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Editorial on the Research Topic
 Genomic insights into sheep and goat breeding efficiency




Grassland Livestock, as the gene, phenotype, Breeding efficiency and ecosystem, provide high-quality livestock products, such as meat, milk and down, that are essential for human survival, maintain the energy flow between forage and humans, and also carry the historical connection between thousands of years of nomadic civilization and the transformation of modern animal husbandry (1–4). With the development of cell biology, molecular biology, and genomics, researchers have conducted extensive studies on the periodic growth of cashmere goat hair follicles, reproductive efficiency of sheep, and improvements in dairy cow production (5, 6). This scaffolds a resolution to the dichotomy between “protecting grassland ecology” and “improving livestock productivity.” Such related research is a core focus in animal husbandry, veterinary science, genetics, and ecology (7).

In recent years, research on grazing livestock has progressed from traditional phenotypic observations and population surveys to a new stage of elucidating the molecular mechanisms of phenotypes and molecularly-informed breeding (8). In-depth research has been conducted on key economic traits, such as growth, reproduction, disease prevention, and the control of grazing livestock (9). Related research provides scientific solutions to the problems faced in grassland animal husbandry, such as long breeding cycles, difficult trait improvements, and insufficient ecological adaptability (10).

Consequently, Frontiers in Veterinary Science has established a Research Topic, “Genomic Insights into Sheep and Goat Breeding Efficiency,” carefully selecting 13 high-quality, original research articles focusing on the field of grazing livestock. These involve important grazing animals such as sheep, goats, yaks, Yunling cattle, and donkeys, and cover the complete research chain from “genetic resource evaluation to functional gene mining to production trait regulation to molecular breeding application.” These papers cover the molecular basis of important biological characteristics of grazing livestock from different perspectives, providing references for promoting innovation in grazing livestock scientific research and promoting sustainable commercial development.

In terms of genetic resources and adaptive evolutionary research in grazing livestock, multiple studies have focused on the genomic characteristics of typical livestock species, providing a molecular basis for the conservation of genetic diversity and stress-resistant breeding. Tang et al. used 10X whole-genome sequencing to conduct single nucleotide polymorphism analysis on seven local horse breeds in Xinjiang, China, and found high population genetic diversity among these local breeds. Marked genetic differences from other horse breeds from Europe, central Asia, western Asia, and China were reported, elucidating differences in distribution patterns, evolutionary characteristics, and genetic diversity.

Zhang S. et al. conducted whole-genome resequencing of six yak populations in south-western China and found rich genetic diversity in yaks from this region. Tibetan yaks showed lower nucleotide diversity because of geographical isolation, whereas Muli yaks were substantially different from the other groups. Strong candidate genes related to high-altitude adaptation, growth, and development were found, addressing a gap in genomic research on yak populations in south-western China.

Dang et al. successfully constructed a genomic copy number variation (CNV) map for Yunling cattle that will facilitate an in-depth analysis of the genetic mechanisms underlying the formation of economic traits, such as subcutaneous fat thickness and longissimus dorsi muscle area in Yunling cattle.

By comparing selective sweep signals between Iranian domestic sheep and wild Mouflon sheep, Taheri et al. found that genes, such as ADGRB3 and CAPN2, in domestic sheep were strongly correlated with economic traits, such as body weight and milk yield, whereas genes such as ACAN and MGST3 in wild sheep were related to adaptive traits, such as daily weight gain and bone weight. This indicates the differential effects of artificial and natural selection on the sheep genome, providing a new perspective for the utilization of sheep genetic resources.

Another core focus of this Research Topic is the regulatory molecular mechanisms of important production traits. Multiple papers in this Research Topic target key traits, such as hair follicle development, reproductive performance, growth, and meat quality, mining many functional genes and regulatory pathways with potential application in the field. In hair follicle development research, Han et al. used proteomics techniques to analyze differences between the telogen and anagen phases of secondary hair follicles in cashmere goats. They found that ADAM17, SFRP1, and PPP1CA proteins might promote hair follicle cycle transition by regulating signaling pathways, such as Notch and Wnt. Zhang C. et al. used multi-omics joint analysis techniques to elucidate the important role of ribosomal proteins during the hair follicle cycle transition. Yuan et al., focusing on the depilation characteristics of Dorper sheep, screened hair follicle development-related genes, such as DBI, FZD3, and ZDHHC21, providing new targets for the regulation of the sheep hair follicle cycle. Related research provides references for studying the mechanisms of hair follicle growth and development in goats and sheep.

In the field of reproductive efficiency traits, Quan et al. systematically analyzed the reproductive performance of Huanghuai goats and found an average litter size of 2.74 and an annual reproductive rate of 418.96%. Combined with transcriptome sequencing technology, they screened candidate genes, such as PTX3 and MMP13, for prolificacy traits.

In the field of meat yield and meat quality-related traits, Liu et al. genotyped non-synonymous single nucleotide polymorphisms of three candidate genes (KIAA1217, SNTA1, and LTBP1) in Ujimqin sheep and performed association analysis between the genotyping results and growth traits. These results provide important data for genetic marker-assisted selection of Ujimqin sheep.

Peng et al., using transcriptome data from the longissimus dorsi muscle of Guangling donkeys, analyzed the importance of long non-coding RNAs in intramuscular fat deposition, expanding the research dimension of non-coding RNAs in the regulation of grazing livestock traits.

Research in molecular breeding technology innovation and application has focused on addressing the bottlenecks in breeding in small populations and optimizing trait prediction models to provide new methods for improving the breeding efficiency of grazing livestock. Zhang S. et al. analyzed the genetic structure of 485 Xinjiang Brown cattle and 2,633 Chinese Holstein cattle to establish a cross-bred joint reference population. They also evaluated the estimated genomic breeding values of milk production traits in Xinjiang Brown cattle. This study provides basic data for genomic prediction and selection in dairy cattle. Qi et al. screened candidate genes related to tail-type using whole-genome re-sequencing in Mongolian (short, fat-tailed) and Bamei (long, thin-tailed) mutton sheep. Of these, PDGFD, GLIS1, and VRTN were strongly associated with tail-fat deposition and tail length. This study provides a new theoretical basis for the molecular breeding of tail-type traits in sheep.

Li et al. conducted transcriptome sequencing of the hypothalamus of Jining Gray goats, identifying 237 differentially-expressed, long non-coding RNAs and analyzed their regulatory role in goat sexual maturity, providing a reference for improving goat reproductive efficiency.

