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The clinical importance of
metagenomic next-generation
sequencing in detecting
disease-causing microorganisms
in cases of sepsis acquired in the
community or hospital setting

Dan Zhang, Xingxing Li, Yu Wang, Yong Zhao and Hong Zhang*

Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui,
Hefei, China

Objectives: Although metagenomic next-generation sequencing (MNGS) is
commonly used for diagnosing infectious diseases, clinicians face limited options
due to the high costs that are not covered by basic medical insurance. The goal
of this research is to challenge this bias through a thorough examination and
evaluation of the clinical importance of MNGS in precisely identifying pathogenic
microorganisms in cases of sepsis acquired in the community or in hospitals.

Methods: A retrospective observational study took place at a tertiary teaching
hospital in China from January to December 2021. Data on 308 sepsis patients
were collected, and the performance of etiological examination was compared
between mNGS and traditional culture method.

Results: Two hundred twenty-nine cases were observed in the community-
acquired sepsis (CAS) group and 79 cases in the hospital-acquired sepsis
(HAS) group. In comparison with conventional culture, mMNGS showed a
significantly higher rate of positivity in both the CAS group (88.21% vs.
25.76%, adj.P < 0.001) and the HAS group (87.34% vs. 44.30%, adj.P < 0.001),
particularly across various infection sites and specimens, which were not
influenced by factors like antibiotic exposure or the timing and frequency
of mNGS technology. Sepsis pathogens detected by mNGS were broad,
especially viruses, Mycobacterium tuberculosis, and atypical pathogens, with
mixed pathogens being common, particularly bacterial-viral co-detection. Based
on the optimization of antimicrobial therapy using mNGS, 58 patients underwent
antibiotic de-escalation, two patients were switched to antiviral therapy, and
14 patients initiated treatment for tuberculosis, resulting in a reduction in
antibiotic overuse but without significant impact on sepsis prognosis. The HAS
group exhibited a critical condition, poor prognosis, high medical expenses, and
variations in etiology, yet the mNGS results did not result in increased medical
costs for either group.

Conclusions: mMNGS demonstrates efficacy in identifying multiple pathogens
responsible for sepsis, with mixed pathogens of bacteria and viruses being
prevalent. Variability in microbiological profiles among different infection setting
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underscores the importance of clinical vigilance. Therefore, the adoption
of mMNGS for microbiological diagnosis of sepsis warrants acknowledgment

and promotion.

KEYWORDS

community-acquired

sepsis, hospital-acquired sepsis, mMNGS, microorganisms,

optimizing antimicrobial therapy, medical expenses

Introduction

Sepsis, a prevalent and severe clinical condition characterized
by organ dysfunction resulting from immune response dysfunction
caused by infection, has garnered significant attention worldwide
due to its substantial health risks and financial burden (Singer
et al.,, 2016; Rhodes et al., 2017; Buchman et al., 2020). In 2017,
the World Health Organization (WHO) introduced a resolution
stressing the importance of improving the recognition, diagnosis,
treatment, and prevention of sepsis due to the pressing need
for emergency care (WHO, 2017). The management of sepsis
treatment is complicated due to the wide range of pathogenic
infections, the challenge of promptly identifying pathogens, and the
need for precise treatment in the early stages. While culture has
long been viewed as the benchmark for diagnosing sepsis, it does
have some drawbacks. These include the time-consuming nature of
the process, which can take 2-7 days, a low rate of positive results,
susceptibility to contamination, a limited spectrum of pathogen
detection, and vulnerability to the influence of antibiotics. These
constraints may lead to delayed treatment with antibacterial drugs,
excessive use of broad-spectrum antibiotics, a rise in resistance
to microbial drugs, and increased medical costs (Miao et al,
2018). Hence, the identification and prompt detection of pathogens
without the aforementioned issues necessitate the exploration
of a technology. Researchers have shown growing interest in
metagenomic next-generation sequencing (mNGS) technology in
this particular situation.

mNGS employs high-throughput gene sequencing technology
to simultaneously detect the deoxyribonucleic acid (DNA)
or ribonucleic acid (RNA) of all microorganisms present
in clinical samples, enabling the determination of potential
pathogenic microorganism types through database comparison
and bioinformatics analysis (Sharon and Banfield, 2013; Chiu
and Miller, 2019). It has the characteristics of no culture, no
dependence on specific sequence amplification, no bias, less time
consumption, high sensitivity, not affected by a variety of bacterial
species and antibiotic treatment, which is widely used in infectious
diseases (Ishihara et al., 2020; Gu et al., 2021; Miller and Chiu, 2022;
Yang et al., 2022). Prior research have shown that mNGS results
obtain higher positive rate and clinical coincidence rate in sepsis
pathogen detection, which is helpful for medical decision-making,
optimizing antibiotic management and improving prognosis
(Wang et al., 2023; Zuo et al., 2023). Clinicians frequently do not
prioritize utilizing mNGS due to its expensive nature and limited
coverage by health insurance.

Research found that community-acquired sepsis (CAS) makes
up around 70% of sepsis cases (Reinhart et al., 2017), with distinct
pathogen characteristics, treatment strategies, and survival rates
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among CAS and hospital-acquired sepsis (HAS) (Tonai et al,
2022; Kim et al., 2023). While timely administration of effective
antibiotics is crucial in reducing sepsis mortality, the significance
of pathogen culture should not be overlooked (Niederman et al.,
2021). Given the limited exploration of the disparities between CAS
and HAS in existing literature, further investigation into the utility
of mNGS in these contexts is warranted. Therefore, the aim of
this research was to evaluate the medical importance of mNGS in
detecting pathogens and offering treatment recommendations for
sepsis acquired in the community or in a hospital setting.

Materials and methods

Study participants and groups

A retrospective observational study on sepsis was conducted
at a single center, using analytical cross-sectional cohort methods.
Between January 2021 and December 2021, the First Affiliated
Hospital of Anhui Medical University enrolled 308 participants.
Patients were selected if they met specific criteria, including
the third international consensus diagnostic criteria for sepsis
and septic shock (Sepsis-3) from 2016, with a Sequential Organ
Failure Assessment (SOFA) score of >2, being over 18 years old,
providing consent for mNGS examination, having complete clinical
and laboratory data available, and undergoing both mNGS and
conventional culture methods for examination. Participants who
did not meet the study criteria were excluded. This included
individuals under 18 years old, those who refused mNGS
examination, pregnant or lactating individuals, and those with
incomplete or insufficient clinical data.

Patients were categorized into two groups, namely, the CAS
group and the HAS group, based on the location of onset as
documented in the clinical electronic medical record system. The
CAS group consisted of patients who developed sepsis due to
infections acquired prior to hospitalization, as well as those who
exhibited symptoms within 48h of hospitalization during the
incubation period. In contrast, sepsis caused by the aforementioned
infections was classified as HAS if it met the following criteria: (1)
Infections without an indeterminate incubation period beyond 48 h
of admission; (2) Infections with a clearly defined incubation period
that exceeded the average incubation period upon admission; (3)
Infections directly associated with the most recent hospitalization;
(4) Occurrence of new infections in other anatomical sites based
on the original infection; (5) Identification of new pathogens
in addition to known pathogens from the original infection.
Based on the findings from mNGS, sepsis was divided into
two categories: those with positive mNGS results and those
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with negative mNGS results. Utilize a comprehensive approach
that incorporates mNGS and traditional culture findings, clinical
presentation, inflammatory markers, and imaging studies to tailor
and refine therapeutic interventions.

Clinical information collection

Data collected from the electronic medical record system
includes a range of clinical details. These details encompass
demographic information, medical history, infection location,
SOFA score, acute physiology and chronic health evaluation
II (APACHE II) score, length of hospital stay, intensive care
unit (ICU) admission, ICU length of stay, treatments (like
vasoactive drugs, mechanical ventilation, and renal replacement
therapy), and mortality rate. Furthermore, the laboratory results
included various blood parameters such as white blood cell
(WBC) count, neutrophils, lymphocytes, neutrophil to lymphocyte
ratio (NLR), red blood cell (RBC) count, hemoglobin, and
platelets. Additionally, levels of total bilirubin (TBIL), alanine
(ALT), aspartate (AST),
prothrombin time (PT), activated partial thrombin time (APTT),

aminotransferase aminotransferase
prothrombin activity (PTA), fibrinogen, d-dimer (D-D), albumin,
blood urea nitrogen (BUN), serum creatinine (Scr), lactic
acid (Lac), and inflammatory markers like C-reactive protein
(CRP), and procalcitonin (PCT) were recorded. The factors to
be considered in this study also include the administration of
antibiotics, the detecting timing and frequency of the mNGS
technique, adjustment of antimicrobial drugs, and various medical
costs. These costs consist of total hospitalization fees, average daily
hospitalization fees, diagnosis costs (including laboratory diagnosis
costs and clinical diagnosis project fees), integrated medical
service costs (comprising medical service fees, treatment operation
fees, nursing fees, and operation fees), as well as treatment costs
(including western medicine fees, antibacterial drug fees, Chinese
patent medicine fees, and blood fees), and consumables expenses.

Microbiological analyses

Samples from various infection sites of sepsis, including blood,
sputum, bronchoalveolar lavage fluid (BALF), urine, cerebrospinal
fluid (CSF), pleural effusion, ascites, pus, tissue, hydropericardium,
and bone marrow, were collected in accordance with National
Clinical Laboratory Procedures (Shang, 2015). These samples
were expeditiously transferred to the microbiology laboratory
and mNGS Laboratory at the First Affiliated Hospital of Anhui
Medical University for Standard Microbial Culture (Shang, 2015)
and mNGS detection procedures (Lu and Wang, 2020). Various
pathogens were identified through microbial cultivation and
automatic analysis in the microbiology laboratory. Blood culture
was emphasized, with each group necessitating two culture bottles,
one aerobic and one anaerobic. In cases where the infection site
was ambiguous or the specimen was unattainable, a blood specimen
was chosen, and the culture protocol was adjusted according to
the suspected infection site. Performing all culture types for each
patient was deemed unnecessary.
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Metagenomic next-generation sequencing
experiments and data analysis

In accordance with the manufacturer’s guidelines, samples
were processed to extract and purify DNA utilizing the QIAamp
DNA Micro Kit (QIAGEN, Hilden, Germany). Subsequent DNA
library construction was completed using the Qiagen library
construction kit (QIAseq Ultralow Input library kit). Quality
assessment of the library was performed using the Qubit 3.0
Fluorometer (Invitrogen, Q33216) and Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, USA). Following this, sequencing
was conducted on the Illumina Nextseq 550 sequencing platform
(Ilumina, San Diego, USA) with SE75bp sequencing strategy. The
data underwent quality filtering to remove adapters, low-quality,
low-complexity, and short sequences, followed by the utilization of
Scalable Nucleotide Alignment Program (SNAP; v2.0.1) software
to eliminate human-derived sequences aligned with the human
reference database (hg38). Subsequently, the non-human data were
classified by simultaneous alignment to the reference microbial
sequences from bacteria, viruses, fungi, which were obtained
from the NCBI Nucleotide database (https://ftp.ncbinlm.nih.gov/
genomes/) (Chiu and Miller, 2019). Sequence alignment was
performed by BLASTN (v2.11.04) with “megablast” option, and
only reads uniquely aligning to microbial taxa were tallied. The
final microbial identification results for the samples were then
determined. Using peripheral blood samples from healthy donors
as negative controls and sterile deionized water as non-template
controls. Reads per million mapped reads (RPM) was defined as
the number of reads of target pathogen per million of total filtered
reads. The identification of positive criteria is not reliant on any
singular indicator, including but not limited to the number of
identified sequences for particular microorganisms, the ratio of
normalized RPM, or the genome coverage of detected species. The
formula used to determine the normalized RPM of the pathogen
is expressed as follows: RPM of the pathogen = (number of reads
mapped to the pathogen x10°)/(total number of mapped reads
from the given library) (Li et al., 2023b). For bacteria other than
Mycobacterium tuberculosis, fungi other than Cryptococcus, and
parasites, identification was based on sequencing coverage ranking
within the top 10 of all detected pathogens and the absence in the
negative control (NTC), or a sample/NTC RPM ratio exceeding
10. Conversely, for viruses, M. tuberculosis, and Cryptococci,
identification relied on the presence of at least one specific sequence
not found in the NTC, or a sample/NTC RPM ratio >5 (Zhang
etal., 2023).

Statistical analysis

The data were analyzed and graphed using GraphPad-Prism 9.
Continuous variables were depicted as mean =+ standard deviation
(SD) for normally distributed data and as median (25th percentile,
75th percentile) for non-normally distributed data. Inter-group
comparisons for continuous variables were conducted using
independent sample t-tests or non-parametric tests. Categorical
variables were expressed as numerical values and percentages,
and evaluated through chi-square or Fisher’s exact test. P-values
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TABLE 1 The baseline characteristics of participants.

10.3389/fmicb.2024.1384166

Clinical feature CAS group HAS group P-value adj. P
Male N (%) 62.01% (142/229) 67.09% (53/79) 0.4192 0.6627
Age (years) 58 (48-69.50) 57 (45-68) 0.7876 0.7876
SOFA score 5(3-9) 8(5-12) <0.0001 0.0004
APACHE II score 14 (9-21) 18 (12-23) 0.0065 0.0321
Length of admission (day) 22 (13-35.50) 32 (25-42) <0.0001 0.0003
ICU admission (%) 43.23% (99/229) 67.09% (53/79) 0.0003 0.0018
ICU length of stay (day) 16 (9-24) 19 (13-31) 0.0413 0.1552
Past history

Hypertension (%) 37.99% (87/229) 39.24% (31/79) 0.8439 0.9672
Diabetes (%) 16.16% (37/229) 20.25% (16/79) 0.4056 0.9390
Cardiopathy (%) 9.61% (22/229) 21.52% (17/79) 0.006 0.0584
Neurogenic disease 10.48% (24/229) 20.25% (16/79) 0.0259 0.2104
Chronic kidney dysfunction (%) 10.04% (23/229) 6.33% (5/79) 0.3735 0.9390
Chronic obstructive pulmonary disease (%) 9.17% (21/229) 7.59% (6/79) 0.819 0.9672
Immune-related diseases (%) 28.82% (66/229) 32.91% (26/79) 0.5687 0.9390
Smoking 14.41% (33/229) 8.86% (7/79) 0.2472 0.8630
Drinking 10.48% (24/229) 6.33% (5/79) 0.3726 0.9390
No underlying diseases 26.20% (60/229) 16.46% (13/79) 0.0919 0.5375
Treatments

Vasoactive drug therapy (%) 39.30% (90/229) 68.35% (54/79) <0.0001 0.0004
Mechanical ventilation (%) 37.12% (85/229) 62.03% (49/79) 0.0001 0.0005
Duration of mechanical ventilation (day) 11 (7-20) 15 (10.50-22.50) 0.0729 0.2031
Renal replacement therapy (%) 15.72% (36/229) 24.05% (19/79) 0.1242 0.2330
Duration of renal replacement therapy (hour) 87 (40.63-205.2) 64 (40-128.5) 0.363 0.3630
Glucocorticoid therapy (%) 63.32% (145/229) 81.01% (64/79) 0.0034 0.0135
Blood products therapy (%) 68.56% (157/229) 97.47% (77179) <0.0001 0.0001
Case fatality rates 26.64% (61/229) 36.71% (29/79) 0.114 0.3045

CAS, community-acquired sepsis; HAS, hospital-acquired sepsis; SOFA, sequential organ failure assessment; APACHE II, acute physiology and chronic health evaluation II; ICU, intensive care

unit; adj.P, Adjusted P-value. The bold values indicate statistical significance.

were adjusted using the Holm-Sidak method. G*Power software
was used to calculate sample size and statistical testing power. A
significance level of adjusted P (adj.P) value < 0.05 was utilized to
determine statistical significance.

Results

Baseline characteristics of study
participants

Table 1 shows the distribution of baseline characteristics of 308
participants between CAS and HAS, including clinical features, past
history, treatments, and mortality rate. Of the 308 participants,
74.35% (229/308) belonged to CAS, while 25.65% (79/308)
belonged to HAS. The median days of admission were 22 for CAS
and 32 for HAS, with a significant difference (adj.P = 0.0003).
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The median age for both groups was similar, with 58 years for
CAS and 57 years for HAS (adj.P = 0.7876). The medical histories
of the two cohorts of patients encompass a range of conditions
such as hypertension, diabetes, heart disease, neurogenic disease,
chronic renal insufficiency, chronic obstructive pulmonary disease,
and immune-related diseases, etc. Analysis of Table 1 reveals no
statistically significant difference in medical history between the
two groups (adj.P > 0.05). Additionally, the severity of the patient’s
condition was assessed using SOFA scores and APACHE II scores,
which indicated that HAS had a higher severity. Furthermore,
HAS had a higher ICU admission rate, longer hospitalization
time, received more vasoactive drugs and mechanical ventilation,
and required more glucocorticoid therapy, and blood products
therapy. HAS had a higher likelihood of developing multiple
organ failure and a slightly increased mortality rate. However,
there was no statistical difference in mortality rate compared
to CAS.
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Analysis of laboratory data among the CAS
and HAS groups

When examining the correlation between laboratory results in
CAS and HAS groups during sepsis diagnosis, it was discovered
that the HAS group had lower levels of RBC, hemoglobin, and
PTA compared to the CAS group (all adj.P < 0.05). Furthermore,
the levels of BUN and PT were elevated in the HAS group
compared to the CAS group, with statistically significant differences
observed (all adj.P < 0.05). The results suggest that people in
the HAS category had a higher likelihood of experiencing anemia,
impaired blood clotting, and damage to kidney function (see
Supplementary Table 1).

Comparison clinical diagnostic outcome of
mMNGS and traditional culture

The study found that the detection rates of mNGS and
traditional culture were 87.99% (271/308) and 30.52% (94/308) in
every instance. There were 387 mNGS specimens and 552 culture
specimens collected for mNGS and culture detection, with positive
rates of 85.27% (330/387) and 22.28% (123/552), respectively.
Certainly, the mNGS positive rate was increased by almost 60%
in both cases and samples compared to traditional culture, a
statistically significant difference shown in the Chi-squared test of
positive rate (adj.P < 0.001). Moreover, within the CAS cohort, the
detection rate of mNGS (202/229, 88.21%) was approximately 63%
greater than that of conventional culture (59/229, 25.76%), showing
a statistically significant disparity (adj.P < 0.001). Similarly, the
HAS group also showed comparable results [(69/79, 87.34%) vs.
(35/79, 44.30%), adj.P < 0.001; Figure 1A]. These findings suggest
that the detection rates of mNGS were similar in the CAS and
HAS groups, and both groups had significantly higher detection
rates compared to traditional culture. Further study showed that
90 patients were positive for mNGS and traditional culture, and the
coincidence rates of mNGS and traditional culture in detecting the
same pathogen were 81.03% (47/58) for CAS and 84.35% (27/32)
for HAS, respectively.

The distribution of infection sites in this study is shown
in Figure 2. Obviously, lower respiratory infection was the most
common in both the CAS group and HAS group. In each infection
site, the positive rate of mNGS was higher than that of culture,
as shown in Figure 1B, particularly in lower respiratory infection
(adj.P < 0.001), bloodstream infection (adj.P < 0.001), central
nervous system (CNS) infection (adj.P < 0.001), and abdominal
infection (adj.P < 0.01). However, the disparity in cases of urinary
infection, skin and soft tissue infection, and pericarditis did not
reach statistical significance due to the limited sample size. Similar
results were also seen in the CAS group (Figure 1C). Nevertheless,
within the HAS cohort, notable variances in detection rates were
solely noted in lower respiratory (Figure 1D).

Figure 3 shows the distribution of assorted samples. The most
common mNGS specimen was blood (175/387, 45.22%), followed
by BALF (72/387, 18.60%), CSF (60/387, 15.50%), sputum (45/387,
11.63%), ascites (14/387, 3.62%), and pus (8/387, 2.07%), pleural
effusion (7/387, 1.81%), urine (2/387, 0.52%), skin and soft tissue
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(2/387, 0.52%), pericardial effusion (1/387, 0.26%), and bone
marrow (1/387, 0.26%) in all cases. These results demonstrate
a notably higher positive rate of mNGS compared to culture,
particularly in blood (adj.P < 0.001), sputum (adj.P < 0.01), BALF
(adj.P < 0.001), CSF (adj.P < 0.001; Figures 3A-C). The CAS
group found similar results in subtypes of blood (adj.P < 0.001),
sputum (adj.P < 0.01), BALF (adj.P < 0.001), and CSF (adj.P <
0.001; Figures 3D-F). Likewise, similar findings were observed in
blood, and BALF in the HAS group, showing statistically significant
variances (Figures 3G-1I).

Comparison of pathogenic characteristics
by mNGS and traditional culture

In this study, mNGS detected 797 pathogens, including 387
bacteria, 252 viruses, 137 fungi, and 21 atypical pathogens. The
detection rates of bacteria and fungi using mNGS were markedly
superior to those achieved through traditional culture methods (all
adj.P < 0.001). Regarding the examination of bacteria, the detection
rates of mMNGS and conventional culture for gram-negative bacteria
were notably greater than those for gram-positive bacteria (all
adj.P < 0.001). Moreover, mNGS identified viruses and unusual
pathogens that are undetectable through conventional methods,
demonstrating its distinct advantages (Figure 4A, all adj.P < 0.001).
Similar findings were observed in the CAS and HAS groups, as
shown in Figures 4B, C. Positive results from mNGS for different
pathogens were significantly higher in both groups than traditional
culture methods (all adj.P < 0.001). However, it is important to note
that atypical pathogens were exclusively identified through mNGS
only in the CAS group.

The research also found that mNGS detection of mixed
pathogens named after two or more pathogens was more common
(174/271, 64.21%), while traditional culture was more frequently
used for single pathogen (65/94, 69.15%). In both the total cases
and CAS, the positive rates of mNGS significantly exceeded that
of traditional culture, whether it was for single pathogen or mixed
pathogens (all adj.P < 0.05). Similarly, mNGS was superior to
traditional culture in detecting mixed pathogens in the HAS group
(adj.P < 0.001). Nevertheless, when identifying a single pathogen,
there was no statistically significant variance found between the
two techniques (Figure 4D, adj.P = 0.2595). The findings clearly
show that the detection rate of mixed pathogens using mNGS was
significantly higher than that of single pathogens across different
subgroups (adj.P < 0.001 for overall cases, adj.P < 0.001 for CAS,
adj.P < 0.001 for HAS).

Analysis of pathogens detected by mNGS
and traditional culture

Subsequently, we further studied the common pathogen types
in the CAS and HAS groups. In the CAS group, Human herpesvirus
(n = 121) was found to be the most hackneyed among the top
10 pathogens tested by mNGS, while Klebsiella pneumoniae (n =
39), and Aspergillus (n = 37) were the most frequent bacteria and
fungi. However, only bacteria and fungi were detected in traditional
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FIGURE 1

Kk

Comparison of positivity rates between metagenomic next-generation sequencing (mMNGS) and traditional culture methods. (A) The positive rates of
mNGS outweigh the culture method in all cases, samples, HAS, and CAS (all adj.P < 0.001). (B) The detection rate of mNGS in different infection
locations was higher compared to culture in all patients, particularly in cases of lower respiratory infections, bloodstream infections, central nervous
system infections, and abdominal infections (all adj.P < 0.01). (C) In the CAS group, mNGS showed higher positivity rates than culture in lower
respiratory infections, bloodstream infections, and central nervous system infection sites were higher than in culture (all adj.P < 0.001). (D) The
detection rate of mMNGS in the lower respiratory tract was higher than that of culture in the HAS group (adj.P < 0.001). Significance levels: “P < 0.01;
P < 0.001; ns, no statistically significant variation.
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FIGURE 3
omparison of the positive rate of MNGS and traditional culture in different samples. (A—C) In every patient, the detection rate of mMNGS in each
specimen was notably higher compared to culture, particularly in blood, sputum, BALF, CSF (all adj.P < 0.01). (D—F) Within the CAS cohort, the
detection rate of mMNGS was significantly higher than that of traditional culture for various sample types including blood, sputum, BALF, and CSF (all
adj.P < 0.01). (G-1) In the HAS group, mNGS results showed a higher positive rate in blood and BALF (all adj.P < 0.01). CSF, cerebrospinal fluid; BALF,
ronchoalveolar lavage fluid. Significance levels: **P < 0.01; P < 0.001; ns, no statistically significant variation.
b hoalveolar | fluid. Signifi levels: P < 0.01; 7P < 0.001 tatisticall ficant t

cultures, with K. pneumoniae (n = 15) and Candida albicans (n =
16) being the commonest. Additionally, mNGS detected 19 cases
of M. tuberculosis, demonstrating advantages beyond traditional
culture. In the HAS group, Human herpesvirus (n = 42) remained
the most frequently identified pathogen using mNGS, although the
bacteria and fungi detected differed compared to those found in
the CAS group. The most frequently bacteria were Acinetobacter
baumannii (n = 25), and the fungi detected were C. albicans (n

23). Similarly, the most frequently found bacteria and fungi
identified through conventional culture methods were comparable
to those identified through mNGS. Nevertheless, whether in the
CAS group or the HAS group, the rates of bacterial and fungal
detection by traditional culture were significantly lower compared
to mNGS. The top 10 specific pathogen is illustrated in Figure 5.
Following that, we conducted a detailed analysis of prevalent Gram-

positive bacteria (top 5), Gram-negative bacteria (top 5), fungi (top
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5), various viruses, and atypical pathogens. For further information,
please consult Supplementary Figure 1A.

Comparison of pathogen types between
single pathogen and mixed pathogens

Next, we conducted an etiological analysis at the level of single
pathogen and mixed pathogens. Regarding the single pathogen
identified through the aforementioned methodologies, mNGS
revealed that bacteria were the predominant pathogen in the
CAS group, followed by viruses, fungi, and atypical pathogens.
However, traditional culture methods solely detected bacteria
and fungi. In the HAS group, mNGS predominantly identified
bacteria, followed by fungi and viruses, with no atypical pathogens
detected. Conversely, traditional culture methods exhibited limited
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FIGURE 4

Comparison of pathogen traits identified by mNGS and conventional culture methods. (A) Comparison of pathogen types and positive rate in all
patients (all adj.P < 0.001). (B) Comparison of pathogen types and positive rate in CAS group (all adj.P < 0.001). (C) Comparison of pathogen types
and positive rates in the HAS group (all adj.P < 0.001, except for atypical pathogens). (D) mNGS was more common for mixed pathogen infections,
while traditional culture was more frequent for single pathogen detection. With the exception of identifying a single pathogen in the HAS group, the
positive rate of mNGS significantly surpassed that of traditional culture (all adj.P < 0.05). Significance levels: P < 0.05; **P < 0.001; ns, no statistically
significant variation.
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FIGURE 5
Distribution of pathogen species detected by mNGS and culture. Tested pathogens are represented on the X-axis by their counts.
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detection of pathogenic types, with bacteria being the most
frequently identified.

This study demonstrates a higher prevalence of mixed
pathogens in the etiology of sepsis. The utilization of mNGS
revealed that bacterial-viral co-detection were more frequently
observed in both the CAS and HAS groups, whereas traditional
culture methods indicated a higher incidence of bacterial-fungal
co-infections specifically in the CAS group. Conversely, multiple
bacterial infections were more commonly observed in the HAS
group. These findings highlight that the single pathogen commonly
found in mNGS-based pathogen detection in sepsis is bacteria, and
bacterial-viral co-detection is the most prevalent form of mixed
pathogens (Table 2). For specific common bacterial strains, please
refer to Supplementary Figures 1B-D.

Analyze the impact of antibiotic exposure,
timing and frequency of mNGS testing on
MNGS results

The purpose of this research was to investigate how antibiotics
exposure, timing, and frequency of mNGS testing could affect the
results of mNGS. The results showed that conducting multiple
mNGS tests in individuals with CAS and HAS led to a higher
rate of positive results compared to a single test, although this
discrepancy was not statistically significant (all adj.P > 0.05).
Furthermore, the positive rate of mNGS was not affected by
antibiotics exposure or the timing of mNGS detection, regardless
of patients’ group (CAS or HAS). Additionally, it was noted
that the mortality rate was elevated in the mNGS positive group
when compared to the mNGS negative group within both the
CAS and HAS groups. It is important to mention that there was
no statistically significant distinction between the two groups, as
shown in Supplementary Table 2.

Optimizing antimicrobial therapy based on
MNGS and culture results

This study examined the optimization of antimicrobial therapy
for sepsis by utilizing both mNGS and culture results. In contrast to
the clinical manifestations, inflammatory markers, routine culture
findings, and therapeutic outcomes of sepsis, the positive mNGS
results in 235 cases demonstrated a favorable influence on clinical
management. These findings contribute to the elucidation of
pathogenic diagnosis and can be regarded as a well-matched
clinical diagnostic group. Conversely, the mNGS results of 73
cases did not exert any discernible impact on clinical treatment.
Out of these, 36 cases were positive for mNGS but deemed to
be mismatched with the clinical diagnosis group, while 37 cases
were negative for mNGS. In the CAS group, there were 126 cases
where antimicrobial therapy was optimized based on mNGS and
traditional culture results. Among these cases, 41 cases had down-
regulated antibiotics, two cases switched to antiviral treatment,
and 14 cases switched to anti-tuberculosis therapy. Additionally,
within the cohort of patients in the HAS group, a total of 48
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TABLE 2 Comparison of types between single pathogen and mixed
pathogens.

Group/type CAS group HAS group
mMmNGS  Culture mNGS  Culture

Single pathogen 82 44 15 22

Bacteria 40 35 9 20

Fungi 11 9 4 2

Viruses 27 2

Atypical pathogens 4

Mixed pathogens 120 15 54 13

Multiple bacteria 10 6 11 9

Multiple viruses 5 3

Multiple fungi 1 1 1

Bacteria combined 13 8 9 3

with fungi

Bacteria combined 41 15

with viruses

Bacteria combined 2

with atypical

pathogens

Viruses combined 7

with atypical

pathogens

Viruses combined 10 4

with fungi

Bacteria, viruses, and 26 12

fungi

Bacteria, viruses, and 3

atypical pathogens

Viruses, fungi, and 1

atypical pathogens

Bacteria, viruses, 1

fungi, and atypical

pathogens

mNGS positive patients underwent optimization of their anti-
infection regimens, with 17 cases having antibiotic treatment
down-regulated. Nevertheless, in the mismatch clinical diagnosis
group, there were six cases where the antibiotic regimen was
optimized using traditional culture results, of which one case was
down-regulated in the CAS and HAS groups, respectively (Table 3).

Analyze the influence of optimizing
antimicrobial therapy on mortality rates

When considering the impact of optimizing antimicrobial
therapy on mortality rates, it was noted that patients with HAS
had a higher mortality rate than patients with CAS, regardless of
whether treatment was optimized using mNGS co-culture results or
solely mNGS results. However, this difference was not statistically
significant (all adj.P > 0.05). Due to the small sample size, there
was still no significant difference in mortality rates between CAS
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TABLE 3 Optimizing antimicrobial therapy and mortality rate analysis based on mNGS and culture results.

Project CAS group HAS group

Number Mortality rate Number Mortality rate
mNGS positive
Match clinical diagnosis 169 27.81% (47/169) 66 40.91% (27/66) 0.0612 0.5313
Adjusting treatment 126 30.95% (39/126) 48 45.83% (22/48) 0.0767 0.5843
Adjustment by mNGS and culture 38 50% (19/38) 20 60% (12/20) 0.5826 0.9978
Up-escalated 26 12
De-escalated 12 8
Adjustment by mNGS 88 22.73% (20/88) 28 35.71% (10/28) 0.2159 0.9122
Up-escalated 43 19
De-escalated 29 9
Adjust to antiviral treatment 2 0
Adjust to anti-tuberculosis treatment 14 0
No changes 43 18.60% (8/43) 18 27.78% (5/18) 0.4989 0.996
Mismatch clinical diagnosis 33 24.24% (8/33) 3 33.33% (1/3) >0.9999 1
Adjustment by culture 4 100% (4/4) 2 50% (1/2) 0.3333 0.974
Up-escalated 3 1
De-escalated 1 1
Adjustment by experience 12 8.33% (1/12) 1 0% (0/1) >0.9999 1
Up-escalated 8 1
De-escalated 2 0
Adjust to anti-tuberculosis treatment 2 0
No changes 17 17.65% (3/17) 0 0% (0/0) >0.9999 1
mNGS negative 27 22.22% (6/27) 10 10% (1/10) 0.6471 0.9981
Adjustment by experience 17 23.53% (4/17) 7 14.29% (1/7) >0.9999 1
Up-escalated 10 6
De-escalated 4 1
Adjust to antiviral treatment 1 0
Adjust to anti-tuberculosis treatment 1 0
Adjust to antibacterial treatment 1 0
No changes 10 20% (2/10) 3 0% (0/3) >0.9999 1

and HAS patients in the mNGS positive mismatch clinical diagnosis
group when optimizing treatment based on traditional culture
results. However, for the patients that were left, there was no
significant difference in mortality rates between the two groups
after accounting for antimicrobial treatment guided by clinical
knowledge (Table 3).

Comparison of medical costs between CAS
and HAS

It is widely recognized that sepsis frequently manifests as a
critical condition accompanied by substantial treatment expenses,
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thereby imposing a significant economic burden on both families
and society. In order to gain deeper insights into the medical
expenses of sepsis patients, this study incorporates various
components of medical expenditure, including total hospitalization
costs, average daily hospitalization expenses, diagnostic charges,
comprehensive medical service fees, treatment expenditures, and
consumables expenses. All monetary figures are denominated in
US dollars. All medical expenses are expressed in US dollars,
utilizing the exchange rate of Renminbi (RMB) to United States
dollar (USD) as of September 3, 2023. The findings indicate that
the aforementioned expenditures incurred by patients with the
HAS group were considerably greater compared to those with
the CAS group, and this disparity was statistically significant
(all adj.P < 0.01). Subsequently, to assess the potential influence
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of mNGS results on healthcare costs, the investigation revealed
no association between divergent mNGS outcomes and various
medical expenditures, irrespective of the CAS or HAS group
(Supplementary Tables 3-5, all adj.P > 0.05).

Discussion

The guidelines set forth by the Surviving Sepsis Campaign
recommend the prompt initiation of antibiotic treatment in
adults deemed at risk of sepsis or septic shock, ideally within
1h of identification (Evans et al., 2021). This practice is widely
acknowledged as a crucial intervention to decrease mortality
rates in septic patients, as supported by various studies (Kumar
et al., 2006; Seymour et al., 2017; Bollinger et al., 2023). Factors
that primarily influence the suitable antimicrobial treatment
include pathogenic microorganisms, infection source (community
or hospital), infection location, immune system status, existing
medical conditions, local epidemiological information, and the
presence of risk factors for antimicrobial resistance in patients
(Gage-Brown et al., 2022). Nevertheless, the low pathogen detection
rate of sepsis poses a considerable obstacle to quickly and accurately
determining the cause. The impartiality of mNGS renders it highly
promising for overcoming diagnostic challenges in scenarios where
conventional methods may prove inadequate, such as culture-
negative sepsis or polymicrobial infections. Thus, the objective of
this study is to assess the efficacy and significance of mNGS in the
identification of sepsis, particularly in filling the gap in pathogen
detection for both community and hospital-acquired cases, with the
aim of informing clinical practice and optimizing patient care.

The findings indicated that the HAS group exhibited elevated
scores on the APACHE II and SOFA scales, along with an
increased rate of ICU admission, prolonged hospital stays, and a
higher likelihood of receiving mechanical ventilation, vasoactive
drugs, blood products, and glucocorticoid treatment. These results
significantly differed from those of the CAS group, aligning with
previous research findings (Westphal et al., 2019; Tonai et al., 2022).
The findings suggest a higher incidence of organ dysfunction in
patients with HAS. Differently, our analysis identified a greater
need for blood products and glucocorticoid therapy in this
cohort. Additionally, our investigation uncovered manifestations
of anemia, coagulation abnormalities, and renal dysfunction in the
HAS group, potentially contributing to the observed distinctions.
Meanwhile, our study revealed that there were no statistically
significant disparities in the prevalence of past history among
sepsis patients originating from CAS and HAS, suggesting that
the medical history of sepsis patients remains basic consistent
regardless of the infection place. We recommend that clinicians
should contemplate employing similar diagnostic and therapeutic
approaches for both patient cohorts.

Consistent with prior research (Duan H. et al., 2021; Sun et al.,
2022), our study also found a notably elevated detection rate of
mNGS in contrast to conventional culture techniques. But our
research results also indicate that the high positivity rate of mNGS is
not affected by the infection site, different infection sites, or sample
types, which is encouraging. In addition, our study emphasizes
the broader range of pathogens and higher sensitivity of mNGS
in identifying sepsis-causing pathogens compared to conventional
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culture techniques, especially in detecting viruses and unusual
pathogens. This finding underscores the robustness of mNGS
in identifying pathogens, regardless of the infection site, sample
type, community or nosocomial source, or etiological classification.
It should be noted that antibiotic exposure may diminish the
sensitivity of blood culture, whereas its impact on mNGS is minimal
(Miao et al.,, 2018; Cheng et al., 2019). Our findings indicate that
antibiotic exposure both prior to and following hospitalization, as
well as varying detection opportunities, did not significantly impact
the positivity rate of mNGS. However, an increase in detection
frequency was observed to potentially enhance the positivity rate
of mNGS, albeit without statistical significance. Thus, in the
context of pathogen detection for sepsis, mNGS demonstrates a
superior positive detection rate for pathogens when compared to
conventional culture methods. This article posits that variables such
as infection site, infection source, sample type, antibiotic exposure,
and detection time have minimal influence, thereby suggesting that
mNGS is a more efficient approach for pathogen identification.

As a genetic diagnostic tool, mNGS presents the added
benefit of not necessitating prior screening for a specific range
of etiologies during pathogen identification. This is especially
advantageous when traditional culture methods fail to detect
microbial agents such as M. tuberculosis, mycoplasma, chlamydia,
and viruses in a timely manner. Previous retrospective studies
have demonstrated that patients with sepsis complicated by
viral infection exhibit a more severe clinical presentation
W. et al, 2021).
Nevertheless, the identification of viruses presents a significant

and a less favorable prognosis (Duan L.

obstacle for healthcare professionals. Our research revealed that
Human herpesvirus was the predominant pathogen in cases
of sepsis when utilizing mNGS. In the context of Human
herpesviruses, populations generally display susceptibility. A
thorough evaluation is necessary in a clinical setting, incorporating
clinical manifestations, inflammatory markers, specific viral load
quantification, as well as serum levels of immunoglobulin G
and immunoglobulin M, to ascertain the existence of active
infection. This finding underscores the importance of recognizing
viral infection in the diagnosis and management of sepsis,
warranting adequate attention. Our research indicated that
bacteria, particularly Gram-negative bacilli, were predominant
in the identification of sepsis pathogens through mNGS and
conventional culture techniques. In cases of CAS and HAS, K.
pneumoniae and A. baumannii were the bacteria most commonly
identified using the methods mentioned. These results align with
previous studies but highlight the superior sensitivity of mNGS
over traditional culture for bacterial detection in sepsis (Geng et al.,
2021; Sun et al., 2022; Qin et al., 2023; Zhou et al., 2023).

Sepsis caused by M. tuberculosis is commonly seen in
individuals with human immunodeficiency virus (HIV), but it
can also occur in those without HIV, a fact often overlooked
by healthcare professionals. A delay in initiating anti-tuberculosis
treatment in cases of sepsis is associated with increased mortality
rates (Adegbite et al., 2023). The accurate diagnosis of M.
tuberculosis septicemia is of significant importance, yet it is
frequently misdiagnosed and overlooked in clinical practice.
Our study found that mNGS method successfully identified
19 cases of M. tuberculosis that were missed by conventional
culture methods, leading to improved detection capabilities
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and significantly reduced detection time. However, the lack of
supporting literature necessitates further investigation through
future research collaborations to confirm this finding across various
patient populations and medical settings. Overall, mNGS shows
distinct benefits in identifying M. tuberculosis. In the realm of
fungal detection, traditional culture methods are characterized
by their time-consuming and labor-consuming, whereas mNGS
demonstrates superior sensitivity and specificity. Our research
revealed that Aspergillus and C. albicans were prevalent fungi
identified through mNGS and traditional culture, respectively,
while mNGS also detected challenging-to-culture strains such as
Pneumocystis Jirovecii and Mucoraceae. Overall, discrepancies in
the strains detected by mNGS and culture techniques highlight
the comprehensive and sensitive nature of mNGS, enabling the
identification of elusive strains.

The advancement of detection techniques has led to a gradual
rise in the identification rate of atypical pathogens, dispelling
the longstanding notion that they are rare pathogen. On the
contrary, these pathogens are quite prevalent and often give rise
to sporadic or epidemic outbreaks. This study utilized mNGS to
identify five atypical pathogens that are challenging to detect using
conventional culture methods, demonstrating the efficacy of mNGS
for pathogen detection. Notably, Chlamydia psittaci, a rare clinical
strain, was detected through mNGS in this study. Chlamydia
psittaci, a zoonotic pathogen, frequently presents with atypical
symptoms resembling respiratory tract infections, such as high
fever, headache, and cough, ultimately progressing to pneumonia
and multi-organ failure (Zhang et al., 2020). The shortcomings
of traditional etiological and serological detection techniques
contribute to low positivity rates and potential misdiagnoses,
underscoring the need for alternative methods like mNGS (Zhang
etal., 2020; Liang et al., 2022). This research emphasizes the clinical
advantages of mNGS in identifying sepsis-causing pathogens,
particularly in challenging cases.

Additionally, this study observed that mNGS not only
identified the types of pathogens in sepsis patients, but also revealed
a higher rate of mixed pathogen infections, which contradicts the
findings of traditional culture-based detection methods. Similar
findings were also reported in a study investigating pathogen
detection in the blood of critically ill patients, suggesting that
mNGS outperforms blood culture in detecting mixed infections
(Geng et al., 2021). Given these circumstances, it is imperative for
clinicians to promptly identify the presence of mixed pathogen
infections in sepsis patients and intervene early, as this could
potentially benefit the patients. The results of the research showed
significant differences in the microorganisms detected using mNGS
and conventional culture techniques in cases of sepsis acquired in
the community or in hospitals, especially when multiple pathogens
were involved. mNGS detection exhibited a higher prevalence of
bacterial combined viral among CAS and HAS, whereas traditional
culture methods identified a greater number of bacterial combined
fungal infections in the CAS group and multiple bacterial infections
in the HAS group. These variations may be ascribed to factors such
as patient origin, immune status, infection sites, local epidemic
strains, and pathogen selectivity, antibiotic usage.

However, in sepsis pathogen detection, distinguishing between
infection, colonization, and contamination is challenging for
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healthcare professionals. To reduce inaccuracies, measures like
using positive and negative controls and following standard
procedures are taken. Aseptic techniques were used in this study
during sample collection and testing to prevent contamination.
The identification of pathogenic microorganisms based on
comprehensive analysis and judgment of the location of infection,
microbial properties, patient symptoms, inflammatory markers,
imaging findings, and inspection report (Li et al., 2023a). In
the analysis of the mNGS report, pathogenic microorganisms,
commensal microorganisms, and contaminants are differentiated
based on criteria such as confidence level, specific sequence count,
relative abundance, and coverage (Wang, 2021).

Subsequently, we conducted a more comprehensive
investigation into the optimization of antimicrobial therapy
based on the outcomes obtained from mNGS and/or conventional
culture methods. Our findings revealed that among the 180
patients, treatment adjustments were made, with 60 patients
reducing antibiotic usage, two patients discontinuing antibiotics
in favor of antiviral therapy, and 14 patients transitioning to
anti-tuberculosis treatment. These interventions successfully
circumvented the misuse and excessive utilization of antibiotics,
thereby optimizing their rational application and effectively
mitigating the emergence of antibiotic resistance. Nevertheless,
when considering the utilization of mNGS co-culture results vs.
solely optimizing treatment with mNGS results, it was noted that
the mortality rate among HAS patients was higher compared
to CAS patients, but the disparity was not deemed statistically
significant (all P > 0.05). From a clinical standpoint, the elevated
mortality rate among HAS patients aligns with previous research
trends (Tonai et al., 2022). Furthermore, when considering
statistical power calculations, utilizing an effect size of 0.5 and
a total sample size of 58 adjusted by mNGS and culture results
yielded a calculated statistical power of 0.96. Similarly, with
an effect size of 0.5 and a total sample size of 116 adjusted by
mNGS, the calculated statistical power was 0.99. Although the
observed difference did not reach statistical significance at the
present sample size, the calculated statistical power indicates that
the sample size may have been insufficient to detect a difference
between the two groups. Therefore, the conclusion regarding the
higher mortality rate in patients with HAS, while not statistically
significant, may still suggest a potential trend. Notably, recent
research has demonstrated contrasting findings, suggesting that
tailoring antibiotic regimens using mNGS could enhance survival
rates in sepsis patients (Zuo et al., 2023). The variations in research
findings may be ascribed to factors such as the etiology of sepsis,
location of infection, severity of the condition, sample size, and
overlooking potential confounding variables such as the results
of RNA detection in samples. Consequently, further inquiry is
warranted to elucidate this matter.

The cost of sepsis treatment exhibits considerable variation
across different countries, generally being quite high (van den
Berg et al., 2022). Currently, there is a scarcity of data regarding
the medical expenses associated with CAS and HAS. Our study
demonstrates a significant disparity in medical costs between
patients with HAS and those with CAS, with the former
incurring substantially higher expenses. This statistically significant
difference underscores the heavier financial burden faced by
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patients with HAS, thereby emphasizing the need for clinicians
to prioritize the prevention of nosocomial infections. The early
identification and prompt treatment of sepsis, as well as the
prevention of its progression, are crucial in reducing the overall
hospitalization burden associated with sepsis in a clinical setting
(Paoli et al., 2018). Consequently, we conducted a comprehensive
investigation into the influence of mNGS results on medical
expenditures. In the context of expenses associated with sepsis
treatment, mNGS does not yield substantial advantages. Given
the high sensitivity of mNGS in identifying diverse bacterial
species, medical professionals should consider prioritizing its early
implementation over alternative approaches.

Our study is subject to certain limitations in terms of
research design, interpretation of mNGS results, and evaluation
of clinical value. It is crucial to mention that this research is
a retrospective study carried out at one center, with a limited
sample size. Consequently, while certain trends were observed
in the context of CAS and HAS, statistical significance was not
achieved. To address this, we plan to expand our sample size by
including data from multiple centers in future research. Secondly,
our findings indicate that mNGS identified a higher prevalence
of mixed etiological infections in the etiological identification
of sepsis. This paper solely examines the prevalent pathogen
types in mixed infections, neglecting to specifically analyze the
composition of mixed etiology, thereby leading to an inadequate
comprehension of pathogenic microorganisms. Consequently, it
is imperative to undertake further endeavors to scrutinize the
precise types of mixed pathogens for enhanced sepsis treatment.
Moreover, this study fails to optimize the processes of mNGS and
traditional culture in the evaluation of clinical value. It does not
provide evidence on the potential impact of early mNGS detection
in sepsis on optimizing disease progression, reducing medical
intervention and costs, and improving prognosis, further research
is warranted.

Conclusion

Overall, mNGS technology demonstrates superiority over
traditional culture techniques in identifying the causative agent
of sepsis, regardless of factors such as antibiotic exposure, time
to detection, sampling frequency, infection site, or sample type.
mNGS is particularly effective in detecting polymicrobial infections
involving bacteria and viruses, enabling the identification of viral,
atypical, and M. tuberculosis pathogens that may be overlooked
by conventional cultures. Optimizing therapy with mNGS reduces
antibiotic overuse without compromising prognosis. Visibly,
mNGS presents distinct benefits in the realm of microbial
diagnosis and antibiotic selection for sepsis, bearing significant
clinical importance. The severe illness and financial burden
experienced by patients with HAS underscore the necessity of
infection control measures in healthcare settings. Our future
research endeavors will focus on an optimization of the clinical
implementation of mNGS and conventional culture techniques,
with the aim of elucidating the specific effects of mNGS on
sepsis outcomes, healthcare delivery, economic implications, and
future prospects.
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A total of 55 food and clinical S. Schwarzengrund isolates were assayed for
plasmid content, among which an IncFIB-IncFIC(FIl) fusion plasmid, conferring
streptomycin resistance, was detected in 17 isolates. Among the 17 isolates, 9
were food isolates primarily collected from poultry meat, and 8 clinical isolates
collected from stool, urine, and gallbladder. SNP—based phylogenetic analyses
showed that the isolates carrying the fusion plasmid formed a subclade indicating
the plasmid was acquired and is now maintained by the lineage. Phylogenetic
analysis of the plasmid suggested it is derived from avian pathogenic plasmids
and might confer an adaptive advantage to the S. Schwarzengrund isolates
within birds. IncFIB-IncFIC(FII) fusion plasmids from all food and three clinical
isolates were self-conjugative and successfully transferred into E. coli J53 by
conjugation. Food and clinical isolates had similar virulome profiles and were
able to invade human Caco-2 cells. However, the IncFIB-IncFIC(FII) plasmid did
not significantly add to their invasion and persistence potential in human Caco-
2 cells.
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Introduction

Salmonella is an enteric pathogen that invades the gut through
contaminated food (Hallstrom and McCormick, 2011; Fabrega and
Vila, 2013). They are Gram-negative, facultative anaerobes with food
animal reservoirs, such as chickens, cows, turkeys, and pigs (Andino
and Hanning, 2015). There is an estimated more than 1 million human
cases of Salmonella infection each year in the U.S. with approximately
20,000 hospitalizations and 400 deaths (Scallan et al., 2011).
Salmonella infections can be classified as either typhoidal (human
specific), or non-typhoidal Salmonellosis (broad host range; Aarestrup
et al., 2007). A significant rise of the Salmonella Schwarzengrund
serovar in countries such as Thailand, Slovakia, New Zealand,
Venezuela, the U.S., Japan, and Denmark has been reported (Aarestrup
etal,, 2007). For example, an increase in S. Schwarzengrund infections
in humans from 0 to 2.4%, and in chickens from 0.3% to 26.2% from
1993 to 2001 was observed in Thailand (Bangtrakulnonth et al.,, 2004).
Similarly, in Japan, of the serovars collected from broiler chickens,
S. Schwarzengrund was found to account for 28.1% of isolates in 2005
compared to 0% in 2000. Asai et al. (2009) also reported an increasing
trend of isolation of S. Schwarzengrund from human patients in Japan.
Their findings showed that in just 2 years S. Schwarzengrund went
from an uncommon serovar to the 10th most commonly reported. A
more recent study, on 3,069 cecal samples collected from broiler
chickens in a processing plant in Japan from 2013 to 2016, reported
17.8% were positive for Salmonella and 21.3% of those were identified
as S. Schwarzengrund. The prevalence of S. Schwarzengrund had
increased from the 2.1% reported in their previous study from 2009
to 2012 (Duc et al., 2020).

In the U.S., S. Schwarzengrund has risen to become one of the top
five Salmonella serovars isolated from retail meat (Aarestrup et al.,
2007). For example, in 2019, a S. Schwarzengrund outbreak linked to
ground turkey occurred in three states and resulted in 78,000 pounds
of turkey being recalled [Center for Disease Control and Prevention
(CDO);
index.html]. In 2007, S. Schwarzengrund outbreaks were also linked

https://www.cdc.gov/salmonella/schwarzengrund-03-19/

to dry pet food (Centers for Disease Control and Prevention, 2008).
This increase in the number of S. Schwarzengrund infections is
not the only important factor to consider; there is also evidence of a
higher frequency of antimicrobial resistance (AMR) within the strains
of this serovar that is spreading internationally. Using antimicrobial
susceptibility testing and pulsed field gel electrophoresis (PFGE)
typing, Aarestrup et al. (2007) found that 7 of 14 strains isolated from
humans in Denmark shared PFGE patterns with isolates from humans
and chicken meat in Thailand, while 22 of 390 human-source isolates
from the U.S. also had common profiles to those in Denmark and
Thailand. These isolates showed a high frequency of resistance to
nalidixic acid, along with a reduced susceptibility to ciprofloxacin
(Aarestrup et al,, 2007). The first reported instance of fluoroquinolone-
resistance in S. Schwarzengrund in the U.S. came from a strain isolated
from a patient who had traveled to the Philippines (Akiyama and
Khan, 2012). In a study conducted on raw chicken samples from
marketplaces in Taiwan, most of the S. Schwarzengrund strains
demonstrated a ACSSuT resistance type [resistant to ampicillin,
chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline
(Chen et al.,, 2010)]. Many of these antibiotics are commonly used in
avariety of treatments for animal and human infections. Consequently,
antimicrobial resistance further complicates the treatment of
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Salmonellosis caused by S. Schwarzengrund, which can lead to higher
morbidity and mortality (Nair et al., 2018).

Salmonella enterica possesses a wide range of virulence factors
that facilitate the establishment of successful infections in animal and
human hosts (Ochman et al., 1996; van der Heijden and Finlay, 2012).
The majority of these virulence factors are encoded in the
chromosome; however, some are harbored by plasmids (Waters and
Crosa, 1991; Ochman et al., 1996; van der Heijden and Finlay, 2012;
Khajanchi et al., 2016, 2017; Khajanchi, 2022). A broad range of
plasmid incompatibility groups (Inc) have been found in Salmonella
serovars (Khajanchi et al., 2016, 2017; Khajanchi, 2022). Among them,
IncFIB plasmids often possess functions associated with colicin
production, the aerobactin siderophore and Sit iron acquisition
systems, and persistence in intestinal epithelial cells (KKhajanchi et al.,
2016, 2017; Khajanchi, 2022).

Johnson et al. (2010) showed that horizontal gene transfer of
IncFIB plasmids contributed to the acquisition of antimicrobial
resistance. In their study, 902 Salmonella isolates that belonged to 59
different serovars were examined for plasmids. The IncFIB plasmids
were found in isolates of serovars Kentucky, Typhimurium, and
Heidelberg. It was shown that a single PFGE clonal type of S. Kentucky
harbored these plasmids and the acquisition of the plasmid allowed
S. Kentucky to be more competitive in colonizing the chicken cecum
compared to those lacking the plasmid. Evaluation of sequences from
three IncFIB plasmids from S. Kentucky isolates that originated in
different locations at different times from different sources showed
almost identical genetic sequence. These findings point to the IncFIB
plasmid being recently attained within the S. Kentucky serovar., with
a rapid transfer among the population that improved colonization and
fitness abilities (Johnson et al., 2010). In other research on horizontal
gene transfer, two IncFIB plasmids (pAPEC-O2-ColV and pAPEC-
02-R) were transferred into an avirulent and plasmid-less E. coli
strain. The E. coli strain became virulent toward chick embryos and
showed resistance to ampicillin, streptomycin, and several other
antibiotics (Johnson et al., 2006).

IncFII and IncFIC plasmids contribute to the horizontal transfer
of antimicrobial resistance genes including extended spectrum
f-lactamases (ESBL; Yoon and Lee, 2022; de Jesus Bertani et al., 2023).
Some IncFIC plasmids are fusion plasmids and carry both the IncFIC
and IncFII replicons (Yoon and Lee, 2022). The formation and spread
of fusion plasmids in Enterobacteriaceae is an emergent problem (Liu
etal, 2021). Mobile genetic elements, such as insertion sequences and
transposons can contribute to the formation of fusion plasmids (Liu
et al,, 2021). Therefore, to better understand the spread of fusion
plasmids, it is important to characterize Salmonella and other enteric
bacteria that harbor them. The objectives of the study were: (i) to
perform molecular characterization of the IncFIB-IncFIC(FII) fusion
plasmid of S. Schwarzengrund isolated from food and clinical sources;
(ii) to determine the role of IncFIB-IncFIC(FII) fusion plasmid in
invasion and persistence of Salmonella.

Materials and methods
Bacterial strains

A total of 55 S. Schwarzengrund isolates, of which 36 were
collected from human patients, were obtained from the Wisconsin
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State Lab of Hygiene (WLSH; n = 15), Minnesota Department of
Health (MDH; n =18) and the Maryland Department of Health
(MD; n =3); while 19 food isolates were collected as part of the
National Antimicrobial Resistance Monitoring System (NARMS)
efforts. Food isolates were primarily collected from chicken, while
clinical isolates were collected from stool, urine, and blood
(Supplementary Table 1). The sodium azide resistant Escherichia
coli J53 was used as a recipient for the conjugation studies (Jacoby
and Han, 1996).

Whole genome sequencing using short
read and long read methods

Of these 55
S. Schwarzengrund isolates were sequenced using both short read

isolates, 17 fusion plasmid-containing
Mlumina and long-read Oxford Nanopore Technology (ONT;
Sopovski et al., 2024). The remaining 38 isolates were only sequenced
using the short read Illumina platform. CheckM was used to
determine the completeness and contamination of the short read
assemblies. Quality measurements of raw data and assembled
genomes were previously published separately (Khajanchi et al,
2019a; 2024)
Supplementary Table 2.

Sopovski et al, and also provided as

Short-read WGS was performed by a procedure described
earlier (Khajanchi et al., 2016). Briefly, genomic DNA from
bacterial cells was extracted using a DNeasy Blood and Tissue kit
(Qiagen, Valencia, CA, United States). The quality and quantity of
the DNA were examined by Nanodrop (ThermoFisher Scientific,
Grand Island, NY, United States) and the Qubit BR assay kit
(ThermoFisher Scientific). DNA libraries were constructed using
1 ng of DNA from each sample using the Nextera XT DNA library
preparation kit (Illumina, San Diego, CA, United States). Samples
were multiplexed using combinations of two indexes of Nextera
XT Index Kit. DNA samples were diluted, denatured, loaded and
sequenced on an Illumina MiSeq instrument with 2x250
pair-end chemistry.

For long-read ONT sequencing, the 1D native barcoding genomic
DNA long read selection protocol was used with the SQK-LSK109 kit
(Oxford Nanopore, Oxford, UK) as described earlier (Taylor et al.,
2019). Briefly, 1 pg of DNA was subjected to end repair and dA-tailing
using the NEBNext® Ultra™ II End Repair/dA-Tailing module (New
England Biolabs, Ipswich, MA, United States). End-prepped DNA
fragments were barcoded using the EXP-NBD104 and EXP-NBD114
kits (Oxford Nanopore). Equimolar amounts of each barcoded sample
were pooled together, adapters were ligated, and the resulting library
pools were sequenced on a MinION device using a FLO-MIN106
(R9.4.1) flow cell for 48 h.

The nanopore reads were trimmed and filtered using NanoFilt
(v2.3.0; De Coster et al,, 2018). For NanoFilt, the parameters were set
to filter out nanopore reads with a quality score (qscore) of less than
10 or if the read was less than 500 bp long. The short and long-read
sequences were assembled by hybrid assembly using UniCycler
(v0.4.8; Wick et al., 2017). The FASTA files of the assemblies from each
isolate were analyzed using PlasmidFinder (version 2.1) and ResFinder
(version 4.1) to identify predicted plasmids and antimicrobial
resistance genes, respectively (Supplementary Table 1; Zankari et al.,
2012; Carattoli et al., 2014).
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Single nucleotide polymorphism analysis

WGS-based SNP analysis of the 55 Salmonella genomes was
performed using the FDA Center for Food Safety and Applied
Nutrition (CFSAN) SNP pipeline (Davis et al., 2015). The CFSAN
SNP pipeline was used to find the pairwise SNP distances between the
isolates. The hybrid assembly for isolate WLSH7 was used as reference
for the SNP analysis. FastTree (v2.1.11), using the general time
reversible model, was used to approximate the maximum likelihood
phylogeny with 1,000 bootstraps. The phylogeny was visualized in
FigTree (v1.4.4).

Plasmid annotation and phylogeny

Platon (v1.6) was used to annotate the assembly contigs for
plasmids. NCBI’s online BLAST server was used to identify the best
hits (>99% identity and>70% query coverage) in the NCBI
Nucleotide database to the IncFIB-IncFIC(FII) plasmid, which were
downloaded. Genes were annotated in the plasmids using Prokka
(v1.14.5). The pangenome was estimated with Roary (v3.12.0). For
reference, the pangenome contained 631 genes of which 49 were core.
MAFFT (v7.305) was used to align the concatenated 49 core genes.
FastTree (v2.1.11), using the general time reversible model, was used
to approximate the maximum likelihood phylogeny with 1,000
bootstraps. The phylogeny was visualized in FigTree (v1.4.4). The
plasmid annotations were visualized in SnapGene (SnapGene by
Dotmatics, Boston, MA, United States). The tanglegram was created
using R and the cophyloplot function from the ape package.

Bacterial conjugation

Conjugation experiments were carried out to determine the
transferability of IncFIB plasmids in S. Schwarzengrund isolates either
by plate mating or broth mating approaches (Khajanchi et al., 2019b).
IncFIB-IncFIC(FII)
S. Schwarzengrund isolates (donors) and the sodium azide resistant

In plate mating strategy, positive
recipient E. coli J53 were cross streaked on Luria-Bertani (LB; BD,
Franklin Lakes, NJ, United States) agar plates. After 24 h of incubation,
the cells from the intersection were collected and re-streaked onto
selective plates containing sodium azide (350pg/mL) and
streptomycin (16 pg/mL). Individual colonies were picked and
sub-cultured onto MacConkey agar to confirm E. coli colonies.
Carriage of IncFIB-IncFIC(FII) plasmids by E. coli transconjugants
were confirmed by PCR. Conjugation experiments that were
unsuccessful by plate mating were subjected to a different approach
described in our previous study (Khajanchi et al., 2019b). Briefly, a
single colony of IncFIB-IncFIC(FII) containing S. Schwarzengrund
isolates (donor) and E. coli J53 (recipient) was grown separately in LB
broth overnight at 37°C. The recipient and the donor were
subsequently mixed together in a 1:1 proportion and centrifuged at
7,000 x g for 5min to obtain the pellet. The pellets were dispersed in
250 pL of LB broth and spotted onto a LB agar plate. The plate was
incubated for 3-4h at 37°C in upright position. The growth seen was
suspended in 1 mL phosphate buffered saline (PBS) and 100 pL of cell
suspension was spread onto a LB agar plate containing sodium azide

(350 pug/mL) and streptomycin (16pg/mL). Pink colonies were
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selected after streaking on to selective MacConkey agar plate and
presence of IncFIB-IncFIC(FII) was confirmed by PCR.

Virulome and plasmid transfer gene assay

The detection of virulence and plasmid transfer-associated genes
encoded by the Salmonella isolates were predicted based on their
whole genome sequences. Genome sequences from Salmonella donors
and transconjugants (plasmids in E. coli J53) were trimmed, and de
novo assembly was completed using CLC Genomics Workbench (ver.
9.0, Qiagen, Redwood City, CA, United States). FASTA files of
sequence assemblies from each strain were analyzed using the multiple
sequence Comparison tool within the FDA Virulence and AMR
Plasmid Transfer Factor Database,' which targets 594 putative
Salmonella virulence genes and plasmid transfer genes from key AMR
plasmid Inc. groups (Aljahdali et al., 2020; Tate et al., 2022; Algarni
etal,, 2023). The predicted presence and absence data for the putative
virulence and plasmid transfer genes were downloaded from the
database, transformed to binary data and imported into BioNumerics
for phylogenetic analyses of the virulence and plasmid transfer genes.
Based categorical (binary) difference calculations and dendrograms
were generated using UPGMA (Applied Maths, Austin, TX,
United States). The profiles of the presence/absence of virulence and
plasmid transfer genes were further compared in BioNumerics using
minimum spanning tree analyses to compare similarities of the
wildtype and transconjugant strains.

Bacterial invasion assay

Bacterial invasion assays were performed using human intestinal
epithelial cells (Caco-2) as described previously (Khajanchi et al.,
2017). Briefly, 10° Caco-2 cells per well were seeded in 24-well tissue
culture plates and incubated at 37°C overnight in a 5% CO, incubator.
Cells in one of the wells were counted using a Cellometer Auto T4
(Nexcelom Bioscience, Lawrence, MA, United States) and the Caco-2
cells were infected with different S. Schwarzengrund isolates at
multiplicity of infection (MOI) of 10. After incubation for 1 h at 37°C,
the cells were washed twice with PBS to remove bacteria that had not
infected the Caco-2 cells and incubated with 200 pg/mL of gentamicin.
After incubation for 1 h at 37°C, the cells were washed twice with PBS
and lysed with 0.1% chilled Triton X-100, followed by dilution and
plating on trypticase soy agar (TSA) to obtain colony forming unit
counts (CFUs) of bacteria following overnight incubation at
37°C. Three replicates per strain were included and the experiments
were repeated three times.

Bacterial persistence assay

Caco-2 cells were infected as for the invasion assay. After 1h
incubation, the cells were washed twice with PBS and incubated with
100 pg/mL of gentamicin for 48 h. After incubation, cells were washed,

1 https://virulence.fda.gov
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lysed, and CFUs were counted as in the invasion assay procedure, with
three replicates per strain and experiments carried out in triplicate.

Results
SNP analyses

SNP analysis (Figure 1) showed that the 17 food and clinical
isolates carrying the IncFIB-IncFIC(FII) fusion plasmid clustered
within the same subclade (between 0 and 52 SNP differences),
separated from the other isolates that lacked the fusion plasmids
(Figure 1). This suggests the plasmid was acquired and has been
maintained by that subclade lineage. The two exceptions were isolates
CVM-6 and WLSH-27 which lacked the fusion plasmid but still
clustered with the isolates carrying the fusion plasmid. These two
isolates carried an IncFIC plasmid that was near-identical to the
IncFIB-IncFIC(FII) fusion plasmid over ~63% of its length, indicating
it had not undergone fusion or had lost the IncFIB portion of the
fusion plasmid. Within the fusion plasmid subclade, isolates further
separated into subclusters by human and chicken isolation sources.
However, this difference might be an artifact due to the time of
collection because all the chicken isolates were collected in 2013,
whereas the clinical isolates were collected between 2013 and 2017.

The concatenated core gene phylogeny of
the IncFIB-IncFIC(FII) fusion plasmid

The topology of the IncFIB-IncFIC(FII) fusion plasmid phylogeny
differed from the SNP tree in Figure 1, with no clear separation
between the human and chicken isolates (Figure 2). Among the best
BLAST hits in the NCBI Nucleotide database were plasmids from
isolates that were recovered from animals (e.g., chicken, duck, pig,
peafowl) with colibacillosis and respiratory disease. Further, several
related plasmids were isolated from avian pathogenic E. coli (APEC).
The gene annotation of the IncFIB-IncFIC(FII) plasmid can be seen
in Figure 3. The pangenome of the IncFIB-IncFIC(FII) plasmid
contained 631 genes of which 49 were core.

Bacterial conjugation

Among 19 food isolates, nine contained the IncFIB-IncFIC(FII)
fusion plasmid (CVM-5, CVM-7, CVM-10, CVM-11, CVM-13,
CVM-14, CVM-15, CVM-16, CVM-17; Supplementary Table 1). All
nine isolates successfully conjugated with E. coli J53. Of the 36 clinical
isolates, eight isolates contained the IncFIB-IncFIC(FII) fusion
plasmid (MDH29, WLSH-3, WLSH-7, WLSH-13, WLSH-25,
WLSH-26, MD-3, MD-4; Supplementary Table 1). Out of the eight
isolates, three (WLSH 7, WLSH 13, WLSH 25) successfully conjugated
with E. coli J53. The conjugation experiment was repeated for the five
isolates that did not transfer the plasmid, but conjugation still did not
occur, indicating they might not be conjugative under the test
conditions. When the sequenced plasmids in the wild type and
transconjugant isolates (J53:CVM5, ]53:CVM7, J53:CVMIO0,
J53:CVM11, J53::CVM13, ]J53::CVM14, ]53::CVM15, J53::CVM16,
J53:CVM17, J53:WLSH-7, J53:WLSH-13, J53::WLSH-25) were
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compared, they had the same gene content (Table 1), including
antimicrobial resistance and iron acquisition genes, supporting the
successful conjugation of the fusion plasmid.

Virulome and plasmid transfer gene
analyses

The presence of the Salmonella-associated virulence genes are
detailed in Supplementary Table 3 and the comparison of the virulence
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gene profiles are shown in Supplementary Figure 1. Overall, the
S. Schwarzengrund isolates had very similar virulence factor profiles,
with the exception of putative virulence genes associated with the
IncFIB-IncFIC(FII) plasmids, including iucABCD and iutA of the
aerobactin operon and ftraT. The transconjugants separated to a
distinct clade, as they were E. coli and lacking many of the Salmonella-
associated virulence genes (Supplementary Figure 2). When the
plasmid transfer genes were detected, the most common genes
detected were the IncFIB-IncFIC(FII)-associated genes that were
present in the transconjugants and their corresponding donor strains
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FIGURE 2

Core gene phylogeny of the IncFIB-IncFIC(FII) plasmid. Includes the plasmids from the 17 long-read sequenced isolates and the best BLAST hits from
the NCBI Nucleotide database (>99% identity and >70% query coverage). Clinical isolates are in orange and food isolates are in blue. The pangenome

of all the plasmids (including the 17 isolates from this study and the best BLAST hits in NCBI) had 631 genes, of which 49 were core. The median
number of genes per plasmid sequence was 158.
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FIGURE 3

The annotated IncFIB-IncFIC(FII) plasmid. The markers for the FIB and FIC replicons co-occurred in the plasmid from 1-344 bp to 59,325-59,519 bp,
respectively, indicating it is a fusion plasmid.
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TABLE 1 Sequence analyses of wild type and transcongugants of 12 IncFIB containing Salmonella Schwarzengrund food and clinical isolates.

Wild type isolates

Transconjugants generated using Escherichia coli J53 as

recipient
Wildtype Palsmid Resistance  Iron Transconjugants  Plasmid Resistance  Iron
Strain ID | content gene acquisition ID content gene acquisition
genes genes
CVM -5 IncFIB(APOO1918). | 40c(6')-laa, iucABCD/iutA/ | ]J53:CVM-5 IncFIB(APOOI9NS), 4o 30) pp, iucABCD/iutA/
IncFIC(FII) aph(3")-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-Id
CVM-7 IncFIB(APOO1918). | 40c(6')-laa, iucABCD/iutA/ | ]53:CVM-7 IncFIB(APOOI9NS), 4o 30) pp, iucABCD/iutA/
IncFIC(FII) aph(3”)-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-Id
CVM-10 IncFIB(APOO1918), | 40c(6')-laa, iucABCD/iutA/  J53:CVM-10 IncFIB(APOOI91S), 4o (37).1, iucABCD/iutA/
IncFIC(FII) aph(3")-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-1d
CVM-11 IncFIB(APO01918), | g4c(6)-laa, iucABCD/iutA/ | J53:CVM-11 IncFIB(APOOI9NS),  4op(37) 1y, iucABCD/iutA/
IncFIC(FII) aph(3")-1Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-1d
CVM-13 IncFIB(APO0I918), | 10t (6)-Taa, iucABCD/iutA/  ]53:CVM-13 IncFIB(APO01918), 4o (3).pp, iucABCD/iutA/
IncFIC(FII) aph(3")-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-1d
CVM-14 IncFIB(APOO1918). | 40c(6')-laa, iucABCD/iutA/ | J53:CVM-14 IncFIB(APOOI9NS), 4o 30) 1y, iucABCD/iutA/
IncFIC(FII) aph(3”)-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-1d
CVM-15 IncFIB(APOO1918), | 400(67)-laa, iucABCD/iutA/  J53:CVM-15 IncFIB(APOOI9NS), 4o 37) pp, iucABCD/iutA/
IncFIC(FII) aph(3”)-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-Id
CVM-16 IncFIB(APOO1918), | 400(')-laa, iucABCD/iutA/  J53:CVM-16 IncFIB(APOOI918), 4o (37)., iucABCD/iutA/
IncFIC(FII) aph(3")-1Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-1d
CVM-17 IncFIB(APO01918), | g4c(6)-laa, iucABCD/iutA/ | ]J53:CVM-17 IncFIB(APOOI91S),  4op37) 1y, iucABCD/iutA/
IncFIC(FII) aph(3")-1b, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-1d
WLSH-7 IncFIB(APO0I918), | 40t (6)-Taa, iucABCD/iutA/  J53:WLSH-7 IncFIB(APO0I918), 4o (3) gy, iucABCD/iutA/
IncFIC(FII) aph(3")-1Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-1d
WLSH-13 IncFIB(APO01918), | gc(6)-Iaa, iucABCD/iutA/ | J53:WLSH-13 IncFIB(APOOI9LS),  4op3n) pp, iucABCD/iutA/
IncFIC(FII) aph(3”)-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-1d sitABCD
aph(6)-Id
WLSH-25 IncFIB(APO01918), | yc(6)-laa, iucABCD/iutA/ | J53:WLSH-25 IncFIB(APOOI91S), 4o (37)., iucABCD/iutA/
IncFIC(FID) aph(3")-Ib, iroNB/sitABCD IncFIC(FII) aph(6)-Id sitABCD
aph(6)-Id

(top clade in Supplementary Figure 2). One of the donor strains
(WLSH-3) carried the IncFIB-IncFIC(FII) along with IncI1 and IncI2-
associated transfer genes. A group of five other strains carried IncI1
plasmid-associated genes, without the IncFIB-IncFIC(FII) plasmids
(bottom group of Supplementary Figure 2), and two strains carried an
IncHI2 plasmid. These results correlated with the plasmid replicon
typing results (Supplementary Table 1). The relatedness of the
virulence genes (Figure 4A) and plasmid transfer genes (Figure 4B)
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can also be displayed with the minimal spanning trees. The three
largest groups of Salmonella differ by the presence of the
aerobactin/traT genes (top group) and the absence of sopE and
Salmonella genomic island (SGI)-1-associated insertion genes (int and
xis; group to the right central group). The majority of the SGI-1 genes
were absent in all of the strains in the study. The plasmid groups are
largely separated by those with the IncFIB-IncFIC(FII) plasmid (top
half of Figure 4B) and those lacking the plasmid (bottom groups).
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o

FIGURE 4

Minimum spanning tree analyses of the (A) Salmonella virulence factors and (B) the plasmid transfer genes. The colors correspond to the sample types
and the size of the circles are representative of the number of strains sharing common virulence or transfer gene profiles. The distance between the
circles is representative of the number of genes differences in the different groups. The closer the circles the more similar the gene profiles. In panel
(A), the recipient and transconjugants are E. coli strains and as such lack many of the Salmonella virulence factors and are distinct from the Salmonella
isolates. In Panel (B), those grouped closest the letter B are the strains that carry the IncFIB-IncFIC(FlI) plasmid.
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Invasion and persistence assay

To assess the role of the IncFIB-IncFIC(FII) plasmid in invasion
and persistence in host cells, human Caco-2 cells were infected with
S. Schwarzengrund food and clinical isolates (Figure 5). The general
trend, for both food and clinical isolates, was that the amount of
surviving CFUs of fusion plasmid containing strains were lower after
48h (persistence) as compared to 1h (Invasion). The difference
between invasion and persistence rate was statistically significant for
food isolates (p =0.007), however; this difference was statistically
non-significant for clinical isolates (p =0.1192). We observed that
IncFIB-IncFIC(FII) plasmid did not significantly add to the invasion

Frontiers in Microbiology

and persistence potential of isolates when compared to those without
the plasmids (Figures 5,6).

Discussion

IncFIB plasmids can contain both antimicrobial resistance
genes and a wide range of virulence factors, hence dissemination of
these plasmids in food pathogens is a public health concern. IncFIB
and IncFIB-like plasmids are more commonly harbored by
Salmonella and APEC, which could serve as reservoir for the spread
of these plasmids into other Gram-negative bacteria (Johnson et al.,
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FIGURE 5

Invasion and persistence of 19 wildtype Salmonella Schwarzengrund food isolates. Nine food isolates contained IncFIB-IncFIC(FIl)are indicated by
asterisks. The general trend was that the amount of surviving colony forming units were lower after 48 h (persistence) as compared to 1 h (Invasion).
X-axis indicates the number of isolates (CVM 1 to CVM-19), SE819 [less virulent strain that lacked IncFIB-IncFIC(FI)], SE163A (virulent strain that
contained IncFIB along with other virulence associated plasmids). Blue bars indicate invasion and red bars indicate persistence. Error bars indicate
standard error of mean. The difference between invasion and persistence were analyzed by Student t-test (two-tailed). A p <0.05 was considered
significantly different between two groups. The difference between invasion and persistence rate for food isolates was statistically significant

(p =0.007).

2006, 2010; Khajanchi et al., 2017). In this study, we extensively
characterized S. Schwarzengrund isolated from food and clinical
samples, some of which contained IncFIB-IncFIC(FII) fusion
plasmids. In the strains isolated from food samples, all the IncFIB-
IncFIC(FII) plasmid containing S. Schwarzengrund strains were
isolated from chicken sources, indicating that IncFIB-IncFIC(FII)
plasmids may be associated with host specific advantages. In clinical
isolates, the majority of the IncFIB-IncFIC(FII) plasmid containing
S. Schwarzengrund strains were isolated from stool and two strains
were isolated from urine and the gallbladder. These data suggested
that IncFIB-IncFIC(FII) plasmids might play a role in extra-
intestinal Salmonella infection; however, further study is warranted
to provide an experimental basis for this speculation. In addition,
acquisition of a similar plasmid such as ColV plasmid by
S. Kentucky enabled its extraintestinal virulence in chickens
(Johnson et al., 2010). It is interesting to note that isolates carrying
the IncFIB-IncFIC(FII) fusion plasmid formed a subclade in the
SNP phylogeny, separated from the isolates lacking the fusion
plasmid. This result implies that the isolates with IncFIB-
IncFIC(FII) plasmid is a lineage defined by the acquisition of the
IncFIB-IncFIC(FII) plasmid. These data agreed with our previous
findings on S. Typhimurium in which IncFIB containing
S. Typhimurium isolates were clustered together and separated from
the isolates that did not carry IncFIB plasmids (Khajanchi et al.,
2017). Additionally, these findings indicate that there is a possible
epidemiological link between IncFIB-IncFIC(FII) containing food
and clinical isolates, which warrants further investigation.

Frontiers in Microbiology

Additionally, out of eight IncFIB-IncFIC(FII) plasmid containing
isolates from humans, two patients reported eating undercooked
chicken; while the sources of the remaining six isolates were
unknown, with patients either not remembering their exposures to
food-related sources or did not agree to an interview.

A tanglegram showed the lack of congruence between the whole
SNP the
(Supplementary Figure 3). The different topologies of the fusion

genome analysis and plasmid  phylogenies
plasmid carrying isolates in the whole genome phylogeny (Figure 1)
and the concatenated core gene plasmid phylogeny (Figure 2)
indicates that, although the lineage might have acquired and
maintained the plasmid, the plasmid still might have been horizontally
transferred within the lineage.

The association of the best NCBI BLAST hit plasmids with human
and animal illness supports a possible association with virulence. The
virulome analyses showed a similar virulence and plasmid profile for
food and clinical isolates. These commonalities are quite evident in
Figure 4, where each of the Salmonella groupings, for both virulence
genes and plasmid genes, have a least three isolates from both food
animal and clinical sources. In the virulome analyses, there was some
separation of the isolate cluster carrying the IncFIB-IncFIC(FII)
fusion plasmids vs. the isolates that lack the fusion plasmid. These
differences were due to virulence-associated genes carried on the
plasmids (aerobactin operon and traT, primarily). Among the isolates
not carrying the fusion plasmid, there were two larger subgroups that
differed in the carriage of sopE, int, and xis. The two latter genes are
associated with SGI-1. Most of the other SGI-1 associated genes in the
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Invasion and persistence of 36 wildtype Salmonella Schwarzengrund clinical isolates. Eight clinical isolates containing IncFIB-IncFIC(FII) are indicated
by asterisks. The general trend was that the number of surviving colony-forming units was lower in persistence as compared to invasion. X-axis
indicates the number of isolates with sample ID and Y-axis represents the CFU/mL. Blue bars indicate invasion and red bars indicate persistence. Error
bars indicate standard error of mean. The difference between invasion and persistence were analyzed by Student t-test (two-tailed). A p <0.05 was
considered significantly different between two groups. The difference between invasion and persistence rate for clinical isolates was statistically non-

database, with the exceptions of res and yidY, were absent in all of
the isolates.

The conjugation of IncFIB and IncFIB-like plasmids has been
linked to enhanced virulence in the recipient bacteria. For example,
avirulent avian E. coli in chick embryo models became virulent after
acquiring IncFIB plasmids through transformation (Wooley et al.,
1996) and IncFIB transconjugants had increased colonization survival
in host compared to recipients (Khajanchi et al, 2017). The
S. Schwarzengrund IncFIB-IncFIC(FII) fusion plasmids were
conjugative as evidenced by their transferability to E. coli. The only
exception were five clinical isolates whose fusion plasmid did not
transfer to E. coli, after several attempts. The genetic cause of this
could not be determined. Studies suggest that the spread of IncFIB
plasmids may lead to improved survival in humans and food animals,
increasing the chance for human infection (Johnson et al., 2010;
Khajanchi et al., 2017). The spread of antimicrobial resistance genes
has also been linked to IncFIB plasmids (Han et al, 2012).
Dissemination of IncFIB plasmids along with antimicrobial resistance
genes may decrease the effectiveness of antimicrobial therapies for
diseases (Khajanchi et al., 2017).

As noted in previous studies, IncFIB plasmids possess several
factors that enhance bacterial pathogenicity, such as the production of
colicins that kill closely related species, the immunity gene that
protects the bacteria from its own bacteriocin, plasmid transfer genes,
and the aerobactin system that allows bacteria to combat the host’s
immunity and to sequester iron for its own survival (Weinberg, 1978;
Waters and Crosa, 1991; Khajanchi et al., 2017; Khajanchi, 2022).

Frontiers in Microbiology

Various research has been conducted on the contribution of IncFIB
plasmids on microbial pathogenesis. However, more work is needed
to answer questions about host range, host specificity, environmental
sources, and the role of virulence factors encoded by the IncFIB and
similar plasmids in bacterial pathogenicity. One aim of this study was
to evaluate the virulence capacity of IncFIB-IncFIC(FII) containing
S. Schwarzengrund by conducting invasion and persistence
assessments using tissue culture assay on Caco-2 cells. Previous
studies have shown that IncFIB plasmids increased the colonization
of chickens by E. coli (Ginns et al., 2000), and also enhanced the ability
of S. Kentucky to colonize chickens (Johnson et al., 2010). Our
previous study showed that IncFIB transconjugants had higher
invasion and persistence, suggesting that IncFIB plasmids can increase
colonization of pathogens in the gut (Khajanchi et al., 2017).

In the present study, Figures 5, 6 show that the IncFIB-IncFIC(FII)
plasmids did not significantly contribute to the invasion or persistence
of S. Schwarzengrund strains isolated from food and clinical sources.
The contribution of IncFIB encoded virulence factors in Salmonella
pathogenesis is still not completely understood. IncFIB or similar
plasmids could be diverse in nature and may play distinct roles in
different Salmonella serovars.

Conclusion

The core gene phylogeny of the IncFIB-IncFIC(FII) fusion
plasmid revealed that the S. Schwarzengrund isolates might
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be descended from the plasmids of avian pathogenic isolates,
indicating it might confer adaptation to avian hosts. Further, the
fusion plasmid carried several virulence factors that might increase
the pathogenicity of its bacterial host. This study shows that the
IncFIB-IncFIC(FII) fusion plasmids can be transferred between
Enterobacteriaceae species. Though the plasmid has virulence factors
such as iron acquisition systems; toxin-antitoxin modules that should
increase the pathogenicity of Salmonella, our assays showed that there
was no difference in invasion and persistence for the isolates with or
without of IncFIB-IncFIC(FII). More research is needed to determine
the correlation between the virulence factors and the overall
pathogenicity of S. Schwarzengrund. Future studies will explore the
invasion and persistence of Salmonella transconjugants in tissue
culture. This study highlights that a better understanding of the role
of plasmids in Salmonella pathogenesis is needed, and that plasmids
might be a significant microbiological hazard associated with food.
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As a common foodborne pathogen, infection with L. monocytogenes poses
a significant threat to human life and health. The objective of this study was
to employ comparative genomics to unveil the biodiversity and evolutionary
characteristics of L. monocytogenes strains from different regions, screening for
potential target genes and mining novel target genes, thus providing significant
reference value for the specific molecular detection and therapeutic targets of L.
monocytogenes strains. Pan-genomic analysis revealed that L. monocytogenes
from different regions have open genomes, providing a solid genetic basis for
adaptation to different environments. These strains contain numerous virulence
genes that contribute to their high pathogenicity. They also exhibit relatively
high resistance to phosphonic acid, glycopeptide, lincosamide, and peptide
antibiotics. The results of mobile genetic elements indicate that, despite being
located in different geographical locations, there is a certain degree of similarity
in bacterial genome evolution and adaptation to specific environmental
pressures. The potential target genes identified through pan-genomics are
primarily associated with the fundamental life activities and infection invasion of
L. monocytogenes, including known targets such as inlB, which can be utilized
for molecular detection and therapeutic purposes. After screening a large
number of potential target genes, we further screened them using hub gene
selection methods to mining novel target genes. The present study employed
eight different hub gene screening methods, ultimately identifying ten highly
connected hub genes (bglF_1, davD, menE_1, tilS, dapX, iolC, gshAB, cysG, trpA,
and hisC), which play crucial roles in the pathogenesis of L. monocytogenes.
The results of pan-genomic analysis showed that L. monocytogenes from
different regions exhibit high similarity in bacterial genome evolution. The PCR
results demonstrated the excellent specificity of the bglF_1 and davD genes
for L. monocytogenes. Therefore, the bglF_1 and davD genes hold promise
as specific molecular detection and therapeutic targets for L. monocytogenes
strains from different regions.
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Introduction

Listeria monocytogenes, a foodborne pathogen, is a Gram-
positive rod-shaped bacterium belonging to the genus Listeria
within the phylum Firmicutes et Bacillota. It is a facultative
anaerobe (Wang et al., 2021; Lourenco et al., 2022). Currently, there
are 30 species of Listeria registered in the prokaryotic nomenclature
database LPSN (last accessed on November 7, 2023) (Lu et al.,
2022). Among the Listeria genus, L. monocytogenes is commonly
considered a pathogenic strain and the most prevalent species
(Sheng et al., 2017; Cain et al., 2023). It can cause listeriosis in
humans, particularly in immunocompromised individuals such as
neonates, elderly, pregnant women, and those with weakened
immune systems, and can present with various symptoms including
mild diarrhea, meningitis, and sepsis (Locatelli et al., 2017;
Radoshevich and Cossart, 2018). The pathogenicity of bacteria and
their unique ability to adapt to their habitats have a distinctive
genetic basis. Numerous relationships between genes and
pathogenic phenotypes have been identified and studied in
L. monocytogenes (Fox et al., 2016; Disson et al., 2021). However,
the genetic basis of L. monocytogenes pathogenicity and
environmental adaptability is not fully understood and requires
further elucidation.

In recent years, with the widespread application of next-
generation sequencing and third-generation sequencing
technologies, a large number of L. monocytogenes genomes have
been sequenced and shared (Jordan and McAuliffe, 2018).
Comparative genomics analysis of L. monocytogenes strains in
different regions can deepen our understanding of their genetic
mechanisms for adapting to different environments and their
pathogenic lifestyles (Lomonaco et al., 2015). The objective of this
study was to employ comparative genomics to unveil the
biodiversity and evolutionary characteristics of L. monocytogenes
strains from different regions, screening for potential target genes
and mining novel target genes, thus providing significant
reference value for the specific molecular detection and
therapeutic targets of L. monocytogenes strains. Therefore,
we conducted comparative genomics research on L. monocytogenes
strains from different regions including America, Europe, and
Asia. The pan-genomes, core genomes, and potential target genes
of each L. monocytogenes strain were analyzed, and each strain
was subjected to multilocus sequence typing (MLST). Functional
analysis of the potential target genes in L. monocytogenes was
conducted using GO and KEGG annotations. Furthermore, a
protein-protein interaction (PPI) network was constructed for
potential target genes of L. monocytogenes, and eight different hub
gene analysis methods were utilized to screen novel target genes
from the potential target genes. Finally, the virulence genes,
antibiotic resistance genes, plasmids, prophages, and CRISPR-Cas
systems of each L. monocytogenes strain were investigated.

Frontiers in Microbiology

Materials and methods
Data retrieval and management

In this study, a total of 355 genome sequences were retrieved and
downloaded from the NCBI genome database (last accessed on
November 7, 2023), including 343 L. monocytogenes strains from three
different regions (223 from America, 91 from Europe, and 29 from
Asia), as well as 12 other Listeria species and non-Listeria bacterial
genomes. Detailed information of the studied L. monocytogenes
genomes, such as GenBank accession numbers, strain names, genome
size, GC content, number of contigs and N50, are summarized in
Supplementary Tables S1, S2 (Palma et al., 2017; Chiaverini et al.,
2021). To ensure greater representativeness, L. monocytogenes isolated
from cerebrospinal fluid were prioritized, as these strains can induce
severe clinical manifestations. In brief, this entails downloading all
genomes of L. monocytogenes strains isolated from cerebrospinal fluid
in NCBI databases pertaining to America, Europe, and Asia for
subsequent analysis. To ensure the specificity of the target genes
obtained, non-Listeria bacterial genomes were selected based on their
high coverage and homology with Listeria sequences, using Gram-
positive reference strains for analysis. Typically, bacteria belonging to
the Gram-positive rods exhibit a genomic coverage and homology
percentage exceeding 95% (Wang et al., 2022).

Pan-genomic analysis of Listeria
monocytogenes and non-target bacterial
strains from different regions

The analysis of pan-genomic comparison of L. monocytogenes and
non-target strains can be used to screen potential target genes. The
potential target genes refer to those genes that are unique to
L. monocytogenes strains and are absent in non-target strains (Li et al.,
2021a). In brief, all analyzed genome sequences were annotated using
Prokka v1.14.6 (Seemann, 2014), and the output results of Prokka
were used for pan-genomic analysis with Roary v3.11.2 (Page et al.,
2015). A core genome was determined for each isolate using a 99%
cutoff, with a BLASTP identity cutoff of 85% (Pang et al., 2019). Genes
that matched with all L. monocytogenes strains genome sequences
were considered highly conserved and used for subsequent
with  other
bacterial genomes.

comparisons Listeria species and non-Listeria
Pan-genome clusters were defined as core-genes: present in all
isolates; soft-core genes: present in at least 95% of isolates; shell-genes
(accessory genes): present between 15 and 95% of isolates; and cloud-
genes (unique genes): present in less than 15% of isolates (Mafuna
etal., 2022).
The potential target genes were screened according to the

following criteria: 100% presence in L. monocytogenes strains and no
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presence in non-target bacterial strains. Then, these potential target
genes were used screened against the nucleotide collection (nr/nt)
databases using the online BLAST program to ensure specificity (Li
etal., 2021D).

Multilocus sequence typing analysis

L. monocytogenes was subjected to MLST using 7 housekeeping
genes (abcZ, bglA, cat, dapE, dat, Idh, and lhkA) as markers (Henri
etal., 2016). MLST profiles were obtained from the Listeria database
hosted by the Pasteur Institute, France. The MLST v.2.18.0 was used
to align reads against these profiles to determine the sequence types
(STs), Clonal Complex values (CC) and lineage for each genome
(Mafuna et al., 2022).

Phylogenetic analysis

To investigate the phylogenetic relationships between the
343 L. monocytogenes from different regions, all the core single-
copy genes were extracted and aligned using MAFFT v7.490 (Lu
et al., 2022). Then, the aligned sequences were concatenated for
each strain with a uniform gene order, and GBLOCKS 0.91b was
utilized to remove the poorly aligned positions and divergent
regions (Lu et al., 2022). MEGA 11 was used to compute the
maximum likelihood (ML) phylogenetic tree (Lu et al., 2022). The
online tool Interactive Tree of Life (iTOL) v6 was used to visualize
the tree with midpoint rooting, and the geographic location, and
the ST typing of each strain were annotated on the tree (Lu
etal., 2022).

Functional characteristics of potential
target genes

In order to investigate the functional characteristics of genes
present exclusively in L. monocytogenes strains and absent in
non-target bacterial strains (potential target genes), annotation
analysis was performed using Gene Ontology enrichment analysis
(GO analysis) and Kyoto Encyclopedia of Genes and Genomes
enrichment analysis (KEGG analysis) (Gao et al., 2021), and the
results were integrated.

Protein-protein interaction network
analysis and identification of novel target
genes

In this study, the STRING database was utilized to construct PPI
networks, and these networks were visualized using Cytoscape v3.10.1
(Lietal., 2021c). The CytoHubba function in Cytoscape v3.10.1 was
employed to identify hub genes (novel target genes) from the PPI. The
CytoHubba function employs eight distinct algorithms to rank genes
in the PPI network, which include Degree, Betweenness, BottleNeck,
Closeness, Edge Percolated Component (EPC), Maximum
Neighborhood Component (MNC), Radiality, and Stress. The top 10
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genes with the highest scores are selected as hub genes (Zhang
etal., 2019).

Prediction of virulence factors and
antibiotic resistance genes of Listeria
monocytogenes

The prediction of virulence factor-related genes and antibiotic
resistance genes in the L. monocytogenes genome was conducted to
determine their presence. The Virulence Factors of Pathogenic
Bacteria (VFDB) database and The Comprehensive Antibiotic
Resistance (CARD) database were employed to detect virulence genes
and antibiotic resistance genes in the L. monocytogenes genome (Tan
etal., 2015; Mafuna et al., 2021), and the results are summarized and
presented in a heatmap.