In summary, the 13 research reports in this Research Topic comprehensively present the current research frontiers in the field of grazing livestock, including an in-depth analysis of the genetic resources of livestock species, such as yaks and Yunling cattle; innovative exploration of the regulatory mechanisms of key traits, such as hair follicles and reproduction; and practical breakthroughs in technologies, such as cross-breeding. These achievements not only enrich the theoretical system of grazing livestock biology but also provide scientific support for the synergistic advancement of animal health, ecological protection, and commercial development under the “One Health” concept.
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Introduction: Xinjiang Brown cattle constitute the largest breed of cattle in Xinjiang. Therefore, it is crucial to establish a genomic evaluation system, especially for those with low levels of breed improvement.
Methods: This study aimed to establish a cross breed joint reference population by analyzing the genetic structure of 485 Xinjiang Brown cattle and 2,633 Chinese Holstein cattle (Illumina GeneSeek GGP bovine 150 K chip). The Bayes method single-step genome-wide best linear unbiased prediction was used to conduct a genomic evaluation of the joint reference population for the milk traits of Xinjiang Brown cattle. The reference population of Chinese Holstein cattle was randomly divided into groups to construct the joint reference population. By comparing the prediction accuracy, estimation bias, and inflation coefficient of the validation population, the optimal number of joint reference populations was determined.
Results and Discussion: The results indicated a distinct genetic structure difference between the two breeds of adult cows, and both breeds should be considered when constructing multi-breed joint reference and validation populations. The reliability range of genome prediction of milk traits in the joint reference population was 0.142–0.465. Initially, it was determined that the inclusion of 600 and 900 Chinese Holstein cattle in the joint reference population positively impacted the genomic prediction of Xinjiang Brown cattle to certain extent. It was feasible to incorporate the Chinese Holstein into Xinjiang Brown cattle population to form a joint reference population for multi-breed genomic evaluation. However, for different Xinjiang Brown cattle populations, a fixed number of Chinese Holstein cattle cannot be directly added during multi-breed genomic selection. Pre-evaluation analysis based on the genetic structure, kinship, and other factors of the current population is required to ensure the authenticity and reliability of genomic predictions and improve estimation accuracy.
Keywords: Xinjiang Brown cattle, multi-breed, genomic prediction, bayes, single-step GBLUP