Prediction of MGEs of Listeria
monocytogenes

Mobile Genetic Elements (MGEs) refer to a class of genetic
elements capable of spreading or transferring within a genome, such
as plasmids and prophages, which can facilitate the evolution of
microorganisms (Castro et al., 2021). The plasmid database PLSDB
and the PHAge Search Tool-Enhanced Release (PHASTER) prophage
database were utilized to detect MGEs in the L. monocytogenes
genome (Bosi et al., 2017; Matle et al., 2019). The detection results
were summarized and presented in a heatmap.

Prediction of CRISPR-Cas systems of
Listeria monocytogenes

Predict the genome of L. monocytogenes to determine the presence
of the CRISPR-Cas system. CRISPRCasFinder was used for the
detection and typing of the Clustered Regularly Interspaced Short
Palindromic Repeats and Cas genes (CRISPR-Cas) system of the
L. monocytogenes (Parsons et al., 2021). To obtain the functional
CRISPR-Cas system, the presence of both the CRISPR sequence and
Cas genes was considered as evidence for an actual CRISPR-Cas
system and used for the further analysis, and the detection results are
summarized and displayed in a heatmap.

Specific primer design and PCR detection
conditions for Listeria monocytogenes

Primer design for the sequences of bglF_I and davD genes was
performed using Primer Premier 5 software (Table 1) (He et al., 2022).
The primers were synthesized by Sangon Biotech Co., Ltd., Shanghai,
China. Primer specificity was tested by PCR analysis of strains from
the laboratory collection. Total reaction volume was 25 pL, including
12.5pL of 2 x Es Taq MasterMix (CWBIO, Beijing, China), 1L each
of forward and reverse primers (10 pM), 8.5 pL of sterile water, and
2L of the purified bacterial genomic DNA as a template. An equal
volume of sterile distilled water was used instead of the template as a
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TABLE 1 Specific target genes and primers used for the detection of L. monocytogenes.

Sequence Primer Sequence (5'/3) Encoded protein Product size/
length/bp bp
bglF_1F AAGTGGCTGTCATGTTCG PTS system beta-
bglF_1 1857 glucoside-specific 616
bglF_1R ATCGCTACTCCTGCTCCC EIIBCA component
davDF AGTTGCGGCCATTACTCC Glutarate-semialdehyde ‘
davD 1,467 567
davDR TTGTCAATCGCATCTTCG dehydrogenase ‘

negative control. PCR thermal cycling involved an initial denaturation
step at 95°C for 10 min, followed by 35 cycles of denaturation at 95°C
for 305, annealing at 56°C for 305, and elongation at 72°C for 1 min,
with a final elongation at 72°C for 10min. PCR products were
evaluated by 2% agarose electrophoresis.

Results
Genome statistics and general features

By querying the NCBI genomic database, we identified 343 strains
of L. monocytogenes. We downloaded and curated the whole-genome
sequences of these L. monocytogenes strains from the NCBI genomic
with  the
(Supplementary Tables S1, S2). Among them, there were 223 isolates

database,  along corresponding  information
from America, with an average genome size of 2.98 (2.8-3.2) Mbp, an
average GC content of 37.98 (37.5-38.0)%, the number of contigs <214
and an average N50 of 334,248. In Europe, there were 91 L. monocytogenes
isolates, with an average genome size of 2.96 (2.9-3.2) Mbp, an average
GC content of 37.98 (37.5-38.0)%, the number of contigs <42 and an
average N50 of 656,340. In Asia, there were 29 L. monocytogenes isolates,
among which, one possesses a complete genome, with an average
genome size of 2.96 (2.8-3.1) Mbp, an average GC content of 38%, the

number of contigs <72 and an average N50 of 699,124.

Pan-genomic analysis of Listeria
monocytogenes strains in different regions

Based on pan-genomic classification, the analysis of
L. monocytogenes strains from different regions revealed the following
gene distribution within the pan-genome: there were 1847 (15%) core
genes, 314 (2.6%) soft-core genes, 1,237 (10.1%) shell genes, and 8,860
(72.3%) cloud genes (Figure 1A). The pan-genomic composition of
L. monocytogenes varies across different regions. In America,
L. monocytogenes strains possess 1866 core genes, 149 soft-core genes,
1,351 shell genes, and 7,714 cloud genes. In Europe, L. monocytogenes
strains possess 2,133 core genes, 103 soft-core genes, 1,267 shell genes,
and 3,782 cloud genes. In Asia, L. monocytogenes strains possess 2,178
core genes, 16 soft-core genes, 1,306 shell genes, and 1,649 cloud genes
(Figures 1B,C). By analyzing and summarizing the genomic,
pan-genomic, and core genomic features of L. monocytogenes strains
from different regions, it was revealed that these strains possess open
genomes, which provide a genetic basis for their adaptation to
diverse environments.
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Pan-genomic analysis of Listeria
monocytogenes strains from different
regions and non-target bacterial strains for
the screening of potential target genes

To identify potential target genes in L. monocytogenes strains
from different regions, we conducted pan-genomic analysis of
these strains as well as non-target bacterial strains. Among them,
due to the presence of non-target strains, the quantities of core
genes are 0, the quantity of soft-core genes are 1919, the quantity
of shell genes are 1,458, the quantity of cloud genes are 41,390, and
the total quantity of genes are 44,767. A total of 357 potential
target genes were detected in L. monocytogenes strains from
different regions (Supplementary Table S3). These potential target
genes were present in the L. monocytogenes strains included in this
study, while being absent in non-target bacterial strains
investigated. These potential target genes have the potential to
serve as novel target genes for L. monocytogenes strains in different
regions, but further screening of these potential target genes is
still required.

MLST and phylogenetic analysis

To investigate the correlation among L. monocytogenes strains from
different regions, MLST was employed to genotype the strains at the
whole-genome level, aiming to determine the phylogenetic relationships
among different sequence types (STs) and their associations with the
disease. In America, the most common among L. monocytogenes strains
was ST1 (n=32, 14.3%), Clonal Complex 1 (CC1) (n=34, 15.2%) and
Lineage I (n=161, 72.2%) (Figure 2A; Supplementary Table S4). In
Europe, the most common was ST1 (n=14, 15.4%), CC1 (n=14, 15.4%)
and Lineage I (n=>52, 57.1%) (Figure 2B; Supplementary Table 54). In
Asia, the most common was ST8 (n=7, 24.1%), CC8 (n=38, 27.6%) and
Lineage IT (n=18, 62.1%) (Figure 2C; Supplementary Table 54). In strains
of L. monocytogenes in America and Europe, a higher proportion is
observed for strains of ST1 and CCl types. In strains of L. monocytogenes
in Asia, a higher proportion is observed for strains of ST8 and CC8 types.

Medically intriguingly, Listeria species inhabit diverse ecological
niches, but only L. monocytogenes and L. ivanovii exhibit pathogenicity
(Orsi and Wiedmann, 2016; Lu et al, 2022). To elucidate the
evolutionary patterns of L. monocytogenes strains from different
regions, we conducted a phylogenetic analysis of L. monocytogenes
using conserved amino acid sequences of all single-copy genes
(Figure 2D). Through the phylogenetic tree analysis, we can observe
that L. monocytogenes strains in different regions share a common
ancestor, all falling within this major root of the Listeria genus.
Although the geographical locations of the L. monocytogenes strains

frontiersin.org


https://doi.org/10.3389/fmicb.2024.1424868
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Zhang et al.

10.3389/fmicb.2024.1424868

A B
Pan-genome Cloudgenes ~ AIMerica Europe
Core genes
Shell genes 1857
1866 2133
Soft core genes
1847
1856 201207
2178
Asia
C
Cloud genes
10000
Core genes
8000 7714
B Shell genes
Qo
g 6000 Soft core genes
Z
O 4000 3782
c
&
2133 2178
- 1866
2000 1351 1267 1649
149 103 16
0 I 1 1
America Europe Asia
FIGURE 1
The proportion and quantity of various parts of the pan-genome in L. monocytogenes from different regions as analyzed through pan-genomics.
(A) The pan-genome proportion of L. monocytogenes in three different regions. (B) The core genome Venn diagram of L. monocytogenes in three
different regions. (C) The number of core genes, soft core genes, shell genes, and cloud genes in L. monocytogenes from three different regions.

we studied vary significantly, some strains from different locations still
cluster within the same branch, indicating they share a relatively similar
phylogenetic relationship. This indicates that despite being in different
geographic locations and under varying environmental conditions,
L. monocytogenes exhibits certain similarities in evolutionary
mechanisms and genetic variations in response to environmental
pressures, displaying a strong adaptability to diverse environments.

Enrichment analysis of the functional
characteristics of potential target genes
using GO and KEGG

To investigate the functional characteristics of 357 potential target
genes in L. monocytogenes strains from different regions, we performed
functional annotation and classification of these genes using GO and
KEGG databases. The detailed information of the potential target genes
is presented in Supplementary Table S3. The GO database categorizes
gene functions into three main categories, namely Biological Processes
(BP), Cellular Components (CC), and Molecular Functions (MF). In
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the BP category, the most enriched biological processes were cellular
process (n=124, 34.7%), nucleobase-containing compound metabolic
process (n=33,9.2%), localization (n=31, 8.7%), and transmembrane
transport (n=27, 7.6%). Within the CC category, the most abundant
cellular components were cytoplasm (1 =50, 14%). In the MF category,
the most enriched molecular functions were organic cyclic compound
binding (n=76, 21.3%), and purine nucleotide binding (n=31, 8.7%)
(Figure 3A). We integrated and ranked all the GO enrichment analysis
results of potential target genes, and generated a bubble chart
(Figure 3B) to display the top 20 functional features in GO enrichment
analysis based on the number of genes and the significance of p values.

The pathway database of KEGG is the most widely used public
database for metabolic pathways, which classifies biological metabolic
pathways into six categories: Metabolism, Genetic Information
Processing, Environmental Information Processing, Cellular Processes,
Organismal Systems, and Human Diseases. The potential target genes
were annotated using KEGG in six categories. Among these, the most
enriched pathways in the Metabolism category were carbohydrate
metabolism (n=31, 8.7%), amino acid metabolism (n=29, 8.1%), and
metabolism of cofactors and vitamins (n=27, 7.6%). In the Genetic
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the Asian region. (D) Phylogenetic trees of L. monocytogenes from different regions, with the outer circle indicating the corresponding ST for each

Information Processing category, replication and repair (1 =10, 2.8%)
were the most enriched pathways. In the Environmental Information
Processing category, membrane transport (n=19, 5.3%) and signal
transduction (n=6, 1.7%) were the most enriched pathways. In the
Cellular Processes category, cellular community — prokaryotes (n=4,
1.1%) and cell growth and death (1 =2, 0.6%) were the most enriched
pathways. In the Organismal Systems category, endocrine system
(n=3,0.8%) and digestive system (n=2, 0.6%) were the most enriched
pathways. In the Human Diseases category, drug resistance:
antimicrobial (1=4, 1.1%) and drug resistance: antineoplastic (n=2,
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0.6%) were the most enriched pathways (Figure 3C). We integrated
and ranked all the KEGG enrichment analysis results of potential
target genes, and generated a bubble chart (Figure 3D) to display the
top 20 functional features in KEGG enrichment analysis based on the
number of genes and the significance of p values.

In summary, the enrichment analysis of functional characteristics
of 357 potential target genes using GO and KEGG databases indicates
that these genes are primarily associated with metabolic processes,
compound binding, protein localization, and transmembrane
transport in L. monocytogenes. Examples include cellular metabolic

frontiersin.org


https://doi.org/10.3389/fmicb.2024.1424868
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

10.3389/fmicb.2024.1424868

Zhang et al.
A B
140 .
Top 20 of GO Enrichment
= BP GeneNumber
tetrapyrrole metabolic process{ e
vitamin metabolic process+ ° o 9
100 activity, rbon groups- ° o 38
@ L . ® 67
2 vitamin biosynthetic process - °
S 80 B 0 %
P acyltransferase activity 4 o
] @
5 amino acid biosynthetic process{ °
< 60 1 .
£ . . - -log,(Pvalue)
2 organic cyclic compound binding 4 (] 3
cellular process-{ . 25
purine nucleotide binding ® 2
cytoplasm{ [©] 15
nucleobase-containing compound metabolic process-| [
localization | ]
carbohydrate derivative binding - (]
transmembrane transport | (]
transporter activity - °
gene expression{ °
cytosolq ]
carbohydrate derivative metabolic process+ e
organophosphate metabolic process - °
protein-containing complex+ @
005 0.1 015 02 025
RichFactor
Biological process Cellular component Molecular function
c ) D
KEGG pathway annotation Top 20 of KEGG Enrichment
Cart . Mem?o=lsm Phenylalanine, tyrosine and tryptophan biosynthesis < ° GeneNumber
arbohydrate metabolism
Amino acid metabolism Folate biosynthesis - ° o 4
Metabolism of cofactors and vitamins
. . 25
Glycan biosynthesis and metabolism Base excision repair ° L4
osynthesis of other secondary metabolites . . . 46
Biosynthesi e e N Terpenoid backbone biosynthesis ° L4
Metabolism of terpenoi polyketide: ®
Nucleotide metabolism Histidine metabolism- °
Lipid metabolism o s
Metabolism of other amino acids Porphyrin and chlorophyll metabolism ]
Energy metabolism L . -log,(Pvalue)
Xenobiotics biodegradation and metabolism Lysine biosynthesis - ° g;
Genetic_Information_Processing Peptidoglycan biosynthesis { ° 5"
Replication and repair 15
Folding, sorting and degradation 2-Oxocarboxylic acid metabolism ° 1
T'ranslation . . . . 0.5
Transcripti Glycine, serine and threonine metabolism °
ranscription
Envi I_Information_Pr ing is of secondary metaboli o
Membrane transport
Signal transduction Amino sugar and nucleotide sugar metabolism+ °
Cellular Processes . . o
Cellular community - eukaryotes Biosynthesis of antibiotics { ©
Cell grow th and death Biosynthesis of amino acids °
Organismal Systems
Endocrine system Starch and sucrose metabolism °
Digestive system .
Human Diseases Metabolic pathways
: antimicrobial Two-component system °
: antineoplastic
Cancer: overview Phosphotransferase system (PTS) °
Infectious disease: bacterial
Immune disease ABC transporters| -~ @
Endocrine apd metabolic disease Microbial metabolism in diverse environments4 @
Cancer: specific types . . . . .
. y y 0.1 02 03 04 05
0 1 0 20 30 RichFactor
Number of genes
FIGURE 3
Enrichment analysis of potential target genes in L. monocytogenes from different regions based on the GO, and KEGG databases. (A) Enrichment
analysis based on the GO database. (B) Enrichment analysis based on GO database with the top 20 enriched terms listed. (C) Enrichment analysis
based on the KEGG database. (D) Enrichment analysis based on KEGG database with the top 20 enriched terms listed.

process, carbohydrate metabolism and organic substance biosynthetic
process. However, there were still some genes with unclear functional
information, which warrants further investigation in future studies.
The potential target genes are closely associated with fundamental
biological processes and infection pathogenesis of L. monocytogenes,
playing crucial roles in sustaining basic life activities, invading the
host, and exerting pathogenic effects.
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PPl network analysis of potential target
genes and identification of novel target
genes

The PPI network plays a crucial role in various biological

processes within organisms. To further assess the interconnections
among potential target genes of L. monocytogenes strains in different
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regions, PPI analysis was carried out using the STRING database. The
PPI network of potential target genes comprised 357 genes, and
visualization of the PPI network was performed using Cytoscap_
v3.10.1 software. They were clustered together, indicating strong
physical interaction or functional association.

To further analyze potential target genes of L. monocytogenes for
the selection of novel target genes, we employed the CytoHubba
function of Cytoscape v3.10.1 software to identify hub genes. Hub
genes are key factors in protein-protein interaction networks that
exhibit high connectivity in gene expression networks, indicating
their ability to regulate multiple genes. The genes in the PPI network
were screened using eight different algorithms available in the
CytoHubba function. The top 10 genes with the highest scores were
selected as hub genes, and their ranking is presented in Table 2. A
comprehensive analysis of the results obtained from the eight
algorithms was performed, and raincloud plots illustrating the scores
of the hub genes for each algorithm was generated (Figure 4B). The
top 10 genes with the highest scores identified by the Degree
algorithm were ultimately determined as novel target genes, and a PPI
network was constructed based on their scores (Figure 4A). Among
them, bglF_1 and davD genes had the highest score of 54, followed by
menE_1I gene with a score of 52, tilS gene with a score of 50, dapX
gene with a score of 48, iolC gene with a score of 46, gshAB gene with
a score of 42, cysG gene with a score of 42, trpA gene with a score of
40, and hisC gene with a score of 38. The detailed information
regarding these 10 genes, including their functional roles, gene
lengths, etc., is provided in Table 3. These 10 hub genes play crucial
roles in sustaining basic life activities and infection invasion of
L. monocytogenes strains, with the potential to become novel target
genes for L. monocytogenes strains, particularly the top-scoring genes,
bglF_1 and davD.

Distribution of virulence genes and
antibiotic resistance genes in Listeria
monocytogenes strains in different regions

To investigate the relationship between L. monocytogenes strains
in different regions and their pathogenic mechanisms, we predicted

TABLE 2 Top 10 hub genes ranked by scoring in eight different algorithms.

10.3389/fmicb.2024.1424868

virulence factor-encoding genes of the entire genome of
L. monocytogenes. Based on VFDB prediction and annotation,
virulence factors of L. monocytogenes were classified into 12 categories
including Adherence, Bile resistance, Enzyme, Immune modulator,
Intracellular survival, Invasion, Iron uptake, Nucleation-promoting
factor, Peptidoglycan modification, Regulation, Surface protein
anchoring, and Toxin.

In this study, the virulence genes ditA, fbpA, lap, plcB, stp, inlK,
oppA, prsA2, inIB, IpeA, hbp2, pdgA, agrC, cheA, lisK, lisR, prfA, virR,
and virS were found to be present in 100% of L. monocytogenes strains
from different regions (Figure 5). Our predictive findings indicate the
presence of numerous virulence genes, including inlB, and plcB, which
play pivotal roles in L. monocytogenes infection and host invasion,
across L. monocytogenes strains from various regions. It is well known
that L. monocytogenes is pathogenic within the Listeria genus, owing to
its abundance of virulence genes, which contribute to its pathogenicity.
Through the prediction of virulence genes, L. monocytogenes strains
from different regions exhibit high pathogenicity.

With the widespread use of antibiotics, the antimicrobial resistance
of foodborne strains has increased in many countries. The distribution
of antimicrobial resistance genes in L. monocytogenes was investigated
using the CARD database. In this study, a total of 10 antimicrobial
resistance genes belonging to 9 drug classes and exhibiting 5 resistance
mechanisms were identified among the 343 L. monocytogenes genomes
analyzed. Among the L. monocytogenes strains from different regions,
100% were found to harbor four types of antibiotic resistance genes,
including phosphonic acid antibiotic gene (FosX), glycopeptide
antibiotic genes (vanTG, vanYM), lincosamide antibiotic gene (lin),
and peptide antibiotic gene (mprF) (Figure 6).

Distribution of MGEs in Listeria
monocytogenes strains in different regions

Currently, many scientists have begun to pay extensive attention
to the significant role of horizontal transfer of MGEs in bacterial
genome evolution and adaptation to specific environmental
pressures. We employed PLSDB and PHASTER databases for the

Catelogy Rank methods in cytoHubba
Betweenness BottleNeck Closeness EPC Radiality Stress
bglF_1* bglF_1° davD® davD® dapX davD® bglF_1* davD®
davD® davD® bglF_1* dapX hisC iolC dapX bglF_1*
menE_1 iolC group_1214 bglF_1° bglF_1° menE_1 gshAB iolC
tilS gshAB gshAB gshAB davD® bglF_1* davD® hisC
Gene symbol dapX tilS menE_1 tilS menE_1 trpA tilS menE_1
top 10 iolC menE_1 hisC iolC trpA hisC group_1214 gshAB
gshAB fni tils menE_1 tilS tilS menE_1 cysG
cysG cysG iolC fni trpF ezrA fni tilS
trpA group_32878 group_8648 hisC iolC divIB hisC yodC
hisC dapX yceM group_1214 norG trpF hepS group_3718

~"The two genes highlighted in bold are the most promising candidates to serve as novel target genes.
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FIGURE 4
PPI network analysis and identification of novel target genes among potential target genes in L. monocytogenes from different regions.
(A) Visualization of PPI network among the top 10 hub genes ranked by Degree algorithm. The larger the circle and the deeper the red color, the higher
the score of the gene. (B) Scoring of hub genes across eight different algorithms.

detection of MGEs, and the results only documented plasmids with
an identity score of 1 and intact prophage regions. In this study, the
L. monocytogenes genome contained a total of 10 plasmids and 7
intact prophage regions. Among them, plasmids pLmAI44,
PLMR479a, pLmcEH-6, and pLmcUH29 were exclusively present in
ST8, while plasmids pLIS22 and pLIS39 were only found in ST3
(Figure 6). The most prevalent prophage was PHAGE_Lister_vB_
LmoS_188 [NC_028871] (n=064, 18.7%), followed by PHAGE_
Lister_LP_101 [NC_024387] (n=48, 14%) (Figure 6). Intriguingly,
despite the geographical disparity of L. monocytogenes isolates,
identical phage genomes have been detected, suggesting a certain
degree of similarity in MGEs across strains from different regions.
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Distribution of CRISPR-Cas system types in
Listeria monocytogenes strains in different
regions

The CRISPR-Cas system is a bacterial adaptive immune system that
protects bacteria from viral infections, which is also associated with the
virulence and pathogenicity of pathogens. In this study, we characterized
the CRISPR-Cas systems in 343 L. monocytogenes genomes and
identified four types of CRISPR-Cas systems. Each CRISPR-Cas system
type exhibited distinct cas genes, with a total of 14 cas genes detected
(Table 4). The CRISPR-Cas system types detected in L. monocytogenes
included CAS-TypelA (4/343), CAS-TypelB (39/343), CAS-TypellA
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TABLE 3 Detailed information of top 10 hub genes ranked by scoring in Degree algorithm.

Name of Sequence Presence profile Encoded protein Product Source
target length/bp size/bp
genes In target In non-
target
PTS system beta-
bglF_1 Imo1035 1857 343 (100%) 0 glucoside-specific EIIBCA 618 This study
component
Glutarate-semialdehyde
davD 1mo0913 1,467 343 (100%) 0 488 This study
dehydrogenase
O-succinylbenzoic acid--
menE_1 Imo1672 1,409 343 (100%) 0 469 This study
CoA ligase
tRNA(Ile)-lysidine
tilS Imo0219 1946 343 (100%) 0 648 This study
synthase
Putative N-acetyl-LL-
dapX Imo1006 1,146 343 (100%) 0 diaminopimelate 381 This study
aminotransferase
5-dehydro-2-
iolC Imo0385 978 343 (100%) 0 325 This study
deoxygluconokinase
Glutathione biosynthesis
gshAB Imo2770 2,331 343 (100%) 0 bifunctional protein 776 This study
GshAB
cysG Imo1201 1,481 343 (100%) 0 Siroheme synthase 493 This study
Tryptophan synthase alpha
trpA Imo1627 774 343 (100%) 0 257 This study
chain
Histidinol-phosphate
hisC Imo1925 1,083 343 (100%) 0 360 This study
aminotransferase

(21/343), and CAS-TypellIA (2/343). Approximately one-fifth of the
L. monocytogenes genomes (66/343) harbored at least one CRISPR-Cas
system, with CAS-TypelB (11.4%) and CAS-TypelIA (6%) being the
most prevalent (Figure 6). CAS-TypelA was only detected in ST1, ST5,
and ST425, while CAS-TypellIA was found exclusively in ST5 and
ST392. The CAS-type IA system detected in the L. monocytogenes isolates
in this study was composed of csa5_TypelA and casRa_TypelA. The
CAS-TypelB system was composed of cas5b_TypelB, cas6_Typel-I1I,
cas8alb_TypelB, cas7b_TypelB, cas3_Typel, cas2_Typel-II-III, cas4_
Typel-1I, and casl_TypelB. The CAS-TypelIA system was composed of
csn2_TypellA, cas2_Typel-II-1III, casl_Typell, and cas9_Typell. The
CAS-type IIIA system was composed of csm2_TypellIA.

Detection of Listeria monocytogenes using
specific primers by PCR

To validate the potential of bglF_1 and davD genes as specific
molecular detection and therapeutic targets in L. monocytogenes
strains from different regions, primers were designed for bglF_I and
davD genes, followed by PCR experiments to assess their specificity.
The PCR results revealed a distinct band at 616 bp for L. monocytogenes
in the bglF 1 gene primer system, while non-L. monocytogenes
samples showed no band (Figure 7A). Similarly, a clear band at 567 bp
was observed for L. monocytogenes in the davD gene primer system,
with no band detected in non-L. monocytogenes samples (Figure 7B).
The results demonstrated the excellent specificity of the bglF_I and
davD genes for L. monocytogenes. Therefore, the bglF_I and davD
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genes hold promise as specific molecular detection and therapeutic
targets for L. monocytogenes strains from different regions.

Discussion

L. monocytogenes, as a significant foodborne pathogen, is widely
prevalent worldwide, posing a serious threat to human life and health.
Therefore, we conducted comparative genomic analysis of
L. monocytogenes strains from different regions to explore their
biodiversity and evolutionary characteristics, identify potential target
genes, and further mining novel target genes, aiming to provide novel
specific molecular detection and therapeutic strategies for
L. monocytogenes strains.

In this study, we conducted a pan-genomic comparative analysis
of 343 L. monocytogenes strains from different regions to investigate
the biodiversity and evolutionary characteristics of strains. To assess
the genomic biodiversity of L. monocytogenes strains in different
regions, we conducted core/pan-genome analysis. Core and accessory
genomes were analyzed based on the whole genomes of
L. monocytogenes. The core genome represents the essential portion
necessary for the presence and shared phenotypic features of specific
strains, while the accessory genome provides unique characteristics
for a species or strain that are not essential for their basic survival, but
offer selective advantages for ecological adaptation and antibiotic
resistance (Deng et al., 2010; Zhang et al., 2017; Lu et al.,, 2022).
Although the studied strains of L. monocytogenes are geographically
diverse, there still exist 1847 core genes that constitute the fundamental
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FIGURE 5

The distribution of virulence genes in L. monocytogenes from different regions.

components of L. monocytogenes survival and development. In
America, the number of core genes in L. monocytogenes strains is
1866, in Europe it is 2,133, and in Asia it is 2,178. It can be observed
that the number of core genes in L. monocytogenes strains varies across
different regions. Apart from the core genes they share,
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L. monocytogenes strains in different regions also possess unique core
genes that are present only in one region and absent in others. These
unique core genes may be the primary reason for the distinctiveness
of L. monocytogenes strains in one region compared to those in other
regions. The primary reason for this phenomenon may be attributed
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frontiersin.org

42

Frontiers in Microbiology


https://doi.org/10.3389/fmicb.2024.1424868
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Zhang et al.

10.3389/fmicb.2024.1424868

TABLE 4 Identification of CRISPR-Cas system types and the corresponding cas genes detected in L. monocytogenes strains from different regions.

Types Cas genes Area Number Total
America 1

CAS-type IA csa5_TypelA Europe 1 2
Asia 0
America 0

CAS-type IA casRa_TypelA Europe 2 2
Asia 0
America 3

CAS-TypelB cas5b_TypelB Europe 1 5
Asia 1
America 8

CAS-TypelB z:zz:zg:il,l ICIaLs8alb_TY1:>eIB, cas7b_TypelB, cas5b_TypelB, cas3_Typel, Furope , »
Asia 2
America 9

CAS-TypelB cas6_Typel-III, cas8alb_TypelB, cas7b_TypelB, cas5b_TypelB, cas3_Typel, Burope P .

cas4_Typel-II, cas1_TypelB, cas2_Typel-II-III

Asia 6
America 11

CAS-type ITA csn2_TypellA, cas2_Typel-II-1II, cas1_Typell, cas9_Typell Europe 7 22
Asia 4
America 2

CAS-type ITIA csm2_TypellIA Europe 0 2
Asia 0

Total 67

to the different environments in which the strains reside. Hence, in
order to adapt to these unique environments, the strains have evolved
genes that are specific to these environments to counteract
environmental pressures (Liao et al., 2023). This is also very intriguing,
as it allows for the exploration of the differences among
L. monocytogenes strains in different regions, analyzing the unique
characteristics of strains in different areas, thereby studying the
evolutionary patterns of strains in that region, and subsequently
devising targeted prevention and control measures for that region. As
the number of genomes increases, the pan-genome size continues to
rise while the core genome decreases and tends to plateau. This
indicates that the studied L. monocytogenes possesses an open
pan-genome, which provides a genetic basis for the adaptation of
L. monocytogenes to different environments. The potential target genes
are exclusively present in L. monocytogenes strains in different regions,
while they are absent in non-target strains. This indicates that the
potential target genes play a crucial role in the pathogenicity of
L. monocytogenes strains in different regions. These genes are
indispensable for the survival, virulence, and invasion of
L. monocytogenes, making them essential for maintaining life activities
and infection. Therefore, investigating potential target genes can
facilitate the analysis of the biodiversity and evolutionary
characteristics of L. monocytogenes, aiding in the selection of novel
specific molecular detection and therapeutic target genes.

To investigate the biodiversity and evolutionary characteristics of
L. monocytogenes strains in different regions, we conducted MLST
typing analysis. The results revealed that L. monocytogenes strains
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from America and Europe were predominantly characterized by ST1
and CCl1 types, whereas those from Asia were predominantly
characterized by ST8 and CC8 types. Wang et al. (2012) identified the
three most common L. monocytogenes types in China as ST8, ST9, and
ST87. Amarasekara et al. (2024) identified a significant presence of
ST1 and CCI types among L. monocytogenes isolates from agricultural
markets in the United States. Additionally, Toledo et al. (2018) found
that the most prevalent type of L. monocytogenes in samples from
Chile was ST1. Our results are consistent with the findings reported
in the above-mentioned literature. Our findings indicate that the
L. monocytogenes strains isolated from America, Europe, and Asia
exhibit different types. The underlying reasons for this phenomenon
could be attributed to variations in the transmission routes and
environmental conditions of L. monocytogenes, as well as genetic
variability among strains. Based on our analysis, although
L. monocytogenes strains originate from diverse geographical regions,
they exhibit relatively similar phylogenetic relationships in the
constructed phylogenetic tree. This indicates that while the
L. monocytogenes strains are present in different environments, they
exhibit a certain degree of genetic similarity in terms of bacterial
variability. Under various environmental pressures, L. monocytogenes
gradually evolves into life forms adapted to these specific
environments, undergoing extensive genetic variations. Bacterial
genetic variations result in distinct predominant types of
L. monocytogenes strains in America, Europe, and Asia. Interestingly,
the predominant sequence type of L. monocytogenes in both America
and Europe is ST1, which may be attributable to the relatively close
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aeruginosa, lane 10: Pneumocystosis jirovecii.

Validation of the specificity of the primers for the bglF_1 and davD genes in L. monocytogenes. (A) The PCR results of the primer system targeting the
bglF_1 gene. (B) The PCR results of the primer system targeting the davD gene. Lane M: DL DNA 2000 marker, lane NC: negative control, and lanes
1-10: represent 10 different strains, including lane 1: Listeria monocytogenes, lane 2: Listeria innocua, lane 3: Listeria ivanovii, lane 4: Listeria
welshimeri, lane 5: Escherichia coli, lane 6: Salmonella, lane 7: Klebsiella Pneumoniae, lane 8: Acinetobacter baumannii, lane 9: Pseudomonas

geographical proximity of these regions resulting in fewer
environmental disparities. Additionally, trade between these regions
may contribute to the mutual dissemination of L. monocytogenes
strains. This discovery provides valuable insights into the reasons for
the differences in the predominant ST and CC types of
L. monocytogenes strains in America, Europe, and Asia.

It is well known that within the genus Listeria, only
L. monocytogenes and L. ivanovii are considered pathogenic, with
L. monocytogenes exhibiting higher pathogenicity. Moreover, the high
pathogenicity of L. monocytogenes typically relies on a plethora of
virulence genes as its foundation. Our analysis findings align with this
observation, as strains of L. monocytogenes in different regions harbor
a significant abundance of virulence genes. During invasion of the
host by L. monocytogenes, the bacterium first utilizes the inlA and inIB
genes to bind with the E-Cadherin and Met receptors of the host’s
eukaryotic cell membrane, respectively, thereby inducing bacterial
uptake through receptor-mediated endocytosis. After internalization,
the bacterium is encapsulated within a vacuole, and releases the hly,
plcA, and plcB genes to mediate vacuole escape. Subsequently, the actA
gene is utilized to induce actin polymerization and generate sufficient
force for the bacterium to spread from one cell to another. During the
invasion process of L. monocytogenes, LIPI-1 (prfA, plcA, hly, mpl,
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actA, and plcB) and LIPI-2 (inlA, inlB, inlC, inlE, inlF, inlG, inlH, inl],
and inlK) play pivotal roles (Mejia et al., 2023). Interestingly, in this
study, the genes prfA, plcB, inlK, and inlB were found to be present in
100% of the selected L. monocytogenes strains, whereas hly, actA, and
inlA were not always present at 100%, but their presence probability
exceeded 99%. This phenomenon could be attributed to prediction
errors in the database or possibly due to genetic variations occurring
in individual strains under specific environmental conditions (Li et al.,
2021d). These virulence genes are essential for infecting and invading
hosts, highlighting the high pathogenicity of L. monocytogenes.
Furthermore, the potential target genes we screened also include these
virulence genes. The potential target genes play crucial roles in the
fundamental life activities and infective invasion of L. monocytogenes.
Selecting these virulence genes as molecular detection and therapeutic
targets may be a viable option, however, it may lack novelty, as
previous studies have validated genes such as inlA, inlB, and hly as
targets for the detection and treatment of L. monocytogenes. Therefore,
although these virulence genes were also selected as potential target
genes in this study, they were not directly chosen as targets for
detection and treatment. This study employed hub gene screening
methods to further select hub genes from numerous potential target
genes. As is well known, hub genes, also known as key genes, refer to

frontiersin.org


https://doi.org/10.3389/fmicb.2024.1424868
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Zhang et al.

genes that play a crucial role in a particular disease or biological
process (Li et al., 2022). Therefore, we selected highly scoring hub
genes from potential target genes as novel target genes.

In this study, L. monocytogenes strains demonstrated relatively
high resistance to phosphonic antibiotics, glycopeptide antibiotics,
lincosamide antibiotics, and peptide antibiotics. Therefore, it is
recommended to avoid selecting these four classes of antibiotics
when undergoing treatment. Other types of antibiotics may yield
better therapeutic effects, such as ampicillin, gentamicin, and
penicillin. Analyzing MGEs can provide insights into the
evolution of bacterial genomes. In this study, despite the different
geographical locations of the L. monocytogenes strains, they
exhibited certain similarities at the MGEs level. This suggests that
although L. monocytogenes is exposed to diverse external
environments, there still exists a degree of similarity in terms of
bacterial genome evolution.

By performing PPI network analysis and conducting GO and
KEGG enrichment analyses on potential target genes, we aimed to
understand the role of these genes in L. monocytogenes strains in
different regions (Adnan et al., 2022). Functional annotation results
revealed that the potential target genes encompassed a significant
number of transport and metabolism genes, as well as virulence-
associated genes, which play crucial roles in the fundamental life
activities and pathogenicity of L. monocytogenes. However, some genes
still lack clear functional information, necessitating further
investigation in future studies. Hub genes, which are the most crucial
genes in PPI networks, were selected to mining novel target genes (Li
etal, 2022). Ten highly connected hub genes (bglF_I, davD, menE_1,
tlS, dapX, iolC, gshAB, cysG, trpA, hisC) were identified from the pool
of potential target genes. These ten hub genes play crucial roles in the
fundamental life activities and infective invasion of L. monocytogenes.
Among them, bglF_1 and davD genes scored the highest and showed
closer connections with other proteins, indicating their potential to
serve as specific molecular detection and therapeutic targets for
L. monocytogenes strains. The inhibitors or antagonists of these genes
hold promise as novel therapeutic agents. The PCR results
demonstrated the excellent specificity of the bglF_I and davD genes
for L. monocytogenes. Therefore, the bglF_I and davD genes hold
promise as specific molecular detection and therapeutic targets for
L. monocytogenes strains from different regions.

Conclusion

In summary, we employed comparative genomic analysis to
investigate the biodiversity and evolutionary characteristics of
L. monocytogenes strains from different regions. Although
L. monocytogenes strains originate from different regions, they exhibit
a high degree of similarity in bacterial genome evolution, harboring
numerous potential target genes that sustain the essential life
activities and infection invasion of L. monocytogenes. Through
further exploration of potential target genes and validation of PCR
results, the bglF_I and davD genes emerged as promising candidates
for specific molecular detection and therapeutic targets in
L. monocytogenes strains. This study provides significant reference
value for the specific molecular detection and therapeutic targets of
L. monocytogenes strains.
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Molecular epidemiology and
genomic features of Bordetella
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2017-2022
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University, National Children's Medical Center, Shanghai, China, 2Nosocomial Infection Control
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China, *CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes,
Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of
Sciences, Shanghai, China

Background: Pertussis is a highly contagious respiratory illness mainly caused by
Bordetella pertussis (BP). Bordetella parapertussis (BPP) can induce symptoms
compatible with pertussis, but has been underdiagnosed and underreported.
The current pertussis vaccines offer low protection against BPP. Herein, we aim
to reveal the epidemiology and genomic evolution of BPP in Shanghai, China.

Methods: Children diagnosed with BPP infection from January 2017 to
December 2022 in Shanghai, China were enrolled. We performed antimicrobial
susceptibility testing (AST), multiple locus variable-number tandem repeat
analysis (MLVA), and whole genome sequencing (WGS) analysis. A total of 260
international BPP genomes were chosen for comparison to investigate the
genomic diversity and phylogenetic characteristics of Chinese strains within a
global context.

Results: Sixty patients were diagnosed with BPP infection by culture, with the
positive ratio of 3.5%. (60/17337) for BPP in nasopharyngeal swap samples. The
average age of patients was 4.5+ 0.3years. BPPs contained four MLVA types
including MT6 (65.0%), MT4 (26.7%), untype-1(6.7%) and MT5 (1.7%), and none of
strains showed resistance to macrolides. All strains carried virulence genotype of
PtxP37/ptxA13/ptxB3/ptxC3/ptxD3/ptxE3/fim2-2/fim3-10. MT4 and MT5 strains
carried prn54, whereas MT6 and untype-1 BPPs expressed prn101. We identified
two outbreaks after 2020 caused by MT4 and MT6 strains, each corresponding
to distinct WGS-based phylogenetic lineages. The MT4-lineage is estimated to
have originated around 1991 and has since spread globally, being introduced
to China between 2005 and 2010. In contrast, the MT6-lineage was exclusively
identified in China and is inferred to have originated around 2002.

Conclusion: We revealed the genomic diversity of BPPs circulating in Shanghai,
China, and reported the outbreaks of MT6 and MT4 BPPs after 2020. This is the
first report on the emergence and regional outbreak of MT6 BPPs in the world,
indicating that continuous surveillance on BPPs are thus required.
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Bordetella parapertussis, MT6, MT4, children, China
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Introduction

Whooping cough (pertussis) is a highly contagious
respiratory disease of humans, which is mainly caused by
Bordetella pertussis (BP; Feng et al., 2021; Gorgojo et al., 2023).
Compared to BP, B. parapertussis (BPP) causes a milder whooping
cough-like syndrome and is responsible for a smaller proportion
(2%~20%) of pertussis (Toubiana et al., 2019). However, BPP
infection has been poorly recognized in the world. Pertussis was
previously thought to mainly occur in infants (Fu et al., 2019).
However, more studies reveal that the prevalence and
re-emergence of pertussis has been increasing in older children,
adolescents and adults, making a great public threaten in the
world (Moore et al.,, 2019; Zhang et al., 2022).

There are many differences between BBP and BP. For example,
BPP lacks the production of the pertussis toxin (Ptx) due to a
mutation in the promoter region of the genes encoding this toxin
(Arico and Rappuoli, 1987). The World Health Organization
(WHO) recommended two types of approach to diagnosis,
including direct diagnosis [culture, real-time polymerase chain
reaction (RT-PCR)] and indirect diagnosis (serology). These two
species can be distinguished based on a number of biochemical
characteristics: BPP grow faster and appear grayish; the oxidase
test was positive in BP but negative in BPP, etc. Moreover, a series
of targets including 1S481, IS1001, IS1002, etc. were used to
distinguish different Bordetella species. For example, 1S1001
which presented in all BPPs but was absent in BPs, was widely
used to identify BPP (Riffelmann et al., 2005).

BPP might vary from an unrecognized infection to a mild
illness or typical pertussis presentation; it is increasingly
recognized and reported to public health agencies (Liko et al.,
2017). Pertussis vaccines are produced as combination vaccines
with diphtheria and tetanus toxoids. In China, a routine
immunization schedule of diphtheria, tetanus, whole-cell pertussis
vaccine (DTwP) was implemented in the 1960s. Starting in 2005,
both DTwP and diphtheria-tetanus-acellular pertussis vaccine
(DTaP) were used in China, with DTaP gradually replacing DTwP
by 2010 (Wu et al,, 2023). Although DTap vaccine significantly
reduced the incidence of pertussis, many studies have shown that
pertussis vaccination is irrelevant to or just partially protect against
BPP infection (Liko et al., 2017). The rodent model showed that aP
vaccination, by priming the host response against BP clearance,
confers an advantage to BPP by interfering with optimal immune
clearance and resulting in increased lung colony-forming units
(Long et al., 2010).

Until now, a series of studies on BP strains were reported in
China, including Zhejiang province (Lin et al., 2022), Shanghai
(Fuetal., 2023b), Shenzhen (Wu et al., 2021), and Beijing (Zhou
et al., 2024). However, systematic studies or reports on BPP
strains are very scarce in the world. National surveillance on BPP
strains are largely lacking in China. In this study, we performed
a continuous surveillance on Bordertella spp. based on culture,
and collected a total of 60 BPP strains from January 2017 to
December 2022 in Shanghai, China. We systematically analyzed
the clinical and epidemiology features, the antimicrobial
resistance (AMR) profiles, and the genomic evolution of
those strains.
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Materials and methods
Enrollment of pertussis cases

From January 2017 to December 2022, there were 740 children
diagnosed as pertussis by bacterial culture in Shanghai, China.
Their nasopharyngeal swab (NP) samples were collected for
Bordetella spp. culture and antimicrobial resistance testing. Their
basic information, clinical diagnosis, and X-ray imaging were
collected based on the electronic medical records. The laboratory
testing results were collected and analyzed in this study, including
white blood cell counts (WBC, x10°/L) and C-reactive protein
(CRP, mg/L). All data collection and analysis were anonymous.
This study was approved by the Ethics Committee of the Children’s
Hospital of Fudan University (no. 2022-66).

Culture and antimicrobial susceptibility
testing of BPP strains

NP samples were delivered to clinical microbiology laboratory
(OXOID,
United Kingdom) plates supplemented with 10% defibrinated

and immediately spread onto charcoal agar
sheep blood and cephalexin (40 mg/L). The plates were incubated
in a humidified incubator at 35°C for 3 to 5days. Different
Bordetella species were verified by Gram staining, biochemical
tests, and Matrix assisted laser desorption ionization-time of flight
mass spectrometry (MALDI-TOF MS, Bruker, Germany).

The BPP isolates were suspended equivalent to a 0.5 McFarland
standard and inoculated onto charcoal agar containing 10% sheep blood
without cephalexin. The minimum inhibitory concentrations of four
antimicrobial ~agents, including erythromycin, azithromycin,
clarithromycin, and sulfamethoxazole/trimethoprim, were determined
by the E-test after 72h of incubation at 35°C. The standardized

interpretation criteria are based on our previous report (Fu et al., 2019).

Whole genome sequencing and analysis

Genomic DNA of BPP strains were extracted using QIAamp
DNA mini kit (QIAGEN) and whole-genome sequencing were
performed on Illumina NovaSeq platform. Sequencing data were
analyzed as previously described (Yang et al., 2022; Fu et al,
2023b). Briefly, species identification was performed using Kraken
2 based on sequencing data (Lu et al., 2022)." Genome assembly
was performed using shovill pipeline. The genome characteristics
of newly sequenced data were calculated using Quast v5.0.2
(Gurevich et al., 2013). The prevalence of insertion sequence (IS)
IS1001 were detected by searching against assembled genome
sequences using BLASTN. It was considered present if the
BLASTN hit coverage and identity were at least 90%.
Core-genome single-nucleotide-polymorphisms (SNPs) were
identified using the Snippy pipeline,* with strain 12822 [accession

1 https://github.com/tseemann/shovill
2 https://github.com/tseemann/snippy
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number: (NC_002928.3)] as the reference genome. Maximum-
likelihood phylogenetic trees were constructed using RAXML-NG
based on core-genome SNPs (Kozlov et al., 2019). The maximum-
likelihood tree was rooted using the midpoint method. The dated
phylogenetic trees were automatically rooted based on temporal
signal using a root-to-tip linear regression with BactDating
(Didelot et al., 2018). New sequencing data have been deposited
in NCBI Sequence Read Archive (SRA) under accession
number PRJNA1060880.

A total of 260 publicly available international genomes were
downloaded from NCBI GenBank or SRA database, with accession
numbers listed in the appendix (Supplementary Table S1). The
international BPP strains included France (118), USA (91), Spain (29),
Germany (3), Austria (2), United Kingdom (1), Australia (1), Japan
(1), Iran (1), and unknow (13).

Multiple locus variable-number tandem
repeat analysis, multilocus sequence
typing, and Bordetella spp. virulence
genotyping analysis

Genomic DNA of BPP isolates was prepared by a QIAamp
DNA mini kit (QIAGEN). Multiple locus variable-number tandem
repeat analysis (MLVA) was performed following the procedures
according to the report of Kamachi et al. (2019). Four loci (VNTR4,
VNTRI13, VNTR14, and VNTR15) were amplified by PCR. The
number of repeats at each VNTR locus was calculated from the
DNA fragment length. The assignment of an MLVA type (MT) was
based on the combination of repeat counts for VNTR4, VNTR13,
VNTRI14, and VNTRI15 according to previous reports (Kamachi
etal., 2019).

Multilocus sequence typing (MLST) were analyzed by seven
housekeeping genes (adk, fumC, glyA, tyrB, icd, pepA, and pgm).
BPP genomes data were matched on the website.” The alleles at
each of the seven loci defined the allelic profile or sequence
type (ST).

Assembled BPP genome sequences were used for virulence
genotyping by searching against BIGSdb-Pasteur genomic platform
for Bordetella.20. The virulence-related genes included pertussis toxin
(PTX) promoter (ptxp), five ptx genes (ptxA, ptxB, ptxC, ptxD, ptxE),
pertactin (prn), filamentous hemagglutinin B (fhaB), and fimbrial
proteins (fim2, fim3).

Statistical analysis

All statistical analyses were performed using the GraphPad
Prism software version 8.0. The f test and Bonferroni correction
were performed to compare the differences of clinical
characteristics and laboratory testing results between two groups.
A p-value of less than 0.05 was considered statistically significant.

3 https://bigsdb.pasteur.fr/bordetella/
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Results

Distributions and detection of BPP cases
from 2017 to 2022

As shown in Figure 1A, there were 740 children diagnosed as
pertussis by bacterial culture, and 91.4% (676 patients), 8.1% (60
patients) and 0.5% (4 patients) of the pertussis were caused by BP, BPP,
and Bordetella bronchitis (BB), respectively.

BP strains were continuously isolated from 2017 to 2019 (ranging
from 4 strains to 97 strains per quarter), but only one BP strain was
collected in 2020. Notably, BP infection was re-emerged from 2021 to
2022, and there were two peaks of BP infection at 4th quarter of 2021
(40 strains) and 1st quarter of 2022 (96 strains). Compared to BP
cases, BPP infection was quite scarce before 2021. Only four BPP
strains were identified at 3rd quarter of 2017. Concurrent with the BP
re-emergence time, BPP infection had outbreaks at 4th quarter of 2021
(25 strains) and 1st quarter of 2022 (29 strains; Figure 1B).

Among 17,337 patients who received nasopharyngeal swap
samples culture, there were 60 children diagnosed with BPP infection,
with the positive ratio of 3.5%o (60/17337). The average ages were
(4.5+0.3) years old. The infants (<1year), toddler (>1~3years),
preschool (>3~5years), school age (>5~8years) and adolescents
(>8~11years) accounted for 10% (6), 16.7% (10), 41.7% (25), 30%
(18), and 1.7% (1), respectively (Figure 1C). Most of patients came
from the internal medicine clinic (80%, 48; Figure 1D).

Clinical and laboratory characteristics of
BPP cases

As shown in Table 1, most of the patients (76.7%, 46 patients)
presented paroxysmal cough and phlegm, and the average cough period
was (27.0+4.6) days. Moreover, there were 56.7% (34 patients), 30% (18
patients), 21.7% (13 patients), 13.3% (8 patients) and 6.7% (4 patients) of
BPP cases presented rhinorrhea, fever, vomiting, wheezing and spasmodic
cough, respectively. We further compared the difference of younger
children (1.7+0.3years old, 2months to 3years) and older children
(5.6+0.2years old, >3years to 11 years). It is noted that younger children
presented more severe clinical symptoms than older children, including
longer cough periods [(35.3+9.6) days vs. (20.0+3.2) days, p=0.03),
vomit (56.3% vs.9.1%, p<0.01), and wheezing (31.3% vs.6.8%, p=0.04].

There were 50% (30 patients) and 40% (24 patients) of BPP cases
treated by macrolides and cephalosporins, respectively. However, no
BPP strains isolated from the patients showed resistance to macrolides,
and all strains presented sensitive to sulfamethoxazole/trimethoprim.
The chest X-ray of BPP cases presented either bronchitis (45.0%, 27),
bronchopneumonia (13.3%, 8) or pneumonia (5.0%, 3), and there was
no difference between younger children and older children. WBC was
slightly increased to (11.4+0.4) x 10°/L, and 23.3% (14) of patients
presented abnormal CRP (>8 mg/L; Table 1).

Prevalence of different BPP types from
2017 to 2022

All 60 BPP strains belonged to one MLST type 19 (ST19, 100%),
whereas MLVA analysis further revealed four different BPP subtypes
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FIGURE 1
Distributions of Bordetella species and basic information of BPP infection cases from 2017 to 2022. (A) Distributions of different Bordetella species;
(B) Detection ratios of three Bordetella species from 2017 to 2022; (C) Age distributions of BPP infection cases; (D) Department distributions of BPP
infection cases. BP, Bordetella pertussis; BPP, Bordetella parapertussis; BB, Bordetella bronchitis.

in this study. MLVA type 6 (MT6) with the VNTR profiles of 4-5-13-5
was the major subtype (65.0%, 39 strains) of BPPs in this study,
followed by MT4 (VNTRs: 3-7-18-4, 26.7%, 16 strains). Other subtype
including MT5 (VNTRs: 3-7-21-4) and untype-1 (VNTRs: 4-5-10-4)
were less frequently detected, with the ratios of 1.7% (1 strain) and
6.7% (4 strains), respectively (Figure 2A).

MT6 and MT4 were mostly isolated at 4th quarter, 2021 (56.4%
and 12.5%) and 1st quarter, 2022 (41.0% and 81.3%), respectively
(Figure 2B). There were MT6-BPP outbreaks at 4th quarter, 2021 (22
strains) and 1st quarter, 2022 (16 strains), and MT4-BPP outbreak at
Lst quarter, 2022 (13), respectively (Figure 2C).

Genomic characteristics and evolution of
Shanghai BPP strains

For the newly sequenced strains, the average GC content, number
of contigs and size of assemblies were 68.17% (68.16-68.17%), 80
(70-92) and 4.72 Mb (4.72-4.73), with an average of 92-fold (87-141)
depth for each genome. The marker sequence of BPP, IS1001, was
found in all Chinese BPP strains.

We compared 60 Shanghai BPPs with 260 public genomes of
global BPPs to reveal the phylogenetic relationship of those strains.
After integrated the MLVA subtypes of 60 BPPs with WGS analysis,
MT4-lineage and MT6-lineage,
corresponding to MT4 and MT6 strains that caused disease outbreaks.

we defined two lineages:

As shown in Figure 3A, MT4-lineage isolates in Shanghai were closely
related to those isolated from the France, United States, Austria, and

Frontiers in Microbiology

Spain. MT6-lineage strains isolated after 2020 in Shanghai were quite
different to other strains. Figure 3B showed that MT4-lineage was
estimated to have originated at 1991 [95% confidence interval (CI):
1985~1996] probably from USA, and has spread to multiple regions,
including Europe (France and Spain), Australia and China. This
lineage was inferred to have been introduced to China around 2005 to
2010, much earlier than our first MT4 strain isolated in 2021.
MT6-lineage was different to either the MT4-lineage strains or other
international strains. Notably, this lineage was estimated to have
originated in China at 2002 (95% CI: 1970~2013) and was only
identified in Shanghai, China (Figure 3C).

We further identified 74 SNP sites that can be used to distinguish
MT4-lineage and MT6-lineage, with alleles that are completely
different in the two lineage strains. Among these SNPs, 64 located
within gene regions (64 genes, each with one SNP), and an additional
10 SNPs located in intergenic regions (Supplementary Table S3). SNP
sites can be used to distinguish MT4- and MT6-lineages, exhibiting
alleles that are completely different in the two lineage strains. For
example, the SNP at position 130,756 has two alleles: A and C. All
MT4-lineage strains carried allele A, while all MT6-lineage strains
carried allele C.

In this study, BPPs expressed a series of Bordetella virulence
factors, with the profiles of ptxP37/ptxA13/ptxB3/ptxC3/ptxD3/ptxE3/
fim2-2/fim3-10. All of MT4 and MTS5 strains carried prn54, whereas
MT6 and untype-1 BPs expressed prnl01 (Supplementary Table S2).
The fhaB genes included four different alleles: fhaB-45 (48.3%), fhaB-3
(18.3%), fhaB-22 (18.3%), and fhaB-44 (15.1%), all of which were not
related to any MT subtypes.
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TABLE 1 Clinical and laboratory characteristics of BPP cases during 2021 to 2022.

Characteristics Total Younger children Older children p-value
(n =60) (<3years old, (>3 years old,
n=16) n=44)
Male 32(53.3%) 11 (68.8%) 21 (47.7%)
Gender
Female 28 (46.7%) 5(31.3%) 23 (52.3%) 0.15
Ages (Years) 4.5+0.3 1.7+0.3 56+0.2 <0.01
Paroxysmal cough 46 (76.7%) 12 (75.0%) 34 (77.3%) 0.87
Cough days 27.0+4.6 35.3+9.6 20.0+£3.2 0.03
Spasmodic cough 4 (6.7%) 2 (12.5%) 2 (4.5%) 0.58
Vomit 13 (21.7%) 9 (56.3%) 4(9.1%) <0.01
Clinical symptoms
phlegm 46 (76.7%) 13 (81.3%) 33 (75.0%) 0.87
Rhinorrhea 34 (56.7%) 10 (62.5%) 24 (54.5%) 0.58
Wheezing 8 (13.3%) 5(31.3%) 3 (6.8%) 0.04
Fever 18 (30.0%) 5(31.3%) 13 (29.5%) 0.9
Macrolides 30 (50%) 9 (56.3%) 19 (43.2%) 0.37
Antimicrobial usage
Cephalosporins 24 (40%) 9 (56.3%) 15 (34.1%) 0.12
Antimicrobial resistant Macrolides 0 (0%) 0 (0%) 0 (0%) >0.99
ratios Sulfamethoxazole/trimethoprim 0 (0%) 0 (0%) 0 (0%) >0.99
Bronchitis 27 (45.0%) 11 (68.8%) 16 (36.4%) 0.54
X-ray Bronchopneumonia 8 (13.3%) 3 (18.8%) 5(11.4%) 0.75
Pneumonia 3 (5.0%) 0 (0%) 3 (6.8%) 0.56
WBC 11.4+0.4 12.2+0.9 11.2+0.5 0.28
Laboratory testing
Abnormal CRP 14 (23.3%) 4 (25.0%) 10 (22.7%) 0.97

White blood cell counts (WBC, 10°/L), C-reactive protein (CRP, mg/L), Abnormal CRP was defined as CRP > 8 mg/L. Statistical analyses were performed with GraphPad Prism 8.00. The t test
and Bonferroni correction were performed to compare the differences of clinical characteristics and laboratory testing between two groups. A p-value of less than 0.05 was considered

statistically significant, and was bolden in the table.

We further compared the clinical and laboratory characteristics of
MT4-lineage and MT6-lineage BPPs (Supplementary Table S4). There
were no big differences between those two BPP lineages in Shanghai
(p>0.05), including the clinical symptoms, the inflammatory factors,
X-rays, antimicrobial treatment history and AMR profiles. However,
MTé6-lineage BPP cases presented longer cough periods of (31.2£5.6)
days, which was two or more times as long as MT4-lineage
(14.2+2.7 days, p=0.04).

Discussion

BPP can cause whooping cough in human, but the epidemiology
of respiratory illness caused by BPP strains has been poorly recognized
in the world (Mastrantonio et al., 1998). Herein, we collected a total
of 60 BPPs from 2017 to 2022 in Shanghai, China, and systematically
analyzed the clinical and epidemiologic features and the genomic
evolution of those strains. BPP accounted for 8.1% of whooping cough
in this study, and caused more severe clinical symptoms in younger
children (0~3year). BPPs circulating in Shanghai contained four
different MT types. It is noted that there was the outbreak of BPP
infection after 2020, and the major MLVA types were MT4 and MT6.
These two subtypes have evolved independently: MT4-lineage was
highly homogeneous to international BPPs which were estimated to
originate at USA and introduced to China around 2005 to 2010,
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whereas MT6-lineage was estimated to originate in China and was
only identified in Shanghai, China.

After aP vaccine replaced wP vaccine by 2010 in China, there are
two types of DTaP formulations licensed in China: one is the
two-component DTaP containing Ptx and Fha, and another is the
three-component DTaP containing Ptx, Fha and Prn. The current
vaccine in Shanghai contains Ptx and Fha. However, BP vaccines fail
to or partially induce protection against BPPs and the incidence of this
species has been rising over the years (Long et al., 2010; Liko et al.,
2017). BPP has been circulating worldwide and causes outbreaks
despite high pertussis vaccine coverage of young children. Unlike BP
infections which were primarily identified in infants before 2020 in
Shanghai, China (Fu et al., 2019, 2023b), the average ages of BPP cases
were (4.5+0.3) years, and only 10% patients aged less than 1-year-old.
The average cough period of BPP infection was much longer than our
previous report of BP infection (27.0 +4.6 days vs. 15.5£0.8 days; Fu
etal., 2023a). Moreover, younger children (0-3 years) presented more
severe clinical symptoms than those aged more than 3-years-old.
Therefore, we must pay attention to BPP infections among children,
especially the younger children.

Previously, erythromycin has been the mainstay of antibiotic
therapy for pertussis as it decreases the transmission of infection
and ameliorates symptoms particularly in younger and more
severely affected infants (Mortensen and Rodgers, 2000).
However, after the erythromycin-resistant BPs in China was firstly
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Prevalence of different BPP subtypes from 2017 to 2022. (A). MT subtypes of all BPPs; (B). Distributions of different MLVA types over time; (C).
Detection of different BPP subtypes per quarter from 2017 to 2022.

isolated in Shandong Province, China in 2011, more macrolides-
resistant BP (MRBP) strains were reported in China, making
macrolides less effective against BP infection (Zhang et al., 2013).
Antimicrobials such as macrolides and sulfamethoxazole/
trimethoprim recommended for BP infection have also been used
for treating and preventing BPP infection (Mortensen and
Rodgers, 2000). This study revealed a high proportion of
macrolides treatment (50%) against BPP infection, but none of the
BPPs were resistant to macrolides. This is quite different with high
macrolides resistance of BPs in China (Feng et al., 2021; Wu et al.,
2022; Fuetal., 2023b), indicating that macrolides are still effective
against BPP infection. The resistance mechanism in BPs and BPPs
are different: The 23S rRNA A2047G mutation is considered the
major mechanism of resistance to macrolides in BP strains.
However, the macrolides resistance mechanism in BPP is still
unclear. Lately, Fong et al. (2022) reported that the macrolides
resistance in BPP was probably related to the upregulation of an
efflux pump mechanism, but it still needs further investigation.
Therefore, we hypothesize that the macrolides resistance due to
A2047G mutation was stable and has the potential spread
capability than any other resistance mechanisms.

BPP can caused regional or national outbreaks. For example,
Koepke et al. (2015) reported the concurrent outbreak of BPPs and
BPs during 2011 to 2012 in Wisconsin, USA, and the BPPs accounted
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for nearly 6.0% of pertussis cases. In this study, we identified BPP
outbreak after 2020 in Shanghai, China, which is greatly consistent
with BP re-emergence time after 2020. We hypothesized that the
potential re-emerging of BPPs and BPs in this study was related to the
suppressed spread or circulation of respiratory pathogens during
COVID-19. There were two major MLVA types including MT6 and
MT4, the VNTR profiles of MT6 and MT4 were quite heterogenous,
revealing the independent spread and genomic evolution of these two
subtypes. Recently, Kamachi et al. (2019) constructed the MLVA
analysis method of BPP strains, and identified one MT6 strain isolated
at 2010 in Taiwan, China, and two MT4 strains isolated at 2010 in
Taiwan, China and at 1988 in France, respectively.

BPP and BP share the same virulence factors including Prn,
dermonecrotic toxin, Fha and adenylate cyclase (Mastrantonio et al.,
1998). However, the Ptx as one of the major virulence factors is only
expressed in BP since the ptx operon in BPP is dysfunctional (Arico
and Rappuoli, 1987). In this study, many of the virulence factors
characterized in BP strains are commonly expressed in BPPs. BPPs in
Shanghai carried a series of virulence factors, including ptxP37/
ptxA13/ptxB3/ptxC3/ptxD3/ptxE3/fim2-2/fim3-10. It is noted that
although BPPs carry ptx genes in the genomes, they cannot express
and secrete the pertussis toxin due to mutation in Ptx promoter
region. Prn allele was diverse among different BPP subtypes: MT4 and
MTS5 strains all carried prn54, whereas MT6 and untype-1 BPs
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expressed prnl0I, revealing the heterogeneity of virulence genes
among different BPP subtypes. Prn-deficient BPs have widely been
reported in countries using aP vaccines, such as the United States
(85%), Australia (>80%), Sweden (69%), and Italy (55%; Byrne and
Slack, 2006; Martin et al., 2015; Zomer et al., 2018; Weigand et al.,
2019; Ma et al.,, 2021). Herein, all BPPs expressed prn gene without any
mutation or disruption, and none of prn-negative BPP was identified.
The aP vaccines containing Prn as an immunogen was thought to
be the selection pressure for prn-negative BP strains (Ma et al., 2021).
The current ACVs in Shanghai only contain Ptx and Fha, so
we hypothesized that prn expression was not influenced by vaccine
pressure because the current ACVs used in Shanghai contain no
Prn antigen.

We collected 260 international BPPs for comparison, revealing
the different genomic characteristics and molecular evolution of
MT4-lineage and MT6-lineage. Firstly, 64 SNPs in gene regions
and 10 SNPs in intergenic regions were identified among these two
lineages. Secondly, the dated phylogenetic trees further revealed
evolutionary differences between MT4- and MT6-lineage:
MT4-lineage which originated at 1991 from USA was introduced
to China around 2005~2010; MT6-lineage presented genomic
heterogeneity to any other BPP strains, and was exclusively
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identified in Shanghai, China. We further compared the clinical
and laboratory features of MT4-lineage and MT6-lineage BPPs.
Although most of the clinical manifestations and inflammatory
factors between these two lineages showed no significant
differences, MT6-lineage cases presented the longer cough period
(31.2 £ 5.6 days), which was about two or more times as long as
MT4-linage cases. Therefore, it is thus important to keep
continuous surveillance of MT-6 lineage BPP strains.

In summary, we revealed the genomic diversity and molecular
evolution of different BPP subtypes circulating in China, and reported
the emergence and outbreak of MT6 and MT4 BPPs after 2020 in
Shanghai, China. To the best of our knowledge, it is the first report on
the emergence and regional outbreak of MT6-lineage BPP in the
world, highlighting that continuous surveillance and effective
detection on BPP strains are thus required.
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Objectives: Certain Group B Streptococcus (GBS) genotypes are associated
with invasive disease in neonates. We conducted a comparative genomic
analysis of GBS isolates from neonatal disease and maternal carriage in the
Netherlands to determine distribution of genetic markers between the two host
groups.

Methods: Whole genome sequencing was used to characterise 685 neonatal
invasive isolates (2006-2021) and 733 maternal carriage isolates (2017-2021)
collected in the Netherlands.

Results: Clonal complex (CC) 17 and serotype Il were significantly more
common in disease while carriage isolates were associated with serotypes I,
IV, V as well as CC1. Previously reported CC17-Al sub-lineage was dominant
among disease isolates and significantly less common in carriage. The phiStagl
phage, previously associated with expansion of invasive CC17 isolates in the
Netherlands, was more common among disease isolates compared to carriage
isolates overall, however it was equally distributed between CC17 isolates from
carriage and disease. Prevalence of antimicrobial resistance genes was overall
lower in disease compared to carriage isolates, but increased significantly over
time, mediated by rise in prevalence of a multidrug resistance element ICESag37
among disease isolates.

Conclusion: There is a stable association between certain GBS genotypes
and invasive disease, which suggests opportunities for developing more
precise disease prevention strategies based on GBS targeted screening.
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In contrast, GBS mobile genetic elements appear less likely to be correlated
with carriage or disease, and instead are associated with clonal expansion events
across the GBS population.
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Introduction

Streptococcus agalactiae (Group B Streptococcus, GBS) is a
common coloniser of the vaginal and gastrointestinal tracts of
healthy adults. Carriage of GBS during pregnancy represents a
risk factor for the development of invasive disease in the newborn
and GBS is a leading cause of invasive infection in neonates
worldwide (Gongalves et al., 2022). Beta-lactams represent the first
choice for intrapartum antibiotic prophylaxis (IAP) during labour
and treatment of GBS disease. While most GBS isolates remain
susceptible to beta-lactams (Kobayashi et al., 2021), prevalence
of resistance to second-line antibiotics such as erythromycin and
clindamycin has been increasing (Slotved and Hoffmann, 2020;
Kekic et al., 2021; Sabroske et al., 2023).

Group B Streptococcus isolates are often grouped based on
their capsular polysaccharide (CPS), with 10 different serotypes
described to date: Ia, Ib, and II-IX (Berti et al., 2014). GBS CPS is
a major virulence factor of GBS and a number of GBS multivalent
vaccines targeting CPS are currently under development (Absalon
et al., 2022). GBS isolates are also characterised using multi-locus
sequence typing (MLST), which has revealed that five GBS clonal
complexes (CCs) are associated with colonisation and disease
in humans: CC1, CC10, CC17, CCl19, and CC23 (Bjornsdottir
et al,, 2016; Khan et al,, 2022). Some GBS lineages are associated
with specific CPS serotypes, for instance CC17 isolates express
predominantly serotype IIT (Teatero et al., 2016). Associations
between GBS molecular markers and different host groups have
been observed, with CC17-serotype III dominant among neonatal
GBS invasive disease (Teatero et al., 2016; Bianchi-Jassir et al., 2020
Jamrozy et al., 2020), while CC1 often associated with disease in the
adult population (Flores et al., 2015).

We have previously reported that CCl7 prevalence has
increased among GBS isolates from neonatal disease in the
Netherlands, which was associated with expansion of particular
CC17 clonal groups and with acquisition of a novel phage phiStagl
(Jamrozy et al., 2020). It has been unclear whether the increasing
prevalence of these CC17 clones occurred only among the disease-
associated GBS isolates, or was reflective of a more broad expansion
across the GBS population. To address this, we have used whole
genome sequencing (WGS) to analyse and contrast population
structures of GBS isolates from maternal carriage and neonatal
disease, collected in the Netherlands. Furthermore, to better
understand the genetic variability between isolates from the two
at-risk populations, we compared the distribution of key GBS
molecular markers such as serotype, CC, antimicrobial resistance
(AMR) genes and the intra-lineage population structure within the
major CCs.
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Materials and methods

GBS isolates

The collection consisted of 685 neonatal (<90 days old)
invasive GBS isolates collected between 2006 and 2021, and 733
maternal carriage GBS isolates collected between 2017 and 2021
in the Netherlands. Isolates from neonatal disease were derived
from a nationwide surveillance of bacterial meningitis and infant
bacteraemia conducted by the Netherlands Reference Laboratory
for Bacterial Meningitis (NRLMB). Disease isolates collected
between 2006 and 2016 were described previously (Jamrozy et al.,
2020). The infections were classified as early onset disease (EOD)
at age 0-6 days, and as late onset disease (LOD) at age 7-89 days.
Maternal carriage isolates were collected from pregnant women
in hospitals in Amsterdam, The Hague, Utrecht, Hengelo, and
Arnhem, for the Netherlands observational study on GBS disease,
bacterial virulence and protective serology (NOGBS). Isolates were
cultured from the vagina (n = 528) or urine (n = 205) according to
local hospital protocols.

Whole-genome sequencing and post
processing

Genomic DNA was extracted using either the Wizard®
Genomic DNA Purification Kit or the Maxwell® RSC Cultured
Cells DNA Kit (AS1620) from Promega. Tagged DNA libraries
were created using NEBNext" Ultra™ II DNA Library Prep Kit
for Illumina. Whole-genome sequencing was performed on the
Mlumina NovaSeq 6000 platform with 150 bp paired-end reads.
Sequence reads were used to create assemblies using SPAdes v3.10.0
(Bankevich et al., 2012). Annotated assemblies were produced as
described previously (Page et al., 2016).

Whole-genome sequence data analysis

The sequence data was assessed using GBS QC pipeline v1.0.3%.
Sequences that have passed QC were analysed using the GBS typer
pipeline v1.0.10% to determine sequence type (ST), serotype, and
AMR gene carriage. Novel MLST alleles and ST profiles were

1 https://github.com/sanger-bentley-group/GBS_QC_nf
2 https://github.com/sanger-bentley-group/GBS-Typer-sanger-nf
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deposited in the MLST database®. Isolates were assigned to a CC
using the geoBURST algorithm in PHYLOVIZ v2.0 (Nascimento
et al, 2017) and a single locus variant for group definition. To
determine the presence of a phiStagl (Jamrozy et al., 2020) and
ICESag37 elements, sequence reads were mapped to reference
sequences (phiStagl: GenBank accession PP091924; ICESag37:
accession no. CP019978, 629058-702486) with SRST2 v0.2 using
default parameters (Inouye et al., 2014).

Phylogenetic analyses were performed as detailed in
Supplementary Methods. CC17 isolates from the Netherlands
were supplemented with publicly available CC17 genomes to
reconstruct a global, time-calibrated phylogeny as detailed in

Supplementary Methods.

Statistical analysis

Fisher’s exact test was used to determine significant association
between host status and GBS genotypes, P-value < 0.001 was
considered statistically significant.

Results

Serotype, ST, and CC distribution among
GBS from carriage and disease

The dataset consisted of 733 maternal carriage and 685
neonatal disease isolates. The majority of neonatal isolates were
from EOD (62%) with the remainder derived from LOD (38%;
Supplementary Table 1).

Based on the in silico analysis, nine capsular serotype genotypes
were identified (Ia, Ib, II-VII, and IX), while six isolates were non-
typeable (Figure 1A). The most common serotypes among carriage
isolates were III (25%), V (19%), II (17%), and Ia (17%), while
disease isolates were predominantly serotype III (59%), followed by
Ta (22%) (Figure 1B).

We identified 149 unique STs (Supplementary Table 1). The
most common STs among carriage isolates were: ST1 (11%),
ST17 (11%), ST23 (9%), ST19 (9%), ST28 (6%), and ST24
(5%) (Supplementary Figure 1). In contrast, disease isolates were
dominated by ST17 (39%), followed by less common ST23 (15%)
and ST19 (10%). The STs were grouped into 12 CCs. The main
CCs among all GBS isolates were CC17 (29%), CC19 (19%), CC23
(15%), CC1 (13%), and CC8 (8%) (Figure 1C). In line with ST
assignment, the majority of disease isolates belonged to CC17
(45%), followed by CC23 (18%) and CC19 (16%). The carriage
isolates showed a more diverse CC distribution, spread across the
five main CCs: CC19 (21%), CC1 (18%), CC17 (15%), CC23 (13%),
and CC8 (11%) (Figure 1D).

We analysed associations between CCs and serotypes (Figure 2
and Supplementary Figure 2), which showed that CC17 and CC23
carried a single dominant serotype, III and Ia, respectively, while
the other main CCs had a higher serotype diversity (Figure 2). Most
serotypes were associated with multiple CCs, except for VI and VII

3 https://pubmlst.org/sagalactiae/
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FIGURE 1

Serotype and CC distribution among the GBS isolates by host status.
(A) Proportion of all isolates representing each serotype, stratified
by host status. (B) Relative serotype distribution in each host status
group. (C) Proportion of all isolates representing each CC, stratified
by host status. (D) Relative CC distribution in each host status
group. (A,C) Total number of isolates for each serotype and CC,
respectively, is displayed above the bars.

which were only identified in CC1, while serotype IX was found
only in CC130 isolates (Supplementary Figure 2).

We wished to compare the distribution of genotypes between
isolates from carriage and disease. However, since our dataset
was not fully temporally matched, we needed to account for the
possibility of sampling bias due to the previously reported temporal
changes in the prevalence of certain GBS lineages among isolates
from neonatal invasive disease in the Netherlands (Jamrozy et al.,
2020). To account for the likelihood of a continuing temporal trend
in frequency of GBS genotypes, we have evaluated the differences
between carriage and disease isolates by comparing a full dataset
as well as a subset consisting only of isolates that were collected
during overlapping collection years (2018-2021). As such, the latter
included only the most recently collected disease isolates.

Across the full dataset we observed that serotype III was
significantly more common in disease while serotypes Ib, II, IV,
and V were more prevalent in carriage isolates (P < 0.001;
Table 1). Among temporarily matched datasets, serotypes II, IV,
and V remained more common in carriage although this was
not statistically significant, while serotype III was still significantly
associated with disease isolates.

Among all isolates, ST17 was significantly more common in
disease, while ST1, ST28, ST291, and ST569 were significantly
associated with carriage isolates (P < 0.001; Table 1). In time-
matched datasets, these carriage-associated STs were still more
prevalent among carriage isolates but this was not statistically
significant. In contrast, ST17 was still significantly more common
among disease isolates. In line with these associations, CC17 was
significantly associated with disease while CC1 with the carriage
isolates (P < 0.001), which was observed across the full and time-
matched datasets. Additionally, CC8 isolates were more common
in carriage although this was statistically significant only for the full
dataset. We also observed that CC19 was significantly (P < 0.001)
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Serotype distribution by host status and CC. EOD, early onset disease; LOD, late onset disease.

more common in carriage but only within the time-matched
dataset, due to a substantial drop in its prevalence in the most recent
disease isolates. Regarding CC-serotype associations, isolates from
CC24-serotype V and CC17-serotype IV were found exclusively in
carriage isolates except for a single CC24-serotype V identified in
disease isolate (Table 1).

We also compared the distribution of genotypes between
maternal carriage isolates collected from vagina and urine and
observed no variation in prevalence of serotypes and CCs between
the two isolation sources (Supplementary Figure 3).

Phylogenetic structure and host status
associations within GBS CC

Intra-lineage population structure was analysed by clustering
each of the five major GBS CCs into phylogenetic clades (Figure 3).
We have previously reported a clonal expansion of specific
CC17 clades (CC17-Al and CC17-A2) among GBS isolates from
neonatal disease in the Netherlands (Jamrozy et al, 2020) and
wished to compare their distribution among carriage and disease
isolates, together with a broader comparison of GBS population
between the two host groups. The phylogenetic trees of CC17
and CC23 revealed a single dominant clade (CC17-A and CC23-
A, respectively), while the phylogenies of other CCs were more
diverse, revealing between 4 and 6 distinct clades each. To identify
the CC17 clades associated with the previously reported expansion,
the dominant CC17 clade, CC17-A, was partitioned further into
three sub-clades: CC17-A1, CC17-A2, and CC17-A0. For each
clade identified, we calculated its prevalence across all carriage and
disease isolates to identify dominant clusters within each host group
and to compare their distribution (Figure 4).

The most common clades among the carriage isolates were
CC19-B (13%), CC23-A (12%), and CCl1-A (9%). In disease
isolates, the most prevalent clades were CC17-A1 (24%) and
CC23-A (18%). Additionally, clades CC1-A, CC8-C, CC19-B, and
CC19-D were significantly more common among carriage while
CC17-A0, CC17-A1, CC17-B, and CC19-A were associated with
the disease isolates (P < 0.001; Table 1). Those associations
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remained significant in time-matched datasets only for CC17-A0
and CC17-Al.

To better understand the variable CC clade distribution
between carriage and disease isolates, we also compared
the prevalence of these clades within corresponding CC
(Supplementary Figure 4). This has revealed that for CCI,
CC8, and CC23 the distribution of clades was similar between
carriage and disease isolates. For instance, CC1-A, CC8-C, and
CC23-A represented dominant CC1, CC8, and CC23, respectively,
clades in both carriage and disease. In contrast, for CC17 and
CC19, we observed that variable clade distribution was associated
with differences in CC17 and CC19 population structure between
carriage and disease. As such, CC17-A1 was the dominant CC17
clade in disease isolates, while CC17 isolates from carriage showed
an equal distribution of CC17-A1 and CC17-A2. The dominant
CC19 clade in carriage isolates was CC19-B, while in disease the
majority of isolates belonged to CC19-A.

Previous analysis of CC17 isolates from neonatal invasive
disease in the Netherlands also revealed acquisition of a novel
phage, phiStagl (GenBank accession PP091924), which correlated
with the clonal expansion of clade CC17-A1 (Jamrozy et al., 2020).
In the current dataset, phiStagl phage was found in 26% of all
isolates, and it was significantly more common in disease (32%)
in comparison to carriage (21%) isolates (Table 1). The phage
was found predominantly in CC17 isolates where it was mostly
associated with CC17-A1 and CC17-A2 (Supplementary Figure 5).
Despite being more common in disease isolates overall, the phage
was equally distributed among CC17 isolates from carriage and
disease (Supplementary Figure 5). The phiStagl phage was also
detected in other dominant CCs: CC19 (10%), CC23 (28%), CCl1
(5%), and CC8 (19%), where it was mostly equally distributed
between carriage and disease (Supplementary Figure 5).

GBS resistome
Tetracycline resistance genes (tetM, tetO, and tetL) were the
most prevalent AMR determinants, observed in 86% of all GBS

isolates. They were equally represented in disease and carriage
isolates (Supplementary Table 2).
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TABLE 1 Prevalence of genotypes found to be differentially distributed between GBS from carriage and disease.

Full Time-matched subset

Carriage Disease Carriage Disease P-value
Serotype
Ib 8% (62) 4% (28) <0.001 8% (59) 9% (6) 1
i 17% (127) 5% (33) <0.001 17% (120) 6% (4) 0.01
I 25% (183) 59% (406) <0.001 25% (177) 57% (40) <0.001
v 8% (56) 2% (17) <0.001 8% (53) 0 0.01
\% 19% (137) 5% (36) <0.001 19% (130) 6% (4) 0.004
MLST
ST1 11% (77) 3% (23) <0.001 10% (71) 3% (2) 0.05
ST17 11% (82) 39% (266) <0.001 11% (80) 43% (30) <0.001
ST28 6% (41) 1% (7) <0.001 5% (38) 1% (1) 025
ST291 2% (15) 0 <0.001 2% (12) 0 0.61
ST569 2% (15) 0 <0.001 2% (15) 0 0.38
cc
ccl 18% (131) 7% (46) <0.001 18% (125) 3% (2) <0.001
CC8 11% (84) 5% (34) <0.001 11% (80) 6% (4) 0.16
cc17 15% (108) 45% (309) <0.001 15% (103) 53% (37) <0.001
cC19 21% (156) 16% (111) 0.02 21% (149) 6% (4) <0.001
CC-serotype
CC17-1V 2% (15) 0 <0.001 2% (12) 0 0.04
CC24-V 3% (24) 0.1% (1) <0.001 3% (24) 1% (1) 0.63
Clades
CCL-A 9% (68) 3% (22) <0.001 9% (64) 3% (2) 0.07
CC8-C 5% (37) 2% (11) <0.001 5% (34) 3% (2) 0.76
CC17-A0 0.4% (3) 7% (50) <0.001 0.4% (3) 9% (6) <0.001
CC17-Al 5% (37) 24% (167) <0.001 5% (37) 21% (15) <0.001
CC17-B 2% (13) 5% (36) <0.001 2% (12) 9% (6) 0.004
CC19-A 1% (8) 7% (46) <0.001 1% (8) 3% (2) 0.23
CC19-B 13% (94) 6% (42) <0.001 13% (90) 1% (1) 0.002
CC19-D 6% (45) 1% (7) <0.001 6% (42) 1% (1) 0.17
MGE
phiStagl 21% (156) 32% (218) <0.001 21% (148) 39% (27) 0.002
AMR
MLSg 24% (179) 15% (102) <0.001 25% (172) 26% (18) 0.88
ICESag37 4% (31) 5% (37) 027 4% (30) 17% (12) <0.001

The total number of isolates from carriage/disease with corresponding genotype is shown in brackets. The prevalence of genotypes is shown for the full and time-matched (2018-2021) datasets.

The second most common were genes conferring resistance to
macrolides, lincosamides, and streptogramin B (MLSg) antibiotics
(ermB, ermA, ermT, mef A/msrD, InuB, IsaC, and IsaE), which were
present in 20% of all GBS isolates (Supplementary Table 2). The
most common MLSg resistance determinants were ermB (12%),
mef A/msrD (4%), and ermA (4%; Supplementary Table 2). Across
the collection, the highest prevalence of MLSp resistance genes was
observed in isolates belonging to CC19 (32%), CC1 (30%), and
CC17 (19%) (Supplementary Table 2), and the majority were from
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clades CC19-B, CC1-A and CC17-A2, respectively (Figures 3A,
C, E). Across the full dataset, MLSp resistance genes were more
common in carriage (24%) in comparison to disease (15%) isolates.
This was no longer observed in a time-matched dataset, which
showed a comparable frequency of MLSp resistance genes in
carriage (25%) and disease isolates (26%).

Overall, 6% of all GBS isolates carried aminoglycoside
resistance genes, with similar prevalence in isolates from carriage
(7%) and disease (6%) in a full dataset (Supplementary Table 2).
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trees of (A) CC17, (B) CC23, (C) CC1, (D) CC8, and (E) CC19.

Phylogenetic trees of the five major CCs. The branches of each tree are coloured in accordance with CC-specific clusters ID. Each tip is annotated
with (from the innermost circle): host status, serotype, carriage of MLSg resistance genes, phiStagl and ICESag37 (where applicable). Phylogenetic

However, in a time-matched dataset they became more common
in disease isolates (17%). Low frequency of chloramphenicol
resistance genes (1%) was observed, mostly in carriage isolates (2%;
Supplementary Table 2).

In CC17, a number of AMR determinants [ant(6-1a), aph(3’-
III), aadE, ermB, tetO] were carried by clonally related isolates
(Supplementary Figure 6). Further analysis revealed that these
resistance genes were located on a single, previously defined mobile
genetic element (MGE), ICESag37 (Zhou et al., 2017). The majority
of CC17 isolates carrying ICESag37 belonged to CC17-A2 (94%;
Figure 3A). The ICESag37 element was also detected in CC8
isolates, exclusively in clade CC8-B (Figure 3D). The prevalence
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of ICESag37 was similar in carriage (4%) and disease (5%) isolates
in a full dataset. However, its prevalence increased substantially in
more recent disease isolates and in a time-matched dataset it was
significantly more prevalent in disease (P < 0.001; Table 1).

Global CC17 phylogeny and prevalence
of ICESag37

To further investigate the apparent association between
ICESag37 element and CC17-A2 isolates, we combined our CC17
sequence data (n = 229) with publicly available CC17 genomes
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(n = 650) (Supplementary Table 3) and reconstructed a time-
calibrated, global CC17 phylogeny (Figure 5). The non-Dutch
CC17 isolates represented 19 countries and most were derived from
disease (83%; Supplementary Table 3).

The global CC17 isolates clustered into the three previously
observed clades: CC17-A, CC17-B, and CC17-C (Figure 5). The
majority of CC17-A isolates were represented by clade CC17-
Al (45%). The ICESag37 element was identified in 10% of
non-Dutch CC17 genomes and only in isolates belonging to
CC17-A, predominantly in CC17-A2 (63%) but also in CC17-Al
(12%) (Figure 5 and Supplementary Figure 7). The ICESag37-
positive CC17 isolates were globally distributed and clustered
into three distinct sub-clades, indicating multiple independent
acquisition events followed by clonal expansion (Figure 5 and
Supplementary Figure 7). It was estimated that all ICESag37-
positive sub-clades emerged in the 1990s. Based on this dataset,
the first ICESag37 positive CC17 isolates were collected in 2010
in Canada and China, with the first isolation in the Netherlands
in 2011 (Supplementary Figure 8). Regardless of the country of
origin, the majority of globally derived CC17-A2 isolates collected
between 2010 and 2021 were ICESag37 positive (Supplementary
Figure 8). ICESag37 sequence from all globally distributed CC17
isolates shared significant nucleotide identity (93%-100%, median
99.8%) (Supplementary Figure 9).

Discussion

Intrapartum antibiotic prophylaxis currently represents the
main strategy for the prevention of early onset GBS disease. This
prevention strategy assumes an equal risk of neonatal invasive
disease from any identified colonising GBS isolate. However, our
and previous research clearly showed that some GBS genotypes
carry a higher risk of neonatal disease. More studies are needed
to investigate the pathophysiological mechanisms that drive these
differences in invasive potential and evaluate the added value
of GBS genotype determination to more precisely target GBS
prevention. Our work has shown that, in line with previous reports,
CC17-serotype III strains were significantly more common in
disease (Kekic et al., 2021). while serotypes II, IV, V, and CC1 were
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associated with maternal carriage. We have also identified variable
prevalence of some lineage-serotype combinations between the two
host groups. This included isolates representing CC24-serotype V
and CC17-serotype IV, which were associated with carriage. This
suggests that the association between CC17 and neonatal disease
is serotype III dependent. Although other serotypes have emerged
within this GBS lineage, they appear less likely to cause neonatal
infection as none of the CC17-serotype IV were observed among
disease isolates in our collection. In contrast, serotype III remained
associated with neonatal disease even after exclusion of all CC17
isolates (P < 0.001).

Our previous work has shown expansion of specific CC17
sub-clades, CC17-A1 and CC17-A2, among isolates from neonatal
invasive disease in the Netherlands, which correlated with a rise in
disease incidence in the country. A matched collection of isolates
from maternal carriage from the Netherlands was not previously
available, which hindered further investigation of the epidemiology
of these clones in a wider GBS population. In this work, we
addressed this data gap and compared the prevalence of different
clades from major CCs, including CC17, between carriage and
disease isolates. Overall, CC17-Al clade was the most prevalent
sub-lineage among all disease isolates, suggesting an increased
capacity to cause disease. However, although it was considerably
less common among all carriage isolates, the CC17 population
from carriage was dominated by CC17-A1 and CC17-A2 isolates.
This suggests that the previously reported rise in the frequency of
these clusters in GBS from neonatal disease likely reflected their
expansion in the carriage GBS CC17 population, which resulted in
a spillover to invasive GBS population.

We also reported previously and in this work that the
expanding CC17 sub-clades, CC17-A1 and CCl17-A2,
associated with certain MGEs that might contribute to their
prevalence. One is a novel phage, previously termed phiStagl,

are

which emerged suddenly in the CC17 population around the
mid-1990s (Jamrozy et al., 2020). A recent study has shown that the
phage belongs to a novel group of phages designated streptococcal
mobilisable prophages (SMphages) (Huang et al., 2023). The phage
carries a putative virulence gene, which was termed Alp-P1 and
was shown to promote the adhesion and invasion of bovine and
human cells. These findings further indicate that phiStagl might
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FIGURE 5

Core genome time-calibrated maximum likelihood phylogeny of
global CC17 GBS isolates. The tree consists of external (n = 650)
and Dutch (n = 229) CC17 GBS genomes. Each tip is annotated with
CC17 clade ID and country of isolation (“Other”: countries
represented by less than 10 isolates). Branches of clusters carrying
ICESag37 are coloured in green.

provide some selective advantage to its host and thus promote
clonal expansion of CC17-Al and CC17-A2. In our dataset, we
found phiStagl to be overall more common among disease isolates.
However, among CC17 isolates, the phage was equally distributed
among carriage and disease. Further work is needed to better
understand phiStagl’s role in GBS disease. While it was found
more common in isolates from disease, this was likely driven by its
association with CC17 and the dominance of this lineage within
disease. It remains unclear if presence of this phage contributes
to maternal colonisation, transmission to the infant or neonatal
invasive disease.

We have also observed a high prevalence of the ICESag37
element among CC17 isolates. This MGE confers resistance to
erythromycin, tetracycline and aminoglycosides (Zhou et al., 2017).
It was first identified in the Sag37 strain, which represents ST12. In
our dataset, ICESag37 was most common in CC17 (15%), followed
by CC8 (4%), which includes ST12. Carriage of a MDR ICESag
element, corresponding to ICESag37, has been reported previously
in CC17 (Campisi et al., 2016). Our analysis of a global CC17
phylogeny has confirmed that ICESag37-positive CC17 isolates are
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widely distributed and have been found in Asia, Europe, and North
America. We also observed that carriage of this MGE within CC17
is associated mostly with sub-clade CC17-A2. Within the Dutch
GBS collection, CC17-A2 accounted for 87% of all isolates carrying
ICESag37. As such, ICESag37-positive CC17-A2 isolates resistant
to both macrolides and aminoglycosides might pose a clinical threat
due to reduced options for first- and second-line antimicrobial
treatment of GBS infections.

Limitations of our study include a temporal sampling bias, with
disease and carriage isolates collected over different time periods,
with only a 4-year overlap between the two collections (2018-
2021). To account for this, we conducted a parallel analysis of
full and time-matched datasets. While some genotypes showed
statistically significant associations across both datasets, for many
the differences between carriage and disease isolates were no
longer statistically significant in time-matched dataset, which is
likely partly due to much lower disease sample size in the latter.
However, the analysis also showed that the prevalence of AMR
genes was higher in most recently collected disease isolates, which
was associated with increase in frequency of isolates carrying
the ICESag37 element. Finally, the maternal carriage isolates
were recovered from vagina and urine, with the latter potentially
associated with asymptomatic bacteriuria. However, we observed
no variation in genotype distribution between isolates from these
sources suggesting that GBS isolates from urine are acquired from
the rectovaginal site and represent the same GBS population.

Here we report that the previously observed clonal expansion
of CC17-Al and CC17-A2 clades as well as the emergence of
phiStagl phage among GBS isolates from neonatal invasive disease
in the Netherlands likely reflect changes in the maternal carriage
population. Overall, our findings reinforce the importance of
comparing GBS isolates from healthy individuals and patients
to identify pathogen genotypes that might be associated with
increased capacity to cause disease. Altogether this will provide
pathogenicity markers that can be targeted in disease prevention
strategies as well as molecular markers for surveillance of high-
risk clones that demonstrate enhanced dissemination across GBS
population irrespective of the host status.
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Introduction: Bovine mastitis caused by Escherichia coli compromises animal
health and inflicts substantial product losses in dairy farming. It may manifest as
subclinical through severe acute disease and can be transient or persistent in
nature. Little is known about bacterial factors that impact clinical outcomes or
allow some strains to outcompete others in the mammary gland (MG) environment.
Mastitis-associated E. coli (MAEC) may have distinctive characteristics which may
contribute to the varied nature of the disease. Given their high levels of intraspecies
genetic variability, virulence factors of commonly used MAEC model strains may
not be relevant to all members of this group.

Methods: In this study, we sequenced the genomes of 96 MAEC strains isolated
from cattle with clinical mastitis (CM). We utilized clinical severity data to perform
genome-wide association studies to identify accessory genes associated with
strains isolated from mild or severe CM, or with high or low competitive fitness
during in vivo competition assays. Genes associated with mastitis pathogens or
commensal strains isolated from bovine sources were also identified.

Results: A type-2 secretion system (T2SS) and a chitinase (ChiA) exported by
this system were strongly associated with pathogenic isolates compared with
commensal strains. Deletion of chiA from MAEC isolates decreased their adherence
to cultured bovine mammary epithelial cells.

Discussion: The increased fitness associated with strains possessing this gene may
be due to better attachment in the MG. Overall, these results provide a much richer
understanding of MAEC and suggest bacterial processes that may underlie the clinical
diversity associated with mastitis and their adaptation to this unique environment.

KEYWORDS

mastitis, Escherichia coli, GWAS, chitinase, ExXPEC

Introduction

Bovine mastitis often results from bacterial infection. Mastitis-associated E. coli (MAEC),
abundant in the dairy environment, are the most important cause of this disease. These bacteria
cycle between the bovine digestive tract and soils and beddings of stalls, from which they may gain
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access to the mammary gland (MG) via the teat canal. Once established
within the MG, MAEC can induce a range of clinical presentations.
Subclinical mastitis is usually defined as increased somatic cell counts in
milk and transient inflammation caused by cytokine release. MAEC
infections are typically cleared rapidly without complication or need for
antibiotic intervention (Roberson et al., 2004; Fuenzalida and Ruegg,
2019). Conversely, severe clinical mastitis (CM) can damage the MG
through sustained inflammation and high bacterial loads. These cows
often suffer permanent udder damage, and the bacteria occasionally
disseminate beyond the MG leading to sepsis (Wenz et al., 2001; Suojala
etal, 2013). Some mastitis cases are characterized by mild acute disease
followed by extended periods of chronic or recurrent infections.
Occasionally MAEC strains gain access through the teat canal to the MG
during the non-lactating period. Symptoms of CM develop shortly after
the next lactation begins, which also tends toward chronic infections
(Bradley and Green, 2000; Lippolis et al., 2014).

Features that distinguish MAEC from other E. coli strains have
been difficult to identify and remain incompletely understood.
Although they may come from any of the diverse E. coli lineages,
MAEQC strains often fall within E. coli phylogroups A and B1, which
are also the most common phylogroups of commensal strains.
Nevertheless, commensal strains are unable to cause acute clinical or
chronic mastitis (Blum et al., 2015), suggesting that there are
fundamental differences between commensals and MAEC strains that
have yet to be discovered. MAEC frequently belong to sequence types
(MLST) 10, 58,95, and 1125 (Kempfetal,, 2016; Leimbach et al., 2017;
Blum and Leitner, 2013; Nuesch-Inderbinen et al., 2019; Freitag et al.,
2017; Keane, 2016) but this also does not distinguish them from other
strains. Genes predicted to be associated with MAEC have been
examined in numerous PCR-based surveys as well as more extensive
genomic studies (Blum et al., 2015; Nuesch-Inderbinen et al., 2019;
Jamali et al., 2018; Ismail and Abutarbush, 2020; Lippolis et al., 2018).

Phenotypes distinctive of MAEC strains include relatively robust
resistance to the complement system and greater motility than other
E. coli (Lippolis et al., 2018; Guerra et al., 2020; Lippolis et al., 2016).
The ferric dicitrate transport system encoded by the fecABCDE genes
is also highly expressed and much more consistently found in MAEC
genomes compared with other E. coli (Jung et al., 2021; Lin et al,,
1999). Previously, we conducted a functional genetic screen using
transposon insertion sequencing to identify the fitness factors of a
single MAEC strain (Olson et al., 2018). This work demonstrated that
the fec genes are needed to colonize lactating mouse MGs and
implicated the high-affinity zinc transport system and several genes
involved in other metabolic pathways in fitness in MGs. However,
different genes may be required for fitness in other MAEC strain
backgrounds. A more thorough understanding of MAEC genomics
may help identify strains capable of causing mastitis from the varied
strains found in agricultural settings, as well as those more likely to
cause severe CM.

Mastitis severity depends on several host factors that contribute
to disease outcome. For instance, the stage of lactation when the MG
becomes infected has a strong influence on whether the infecting
bacteria are efficiently cleared. At the time of parturition and earlier
stages of lactation, cows are more prone to severe CM, which has been
attributed to immunological dysfunction of neutrophils and
lymphocytes during this time (Burvenich et al., 2007; Sordillo, 2005;
Vangroenweghe et al., 2005; Hill, 1981; Cai et al., 1994; Burvenich
etal., 1994).
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In addition to host factors, bacterial factors may also influence
CM severity (Guerra et al., 2020; Lehtolainen et al., 2003; Wenz et al.,
2006). Some MAEC strains carry virulence factors often found in
extraintestinal pathogenic E. coli (EXPEC) such as toxins, siderophores,
capsules and adhesins (Olson et al., 2021). For the most part, the
influence of these virulence factors during intramammary infections
has not been determined. Thus far, the only trait with a demonstrated
association with CM severity is swarming motility, which is higher in
MAEC strains isolated from severe CM cases than those strains
isolated from mild and moderate CM (Guerra et al., 2020). Gene
expression comparisons of MAEC isolates from transient infections
and persistent CM also demonstrated that flagella gene expression and
motility are generally higher in the persistent CM strains (Lippolis
et al.,, 2018). Persistent strains are also more resistant to serum
complement and express the fec operon genes at higher levels than
transient strains.

Previous genomic analyses have focused on identifying genes that
are unique to MAEC isolates compared to non-pathogenic strains
inhabiting the same niches or commensal strains belonging to the
same phylogroups. These analyses have uncovered putative marker
genes that could distinguish MAEC from other strains, including
those that may function in niche-specific metabolic pathways, gene
regulation, and virulence (Jung et al., 2021; Goldstone et al., 2016). In
this study, we sequenced 96 MAEC genomes and implemented a
comparative genomics approach to uncover genes more likely to
be present in strains isolated from cattle with mild or severe
CM. We then extended this analysis to identify genes associated with
either mastitis isolates or commensal E. coli strains from cattle.
We employed mouse infection and milk growth assays to separate
MAEQC strains with higher or lower fitness to identify genes that are
associated with these phenotypes.

Materials and methods
Bacterial strains and growth conditions

E. coli strains M22 through M117 (Supplementary Dataset 1) were
isolated from individual quarter milk samples from cattle with clinical
mastitis as part of the Canadian National Cohort of Dairy Farms as
previously described (Reyher et al., 2011). In brief, 89 herds across
Canada (Alberta, Ontario, Quebec, and the Maritime provinces Prince
Edward Island, New Brunswick, and Nova Scotia) were selected to
be representative of their respective province in terms of housing type,
bulk tank somatic cell count, cattle breed, and milking schedule, and
were followed from February 2007 to December 2008. At the time of
collection, farmers evaluated the clinical signs presented in each
affected animal and assigned a clinical score, as follows: mastitis score
1 (mild =abnormal milk only), mastitis score 2 (moderate =abnormal
milk and local inflammation signs), or mastitis score 3
(severe=abnormal milk, local inflammation and systemic clinical
signs) (Sears and McCarthy, 2003). From this collection (Dufour et al.,
2019), strains isolated from cows in the middle to late stages of their
lactation cycle were selected in order to focus on bacterial differences
and minimize the effect that early lactation has on mastitis severity
(Hyvonen etal.,, 2010). Selection was also designed to include isolates
from different herds and provinces. Six strains isolated from CM cases
in the United States included in this

were also study
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(Supplementary Dataset 1). Strains M3, M6, M9, M11, and M12 were
previously isolated from quarter milk samples of CM cases (Olson
etal, 2018). Clinical severity data were not available for these isolates.
Strain G1 was supplied by Jennifer Wilson (Jersey Girls, Jerome ID)
and was isolated from a cow with severe, gangrenous mastitis that
necessitated culling of the animal.

The E. coli strains obtained from the mastitis pathogen culture
collection (Dufour et al., 2019) were verified phenotypically by colony
morphology on MacConkey agar (Difco, United States) plates and
confirmed by whole-genome sequencing. Bacteria were routinely
grown in Luria-Bertani (LB) medium at 37°C. For milk cultures,
whole, unpasteurized cow’s milk was obtained from a local supplier
and used immediately or stored at —80°C until use. To determine
growth yields of individual MAEC isolates, bacteria from overnight
LB cultures were added to 100 pL milk to a concentration of 10° CFU/
mL in a 96-well format. Plates were incubated without shaking at
37°C. A sample was immediately removed (T'=0), serially diluted and
plated on MacConkey agar to determine the starting concentration.
Bacterial concentrations were also measured at 4h and 8h post-
inoculation. The change in CFU/ml at 4h and 8h relative to T=0 was
calculated for three biological replicates for each strain.

Genome sequencing, assembly, and
annotation

Total DNA was isolated from MAEC strains using a ZR Fungal/
Bacterial DNA MiniPrep kit (Zymoresearch). DNA sequencing
libraries were prepared using the Illumina Nextera DNA Library Prep
kit as previously described (Baym et al., 2015). DNA libraries were
sequenced by Genewiz, Inc. (South 330Plainfield, NJ), and Illumina
paired-end reads of 150 bp were generated on a MiSeq with version 2
chemistry. Quality control, contig assembly, in silico determination of
phylogroup, multi-locus sequence typing, and GrapeTree analysis
were performed within EnteroBase (Zhou et al., 2020; Zhou et al,,
2018) and genomes were annotated with Prokka (version 1.14.6)
(Seemann, 2014). GrapeTree analysis was performed using the
Achtman 7 Gene MLST scheme (adk, fumC, gyrB, icd, mdh, purA,
recA) and the MSTree V2 algorithm. Accession numbers for genome
assemblies are found in Supplementary Dataset 1 and are publicly
available at Enterobase.'

Core and accessory genome
determination, alignment, phylogenetic
trees, and pan-genome analysis

PIRATE (version 1.0.4 with default parameters) was used to
perform a pan-genome analysis on all the GFF annotation files for all
MAEC genomes and the results were then converted to the ROARY
gene presence/absence format. The SNPs of all genes that comprised
the core genome were concatenated in the same linear order prior to
reconstructing a maximume-likelihood phylogenetic tree using
IQ-Tree, and the subsequent tree was visualized using Interactive Tree

1 https://enterobase.warwick.ac.uk
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of Life (Letunic and Bork, 2019; Minh et al., 2013; Nguyen et al.,
2015). For the IQ-Tree phylogenetic reconstruction, ModelFinder
(Kalyaanamoorthy et al., 2017) was employed to select the generalized
time reversible model (GTR+R10), and an ultrafast bootstrap
approximation (UFboot) with 1,000 bootstrap replicates was used. The
PIRATE output was then input into the SCOARY (version 1.6.16 with
default parameters) tool (Brynildsrud et al., 2016), which predicts
clusters of orthologous genes across the core and accessory genome.
Specifically, SCOARY identified members of the accessory genome
that had a statistically significant association between gene presence
and the tested phenotype. For the severity analysis, we selected 90
isolates belonging to mastitis scores 1 or 3 (44 mild, 46 severe).
SCOARY was also used to identify genes in the pan-genome associated
with competitive fitness in milk and in mouse MGs (using barcoded
strains, see below). For this analysis, the top and bottom 30% of strains
for each condition were separated based on their competition index
(CI) values (regardless of whether they came from mild or severe CM
cases). To identify genes associated with pathogenic or commensal
strains, 220 genomes for bovine commensal strains were downloaded
from NCBI using “bos taurus commensal” with the E. coli species tag.
Similarly, 188 MAEC genomes were downloaded from NCBI using
“bovine mastitis” with the E. coli species tag or from (Alawneh et al.,
2020) using the python downloading programs at: https://github.com/
SomeoneNamedCaz/E.-Coli-genome-analysis. SCOARY input files
consisted of a gene absence/presence Rtab file generated by PIRATE
and a custom trait file which assigned a discrete phenotype for
each strain.

Hierarchical clustering analysis

The MD Anderson Cancer Center Next-Generation Clustered
Heat Map (NG-CHM) builder was used for hierarchical clustering’
based on the EXPEC virulence gene carriage. The Euclidian distance
and single-linkage methods were used to generate the clusters.

Detection of plasmids, antimicrobial
resistance (AMR), and virulence genes

The PlasmidFinder 2.1 database at the Center for Genomic
Epidemiology® was used to detect and type plasmids found in the
MAEC strains in this study (Supplementary Dataset 1). Assembled
reads for each strain were searched using the most recent
Enterobacteriaceae plasmid database using 90% minimum identity
and 60% minimum length coverage cutoffs. Incompatibility (Inc)
groups that were found in each strain were recorded. Each Inc. group
was counted individually even when multiple Inc. groups were
detected in a single strain. ABRicate software* was used to find genes
implicated in AMR from the Resfinder database (Zankari et al., 2012).
Virulence genes were identified using the VirulenceFinder 2.0

2 https://build.ngchm.net/NGCHM-web-builder/
3 http://genepi.food.dtu.dk/resfinder
4 https://github.com/tseemann/abricate
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program’® using 90% minimum identify and 60% minimum
length cutoffs.

Development of barcoded plasmids and
barcode sequencing

The low copy pACYC184 plasmid was modified by designing PCR
primers incorporating a partial Illumina adapter flanking 12 random
nucleotides and eliminating the tetracycline resistance gene, yielding
a 2,102bp product (Supplementary Figure 1). The left primer
incorporated the random sequences and the first Illumina Truseq
adapter, and both primers included Sall overhang sequences. The PCR
product was digested with Sall, ligated and transformed into
chemically competent E. coli DH5a. Ninety-six unique plasmids were
isolated, and their barcode sequence determined by Sanger
sequencing. These plasmids were then transformed into individual
MAEC isolates. Four strains were unable to be transformed because
of pre-existing chloramphenicol resistance, leaving 92 strains that
were successfully transformed. An inoculum was prepared by growing
each strain individually in LB to an A= 1.0, mixing 20 uL of each
strain, together, and diluting the mixture to a final concentration of
5x10° CFU/ml in PBS. This inoculum was frozen for use in
competition tests and was sequenced as the input library.

The input library was grown in duplicate in LB broth and in whole
unpasteurized cow milk (pooled from healthy cows from a local
commercial supplier) for 8 h. The input library was also injected into
lactating mouse MGs (see below). After growth in LB, milk and MG
infections, plasmids were isolated from the bacterial population in
each sample. The barcodes were amplified using primers that also
added the remainder of the Illumina adapter as well as sample-specific
identifying sequence. Illumina paired-end reads of 150bp were
generated on MiSeq version 2 sequencer by Genewiz, Inc. (South
Plainfield, NJ) and CD-Genomics, Inc. (Shirly, NY). A custom grep
function was used to identify and count barcodes for each strain from
the sequence reads. Fitness scores were calculated as the number of
reads for each barcode in an output sample as a proportion of the total
reads (all barcodes) in that sample, divided by the ratio of that same
barcode to the total reads in the inoculum (input) library.

Mouse infections

Lactating CD-1 IGS mice between 9 and 12 weeks of age and 10
to 11 days postpartum were infected as previously described (Olson
et al., 2018). Protocol 16-0302 was reviewed and approved by the
Institutional Animal Care and Use Committee of Brigham Young
University. Briefly, a 50 pL volume of bacteria containing 500 CFU of
each strain for total of ~50,000 CFU was suspended in phosphate-
buffered saline (PBS). The inoculum was injected directly through the
teat canal into the ductal network of the 4th left and 4th right MGs of
five individual mice using a 33-gage needle with a beveled end. Pups
were removed for 1-2h after injections and then reunited with the
mother and allowed to nurse normally. Mice were euthanized 24h

5 https://cge.food.dtu.dk/services/VirulenceFinder
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post infection and each individual gland was separately homogenized
in 1 mL PBS. The tissue homogenate was added to LB broth containing
chloramphenicol (10pg/mL) to recover the bacteria and isolate
plasmid DNA. Sequencing of each MG sample (as described above)
was successful for nine of the 10 individual glands. The barcode
frequencies in each gland (n=9) were determined and used to
determine competitive fitness of each strain.

Deletion and complementation of chiA

An allelic exchange plasmid was created using the pAX1 plasmid
(Wiles et al., 2018). Upstream and downstream regions (500 bp) of chiA
in strain M45 were amplified, stitched together using overlap extension,
and inserted into the Sall and AvrlI sites of the pAX1 plasmid. The
resulting plasmid was transformed via electroporation into the donor
E. coli strain MFDApir. Integration of the suicide plasmid to create
merodiploid recipients and excision to produce unmarked deletions of
chiA in each of the strains was performed as described (Wiles et al.,
2018). Complementation of chiA gene was done by amplifying chiA
from strain M45 including 300bp upstream to include the putative
promoter and ligating the resulting product into pJET1.2. The resulting
plasmid pWHO1 was verified by sequencing and transformed via
electroporation into each deletion mutant.

MAC-T cell culture and media

Bovine mammary alveolar epithelial cells (MAC-T cells) were
generously provided by Dr. Janos Zempleni (University of Nebraska-
Lincoln). They were grown in T-75 flasks with 40% (v/v) Dulbecco’s
Modified Eagle Medium (DMEM), 40% (v/v) Ham’s F12 Medium, and
10% (v/v) bovine serum (FBS). FBS was heat-inactivated prior to use
in media by incubating in a 56°C water bath for 30 min with periodical
mixing. This was supplemented with 5 pg/mL bovine insulin, 1 pg/mL
hydrocortisone, 23 mM HEPES buffer, 2.2 g/L sodium bicarbonate,
and 40 mM L-glutamine. Penicillin, streptomycin (100 U/mL and
100 pg/mL, respectively) and amphotericin B (2.5 pg/mL) were added
into the media for routine growth. MAC-T cells were grown at 37°C
and 5% CO, (v/v).

Adhesion assays

Adhesion was measured as previously described (Almeida et al.,
1996) with modifications. MAC-T cells were seeded into a 12-well
plate and grown to >95% confluency. The density of epithelial cells
was determined by trypan blue exclusion and counting using Cell
Counter model R1 automated cell counter (Olympus). Approximately
6x10° cells were present in each well. The number of cells and viability
did not vary throughout the assays as determined by trypan blue
exclusion. On the day of each assay, spent media was removed from
each well and the cells were washed 3 times with 1 mL of sterile PBS
to remove residual antibiotics from media. Media without antibiotics
was added into each well and cells were allowed to incubate for >2h
prior to inoculation with bacteria.

Overnight cultures of bacteria were diluted in sterile PBS to an
ODy of 0.5. Bacteria were added to a multiplicity of infection (MOI)
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of 10:1. The 12-well plates were then centrifuged at 300 x g for 5min
at room temperature to synchronize contact of bacteria with the
MAC-T cells. Plates were then incubated at 37°C and 5% CO, (v/v)
for 1h. Following incubation, media was aspirated and wells washed
3x with 1mL of sterile PBS to dislodge non-and weakly adhered
bacteria. Triton X-100 (500 pL, 0.1%) in PBS was then added into each
well and incubated at room temperature for 5min to lyse cells. The
resulting suspension of bacteria was then homogenized, serially
diluted and plated on LB agar overnight and CFUs were counted.

Statistical analyses

Statistical analyses were carried out using Prism9 (GraphPad) or
SCOARY. A p <0.05 was considered statistically significant. For
genome-wide association (GWAS) studies, Fisher’s exact test was used
to determine significance for each gene. Associations of the Inc. group
with a strain type (mild or severe CM) were assessed using Fisher’s
exact test. Distribution of AMR genes between mild and severe CM
isolates was compared using the Mann-Whitney T-test. Correlations
between fitness scores were determined by Spearman rank correlation
analysis or Mann-Whitney T-test. Differences in adherence to
MAC-T cells by wild-type, chiA mutant, or complemented strains
were analyzed using a one-way ANOVA.

Results

Bacterial growth in milk is not associated
with clinical mastitis severity

The ability to efficiently utilize the nutritional components present
in milk and thus grow rapidly may be a determining factor for some
strains ability to colonize MGs successfully. To determine if there is a
link between in vitro growth in milk and CM severity, we compared
the growth of a subset of mild and severe MAEC strains in whole
unpasteurized cow’s milk (Supplementary Figure 2). Replication was
measured after 4 or 8h of growth. MAEC strains varied widely in their
growth yields, with some strains replicating 100-fold within 4h and
up to 100,000-fold by 8h, whereas others did not increase. However,
replication was not different between strains isolated from mild and
severe CM at either time point.

Genome analysis of mild and severe clinical
mastitis isolates

Complete genome sequences for 90 MAEC strains (46 severe and
44 mild CM
(Supplementary Dataset 1). From these annotated sequences,

isolates) were assembled and annotated
we identified a total of 15,395 unique genes representing the
pan-genome. Of these, 3,177 (20.6%) were considered core genes
(>98% prevalence), 263 (1.7%) were considered soft core genes
(95-98% prevalence), 1,523 were considered shell genes (15-95%
prevalence), and 10,432 (67.8%) were considered cloud genes (<15%
prevalence) (Supplementary Table 1).

In silico phylogroup analysis demonstrated that most strains

belong to phylogroups A and B1. Multi-locus sequence typing based
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on seven house-keeping genes was also used to more precisely assess
the phylogenetic backgrounds of the MAEC
(Supplementary Dataset 1). A total of 30 different STs were identified,
with many STs being represented by only one strain each. In our study,
ST10, ST58, ST1121 and ST1125 were the most abundant, representing
45% of the total strains (Figure 1A). MLST groupings did not correlate

strains

with mild or severe CM.

To explore whether CM severity can be predominantly attributed
to differences in the core genome, a phylogenetic tree was constructed
based on the core genome sequence alignments. In this analysis,
several EXPEC strain, one enterohemorrhagic strain, and additional
MAEC strains without clinical severity data were included as
references (Figure 1B). The phylogenetic tree reveals the high
diversity of MAEC strains. Compared to the relatively tight clustering
of other EXPEC, the MAEC strains belong to a broad range of
backgrounds, including some closely related to other EXPEC strains.
Of 10 strains that clustered closely with other ExPEC strains, nine
were isolated from severe CM and one from mild CM. However, there
was no consistent clustering into clades based on CM severity. There
was also no association between the core genome and the
geographical region where the strains were isolated
(Supplementary Figure 3).

ExPEC are difficult to define based on any single or group of
virulence genes. However, they often carry genes related to iron
acquisition (yersiniabactin ybtP, aerobactin iutA, salmochelin iroN
siderophores, ferric citrate fecA, and sit ferrous iron transport),
group 2 or 3 capsules (kps), adhesive and invasive factors [P fimbriae;
papC, S fimbriae; sfaé, focC, afimbiral adhesins (afaD), and toxins (sat,
hlyA, cdtA)] (Johnson and Stell, 2000; Johnson et al., 2003; Royer et al.,
2023; Welch, 2016; Sarowska et al., 2019). These genes were detected
in several of the MAEC genomes (Figure 2). Mean number of
virulence genes carried by each strain was 3.32+2.15 or 3.17 +£2.23 for
mild and severe isolates, respectively, demonstrating that simple
abundance of ExPEC virulence genes is not predictive of CM severity.
For example, strain M93 (mild isolate) carries 10 of these EXPEC
virulence genes. As CM severity could be associated with specific
combinations of virulence genes, hierarchical clustering was then
performed based on the presence or absence of each gene (Figure 2).
This analysis demonstrated no apparent clustering of strains based on
CM severity and ExPEC virulence gene content.

Plasmids contribute to bacterial diversity such as that
demonstrated by our study population, in part because they can
contribute to homologous or non-homologous recombination.
Plasmids also frequently carry specific fitness or AMR genes, which
could influence CM severity. Incompatibility (Inc) typing was
performed for each of the MAEC strains, and 22 different Inc. types
were detected, suggesting a wide diversity of plasmid content
(Figure 3 and Supplementary Dataset 1). Multiple Inc. types were
frequently detected in the same strain, suggesting the possibility of
hybrid plasmids. When compared to the severe CM strains, more
Inc. types were detected among the mild CM strains and were more
frequent overall, whereas 15.2% of severe CM isolates and 4.5% of
mild CM isolates did not carry any plasmids (Figure 3). IncF1B
(APO1918) was the most abundant Inc. type and was detected in the
majority of mild and severe CM strains (65.9 and 56.5%
respectively).

Carriage of AMR genes among mild and severe CM strains was also
assessed in silico by searching a repository of AMR genes. This analysis
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FIGURE 1

Genome comparison of MAEC strains. (A) Sequence type (ST) prediction using the GrapeTree function with the MSTree V2 algorithm to visualize strain
relatedness (Zhou et al,, 2020; Zhou et al.,, 2018). Overall, 30 unique STs were detected. The legend displays STs represented more than once in the
population (node diameter scaled to frequency of detection). (B) Core genome relatedness among strains isolated from severe mastitis or mild mastitis.
Strains isolated from mild CM cases are denoted in blue and severe CM in red. Strains labeled black were included as references or did not have clinical

severity data and were not part of the analysis.

demonstrated that 12 strains carried one or more genes conferring
resistance to aminoglycosides, beta-lactams, anti-folates, macrolides,
phenicols, and tetracyclines (Supplementary Table 2). Aminoglycoside
and anti-folate resistance genes were the most abundant. Notably, two
severe CM isolates (M79 and M96) had nine AMR genes each. However,
the distribution of AMR genes was not significantly different between
mild and severe CM isolates (p=0.6029).

Genes associated with clinical mastitis
severity

Next, we analyzed each gene in the pan-genome and scored it
according to the association with mild or severe CM phenotypes.
Each gene with an apparent association with the phenotype was
reanalyzed, incorporating information about the phylogenetic
structure to implicate genes associated with CM severity. Using a
p-value cutoff of 0.05, we detected 25 genes that were associated with
CM associated with mild CM
(Supplementary Dataset 1 and Table 1). Among those associated with

severe and 79 genes
severe CM were two genes likely involved in O-antigen or capsule
biosynthesis (wbpl and capD) and several genes involved in
producing Yad fimbriae. These genes were detected in eight strains
isolated from severe CM cases and were not present in any strains
from mild CM cases. Genes encoding fimbrial protein subunits
YadM, YadL, YadK and YadN as well as the fimbrial usher HtrE and
chaperone YadV were all positively associated with severe CM.
Most genes associated with mild CM were hypothetical genes.
However, genes for producing the biofilm PGA exopolysaccharide and
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several tyrosine recombinases were associated with mild CM. The
complete pgaABCD operon was detected in nearly all (39 of 40) strains
with a mild CM score whereas just pgaD was missing in eight strains
from severe CM. Three tyrosine recombinase alleles (Blum and
Leitner, 2013; Goldstone et al., 2016; Dufour et al., 2019) were
associated with mild CM strains, while distinct alleles (Fuenzalida and
Ruegg, 2019; Lippolis et al., 2016; Cai et al., 1994) were associated with
severe CM strains (Table 1).

Genes associated with mastitis vs.
commensal strains

We conducted a complementary analysis of a larger publicly
available set of E. coli genomes to identify genes that may distinguish
commensal from mastitis-causing strains. These included strains
isolated from the gastrointestinal tracts of cattle, which were
designated as commensals. Likewise, publicly available genome
sequences for all strains with an identifiable mastitis designation as
well as strains from this study or published by Alawneh et al. (2020)
were designated as pathogens. As expected, genes within the ferric
dicitrate receptor (fec) operon were among the most strongly
associated with the mastitis isolates. The gadB gene encoding the
glutamate decarboxylase B enzyme was more often absent from the
mastitis isolates (detected in 30.3% genomes) whereas the
commensal strains typically contained gadB (84.5%). Genes
encoding the accessory type II secretion system (gsp) and the linked
chiA gene were also strongly associated with disease-causing strains
(Table 2).
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FIGURE 2

Hierarchical clustering of MAEC strains based on the carriage of virulence genes associated with the EXPEC phenotype. A dendogram was built based
on the presence or absence of each gene. Both mild and severe CM isolates were present in each clade, and no relationship between CM severity and
particular combinations of virulence genes was detected. NA-CM severity score not available.
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Plasmid replicons (Inc types) found in mild and severe CM strains.
The number of plasmid replicon genes detected in mild and severe
strains is presented as a proportion of the total for each group. More
unique replication genes were detected in the mild CM strains
compared with severe CM strains, whereas more of the severe CM
strains contained no detectable Inc. types than the mild CM strains.

Genes associated with fithess in milk and
mammary glands

Next, we tested whether strains isolated from severe or mild CM
have different fitness levels within the MG environment. We competed
92 MAEC strains against each other and used GWAS to identify genes
associated with fitness. In these assays, pools of barcoded MAEC
strains were grown in LB media, whole unpasteurized milk, and
mouse MGs. Seventy-three bacterial strains were successfully
recovered (sequencing failed for 19 barcodes and these strains were
excluded from the analysis). From these 73 remaining strains, the
abundance of each barcode was used to calculate the competition
index (CI)
(Supplementary Dataset 1).

as a measurement of fitness for each strain

The CI scores that were calculated for each strain in duplicate LB
and milk samples were highly consistent with each other (R*=0.99
and 0.94 respectively). The replicate samples for the nine MG
infections were much more variable than in LB or milk. However,
several strains consistently outcompeted others in mouse MGs
(Supplementary Figure 4). For instance, strain M65 exhibited a mean
CI of 225. The mean CI of each strain during growth in LB and milk,
(Figure 4A), milk and MGs (Figure 4B), and LB and MGs (Figure 4C)
were positively correlated. Correlation between CI milk and MGs was
slightly stronger (r=0.53) than between LB and MGs (r=0.38). No
association between the diagnosed CM severity (mild vs. severe) and
fitness in mouse MGs was evident (Figure 4D).

Genes in the pan-genome that are associated with competitive
fitness in milk and in mouse MGs were then identified. For this
analysis, the top and bottom 30% of strains for each condition were
separated based on their CI scores. Only five genes were positively
associated with higher growth in milk, including a predicted inner
membrane protein yjeO, three genes with unknown function, and an
IS3 family transposase, insK. In mouse MGs, 38 genes were
associated with  increased fitness

positively competitive
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(Supplementary Dataset 1). These included the bacterioferritin (bfr)
and bacterioferritin-associated ferredoxin (bfd) genes that are involved
in intracellular iron storage and mobilization. Notably, 14 of these
genes are involved in the accessory type 2 secretion system found in
two operons (gspC-O and gspAB) as well as the chitinase encoded by
chiA (Table 3). The type 2 secretion system and chiA were also more
frequently associated with mastitis-causing strains than with
commensals (Table 2).

These associations suggested that ChiA might promote fitness of
pathogenic strains. As ChiA proteins are known to enhance adherence
of other bacteria to host cells or tissues, the role of ChiA in adhesion
to cultured mammary alveolar epithelial (MAC-T) cells was
investigated. We chose to investigate three strains that were in our
original study population that possess chiA (M45, M93, M111) as well
as one additional strain that was not part of the original analysis (G1).
M45 was among the top 30% most fit strains in MGs. M45 and M93
were isolated from mild cases of CM while M111 was isolated from a
severe case. Strain Gl was isolated from a case of severe,
gangrenous mastitis.

Wild type, chiA deletion mutants, or their complemented strains
were added to MAC-T cells (MOI =10) for 1 h and then the proportion
measured. M45AchiA demonstrated an
approximately 2-fold reduction compared to the wild-type parent
(3.1x10° vs. 7.2x 10° CFUs, respectively) in attachment (Figure 5).
Attachment was restored upon reintroduction of chiA by plasmid

of adherent cells

complementation. A greater reduction was observed in M93 (>6-fold)
between the wild type and mutant (Figure 5), which was also able to
be complemented. The slight reduction in attachment of M111AchiA
compared to the wild-type strain was not statistically significant
(p=0.06) and complementation did not change adherence of this
strain (Figure 5). Deletion of chiA in G1 caused the largest decrease in
attachment of all the MAEC strains we investigated. G1AchiA
presented almost a 10-fold decrease when compared to the wild type
as shown in Figure 5. Wild-type levels of adherence were restored
upon plasmid complementation in G1.

Discussion

The features of pathogenic E. coli that differentiate them from
non-pathogens remain incompletely understood, as is the relationship
between bacterial fitness and the clinical disease that occurs during
infection. Several recent studies have employed genome-wide
association tools paired with clinical or experimental data to identify
accessory genes associated with bacterial virulence, niche adaptation,
AMR, and environmental persistence (Bazinet, 2017; Maury et al.,
2019; Gouliouris et al., 2018; Zong et al., 2018; He et al., 2018; Fritsch
etal, 2019; Gori et al., 2020). In this study we sequenced 96 MAEC
genomes, with the goal of identifying bacterial genes associated with
differences in manifestation of bovine CM. We also identified genes
associated with commensal strains in comparison with clinical bovine
mastitis isolates. We developed a barcoding system where multiple
strains can be tracked as they compete in different conditions. This
allowed us to quantify differences in fitness in specific controlled
conditions and use these differences to identify genes associated with
high and low-fitness strains. This approach enabled the identification
of novel genes that may influence bacterial growth in multiple host
environments. Our study differs from most bacterial GWAS in that it
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TABLE 1 Top genes* associated with MAEC isolated from mild or severe clinical mastitis (CM).

Proportion of strains

Gene name Annotation Severe CM Mild CM P-value
Mild

xerC_5 Tyrosine recombinase XerC 0.429 0.756 2.96E-03
xapA Purine nucleoside phosphorylase 2 0.667 0.902 1.05E-02
xapB Xanthosine permease 0.667 0.902 1.05E-02
pgaD Biofilm PGA synthesis protein PgaD 0.810 0.976 1.18E-02
xerC_1 Tyrosine recombinase XerC 0.048 0.244 1.31E-02
hcaR_2 Hca operon transcriptional activator HcaR 0.690 0.902 2.01E-02
traA Pilin 0.476 0.732 2.20E-02
Severe

wbpl UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronate 2-epimerase 0.190 0.000 5.36E-03
capD UDP-glucose 4-epimerase 0.190 0.000 5.36E-03
yadV Putative fimbrial chaperone YadV 0.190 0.000 5.36E-03
yadM Putative fimbrial-like protein YadM 0.190 0.000 5.36E-03
yadK Putative fimbrial-like protein YadK 0.190 0.000 5.36E-03
htrE Outer membrane usher protein HtrE 0.190 0.000 5.36E-03
cfak CFA/I fimbrial subunit E 0.214 0.024 1.45E-02
ygcB CRISPR-associated endonuclease/helicase Cas3 0.286 0.073 2.01E-02
casB CRISPR system Cascade subunit CasB 0.286 0.073 2.01E-02
hpcD 5-carboxymethyl-2-hydroxymuconate Delta-isomerase 0.500 0.244 2.20E-02
hscC_2 Chaperone protein HscC 0.143 0.000 2.57E-02
fliD Flagellar hook-associated protein 2 0.571 0.317 2.59E-02
ygbF CRISPR-associated endoribonuclease Cas2 0.310 0.098 2.74E-02
casE CRISPR system Cascade subunit CasE 0.310 0.098 2.74E-02
casD CRISPR system Cascade subunit CasD 0.310 0.098 2.74E-02
ygbT CRISPR-associated endonuclease Casl 0.310 0.098 2.74E-02
casC CRISPR system Cascade subunit CasC 0.310 0.098 2.74E-02
yadL Putative fimbrial-like protein YadL 0.190 0.024 2.91E-02
yadN Putative fimbrial-like protein YadN 0.190 0.024 2.91E-02

*Excluding hypothetical proteins.

combines clinical and mouse infection assay data to identify a gene
that was validated by functional studies.

Our data confirm the diversity of MAEC strains (Figure 1) and
reveals the large pan-genome associated with these bacteria. In
previous genomic studies of MAEC strains, most were classified as
ST10, ST23, ST58, ST88, or ST1125 in phylogroups A or B1, which is
consistent with our findings (Leimbach et al., 2017; Blum and Leitner,
2013; Nuesch-Inderbinen et al., 2019). Within the accessory genome,
we identified genes encoding adhesive and extracellular matrix
structures associated with strains isolated from mastitis cases
diagnosed as either mild or severe (Table 1). This includes the Yad
fimbriae, which were positively associated with mastitis severity, and
conversely, the PGA biofilm exopolysaccharide was negatively
associated with mastitis severity. Yad fimbriae are also enriched
among ExPEC strains of avian and human origin and are thought to
promote adherence (Ren et al., 2016; Wurpel et al,, 2013; Dziva et al.,
2013; Verma et al., 2016; Larsonneur et al., 2016; Elpers and Hensel,
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2020). Sustained inflammation in the MG is a main trigger for severe
CM and bacterial factors that promote adherence would likely
increase immune detection and signaling, leading to phagocytic cell
recruitment. Alternatively, PGA may lessen CM severity by promoting
biofilm formation, shielding inflammatory molecules on the surface
of the bacteria and/or reducing invasion into epithelial cells.

MAEC are typically excluded from discussion of EXPEC strains
more broadly. EXPEC exact an outsized disease burden in both
humans and animals and are difficult to distinguish reliably from
other E. coli. We did find several instances of MAEC strains possessing
genes with demonstrated roles in ExPEC virulence (Figure 2).
Although these virulence factors were not associated with CM severity
generally, it does not rule out the possibility that they contribute to the
virulence of individual strains in MGs, as we have previously
demonstrated for the capsule and zinc uptake gene clusters of strain
M12 (Olson et al.,, 2018; Olson et al., 2021). Furthermore, additional
factors continue to be recognized that contribute to ExXPEC infections,
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TABLE 2 Top genes* associated with mastitis or commensal bovine E. coli isolates.

Proportion of strains

Gene name Annotation Commensal  Mastitis  P-value
Commensal

gadB Glutamate decarboxylase B subunit 0.846 0.303 7.84E-35
tufB Elongation factor Tu 0.865 0.420 3.11E-25
cytR Cytidine repressor 0.765 0.415 6.53E-15
Mastitis

fecB Ferric dicitrate ABC transporter - periplasmic binding protein 0.360 0.878 1.07E-31
fecD Ferric dicitrate ABC transporter - membrane subunit 0.354 0.872 1.33E-31
fecE Ferric dicitrate ABC transporter - ATP binding subunit 0.354 0.872 1.33E-31
fecl RNA polymerase sigma 19 factor 0.379 0.888 2.48E-31
fecR Regulator for fec operon periplasmic 0.379 0.888 2.48E-31
fecA Ferric citrate outer membrane porin FecA 0.379 0.888 2.48E-31
fecC Ferric dicitrate ABC transporter - membrane subunit 0.360 0.872 4.61E-31
yjhV KpLE2 phage-like element predicted protein 0.344 0.835 8.14E-28
mgsA Antitoxin of the MgsRA toxin-antitoxin system and DNA-binding transcriptional repressor 0.273 0.644 5.53E-16
yafN Antitoxin of the YafO-YafN toxin-antitoxin system 0.280 0.649 6.72E-16
yafO Ribosome-dependent mRNA interferase toxin 0.273 0.638 1.23E-15
mgqsR mRNA interferase toxin of the MqsR-YgiT toxin-antitoxin system 0.273 0.638 1.23E-15
ygiS Putative transporter subunit 0.328 0.691 3.16E-15
ybfP Putative pectinase 0.251 0.590

gspO Type 4 prepilin-like proteins leader peptide-processing enzyme 0.289 0.633 6.79E-14
gspK Putative type II secretion system protein K 0.292 0.633 8.86E-14
gspA Putative general secretion pathway protein 0.292 0.633 8.86E-14
gspF Putative type II secretion system protein F 0.292 0.633 8.86E-14
gspH Putative type II secretion system protein H 0.292 0.633 8.86E-14
chiA Putative bifunctional chitinase/lysozyme 0.292 0.633 8.86E-14
gspM Putative type II secretion system protein M 0.292 0.633 8.86E-14
gspJ Putative type II secretion system protein ] 0.292 0.633 8.86E-14

*Excluding hypothetical proteins.

and these may also be selected by the dairy environment and enriched
in MAEC strains. The ferric dicitrate iron acquisition system is one
such example (Frick-Cheng et al., 2022). While their role in
intramammary infection has been established, they were recently
demonstrated to enhance EXPEC urovirulence, suggesting that the fec
system may be a factor in zoonotic spread of E. coli since it promotes
fitness in multiple hosts and tissue types (Frick-Cheng et al., 2022).
The presence of these classic and newly appreciated ExXPEC virulence
genes in MAEC strains suggests that they occasionally infect humans
and cause bloodstream or urinary tract infections.

We identified many different Inc. plasmid groups in our MAEC
strains and found that mild CM strains had significantly more Inc.
groups than severe CM strains (Figure 3). However, we did not
investigate whether any virulence or AMR genes were carried on these
plasmids as is frequently the case. The majority of the plasmids
we detected belong to the IncF family which are usually conjugative
(Douarre et al., 2020), illustrating their potential to spread resistance
in these populations. AMR is a significant health and environmental
concern. However, only 12 strains carried one or more AMR genes.

Frontiers in Microbiology

Two strains carried genes that confer resistance to six different classes
of antimicrobials. Carriage of AMR genes did not appear to
be associated with disease severity.

Unsurprisingly, our results indicate that those strains that are highly
competitive in vitro tend to outcompete other strains in vivo, due to
more rapid growth, direct antibacterial antagonism, or both (Figure 4).
Interestingly, the correlation between competitive fitness in milk with
MG infections than was slightly stronger than the correlation between
fitness in LB and MG, suggesting that the ability to utilize nutrients or
resist antimicrobial substances found in milk contributes to growth in
lactating MGs. However, the lack of correlation we observed between
bacterial fitness and CM severity (Figure 4D) illustrates that successful
pathogens may replicate to high numbers without triggering deleterious
responses in the host. Similarly, we observed no relationship between in
vitro growth rates of individual strains in milk with CM severity
(Supplementary Figure 2), which has also been reported by other
researchers (Kornalijnslijper et al., 2004).

The chiA gene encoding a putative chitinase/chitin-binding
protein was enriched in MAEC with higher fitness during mouse
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Competitive fitness of barcoded MAEC strains. All strains were inoculated together and grown in LB or unpasteurized cow's milk (in duplicate) for 8 h,
or in nine lactating MGs for 24 h. The bacteria were recovered, and their barcode plasmids were sequenced to determine their competitive indexes.
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between Cl in milk and MGs (p <0.0001) and in (C) LB and MGs (p = 0.0008) by Spearman rank correlation test. (D) Cl in mouse MG infections for
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MG infections. This gene, along with the type II secretion system
linked with it, was also associated with pathogenicity in the larger
cohort of bovine strains. However, they were not associated with
CM severity. In the non-pathogenic K12 strain, transcription of
this type II secretion system is normally repressed by the Hns
protein, and the full gsp locus is needed for proper chiA secretion
(Francetic et al., 2000). ChiA has been implicated in the virulence
of some adherent/invasive E. coli strains that cause colitis. This is
not due to their chitinolytic activity, but rather because of chitin-
binding domains that are found in the N-terminus. These domains
mediate binding to chitinase-3-like-1 (CHI3L1), which is expressed
on the surface of intestinal epithelial cells, leading to subsequent
invasion of the bacteria (Low et al., 2013; Mizoguchi, 2006).
Interestingly, expression of host chitin-like proteins is also induced
by some bacterial pathogens (Lee et al., 2011). CHI3L1 regulates
innate immune defenses against Streptococcus pneumoniae and
Pseudomonas aeruginosa lung infections through inhibition of
caspase-1-dependent macrophage pyroptosis (Dela Cruz et al.,
2012; Marion et al.,, 2016). Conversely, CHI3L1 expressed by
intestinal epithelial cells during inflammatory bowel disease helps
facilitate enteric bacterial infection.
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Recently, CHI3L1 was also found in the milk secretions of
quarters with bovine coliform mastitis (Breyne et al., 2018). CHI3L1
gene expression is also increased in mouse MGs following E. coli
infection. In knockout mice lacking CHI3L1, bacterial growth is not
affected, but the influx of neutrophils into the lumen of the infected
gland is reduced (Breyne et al., 2018). It also promotes increased
proliferation of mammary epithelial cells and reduces apoptosis
(Anand et al., 2016). In the absence of CHI3L1, migration, maturation,
and activation of macrophages is significantly impaired (Hughes et al.,
20125 He et al,, 2013). It seems likely that some MAEC strains may
bind to CHI3L1 via ChiA, which could promote bacterial attachment
and invasion and suppression of its inflammatory functions. In this
way, bacterial fitness may be increased while limiting disease severity.

Alternatively, it is possible that ChiA contributes to infection
through glycosidase activity, independently of its binding to host
proteins. Salmonella chitinases modify glycans present in the
extracellular matrix, uncovering mannose residues present on the
epithelial surface and making them available for attachment through
type I fimbriae (Chandra et al., 2022; Devlin et al., 2022). They also
increase survival inside phagocytes by dampening the expression of
host antimicrobial responses in dendritic cells and macrophages
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TABLE 3 Top genes* associated with MAEC fitness in mouse MG infections.

10.3389/fmicb.2024.1452007

Proportion of strains

Most fit Least fit P-value
rpiB Ribose-5-phosphate isomerase B 0.812 0.313 3.85E-03
bfd Bacterioferritin-associated ferredoxin 0.812 0.375 2.90E-02
bfr Bacterioferritin 0.812 0.375 2.90E-02
gspB Putative general secretion pathway protein B 0.812 0.375 2.90E-02
gspC Putative type II secretion system protein C 0.812 0.375 2.90E-02
gspA Putative general secretion pathway protein A 0.812 0.375 2.90E-02
gspF Putative type II secretion system protein F 0.812 0.375 2.90E-02
gspG Putative type II secretion system protein G 0.812 0.375 2.90E-02
gspD Putative secretin GspD 0.812 0.375 2.90E-02
gspE Putative type II secretion system protein E 0.812 0.375 2.90E-02
gspJ Putative type II secretion system protein J 0.812 0.375 2.90E-02
gspH Putative type II secretion system protein H 0.812 0.375 2.90E-02
gspl Putative type II secretion system protein I 0.812 0.375 2.90E-02
gspO Type 4 prepilin-like proteins leader peptide-processing enzyme 0.812 0.375 2.90E-02
gspL Putative type II secretion system protein L 0.812 0.375 2.90E-02
gspM Putative type II secretion system protein M 0.812 0.375 2.90E-02
gspK Putative type II secretion system protein K 0.812 0.375 2.90E-02
chiA putative bifunctional chitinase/lysozyme 0.812 0.375 2.90E-02
alsB D-allose-binding periplasmic protein 0.812 0.375 2.90E-02

*Excluding hypothetical proteins.
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FIGURE 5

Role of ChiA in adherence of MAEC to mammary epithelial cells.
Wild-type MAEC strains, their isogenic AchiA mutants, or the
complemented mutant strains were tested for their ability to adhere
to MAC-T cells at an MOI = 10. One-way ANOVA with Tukey's
correction was used to determine significant differences between
the wild-type and each AchiA mutant (**p = 0.0082, ***p = 0.0003,
***%p <0.0001). These results are a representative experiment that
was performed twice with six replicates per strain.

(Chandra et al, 2022). ChiA may play similar roles in MAEC
colonization of MGs.

Our study has several limitations. First, the barcoding plasmid that
we used to track mixed populations of bacteria may not behave

Frontiers in Microbiology

identically in each strain’s unique genetic background. Although the
plasmid has only one coding sequence for chloramphenicol resistance
and is unlikely to affect gene expression broadly, the presence of the
plasmid may interfere with stability of other native plasmids, which
we have not examined. This may influence the fitness of these bacteria
in unexpected ways. Secondly, competitive fitness of MAEC strains may
be most relevant in natural environments in the presence of many other
bacterial species other than E. coli. The ability to outcompete other
E. coli strains may be less critical for MAEC than their ability to defend
themselves against other diverse bacteria in the cattle GI tract, in soil,
or ascending the MG teat canal. Future work should test what genes
contribute to fitness in these environments and whether they can
explain why some MAEC strains are more common, particularly those
STs that we and others have identified. Finally, the results of our study
may have been influenced by random factors such as when CM was
diagnosed and scored. For example, a case that was detected early may
have been diagnosed as mild whereas if diagnosed a few hours later may
have been scored as moderate or severe. Diagnosis of CM is also
inherently subjective, and the criteria may have been interpreted
differently by individual farmers.

The wide range of severity and clinical presentation of MG
infections by MAEC is impressive, and more studies directly
characterizing the putative virulence factors of these strains are
required. In this study, we have identified new accessory genes that
could play a role in host specificity of these bacteria and influence
disease outcomes. The role of ChiA in colonizing MGs as well as its
functions in other EXPEC strains deserves further study, including its
potential role in immune suppression and interaction with host
structures. The ability of some MAEC strains to cross host species
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barriers and colonize different tissues underscores the importance of
better understanding the diversity among this group of bacteria.
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Escherichia albertii is an emerging foodborne pathogen. We previously reported
that some avian Shiga toxin-producing E. albertii strains exhibited higher or
comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic
E. coli (EHEC) outbreak strains. To better understand the environmental
persistence of this pathogen, comparative genomics and phenotypic assays
were applied to assess adhesion capability, motility, and biofilm formation in
E. albertii. Among the 108 adherence-related genes, those involved in biogenesis
of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae
were conserved in E. albertii. All 20 E. albertii strains carried a complete set of
primary flagellar genes that were organized into four gene clusters, while five
strains possessed genes related to the secondary flagella, also known as lateral
flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located
within the primary flagellar gene clusters were deleted in E. albertii. Additional
deletion of motility genes lnABCD and motBC was identified in several E. albertii
strains. Swimming motility was detected in three strains when grown in LB
medium, however, when grown in 5% TSB or in the pond water-supplemented
with 10% pigeon droppings, an additional four strains became motile. Although
all E. albertii strains carried curli genes, curli fimbriae were detected only in
four, eight, and nine strains following 24, 48, and 120 h incubation, respectively.
Type 1 fimbriae were undetectable in any of the strains grown at 37°C or 28°C.
Strong biofilms were detected in strains that produced curli fimbriae and in
a chicken isolate that was curli fimbriae negative but carried genes encoding
adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing
neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation
was revealed between the strains isolated from different sources, or between
the strains with and without Shiga toxin genes. The phenotypic variations could
not be explained solely by the genetic diversity or the difference in adherence
genes repertoire, implying complex regulation in expression of various adhesins.
Strains that exhibited a high level of cytotoxicity and were also proficient in
biofilm production, may have potential to emerge into high-risk pathogens.
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1 Introduction

Escherichia albertii, an emerging foodborne pathogen, is the
most divergent lineage among the other Escherichia species
and clades (Walk et al, 2009; Ooka et al, 2015). Due to
similar biochemical properties and possession of the intimin gene
located on the locus of enterocyte effacement (LEE) pathogenicity
island, many E. albertii isolates have been misidentified as
enteropathogenic E. coli (EPEC), or enterohemorrhagic E. coli
(EHEC) (Ooka et al., 2012). E. albertii causes diarrhea, abdominal
pain, and high fever in humans, although bacteremia and
extraintestinal infections were also reported (Gomes et al., 2020).
The well-known virulence factors in E. albertii include LEE
encoded intimin and its Tir receptor, responsible for the initial
adherence of pathogen cells to the host epithelial cell surfaces,
as well as the LEE-encoded type three secretion system (T3SS)
and the effector proteins. Other common virulence factors include
Shiga toxin (Stx), cytolethal distending toxin (CDT), type six
secretion systems (T6SS), and the vacuolating autotransporter
toxin Vat (Carter et al., 2023a). Sporadic infections and outbreaks
of foodborne gastroenteritis caused by E. albertii have been
reported worldwide (Konno et al., 2012; Ooka et al., 2013; Ori
et al, 2018; Masuda et al., 2020; Bengtsson et al., 2023; Iguchi
et al., 2023). Transmission of E. albertii is thought to occur
via contaminated food or water although in most outbreaks the
transmission vehicles were not identified (Masuda et al., 2020;
Muchaamba et al., 2022).

Growing evidence supports that E. albertii has a wide habitat
range. E. albertii strains have been isolated from domestic and wild
animals, various foods, and aquatic environments (Muchaamba
et al., 2022). Among the reported animal hosts, birds appear to be
one of the main reservoirs/carriers (Oaks et al., 2010; Hinenoya
et al.,, 2021; Hinenoya et al.,, 2022; Wang et al., 2022; Barmettler
et al, 2023; Xu et al., 2024). Presence of E. albertii in various
water bodies and food products including chicken, pork, duck
meat, mutton, and oysters has been reported (Felfoldi et al., 20105
Maheux et al., 2014; Lindsey et al., 2015; Maeda et al., 2015; Wang
et al, 2016; Arai et al., 2022), however, little is known about
the contamination routes and the environmental prevalence and
persistence of this emerging foodborne pathogen. A recent study
investigating the survival of E. albertii in foods and water revealed
that E. albertii grew faster in chicken than in pork or in oysters but
had low viability in warm environmental water (Hirose et al., 2024).
Induction of flagellar biosynthesis and swimming motility was
observed in some strains when cells were exposed to hypoosmotic
pressure or at ambient temperature, suggesting a role of flagellar
motility in the survival of E. albertii in aquatic environments
(Tkeda et al., 2020).

Biofilm is a common microbial lifestyle in natural
environments (Watnick and Kolter, 2000). Compared with
planktonic cells, biofilm-associated cells are better at coping
with environmental stresses and have increased resistance to
toxic substances including antibiotics and chemical sanitizers.
Therefore, biofilm formation by enteropathogenic bacteria would
increase their survival and persistence in natural environments and
may serve as a source of contamination. Biofilm formation
steps,
transient association, attachment, maturation, and dispersion

involves multiple including initial surface contact,
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(O’Toole et al., 2000). bacterial adherence factors

including surface adhesive appendages and autotransporter

Numerous

proteins play a role in biofilm formation. In E. coli K-12 strains,
flagellar motility, curli fimbriae, as well as FimH adhesin were
found to be important for initial surface contact and attachment.
Additionally, flagellar motility was found playing a role in
biofilm dispersion (Pratt and Kolter, 1998; Reisner et al., 2003;
Karatan and Watnick, 2009).

Shiga toxin-producing E. coli (STEC) produces diverse fimbrial
and nonfimbrial adhesins that facilitate the attachment to
and/or colonization by STEC cells in diverse ecological niches
(McWilliams and Torres, 2014; Vogeleer et al.,, 2014). In STEC
0157:H7 strains, curli fimbriae were found to mediate binding
to, and invasion of epithelial cells, and promote the attachment
of pathogens to plant and abiotic surfaces (Gophna et al,
2001; Fink et al., 2012; Carter et al, 2016). The hemorrhagic
E. coli pilus (HCP), originally identified in STEC O157:H7 as a
colonization factor (Xicohtencatl-Cortes et al., 2007), contributed
to the biofilm formation of STEC O157:H7 strains on abiotic
surfaces (Xicohtencatl-Cortes et al., 2009). In E. coli and other
enteric pathogens, expression of type 1 fimbriae is controlled by a
phase variation mechanism, which reversibly switches between the
“ON” and “OFF” state of fim genes transcription (Abraham et al.,
1985). This switch is mediated by an invertible DNA element, fimsS,
and two site-specific recombinases. Inversion of fimS abolishes the
transcription of fimA, which encodes the major subunit of type
1 fimbriae. Expression of type 1 fimbriae were detected in STEC
non-0157 strains, but not in O157:H7 strains (Roe et al., 2001). In
STEC O157:H7 strains, transcription of fimA is locked at the “OFF”
state due to a 16-bp deletion within the fim$ (lida et al., 2001).
Type 1 fimbriae contributed to the attachment of STEC cells to
abiotic surfaces in a O128:H2 strain and contributed to the biofilm
formation when the fim genes of the STEC O157:H7 strain Sakai
were expressed in a nonpathogenic E. coli strain (Cookson et al.,
2002; Elpers and Hensel, 2020).

Knowledge about environmental persistence of E. alberti is
scarce. Biofilm formation by E. albertii was reported in only a few
clinical strains at 37°C although the efficiency of biofilm formation
was much lower than that of E. coli strain 042 (Lima et al., 2019).
Understanding prevalence and persistence of E. albertii in nonhost
environments will provide valuable information for risk assessment
and to bridge gaps in understanding the epidemiology of this
emerging human pathogen. We previously reported genomic
features and virulence genes repertoire of Shiga toxin-producing
E. albertii strains isolated from wild birds in an agricultural region
in California and revealed that some bird strains exhibited higher
or comparable cytotoxicity with several EHEC outbreak strains
(Carter et al., 2023a). To gain insight into the persistence of
E. albertii in nonhost environments, we systematically evaluated
the adhesion capability and several phenotypic traits known to
contribute to bacterial biofilm formation in a set of E. albertii avian
and clinical strains. Our study revealed great genetic diversity in
genes encoding fimbrial and nonfimbrial adhesins in E. albertii
as well as vast strain variations in expression of curli fimbriae,
swimming motility, and in biofilm formation. Our study provides a
foundation into further understanding how E. albertii senses and
responds to environmental stimuli for improved survival in the
changing environments.
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2 Materials and methods

2.1 Bacterial strains and growth media

Bacterial strains and their sources are listed in Table 1. The
complete genome sequences of E. albertii strains were reported
previously (Carter et al., 2023a). The strains were grown routinely
in Luria-Bertani (LB) broth (10 g tryptone, 5 g yeast extract,and 5 g
NaCl per liter) unless noted.

2.2 Sequence analysis

The flagellar genes in E. albertii strains were identified by
using BLASTn searches with the flagellar genes of the E. coli K-12
sub-strain MG1655 and the EHEC strain EDL933 (Supplementary
Table 1). Additional flagellar genes were identified from the
E. albertii genome annotations as described previously (Carter
et al., 2023a) (Supplementary Table 2). E. coli genes related to
fimbriae and pili biogenesis and genes encoding protein adhesins
(Supplementary Table 3) were used as queries of BLASTn to
identify homologs of adherence-related genomic loci in E. albertii
strains. The BLASTn was performed in Geneious Prime® with a
threshold of 65% for gene coverage and 70% or 25% for sequence
identity at nucleotides or amino acids level, respectively. Homologs
of each gene or the entire operons were extracted from the
corresponding bacterial genomes. DNA sequences were aligned
using Clustal Omega in Geneious Prime® (2024.0.3) and neighbor-
joining consensus trees were constructed with the following
parameters: Genetic Distance Model, Jukes-Cantor; Resampling
Method, bootstrap; and number of replicates, 10,000.

2.3 Motility tests

Swimming motility was examined for each strain grown
on soft agar (0.25%) in rich medium (LB), diluted TSB (5%),
and sterile pond water containing 10% pigeon droppings as
described previously (Murakami et al., 2020) with modification.
The pond water was collected from a public accessible creek
in Albany, California (37°53'43.86''N, 122°18'16.68”W). The
pigeon droppings were collected near a train station in El
Cerrito, California (37°54'9.63"'N, 122°17'56.17"W). To prepare
the 10% pigeon-droppings suspension, pigeon droppings were
first suspended in nine volumes of pond water and then filtered
through a 0.22-pm filter followed by adding agar to 0.25% prior
to autoclaving. Single colonies of each E. albertii strain were point-
inoculated on soft agar plates using sterile toothpicks. The plates
were incubated at 30°C for three days prior to observing the
motility.

2.4 Detection of curli fimbriae

Curli fimbriae were examined by growing each strain at 26°C
for 1, 2, and 5 days on Congo Red indicator (CRI) plates,
consisting of LB agar plates without sodium chloride (LBNS) and
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supplemented with 40 pg/ml of Congo Red dye and 10 pg/ml of
Coomassie Brilliant Blue, as described previously (Carter et al,
2011). Curli-producing strains were indicated by red colonies
whereas curli-deficient strains were indicated by white colonies on
CRI plates.

2.5 Detection of type 1 fimbriae

Production fimbriae was examined by

of type 1
hemagglutination for each strain grown in LBHS broth statically at
37°C or in LBNS broth statically at 28°C for two days. Cells were
collected by centrifugation at 8,000 g for 3 min and resuspended in
1x PBS buffer at a final concentration about 3 x 10 cells/ml. Fifty
! of bacterial suspension was then mixed with 50 pl of guinea pig
red blood cells (Innovative Research Inc) at room temperature in
the presence or absence of 1% D mannose as previously described
(Biscola et al., 2011). E. coli strain DH5a was used as a positive

control and EHEC strain EDL933 was used as a negative control.

2.6 Biofilm formation and quantification

Biofilm assays were carried out as described previously (Carter
et al., 2023b). Briefly, overnight cultures of E. albertii grown in LB
at 37°C were inoculated in LBNS broth at a final concentration of
1x10° cells/ml. One ml of inoculated LBNS broth was aliquoted
into a borosilicate glass tube and then incubated statically at 28°C
for 1, 2, and 5 days. At the end of each incubation, the planktonic
cells were removed carefully, and the tubes were rinsed twice with
one ml sterile distilled water and then stained with one ml 0.1%
crystal violet at room temperature for 30 min. The dye was then
removed gently, and the tubes were washed twice with sterile
distilled water. The crystal violet that bound to the glass tube
was solubilized in 0.5 ml of 33% acetic acid and the absorbance
was determined at 570 nm using a microplate reader (SpectraMax
340; Molecular Devices, Sunnyvale, CA). Tubes with uninoculated
media served as negative controls. Each data set was the average of
results from at least three biological replicates. All data were first
evaluated for normal distribution by the Shapiro-Wilk test using
Graph Pad Prism 10 Version 10.2.3 (Dotmatics). The differences
in biofilm formation, represented by the absorbance at 570 nm,
among the strains were assessed by the adjusted P-value of the
Tukey’s multiple comparisons test after a One-way ANOVA test
(P < 0.05). Similarly, the differences in biofilm formation of each
strain at various incubation times were assessed by the adjusted
P-value of the Tukey’s multiple comparisons test after a One-way
ANOVA test.

3 Results

3.1 E. albertii flagellar genes

Of the 48 genes related to flagella biosynthesis and motility
in strain EDL933, homologs of 40 and 35 genes were identified
in 13 and seven E. albertii strains, respectively (Supplementary
Table 1). In strain EDL933, these 48 flagellar genes are distributed
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at four genomic locations, with a size of 11.5 Kb, 15.6 Kb, 6.7 Kb,
and 11.0 Kb for Regions 1-4, respectively. Examining the genomic
locations of the flagellar genes in E. albertii revealed a similar genes
organization as in strain EDL933 (Figure 1A). Among the four
genomic locations, the greatest sequence variation was detected
in Region 2. In strain EDL933, Region 2 contained seven flagellar
genes and eight chemotaxis genes (cheZYBR, tap, tar, and cheWA).
Unlike strain EDL933, the eight chemotaxis genes were deleted in
all E. albertii strains examined. Furthermore, an additional deletion
of genes fliBCD and motBA was detected in a subset of E. albertii
strains including five avian and two clinical strains. This deletion
appeared to be mediated by a recombination between the sites
within genes flhA and ofsA since a 183-bp ofsA gene fragment
was located immediately upstream of a truncated flhA gene. In
contrast, the flagellar genes located in the other three regions in
strain EDL933 were all conserved in E. albertii strains.

Interestingly, a Flag-2 locus, which encodes a secondary
flagellar system that resembles the lateral flagella in Aeromonas
hydrophila and Vibrio parahaemolyticus (Ren et al., 2005), was
identified in one avian (RM9973) and four clinical E. albertii strains.
The Flag-2 loci in E. albertii varied in size from 33 Kb in the
clinical strain 2010C-3449 to 44 Kb in the clinical strain 05-3106.
Like the Flag-2 locus in the enteroaggregative E. coli (EAEC) strain
042, Flag-2 genes were organized into three gene clusters, separated
by the two variable regions, VR1 and VR2 (Figure 1B). In strain
042, the first gene cluster contains 14 genes that are involved
in regulation and expression of flagellar basal body components.
Homologs of these 14 genes were detected in the avian strain
RM9973 and in the clinical strain 05-3106. Genes [fhB and IfiR were
deleted in the strain 07-3866, while genes lafK and I[iEFGHI] were
deleted in both strains 54-2045 and 2010C-3449 (Supplementary
Table 2). The second gene cluster in strain 042 also contains 14
genes encoding flagellar structural proteins and the third gene
cluster carries nine genes that are mainly involved in flagellar
filament synthesis. Homologs of all genes within the second and the
third gene clusters were detected in the Flag-2 positive E. albertii
strains. In the Flag-2 negative E. albertii strains, this region was
about 2.5 Kb, containing the truncated two border genes, flhA
and lafU (Figure 1B). A highly similar truncated Flag-2 locus was
detected in E. coli strains EDL933 and K-12 strain MG1655 (%
Identity > 90).

3.2 Motility in E. albertii

When grown in LB at 30°C for three days, motility was
observed in two avian strains, RM10507 and RM10705, and
one clinical strain 07-3866 (Table 1). Both strains RM10507 and
RM10705 were isolated from brown-headed cowbird and were
Flag-2 negative. These three strains remained motile when grown in
5% TSB or in pond water supplemented with 10% pigeon droppings
(Table 1). Interestingly, four nonmotile strains when grown in
LB, became motile when grown in 5% TSB or in the pond water
supplemented with 10% pigeon droppings (Table 1). These four
strains included two avian strains, RM9973 and RM9976 that were
both isolated from American crow, the chicken isolate 2014C-
4356, and the clinical strain 05-3106. The majority of nonmotile
phenotypes could be explained by the mutations identified in the
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flagellar genes, including the deletion of motAB and fliBCD in
avian strains RM15112-RM15116 and in clinical strains 2014C-
4015 and 2014EL-1348 (Figure 1B), point deletions in fliF of the
strains RM9974 and 2011C-4180 and in motA of the strain 2013C-
4143, and an amber mutation in flgG and flhA of the strains 54-2045
and 2010C-3449, respectively (Supplementary Table 1).

3.3 E. albertii fimbrial genes

Homologs of genes encoding 12 fimbriae and pili implicated in
adherence, biofilm formation, and pathogenesis in diverse E. coli
pathotypes were examined in E. albertii. All genes are listed in
Supplementary Table 3. Homologs of genes encoding curli fimbriae,
type 1 fimbriae, and hemorrhagic E. coli pilus (HCP) were detected
in all strains while homologs of genes encoding adhesive fimbriae,
Sfm fimbriae, and P fimbriae were detected in a subset of E. albertii
strains examined.

3.3.1 Curli genes and expression of curli fimbriae

Like E. coli, genes related to biogenesis of curli fimbriae in
E. albertii are organized in two divergent operons, csgDEFG and
csgBAC, and located upstream of tRNA gene serX (Figure 2A).
Sequence analysis revealed that all E. albertii curli genes were placed
in the same clade that was separated from the E. coli curli genes
(Figure 2B). The curli genes of the E. albertii strains shared a high
sequence similarity ( > 95%) with each other, except for the clinical
strain 2010C-3449, in which, both ¢sgE and csgD were truncated
due to an IS insertion, while csgA carried an amber mutation.

Unexpectedly, production of curli fimbriae varied greatly
among the E. albertii strains (Figure 2C). Among the 10 avian
strains, production of curli fimbriae was observed in strains
RM9973, RM9974, RM9976 and RM10705, although all avian
strains carried intact coding sequences for all curli genes. As
expected, no curli fimbriae were observed for clinical strain 2010C-
3449. Among the other clinical strains, production of curli fimbriae
was detected in three out of four stxy¢ positive strains (2012EL-
1823B, 2014C-4015, 2014EL-1348) and in the stx,¢ negative strain
07-3866. Colonies of strain 2013C-4143 exhibited pink and light red
color following 48 h and 120 h incubation, respectively, suggesting
that this strain could produce curli fimbriae under the condition
examined but with less amount compared with the other curli-
positive strains (Figure 2C).

3.3.2 Type 1 fimbriae genes and expression of
type 1 fimbriae

In E. coli, the type 1 fimbriae genes (fimB, fimE, and
fimAICDFGH) are located on an 8.8-Kb DNA fragment. Expression
of the type 1 fimbriae is controlled by a phase variation
mechanism, in which, transcription of fimA is switched to “ON”
or “OFF” by an invertible DNA element, fimS, and two site-
specific recombinases encoded by genes fimB and fimE, respectively
(Figure 3A). Homologs of the nine fim genes were identified in all
20 E. albertii strains examined. Additionally, the invertible element,
fimS, flanked by two 9-bp inverted repeats (IRs), was also detected
in all E. albertii strains. The IRs (5-TTGGGGCCA-3) in E. albertii
strains were identical to the IRs in E. coli strains EDL933 and K-
12 strain MG1655, except for the avian strain RM9973, in which a
single base substitution of G to A occurred at position 6.
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seqguences.

Expression of type 1 fimbriae in E. coli O157:H7 strains
including EDL933 is silenced due to a 16 bp deletion in fimS (Roe
et al., 2001). This deletion locks the transcription of fimA at the
“OFF” orientation. Comparative analyses of E. albertii fimS genes
with the EDL933 fimS revealed an intact fimS in E. albertii strains,
like the fimS in E. coli K-12 strain MG1655 (Figure 3B). Sequence
analyses of other fim genes placed all E. albertii strains in the same
clade, separated from the fim genes in the E. coli strains (Figure 3C).
Various mutations including point deletions and IS insertions were
revealed in the fimA, fimC, and fimD genes of clinical strain 2010C-
3449, the fimD of the clinical strain 54-2045, and the fimI of the
clinical strain 2013C-4143 (Supplementary Table 3).

However, a mannose-sensitive hemagglutination assay failed to
detect type 1 fimbriae in any of the 20 E. albertii strains examined
when they were grown in LBHS at 37°C or in LBNS at 28°C, like
strain EDL933. Production of type 1 fimbriae was detected in E. coli
DH5a cells under both testing conditions.

3.3.3 Other fimbriae genes

Homologs of genes encoding hemorrhagic E. coli pilus
(hcpABC) were identified in all 20 E. albertii strains, and mutations
in hcpB (annotated as gspE in E. albertii), encoding the type II
secretion system protein GspE, were present in seven out of the
20 strains examined (Supplementary Table 3). Similarly, homologs
of genes encoding the Sfm fimbriae (sfmACDHF and sfmZ) were
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identified in the 18 out of the 20 strains examined. Mutations
were most common in sfmD, encoding a fimbrial biogenesis usher
protein (Supplementary Table 3). In the clinical strains 54-2045
and 2010C-3449, only a homolog of sfmA was present. Among the
adhesive fimbriae genes examined, homologs of cfaABCD genes,
which are often present on the chromosomes of EHEC strains,
were identified in 10 out of the 14 stxzf—positive E. albertii strains,
while homologs of faeCDEFGHIJ genes, which are often present
on the plasmids of enterotoxigenic E. coli (ETEC) strains, were
identified in the clinical strain 07-3866 and in the chicken isolate
2014C-4356 (Supplementary Table 3). In E. coli, there are 12
genes (papXGFEKJDCHABI) related to biogenesis of P fimbriae.
Homologs of seven genes, papEKJDCHA, were identified in seven
out of the 20 E. albertii strains, homologs of five genes, pap/DCHA,
were identified in the chicken isolate 2014C-4356, and homologs of
four genes, papDCHA, were identified in the clinical strain 2012EL-
1823B.

3.4 Nonfimbrial adhesin genes and their
genetic diversity

The
detected in E. albertii were paa, ehaC, eaeH, ehaB, and sinB

most common autotransporter adhesin  genes
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TABLE 1 E. albertii strains used in this study and the motility test.

Strains Sources/Year of GenBank

10.3389/fmicb.2024.1456637

aSwimming Motility

isolation BioSample Number

stxy¢-positive E. albertii LB 5% TSB Pond water with 10%

pigeon droppings

RM9973 American crow (Corvus SAMNI12620691 — + +
brachyrhynchos)/2009

RM9974 American crow (Corvus SAMN12620692 — — -
brachyrhynchos)/2009

RM9976 American crow (Corvus SAMNI12620693 — + +
brachyrhynchos)/2009

RM10507 Brown-headed cowbird SAMN12620694 + + +
(Molothrus ater)/2009

RM10705 Brown-headed cowbird SAMN12620697 + + +
(Molothrus ater)/2009

RM15112 Oregon Junco (Junco SAMN12620700 — — —
hyemalis)/2011

RM15113 Oregon Junco (Junco SAMNI12620701 — — —
hyemalis)/2011

RM15114 Oregon Junco (Junco SAMN12620702 — — —
hyemalis)/2011

RM15115 ‘White-Breasted Nuthatch SAMNI12620703 - - —
(Sitta carolinensis)/2011

RM15116 Oregon Junco (Junco SAMN12620704 — — -
hyemalis)/2011

2011C-4180 Human/2011 SAMNO03019926 - - —

2012EL-1823B Human/2012 SAMNO04498560 - - —

2014C-4015 Human/2014 SAMNO04505646 - - -

2014EL-1348 Human/2014 SAMNO04505647 - - -

stx-negative E. albertii

2014C-4356 Chicken Carcass/2009 SAMNO07159041 — + +

05-3106 Human/2005 SAMNO08199278 - + +

07-3866 Human/2007 SAMNO07159045 + + +

54-2045 (NCTC 9362) Human/1954 SAMNO09534374 - - -

2010C-3449 Human/2010 SAMNO07159044 — - —

2013C-4143 Human/2013 SAMNO08172567 - - -

#Swimming motility was observed after incubation at 30°C for three days.

(Supplementary Table 3). paa encodes an AcfC family adhesin.
A homolog of paa was present in nearly all E. albertii strains
examined and exhibited > 80% sequence identity with the paa
gene in EHEC strain EDL933. The gene ehaC encodes an AIDA-I
family autotransporter adhesin. A homolog of ehaC was detected
in all E. albertii strains examined, although a point deletion and a
point insertion were present in the avian strain RM10705 and the
clinical strain 2010C-3449, respectively (Supplementary Table 3).
The E. albertii ehaC genes exhibited ~ 75% sequence identity with
the ehaC gene in strain EDL933. eaeH encodes an intimin-like
adhesin FdeC. A distant homolog (~ 80% length in CDS and 27.6%
identity in amino acids) was identified in all E. albertii strains
examined, although mutations were detected in the clinical strain
2011C-4180 (IS insertion), and avian strains RM 10507 (Insertion
of 5-GTCTG-3’) and RM10705 (a point deletion). A homolog of
ehaB, ranging in size from 2430 bp to 2979 bp was detected in
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E. albertii strains. Interestingly, the ehaB genes in avian strains
RM9973 and RM9976, and in clinical strains 05-3106, 54-2045, and
2014C-4356, displayed higher sequence similarity with the EDL933
ehaB gene compared with the ehaB genes in other E. albertii strains.
The gene sinH, encoding an intimin-like inverse autotransporter,
was present in all E. albertii strains examined. In fact, the gene
sinH appeared to be widespread in E. albertii but only present in a
subset of E. coli strains. Homologs of sinH were not identified in
EHEC strain EDL933.

3.5 Biofilm formation

Following the initial 24 h incubation, a visible ring was observed
for avian strain RM9974 and four clinical strains, 2012EL-1823B,
2014C-4015, 2014EL-1348, and 07-3866 (Figure 4A). Consistently,
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FIGURE 2
Sequence analyses of curli genes and detection of curli fimbriae in E. albertii. (A) Chromosomal locations of curli operons and pairwise comparison
of the curli genes between the E. albertii avian strain RM9973 and E. coli O157:H7 strain EDL933. Numbers indicate the corresponding chromosomal
positions in each strain. Green arrows represent the annotated genes, and the pink arrows represents tRNA gene serX. (B) Sequence analysis of curli
genes. The curli operons were identified by BLASTn search of a database containing all genomes examined using a 4.4-Kb DNA fragment containing
the seven curli genes of the E. coli strain MG1655 as a query in Geneious Prime®. The sequences of the curli genes were extracted from
corresponding genomes and aligned using Clustal Omega alignment in Geneious Prime®. A consensus tree was constructed with the following
parameters: Genetic Distance Model, Jukes-Cantor; Resampling tree method: Bootstrap; Number of Replicates: 10,000; Support Threshold: 50%.
The stx,¢ positive strains are indicated in parentheses. The strain marked with an “*" indicates presence of mutations within the coding sequences of
curli genes. (C) Detection of curli fimbriae on CRI plates. Curli fimbriae were examined by growing each strain on the CRI plates at 26°C for 24 h,
48 h, and 120 h. Production of curli fimbriae is indicated by red colonies which resulted from the binding of CR dye supplemented in growth
medium.

quantitative analysis revealed that the attached biomass for the =~ RM9974, 2014C-4015, and 07-3866 produced significantly greater
above five strains were all significantly greater than the rest of the  amounts of biofilm than the other two strains (Figure 4B).
strains except the comparison between strains 2014EL-1348 and  Following 48 h incubation, the attached biomass for the five
RM15112 (One-way ANOVA, adjust P < 0.05) (Supplementary  biofilm producing strains were all significantly greater than the
Table 4). Among the five biofilm producing strains, strains  corresponding biofilms at 24 h (Figure 4C) (One way ANOVA
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FIGURE 3
Sequence analyses of E. albertii type 1 fimbriae genes. (A) Chromosomal locations and pairwise comparison of the type 1 fimbriae genes between
the E. albertii avian strain RM9973 and E. coli O157:H7 strain EDL933. Numbers indicate the chromosomal positions in each strain. Green arrows
represent the fim genes; Gray arrows represent the neighbor genes; and the red arrows represents right and left inverted repeats (IRs) within fimS.
The 9-bp IR in strain EDL933 is 5'-ttggggcca-3’ while in strain RM9973, the 9-bp IR is 5'-ttgggacca-3'. (B) Pairwise alignment of the cis element fim$S
of the E. albertii avian strain RM9973 and E. coli O157:H7 strain EDL933. Red arrows represent the IRs. The grey triangle represents the
16 bp-deletion in EDL933 fimS. (C) Sequence analysis of E. albertii type 1 fimbriae genes with the fim genes in E. coli strains EDL933 and MG1655.
The fim genes were identified by BLASTh search of a database containing all genomes examined in this study using an 8.7-Kb DNA fragment
containing the nine fim genes of the E. coli strain EDL933 as a query in Geneious Prime®. The sequences of the fim genes were extracted from
corresponding genomes and aligned using Clustal Omega alignment in Geneious Prime®. A consensus tree was constructed using Geneious Tree
Builder with the following parameters: Genetic Distance Model, Jukes-Cantor; Resampling tree method: Bootstrap; Number of Replicates: 10,000;
Support Threshold: 50%. The stx, positive strains are indicated in parentheses. The strain marked with an “*" carries mutations within the coding
sequences of type 1 fimbriae genes.

test, adjust P < 0.05). Among the strains that did not produce
any detectable biofilm at 24 h, a visible ring was observed for
strains RM9973 and RM10705 (Figure 4A). Quantitative analysis
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P < 0.05) (Figure 4C). Among the strains that did not produce any
visible biofilms at 48 h, strain 2014C-4356 produced a considerable
amount of biomass on the glass surface following 120 h incubation
(Figure 4A). Among the strains that produced biofilms following
48 h incubation, a significant increase in attached biomass was
observed for all strains following 120 h incubation (One-way
ANOVA, adjust P < 0.05) (Figure 4D). At 120 h post inoculation,
quantitative analysis revealed that avian strain RM9974, chicken
isolate 2014C-4356 along with the clinical strain 2014C-4015 were
the strongest biofilm producers, followed by the clinical strains
2014EL-1348 and 2012EL-1823B, and the avian strain RM9973,
which all produced significantly greater amounts of biofilm than
the clinical strain 07-3866 (One-Way ANOVA, adjust P < 0.05).
For avian strains RM9976 and RM10705, although a visible ring
was detected on glass surfaces, they were not significantly different
from those of non-biofilm producing strains (Figure 4D).

4 Discussion

Flagellar motility allows bacteria to move rapidly towards
nutrients and away from toxic substances, thus it plays an
essential role in bacteria to explore new niches and to establish
colonization. Moreover, flagella also serve as a virulence factor in
many enteric pathogens, contributing to adhesion, invasion, and
host colonization (Moens and Vanderleyden, 1996; Colin et al.,
2021). In E. coli, nearly 50 genes are involved in flagella assembly
and function. Expression of the flagellar genes is tightly regulated
by a three-tiered transcriptional hierarchy to ensure production
of flagellum at the right time and under the applicable conditions
(Khan et al., 2020). The group I genes, fIliDC, encode the master
transcriptional regulator FIhDC that activates the expression of
the group II genes. In E. coli, there are nearly 30 genes belonging
to the group II and many of these genes encode components
of the flagellum basal body and hook and the sigma factor 28
FliA. FliA regulates the expression of group III genes, which
are involved in synthesis of complete flagellum and chemotaxis
systems. The regulation of flagellar gene expression in E. albertii
is unknown, although a similar hierarchical regulation fashion is
expected considering the close phylogenetic relationship between
the two species. Originally, E. albertii was thought nonmotile and
lacked flagella although 74% E. albertii strains were reported to
carry a complete set of flagellar biosynthesis genes (Abbott et al.,
2003; Ooka et al, 2015). Induction of flagellar motility by low
osmotic pressure was observed in 27 out of the 59 E. albertii
strains tested (Ikeda et al., 2020); similarly, induction of swimming
motility by nutrients derived from pigeon droppings was observed
in six out of the 12 strains examined (Murakami et al., 2020),
implying strain variation in expression of flagellar motility in
E. albertii. Consistently, our study revealed great diversity in
flagellar genes repertoire and conditionally expressing swimming
motility in E. albertii. Among the 20 E. albertii strains examined,
three were motile regardless of the growth conditions, while four
were motile only when grown in pond water supplemented with
pigeon droppings or in the diluted TSB medium. Deletion of a
large DNA fragment containing genes flhAB, motBA, and flhCD
is likely the molecular basis of nonmotile phenotypes observed
in five avian and two clinical strains. Furthermore, a loss-of-
function mutation in genes fliC, fliF, fli], flgD, flgG, flhA, and motA
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may explain some but not all non-motile phenotypes observed in
our study. Considering the highly complex regulation in flagellar
gene expression, comparative transcriptomic studies may provide
insight into the molecular basis of the strain variation in expression
of flagellar motility.

Our study revealed the presence of the Flag-2 locus in
E. albertii. The Flag-2 locus appears to be widespread among
the Enterobacterales (De Maayer et al, 2020) and serve as
a hot spot for gene insertions and deletions. Consistently,
great sequence variation was observed among the five Flag-2
loci identified, including large deletions, point mutations and
transposon insertions. However, several VRI genes that are
predicated on having a role in posttranslational regulation of
flagellar biosynthesis are conserved in E. albertii, including the
glycosyltransferase gene and the lysine-N-methylase gene. Unlike
the primary flagellar system, the function of the Flag-2 locus is
not fully understood. Expression of Flag-2 genes was observed
in Yersinia enterocolitica with a maximal level at 20°C and, in
Plesiomonas shigelloides, the Flag-2 locus encoded lateral flagella
appeared to be essential for swarming motility (Bresolin et al., 2008;
Merino et al.,, 2015). Systematic analyses of cargo genes located in
the VR2 in Flag-2 loci suggested a role in secretion of virulence
factor and in inter-bacterial competition (De Maayer et al., 2020).
Searching other E. albertii genomes deposited in public databases
as of April 2024 revealed that about 25% of genomes carry a Flag-2
locus. Additional studies are needed to elucidate any physiological
roles or ecological benefits conferred by this secondary flagellar
system in E. albertii.

Among the 12 fimbriae/pili that are commonly present in
E. coli, genes encoding curli fimbriae, hemorrhagic E. coli pilus,
type 1 fimbriae, and Sfm fimbriae were identified in most of the
E. albertii strains examined, while genes related to biogenesis of
adhesive fimbriae, or P fimbriae were only present in a subset of
strains. Curli, also known as bacterial amyloid, is an important
colonization factor involved in initial surface attachment, biofilm
formation, and induction of the host inflammatory response
(Barnhart and Chapman, 2006). Although 19 out of the 20
E. albertii strains examined in our study carried intact curli genes,
production of curli fimbriae was detected in only nine strains. This
strain variation could not be explained solely by the differences
in the coding sequences of the curli genes or the differences in
the intergenic regions between the two curli operons, including
the promoters of csgD and csgB, since some curli-deficient strains
shared the identical intergenic sequences with the curli expressing
strains (Data not shown). Strain variation in curli production
were reported in E. coli and Salmonella enterica (Romling et al.,
1998; Dyer et al, 2007), which both have served as the model
organisms for studying curli biogenesis and regulation. In both
E. coli and S. enterica, expression of curli is regulated by a complex
regulation network involving multiple transcriptional regulators,
two-component regulatory systems, and in some isolates cyclic
dinucleotide 3}5-cyclic di-GMP (Barnhart and Chapman, 2006;
Blomfield and van der Woude, 2007). Therefore, mutations in
any of these regulators or the target sequences that interact with
the regulators directly or indirectly could have an impact on the
expression of curli fimbriae. For example, mutations in genes
encoding the transcriptional regulators rpoS or rcsB were reported
to be the molecular bases of strain variation in curli production
in EHEC O157:H7 (Carter et al., 2012; Carter et al., 2014) and
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Biofilm formation by E. albertii strains on glass surfaces. (A) Crystal violet staining the attached biomass on the glass surfaces under a static growth
condition for 24 h, 48 h, and 120 h. Only strains that can produce visible rings are shown here. (B—D) quantitative analyses of biofilms under a static
growth condition for 24 h (B), 48 h (C), and 120 h (D). Each data set represents the mean and SD of three biological replicates. Differences that are
statistically significant (One-way ANOVA followed by a Tukey's multiple comparisons test, adjust P < 0.05) are indicated by different letters. The
detailed results of the statistical analyses are presented in Supplementary Table 4.
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mutations in the csgD promoter could lead to overproduction of
curli fimbriae (Uhlich et al., 2002). Knowledge about the regulation
of curli fimbriae in E. albertii is limited. Examining genes encoding
putative transcriptional regulators of the curli genes in E. albertii
revealed a loss-of-function mutation in the rpoS gene in strains
05-3106 and 54-2045, while no mutations were identified in genes
encoding Crl, MIrA, CpxRA, OmpR-EnvZ, or ResBC. Additional
studies are required to gain a comprehensive understanding of curli
regulation network in E. albertii as well as the environmental and
physiological signals that may induce or repress the expression of
curli fimbriae.

Although the majority of E. albertii strains examined in our
study carried functional fim genes and an intact fimS, none of
them displayed a mannose-sensitive hemagglutination (MSHA)
phenotype under the growth conditions examined. Expression of
type 1 fimbriae was reported to be dependent on the growth
conditions. For example, optimal production of a predominantly
type 1 fimbriae positive population in Shigella required serial
passage every 48 to 72 h in unshaken brain heart infusion broth
at 37°C (Snellings et al, 1997). Since the goal of our study
was to reveal if the type 1 fimbriae contributed to the biofilm
formation in E. albertii, the conditions tested for production of
type 1 fimbriae were the conditions used for examining biofilm
formation, which may not be optimal for expression of type 1
fimbriae. Additionally, the phase variation of type 1 fimbriation is
regulated at multiple levels. In E. coli, switch of fimS is required
but not sufficient for biosynthesis of type 1 fimbriae. Besides
FimB and FimE, other transcriptional regulators including IHF,
Lrp, and H-NS were reported to be involved in fim$S switch
(Blomfield and van der Woude, 2007). Variations in the activities
of FimB and FimE, cross talks between fimbrial operons, as
well as the presence of other recombinases can all contribute
to variation in expression of type 1 fimbriae. Additional studies
are required to understand growth conditions, physiological cues,
and environmental signals for induction of type 1 fimbriae in
E. albertii.

Among the nonfimbrial adhesins examined, genes encoding
the autotransporter (AT) adhesins were predominant in E. albertii.
For example, homologs of ehaA, ehaB, ehaC, and upaH that
all encode an AIDA-I type autotransporter (AT) adhesin were
identified in all or most of the strains examined and a homolog
of ehaG, encoding a trimeric AT adhesin was identified in all
strains. Other AIDA-1 type adhesins genes in E. albertii included
aatA, aidA, agn43, and cah. In E. coli, Ag43 is the most prevalent
AIDA-1 type AT adhesin, however, in E. albertii, the agn43 was
identified only in a clinical strain. Other commonly detected
non-fimbrial adhesin genes were eaeH, paa, and sinH. The gene
eaeH encodes an intimin-like adhesin that facilitates adhesion of
bacterial cells, delivery of heat-labile toxin, and colonization of
the small intestine in ETEC (Sheikh et al., 2014). The gene paa,
encoding an AcfC family adhesin, is widespread in both EHEC and
ETEC strains. Paa contributes to the formation of A/E lesions in
animal hosts and thus is an important virulence factor in various
E. coli pathotypes (An et al., 1999; Batisson et al., 2003). The
paa gene appears to be widespread in E. albertii and in some
strains, there are two paa loci, including the bird strains isolated
in Poland (BioSample numbers: SAMN33094111, SAMN33094114,
SAMN33094099, SAMN33094102, and SAMN33094112), and a
poultry strain isolated in China (SAMN17525956). The gene
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sinH encodes an intimin-like inverse autotransporter. The inverse
autotransporters were reported to play a role in biofilm formation
in E. coli and contributed to biofilm formation and virulence
in Yersinia ruckeri (Martinez-Gil et al., 2017; Goh et al,
2019; Wrobel et al., 2020). However, deletion of sinH in the
UPEC strain CFT073 did not impact the biofilm formation
significantly, rather, the mutant displayed a significant fitness
reduction during UTI in a murine model (Shea et al, 2022).
Like paa, sinH appears to be conserved in E. albertii. BLASTn
search of additional 57 complete E. albertii genomes deposited
in GenBank as of April 2024 identified a sinH in all of
them.

Like curli production, E. albertii strains differed greatly in
biofilm formation on glass surfaces. Consistent with our previous
report that, in STEC, curli fimbriae are important for biofilm
formation on abiotic surfaces (Carter et al.,, 2016; Carter et al,,
2019), all curli-producing E. albertii strains produced moderate
or strong biofilms under the condition examined. Interestingly,
some curli-positive strains produced visible biofilm following a 24-
h incubation, while others did not produce biofilms until a 120-h
incubation, implying a difference in biofilm development among
the E. albertii strains. Furthermore, although no curli fimbriae
were detected in chicken isolate 2014C-4356, strong biofilms were
observed on day 5 of incubation, suggesting a role of other adhesins
in biofilm formation. Strains 2014C-4356 and 07-3866 were the
only strains carrying genes encoding the adhesive fimbriae that
are located on a large plasmid commonly found in ETEC strains,
such as pUMNKBS88_Hly (GenBank accession # NC_017643.1). It
requires further investigation to determine if the plasmid-borne
adhesive fimbriae are expressed in E. albertii and whether it
contributes to biofilm formation in strains that do not produce curli
fimbriae.

Biofilms of foodborne pathogens can enhance their survival
and persistence in diverse ecological niches and serve as sources of
contamination in food production environments and of infection
in health-care environments. Adhesion is the first step in biofilm
development and in establishing colonization in animal hosts.
Strong adherence often implies enhanced surface attachment and
biofilm formation, leading to increased fitness and pathogenic
potential. Therefore, understanding the adhesion capability and
the underlining factors in E. albertii would provide valuable
information for development of effective control strategies. Our
study revealed that curli fimbriae, Type 1 fimbriae, Sfm fimbriae,
and HCP appear to be the common fimbrial adhesins in
E. albertii, while adhesive fimbriae was a strain-specific trait.
Among the numerous nonfimbrial adhesins identified in E. albertii,
autotransporter adhesins EhaA, EhaB, EhaC, EhaG, and SinH,
and the adherence factors EaeH and Paa are common, while
Agn43, Cah, and Tha that are widespread in E. coli, are only
associated with a few strains. E. albertii strains carry different
combinations of fimbrial and nonfimbrial adhesins that may
facilitate colonization of E. albertii in diverse niches. Our study
further revealed great variations in expression of curli fimbriae
and in biofilm production, suggesting complex regulation in
expression of adhesins in E. albertii. Studies are needed to identify
environmental cues that induce the adhesions expression and the
receptors specifically interacted with each adhesin to gain insight
into molecular basis of niche selection for E. albertii, an emerging
human and avian pathogen.
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Clostridium perfringens is a causative agent of various human and animal enteric
diseases including food poisoning. In this study, we describe an interesting case of a
persistent food poisoning outbreak among Finnish peacekeepers in Eritrea, possibly
caused by Clostridium perfringens carrying a new variant of the chromosomally
encoded enterotoxin gene. C. perfringens strains causing food poisoning carry
the enterotoxin gene, cpe, in its chromosome (c-cpe) or on a plasmid (p-cpe).
PCR assays are widely used for toxinotype C. perfringens strains. The integration
sites for the cpe gene are highly conserved, and PCR assays targeting the cpe
gene and the adjacent IS elements (the 1S1470 in c-cpe and the IS1470-like or
IS1151 in p-cpe strains) are used to further determine the genetic location of the
cpe gene. We sequenced nine enteropathogenic C. perfringens strains related
to a persistent food poisoning outbreak among Finnish peacekeepers in Eritrea.
Six of these strains produced non-typeable cpe results in the standard PCR assay
due to divergence in the enterotoxin integration site. The gene order of the new
variant of the chromosomal cpe insertion site with an additional IS1470 element
impairing genotyping PCR assay for the location of cpe is described. In addition,
variant c-cpe strains carried 58-81 copies of IS1470 in their genomes, compared
to 9-23 copies found in previously described c-cpe strains. Thus, the present
study represents an untraditional type of C. perfringens food poisoning caused
by variant c-cpe strains, and the sequenced strains bring geographic variation to
the existing strain collection of sequenced C. perfringens.

KEYWORDS

Clostridium perfringens, genotyping, variant strains, enterotoxin gene, food
poisoning, persistent outbreak, IS element

1 Introduction

Clostridium perfringens is an anaerobic, spore former causing gas gangrene, wound infections,
and a variety of human and animal diseases involving the gastrointestinal (GI) system (Lindstrom
etal, 2011; Kiu and Hall, 2018). Traditional C. perfringens food poisoning outbreaks are associated
with temperature-abused food and typically affect many people at the same time. In addition,
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cases of antibiotic-associated diarrhea (AAD) by C. perfringens may
be transmitted through food (Lindstrom et al., 2011).