1 INTRODUCTION
Xinjiang Brown cattle is a major breed supporting the development of the cattle industry in Xinjiang, it was the first breed of cattle used for milk and meat purposes after the founding of the People’s Republic of China. In 2023, the number of Xinjiang Brown cattle in stock reached 1.16 million; however, the level of breed improvement was low, with a performance measurement population of <10,000. Therefore, it is important to establish an efficient genomic evaluation system for Xinjiang Brown cattle to improve their genetic level. The application of genome selection technology has significantly enhanced the efficiency of genomic evaluation (Hayes et al., 2016). Because of the implementation of the genome selection for Chinese Holstein cattle in 2008, early and accurate selection of calves and young cattle has been achieved (George et al., 2017), leading to higher accuracy in genomic evaluation and more precise assessment of individual breeding value (Weigel et al., 2010; Dassonneville et al., 2011). In addition, due to early selection and higher accuracy, the rate of genetic progress has doubled (Weller et al., 2017), improving breeding profitability and significantly reducing breeding costs. Although genome selection has been successfully applied to Chinese Holstein cattle population, the low level of production performance measurement and small population size of Xinjiang Brown cattle have hindered the application of genome selection technology. To improve the reliability of genomic predictions, especially for smaller populations, many feasible methods have been proposed, including increasing marker density, constructing linkage disquilibrium (LD) with more markers and causal mutations, and simulation data analysis (de Roos et al., 2009). Simulation and real data analyses (BrØndum et al., 2015) have shown that genomic prediction can play an important role in different populations.
For genome selection, it is necessary to have a reference population with sufficient size and an appropriate genetic structure that simultaneously incorporates genomic and phenotypic information to accurately predict genome estimated breeding values (GEBVs) (Metta et al., 2004; Boichard et al., 2016). Genome selection has recently been widely used in dairy cattle breeding programs. However, its application is limited to populations with a small number of breeds. Establishing a sufficiently large reference population is the most limiting factor for the accurate estimation of SNP effects (Boichard et al., 2016). When conducting genome selection for small populations, the most direct approach to enhancing its reliability is to expand the reference population. Many countries have found effective solutions through international cooperation, leading to joint genomic evaluations (Lund et al., 2011). By connecting France, Germany, Austria, Italy, Slovenia, Switzerland, and the United States of America to the InterGenomics consortium operated by the Interbull Center (Zumbach et al., 2010; Jorjani et al., 2012), genome-wide joint evaluations have been conducted for Brown Swiss bulls and Simmental cattle in Germany and Austria (Edel et al., 2011). Research has shown that by combining different populations of the same breed or related breeds in the reference population, more effective information can be obtained for estimating marker effects. Therefore, more accurate breeding predictions can be obtained from genomic predictions. Accuracy is improved when three related dairy cattle populations, Danish Red, Swedish Red, and Finnish Ayrshire, are combined into a single reference population (Zhou et al., 2014). When four European Holstein populations were combined into a reference population, the reliability increased by 10% (Lund et al., 2011). By combining six Brown Swiss populations, the reliability increased from 6% to 45% (Jorjani et al., 2012). However, multi-breed genomic evaluation of Xinjiang Brown cattle has not yet been conducted, limiting the optimized utilization of genomic selection technology in their genomic evaluation.
Based on the research foundation for domestic and international multi-breed joint genomic evaluation (Pryce et al., 2011; Lund et al., 2014; Steyn et al., 2019; Xu et al., 2019; Palombo et al., 2021), we proposed to integrate Xinjiang Brown cattle and Chinese Holstein cattle to construct a joint reference population for genome selection. In order to expand the Xinjiang brown cattle genome selection reference group, so as to apply multi-breed genome selection in Xinjiang brown cattle population to improve the prediction reliability. This study aimed to analyze the genetic structures of Xinjiang Brown and Chinese Holstein cattle to establish a multi-breed joint reference population. Using a dual-trait single-step genome-wide best linear unbiased prediction (ssGBLUP) approach, we established a genomic evaluation system for the primary lactation traits of Xinjiang Brown cattle, leveraging the joint reference population of Xinjiang Brown and Chinese Holstein cattle. This improves the accuracy of genomic selection for Xinjiang Brown cattle, creating a core breeding herd of genetically superior dairy Xinjiang Brown cows. Consequently, the genetic improvement of Xinjiang Brown cattle population will be expedited, leading to enhanced genetic levels across the breed.
2 MATERIALS AND METHODS
2.1 Sample collection and DNA extraction
A total of 1,729 blood samples were collected from the tail vein of Xinjiang Brown cattle and added to 10 mL EDTA anticoagulant tubes. The samples were then aliquoted into 1.5 mL centrifuge tubes and stored at −20°C. In addition, 66 frozen semen samples were collected from Xinjiang Brown and Brown Swiss bulls used for the artificial insemination of Xinjiang Brown cattle after 1983.
DNA was extracted from the above samples, and the concentration and purity of the obtained genomic DNA were measured using a NanoDrop 2000c spectrophotometer. The OD260/OD280 ratio was 1.7–1.9, indicating good DNA quality. After assessing DNA concentration, purity, and integrity, the samples were stored at −20°C (Ma, 2015).
2.2 Sample screening and chip detection
Phenotypically complete Xinjiang Brown cattle were screened from various Xinjiang Brown cattle farms for chip detection. After screening, 403 cows and 82 bulls from four core farms in Xinjiang region were selected. Moreover, we included 174 Xinjiang Brown cows from Xinjiang Uygur Autonomous Region State-owned Urumqi breeding farm, 50 Xinjiang Brown cows from Xinjiang Tianshan Animal Husbandry Bioengineering Co., Ltd. breeding farm, 130 Xinjiang Brown cows from the Tacheng Agriculture and Animal Husbandry Technology Co., Ltd., 49 Xinjiang Brown cows from Yili New Brown breeding farm, 71 bulls and 11 Brown Swiss bulls from Xinjiang Tianshan Animal Husbandry Bioengineering Co., Ltd. Bull breeding station. Chip data for Chinese Holstein cows were obtained from 2,633 animals in Beijing, distributed across 18 farms in the region. All of these animals were detected using the Illumina GeneSeek GGP bovine 150 K chip.
2.3 Chip imputation and quality control
A total of 139,376 and 138,892 SNP markers were detected using Xinjiang Brown and Chinese Holstein cattle chip assays, respectively. These data were imputed using Beagle 4.1 software, which infers haplotypes present in the population based on the principle of linkage disequilibrium. To ensure the accuracy of imputation, quality control measures were applied to the chip data.
The quality control criteria were as follows: individuals with a genotyping call rate of <90% were excluded. Only SNPs on chromosomes 1–30 were retained, with an individual genotype missing rate of <10%. SNPs with a minor allele frequency of >0.01 and a Hardy–Weinberg equilibrium p-value >1 × 10−6 were also included. After quality control using the PLINK software, the SNP genotypes were converted to a 0, 1, and 2 format. Finally, 118,622 and 123,268 SNP markers on the autosomal chromosomes of Xinjiang Brown and Chinese Holstein cattle were retained, respectively. Because the number of SNP markers differed between the two breeds after quality control, an intersection of the SNP markers was taken, which resulted in 118,021 common SNP markers for both breeds (Figure 1).