Both food poisoning and AAD cases of C. perfringens diarrhea are
primarily caused by type F strains (strains carrying enterotoxin gene
cpe), which produce pore-forming C. perfringens enterotoxin (CPE).
The prevailing understanding is that all C. perfringens strains may carry
the cpe gene, but only approximately 5% do and produce CPE
(Miyamoto et al., 2006). The cpe allele encoding a 319 aa end product
is located either in pCPF5603 or pCPF4969 plasmid (plasmid-
mediated cpe, p-cpe strains) or in a transposable element Tn5565
integrated into the chromosome (chromosomal cpe, c-cpe strains)
(Cornillot et al., 1995; Brynestad et al., 1997; Miyamoto et al., 2006; Li
etal, 2010). The Tn5565 includes insertion sequences (IS) IS1470 and
1S1469 directly adjacent to the cpe gene (Brynestad et al., 1997). Known
cpe-carrying plasmids are all conjugative and horizontally transferable
(Miyamoto et al,, 2006). The plasmid cpe gene is adjacent to IS1151- or
1S1470-like elements (Daube et al., 1993; Miyamoto et al., 2002).

Foodborne outbreaks are caused by both p-cpe and c-cpe strains
(Lahti et al, 2008), but multiple studies have shown that most
outbreaks are caused by chromosomal cpe strains. In addition, a 325
aa variant of the cpe gene of unknown clinical relevance has been
described in the pCPBBI1 plasmid (Miyamoto et al., 2011). Persistent
longitudinal outbreaks of C. perfringens have been suggested in some
studies (Kiu et al., 2019), and these outbreaks have been associated
with plasmidial cpe-carrying strains.

Six toxin genes detected by PCR have been widely used for
toxinotype strains of types A-G (Rood et al., 2018). The only invariably
chromosomal gene in the toxinotyping scheme is alpha (plc), which is
present in all C. perfringens strains, while the other toxinotyping
toxins are carried on transposable elements or a family of conjugative
plasmids (Li et al., 2013). Toxinotyping, therefore, does not reflect the
phylogenetic lineage of strains. To address this, the availability of
genomic sequences has led to the establishment of genetic lineages
(Kiuetal, 2017; Feng et al., 20205 Jaakkola et al., 2021), and a virulence
gene profile scheme including chromosomal genes has been proposed
(Abdelrahim et al., 2019).

PCR genotyping is also used to detect the location and type of
enterotoxin gene in enteropathogenic C. perfringens. Despite the
transmissible nature of these genetic structures, the gene order on
both chromosomal and plasmidial integration sites is so highly
conserved that IS elements are utilized as PCR probe targets
(Brynestad, 1997), and reported variant strains have been related to
the presence of a larger variant of the enterotoxin gene itself (325 aa)
(Heikinheimo et al., 2006; Li et al., 2007).

In this study, we describe a persistent food poisoning outbreak
putatively caused by Eritrean C. perfringens strains. In addition,
we describe six outbreak strains with chromosomal cpe that exhibit an
additional IS1470 insertion sequence near the cpe gene, which affects the
ability of the PCR assay to detect the cpe location and genotyping results.

2 Materials and methods
2.1 Outbreak and stool samples
The occurrence of gastroenteritis among Finnish peacekeepers

deployed in the United Nations peacekeeping operation in Eritrea in
Africa (UNMEE) increased during the summer and autumn of 2004.
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In the autumn of 2004, an investigation team from Finland was sent
to Eritrea to investigate the possible outbreak, take measures, and give
instructions to address the situation. Inspections of the camp food
premises, water distribution system, and local water suppliers were
conducted. Water samples were collected and analyzed for the total
bacterial count, total coliforms, E. coli, parasites (Giardia,
Cryptosporidium, and Entamoeba histolytica), and noroviruses using
the standard drinking water methods. No E. coli, parasites, or
noroviruses were detected in any of the 13 samples.

Of the 163 (91.3%) answered the

epidemiological questionnaire and 98 (60.1%) of them had suffered

184 peacekeepers,

from symptoms such as diarrhea (93.9%), flatulence (69.4%),
abdominal pain (58.2%), nausea without vomiting (51.5%), lack of
appetite (43.9%), abdominal distention (33.7%), fever (31.6%),
vomiting (22.4%), muscular pain (17.3%), abdominal cramps and
other symptoms (16.3%), and bloody diarrhea (7.1%). The illnesses
occurred consistently from June to October, with no distinct peak in
their occurrence. The analysis of questionnaires and medical reports
revealed that on average, approximately five peacekeepers were sick
each day from June to October.

Stool specimens were collected from 184 Finnish peacekeepers
(sample numbers 1-184) and 38 local Eritrean staff (cooks and
cleaners) members (sample numbers 200-237) and transported to the
Laboratory of Helsinki University Central Hospital. Salmonella,
Shigella, Yersinia, and Campylobacter, parasites (Cryptosporidium,
Cyclospora, Cystoisospora, and Dientamoeba), norovirus and
astrovirus, and antigens for Giardia, Cryptosporidium, and Entamoeba
histolytica were investigated from the stool samples using standardized
methods of the laboratory. The epidemiological and laboratory
investigations revealed no specific bacteria, virus, or parasite
connected to the illnesses. However, the symptoms resembled those
of Clostridium perfringens food poisoning, and the fecal samples were
taken for further examination.

2.2 Detection and isolation of Clostridium
perfringens

Each fecal swab sample was dissolved into a tube that contained
sterilized water, and the hydrophobic grid membrane filter-colony
hybridization (HGMF-CH) (Heikinheimo et al., 2004) was used to
detect and isolate cpe-carrying C. perfringens from the samples. The
samples giving a positive signal in the HGMF-CH assay were
considered positive for cpe-carrying C. perfringens. The probe-positive
colonies were isolated from each sample to obtain cpe-carrying
C. perfringens from a single sample and to further study the genetic
relatedness of these isolates.

2.3 PCR and PFGE typing

We detected major toxins and cpe in the C. perfringens isolates
with PCR, as previously described by Heikinheimo and Korkeala
(2005) in 2004-2005. The current nomenclature was used in this
article (Rood et al., 2018). C. perfringens strains NCTC 8239, ATCC
3626, CCUG 2036, CCUG 2037, and CCUG 44727 were used as
positive controls. C. perfringens type F isolates were further studied by
PCR to determine the cpe genotype based on the cpe insertion site
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with IS elements. The total DNA was isolated by using Advamax beads
(Edge Biosystems, Gaithersburg, MD, USA), according to the
manufacturer’s instructions. IS elements downstream of cpe that
determine the cpe genotype (IS1151, 1S1470-like, or IS1470) of each
isolate were characterized by using PCR with the previously described
primers (Daube et al., 1993; Brynestad, 1997; Brynestad et al., 1997;
Miyamoto et al, 2002; Miyamoto et al., 2004) and protocols
(Heikinheimo et al., 2006).

In pulsed-field gel electrophoresis (PFGE) analysis, the DNA was
digested with Apal (New England Biolabs, Beverly, MA, USA), and
the genetic relationships between isolates were assessed using the
previously described assay (Ridell et al., 1998), which was modified by
adding thiourea to the electrophoresis running buffer (Leclair et al.,
2006). The digital images of PFGE patterns were analyzed using
Bionumerics software (version 4.6, Applied Maths, Sint-Martens-
Latem, Belgium), and the similarity analysis of PFGE patterns was
performed using the Dice coefficient (optimized 2%, tolerance 1.2%).
Clustering and construction of dendrograms were performed by using
the unweighted pair-group method with arithmetic averages.

2.4 Sequencing of selected Clostridium
perfringens isolates and annotation

Nine strains were sequenced in 2022 and have been deposited in
the GenBank. These nine strains were selected for sequencing based
on the genotyping results, and they represented both chromosomal
and variant chromosomal cpe-carrying isolates in the genotyping assay.

Genomic DNA of C. perfringens isolates was extracted, as
described by Keto-Timonen et al. (2006), and whole-genome
sequencing was performed using PacBio RSII (Institute of
Biotechnology, Helsinki, Finland). Sequenced genomes were
assembled using HGAP3 and checked for circularity using Gap4
(Staden et al.,, 2003; Chin et al., 2013). To improve the draft assembly,
Mlumina MiSeq reads and the Pilon tool were used for genome
polishing (Walker et al., 2014). Both sequenced and downloaded
genomes were annotated using Prokka (Seemann, 2014).

Selected reference strains (ATCC 13124, SM101, and Str. 13) and
previously sequenced lineage I'V strains were included in the cgMLST
analysis (Supplementary Table S1). Genomes were downloaded from
the Bacterial and Viral Bioinformatics Resource Center.'

2.5 Comparative genome analysis

Bacterial and Viral Bioinformatics Resource Center (see text
footnote 1) was used to perform comparative genome analysis and to
combine results with previous studies (Jaakkola et al., 2021). To
determine the cgMLST target gene set and create a genome-wide gene-
by-gene comparison, ChewBBACA (3.0.0) was used (Silva et al., 2018).
A schema created by Abdel-Glil et al. (2021) available at https://www.
cgmlst.org was used. The core genome of 63 C. perfringens genomes
consisted of 1,236 genes. For cgMLST results, a minimal spanning tree
was calculated by GrapeTree (Zhou et al,, 2018) using MSTreeV?2.

1 https://www.bv-brc.org/
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Strains (n=63) included in the comparative genome analysis are listed
in Supplementary Table S1.

Sequenced genomes were queried for the presence of IS elements
(IS1470, 1S1469, and IS1151) and selected genetic features
(Supplementary Table S2). For IS elements, the hits with >80% identity
over 80% of length were considered a match. For other genetic
features, an identity threshold of 90% was used.

2.6 Phylogenetic analysis

Single-nucleotide polymorphisms between sequenced strains and
selected reference strain genomes were identified using Snippy 4.6.
(Seemann et al., 2015), with strain SM101 (289380.15) as a reference.
A phylogeny based on core-SNP alignment was created by IQ-TREE
2.3.0. (Nguyen et al., 2015). Bootstrap values for branches were
approximated using ultrafast bootstrapping (-B 1000), and FigTree
v1.4.4. was used to visualize the trees (Rambaut and Drummond,
2008). Strains (n=63) included in phylogenetic analysis are listed in
Supplementary Table S1.

3 Results

3.1 cpe-positive Clostridium perfringens
samples

Altogether, 50 of 222 (22.5%) human stool samples gave a positive
signal in the HGMF-CH and were considered positive for the presence
of cpe-carrying C. perfringens. The prevalence of type F C. perfringens
differed between the samples from peacekeepers and local staff
members. Overall, 32 of 184 (17.4%) of the samples of the
peacekeepers and 18 of 38 (47.3%) of the samples of local staft
members were positive. Altogether, we isolated 96 C. perfringens
isolates from 12 samples (Table 1). The isolates were regarded as cpe-
positive since they gave a signal in the HGMF-CH.

Of the peacekeepers who gave cpe-positive or cpe-negative
samples, 72 and 59%, respectively, had symptoms of intestinal disease
between June and October 2004.

3.2 Genotyping results

Based on multiplex PCR, 94 (98%) of the 96 isolates were cpe-
carrying type F (former type A). None of the 94 cpe-carrying isolates
carried plasmidial cpe. PCR genotyping identified 49 (52%) of the 94
isolates as typical c-cpe isolates. The remaining 45 (48%) of the 94
isolates yielded PCR products of divergent size compared to c-cpe;
thus, the genetic location of the cpe gene of these 45 isolates was
interpreted as a variant. The PCR results are shown in Table 1.

We typed 78 (83%) of 94 cpe-positive isolates with PEGE. Isolates
from four peacekeepers (samples 33, 44, 53, and 103) displayed four
distinct patterns (Figure 1). Isolates from a fifth peacekeeper (sample
24) and four locally employed workers (203, 205, 206, and 233)
displayed closely related patterns and included both c-cpe and variant
isolates. Among this cluster, a subcluster of indistinguishable isolates
from the fifth peacekeeper and three local staff members was selected
for further analysis.
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characters) following the study ID constitute the strain/genome ID. Reference strain = C. perfringens strain SM101.
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3.3 Sequenced genomes

Nine isolates representing both c-cpe typed isolates and PCR
variant cpe isolates were sequenced (Table 2). Sequencing revealed
that all carried a chromosomally inserted cpe and they, despite the
varied PCR results and the differences observed in PFGE,
belonged to the same phylogenetic lineage IV and phylogenetically
clustered together with c-cpe food poisoning isolates (Figure 2).
Different c-cpe groups, 1 and 2, have been recently suggested
(Jaakkola et al., 2021). C-cpe group 1 strains seem to be equipped
for changing pH and acidic, high-temperature environments
where iron uptake is competitive, and citrate utilization is
beneficial, whereas strains of c-cpe group 2 lack these genes and
operons. The isolates described here belonged to c-cpe group 1,
among many well-researched food poisoning strains such as
SM101, NCTC 8239, and NCTC 10613.

All sequenced cpe genes were highly conserved and encoded a 319
aa enterotoxin sequence. Genome analysis revealed that the six strains
in Table 2 with variant cpe PCR results (24-6, 203-4, 205-27, 205-32,
233-1, and 233-6) carried an additional IS1470 sequence directly
downstream the cpe gene (Figure 3), while the genomes typed as
chromosomal in PCR (Table 2) had a typical gene order and genetic
composition, as described by Miyamoto et al. (2006) around their
chromosomally inserted cpe gene. For the sake of brevity, these six
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genes with new gene order for their cpe insertion site are called
“variant c-cpe strains” in this article.

The additional IS1470 element in strains with variant gene
order was 99% identical with the other, well-described 1S1470 in
the close vicinity of the cpe gene in chromosomal strains. Further
analysis of IS1470 revealed that the variant c-cpe strains such as
24-6, 203-4, 205-27, 205-32, 233-6, and 233-1 had also
accumulated other additional copies of IS1470 elements (Table 3).
Variant c-cpe strains carried 58 to 81 copies of IS1470 in their
genomes, while the majority of studied chromosomal strains
carried 9 to 23 copies of IS1470. P-cpe strains carried under 10
copies of 1S1470 (0 to 7) (Supplementary Table S2). All c-cpe
strains carried 1 copy of IS1469 (Supplementary Table 52).

The traditional and variant c-cpe strains sequenced in this study
had slight differences when selected genetic features were compared
(Table 3). The traditional c-cpe strains lacked the arginine deiminase
pathway Arc and the iron uptake system FeoAB, which were present
in variant c-cpe strains. The traditional c-cpe strains sequenced in
this study carried cellobiose metabolism operon and spore
photoproduct lyase SpIB, which were absent in the variant c-cpe
strains. Sequenced strains were subjected to cgMLST analysis to
characterize the strains and shed light on their epidemiological
context. Analyzed C. perfringens strains (Supplementary Table S1)
shared 1,236 genes in their core genome. Strains 24-6, 203-4,
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TABLE 1 cpe-positive samples yielded cpe-positive isolates, the isolation source of the samples, the number of cpe-positive isolates, and their cpe type
(chromosomal/plasmidial).

Sample Isolation Number of cpe-positive Number of isolated cpe genotypes
AUmbEr SOHICE ISolates c-cpe isolates  p-cpeisolates 1IS1470- = Variant isolates?
1S1470 like or IS1151

24 Peacekeeper 7 2 0 5
33 Peacekeeper 7 (+2 cpe-negative) 7 0 0
44 Peacekeeper 3 3 0 0
53 Peacekeeper 9 9 0 0
96 Peacekeeper 2 0 0 2
103 Peacekeeper 14 14 0 0
203 Local cook 5 4 0 1
204 Local cleaner 1 1 0 0
205 Local cleaner 32 2 0 30
206 Local cook 1 1 0 0
225 Local cook 3 3 0 0
233 Local cook 10 3 0 7

“Divergent size product in PCR detecting c-cpe.

Source

[ ]Other [32]

["]Food/food poisoning [22]
[l Local, cook [6]

Local, cleaner [2]
Finnish peacekeeper [1]

FIGURE 2

Minimal spanning tree of cgMLST results of 63 C. perfringens strains including here sequenced strains (n = 9) and previously published C. perfringens
strains (n = 54). A scheme created by Abdel-Glil et al. (2021) was used for allele calling, and 1,236 loci belonging to the core genome were used to
create the minimal spanning tree with GrapeTree (MSTreeV2). The isolation sources of strains have been added as a colored annotation, and branches
below two allelic differences are collapsed.

205-27, 205-32, 233-1, and 233-6 formed a clade and shared  Kkitchen staff members (Cook #1203: 203-4 and Cook #2233: 233-1
highly similar cgMLST gene profiles (5 to 25 differences), suggesting  and 233-6), and a local cleaner (205-27 and 205-32). Strains 203-2,
genetic relatedness and a recent shared origin (Figure 1). These ~ 203-3, and 233-8 shared another clade with a genetic difference of
strains had been isolated from a peacekeeper (24-6), two local 8 between 203-2 and 233-8 (Figure 2).
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TABLE 2 Sequenced C. perfringens strains, their cpe type (chromosomal/plasmidial), initial PCR typing results, genetic lineage, isolation source, and

BioSample accession number.

cpe type? Initial PCR typing

Genetic lineage®

Isolation source BioSample

results accession number
203-2 Chromosomal Chromosomal v Cook #1 SAMN35541948
203-3 Chromosomal Chromosomal v Cook #1 SAMN35541949
203-4 Chromosomal Variant v Cook #1 SAMN35541950
205-27 Chromosomal Variant v Cleaner SAMN35541951
205-32 Chromosomal Variant v Cleaner SAMN35541952
233-1 Chromosomal Variant v Cook #2 SAMN35541953
233-6 Chromosomal Variant v Cook #2 SAMN35541954
233-8 Chromosomal Chromosomal v Cook #2 SAMN35541955
24-6 Chromosomal Variant v Peacekeeper SAMN35541956

“Based on the sequenced genome.
®Feng et al. (2020) and Jaakkola et al. (2021).

B)

FIGURE 3

Presentation of gene order on chromosomal insertion sites of enterotoxin gene (cpe). (A) The well-described and conserved gene order (Brynestad
et al,, 1997) is commonly utilized for PCR genotyping, and probes target the 1S1470 element downstream of the cpe gene and the cpe gene itself. In
this study, six isolates (233-6, 233-1, 205-27, 203-4, 205-32, and 24-6) produced variant PCR results in PCR genotyping and had a new variant cpe
loci (B) with a 1,053 aa 1S1470 insertion element directly downstream of the cpe gene. The additional IS1470 element was 99% identical to the other,
well-described 1S1470 in the close vicinity of the cpe gene in chromosomal strains.

1S1469

4 Discussion

In the present study, we found C. perfringens type F strains in the
stool samples of peacekeepers and locally employed workers. Among
the samples from locally employed workers and peacekeepers, 47 and
17%, respectively, tested positive for cpe-carrying C. perfringens.
Altogether, 94 c-cpe strains were isolated from 12 people, including
clinically healthy individuals (the locally employed workers and some
peacekeepers) and those who were ill or recovering from intestinal
disease (some peacekeepers). The isolation of c-cpe strains from
multiple people suggests that there may have been one or more
C. perfringens food poisoning outbreaks among peacekeepers with
symptoms of disease as c-cpe strains are known to be a common cause
of food poisoning (Lindstrom et al., 2011). However, since the
sampling was conducted in October and the symptoms of the
peacekeepers had occurred between June and October, CPE or large
numbers of type F isolates were not found in the feces of affected
people, and we could not definitively identify these symptoms being
caused by C. perfringens type E. The local workers were not included
in the epidemiological questionnaire or systematically interviewed, so
it is unclear whether they had some symptoms of intestinal disease at
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the same time period as the peacekeepers. Interestingly, we obtained
only c-cpe isolates, especially among locally employed workers. P-cpe
strains are often present in the normal intestinal microbiota of many
healthy people (Heikinheimo et al, 2006; Carman et al., 2008).
Noteworthy, the isolation of C. perfringens strains was not successful
from all cpe-positive samples, and whether p-cpe or c-cpe strains were
present in these samples remains unknown.

In the present study, four peacekeepers had individual c-cpe
strains according to the PFGE results. Those c-cpe strains were not
found in anyone else. Based on the questionnaire, at least two of these
peacekeepers had the symptoms of intestinal disease 1-2months
earlier, but not at the time of sampling. Moreover, one peacekeeper
shared the same c-cpe strain with two local cooks and one local
cleaner. According to the questionnaire, this peacekeeper had
symptoms of intestinal disease 3 weeks earlier but not at the time of
sampling. This may indicate that the peacekeepers had become
carriers of the c-cpe strains after food poisoning.

While there is no clear evidence that c-cpe strains have been the
cause of symptoms observed among the peacekeepers, the fact that
we found genetically similar C. perfringens strains in samples from the
locally employed workers and peacekeepers suggests that transmission
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TABLE 3 Comparison of selected genetic features of the c-cpe strains sequenced in this study and some well-known C. perfringens strains.

cpe type Lineage Selected genes and genetic features
N of N of N of Myo-
1S1470 1S1469 1S1151 pfoA nanl | Arc NanJ Fhu FeoAB Citrate Cellobiose Fucose Ethanolamine inositol Biotin = CspLA = splB SigV ssp4 HR

New variant of the

203-4 v 62 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1
c-cpe insertion site

205-27 v 81 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1

205-32 v 57 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1

233-1 v 65 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1

233-6 v 58 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1

24-6 v 58 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1
‘The known c-cpe

203-2 v 23 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1
insertion site

203-3 v 31 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1

233-8 v 23 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1

NCTC8081 v 49 0 2 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1

NCTC8239 v 23 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1

SM101 v 16 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1

NCTC10240 v 9 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0
Plasmidial cpe CPE str. F4969 v 0 2 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0

AAD1903a 11 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0
cpe-negative Str13 v 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0

Cpe type (New variant of the c-cpe insertion site/The known c-cpe insertion site/Plasmidial cpe/cpe-negative), the genetic lineage, number of IS elements (>80% identity, >80% length), and presence (1) and absence (0) of selected genes and genetic features
[Arc=arginine deiminase pathway, Fhu = ferrichrome uptake system, FeoAB =iron uptake system, Citrate = citrate metabolism, Cellobiose = cellobiose metabolism operon, Fucose = fucose metabolism operon, Ethanolamine = ethanolamine utilization operon, Myo-
inositol = myo-inositol utilization operon, Biotin = biotin biosynthesis, SpIB = spore photoproduct lyase, SigV =sigma V, Ssp4 HR = gene allele with Asp at residue 36 and Asn at residue 72 associated with spore heat resistance (Li and McClane, 2008)] in sequenced C.

perfringens strains. All 1S1470 hits were located within the chromosome. Complete version of this table is available in Supplementary Table S2.
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of these strains has occurred among camp crew. The transmission has
most likely been foodborne as this is the most common route of
transmission for intestinal bacteria (Browne et al., 2017). This is further
supported by the presence of the same strains in the kitchen staff. The
high number of c-cpe C. perfringens among the local workers may even
suggest humans as a reservoir of the c-cpe strains, and the persistence
of c-cpe in peacekeepers several months after symptoms may even
suggest that humans might become at least a transient reservoir of
c-cpe strains in some cases. This subject needs to be further elucidated
for better prevention of epidemics in the future. Reservoirs of the c-cpe
strains are unclear, but humans as reservoirs have also been suggested
previously (Heikinheimo et al., 2006).

In a previous study (Kiu et al., 2019), genetically highly similar p-cpe
C. perfringens strains were associated with nine distinct care-home-
associated outbreaks throughout a 5-year interval. Kiu et al. (2019)
suggested that there was a common source linked to these outbreaks or
transmission over time and space. Previous studies (Lahti et al., 2012;
Jaakkola et al., 2021) have suggested that p-cpe strains and some c-cpe
strains inhabit human intestines, so humans as carriers of food
poisoning strains over time and space are possible. Since peacekeepers
had symptoms evenly distributed during summer and autumn in 2004,
it is possible that there had been a persistent food poisoning outbreak
caused by the c-cpe strains carried by the kitchen workers.

An alternative explanation is that contaminated food ingredients
have introduced the C. perfringens strains to the camp, where camp
conditions may have facilitated the transmission of c-cpe strains
among food consumers. C-cpe strains are known to enter the food
chain and have been identified as the sole or predominant cpe-positive
strains in retail meats from both the United States (Wen and McClane,
2004) and Turkey (Yibar et al., 2018). However, it is unclear how the
c-cpe strains end up in the food chain, from food handlers or other
sources. In the present study, the camp’s food premises were adequate
when inspected, and the UN procured food from international
operators known for their high standards of food safety.

In the present study, the higher proportion of the c-cpe C. perfringens
among the local workers than among the peacekeepers may also indicate
a specific local source of c-cpe C. perfringens. The high numbers of these
pathogenic isolates in the stool of one local cleaner (32 isolates) and a
local cook (10 isolates) support this. The exposure to local foods outside
the camp may have increased the risk of C. perfringens food poisoning.

The cgMLST scheme for C. perfringens has been used to type strains
in several studies, and allele differences between these variable species
are usually relatively large, with differences ranging from 200 to 1,000
alleles between strains (Abdel-Glil et al., 2021; Jaakkola et al., 2021). The
allele differences between these sequenced strains varied between 5 and
25, and they formed a distinct cluster, supported by a separate clade in
(Figure 2). The
epidemiologically linked isolates are usually below 10 alleles in bacterial

phylogenetic  analysis differences between
species (Schiirch et al., 2018), but the cluster thresholds are dependent
on the sequencing method and bacterial species, and larger cluster
thresholds have been suggested for C. perfringens and its highly variable
genome (Abdel-Glil et al., 2021). We suggested that the isolation of
strains with less than 50 allele differences from a diverse group of people
working on the same campsite suggests recent genetic relatedness, and
considering the associated symptoms of gastrointestinal disease, there
is a possible persistent outbreak among the residents at the camp. It is
also possible that the chosen sequencing method has introduced some

observed differences between the isolates.
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The cpe insertion sites in the C. perfringens are well-described and
conserved; therefore, they are widely used for strain typing. In our PCR
typing, 45 of 94 c-cpe isolates were variants, and the sequencing revealed
that the sequenced strains with variant results had an additional IS1470
element inserted directly downstream of the cpe gene. Variation in cpe
loci arrangements has been previously reported by Abdelrahim et al.
(2019), but this is the first time a cpe loci arrangement has been reported
to affect PCR typing. Furthermore, the additional 1S1470 element
within cpe loci observed here has not been previously described.

The PCR genotyping probes in the C. perfringens assay target the
IS1470 element downstream of the cpe gene and the cpe gene itself,
and the presence of an additional IS1470 element downstream of the
cpe gene impaired the standardized genotyping PCR assay. These
variant c-cpe strains could be misidentified as strains with unknown
cpe locations. Due to the variant c-cpe, the genotyping PCR primers
need to be redesigned to detect reliably the variant c-cpe as well.

The traditional and variant c-cpe strains sequenced in this study
all belonged to c-cpe group 1, which tolerate changing pH and acidic
environments (Jaakkola et al., 2021). Interestingly, the variant c-cpe
strains and traditional c-cpe strains had slight differences when
selected genetic features were compared (Table 3). The variant c-cpe
strains carried the arginine deiminase pathway Arc and the iron
uptake system FeoAB, which were absent in traditional c-cpe strains
and lacked the cellobiose metabolism operon, which was present in
the traditional c-cpe strains. These possible differences in the
metabolism between the c-cpe types may indicate that the variant
c-cpe strains are better equipped for harsh conditions.

The variant c-cpe strains with an additional 1S1470 element
downstream of the cpe gene had a higher number of IS1470 elements in
their entire genome compared to other C. perfringens strains. 151470
element has been reported on chromosomes, never plasmids, and
generally in moderate numbers (0-10 copies) (Brynestad et al., 1994).
However, 1S1470-like sequences are common on C. perfringens
plasmids (Miyamoto et al., 2004). IS elements together with other
transposable elements are important mutagenic agents enabling the
host to adapt to new environmental challenges and colonize new niches.
IS expansion has been linked to genome rearrangements, genome size
reduction, and gene inactivation characteristic of the emergence of
pathogenic strains (Parkhill et al., 2003; Siguier et al., 2006; Vandecraen
etal,, 2017), with famous examples of Yersinia pseudotuberculosis and
Yersinia pestis (Parkhill et al., 2001; Chain et al., 2004), Bordetella
bronchiseptica, and Bordetella pertussis (Parkhill et al., 2003).

In C. perfringens, the expansion of IS1470 elements has previously
been reported in Darmbrand strain NCTC 8081 (Ma et al., 2012), and
in other bacteria, the expansion of IS elements has been associated
with an increase in virulence (Parkhill et al., 2003; Siguier et al., 2006).
The relevance of IS1470 expansion for these Eritrean strains remains
unknown, but the impact of IS1470 expansion on C. perfringens gene
expression and host adaptation would be interesting topics for
further research.

5 Conclusion

Our results suggest that persistent food poisoning outbreaks
caused by C. perfringens type F strains can occur and that humans are
a likely reservoir and carrier for enteropathogenic C. perfringens.
We also conclude that the occurrence of additional 1S1470 elements
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in chromosomal cpe-carrying C. perfringens strains can impair the
PCR typing, resulting in false-negative typing of these strains.

We present six new c-cpe C. perfringens genomes featuring an
additional IS1470 element at the cpe insertion site and describe the
organization of this new variant of the cpe locus. In addition, these
variant c-cpe strains carry 58-81 copies of IS1470 in their genomes
instead of 9-23 copies in previously described chromosomal cpe strains.

Our study contributes to the expansion of the pool of c-cpe strains
by introducing Eritrean strains marking the first reported instances of
c-cpe strains originating from Eastern Africa.
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Introduction: Paracoccus yeei is the first species in the genus Paracoccus to
be implicated in opportunistic infections in humans. As a result, P. yeei strains
provide a valuable model for exploring how bacteria shift from a saprophytic
to a pathogenic lifestyle, as well as for investigating the role of horizontally
transferred DNA in this transition. In order to gain deeper insights into the unique
characteristics of this bacterium and the molecular mechanisms underlying its
opportunistic behavior, a comparative physiological and genomic analysis of P.
yeei strains was performed.

Results: Complete genomic sequences of 7 P. yeei isolates (both clinical and
environmental) were obtained and analyzed. All genomes have a multipartite
structure comprising numerous extrachromosomal replicons (59 different ECRs
in total), including large chromids of the DnaA-like and RepB families. Within the
mobile part of the P. yeei genomes (ECRs and transposable elements, TEs), a
novel non-autonomous MITE-type element was identified. Detailed genus-wide
comparative genomic analysis permitted the identification of P. yeei-specific
genes, including several putative virulence determinants. One of these, the
URE gene cluster, determines the ureolytic activity of P. yeei strains—a unique
feature among Paracoccus spp. This activity is induced by the inclusion of
urea in the growth medium and is dependent on the presence of an intact
nikR regulatory gene, which presumably regulates expression of nickel (urease
cofactor) transporter genes.

Discussion: This in-depth comparative analysis provides a detailed insight into
the structure, composition and properties of P. yeei genomes. Several predicted
virulence determinants (including URE gene clusters) were identified within
ECRs, indicating an important role for the flexible genome in determining the
opportunistic properties of this bacterium.

KEYWORDS

Paracoccus yeei, opportunistic pathogen, multipartite genome, chromid, evolution of
pathogenic bacteria, transposable element, non-autonomous transposable element,
urease
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1 Introduction

Bacteria of the genus Paracoccus (family Paracoccaceae, order
Rhodobacterales, class Alphaproteobacteria) are known for their
great metabolic diversity and flexibility. Many of them can switch
between growth modes, using different carbon and energy sources,
and employing various final electron acceptors (Czarnecki and
Bartosik, 2019). There are currently 105 known species of the genus
Paracoccus (NCBI Taxonomy, 17 July 2024), including Paracoccus
denitrificans—the type strain of the genus (isolated in 1910) —
commonly used as a model denitrifying organism (Beijerinck and
Minkman, 1910; Bordel et al., 2024). A large number of these
species were identified only recently and many have yet to be the
subject of detailed studies.

Paracoccus spp. inhabit diverse marine and terrestrial
environments, such as soil, sediments, sludge, brines or
groundwater (e.g., Urakami et al, 1990; Siller et al, 1996;
Tsubokura et al., 1999; Berry et al., 2003; Lee et al., 2004; Liu et al,,
2006, 2008). In addition, some strains have been isolated from the
rhizosphere or from the surface of other organisms, e.g., ticks,
marine bryozoans and corals (Pukall et al., 2003; Ghosh et al,
20065 Carlos et al.,, 2017). The ubiquity of these bacteria is further
demonstrated by their presence in house dust (Thompson et al,
2021).

Among these environmental bacteria, Paracoccus yeei (formerly
classified as a eugonic oxidizer in group 2; strain EO-2) is of
particular interest because it is the first species of the genus
Paracoccus to be implicated in opportunistic infections in humans
(Daneshvar et al, 2003). This bacterium (naturally occurring
in soil) is not associated with a specific disease (Fosso et al.,
2021). P. yeei isolates have been recovered from several clinical
conditions, e.g., from the dialysate of a patient with peritonitis,
myocarditis in a transplanted heart, corneal transplantation,
bacteremia, keratitis, otitis and dermatological lesions (Lasek et al.,
2018). The number of cases of infection by P. yeei appears to
be increasing (Funke et al., 2004; Kanis et al., 2010; Schweiger
et al., 2011; Courjaret et al., 2014; Arias and Clark, 2019; Aliste-
Ferndndez et al., 2020; Fosso et al., 2021; Shifera et al., 2021; Bhikoo
et al., 2022). However, this reported incidence is likely to be an
underestimate since current common diagnostic tests do not detect
this bacterium (Sack et al., 2017). Moreover, P. yeei cells can appear
under-decolorized after Gram staining, so may be inadvertently
reported or dismissed as gram-positive cocci (Dyer and Harris,
2020).

Analysis of a larger number of clinical cases suggests that
immunocompromised patients are at increased risk of infection
with this bacterium (Dyer and Harris, 2020). However, the natural
reservoir of this opportunistic pathogen as well as the molecular
bases of its pathogenicity remain unclear.

Numerous P. yeei strains have been isolated from everyday
objects in hospital environments, which may play an important
role in its transmission. This bacterium was found on the surface
of medical equipment, such as operating tables, endoscopes or
laryngoscopes (in direct contact with the mucosa, saliva and blood
of patients) (Choi et al., 2017; Sartoretti et al., 2017; Pasquale
et al., 2021), as well as on the surface of mobile phones of hospital
employees and patients (Murgier et al., 2016; Cantais et al., 2020).
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Moreover, in non-hospital settings P. yeei strains were detected on
the surface of benches, doors and walls of schools and kindergartens
(Kruszewska et al., 2021), and on hand-drying devices in public
toilets (Huesca-Espitia et al., 2018). Interestingly, this bacterium
was also identified as a dominant member of microbial consortia
contributing to the biodegradation of pre-Columbian canvasses in
a museum collection (Pietrzak et al., 2017).

P. yeei represents a convenient model organism to study
the switch from a saprophytic to a pathogenic lifestyle and to
determine the role of horizontally acquired DNA in this process.
Comparative genomic analyses of P. yeei and other members of the
genus Paracoccus should yield a great deal of information on the
mechanisms involved in this transition. Our previous analysis of
the genomes of 3 P. yeei isolates (CCUG 32053, FDAARGOS_252
and TT13) gave the first insight into the genome composition,
mobilome and metabolic potential of these bacteria (Lasek et al.,
2018). However, the small number of strains analyzed was a major
limitation of this study.

The main objective of the present study was to define the
specific properties and genetic information of P. yeei species that
are potentially involved in the process of pathogenesis, as well as
to characterize mobile genetic elements—natural gene carriers that
may be responsible for the horizontal transmission of virulence
determinants. For 7 P. yeei strains available in our laboratory,
we performed various physiological tests and detailed analyses of
their mobile genetic elements. To identify P. yeei-specific genes,
we conducted a comparative analysis of the 11 genomes of P.
yeei strains available in the NCBI database (both clinical and
environmental isolates) and four genomes of other members of the
genus Paracoccus.

2 Materials and methods

2.1 Strains and culture conditions

P. yeei strains CCUG 13493, CCUG 17731, CCUG 32052,
CCUG 32054, CCUG 46822, and CCUG 54214 were purchased
from the Culture Collection of the University of Gothenburg
(CCUG) (Sweden). Strain LM20 was isolated from black shale
collected within the Lubin underground copper mine in Poland
(Dziewit et al., 2015). P. yeei CCUG 13493R, CCUG 17731R,
CCUG 32052R, CCUG 32054R, CCUG 46822R, CCUG 54214R,
and LM20R, rifampicin-resistant derivatives of the respective wild-
type strains, and Escherichia coli TGl (Sambrook and Russell,
2001), were used as plasmid recipients. E. coli DH5a (Hanahan,
1983) was the host strain of helper plasmid pRK2013, used in
triparental matings (Ditta et al., 1980) (Supplementary Table S1).

All strains were cultured in lysogeny broth (LB) medium
(Sambrook and Russell, 2001) at 37°C for E. coli or 30°C for
the other strains. Liquid cultures were grown under shaking
conditions. When required, the medium was supplemented with
10% sucrose and the following concentrations of selective
antibiotics:  kanamycin, 50pg/ml for all strains except
Achromobacter sp. LMI6R (300 pg/ml) (Dziewit et al, 2015);
rifampicin, 50 pg/ml; tetracycline, 2 pg/ml for P. yeei and 20 jLg/ml
for E. coli strains.
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2.2 Physiological analyses

The response to various growth conditions (temperature, pH
and salinity) of P. yeei strains was determined as described
previously by Dziewit et al. (2013). Motility was tested according
to the method previously outlined by Dziewit et al. (2015). The
hemolytic ability of different strains was tested by growth on blood
agar plates that were incubated at 30 and 37°C under aerobic
conditions—the results were read after 24 and 48 h of incubation.
Siderophore production was assessed using the chrome azurol S
(CAS) agar plate method, as described previously (Dziewit et al.,
2015). The plates were incubated in the dark at 30°C for 72h,
after which halo formation around the colonies was assessed.
Each isolate was phenotypically characterized using (i) the API
50 CH test system (to differentiate strains based on their ability
to metabolize different carbohydrates) and (ii) the API ZYM test
system (to detect and identify enzymatic activities); according
to the recommendations of the supplier (bioMerieux, Marcy
I’Etoile, France). Ureolytic activity was detected by cultivation on
Christensen’s urea medium, containing urea and a pH indicator
(phenol red) (Christensen, 1946) or using rapid urease tests.
Proteus vulgaris and/or Klebsiella pneumoniae strains (University
of Warsaw collection) were used as positive controls, and P.
aminophilus JCM 7686 and/or P. aminovorans JCM 7685 as
negative controls (Urakami et al., 1990). The minimal inhibitory
concentrations (MIC) of antimicrobial agents were determined
for P. yeei strains by using Mueller Hinton II agar diffusion with
E-tests as recommended by the supplier (bioMérieux). E. coli
ATCC 25922 was used as a control. To confirm reproducibility,
antimicrobial susceptibility testing was repeated at least twice.
Since no interpretative guidelines for P. yeei susceptibility have
been published, we used the criteria proposed by Arias and Clark
(2019). MIC values for selected heavy metal ions were established
on titration plates using a procedure described previously (Dziewit
et al,, 2013). The following heavy metal salts were used to prepare
appropriate stock solutions in water: NaAsO;; 3CdSO4 x 8H,0;
COSO4 X 7H20; KzCr207; CuSO4; HgClz; NiC12 X 6H20; NaO3V;
ZnSO4 x 7H,0. Each microplate was monitored for growth using
an automated microplate reader at 24-h intervals for 3 days.
Isolates that demonstrated growth at the following minimum metal
ion concentrations were classified as resistant using previously
described criteria (Dziewit et al., 2015): (i) 20 mM V>, (ii) 1 mM
As3T, Cd%T, Co?T, Cu?t, Ni*t, Zn?t or Crt, and (iii) 0.1
mM Hg2+.

2.3 DNA isolation, standard molecular
biology procedures and PCR conditions

Plasmid DNA was isolated using the alkaline lysis procedure
(Birnboim and Doly, 1979) or purified by CsCl-ethidium
bromide gradient centrifugation (Sambrook and Russell, 2001).
The visualization of mega-sized replicons was achieved by
in-gel lysis and DNA electrophoresis (Eckhardt, 1978; Hynes
and McGregor, 1990). Plasmid DNA was also isolated using a
Plasmid Mini kit (A&A Biotechnology), GeneMATRIX Miniprep
DNA Purification Kit (EURy) and GeneJET Plasmid Miniprep
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Kit (Thermo Fisher Scientific). Routine DNA manipulation
was performed using standard methods (Sambrook and
Russell, 2001). DNA amplification by PCR was performed in
a Mastercycler (Eppendorf) using synthetic oligonucleotides
(Supplementary Table S1), High Fidelity Taq DNA polymerase
(Qiagen) or Phusion Hi-Fidelity DNA polymerase (Thermo Fisher
Scientific), dNTPs and appropriate template DNAs, as described
previously (Bartosik et al., 2003).

2.4 Introduction of plasmid DNA into
bacterial cells

Chemical transformation of E. coli cells was performed by a
standard method (Kushner, 1978). Plasmid DNA was introduced
into Paracoccus spp. strains by triparental mating using helper
E. coli strain DH5a carrying plasmid pRK2013 (containing the
transfer system of plasmid RP4) (Ditta et al., 1980), as described
previously (Lasek et al., 2018).

2.5 Plasmid host range testing

REP systems of extrachromosomal replicons of the analyzed
strains were cloned in vector pABW1 (Bartosik et al, 1997)
which cannot replicate in Paracoccus strains or other tested
These shuttle
constructs were introduced into the following strains: (i) class
Alphaproteobacteria—Agrobacterium  tumefaciens LBA  288R
(Hooykaas et al, 1980), Paracoccus aminophilus JCM 7686R
(without plasmids pAMI2, pAMI3) (Dziewit et al, 2014),
Paracoccus aminovorans JCM 7686R (Czarnecki et al., 2017),
Paracoccus pantotrophus KL100 (Jordan et al, 1997), (ii) class
Betaproteobacteria—Achromobacter sp. LM16R (Dziewit et al,
2015) and (iii) class Gammaproteobacteria—Cronobacter sakazakii
ATCC 29544 (Iversen et al., 2008) and Pseudomonas sp. LM6R
(Dziewit et al., 2015).

recipients (Supplementary Table S1). plasmid

2.6 ldentification of functional transposable
elements

Trap plasmids pMAT1 and pMEC1 (Bartosik et al, 2003;
Szuplewska and Bartosik, 2009; Gay et al., 1985; Schneider et al,,
2000) were used for the identification of functional TEs of P. yeei
(Supplementary Table S1). These plasmids were transferred from
E. coli TG1 to P. yeei strains by triparental mating. The “capture”
of TEs was verified by PCR using primers specific to the selection
cassettes, with DNA isolated from Tc' and Suc’ mutants as the
template (Supplementary Table S1). A total of 1,304 clones were
tested this way. The amplified DNA fragments were subjected to
electrophoretic analysis, which permitted the detection of DNA
elements (TEs), ranging in size from ~0.8 to 1.5kb, embedded in
the cassettes. DNA sequencing of the termini of individual TEs
was used to identify the complete elements within the genome
sequences of their parental strains. All trapped TEs were sequenced
and compared with the ISfinder database (Siguier et al., 2006).
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2.7 Mutational analysis of URE modules

To confirm that the identified URE modules are responsible
for ureolytic activity, mutational analysis was performed using
the gene replacement method. Mutations (insertion of a Km"
cassette) were introduced into URE type 1 modules, either in
the 5/ region of the Urea subunit gene or within the nikR gene.
Both mutations were created in the strain CCUG 32053 (which
contains only URE type 1) and the strain CCUG 13493 (which also
contains a URE type 2 module). The following procedure was used
to obtain urea:Km" and nikR:Km" mutants: (i) DNA fragments
containing urea-uref-urey or part of the region encoding NikR
and nickel transporters were amplified by PCR using CCUG 32053
DNA as the template, (ii) these DNA fragments were cloned
into the Sacl and Sphl sites of the mobilizable suicide vector
pDS132 (Philippe et al., 2004), (iii) the Km" cassette from plasmid
pDIY-Km (Dziewit et al,, 2011) was inserted into the Alel site
within these fragments to obtain constructs pDS132-ureo: and
pDS132-nikR (Supplementary Table S1); (iv) these plasmids were
then introduced into strains CCUG 32053R and CCUG 13493R by
conjugation. Mutant clones ure::Km" and nikR:Km" were selected
on medium supplemented with kanamycin (for recombinant
selection) and sucrose (for counter-selection). The introduced
mutations were confirmed by DNA sequencing. Ureolytic activity
of the obtained mutants was tested following growth on minimal
medium supplemented with 1% urea, using rapid urease tests.
Complementation of the mutants was performed using plasmids
pBBR-urea or pBBR-nikR, which were prepared by cloning
PCR fragments containing urex-uref3-urey or part of the region
encoding NikR and nickel transporters into vector pBBR-MCS5
(Gm") (Kovach et al., 1995) (Supplementary Table S1).

2.8 Genome sequencing

The P. yeei genomes were sequenced using a combination
of Oxford Nanopore and Illumina technologies, as described
previously (Lasek et al., 2018).

2.9 Bioinformatic analyses

Sequence annotation and bioinformatic analyses (identification
of tRNA genes and rRNA operons, relaxases—MOB, toxin-
antitoxin modules, transposable elements—TE) were performed as
described previously (Lasek et al., 2018). Potential ICE and IME
elements were predicted using ICEfinder (Liu et al., 2019).

Categories for clusters of orthologous groups (COGs) were
assigned to each protein by performing a local RPS-BLAST search
against the COG database (last updated on January 22, 2015). A
threshold e-value of le-5 was used, and only the top BLAST hits
were taken into account (Tatusov et al., 2003).

The core genome of Paracoccus spp. and P. yeei species
was defined based on the complete genomic sequences of P.
aminophilus JCM 7686 (Dziewit et al., 2014), P. aminovorans
JCM 7685 (Czarnecki et al., 2017), P. contaminans RKI16-01929T
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(Aurass et al., 2017) and P. denitrificans PD1222 (NC_008686-
8), and eleven P. yeei strains: CCUG 32053 (Lasek et al,
2018), FDAARGOS_252 (NZ_CP020440-47), FDAARGOS_643
(NZ_CP044078-82), TT13 (Lim et al, 2018) and CCUG 13493,
CCUG 17731, CCUG 32052, CCUG 32054, CCUG 46822, CCUG
54214, LM20 (Dziewit et al., 2015). Proteins encoded within the
genomes were used in all-against-all BLASTp searches utilized by
a stand-alone version of OrthoVenn2 (Xu et al,, 2019), using an
e-value of le-15 as the threshold and inflation level of 1.5. Based
on this analysis, all proteins were clustered into groups reflecting
similarity and designated as core proteins when encoded by all
eleven genomes or as singletons when the respective gene was
identified in only a single genome. A similar approach with a
different manner of grouping was applied to identify strain-specific
gene clusters.

Protein datasets from the Virulence Factor Database VFDB
(Chen et al,, 2016), the Comprehensive Antibiotic Resistance
Database CARD (Alcock et al., 2020) and Virulence Factors
Database VICTORS (Sayers et al., 2019), all downloaded on April
1 2021, were used for BLASTp searches (e-value threshold of le-
30 and 80% of query coverage per HSP) with the proteomes of P.
yeei and four other Paracoccus spp. strains listed above to identify
putative P. yeei species virulence determinants.

EasyFig (Sullivan et al., 2011) was used to perform comparative
genomic analyses (including genomes and plasmidomes
comparisons) and visualize the results. RNA secondary structures
were predicted by in silico folding using Mfold software (Zuker,
2003).

Phylogenetic analysis of the genus Paracoccus was based on
alignment of concatenated nucleotide sequences of selected core
genes: atpD, dnaA, dnaK, gyrB, recA, rpoB, and thrC (homologous
genes of Roseobacter denitrificans OCh 114 were used as an
outgroup), as described previously (Lasek et al., 2018). Nucleotide
alignments were obtained with Maftt (Katoh et al., 2019). Then,
concatenated genes were analyzed with ModelTest-NG (Darriba
et al., 2020), checking all models to select the best-fit nucleotide
substitution model. The selected substitution model was applied
in RaxML-NG (Kozlov et al., 2019) with 2,000 regular bootstrap
replicates performed on the best Maximum Likelihood (ML) tree
selected from 100 independently generated ML starting trees.

2.10 Nucleotide sequence accession
numbers

The nucleotide sequences of the P. yeei chromosomes and
extrachromosomal replicons were deposited in GenBank (NCBI),
with the following accession numbers: (i) CCUG 13493—
CP038080 (chromosome), CP038073 (plasmid pYEE13493P1),
CP038074  (pYEE13493P2),  CP038075  (pYEE13493P3),
CP038076  (pYEE13493P4),  CP038077  (pYEE13493P5),
CP038078 (pYEE13493P7), CP038079 (pYEE13493P8), CP038081
(pYEE13493P6); (ii) CCUG 17731—CP038042 (chromosome),
CP038035  (pYEE17731P1),  CP038036  (pYEE17731P2),
CP038037  (pYEE17731P3),  CP038038  (pYEE17731P4),
CP038039 (pYEE17731P5), CP038040 (pYEE17731P6), CP038041
(pYEE17731P7); (iii) CCUG 32052—CP038090 (chromosome),
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CP038082 (pYEE32052P1), CP038083 (pYEE32052P2), CP038084

(pYEE32052P3),  CP038085  (pYEE32052P4),  CP038086
(pYEE32052P5),  CP038087  (pYEE32052P6),  CP038088
(pYEE32052P7), CP038089 (pYEE32052P8); (iv) CCUG

32054—CP038095 (chromosome), CP038091 (pYEE32054P6),
CP038092 (pYEE32054P7), CP038093 (pYEE32054P8), CP038094

(pYEE32054P9),  CP038096  (pYEE32054P1),  CP038097
(pYEE32054P2),  CP038098  (pYEE32054P3),  CP038099
(pYEE32054P4), CP038100 (pYEE32054P5); (v) CCUG

46822—CP038056 (chromosome), CP038043 (pYEE46822P1),
CP038044 (pYEE46822P2), CP038045 (pYEE46822P3), CP038046

(PYEE46822P4),  CP038047  (pYEE46822P5),  CP038048
(pYEE46822P6),  CP038049  (pYEE46822P7),  CP038050
(PYEE46822P8),  CP038051  (pYEE46822P9),  CP038052
(pYEE46822P10), CP038053  (pYEE46822P11), CP038054
(pYEE46822P12), CP038055 (pYEE46822P13); (vi) CCUG

54214—CP038061 (chromosome), CP038057 (pYEE51214P1),
CP038058 (pYEE51214P2), CP038059 (pYEE51214P3), CP038060
(pYEE51214P4); (vii) LM20—CP038072 (chromosome), CP038062

(pLM20P1), CP038063 (pLM20P2), CP038064 (pLM20P3),
CP038065 (pLM20P4), CP038066 (pLM20P5), CP038067
(pLM20P6), CP038068 (pLM20P7), CP038069 (pLM20PS8),

CP038070 (pLM20P9), CP038071 (pLM20P10). The nucleotide
sequences of newly identified ISs (ISPye73—ISPye80) and
MITEPyel were deposited in the ISfinder database (Siguier et al.,
2006).

3 Results

3.1 P. yeei strains selected for
characterization

Seven (five clinical and two environmental) isolates of P.
yeei were selected for detailed characterization (Table 1). Clinical
strains were sourced from two continents—they were isolated
in different geographical locations, at different times and from
different clinical cases (Table 1). The other strains were isolated
either from an anthropogenic environment (CCUG 54214; a metal
surface), or from the natural environment (LM20; organic-rich
black shale from the Lubin copper mine in Poland; Dziewit
et al., 2015). The clinical isolate CCUG 32053, characterized
in a previous study (Lasek et al, 2018), was used as a
reference strain.

3.1.1 Physiological and phenotypic
characterization

P. yeei is a non-motile, oxidase- and catalase-positive gram-
negative bacterium. The analyzed strains were facultative aerobes
capable of nitrate reduction and denitrification (except for CCUG
32052). The strains were mesophilic, capable of growth at
temperatures ranging from 21 to 37°C (except LM20, which grew
from 15 to 37°C) (Table 2). All strains grew in LB medium at
pH values close to 7 (ranging from 5 to 8 or 9), typical for
neutrophilic bacteria. Salinity tolerance testing showed that the
isolates could tolerate NaCl concentrations of 4-6%. These bacteria
were non-hemolytic, did not produce bacteriocins, and exhibited
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weak adhesion to polystyrene. However, all produced siderophores,
as determined by the chrome azurol S (CAS) agar plate assay.
They demonstrated the ability to degrade 27 carbohydrates
(out of 49 tested), with identical profiles for all strains except
LM20, which is unable to ferment mannitol, sorbitol or arabitol
(Table 2). The enzymatic capabilities of these strains were assessed
by testing for 19 hydrolytic enzymes from various groups. All
strains produced alkaline phosphatase (except CCUG 13493),
esterase, lipase esterase, leucine arylamidase, acid phosphatase,
naphthol-AS-BI phosphohydrolase, and a-glucosidase, with only
CCUG 17731 producing B-galactosidase (Table 2). The strains also
displayed ureolytic activity, which is a unique feature among
Paracoccus spp.

MIC values for selected antibiotics (ampicillin, ciprofloxacin,
erythromycin, gentamicin, tetracycline, and vancomycin) were
determined for each strain (Supplementary Table S2). The data
were analogous to those from previous studies of clinical
isolates of P. yeei, showing sensitivity to beta-lactams, especially
aminopenicillins, as well as macrolides and aminoglycosides
(Funke et al., 2004; Wallet et al., 2010; Schweiger et al., 2011;
Sastre et al., 2016; Arias and Clark, 2019; Aliste-Fernandez et al.,
2020). Nevertheless, we observed variations in the susceptibility
of the isolates, e.g., CCUG 13493 was most sensitive to the tested
antibiotics, CCUG 32054 was the most tolerant, and some strains
(CCUG 32052, CCUG 32054, CCUG 46822, LM20) were less
sensitive to ciprofloxacin (Supplementary Table S2).

MIC values for selected heavy metal ions were similar
for all strains, with no major differences between clinical and
environmental isolates. CCUG 54214 showed higher tolerance
to As’t, Ni¢t, V>t and Zn?t, while LM20 showed higher
tolerance to As*t, Cd?*t, and Hg2+, reflecting the adaptation of
these strains to the environments from which they were isolated
(Supplementary Table S2).

3.2 Genomic features

The genomes of the seven strains of P. yeei were fully
sequenced and characterized. Their genome sizes range from
4,423,927 to 4,829,807 bp (average 4,610,003 bp). All are
multipartite, containing from 4 (CCUG 54214) to 13 (CCUG
46822) extrachromosomal replicons (ECRs), that range in size from
3.5kb (pYEE46822P1 of CCUG 46822) to 485kb (pYEE17731P7
of CCUG 17731) (Table 3; Figure 1B; Supplementary Figure S1). In
total, the strains contain 59 ECRs (11,665,529 bp), which on average
constitute ~25% of the size of each genome (Table 3; Figure 1B).
The physicochemical parameters of the genome sequences were
determined, including the %GC content (average 67%), the
number of protein-coding sequences (CDSs) (average 4,200) and
pseudogenes (average 190). The GC content of the ECRs ranges
from 53% (pYEE46822P4, CCUG 46822) to 69% (pYEE13493P5,
CCUG 13493). The number of CDSs present in ECRs ranges from
849 (CCUG 54214), accounting for 20% of the entire genome, to
1,270 (CCUG 17731) (28%) (Supplementary Table S3). The rRNA
operons and most of the tRNA genes are localized within the
chromosomes, although some additional tRNA genes (2-3) were
identified within ECRs (Table 3).
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TABLE 1 Paracoccus yeei strains analyzed in this study.

10.3389/fmicb.2024.1483110

P. yeei strain Source of isolation References
Specimen Locality

Clinical isolates (human)

CCUG"® 13493 Foot wound USA (Virginia) 1980 -

CCUG 17731 Water, hemodialysis France (Grenoble) 1985 -

CCUG 32052 Cerebrospinal fluid USA (Puerto Rico) 1983 -

CCUG 32053° Eye USA (Missouri) 1981 Lasek et al., 2018

CCUG 32054 Facial sinus USA (Washington) 1985 -

CCUG 46822 Abdominal dialysate USA (Pennsylvania) 1988 Daneshvar et al., 2003

Environmental isolates

CCUG 54214 Metal product, industry Sweden 2007 -

LM20 Black shale (copper mine) Poland (Lubin) 2015 Dziewit et al., 2015

2P. yeei strains with the designation CCUG were purchased from the Culture Collection of the University of Gothenburg (CCUG) (Sweden).

bReference strain.

3.3 Extrachromosomal replicons

The analyzed P. yeei strains contain numerous ECRs (59 in
total)—from 4 (CCUG 54214) to 13 (CCUG 46822) (Figure 1B;
Supplementary Figure S1). These are mainly large DNA molecules,
constituting a significant proportion of their host strain genomes—
from 22% (CCUG 54214) to >28% (CCUG 13493) (Figure 1B).
The replication system (REP) and the gene encoding the replication
initiation protein (Rep) within each ECR were identified. The
REP modules (and entire plasmids) were classified based on the
presence of specific amino acid (aa) sequence signatures in the Rep
proteins (Figure 2A). Replicons of the DnaA-like, RepB (RepBl
and RepB2), RepABC, RepC, Rep_3 and HTH_36 families were
identified, all of which are common among Paracoccus spp. and
other Alphaproteobacteria (Figures 1C, 2).

The ECRs carrying REPs of a given type are generally similar
in size, with the exception of RepBl and RepB2 replicons,
in which greater size variation is observed (Figure2B). The
REPs of the DnaA-like, RepB and RepABC types (occurring
in each P. yeei strain) are characteristic for large replicons,
which is consistent with previous observations (e.g., Lasck
et al, 2018). Detailed characterization of individual ECRs,
including their size, sequence GC content,
coding capacity and tRNA gene distribution, is presented in
Supplementary Table S3.

To test the host range of individual ECRs representing the
different replicon families, their REP regions were cloned in
mobilizable shuttle plasmids and introduced by triparental mating
into recipient strains from different classes of Proteobacteria (listed
in Section 2). This analysis revealed that all of the analyzed REPs
function solely in Alphaproteobacteria, so have a relatively narrow
host range.

The P. yeei ECRs contain numerous loci enabling their stable
maintenance in bacterial cells and populations. The DnaA-like,
RepB, and RepABC replicons all carry type I partitioning systems,

nucleotide
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encoding Walker-type ATPases (Thomas, 1981) (Figure 2A). The
vast majority of ECRs also have class II toxin-antitoxin (TA)
systems, mainly encoding toxins of the VapC family (18 toxins),
as well as toxins of the RelE/ParE (14), PhD/YefM (14) or parDE
(8) families. None of the ECRs encode a complete type IV
secretion system (T4SS), suggesting that these replicons are not
self-transmissible. However, 16 of them contain genes encoding
predicted relaxases of the Mobc (14), Mobq (1), and Mobygn
(1) families (Garcillan-Barcia et al., 2009), which are typical
components of genetic modules, enabling plasmid mobilization for
conjugative transfer (MOB).

Further analysis was conducted to verify whether the P.
yeei genomes contain ECRs that meet the criteria for chromids
(secondary chromosomes)—essential replicons of plasmid origin.
This revealed that all the DnaA-like, RepB1 and RepB2 replicons
can be considered chromids (Figure 1C), since they (i) carry
plasmid-type REP modules, (ii) have a nucleotide sequence
composition that is close to that of the chromosome (<1%
difference in GC content), and (iii) possess a set of core genes
(in one copy in the genome) characteristic for the entire genus
(Harrison et al., 2010). The genes carried by these chromids
participate in several important metabolic pathways, e.g., encoding
acetyl-CoA C-acyltransferase, and proteins likely to be involved
in biosynthesis of the lipoyl cofactor, in oxidative metabolism,
leucine metabolism, and electron transport via the respiratory chain
(complex I).

The Rep proteins of the DnaA-like, RepB1 and RepB2 chromids
display a high level of aa sequence identity within a given replicon
group. These replicons are also more highly conserved in terms
of their structure and genetic load (Supplementary Table S5). In
contrast, the replication initiators of the RepABC, Rep_3 and
HTH_36 families (and their entire replicons) show much greater
sequence variability. Many of these replicons appear to be unique
among P. yeei strains, suggesting their recent horizontal acquisition
(Supplementary Table S5).
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TABLE 2 Phenotypic and physiological characteristics of P. yeei strains.

Characteristic(s)

P. yeei clinical isolates

Environmental isolates

CCUG CCUG CCUG CCUG o
17731 32052 32054 54214 LM20
General features
Temperature range for growth (°C, optimum) 21-37(30) 21-37 (30) 21-37 (30) 21-37(30) 21-37 (30) 21-37 (30) 15-37 (30)
NaCl tolerance (%) 6 4 4 6 4 6 4
pH range for growth 5-9 5-8 5-9 5-8 5-8 5-9 4-9
Motility ] ] O ] O O
Hemolysis O O O O O O
Siderophore production || | ] || | u
Nitrate metabolism
Nitrate reduction | ] || | | |
Gas from nitrate | O | | | |
Carbohydrate fermentation (API 50 CH test)
D-Arabinose, L-arabinose, D-ribose, D-xylose, L-xylose, D-galactose, | ] ] || ] [ ] [ ]
D-glucose, D-fructose, D-mannose, L-sorbose, L-rhamnose, dulcitol,
inositol, D-cellibiose, D-lactose, D-melibiose, xylitol, gentibiose,
D-lyxose, D-tagatose, D-fucose, L-fucose, L-arabitol
D-Adonitol u | || || u
D-Mannitol, D-sorbitol, D-arabitiol | | | | | | | | O
Glycerol, erythritol, methyl-BD-xylopyranoside, O O O O O
methyl-aD-mannopyranoside, methyl-aD-glucopyranoside,
N-acetylglucosamine, amygdaline, arbutine, esculine, salicin,
D-maltose, D-sacharose, D-trehalose, inulin, D-melezitose,
D-raffinose, amidon, glycogen, D-turanose, potassium gluconate,
potassium 2 ketogluconate, potassium 5 ketogluconate
Enzyme activities (including API ZYM test)
Esterase, esterase lipase, leucine arylamidase, acid phosphatase, ] || | ] || | |
naphthol-AS-BI-phosphohydrolase,a-glukosidase
Alkaline phosphatase ] ] ] ] [ ]
B-Galactosidase | | O O O O
Lipase, valine arylamidase, cystine arylamidase, trypsin, O O O O O
a-chymotrypsin, a-galactosidase, p-glucuronidase, B-glucosidase,
N-acetyl-B-glucosamidase, a-mannosidase, a-fucosidase
Catalase | ]
Oxidase ] || | || | u
Urease activity ] ||

e 19 eysmajdnzs

0TTE8YT'¥202'a21Wy/68¢5°0T

2Growth conditions (temp. range, pH range, NaCl tolerance) for strain LM20 were as described previously (Dziewit et al., 2015).
Filled square M indicates a positive result, empty square [J indicates a negative result.
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FIGURE 1
Distribution of ECRs in P. yeei genomes. (A) Phylogenetic tree of P. yeei constructed using core gene nucleotide sequences. Three other members of
the genus Paracoccus—P. aminophilus JCM 7686, P. aminovorans JCM 7685, and P. denitrificans PD1222—as well as Roseobacter denitrificans Och
114 (as an outgroup) were included in the analysis. Bar represents 0.1 nucleotide substitutions per position. (B) Summary of data for ECRs of the
analyzed Paracoccus spp. strains. (C) Distribution of different REP module types among ECRs of Paracoccus spp.

3.4 Comparative analysis of P. yeei
genomes

Phylogenetic analysis showed that the two environmental
isolates (CCUG 54214 and LM20) are situated on different branches
of the P. yeei phylogenetic tree and are closely related to the clinical
isolates. Strains LM20 and CCUG 46822 form a separate cluster,
while the other five strains can be divided into two phylogenetic
groups: (i) CCUG 54214 and CCUG 13493, and (ii) CCUG 17731,
CCUG 32052 and CCUG 32054 (Figure 1A).

Comparative genomic analysis of the P. yeei strains (including
clinical isolates CCUG 32053, FDAARGOS_643, FDAARGOS_252,
and TT13) revealed a conserved genome structure, preserved
ECR composition and synteny of gene arrangement in this
species (Supplementary Table S5). There is a particularly high
degree of synteny between the genomes of the strains LM20
and CCUG 46822 (Figure 3). The ECRs of these strains are
nearly identical, although they display minor rearrangements
(Supplementary Table S5).

Our analysis identified two chromosome structure variants
(one found in strains CCUG 17731, CCUG 32052, CCUG 32053,
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CCUG 32054, CCUG 54214, FDAARGOS_643, TT13, and the
other in CCUG 13493, CCUG 46822, LM20, FDAARGOS_252),
which correlates with the phylogeny of the strains (Figure 3;
Supplementary Table S5). The differences result mainly from
inversions or translocations of fairly large DNA segments
(Figure 3).

The DnaA-like replicons show a high degree of conservation,
although with some rearrangements, e.g., translocation of
DNA segments in strains CCUG 32053 and CCUG 13493,
sometimes with inversion of the transferred DNA segment
(Supplementary Table S5).

3.5 Genetic load of P. yeei genomes

Analysis of the proteome of P. yeei determined in silico
permitted the assignment of individual proteins to functional COG
groups. For all genomes a similar proportion of the encoded
proteins belong to each category, indicating a conserved genome
structure and limited variability within the species. Interestingly,
significant similarity in the distribution of COG groups was found
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TABLE 3 General features of P. yeei genomes.

General features

Clinical isolates

10.3389/fmicb.2024.1483110

Environmental isolates

CCUG CCUG CCUG CCUG

17731 32052 46822 54214 LM20
Genome size (bp) 4,423,927 4,829,807 4,505,223 4,652,732 4,562,823 4,554,217 4,741,293
ECRs 8 7 8 9 13 4 10
Total ECR size (bp) (%
of entire genome) 1,273,632 (28.8) 1,425,205 (29.5) 1,106,974 (24.6) 1,169,804 (25.1) 1,169,050 (25.6) 1,001,530 (22) 1,114,732 (23.5)
G + C content (%)
Genome 67.6 67.3 67.4 67.5 67.4 67.5 67.3
ECRs (range) 62.8-69 56.9-68.3 58.5-68.4 60.6-68.5 53.5-68.9 64.5-68.5 57.8-68.9
CDSs
Genome 4,066 4,465 4,168 4,284 4,152 4,162 4,353
ECRs (% of entire
genome) 1,117 (27.5) 1,270 (28.4) 964 (23.1) 1,021 (23.8) 998 (24) 849 (20.4) 957 (22)
Pseudogenes
Genome 195 205 179 163 208 188 217
ECRs (%) 96 (49.2) 100 (48.8) 78 (43.6) 74 (45.4) 98 (47.1) 67 (35.6) 95 (43.8)
RNA genes
tRNA genes in genome 50 51 51 51 50 50 50
tRNA genes in ECRs 2 3 2 3 2 2 2
rRNA operons® 3 3 3 3 3 3 3
Integrative elements
f:;i‘;ﬁid prophage 2 5 5 " 3 6 7
Predicted ICE/IME
elements® 2 3 0 2 0 2 1
Transposase genesd
Genome 119 145 150 84 136 125 150
ECRs (% of entire
genome) 57 (48) 64 (44) 66 (44) 32(38) 56 (41) 40 (32) 52 (35)

216S-23S-5S rRNA operons.

b Phastest predicted prophage regions (complete) (Supplementary Table S4).
ICEfinder predicted ICE/IME elements (Supplementary Table 54).
4Including truncated forms.

between the chromosomes and ECRs, suggesting that ECRs may
contain a large amount of genetic information of chromosomal
origin (Figure 4).

In all cases, a considerable number of genes are of unknown
function (R and S categories) or could not be classified into any
COG group: 27-31% for chromosomes and 27-32% for ECRs.
The largest group of classified proteins comprises those related
to amino acid transport and metabolism (category E; 9-10%),
followed by carbohydrate metabolism (G; 5-6%), transcription
(K; 6%), transport and metabolism of inorganic ions (P; 5-6%),
energy acquisition processes (C; 5%), and the synthesis of cell
wall, membrane, and envelope components, including capsules (M;
5%) (Supplementary Figure S2). In the case of ECRs, the largest
fraction of classified proteins was assigned to categories E (7-10%),
G (8-11%), P (6-8%), and K (6-8%) (Figure 4B). There are no
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significant differences between clinical and environmental isolates
in the distribution of COG categories.

Transport-related genes constitute a dominant group of
functional genes in the P. yeei genomes—from 530 (CCUG
32052) to over 600 CDSs (CCUG 17731). These genes
encode various types of transporterss ABC, MSF (Major
Facilitator Superfamily), P-type, RND (Resistance-Nodulation-
Division), TRAP (Tripartite ATP-independent Periplasmic),
and TTT (Tripartite Tricarboxylate Transporters) (Table 4;
Supplementary Table S6). ECRs (mainly DnaA-like and RepB
chromids) contain over 35% of the ABC transporter genes.
Less common in ECRs are MFS, RND and TTT transporter
genes. Only a few genes encoding proteins with similarity to
P-type ATPase integral membrane transporters were found in the
analyzed genomes.
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FIGURE 2

ECRs identified in the genomes of P. yeei strains. (A) Genetic organization of the replication (REP) and partitioning modules of the ECRs. The box
indicates the location of sequence motifs specific to each type of replication initiation protein. (B) Size range of P. yeei replicons carrying a given REP
module type (yellow). The blue color indicates replicons present in the genomes of P. aminophilus JCM 7686, P. aminovorans JCM 7685, and P.

denitrificans PD1222.
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The ECRs also carry numerous genes that may increase
the adaptability of their host strains in the environment. All
types of chromids and RepABC plasmids encode potential iron
or carbohydrate transporters. Siderophore receptor genes were
identified in all RepB2 plasmids, including the FhuADCB ferric
hydroxamate transporter, which is essential for the uptake of
Fe3*-aerobactin. All RepB1 replicons carry a mauMGJCBDEAF
gene cluster involved in the utilization of methylamine (Baker
et al., 1998). Organisms that utilize C1 compounds as their sole
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carbon and energy sources are described as methylotrophs and this
trait is common in bacteria of the genus Paracoccus (Czarnecki
and Bartosik, 2019). Methylotrophs play an important role in
global carbon, nitrogen and sulfur cycling, and they have been
successfully employed in the bioremediation of contaminated soils
(Chistoserdova, 2011).

The RepB1 replicons of three phylogenetically closely related
P. yeei strains (CCUG 17731, CCUG 32052, CCUG 32054)
(Figure 1A) contain a putative operon (phnCDEFGHIJKLMNOP)
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P. yeei strain:
1. LM 20"
2. CCUG 54214~

COG functional category:

7. CCUG 13493

FIGURE 4
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6. CCUG 17731 Metabolism Cellular processing and signaling and processing _ chara cte!iz &

Distribution of genes encoding proteins belonging to different COG functional categories within (A) the chromosomes and (B) ECRs of the analyzed
P. yeei strains (*environmental isolates). Each colored segment indicates the relative contribution of a functional category as a percentage of total
COGs. Each ring represents a different strain of P. yeei. COG functional categories: C, energy production and conversion; E, amino acid transport and
metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and metabolism; I, lipid
transport and metabolism; P, inorganic ion transport and metabolism; Q, secondary metabolite biosynthesis, transport and catabolism; D, cell cycle
control, cell division, chromosome partitioning; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, posttranslational modification,
protein turnover, chaperones; T, signal transduction mechanisms; U, intracellular trafficking, secretion and vesicular transport; V, defense
mechanisms; W, extracellular structures; Z, cytoskeleton; J, translation, ribosomal structure and biogenesis; K, transcription; L, replication,
recombination and repair; X, mobilome, i.e., prophages, transposons; R, general function, prediction only; S, function unknown, COG not assigned.

encoding carbon-phosphorus lyase, which permits the utilization of
phosphorus from a wide range of stable phosphonate compounds
containing a C-P bond (Makino et al., 1991; Horsman and Zechel,
2017; Amstrup et al., 2023). In numerous environments, inorganic
phosphate, a vital nutrient, is available in very limited amounts,
compelling microorganisms to rely on alternative phosphorus
sources for survival (Podzelinska et al, 2009). Therefore,
the ability to uptake and breakdown phosphonates would
be advantageous.

Enzymes catalyzing rhamnose biosynthesis (RfbABCD) are
encoded by all RepB2 replicons (CCUG 32052 has an additional
copy of the rfbABCD operon in Rep_3 plasmid pYEE32052P3).
Rhamnose is present in the O-antigens of many gram-negative
bacteria, forming part of the lipopolysaccharide (LPS). This deoxy-
hexose sugar is also present in capsular polysaccharides, covalently
bound to the cell wall, and in exopolysaccharides that are loosely
associated with the cell wall (Marolda and Valvano, 1995). The P.
yeei strains analyzed in this study display characteristic mucoid
growth, probably related to the presence of a polysaccharide capsule
(data not shown).
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The ECRs also carry genes for proteins involved in
(i) the cobalamin (vitamin B12) biosynthetic pathway
(cobAWNGHIJKLMBF; DnaA-like chromids), (ii) ectoine
biosynthesis (ehuABCD; RepBl chromids), (iii) propionate
catabolism (mmgE/prpD; several RepBl, RepB2, and RepABC
replicons), (iv) disulfide bond formation (dsbA, dsbB, and dsbE),
and (v) resistance to arsenic compounds (permease Arc3, arsenate
reductase ArsC, flavoprotein ArsH, repressor ArsR, and transporter
Ars]). Notably, all RepBl chromids carry a complete conserved
set of crt genes (crtXYIBZE-idi) for carotenoid synthesis (Maj
et al., 2013). However, colonies of the strains with these chromids
lack the characteristic color associated with carotenoid pigment
production and these compounds could not be detected by HPLC
analysis (data not shown).

In summary, the DnaA-like, RepBl and RepB2 chromids
and the RepABC plasmids carry the largest number of genes of
adaptive potential. The genetic load of smaller replicons (HTH_36
or Rep_3) consists mainly of genes of unknown function. The
distribution of selected genes in individual ECRs is presented in
Supplementary Table S3.
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TABLE 4 Distribution and characterization of transport-related genes in P. yeei genomes.

Transporter type

13493

P. yeei clinical isolates

CCUG
32052

CCUG
32054

CCUG
46822

10.3389/fmicb.2024.1483110

CCUG
54214

Environmental isolates

LM20

ABC No. of genes 366 390 370 384 341 342 342
Chromosome (%) 219 (60%) 235 (60%) 241 (65%) 241 (63%) 225 (66%) 213 (62%) 226 (66%)
ECRs (%) 147 (40%) 155 (40%) 129 (35%) 143 (37%) 116 (34%) 129 (38%) 116 (34%)
MSF 31 34 29 34 30 28 29
Chromosome 22 (71%) 23 (68%) 23 (79%) 28 (82%) 22 (73%) 20 (71%) 21 (72%)
ECRs 9 (29%) 11 (32%) 6 (21%) 6 (18%) 8 (27%) 8 (29%) 8 (28%)
P-type 4 7 4 5 3 8 6
Chromosome 3 (75%) 4 (57%) 3(75%) 4 (80%) 3 (100%) 8 (100%) 6 (100%)
ECRs 1(25%) 3 (43%) 1(25%) 1(20%) 0 0 0
RND 21 15 15 17 19 20 20
Chromosome 10 (48%) 10 (67%) 10 (67%) 14 (82%) 11 (58%) 15 (75%) 11 (55%)
ECRs 11 (52%) 5 (33%) 5 (33%) 3(18%) 9 (42%) 5 (25%) 9 (45%)
TRAP 19 17 19 25 19 20 19
Chromosome 11 (58%) 11 (65%) 13 (68%) 15 (60%) 10 (53%) 14 (70%) 10 (53%)
ECRs 8 (42%) 6 (35%) 6 (32%) 10 (40%) 9 (47%) 6 (30%) 9 (47%)
TTT 16 15 13 16 19 27 16
Chromosome 16 (100%) 13 (87%) 10 (77%) 13 (81%) 16 (84%) 19 (70%) 13 (81%)
ECRs 0 2 (13%) 3(23%) 3(19%) 3 (16%) 8 (30%) 3.(19%)
Others/not defined 106 125 107 103 108 114 113
Chromosome 84 (79%) 82 (66%) 81 (76%) 73 (71%) 82 (76%) 89 (78%) 87 (77%)
ECRs 22 (21%) 43 (34%) 26 (24%) 30 (29%) 26 (24%) 25 (22%) 26 (23%)
Total 563 604 530 557 540 559 545

3.6 Transposable elements

A search for transposable elements (TEs) in the P. yeei genomes
revealed the presence of over 900 tnp genes (complete or partial)
encoding transposases from 18 families of insertion sequences
(ISs): 1S3, 1S5, 1S6, 1S21, 1S30, 1S66, 1S91, 1S110, 1S256, 1S481,
1S630, 1S701, 1S1182, 1S1202, 1S1380, 1S1595, ISL3, and ISNCY
(Figure 5; Supplementary Table S7). The number of tnp genes in
individual genomes ranges from 84 (CCUG 32054) to 150 (CCUG
32052 and LM20). The dominant elements are representatives of
the IS3, IS5, IS110, and IS256 families. Several IS families were
identified in only one or a few isolates, e.g., IS6—CCUG 17731
and CCUG 32052, IS91—CCUG 46822, IS630—CCUG 32054 and
LM20, IS1202—CCUG 46822, IS1380—CCUG 46822, 1S1595—
CCUG 13493, CCUG 46822 and LM20, and IINCY—CCUG 13493
and CCUG 32054 (Supplementary Table S7).

Numerous ISs are localized within ECRs. Surprisingly, most
of the largest ECRs (DnaA-like and RepB chromids), except for
those from CCUG 46822 and LM20, contain relatively few ISs,
indicating a more conserved replicon structure and the presence of
essential genes. The replicons richest in these elements are RepABC
plasmids, which in most cases carry almost 50% of the tnp genes of
a given strain (Supplementary Table S7).
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In the chromosomes and ECRs of strains CCUG 46822 and
LM20 several repetitive IS arrays were identified with a structure
resembling composite transposon (Supplementary Table S7). These
DNA regions are flanked by divergently oriented complete isoforms
of ISPye46 (1361 bp; IS110 family) and contained within them are
tnp genes of the 1S256 family (related to ISPye43) and/or the IS5
family (related to ISPyel2). Each copy of ISPye46 is flanked by
identical DRs (5/-TG-3/), so it is not clear whether these IS110-
IS5/1S256-1S110 arrays constitute functional TEs or are the result
of preferential transposition of ISPye46 into ISs representing the
1S256 or IS5 families. Interestingly, ISPye46 is dominant in the
analyzed P. yeei genomes (47 copies in total); however, most of the
copies are present in strains CCUG 46822 (19 copies) and LM20
(24 copies) (Figure 5; Supplementary Table S7). No related IS110-
IS5/1S256-1S110 arrays were identified in the genomes of other
bacteria by BLASTn analysis.

Interestingly, a 159-bp-long sequence element was
identified in most chromosomes of the analyzed P. yeei strains
(Supplementary Table S7). These elements show high sequence
similarity (96-100% identity), lack any open reading frames, occur
in intergenic regions at different locations, and are flanked by short
(4 bp) direct repeats (DRs), suggesting their acquisition through
transposition (Supplementary Table 57). Additionally, they contain
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Distribution of insertion sequences in P. yeei genomes (*environmental isolates).

inverted repeats at both termini (TIRs; IRL and IRR) (18 bp)
with significant similarity to the TIRs of insertion sequences of
the IS1182 family, including ISPyel8, previously identified in the
CCUG 32053 genome (Lasek et al., 2018) (Figure 6A). Analysis of
the distribution of ISPyel18 in P. yeei genomes revealed the presence
of intact isoforms of this element in strains FDAARGOS_252 (1
copy; plasmid 4) and CCUG 32053 (1 copy; plasmid pYEE3).
However, related ISs from the IS1182 family were also identified
in the genomes of CCUG 13493, CCUG 46822, CCUG 54214, and
LM20 (Supplementary Figure S3).

Considering (i) the potential mobility of these DNA regions,
(ii) their small size, (iii) the presence of TIRs, (iv) DRs, and (v) the
absence of a transposase gene, it seems likely that they constitute a
novel group of MITE-type non-autonomous TEs (Delihas, 2011),
that are most probably mobilized for transposition by ISs of the
IS1182 family. This element was named MITEPyel (ISfinder).

The activity of TEs of P. yeei was investigated in vivo using
trap plasmids that allow positive selection of transposition events.
Two trap plasmids were used, pMEC1 and pMAT], containing
the cI-tetA and sacB selection cassettes, respectively. Transposition
of TEs into these cassettes resulted in the appearance of new
phenotypes—the cells carrying a mutated plasmid become resistant
to tetracycline (pMEC1) or to sucrose (pMAT1) (see Section 2
for details).

Despite the presence of a very large number of transposase
genes in the P. yeei genomes, use of the entrapment vectors led
to the identification of only six distinct elements: (i) three ISs
previously identified in silico in the CCUG 32053 genome—ISPye2
(IS5 family, IS5 group), ISPye38 (IS5 family) and ISPye41 (IS5
family, IS903 group), (ii) an isoform of 1S1247 of Xanthobacter
autotrophicus (IS1380 family), and (iii) two novel elements,
designated ISPye79 and ISPye80, representing the IS5 and 1S427
groups within the IS5 family, respectively.

The distribution of every defined IS of P. yeei (ISfinder
and this study) across all P. yeei genomes is shown in
Supplementary Figure S3. The most abundant elements are (i)
ISPye46—47 copies in 5 strains (most copies present in CCUG
46822 and LM20), (ii) ISPye53—45 copies in seven strains, and (iii)
ISPye41—30 copies in six strains (most copies present in CCUG
17731 and CCUG 32053). Many of the ISs are present in only 1
copy, e.g., (i) ISPyel3 (chromosome FDAARGOS_252), (ii) ISPye63
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(chromosome of CCUG 32052), and (iii) IS1247a (chromosome of
CCUG 46822).

3.7 P. yeei strain- and species-specific
genes

The core genomes of Paracoccus spp. and of P. yeei were defined
based on the complete genomic sequences of P. aminophilus JCM
7686 (Dziewit et al., 2014), P. aminovorans JCM 7685 (Czarnecki
et al., 2017), P. contaminans RKI16-01929T (Aurass et al., 2017),
P. denitrificans PD1222, plus eleven P. yeei strains. Comparative
genomic analysis was used to define (i) the core genome of bacteria
of the genus Paracoccus spp., (ii) genes specific to P. yeei (not
found in other Paracoccus spp. with complete genomes), and (iii)
genes that are unique to individual P. yeei strains (singletons).
The collected data, also showing the distribution of these genes
in the individual replicons of each P. yeei strain, are presented in
Supplementary Table S8.

This analysis revealed that the core genome of Paracoccus spp.
consists of 1,647 protein-encoding genes, of which 116 are located
within ECRs of P. yeei. The total number of P. yeei-specific genes is
250 and the number of singletons ranges from 138 (CCUG 46822)
to 332 (FDAARGOS 252) (Supplementary Table S8). In some
strains, the majority of singletons occur in the chromosome, while
in others (CCUG 13493, CCUG 17731) they are predominantly
in ECRs. The vast majority of singletons encode proteins of
unknown function, although a predicted role in adaptation could
be assigned to some genes from the P. yeei environmental isolates.
The chromosome of LM20 encodes (i) the membrane protein YeeE,
which mediates the uptake of thiosulfate as an inorganic sulfur
source for cysteine synthesis (Tanaka et al., 2020), (ii) mercury
transporter Mer, and (iii) the sensor kinase KdpD, which senses
potassium levels, and the kdpABC operon, which encodes a high-
affinity potassium uptake system crucial for bacterial survival in
low potassium environments (Laermann et al., 2013; Ali et al,
2017). In the CCUG 54214 genome, many transport-related genes
(ABC, RND, TTT types) were distinguished among the singletons,
as well as genes for toxin-antitoxin systems (e.g., HipA-, PrlF-, Yha-
family), similarly to clinical strains.
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FDAARGOS_643

MITEPye1
prRIRL _ IRRpg

CCUG 13493 GGCCGAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGACTTTGAGTTTTGACACCGCCTCGGCC
CCUG 17731 GGCCGAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTCGGCC
CCUG 32052 GGCCGAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTCGGCC
CCUG 32054 GGCCGAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTCGGCC
CCUG 46822 GGCCGAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTCGGCC
CCUG 54214 GAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - ACCCGAGATTTTGAGTTTTGACACAGCCTC

LM20 GGCCGAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTCGGCC
GGCCGAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTCGGCC

FIGURE 6

structures was calculated by Mfold.

TT13_1 GAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTC
17132 GAGACTGTGTAAAAACTCGGTCAGGCGGCC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTC {
TT13 3 AGCCGAGACTGTGTAAAAACTCGGTCAGGCGGEC - - - - CCCGAGGATTTTGAGTTTTGACACAGCCTCAGCC i;:!
- left flank right flank i—i_
i1
ISPye 18 CAGACCGTGTGAAAACACCTGTAGGATTCC - - - TGEAATTCCTCCGGGTTTTCACACGGTCTG 1;
H

S

Non-autonomous transposable element MITEPyel identified in P. yeei strains. (A) Alignment of terminal inverted repeat nucleotide sequences (IRL,
left IR; IRR, right IR) of complete MITEPyel elements identified in P. yeei genomes and ISPye18. Identical residues are indicated by gray shading.
Nucleotide sequences of direct repeats (DRs) generated by MITEPyel elements during transposition are indicated by underlining. (B) RNA secondary
structures predicted by in silico folding using Mfold software for MITEPyel. The minimum folding energy (AG —47.93) of the predicted secondary

The largest group of P. yeei-specific genes (found in
chromosomes and DnaA-like, RepBl, RepB2 and RepABC
replicons) encode transposases from different IS families. The
second largest group of genes encodes transporters, mostly of
the ABC type, which are located in chromosomes and in DnaA-
like and RepBl1 chromids. Other abundant genes, found mainly
in RepBl1 chromids, encode transcription regulators of the LuxR,
CopG, TetR/AcrR, MarR, Lacl, AraC, TetR, DeoR/GIlpR, and NikR
families (Supplementary Table S8).

Examples of proteins encoded by other P. yeei-specific genes
include a urease enzyme, components of the trehalose, rhamnose,
and cobalamin biosynthetic pathways, chaperone proteins, and
factors possibly involved in the cell’s response to stress conditions
(Supplementary Table S8).

3.8 Putative virulence determinants

The proteomes of a number of Paracoccus strains were analyzed
in order to identify potential virulence factors: (i) the seven P.
yeei strains described in this study, (ii) other P. yeei strains
whose complete genomic sequences are available (CCUG 32053,
TT13, FDAARGOS_262, FDAARGOS_643), as well as (iii) several
environmental isolates of the genus Paracoccus, including the
type strain P. denitrificans PD1222. These protein sets were
compared against databases containing bacterial virulence factors
and antibiotic resistance genes (see Section 2 for details). Relatively
few of the identified determinants were unique to P. yeei (all clinical
isolates). The pool of identified genes includes those encoding six
types of protein, that were previously mentioned by Lasek et al.
(2018), i.e., (i) methionine sulfoxide reductase (msrAl, msrA2,
msrB), (ii) diguanylate cyclase, (iii) superoxide dismutase, (iv) sugar
transferase, (v) type IV secretion system components, and (vi)
urease (Supplementary Tables S3, S9).
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The chromosomally-located msr genes of CCUG 32052 and
CCUG 46822 encode predicted proteins sharing 61-100% aa
sequence similarity, while the homologous proteins encoded by
other P. yeei strains are less well-conserved (38-55% aa identity).
Msr proteins participate in the detoxification of reactive oxygen
intermediates (both prokaryotic and eukaryotic cells lacking Msr
are sensitive to oxidative stress) (Denkel et al., 2011). Moreover,
MsrA has been shown to be critical for the survival of Erwinia
chrysanthemi (El Hassouni et al., 1999), Mycoplasma genitalium
(Das et al, 2012), and Helicobacter pylori (Alamuri and Maier,
2006) in their infected hosts. Genes encoding components of a
putative type IV secretion system (T4SS) were identified only in
CCUG 17731 (30-50% aa identity) and in CCUG 13493 (25-50% aa
identity)—within RepABC plasmids in both cases. However, these
were not complete modules, unlike the one previously identified in
CCUG 32053 (Lasek et al., 2018).

The remaining virulence factors, present in all analyzed
genomes, include the gene encoding diguanylate cyclase, an
enzyme synthesizing cyclic diguanylate (c-di-GMP)—an important
bacterial second messenger. This signaling molecule is involved
in the regulation of a number of complex physiological processes,
including biofilm formation and motility, which affect the
pathogenesis of many bacteria (Tamayo et al., 2007).

Genes encoding several other putative virulence factors were
identified within ECRs, although they were not unique to P.
yeei. These include proteins participating in the following: (i)
numerous ABC and RND transport systems (DnaA-like, RepB,
RepABC replicons), (ii) siderophore synthesis (RepB2 replicons,
chromosomes), (iii) polysaccharide capsule production (RepB2
replicons), and (iv) trehalose synthesis (DnaA-like type replicons).

All P. yeei strains contain a set of genes (URE) involved in
the synthesis of the metalloenzyme urease, which hydrolyzes urea
to ammonia and CO,. These genes are located within essential
replicons—DnaA-like chromids. They display synteny and a high
degree of nucleotide sequence identity (98%), indicating their
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biological importance. The role of urease in bacterial pathogenesis
is well-documented (e.g., Mobley, 1996; Dupuy et al., 1997; Burne
and Chen, 2000; Berutti et al., 2014; Rutherford, 2014; Graham and
Miftahussurur, 2018; Zhou et al., 2019; Minami et al., 2021).

3.9 URE gene clusters

Besides genes for the main urease subunits (UreA—y subunit,
UreB—p subunit, and UreC—a subunit) and accessory proteins
(ureD, ureE, ureF, and ureG), the URE gene cluster also contains the
nikR gene (encoding a predicted nickel-dependent transcription
factor) and numerous ABC transporter genes, likely to be involved
in the uptake of Ni** (an essential cofactor for urease; Rutherford,
2014). Tt is probable that NikR regulates the expression of the
transporter genes (Figure 7). Interestingly, in P. yeei strain CCUG
32052, part of the URE gene cluster, containing the ureABC and
ureD genes, has been duplicated and transferred to another ECR
(RepABC; pYEE32052P4) (99% nucleotide sequence identity to the
corresponding URE genes) (Figure 7).

The URE gene cluster of DnaA-like replicons (designated
URE type 1) (Figure7) is unique to and characteristic of P.
yeei strains. However, in two strains (CCUG 13493 and CCUG
32052) another set of ure genes (URE type 2; Figure 7), possibly
associated with urease synthesis, was identified. These genes
are present in RepABC plasmids in both strains (pYEE13493P4
and pYEE32052P5, respectively) and their genetic organization is
different from that of URE type 1. In the URE type 2 cluster, the y
and P urease subunits are encoded by a single fusion gene ureBC,
the order and transcriptional orientation of the accessory genes
ureFEDG is different, there are fewer transporter genes and the nikR
gene is absent (Figure 7).

URE type 2 represents a novel type of ureolytic gene cluster
which has a different evolutionary origin from URE type 1. The two
clusters share some sequence similarity between the genes encoding
the main urease subunits, but no similarity was found in case of the
accessory genes and their arrangement is different.

The ureolytic activity of three P. yeei strains (CCUG 32053,
CCUG 32052—containing the duplicated part of URE type 1, and
CCUG 32052—also carrying URE type 2; Figure 7) was examined
using Christensen’s differential medium without (control) and with
the addition of urea (1%) (see Section 2 for details). All the strains
displayed ureolytic activity, which was induced by the presence of
urea in the medium.

To unequivocally confirm the role of the type 1 URE
gene cluster in the observed ureolytic activity, mutations were
introduced by insertion of a kanamycin resistance cassette into the
ureC (encoding the o subunit of urease) or nikR genes of CCUG
32053 and CCUG 13493. These mutations completely abolished
ureolytic activity in these strains, indicating the importance of
both ureC and nikR in determining this phenotype. The lack
of ureolytic activity in mutated strain CCUG 13493, which also
contains URE type 2, indicates that this second cluster does
not produce an active urease under the tested conditions and
its genes are unable to complement mutations introduced in
URE type 1.
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4 Discussion

These comprehensive comparative genomic analyses of a
pool of strains of the opportunistic bacterium P. yeei, have
provided valuable information on (i) the structural diversity of
genomes within this species, (ii) the components of the mobilome,
their impact on genome structure and properties, and (iii) the
genetic information determining the opportunistic properties of
this species. Importantly, the analyzed strains originated from
different environments (clinical and natural) and were isolated
at different times. Therefore, the collected data better reflects the
extent of strain variability within this species, and also permits the
identification of genes conserved during evolution, including those
involved in the process of pathogenesis (Table 1).

The physiological and phenotypic properties of the analyzed
strains were found to be very similar. High levels of similarity
were also evident when the structure and genetic content of the
genomes of clinical and environmental isolates were compared. The
relatedness of these strains is reflected in the topology of the P. yeei
phylogenetic tree (Figure 1A).

All strains contain numerous ECRs of varying sizes, ranging
from 4 to 485 kbp. It should be noted that strain CCUG 46822
carries the largest number of ECRs (13) among Paracoccus spp.
strains analyzed so far. The main ECRs are large replicons
representing the DnaA-like, RepB (RepB1 and RepB2 subgroups)
and RepABC families, which is consistent with our previous
observations (Lasek et al., 2018) (Figures 1B, C). All of the DnaA-
like, RepBl1 and RepB2 replicons (which meet the criteria of
chromids) contain numerous adaptive genes (facilitating survival
in challenging environmental conditions) plus a set of conserved
genes of the core Paracoccus spp. genome. However, the genetic
load of these replicons is not equal. DnaA-like replicons can be
considered major chromids due to (i) the presence of the largest
number of core genes, (ii) the relatively low variability in their
structure and size (especially in relation to DnaA-like replicons of
other Paracoccus species) (Figure 3; Supplementary Table S5), and
(iii) the presence of the URE gene cluster, which is chromosomally
located in other pathogenic bacteria.

DnaA-like chromids are characteristic for Paracoccus spp. and
play an important role in the biology of these bacteria. Related
essential replicons were previously identified and analyzed e.g.,
in P. denitrificans PD1222, P. aminophilus JCM 7686 and P.
aminovorans JCM 7685 (Dziewit et al., 2014; Czarnecki et al,
2017). The removal of DnaA-like and RepB chromids from P.
aminophilus cells was attempted (Dziewit et al., 2014), but this was
only successful in the latter case. The strain lacking RepB replicons
grew much more slowly on complete medium and was unable to
grow at all on minimal media (regardless of the type of carbon
source). Based on these observations, two classes of chromids were
proposed: obligatorily essential primary chromids (e.g., DnaA-like)
and facultatively essential secondary chromids (e.g., RepB).

It should be noted that DnaA-like chromids have yet to
be identified in other taxonomic groups of bacteria, which is
consistent with the assertion of Harrison et al. (2010) that particular
chromid types are characteristic for a specific taxonomic group of
bacteria (mainly genus). This claim seems reasonable given that
these types of replicons are likely to have arisen from plasmids
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(potentially with a narrow host range) specific to a particular group
of bacteria. DnaA-like replicons therefore have some aptitude
to generate chromids. However, it has yet to be explained why,
for example, RepABC replicons, which are the main chromids
of e.g.. Rhizobium spp. and Agrobacterium spp. (Landeta et al,
2011; diCenzo et al., 2013; Dohlemann et al., 2017), despite also
being common in Paracoccus spp., do not play the same role in
these bacteria.

The flexible genome of P. yeei also comprises transposable
elements. A previous study examining strain CCUG 32053
highlighted an unusual diversity of insertion sequences, not seen
in other Paracoccus spp. strains (Lasek et al., 2018). This analysis
resulted in the examination of the prevalence of 80 ISs (ISPyel-
ISPye80) sequences in the genomes of P. yeei, that had not
been previously characterized in the transposable mobilome of
, 2012). In this study, we searched
for putative TEs in all available complete genomic sequences of

Paracoccus spp. (Dziewit et al.

P. yeei. The results of these analyses showed (i) the widespread
presence of ISs in this species (although there is great variability
in their number in individual strains), (ii) the predominance of
ISs belonging to the IS5, IS3, IS110, and 1S256 families (Figure 5;
Supplementary Figure S3), and the absence of (iii) P. yeei-specific
elements conserved in all genomes or (iv) transposons that could
be linked with potential determinants of pathogenesis. A more
global comparative analysis using data collected in the ISfinder
database showed that the overall distribution pattern of IS families
in the P. yeei genomes corresponds to their distribution across the
genus Paracoccus. This also highlighted the ubiquity and diversity
of these elements in Paracoccus spp. in comparison to other genera
of Alphaproteobacteria (Supplementary Figure S4).

The presence of multiple copies of particular ISs in P. yeei
genomes may promote homologous recombination, resulting in
genomic structural rearrangements. It is likely that such events
led to the generation of the two chromosome structural variants
identified in this study (Figure 3). Notably, the large number of
TEs predicted in silico did not correlate with the number of active
elements identified by the application of trap plasmids. Only a few
elements that were the most dynamic in the process of transposition
were captured. The low activity of TEs may be due to the presence
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of multiple regulatory systems keeping this process in check to
reduce the likelihood of lethality caused by insertional inactivation
of host housekeeping genes (Lipszyc et al., 2022).

Analysis of the P. yeei genomes also identified a novel group
of non-autonomous TEs (MITE-type; MITEPyel). These elements
contain TIRs and are bordered by DRs, so resemble functional TEs
in this respect (Figure 6A). Their TIRs share significant sequence
similarity with terminal sequences of ISI1182-family elements,
which suggests that they originate from defective ISs and their
transposition may be trans-activated by compatible transposases.
In the chromosomes, these MITE-type elements occur in low
numbers (1-3) and are preferentially located within intergenic
regions (Supplementary Table S7). Mfold analysis revealed that
these elements are able to fold into long stem-loop structures at
the RNA level (Figure 6B). Therefore, their co-transcription with
upstream genes, may influence the conformation and stability
of the resulting transcripts. The altered expression may result
in various phenotypes depending on the specific gene function
(Szuplewska and Bartosik, 2009; Dziewit et al., 2012; Szuplewska
etal., 2014).

Particular attention was given to the identification of genes
responsible for the opportunistic phenotype of P. yeei. Collections
of P. yeei species-specific genes were searched for potential
virulence factors. A noteworthy finding of this analysis was the very
large number of transporter genes, which is a unique feature among
Paracoccus spp. Although it is difficult to directly link their presence
to the ability of these bacteria to cause opportunistic infections, they
could potentially play an important role in pathogenesis.

The URE gene clusters of P. yeei identified in the screen for
potential pathogenicity determinants were examined in more
detail. These clusters are involved in the synthesis of urease,
an enzyme that acts as a virulence factor in many pathogenic
(90% of methicillin-
resistant S. aureus display ureolytic activity), Helicobacter pylori,

bacteria, including Staphylococcus spp.

Mycobacterium  tuberculosis, Mycobacterium bovis, anaerobic
Clostridium perfringens and Vibrio parahaemolyticus (Dupuy et al.,
1997; Berutti et al., 2014; Graham and Miftahussurur, 2018; Zhou
et al,, 2019; Minami et al., 2021). In the case of H. pylori, urease is
one of the major virulence factors, since strains unable to produce
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this enzyme cannot colonize the gastric mucosa. The ammonia
released by urease action affects the tissue, causing damage to
epithelial cells. Urease activity also enables pathogens to survive
and proliferate in macrophages (Fu et al, 2018). This enzyme
elicits a response from the human immune system by stimulating
the production of antibodies (Konieczna et al., 2012).

Two diverse URE gene clusters were identified in the P. yeei
genomes: type 1—species specific, and type 2—present only in two
RepABC plasmids. We showed that URE type 1 determined the
urease activity, which was induced by the presence of urea in the
growth medium. Activity of the URE type 2 cluster could not be
demonstrated. It may be speculated that these URE module variants
require different substrates/activators to initiate the synthesis of
urease. Nevertheless, it is highly probable that the presence of
additional URE gene clusters may enhance the ureolytic capacity
of the bacteria, which highlights the biological importance of this
phenotype. It is important to note that urea is present in large
quantities in the human body, mainly in the kidneys, but is also
found in the stomach, blood serum, sweat and milk (Fu et al., 2018;
Graham and Miftahussurur, 2018; Schimmel et al., 2021).

Mutations introduced into the ureC (encoding a subunit of
urease) or nikR (encoding a putative regulator of nickel transporter
gene expression) genes of URE type 1 completely abolished urease
activity. This effect was previously observed in analogous mutants
of H. pylori. One of the main phenotypes of an H. pylori nikR
mutant was the absence of nickel-responsive induction of urease
expression (Van Vliet et al., 2002). Further studies showed that
NikR binds to the ureA promoter (in a nickel-dependent manner),
which results in nickel-induced transcription and expression of a
ureolytic phenotype (Ernst et al., 2005). We hypothesize that the P.
yeei ure genes may be regulated in a similar way.

As the conserved URE type 1 gene cluster of P. yeei is unique
among Paracoccus spp., it is highly probable that urease plays an
important role in the pathogenesis of this species. The verification
of this hypothesis is an immediate goal of our future studies.
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Genomic analysis of Salmonella
isolated from surface water and
animal sources in Chile reveals
new T6SS effector protein
candidates

Fernando A. Amaya®, Carlos J. Blondel?, Felipe Reyes-Méndez?,
Dacil Rivera*, Andrea Moreno-Switt*, Magaly Toro®5,
Consuelo Badilla®, Carlos A. Santiviago'* and David Pezoa*"*

!Laboratorio de Microbiologia, Departamento de Bioquimica y Biologia Molecular, Facultad de
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Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago,
Chile, *Nucleo de Investigacion en One Health, Facultad de Medicina Veterinaria y Agronomia,
Universidad de Las Américas, Santiago, Chile, *Escuela de Medicina Veterinaria, Facultad de
Agronomia e Ingenieria Forestal, Facultad de Ciencias Bioldgicas y Facultad de Medicina, Pontificia
Universidad Catolica de Chile, Santiago, Chile, ®Joint Institute for Food Safety and Applied Nutrition
(JIFSAN), University of Maryland, College Park, MD, United States, ®Instituto de Nutricién y Tecnologia
de los Alimentos (INTA), Universidad de Chile, Santiago, Chile, ’Departamento de Ciencias Quimicas y
Bioldgicas, Universidad Bernardo O'Higgins, Santiago, Chile

Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria,
contribute to interbacterial competition and pathogenesis through the translocation
of effector proteins to target cells. Salmonella harbor 5 pathogenicity islands
encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number
of effector proteins have been identified. Previous analyses by our group focused
on the identification of candidate T6SS effectors and cognate immunity proteins in
Salmonella genomes deposited in public databases. In this study, the analysis was
centered on Salmonella isolates obtained from environmental sources in Chile.
To this end, bioinformatics and comparative genomics analyses were performed
using 695 genomes of Salmonella isolates representing 44 serotypes obtained
from surface water and animal sources in Chile to identify new T6SS effector
proteins. First, T6SS gene clusters were identified using the SecreT6 server. This
analysis revealed that most isolates carry the SPI-6 T6SS gene cluster, whereas
the SPI-19 and SPI-21 T6SS gene clusters were detected in isolates from a limited
number of serotypes. In contrast, the SPI-20 and SPI-22 T6SS gene clusters were
not detected. Subsequently, each ORF in the T6SS gene clusters identified was
analyzed using bioinformatics tools for effector prediction, identification of immunity
proteins and functional biochemical prediction. This analysis detected 20 of the
37 T6SS effector proteins previously reported in Salmonella. In addition, 4 new
effector proteins with potential antibacterial activity were identified in SPI-6: 2
Rhs effectors with potential DNase activity (PAAR-RhsA-NucA_B and PAAR-RhsA-
GH-E) and 2 effectors with potential RNase activity (PAAR-RhsA-CdiA and RhsA-
CdiA). Interestingly, the repertoire of SPI-6 T6SS effectors varies among isolates
of the same serotype. In SPI-19, no new effector protein was detected. Of note,
some Rhs effectors of SPI-19 and SPI-6 present C-terminal ends with unknown
function. The presence of cognate immunity proteins carrying domains present
in bona fide immunity proteins suggests that these effectors have antibacterial
activity. Finally, two new effectors were identified in SPI-21: one with potential
peptidoglycan hydrolase activity and another with potential membrane pore-
forming activity. Altogether, our work broadens the repertoire of Salmonella T6SS
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effector proteins and provides evidence that SPI-6, SPI-19 and SPI-21 T6SS gene
clusters harbor a vast array of antibacterial effectors.

KEYWORDS

Salmonella, T6SS, Chile, effector, immunity protein

Introduction

The type VI secretion system (T6SS) is an apparatus composed of
13 structural proteins and several accessory proteins that deliver
protein effectors into target cells by means of a contractile mechanism
(Coulthurst, 2019; Cherrak et al., 2019). The T6SS needle is composed
of an inner tube made of a stack of Hcp hexamer rings that is tipped
by a trimer of VgrG and a proline-alanine-alanine-arginine repeat
(PAAR) protein. This internal structure is surrounded by a contractile
sheath of polymerized TssB/TssC subunits assembled in an extended,
metastable conformation (Silverman et al., 2013; Cherrak et al., 2019).
Contraction of the sheath propels the needle complex toward the target
cell (Brackmann et al., 2017). T6SS effector proteins are classified as
either cargo or specialized effectors. Cargo effectors are transported by
non-covalent interaction with some core components (Coulthurst,
2019), while specialized effectors are VgrG, Hcp or PAAR proteins
carrying additional domains (Durand et al., 2014; Whitney et al., 2014;
Diniz and Coulthurst, 2015; Ma et al., 2017; Pissaridou et al., 2018).

T6SS effector proteins can target prokaryotic and/or eukaryotic
cells (Coulthurst, 2019; Monjaras Feria and Valvano, 2020). Among the
anti-bacterial effector proteins, some target the peptidic or glycosidic
bonds of the peptidoglycan (Ma and Mekalanos, 2010; Russell et al.,
2012; Srikannathasan et al., 2013; Whitney et al., 2013; Berni et al,,
2019; Wood et al., 2019), or the FtsZ cell division ring (Ting et al.,
2018). These anti-bacterial effectors are usually encoded in bi-cistronic
elements with their cognate immunity proteins (E/I pairs) in order to
avoid self-intoxication and killing of sibling cells (Russell et al., 2012).
Other T6SS effectors target eukaryotic cells, such as those disrupting
the actin or microtubule cytoskeleton networks (Monjards Feria and
Valvano, 2020), while trans-kingdom effectors target both bacterial
and eukaryotic cells (Jiang et al., 2014). These effectors include those
forming pores in membranes or targeting conserved molecules such
as NAD* and NADP", and macromolecules such as DNA, RNA and
phospholipids (Whitney et al., 2015; Tang et al., 2018; Ahmad et al.,
2019). In many enteric pathogens (e.g., Salmonella, Shigella and
Vibrio), the T6SS contributes to colonization of the intestinal tract of
infected hosts (Sana et al., 2016; Chassaing and Cascales, 2018). On the
other hand, strains of the gut commensal Bacteroides fragilis use their
T6SSs for competition against other Bacteroidales species (Coyne and
Comstock, 2019). Hence, the T6SS is a key player in bacterial warfare.

The Salmonella genus includes more than 2,600 serotypes
distributed between species S. enterica and S. bongori (Issenhuth-
Jeanjean et al., 2014), which differ in clinical signs and host range
(Uzzau et al,, 2000). In Salmonella, five T6SS gene clusters have been
identified within Salmonella Pathogenicity Islands (SPIs) SPI-6,
SPI-19, SPI-20, SPI-21, and SPI-22 (Blondel et al., 2009; Fookes et al.,
2011; Bao et al.,, 2019). These T6SS gene clusters are distributed in 4
different evolutionary lineages: The SPI-6 T6SS gene cluster belongs
to subtype i3, SPI-19 T6SS gene cluster to subtype il, SPI-22 T6SS
gene cluster to subtype i4a, and both SPI-20 and SPI-21 T6SS gene
clusters to subtype i2 (Bao et al., 2019). Besides their distinct
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evolutionary origin, these five T6SS gene clusters are differentially
distributed among distinct serotypes, subspecies, and species of
Salmonella (Blondel et al., 2009; Bao et al., 2019).

In Salmonella, only a few studies have addressed the role played by
the T6SSs in interbacterial and eukaryotic relationships, and most of our
understanding regarding the contribution of T6SSs to Salmonella
infection cycle, virulence and pathogenesis comes from studies of
T6SSspr¢ in S. Typhimurium and T6SSep; 1o in S. Dublin (Mulder et al.,
2012; Pezoa et al., 2013; Pezoa et al., 2014; Sana et al., 2016; Sibinelli-
Sousa et al., 2022; Xian et al., 2020; Blondel et al., 2010; Hespanhol et al.,
2022). Furthermore, knowledge of the presence and distribution of T6SS
effector proteins is derived from studies using strains representing a
limited number of serotypes (Russell et al., 2012; Benz et al., 2013; Sana
et al,, 2016; Whitney et al., 2013; Sibinelli-Sousa et al., 2020; Lorente-
Cobo et al., 2022; Koskiniemi et al., 2014; Amaya et al., 2022; Jurénas
etal, 2022; Blondel et al., 2023). Consequently, information regarding
Salmonella T6SS effector proteins is still scarce. Indeed, only 37 T6SS
effectors and candidate effectors that target different bacterial molecules
such as peptidoglycan, nucleic acids and bacterial ribosomes have been
currently identified in a few serotypes (Blondel et al., 2009; Russell et al.,
2012; Benz et al., 2013; Whitney et al., 2013; Koskiniemi et al., 2014; Sana
etal,, 2016; Ho et al., 2017; Sibinelli-Sousa et al., 2020; Amaya et al., 2022;
Jurénas et al., 2022; Lorente-Cobo et al., 2022; Hespanhol et al., 2022;
Blondel et al., 2023). This is an important knowledge gap as the T6SS
effector proteins are the ultimate mediators of the T6SS activity and thus,
their identification and characterization are pivotal for a better
understanding of Salmonella infectious cycle and in its contribution to
environmental fitness and pathogenic potential.

Nowadays, there is increasing evidence that Salmonella enterica
can persist in diverse environments such as aquatic ecosystems,
maintaining a reservoir in surface waters and becoming a serious risk
to public health and animal production systems. It is conceivable that
the T6SS could mediate in part this persistence since it has been shown
that S. Typhimurium requires the T6SSgp; ¢ to survive intracellularly in
environmental amoebas such as Dictyostelium discoideum (Riquelme
etal,, 2016). Interestingly, in Chile some serotypes such as S. Infantis,
S. Newport and S. Typhimurium have been frequently isolated in
surface waters during the last decade, imposing a significant threat to
human and animal health since these serotypes usually carry an arsenal
of antimicrobial resistance genes (Chen et al., 2024a,b). These Chilean
isolates could be an untapped reservoir of new T6SS effector proteins.
Importantly, Salmonella strains isolated from surface waters in Chile
will shed light not only on the vast arsenal of T6SS effector repertoire
but could also provide insight into geographic adaptation of Salmonella.

In this study, we performed bioinformatic and comparative
genomic analyses of a dataset of 695 S. enterica genomes representing
44 serotypes isolated from different environmental sources in Chile,
mostly surface waters. Our analysis revealed that most genomes only
harbor the SPI-6 T6SS gene cluster, and that within its variable region
3 (VR3) we found four new candidate T6SS effectors with predicted
nuclease activity. Noteworthy, many putative SPI-6 rearrangement
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hotspot (Rhs) effectors identified in this study harbor C-terminal
extensions with unknown function. Overall, the diversity and
distribution of T6SS effector proteins in Chilean Salmonella isolates
suggest that different combinations of these proteins may contribute
to the environmental fitness and pathogenic potential.

Materials and methods

Environmental samples and Salmonella
isolation

Water samples were collected as part of a previous study (Toro et
al., 2022) from sites in the Maipo, Mapocho, Claro and Lontué
watersheds from the rivers themselves and connected tributaries, such
as canals. Animal samples were collected as part of a previous study
(Rivera et al., 2021) from industrial dairy farms, backyard systems and
wild animals in the Regién de Coquimbo, Region de Valparaiso,
Region Metropolitana and Region del Libertador General Bernardo
O’Higgins, Chile. A detailed description of sampling procedures,
geographical location of samples and the procedure employed for
Salmonella isolation from water an animal samples can be found
elsewhere (Rivera et al., 2021; Toro et al., 2022).

Whole genome sequencing, assembly, and
quality control

For sequencing, each isolate was grown overnight at 37°C in tryptic
soy broth and 1 mL of culture was used to purify DNA with the DNeasy
Blood and Tissue Qiagen kit (Qiagen, CA, United States). Ratios of
absorbance at 260 nm and 230 nm were obtained using a MaestroNano
spectrophotometer (Maestro, Korea) and a QUBIT fluorimeter (Life
Technologies, CA, United States). Libraries were prepared with the
Mumina DNA Prep kit (Illumina, CA, United States) on the Sciclone
G3 NGSx iQ Workstation (Perkin Elmer, MA, United States), and
sequencing was performed on the Illumina NextSeq 2000 using the
NextSeq 1000/2000 P2 reagents 300 cycles with the 150 paired-end
chemistry (Illumina, CA, United States). Reads were examined for
quality using FastQC (Galaxy version 0.69) (Wingett and Andrews,
2018) and trimmed using Trimmomatic (Galaxy version 0.36.4), with
a minimum required quality of 20, averaging across 4 bases (Bolger
et al,, 2014). Processed reads were assembled using SPAdes (Galaxy
version 3.11.1) with kmer sizes of 99 and 127, and careful correction
(Bankevich et al., 2012). Assemblies were checked for quality using
QUAST (Galaxy version 4.6.3) (Gurevich et al., 2013) and finally
deposited in the NCBI Bioproject 560,080."

In silico serotyping was carried out using SeqSero (Galaxy version
2.0.1) (Zhang et al., 2015) and SISTR (Galaxy version 1.0.2) (Yoshida
etal, 2016). Finally, a single-nucleotide polymorphism (SNP) analysis
was performed to identify clonality among isolates from the same
sample. Clones were defined as isolates with genomes having 20 or
fewer SNPs, as described by Pightling et al. (2018). According to this
criterion, genome sequences from non-clonal isolates obtained from

1 https://www.ncbi.nlm.nih.gov/bioproject/560080
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the same sample were selected for subsequent analysis. Thus, the
genome sequence dataset analyzed in this study includes 695 S. enterica
genomes from 44 distinct serotypes (Supplementary Table S1).

Identification of T6SS gene clusters

The T6SS prediction tool from the Secret6 web server” was used
to identify T6SS gene clusters encoding the minimal 13 core
components of a T6SS in each genome (Zhang et al., 2023). For
selection of positive matches, a BLASTp 2.10.1+ identity threshold for
T6SS prediction >30% and an E-value <0.0001 were used. These
threshold values have been successfully used to identify T6SS gene
clusters in Salmonella genomes (Amaya et al, 2022; Blondel
etal., 2023).

Identification of candidate T6SS effectors

To identify putative T6SS effectors encoded within the Salmonella
genomes analyzed, each ORF encoded within the T6SS gene clusters
identified was analyzed with the Bastion6 pipeline® (Wang et al., 2018)
excluding the 13 T6SS core components. ORFs presenting a Bastion6
score > 0.7 were considered as candidate T6SS effectors. It is worth
mentioning that a Bastion6 score > 0.5 is routinely used as default
setting for detection of T6SS effectors. However, we decided to use a
score > 0.7 to perform a more strict analysis. Each Bastion6 prediction
was further analyzed using tools implemented in the Operon-Mapper
web server! (Taboada et al., 2018) to determine whether it was part of
a single transcriptional unit that also encoded a putative immunity
protein [i.e., a small protein with potential signal peptides (SignalP 6.0)
and/or transmembrane domains (TMHMM 2.0)]. Conserved
functional domains and motifs in the candidate T6SS effectors were
identified using the PROSITE, NCBI-CDD, Motif-finder, and Pfam
databases (Kanehisa et al., 2002; Sigrist et al., 2013; Finn et al., 2014;
Lu et al,, 2019) implemented in the GenomeNet search engine.” An
E-value cutoff score of 0.01 was used. In addition, for each putative
effector and immunity protein identified, a biochemical functional
prediction was performed by HMM homology searches using the
HHpred HMM-HMM comparison tool® (Zimmermann et al., 2017).
Finally, a candidate T6SS effector was defined as “new” when it meets
two criteria: (i) it includes at least one domain previously linked to
antibacterial activity, and (ii) this domain has not been described as
part of a T6SS effector in publicly available databases.

Hierarchical clustering analysis of the new
T6SS effectors

For hierarchical clustering analysis, a presence/absence matrix of
each T6SS effector and candidate effector was constructed for each

https://bioinfo-mml.sjtu.edu.cn/SecReT6/t6ss_prediction.php
https://bastion6.erc.monash.edu
https://biocomputo.ibt.unam.mx/operon_mapper

https://www.genome.jp
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bacterial genome by means of BLASTn analyses and manual curation
of the data (Supplementary Table S2). A 90% identity and 90%
sequence coverage threshold was used to select positive matches, as
done in previous analyses conducted by our group (Amaya et al., 2022;
Blondel et al., 2023). The matrix generated was uploaded as a csv file
to the online server MORPHEUS’ using default parameters (i.e., one
minus Pearson’s correlation and average linkage method).

Phylogenetic analyses of Salmonella T6SS
gene clusters

TssC aminoacid sequences encoded in T6SS gene clusters from
605 Salmonella genomes were concatenated and aligned with
ClustalW using the Molecular Evolutionary Genetics Analysis
(MEGA) software version 7.0 (Kumar et al., 2016). A phylogenetic tree
was built from the alignments obtained from MEGA by performing a
bootstrap test of phylogeny (1,000 replications) using the maximum-
likelihood method with a Jones-Taylor-Thornton correction model.

Analysis of T6SS effectors distribution

The DNA sequence encoding each T6SS effector identified in this
study was subjected to tBLASTx analyses to find orthologs in all
Salmonella genome sequences deposited in the NCBI database
(March, 2024) (Supplementary Tables S3, S4). For selection of positive
matches, a 90% identity and 90% sequence coverage threshold was
used. Conservation of sequences was determined by independent
multiple sequence alignments using T-Coffee Expresso® (Notredame
etal., 2000), MAFFT’® (Katoh et al., 2017), and ESPript 3" (Robert and
Gouet, 2014). Comparative genomic analyses of T6SS gene clusters
were performed using Mauve version 2.3.1'" (Darling et al., 2004) and
EasyFig version 2.2.5'* (Sullivan et al., 2011). Nucleotide sequences
were analyzed using Artemis version 18" (Rutherford et al., 2000).

Results

T6SS gene clusters are widely distributed
among Chilean Salmonella isolates

Previous analyses performed by our group have aimed in the
identification of candidate T6SS effectors and cognate immunity
proteins in Salmonella genomes deposited in public databases (Amaya
et al., 2022; Blondel et al,, 2023). In the present study, the analysis
focused on genome sequences of Salmonella isolates obtained from
different environmental sources in Chile, in order to shed light on the
repertoire of T6SS candidate effectors present in Salmonella inhabiting

7 https://software.broadinstitute.org/morpheus

8 https://tcoffee.crg.eu/apps/tcoffee/do:expresso

9 https://mafft.cbrc.jp/alignment/server/index.html

10 https://espript.ibcp.fr/ESPript/ESPript/

11 https://darlinglab.org/mauve/mauve.html

12 https://mjsull.github.io/Easyfig/files.html

13 https://sanger-pathogens.github.io/Artemis/Artemis/
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our local geography. To this end, we analyzed a database of 695 high-
quality sequenced Salmonella genomes from strains isolated from
surface water and animal sources. Most isolates in this collection come
from surface waters (674 isolates representing 34 serotypes), while 21
isolates representing only 8 serotypes were obtained from animal
sources (14 in chicken, 3 in pigeon, 2 in pig and 2 in duck).
Interestingly, the most frequently isolated serotypes were S. Infantis
(n=169), S. Agona (n =71) and S. Newport (n = 11).

To identify T6SS gene clusters we used the T6SS prediction tool
from the SecreT6 web server (see text footnote 2), which identified
622 putative T6SS gene clusters in 608 Salmonella genomes (Table 1;
Supplementary Table S1). A more in-depth analysis revealed that these
T6SS gene clusters correspond to those encoded in SPI-6, SPI-19 and
SPI-21 (Table 1; Supplementary Figure S1). We could not identify
T6SS gene clusters encoded in SPI-20 or SPI-22 in the genome of any
isolate from our database. The SPI-6 T6SS gene cluster is widely
distributed in 518 of the 695 genomes analyzed (74.5%), while the
SPI-19 and SPI-21 T6SS gene clusters were only detected in 89 (12.8%)
and 14 (2%) genomes, respectively (Table 1). Most isolates carried a
unique T6SS gene cluster in SPI-6, SPI-19 or SPI-21, while a group of
isolates belonging to serotype S. Livingstone harbors both SPI-6 and
SPI-19 T6SS gene clusters. In contrast, no complete T6SS gene cluster
was detected in isolates belonging to serotypes S. Enteritidis and
S. Stanley.

To identify high-confidence putative effectors encoded within
every T6SS gene cluster detected, each ORF within these gene clusters
was analyzed based on four criteria: (i) identification of candidate
effectors through Bastion6 analysis (a bioinformatic tool that predicts
T6SS effectors based on amino acid sequence, evolutionary
information, and physicochemical properties); (ii) identification of
putative immunity proteins by operon prediction (Operon-mapper;
Taboada et al., 2018) and detection of signal peptides (SignalP 6.0) and
transmembrane domains (TMHMM 2.0); (iii) identification of
conserved functional domains associated with bona fide T6SS effectors
(INTERPROSCAN, PROSITE, NCBI-CDD, MOTIE, and Pfam); and
(iv) functional biochemical prediction using the HHpred
HMM-HMM server. In addition, we further analyzed these T6SS gene
clusters to identify potential unannotated ORFs that could encode
putative effectors and cognate immunity proteins. Thus, our analysis
revealed the presence of 6 new effector candidates encoded within the
SPI-6 (4 effectors) and SPI-21 (2 effectors) T6SS gene clusters.

The VR3 within the SPI-6 T6SS gene cluster
of isolates from surface waters harbor four
candidate T6SS effector proteins

Most T6SS effector proteins identified in Salmonella are encoded
within three variable regions (VR1-3) of SPI-6 (Blondel et al., 2023).
We have previously shown that the VR3 of SPI-6, located downstream
of the tssI gene, exhibits the greatest diversity of Salmonella T6SS
effectors (Blondel et al., 2023). This is mainly due to the presence of a
variable number of Rhs effector proteins that harbor C-terminal
extensions encoding endonuclease domains, such as DNases, RNases,
and deaminases, as well as ADP-ribosyltransferases (Blondel et al., 2023).

Our analysis identified 4 new putative effector proteins and
cognate immunity proteins (Table 2; Figure 1) encoded in the VR3 of
SPI-6 distributed in isolates of serotypes S. Braenderup, S. Albany,
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TABLE 1 T6SS effectors and cognate immunity proteins encoded in T6SS gene clusters in Chilean Salmonella isolates.

Source of
sample
(Number
of isolates)

Water (510),
Chicken (5),
Duck (2), Pig
(2), Pigeon (3)

T6SS
gene
cluster

SPI-6

T6SS effector®

Tae2

Serotypes (Number of isolates with the corresponding T6SS effector)

S. Adelaide (4), S. Albany (1), S. Anatum (12), S. Bovismorbificans (37), S. Braenderup (4), S. Brandenburg
(4), S. Cerro (12), S. Corvallis (9), S. Derby (1), S. Edinburgh (13), S. Give (4), S. Hadar (2), S. Heidelberg
(1), S. Infantis (152), S. I -:b:1,5 (2), S. I 1,4,[5],12:d:- (1), S. I 1,4,[5],12:i:- (1), S. Johannesburg (1), S.
Kentucky (1), S. Montevideo (2), S. Muenchen (5), S. Newport (1), S. Oranienburg (5), S. Panama (15), S.
Paratyphi B (2), S. Sandiego (3), S. Santiago (4), S. Senftenberg (35), S. Soerenga (3), S. Tennessee (2), S.
Thompson (10), S. Typhimurium (46), S. Worthington (4)

Tae4

S. Adelaide (4), S. Albany (1), S. Anatum (12), S. Bovismorbificans (38), S. Braenderup (3), S. Cerro (11),
S. Corvallis (10), S. Derby (1), S. Edinburgh (13), S. Give (4), S. Goldcoast (11), S. Hadar (2), S. Heidelberg
(1), S. Infantis (151), S. T -:b:1,5 (3), S. I 1,4,[5],12:d:- (1), S. T 1,4,[5],12:i:- (1), S. Kentucky (1), S.
Livingstone (23), S. Mbandaka (4), S. Montevideo (2), S. Muenchen (7), S. Newport (44), S. Oranienburg
(5), S. Panama (15), S. Paratyphi B (2), S. Sandiego (3), S. Santiago (4), S. Senftenberg (33), S. Soerenga (3),
S. Tennessee (2), S. Thompson (10), S. Typhimurium (46), S. Worthington (4)

Tge2P

S. Adelaide (4), S. Bovismorbificans (38), S. Braenderup (3), S. Corvallis (10), S. Give (1), S. Hadar (2), S.
Heidelberg (1), S. Infantis (152), S.11,4,[5],12:d:- (1), S. Johannesburg (1), S. Kentucky (1), S. Livingstone
(7), S. Mbandaka (4), S. Muenchen (7), S. Newport (23), S. Sandiego (3), S. Senftenberg (35), S. Soerenga
(3), S. Tennessee (2), S. Thompson (10), S. Typhimurium (1), S. Worthington (4)

Tldel

S. Adelaide (4), S. Albany (1), S. Anatum (12), S. Bovismorbificans (38), S. Braenderup (3), S. Brandenburg
(4), S. Cerro (13), S. Corvallis (10), S. Derby (1), S. Goldcoast (11), S. Hadar (2), S. Heidelberg (1), S. Infantis
(152), 8.11,4,[5],12:d:- (1), S. 1 1,4,[5],12:i:- (1), S. Johannesburg (1), S. Kentucky (1), S. Livingstone (25), S.
Mbandaka (4), S. Muenchen (7), S. Newport (35), S. Paratyphi B (2), S. Sandiego (3), S. Senftenberg (1), S.
Soerenga (3), S. Tennessee (2), S. Thompson (10), S. Typhimurium (46), S. Worthington (4)

L-Ala, D-Glu endopeptidase

S. Bovismorbificans (37), S. Braenderup (1), S. Brandenburg (4), S. Edinburgh (13), S. Give (4), S. I -:b:1,5
(4), S. Johannesburg (1), S. Mbandaka (4), S. Montevideo (2), S. Newport (18), S. Oranienburg (5), S.
Panama (15), S. Sandiego (3), S. Worthington (4)

PgP

S. Braenderup (2)

TseH-like

S. Edinburgh (13), 8. I -:b:1,5 (6), S. Panama (15)

Peptidase_M64

S. Braenderup (2), S. Give (4), S. Montevideo (2), S. Senftenberg (34), S. Tennessee (2)

RhsA-HNHc

S. Tennessee (2)

RhsA-Ntox47

S. Brandenburg (2), S. I 1,4,[5],12:i:- (1), S. Typhimurium (44)

RhsA-Tox-HNH-EHHH

S. Braenderup (2), S. Derby (1)

PAAR-RhsA-HNHc

S. Anatum (1), S. Edinburgh (1), S. Infantis (132), S. Kentucky (1), S. Senftenberg (1)

PAAR-RhsA-Ntox47

S. Give (3), S. Livingstone (8), S. Muenchen (7), S. Newport (14), S. Panama (15), S. Sandiego (2)

PAAR-RhsA-Tox-HNH-EHHH

S. Johannesburg (1), S. Tennessee (2)

PAAR-RhsA-AHH

S. Goldcoast (11)

PAAR-RhsA-GIY-YIG

S. Livingstone (8)

RhsA-Tox-ART-HYD1

S. Thompson (7)

PAAR-RhsA-Tox-ART-HYD1

S. Johannesburg (1)

Rhspain

S. Typhimurium (36)

PAAR-RhsA-NucA_B

S. Braenderup (1)

PAAR-RhsA-GH-E

S. Albany (1)

PAAR-RhsA-CdiA

S. Tennesse (2)

RhsA-CdiA S. Derby (1)

S. Adelaide (4), S. Braenderup (3), S. Brandenburg (2), S. Cerro (12), S. Derby (1), S. Edinburgh (5), S. Give (1), S.
PAAR-RhsA-CT Hadar (2), S. Heidelberg (1), S. 1 1,4,[5],12:i:- (1), S. Mbandaka (1), S. Montevideo (2), S. Newport (21), S.

Paratyphi B (2), S. Sandiego (3), S. Soerenga (3), S. Thompson (10), S. Typhimurium (1), S. Worthington (4)

S. Braenderup (2), S. Cerro (12), S. Edinburgh (5), S. Give (1), S. Hadar (2), S. Johannesburg (1), S.
RhsA-CT

Thompson (9), S. Typhimurium (1)
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TABLE 1 (Continued)

T6SS
gene

Source of T6SS effector?

sample

10.3389/fmicb.2024.1496223

Serotypes (Number of isolates with the corresponding T6SS effector)

(Number cluster
of isolates)
‘ Water (66) ‘ SPI-19 PAAR-RhsA-CT S. Agona (65), S. T 4:f,g,s:1,2 (1)
‘ ‘ VgrG-PyocinS-HNHc S. IIIb 35:i:z (1), S. I1Ib 48:i:z (7)
‘ Water (13) ‘ SPI-21 Glucosaminidase S. IIIb 35:i:z (1), S. I1Ib 48:i:z (11)
‘ BTH_I12691 S. TIIb 35:i:z (1)

“T6SS effectors and immunity proteins are designated according their formal name (in the case of those previously reported in the literature) or indicating the functional domains present in
the predicted proteins (in the case of those having no formal names). New T6SS candidate effectors identified in this study are highlighted in bold type.

TABLE 2 New putative T6SS effectors and cognate immunity proteins encoded in the SPI-6 T6SS gene cluster of Chilean Salmonella isolates.

T6SS effector genes

Cognate T6SS immunity
protein genes

. . o TM or signal
oo (e Serotype- Variable Predicted activity/ ORF(s) o tid%/
isolate Region Domain peptia 5
Domain
Effectors targeting nucleic acids
S. Braenderup DNase/PAAR-RhsA-
FA1083_3621 1,498 3 FA1083_3620 No/DUF6707
FA1083 NucA_B
FA1443_1959 1,566 S. Albany FA1443 3 DNase/PAAR-RhsA-GH-E | FA1443_1960 No/TPR
FA1455_4074 S. Tennessee FA1455 FA1455_4073
1,560 S. Tennessee 3 RNase/PAAR-RhsA-CdiA No/Mafl
CFSAN035156_3316 CFSAN035156_3317
CFSAN035156
FA1451_3438 372 S. Derby FA1451 3 RNase/RhsA-CdiA FA1451_3439 No/AntA

“Presence or absence of transmembrane domains (TM) or a signal peptide, and protein domains present in the putative immunity protein genes.

S. Tennessee and S. Derby. Three of these candidates are specialized
Rhs effector proteins with predicted nuclease activity, including 2
DNases and 1 RNase, while only one is a cargo Rhs effector with
putative RNase activity (Table 2). The first putative effector
(FA1083_3621 in S. Braenderup FA1083) is a large 1,498 amino acid
Rhs protein that harbors an N-terminal PAAR domain and a
C-terminal Nuclease A/Nuclease B (NucA_B) domain with predicted
DNase activity (Table 2; Figure 1). It should be noted that FA1083_3621
is predicted to be encoded in a bi-cistronic unit with FA1083_3620
(Table 2). This latter ORF encodes a 204 amino acid protein with a
DUF6707 domain that may correspond to the cognate immunity
protein of FA1083_3621. The second candidate effector
(FA1443_1959 in S. Albany FA1443) with predicted DNase activity
also corresponds to a 1,566 amino acid Rhs protein that harbors an
N-terminal PAAR domain and the putative GH-E domain in its
C-terminal end (Table 2; Figure 1). The GH-E domain is found in
members of the HNH/ENDO VII superfamily nuclease with
conserved glycine, histidine and glutamate residues. This putative
effector was also predicted to be co-transcribed with its respective
putative immunity protein gene that encodes a tetratricopeptide
repeat (TPR)-containing protein (FA1443_1960 in S. Albany FA1443).
The third candidate effector (FA1455_4074 in S. Tennessee FA1455)
is a 1,560 amino acid Rhs protein with a predicted N-terminal PAAR
domain and a C-terminal contact-dependent growth inhibition
protein A (CdiA) domain with putative RNase activity (Table 2;
Figure 1). The gene encoding this candidate effector is predicted to
be part of a bi-cistronic unit with FA1455_4073, encoding its putative
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immunity protein (Table 2; Figure 1). Of note, FA1455_4073 harbors
a multiple adhesin family I (MafI) domain that is frequently found in
cognate immunity proteins of bacterial toxin systems (Zhang et al.,
2012). The fourth new candidate effector identified in this study is a
372 amino acid Rhs protein with a predicted CdiA domain in its
C-terminal end (FA1451_3438 in S. Derby FA1451) (Table 2;
Figure 1). FAI451_3438 is predicted to be co-transcribed with
FA1451_3439, encoding its cognate immunity protein (Table 2;
Figure 1). FA1451_3439 harbors an anti-repressor A (AntA) domain
usually found in phage anti-repressor proteins (Sandt et al., 2002). It
is worth mentioning that the CdiA domain found in candidate
effectors FA1455_4074 and FA1451_3438 has not been previously
associated with any Rhs effector protein in Salmonella.

The genetic structure and repertoire of
effector proteins encoded in the SPI-6
T6SS gene cluster vary considerably among
Salmonella isolates of the same serotype

It has been reported that the genetic structure of the T6SS gene
clusters and the repertoire of effector proteins varies between different
serotypes of Salmonella (Amaya et al., 2022; Blondel et al., 2023).
Therefore we analyzed the genetic structure of SPI-6 and the
distribution of previously identified effector proteins (Table 1;
Supplementary Table S2). We identified 19 out of the 32 previously
reported effectors encoded in the SPI-6 T6SS gene cluster. The three
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identified. ORFs encoding new E/I modules are highlighted in different colors
were identified by BLASTh analyses as described in Materials and Methods.
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The SPI-6 T6SS gene cluster encodes new putative T6SS effector proteins. (A) Comparative genomic analysis of the SPI-6 T6SS cluster of S.
Braenderup FA1083, S. Albany FA1443, S. Tennessee FA1455 and S. Derby FA1451. BLASTn sequence alignment was performed and visualized using
EasyFig (Sullivan et al., 2011). (B) Schematic representation and distribution among Salmonella genomes of each new effector and immunity protein

according to the predicted functions. Homologs for each component

most frequently distributed T6SS effectors are encoded in VR1-2 of
SPI-6. These effector proteins were Tae4 (34/36), Tae2 (32/36) and
Tldel (29/36). In VR3, the region showing the greatest diversity of
Salmonella T6SS effectors, the most prevalent effector proteins were
PAAR-RhsA-Ntox47 (6/36) and PAAR-RhsA-HNHc (5/36).

Next, we performed a hierarchical clustering analysis to shed
lights into the distribution of effectors and candidate effectors encoded
in the SPI-6 T6SS gene cluster identified (Supplementary Table S1).
As illustrated in Figure 2, the four bona fide effectors encoded within
VR1-2 (Tae2, Tae4, Tge2 and Tldel) were the most conserved across
the genomes of isolates representing 29 to 34 Salmonella serotypes.
However, some of these effectors are missing from the genomes of all
isolates from a few Salmonella serotypes. In VR3, the most prevalent
effector protein was PAAR-RhsA-Ntox47, while PAAR-RhsA-AHH,
PAAR-RhsA-GIY-YIG, PAAR-RhsA-Tox-ART-HYDI1, RhsA-Tox-
ART-HYD1 and RhsA-HNHc were the least prevalent. It is worth
mentioning that a greater diversity of VR3-encoded effectors is
observed in those serotypes that lack some of the more conserved
VR1-2-encoded effectors (Figure 2).

Analysis of genetic structure variation of the SPI-6 T6SS gene
cluster between serotypes and between isolates of the same serotype
revealed interesting observations. First, we identified a variable number
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of tssI-eagR-rhs gene modules encoded in VR3. A number of isolates
from serotypes S. Braenderup, S. Kentucky, S. Sandiego and S. Tennessee
harbor two tssI-eagR-rhs modules (Figure 3), while most isolates from
serotypes carrying the SPI-6 T6SS gene cluster only harbor one tssI-
eagR-rhs module (Figure 4). Remarkably, in S. Braenderup the genetic
structure of SPI-6 differs between isolates CFSAN43223, FA0982 and
FA1083. CFSAN43223 has only one fssI-eagR-rhs module, while FA0982
and FA1083 have two of these modules, as previously reported in
S. Tennessee isolate CFSAN070645 (Blondel et al., 2023) (Figure 3;
Supplementary Figure S2). Isolates FA0982 and FA1083 encode the
RhsA-Tox-HNH-EHHH effector, as well as two other effectors
harboring C-terminal ends with unknown function (PAAR-RhsA-CT
and RhsA-CT). Additionally, isolate FA1083 encodes a new PAAR-
RhsA-NucA_B effector with putative DNase activity, as described above
(Figures 1, 3). It is important to note that isolate CFSAN43223 has an
internal deletion within VR2 in comparison to isolates FA0982 and
FA1083, and encodes only the Tldel effector. In contrast, isolates
FA0982 and FA1083 encode two copies of the Tge2 effector in VR2
(Supplementary Figure S2). In S. Kentucky, our analysis of the single
isolate present in the database (CFSAN035145) identified two tssI-eagR-
rhs modules in VR3. These modules encode the PAAR-RhsA and
PAAR-RhsA-HNHCc effector proteins, respectively (Figure 3). Notably,
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Prevalence of ORFs encoding T6SS effectors and candidate effectors in the SPI-6 T6SS gene cluster of Chilean Salmonella isolates. A hierarchical clustering
analysis was conducted using MORPHEUS, as detailed in the Materials and Methods section. The color code in the heatmap indicates the frequency of a
given ORF among all isolates of a particular Salmonella serotype. The names of new T6SS candidate effectors identified in this study are highlighted in red.

the first tssI-eagR-rhs module has a high sequence identity with only one
gene module previously reported in S. Tennessee CFSAN070645
(Blondel et al., 2023). Similarly, the second tssI-eagR-rhs module of
S. Kentucky CFSANO035145 shows high sequence identity with the
corresponding module encoded in VR3 of S. Typhimurium 14028s.
Furthermore, S. Kentucky CFSAN035145 harbors an ORF with a
predicted DUF4056 domain encoded in a bi-cistronic unit in VR2 never
reported in Salmonella, which may constitute a new T6SS candidate
effector (Figure 3). In S. Sandiego, the genetic structure of the SPI-6
T6SS gene cluster is conserved between isolates FA0894 and
CFSAN105324, that harbor two tssI-eagR-rhs gene modules encoding a
PAAR-RhsA-CT (C-terminal end with unknown function) and the
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PAAR-RhsA-Ntox47 effector proteins, respectively (Figure 3). A
genomic comparative analysis of this latter effector with the
corresponding T6SS effector in S. Typhimurium 14028s suggest that in
isolates of serotype S. Sandiego the Rhs,,.;, and RhsA-Ntox47 were at
some point a single ORF that was later split due to the accumulation of
nonsense mutations (Figure 3). Similar to S. Kentucky, the two fssI-
eagR-rhs gene modules encoded in SPI-6 of S. Sandiego share high
sequence identity with the corresponding gene modules encoded in
S. Tennessee CFSAN070645 and S. Typhimurium 14028s, respectively
(Figure 3). It is worth mentioning that Chilean S. Sandiego isolates
harbor the Tae2 and Tae4 effector proteins encoded in VR1, as well as
Tge2 and Tldel effectors encoded in VR2. Finally, in S. Tennessee, the
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The SPI-6 T6SS gene cluster in a number of Chilean Salmonella isolates includes two tss/-eagR-rhs gene modules in VR3. Comparative genomic
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Typhimurium 14028s was used for comparative purposes.

genomic organization of the T6SS gene cluster encoded in SPI-6 is
highly conserved not only among Chilean isolates but also among
previously reported S. Tennessee isolates (Blondel et al., 2023) (Figure 3).
Isolates of this serotype harbor two tssI-eagR-rhs gene modules encoding
a PAAR-RhsA-Tox-HNH-EHHH and a PAAR-RhsA-CdiA T6SS
effector proteins, respectively. Interestingly, unlike the other serotypes
described above, these two tssI-eagR-rhs gene modules do not share any
sequence identity with the corresponding module in S. Typhimurium
14028s. Altogether, these results suggest a distinct evolutionary origin
of tssI-eagR-rhs gene modules within the SPI-6 T6SS gene cluster.

On the other hand, the isolates belonging to the remaining 32
serotypes only contain one tssI-eagR-rhs gene module encoded in
the SPI-6 T6SS gene cluster. In these isolates, the distribution of
known and new candidate effectors varies considerably, even
among representatives of the same serotype. This is the case of
S. Livingstone, where two groups of isolates are distinguished. In
the first group, the VR3 encodes the PAAR-RhsA-Ntox47 effector,
while isolates in the second group harbor the PAAR-RhsA-
GIY-YIG effector (Figure 5). In addition, the VR2 in the first group
encodes the Tge2 and Tldel effector proteins, while in the second
group only encodes Tldel (Figure 5; Supplementary Table S1).
Remarkably, the first group only harbor the SPI-6 T6SS gene
cluster while the second group also encodes the SPI-19 T6SS gene
cluster. Furthermore, the genetic structure of the SPI-6 T6SS
cluster in the first group differs more with the T6SS gene cluster of
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S. Typhimurium 14028s when compared to the second group
(Figure 5).

In isolates of serotype S. Give, the SPI-6 T6SS gene cluster shows
structural differences in VR2 and VR3. In VR2, the isolate
CFSAN043231 encodes the Tge2 and Peptidase M64 effector proteins,
other (CFSAN119452, CFSAN119453, and
CFSAN119454) carry a bi-cistronic unit encoding proteins with

while isolates
unknown function (Supplementary Figure S3). The putative immunity
protein encoding-gene of this bi-cistronic unit harbors a DUF4229
domain found in integral membrane proteins (Wang et al., 2023).
Another intriguing structural difference exists in VR3, where isolates
CFSAN119452, CFSAN119453, and CFSAN119454 encode a PAAR-
RhsA-Ntox47 effector protein, while isolate CFSAN043231 encodes a
PAAR-RhsA-CT and an RhsA-CT, both harboring C-terminal ends
with unknown functions (Supplementary Figure S3). Notably, the
putative immunity protein encoding-gene of the RhsA-CT candidate
effector harbors the Imm9 domain, which is frequently found in
cognate immunity proteins of bacterial toxin systems with RNase
activity (Zhang et al., 2012). Thus, the presence of the Imm9 domain
in the putative immunity protein-encoding gene suggests that the
C-terminal end of the RhsA-CT candidate effector has RNase activity.

The genetic organization of the SPI-6 T6SS gene cluster in
S. Newport varies between two groups of isolates. In the first group,
the isolates encode the PAAR-RhsA-Ntox47 effector in VR3 and the
Tge2 effector in VR2. Furthermore, in VR3, these isolates also contain
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an ORF with a predicted DUF6769 domain encoded in a bi-cistronic
unit with an ORF harboring an Imm26 domain, which is typically
found in cognate immunity proteins of bacterial toxin systems with
RNase activity (Zhang et al., 2012). The presence of the Imm26
domain in this ORF suggests that the DUF6769-containing protein is
a candidate effector with RNase activity. On the other hand, isolates
in the second group encode the PAAR-RhsA-CT effector in VR3 and
do not encode the Tge2 effector in VR2 (Supplementary Figure S4).
Of note, there is no sequence identity between the Rhs elements of
both groups of isolates, suggesting a different origin. In addition, the
sequence of the C-terminal end of the PAAR-RhsA-CT effector
encoded in these isolates shows high sequence similarity with the Rhs
element of S. Typhi CT18 (Supplementary Figure 54).

Similar findings were also identified in S. Edinburgh, where two
groups of isolates were distinguished. In VR3, isolates in the first
group encode the PAAR-RhsA-HNHc effector protein, while isolates
in the second group encode the PAAR-RhsA-CT and RhsA-CT
effectors with C-terminal with  unknown function
(Supplementary Figure S5). Notably, S. Edinburgh is one of the three

ends

Frontiers in Microbiology

135

serotypes in which the TseH-like effector is predicted to be encoded
in VR2 (Supplementary Figure S5; Supplementary Table S1).

Finally, the SPI-6 T6SS gene cluster in the remaining 32 serotypes is
highly conserved among isolates within the same serotype. However, the
T6SS effector repertoire and its distribution varies considerably among
these 32 serotypes (Figure 4). Notably, in VR3 these serotypes encode
several T6SS effector proteins with different anti-bacterial activities,
including putative DNases such as PAAR-RhsA-HNHc (S. Anatum,
S. Edinburgh, S. Infantis, S. Kentucky, S. Senftenberg), RhsA-HNHc
(S. Tennessee), RhsA-Tox-HNH-EHHH (S. Braenderup, S. Derby),
PAAR-RhsA-Tox-HNH-EHHH (8. Johannesburg, S. Tennessee), PAAR-
RhsA-AHH (S. Goldcoast) and PAAR-RhsA-GIY-YIG (8. Livingstone);
putative RNases such as RhsA-Ntox47 (S. Brandenburg, S.11,4,[5],12:i:-,
S. Typhimurium), PAAR-RhsA-Ntox47 (S. Give, S. Livingstone,
S. Muenchen, S. Newport, S. Panama, S. Sandiego) and DUF4329
(S. Anatum); and putative ADP-ribosyltransferases such as PAAR-
RhsA-Tox-ART-HYD1 (S. Johannesburg), RhsA-Tox-ART-HYD1
(S. Thompson) and RhsA,,;, (S. Typhimurium). Notably, 19 out of these
32 serotypes encode PAAR-RhsA-CT and RhsA-CT effectors harboring
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C-terminal ends with unknown function (Table 1; Figure 4). For
instance, S. Johannesburg isolate CFSAN 122905 encodes an RhsA-CT
candidate effector, along with a putative immunity protein harboring an
Imm8 domain, which is commonly found in immunity proteins of
bacterial toxin systems with RNase activity (Zhang et al., 2012). This
result suggests that the C-terminal end of the RhsA-CT candidate
effector has RNase activity.

The SPI-19 Rhs effectors of Chilean
Salmonella serotypes harbor C-terminal ends
with protein domains of unknown function

The SPI-19 encodes a T6SS gene cluster present in some of the
most prevalent Salmonella serotypes worldwide, such as S. Dublin,
S. Agona, S. Weltevreden and S. Gallinarum, among others. Despite
its contribution to intestinal colonization, antibacterial activity and
cytotoxicity against macrophages (Blondel et al., 2013; Blondel et al.,
2010; Pezoa et al., 2013, 2014; Schroll et al., 2019; Xian et al., 2020) no
effector protein of this T6SS has been experimentally validated and
tested. This is an important knowledge gap as infections triggered by
these serotypes cause major economic problems in animal production
and public health issues.

Our analysis identified the SPI-19 T6SS gene cluster in isolates
representing 4 out of the 42 serotypes encoding T6SS. Of note, the
genetic structure of this T6SS gene cluster differs among isolates of
these 4 serotypes (Figure 6). In S. Agona, there are two groups of
isolates that encode a PAAR-RhsA-CT effector and differ in the
putative cognate immunity protein. The first group encodes a putative
immunity protein with a predicted TPR domain, while in the second
group this protein harbors an Imm40 domain that is frequently found
in cognate immunity proteins of bacterial toxin systems with RNase
activity (Zhang et al., 2012) (Figure 6). Therefore, the presence of the
Imm40 domain in the putative immunity protein-encoding gene
suggests that the C-terminal end of the PAAR-RhA-CT candidate
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effector has RNase activity. Of note, a single S. Agona isolate
(CFSAN100497) lacks the SPI-19 T6SS gene cluster and harbors that
encoded in SPI-6, which encodes the effector RhsA-Ntox47. This
SPI-6 T6SS gene cluster exhibits high homology to the corresponding
cluster in S. Typhimurium 14028s (Supplementary Figure S6).

In the case of the only isolate of serotype S. I 4:f,g,s:1,2 analyzed, the
SPI-19 T6SS gene cluster exhibits high sequence conservation between
the tssK and tssI core component genes with those encoded in the
corresponding cluster of S. Dublin and S. Gallinarum (Figure 6). However,
this serotype encodes a PAAR-RhsA-CT effector that has a different
origin from the corresponding effector of S. Dublin and S. Gallinarum.
Furthermore, the cognate immunity protein of this PAAR-RhsA-CT
effector harbors an Imm40 domain (Zhang et al., 2012) (Figure 6),
suggesting that the C-terminal end of PAAR-RhsA-CT has RNase activity.

Although we were not able to identify new effector candidates in
the SPI-19 T6SS gene cluster of isolates belonging to serotypes S. IV
43:74,223:- and S. Livingstone, we found some features worth
mentioning. In the case of serotype S. IV 43:24,223:-, the SPI-19 T6SS
gene cluster is highly conserved among the 3 isolates analyzed.
However, it shares lower degree of sequence identity with the
corresponding gene cluster of S. Dublin and S. Gallinarum (Figure 6).
The same was true for the group of 14 S. Livingstone isolates carrying
both SPI-6 and SPI-19 T6SS gene clusters described above (Figure 6).

The SPI-21 T6SS gene cluster from

S. enterica subspecies arizonae and
diarizonae encodes two candidate

effectors

To date there is very limited information regarding the effector
proteins encoded in the SPI-21 T6SS gene cluster. Only one candidate
effector has been described in S. enterica subsp. arizonae serotype
62:74,223:- reference strain RSK2980, which corresponds to a specialized
VgrG protein with a C-terminal extension including a pyocin domain
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de sequences.

(S Type) (Blondel et al., 2009; Ho et al., 2017). Indeed, our bioinformatic
analysis identified the VgrG-PyocinS-HNHc effector in most isolates of
S. enterica subsp. diarizonae serotypes 48:i:z and 35:i:z (S. IIIb 48:i:z and
S. IIIb 35:1:z, respectively) analyzed (Table 1; Figure 7A). The predicted
cognate immunity protein of this candidate effector includes a inhibitory
immunity protein of colicin DNase and pyocins (Col_Imm_like)
domain, frequently present in immunity proteins of bacterial toxin
systems (Zhang et al., 2012) (Figure 7A). Noteworthy, the SPI-21 T6SS
gene cluster in all isolates of S. enterica subsp. diarizonae analyzed
encodes a new candidate effector including a glucosaminidase domain
with predicted peptidoglycan hydrolase activity (Table 3; Figure 7B).
The predicted cognate immunity protein carries the domain with no
name (DWNN). Furthermore, the SPI-21 T6SS gene cluster in the only
isolate of S. IIIb 35:i:z analyzed (CFSAN111176) encodes a second new
candidate effector with a predicted BTH_I2691 domain (Table 3;
Figure 7B). Of note, BTH_12691 is a T6SS effector protein originally
described in B. thailandensis (Russell et al., 2012), which exhibits
structural homology to colicin Ia (Parret et al., 2003). This suggests that
the BTH_I2691 candidate effector protein may have membrane pore-
forming activity. Finally, the SPI-21 T6SS gene cluster in all isolates of
S. enterica subsp. diarizonae analyzed exhibit a relatively low degree of
sequence identity with the corresponding gene cluster in S. enterica
subsp. arizonae RSK2980 (Figure 7A).

Global genome-wide distribution analysis
of the new candidate effectors identified in
SPI-6 and SPI-21 T6SS gene clusters

The identification of 6 new candidate T6SS effectors, harboring
protein domains frequently found in bacterial toxin systems, prompted
us to determine their distribution across Salmonella. To this end, the
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nucleotide sequence corresponding to the ORF encoding each
candidate effector was used in tBLASTx searches in publicly available
Salmonella genome sequences deposited in the NCBI database (March,
2024) and the distribution of each effector was determined. Our
analysis revealed that the new candidate effectors are distributed in a
limited number of serotypes (Figures 1B, 7B). Indeed, effectors PAAR-
RhsA-NucA_B, PAAR-RhsA-CdiA and RhsA-CdiA (encoded in the
SPI-6 T6SS gene cluster) are distributed in 10 to 13 serotypes, while
effector PAAR-RhsA-GH-E is distributed only in 5 serotypes
(Figure 1B). In the case of the two candidate effectors encoded in the
SPI-21 T6SS gene cluster, they are restricted to isolates of S. enterica
subsp. arizonae and S. enterica subsp. diarizonae (Figure 7B).

Discussion

The T6SS has emerged as a significant virulence and
environmental fitness factor for Gram-negative bacteria. The T6SS is
a versatile machine that delivers a wide range of effector proteins to
bacterial and/or eukaryotic cells. As a result, it has become an essential
weapon for mediating interbacterial competition and host-cell
interactions for many bacterial pathogens. In Salmonella, five T6SS
gene clusters have been identified within pathogenicity islands SPI-6,
SPI-19, SPI-20, SPI-21, and SPI-22 (Blondel et al., 2009; Fookes et al.,
2011) which belong to 4 different evolutionary lineages. However,
information regarding the presence and distribution of T6SS gene
clusters and their effector proteins is still limited, partly because most
analyses have focused on a limited number of strains of a few serotypes.

In this study, to expand our knowledge regarding the distribution
of T6SS gene clusters and the repertoire of T6SS effector proteins in
Salmonella, we performed bioinformatic and comparative genomic
analyses of a dataset including 695 S. enterica genomes, representing
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The SPI-21 T6SS gene cluster encodes new putative T6SS effector proteins. (A) Comparative genomic analysis of the SPI-21 T6SS cluster of S. enterica
subsp. diarizonae 48:i:z CFSAN043227, S. enterica subsp. diarizonae 35:i:z CFSAN111176 and S. enterica subsp. diarizonae 48:i:z CFSAN119408. BLASTn
sequence alignment was performed and visualized using EasyFig (Sullivan et al., 2011). SPI-21 TESS gene cluster from S. enterica subsp. arizonae
RSK2980 was used for comparative purposes. (B) Schematic representation and distribution among Salmonella genomes of each new effector and
immunity protein identified. ORFs encoding new E/I modules are highlighted in different colors according to the predicted functions. Homologs for
each component were identified by BLASTn analyses, as described in Materials and Methods.

TABLE 3 New putative T6SS effectors and cognate immunity proteins encoded in the SPI-21 T6SS gene cluster of Chilean Salmonella isolates.

T6SS effector genes Cognate T6SS immunity protein genes

Size Serotype-isolate Predicted activity/ = ORF(s) TM or signal
(aa) Domain peptide/Domain?

Effectors targeting peptidoglycan

CFSAN043227_5840 S. TIIb 48:i:z CFSAN043227 Peptidoglycan hydrolase/ | CESAN043227_5839
739 N No/DWNN
CFSAN119438_4687 S. TIIb 48:i:z CFSAN119438 Glucosaminidase CFSAN119438_4688

Effectors targeting inner membrane

Membrane-pore forming/
CFSANI111176_6167 884 S. IIIb 35:i:z CFSAN111176_6166 No/No
BTH_I2691

“Presence or absence of transmembrane domains (TM) or a signal peptide, and protein domains present in the putative immunity protein genes.

44 serotypes isolated in Chile from different sources including surface ~ Bao et al,, 2019). Since the presence of multiple T6SSs in the same
waters, backyard systems and wildlife, among others. As expected, the  isolate is not common among Salmonella serotypes, it is still unclear
SPI-6 T6SS gene cluster was the most prevalent in isolates of 36 how such multiplicity contributes to their environmental adaptation
different serotypes (87.48% of total Salmonella isolates), suggesting  and/or pathogenic potential. Other T6SS gene clusters are restricted
that the T6SSgp; is one of the most critical molecular toolboxes for  to specific serotypes. For instance, we identified the SPI-21 T6SS gene
Salmonella pathogenicity and environmental fitness. Our analysis also  cluster only in isolates belonging to S. enterica subsp. arizonae and
confirmed previous observations suggesting that the T6SSe 9 is  S. enterica subsp. diarizonae, as previously reported (Blondel et al.,
prevalent only in a subset of Salmonella serotypes, perhaps reflecting ~ 2009; Bao et al., 2019). Regarding the repertoire of T6SS effector
a contribution to Salmonella fitness in specialized environments and/  proteins of the Chilean Salmonella isolates, we identified 20 out of the
or hosts (Blondel et al., 2009; Bao et al., 2019). Interestingly, we provide 37 effectors previously identified in Salmonella (Blondel et al., 2009;
the first report on the presence of both SPI-6 and SPI-19 T6SS gene  Russell et al,, 2012; Benz et al., 2013; Whitney et al., 2013; Koskiniemi
clusters in isolates of serotype S. Livingstone, as previously reported et al., 2014; Sana et al., 2016; Ho et al., 2017; Sibinelli-Sousa et al.,
only in serotypes S. Dublin and S. Weltevreden (Blondel et al., 2009;  2020; Amaya et al., 2022; Jurénas et al., 2022; Lorente-Cobo et al.,
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2022; Hespanhol et al., 2022; Blondel et al., 2023). These effector
proteins are distributed across 42 serotypes. It is notable that the
content and distribution of T6SS effector proteins in local Salmonella
isolates differs from previous reports (Blondel et al., 2023) and show
differences between isolates of the same serotype. It is therefore
tempting to speculate that diverse combinations of these proteins may
have different effects on the environmental fitness, which could
differentially contribute to geographic adaptations and/or pathogenic
potential of Salmonella strains. Further experimental work is required
to confirm this hypothesis.

One of these differences is exemplified by the variable number of
tssI-eagR-rhs gene modules within the VR3 of the SPI-6 T6SS gene
cluster. All these modules encode different T6SS effectors and candidate
effectors. In Salmonella, 23 T6SS effector proteins with putative
nuclease activity targeting DNA and RNA have been identified so far
encoded in VR3 (Blondel et al., 2009; Koskiniemi et al., 2014; Ho et al.,
2017; Amaya et al., 2022; Hespanhol et al., 2022; Blondel et al., 2023).
In this work, we identified 4 new candidate effector proteins with
potential nuclease activity within VR3 in SPI-6. This expands our
knowledge regarding the versatility of the Salmonella T6SS effectors in
targeting bacterial nucleic acids and highlights how they are one of the
main bacterial targets of Salmonella T6SS effector proteins. Most of
these effector proteins correspond to Rhs proteins with C-terminal
ends including domains with predicted antibacterial activities, thus
contributing to the diversification of the molecular targets of T6SSs in
Salmonella. This was expected, given that previous studies have
demonstrated that the VR3 of the SPI-6 T6SS gene cluster encodes a
variable number of Rhs elements (Blondel et al., 2009; Amaya et al.,
2022; Blondel et al, 2023) and that several Rhs proteins carry
C-terminal polymorphic endonuclease domains, which are associated
with T6SS effectors in Salmonella and other bacteria (Zhang et al.,
2012; Koskiniemi et al., 2014; Amaya et al., 2022; Blondel et al., 2023).

Another exciting observation is that many of the putative SPI-6
and SPI-19 Rhs effectors identified in this study harbor C-terminal
extensions with unknown function. However, the presence of putative
immunity proteins encoded next to these Rhs proteins suggests that
these effectors have an antibacterial activity. Thus, it is tempting to
speculate that the arsenal of Salmonella T6SS effectors harbors a
diverse array of protein domains with yet-to-be-discovered activities
and bacterial targets.

Regarding the SPI-19 T6SS gene cluster, we could not identify new
T6SS candidate effectors encoded in the genome of the local isolates
analyzed. Of note, the previously identified T6SS candidate effectors,
SED_RS06235 and SED_RS06335, encoded in the SPI-19 T6SS gene
cluster of S. Dublin CT_02021853 harbor the LysM and
metallopeptidase M91 domains, respectively (Amaya et al., 2022),
both of which target the peptidoglycan layer.

The only known T6SS effector encoded in the SPI-21 T6SS gene
cluster corresponds to VgrG-PyocinS-HNHc, which harbors putative
nuclease activity and was previously identified in S. enterica subsp.
arizonae 62:z4,223:-s reference strain RSK2980 (Blondel et al., 2009;
Ho et al., 2017). Noteworthy, the SPI-21 T6SS gene cluster from our
local Salmonella isolates encodes two new candidate effector proteins.
The first one includes a glucosaminidase domain with peptidoglycan
hydrolase activity, while the second one harbors the BTH_I2691
domain with predicted membrane-pore forming activity. This is the
first report of a T6SS candidate effector harboring the BTH_I2691
domain present in the Salmonella genus, which expands our
knowledge on the molecules targeted by T6SS in competing bacteria.
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Furthermore, this BTH_I2691 domain exhibits predicted structural
homology to colicin Ia, a bactericidal protein that forms a voltage-
dependent channel in the inner membrane of target cells (Parret et al.,
2003). These findings suggest that T6SSgp ,, attacks different bacterial
targets (i.e., nucleic acids, peptidoglycan and inner membrane),
contributing to the fitness and virulence of both S. enterica subsp.
arizonae and S. enterica subsp. diarizonae.

Finally, the distribution analysis of the six new T6SS candidate
effectors identified in this study in Salmonella genomes from the NCBI
database revealed that they are distributed in a limited number of
serotypes, in contrast to the distribution previously reported for other
T6SS candidate effectors in Salmonella (Blondel et al., 2023).

Altogether, our work broadens the repertoire of Salmonella T6SS
effector proteins and provides evidence that the SPI-6, SPI-19 and
SPI-21 T6SS gene clusters harbor a vast array of potential antibacterial
effectors. This diversity is particularly evident in the VR3 of the SPI-6
T6SS gene cluster in our local Salmonella isolates, especially in those
serotypes that lack some of the most conserved T6SS effectors
encoded in VR2 (Figure 6). Finally, although this study increases the
number of putative Salmonella antibacterial effectors against
competing bacteria, it cannot be ruled out that those new candidate
effectors targeting nucleic acids and cellular membranes may also
affect eukaryotic cells. This represents a significant gap in our current
understanding of the roles played by T6SS in host-pathogen
interaction. In fact, no T6SS effector protein identified to date in
Salmonella has been confirmed to target eukaryotic organisms, despite
the clear contribution of Salmonella T6SSs to intracellular replication,
survival and cytotoxicity inside the host immune cells (Mulder et al.,
2012; Blondel et al., 2013; Schroll et al., 2019). Further research is
required to address this issue.
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Phylogenetic analysis and E/I module composition of T6SS gene clusters in
Chilean Salmonella isolates. Concatenated TssC aminoacid sequences
encoded in the genome of 605 Chilean Salmonella isolates were aligned with
ClustalW using MEGA version 7.0. Next, a maximume-likelihood phylogenetic
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Introduction: The Bacillus cereus group encompasses a complex group of closely
related pathogenic and non-pathogenic bacterial species. Key members include B.
anthracis, B. cereus, and B. thuringiensis organisms that, despite genetic proximity,
diverge significantly in morphology and pathogenic potential. Taxonomic challenges
persist due to inconsistent classification methods, particularly for B. cereus isolates
that resemble B. anthracis in genetic clustering.

Methods: This study investigated B. cereus group isolates from blood smears of
animal carcasses in Kruger National Park, uncovering an unusual isolate with B.
cereus features based on classical microbiological tests yet B. anthracis-like genomic
similarities with an Average Nucleotide Identity (ANI) of >95%. Using comparative
genomics, pan-genomics and whole genome Single Nucleotide Polymorphism
(wgSNP) analysis, a total of 103 B. cereus group genomes were analyzed, including
nine newly sequenced isolates from South Africa and a collection of isolates that
showed some classification discrepancies, thus classified as “anomalous.”

Results and discussion: Of the 36 strains identified as B. anthracis in GenBank,
26 clustered phylogenetically with the four confirmed B. anthracis isolates from
South Africa and shared 99% ANI. Isolates with less than 99% ANI alignment to B.
anthracis exhibited characteristics consistent with B. cereus and/or B. thuringiensis,
possessing diverse genetic profiles, insertion elements, resistance genes, and
virulence genes features, contrasting with the genetic uniformity of typical B.
anthracis. The findings underscore a recurrent acquisition of mobile genetic
elements within B. cereus and B. thuringiensis, a process infrequent in B. anthracis.

Conclusion: This study highlights the pressing need for standardized taxonomic
criteria in B. cereus group classification, especially as anomalous isolates emerge.
This study supports the existing nomenclature framework which offers an effective
solution for classifying species into genomospecies groups. We recommend isolates
with ANI >997% to standard reference B. anthracis be designated as typical B. anthracis
in GenBank to maintain taxonomic clarity and precision.

KEYWORDS

Bacillus cereus group, Bacillus anthracis, whole genome sequencing, pan-genomics,
average nucleotide identity
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1 Introduction

The Bacillus cereus sensu lato (s. I) also referred as B. cereus group,
is a complex cluster of Gram-positive, spore-forming, rod-shaped
bacteria comprising both pathogenic and non-pathogenic species
(Okinaka and Keim, 2016). Over 18 members have been classified as
part of the B. cereus group; B. albus, B. anthracis, B. cereus,
B. cytotoxicus, B. luti, B. mobilis, B. mycoides, B. nitratireducens
B. pacificus, B. paranthracis, B. paramycoides, B. proteolyticus,
B. pseudomycoides, B. toyonensis, B. thuringiensis, B. tropicus,
B. wiedmannii, and B. weihenstephanensis (Carroll et al., 2020a,b). The
most prominent pathogenic species include B. anthracis, B. cereus, and
B. thuringiensis, each displaying unique phenotypic and virulence
traits. For instance, B. anthracis presents as non-motile, encapsulated,
non-hemolytic in sheep blood agar, and sensitive to both y-phage and
penicillin (WHO, 2008), while B. cereus and B. thuringiensis are
hemolytic, motile, non-encapsulated, and exhibits y-phage and
penicillin resistance (Vilas-Boas et al., 2007; Kolsto et al., 2009).

Bacillus anthracis is a zoonotic pathogen which causes anthrax
disease (Turnbull, 2002). The disease primarily affects livestock,
wildlife and humans and may present as cutaneous anthrax, acquired
through contact with contaminated food or meat of animal with the
disease, and inhalation anthrax, from breathing in airborne anthrax
spores (WHO, 2008). Pathogenicity in B. anthracis is primarily
attributed to plasmids pXO1 and pXO2 which harbor the anthrax
toxin genes that include protective antigen (pagA), lethal factor (lef)
and edema factor (cya) and the poly-y-D-glutamic acid (PGA) capsule
genes (capABCDE), respectively (Turnbull, 2002; Pena-Gonzalez et al.,
2018). In contrast, Bacillus cereus acts as an opportunistic pathogen
capable of causing gastrointestinal and non-gastrointestinal infections
(Kotiranta et al., 2000; Bottone, 2010). Gastrointestinal disease may
manifest as diarrheal (linked to toxins such as hemolysin BL,
non-hemolytic enterotoxin, and cytotoxin K) or emetic illness (due to
the cereulide toxin encoded by cesABCDPTH) (Schoeni and Wong,
2005; Owusu-Kwarteng et al., 2017; Ehling-Schulz et al., 2006). On the
other hand, Bacillus thuringiensis, often employed as a natural
insecticide which is not harmful to humans, contains insecticidal
crystal protein genes (cry and/or cyt), which may lead to its
misidentification as B. cereus in the absence of these genes (Kolsto
et al., 2009).

Due to the clinical, agricultural, and economic importance of
B. cereus s.1, especially the pathogenic species, substantial research has
focused on their classification and taxonomy (Baldwin, 2020; Carroll
et al,, 2020a,b). The classification of these species was historically
based on characteristics such as hemolytic activity, colony
morphology, y-phage and penicillin activity and the detection of
virulence markers that were alleged to be species-specific (Rasko et al.,
2005; Kamar et al., 2013; Ehling-Schulz et al., 2019). However, the
emergence of exceptional genomes, such as B. thuringiensis isolates
carrying cry genes that phylogenetically grouped with B. anthracis
(Kolstg et al., 2009), along with atypical B. cereus and B. cereus biovar
anthracis strains carrying the pBCXO1 and pBCXO2 plasmids, which
contain anthrax virulence factors (Antonation et al., 2016; Baldwin,
2020), and the loss of virulence plasmids in B. anthracis isolates
(Marston et al,, 2005), suggested that the identification and
classification of B. cereus group isolates should not rely solely on
phenotypes and virulence factors (Baldwin, 2020; Brézillon et al.,
2015). In some instances, molecular analysis targeting virulence
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determinants of B. anthracis revealed the presence of homologous
PGA that synthesizes capsular genes (capABCDE) of B. anthracis in
other Bacillus species (pgsABCDE) (Lekota et al., 2016; Lekota et al.,
2018). Moreover, varying phenotypic characteristics by expressed
bacterial isolates and/or limited genomic databases may have led to
nomenclatural discrepancies observed in the B. cereus group
(Afshinnekoo et al., 2015; Abdelli et al., 2023), which could have
profound implications for clinical and public health settings (Carroll
et al., 2020a,b; Carroll et al., 2022a,b,c). To date, the phenotypic
characteristics (i.e., hemolysis activity, capsule presence/absence),
plasmids and virulence factors still play a critical role in routine
diagnosis and surveillance of potential disease outbreaks associated
with pathogenic members of the B. cereus group (Mogaji et al., 2024).
Genetic techniques such as DNA-DNA hybridization (DDH)
(Goris et al., 2007), multiple-locus variable-number tandem repeat
analysis (MLVA) (Marston et al., 2006), amplified fragment length
polymorphisms (Guinebreti¢re et al., 2008), 16S RNA (Braun et al.,
2021) and 23S RNA (Sacchi et al., 2002) were entirely instrumental
methods used to differentiate members of the B. cereus group. The
growing scheme of technology and rising novel species saw an increase
in the application of more gene-specific target sequencing, such as
single- and multi-locus sequence typing (SLST and MLST) methods,
which became and remained some of the essential tools used for the
identification of the B. cereus group members (Guinebreticre et al.,
2008). The pantoate-3-alanine ligase (panC) emerged as a popular
target locus used in SLST to assign members of the B. cereus group into
seven distinct phylogenetic groups (group I-VII) based on sequence
variations providing superior resolution compared to other traditional
methods such the 16S RNA (Guinebretiere et al.,, 2008). The seven-
group assignment was later updated to an eight-group panC group
assignment/genomospecies (Group I-VIII) with species names as
representative names for some of the assigned groups (Carroll et al.,
2022a,b,c). Group I contains species closely related to B. pseudomycoides.
Group II (mosaicus/luti) includes certain strains that exhibit unique
characteristics but are less commonly identified. Group III (mosaicus)
is notably the most diverse group containing strains with emetic toxin
production (cereulide), anthrax virulence genes production, and
traditional B. anthracis, B. cereus and B. thuringiensis species closely
related to traditional B. anthracis. Group IV (B. cereus sensu stricto) is a
group that contains strains closely related to B. cereus sensu stricto,
frequently identified in clinical and food-related sources. Bacillus
thuringiensis species are also located in Group IV. Group V
(B. toyonensis) contains strains that have been less frequently
characterized but are part of the broader Bacillus cereus group. Group
VI (B. mycoides/paramycoides) primarily consists of psychrotolerant
species, indicating their ability to grow at lower temperatures (Liu et al.,
2018). Group VII (B. cytotoxicus) contains specific strains with cytotoxic
effects related to cytotoxin K-1 (Fagerlund et al., 2004) and Group VIII
(B. mycoides), which contains species closely related to B. mycoides.
The study of Liu et al. (2015) applied an integrated approach
utilizing molecular techniques, including digital DNA-DNA
hybridization (dDDH) with a >70% similarity threshold (Goris et al.,
2007), MLST, and 16S RNA analysis. This approach clustered 224
genomes of B. cereus s.l into 30 clusters. Notably, dDDH analysis
revealed that 20 genomes initially classified as B. cereus or B. thuringiensis
exhibited unique genomic characteristics and were subsequently
identified as B. anthracis, referred to as ‘anomalous B. anthracis’ to
distinguish them from traditional B. anthracis isolates (Liu et al., 2015).
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In a separate study, 2,231 B. cereus group genomes were analyzed using
Fast ANI, which found that approximately 66.2% of the genomes belong
to several genomospecies at an ANI threshold of 95% (Carroll et al.,
2020a,b). Furthermore, additional anomalous B. cereus group isolates
were identified, including isolates with phenotypic features typical of
B. anthracis, B. cereus, and B. thuringiensis, which exhibited an
ANI > 95% with canonical B. anthracis, yet lacked anthrax-specific
virulence genes. This work also proposed a nomenclatural framework
which integrated virulence detection, MLST, ANI and panC group
assignment for the B. cereus group to harmonize phenotypic and
genomic classification, aiming to reduce misclassification and
misinterpretation of species in clinical and industrial settings, ultimately
addressing public health implications (Carroll et al., 2020a,b).

The estimated pan-genome of the B. cereus group encompasses
approximately 60,000 genes, with around 600 core genes shared by
99% of analyzed strains (Bazinet, 2017). This estimate, however, is
likely evolving with the classification of new members and the
availability of additional genomes. Pan-genome analysis has been
instrumental in distinguishing essential core and accessory genes,
revealing the functional versatility of the B. cereus group and the
unique adaptive capacities of individual strains (Kim et al., 2017).
While pan-genome analysis illuminates the broader genetic landscape,
providing insights into environmental adaptability and metabolic
functionality, whole-genome single nucleotide polymorphism
(wgSNP)
differentiating genetic diversity within closely related strains (Bogaerts

analysis offers a high-resolution for delineating
etal., 2023). Single nucleotide polymorphisms are evolutionarily stable
markers that contribute to elucidating deep phylogenetic relationships
among global strains (Pearson et al., 2004; Girault et al., 2014; Lekota
et al.,, 2024). Given the monomorphic nature of B. anthracis, wgSNP
analysis has proven valuable in differentiating traditional B. anthracis
strains from other closely related B. cereus group members.

This study investigated the genomic cohesion among “anomalous”
B. cereus group isolates, prompted by the identification of an isolate
with phenotypic features consistent with B. cereus yet a phylogenetic
profile aligning with typical B. anthracis. A genome-based comparative
approach was employed, encompassing pan-genomic and wgSNP
analyses of previously reported “anomalous” B. cereus group strains
from the studies of Liu et al. (2015) and Carroll et al. (2020a,b), as well
as newly sequenced isolates displaying typical B. anthracis and
B. cereus phenotypes. The isolates investigated in this study were
obtained from archival animal blood smears collected in anthrax
endemic regions of Kruger National Park, South Africa, as part of
their anthrax outbreak surveillance program. The isolates in this study
were initially screened for anthrax virulence markers (pagA, lef, and
capB) and the chromosomal marker Ba-1, with phenotypic
characteristics of the isolated recorded as detailed in Ochai et al.
(2024). The collaborative work of the surveillance program is put in
place to monitor anthrax outbreaks caused by traditional B. anthracis
and/or any other potential isolates that may cause anthrax disease.

2 Materials and methods
2.1 Sample collection and screening

Bacterial cultures of samples collected between 2012 and 2015
(Table 1), were isolated from blood smears obtained from animal
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carcasses from the anthrax endemic regions of Kruger National Park
(KNP) as described by Ochai et al. (2024). Briefly, blood smears on
microscope slides were sterilely scrapped into 1.5 mL centrifuge tubes.
Two hundred microliters of phosphate-buffered saline (PBS; Thermo
Scientific, MA, United States) was added into the tube and half of the
aliquot was spread plated on 5% sheep blood agar and incubated
overnight at 37°C. All isolates with different colony morphologies
were treated as different isolates and were sub-cultured on 5% sheep
blood agar to obtain pure colonies. All the isolates were primarily
subjected to classical methods that included microscopy, morphology,
motility, hemolysin activity, y-phage and penicillin sensitivity tests as
described by the World Health Organization (WHO, 2008). The
isolates were screened for the presence/absence of anthrax-toxin
markers (pagA, lef, capB) and the B. anthracis chromosomal marker
Ba-1 using SYBR green as prescribed by WHO (2008) and Tagman
probe qPCR-based method as prescribed by Zincke et al. (2020). This
was done in order to investigate any other Bacillus isolates which may
carry anthrax virulence genes. The results are summarized in
Supplementary Table SI, extracted from the study of Ochai
etal. (2024).

2.2 Genomic extractions and sequencing

Genomic DNA of the isolates (1 = 9) was extracted from overnight
pure cultures using the Pure link Genomic DNA kit (Thermo Fisher
Scientific, United States) following the manufacturer’s protocol. The
concentration and quality of the DNA were determined using the
Qubit 2.0 fluorometer (Thermofisher-Scientific, United States). The
DNA was sent to the Agricultural Research Council-Biotechnology
Platform (ARC-BTP) for whole genome sequencing. Sequence

TABLE 1 Bacillus anthracis and B. cereus isolates from South Africa were
cultured from blood smears from animal carcasses in the Kruger National
Park, South Africa.

Strain Genus  Animal Genus/ Ranger
source species section

AX2012- Bacillus Wildebeest Connochaetes Mooiplaas

121

AX2013- Bacillus Rhinoceros Diceros Houtboschrand

496 bicornis

AX2014- Bacillus Impala Aepyceros Lower Sabie

912 melampus

AX2014- Bacillus Rhinoceros Diceros Houtboschrand

949 bicornis

AX2016- Bacillus Zebra Equus quagga Pafuri

1771Ac

AX2015- Bacillus Impala Aepyceros Pafuri

1136 melampus

AX2015- Bacillus Nyala Tragelaphus Pafuri

1152 angasii

AX2015- Bacillus Zebra Equus quagga Pafuri

1270

AX2015- Bacillus African Syncerus caffer .~ Mooiplaas

1277A Buffalo
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libraries of the isolates were constructed using the MGIEasy FS DNA
Prep Kit (BGI, China) according to the manufacturer’s protocol. The
prepared libraries were sequenced using the BGI MGISEQ-2000
platform (BGI Shenzhen, China) using the paired-end 2 x 150 bp to
generate reads. Four genomic sequences (AX2015-1136, AX2015-
1152, AX2015-1270, and AX2015-1277A) were described and
published in our previous study (Magome et al., 2024). For this study,
we included these four isolates as they form part of an anthrax
surveillance study in KNP from the same culture collection of the
B. cereus group.

2.3 Genome assembly and annotation

De novo sequencing assembly, adapter trimming and polishing
were performed using Shovill v4.6.0 (Seemann et al., 2020). Transeq
from EMBOSS was used for the translation of nucleotide sequences
into amino acids (Rice et al., 2000). Diamond software was used to
compare the contig sequences against the protein databases by BlastX
(the following command option was used: diamond blastx
--max-target-seqs 0 --more-sensitive --id 70 -p 8 --subject-cover 90)
(Buchfink et al., 2015; Buchfink et al., 2023). In-house AWK, Python
and Excel scripts were further used to filter the resulting data. The
annotation of the selected isolates was first performed with Prokka
v1.14 using the command option: prokka --cpus 8 --gcode 11
--rnammer --compliant --center XXX (Seemann, 2014), an updated
annotation tool Bakta (Schwengers et al., 2021) was then used with the
following command argument: bakta --db db --verbose --threads 8.
The resulting output from annotations was further used as input for
Roary 3.13.0 (the following options have been used: “-g 80000 -e
-mafft -p 8 -r -qc -r -z -f’) (Page et al., 2015). Gene ontology
classification of the pangenome data, was performed using DeepNOG
(Feldbauer et al., 2020) and COG Classifier tools (Shimoyama, 2022).
Whole genome SNP analysis was performed using Snippy v4.6.0
(Seemann, 2015). The clean alignment of the sequences was subjected
to bootstrap =100 phylogenetic tree built with RaXML
(Stamatakis, 2014).

2.4 Genome identification and
phylogenetic placement

The sequenced genomes were first identified using the Pub-MLST
species-1D search tool* (Jolley et al., 2018) and the Genome Taxonomy
Database (GTDB) v1.7.0 which incorporates the Fast Average
Nucleotide Identity (ANI) on KBase app (Arkin et al, 2018).
Pan-genomic placement together with ANI comparison using the
sequenced genomes (n = 9) and the 18 recognized members of the
B. cereus group obtained from GenBank was constructed using the
integrated prokaryotes genome and pan-genome analysis web services
(IPGA) v1.09° (Liu et al, 2022). A comprehensive comparative
genomics analysis was conducted on 88 anomalous genomes of the
B. cereus group, which were retrieved from GenBank and classified

1 https://github.com/tseemann/snippy
2 https://pubmlst.org/species-id
3 https://nmdc.cn/ipga/
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into three major species: B. anthracis (n = 36), B. cereus (n = 37), and
B. thuringiensis (n = 15). This analysis included five B. cereus biovar
anthracis strains (CAM, CAR, CI, DRC, and UFBc0001) sourced from
animal samples in Cameroon, the Central African Republic, Cote
d’Ivoire, and the Democratic Republic of the Congo. These strains
have reportedly caused anthrax-like diseases in their hosts
(Antonation et al., 2016; Baldwin, 2020). Additionally, the atypical
B. cereus strain BC-AK, isolated from a kangaroo in China, was
included, along with nine South African isolates from this study
(Supplementary Tables S2, S3). In total, this analysis examined 103
genomes. Moreover, further description of the genomes was
conducted using BTyper3 (Carroll et al., 2020a,b) that involved panC
group assignment, PubMLST genome identification, GTDB
identification and ANT comparison within the IPGA (Liu et al., 2022).
The pan-genome trees were based on gene presence/absence and were
visualized using tvBOT incorporated in the web-based tool ChiPlot*
(Xie et al., 2023).

2.5 ldentification of mobile elements,
virulence factors, and resistance genes

Various nucleotide/protein sequence databases, such as
comprehensive antibiotic resistance database (CARD) (Alcock et al.,
2023), ResFinder (Feldgarden et al., 2019), BacMet (Pal et al., 2014),
BacAnt (Hua et al., 2021), MobileElementFinder (Johansson et al.,
2021), PAIDB (Yoon et al., 2015), Iceberg2 (Liu M. et al., 2019; Liu
B. et al., 2019) were used for mobile genetic elements and resistance
gene predictions. Specifically, antibiotic resistance determinants were
identified in each assembled genome using the ResFinder [—db
ResFinder] (Feldgarden et al., 2019) with the minimum identity and
coverage thresholds of 75 (—minid 75) and 50% (—mincov 50),
respectively. Virulence factors in the sequenced genomes were mined
using the Virulence Factor Database [—db vfdb] (Chen et al., 2016; Liu
M. et al., 2019; Liu B. et al,, 2019), using minimum identity and
coverage thresholds of 75 (—minid 75) and 50% (—mincov 50),
respectively. Further mining and annotation of antibiotic resistance
genes (ARG), integrons and transposable elements was conducted
using the BacAnt web-based tool (Hua et al., 2021), whereas BacMet
was used to mine for metal resistance genes (Pal et al., 2014).

3 Results

3.1 Phenotypic and molecular
characteristics

Microscopic examination of the nine bacterial isolates revealed
that all were Gram-positive rod-shaped cells. Notably, four isolates
(AX2015-1136, AX2015-1152, AX2015-1270, and AX2015-1277A)
displayed long rod chains, while the remaining five isolates (AX2012-
121, AX2013-496, AX2014-912, AX2014-949, and AX2016-1771Ac)
were characterized by shorter rod-shaped cells, presumptively
identified as B. cereus. Among these, the latter five were p-hemolytic,

4 https://www.chiplot.online/index.html
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motile, and showed y-phage and penicillin resistance. Conversely, the
four isolates previously identified as B. anthracis (AX2015-1136,
AX2015-1152, AX2015-1270, and AX2015-1277A)
non-hemolytic, y-phage and penicillin sensitive (Ochai et al., 2024).

were

Molecular screening of these isolates for anthrax virulence genes
indicated the presence of pagA, lef, and the chromosomal marker
Ba-1 in B. anthracis isolates. The other five isolates, AX2012-121,
AX2013-496, AX2014-912, AX2014-949, and AX2016-1771Ac, tested
positive for the lef gene. The B. cereus isolate AX2014-912 tested
positive for anthrax chromosomal marker Ba-1, while isolate AX2016-
1771Ac the capB, lef,
(Supplementary Table S1).

amplified for and pagA marker

3.2 Genome metrics and identification of
the Bacillus cereus group isolates

The genome features of the sequenced isolates are presented in
Table 2. Quality assessment of the assembled genomes showed an
average of 99.43% completeness for all the genomes (n=9). The
genomes were initially identified using Pub-MLST and GTDB-tk
v1.7.0, which incorporates Fast average nucleotide identity (ANI) by
matching the query genomes against the closest reference strains
incorporated in the database. The isolates AX2015-1136, AX2015-
1152, AX2015-1270, and AX2015-1277A were identified as
B. anthracis based on PubMLST species identifier and shared an ANI
of >99% score when matched with the B. anthracis Vollum reference
isolate (GCA_000007825.1) based on GTDB-tk v1.7.0. The isolates
AX2012-121, AX2013-496, AX2014-912, and AX2014-949 were
classified as B. cereus, based on PubMLST species identifier and each
shared >98 ANI score when matched with B. cereus ATCC 14579

10.3389/fmicb.2025.1527049

(GCA_000008725.1) using GTDB-tk v1.7.0. The genome size of the
B. cereus genomes ranged from 5.34 Mb to 5.52 Mb, with a GC content
ranging from 35.0 to 35.2%. Isolate AX2016-1771Ac was identified as
B. cereus on the PubMLST species identifier. However, based on
GTDB-tk v1.7.0, the closest reference genome to isolate AX2016-
1771Ac was B. anthracis Vollum (GCA_000007825.1). The two
genomes shared >97 ANI, which is well above the 95% ANI threshold
typically used for prokaryotic species delineation (Jain et al., 2018).