[image: Venn diagram comparing Chinese Holstein and Xinjiang Brown cattle. Chinese Holstein has 5,247 (4.2%), Xinjiang Brown has 601 (0.5%), and their overlap is 118,021 (95.3%).]FIGURE 1 | Venn diagram of GeneSeek GGP Bovine 150 k after quality control in Xinjiang Brown cattle and Chinese Holstein cattle.
2.4 Genetic structure analysis
2.4.1 Linkage disequilibrium analysis
The.map and. ped files for both breeds were converted to. vcf format using PLINK. The PopLDdecay software was then used to analyze and plot LD decay graphs (https://github.com/BGI-shenzhen/PopLDdecay) (Zhang et al., 2019). The LD metric, r2, was calculated for the four populations (Hill, 1974). The mean r2 value was computed at various marker distances of 1 Kb to demonstrate the degree of LD decay across different populations.
2.4.2 Population structure analysis
To infer ancestral populations based on the allele frequencies of descendant individuals, an unsupervised algorithm was employed (Consortium et al., 2009). In this study, genome-wide SNP data were used to calculate the population structure for ancestral admixture components with K values of 2–4 using admixture (Alexander et al., 2009). Visualization of the population structure was performed using the R package “pophelper”.
Analysis was conducted using the FastTree software (http://www.microbesonline.org/fasttree/), with the maximum likelihood method adopted for estimation. The Jukes–Cantor + CAT model was used as the default model for nucleotide phylogeny. The credibility of the phylogenetic tree branches was tested using 1,000 bootstrap replicates. Finally, the FigTree software was used for visualization.
2.4.3 Principal component analysis
The Gmatrix package in R was used to calculate the genomic kinship matrix (G-matrix) for Xinjiang Brown and Chinese Holstein cattle. Subsequently, principal component analysis (PCA) was performed using the G-matrix. The first three eigenvectors (PCA1, PCA2, and PCA3) were extracted and used as the horizontal and vertical coordinates for plotting. The contribution rates of the principal components were calculated on the basis of the percentage of eigenvalues. Finally, visualization was performed using the R language.
2.5 Multi-breed genomic evaluation using a joint reference population
2.5.1 Phenotypic data processing
The data for Xinjiang Brown cattle include production performance measurement records from 1983 to 2018 and DHI measurement records from 2010 to 2017. The data for Chinese Holstein cattle include DHI measurement records from 2001 to 2019. Milk-related traits, including 305-day milk yield (305dMY), milk fat yield (MFY), milk protein yield (MPY), and somatic cell score (SCS), were obtained through collation (Table 1). There were 7,516 and 93,717 milk trait measurements recorded for Xinjiang Brown and Chinese Holstein cattle, respectively.
TABLE 1 | The standards for data filtering.
[image: Table comparing milk characteristics between Xinjiang Brown Cattle and Chinese Holstein Cattle. Columns show character names and units: 305MY (kilograms), MFP (percentage), MPP (percentage), SCC (one thousand per milliliter). Screening criteria vary per breed: Xinjiang Brown Cattle, 305MY is 2,000–13,000 kilograms; Chinese Holstein Cattle, 305MY is 4,000–15,000 kilograms; MFP and MPP for both are 2–7 percent, SCC is 0–25,000. Footnote defines terms: 305 dMY as 305 daily milk yield, MFP as milk fat percentage, MPP as milk protein percentage, SCC as somatic cell count.]The pedigree file used to analyze Xinjiang Brown cattle had 16,795 cattle, including 676 breeding bulls. Among these bulls, one had a maximum of 619 offspring, whereas 221 had only one offspring. Among the female adult cattle, 583 had only one offspring, whereas 1,623 had two or more offspring, with a maximum of 12 offspring per individual.
For the Chinese Holstein cattle, the pedigree file used for the analysis contained 6,54,390 individuals, including 11,243 breeding bulls. Among these bulls, one had a maximum of 7,884 offspring, whereas 4,695 had only one offspring. Among the female adult cattle, 1,63,781 had only one offspring, whereas 1,11,912 had two or more offspring, with a maximum of 12 offspring per individual (Table 2).
TABLE 2 | Data statistics.
[image: Table comparing two cattle breeds. Xinjiang Brown Cattle: 7,516 total, 2,207 phenotype, 16,795 pedigree animals. Chinese Holstein Cattle: 93,717 total, 48,464 phenotype, 654,390 pedigree. Total numbers: 101,233, 50,671, 671,185.]2.5.2 Genotype data
Genotype data for 403 female Xinjiang Brown cattle, 71 male Xinjiang Brown cattle, and 11 male Brown Swiss cattle was considered. In addition, 2,100 Chinese Holstein cattle were randomly selected (According to PCA and Admixture results, PLINK software was used to remove the chip data of Chinese Holstein cows that was inconsistent with the large population of Chinese Holstein cows).
2.5.3 Statistical analysis
In this study, the ssGBLUP method was used to construct the H-matrix based on the pedigree and genomic information from Xinjiang Brown and Chinese Holstein cattle. The two-trait model Bayesian approach was used to estimate the variance components and breeding values for each trait.
To investigate the suitable integral ratio of the Chinese Holstein cattle in the joint reference population, a random gradient grouping approach was applied. The population was gradually accumulated in increments of 300 individuals to construct the joint reference population. A control group was established by excluding the phenotypic and genomic information of the Chinese Holstein cattle (Table 3).
TABLE 3 | Gradient grouping of joint reference group.
[image: Table comparing values across three groups: Joint reference group, Xinjiang Brown cattle, and Chinese Holstein cattle. The Joint reference and Xinjiang Brown cattle columns show consistent values of 485, increasing for Chinese Holstein cattle from 0 to 2,100 in increments of approximately 300.]Because of the significant differences in milk production traits between Xinjiang Brown and Chinese Holstein cattle (Zhang et al., 2021), a dual-trait animal model was constructed. In this model, each biological trait was treated individually in the two populations, accounting for potential scale inconsistencies that may arise during breeding value estimation due to standardization across different breeds. The milk production traits (305dMY, MFY, MPY, and SCS) of Xinjiang Brown and Chinese Holstein cattle were considered to be two separate traits. A dual-trait linear model was used to estimate the variance components for milk production traits based on the genomic-pedigree combined relationship matrix, H-matrix. The model is described as follows:
[image: A mathematical equation displaying a matrix formula: \([y_1, y_2]^T = [X_1, 0; 0, X_2][\beta_1; \beta_2] + [Z_1, 0; 0, Z_2][a_1; a_2] + [e_1; e_2]\).]
In the formula, [image: Please upload the image or provide a URL, and I will help generate the alternate text for you.] represents the observation value vector of a certain milk trait for each of Xinjiang Brown cattle, and [image: Certainly! Please upload the image so I can generate the alternate text for you.] represents Chinese Holstein cattle. [image: It seems you tried to include an image, but it did not come through. Please upload the image or provide a URL to it, and I will generate the alt text for you.] and [image: Mathematical notation for beta subscript two, symbolized as a lowercase beta with a subscript of the number two.] represent the fixed effect vectors for the same milk trait of Xinjiang Brown and Chinese Holstein cattle, respectively, including farm effect, calving year effect, calving season effect, and parity effect. The farm effect was divided into 20 levels based on the phenotypic data sources of the farms where the cattle were raised. The calving years of Xinjiang Brown cattle were divided into seven levels based on phenotypic records: 1985–1995, 1996–2000, 2001–2005, 2006–2008, 2009–2011, 2012–2014, and 2015–2018. The calving years of the Chinese Holstein cattle were divided into six levels: 2001–2005, 2006–2008, 2009–2011, 2012–2014, 2015–2018, and 2019. For the parity effect, Xinjiang Brown and Chinese Holstein cattle were classified into six levels: 1, 2, 3, 4, 5, and 6 (including those with more than six calves). The calving season effect of Xinjiang Brown cattle was divided based on the unique climatic conditions of Xinjiang. According to the method of temperature intervals, April and May were considered spring, June, July, and August were considered summer, September was considered autumn, and January, February, March, October, November, and December were considered winter. Conversely, the calving season effect of Chinese Holstein cattle was determined based on the climatic characteristics of Beijing. Following the same method of temperature intervals, March, April, and May were considered spring, June, July, and August were considered summer, September, October, and November were considered autumn, and December, January, and February were considered winter. [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] and [image: Please upload the image or provide a URL, and I will assist you with generating the alt text.] represent the individual additive genetic effect vectors for a certain milk trait of Xinjiang Brown and Chinese Holstein cattle, respectively. [image: If you upload an image, I can help generate the alt text for it. Please use the image upload feature to share the image you need assistance with.] and [image: Please upload the image so I can assist you in generating the appropriate alternate text for it.] represent the random residual effect vectors for the same milk trait of Xinjiang Brown and Chinese Holstein cattle, respectively. [image: It seems there was an attempt to upload an image, but it did not come through. Please try uploading the image again, and I'll be glad to help you generate the alternate text. If you have any specific details or a description of the image, feel free to include them as well.] and [image: Please upload the image or provide a URL so I can generate the alt text for you.] represent the incidence matrices for the fixed effects and individual random additive genetic effects of the i-th trait, respectively.
Assume [image: Two-element vector \([\alpha_1, \alpha_2]\) follows a multivariate normal distribution \(N\) with mean zero and covariance matrix \(H\) Kronecker product with a 2x2 matrix. The matrix elements are \(\sigma_{\alpha_1}^2\), \(\sigma_{\alpha_1 \alpha_2}\), \(\sigma_{\alpha_2 \alpha_1}\), and \(\sigma_{\alpha_2}^2\).], [image: Vector \([e_1, e_2]^T\) follows a multivariate normal distribution with mean vector \(0\) and covariance matrix given by the Kronecker product of identity matrix \(I\) and a diagonal matrix with entries \(\sigma^2_{e_1}\) and \(\sigma^2_{e_2}\).], In the aforementioned formula, H represents the combined genomic-pedigree relationship matrix. [image: Mathematical expression showing the variance of a random variable, denoted as sigma squared with a subscript "a" and the subscript "i".] denotes the additive genetic variance for the i-th breed, while [image: The image shows the Greek letter sigma (σ) followed by subscripts alpha one (α₁) and alpha two (α₂).] represents the covariance between breeds. [image: Mathematical expression showing sigma squared subscript e subscript t, representing a variance term.] stands for the residual variance of the i-th breed. Given that Xinjiang Brown and Chinese Holstein cattle are reared in separate populations, there is no residual covariance between the two groups.
The genetic variance–covariance structure of the ssGBLUP additive genetic effect model is represented by [image: Mathematical expression showing a is distributed as a normal distribution with a mean of zero and a variance of H times sigma sub a squared.], where [image: Mathematical expression showing sigma squared subscript a.] denotes the additive genetic variance. H, the pedigree–genome relationship matrix, represents a combination of the pedigree-based additive genetic relationship matrix (A matrix) and the genome-based kinship matrix (G-matrix) (Aguilar et al., 2010; Christensen and Lund, 2010).
The formula used to compute H is as follows:
[image: Matrix equation representing \( H \) with two rows and two columns. The first element is \( A_{11} - A_{12}A_{22}^{-1}A_{21} + A_{12}A_{22}^{-1}GA_{21} \), and the second element is \( A_{12}A_{22}^{-1}G \). The third element is \( GA_{22}^{-1}A_{21} \), and the fourth element is \( G \).]
Subscripts 1 and 2 in A represent the non-genotyped and genotyped animals in the population, respectively. G represents the genetic relationship matrix. The calculation formula is as follows: [image: Equation representing G equals MM prime divided by two times the sum from k equals one to m of p sub k times one minus p sub k.]. M represents the association matrix for SNP effects, where the elements [image: I'm sorry, but it seems there is no image attached or accessible. Could you please upload the image or provide a URL for it?], [image: Mathematical expression in parenthesis: \(1 - 2p_j\).], and [image: I'm sorry, I can't generate alt text from the provided input. Please upload the image or provide a URL for me to create the alternate text.] represent homozygous 11, heterozygous 12 or 21, and homozygous 22 genotypes, respectively. [image: I'm sorry, it seems like something went wrong with the image upload. Please try uploading the image again, and I'll be happy to help you with the alt text.] represents the minor allele frequency of the jth SNP, and m represents the number of markers. [image: Stylized lowercase letter "p" with a subscript "k" in a serif font, representing a mathematical or scientific variable notation.] denotes the allele frequency of the Kth SNP. Therefore, the H−1 formula is given by [image: \( H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} + A_{22}^{-1} \end{bmatrix} \).]: where [image: Matrix A with a superscript negative one, indicating the inverse of matrix A.] represents the inverse matrix of all pedigree relationships, [image: The image shows a mathematical notation, "G" with an inverse symbol, represented as "G" raised to the power of negative one.] represents the inverse matrix of genomic kinship relationships, and [image: Inverse of matrix element A sub twenty-two.] represents the inverse matrix of the pedigree relationships for the sequenced individuals. The Bayes method was calculated using the GIBBS1F90 module in the BLUPF90 software along with the Bayes–Gibbs sampling method. In the Bayes method, the total chain length of the samples was 100,000, the burn-in chain length was 10,000, and the thinning interval was 50. The Geweke diagnostic method in POSTGIBBSF90 was used to check the convergence of the Gibbs chain (Zhang et al., 2022).
2.5.4 Calculation of heritability
The calculation formula of heritability is as follows:
[image: Heritability equation with \( h^2 \) equals the ratio of genetic variance \( \sigma_a^2 \) over the sum of genetic variance \( \sigma_a^2 \) and environmental variance \( \sigma_e^2 \).]
The formula for the standard error of heritability is shown below:
[image: Formula for SE squared of h squared: SE²(h²) equals σₐ⁴ over σₚ⁸ times a bracket containing Var(σₐ²) over (σₐ²)² plus Var(σₚ²) over (σₚ²)² minus Cov(σₐ², σₚ²) over σₐ²σₚ².]
where [image: I cannot view or generate alternate text for specific images without them being uploaded. Please upload the image, and I can help create the alt text for it.] is heritability, [image: SE^2(h^2) is the standard error of heritability, σ²_d.] is the additive genetic variance, [image: Greek lowercase letter sigma squared and subscript e, representing a variable or parameter often associated with variance in statistical notation.] is the residual variance. [image: Mathematical notation showing sigma squared subscript p, representing the variance of a portfolio in finance.] is the overall phenotypic variance, [image: Mathematical equation showing the variance of a population (\(\sigma_p^2\)) is equal to the sum of the additive genetic variance (\(\sigma_a^2\)) and the environmental variance (\(\sigma_e^2\)).].
2.5.5 Verification of the reliability of genomic breeding values