The genome size of AX2016-1771Ac was 5.33 Mb with a GC
content of 35.1% (Table 2). Phylogenetic placement using pan-genome
and ANT analysis of the 18 recognized B. cereus group isolates in IPGA
v1.09 (Figure 1) showed that isolates identified as B. cereus (AX2012-
121, AX2013-496, AX2014-912, and AX2014-949) grouped with
B. cereus ATCC 14579. The B. anthracis genomes (AX2015-1136,
AX2015-1152, AX2015-1270, and AX2015-1277A) grouped more
closely with B. anthracis Ames TYPE-STRAIN (GCA_000007845.1).
However, isolate AX2016-1771Ac grouped closely with the B. anthracis
isolates than with B. cereus isolates (Figure 1).

3.3 Phylogenetic placement of the Bacillus
cereus group genomes using various
databases

The pan-genome and wgSNP analysis revealed that four isolates
(AX2015-1136, AX2015-1152, AX2015-1270, and AX2015-1277A)
from South Africa identified as B. anthracis based on phenotypic
characteristics, GTDB-tk and PubMLST classification, clustered with
26 additional genomes identified as B. anthracis on GenBank (PRO1,
PRO02, PRO5, PR06, PR0O7, PR0O8, PR09-1, PR09-4, PR10-4, Parentl,
Parent2, Sterne, deltaSterne, BA_V770-NP1-R-ATCC 14185, Gmbl,

TABLE 2 Genome features of the nine South African sequenced Bacillus cereus group isolates.

Isolate PubMLST GTDB-tk Contigs Largest Genome N50 G+C Coding RNAs
and contig size (bp) Content sequences
BTyper3- %
PubMLST
AX2015- B. anthracis B. anthracis 72 548,990 5,359,201 157,399 35.1 5,943 77
1136
AX2015- B. anthracis B. anthracis 76 641,194 5,459,155 186,582 35.1 5,861 58
1152
AX2015- B. anthracis B. anthracis 59 450,267 5,445,999 221,866 35.1 5,847 49
1270
AX2015- B. anthracis B. anthracis 43 451,964 5,451,556 538,273 35.1 5,848 52
1277A
AX2012- B. cereus B. cereus 90 833,493 5,524,290 194,899 35.0 5,598 58
121
AX2013- B. cereus B. cereus 143 443,994 5,489,039 85,188 35.1 5,617 77
496
AX2014- B. cereus B. cereus 126 813,864 5,466,335 113,038 35.1 5,593 69
912
AX2014- B. cereus B. cereus 98 430,535 5,431,140 211,170 352 5,494 74
949
AX2016- B. cereus B. anthracis 44 616,581 5,338,489 304,668 35.1 5,568 54
1771Ac
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et al. (2020a,b), including the South African genomes (n = 9) from this study (marked in red).

Sen3, Sen2Col2, UT308, BAP417, BA781, Smith1013, Pasteur, A46,
A1055, 2000031021, and 2000031052). This collective group, totalling
30 genomes, was consistently classified as B. anthracis based on
GTDB-tk and BTyper3-PubMLST analysis and clustered in the
mosaicus panC group III, sharing a>99% ANI (Figure 2;
Supplementary Tables S2-S5). Given the genetic monomorphism
characteristic of traditional B. anthracis strains, the wgSNP analysis
(Figure 2B) supports the inclusion of these isolates within the
B. anthracis lineage. Thus the 30 genomes are proposed to be accepted
as part of the traditional or typical B. anthracis. This group of strains
displayed diverse isolation sources, including laboratory/vaccine
strains (n =17), environment-soil (n=1), animals (n=9), and
unknown source type (n=3) from locations including the
United States of America (USA), Senegal, Gambia, Pakistan and
South Africa (Figure 2).

Ten of the genomes classified on GenBank as B. anthracis (Ames
TYPE-STRAIN, AFS072084, PFAB2, L19, MCC1A01412, AFS081271,
MCC1A02161, N1ZF-2, RIT375, and F34) did not co-cluster with the
previously mentioned 30 B. anthracis genomes based on pan-genome
and wgSNP analyses (Figure 2). Furthermore, ANI analysis showed
that the 10 genomes shared <98 ANI identity with typical B. anthracis
genomes (AX2015-1136, AX2015-1152, AX2015-1270, and AX2015-
1277A) (Supplementary Table S5). These genomes originated from
diverse sources, such as hot spring (India, strain PFAB2), salt lake
(Algeria, strain F34), sediment (South China sea: strains
MCCC1A02161, MCC1A01412, N1ZF-2, and L19), soybean plant
(strain AFS081271), corn plant (strain AFS072084), stem tissue of a
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Chamaecostus cuspidatus plant (Puerto Rico, strain RIT375) and
laboratory/vaccine (Ames TYPE-STRAIN). Despite being classified
as B. anthracis under BTyper3-PubMLST and as panC group III
within the mosaicus group, one genome (AFS081271) was classified
as B. thuringiensis by GTDB-tk in IPGA, aligning with isolate B4082
classified as B. cereus in GenBank isolated from a food source (pea
soup in the Netherlands) (Figure 2). The genomes AFS081271 and
B4082 were classified as B. thuringiensis based on GTDB-tk in IPGA
v1.09 and classified as B. anthracis based on Btyper3 PubMLST
belonging to panC group II of mosaicus/luti (strain B4082) and in
panC group III of the mosaicus group (strain AFS081271) (Figure 2).
The genomes AFS081271 and B4082 shared a > 99% ANI when
compared against each other, suggesting they are the same species.
Moreover they clustered with four South African isolates (AX2012-
121, AX2013-496, AX2014-912, and AX2014-949) identified as
B. cereus under GTDB-tk and PubMLST (Figure 2).

The four B. cereus genomes, isolated from animal blood smears in
South Africa, grouped under panC group IV in the B. cereus sensu
stricto group based on Btyper3, showing 97-98% ANI among
themselves and < 91% ANI compared to the GenBank B. cereus
genomes (Figure 2; Supplementary Tables S4, S5). Thirty-five
GenBank B. cereus genomes were identified as panC group III of the
mosaicus group and two GenBank B. cereus genomes (B4082 and
MODI1_Bc20), isolated from food sources were identified as panC
group II of the mosaicus/luti group, however they were classified as
B. anthracis in BTyper3 (Figure 2). The results above highlight the
discrepancies that exist within the various genomic identification
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(A) Pan-genome and (B) whole genome single nucleotide polymorphism (wgSNP) analysis of 103 Bacillus cereus group genomes analyzed. The red
dots in the inner circle indicate the South African isolates from this study. The AX2016-1771Ac highlighted in red. The rings surrounding the
phylogenetic tree represent the following: (A) current genus species assignment as submitted on GenBank database; (B) BTyper3 PubMLST genome
species assignment; (C) GTDB-tk-IPGA species assignment; (D) panC group assignment; (E) general source from which samples were obtained from.

databases which further complicate taxonomic classification.  genomes using pan-genome and wgSNP analysis (Figure 2). These
Additionally, an anomalous AX2016-1771Ac isolate, originating from  isolates, identified as B. anthracis under GTDB-tk and BTyper3-
a zebra blood smear, sequenced in this study, grouped with B. cereus ~ PubMLST, aligned with panC group III in the mosaicus group. The
(E33L and MOD1_Bc215) and B. anthracis (L19 and MCC1A01412)  anomalous isolate AX2016-1771Ac shared 97-98% ANI with similar
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genomes from the South China Sea (strains L19 and MCC1A01412),
United States baby wipes (MOD1_Bc215), and a Namibian zebra
(strain E33L). Two B. thuringiensis strains (HD571 and Al-Hakam)
that form part of the anomalous clustered with B. cereus strains
BGSC6EL, 03BB108, F837_76, and UAEU-H3K6M1 as panC group
III species of the mosaicus group (Figure 2). GenBank classified
B. cereus strains (FLSW8-0483, WH2015, D17, and MOD1_Bc90)
isolated from food in the United States and strain 16-00175 from
France formed part of this group. Meanwhile, the B. anthracis Ames
TYPE-STRAIN and AFS072084 genomes formed close associations
with B. thuringiensis strains (BGSC4AJ1 from Mexico and BGSC4AC1
from India), with a notable >99% ANI score shared between
B. anthracis Ames TYPE-STRAIN and B. thuringiensis BGSC4AJ1
(Supplementary Table S5).

The anomalous B. cereus ISP3191 genome isolated from food
source, clustered closely with the B. cereus biovar anthracis strains
(CAM, CAR, CI, DRC, and UFBc0001) isolated from animals (gorilla,
chimpanzees, goat, and colobus monkey) in Western Africa, sharing
>99% ANI. This cluster displayed a 97% ANI similarity with 82 other
GenBank genomes, including the four typical B. anthracis strains
(AX2015-1136, AX2015-1152, AX2015-1270, and AX2015-1277A)
from this study. A subset of anomalous isolates (AFS081271, L19,
B4082, MOD1_Bc20, MOD1_Bc98, and MOD1_Bc215) exhibited
<96% ANI with B. cereus biovar anthracis isolates. Moreover, the
B. cereus (AX2012-121, AX2013-496, AX2014-912, and AX2014-949)
isolates from this study, shared <91% ANI with B. cereus biovar
anthracis. The AX2015-1771Ac isolate shared >96% ANI score with
B. cereus biovar anthracis isolates. However, AX2015-1771Ac shared
<94% ANI with atypical B. cereus strain BC-AK. These results indicate
that B. cereus group isolates may belong to different species clusters
when a threshold >95% is adopted for all species in the same group.

3.4 Comparative annotation and functional
analysis of Bacillus cereus group genomes

To predict gene content and perform pan-genomic analysis, 103
genomes within the Bacillus cereus group were annotated using two
distinct tools: Prokka and Bakta. Initially, the annotation based on
Prokka identified a total of 38,079 genes, with 26,173 (68. 73%)
classified as hypothetical proteins. In contrast, Bakta annotation
assigned 37,678 genes, only 5,391 (14.31%) were predicted to
be hypothetical proteins. This suggests that Bakta may offer improved
functional predictions for gene products within the B. cereus group,
potentially reducing ambiguity around hypothetical proteins
(Figure 3).

In the Bakta annotation, 1,338 cloud genes were solely found in
five anomalous isolates AX2016-1771Ac, B. anthracis strains (L19 and
MCC1A01412) as well as B. cereus strains (E33L and MOD1_Bc215).
Within this subset, 271 of these genes were assigned as hypothetical
proteins. Additionally, 14 genes with distinct functional roles were
identified exclusively in these five isolates. These genes included
transport-related proteins (e.g., ABC transporter permease), structural
proteins (e.g., spore coat protein), regulatory proteins (e.g.,
transcriptional regulators such as LysR and YdeE), metabolic enzymes
(e.g., putative ubiquinone/menaquinone methyltransferase and
NAD-dependent epimerase/dehydratase family protein), and other
(e.g.

specific proteins FAD-dependent oxidoreductase and
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DUF-domain proteins like DUF998, DUF952, DUF4430, and
DUF3380).
functionalities within these isolates. Functional categorization based

These unique genes may indicate specialized
on the cluster of orthologous groups (COG) analysis revealed that
from the 1,338 clouds genes of the five compared strains, 146 genes
(10.9%) were associated with mobilomes, including prophages and
transposons functional group (X), followed by the transcription
functional group (K) with 122 (9.1%) gene count, and the replication,
recombination and repair functional group (L) with 95 (7.1%) gene
counts (Figure 3B; Supplementary Table S6). Notably, the AX2016-
1771Ac isolate contained 195 unique genes, which were not detected

in other B. cereus group isolates, based on the COGs (Figure 3C).

3.5 Antibiotic resistance genes in Bacillus
cereus group

A total of 16 antibiotic resistance genes (ARGs) were distributed
across 103 Bacillus cereus group genomes analyzed in this study
(Figure 4). The most abundant ARGs identified across all genomes
(n =103) were the beta-lactamase genes Blal (96%), BclI (95%), and
Bla2 (78%). A distinct class A beta-lactamase gene, BcI, was exclusively
detected in four B. cereus genomes as (AX2012-121, AX2013-496,
AX2014-912, and AX2014-949) and the anomalous GenBank
classified B. thuringiensis strain BM-BT15426. Additionally, the beta-
lactamase gene, Blarg, ;s was solely detected in the anomalous
B. cereus strain FSLW8-0932, which was isolated from a food source
in the United States. Another resistant gene, satA (encoding
streptothricin N-acetyltransferase) was found in 48 genomes, but was
absent in the B. cereus sensu stricto isolates (AX2012-121, AX2013-
496, AX2014-912, and AX2014-949). The Fosfomycin resistance gene
FosB2 was identified in 30 genomes, all suggested in this study to
represent traditional/typical B. anthracis with high genomic similarity
(>99 ANI) (Figure 2). Notably, the 30 B. anthracis isolates, exhibited
a consistent ARG profile that included Bcll, Blal, Bla2, FosB2, and
satA (Figure 4), a typical profile for B. anthracis isolates.

The fosfomycin gene FosBI was detected in 23 anomalous
genomes made up of 12 B. cereus isolates (16-00195, 3a, 95_8201, D17,
E33L, MOD1_Bc20, MOD1_Bc214, MOD1_Bc98, PE8-121b, Rock3-
42, S2-8, and BGSC6EL1), four B. anthracis isolates (RIT375, PFAB2,
NIZEF-2, and MCC1A02161), two B. thuringiensis isolates (HD10111
and BGSC4BA1), including the atypical B. cereus BC-AK strain and
the four B. cereus sensu stricto isolates (AX2012-121, AX2013-496,
AX2014-912, and AX2014-949) from this study (Figure 4).
Furthermore, the vancomycin resistance gene, vanR-A, was detected
in 15 genomes that included B. cereus classified genomes (AX2012-
121, AX2013-496, AX2014-912, AX2016-1771AC, 03BB108, B4082,
F837_76, MOD1_Bc20, MOD1_Bc215, and BGSC6E1), B. anthracis
genomes (AFS081271, MCC1A01412, and L19) and B. thuringiensis
(HD571 and Al-Hakam). The gene rpoB known to confer resistance
to rifampicin was detected in the South African B. cereus strains
(AX2012-121, AX2013-496, and AX2014-912), the atypical B. cereus
BC-AK strain associated with anthrax-like disease, as well as in the
anomalous B. anthracis F34 strain isolated from Algeria. The vanS-Pt
gene that is associated with ruminant microbiota in Paeniballicus
strains (Guardabassi et al., 2005) and vancomycin resistance was only
detected in two B. cereus genomes AX2013-496 and AX2014-912
sequenced in this study. The tetracycline efflux pump tet(45) was
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compartment).

Cluster of orthologous groups (COGs) analysis indicating annotated genes in different functional groups (A) COG gene count comparison of the two
annotation tools Prokka (pink) and Bakta (blue). (B) COG shared between the branch containing the five genomes B. cereus (AX2020-1771Ac, E33L,
and MOD1_BC215) and B. anthracis (L19 and MCC1A01412) based on Bakta annotation. (C) COG corresponds to the set of genes that are unique to the
anomalous sequenced isolate AX2016-1771Ac sequenced in this study. Each bar height corresponds to the total number of genes in the compartment
that were assigned to the COG functional group. NA (Not Assigned compartment represents the genes that could not be assigned in a functional

detected in anomalous B. anthracis F34 and B. thuringiensis
BGSC4BX1 isolates. The tetracycline efflux pump fet(L) was detected
in the anomalous B. cereus isolates BGSC6E1 and MOD1_Bc98. The
sequenced typical B. cereus isolates AX2013-496 and AX2014-912
each presented seven ARGs namely the BcI, BcIl, Blal, rpoB, FosB1,
vanR-A, and vanS-Pt. The B. cereus AX2012-121 strain contained six
ARGs namely the Bcl, Bcll, Blal, rpoB, FosBl, and vanR-A. The
B. cereus AX2014-949 strain contained only four ARGs, which were
identified as BcI, Bcll, Blal, and FosB1. The anomalous B. cereus strain
AX2016-1771Ac also contained four ARGs namely BcIl, Blal, Bla2,
and vanR-A. Bacillus cereus and B. thuringiensis isolates indicated a
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potential to carry varying resistance gene profiles from the typical
B. anthracis isolates.

3.6 Virulence factors in Bacillus cereus
group

In this analysis, 117 virulence factor genes were found across 103
genomes analyzed in this study, notably genes which form part of a
cluster were counted as individual genes. It has already been
established that the 88 GenBank isolates B. anthracis (n = 36), B. cereus
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(n=37), and B. thuringiensis (n = 15) do not contain the anthrax
virulence genes: edema factor- cya, lethal factor- lef, the protective
antigen -pagA located on the pXO1 plasmid (Carroll et al., 2020a,b).
In this study, the virulence genes cya, lef and pagA were found present
in the confirmed B. anthracis isolates AX2015-1136, AX2015-1152,
AX2015-1270, and AX2015-1277A, atypical B. cereus BC-AK isolate
and the B. cereus biovar anthracis isolates (UFBc0001, CAR, CAM,
and CI). The anomalous isolate AX2016-1771Ac did not contain the
anthrax virulence genes cya, lef and pagA. All the capsular genes cap-
ABCDE and the capsule synthesis transcriptional regulator genes acpA
and acpB were detected in the identified and classified traditional
B. anthracis isolates (deltaSterne, AX2015-1152, AX2015-1270,
AX2015-1277A, A1055, 2000031021, 2000013052, A46, Smith1013,
and Pasteur), B. cereus biovar anthracis isolates (UFBc0001, CI, CAM,
CAR, and DRC) and the B. cereus BC-AK isolate. The B. cereus
03BB108 isolated from the environment (dust particles) in the
United States and the B. anthracis isolate N1ZF-2 from sediments in
China both contained the capsule synthesis regulator gene acpB and
the capsule genes capA and capC. The virulence regulator gene of
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B. anthracis (atxA), and the has-ACB gene cluster that encodes for the
hyaluronic acid capsule was detected in sequenced B. anthracis isolates
(AX2015-1136, AX2015-1152, AX2015-1270, AX2015-1277A), and
anomalous B. anthracis strains BAP417 and BA781, the B. cereus
BC-AK isolate including the B. cereus biovar anthracis isolates
UFBc0001, CI, CAM, and CAR (Figure 5).

The insecticidal crystalline delta-endotoxin gene crylll was
detected in the B. anthracis Ames TYPE-STRAIN and B. thuringiensis
BGSC4AC1 and BGSC4A]J1 strains that shared a common ancestor.
At least two or more genes belonging to the gene clusters asb-ABDEF
encoding for the biosynthetic machinery for petrobactin and the dhb-
ABCEF bacillibactin which are siderophores involved in iron
acquisition of Bacillus species were detected in all the genomes.
Although B. anthracis is non-motile, gene clusters related to flagellum
synthesis (flg, flh, and fli) were present in all the genomes. The
non-hemolytic enterotoxin nhe-ABC cluster was present in over 99%
percent of the genomes. Whereas genes of the hemolytic enterotoxin
gene complex hbl-ACD were detected in 24 genomes which included
anomalous B. cereus, B. anthracis, and B. thuringiensis. The cytotoxin
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gene cytK was present in 49.6% of the genomes classified as
B. anthracis, B. cereus, and B. thuringiensis, however our sequenced
B. anthracis strains lack this gene. The hydrolase cesH gene which
forms part of the cereulide operon was detected in six anomalous
B. cereus strains (3a, 95_8201, BA087, BGSC6E1, PE8-121b, and S2-8).
A more detailed description of the virulence genes is included in
Supplementary Table S7.

3.7 Determination of the insertion
sequences on the 103 genomes

A total of 50 insertion sequences (IS) and five mobile insertion
cassettes (MIC) were detected among the 103 genomes (Figure 6). The
50 IS were distributed as follows: IS231 (n = 15), ISBce (n = 15), ISBth
(n =16), ISBwe (n =2), ISBt (1), ISBsp8 (n = 1), and I1S232 (n = 1).
Mobile insertion cassettes included MICBan1 (n = 1), MICBce (3) and
MICBth (n=1). The insertion sequence IS231L was the most
prevalent, as it was detected in all 103 genomes analyzed in this study.
Among the 30 genomes classified as B. anthracis in this study,
insertion sequences IS231 (L and S), ISBt (2 and 7) and the insertion
cassette MICBanl were found in AX2015-1136, AX2015-1152,
AX2015-1277A, AX1270, and BA781. Other insertion sequences, such
as [S2321, ISBwe, and ISBt variants, were less frequent than ISBce and
ISBth. The four South African B. anthracis isolates contained more IS
than the B. anthracis isolates in the same cluster (Figure 6). The

10.3389/fmicb.2025.1527049

anomalous B. cereus strain AX2016-1771Ac strain sequenced in this
study included the insertion sequences IS231L, ISBce (17 and 19),
ISBth (4 and 7) and the insertion cassette MICBan1. None of the
insertion genes can discriminate typical B. anthracis from the
anomalous B. cereus group strains compared in this study. The
B. anthracis Ames TYPE-STRAIN and B. thuringiensis BGSC4AJ1 and
BGSC4AC1 contained similar insertion sequence profiles, which
included 1S231 (C, E, H, L), ISBce (3 and 15), ISbth (16 and 17),
and MICBanl.

4 Discussion

In this study, a comparative genomics approach was employed to
analyze the nine B. cereus group isolates (Table 1), from animal blood
smears that also included previously reported four B. anthracis strains
from anthrax surveillance in KNP (Magome et al., 2024). Pan-genomic
and wgSNP analysis was conducted to investigate previously reported
“anomalous” B. cereus group strains (Liu et al., 2015; Carroll et al.,
2020a,b), as well as newly sequenced isolates displaying typical
B. anthracis and B. cereus phenotypes. The study highlights and
supports some of the approaches used in the proposed framework by
Carroll et al. (2020a,b). We further indicate through a restrictive ANI
value of 99% and wgSNP analysis traditional B. anthracis can
be distinguished from other closely related species which form part of
the mosaicus group. Additionally, mobile genetic elements, including
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insertion sequences, virulence and antibiotic resistance genes across
the genomes were investigated to contribute to the growing body
isolates that form part of the B. cereus group.

The isolates in this study were initially screened for anthrax
virulence markers (pagA, lefand capB) and the chromosomal marker
Ba-1, with phenotypic characteristics of the isolated recorded as
detailed in Ochai et al. (2024). An anomalous strain (AX2016-1771Ac)
isolated from Equus quagga (Zebra) was discovered when it grouped
phylogenetically with B. anthracis isolates Ochai et al. (2024). Notably,
the strain was initially classified as B. cereus using classical
microbiological tests, presenting as hemolytic, motile, and
characterized as Gram-positive rods with short chains. Furthermore,
together with other Bacillus isolates (Ochai et al., 2024), five B. cereus
isolates sequenced in this study presented with positive qPCR
detection for the anthrax virulence markers lef and/or pagA and/or
chromosomal marker Ba-1 (Supplementary Table S1). The findings
warranted further genomic investigations alongside reference atypical
strains B. cereus and B. cereus biovar anthracis, which have reportedly
caused anthrax-like diseases in humans and animals (Antonation
et al., 2016; Baldwin, 2020).

While classical microbiology techniques, such as culturing and
microscopy are still essential for bacterial identification, particularly
in anthrax endemic regions (WHO, 2008; Ochai et al, 2024),
molecular diagnostics often reveal discrepancies. The work of Ochai
et al. (2024) showed that Peribacillus, Lactobacillus, and Priestia
species were positive for anthrax virulence markers (pagA, lef, and
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cap). As an example, the PCR amplicons of pagA from Peribacillus,
Lactobacillus, and Priestia isolates were sequenced and the BLASTn
identification did not match with the pagA of B. anthracis (Ochai et al.,
2024). Further analysis that involved genomic analysis and BLASTn
comparison of the anthrax virulence markers in the Priestia and
B. cereus group genomes revealed that these genes (pagA, lef, and
capB) were only present in the four confirmed B. anthracis genomes
with 99.9-100% alignment (Magome et al., 2024). In this study, several
isolates with B. cereus-like phenotypes were positive for the anthrax-
specific lef gene in qQPCR assays but did not indicate lef gene in the
genome after sequencing. The lef gene was found in the following
isolates, with 99.9-100% in the four B. anthracis isolates, B. cereus
biovar anthracis isolates and the atypical B. cereus strain. This is to
be expected as anthrax virulence factors have been detected in these
strains and were implicated in causing the anthrax disease to their host
animal (Antonation et al., 2016; Baldwin, 2020). Previous studies have
reported on false positives occurrence for anthrax virulence markers
in non-B. anthracis strains from blood smears in anthrax endemic
region in Kruger National Park (Lekota et al., 2016; Lekota et al.,
2018). As thus the risk of misidentification in routine diagnostics,
which could potentially compromise the reliability of anthrax
detection assays, particularly in B. cereus group is increased if
diagnosis is depended on molecular marker detection using PCR
(Carroll et al., 2022a,b,¢). In order to overcome the misidentification
of anthrax using anthrax virulence genes on qPCR assay, Ochai et al.
(2024) proposed using a combination of the PCR anthrax virulence
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markers including the chromosomal Ba-1 marker for increased
sensitivity in detecting B. anthracis in environmental samples. Other
studies have proposed species-specific chromosomal markers found
in only in B. anthracis that could assist in rapid and accurate detection
of B. anthracis especially during anthrax outbreaks (Braun et al., 2021;
Zorigt et al., 2024).

Genome sequencing remains a gold standard for accurate
taxonomic classification, offering high resolution for species
delineation (Carroll et al., 2022a,b,c). However, in the B. cereus group,
genomic ambiguity persists due to the lack of standardized
thresholds (Carroll et al, 2022ab,c). The
nomenclatural discrepancies observed within the B. cereus group will

genomospecies

not likely be resolved within the next few years especially when more
of these anomalous strains are identified and could be either
be misclassified and/or proposed as a new species in the B. cereus
group based on the database and methodology applied (Gillis et al.,
2024). Among the 36 isolates from GenBank classified as B. anthracis,
26 clustered with the four confirmed B. anthracis, all sharing an ANI
threshold of 99%. This suggests that applying a 99% ANI threshold for
classifying B. anthracis as initially proposed by Jain et al. (2018), could
help distinguish typical B. anthracis from other group members.
Moreover, this was augmented by wgSNP phylogenetic analysis,
placing the 26 B. anthracis isolates together with the four confirmed
South African B. anthracis as a cluster.

The remaining 10 anomalous GenBank genomes (Ames TYPE-
STRAIN, AFS072084, PFAB2, L19, MCC1A01412, AFS081271,
MCC1A02161, N1ZF-2, RIT375, and F34), classified as B. anthracis,
diverged from typical B. anthracis clusters, raising caution in their
usage for studies focused solely on typical B. anthracis. For instance,
the Ames TYPE-STRAIN (GCA_000007845.1) was classified as
B. anthracis across the genome identification tools (PubMLST and
GTDB-TK) but exhibited high ANT with a B. thuringiensis isolate and
contained insecticidal genes (cryIIl), a marker typically associated
with B. thuringiensis. Such findings underscore the challenges of
relying solely on ANT or whole-genome SNP analysis for classification
within the B. cereus group, as even wgSNP analysis did not resolve this
discrepancy for the Ames TYPE-STRAIN including the other
anomalous B. cereus and B. thuringiensis genomes.

The use of GTDB and PubMLST classified the sequenced isolates
AX2012-121, AX2013-496, AX2014-912, and AX2014-949 from this
study as B. cereus, belonging to panC group IV of the B. cereus sensu
stricto. These isolates form part of the traditional B. cereus based on
phenotypic and genomic traits, presented with an ANI of 98%,
matching with B. cereus ATCC 14579 (GCA_000008725.1). The
anomalous isolate AX2016-1771Ac sequenced in this study grouped
together with four anomalous B. anthracis strains (L19 and
MCC1A01412) and B. cereus strains (E33L and MODI1_Bc215).
Pan-genome analysis identified 14 unique genes, which were solely
found on these five isolates. These included genes involved in the
physiological functions and processes such as metabolism, cellular
homeostasis and transporter cassettes. The anomalous AX2016-1771A
isolate contained 146 unique genes, which included ABC transporter
permeases, integrase proteins and spore germination proteins (KA,
KC, and KB) including aspartyl-phosphate phosphatase SpoOE family
proteins known to act as regulator of sporulation which influences
development pathways in bacteria such as B. subtilis (Perego, 2001).

According to the proposed nomenclature of Carroll et al
(2020a,b), strains that group closely with B. anthracis can be classified
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under the genomospecies B. mosaicus (panC group III) or simply use
the strain number and report the isolate as a member of the B. cereus
group (Carroll et al, 2022a,b,c). We endorse this classification,
although we proposed that the traditional B. anthracis species name
must be retained by those species that exhibit phenotypic characteristic
of B. anthracis supported by 99% ANI reference B. anthracis with SNP
shared by traditional B. anthracis. Thus, the anomalous isolate
detected in this study based on phenotypic characteristics and genome
analysis taking into consideration the impact the classification of
species may have on clinical and environmental settings, the isolate
AX2016-1771Ac was submitted and classified as B. cereus on
GenBank. Further description is provided elucidating that the strain
belongs to the panC group III of the mosaicus group. Recent studies
have also reported on the difficulty of classifying novel isolates, they
have however relied on placing the isolates in the eight genomospecies
groups (I-VIII) as suggested by Carroll et al. (2020a,b). However,
species names for novel isolates remain unresolved (Abdelli
etal., 2023).

In this study, we also investigated the antimicrobial resistance
(AMR) potential of bacterial isolates within the B. cereus groups,
focusing on the prevalence of specific antibiotic resistance genes
(ARGs) that could potentially affect therapeutic efficacy and inform
public health monitoring. Monitoring the presence of these ARGs is
critical for understanding the distribution of acquired resistance genes
and assessing possible clinical interventions for antibiotic-resistant
infections (Kompes et al., 2024). Our findings revealed that beta-
lactamase genes, specifically blal, bla2, and Bcll, were the most
prevalent ARGs among the B. cereus group isolates (Figure 4). These
genes have been reported to present with a generally low expression
in B. anthracis attributed to the mutation in regulatory genes such as
the plcR (Chen et al., 2003; Materon et al., 2003). Among the 30 typical
B. anthracis isolates studied, a recurring resistance gene profile was
observed, characterized by the presence of Bcll, Blal, Bla2, FosB2, and
satA (Figure 4). Notably, FosB2, a gene conferring Fosfomycin
resistance, was exclusive to the typical B. anthracis isolates,
distinguishing them from other B. cereus group members. The satA
gene, a streptothricin N-acetyltransferase gene family, associated with
nucleoside antibiotic resistance and typically found in actinomycetes
in soil-dwelling actinomycetes, suggests a potential environmental
acquisition of resistance (Burckhardt and Escalante-Semerena, 2019).
Although these resistance determinants are consistent with previous
characterizations of B. anthracis, further phenotypic testing would
provide additional insights into the practical resistance potential of
these isolates (Heine et al., 2024). The B. cereus showed presence of
resistance genes such as beta-lactamases, rifamycin, fosfomycin, and
vancomycin in the South African B. cereus strains. Bacillus cereus s.s
are commonly reported in nosocomial infections in clinical settings,
proliferation of ARGs among the isolates in the environment could
potentially lead to the formation of superbugs which may pose public
health risk if ignored (Kowalska et al., 2024).

The presence of virulence factors further emphasizes the
pathogenic potential of these isolates. While typical anthrax-toxin
genes (cya, lef, pagA) on the pXO1 plasmid (Turnbull, 2002; Liu et al.,
2015; Carroll et al., 2020a,b) are absent in the anomalous strains, the
anthrax-toxin genes and associated regulatory elements, i.e., atxA,
were detected in the typical B. anthracis (AX2015-1152, AX2015-
1270, and AX2015-1277A), as well as in atypical B. cereus BC-AK
isolate and B. cereus biovar anthracis strains (UFBc0001, CAR, CAM,
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and CI), which are implicated in anthrax related diseases in humans
and animals (Ochai et al., 2024; Baldwin, 2020). The presence of the
pXO1/pBCXO1 and pXO2/pBCXO1 plasmids suggests a shared
virulence mechanism across these isolates. Interestingly, one
sequenced B. anthracis strain, AX2015-1136, lacked the capsular genes
(cap-ABCDE, acpA, acpB genes) despite carrying the tripartite anthrax
toxin genes, indicative of the pXO1 plasmid’s retention but pXO2
plasmid loss, conversely anomalous isolates deltaSterne, A1055,
2000031021, 2000013052, A46, Smith1013, and Pasteur contained
capsular genes but lacked the tripartite anthrax toxin genes, indicative
of the pXO2 plasmid retention and loss of pXO1 plasmid. This
phenomenon is reportedly likely due to genetic instability from
environmental pressures (Liang et al., 2016).

In atypical B. cereus strains, the functional expression of both
PGA and hyaluronic acid capsules encoded by has-ABC located in the
pBCXO1 plasmid, facilitates pathogenicity, with the hyaluronic
capsule linked to cause anthrax-like disease (Antonation et al., 2016;
Baldwin, 2020). This dual-capacity for capsule expression is unique to
the atypical B. cereus biovar anthracis and is absent in B. anthracis,
where capsule synthesis is disrupted by mutations within hasA
(Okinaka et al., 1999). Therefore, the B. anthracis isolates only express
the PGA capsule, whereas atypical B. cereus isolates and B. cereus
biovar anthracis may express both a hyaluronic acid capsule and PGA
capsule required for pathogenicity (Oh et al., 2011).

The diversity in the Bacillus cereus group’s virulence and resistance
factors is further demonstrated by the detection of the hydrolase cesH
gene, linked to the emetic cereulide operon (ces-FABCDPTH), detected
in six anomalous B. cereus strains (3a, 95_8201, BA087, BGSC6EI1,
PE8-121b, and S2-8). Although it is associated with a specific group
of emetic B. cereus strains, non-emetic isolates have been found to
carry cesH flanking genes which reportedly are closely related to the
anthrax-toxin encoding pXO1 plasmid (Ehling-Schulz et al., 2006).
The presence of toxin-related gene clusters (nhe-ABC, hbl-ACD, and
cytK), which are the hemolysin BL, non-hemolytic enterotoxin, and
cytotoxin K, respectively, found in sequenced B. cereus isolates
AX2012-121, AX2013-496, AX2014-912, and AX2014-949, signals the
potential for diarrheal illness, consistent with prior findings
associating these clusters with enteric disease (Schoeni and Wong,
2005; Owusu-Kwarteng et al., 2017). The genomic plasticity within
these isolates underscored by the presence of insertion sequences and
mobile elements, may facilitate AMR and virulence gene transfer,
impacting the adaptability and pathogenic potential of Bacillus species
(Fayad et al., 2019; Bianco et al., 2023). Recent studies have also
identified insertions contributing to clarithromycin resistance,
underlining the evolutionary adaptability of B. anthracis and related
species (Maxson et al., 2024).

5 Conclusion

In this study, B. cereus group isolates that were isolated from
blood smear samples in the Kruger National Park presenting with
amplification of anthrax-toxin markers during molecular analysis
in Ochai et al. (2024) were investigated and resolved using genome-
sequence analysis. Following identification of other anomalous
strains, 26 out of 36 B. anthracis strains may be accepted as part of
traditional B. anthracis strains. The above suggestion is based on
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the comparative genomics analysis applied which involved
pan-genome, ANI (>99%) and wgSNP analysis. The anomalous
AX2016-17771Ac isolate from this study showed no SNP related to
traditional B. anthracis and anthrax virulence genes, therefore the
isolate was classified as B. cereus panC group III of the mosaicus
group. The four newly sequenced isolates AX2012-121, AX2013-
496, AX2014-912, and AX2014-949 are classified as B. cereus sensu
stricto of panC group IV. Although we were able to distinguish
traditional B. anthracis from other closely related strains, the
relation between B. thuringiensis and B. cereus remains to
be resolved especially those that group in the mosaicus clade. This
study also calls into the reassessment of the B. cereus taxonomy
committee which oversees the guidelines and monitoring of the
submission or classification of species in the B. cereus group. Most
of the anomalous isolates may have been assigned their species
names due to the lack of advanced genomic tools, and/or the
database available during analysis which contributed to the naming
of the isolates within the B. cereus group. Our study further
highlights the complex interplay of ARGs, virulence factors, and
plasmid mobility within B. anthracis and other B. cereus group
species. This genomic diversity necessitates ongoing surveillance
and phenotypic assessment to better understand and mitigate the
clinical risks posed by potential pathogens in this B. cereus group.
The insights provided herein contribute to a growing body of
evidence on Bacillus-related antimicrobial resistance, with potential
implications for both therapeutic approaches and public
health policies.
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The mcpC mutant of Salmonella
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Background: Salmonella enteritidis (SE) is a Gram-negative, facultative
anaerobic intracellular pathogen that not only causes disease and mortality in
livestock and poultry but also contaminates animal-derived products, leading
to foodborne illnesses in humans. This presents a significant threat to public
health. To eliminate this pathogen, the development of novel vaccines targeting
SE is imperative. Attenuated live vaccines are capable of eliciting robust immune
protection against SE.

Methods: In this study, an mcpC gene deletion strain (AmcpC) was constructed
by the wild strain C50336, to evaluate its potential as a genetically engineered
attenuated live vaccine. The virulence of AmcpC was assessed by examining
its resistance to environmental stresses, biofilm formation capacity, motility,
adhesion, invasion ability, intracellular survival, LDs,, expression levels of virulence
genes, and in vivo colonization ability. Furthermore, the immunogenicity of
AmcpC was analyzed in mice by measuring specific IgG and SIgA antibody
levels, lymphocyte proliferation, cytokine expression, and the protective efficacy
of AmcpC vaccination.

Results: Compared to the wild-type strain, AmcpC exhibited no significant
changes in biofilm formation or adhesion to Caco-2 cells. However, AmcpC
showed significantly reduced survival under acidic, alkaline, thermal, and
oxidative stress conditions; markedly diminished motility; weakened invasion
of Caco-2 cells; and reduced intracellular survival in RAW264.7 macrophages.
The LDs, of AmcpC increased by 30-fold, and the expression levels of certain
virulence genes were significantly downregulated. Additionally, AmcpC
demonstrated significantly decreased colonizationin the liver, spleen, and cecum
of mice, indicating attenuated virulence. Immunization with AmcpC induced
the production of specific IgG and SIgA antibodies, enhanced lymphocyte
proliferation, upregulated cytokine expression, and achieved a 100% survival
rate in immunized mice. These findings indicate that AmcpC provides effective
immune protection in mice.

Conclusion: This study demonstrates that deletion of the mcpC gene attenuates
the virulence of SE. The AmcpC offers strong immune protection in mice,
providing a solid foundation for the development of genetically engineered
attenuated live vaccines against SE.
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Background

Salmonella enteritidis (SE) is a significant zoonotic pathogen that
not only inflicts substantial economic losses on the livestock industry
but has also emerged as one of the predominant serotypes causing
salmonellosis in humans in recent years (Zhou et al., 2023; Chousalkar
etal,, 2018). While strict biosecurity measures can create Salmonella-
free poultry farming environments, such measures are often
economically unfeasible in many countries. Moreover, the widespread
emergence of multidrug-resistant strains has raised concerns about
the use of antibiotics. Vaccination remains a primary strategy for
controlling Salmonella infections. Currently, inactivated vaccines,
subunit vaccines, and live attenuated vaccines represent the major
categories of Salmonella vaccines under development (Huberman
etal., 2019).

Studies indicate that inactivated vaccines primarily induce
humoral immunity and fail to elicit robust cell-mediated immune
responses. As a result, booster immunizations are often required to
achieve long-term protection (Deguchi et al., 2009). Subunit vaccines,
while safe, typically require multiple doses to extend the duration of
immunity and necessitate suitable adjuvants to trigger effective
cellular immune responses. In contrast, live attenuated vaccines, when
administered orally, adhere to the intestinal mucosa and mimic
natural infection, thereby eliciting strong humoral and cell-mediated
immune responses (Van Immerseel et al., 2005). The identification of
virulence genes is crucial for developing gene-deletion-based live
vaccines. This approach has been successfully employed in the
development of various vaccines, including those for Brucella spp.,
Salmonella Typhimurium, Yersinia pestis, Vibrio anguillarum, and
Edwardsiella tarda (Yang et al., 2015; Liu et al., 2018; Park et al., 20205
Cote et al., 2021; Zabalza-Barangua et al., 2023).

SE must overcome multiple defense mechanisms inside and
outside the gastrointestinal tract to establish infection in the host.
Upon entering the digestive system, the first challenge it encounters is
the bactericidal effect of gastric acid. Gastric acid, being a strongly
acidic environment, inhibits or kills most microorganisms that reach
the stomach. To survive, SE expresses high levels of acid shock
proteins, such as ATPase, which help maintain intracellular pH
balance and enhance its resistance to gastric acid. In the intestine, SE
defends itself against bile and digestive enzymes by regulating its
lipopolysaccharide (LPS) structure and producing anti-bile proteins,
such as TolC. In the small intestine, it utilizes a type III secretion
system (T3SS) to secrete effector molecules, including SipA, SipB, and
SipC, which facilitate its invasion of intestinal epithelial cells. Within
host cells, Salmonella forms a specialized membrane-bound
compartment called the Salmonella-containing vacuole (SCV), which
protects it from lysosomal degradation. After being phagocytosed by
macrophages, SE injects T3SS effectors like SifA and SipC to inhibit
the fusion of SCV's with lysosomes. Additionally, Salmonella can evade
autophagy-mediated clearance by secreting effectors such as Sse],
allowing it to persist and proliferate within the SCV. In summary, the
infection process of SE involves adapting to gastric acid, resisting bile,
invading intestinal epithelium, evading the immune system, surviving
intracellularly, and inducing inflammation. Each step relies on specific
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virulence factors and adaptive mechanisms, enabling Salmonella to
establish infection in the gastrointestinal tract and beyond, leading to
host disease. The loss of these virulence factors significantly attenuates
the pathogen’s virulence. Consequently, researchers have utilized these
virulence factors to develop various gene-deletion vaccines, achieving
promising immune protection results.

Methyl-accepting chemotaxis protein C (McpC) is a
methylation-based chemotaxis protein involved in bacterial
chemotaxis, enabling directional movement in response to chemical
gradients. By sensing and transmitting environmental chemical
signals, McpC helps bacteria regulate their motility. This chemotactic
ability is crucial for pathogenic bacteria to colonize and spread
within the host, thereby playing a significant role in virulence.
Additionally, McpC is involved in regulating biofilm formation,
flagellar biosynthesis, and toxin production (Hickman et al., 2005;
Berleman and Bauer, 2005; Harkey et al., 1994). As such, modulating
McpC expression or function in pathogens may impact their
infection efficiency and pathogenicity, making McpC a key target for
studying bacterial virulence and infection mechanisms. Previous
studies have demonstrated the role of methyl-accepting chemotaxis
proteins (MCPs) in the pathogenicity of various bacteria, including
Pseudomonas aeruginosa, Campylobacter jejuni, and Vibrio cholerae
(Lietal., 2014; Sampedro et al., 2014; Nishiyama et al., 2016). Based
on these findings, it is hypothesized that McpC contributes to the
virulence of SE, a hypothesis that requires further experimental
validation. By precisely deleting the mcpC gene, the pathogen’s
virulence is significantly reduced while retaining its immunogenicity,
thereby greatly enhancing safety and efficacy. Moreover, the vaccine
strain produced by deleting the presumed virulence-associated gene
mcpC can induce robust mucosal, cellular, and humoral immune
responses, making it suitable for non-injection administration
methods such as oral or spray vaccination, which facilitates large-
scale application.

In this study, we constructed an mcpC gene deletion strain
(AmcpC) using homologous recombination techniques and
investigated its impact on SE virulence. The evaluation included
analyses of stress resistance, biofilm formation, motility, adhesion,
invasion, intracellular survival in macrophages, LDs, expression levels
of virulence genes, and bacterial load in host organs. Additionally,
we assessed the ability of AmcpC to induce immune responses and its
protective efficacy in mice using an infection model. The findings
provide a foundational basis for the development of genetically
engineered live-attenuated vaccines targeting SE.

Materials and methods
Bacterial strains, cells and plasmids

Bacterial strains and plasmids used in this study are listed in
Table 1. Salmonella enteritidis strain C50336, a wild-type strain, was
preserved in the Key Laboratory of Preventive Veterinary Medicine,
Hebei Province, and used for constructing the AmcpC strain. The
mcpC gene deletion strain in this study was constructed using the
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TABLE 1 Bacterial strains and plasmids used in this study.

Strains Relevant characteristics = Sources
Salmonella enterica serovar
C50336 This study
Enteritidis, wild-type
AmcpC:cat A first recombination strain This study
AmcpC A second recombination strain This study
AmcpC + mcpC | AmcpC-complemented strain This study
Plasmids Characteristics Sources
Template plasmid; FRT-aphT-FRT
Datsenko and
pKD3 (containing chloramphenicol
Wanner (2000)
resistance gene)
Red recombinase expression plasmid
Datsenko and
pKD46 blapBAD gam bet exopSC101 oriTS
‘Wanner (2000)
(containing ampicillin resistance gene)
Datsenko and
pCP20 FLP recombinase expression plasmid
Wanner (2000)

A-Red recombinase-mediated gene replacement method (Datsenko
and Wanner, 2000). The bacteria were cultured in Luria-Bertani (LB)
broth (Haibo Biotechnology Co., Ltd.) at 37°C unless otherwise
specified. Human epithelial Caco-2 BBE cells and mouse macrophage
RAW264.7 cells used in this study were provided by BeNa Culture
Collection (Shanghai, China). Both cell types were cultured in DMEM
(Thermo Fisher Scientific Co., Ltd.) supplemented with 10% fetal
bovine serum (Thermo Fisher Scientific Co., Ltd.). Antibiotics were
added as necessary, such as 50 pg/mL streptomycin and 50 U/mL
penicillin, or 50 pg/mL gentamicin, in an incubator with 5% CO..

Experimental animals and ethical
statement

Kunming (KM) mice were obtained from Beijing Speifu
Biotechnology Co., Ltd. All animal experiments were conducted in
full compliance with international ethical standards and the
Experimental Animal Regulation Ordinances (HPDST 2020-17) as
stipulated by the Hebei Provincial Department of Science and
Technology. The study protocol was reviewed and approved by the
Animal Care and Use Committee of Hebei Normal University of
Science and Technology.

Construction of the mcpC deletion strain
and complemented strain

C50336 (pKD46) was cultured in Luria-Bertani agar (LBA)
containing 225 mg/mL L-arabinose at 30°C until the optical
density (OD) at 600 nm reached 0.6-0.8. The cells were then
washed three times with pre-chilled autoclaved ultrapure water to
prepare electrocompetent cells. Using DH5a (pKD3) as a template,
a homologous targeting fragment was amplified with specific
primers P1 and P2 (Table 2). The purified fragment was
electroporated into electrocompetent C50336 (pKD46) cells.
Subsequently, 1 mL of LB broth was added, and the cells were
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incubated at 30°C for 2 h. The culture was then plated onto LB agar
containing 50 pg/mL chloramphenicol (Cm). Colonies were
identified using primers P3 and P4 (Table 2). Positive strains were
cured of the pKD46 plasmid by incubation at 42°C and were
designated as AmcpCi:cat.

To remove the Cm cassette, the pCP20 plasmid was introduced
into AmcpCi:cat via electroporation. Mutants were identified using
primers P3 and P4, and positive strains were cured of the pCP20
plasmid by incubation at 42°C, resulting in the final AmcpC strain.

For the construction of the complemented strain, the open
reading frame of the mcpC gene was amplified using primers P5 and
P6 (Table 2). The purified PCR product was cloned into the pMD-19 T
vector [Takara Biomedical Technology (Beijing) Co., Ltd.], resulting
in the recombinant plasmid pMD-19 T-mcpC. This plasmid was then
introduced into AmcpC by electroporation, and transformants were
confirmed using primers P5 and P6. The complemented strain was
designated as AmcpC + mcpC.

In vitro stress simulation experiments

Overnight cultures of C50336, AmcpC and AmcpC + AmcpC
were washed three times with physiological saline and enumerated
using the traditional plate counting method to determine the initial
bacterial count. The bacterial suspensions were then subjected to static
incubation under various stress conditions: physiological saline at pH
3.5, physiological saline at pH 10, and at 42°C for 1 h. Additionally,
the bacterial suspensions were exposed to physiological saline
containing 10 mmol/L H,O, for 10 min. After stress treatment,
bacterial counts were determined, representing the post-stress
bacterial count. The survival rate of each strain under different
conditions was calculated as follows: survival rate = (post-stress
bacterial count)/(initial bacterial count).

Biofilm formation assay

The crystal violet (CV) staining method was used to assess biofilm
formation (Zhang et al., 2020). Bacterial suspensions of C50336,
AmcpC, and AmcpC + mcpC were inoculated at a 1:100 ratio into glass
tubes containing 6 mL of LB broth and incubated statically at 28°C for
3 days. The tubes were washed 2-3 times with PBS, fixed with
anhydrous methanol for 15 min, and stained with 2% CV for 15 min.
The presence and thickness of stained bacterial rings on the tube walls
were observed.

For quantitative analysis, a 96-well plate assay was performed.
Each well was inoculated with 150 pL of bacterial suspension and
stained as described above. After staining, 200 uL of anhydrous
ethanol was added to each well to dissolve the CV. Absorbance at
570 nm was measured, and the experiment was repeated three times.

To detect two major components of the biofilm, curli fimbriae and
cellulose, 5 pL of bacterial suspension from C50336, AmcpC, and
AmcpC+ mcpC was spotted onto salt-free LB agar containing
160 mg/L Congo red and 10 mg/L Coomassie brilliant blue (for curli
detection) or onto agar containing 200 mg/L Calcofluor White Stain
(CWS) for cellulose detection. Plates were incubated at 28°C for
2 days. Colony color, morphology, and fluorescence intensity under
UV light (366 nm) were observed (Dong et al., 2011).
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TABLE 2 Primers used for constructing the mutant and the complemented strain.

Primer Sequence (5'-3)

P1: AGCAGCTCATGTTACTGGATGAAGAGGGGCGCTGGAGCCAGAGTTCGCAGAAAGAGCTGTGTGTAGGCTGGAGCTGCTTCG
P2: CGCACGCGCCGCTTCAACCGCCGCGTTCAGCGCCAGAATATTGGTCTGAAAGGCAATGGCATATGAATATCCTCCTTAG

P3: CGCTCTGTCTTTGTTTAGCCTTGA

P4: ATCCCTTCCTGAGTCTGACTGGTT

P5: GAAAATATGTTTTTGCATAACATTAAAA

P6: TTAAGCGGGCTGCGTGTCCTCTTCGCGGA

Motility assay

Bacterial motility was assessed using semi-solid agar plates (0.3%
agar). Briefly, 5pL of overnight bacterial culture was carefully
inoculated into the center of the semi-solid agar plate by gently
stabbing it with a pipette tip to avoid agitation. Plates were incubated
upright at 37°C for 5-6 h. Motility was determined by observing the
migration of bacteria from the inoculation site toward the periphery
of the plate. The experiment was repeated three times (Eakley
etal., 2011).

Adhesion, invasion, and intracellular
survival assays

Bacterial suspensions of C50336, AmcpC, and AmcpC + mcpC
were washed three times with PBS and enumerated using CFU
calculations from serial dilutions on agar plates. Caco-2 BBE cells were
seeded into 12-well plates at a density of 10° CFU/well and cultured
overnight in antibiotic-free DMEM supplemented with 10% FBS to
achieve 80% confluence. The cells were washed three times with sterile
PBS, and 1 mL of bacterial suspension was added to each well at a
multiplicity of infection (MOI) of 100. Plates were centrifuged at
1,000 rpm for 5 min and incubated in a 37°C, 5% CO incubator for
1 h (Xiong et al., 2023).

Adhesion assay

After a 1-h incubation, the cells were washed three times with PBS
and lysed with 1% Triton X-100 for 8 min. The cell lysates were serially
diluted and plated on SS agar for bacterial enumeration. Adhesion
rate = (number of adhered bacteria/number of bacteria in the
inoculum per well) x 100%.

Invasion assay

After a 1-h incubation, the cells were washed three times with PBS
and further incubated for 1 h in DMEM containing gentamicin
(100 pg/mL) to kill extracellular bacteria. The cells were then lysed
with 1% Triton X-100 for 8 min, and the lysates were plated for
bacterial enumeration. Invasion rate = (number of intracellular
bacteria/number of bacteria in the inoculum per well) x 100%.

For the intracellular survival assay, RAW264.7 cells were seeded
at a density of 10° cells per well into two 12-well plates. Cells were
infected with bacteria at an MOI of 100 and incubated at 37°C with
5% CO, for 2h. Non-adherent and non-invaded bacteria were
removed by washing the cells twice with PBS. The cells were then
incubated for 1 h in DMEM containing 100 pg/mL gentamicin to
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eliminate remaining extracellular bacteria. The cells were lysed with
1% Triton X-100, and intracellular bacteria were enumerated,
representing the bacterial count at 3 h post-infection. For the second
plate, the cells were further incubated in DMEM containing 10 pg/mL
gentamicin for 20 h. Cells were then lysed with 1% Triton X-100, and
intracellular bacteria were enumerated to represent the bacterial count
at 23 h post-infection. Intracellular survival rate = (intracellular
bacteria at 23 h/intracellular bacteria at 3 h) x 100%.

Determination of LDs, in mice

Eighty KM mice aged 4 to 6 weeks were randomly divided into 16
groups (n =5). The first five groups were intraperitoneally (i.p.)
injected with C50336 at doses of 2 x 107, 2 x 10°%, 2 x 10°, 2 x 10, and
2 x 10> CFU/mouse, respectively. The second five groups were i.p.
injected with AmcpC at doses of 3.8 x 10°, 3.8 x 10%, 3.8 x 10/,
3.8 x 10°, and 3.8 x 10° CFU/mouse, respectively. The third five groups
were i.p. injected with AmcpC + mcpC at doses of 2 x 107, 2 x 10°,
2 x 10% 2 x 10* and 2 x 10° CFU/mouse, respectively. The remaining
group was i.p. injected with an equal volume of PBS. The mortality of
the mice was observed and recorded over a 14-day period following
the injection (Yin et al., 2019).

The LD, value was calculated using the formula of log,, (50%
endpoint) = A + (B x C), where A =log, (infectious dose showing a
50%),
logarithms = [50% — (mortality at infectious dose next below 50%)]/

mortality next below B = difference of
[(mortality next above 50%) — (mortality next below 50%)], and
C =log, (difference between serial infectious doses used in challenge

studies) (Park et al., 2022).

RNA extraction and quantitative real-time
PCR

To further investigate the effect of the mcpC gene on the virulence
of SE, quantitative real-time PCR (qPCR) was employed to analyze the
expression levels of SE virulence-related genes after the deletion of the
mcpC gene. The procedure was as follows: RNA was extracted using a
bacterial RNA extraction kit (Beijing Aidlab Biotechnologies Co.,
Ltd.), and genomic DNA was removed via DNase I treatment. The
RNA was then reverse-transcribed into ¢cDNA using a reverse
transcription kit (Bohang Biotechnology Co., Ltd.). This cDNA was
used as the template for qPCR analysis with the SYBR Green dye
method. The UltraSYBR Mixture used in this method is from Jiangsu
Cowin Biotech Co, Ltd. Virulence factor-related genes and their
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primers were selected based on previously reported literature
(Table 3), with the 16S rRNA gene serving as the internal control (Frye
et al., 2006; Upadhyaya et al., 2013). The qPCR thermal cycling

TABLE 3 Primers used for qPCR.

Gene Sequence (5-3)

fimD-F CGCGGCGAAAGTTATTTCAA
fimD-R CCACGGACGCGGTATCC

flG-F GCGCCGGACGATTGC

flgGR CCGGGCTGGAAAGCATT

prot6E-F GAACGTTTGGCTGCCTATGG
prot6E-R CGCAGTGACTGGCATCAAGA
csgA-F AATGCCACCATCGACCAGTG
csgAR CAAAACCAACCTGACGCACC
csgD-F GCCTCATATTAACGGCGTG

csgD-R AGCGGTAATTTCCTGAGTGC
besA-F GCCCAGCTTCAGAATATCCA
besA-R TGGAAGGGCAGAAAGTGAAT
ompR-F TGTGCCGGATCTTCTTCCA

ompR-R CTCCATCGACGTCCAGATCTC
hfIK-E AGCGCGGCGTTGTGA

WIK-R TCAGACCTGGCTCTACCAGATG
tatA-F AGTATTTGGCAGTTGTTGATTGTTG
tatA-R ACCGATGGAACCGAGTTTTTT
Irp-F TTAATGCCGCCGTGCAA

Irp-R GCCGGAAACCAAATGACACT
sipA-F CAGGGAACGGTGTGGAGGTA
sipAR AGACGTTTTTGGGTGTGATACGT
sipB-F GCCACTGCTGAATCTGATCCA
sipB-R CGAGGCGCTTGCTGATTT

pipB-F GCTCCTGTTAATGATTTCGCTAAAG
PpipBR GCTCAGACTTAACTGACACCAAACTAA
invH-F CCCTTCCTCCGTGAGCAAA

invH-R TGGCCAGTTGCTCTTTCTGA
mgtC-F CGAACCTCGCTTTCATCITCTT
mgtC-R CCGCCGAGGGAGAAAAAC

s0dC-F CACATGGATCATGAGCGCTTT
s0dC-R CTGCGCCGCGTCTGA

orf245-F CAGGGTAATATCGATGTGGACTACA
0rf2457R GCGGTATGTGGAAAACGAGTTT
1fbH-F ACGGTCGGTATTTGTCAACTCA
rﬂJHfR TCGCCAACCGTATTTTGCTAA
xthA-F CGCCCGTCCCCATCA

xthA-R CACATCGGGCTGGTGTTTT

mirl-F CCATCGCTTCCAGCAACTG

mrrl-R TCTCTACCATGAACCCGTACAAATT
168 rRNA-F CCAGGGCTACACACGTGCTA

168 rRNA-R TCTCGCGAGGTCGCTTCT
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conditions were as follows: initial denaturation at 95°C for 10 min,
followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.

Bacterial colonization and persistence in
organs

Thirty-five 4-6-week-old KM mice were randomly divided into
two groups: the C50336 infection group (Group A, n = 20) and the
AmcpC infection group (Group B, n = 15). Mice in Group A were i.p.
injected with the wild-type strain C50336, while mice in Group B were
i.p. injected with the gene-deleted strain AmcpC. The injection dose
for both groups was 2 x 10° CFU/mouse. On days 3, 7, and 14 post-
infection, five mice were randomly selected from each group and
euthanized. Under sterile conditions, the liver, spleen, and cecum were
collected, weighed, and homogenized in 1 mL of sterile PBS. Serial
dilutions of the homogenate were plated on SS agar for bacterial
enumeration. The bacterial load in each organ was calculated using
the formula log,, CFU/g (Negi et al., 2007; Milanez et al., 2018).

Immunization with AmcpC in mice

Twenty-four 6 to 8-week-old female KM mice were randomly
divided into two groups: the immunized group (n = 12) and the
control group (n = 12). The immunized group received an oral dose
(p-0.) of 2 x 10" CFU/mouse of the AmcpC strain. The procedure was
as follows: after fasting and water deprivation for 6 h, each mouse was
orally administered 100 pL of 5% NaHCOj; to neutralize gastric acid.
Two hours later, oral inoculation was performed using a gavage
needle. On day 14 post-immunization (dpi), a booster immunization
with the same dose was administered. The control group received an
equivalent volume of PBS via oral administration.

Detection of 1IgG and IgA

The indirect ELISA method was employed to detect SE-specific
IgG and IgA in the serum and feces of immunized mice. The strain
C50336 was cultured to the logarithmic growth phase, washed twice
with PBS, and resuspended. The suspension was ultrasonically lysed for
30 min at 4°C, followed by centrifugation at 8,000 rpm for 10 min. The
supernatant was collected and stored at —80°C for use as the coating
antigen (Ji et al., 2022). At 14 dpi and 28 dpi, blood samples were
randomly collected from three mice in the immunized group and three
in the control group. The blood was centrifuged to separate the serum,
which was stored at —80°C for IgG detection. Fecal samples were also
collected from the same three mice. Five fecal pellets from each mouse
were suspended in 0.5 mL of extraction buffer containing 0.1 mg/mL
soybean trypsin inhibitor (Shanghai Yuanye Bio-Technology Co., Ltd.),
10 mg/mL bovine serum albumin (Biofroxx), and 30 mM EDTA
disodium (pH 7.6). After homogenization and centrifugation, the
supernatant was collected and stored at —80°C for IgA detection
(Nandre et al.,, 2011; Pasquevich et al., 2011).

Using a checkerboard titration method, the optimal antigen
coating concentration and sample dilution were determined. The
coating antigen (500 ng/100 uL) was added to a 96-well microtiter
plate and incubated overnight at 4°C. Blocking was performed using
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5% skim milk (prepared in PBS containing 0.05% Tween 20, PBST) at
37°C for 4 h (200 pL/well). After removing the blocking solution, the
plate was washed three times with PBST. Serum samples diluted 1:400
or undiluted fecal supernatant (100 pL/well) were added and
incubated at 37°C for 1 h. The plate was then washed three times with
PBST. HRP-conjugated goat anti-mouse IgG (diluted 1:10,000, Beijing
Solarbio Science & Technology Co., Ltd.) or HRP-conjugated goat
anti-mouse IgA (diluted 1:10,000, Beijing Pulilai Gene Technology
Co., Ltd.) was added at 100 pL/well and incubated at 37°C for 1 h.
Following another washing step, 100 pL of TMB substrate solution
(Beijing Solarbio Science & Technology Co., Ltd.) was added to each
well and incubated at 37°C for 10 min. The reaction was terminated
by adding 50 pL of 2 M H,SO, to each well, and the ODs,,, was
measured (Park et al., 2022).

Lymphocyte proliferation assay

The C50336 bacterial antigen was prepared following the
previously described method and used as a stimulant for the
lymphocyte proliferation assay. At 14 dpi and 28 dpi, three mice from
each group were euthanized. The spleens of the immunized mice were
aseptically isolated, homogenized, and filtered through a 70 pm cell
strainer (Beijing Labgic Technology Co., Ltd.) to obtain spleen cells.
Red blood cells were lysed using a red blood cell lysis buffer (Beijing
Solarbio Science & Technology Co., Ltd.). The spleen lymphocytes
were suspended in RPMI Medium 1,640 (Thermo Fisher Scientific
Co., Ltd.) supplemented with 10% fetal bovine serum (FBS), 50 U/mL
penicillin, and 50 pg/mL streptomycin. Cell viability was assessed
using the trypan blue exclusion test, and cells were counted using
a hemocytometer.

In a 96-well tissue culture plate, 10° cells/100 pL of cell suspension
were added to each well. For the stimulation group, bacterial antigen
was added at a final concentration of 7.5 ug/mL (11 pL/well). For the
non-stimulation group, 11 uL of RPMI Medium 1,640 containing 10%
FBS, 50 U/mL penicillin, and 50 pg/mL streptomycin was added to
each well. A medium-only control group was also included (111 puL/
well). The 96-well tissue culture plates were incubated at 37°C in a
humidified environment with 5% CO, for 72h. Lymphocyte
proliferation was measured using the MTT Cell Proliferation and
Cytotoxicity Assay Kit (Shanghai Beyotime Biotechnology Co., Ltd.).
Absorbance was measured at 450 nm, and the stimulation index (SI)

)i

was calculated as follows (Lin et al., 2017):

(

Mean OD value of stimulation group —
Mean OD value of medium — only group

Mean OD value of non —
stimulation group —
Mean OD value of
medium — only group

The expression of cytokines in the spleen

qPCR was used to evaluate the expression levels of cytokines IL-1f,
IL-2, IL-4, IL-6, IL-10, IFN-y, and TNF-a in the spleen of immunized
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mice. At 14 dpi and 28 dpi, three mice from each group were randomly
selected. Spleens were aseptically isolated, and total RNA was extracted
using the TriQuick Total RNA Extraction Kit (Beijing Solarbio Science
& Technology Co., Ltd.). DNA was removed by DNase I treatment, and
RNA was reverse transcribed into cDNA using a reverse transcription
kit (Bohang Biotechnology Co., Ltd.). Samples were stored at —80°C
until use. RT-PCR for gene expression studies was performed using
UltraSYBR Mixture (Jiangsu Cowin Biotech Co, Ltd., China).

The primers used for the qPCR are shown in Table 4. Cytokine
expression levels were normalized to the internal control gene gapdh
and f-actin and calculated using the 272AC method. Thermal cycling
conditions: initial denaturation at 95°C for 10 min, followed by 40 cycles
0f 95°C for 15 s and 60°C for 1 min (Wang et al., 2021; Kang et al.,, 2022).

Immune protection assessment in mice

Forty 6 to 8-week-old KM female mice were randomly divided into
four groups (n = 10): the immunization groups (Group A and Group
B), the challenge group (Group C), and the control group (Group D).
Mice in Group A were orally administered 2 x 10’7 CFU/mouse of
AmcpC, with a booster immunization at the same dose at 14 dpi. Mice
in Group B were orally administered 2 x 10° CFU/mouse of AmcpC,
also with a booster immunization at the same dose at 14 dpi. Mice in
Groups C and D were orally administered an equivalent volume of
PBS. At 28 dpi, mice in the immunization groups (Groups A and B) and
the challenge group (Group C) were i.p. injected with 2 x 10" CFU/
mouse of C50336, while mice in the control group (Group D) were i.p.
injected with an equivalent volume of PBS. For 14 days post-challenge,
mouse mortality was recorded daily, and the relative survival rate was
calculated as follows:

TABLE 4 Primers used for the gPCR amplification of cytokines.

Sequence 53

IL-1p-F GACTGTTTCTAATGCCTTCCC
IL-1p-R ATGGTTTCTTGTGACCCTGA
IL-2-F TGAGCAGGATGGAGAATTACAGG
IL-2-R GTCCAAGTTCATCTTCTAGGCAC
IL-4-F GGTCTCAACCCCCAGCTAGT
IL-4-R GCCGATGATCTCTCTCAAGTGAT
IL-6-F TAGTCCTTCCTACCCCAATTTCC
IL-6-R TTGGTCCTTAGCCACTCCTTC
IL-10-F CTTACTGACTGGCATGAGGATCA
IL-10-R GCAGCTCTAGGAGCATGTGG
IFN-y-F ATGAACGCTACACACTGCATC
IFN-y-R CCATCCTTTTGCCAGTTCCTC
TNF-a-F CCCTCACACTCAGATCATCTTCT
TNF-a-R GCTACGACGTGGGCTACAG
GAPDH-F AGGTCGGTGTGAACGGATTTG
GAPDH-R TGTAGACCATGTAGTTGAGGTCA
P-Actin-F TTCAACACCCCAGCCATG
P-Actin-F CCTCGTAGATGGGCACAGT
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Mortality rate of the
control group —
Mortality rate of the
experimental group
Mortality rate of the
control group x100%

Relative survival rate = /

Statistical analysis

Data are expressed as the mean + standard error of the mean
(SEM). All statistical analysis were two-way ANOVA and post-test.
Differences between two samples were evaluated using Student’s ¢-test.
Significant differences are indicated with an asterisk (*), where
*p <0.05, **p <0.01, and ***p < 0.001 are considered to represent
statistically significant differences in mean values. Statistical analyses
were conducted using IBM SPSS Statistics 26.

Results

The AmcpC mutation results in a reduced
stress defense capacity

Genomic DNA from the strains C50336, AmcpC::cat, and AmcpC
was used as templates for PCR identification with primers P3 and P4.
The results (Figure 1A) showed bands at 1203 bp, 1,506 bp, and
489 bp, respectively, consistent with the expected sizes, indicating the
successful knockout of the mcpC gene. Genomic DNA from the
suspected complemented strain was used as a template, and primers
P5 and P6 were employed for PCR identification. The results
(Figure 1B) revealed a target band at approximately 1,572 bp, matching
the expected size, confirming the successful construction of the mcpC
complemented strain, designated as AmcpC + mcpC.

To investigate whether the mcpC gene affects the resistance of SE
to various environmental stresses, the survival rates of C50336 and
AmcpC were compared under conditions of pH 3.5, pH 10, 42°C, and
10 mmol/L H,O,. The results showed that (Figure 1C), compared to
C50336, the survival rate of AmcpC was significantly reduced under
all tested conditions, indicating that the deletion of the mcpC gene
weakens SE’s resistance to acid, alkaline, thermal, and oxidative stresses.

The mcpC gene does not affect biofilm
formationand drug resistance

The biofilm formation ability of strains C50336, AmcpC, and
AmcpC+ mcpC was evaluated. Tube assay results showed no
significant differences in biofilm formation ability among the three
strains (Figure 2A). Quantitative analysis using a 96-well plate assay
also indicated no significant differences in biofilm formation among
the strains (Figure 2B).

Detection of curli fimbriae, a major component of biofilms,
revealed that all three strains formed red, rough colonies (Figure 2C),
indicating their ability to produce curli fimbriae. Cellulose production
analysis showed that colonies of all three strains exhibited the same
fluorescence intensity under UV light (Figure 2D), confirming their
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ability to produce cellulose. These findings demonstrate that the mcpC
gene does not affect the biofilm formation ability of SE.

The AmcpC mutation results in motility
reduction

To assess whether the deletion of the mcpC gene affects the
motility of SE, motility assays were conducted. The results showed that
the average migration diameter of the AmcpC strain (17.5 mm) was
significantly smaller than that of the wild-type C50336 strain (25 mm)
and the complemented strain AmcpC + mcpC (21 mm) (Figure 3).
These findings indicate that the deletion of the mcpC gene impairs the
motility of SE.

Removal of mcpC weakens the invasion
and intracellular survival of SE

The adhesion and invasion abilities of the AmcpC strain toward
intestinal epithelial cells were assessed using human colorectal
adenocarcinoma cells Caco-2. As shown in Figure 4A, the adhesion
rate of AmcpC was comparable to that of the wild-type C50336 strain,
but its invasion rate was significantly reduced.

The intracellular survival of AmcpC was evaluated using mouse-
derived macrophages RAW264.7. The results revealed a significantly
lower survival rate of AmcpC within macrophages compared to
C50336 (Figure 4B). These findings indicate that the mcpC gene is
critical for the invasion and intracellular survival capabilities of SE.

AmcpC exhibits increased LDs, in mice

The virulence of C50336 and AmcpC strains was evaluated in
mice via i.p. injection. Mice infected with AmcpC began to die on day
2, whereas those infected with C50336 showed mortality starting on
day 3. In contrast, the control group exhibited no mortality and
maintained normal behavior, including smooth fur, good mental state,
and an absence of symptoms such as shivering, hunching, eye crusting,
or disheveled fur.

The calculated LDs, values (Table 5) were 6.3 x 10° CFU/mouse
for C50336 and 1.9 x 10’ CFU/mouse for AmcpC, with the LDs, of
AmcpC being approximately 30 times higher than that of C50336
(1.9 x 107/6.3 x 10° = 30). The LDs, of the gene-complemented strain
AmcpC + mepCis 1.6 x 10° CFU/mouse. The results suggest that the
deletion of the mcpC gene significantly attenuates the virulence of SE.

Removal of mcpC results in a
down-regulation of the multiple virulence
gene expressionof in SE

To investigate the mechanisms underlying the attenuated virulence
of SE caused by the deletion of the mcpC gene, this study employed
qPCR to examine the expression levels of various virulence genes. The
results revealed that the deletion of mcpC significantly downregulated
the expression of genes associated with bacterial motility (fimD),
biofilm formation (csgA, csgD), cell membrane and cell wall integrity
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FIGURE 1
(A) PCR verification of the mcpC gene deletion strain. The PCR product of C50336 has a length of 1,203 bp, the product of AmcpC::cat has a length of
1,504 bp, the product of AmcpC has a length of 489 bp. (B) PCR verification of AmcpC + mcpC. The PCR product has a length of 1,572 bp. (C) The
survival rate of C50336, AmcpC and AmcpC + mcpC under various environmental stresses. The data represents the average of 3 replicates.

(WK, Irp), the type III secretion system (T3SS) (sipA, sipB, pipB),
adhesion and invasion (invH), intracellular survival (mgtC, sodC), and
nucleic acid exonuclease/endonuclease activity (mrrl) (Figure 5). These
findings suggest that mcpC may regulate the expression of multiple
virulence genes, thereby contributing to the overall virulence of SE.

Removal of mcpC results in reduced
colonization and persistence of bacteria in
the organ

Organ bacterial load is another critical indicator of SE
virulence. In this study, the bacterial loads in the liver, spleen, and
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cecum of mice infected with C50336 and AmcpC were assessed.
After
were measured.

homogenization of the organs, bacterial counts

As shown in Figure 6, bacteria were isolated from the liver, spleen,
and cecum on days 3, 7, and 14 post-infection. The colonization levels
of both C50336 and AmcpC peaked on day 7 and subsequently
declined. Notably, compared to C50336, AmcpC exhibited significantly
lower bacterial loads in the liver, spleen, and cecum on day 3 and day
7; in the liver and cecum on day 14.

These findings indicate that while AmcpC can still colonize
organs, its colonization ability in certain organs is significantly
reduced, suggesting that the deletion of the mcpC gene diminishes the

organ bacterial load and virulence of SE.
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(A) The images shown are representatives of several independent assays. (B) The motility of the strains was evaluated on 0.3% agar plates, measured

AmcpC can induce mucosal, humoral, and
cellular immune responses

To evaluate the ability of AmcpC to induce specific humoral and
mucosal immune responses, serum IgG and fecal SIgA levels were
measured in immunized mice using indirect ELISA. The results
showed that at 14 dpi and 28 dpi, mice immunized with AmcpC
exhibited significantly higher serum IgG levels compared to the
control group (Figure 7A). Additionally, elevated SIgA levels were
detected in fecal samples (Figure 7B). Both serum IgG and fecal SIgA
levels increased significantly following the second immunization
compared to the first. These findings suggest that AmcpC effectively
induces robust specific humoral and mucosal immune responses,
which are enhanced with repeated immunizations.
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Lymphocyte proliferation assays are a primary method for
evaluating cellular immune responses. In this study, a lymphocyte
proliferation assay was conducted using C50336 antigens as
stimulants. The results revealed that lymphocyte proliferation,
measured by the stimulation index (SI), was significantly higher in
mice immunized with AmcpC compared to the control group
(Figure 7C). Moreover, after the booster immunization, lymphocyte
proliferation levels further increased. These findings indicate that
AmcpC induces a strong specific immune response, which is enhanced
with repeated immunizations.

The expression of different cytokines reflects the strength and
polarization of the immune response. At 14 dpi and 28 dpi, the
expression levels of IL-1§3, IL-2, IL-4, IL-6, IL-10, TNF-a, and IFN-y were
analyzed using qPCR. The results showed that (Figures 7D,E), compared
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TABLE 5 LDs, of C50336, AmcpC and AmcpC + mcpC in KM mice.

Inoculation No. of LDsg
dose (CFU/ deaths/
mouse) total No.
of mice
C50336 2% 107 5/5 6.3 % 10°
2x10° 3/5
2% 10° 2/5
2% 10 0/5
2x10° 0/5
AmcpC 3.8 % 10° 5/5 1.9 x 107
3.8 % 10° 5/5
3.8 %107 3/5
3.8 % 10° 1/5
3.8 % 10° 0/5
AmcpC + mepC 2x107 5/5 1.6 x 10°
2% 10° 2/5
2% 10° 1/5
2 x10* 0/5
2% 10° 0/5

to the control group, the expression levels of IL-6, IL-10, and IFN-y
significantly increased after the first immunization. Following the second
immunization, IL-6 and IFN-y expression levels further increased,
although IL-6 remained similar to the levels observed after the first
immunization, while IFN-y continued to rise. These findings suggest that
AmcpC effectively induces a strong immune response in mice.

AmcpC immunization provides powerful
protective immune protection for mice

To further evaluate the protective immunity conferred by AmcpC,
this study challenged immunized mice with a virulent strain via i.p.
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injection, recorded survival rates, and plotted survival curves. The
results showed that mice in Group A (oral immunization with a dose
of 2 x 107 CFU/mouse) exhibited 100% survival with no deaths
recorded. In Group B (oral immunization with a dose of 2 x 10° CFU/
mouse), partial mortality was observed. In contrast, all mice in Group
C (non-immunized, challenged group) succumbed within 5 days,
while mice in Group D (non-immunized, non-challenged control
group) showed no mortality (Figure 8).

The percentage survival of mice at 14 days post-challenge is
summarized in Table 6. The results showed that Groups A and D
achieved a relative survival rate of 100%, Group B exhibited a survival
rate of 60%, while Group C had no survivors. These findings indicate
that oral immunization with AmcpC offers robust protection against
SE infection in mice.

Discussion

SE can cause subclinical infections in adult livestock and poultry,
leading to bacterial shedding through feces into the external
environment. This creates challenges in pathogen eradication,
resulting in severe systemic infections and high mortality rates in
animals. The use of antibiotics and vaccination are key strategies for
controlling Salmonella infections. However, widespread antibiotic
use has led to the emergence of multidrug-resistant strains and
severe drug residue issues, posing a significant threat to public
health. Therefore, there is an urgent need for an effective vaccine to
control this important zoonotic pathogen. As an intracellular
pathogen, the host’s cellular immune response plays a crucial role in
limiting SE infections. Live attenuated vaccines are considered more
effective than inactivated vaccines in combating both intestinal and
systemic infections, as they can simultaneously stimulate robust
cellular and humoral immune responses (Wang et al., 2022). In this
study, a mcpC mutant strain of SE AmcpC exhibited significantly
attenuated virulence and provided strong immune protection
in mice.

During its pathogenesis, SE must overcome numerous adverse

environmental conditions, including antimicrobial peptides,
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gene. The data represents the average of 3 replicates

The expression levels of virulence genes in C50336, AmcpC and AmcpC + mcpC were detected by using gPCR, with 16S rRNA as the housekeeping
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FIGURE 6

The colonization and persistence of C50336 and AmcpC colonization in liver, spleen and cecum after challenge. Values are represented as log,o CFU/g
sample. Negative samples are shown as 0 CFU/g; all samples from the control group were negative.

temperature and pH fluctuations, and nutrient limitations (Rana et al.,
2021). The ability to survive under these diverse environmental
conditions is a fundamental characteristic of SE virulence (Arunima
etal,, 2020). In this study, the deletion of the mcpC gene impairs SE’s
ability to sense and respond to environmental changes, such as acid,
alkali, heat, and oxidative stress. A large number of studies showed
that Lon, CpxR, RfaL, and RpoS significantly affect the strain’s stress
defense capacity, thereby influencing the bacterias pathogenicity
(Kirthika et al., 2024; Badie et al., 2021). Thus, it is speculated that
McpC helps Salmonella cope with challenges such as oxidative stress,
high influence the
bacteria’s virulence.

temperature, and hypoxia, and may

Frontiers in Microbiology

Numerous studies have demonstrated that Salmonella can form
biofilms on a variety of contact surfaces (Romling et al., 2003). These
biofilms exhibit high resistance to antimicrobial agents and contribute
to the increased virulence of Salmonella, facilitating the establishment
of chronic infections (Merino et al., 2019). Biofilm formation allows
Salmonella to persist in poultry farming environments and
contaminate poultry meat and eggs, which remain major vehicles for
foodborne Salmonella outbreaks. Curli fimbriae and cellulose are the
primary components of Salmonella biofilms. The AmcpC was no
significant reduction in the formation of biofilm, curli fimbriae, and
cellulose. But the expression levels of biofilm-related genes, csgA and
csgD, were significantly reduced. One possible explanation is that
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while the deletion of the mcpC gene downregulates certain biofilm-
related genes, biofilm formation is regulated by the collective

interaction of multiple genes.
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Bacterial motility is closely associated with chemotaxis. The
combination of motility and chemotaxis enables bacteria to detect and

pursue nutrients, allowing them to reach and maintain their preferred
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colonization niches (Josenhans and Suerbaum, 2002). The level of
motility plays a critical role in determining whether Salmonella can
reach specific sites within the host, thereby influencing its virulence.
We observed that the motility of the AmcpC was significantly reduced.
The expression of the motility-associated gene fimD was down-
regulated in AmcpC. These findings suggest that the deletion of the
mcpC gene impairs the motility of SE, which in turn affects its
pathogenic process. This hypothesis is supported by many studies,
such as the finding that the c¢-di-GMP binding effector STM0435
regulates flagella synthesis, controls biofilm formation, and affects
Salmonella virulence (Dai et al., 2024). In addition, the knockout of
YeiE reduces the expression of flagella-related genes such as fliA, flgM,
and fliD in Salmonella enterica, leading to a decrease in flagella
formation, which affects the bacteria’s colonization of the intestines
and its virulence (Westerman et al., 2021).

The pathogenic process of Salmonella involves adhesion and
invasion of intestinal epithelial cells, survival and replication within
host cells, and dissemination beyond the intestine. Invasion of host
cells is a critical characteristic of Salmonella pathogenicity, while
survival within macrophages is considered a more robust indicator of
bacterial virulence (Fields et al., 1986; Eakley et al., 2011). We found
that that the deletion of the mcpC gene impairs the invasion and
intracellular survival capabilities of SE, both of which are closely
linked to its virulence.

An ideal attenuated live vaccine strain should effectively withstand
host-induced stress, provide robust protection against the target
pathogen, and successfully colonize host lymphoid tissues, all while
maintaining an avirulent profile (Pati et al., 2013). This study showed
that the LDs, of AmcpC was significantly increased, and the expression
of multiple virulence genes is down-regulated, indicating a reduction
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FIGURE 8
Survival curve. Female KM mice aged 6-8 weeks were p.o.
inoculated with the AmcpC and i.p. injected with a lethal dose of
C50336 at 28 dpi. The percent survival of mice was monitored daily.

TABLE 6 Protective effects of AmcpC in mice.

10.3389/fmicb.2025.1548920

in its virulence. Following ingestion, Salmonella replicates in mucosa-
associated lymphoid tissues, such as Peyer’s patches, and disseminates
via mesenteric lymph nodes to systemic organs, including the spleen
and liver. The cecum is also a primary colonization site for SE in
poultry. Organ bacterial load is a critical indicator of Salmonella
virulence. Our results showed that AmcpC exhibited significantly
reduced bacterial loads in these organs compared to the wild-type
C50336 strain, indicating that mcpC deletion diminishes the
pathogenicity of SE. Collectively, these findings suggest that the
AmcpC mutant strain has significant potential as a candidate for an
attenuated live vaccine.

Another critical requirement for developing an attenuated live
vaccine is its ability to elicit both humoral and cellular immune
responses in the host (Lin et al., 2017). A robust humoral immune
response, particularly the secretion of secretory IgA (SIgA) in the
intestinal mucosa, is essential for combating Salmonella infections
(Roesler et al., 2006). Furthermore, as Salmonella is a facultative
intracellular pathogen, cellular immune responses are crucial for
effective host defense (Nandre et al., 2011). In this study, indirect
ELISA revealed that AmcpC induced strong specific humoral and
mucosal immune responses. Given that this pathogen primarily
resides in the intestinal tract, IgA secreted into the intestinal lumen is
likely to play a key role in protective immunity (Nandre et al., 2011).
Our results also showed that AmcpC could induce a specific cellular
immune response, and up-regulate the expression of IL-6, IL-10, and
IFN-y. IL-6 is pro-inflammatory cytokines that coordinate
inflammatory and host defense responses (Huang and Sheng, 2010).
IL-10, predominantly produced by Th2 cells, is a multifunctional anti-
inflammatory cytokine associated with immune regulation, defense,
and infection (Yuan et al., 2022). IFN-y, produced by activated T cells
and natural killer (NK) cells, plays a vital role in host defense against
intracellular pathogens such as Salmonella Typhimurium (Benbernou
and Nauciel, 1994). Immune protection rate is a key indicator of
vaccine efficacy, reflecting the vaccine’s ability to protect against the
target pathogen post-immunization. Oral immunization with AmcpC
achieved a relative protection rate of 100%, demonstrating its strong
protective efficacy in mice.

In summary, the mcpC gene is involved in multiple biological
processes in SE, and its deletion significantly attenuates bacterial
virulence in mice. The AmcpC strain was shown to induce robust
immune responses and provide excellent immune protection in mice.
These findings suggest that the AmcpC strain is a promising candidate
for an attenuated live vaccine against SE, laying a preliminary
foundation for the development of genetically engineered vaccines.
Considering the broad host range of SE, future studies will validate its
protective efficacy and safety in poultry and other animal models.

Vaccination Number Challenge Survivors/ Percent
Strain Route Strain Route total SUE‘Y/:;Ial
A AmcpC p.o. 2x107 10 C50336 ip. 2x107 10/10 100
B AmepC p.o. 2% 10° 10 C50336 i.p. 2% 107 6/10 60
PBS p.o. — 10 C50336 i.p. 2% 107 0/10 0
D PBS p.o. — 10 PBS i.p. — 10/10 100
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Objective: A recent alarming report from the World Health Organization
highlighted the rapid global spread of a hypervirulent, carbapenem-resistant
strain of Klebsiella pneumoniae. The COVID-19 pandemic frequently led
to bacterial co-infections, with K. pneumoniae being a common and
highly pathogenic agent. This study aimed to assess KP characteristics via
whole-genome sequencing and clarify its molecular epidemiology to guide
standardized clinical treatment.

Methods: Our retrospective analysis of clinical data from COVID-19 patients
admitted to our hospital between 7 December 2022, and 2 January 2023-
following China’s policies changes, which led to a significant influx of
patients-identified 17 K. pneumoniae isolates from sputum samples with
bacterial co-infections. These isolates underwent whole-genome sequencing
for ST typing, virulence gene annotation, plasmid profiling, and antimicrobial
susceptibility testing.

Results: Of the 17 K. pneumoniae isolates, 52.9% were hypermucoviscous.
Whole genome sequencing identified eight sequence types (STs), with ST23/KL1
being the most prevalent at 35.3%. Virulence genes were present in 94.1% of
strains, including Yersiniabactin (70.6%), Aerobactin (82.3%), and Salmochelin
(88.2%). Plasmid analysis revealed common IncHI1B/FIBk or IncFIBk types. All
isolates were highly sensitive to antibiotics, except for blaSHV resistance. The
17 patients had a median age of 71 years and significant comorbidities, such as
hypertension (64.7%) and diabetes (41.2%).

Conclusion: The ST types and virulence gene profiles indicate that most
K. pneumoniae strains co-infecting COVID-19 patients are common, high-
virulence strains prevalent in the Asia-Pacific region. Our findings suggest that
COVID-19 may contribute to the spread of hypervirulent K. pneumoniae strains,
potentially informing the ongoing WHO epidemic alert.

KEYWORDS

hypervirulent Klebsiella pneumoniae, COVID-19, bacterial co-infections, sequence
type, virulence factor
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Introduction

The COVID-19 pandemic has posed unprecedented challenges

to global public health systems, significantly exacerbating the
spread of various bacterial pathogens (Fan et al., 2023; Lansbury
et al, 2020). A recent alarming report by the World Health
Organization (WHO) highlighted the rapid global dissemination
of a hypervirulent, carbapenem-resistant strain of K. pneumoniae,
predominantly the ST23 strain, identified in at least 16 countries
and regions since early 2024 (World Health Organization,
2024). Traditionally reported as sporadic or localized clonal
outbreaks, the widespread prevalence of this strain under
current circumstances remains unexplained. Bacterial co-infections
in COVID-19 can lead to severe illness and warrant close
attention.
Existing studies have shown that the prevalence of
K. pneumoniae co-infection with COVID-19 is highest in
Asia at 23% (95% CI: 14-35%), followed by Europe at 15% (95%
CI: 6-32%), and the Americas at 4% (95% CI: 4-5%). Globally,
approximately 17-40% of COVID-19 patients develop bacterial
co-infections, with K. pneumoniae infections accounting for
19% (ranging from 13 to 28%) of these cases (das Chagas et al,
2024).

Recent studies have shown that K. pneumoniae is frequently
detected in critically ill COVID-19 patients admitted to the
Intensive Care Unit (ICU), as evidenced by respiratory tract and
blood samples from these patients (Arcari et al., 2021; Pourajam
et al., 2022). The prevalence of multi-drug resistant bacterial
infections, particularly those caused by K. pneumoniae, is notably
associated with the deterioration of patient outcomes, characterized
by increased complications, higher morbidity and mortality (Ficik
et al.,, 2023; Navon-Venezia et al., 2017). These findings highlight
the crucial role that co-infection with K. pneumoniae plays in the
progression of COVID-19 to severe conditions.

However, these reports lacked in-depth genomic analysis,
focusing primarily on resistance profiles and clinical outcomes.
This study aims to use genomic analysis to further investigate the
impact of SARS-CoV-2 on the epidemiology of K. pneumoniae
in our hospital.

Materials and methods

Study design and sample collection

This study retrospectively analyzed clinical and microbiological
data from COVID-19 patients admitted to our hospital between
7 December 2022, and 2 January 2023, during a period of
increased patient influx following a policy shift in COVID-19
prevention. We confirmed KP co-infection in all 17 patients
using a comprehensive diagnostic approach that integrated clinical
signs, imaging studies (CT or X-ray), blood tests (WBC, NEU%,
LYM%, CRP, PCT, etc.), and sputum cultures, ensuring accurate
identification. A total of 17 K. pneumoniae isolates were obtained
from the sputum samples of these patients. Additionally, we
extracted clinical data, including demographic characteristics,
comorbidities, and laboratory findings, from electronic medical
records for further analysis.
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Phenotypic analysis

Phenotypic analysis of the isolates was performed using
the string test to identify hypermucoviscosity. A positive result,
indicated by a mucoviscous string greater than 5 mm, classified the
strain as hypermucoviscous.

Whole genome sequencing and genomic
analysis

Whole genome sequencing (WGS) was conducted to analyze
the genomic features of the isolates. Genomic DNA was extracted
using a Qiagen DNA Mini Kit, and libraries were prepared using
the DNA Library Prep Kit before sequencing on the Illumina
HiSeq platform. Sequence assembly was performed with SPAdes,
and genome annotation was conducted using Prokka. Sequence
types (STs) were determined using the MLST tool, while virulence-
associated genes were identified using the BIGSdb-Kp database.
Plasmid replicon types were determined with PlasmidFinder, and
phylogenetic relationships were analyzed using CSI Phylogeny.
Virulence scores were calculated based on the presence of key
genes: yersiniabactin, colibactin, and aerobactin. Scores ranged
from 0 (no virulence genes detected) to 5 (all three virulence genes
present). This scoring system was used to quantify the virulence
potential of the isolates. Resistance genes were screened using the
ResFinder database.

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed using
the disk diffusion method, following CLSI guidelines. The
tested antibiotics included ceftriaxone, meropenem, ciprofloxacin,
amikacin, and tigecycline.

Clinical data analysis

Clinical data were analyzed to identify patient characteristics,
including age, sex, comorbidities, and hospitalization duration.
Patients were categorized as having either hospital-acquired
or community-acquired infections. Statistical analyses were
conducted using SPSS, with results presented as medians with
interquartile ranges (IQR) or means with standard deviations (SD).

Ethical approval

Ethical approval for the study was obtained from the Ethics
Committee Of Our Hospital (NO.KYLL-2023-091). Informed
consent was waived due to the retrospective nature of the research.
To protect patient privacy, all genomic data were anonymized and
handled in compliance with institutional guidelines and applicable
privacy regulations.
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Results and discussion

Distribution and virulence of
K. pneumoniae isolates based on
phenotypic and genotypic analysis

Phenotypic analysis indicated that 9 of these isolates were
hypermucoviscous. Whole genome sequencing identified 8
different sequence types (ST), with 7 of these belonging to highly
virulent clonal groups, ST23/KL1 was the most prevalent at 35.3%,
followed by ST412/KL57 at 17.6%, and ST86/KL2 at 11.8%. The
other isolates corresponded to five different STs: ST35, ST380,
ST65, ST2906, and ST1550-2LV, with ST1550-2LV not classified
as a highly virulent type (Figure 1). The clustering patterns
did not strongly support hospital-based clonal transmission,
highlighting the likelihood of community acquisition in most
cases. Additionally, ST23/KL1 has been reported to be more
prevalent in East Asian regions, which could also explain its
dominance in our study.

Upon further analysis of Figure 1, we observed that there
was no significant correlation between virulence factor scores and
hospitalization duration, clinical signs, and infection modes. This
suggests that, while virulence factors such as rmpA, aerobactin,
and colibactin contribute to the pathogenicity of K. pneumoniae,
they do not appear to directly impact the length of hospital stay.
Instead, factors such as patient comorbidities, immune status,
and the severity of underlying COVID-19 infections likely play
a more substantial role in determining hospitalization duration.
This finding implies that the patients in this cohort may have
been carriers of hypermucoviscous K. pneumoniae, rather than
experiencing severe infections primarily driven by these high-
virulence strains. The absence of a strong correlation further
supports the notion that co-infection dynamics are multifaceted,
influenced by a complex interplay of both bacterial virulence and
host-related factors.