To verify the accuracy of the estimated genomic breeding values for the joint reference populations, 50 offspring individuals born in the past 4 years from 485 genotyped Xinjiang Brown cattle served as a validation group. Genomic predictions were performed in two groups: with and without excluding the phenotypic data of the validation group. This resulted in 16 sets of genetic parameters and genomic estimated breeding values for each milk trait. By comparing the prediction accuracy, estimation bias, and inflation coefficient of the validation group, the optimal number of joint reference populations was determined.
To calculate the prediction accuracy of the genomic estimated breeding values, the correlation coefficient between the genomic breeding values calculated with the phenotypic data of the validation group and those calculated without these data was used to measure the accuracy of estimating genomic breeding values for different joint reference populations. The formula is as follows: [image: Correlation formula for genomic estimated breeding values (\( R_{\text{GEBV}} = \text{Cor}(\text{TBV}^*, \text{GEBV}) \)).], where [image: Please upload an image or provide a URL so I can generate the alternate text for you.] represents reliability or the square of accuracy.
Meanwhile, the regression of [image: Text "TBV" followed by a star symbol in bold font.] on [image: Text "GEBV" in bold black font.] is calculated using the formula [image: Equation depicting a linear relationship: TBV* equals b sub 0 plus b sub 1 times GEBV, where TBV* represents the trait breeding value and GEBV denotes the genomic estimated breeding value.], where the regression coefficient [image: It seems there's an issue with the image you’re trying to upload. Could you please try again? Make sure the file is in a supported format and under the size limit. Optionally, you can add a caption for context.] is the inflation coefficient, and the intercept [image: Black lowercase letter "b" followed by a subscript zero.] is the estimation bias (Legarra and Reverter, 2019).
[image: Equation showing \( b_1 = \frac{\text{cov}(GEBV, y)}{\text{var}(y)} = \frac{\text{var}(GEBV)}{\text{var}(y)} < 1 \).]
[image: Formula for heritability: \( h_{b} = \frac{Var(GEBV)}{Var(y)} = \frac{Var(GEBV)Var(a)}{Var(a)Var(y)} = r^{2}_{GEBV} r^{2}_{y} \ll 1 \).]
In this context, [image: I'm sorry, but I can't see the image you're referring to. Please upload the image or provide a URL, and I can help generate the alt text for it.] represents the regression coefficient, which has the following implications: when [image: Text showing the mathematical expression \( b_1 < 1 \).], GEBV is inflated, indicating that Var (GEBV) is too large. This means that in the genomic breeding values, the good ones are even better, and the bad ones are even worse. Conversely, when [image: Mathematical expression showing \( b_1 > 1 \).], GEBV is deflated, suggesting that Var (GEBV) is too small. This indicates that the genomic breeding values are smaller than the true values and are contracted toward the middle.
3 RESULTS
3.1 Genetic structure
3.1.1 Linkage disequilibrium analysis
Linkage disequilibrium analysis was conducted between the two breeds by calculating the linkage disequilibrium coefficients for the two loci and plotting the LD decay graph (Figure 2). The graph shows that the average LD coefficients for Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows at a genomic distance of 50 kb were approximately 0.2, 0.25, 0.3, and 0.35, respectively, indicating a gradual increase. Noteworthy, the decay rates of the LD coefficients vary among different populations. Among the breeds, Brown Swiss bulls exhibited the slowest LD decay at 0–40 kb, whereas the Chinese Holstein cows exhibited the fastest LD decay. However, in the range of 40–300 kb, Xinjiang Brown cows exhibited the fastest LD decay, with a decay rate order of Xinjiang Brown cows > Chinese Holstein cows > Xinjiang Brown bulls > Brown Swiss bulls.
[image: Line graph illustrating linkage disequilibrium (LD) decay over physical distance in kilobases (Kb). The y-axis shows LD measured as r², ranging from 0.0 to 1.0. The x-axis represents distance from 0 to 300 Kb. Four datasets (BSS in red, XBB in black, XJIC in blue, and ChicC in purple) display a rapid decline in LD with increasing distance, stabilizing at lower values.]FIGURE 2 | LD decay of Xinjiang Brown cattle and Chinese Holstein cow. BSB is Brown Swiss Bull, CHC is Chinese Holstein cow, XBB is Xinjiang Brown Bull, XBC is Xinjiang Brown Cow.
3.1.2 Population structure analysis
To further investigate the genetic components of Xinjiang Brown and Chinese Holstein cows, population structure and phylogenetic tree analyses were conducted. As shown in Figure 3, when the number of ancestral populations K = 2, there was a clear distinction in the genetic structure among Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows. However, the genetic structure within each group differed insignificantly. As shown in Figure 4, Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls were clustered, whereas the Chinese Holstein cows were clustered separately. In addition, Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls appear at the end of a certain branch within the Chinese Holstein population.
[image: Spectrogram showing three channels of audio data with time on the horizontal axis and frequency on the vertical axis. The first channel is primarily blue and green, the second is green, and the third shifts from blue to yellow. Different colors represent varying intensity levels.]FIGURE 3 | Analysis chart of population structure in Xinjiang Brown cattle and Chinese Holstein cow. BSB is Brown Swiss Bull, CHC is Chinese Holstein cow, XBB is Xinjiang Brown Bull, XBC is Xinjiang Brown Cow.
[image: Phylogenetic tree diagram showing genetic relationships among CHC (blue), XBC (green), and BSB/XBB (pink) variants. Branches radiate circularly, illustrating evolutionary divergences. Color-coded legend is included.]FIGURE 4 | Phylogenetic tree of Xinjiang Brown cattle and Chinese Holstein cow. BSB is Brown Swiss Bull, CHC is Chinese Holstein cow, XBB is Xinjiang Brown Bull, XBC is Xinjiang Brown Cow.
3.1.3 Genetic relatedness between Xinjiang Brown and Chinese Holstein cows
Using the SNP genotyping information from 403 Xinjiang Brown cows, 71 Xinjiang Brown bulls, 11 Brown Swiss bulls, and 2,633 Chinese Holstein cows, a G-matrix was constructed. Figure 5 was then generated on the basis of the actual genetic relatedness among individuals in the G-matrix. Figure 5 shows that the kinship coefficients among Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls populations were approximately 0.5, which is significantly higher than those among individuals within the Chinese Holstein cow population. The kinship coefficients between Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows populations tend toward 0.
[image: Heatmap showing data grouped by categories like MA, PM, reduced into a grid format. Colors range from deep blue to bright red, representing low to high values. Two colored sidebars indicate additional categorical data.]FIGURE 5 | Genomic relationship matrix of Xinjiang Brown cattle and Chinese Holstein cow. BSB is Brown Swiss Bull, CHC is Chinese Holstein cow, XBB is Xinjiang Brown Bull, XBC is Xinjiang Brown Cow.
3.1.4 PCA
PCA was performed using the genomic kinship relationship matrix (G-matrix) among individuals from the two breeds (Figures 2–7). The results revealed that the first principal component (PC1, accounting for 4.75%) separated Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows into distinct groups. Specifically, Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls were closely clustered. The second principal component (PC2, accounting for 1.76%) could not distinguish between Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls; however, it separated the Chinese Holstein cows into two distinct groups. The third principal component (PC3, accounting for 1.22%) further distinguished the Chinese Holstein cows into two groups.
[image: Four scatter plots show Principal Component Analysis of different cattle populations. Top left and right plots display PC1 versus PC2 and PC1 versus PC3. Bottom left plot shows PC2 versus PC3 with a density ellipse. Bottom right is a 3D plot of PC1, PC2, and PC3. Color-coded legend identifies four cattle groups: Brown Swiss Bull, Chinese Holstein Cow, Xinjiang Brown Bull, and Xinjiang Brown Cow.]FIGURE 6 | Principal Component Analysis of Xinjiang Brown Cattle and Chinese Holstein cow.
[image: Scatter plots depicting stages of development for three different series: ARIMA, SARIMA, and Prophet. Each series shows ACF (Autocorrelation Function), PACF (Partial Autocorrelation Function), RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and Durbin-Watson statistics across time and forecasted values. Data points vary in concentration and distribution across the series.]FIGURE 7 | Gradient grouping of PCA analysis in joint reference group.
3.2 Multi-breed genomic evaluation using a joint reference population
3.2.1 Descriptive statistics of the dairy traits of Xinjiang brown and Chinese Holstein cattle
Table 4 lists the statistics, including sample size, minimum value, maximum value, mean, standard deviation, and coefficient of variation of the observed dairy traits of Xinjiang Brown and Chinese Holstein cattle. 305dMY, MFY, MPY, and SCS between Xinjiang Brown and Chinese Holstein cattle differed significantly.
TABLE 4 | Description of milk traits in Xinjiang Brown Cattle and Chinese Holstein Cattle.
[image: Table comparing traits of Xinjiang Brown and Chinese Holstein breeds. Traits include 305-day milk yield, milk fat yield, milk protein yield, and somatic cell score. Data columns are number, minimum, maximum, average, standard deviation, and coefficient of variation in percentage. Xinjiang Brown has lower numbers in all traits compared to Chinese Holstein, with notably lower averages and higher coefficients of variation.]3.2.2 Random grouping of the joint reference group
The chip data of 2,633 Chinese Holstein cows were screened to eliminate individuals with distant kinship within the Chinese Holstein cattle population, leaving 2,271 genotyped Chinese Holstein cows. Among these, 2,100 cows were randomly selected as the total population of Chinese Holstein cows to be included in the joint reference group. Random equal-sized groupings were then performed on 2,100 genotyped Chinese Holstein cows, resulting in subsets with different numbers of cows. As shown in Figure 7, the distribution of the subsets in the total population was relatively scattered for the Chinese Holstein cows added to the joint reference group.
3.2.3 Estimation of genetic parameters of dairy traits in the joint reference group
As shown in Table 5, before the inclusion of the Chinese Holstein population, the heritability of 305dMY was 0.204 without excluding the phenotypic data of 50 genotype Xinjiang Brown cows, which decreased to 0.203 after data exclusion. When varying numbers of Chinese Holstein cows were incorporated into the joint reference group, the heritability of 305dMY in Xinjiang Brown cows was 0.137–0.249 without excluding the phenotypic data of the 50 genotype cows. However, after excluding these data, the heritability of 305dMY in Xinjiang Brown cows was adjusted to 0.169–0.254.
TABLE 5 | Genetic parameter estimation of 305dMY in joint reference population based on ssGBLUP.
[image: A table presents data for different breeds, Xinjiang Brown and Chinese Holstein, with columns for joint reference population, additive genetic variance, residual variance, and heritability under conditions "All data" and "All data-50." Each row corresponds to a combination of joint reference population and breed, showcasing variability in genetic parameters. Footnotes explain terms such as "All data" and "σ²" (additive genetic variance), "σₑ²" (residual variance), and "h²" (heritability) with standard errors.]As shown in Table 6, without the inclusion of Chinese Holstein cows, the heritability of MFY, was 0.07 when the phenotypic data of 50 genotype Xinjiang Brown cows were included, and it was 0.073 when the phenotypic data were excluded. When different numbers of Chinese Holstein cows were added to the reference population, the MFY, heritability of Xinjiang Brown cows was 0.073–0.086 when the phenotypic data of 50 genotype Xinjiang Brown cows were included, and it was 0.057–0.085 when the phenotypic data were excluded.
TABLE 6 | Genetic parameter estimation of MFY in joint reference population based on ssGBLUP.
[image: Table showing additive genetic variance, residual variance, and heritability for Xinjiang Brown and Chinese Holstein breeds across different joint reference populations. Values are given with standard errors for "All data" and "All data-50" conditions. The note explains terminology used.]As shown in Table 7, without the inclusion of the Chinese Holstein cows, the heritability of MPY, was 0.143 when the phenotypic data of 50 genotyped Xinjiang Brown cows were included, and it was 0.145 when the phenotypic data were excluded. When different numbers of Chinese Holstein cows were added to the reference population, the MPY, heritability of Xinjiang Brown cows was 0.123–0.158 when the phenotypic data of the 50 genotyped Xinjiang Brown cows were included, and it was 0.0142–0.174 when the phenotypic data were excluded.
TABLE 7 | Genetic parameter estimation of MPY in joint reference population based on ssGBLUP.
[image: A table displays data comparing joint reference populations between Xinjiang Brown and Chinese Holstein breeds. It includes columns for breed, all data, and all data excluding 50 validation animals. Measures shown are additive genetic variance (σ²ₐ), residual variance (σ²ₑ), and heritability (h²), each with standard errors in parentheses. The table also provides a note explaining that "All data" includes all phenotypic data, while "All data-50" excludes data from 50 validation animals.]Table 8 shows that without the inclusion of the Chinese Holstein cow population, the heritability of SCS was 0.042 when the phenotypic data of the 50 genotyped Xinjiang Brown cows were included and 0.043 when the phenotypic data were excluded. After adding different numbers of the Chinese Holstein cows to the joint reference population, the SCS heritability for Xinjiang Brown cows was 0.02–0.062 when the phenotypic data of the 50 genotyped Xinjiang Brown cows were included. When the phenotypic data were excluded, the SCS heritability for Xinjiang Brown cows was 0.015–0.081.
TABLE 8 | Genetic parameter estimation of SCS in joint reference population based on ssGBLUP.
[image: A table displays data comparing Xinjiang Brown and Chinese Holstein cattle across various joint reference populations. Columns include joint reference population numbers, breed types, and calculations for additive genetic variance, residual variance, and heritability. Two datasets, "All data" and "All data-50," are compared with standard errors provided. The table highlights variations in genetic and phenotypic measurements across different joint populations and breeds. A note explains terminology and context.]3.2.4 Verification of the genomic breeding value reliability
As shown in Table 9, when different numbers of Chinese Holstein cows were added to the joint reference population, the reliability of the total population genomic breeding values for 305dMY of Xinjiang Brown cows was 0.142–0.340, with a regression coefficient of 0.129–0.312. The reliability of the genomic breeding values for the validation population was −0.033–0.087, with a regression coefficient of −0.064–0.056.
TABLE 9 | Genetic parameter estimation of 305dMY in joint reference population based on ssGBLUP.
[image: Table showing different population data. Columns include "Joint reference population," "Xinjiang Brown," "Chinese Holstein," "Total population," and "Validation population," with sub-columns for R² GEBV, b₀, and b₁. Values vary, e.g., R² GEBV for total population ranges from 0.142 to 0.340, and for validation ranges from -0.147 to 0.225.]As shown in Table 10, when different numbers of the Chinese Holstein cows were added to the joint reference population, the reliability of the total population genomic breeding values for MFY, of Xinjiang Brown cows was 0.263–0.424, with a regression coefficient of 0.296–0.437. The reliability of the genomic breeding values for the validation population was −0.149–0.138, with a regression coefficient of −0.192–0.137.