Virulence gene profiles, plasmid types,
and antimicrobial susceptibility of
K. pneumoniae strains

Strains with the same ST carry similar types of high-virulence-
associated plasmids (plasmid type: IncHI1B/FIBk or IncFIBk) and
exhibit comparable virulence gene profiles. The prevalence of
virulence genes among these strains is detailed below (Figure 1):
yersiniabactin (facilitates iron acquisition, enhancing the survival
and virulence of bacteria in iron-limited environments) was
detected in 70.6% of the strains (12 strains), with the highest
incidence found in ybtl (ICEKpI0) at 35.2% (6 strains); ybt4
(plasmid) and ybt9 (ICEKp3) were each present in 11.7% (2
strains). Salmochelin (glycosylated derivative of enterobactin,
another siderophore) had the highest detection rate at 88.2%;
aerobactin (siderophore) and RmpA/RmpA2 (synthesis of the
bacterial capsule) were found in 82.3% of strains, and the wzi
(capsule assembly protein) gene was present in 70.6% of strains.
Colibactin (a genotoxin, induces DNA double-strand breaks)
displayed the lowest detection rate at 35.3%. The mucoviscosity
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phenotype-regulating gene, rmpA, which is located on the large
plasmids of these virulent strains, primarily controls capsule
synthesis, resulting in a highly mucoviscous phenotype, observed
in 52.9% of the strains. The string test has traditionally identified
hvKp strains, but recent studies show that several genetic markers
offer high diagnostic accuracy (> 0.95) for detecting hypervirulent
strains. These markers include the salmochelin gene (iroB),
aerobactin gene (iucA), and mucoid phenotype regulators (rmpA
and rmpA2). These genes serve as biomarkers to distinguish
hypervirulent K. pneumoniae (hvKp) from classical strains (Russo
et al., 2018). In this study, 16 out of the 17 strains carried one
or more of these virulence genes, with only one hospital-acquired
strain lacking these genes.

Antimicrobial susceptibility tests revealed that the 17 isolated
strains of K. pneumoniae were highly sensitive to most antibiotics.
Apart from the inherent blasyy gene, no other resistance genes
were detected in any of the strains. Our whole-genome SNP analysis
revealed significant genetic diversity among the K. pneumoniae
isolates. Combined with clustering analysis and consideration
of isolation sites and collection times, the findings suggest
these strains were primarily community-acquired infections, not
hospital-based clonal transmissions. Strains with the same ST type
also showed no evidence of clonal spread (Supplementary Table 1).
The analysis of ST types and virulence gene profiles reveals that the
majority of the K. pneumoniae strains co-infected with COVID-19
represent common, widespread high-virulence strains prevalent in
the Asia-Pacific region.

Traditionally, hypervirulent K. pneumoniae strains are mostly
sensitive to conventional antibiotics, while clinically prevalent
multidrug-resistant strains are generally not hypervirulent,
while the strains exhibit high virulence, the limited resistance
profiles may reflect an evolutionary trade-off, where acquiring
extensive resistance genes could compromise fitness or virulence.
Additionally, hypervirulent K. pneumoniae strains are traditionally
associated with community-acquired infections, where antibiotic
selection pressure is lower compared to hospital settings,
potentially limiting the acquisition of resistance genes.

Clinical profiles and emergence of
hypervirulent K. pneumoniae in
COVID-19 patients post policy shift

Clinical data indicate that these 17 patients are elderly and
suffer predominantly from underlying health conditions. The
median age is 71 years (IQR: 64-78), comprising 9 males
and 8 females. The average duration of hospitalization was
11.2 £ 6.7 days. A significant proportion of the patients have
comorbidities; 64.7% are diagnosed with hypertension, 41.2%
with diabetes, and 35.3% with cardiovascular diseases. These
patients were hospitalized due to COVID-19 infections or related
complications from their existing health conditions. The clinical
data, including imaging and laboratory findings, suggest that
the majority of these COVID-19 patients were carriers of high-
virulence strains. Furthermore, due to Chinas COVID-19 control
policies, most hospitals in the country did not admit COVID-19
patients, as these patients were restricted to treatment in designated
hospitals. It was only after the policy shift in December 2022 that
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FIGURE 1

The phylogenetic tree of 17 Kp strains, along with their hospitalization durations, virulence genes, and MLST typing. A total of 17 K. pneumoniae (Kp)
strains were analyzed, as shown in the left figure, illustrating the evolutionary relationship of Kp strains associated with COVID-19 pneumonia. The
intensity of pink within the boxes represents varying degrees of clinical subtypes: deep pink indicates severe conditions, light pink indicates moderate
conditions, and light gray represents mild conditions. A black frame around the sample number denotes hospital-acquired infections, while a blue
circle indicates community-acquired infections. An orange circle represents the duration of hospitalization, and a green circle reflects virulence
gene scores, with the size of each circle proportional to its respective value. Virulence scores are defined as follows: score O = no yersiniabactin,
colibactin, or aerobactin; 1 = yersiniabactin only; 2 = yersiniabactin and colibactin (or colibactin only); 3 = aerobactin without yersiniabactin or
colibactin; 4 = aerobactin with yersiniabactin (no colibactin); and 5 = yersiniabactin, colibactin, and aerobactin. The central heatmap indicates gene
presence, with red representing positive genes and gray for negative ones. The right side displays MLST typing and serotypes, with hypervirulent
strain ST types highlighted in blue font. Strains with K locus and O locus sequencing issues are shown in the blue boxes on the right.

COVID-19 patients were widely admitted to general hospitals,
including ours. This sudden influx provided a unique opportunity
to observe bacterial co-infections, including K. pneumoniae, under
a high patient-load scenario. According to the experience of
the clinical microbiology laboratory, there has been a noticeable
increase in hypervirulent K. pneumoniae infections following
the admission of COVID-19 patients. However, standardized
testing and reporting for hypervirulent strains remain absent in
current clinical microbiology practices, preventing the collection of
comprehensive statistical data.

Also, During the COVID-19 pandemic, the World Health
Organization observed a noticeable global increase in hypervirulent
K. pneumoniae strains. This study identified a considerable number
of hypervirulent K. pneumoniae strains despite the extremely high
workload and staff shortages during the study period. Notably,
none of these strains belonged to the ST11 hyper-resistant epidemic
clone, which is encouraging as patients generally experienced
favorable clinical outcomes.

Apart from the patient flow driven by policy changes or
factors related to COVID-19 infection, several additional factors
may have influenced the prevalence of these strains. Specifically,
in healthcare settings, the increase in antimicrobial use was
evident in both COVID-19 wards and non-COVID-19 wards.
The overuse of antimicrobials, combined with changes in hospital
microbiological ecosystems following the large-scale admission of
COVID-19 patients, and the increased number of critically ill
patients in overcrowded ICUs, likely created an environment more
conducive to the survival and dissemination of multidrug-resistant
(MDR) and hypervirulent strains. Additionally, altered immune
responses in COVID-19 patients may have rendered them more
susceptible to infections by hypervirulent bacteria. Moreover, the
significant strain on healthcare systems during the pandemic—
characterized by surging patient numbers and insufficient resource
allocation—may have led to delays in infection control measures
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and antimicrobial treatments, further facilitating the spread of these
hypervirulent strains. Collectively, these factors likely contributed
to the post-COVID-19 emergence and prevalence of hypervirulent
K. pneumoniae.

We acknowledge that the limited data collection timeframe
coincided with this policy transition, focusing our observations on
a unique and dynamic period. While this context underscores the
relevance of our findings, it also limits the ability to observe trends
across different COVID-19 waves or under varying healthcare
system pressures. This limitation affects the generalizability of
our conclusions to other timeframes or regions. To address
this, we emphasize the need for future multi-center studies
with extended observation periods to comprehensively assess
bacterial co-infection trends over time. We plan to collaborate
with more hospitals across different regions to investigate regional
variations in the prevalence of hypervirulent K. pneumoniae
strains. Additionally, we aim to analyze factors such as patient
demographics, hospital settings, and infection control practices
to better understand their impact on strain transmission and
clinical outcomes. These studies would help elucidate the broader
epidemiology of hypervirulent K. pneumoniae strains and their
interaction with SARS-CoV-2, particularly under diverse healthcare
and pandemic conditions.

Conclusion

In conclusion, the widespread prevalence of carbapenem-
resistant hypervirulent K. pneumoniae strains, as highlighted by
WHO, is likely predicated on the prior widespread circulation
of hypervirulent strains. However, current global and national
antimicrobial resistance surveillance systems primarily focus on
detecting multidrug resistant strains or isolates from sterile body
fluids, with limited attention given to strains isolated from
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sputum, leaving the true prevalence of hypervirulent strains
unclear. It is possible that these hypervirulent strains have
acquired carbapenem-resistant plasmids, leading to the observed
epidemic. Recently, a study has revealed that during the COVID-
19 pandemic, multiple clusters of carbapenem-resistant and
hypervirulent K. pneumoniae (CR-hvKp) emerged and exhibited
significant clonal spread. Post-pandemic, both the prevalence and
incidence of CR-hvKp have increased markedly, providing robust
support for our hypothesis (Liu et al., 2024). Although our findings
are based on a single-center report, they suggest that COVID-19
may have facilitated the widespread dissemination of hypervirulent
K. pneumoniae strains, potentially explaining the current epidemic.
More epidemiological data are needed to confirm this, as these
strains have highly mutable genomes and can easily acquire
carbapenem-resistant plasmids.
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isolates in southeast China

Yongjuan Yuan?, Ping Li?, Wei Shen?, Min Li%, Xiaofei He* and
Bin Zhou?*
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Introduction: Salmonella is an important foodborne pathogen that can induce
severe diseases such as gastrointestinal disease and typhoid fever. Accumulating
evidence revealed that Salmonella's resistance to antibiotics also seriously
affects human health. Pathogenic Salmonella enterica serovar Goldcoast (S.
Goldcoast) was first detected in 2010 in China and was predicted to have an
increasing tendency.

Methods: The MacConkey agar, Salmonella Shigella agar, three-sugar iron
agar slant, and Gram-stained microscopic examination were used for strain
identification. Gram-negative bacteria identification cards explored more
properties of the isolates, while antimicrobial susceptibility testing was used
to examine the multidrug resistance. The 2nd and 3rd generation sequencing
revealed the genetic information of the isolates.

Results: Two non-pathogenic isolates with multidrug resistance, JS33 and JS34,
harbored 42 antibiotic-resistant genes (ARGs) in contigl and 13 ARGs in contig2,
were isolated from a healthy donor living in southeast China and identified as S.
Goldcoast (6,8:r:L,w). Interestingly, JS33 and JS34 showed identical responses
to more than 20 antimicrobial agents and were resistant to ampicillin, selectrin,
chloramphenicol, tetracycline, and streptomycin. However, JS33 differed from
JS34 in hydrogen sulfide (H,S) generation. The genomic sequencing identified a
deletion in thiosulfate reductase (K08352) in JS34.

Discussion: H,S is an essential physiological regulator linked to inflammation
and cancer. Therefore, genomic identification of JS33 and JS34 provided us
with a better understanding of drug resistance and could be used as model
strains to study the effects of microbial H,S production on the host. Since JS33
and JS34 did not induce gastrointestinal infection or other clinical symptoms
as previously reported, the appearance of non-pathogenic S. Goldcoast in
southeast China warned us to prepare for the prevalence of antimicrobial-
resistant S. Goldcoast in China.

KEYWORDS

Salmonella enterica serovar Goldcoast, multidrug resistance, f-Lactamase, H,S
generation, thiosulfate reductase
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1 Introduction

Salmonella is a common foodborne pathogen, and S. enterica
and S. bongori can induce severe diseases, such as gastrointestinal
disease and typhoid fever (Lamichhane et al., 2024). The Disease
Control and Prevention (CDC) center estimates 1.35 million
infections, 26,500 hospitalizations, and 420 deaths annually, with
about $3.3 billion in costs in the United States due to Salmonella
infection (Hoffmann et al., 2012). S. enterica was dominant in
causing human infection in China; that serovars S. typhi and
S. paratyphi-A, B, or C can cause typhoid and paratyphoid fevers in
humans, whereas other serovars are loosely described as
non-typhoidal Salmonella (NTS), accounting for more than 98% of
S. enterica isolates (Manesh et al., 2021).

S. Goldcoast is a NTS with high plasmid carrier rates and the
cytolethal distending toxin subunit B (cdtB toxin) commonly,
accounting for 2.14% frequency of serovars in S. enterica isolates
and 2.59% of human origin in China. The trend was expected to
increase according to the analysis of temporal and spatial
dynamics of antimicrobial-resistant S. enterica from 2006 to
2019 in China (Wang et al., 2023a). Based on the extensive study,
we derived the first appearance of S. Goldcoast in 2010 in Fujian
province and its prevalence in Shanghai (Wang et al., 2023a). Few
cases were reported in Zhejiang province, and all reported cases
exhibited
clinical symptoms, independent of age and gender (Wang
et al.,, 2023a).

Broad-spectrum antibiotics are used for bacteremia, invasive

gastrointestinal infection or other

NTS infections, and disseminated typhoidal Salmonella infections
(Smith et al., 2016; Gal-Mor et al., 2014). However, the response
toward antibiotics varied depending on the bacteria’s serotype and
the host’s immune response. Salmonella’s multidrug resistance
(MDR), a global issue affecting countries at all income levels,
leads to economic problems worldwide (Aleksandrowicz et al.,
2023). S. Goldcoast showed a higher proportion of MDR rate of
human origin (66.67%) than that of non-human origin (41.67%)
(Wang et al., 2023a). Although the current understanding of
MDR, including gene mutation, efflux pumps, passivating and
inactivating enzymes encoded by drug resistance genes, and the
transfer of genetic resistance gene elements in bacteria, has shed
some light on the issue, the global community is still grappling
with antimicrobial resistance, and further research, particularly
into the underlying mechanisms of MDR in Salmonella, is crucial
(Gaurav et al., 2023; Darby et al., 2023).

Moreover, most Salmonella produce hydrogen sulfide (H,S), a
beneficial gas regulating cardiovascular activity, nerve conduction,
anti-inflammation, and metabolism if properly activated (Han et al.,
2022). However, the mechanisms by which H,S regulates various
physiological functions remain unclear. In the present study, a pair of
non-pathogenic Salmonella isolates were isolated from a healthy
female and identified as Salmonella enterica serovar Goldcoast
according to the White-Kauffmann-Le Minor antigenic table,
indicating a growth of microbial diversity of S. Goldcoast in southeast
China. Antibacterial drug sensitivity tests showed that both isolates
had MDR to ampicillin, chloramphenicol, tetracycline, and
streptomycin. However, their ability to generate H,S was quite
different. Therefore, deep sequencing of these two isolates was
adapted to help us understand the mechanism underlying
Salmonella’s multidrug resistance and H,S generation.
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2 Material and method
2.1 Reagents

Selenite Brilliant Green (SBG) enrichment solution (#HB8606,
Qingdao Haibo), Blood plate (#CP10002, Shanghai Kemagar),
Salmonella Shigella (SS) agar medium (#¥HB4089, Qingdao Haibo),
Xylose lysine deoxycholate (XLD) agar medium (#HB4105, Qingdao
Haibo), MacConkey agar medium (#HB6238-9, Qingdao Haibo), three-
sugar iron agar slant (#HB4088, Qingdao Haibo), Gram staining solution
(#HB8278, Qingdao Haibo), Gram-negative bacteria identification card
(#21341, Merieux, France), Salmonella typing diagnostic serum
(#882116,#152,116,#332,106, Japan),
Susceptibility Testing (AST) panel for aerobic Gram-negative bacilli
(#B3226B, Thermo Fisher, America), DNA extraction reagents (#51304,
QIAGEN); all reagents were used within their expiry dates.

Senyan, Antimicrobial

2.2 Equipment

Constant temperature incubator (MIR-H263L-PC, PHCBI),
Optical microscope (CX21FS1, Olympus), Automatic microbial
identification and drug sensitivity analysis system (VITEK 2
COMPACT, Merieux, France), Turbidimeter (DensiCHEK plus,
Merieux, France), Microbial susceptibility instrument (Vizion®,
Thermo), High-throughput sequencer (model: 550, Illumina) were
used for sequencing bacterial genomes (2nd generation), etc.

2.3 Materials

The S. enterica isolates 2023]JS33 and 2023]S34 were extracted
from the stool sample of a healthy female, 52 years old, located in
southeast China, without typhoid fever or any gastrointestinal
complaints. The studies involving humans were approved by
Committee of Zhejiang Provincial Center for Disease Control and
Prevention. The studies were conducted in accordance with the local
legislation and institutional requirements. Written informed consent
for participation in this study was provided.

24 Isolation

An appropriate amount of feces was inoculated in SBG enrichment
broth and incubated at 36 °C for 24 h. Then, broth containing bacteria
was inoculated on SS agar medium and MacConkey agar medium by
drawing lines in sections and incubated at 36 °C for 24 h. After that,
a single colony was selected and inoculated with Triple Sugar Iron
(TSI) and incubated at 36 °C for 24 h. Pick the interested bacterial
species for microscopic examination with Gram stain and
subsequently inoculate into blood plates and incubate at 36°C for 24 h.
The purified bacterial species were identified by automatic biochemical
identification and examined with the serum agglutination test.

2.5 Automatic biochemical identification

One to two single colonies were picked by inoculation rings and
emulsified in sterile water. Adjust solution to 0.5 McFarland turbidity
for biochemical identification with Gram-negative bacteria
identification cards that had been rewarmed in advance. The sterilized
saline was used as agglutination control and the agglutination
phenomenon was observed within 2 min.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1540843
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Yuan et al.

2.6 Serum agglutination test

An appropriate amount of Salmonella serum was dropped on a
clean slide and mixed with the bacterial moss, picked out by an
inoculation ring, and sterilized saline thoroughly. If no agglutination
was observed, other commercial serums were used to conduct serum
agglutination tests one by one, according to the instructions of reagents.

2.7 Antibacterial drug sensitivity test

The antimicrobial susceptibility of the isolates was determined by
microdilution broth assay. In detail, tested isolates (2023]533,2023]S34)
and quality control strain (ATCC25922) were streaked and inoculated
on blood agar plates and incubated at 36°C for 24 h. Individual colonies
were picked with an inoculation ring seeded again on blood agar plates
and incubated for 24 h at 36 °C. One or two colonies were picked from
freshly prepared blood agar plates and emulsified in sterile water.
Adjusted the solution to 0.5 McFarland turbidity and mixed thoroughly.
Then, the bacterial suspension prepared above 10 uL was added to a
test tube containing 11 mL cation-adjusted Mueller-Hinton broth
(CAMHB) and mixed well. The mixture should be used within 15 min.
Replace the test tube cover with a Sensititre® disposable sampling head
and add the sample to the CHNENF drug sensitivity test plate
according to AIM® instructions. Remove the test tube/sampling head
combination from AIM® within 30s after completion of sample
loading in the drug susceptibility plate.

After the inoculation of the drug sensitivity plate, the purity of the
final culture solution was checked, and all micropores were covered
with a sealing film. After the incubation at 36°C for 24 h, all samples
were read with a microbial susceptibility instrument, Vizion®. The
minimum inhibitory concentration (MIC) of the drugs that naked eye
could see was recorded and defined as sensitive (S), moderately
sensitive (I) and resistant (R) according to the standard of Clinical and
Laboratory Standards Institute (CLSI) (2023). The quality control
strain was Escherichia coli ATCC25922. As CLSI does not provide
streptomycin resistance breakpoint, it was determined according to the
National Antimicrobial Resistance Monitoring System (NARMS) MIC
criteria [Centers for Disease Control and Prevention (CDC), 2018].

2.8 Sequencing

Two isolates (2023]S33 and 2023]S34) were sent to the genetic
testing laboratory of Zhejiang Tianke High-tech Development Co., Ltd.
for deep sequencing (3rd generation sequencing). Whole genomic
DNA was extracted by Gentra Puregene Yeast/Bact Kit (Qiagen,
Valencia, CA) and sequenced using the GridION X5 platform (Oxford
Nanopore Technology).

3 Results
3.1 Identifying Salmonella enterica serovar
Goldcoast strains with different H,S

generation capacities

Colorless, translucent, and smooth round colonies were
observed on MacConkey agar medium (Figure 1A), supporting
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that JS33 and JS34 belonged to Salmonella (Farhoudi Moghaddam
et al., 1988). In addition, JS33 and JS34 formed round, moist,
smooth, translucent colonies that became lighter in color on the SS
agar medium (Figure 1B). However, JS33 was a colony with a black
center, which differed from JS34 (Figure 1B). These two bacterial
isolates with inconsistent morphology on the SS agar medium were
selected and inoculated on the three-sugar iron agar slant
(Figure 1C). It showed that both isolates fermented glucose and
produced acid and gas but did not ferment lactose and sucrose, as
these two gas-produced (+) isolates showed acid (K) on the slant
and alkali (A) on the bottom (Figure 1C).

Interestingly, JS33 (K/A++) generated H,S (+) (black), while JS34
(K/A +-) did not produce H,S (—) (Figure 1C). Gram-stained
microscopic examination revealed both isolates as Gram-negative
bacilli due to the appearance of a loosely distributed red color
(Figure 1D). Gram-negative bacterial identification cards also
identified high similarity in JS33 and JS34 except for the production of
H,S (Table 1, bold text). The serotypes of the two suspected Salmonella
isolates were 6, 8: r: 1, w, which could be identified as Salmonella
enterica serovar Goldcoast according to the White-Kauffmann-Le
Minor antigenic table. The 2nd generation sequencing also identified
JS33 and JS34 as S. Goldcoast and there were structural variations in
the JS34 assembled genome and some of the original reads, compared
with the reference genome (Figure 1E).

3.2 JS33 and JS34 isolates show multidrug
resistance

Based on the latest version of CLSI breakpoints, JS33 and JS34
were evaluated with MDR to ampicillin (AMP), compound
sulfamethoxazole (or selectrin, SXT), chloramphenicol (CHL),
tetracycline (TET), and streptomycin (STR) (Table 2). They were
both intermediate-resistant to ampicillin/sulbactam (AMS), colistin
(CT), and polymyxin (BPOL). Besides, JS33 was sensitive to
cefazolin (CFZ), while JS34 was intermediate-resistant (Table 2).
Both JS33 and JS34 were sensitive to azithromycin (AZM),
ciprofloxacin (CIP), nalidixic acid (NAL), and gentamicin (GEN),
as well as cefotaxime (CTX), ceftazidime (CAZ), cefoxitin (CFX),
imipenem (IPM), amoxicillin/clavulanic acid (AMC), cefuroxime
(CXM), (CPM), (CZA),
meropenem (MEM), ertapenem (ETP), tigecycline (TGC), and
amikacin (AMI).

cefepime ceftazidime-avibactam

3.3 Deep sequencing reveals ten
protein-coding genes exclusively
expressed in either JS33 or JS34

To elucidate the genetic background, we extracted DNA
samples from purified JS33 and JS34 isolates and subjected them
to deep sequencing using GridION (Oxford Nanopore
Technology). This process yielded a comparable annotated
sequence number in Non-Redundant (NR), Swiss-port, Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Clusters of
Orthologous Genes (COG) databases in JS33 and JS34, respectively
(Figure 2A). Ten protein-coding genes were exclusively expressed
in either JS33 or JS34 (Figures 2A,B). Among them, the thiosulfate

reductase (K08352), nitrate reductase (K02567), f-lactamase
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FIGURE 1
JS33 and JS34 are different in H,S generation. (A—C) JS33 and JS34 were cultured in MacConkey agar (A), SS agar medium (B), and three-sugar iron
agar slant (C). (D) The Gram-stained microscopic examination of JS33 and JS34. (E) Aligned to CP091611.1 Salmonella enterica strain 1795
chromosome, complete genome (from outer to the inner: 1. GC ratio; 2. QUAST gives parametric assembly results; 3. Flye De Novo assembly results;
4. Gene density; 5. Depth of sequencing coverage).

(K18698), and clavulanate-9-aldehyde reductase (K12677) were
unique to JS33. Other proteins, such as fibronectin-binding
autotransporter (K19231), DNA (cytosine-5)-
methyltransferase 1(K00558), and REP-associated tyrosine
transposase (K07491), were expressed in both JS33 and JS34, but
with different gene numbers (Figure 2B).

adhesin

Despite the distinct genome, the function classification identified
high genetic similarities between JS33 and JS34. The COG function
classification was consistent in both isolates, with only minor
variations in the number of genes (Figure 2C). Amino acid transport
and metabolism, carbohydrate transport and metabolism,
transcription, cell wall/membrane/envelope biogenesis, and energy
production and conversion were the top five gene-enriched functions,
highlighting the shared roles of JS33 and JS34. The KEGG analysis
consistently emphasized the roles of JS33 and JS34 in regulating
metabolism and participating in genetic information processing

(Supplementary Figure S1).
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3.4 p-Lactamase is related to MDR, while
the deficiency of thiosulfate reductase
inhibits H,S production in JS34

Deep sequencing also revealed that JS33 and JS34 were closely
related to infectious disease and drug resistance, while one more
gene was identified in JS33, which encoded B-lactamase class A
(Figure 2B; Supplementary Figure S1). B-lactamases are the most
common reason resulting in resistance to f-lactam antibiotics in
Gram-negative bacteria (Bush and Bradford, 2019). By combing
the detailed KEGG classification with gene identification,
we found that the exclusively expressed K12677 and K18698
participated in the biosynthesis of secondary metabolites,
butanoate metabolism, f-lactam resistance, and clavulanic acid
biosynthesis. They were responsible for mild differences in drug
response between JS33 and JS34 (Figure 3A). K02567 and K08352
participated in energy metabolism by regulating nitrogen and
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TABLE 1 Gram-negative testing of JS33 and JS34.

JS33 Salmonella group (98% probability)

10.3389/fmicb.2025.1540843

APPA - ADO - PyrA - IARL - dCEL - BGAL -
H2S + BNAG - AGLTp - dGLU + GGT - OFF +
BGLU - dMAL + dMAN + dMNE + BXYL - BAlap -
ProA - LIP - PLE - TyrA + URE - dSOR +
SAC - dTAG - dTRE + CIT + MNT - 5KG +
ILATk + AGLU - SUCT + NAGA - AGAL + PHOS +
GlyA - OoDC + LDC + THISa - CMT + BGUR -
O129R + GGAA - IMLTa - ELLM - ILATa -

JS34 Salmonella group (97% probability)

APPA - ADO - PyrA - IARL - dCEL - BGAL -
H2S - BNAG - AGLIp - dGLU + GGT - OFF +
BGLU - dMAL + dMAN + dMNE + BXYL - BAlap -
ProA - LIP - PLE - TyrA + URE - dSOR +
SAC - dTAG - dTRE + CIT + MNT - 5KG +
ILATk + AGLU - SUCT + NAGA - AGAL + PHOS +
GlyA - ODC + LDC + THISa - CMT + BGUR -
O129R + GGAA - IMLTa - ELLM - ILATa -

“+” represents a positive result, “—” represents a negative result. Bold text highlights the difference in the production of H,S.

sulfur metabolism, respectively. Particularly, K08352 played an
essential role in H,S production (Figure 3B).

Moreover, the resistance gene identifier (RGI) identified 55
resistance genes (42 in configl and 13 in config2, >50% identities,
E-value<0.00001), while 53 ARGs were common in JS33 and JS34,
and 45 of 55 ARGs showed more than 90% identities (Figure 4).
Based on the analysis of virulence factors in pathogenic bacteria,
we found that the gene encoded K19231 in JS33 was linked to the
upaH gene, which regulates the AIDA-I type autotransporter
protein, a rarely glycosylated protein. The gene encoded K02567
was associated with the nuoG gene and functioned as an anti-
apoptosis factor. The gene encoded K08352 was related to narG
and was involved in anaerobic respiration. However, the
differentially expressed genes did not correlate with bacterial
virulence in JS34.

Furthermore, the subcellular localization of secretory proteins in
JS33 and JS34 were similar based on PSORTD analysis' (Yu et al.,
2010). Most secretory proteins were located at cytoplasmic and fewer
were in cytoplasmic membrane, while a few were in periplasmic. The
Prophage prediction based on PHAge Search Tool Enhanced Release
software (PHASTER) also showed high similarity in contig_1 and
relatively less similarity in contig_2 between JS33 and JS34* (Arndt
et al.,, 2016). Genomic island prediction based on Island Viewer and
Crispr-Cas prediction based on CRISPR finder® were the same as each
other (Couvin et al., 2018). No difference was observed in JS33 and
JS34 based on the carbohydrate-active enzymes database.

1 http://www.psort.org
2 https://phaster.ca
3 https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
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4 Discussion and conclusion

JS33 and JS34 were identified as Salmonella enterica serovar
Goldcoast with almost identical biological properties. The only
remarkable difference between JS33 and JS34 was H,S generation
based on the three-sugar iron agar slant and Gram-negative bacterial
identification. Consistent with the phenotypic observation, deep
sequencing also identified high similarity in genetic information. Only
ten genes and four proteins were exclusively expressed in JS33 or JS34.
There were two different genes relating to antibiotic resistance, i.e.,
TEM-185 and TEM-163, and three relating to virulence factors, i.e.,
narG, nuoG, and upaH.

The K18698 represented f-lactamase, and K12677 represented
clavulanate-9-aldehyde reductase affected resistance to antibiotics in
JS33. Specifically, B-lactams are the most widely used antibacterial
agents worldwide, while p-lactamases are capable of deacylating
fB-lactam-derived covalent complexes, representing the most critical
resistance mechanism in Gram-negative bacteria (Mora-Ochomogo
and Lohans, 2021). However, the presence of f-lactamases did not
generate a remarkable impact on the efficacy of antibiotics in JS33
compared with JS34. It was because of the coexistence of clavulanate-
9-aldehyde reductase catalyzed the biogenesis of clavulanic acid, an
important inhibitor of f-lactamases in JS33 (Docquier and Mangani,
2018). Clinically, p-lactam antibiotics are frequently administered
with a B-lactamase inhibitor, such as clavulanic acid, that protects the
antibiotic from p-lactamase catalyzed degradation (Huttner
et al., 2020).

K02567 represented nitrate reductase, and K08352 represented
thiosulfate reductase, which participated in nitrogen metabolism
and sulfur metabolism, respectively. Particularly, thiosulfate
reductase deficiency resulted in an ultimate inhibition of H,S
production in JS34. Thiosulfate reductase activity is found in
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TABLE 2 Results of drug-susceptibility testing.

Antimicrobial agents

10.3389/fmicb.2025.1540843

MIC (ug/ml)

AZM 4(8) 4(S) <16/8 /16 >32
AMP >64(R) >64(R) <8 16/ >32
AMS 16(1) 16(1) <8/4 16/87 >32/16
CIp 0.25(S) 0.25(S) <0.25 0.5n >1
SXT >8(R) >8(R) <2/38 >4/76
CHL >64(R) >64(R) <8 16 >32
NAL 8(S) 8(S) <16 >32
GEN <1(9) <1() < 4A >8
TET >32(R) >32(R) <4 8 >16
CTX <0.25(S) <0.25(S) <1 27 >4
CAZ <0.5(S) 1(S) <4 8A >16
CEX 4(S) 4(S) <8 167 >32
CFZ 2(8) 4(1) < 4 >8
IPM <0.25(S) <0.25(8) <1 27 >4
CT 0.25(1) 1(1) < >4
BPOL 0.25(1) 2(1) < >4
AMC 8(S) 8(S) <8/4 16/87 >32/16
CXM 8(S) 8(S) <8 167 >32
CPM <1(9) <1(9) < >16
CZA 0.5(S) 0.5(S) <8/4 >16/4
MEM <0.12(S) <0.12(S) <1 27 >4
ETP <0.25(S) <0.25(S) <05 1A >2
TGC 0.5(S) 0.5(S) <4 8 >16
AMI <4(9) <4(8) <4 8n >16
STR 32(R) >32(R) <16 >32

“A” Drugs with potential to concentrate in urine.

numerous microorganisms, whereas the molecular mechanism of
reductive cleavage of thiosulfate is not yet known in bacteria (Le
Faou et al., 1990). The comparison between JS33 and JS34 could
help to illustrate the role of thiosulfate reductase in H,S production
in bacteria. No other significant difference was observed between
JS33 and JS34 in the subcellular localization of secretory protein,
the Prophage prediction, or genomic island prediction.

However, JS33 and JS34 differed from previously reported
pathogenic S. Goldcoast in Zhejiang province in that they did not
induce any clinical symptoms. There were three cases of
S. Goldcoast that were collected in Zhejiang province, and two of
them came from human hosts (Wang et al., 2023a, 2023b). The
XXB830 (2015, 1-year-old, Female) was extracted from human
feces which caused the gastrointestinal infection, while XXB1582
(2017, 67-year-old, Male) was extracted from the blood which
caused the extra-intestinal infection. By downloading public files
from the Chinese Local Salmonella Genome DataBase version 2,
we compared previously reported cases with JS33 and JS34 (Wang
et al., 2023b). Only 1 of 1,323 genes relating to virulence factors
were different between XXB830 and XXB1582, but 169 of 1,323
genes relating to virulence factors disappeared in JS33 and JS34. Of

Frontiers in Microbiology

course, the difference in accuracy between the second-generation
sequencing and the third-generation sequencing may cause some
errors in data analysis. On the contrary, JS33 showed the exact
same antibiotic-resistant genes compared with XXB830. Moreover,
the annotated sequence number ascribed in NR, Swiss-port,
KEGG, and COG, as well as function classification, was similar in
all S. Goldcoast samples.

Identifying new S. Goldcoast strains was consistent with
previously estimated increased tendency and alerted a prevalence
of S. Goldcoast with MDR in southeast China. Besides, due to the
extensive similarities and specific differences between JS33 and
JS34, they could perform as model strains to help us understand
microbial antibiotic resistance and study microbial H,S. However,
the conclusions of this study are limited by the small sample size.
As S. Goldcoast was the 16th serotype of S. enterica in China,
accounting for 0.91% of geographical distribution, a
comprehensive monitor of S. Goldcoast was needed but has not
drawn much attention from the public (Wang et al., 2023a). The
surveillance of non-pathogenic but multidrug-resistant isolates
from healthy populations was especially unsatisfying and
urgently needed.
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A JS33 JS34
Database Number Percentage % Number Percentage %
NR 4499 99.60 4493 99.62
Swiss-Prot 3949 87.43 3941 87.38
KEGG 3733 82.64 3725 82.59
COG 3768 83.42 3760 83.37
ALL 4504 99.71 4498 99.73
B JS33 JS34
K19231:Fibronectin-binding
autotransporter adhesin
K08352:Thiosulfate K025d<57:t'\litrate e
reductase
reductase K00558: DNA (cytosine-
5)-methyltransferase 1
K18320:Transposase, ? .\ ’ K18698:B-lactamase ‘
1S15DI f.
/[
\ K12677: Clavulanate-9-
‘ K21528:Serine recombinase aldehyde reducatase
K18320:Transposase,|S26 ‘ K07491 REP-associated
tyrosine transposase
C
COG Function Classification of 2023_JSZJ33 COG Function Classification of 2023_JSZJ34
400 M [ 400 [ [
n n
) - ] M
3004 g3004
o - o -
S _ s _
2 7 e b i e
£ 200 - £ 200 —
5 =
4 | Z ||
100 — 1 100 — M
0 H HH H HH
ACDEFGHI JKLMNOPQRSTUVWXZ ACDEFGHI JKLMNOPQRSTUVWXZ
Function Class Function Class
A: RNA processing and modification N: Cell motility
C: Energy production and conversion O: Posttranslational modification, protein turnover, chaperones
D: Cell cycle control, cell division, chromosome partitioning P: Inorganic ion transport and metabolism
E: Amino acid transport and metabolism Q: Secondary metabolites biosynthesis, transport and catabolism
F: Nucleotide transport and metabolism R: General function prediction only
G: Carbohydrate transport and metabolism S: Function unknown
H: Coenzyme transport and metabolism T: Signal transduction mechanisms
I: Lipid transport and metabolism U: Intracellular trafficking, secretion, and vesicular transport
J: Translation, ribosomal structure and biogenesis V: Defense mechanisms
K: Transcription W: Extracellular structures
L: Replication, recombination and repair X: Mobilome: prophages, transposons
M: Cell wall/membrane/envelope biogenesis Z: Cytoskeleton
FIGURE 2

Ten protein-coding genes are exclusively expressed either in JS33 or JS34. (A) Annotated sequence number ascribed in NR, Swiss-port, KEGG, and
COG in JS33 and JS34, respectively. (B) Exclusive protein-encoding genes in JS33 or JS34. The blue point represents proteins with unknown
subcellular localization, while the red points represent proteins with specific localization. (C) The COG function classification of JS33 and JS34
samples.
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A The different proteins in JS33___and JS34
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Biosynthesis of secondary metabolites | 398-K12677=397
Microbial metabolism in diverse environments | 304-K02567-K08352=302
Sulfur metabolism-_] 46-K08352=45
Butanoate metabolism-{] 32-K12677=31
B-Lactam resistance{] 27-K18698=26
Nitrogen metabolism-] 23-K02567=22
Calvulanic acid biosynthesis  1-K12677=0
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FIGURE 3
Distinct genome affects drug resistance and H.,S production. (A) The annotated sequence number of JS33 differed from JS34 in KEGG pathways.
(B) The annotated sequence number of JS33 and JS34 in KEGG energy metabolism pathways.

Query_ID: Contig_2_72 Query_ID: Contig_2_74
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FIGURE 4
The comprehensive antibiotic resistance database in JS33 and JS34.
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Bioinformatics combined with
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Vibrio parahaemolyticus is the leading cause of illnesses and outbreaks linked to
seafood consumption across the globe. Understanding how this pathogen may
be adapted to persist along the farm-to-table supply chain has applications for
addressing food safety. This study utilized machine learning to develop robust
models classifying genomic diversity of V. parahaemolyticus that was isolated
from environmental (n = 176), seafood (n = 975), and clinical (n = 865) sample
origins. We constructed a pangenome of the respective genome assemblies
and employed random forest algorithm to develop predictive models to identify
gene clusters encoding metabolism, virulence, and antibiotic resistance that were
associated with isolate source type. Comparison of genomes of all seafood-clinical
isolates showed high balanced accuracy (>0.80) and Area Under the Receiver
Operating Characteristics curve (>0.87) for all of these functional features. Major
virulence factors including tdh, trh, type Ill secretion system-related genes, and four
alpha-hemolysin genes (hlyA, hlyB, hlyC, and hlyD) were identified as important
differentiating factors in our seafood-clinical virulence model, underscoring the
need for further investigation. Significant patterns for AMR genes differing among
seafood and clinical samples were revealed from our model and genes conferring
to tetracycline, elfamycin, and multidrug (phenicol antibiotic, diaminopyrimidine
antibiotic, and fluoroquinolone antibiotic) resistance were identified as the top
three key variables. These findings provide crucial insights into the development
of effective surveillance and management strategies to address the public health
threats associated with V. parahaemolyticus.

KEYWORDS

comparative genomics, machine learning, Vibrio parahaemolyticus, virulence,
antibiotic resistance

1 Introduction

Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium that is widely distributed
in estuarine, marine, and coastal surroundings, and frequently detected in diverse seafood
products such as clams, shrimps, crabs, and oysters (Su and Liu, 2007). V. parahaemolyticus is
an important foodborne pathogen that is responsible for illnesses associated with seafood
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throughout the world and is often linked to the consumption of raw
or improperly handled seafood (DePaola et al., 2003). Typical signs
and symptoms triggered by the infection of V. parahaemolyticus
encompass watery diarrhea, abdominal cramps, nausea, vomiting,
fever, headache, and bloody diarrhea (Centers for Disease Control and
Prevention, 2013). Immunocompromised persons are at highest risk
for morbidity and mortality (Centers for Disease Control and
Prevention, 2013). Outbreaks/infections caused by V. parahaemolyticus
usually happen in regions with high water temperatures. However, the
ongoing climate changes are believed to expand the prevalence of
V. parahaemolyticus geographically and increase human exposure to
V. parahaemolyticus on a global scale (Zhang W. et al., 2023).
Therefore, the development of efficient management strategies to
control the spread of V. parahaemolyticus and minimize related food
safety risks is needed.

Native to estuarine environments, V. parahaemolyticus can become
a problematic contaminant among the microflora in shellfish as it takes
on a broad niche range. In general, bacterial attachment and
internationalization are described as the two critical processes
mediating its transmission to and persistence in raw seafood (Brauge
etal., 2024). Human consumption of contaminated seafood products
may then result in the development of foodborne illness. However, the
specific mechanisms involved in V. parahaemolyticus transmission and
survival across diverse lifestyles, from the environment to seafood and
consumers remain unclear. Thermostable direct haemolysin (TDH) and
thermostable-related haemolysin (TRH) are the two major virulence
factors in V. parahaemolyticus that may play important roles, as tdh and
trh have been identified as reliable gene markers for the detection of
pathogenic strains due to their prevalence in clinical isolates
(Raghunath, 2015). Nevertheless, several studies have demonstrated
that tdh and trh negative strains also cause infection, which indicates
that additional virulence factors may be involved as well (Chao et al.,
2010; Velazquez-Roman et al., 2012; Zha et al., 2023). Furthermore,
while antibiotics have been widely adopted as the major treatment for
V. parahaemolyticus infection, especially for severe cases (Loo et al.,
2020), there is a growing concern for the emergence of antibiotic
resistance among the species (Letchumanan et al., 2015; Letchumanan
etal., 2016; Loo et al.,, 2020). Comparing the metabolism, virulence, and
antibiotic resistance profiles of different V. parahaemolyticus isolates
representing alternative lifestyles (i.e., waterborne, food-associated, and
clinical) may provide a better understanding of its mechanisms for
contamination, pathogenicity, and overall health risk.

Whole genome sequencing technologies have become increasingly
utilized in the food industry for food safety monitoring assessment
(Brown et al., 2019; Unrath et al., 2021). Given the complexity of
sequencing data, machine learning (ML) can be applied to capture
patterns in datasets with large quantities, and make robust predictions
based on identified patterns (Tanui et al., 2022b; Karanth et al., 2022;
Benefo et al., 2024a; Feng et al., 2024). Machine learning, particularly
supervised ML, has demonstrated great applications in food safety
such as predicting the disease outcome of Salmonella, the virulence
potential and food source attribution of Listeria monocytogenes, as well
as the abundance of V. parahaemolyticus (Tanui et al., 2022a; Ndraha
etal, 2021; Karanth et al., 2022; Gmeiner et al., 2024). According to
the models with good performance, the most influential predictors
could also be retrieved, which shows great promise in managing and
controlling food safety accurately. For example, Benefo et al. (2024a)
adopted six different ML algorithms and identified the critical

Frontiers in Microbiology

10.3389/fmicb.2025.1549260

Salmonella stress response gene during poultry processing with high
accuracy. Random forest (RF), as one of the most used ML algorithms
in food safety, has been highlighted for its robust performance when
the number of predictors is much larger than the number of
observations, such as in WGS data (Biau and Scornet, 2016). Generally,
the RF algorithm aggregates the prediction of several randomized
decision trees through averaging, to obtain a final prediction/decision
(Biau and Scornet, 2016). Thus, applying RF and alternative modeling
efforts holds the potential to retrieve and reveal the information
underlying bacterial behaviors from a genetic level via analyzing
WGS data.

For this study, we aimed to perform a pangenomic analysis and
apply RF to identify key genetic signatures of V. parahaemolyticus
isolated from environmental, seafood, and clinical samples (i.e.,
potential differences in metabolism, virulence, and antibiotic
resistance as a factor of source type). The findings from this study
could help to (1)
V. parahaemolyticus as it transmits along the farm-to-table supply

understand the adaptive response of
chain (environment-seafood-consumer) and (2) identify potential
virulence factors and antibiotic resistance genes in V. parahaemolyticus
that may have implications for consumer health and food safety.

2 Materials and methods
2.1 Sample collection

Genome assemblies of V. parahaemolyticus were collected from
the National Center for Biotechnology Information (NCBI) Pathogen
Detection database.! A total of 6,227 assemblies consisting of
environmental (1 = 633), seafood (n = 2,284), and clinical (n = 3,310)
isolates were downloaded and used in this study after checking the
isolation type and isolation source manually for each assembly.
Assemblies were subset for further analysis based on specific inclusion
criteria for having corresponding metadata that indicated specific
sample sources (i.e., environmental, seafood, and clinical), as
described in Supplementary Table S1.

2.2 Bioinformatics analysis

The selected genome assemblies were processed with CheckM
(v1.2.2) (Parks et al., 2015) for quality control, and those predicted to
have greater than 97% completeness and less than 3% contamination
(n=176, 975, and 865 for environmental, seafood, and clinical
isolates, respectively) were further processed (Blaustein et al., 2019).
Annotation and pangenome construction of these high-quality
assemblies were performed with Prokka (v1.14.6) and Panaroo
(v1.3.4), sequentially (Seemann, 2014; Tonkin-Hill et al., 2020). Genes
identified in the pangenome were categorized into three different sets
based on their prevalence across all strains analyzed: core genes were
present in over 95% of isolates, shell genes were found between 15 to
95% isolates, while cloud genes were defined as those with a prevalence
less than 15% isolates (Livingstone et al., 2018). In addition to the

1 https://www.ncbi.nlm.nih.gov/pathogens/, accessed on March 4, 2024.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1549260
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/pathogens/

Feng et al.

comprehensive pangenome for all isolates, pangenomes for the
subgroups of seafood and clinical isolates were constructed as well.
The nucleotide sequences of all gene clusters in the respective
pangenomes were translated with Prodigal (v2.6.3) (Hyatt et al., 2010).
Amino acid sequences were then screened for homology to proteins
in the Database of Clusters of Orthologous Genes (COG), the
Virulence Factor Database (VFDB) and the Comprehensive Antibiotic
Resistance Database (CARD) using BLASTp (v2.14.1) (Camacho
et al,, 2009; Liu et al.,, 2022; Alcock et al., 2023) to identify the gene
profiles with homology to features for metabolism, virulence and
antibiotic resistance, respectively. During our preliminary analysis,
different cutoff thresholds ranging from 99 to 50% (99, 98, 97, 96, 95,
90, 85, 80, 75, 70, 65, 60, 55, and 50%) were employed to query
coverage and percent identity, as we aimed to get the threshold as high
as possible while 50% is the common choice for BLASTp. The filtered
genes with different thresholds were fed into RF models as the
predictors. After comparing the performance of models (sensitivity,
specificity, balanced accuracy, and Area Under the Receiver Operating
Characteristics curve (AUROC)) using filtered genes with different
cutoff values (Supplementary Tables S2-S7), the thresholds for both
query coverage and percent identity were set as 90, 80, and 50% for
metabolism, virulence, and antibiotic resistance models, respectively.

2.3 Machine learning

Random forest was adopted to develop predictive models for
isolation sources of V. parahaemolyticus (environmental vs. seafood

10.3389/fmicb.2025.1549260

(ES) and seafood vs. clinical (SC)). The presence and absence of genes
related to metabolism, virulence, and antibiotic resistance were
separately used as the predictors. The overview of the prediction
strategy used in this study is simplified as a workflow and displayed in
Figure 1. Further details regarding this approach are described in the
following sections.

2.3.1 Data preprocessing

The presence and absence of gene clusters (denoted by 1 and 0,
respectively) with homology to each functional category (metabolism,
virulence, and antibiotic resistance) were used as the input variables
for the ML models. Predictors (gene clusters) possessing only one
unique value (zero variance predictor) or a limited number of unique
values (near-zero variance predictor) were removed as they could
introduce unnecessary complexity to the model and lead to increased
computational time without significantly increasing the accuracy of
the model (Kuhn, 2019). Predictors with near-zero variance were
detected by estimating frequency ratio (the frequency of the most
prevalent value over the second most frequent value) and unique value
percentage (the number of unique values to the total number of
samples expressed as a percentage). For this study, a predictor with a
frequency ratio greater than 19 and a unique value percentage less
than 10% was considered as near-zero variance and, therefore,
excluded from model building (Kuhn, 2019; Benefo et al., 2024a).

Class imbalance, which could result in potential bias in the
model, was observed for ES (15.29% for the minority class
(environmental isolates) and 84.71% for the majority class
(seafood isolates)) while was not found in SC (47.01% for the

[

predictors: gene presence/absence matrix
metabolism/virulence/antibiotic resistance

]

preprocessing: remove zero
and near-zero variance

training set
(70% of the included datase

[

)

ubsampling: ROS
(only for ES)

I

ES: ROSE training set
SC: training set

[s
[

]

F

RF model building: 10-fold cross
validation with 10 repeats

predictive models
ES/SC

[

test set
(30% of the included dataset)

[

)
J

model evaluation:
sensitivity, specificity, balanced accuracy.
AUROC

[

)

FIGURE 1
A simplified workflow for the approach used in this study.

*AUROC: Area Under the Receiver Operating Characteristics curve; ES: Environmental vs. Seafood; RF:
Random Forest; ROSE: Random Over-Sampling Examples technique; SC: Seafood vs. Clinical.
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minority class (clinical isolates) and 52.99% for the majority class
(seafood isolates)). Upsampling, downsampling, random over-
sampling examples (ROSE) technique, and Synthetic Minority
Oversampling TEchnique were applied to attenuate the imbalance
in the ES dataset during the preliminary analysis, and ROSE was
selected for subsampling in the ES models due to having better
predictive performance than the other methods. Through ROSE,
the majority class is downsampled while new instances are
generated via a smoothed-bootstrap approach for the minority
class (Lunardon et al., 2014).

2.3.2 Model building

Six classification models were developed using RF for both ES
and SC datasets across each functional category: metabolism,
virulence, and antibiotic resistance. For each model, the dataset was
randomly split into a training set (70% of included data) and a test
set (30% of included data), which were used for model building and
model test and validation, respectively (Benefo et al., 2024b).
Ten-fold cross-validation with 10 repeats was adopted to train the
model as it helps to reduce the potential bias (Kohavi, 1995).
Specifically, the training set was randomly partitioned into 10
subsets, and 10 models were built out of these 10 subsets. For each
model/iteration, nine subsets were employed to train the model
while the remaining set was kept aside to test and evaluate the model
performance. The aforementioned procedures were repeated 10
times, resulting in an average performance for all models generated
throughout the process (Kuhn, 2019). Randomized search was
adopted to tune the hyperparameters and identify the optimal ones
for each model. The test of the developed models was conducted
using the hold-out test set (30% of included data), and a confusion
matrix was generated according to model performance on the
test set.

2.3.3 Model evaluation

Sensitivity, specificity, balanced accuracy, and AUROC were used
to evaluate the performance of the developed models. Sensitivity and
specificity are commonly used metrics to evaluate the performance of
classification models. Sensitivity is defined as the ratio of the correctly
identified positives to all true positives, while specificity refers to the
proportion of true negatives that are correctly predicted (Sidey-
Gibbons and Sidey-Gibbons, 2019). Balanced accuracy, which is
defined as the average of sensitivity and specificity, outperforms
traditional accuracy when evaluating the performance of models with
imbalanced data as it considers accuracies for both positive and
negative classes (Tholke et al, 2023). Sensitivity, specificity, and
balanced accuracy all range from 0 to 1; and the closer these values to
1, the better performance the model has. AUROC characterizes the
classification (discrimination) ability of the model. Specifically, the
value of AUROC varies from 0.5 to 1, with AUROC = 0.5 (baseline)
linked to random classification while AUROC = 1 indicates a perfect
classifier (D’Agostino et al., 2013). Moreover, the plots of AUROC
were generated as well. In the AUROC graph, the false positive rate
(1- specificity) of the model is the x-axis while the true positive rate
(sensitivity) of the model is the y-axis. An AUROC curve which is
close to the upper left corner of the graph is considered as the indicator
of high AUROC value and therefore, good predictive ability of
a model.
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2.3.4 Significant genes identification

The twenty most significant genes for each reliable model were
identified and ranked based on their importance (note: only 17 genes
were listed for the SC-antibiotic resistance model since it only had 17
genes as predictors). It was estimated by computing the difference in
the prediction accuracies of the model caused by permuting the
values of each predictor variable. The calculated difference between
the two accuracies was averaged over all trees and normalized by the
standard error. The more significantly permuting the value of a
predictor impacts the accuracy, the more important that predictor
(Kuhn, 2019). All the ML analyses were performed using the caret
and MLeval package (Kuhn, 2019) in R (v. 4.1.1). The prevalence rate
(the ratio of positive genomes to the total genomes) of the identified
genes was calculated. The Proportion test was performed using the
prop.test package in R (v. 4.1.1) to evaluate the homogeneity of
proportions in different isolate sources. In addition, relevant
information about the specific genes in COG, VFDB, and CARD that
were homologous to the most important pangenome gene cluster
predictors (e.g., homologous gene COG category) were retrieved
from the respective databases.

2.4 Data visualization

A pie chart was generated for the pangenome for all isolates.
AUROC curves and heatmaps were generated for the prevalence of
the identified important genes via R (v. 4.1.1) using the autoplot and
pheatmap packages, respectively.

3 Results
3.1 Pangenome characteristics

A total of 42,324 gene clusters were identified in the
V. parahaemolyticus pangenome, with 4,608 + 160 genes per genome
(mean £ SD). Specifically, our pangenome identified 3,880 core genes,
1,081 shell genes, and 37,363 cloud genes. The pie chart demonstrating
the distribution of total genes and respective percentages is shown in

Figure 2.
1081
(2.55)
/
3880
(9.17)
37363
(88.28)
Core Genes
Shell Genes
Cloud Genes
FIGURE 2
Pie chart of genes of the overall pangenome. Total genes (percent)
are listed.
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3.2 Predictive models

Six ML classification models were built based on the presence and
absence of genes with homology to metabolism, virulence, and
antibiotic resistance for the ES and SC datasets. Based on the
thresholds for query coverage and percentage of identity, 4,132, 273,
and 160 genes were selected as inputs for the metabolism, virulence,
and antibiotic resistance models, respectively. After removing zero and
near-zero variance, 390, 23, 19, 380, 48, and 17 genes were used as the
predictors for ES-metabolism, ES-virulence, ES-antibiotic resistance,
SC-metabolism, SC-virulence, and SC-antibiotic resistance models,
respectively.

The performance of all six models was measured using sensitivity,
specificity, balanced accuracy, and AUROC (shown in Table 1).
Generally, SC models provided better predictions compared to ES
models, and models for metabolism surpassed those for virulence and
antibiotic resistance.

Specifically, sensitivity, specificity, and balanced accuracy varied
from 0.44 to 0.52, 0.72 to 0.88, and 0.58 to 0.70, respectively for ES
models; while for SC models, the range for sensitivity, specificity, and
balanced accuracy were 0.73 to 0.88, 0.87 to 0.96, and 0.80 to 0.90,
respectively. On the other hand, all models, except for ES-virulence
and ES-antibiotic resistance, resulted in an AUROC value greater than
0.80 (ranging from 0.82 to 0.96), and a model with an AUROC value
above 0.80 is generally interpreted as a reliable model (Nahm, 2022).
The plotted AUROC curves were shown in Figure 3 and the baseline,
of which AUROC is equal to 0.5, was denoted as the dotted diagonal
line in the graph.

Based on the overall consideration of four evaluation metrics,
SC-metabolism, SC-virulence, and SC-antibiotic resistance models
were considered as models which could provide robust prediction and
were selected for further identification of significant genes.

3.3 Significant genes enriched by source
type

Twenty significant genes identified by the SC-metabolism and
SC-virulence models, genes used as the predictors in the SC-antibiotic
resistance model as well as the relevant information about their
homologies in different databases and prevalence rates in the seafood
and clinical groups were listed in Tables 2-4; and the related heatmaps
were displayed as Figures 4-6.

As presented in the SC-metabolism model (shown in Table 2), the
top 20 important genes were predicted as homologies to genes coding

TABLE 1 Model performance of the developed predictive models.

10.3389/fmicb.2025.1549260

for proteins belonging to 13 different functional categories and
intracellular trafficking, secretion, and vesicular transport, cell
motility, as well as transcription were the most predominant
categories. Most of the proportion of strains harboring the above
genes (14 out of 20) were significantly greater in the clinical cohort
than in the seafood group (displayed in Table 2; Figure 4).

According to the SC-virulence model (presented in Table 3), genes
of great importance in characterizing the virulence profiles of seafood
and clinical isolates belonged to six different functional categories and
were primarily associated with exotoxin followed by effector delivery
system. The proportion test revealed that the prevalence rates of 15 out
of 20 important virulence genes differed significantly in seafood and
clinical isolates. Among the genes with significantly different ubiquity,
all of them were more encoded in clinical samples, other than
‘flaD_I~~~flaD_3 (flaC) (Table 3; Figure 5).

Gene clusters used as predictors in our SC-antibiotic resistance
model were predicted to resist 12 different drug classes including three
multidrug classes (Table 4; Figure 6), among which genes conferring
tetracycline resistance, elfamycin resistance, as well as multi-drug
resistance (tet(35), Ecol_EFTu_PLV, and MexS) were the top three
important genes. The most common antibiotic resistance genes in the
seafood cohort were macB (macrolide resistance, 89.13%), dfrA3
(diaminopyrimidine resistance, 89.13%), and ugd (peptide resistance,
80.51%), while the most common antibiotic resistance genes in the
clinical cohort were dfrA3 (diaminopyrimidine resistance, 97.11%),
macB (macrolide resistance, 96.76%), and Ecol_EFTu_PLV (elfamycin
resistance; 66.13%). On the other hand, five different antibiotic
resistance mechanisms were involved in differentiating the antibiotic
resistance of seafood and clinical samples, and efflux pump, as well as
target site alteration, were the two major categories.

4 Discussion

The overarching goal of this study was to use the differences in the
presence and absence of genes among V. parahaemolyticus isolates as
ML input to (i) develop classification models that differentiate
V. parahaemolyticus isolates from environmental, seafood, and clinical
samples, based on the accessory genes they carry that encode critical
functions (metabolism, virulence, and antibiotic resistance) and (ii)
identify the specific genes underlying the differences. Understanding
potential mechanisms involved in transmission, pathogenicity, and
antibiotic resistance of V. parahaemolyticus along the seafood supply
chain could inform new strategies for food safety control and public
health surveillance. To our knowledge, this is the initial attempt to

Models Sensitivity Specificity Balanced accuracy AUROC

ES Metabolism 0.52 0.88 0.70 0.82
Virulence 0.44 0.72 0.58 0.66
Antibiotic resistance 0.52 0.76 0.64 0.70

sC Metabolism 0.85 0.96 0.90 0.96
Virulence 0.88 0.92 0.90 0.94
Antibiotic resistance 0.73 0.87 0.80 0.87

ES, environmental vs. seafood; SC, seafood vs. clinical; AUROC, area under the receiver operating characteristics curve.
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Area under the receiver operating characteristics curve for the developed RF models: ES-metabolism (A), ES-virulence (B), ES-antibiotic resistance (C),
SC-metabolism (D), SC-virulence (E), and SC-antibiotic resistance (F). ES, environmental vs. seafood; SC, seafood vs. clinical.

adopt a bioinformatics workflow combined with ML to characterize
differences in genetic diversity of V. parahaemolyticus strains across
different isolation sources.

Our results showed that the three SC models could generate
accurate predictions while the ES models did not perform as well.
Therefore, only significant genes identified by SC models were
analyzed and discussed. It is possible that compared with SC isolates,
ES isolates were not that much different since these are all ‘commensal,
possibly pathogenic’ strains recovered in monitoring while clinical
strains are likely pathogens. However, limitations with the smaller
sample size and data imbalance in the ES dataset may have affected
the performance of ES models. In fact, significant biofilm formation
was observed for V. parahaemolyticus in seafood compared with
strains from the environment, implying the different lifestyles between
environmental and seafood isolates (Rajkowski, 2009). Moreover,
Feng et al. (2024) demonstrated that V. parahaemolyticus strains
isolated from seawater and oyster were differently impacted by the
same environmental parameters, indicating functional differences
between certain environmental and seafood isolates as well. The
inclusion of more environmental samples in the future should enable
the model to capture and characterize the difference better.

In general, as shown in Table 2 and Figure 4, most of the top
genes identified by our SC-metabolism model were more prevalent
in clinical strains compared with seafood strains, indicating the
more active metabolic activities occurring in clinical strains. This
could be explained by the fact that the adaptative responses
required to survive in the human body were more complicated
than the ones associated with the seafood isolates due to the two
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distinguished conditions provided by the human body and seafood.
When V. parahaemolyticus enters the human body, it could face
various stresses such as thermal stress, acid stress, bile salts stress,
and attack from the host cells, resulting in potential damage to
different components of V. parahaemolyticus including cell
membrane, DNA, and protein (Qadri et al., 2003; Pazhani et al.,
2021). However, the stresses that seafood isolates may encounter
are majorly associated with postharvest handling procedures such
as cold stress caused by refrigeration storage and low salinity stress
caused by washing (Huang and Wong, 2012; Tang et al., 2018).
Thus, adaptive response of Vibrio along the processing and supply
chain may become relevant for transmission and persistence that
precedes consumption.

Specifically, the top two gene clusters (‘group_1266" and
‘group_5540’), which were orthologous to cytoskeletal protein and
superfamily Il DNA or RNA helicase, were annotated as hypothetical
proteins, pressing the need to study and reveal their functions and
roles in the survival of V. parahaemolyticus. Intracellular trafficking,
secretion, and vesicular, specifically, proteins associated with type III
secretion system (T3SS), was one of the most predominant categories
recognized by the SC-metabolism model and all the homologies
(COG symbol: PulD, Flil, and EscV, ranked the third, fifth/eleventh,
and sixth, respectively in the SC-metabolism model) belonging to this
group were more prevalent in clinical isolates. Our findings were
consistent with a previous study, in which the pangenome of
V. parahaemolyticus was analyzed and significant enrichment of genes
related to intracellular trafficking, secretion, and vesicular transport
was observed for the clinical isolates (Pérez-Duque et al., 2021). This
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TABLE 2 Twenty important genes identified by SC-metabolism model, information of their homologies from COG, and their prevalence rates.

Gene cluster from COG COG COG name COG Prevalence rate p values
pangenome annotation symbol functional o
category Seafood Clinical
Hypothetical protein Cytoskeletal protein <0.001
P P RodZ h P D 12.10 87.98
group_1266 VPA1391 RodZ
Hypothetical protein Superfamily IT DNA or <0.001
SSL2 KL 12.10 87.98
group_5540 VPA1393 RNA helicase
Type II secretory <0.001
Type III secretion
PulD pathway component U 3.69 60.69
system EscC protein
sctC_5~~~sctC_3 GspD/PulD (secretin)
Sialic acid synthase <0.001
N-acetylneuraminic SpsE, contains
SpsE M 20.31 1.39
acid synthetase C-terminal SAF
legl_2~~~legl domain
Flagellar biosynthesis/ <0.001
ATPase YscN Flil type III secretory NU 3.69 60.58
yScN_2~~~atpB_1 pathway ATPase Flil
Type III secretory <0.001
Type III secretion
EscV pathway, component U 3.69 60.58
system EscV protein
ssaV EscV
Outer membrane <0.001
protein OmpA and
Outer membrane
. OmpA related peptidoglycan- = M 3.69 60.46
protein
associated (lipo)
group_268 proteins
Acetyl/propionyl-CoA <0.001
acyl-CoA carboxylase yipropiony
PccA carboxylase, alpha I 9.13 0.58
alpha chain
accAl_2~~~accAl subunit
Hypothetical protein Uncharacterized <0.001
YhfA R 36.92 69.60
YhfA_2~~~yhfA_1~~~yhfA_3 VP1807 OsmC-related protein
Hypothetical protein Na+/H+ antiporter <0.001
NhaC C 32.62 4.51
group_31591 VP1134 NhaC/MleN
Flagellar biosynthesis/ <0.001
Hypothetical protein Flil type III secretory NU 20.10 3237
hreN pathway ATPase FIil
Predicted <0.001
transcriptional
regulator, contains an
Hypothetical protein
AF2118 XRE-type HTH K 4.10 51.33
VP1825
domain (archaeal
members contain CBS
group_999 pair)
Hydrogenase/urease <0.001
Urease accessory maturation factor
HypB O 20.41 32.37
protein UreG HypB, Ni2 + —binding
ureG GTPase
Diphthamide synthase <0.001
Hypothetical protein
Dph6 (EF-2-diphthine-- ] 20.00 7.51
VP2937
group_965 ammonia ligase)
Virulence-associated 0.892
VacB Exoribonuclease R K 62.36 62.77
rnr_l~~~rnr_2 protein VacB/Rnase R
(Continued)
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TABLE 2 (Continued)
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Gene cluster from COG COG name COG Prevalence rate p values
pangenome annotation functional o
category Seafood Clinical
Hypothetical protein Multidrug resistance <0.001
EmrA \' 57.74 87.51
group_4703 VPA0394 efflux pump EmrA
Glycosyltransferase, <0.001
catalytic subunit of
Hypothetical protein cellulose synthase and
BesA N 57.74 87.51
VPA0393 poly-beta-1,6-N-
acetylglucosamine
icaA synthase
Type III secretion Flagellar biosynthesis <0.001
FIhB N 3.69 60.46
fIhB_3~~~yscU_2 system EscU protein protein FIhB
Uncharacterized <0.001
Hypothetical protein
YccC membrane protein N 72.51 95.95
VP1358
aaeB~~~aaeB_1 YccC
tufB~~~tuf~~~tufl ~~~tufA_2~ Translation elongation 0.895
/B o 4 2 Elongation factor Tu TufA & ] 61.33 60.92
~~tufA~~~tufA_1 factor EF-Tu, a GTPase

COG, the Database of Clusters of Orthologous Genes. SC, seafood vs. clinical. C, Energy production and conversion; D, Cell cycle control, cell division, chromosome partitioning; I, Lipid
transport and metabolism; ], Translation, ribosomal structure and biogenesis; K, Transcription; L, Replication, recombination and repair; M, Cell wall/membrane/envelope biogenesis; N, Cell
motility; O, Posttranslational modification, protein turnover, chaperones; R, General function prediction only; S, Function unknown; U, Intracellular trafficking, secretion, and vesicular

transport; V, Defense mechanisms.

observation may be attributed to the fact that T3SS is a key virulence
factor of V. parahaemolyticus (Li et al., 2019). Cell motility was the
other most predominant functional category and four genes (COG
symbol: FliI, Flil, BcsA, and FlhB, ranked the fifth, eleventh,
seventeenth, and eighteenth, respectively, in the SC-metabolism
model) out of the 20 important genes were recognized as the
homologies to genes coding for proteins belonging to this category,
particularly the orthologous cluster of flagellar biosynthesis. Similar
to PulD and EscV, genes associated with flagellar biosynthesis were
more frequently detected in clinical samples, highlighting the
significance of flagellar in helping the transmission and survival of
V. parahaemolyticus and possibly contributing to infection. It has been
reported that the formation of biofilm, which is one of the important
survival strategies of V. parahaemolyticus, is achieved with the aid of
a dual flagellar system (Zhang V. et al., 2023). On the other hand, the
significantly high prevalence of four genes (COG symbol: SpsE, PccA,
Nhac, and Dphé, ranked the fourth, eighth, tenth, and fourteenth,
respectively) in seafood isolates could be explained by the response of
the strain to the environmental pressure caused by the postharvest
treatment of seafood. For example, V. parahaemolyticus has been
reported to increase the expression of acetyl-CoA carboxylase (COG
symbol: PccA) to synthesize unsaturated fatty acids and increase cell
membrane fluidity to adapt to high hydrostatic pressure conditions,
which has been commonly applied to inactivate the pathogen and
extend the shelf life of seafood (Liang et al., 2022).

According to the SC-virulence model, exotoxin was the most
predicted functional category (presented in Table 3). Specifically, two
gene clusters were predicted to be two different copies of tdh and
ranked first and eighteenth, respectively. On the other hand, one gene
cluster from the pangenome was recognized as homology to trhX (also
known as trh) and ranked sixteenth. These three gene clusters were
significantly more prevalent in the clinical group, though none of
them were present in all clinical isolates. Similar results have been
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found in previous studies, indicating the contribution of other factors
to the pathogenicity of V. parahaemolyticus (Chao et al., 2010;
Velazquez-Roman et al., 2012; Zha et al, 2023). Apart from
homologies to tdh and trhX, homologies to four different alpha-
hemolysin coding genes (hlyD, hlyC, hlyA, and hlyB) belonging to the
exotoxin category have been identified as the top 20 influential
predictors and ranked the third, fourth, sixth, and fourteenth,
respectively. Interestingly, only hlyD was profoundly enriched in the
clinical cohort compared with the seafood group while no significant
difference was found regarding the prevalence rate of hlyA, hlyB, and
hlyC in seafood and clinical isolates. In fact, the presence of hlyA, hlyB,
hlyC, and hlyD in V. parahaemolyticus was only reported in a study
investigating the pathogenesis of V. parahaemolyticus 353 isolated
seafood in China (Zha et al., 2023). More studies are needed to reveal
how these alpha-hemolysins contributed to the pathogenicity of
V. parahaemolyticus, which could aid in explaining why their
prevalence between seafood and clinical strains was similar but still
critical to differentiate these two groups.

Moreover, it has been revealed that effector delivery system, T3SS,
played an important role in differentiating nonpathogenic and
pathogenic (seafood and clinical) groups. Based on our SC-virulence
model, five genes related to T3SS (vscJ2, vscC2, vopB2, VP_RS21585,
and vopD?2) were identified as important genes and ranked the second,
fifth, seventh, tenth, and eleventh, respectively. V. parahaemolyticus
possesses two sets of T3SS: T3SS1 and T3SS2, which are responsible
for cytotoxicity and enterotoxicity, respectively (Li et al., 2019). All the
effector delivery system genes identified by the SC-virulence model
were associated with T3SS2, which could be explained by the fact that
T3SS1 is commonly found in both nonpathogenic and pathogenic
isolates while T3SS2 is exclusive to pathogenic/clinical isolates
(Matsuda et al, 2020). Generally, the proteins of T3SS could
be categorized into four classes: structural proteins, translocators,
effector proteins, and molecular chaperones (Li et al., 2019). In this
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TABLE 3 Twenty important genes identified by SC-virulence model, information of their homologies from VFDB, and their prevalence rates.

Gene cluster from Name of the VFDB gene VFDB Prevalence rate p values
pangenome ggrr:;c?lr:)\glggsB product ilg?gggrr;al Seafood Clinical
Thermostable direct <0.001
tdhl_1~~~tdh3~~~tdhl~~~tdh2 tdh hemolysin A Exotoxin 9.13 86.24
Type III secretion system Effector delivery <0.001
group_5343 vscj2 protein VscJ2 system 3.69 60.81
RlyD~~~hlyD_1~~~hlyD_2 hlyD Hemolysin D Exotoxin 14.36 30.17 <0.001
hlyC_2 hlyC Hemolysin C Exotoxin 7.28 7.40 0.995
Type III secretion system Effector delivery <0.001
sctC_5~~~sctC_3 vscC2 protein VscC2 system 3.69 60.69
hlyA~~~hlyA_2 hlyA Hemolysin A Exotoxin 7.18 7.51 0.853
Type ITI secretion system <0.001
translocator protein Effector delivery
group_9636 vopB2 VopB2 system 3.69 60.69
group_10785 mshC MSHA pilin protein MshC | Adherence 35.18 54.34 <0.001
Immune <0.001
epsL_1~~~epsL_2~~~pssY~~~epsL_3 | wbfU Sugar transferase modulation 27.18 36.18
Putative type III secretion | Effector delivery <0.001
group_6266 VP_RS21585 system protein system 3.69 60.69
Type III secretion system <0.001
translocator protein Effector delivery
group_6750 vopD2 VopD2 system 3.69 60.69
flaD_4~~~flaD_2~~~flaD_5~~~flaD 0.044
_I~~~flaD_3 flaC Flagellin Motility 60.92 56.18
tufB~~~tutf~~~tufl ~~~tufA_2~~~tuf 0.895
A~~~tufA_1 tufA Elongation factor Tu Adherence 61.33 60.92
hlyB~~~hlyB_2 hlyB Hemolysin B Exotoxin 8.21 7.40 0.578
Effector delivery <0.001
group_10962 VP_RS21705 Hypothetical protein system 3.69 60.69
tdh2~~~tdh2_1~~~tdh2_2 trhX TDH-related hemolysin Exotoxin 17.95 32.14 <0.001
flaD_1~~~flaD_3 flaC Flagellin Motility 34.05 9.60 <0.001
Thermostable direct <0.001
tdh3_2~~~tdh3~~~tdhl tdh hemolysin A Exotoxin 0.62 48.09
Glucose-1-phosphate <0.001
thymidylyltransferase Immune
rffH_2~~~rffH rmlA RfbA modulation 5.33 23.24
hag lafA Lateral flagellin LafA Biofilm 78.46 90.75 <0.001

SC, seafood vs. clinical. VEDB, the Virulence Factor Database.

study, we observed two genes predicted to encode structural proteins Among all gene clusters identified as important by our

of T3SS2 (vscJ2 and vscC2), which contribute to the formation of the
physical structure of T3SS2, particularly the assemble of the inner
membrane of both the basal body and export apparatus (Deng et al.,
2017). Genes vopB2 and vopD2, coding for the translocator protein of
T3SS2, have been reported to be responsible for creating the pathway,
pores in the membrane of host cells, through which effectors could
be delivered into the host cells (Paria et al., 2021). It should be noted
that two of the T3SS-related genes were hypothetical/putative proteins,
which presses the need to perform further research specifically on
these genes to unveil their characterizations and roles in contributing
to the pathogenicity of V. parahaemolyticus.

Frontiers in Microbiology

SC-virulence model, the homology to flaC (ranked the seventeenth)
was the only one that was more prevalent in the seafood group. It has
been reported that FlaC, which is one of the flagellin subunits of the
filament of V. parahaemolyticus flagellum coded by flaC, can activate
the immune protection function of shellfish (Chen et al.,, 2019).
We suspect that flaC-activated immune protection could result in
changes in the texture or appearance of shellfish, causing consumers
to perceive it as unsafe to eat. In contrast, shellfish contaminated with
V. parahaemolyticus lacking flaC may not exhibit such changes, which
makes people consider it as safe for consumption. Consequently,
shellfish contaminated with V. parahaemolyticus lacking flaC is more
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TABLE 4 Genes used as predictors in SC-antibiotic resistance model, information of their homologies from CARD, and their prevalence rates.

Gene cluster from Name of the = Drug class AMR gene family = Resistance Prevalence rate p
pangenome homologous mechanism o values
gene in Seafood  Clinical
CARD
ATP-binding cassette <0.001
Tetracycline
group_31591 tet(35) (ABC) antibiotic efflux Efflux pump 32.62 4.51
antibiotic
pump
Elfamycin Target site <0.001
tufA_I~~~tuf~~~tufA~~~tufB  Ecol_EFTu_PLV elfamycin resistant EF-Tu 36.51 66.13
antibiotic alteration
Phenicol antibiotic, <0.001
diaminopyrimidine | resistance-nodulation-cell
group_5516 MexS antibiotic, division (RND) antibiotic = Efflux pump 6.77 29.60
fluoroquinolone efflux pump
antibiotic
Streptogramin <0.001
antibiotic,
Erm 23S ribosomal RNA Target site
group_11708 ErmY lincosamide 77.03 62.43
methyltransferase alteration
antibiotic,
macrolide antibiotic
Phosphonic acid antibiotic-resistant murA | Target site 0.539
group_8131 Ctra_murA_FOF 16.92 18.15
antibiotic transferase alteration
pmr <0.001
Target site
ugd~~~ugd_2~~~ugd_1 ugd Peptide antibiotic phosphoethanolamine 80.51 64.97
alteration
transferase
macB_6~~~macB_4~~~macB_ Macrolide ABC antibiotic efflux <0.001
macB Efflux pump 89.13 96.76
S5~~~macB_3~~~macB_2 antibiotic pump
pmr <0.001
. L . Target site
ugd_1~~~ugd_2~~~ugd ugd Peptide antibiotic phosphoethanolamine ) 19.69 35.26
alteration
transferase
Inactivation of <0.001
pse4 CARB-23 Penam CARB beta-lactamase 27.59 4.74
antibiotic
tufB~~~tuf~~~tufl ~~~tufA_2 Elfamycin Target site 0.895
/B f 4 /i Ecol_EFTu_PLV ) elfamycin resistant EF-Tu 8 61.33 60.92
~~~tufA~~~tufA_1 antibiotic alteration
tufB~~~tuf A~~~ tufA_I~~~tuf Elfamycin Target site 0.042
Ecol_EFTu_PLV elfamycin resistant EF-Tu 21.54 25.66
B_I~~~tufl antibiotic alteration
trimethoprim resistant <0.001
Diaminopyrimidine Antibiotic target
dhfrlll dfrA3 dihydrofolate reductase 89.13 97.11
antibiotic replacement
dfr
Acinetobacter mutant Lpx <0.001
Target site
group_10971 LpxA Peptide antibiotic gene conferring resistance 4.10 12.83
alteration
to colistin
Tetracycline <0.001
antibiotic, penam,
RND antibiotic efflux
cephamycin,
pump, major facilitator
hns H-NS cephalosporin, Efflux pump 15.79 2.43
superfamily (MFS)
fluoroquinolone
antibiotic efflux pump
antibiotic,
macrolide antibiotic
chloramphenicol Inactivation of <0.001
cat_3~~~cat_2 catB9 Phenicol antibiotic 16.31 3.82
acetyltransferase (CAT) antibiotic
(Continued)
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TABLE 4 (Continued)

Name of the
homologous
genein
CARD

Gene cluster from
pangenome

Drug class

10.3389/fmicb.2025.1549260

Resistance
mechanism

AMR gene family Prevalence rate P

values

Seafood Clinical

Fluoroquinolone quinolone resistance <0.001
group_31739 qnrAS Target protection 13.95 3.58

antibiotic protein (qnr)

Tetracycline ABC antibiotic efflux <0.001
acoR_2~~~qseF~~~dctD_1 txR Efflux pump 9.64 1.85

antibiotic pump

AMR, antimicrobial resistance. CARD, the Comprehensive Antibiotic Resistance Database. SC, seafood vs. clinical.
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FIGURE 4

Heatmap for the prevalence of twenty important genes identified by the SC-metabolism model. SC, seafood vs. clinical.
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likely to be eaten by consumers, which may explain the relatively lower
prevalence of flaC in clinical isolates.

The gene tet(35), which confers tetracycline resistance, was
identified as the most important predictor in the SC-antibiotic
resistance model with higher prevalence in seafood samples (shown
in Table 4). Our results corresponded well with the frequently
observed tetracycline resistance in seafood isolates worldwide
(Elmahdi et al., 2016). EFTu, which confers to elfamycin resistance,
ranked as the second among all the predictors in our SC-antibiotic
resistance model. Several studies have described elfamycin resistance
in pathogens obtained from various seafood and aquatic
environments, which could be attributed to the usage of elfamycins as
growth promoters for aquaculture (Behera et al,, 2021; Liu et al., 2019;
Zhang Q. et al,, 2023). In addition, MexS (ranked the third), possessing
multidrug resistance (phenicol antibiotic, diaminopyrimidine
antibiotic, and fluoroquinolone antibiotic), were more predominantly

Frontiers in Microbiology

found in the clinical group rather than the seafood cohort. The low
prevalence rate of MexS in seafood samples (6.77%) observed in our
study was consistent with previous research (Hanekamp and Bast,
2015; Obaidat et al., 2017; Lei et al., 2020; Kemp et al., 2021; Bondad-
Reantaso et al., 2023).

Efflux pump and target set alteration were the most prevalent
antibiotic resistance mechanisms associated with the predictors used by
our SC-antibiotic resistance model (shown in Table 4). The presence of
tet(35), MexS, macB, H-NS, and txR (ranked the first, third, seventh,
fourteenth, and seventeenth, respectively), which are related to
ATP-binding cassette (ABC), resistance-nodulation-cell division
(RND), and major facilitator superfamily (MFS) antibiotic efflux pump,
could be indicative of the essential roles of ABC, RND, and MES efflux
pumps in differentiating antibiotic resistance profiles of seafood and
clinical isolates and similar insights have been gained from prior studies
(Pérez-Acosta et al., 2018; Lloyd et al.,, 2019; Stephen et al., 2022).
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Heatmap for the prevalence of twenty important genes identified by the SC-virulence model. SC, seafood vs. clinical.
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Though the target site alteration mechanisms of the listed important
genes in V. parahaemolyticus (Ecol_EFTu_PLV, ugd, and LpxA) have not
been extensively studied, the involvement of their related gene family in
the antibiotic resistance have been demonstrated (Miele et al., 1994;
Tracevska et al., 2002; Novovi¢ and Jov¢ié, 2023).

Additionally, the characterization of the individual pangenomes
for the respective seafood and clinical isolates were summarized in
Table 5. The total numbers of core genes and shell genes between the
pangenomes of seafood and clinical isolates appeared similar, while
the number of cloud genes for the seafood pangenome was about
two-fold more than that for clinical pangenome, resulting in the
drastic difference of the sizes of pangenome. The respective genes-per-
genome by isolate source were consistent with this observation,
indicating much greater genomic diversity of V. parahaemolyticus
isolated from seafood samples. These differences may be attributed to
the broader geographic distribution of isolation locations of the
isolates from seafood samples compared to clinical samples.
Horizontal gene transfer (HGT) of mobile genetic elements is
commonly found in V. parahaemolyticus and has been proven that
could greatly contribute to its genetic diversity (Xu et al., 2022). To
be more specific, seafood isolates from diverse locations could obtain
various genes through HGT, which explains the massive number of
cloud genes in its pangenome.

Although some models developed and used in this study could
predict the isolation sources accurately and provide useful insights,
certain limitations have been recognized. The limited availability of
environmental isolates, which resulted in a severe class imbalance for
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our ES models, has constituted an obvious limitation and affected the
robustness of the model greatly in this study. Though ROSE has been
applied to overcome the bias caused by the imbalanced class and has
significantly improved the model performance compared with models
built based on data without ROSE, the obtained ES models were still
not capable of providing accurate predictions. The scarcity of
V. parahaemolyticus strains isolated from environmental samples has
also been described in several other studies (Turner et al., 2013;
Ronholm et al., 2016; Obaidat et al., 2017; Yan et al., 2020). Therefore,
in the future, times of sampling events and detections of
V. parahaemolyticus in environmental samples should be increased to
aid in comprehending the population features of environmental
strains more representatively. Moreover, as the genome assemblies
were downloaded from the NCBI database, potential bias or batch
effects among different studies (e.g., sequencing platform, sequencing
depth, assembler) may have contributed to variations we observed.
A great number of tools with different mechanisms are available
for each bioinformatic analysis step in this study and alternative tools
may be resourceful to find additional differences correlated with the
metadata. Therefore, the choice of method for each step could
potentially impact our results. Although Prokka and Panaroo were
used in this study, future work will explore other bioinformatics tools,
such as PGAP, Roary, and PIRATE, to better understand how method
selection may impact the downstream analysis. Additionally, the
cutoft values for query coverage and percent identity were set based
on the number of predictors, potentially impacting the performance
of our random forest models. To enhance the robustness of our
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FIGURE 6
Heatmap for the prevalence of genes used as predictors in the SC-antibiotic resistance model. SC, seafood vs. clinical.

TABLE 5 Summary table for the pangenomes of seafood and clinical isolates.

Pangenome Core genes Shell genes Cloud genes Total genes Genes per genome

(mean + SD)
Seafood 3,886 877 32,543 37,306 4,629 +195
Clinical 4,017 1,025 14,325 19,367 4,580 + 84

models, we systematically tested various BLASTp thresholds for query
coverage and percent identity (as described in 2.2 Bioinformatics
analysis), identifying the thresholds that yielded the most reliable
predictions. In future studies, higher cutoff values should be applied
when more datasets become available, as this may reduce noise
associated with lower cutoff thresholds. Further research is needed to
thoroughly assess how the choice of different bioinformatics tools
influences downstream analysis and to develop a standardized and
most optimal workflow for bioinformatics-ML studies.

Moreover, the prediction of gene function was greatly restrained
by the size and accuracy of databases (COG, VFDB, and CARD) used
for performing BLASTp analysis. It has been noticed that models for
metabolism and virulence outperformed models for antibiotic
resistance, which could be explained by the relatively limited
predictors available for antibiotic resistance models, as the size of
CARD is smaller than COG and VFDB. Expanding and updating
respective gene function databases when new genes and functions are
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identified could contribute to overcoming this bias in the future. On
the other hand, combining multiple databases might improve the
performance of our models as well by providing a more comprehensive
input. However, the lack of standardization and the methodological
discrepancies between databases hinder the application of the database
combination. Improved harmonization across databases and a
thorough evaluation of the associated analysis method in the future
could help address these challenges and make the combined database
a feasible approach for enhancing model performance.

5 Conclusion

In this study, the application of machine learning was used to
analyze pangenomes of V. parahaemolyticus to identify important
genes associated with different isolation sources (environmental,
seafood, and clinical). Our study highlights the crucial role of the type
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III secretion system in distinguishing metabolic and virulence
accessory gene profiles of Vibrio parahaemolyticus seafood and clinical
isolates. We also found that virulence-related genes encoding alpha-
hemolysins were key in differentiating these groups. Among the top
three most important predictors from our SC-antibiotic resistance
model, gene conferring to tetracycline resistance was more prevalent
in seafood isolates while genes confer to elfamycin, and multidrug
(phenicol antibiotic, diaminopyrimidine antibiotic, fluoroquinolone
antibiotic) resistance were greatly enriched in clinical isolates. These
findings can help enhance risk management strategies along the
seafood-to-consumer chain. However, the limited availability of
environmental isolates significantly impacted the performance of our
environmental-seafood model. Future research should focus on
expanding sequencing databases for environmental samples and
evaluating the impact of genomics workflow selection on analysis
outcomes, providing a stronger scientific basis for selecting
appropriate genomics tools.
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Health, Ministry of Education, Guizhou Medical University, Guiyang, China, 2Key Laboratory of
Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guizhou Center for
Disease Control and Prevention, Guiyang, China

Vagococcus fluvialis (V. fluvialis), a Gram-positive bacterium belonging to the
Enterococcaceae family, has been associated with human infections, including
bacteremia and endocarditis. Its zoonotic potential raises concerns for public health,
yet research on its antimicrobial resistance and pathogenicity is still limited. This
study aimed to isolate and characterize V. fluvialis from wild Niviventer, analyze
its genomic features (including antimicrobial resistance and virulence genes),
and evaluate its antibiotic susceptibility profile to assess potential public health
risks. We first isolated V. fluvialis (strain 25C42) from the rectum of wild Niviventer,
confirmed through Matrix-Assisted Laser Desorption/lonization Time-of-Flight Mass
Spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing. Whole-genome
sequencing (WGS) was performed using second-and third-generation technologies,
with subsequent quality control and assembly. Six databases including KEGG, COG,
CARD and VFDB were used for genome annotation. Antibiotic susceptibility was
evaluated according to Clinical and Laboratory Standards Institute (CLSI) guidelines,
determining the minimum inhibitory concentrations (MIC) for 16 antibiotics. Strain
25C42 was identified as V. fluvialis, confirmed by MALDI-TOF MS and 16S rRNA
sequencing. WGS revealed a genome length of 2,720,341 bp, GC content of
32.57%. Functional genomic analysis identified 2,268 genes in the COG database
and 2,023 genes in KEGG, highlighting key metabolic and cellular processes.
Notably, 119 virulence genes and 65 antimicrobial resistance genes were found,
indicating significant resistance potential. Phylogenetic analysis demonstrated
a close relationship with other Vagococcus species, particularly V. fluvialis (ANI
98.57%, DDH 88.6%). Antibiotic susceptibility tests indicated strain 25C42 was
resistant to clindamycin, tetracycline, rifampicin, cefoxitin and levofloxacin. Our
findings reveal that the wild rodent-derived V. fluvialis strain 25C42 harbors clinically
relevant antimicrobial resistance determinants and virulence-associated genes.
The high genomic integrity and extensive functional gene annotation underscore
its metabolic versatility. Notably, strain 25C42 exhibits significant antimicrobial
resistance, necessitating ongoing surveillance and research to understand its
implications for public health and environmental monitoring, as well as strategies
for effective therapeutic intervention.

KEYWORDS

Vagococcus fluvialis, Niviventer, whole genome sequencing, genes annotation, drug
resistance
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1 Introduction

Vagococcus fluvialis (V. fluvialis) is a Gram-positive bacterium
classified within the genus Vagococcus and the family Enterococcaceae,
closely related to other enterococci, such as Enterococcus. Originally
isolated from chicken manure and river water, V. fluvialis was first
characterized by Hashimoto et al. (Collins et al., 1989; Schleifer et al.,
1985). The specific host species of V. fluvialis in animals remains
uncertain, however, it was identified in bats by Qin et al. (2021) in
China, followed by its detection in bovine urine by Giannattasio-
Ferraz et al. (2021) in the United States. Notably, Niviventer, a small
rodent prevalent in mountainous and forested regions of Asia,
particularly in the Yunnan and Guizhou provinces of China, has been
recognized as a host for a diverse array of pathogenic bacteria and
parasites (Yan, 2021; Tian et al., 2020; Lu et al., 2022).

In recent years, the isolation of V. fluvialis from human
patients has become increasingly common. Matsuo et al. (2021)
reported a case of bacteremia and pressure ulcers associated with
V. fluvialis, while Jadhav and Pai (2019) documented endocarditis
linked to this bacterium. Furthermore, V. fluvialis has been
isolated from the bile of patients suffering from cholecystitis and
from peritoneal fluid in individuals with cirrhosis (Zhang et al.,
2023; Kucuk et al., 2022). In China, Ting et al. (2019) isolated
V. fluvialis from postoperative infected puncture fluid of the lower
left femur for the first time. Additionally, this bacterium has been
found in human urine on multiple occasions, demonstrating its
potential to cause harm to patients (Chen et al., 2024; Kitano
et al.,, 2024).

Researchers have raised concerns regarding the zoonotic
transmission of V. fluvialis from animals to humans, leading to
heightened clinical interest in this organism. Despite an increasing
number of reported clinical cases, the direct clinical implications of
V. fluvialis on human health remain unclear. Moreover, the spectrum
of drug resistance and the underlying mechanisms of V. fluvialis are
yet to be thoroughly investigated. Current studies indicate a potential
pathogenicity, however, compared to other common pathogens,
research on this bacterium is relatively limited. Other known species
within the Vagococcus genus exhibit certain pathogenic characteristics
and drug resistance profiles (Racero et al., 2021), further accentuating
the clinical importance of V. fluvialis.

Consequently, it is reasonable to postulate that V. fluvialis may
pose a risk to human health, however, our understanding of this
organism is still inadequate. We report here the first isolation of
V. fluvialis from the gastrointestinal tract of Niviventer. Although
previous studies have provided insights into the biological
characteristics of this strain (Collins et al., 1989; Schleifer et al., 1985),
there is a notable paucity of research focusing on its antimicrobial
resistance and pathogenicity, which are critical for clinical diagnosis
and treatment. The discovery of V. fluvialis in diverse hosts is of
paramount significance for elucidating its transmission mechanisms.

To address these gaps, The objectives of this study were: (1) to
isolate and identify V. fluvialis from wild Niviventer using molecular
and phenotypic methods; (2) to perform whole-genome sequencing
and functional annotation to uncover genomic traits, including
antimicrobial resistance and virulence determinants; (3) to determine
the antibiotic resistance profile of the isolated strain; and (4) to assess
the potential implications of these findings for zoonotic transmission
and public health surveillance.
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2 Methods and materials
2.1 Ethics approval

Our study was approved by the Ethics Committee of Guizhou
Center for Disease Control and Prevention, approval number: G2019-
01. The Ethics Committee agreed that the research was in accordance
with the Helsinki Declaration and the Guidelines for the Good
Treatment of Animals.

2.2 Source of strains

A collection of wild rats were conducted in Jinping County,
Qiandongnan City, Guizhou Province. Traps were set overnight and
retrieved the following morning. Live mice were euthanized through
cervical dislocation under ether anesthesia to ensure a rapid and
painless process, this method of euthanasia is recommended in
animal euthanasia guidelines in China and the United States [Lu
et al., 2021; National Technical Committee for Standardization of
Laboratory Animals (SAC/TC 281), 2021]. This research complied
with all relevant wildlife protection laws, ensuring the welfare of the
captured animals. The species, size, and sex of the specimens were
identified according to the Handbook of Important Medical
Animals in China (Lu, 1982). After identification, the mice were
promptly dissected in the local disease prevention and control
center’s laboratory under sterile conditions. Lung tissues
(approximately 500 mg) were excised using surgical scissors and
immediately inoculated into 1.5 mL of brain heart infusion liquid
containing 20% glycerol for preservation. The specimens were
homogenized and plated onto Columbia blood agar plates, which
were then incubated at 37°C for 48 h to observe microbial growth.
Single colonies were isolated for further purification on additional
Columbia blood agar plates. The initial identification of the purified
colonies was conducted using Matrix-Assisted Laser Desorption/
Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS),
targeting the isolation of potentially significant microbial strains for
subsequent identification and analysis. Finally, a strain suspected of
V. fluvialis (Strain 25C42) was cultured in a rectal specimen of a
Niviventer, and the identification score of MALDI-TOF MS
was 8.285.

2.3 Identification of 16S rRNA gene

Strain 25C42 was isolated and subsequently purified. DNA
extraction from the strain was performed using a nucleic acid
extraction kit (Hangzhou Baiyi Technology Co., Ltd.). The 16S rRNA
gene was amplified via PCR using the primers 27F (5-AGTTTG
ATCMTGGCTCAG-3") and 1492R (5-AGTTTGATCMTGGCTC
AG-3’). Reaction system total 50 ul: Premix Taq 25 ul; Primer 27F 2
ul; Primer 1492R 2 ul; Template DNA 2 ul; Water 19 ul. The reaction
condition of PCR amplification was 94°C for 10 min. 94°C 45s, 52°C
60's,72°C 60 s, 40 cycles; 72°C for 10 min. The resultant PCR products
were sequenced, and the obtained sequences were subjected to a
comparative analysis against the NCBI BLAST database. Homologous
sequences with high similarity from GenBank were downloaded for
evolutionary analysis.
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Phylogenetic reconstruction based on 16S rRNA gene sequences
was performed using MEGA 11 software. Four distinct phylogenetic
trees were generated through the Clustal W alignment module,
employing the following algorithms: Neighbor-Joining (NJ),
Maximum Likelihood (ML), Maximum Parsimony (MP), and
Minimum Evolution (ME). Branch node confidence was assessed
through 1,000 bootstrap replications, with support values expressed
as percentages.

2.4 Whole-genome sequencing

A hybrid assembly strategy combining second-generation and
third-generation (Oxford Nanopore) sequencing data was
employed to leverage the high accuracy of second-generation
sequencing and the long-read capabilities of third-generation
sequencing, yielding a complete and accurate genome assembly of
the strain.

Second-Generation Sequencing was performed using advanced
technologies provided by the Beijing Genomics Institute. The process
began with DNA fragmentation via enzymatic digestion to generate
fragments of 200-500 bp in length suitable for sequencing. Adapter
ligation was then performed on both ends of the DNA fragments. The
adapters consist of a DNA sequence that includes amplification
primers, sequencing primers, and barcode sequences. The barcode
allows for distinguishing between different samples and ensuring
sequencing accuracy. Following adapter ligation, PCR amplification
was carried out to construct the sequencing library. The amplification
was performed using primers with dual-barcode sequences, and the
products were purified before sequencing. The sequencing was
conducted on the BGISEQ platform, which utilizes DNA nanoball
(DNB) amplification technology. This method forms DNA nanoballs
through rolling circle amplification and generates high-quality raw
sequencing data in FASTQ format.

Third-generation sequencing was performed using Oxford
Nanopore’s platform, following the proprietary library preparation
protocols. DNA fragmentation was carried out using Oxford
Nanopore’s DNA fragmentation method, and adapters were ligated to
the DNA fragments. Library quality control was conducted using the
Agilent Bioanalyzer to assess fragment size distribution, ensuring the
library was suitable for sequencing. Sequencing was performed on the
Oxford Nanopore platform using electrophoretic migration to load
DNA samples into nanopore chips for real-time single-molecule
sequencing. Data acquisition and preliminary processing were carried
out using the Oxford Nanopore MinKNOW software, and raw
sequencing data were obtained in FASTQ format.

The hybrid assembly strategy combined both second-and third-
generation sequencing data using the Micro IBS Analyzer software
(Beijing MicroFuture Technology Co., Ltd.) for pathogen genome
assembly and identification. First, second-generation sequencing data
underwent quality control using Trimmomatic (v0.39) to remove
low-quality reads. Third-generation sequencing data were filtered and
corrected using the PBJelly tool. Next, an initial assembly of the
second-generation data was performed using SPAdes, while the third-
generation data were initially assembled with Canu (v2.1.1). Finally,
the hybrid assembly was refined by integrating both datasets with
Pilon (v1.23), which allowed for genome correction and the generation
of high-quality, clean data in FASTA format.
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2.5 Genetic analysis

Genome annotation was executed using nine databases, including
the Comprehensive Antibiotic Resistance Database (CARD), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous
Groups (COG), Non-Redundant Protein Database (NR), Pathogen-
Host Interaction (PHI), Swiss-Prot, Virulence Factor Database (VFDB).
These databases were accessed and annotated through the Beijing
Micro Future Pathogen Microbiological Information Analysis System
platform. Circular genome maps were generated utilizing CGView
online software (available at https://stothardresearch.ca/cgview/).
Phylogenetic relationships and genomic homology were assessed using
Average Nucleotide Identity (ANI) to compare the genomic sequences
of the bacteria against reference databases, thus providing a measure of
genetic relatedness (available at https://www.ezbiocloud.net/).
Furthermore, DNA-DNA hybridization (DDH) was performed to
quantitatively assess genomic similarity between the unknown strain
and reference strains (accessible at https://ggdc.dsmz.de/).

2.6 Drug resistance phenotype

Antimicrobial susceptibility testing was performed using the
CHN5GOVF customized panel (broth microdilution method,
National Pathogen Identification Network, China) following the
Clinical and Laboratory Standards Institute (CLSI) M100 guidelines
(Humpbhries et al., 2021). The procedure included: Bacterial suspension
preparation: Pure colonies of Vagococcus fluvialis were adjusted to a
0.5 McFarland standard (~1 x 10® CFU/mL) in sterile saline and
further diluted to a final concentration of 1 x 10° CFU/mL. Inoculation
and incubation: The bacterial suspension was dispensed into the panel
wells and incubated aerobically at 35°C for 18-24h. MIC
determination: The minimum inhibitory concentration (MIC) was
defined as the lowest drug concentration showing no visible growth.
Susceptibility (S), intermediate (I), or resistance (R) were interpreted
according to CLSI breakpoints. Quality control: Escherichia coli ATCC
25922 was included as a quality control strain in each run.

2.7 Motility assay

Motility was assessed by inoculating strains into semi-solid agar
and performing a stab-inoculation method. After 24 h of incubation
at 37°C, motility was determined by the diffusion of the inoculation
line: non-diffusive growth indicated negative motility, while a blurred,
diffused line indicated positive motility.

3 Results

3.1 Morphological characterization of
strain 25C42

Following Gram staining, strain 25C42 exhibited a positive result,
and the colony morphology was cocci (Supplementary Figure S1A).
Motility assays indicated that strain 25C42 was non-motile,
contrasting with the positive motility observed in the control strain,
Escherichia coli ATCC25922 (Supplementary Figure S1B).
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(A) Phylogenetic tree with 16S rRNA gene sequences of strains 25C42 and 18 other Vagococcus species. (B) Complete gene map of strain 25C42.

3.2 Phylogenetic relationships of 16S rRNA
gene sequences

The identification of strain 25C42 through MALDI-TOF MS
yielded a definitive classification as V. fluvialis with a high identification
score of 8.285. Further confirmation was obtained via 16S rRNA gene
sequencing, which showed 100.00% identity with V. fluvialis (NCBI
accession number: NR_026489.1). The 16S rRNA gene sequence of
strain 25C42 encompass 1,549 base pairs, we have uploaded the
sequence to a public database.! We downloaded the 16S rRNA
sequences of all Vagococcus species similar to strain 25C42 from the
NCBI database, totaling 18 species, the phylogenetic tree was rooted
using Enterococcus faecalis strain LMG 7937. The NJ phylogenetic tree
demonstrated that strain 25C42 formed a robust monophyletic cluster
with V. fluvialis strain M-29¢ (NR_026489.1), supported by a maximum
bootstrap value of 100% (Figure 1A). Additionally, strain 25C42
demonstrated a close phylogenetic relationship with V. hydrophili strain
HDWI17B (NR_180653.1) and V. carnipilus strain 1843-02
(NR_025689.1), both of which showed high bootstrap values. This
topology effectively resolved the evolutionary relationships among
Vagococcus species members. The observed phylogenetic patterns were
consistently validated by three complementary reconstruction methods
(ML, ME, and MP), as illustrated in Supplementary Figures S2-54.

3.3 Complete gene map of strain 25C42
By integrating both second and third-generation WGS data for

assembly and gene prediction, we achieved a genome assembly
integrity of 99.92%, maintaining a splicing quality of 100% and a

1 https://bigd.big.ac.cn/gsa/browse/CRA021120
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reduced contamination level of 1.38%. The annotated genome
comprises 77 tRNA genes and 7 copies each of the 23S, 16S, and 5S
rRNA genes. The total sequence length is 2,720,341 bp, characterized
by a GC content of 32.57%. The assembly yielded a single contig with
no gaps, exhibiting N50 and N75 values both at 2,720,341 bp. We've
uploaded the sequence to a public database.? Based on the criteria
established by Bowers et al. (2017) and Duan et al. (2020), this genome
sequence was classified as complete and of high quality. The complete
gene map features a circular representation of the coding regions,
color-coded according to functional categories, and includes
information on non-coding RNAs (tmRNA, tRNA, rRNA), GC
content, and coding DNA sequences (CDS) (Figure 1B).

3.4 Functional gene analysis

The complete gene sequence of strain 25C42 underwent
annotation across six databases, yielding 2,268 genes in the COG
database, 2,023 in KEGG, 133 in PHI, 2,610 in NR, 119 in VEDB,
65 in CARD.

COG analysis classified the 2,268 annotated genes into four
primary categories and 23 functional groups. The major categories
included Cellular Processes and Signaling, Information Storage and
Processing, Metabolism, and Poorly Characterized functions. Notably,
the most prevalent annotations were found in “Translation, ribosomal
structure and biogenesis” (238 genes), “Carbohydrate transport and
metabolism” (231 genes), and “Transcription” (205 genes). Other
significant functional annotations encompassed cell wall/membrane/
envelope biogenesis, inorganic ion transport and metabolism, and
defense mechanisms (Figure 2A).

2 https://bigd.big.ac.cn/gsa/browse/CRA021105
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A total of 2,023 orthologous protein-coding genes were mapped
to 32 KEGG metabolic pathways, categorized into Cellular Processes,
Environmental Information Processing, Genetic Information
Processing, Human Diseases, Metabolism, and Organismal Systems.
The predominant pathways identified were related to Metabolism,
including “Global and overview maps” (750 genes), “Carbohydrate
metabolism” (223 genes), and “Amino acid metabolism” (122 genes).
Additionally, Environmental Information Processing pathways, such
as “Membrane transport” (114 genes), and pathways associated with
Human Diseases, including “Drug resistance: Antimicrobial” (29
genes) and “Infectious diseases: Bacterial” (13 genes), were also noted
(Figure 2B).

Pathogen-host interaction-related genes were examined with 133
genes annotated in the PHI database. These were categorized into 7
groups, with “Reduced virulence” (88 genes) being the most prominent,
followed by “Unaffected pathogenicity” (24 genes), “Lethal” (8 genes),
“Increased virulence (hypervirulence)” (7 genes), “Loss of pathogenicity”
(4 genes), “Effector (plant avirulence determinant)” (1 genes), and
“Chemistry target: sensitivity to chemical” (1 gene) (Figure 3A).

In the NR database, the gene sequence of strain 25C42 was
translated into amino acid sequences, revealing 2,610 annotated genes.
Notably, V. fluvialis was the most frequently annotated, comprising
86.59% of the annotations, followed by Enterococcus sp. at 8.62%, and
V. sp. accounts for 0.84% (Figure 3B).

Virulence factors were classified into 6 functional categories:
Invasion (3 genes), Secretion system (3 genes), Adherence (6 genes),
Iron uptake system (14 genes), Stress protein (22 genes), and Toxin
(23genes). DIAMOND analysis against the VFDB identified 119
putative virulence genes in strain 25C42, positive results were accepted
with at least 40% identity (Figure 4A). There were 13 virulence genes

10.3389/fmicb.2025.1546744

with more than 60% identity (Supplementary Table 1). With the highest
number of annotated genes associated with carbohydrate ABC
transporter ATP-binding (sugC) and peptide/nickel transport system
substrate-binding protein (oppA) in Toxin (Figure 4B). With the
highest number of annotated genes associated with flagellar biosynthesis
protein FlhA (flhA), capsular exopolysaccharide family protein
(BCE_5400) and putative alcohol-acetaldehyde dehydrogenase (lap) in
Stress protein (Figure 4C). With the highest number of annotated genes
associated with DNA-binding response regulator RegX3 (regX3),
el-beta chain (pdhB) and Coxiella Dot/Icm type IVB secretion system
translocated effector (CBU_1566) in Iron uptake system (Figure 4D).
In addition, Secretion system includes bactoprenol glucosyl transferase
(gtrB), capsular polysaccharide biosynthesis protein Cap5H (cap5H),
Secretion System Chemotaxi-specific methylesterase (cheB). Invasion
contains UDP-glucose pyrophosphorylase (hasC), chemotaxis protein
CheA (cheA), type IV pilus response regulator PilG (pilG). Adherence
includes Elongation factor Tu (tuf), chaperonin GroEL (groEL),
autolysin (IytA), endocarditis specific antigen (efaA), molecular
chaperone DnaK (CT396), putative lipoate protein ligase A (IplA1).

The CARD database annotated 65 antimicrobial resistance genes
from strain 25C42 (identity >40%) (Supplementary Table 2).
Identifying five primary resistance mechanisms: Antibiotic efflux,
Antibiotic inactivation, Antibiotic target alteration, Antibiotic target
protection, and Antibiotic target replacement. The resistance gene
families included 21 distinct types, notably the ABC-F ATP-binding
cassette ribosomal protection protein, major facilitator superfamily
(MFS) antibiotic efflux pump, and glycopeptide resistance gene
cluster. Predictions of drug resistance indicated the potential for
resistance to a wide range of antibiotics, including acridine dyes,
fluoroquinolone antibiotics, and others (Figure 5).
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3.5 Whole genome similarity comparisons

For comparative genomic analysis, strain 25C42 was selected for
ANI and DDH assessment against 18 other Vagococcus strains with
complete genome sequences and closely related phylogenetic
backgrounds. The ANI value between strain 25C42 and V. fluvialis
(GCF_020628455.1) was determined to be 98.57%, exceeding the 95%
threshold indicative of significant genomic similarity. Furthermore,
strain 25C42 clustered closely with V. hydrophili (GCF_011304195.1)
and V. carnipilus (GCF_014397115.1). Additionally, the ANI value
between V. Martis (GCF_002026305.1) and V. teuberi
(GCF_001870205.1) was calculated at 95.77% (Figure 6). For the
DDH analysis, strain 25C42 was compared with 18 closely related
Vagococcus strains using all three default calculation formulas. The
highest DDH value obtained was 88.6% (DDH > 70%), recorded in
comparison with V. fluvialis (GCF_020628455.1), yielding a
probability of 95.32% (Supplementary Table 3).

3.6 Antimicrobial resistance profile

The strain exhibited resistance to clindamycin, tetracycline,
rifampin, cefoxitin, and levofloxacin (Table 1). Additionally, penicillin
resistance may be related to the activity of natural f-lactamase
(Rodriguez Jimenez et al, 2022). The strain was sensitive to
erythromycin, while resistant to clindamycin, which could suggest

10.3389/fmicb.2025.1546744

erm-mediated inducible resistance, requiring confirmation through a
D-test (Hollenbeck and Rice, 2012).

4 Discussion

The emergence of V. fluvialis as a potential human pathogen poses
significant challenges within microbiology and clinical medicine.
Historically regarded as a less prominent member of the
Enterococcaceae family, recent findings indicate its isolation from a
diverse range of hosts, including humans, bats, and livestock. This
suggests a broader ecological niche than previously recognized. Our
study reports the first isolation of the more resistant V. fluvialis in wild
Niviventer, contributing to the growing understanding of this
bacterium’s presence in mammals. By investigating the resistance and
pathogenicity of strains isolated from novel hosts, we aim to elucidate
their potential public health implications and provide essential data
for future environmental monitoring and the development of
antimicrobial therapeutics. These findings not only enhance our
comprehension of the transmission and adaptation mechanisms of
V. fluvialis across different ecosystems but also offer a new avenue for
research in the prevention and control of related infections.

The identification of strain 25C42 as V. fluvialis was substantiated
through comprehensive analyses employing both MALDI-TOF mass
spectrometry and 16S rRNA gene sequencing, achieving a 100%
identity match with established V. fluvialis sequences (NCBI number:
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pmr pt., pmr phosphoethanolamine transferase; RND, resistance-nodulation-cell division; SMR, small multidrug resistance; trdr, trimethoprim-resistant
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FIGURE 6

Heat map of ANI between strain 25C42 and 18 phylogentically close Vagococcus species.

NR_026489.1). This underscores the reliability of these methodologies
for accurate identification, aligning with findings from prior studies
(Chen et al., 2024; Kitano et al., 2024).

Our sequencing efforts yielded a high-quality genome assembly
with an integrity of 99.92% and a contamination level of 1.38%,
demonstrating the efficacy of integrating second-and third-generation
sequencing technologies for thorough genomic analysis. The
assembled genome spans a total length of 2,720,341 bp with a GC
content of 32.57%, further affirming its classification within the
Vagococcus genus, as similar GC content ranges have been reported in
closely related species (Lewis and Jorgensen, 2005).

Gene annotation via Prokka unveiled a diverse array of functional
genes categorized into multiple biological processes. Notably, the
predominant functions identified encompassed translation, ribosomal
structure, carbohydrate transport, and amino acid metabolism. These
results are consistent with the observations of Rodriguez Jimenez et al.
(2022), who highlighted metabolic versatility as a defining trait of
Vagococcus species, enabling adaptation to fluctuating environmental
conditions. The comprehensive mapping of 2,268 genes to COG
functional categories illustrates a complex regulatory and metabolic
network, which is essential for the organisms survival and
pathogenic potential.
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The pathogenicity potential of strain 25C42 is further accentuated
by the identification of 133 pathogen-host interaction-related genes,
predominantly linked to reduced virulence. This observation suggests
that many environmental Vagococcus species harbor genes that may
modulate virulence without necessarily conferring hypervirulence.
Furthermore, the identification of virulence factors, including secretion
systems and iron uptake mechanisms, corroborates the findings of
Jimenez Ana et al., highlighting the significance of these factors in the
pathogenicity of Vagococcus species (Lewis and Jorgensen, 2005).

This study is the first to report the antibiotic susceptibility profile
of Vagococcus fluvialis to 16 antibiotics in the CHN5GOVF panel. The
antimicrobial resistance profile of strain 25C42 is particularly
concerning. Resistance to clindamycin, tetracycline, rifampicin, and
cefoxitin reflects an alarming trend in V. fluvialis, as noted in studies
where strains isolated from infected patients exhibited poor
antibacterial efficacy against clindamycin, oxacillin, and
sulfamethoxazole/trimethoprim (Ting et al., 2019). Additionally,
V. fluvialis isolated from bats demonstrated potential resistance to
macrolides (Qin et al., 2021). The results indicated multi-drug
resistance, with the strain showing resistance to clindamycin,
tetracycline, rifampin, cefoxitin, and levofloxacin, suggesting the
presence of multiple resistance genes, such as erm, tet, and gyrA
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TABLE 1 Antimicrobial susceptibility profile of strain 25C42.

10.3389/fmicb.2025.1546744

Antibiotic Abbreviation MIC (ung/mL) Interpretation
B-Lactams Penicillin PEN 0.5 R*
Cefoxitin CFX >8 R
Macrolides/Lincosamides Clindamycin CLI >8 R
Erythromycin ERY <0.5 S
Erythromycin/Clindamycin ERY/CLI <4/0.5 S/R"
Tetracyclines Tetracycline TET >16 R
Rifamycins Rifampicin RIF >4 R
Fluoroquinolones Levofloxacin LEV 4 R
Glycopeptides Vancomycin VAN 1 N
Teicoplanin TEC <0.5 N
Oxazolidinones Linezolid LZD <1 S
Lipopeptides Daptomycin DAP 0.5 S
Aminoglycosides Gentamicin GEN 0.5 S
Folate pathway inhibitors Cotrimoxazole SXT <0.25 N
Nitrofurans Nitrofurantoin NIT <16 N
Other Oxacillin OXC <0.12 N

“R” indicates resistant; “S” indicates sensitive; R*, Penicillin resistance may be related to natural beta-lactamase activity; S/R', Erythromycin sensitive but clindamycin resistant suggests

potential induced resistance (D test required).

mutations (RDarby et al., 2023). Susceptible antibiotics included
glycopeptides  (vancomycin, teicoplanin), aminoglycosides
(gentamicin), and linezolid (Arias and Murray, 2012), offering
alternative treatment options. The minimum inhibitory concentration
(MIC) of penicillin was 0.5 pg/mL (determined resistant by CLSI),
which may reflect f-lactamase activity or mutations in penicillin-
binding proteins (PBPs) (Queenan and Bush, 2007), and should
be further verified by molecular testing (e.g., blaZ gene detection). The
sensitivity to erythromycin and resistance to clindamycin may indicate
erm-mediated inducible resistance, which needs to be confirmed by a
D-test (Hollenbeck and Rice, 2012). Future studies are warranted to
determine whether different sources of V. fluvialis exhibit distinct
resistance patterns or resistance genes.

Genomic analysis revealed 65 antibacterial resistance genes in strain
25C42, many of which correlate with its phenotypic resistance. For
example, Isa (A) and msrC likely mediate clindamycin resistance
through ribosomal protection and efflux, while tet (M) and tet (L)
synergistically confer tetracycline resistance. Similarly, fluoroquinolone
resistance (levofloxacin) aligns with efflux pumps (pmrA, qacA) and
potential gyrA mutations. However, some discrepancies exist: rifampicin
resistance (MIC > 4 pg/mL) may stem from rpoB mutations not
captured by CARD, and cefoxitin resistance could involve unannotated
f-lactamases or PBPs. Notably, erythromycin sensitivity despite erm (B)
presence suggests inducible resistance, requiring phenotypic validation
via D-test. These findings underscore the importance of integrating
genomic predictions with phenotypic assays to fully resolve resistance
mechanisms, particularly for emerging pathogens like V. fluvialis.

Identified mechanisms of resistance, such as antibiotic efflux and
target alteration, mirror patterns observed in other pathogenic bacteria,
indicating shared evolutionary pathways (Jiang et al., 2018; Guitor and
Wright, 2018). This finding emphasizes the critical need for ongoing
surveillance of antimicrobial resistance patterns in V. fluvialis to mitigate
the public health risks associated with these emerging pathogens.

Frontiers in Microbiology

Phylogenetic analyses revealed that strain 25C42 is closely related
to V. fluvialis strain M-29¢, with a high Average Nucleotide Identity
(ANI) value of 98.57% and robust DNA-DNA Hybridization (DDH)
values further supporting its classification. Collectively, these findings
illuminate the intricate interplay between environmental adaptation,
pathogenicity, and antimicrobial resistance in V. fluvialis, underscoring
the necessity for further investigations to unravel the implications of
these traits in clinical and environmental contexts.

The limitations of this study include the lack of detection of
resistance genes and the absence of animal model validation.

5 Conclusion

Our findings highlight the emergent role of V. fluvialis as a
potential human pathogen, revealing its resistance mechanisms
and pathogenicity in diverse hosts. The high genomic integrity
and extensive functional gene annotation underscore its
metabolic versatility. Notably, strain 25C42 exhibits significant
antimicrobial resistance, necessitating ongoing surveillance and
research to understand its implications for public health and
environmental monitoring, as well as strategies for effective
therapeutic intervention.
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Introduction: Klebsiella michiganensis, a significant member of the Klebsiella
oxytoca complex, has emerged as a potential pathogen in clinical settings.
Despite extensive research on the Klebsiella pneumoniae complex, the
pathogenicity and drug resistance of the K. oxytoca complex remain
understudied, particularly regarding the reconstruction of whole genomes from
metagenomic next-generation sequencing (MNGS) data.

Methods: In this study, bronchoalveolar lavage fluid (BALF) from a 55-year-old
woman with a suspected right lung infection in Anhui Province, China, was
analyzed using mNGS.

Results: Three distinct assembly strategies were employed to reconstruct the
genome of K. michiganensis, leading to the identification of a novel ST452
strain, KMLRT2206. Comprehensive genomic analysis of this strain and 206
clinical isolates (genomes downloaded from public databases) revealed the
population structure, distribution of drug resistance genes, and virulence factors
of K. michiganensis. The results demonstrated significant genetic diversity,
with the species divided into three major clades, each exhibiting distinct
patterns of drug resistance and virulence genes. Notably, 38.6% of the strains
harbored the blapxy_1—1 gene, highlighting a potential threat of drug resistance.
While virulence gene distribution was not correlated with sequence type (ST),
significant differences were observed among clades.

Conclusion: This study underscores the value of mMNGS combined with
optimized assembly strategies for accurate species identification within the K.
oxytoca complex, providing critical insights for clinical pathogen detection and
epidemiological surveillance.

KEYWORDS

Klebsiella ~michiganensis, genome assembly, metagenomic next-generation
sequencing, genomic characteristics, epidemiology
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Introduction

Klebsiella is a gram-negative, rod-shaped, facultative anaerobic
organism. Known for its capability to produce polysaccharide
capsules, it possesses a defense mechanism against the host
immune responses. Klebsiella has been isolated and characterized
from diverse environmental habitats, including soil, food, plants,
insects, and water. However, it is primarily recognized for
its associated with hospital-acquired infections (Dantur et al,
2018; Hu et al., 2022). Klebsiella michiganensis is an important
member of the Klebsiella oxytoca complex within the Klebsiella
genus. Strains of the K. oxytoca complex are non-spore-
forming and non-motile, forming smooth, round, dome-shaped,
and glistening colonies on agar plates (Merla et al, 2019).
K. michiganensis was first discovered in 2012 in a toothbrush
holder in a Michigan household and exhibits biochemical
characteristics consistent with the Klebsiella genus (Saha et al,
2013). This emerging pathogen has since been reported in
clinical settings worldwide (Kula et al., 2024; Lopez-Camacho
et al, 2025; Yamada et al, 2024). Drug-resistant strains of
K. michiganensis have been isolated from the abdominal fistula,
sputum, blood, and rectal swabs (Chapman et al., 2020). The species
demonstrates various resistance mechanisms similar to other
pathogenic Klebsiella species, including genome- and plasmid-
mediated extended-spectrum PB-lactamases, carbapenemases, and
drug efflux pumps (Abed et al, 2021; Flerlage et al, 2020;
Zhang et al., 2021).

Next-generation sequencing (NGS) provides valuable data
for epidemiological monitoring due to its high-throughput
capabilities, particularly in reconstructing entire target genome
from metagenomic NGS (mNGS) data. This information is
crucial for clinical practice, enabling the identification of
pathogenic strains and understanding their characteristics.
Advances in NGS technology have revealed mechanisms by which
Klebsiella invades the host immune system and causes disease,
including studies on lipopolysaccharide, fimbriae, outer membrane
proteins, siderophores, and allantoin metabolism related to
virulence and genomics in K. pneumoniae (Hu et al, 2022;
Igo and Schaffner, 2022).

K. michiganensis shares the closest phylogenetic relationship
with K. oxytoca, with 99% similarity in the 16S rRNA gene
sequences of two species (Yang et al., 2022). Despite the
use of advanced technologies such as matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS) and 16S rRNA gene sequencing in clinical laboratories,
K. michiganensis is often misidentified as K. oxytoca. In 2013,
MALDI-TOF MS misidentified K. michiganensis, likely because
this species, first discovered in 2012, had not yet been included
in the database. With updated dataset, MALDI-TOF MS can now
accurately identify the species within the K. oxyfoca complex
(Merla et al., 2019). For example, strain 12084 and strain K210011,
isolated from patients’ sputum samples and rectal swabs were
initially identified as K. oxytoca based on MALDI-TOF/MS.
Subsequent whole-genome analysis confirmed these strains as
K. michiganensis (Li et al., 2022). Despite recent publications
on the genome of K. michiganensis, there remains a lack of
research on the direct reconstruction of high-quality genomes
of K. michiganensis from mNGS data. Therefore, our study
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focused on the genomic reconstruction of K. michiganensis
from clinical metagenomic sequencing data and conducted a
comprehensive genomic analysis of global clinical isolates to
address critical gaps in understanding its pathogenicity, drug
resistance, and population structure, while also providing valuable
insights for clinical pathogen detection and epidemiological
surveillance.

Materials and methods

Clinical specimen

Figure 1 depicts the analytical workflow of this study. A BALF
sample was collected from a 55-year-old woman with a suspected
right lung infection in Anging Medical Center of Anhui Medical
University, China, in May 2022. Upon admission, the patient
received empirical antibiotic treatment. During the diagnostic
process, bronchoscopy and pathogen culture were performed.
With patient’s consent, the BALF sample was sent to Genoxor
Medical & Science Technology Inc. (Shanghai, China) for mNGS
test. After 48 h, the BALF cultivation test returned negative
results, while the mNGS test identified numerous Klebsiella sp.
sequences, primarily including Klebsiella michiganensis, Klebsiella
oxytoca, Klebsiella pneumoniae, and Klebsiella aerogenes. Following
treatment with Piperacillin Sodium and Tazobactam Sodium (4.5 g,
IV, tid), the patient was discharged three days later with improved
symptoms.

Metagenomic sequencing and
taxonomic profiling

DNA was extracted from the BALF sample using a TTANamp
Micro DNA Kit (DP710-T2A, TIANGEN BIOTECH) according
to the manufacturer’s instructions. Metagenomic libraries
were then constructed using the Hieff NGS OnePot Pro
DNA Library Prep Kit for Illumina (Yeasen Biotech, China).
Sequencing was performed in a 75-bp single-end mode on a
NextSeq 550 system (Illumina Inc., USA). To ensure high-
quality sequencing data, low-quality and short reads were
removed (Chen et al., 2018). A quality cutoff value of Q20
was set, and reads with base quality values below Q15 at
any position were discarded. Additionally, reads shorter than
50 bp were filtered out. Human sequence data were identified
and removed by mapping the data to the human reference
genome (hgl9) using Bowtie v2.2.6 (Langmead and Salzberg,
2012) with the parameters —threads 24 -seed 100 -no-unal.
The remaining data were classified using the NCBI Microbial
Genome Database. To estimate the relative abundance of each
species reads in the bacterial community, the taxonomy of
species abundance was calculated using Kraken v2.0.9 (Wood
et al., 2019). Subsequently, metaMLST (Zolfo et al., 2017) was
applied for strain-level ST typing and identification of the
metagenomic data. No-template control (NTC) samples were
sequenced simultaneously to monitor contamination during the
experiments.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1546594
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Sun et al. 10.3389/fmicb.2025.1546594

A patient with suspected lung infection from
Anhui Province, China, May, 2022

Collected a bronchoalveolar lavage fluid sample

l

Metagenomic next-generation sequencing (mNGS
g g test 4 g ( ) Culture test

l l

/ Test results: positive, reported Klebsiella / / Test result: /

sp. sequences negative

Reconstruction of a K. michiganensis genome
through three assembly strategies

1. metagenomic assembly and binning |
! 2. de novo assembly using SPAdes
i 3. de novo assembly using Megahit

Download 206 K. michiganensis genomes derived
Assembly 1 ‘ ‘ Assembly 2 ‘ ‘ Assembly 3 ‘ from human hosts from a public database

| |
I

Established a genomic population

comprising 207 K. michiganensis
[
! v i

; < . Pangenomic structural and functional Annotation and comparative analysis of
Multilocus sequence typing analysis . : ;
analysis virulence factors and resistance genes

FIGURE 1
Schematic workflow of the research methodology.

Genome assembly and characterization
of the targeted pathogen

Three strategies (designated as Assembly 1-3) were employed
for the genomic reconstruction of K. michiganensis from
metagenomic reads. For Assembly 1, MetaSpades v3.15.4 (Nurk
et al., 2017) was used for assembly, followed by genome binning
using the binning and bin refinement modules in metaWRAP
v1.3.2 (Uritskiy et al., 2018). Contig binning was performed using
MetaBAT and Maxbin2, and the resulting bins were optimized
and combined to generate a draft genome for a single strain.
The quality of g draft genome (Assembly 1) was assessed using
CheckM (Parks et al., 2015), which evaluated completeness and
contamination. Taxonomic classification was performed using
GTDB-tk (Chaumeil et al., 2022), confirming the draft genome
as K. michiganensis. For Assembly 2 and Assembly 3, RefSeq
genomes of 384 K. michiganensis isolates (NCBI TaxID: 1134687)
were retrieved from the NCBI Assembly database. Reads affiliated
with K. michiganensis were captured using BBmap and assembled
using SPAdes (parameters: -t 24 -m 128 —cov-cutoff auto —isolate)
(Gurevich et al., 2013) and Megahit software (Li et al., 2015),
respectively. These three assembly strategies were selected because
Assembly 1 is optimized for complex metagenomic data processing,
Assembly 2 is tailored for specific analysis of the target strain, and
Assembly 3 can efficiently handles large-scale data, enabling a more
comprehensive reconstruction of K. michiganensis genome.

The quality of genome assemblies was evaluated using QUAST
(Nurk et al., 2017) with the reference genome of the THO-011
Strain (GenBank accession: ASM1513957v1), while contamination
and completeness were evaluated using CheckM (Parks et al., 2015).
Then, the Pyani v0.2.11 (Leighton Pritchard et al., 2016) software
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was employed to accurately evaluate the Average Nucleotide
Identity (ANI) among the optimal assembly genomes, its closest
relatives, and the type strains of the species. For each species, two or
three complete genomes retrieved from NCBI Assembly database
are used for the comparative analysis. An ANI score of >95% was
adopted as the criterion for species delineation (Jain et al., 2018),
confirming the genome as K. michiganensis.

Genome analysis of clinically related
genotypes

Multilocus sequence typing (MLST) was performed using
FastMLST v0.0.15 (Guerrero-Araya et al.,, 2021) and pubMLST
database! to assign the alleles number and STs. The analysis was
conducted on the optimal assembled genome and 206 additional
K. michiganensis genomes with an assembly level of scaffold or
higher downloaded from the NCBI Assembly database (updated
on April, 2023). These genomes were sourced from sapiens hosts
and included seven conserved alleles of K. michiganensis, gapA,
infB, mdh, pgi, phoE, rpoB, and tonB. Kleborate (Lam et al,
2021) software was used to invoke the software Kaptive (Lam
et al,, 2022) for K and O antigen typing. Virulence factors (VFs)
genes were detected by performing a BLASTp against the VFDB
database (Chen et al., 2005), with putative virulence genes screened
using an e-value threshold of 1e2. Additionally, resistance genes
were annotated using the Resistance Gene Identifier (RGI) (Alcock
et al., 2020) software, referencing the Comprehensive Antibiotic
Resistance Database (CARD).

1 https://pubmlst.org

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1546594
https://pubmlst.org
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Sun et al.

Phylogenetic analysis and gene
annotation

For the pan-genome analysis, all K. michiganensis genomes
were uniformly annotated using Prokka v1.14.6 (Seemann, 2014).
Roary v3.13.0 (Page et al, 2015) was used to detect and
cluster orthologous genes (OGs) with the following parameters:
-p 36 -i 90 -e -n -t Il -s -cd 100 -a -v -z. The core
gene supergene was developed through the following process.
After obtaining the OG clusters, we selected the representative
genes from each OG. These representative genes were then
concatenated to form the core gene supergene. This supergene
represents the conserved genetic information shared by all
K. michiganensis strains and can be used for high-resolution
phylogenetic analysis.

A phylogenetic tree for 207 K michiganensis strains was
constructed using FastTree V2.1.10 and visualized using Evolview-
v3 (Subramanian et al, 2019). To further understand the
functions of the genes in the OGs, we extracted the amino
acid sequences of the representative genes from each OG. These
sequences were then annotated based on the best hits and an
e-value threshold of 1e=%, by Blastp v2.9.0 + against the COG
database.

Results

Genomic analysis of K. michiganensis
KMLRT2206 strain

After quality control and removal of host sequences from
the mNGS raw data, a total of 6,128,944 clean reads were
obtained. Among these, 4,476,090 reads were aligned to all
microbial sequences by Kraken. Within these aligned reads,
2,786,596 were assigned to the genus Klebsiella. However, 96.5%
of these sequences could not be further classified to a specific
species. MetaMLST detected K. oxytoca in the metagenomic data
and reported a novel ST, namely ST 100001, with a confidence
of 100%. Supplementary Table 1 is the New K. oxytoca ST
table, which includes all the known STs as well as the new ST
detected in the sample.

To identify the pathogenicity of Klebsiella sp., three assembly
strategies were employed to reconstruct its genome. Table 1
summarizes the quality metrics for the genome assemblies. Based
on total contig size and N50, the optimal genome assembly
was generated by Assembly 3, which produced 125 contigs
longer than 500 bp, with a total length of approximately
5.86 Mb and an N50 of 118,958 bp. Assembly 3 outperformed
Assembly 1 and 2 in terms of N50 and Largest contig
metrics. With a GC content of 56.06%, Assembly 3 was
selected for subsequent phylogenomic and pan-genomic analyses,
and the strain was designated KMLRT2206. The KMLRT2206
genome contains 5,422 protein-coding sequences and 15 rRNA
genes.

Genome-wide nucleotide sequence identity analysis was
performed to infer the organismal origin of the metagenome strain.
As shown in Figure 2, KMLRT2206 shared 98.79%-99.34% ANI
with of K. michiganensis genomes, while displaying low ANI values
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TABLE1 Comparison of genome assemblies of an K. michiganensis
strain recovered from the metagenome data.

_ Assembly 1 | Assembly 2 | Assembly 3
233 305 125

No. of contigs

> 500 bp

No. of contigs 150 156 71

> 10,000 bp

N50 (bp) 38,615 34,389 118,958
NGA50 (bp) 281,23 28,123 70,564
Largest contig 186,901 186,901 424,791
(bp)

Total length 5,700,083 5,850,327 5,860,284
(bp)

Average 117.19 118.99 118.40
coverage depth

GC (%) 56.11 56.04 56.06
Genome 88.74 90.048 90.232
fraction (%)

Completeness 98.81 100 99.70
(%)

Contamination 0.22 0.22 0.22
(%)

No. of CDSs 5,283 5,346 5,422
No. of rRNAs 11 17 15

No., number; bp, base pair; N50, the length of the shortest contig when the cumulative length
reaches 50% of the total genome length; NGA50, calculated based on the genome-adjusted;
CDSs, coding DNA sequences; rRNAs, ribosomal RNAs.

(83.19%-93.19%) with other Klebsiella species (Supplementary
Table 2). Since the 95% ANI threshold for species delineation, strain
KMLRT2206 was reclassified as K. michiganensis.

Phylogeny of the KMLRT2206 genome

MLST analysis revealed that strain KMLRT2206 possesses a
previously unreported allelic profile of housekeeping genes [gapA
(3), infB (8), mdh (16), pgi (21), phoE (107), rpoB (19), and tonB
(~18)]. Upon submission of these sequences to the PubMLST
database, the strain was assigned to a novel ST, ST452. Then, MLST
analysis of the remaining 206 strains classified 165 strains, with
the top 10 STs being ST27 (13 strains), ST50 (10), ST85 (10), ST43
(9), ST11 (8), ST213 (8), ST29 (6), ST231 (5), ST138 (5), ST35 (4),
ST84 (4), and ST205 (4). Thirty-six strains represented novel ST
types, whereas six strains could not be classified due to the missing
housekeeping gene fragments (Supplementary Table 3).

A maximum-likelihood phylogenetic tree was constructed
using the 206 K. michiganensis strains and KMLRT2206 (Figure 3).
The tree revealed three major clades: Clade 1, Clade 2, and Clade
3. Clade 1 comprised 28 strains, including ST29 (6 strains) and 8
novel ST strains. Clade 2 contained 79 strains, with ST27, ST43,
ST85, ST11, and ST213 exclusively distributed within this clade.
Clade 3 included 100 strains (48.3% of the total), with ST50, ST32,
and ST321 uniquely present in Clade 3. Additionally, the strain
KMLRT2206 was located in Clade 3, exhibiting the closest genetic
resemblance to ST32 strains (GCF010590665, GCF015721285, and
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GCF015721325) isolated from the United States. These findings
indicate significant genetic diversity and non-clonal population
structure among K. michiganensis strains.
Further of the
207 K. michiganensis strains and their isolation locations

analysis relationship ~ between
and times revealed no clustering based on these factors
(Supplementary Figure 1), suggesting that the evolutionary process
of K. michiganensis is not influenced by geography or time. In
terms of geographical distribution, the top six countries of isolation
were the United States (53 strains), Switzerland (61), China (29),

Germany (22), Australia (15) and the United Kingdom (5).

Pan-genomic composition of
K. michiganensis

Pan-genome analysis was performed using 26,966 protein-
coding sequences (CDSs) across the 207 K. michiganensis genomes.
The analysis identified 2,587 (9.6%) core OGs, 16,155 (60%)
accessory genes, and 8,224 (30%) strain-specific genes, which
may contribute to unique phenotypes of individual strains.
The pan-genomic asymptotic curve did not reach a platform
(Figure 4A), and the exponential value of the mathematical
function derived from the curve exceeded 0.5 (Figure 4B),
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indicating that K. michiganensis has an open pan-genome. This
suggests a high rate of gene exchange within the K. michiganensis
species and a strong capacity to acquire novel genes from the
environment or other species. The distribution of core, accessory,
and unique gene sets across COG functional categories is shown in
Figure 4C. Among the accessory genes, 766 genes were identified
as mobile genetic elements, which play a crucial role in the
transmission of virulence factors such as exotoxins and extracellular
enzymes.

Patterns of drug-resistance genes in
K. michiganensis

A total of 37 drug-resistance genes were identified
in KMLRT2206, including genes conferring resistance to
aminocoumarin antibiotic [mdtC, mdtB, APH (3')-Ia, acrD,
APH (3”)-Ib, APH (6)-1d], fluoroquinolone (emrR, emrB, QnrS1),
diaminopyrimidine (dfrA14), glycopeptide (vanG), nitroimidazole
antibiotic (msbA), peptide antibiotic (ArnT, PmrF, eptB, bacA),
tetracycline antibiotic [tet(A)] and multiple-resistant genes (baeR,
LptD, acrB, marR, rsmA, oqxA, oqxB, marA, KpnE, KpnF, KpnG,
CRP, OmpA, blagxy—1—1). Analysis of 207 K. michiganensis strains
identified 194 drug-resistance genes (Supplementary Table 4).
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FIGURE 3

Maximume-likelihood phylogenetic tree of K. michiganensis. The outer circle indicates the STs of the isolates, while the inner circle represents the
different clades of K. michiganensis. The strain KMLRT2206 is marked with a red five-pointed star.

Common resistance genes included those for aminocoumarin
antibiotic (mdtB, mdtC), aminoglycoside antibiotic (acrD),
peptide antibiotic (eptB), nitroimidazole antibiotic (msbA),
and multiple resistance genes (PBP3 conferring resistance to
B-lactam antibiotics, acrB, rsmA, KpnE, KpnG). Among the 60
B-lactamase resistance genes identified, blapxy—1—1 gene was
present in 38.6% (80/207) of strains. In addition, a variety of
carbapenemase genes were detected in 60 isolates, including 14
blaypy genes, 12 blaypy genes, 5 blajyp genes, and 46 blagpc
genes (Supplementary Table 4). Among them, blagpc—, was
the most prevalent variant, accounting for 31 isolates. The co-
occurrence of different carbapenemase genes was detected in two
clinical isolates. We further investigated the correlation between
resistance genes and evolutionary clades. The results indicated
no obvious difference in the number of drug-resistance genes
among different evolutionary clades (Supplementary Figure 2).
However, blapxy_s—1 was present in all 27 strains of Clade 1,
while blapxy_1-1 and blapxy_1_, were absent in this clade.
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blapxy_1-4 was exclusively found in some strains of Clade 3
(Supplementary Figure 2).

Patterns of virulence genes in
K. michiganensis

Fifteen categories of virulence genes were identified in the
KMLRT2206 genome, including Nutritional/Metabolic factors
(90 genes), immune regulation (75), inheritance (48), effect
delivery system (46), biofilm (27), regulation (18), exoxin (15),
stress survival (15), motility (10), and others. Key genes in the
nutritional/metabolic factors category included those related to
iron carriers, such as Yersinia (ybtX, ybtU, ybtT, ybtS, ybtQ, ybtP,
ybtE, ybtA, irpl) and Enterobacterium (entS, entF, entE, entD,
entC, entB, entA, fes, fepG, fepD, fepC, fepB, fepA) gene clusters
(Supplementary Table 5). In the immune regulation category, 26
genes were involved in lipopolysaccharides (LPS) synthesis, such as
rfbA, rfbB, rfbD, waaC, and waaF (Supplementary Table 5). LPS,
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a toxin of extracorporeal alveolar macrophages, can significantly
inhibit phagocytosis, alter the host immune system, lead to
pathogenic and physiological changes, and interfere with other
antigens. Additionally, 21 genes related to capsular polysaccharide
(CPS) were identified, which help the strain evade phagocytosis and
enhance its survival. CPS and LPS are key pathogenicity factors and
potential targets for novel control strategies.

Annotation of 207 genomes through the VFDB database
identified 510 virulence genes, with 211 common to all strains.
No correlation was observed between virulence genes and
ST (Supplementary Figure 3). Notably, 27 strains in Clade 1
lacked Yersiniabactin virulence genes, 26 strains in Clade 1
lacked cytochrome C virulence genes, and 23 strains in Clade
3 lacked Yersiniabactin virulence genes. All strains in Clade 2
possessed both Yersiniabactin and cytochrome C virulence genes
(Supplementary Figure 3).

Among the 207 strains, 161 had accurately identified O
antigens, including O1 (127 strains), O2a (33), and O2ac (1).
The remaining 46 strains could not be classified. KMLRT2206
was identified as Ol. For K antigens, 32 strains were classified
into six types: K70 (11), K43 (11), K26 (4), K74 (3), and K41
(1). The remaining 175 strains, including KMLRT2206, could not
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be classified, with the best match for KMLRT2206 being KL107
(75.85% identity). Further analysis indicated that all ST213 and
ST32 strains were identified as O2a, and the K43 was closely
associated with ST43 (Supplementary Figure 3).

Discussion

In this study, we report the genomic characteristics of
K. michiganensis recovered from patient with pulmonary infection
using mNGS technology in a hospital in Anhui Province, China,
and place it within a broader range of clinical samples from
20 countries. At these two geographical scales, the overall
K. michiganensis population exhibited rich genetic diversity, with
the emergence of a large number of new STs. ST27, ST50, and
ST85 are widely distributed, and strains of different STs showed
differences in resistance genes, virulence genes, and antigen types.

Traditional tests based on phenotypes, biochemistry, and PCR
for differentiating members of the K. oxytoca complex have
certain limitations in sensitivity, accuracy, and speed. Culture
method is the gold standard for bacterial identification, but
the probability of false-negative results increases after empirical

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1546594
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Sun et al.

drug use (Li et al, 2021). This is consistent with the results
observed in this study. 16S rRNA gene sequencing is another
commonly used bacterial identification technique. Due to its
low taxonomic resolution and the close genetic distance among
members of the K. oxytoca complex, it is difficult to accurately
identify species (Pan et al., 2023). Whole-genome sequencing and
analysis provide the highest level of resolution for accurate bacterial
species identification (Konstantinidis and Tiedje, 2005), but it is
time-consuming, culture-dependent, and cannot quickly obtain
all potential pathogens in clinical samples. In contrast, in this
study, mNGS combined with an optimal assembly strategy was
used to simultaneously conduct rapid and extensive screening of
pathogens, identification of species subgroups, and determination
of resistance genes without relying on culture. This not only
helps clinicians to identify pathogens earlier, reduce unnecessary
use of broad-spectrum antibiotics, and lower the risk of drug
resistance, but also provides important reference for deciphering
K. michiganensis.

Accurate identification of bacterial species is not only crucial
for improving patient care, as it may affect the interpretation of
drug susceptibility tests and thus impact treatment outcomes, but
also for enhancing our understanding of bacterial epidemiology
(Saxenborn et al, 2021; Voellmy et al, 2022; Wu et al,
2021). Previous study has demonstrated that the use of a core-
genome MLST scheme can provide fine-scale resolution for strain
discrimination of K. pneumoniae (Raj et al., 2022). Ikhimiukor
et al. (2023) analyzed a global K. oxytoca dataset spanning 15 years
and 18 countries, and the results showed that ST2, ST176, and
ST199 were prevalent and widely spread in clinical infections.
We performed MLST analysis on 207 K. michiganensis strains
obtained from human hosts. A large number of new STs (36
strains) and unclassifiable strains (6 strains) were discovered,
which fully indicates the rich genetic diversity of K. michiganensis
(Figure 3). The phylogenetic tree divided K. michiganensis into
three major clades, and this distribution may be related to
the origin and divergence history of each clade. ST27 was the
most common ST (13/207, 6.3%), followed by ST50 and ST80
(Figure 3). This result differs from that of Li et al. (2022)
in their analysis of 275 K. michiganensis strains from human,
animal, and environmental sources, where they reported that ST29
(12/275) was the most common ST. Additionally, ST29, ST43 and
ST92 have been reported as predominant STs of carbapenem-
resistant K. michiganensis (Li H. et al., 2024; Wan et al., 2023).
These differences may be due to variations in sample sources,
geographical regions, and sample collection times. The high
prevalence of ST27 indicates its relatively frequent occurrence in
the local clinical setting compared to other STs. In addition, the
ST27 K. michiganensis strains had the highest number of resistance
genes (Li et al., 2022). Consequently, enhanced surveillance of this
strain is warranted to mitigate potential public health risks. There
was no obvious clustering relationship between the distribution
of K. michiganensis strains and the isolation location and time
(Supplementary Figure 1). This conclusion is different from the
traditional view that microbial evolution is greatly influenced by
geographical and temporal factors, which may imply that this
species has a special transmission mechanism or evolutionary
driving force.

A correlation between PB-lactamase genes and species has
previously been reported, where K. pneumoniae is associated with
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the blagyy gene, K. quasipneumoniae with the blapkp gene, and
K. variicola with the blapgn gene (Haeggman et al., 2004). In the
analysis of resistance genes in this study, the blapxy—1—1 gene
was detected in 38.6% (80/207) of K. michiganensis strains, and it
coexisted with other f-lactamase resistance genes (Supplementary
Table 4), which poses a potential threat to public health. Recent
study has demonstrated that blaoxy—5-carrying K. michiganensis
exhibits higher antibiotic resistance rates, representing a highly
resistant subpopulation (Li Y. et al., 2024). In our study, the clade-
specific distribution pattern of blapxy_s—; gene was observed
(100% prevalence in Clade 1) (Supplementary Table 4), suggesting
a potential evolutionary link between phylogenetic divergence
and antimicrobial resistance in K. michiganensis that warrants
further investigation. It is known that sequence variations of the
chromosomally encoded B-lactamase gene blapxy can assign the
K. oxytoca complex to phylogroups (Brisse et al., 2016). Nine
phylogroups, Kol to Ko9, were assigned to reflect the blaoxy
variants they carried (blagxy—1 to blapxy—9) (Yang et al., 2022).
Previous study has used the blapxy variants of blapxy—; and
blaoxy—s5 to help distinguish between phylogroup Kol and sub-
phylogroup Ko5 (Fevre et al, 2005), and the results of our
article are consistent with this (Supplementary Figure 2). Cosic
et al. (2021) proposed that combining blapxy genotyping with
auxiliary gene markers enables species discrimination within the
environmental K. oxytoca species complex. This suggests that
variations in B-lactamase genes may reveal lineage divergence more
rapidly than variations in housekeeping genes. In the Klebsiella
genus, the predominant carbapenem resistance gene is class A
serine B-lactamase blaxpc—, (Chatzidimitriou et al., 2024), which
is consistent with our findings (Supplementary Table 4). Notably,
this distribution pattern differs from Spanish epidemiological
reports documenting blayiv—1 and blapxa—4s as the predominant
carbapenemases in K. oxytoca populations (Pérez-Vazquez et al,
2019). Findings revealed that K. michiganensis strains can co-
harbor multiple carbapenemase genes (Founou et al., 2018; Sun
etal., 2024; Zhang et al., 2022), demonstrating this species’ potential
for accumulating antimicrobial resistance determinants. Although
only a limited number of isolates carrying multiple carbapenem
resistance genes were detected in our study (Supplementary
Table 4).

In the analysis of antigen types, we found that the CPS
K antigens of most K. michiganensis isolates in the population
were unknown (Supplementary Table 5), which is consistent with
a study from Australia (Stewart et al., 2022). Additionally, the
CPS K antigen locus exhibited low prevalence (Supplementary
Table 5), consistent with findings from a previous study (Biedrzycka
et al, 2023). This indicates that the K antigens of most
K. michiganensis strains remain uncharacterized, which may
impede clinical serological analysis. Both ST213 and ST32 strains
were identified as serotype O2a, and K43 was closely associated
with ST43 (Supplementary Figure 3), suggesting that there is a
certain correlation between the antigen type and the ST of the
strains. Li Y. et al. (2024) have revealed the distinct distribution
patterns of K and O loci between K. michiganensis and K. oxytoca.
This correlation may contribute to more accurate classification
and tracing of K. michiganensis. In the analysis of virulence genes,
there was no obvious correlation between virulence genes and
ST (Supplementary Figure 3), which means that the composition
of virulence genes of strains cannot be inferred solely based on
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ST. However, the distribution of virulence genes differed among
different clades of K. michiganensis. The Yersiniabactin virulence
genes were not detected in any of the strains within Clade 1, but
were found in Clade 2 and Clade 3 (Supplementary Figure 3).
It is known that Yersiniabactin virulence genes can block the
production of reactive oxygen species in the respiratory system,
indirectly reducing the bactericidal ability of host innate immune
cells and increasing the virulence of clinical infections (Paauw et al.,
2009). This implies that different clades may exhibit differences
in pathogenic characteristics, which may be attributed to different
selective pressures experienced during the evolutionary process,
leading to the acquisition or loss of virulence genes.

Currently, there are still many research gaps in our
understanding of the K. oxytoca complex. The proportion of
K. michiganensis strains that are insensitive to carbapenems and
cephalosporins has been increasing year by year. Without careful
monitoring, it is likely to pose greater challenges to treatment
and infection control in the future. This study pioneered the
proposal of the value of mNGS combined with the optimal
assembly strategy in the accurate identification of species within
the K. oxytoca complex. However, the reliability and broad
applicability of mNGS in practical clinical applications remain to
be further verified. Recent studies have shown that MALDI-TOF
also has the potential to identify subgroups within bacterial
species for epidemiological assessment (Cuénod et al, 2021;
Giraud-Gatineau et al., 2021). Therefore, performance comparison
with MALDI-TOF technology is necessary in the future. At
the sample level, this study only reconstructed one strain of
K. michiganensis from a clinical specimen collected at a hospital
in Anhui Province, China, while the other isolates were derived
from global clinical samples in public database. There is still
room for improvement in geographical coverage and sample
diversity, and it may not comprehensively reflect the genetic
characteristics and distribution patterns of K. michiganensis under
different environmental and host backgrounds. Secondly, in
terms of clinical significance, since the colonization incidence,
pathogenicity, as well as clinical manifestations, severity, and
prognosis of species within the K. oxyfoca complex in patients
are still largely unknown, it remains to be elucidated whether
the accurate species identification of K. michiganensis or
the differentiation of the K. oxytoca complex has an impact
on patient treatment, prognosis prediction, epidemiological
monitoring, and infection control. We believe that currently,
the accurate identification of species within the K. oxytoca
complex is necessary for scientific research. This helps to improve
epidemiological monitoring, precisely monitor the situation of
drug resistance, and thus formulate targeted prevention and
control strategies. However, it may not be necessary for routine
clinical practice.

Conclusion

In this study, mNGS was performed on a BALF sample
obtained from a patient, enabling rapid and accurate pathogen
identification and a comprehensive analysis of the strain’s genomic
characteristics. This provided reliable information for clinicians
and epidemiologists. Additionally, we conducted an in-depth
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analysis of population genetics and molecular epidemiological
features using 206 published K. michiganensis genomes from
human hosts, establishing a critical framework for understanding
this species. Among the 207 K. michiganensis strains analyzed,
the predominant O- antigen was Ol, and the most common
ST was 27. The strain KMLRT2206, identified as a novel ST452
strain, carries multiple virulence and drug-resistance genes. It
belongs to Clade 3 and encodes genes for the carbapenemase
and the yersiniabactin, indicating its potential pathogenicity
and warranting further investigation. A limitation of this study
is the potential sampling bias in genome sequencing. Future
research should focus on systematically exploring the prevalence,
pathogenesis, antibiotic resistance, and transmission dynamics of
K. michiganensis.

Data availability statement

The names of the repository/repositories and accession
number(s) can be found below: https://www.ncbinlm.nih.gov/,
PRJNA1021007.

Ethics statement

The studies involving humans were approved by the Ethics
Committee of Anqging Municipal Hospital. The studies were
conducted in accordance with the local legislation and institutional
requirements. The human samples used in this study were acquired
from primarily isolated as part of your previous study for
which ethical approval was obtained. Written informed consent
for participation was not required from the participants or
the participants’ legal guardians/next of kin in accordance with
the national legislation and institutional requirements. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

Author contributions

YS: Conceptualization, Formal Analysis, Methodology,
Resources, Writing - original draft. QC: Conceptualization, Data
curation, Formal Analysis, Methodology, Writing - original
draft. TL: Data curation, Investigation, Writing - original draft,
Visualization. JC: Project administration, Supervision, Writing -
review and editing. YF: Conceptualization, Methodology, Project

administration, Writing - review and editing.

Funding

The authors declare that no financial support was received for
the research and/or publication of this article.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1546594
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Sun et al.

Conflict of interest

QC, TL, YF were employed by Genoxor Medical Science and
Technology Inc.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abed, J., Déraspe, M., Bérubé, E, Dewar, K., Boissinot, M., et al. (2021). Complete
genome sequences of Klebsiella michiganensis and Citrobacter farmeri, KPC-2-
producers serially isolated from a single patient. D’Torio M 10:1408. doi: 10.3390/
antibiotics10111408

Alcock, B., Raphenya, A., Lau, T., Tsang, K., Bouchard, M., Edalatmand, A.,
et al. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive
antibiotic resistance database. Nucleic Acids Res. 48, D517-D525. doi: 10.1093/nar/
gkz935

Biedrzycka, M., Urbanowicz, P., Zabicka, D., Hryniewicz, W., Gniadkowski, M., and
Izdebski, R. (2023). Country-wide expansion of a VIM-1 carbapenemase-producing
Klebsiella oxytoca ST145 lineage in Poland, 2009-2019. Eur. J. Clin. Microbiol. Infect.
Dis. 42, 1449-1457. doi: 10.1007/s10096-023-04682-x

Brisse, S., Grimont, F., and Grimont, P. (2016). “The genus Klebsiella,” in The
Prokaryotes: A Handbook on The Biology of Bacteria, vol 6. Proteobacteria: Gamma
Subclass, eds D. Martin, F. Stanley, R. Eugene, S. Karl-Heinz, and S. Erko (New York,
NY: Springer), 159-196.

Chapman, P., Forde, B., Roberts, L., Bergh, H., Vesey, D., Jennison, A., et al. (2020).
Genomic investigation reveals contaminated detergent as the source of an extended-
spectrum-f-lactamase-producing klebsiella michiganensis outbreak in a neonatal unit.
J. Clin. Microbiol. 58:¢01980-19. doi: 10.1128/JCM.01980- 19

Chatzidimitriou, M., Kavvada, A., Kavvadas, D., Kyriazidi, M., Eleftheriadis, K.,
Varlamis, S., et al. (2024). Carbapenem-resistant Klebsiella pneumoniae in the Balkans:
Clonal distribution and associated resistance determinants. Acta Microbiol. Immunol.
Hung. 71, 10-24. doi: 10.1556/030.2024.02230

Chaumedil, P., Mussig, A., Hugenholtz, P., and Parks, D. H. (2022). GTDB-Tk v2:
Memory friendly classification with the genome taxonomy database. Bioinformatics
38, 5315-5316. doi: 10.1093/bioinformatics/btac672

Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., et al. (2005). VFDB: A reference
database for bacterial virulence factors. Nucleic Acids Res. 33, D325-D328. doi: 10.
1093/nar/gki008

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34, i884-i890. doi: 10.1093/bioinformatics/bty560

Cosic, A., Leitner, E., Petternel, C., Galler, H., Reinthaler, F., Herzog-Obereder,
K., et al. (2021). Variation in accessory genes within the Klebsiella oxytoca species
complex delineates monophyletic members and simplifies coherent genotyping. Front.
Microbiol. 12:692453. doi: 10.3389/fmicb.2021.692453

Frontiers in Microbiology

10.3389/fmicb.2025.1546594

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.
1546594/full#supplementary- material

SUPPLEMENTARY FIGURE 1
Maximum-likelihood phylogenetic tree of K. michiganensis with country
and collective date information.

SUPPLEMENTARY FIGURE 2
Maximum-likelihood phylogenetic tree of K. michiganensis with a heatmap
of antibiotic resistance gene.

SUPPLEMENTARY FIGURE 3
Maximum-likelihood phylogenetic tree of K. michiganensis with a heatmap
of virulence gene.

SUPPLEMENTARY TABLE 1
Results of MetaML ST of BALF metagenomes.

SUPPLEMENTARY TABLE 2
Pairwise average nucleotide identity (ANI) values between genomes of
distinct Klebsiella species.

SUPPLEMENTARY TABLE 3
Metadata of epidemiological and genomic features of all K. michiganensis
strains used in this study.

SUPPLEMENTARY TABLE 4
Antibiotic resistance encoding genes in K. michiganensis.

SUPPLEMENTARY TABLE 5
Genes encoding virulence factors in K. michiganensis.

Cuénod, A., Wiithrich, D., Seth-Smith, H., Ott, C., Gehringer, C., Foucault, F.,
et al. (2021). Whole-genome sequence-informed MALDI-TOF MS diagnostics reveal
importance of Klebsiella oxytoca group in invasive infections: A retrospective clinical
study. Genome Med. 13:150. doi: 10.1186/s13073-021-00960-5

Dantur, K., Chalfoun, N., Claps, M., Tértora, M., Silva, C., Jure, A, et al. (2018). The
Endophytic strain Klebsiella michiganensis Kd70 lacks pathogenic island-like regions
in its genome and is incapable of infecting the urinary tract in mice. Front. Microbiol.
9:1548. doi: 10.3389/fmicb.2018.01548

Fevre, C., Jbel, M., Passet, V., Weill, F., Grimont, P., and Brisse, S. (2005). Six
groups of the OXY beta-Lactamase evolved over millions of years in Klebsiella oxytoca.
Antimicrob. Agents Chemother. 49, 3453-3462. doi: 10.1128/AAC.49.8.3453-3462.
2005

Flerlage, T., Brazelton de Cardenas, J. N., Garner, C. D., Hasan, N. A., Karathia,
H., Qudeimat, A., et al. (2020). Multiple NDM-5-Expressing Escherichia Coli isolates
from an immunocompromised pediatric host. Open Forum Infect. Dis. 7:0faa018.
doi: 10.1093/0fid/ofaa018

Founou, R., Founou, L., Allam, M., Ismail, A., and Essack, S. (2018). Genomic
characterisation of Klebsiella michiganensis co-producing OXA-181 and NDM-1
carbapenemases isolated from a cancer patient in uMgungundlovu district, KwaZulu-
Natal Province, South Africa. S. Afr. Med. J. 109, 7-8. doi: 10.7196/SAM]J.2018.v109i1.
13696

Giraud-Gatineau, A., Texier, G., Fournier, P., Raoult, D., and Chaudet, H. (2021).
Using MALDI-TOF spectra in epidemiological surveillance for the detection of
bacterial subgroups with a possible epidemic potential. BMC Infect. Dis. 21:1109.
doi: 10.1186/s12879-021-06803-3

Guerrero-Araya, E., Mufoz, M. Rodriguez, C., and Paredes-Sabja, D.
(2021). FastMLST: A multi-core tool for multilocus sequence typing of
draft genome assemblies. Bioinform. Biol. Insights 15:11779322211059238.
doi: 10.1177/11779322211059238

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: Quality
assessment tool for genome assemblies. Bioinformatics 29, 1072-1075. doi: 10.1093/
bioinformatics/btt086

Haeggman, S., Lofdahl, S., Paauw, A., Verhoef, J., and Brisse, S. (2004). Diversity and
evolution of the class A chromosomal beta-lactamase gene in Klebsiella pneumoniae.
Antimicrob. Agents Chemother. 48, 2400-2408. doi: 10.1128/AAC.48.7.2400-2408.
2004

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1546594
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1546594/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1546594/full#supplementary-material
https://doi.org/10.3390/antibiotics10111408
https://doi.org/10.3390/antibiotics10111408
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1007/s10096-023-04682-x
https://doi.org/10.1128/JCM.01980-19
https://doi.org/10.1556/030.2024.02230
https://doi.org/10.1093/bioinformatics/btac672
https://doi.org/10.1093/nar/gki008
https://doi.org/10.1093/nar/gki008
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.3389/fmicb.2021.692453
https://doi.org/10.1186/s13073-021-00960-5
https://doi.org/10.3389/fmicb.2018.01548
https://doi.org/10.1128/AAC.49.8.3453-3462.2005
https://doi.org/10.1128/AAC.49.8.3453-3462.2005
https://doi.org/10.1093/ofid/ofaa018
https://doi.org/10.7196/SAMJ.2018.v109i1.13696
https://doi.org/10.7196/SAMJ.2018.v109i1.13696
https://doi.org/10.1186/s12879-021-06803-3
https://doi.org/10.1177/11779322211059238
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1128/AAC.48.7.2400-2408.2004
https://doi.org/10.1128/AAC.48.7.2400-2408.2004
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Sun et al.

Hu, L., Zhang, X., Zeng, X., Chen, Y., Liu, L, and Li, G. (2022). Genomic
characterization of a carbapenemase-producing, extensively drug-resistant klebsiella
michiganensis strain from a renal abscess patient. Microbiol. Resour. Announc.
11:€0082522. doi: 10.1128/mra.00825-22

Igo, M., and Schaffner, D. (2022). Draft genome sequence for Klebsiella
michiganensis B199A, originally identified as Enterobacter aerogenes. Microbiol.
Resour. Announc. 11:¢0031022. doi: 10.1128/mra.00310-22

Ikhimiukor, O., Souza, S., Akintayo, I., Marcovici, M., Workman, A., Martin, I, et al.
(2023). Phylogenetic lineages and antimicrobial resistance determinants of clinical
Klebsiella oxytoca spanning local to global scales. Microbiol. Spectr. 11:€0054923.
doi: 10.1128/spectrum.00549-23

Jain, C., Rodriguez-R, L., Phillippy, A., Konstantinidis, K., and Aluru, S. (2018). High
throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
Nat. Commun. 9:5114. doi: 10.1038/s41467-018-07641-9

Konstantinidis, K., and Tiedje, J. (2005). Genomic insights that advance the species
definition for prokaryotes. Proc. Natl. Acad. Sci. U S A. 102, 2567-2572. doi: 10.1073/
pnas.0409727102

Kula, A., Arman, M., Appleberry, H., Wolfe, A., and Putonti, C. (2024). Draft
genomes of Klebsiella aerogenes, Klebsiella huaxiensis, and Klebsiella michiganensis
isolates from the urinary tract. Microbiol. Resour. Announc. 13:¢0049224. doi: 10.1128/
mra.00492-24

Lam, M., Wick, R,, Judd, L., Holt, K., and Wyres, K. (2022). Kaptive 2.0: Updated
capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species
complex. Microb. Genom. 8:000800. doi: 10.1099/mgen.0.000800

Lam, M., Wick, R., Watts, S., Cerdeira, L., Wyres, K., and Holt, K. E. (2021). A
genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and
its related species complex. Nat. Commun. 12:4188. doi: 10.1038/s41467-021-24448-3

Langmead, B., and Salzberg, S. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9, 357-359. doi: 10.1038/nmeth.1923

Leighton Pritchard, R., Sonia, H., and John, G. (2016). Elphinstoneb and Ian
K. Tothc Genomics and taxonomy in diagnostics for food security: Soft-rotting
enterobacterial plant pathogens. Anal. Methods 8, 12-24. doi: 10.1039/c5ay02550h

Li, D., Liu, C., Luo, R., Sadakane, K., and Lam, T. W. (2015). MEGAHIT: An ultra-
fast single-node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics 31, 1674-1676. doi: 10.1093/bioinformatics/btv033

Li, H., Dong, W., Liu, Y., Ma, J., and Liu, X. (2024). Whole-genome sequencing of
clinical isolates of Klebsiella michiganensi in China carrying blaIPM-4 and blaNDM-1.
Microb. Pathog. 197:107070. doi: 10.1016/j.micpath.2024.107070

Li, N, Cai, Q., Miao, Q., Song, Z., Fang, Y., and Hu, B. (2021). High-throughput
metagenomics for identification of pathogens in the clinical settings. Small Methods
5:2000792. doi: 10.1002/smtd.202000792

Li, S, Jiang, X,, Li, C,, Ju, Y., Yue, L., Chen, F,, et al. (2022). A bla SIM-1 and mcr-
9.2 harboring Klebsiella michiganensis strain reported and genomic characteristics of
Klebsiella michiganensis. Front. Cell. Infect. Microbiol. 12:973901. doi: 10.3389/fcimb.
2022.973901

Li, Y., Wu, Y, Li, D, Du, L, Zhao, L, Wang, R, et al. (2024). Multicenter
comparative genomic study of Klebsiella oxytoca complex reveals a highly antibiotic-
resistant subspecies of Klebsiellamichiganensis. J Microbiol. Immunol. Infect. 57,
138-147. doi: 10.1016/j.jmii.2023.10.014

Lépez-Camacho, E., Aguilera-Alonso, D., Buenestado-Serrano, S., Marin, M.,
Molero-Salinas, A., Lopez Fresnefa, N., et al. (2025). Genomically-supported
Redefinition of an outbreak in a pediatric unit caused by blaVIM -harboring
Klebsiella michiganensis. Pediatr. Infect. Dis. ]. 44, 166-173. doi: 10.1097/INF.
0000000000004571

Merla, C., Rodrigues, C., Passet, V., Corbella, M., Thorpe, H., Kallonen, T., et al.
(2019). Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp.
nov. Front. Microbiol. 10:2360. doi: 10.3389/fmicb.2019.02360

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. (2017). metaSPAdes:
A new versatile metagenomic assembler. Genome Res. 27, 824-834. doi: 10.1101/gr.
213959.116

Paauw, A., Leverstein-van Hall, M., van Kessel, K., Verhoef, J., and Fluit, A. (2009).
Yersiniabactin reduces the respiratory oxidative stress response of innate immune
cells. PLoS One 4:e8240. doi: 10.1371/journal.pone.0008240

Page, A., Cummins, C., Hunt, M., Wong, V., Reuter, S., Holden, M., et al. (2015).
Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691—
3693. doi: 10.1093/bioinformatics/btv421

Frontiers in Microbiology

228

10.3389/fmicb.2025.1546594

Pan, P., Gu, Y., Sun, D., Wu, Q., and Zhou, N. (2023). Microbial diversity biased
estimation caused by intragenomic heterogeneity and interspecific conservation of 16S
rRNA genes. Appl. Environ. Microbiol. 89:€0210822. doi: 10.1128/aem.02108-22

Parks, D., Imelfort, M., Skennerton, C., Hugenholtz, P., and Tyson, G. (2015).
CheckM: Assessing the quality of microbial genomes recovered from isolates, single
cells, and metagenomes. Genome Res. 25, 1043-1055. doi: 10.1101/gr.186072.114

Pérez-Vazquez, M., Oteo—Iglesias, J., Sola—Campny, P., Carrizo-Manzoni, H.,
Bautista, V., Lara, N., et al. (2019). Characterization of carbapenemase-producing
Klebsiella oxytoca in Spain, 2016-2017. Antimicrob. Agents Chemother. 63:¢02529-18.
doi: 10.1128/AAC.02529-18

Raj, S., Sharma, T., Pradhan, D. Tyagi, S., Gautam, H., Singh, H., et al
(2022). Comparative analysis of clinical and genomic characteristics of hypervirulent
Klebsiella pneumoniae from hospital and community settings: Experience from a
tertiary healthcare center in India. Microbiol. Spectr. 10:¢0037622. doi: 10.1128/
spectrum.00376-22

Saha, R., Farrance, C., Verghese, B., Hong, S., and Donofrio, R. (2013). Klebsiella
michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr.
Microbiol. 66, 72-78. doi: 10.1007/s00284-012-0245-x

Saxenborn, P., Baxter, J., Tilevik, A., Fagerlind, M., Dyrkell, F., Pernestig, A., et al.
(2021). Genotypic characterization of clinical Klebsiella spp. isolates collected from
patients with suspected community-onset sepsis, Sweden. Front. Microbiol. 12:640408.
doi: 10.3389/fmicb.2021.640408

Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics
30, 2068-2069. doi: 10.1093/bioinformatics/btul53

Stewart, J., Judd, L., Jenney, A., Holt, K., Wyres, K., and Hawkey, J. (2022).
Epidemiology and genomic analysis of Klebsiella oxytoca from a single hospital
network in Australia. BMC Infect. Dis. 22:704. doi: 10.1186/s12879-022-07687-7

Subramanian, B., Gao, S., Lercher, M., Hu, S., and Chen, W. (2019). Evolview v3:
A webserver for visualization, annotation, and management of phylogenetic trees.
Nucleic Acids Res. 47, W270-W275. doi: 10.1093/nar/gkz357

Sun, M., Xiao, W., and Xu, Q. (2024). Molecular characterization of a KPC-2-
and NDM-1-producing Klebsiella michiganensis clinical isolate in cerebrospinal fluid.
Infect. Drug Resist. 17, 3569-3578. doi: 10.2147/IDR.S468895

Uritskiy, G., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP-a flexible pipeline for
genome-resolved metagenomic data analysis. Microbiome 6:158. doi: 10.1186/540168-
018-0541-1

Voellmy, I, Lang, C., Gasser, M., and Kronenberg, A. (2022). Antibiotic resistance
surveillance of Klebsiella pneumoniae complex is affected by refined MALDI-TOF
identification, Swiss data, 2017 to 2022. Euro Surveill. 27:2200104. doi: 10.2807/1560-
7917.ES.2022.27.45.2200104

Wan, W, Yang, X., Yu, H., Wang, M,, Jia, W., Huang, B., et al. (2023). Genomic
characterization of carbapenem-resistant Klebsiella oxytoca complex in China: A
multi-center study. Front. Microbiol. 14:1153781. doi: 10.3389/fmicb.2023.1153781

Wood, D., Ly, J., and Langmead, B. (2019). Improved metagenomic analysis with
Kraken 2. Genome Biol. 20:257. doi: 10.1186/s13059-019-1891-0

Wu, W., Wei, L., Feng, Y., Xie, Y., and Zong, Z. (2021). Precise species identification
by whole-genome sequencing of Enterobacter bloodstream infection. China. Emerg.
Infect. Dis. 27, 161-169. doi: 10.3201/eid2701.190154

Yamada, A., Souza, A., Bertani, A., Campos, K., Sacchi, C., Assis, D., et al. (2024).
Genomic characterization of a clinical NDM-1-producing klebsiella michiganensis
from  Brazil. Microorganisms ~ 12:1408.  doi:  10.3390/microorganisms1207
1408

Yang, J., Long, H., Hu, Y., Feng, Y. McNally, A, and Zong, Z. (2022).
Klebsiella oxytoca complex: Update on taxonomy, antimicrobial resistance,
and virulence. Clin. Microbiol. Rev. 35:e0000621. doi: 10.1128/CMR.
00006-21

Zhang, Y., Gu, D., Yang, X., Wu, Y., Liu, C,, Shen, Z,, et al. (2021). Emergence
and genomic characterization of a KPC- 2-, NDM- 1-, and IMP-4-producing
Klebsiella michiganensis Isolate. Front. Microbiol. 12:762509. doi: 10.3389/fmicb.2021.
762509

Zhang, Y., Gu, D,, Yang, X, Wu, Y., Liu, C,, Shen, Z., et al. (2022). Emergence and
genomic characterization of a KPC- 2-, NDM- 1-, and IMP-4-producing Klebsiella
michiganensis isolate. Front. Microbiol. 12:762509. doi: 10.3389/fmicb.2021.762509

Zolfo, M., Tett, A., Jousson, O., Donati, C., and Segata, N. (2017). MetaMLST: Multi-
locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 45:¢7.
doi: 10.1093/nar/gkw837

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1546594
https://doi.org/10.1128/mra.00825-22
https://doi.org/10.1128/mra.00310-22
https://doi.org/10.1128/spectrum.00549-23
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1128/mra.00492-24
https://doi.org/10.1128/mra.00492-24
https://doi.org/10.1099/mgen.0.000800
https://doi.org/10.1038/s41467-021-24448-3
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1039/c5ay02550h
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1016/j.micpath.2024.107070
https://doi.org/10.1002/smtd.202000792
https://doi.org/10.3389/fcimb.2022.973901
https://doi.org/10.3389/fcimb.2022.973901
https://doi.org/10.1016/j.jmii.2023.10.014
https://doi.org/10.1097/INF.0000000000004571
https://doi.org/10.1097/INF.0000000000004571
https://doi.org/10.3389/fmicb.2019.02360
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1371/journal.pone.0008240
https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/10.1128/aem.02108-22
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1128/AAC.02529-18
https://doi.org/10.1128/spectrum.00376-22
https://doi.org/10.1128/spectrum.00376-22
https://doi.org/10.1007/s00284-012-0245-x
https://doi.org/10.3389/fmicb.2021.640408
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1186/s12879-022-07687-7
https://doi.org/10.1093/nar/gkz357
https://doi.org/10.2147/IDR.S468895
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.2807/1560-7917.ES.2022.27.45.2200104
https://doi.org/10.2807/1560-7917.ES.2022.27.45.2200104
https://doi.org/10.3389/fmicb.2023.1153781
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.3201/eid2701.190154
https://doi.org/10.3390/microorganisms12071408
https://doi.org/10.3390/microorganisms12071408
https://doi.org/10.1128/CMR.00006-21
https://doi.org/10.1128/CMR.00006-21
https://doi.org/10.3389/fmicb.2021.762509
https://doi.org/10.3389/fmicb.2021.762509
https://doi.org/10.3389/fmicb.2021.762509
https://doi.org/10.1093/nar/gkw837
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Frontiers In
Microbiology

Explores the habitable world and the potential of
microbial life

The largest and most cited microbiology journal
which advances our understanding of the role
microbes play in addressing global challenges
such as healthcare, food security, and climate
change.

Discover the latest
Research Topics  trontiers

Frontiers in

Microbiology

Frontiers

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

+41(0)21 510 17 00
frontiersin.org/about/contact

&® frontiers | Research Topics



https://www.frontiersin.org/journals/Microbiology/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Bacterial pathogens and virulence factor genes: diversity and evolution

	Table of contents

	The clinical importance of metagenomic next-generation sequencing in detecting disease-causing microorganisms in cases of sepsis acquired in the community or hospital setting
	Introduction
	Materials and methods
	Study participants and groups
	Clinical information collection
	Microbiological analyses
	Metagenomic next-generation sequencing experiments and data analysis
	Statistical analysis

	Results
	Baseline characteristics of study participants
	Analysis of laboratory data among the CAS and HAS groups 
	Comparison clinical diagnostic outcome of mNGS and traditional culture
	Comparison of pathogenic characteristics by mNGS and traditional culture
	Analysis of pathogens detected by mNGS and traditional culture
	Comparison of pathogen types between single pathogen and mixed pathogens 
	Analyze the impact of antibiotic exposure, timing and frequency of mNGS testing on mNGS results
	Optimizing antimicrobial therapy based on mNGS and culture results
	Analyze the influence of optimizing antimicrobial therapy on mortality rates
	Comparison of medical costs between CAS and HAS

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Genetic relatedness and virulence potential of Salmonella Schwarzengrund strains with or without an IncFIB-IncFIC(FII) fusion plasmid isolated from food and clinical sources
	Introduction
	Materials and methods
	Bacterial strains
	Whole genome sequencing using short read and long read methods
	Single nucleotide polymorphism analysis
	Plasmid annotation and phylogeny
	Bacterial conjugation
	Virulome and plasmid transfer gene assay
	Bacterial invasion assay
	Bacterial persistence assay

	Results
	SNP analyses
	The concatenated core gene phylogeny of the IncFIB-IncFIC(FII) fusion plasmid
	Bacterial conjugation
	Virulome and plasmid transfer gene analyses
	Invasion and persistence assay

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Comparative genomics analysis to explore the biodiversity and mining novel target genes of Listeria monocytogenes strains from different regions
	Introduction
	Materials and methods
	Data retrieval and management
	Pan-genomic analysis of Listeria monocytogenes and non-target bacterial strains from different regions
	Multilocus sequence typing analysis
	Phylogenetic analysis
	Functional characteristics of potential target genes
	Protein-protein interaction network analysis and identification of novel target genes
	Prediction of virulence factors and antibiotic resistance genes of Listeria monocytogenes
	Prediction of MGEs of Listeria monocytogenes
	Prediction of CRISPR-Cas systems of Listeria monocytogenes
	Specific primer design and PCR detection conditions for Listeria monocytogenes

	Results
	Genome statistics and general features
	Pan-genomic analysis of Listeria monocytogenes strains in different regions
	Pan-genomic analysis of Listeria monocytogenes strains from different regions and non-target bacterial strains for the screening of potential target genes
	MLST and phylogenetic analysis
	Enrichment analysis of the functional characteristics of potential target genes using GO and KEGG
	PPI network analysis of potential target genes and identification of novel target genes
	Distribution of virulence genes and antibiotic resistance genes in Listeria monocytogenes strains in different regions
	Distribution of MGEs in Listeria monocytogenes strains in different regions
	Distribution of CRISPR-Cas system types in Listeria monocytogenes strains in different regions
	Detection of Listeria monocytogenes using specific primers by PCR

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	References

	Molecular epidemiology and genomic features of Bordetella parapertussis in Shanghai, China, 2017–2022
	Introduction
	Materials and methods
	Enrollment of pertussis cases
	Culture and antimicrobial susceptibility testing of BPP strains
	Whole genome sequencing and analysis
	Multiple locus variable-number tandem repeat analysis, multilocus sequence typing, and Bordetella spp. virulence genotyping analysis
	Statistical analysis

	Results
	Distributions and detection of BPP cases from 2017 to 2022
	Clinical and laboratory characteristics of BPP cases
	Prevalence of different BPP types from 2017 to 2022
	Genomic characteristics and evolution of Shanghai BPP strains

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Genetic markers associated with host status and clonal expansion of Group B Streptococcus in the Netherlands
	Introduction
	Materials and methods
	GBS isolates
	Whole-genome sequencing and post processing
	Whole-genome sequence data analysis
	Statistical analysis

	Results
	Serotype, ST, and CC distribution among GBS from carriage and disease
	Phylogenetic structure and host status associations within GBS CC
	GBS resistome
	Global CC17 phylogeny and prevalence of ICESag37

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Members of the NOGBS study group
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Genes associated with fitness and disease severity in the pan-genome of mastitis-associated Escherichia coli 
	Introduction
	Materials and methods
	Bacterial strains and growth conditions
	Genome sequencing, assembly, and annotation
	Core and accessory genome determination, alignment, phylogenetic trees, and pan-genome analysis
	Hierarchical clustering analysis
	Detection of plasmids, antimicrobial resistance (AMR), and virulence genes
	Development of barcoded plasmids and barcode sequencing
	Mouse infections
	Deletion and complementation of chiA 
	MAC-T cell culture and media
	Adhesion assays
	Statistical analyses

	Results
	Bacterial growth in milk is not associated with clinical mastitis severity
	Genome analysis of mild and severe clinical mastitis isolates
	Genes associated with clinical mastitis severity
	Genes associated with mastitis vs. commensal strains
	Genes associated with fitness in milk and mammary glands

	Discussion
	 References

	Conditional expression of flagellar motility, curli fimbriae, and biofilms in Shiga toxin-producing Escherichia albertii
	1 Introduction
	2 Materials and methods
	2.1 Bacterial strains and growth media
	2.2 Sequence analysis
	2.3 Motility tests
	2.4 Detection of curli fimbriae
	2.5 Detection of type 1 fimbriae
	2.6 Biofilm formation and quantification

	3 Results
	3.1 E. albertii flagellar genes
	3.2 Motility in E. albertii
	3.3 E. albertii fimbrial genes
	3.3.1 Curli genes and expression of curli fimbriae
	3.3.2 Type 1 fimbriae genes and expression of type 1 fimbriae
	3.3.3 Other fimbriae genes

	3.4 Nonfimbrial adhesin genes and their genetic diversity
	3.5 Biofilm formation

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	References

	Identification of a new Clostridium perfringens variant with a chromosomally encoded enterotoxin gene in a suspected persistent food poisoning outbreak in Eritrea
	1 Introduction
	2 Materials and methods
	2.1 Outbreak and stool samples
	2.2 Detection and isolation of Clostridium perfringens
	2.3 PCR and PFGE typing
	2.4 Sequencing of selected Clostridium perfringens isolates and annotation
	2.5 Comparative genome analysis
	2.6 Phylogenetic analysis

	3 Results
	3.1 cpe-positive Clostridium perfringens samples
	3.2 Genotyping results
	3.3 Sequenced genomes

	4 Discussion
	5 Conclusion
	References

	Genome-wide comparative analysis of clinical and environmental strains of the opportunistic pathogen Paracoccus yeei (Alphaproteobacteria)
	1 Introduction
	2 Materials and methods
	2.1 Strains and culture conditions
	2.2 Physiological analyses
	2.3 DNA isolation, standard molecular biology procedures and PCR conditions
	2.4 Introduction of plasmid DNA into bacterial cells
	2.5 Plasmid host range testing
	2.6 Identification of functional transposable elements
	2.7 Mutational analysis of URE modules
	2.8 Genome sequencing
	2.9 Bioinformatic analyses
	2.10 Nucleotide sequence accession numbers

	3 Results
	3.1 P. yeei strains selected for characterization
	3.1.1 Physiological and phenotypic characterization

	3.2 Genomic features
	3.3 Extrachromosomal replicons
	3.4 Comparative analysis of P. yeei genomes
	3.5 Genetic load of P. yeei genomes
	3.6 Transposable elements
	3.7 P. yeei strain- and species-specific genes
	3.8 Putative virulence determinants
	3.9 URE gene clusters

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Genomic analysis of Salmonella isolated from surface water and animal sources in Chile reveals new T6SS effector protein candidates
	Introduction
	Materials and methods
	Environmental samples and Salmonella isolation
	Whole genome sequencing, assembly, and quality control
	Identification of T6SS gene clusters
	Identification of candidate T6SS effectors
	Hierarchical clustering analysis of the new T6SS effectors
	Phylogenetic analyses of Salmonella T6SS gene clusters
	Analysis of T6SS effectors distribution

	Results
	T6SS gene clusters are widely distributed among Chilean Salmonella isolates
	The VR3 within the SPI-6 T6SS gene cluster of isolates from surface waters harbor four candidate T6SS effector proteins
	The genetic structure and repertoire of effector proteins encoded in the SPI-6 T6SS gene cluster vary considerably among Salmonella isolates of the same serotype
	The SPI-19 Rhs effectors of Chilean Salmonella serotypes harbor C-terminal ends with protein domains of unknown function
	The SPI-21 T6SS gene cluster from S. enterica subspecies arizonae and diarizonae encodes two candidate effectors
	Global genome-wide distribution analysis of the new candidate effectors identified in SPI-6 and SPI-21 T6SS gene clusters

	Discussion
	References

	Decoding the anomalies: a genome-based analysis of Bacillus cereus group strains closely related to Bacillus anthracis
	1 Introduction
	2 Materials and methods
	2.1 Sample collection and screening
	2.2 Genomic extractions and sequencing
	2.3 Genome assembly and annotation
	2.4 Genome identification and phylogenetic placement
	2.5 Identification of mobile elements, virulence factors, and resistance genes

	3 Results
	3.1 Phenotypic and molecular characteristics
	3.2 Genome metrics and identification of the Bacillus cereus group isolates
	3.3 Phylogenetic placement of the Bacillus cereus group genomes using various databases
	3.4 Comparative annotation and functional analysis of Bacillus cereus group genomes
	3.5 Antibiotic resistance genes in Bacillus cereus group
	3.6 Virulence factors in Bacillus cereus group
	3.7 Determination of the insertion sequences on the 103 genomes

	4 Discussion
	5 Conclusion
	References

	The mcpC mutant of Salmonella enteritidis exhibits attenuation and confers both immunogenicity and protective efficacy in mice
	Background
	Materials and methods
	Bacterial strains, cells and plasmids
	Experimental animals and ethical statement
	Construction of the mcpC deletion strain and complemented strain
	In vitro stress simulation experiments
	Biofilm formation assay
	Motility assay
	Adhesion, invasion, and intracellular survival assays
	Adhesion assay
	Invasion assay
	Determination of LD50 in mice
	RNA extraction and quantitative real-time PCR
	Bacterial colonization and persistence in organs
	Immunization with ΔmcpC in mice
	Detection of IgG and IgA
	Lymphocyte proliferation assay
	The expression of cytokines in the spleen
	Immune protection assessment in mice
	Statistical analysis

	Results
	The ΔmcpC mutation results in a reduced stress defense capacity
	The mcpC gene does not affect biofilm formationand drug resistance
	The ΔmcpC mutation results in motility reduction
	Removal of mcpC weakens the invasion and intracellular survival of SE
	ΔmcpC exhibits increased LD50 in mice
	Removal of mcpC results in a down-regulation of the multiple virulence gene expressionof in SE
	Removal of mcpC results in reduced colonization and persistence of bacteria in the organ
	ΔmcpC can induce mucosal, humoral, and cellular immune responses
	ΔmcpC immunization provides powerful protective immune protection for mice

	Discussion
	References

	Prevalence of hypervirulent Klebsiella pneumoniae strains in COVID-19 patients with bacterial co-infections
	Introduction
	Materials and methods
	Study design and sample collection
	Phenotypic analysis
	Whole genome sequencing and genomic analysis
	Antimicrobial susceptibility testing
	Clinical data analysis
	Ethical approval

	Results and discussion
	Distribution and virulence of K. pneumoniae isolates based on phenotypic and genotypic analysis
	Virulence gene profiles, plasmid types, and antimicrobial susceptibility of K. pneumoniae strains
	Clinical profiles and emergence of hypervirulent K. pneumoniae in COVID-19 patients post policy shift

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

	Genomic identification of a pair of multidrug-resistant but non-pathogenic Salmonella enterica serovar Goldcoast isolates in southeast China
	1 Introduction
	2 Material and method
	2.1 Reagents
	2.2 Equipment
	2.3 Materials
	2.4 Isolation
	2.5 Automatic biochemical identification
	2.6 Serum agglutination test
	2.7 Antibacterial drug sensitivity test
	2.8 Sequencing

	3 Results
	3.1 Identifying Salmonella enterica serovar Goldcoast strains with different H2S generation capacities
	3.2 JS33 and JS34 isolates show multidrug resistance
	3.3 Deep sequencing reveals ten protein-coding genes exclusively expressed in either JS33 or JS34
	3.4 β-Lactamase is related to MDR, while the deficiency of thiosulfate reductase inhibits H2S production in JS34

	4 Discussion and conclusion
	References

	Bioinformatics combined with machine learning unravels differences among environmental, seafood, and clinical isolates of Vibrio parahaemolyticus
	1 Introduction
	2 Materials and methods
	2.1 Sample collection
	2.2 Bioinformatics analysis
	2.3 Machine learning
	2.3.1 Data preprocessing
	2.3.2 Model building
	2.3.3 Model evaluation
	2.3.4 Significant genes identification
	2.4 Data visualization

	3 Results
	3.1 Pangenome characteristics
	3.2 Predictive models
	3.3 Significant genes enriched by source type

	4 Discussion
	5 Conclusion
	References

	Whole-genome analysis and antimicrobial resistance phenotype of Vagococcus fluvialis isolated from wild Niviventer
	1 Introduction
	2 Methods and materials
	2.1 Ethics approval
	2.2 Source of strains
	2.3 Identification of 16S rRNA gene
	2.4 Whole-genome sequencing
	2.5 Genetic analysis
	2.6 Drug resistance phenotype
	2.7 Motility assay

	3 Results
	3.1 Morphological characterization of strain 25C42
	3.2 Phylogenetic relationships of 16S rRNA gene sequences
	3.3 Complete gene map of strain 25C42
	3.4 Functional gene analysis
	3.5 Whole genome similarity comparisons
	3.6 Antimicrobial resistance profile

	4 Discussion
	5 Conclusion
	References

	Genome assembly of Klebsiella michiganensis based on metagenomic next-generation sequencing reveals its genomic characteristics in population genetics and molecular epidemiology
	Introduction
	Materials and methods
	Clinical specimen
	Metagenomic sequencing and taxonomic profiling
	Genome assembly and characterization of the targeted pathogen
	Genome analysis of clinically related genotypes
	Phylogenetic analysis and gene annotation

	Results
	Genomic analysis of K. michiganensis KMLRT2206 strain
	Phylogeny of the KMLRT2206 genome
	Pan-genomic composition of K. michiganensis
	Patterns of drug-resistance genes in K. michiganensis
	Patterns of virulence genes in K. michiganensis

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

	Back Cover