TABLE 10 | Genetic parameter estimation of MFY in joint reference population based on ssGBLUP.
[image: Table showing joint reference population sizes for Xinjiang Brown and Chinese Holstein cattle, and corresponding statistical values. Data points include population sizes, R-squared GEBV, and coefficients b0 and b1 for total and validation populations, reflecting trends and differences in genetic evaluations.]As shown in Table 11, when different numbers of Chinese Holstein cows were added to the joint reference population, the reliability of the total population genomic breeding values for MPY, of Xinjiang Brown cows was 0.28–0.465, with a regression coefficient of 0.277–0.504. The reliability of the genomic breeding values for the validation population was −0.259–0.203, with a regression coefficient of −0.213–0.032.
TABLE 11 | Genetic parameter estimation of MPY in joint reference population based on ssGBLUP.
[image: Table comparing joint reference population data for Xinjiang Brown and Chinese Holstein cattle. It lists the number of individuals in each group and corresponding statistical values: \( R^2 \) GEBV, \( b_0 \), and \( b_1 \) for both total and validation populations. Data points include numbers like 485, 785, 1,085, and more, with varying \( R^2 \) GEBV values ranging from 0.203 to 0.465.]As shown in Table 12, when different numbers of Chinese Holstein cows were added to the joint reference population, the reliability of the total population genomic breeding values for SCS, of Xinjiang Brown cows was 0.190–0.448, with a regression coefficient of 0.207–0.502. The reliability of the genomic breeding values for the validation population was −0.145–0.062, with a regression coefficient of −0.223–0.075.
TABLE 12 | Genetic parameter estimation of SCS in joint reference population based on ssGBLUP.
[image: Table displaying data on joint reference population sizes, split into Xinjiang Brown and Chinese Holstein categories, with corresponding totals. It shows \( R^2 \) values, \( b_0 \), and \( b_1 \) coefficients for both total and validation populations across various sizes, highlighting variations in predictive metrics.]4 DISCUSSION
4.1 Genetic structure analysis
LD is a metric that quantifies whether genotype variations in two SNP markers are relatively consistent and whether they are correlated (Park, 2012). If two loci with adjacent alleles are correlated, certain genotypes tend to be co-inherited, resulting in a higher frequency of certain haplotypes than expected. This pattern can be visually represented using an LD decay plot (Amaral et al., 2008). Because of the correlated inheritance of the two loci, the decay rate of the LD coefficient decreases with increasing generations and recombination events. Genetic background also influences it. Domestication selection reduces genetic diversity within a population, reinforcing the correlation or linkage between SNP loci (Farnir et al., 2000). Consequently, populations with higher degrees of domestication exhibit stronger selection intensities (Odani et al., 2006), resulting in slower LD decay rates. The higher selection intensity in breeding bulls likely reduced the effective population size, thereby affecting LD in these groups. Meanwhile, the LD decay patterns in Xinjiang Brown and Chinese Holstein cows exhibit potential similarities, favoring the construction of a combined reference population. Overall, the LD decayed fastest in Xinjiang Brown cows, indicating lower levels of selection than the other three groups. This suggests a high level of genetic diversity in Xinjiang Brown cows, which harbor rich genetic resources with potential for development and use. These findings provide a scientific basis for the conservation, exploitation, and use of genetic diversity in Xinjiang Brown cattle.
Genetic structure analysis can elucidate phylogenetic relationships and genetic distances among different populations (Whelan and Goldman, 2001). Under the influence of natural and artificial selection, populations exhibiting pronounced genetic differences are evident. When K = 2, there is a distinct genetic structure differentiation among Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows. This is related to the breeding strategies employed during the intense selection process of Xinjiang Brown and Chinese Holstein cattle, where most female progenitors in the early stages of population breeding originated from local Chinese yellow cattle (Liu, 2013).
The breeding of Xinjiang Brown and Chinese Holstein cattle involves the introduction of foreign breeds for crossbreeding to improve and enhance the local yellow cattle population in China. Subsequently, through crossbreeding fixation and selective breeding, these breeds have been further developed and stabilized. The genetic background of Xinjiang Brown cattle is traceable to the original crossbreeding improvement in 1951, when the maternal breed was Kazakh cattle (Ma, 2015). Conversely, the genetic background of the Chinese Holstein cattle dates back to 1840. From 1840 to 1948, the Chinese Holstein cattle underwent more than a century of introduction and early stages of crossbreeding improvement. During this period, China initially introduced various dairy breeds, including the Holstein cattle, Jersey cattle, Ayrshire cattle, Brown Swiss cattle, and Shorthorn cattle (Liu, 2013). The distinct genetic structure observed among Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows indicates a significant genetic distance between these two major groups. This significantly affects the genetic structure of multi-breed joint reference genomes established later, subsequently affecting the accuracy of genomic predictions.
Figure 5 shows that the coefficient of kinship among individuals within the populations of Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls was relatively high. However, the coefficient of kinship between these groups and the Chinese Holstein cow population tended to be close to 0. This result suggests that when conducting multi-breed genomic selection, it is not advisable to use only one breed as the reference population and the other as the selection population. Instead, it is necessary to fully consider the relationship between the selection and reference populations. When the kinship between the two breeds involved in multi-breed genomic selection is weak or extremely weak, it is necessary to include a certain number of individuals from the same breed in the reference population to ensure high reliability in the estimation of genomic breeding values.
The PCA results identified two major clusters: one containing Xinjiang Brown cows, Xinjiang Brown bulls, Brown Swiss bulls, and Chinese Holstein cows, whereas the other mainly contained Chinese Holstein cows. This suggests a relatively distant genetic relationship between these two clusters. Clustering of Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls is highly concentrated, indicating a close genetic distance among these groups. When considering only the clustering of Chinese Holstein cows, a small subset can be distinguished from the larger population, which exhibits a distant genetic relationship with Xinjiang Brown cows, Xinjiang Brown bulls, and Brown Swiss bulls and with most Chinese Holstein cows. In the subsequent multi-breed genetic evaluations, it is recommended to exclude chip and phenotypic data from this subset of Chinese Holstein cows and their respective farms. This approach can help reduce the interference of genetic structure differences while estimating SNP effects. These findings suggest a low genetic linkage between Xinjiang Brown and Chinese Holstein cattle.
4.2 Genetic parameter analysis of the joint reference population
The number of genotyped Chinese Holstein cattle in the joint reference population significantly affects the estimation of variance components. Therefore, it is necessary to consider the number of genotyped animals from different populations in the joint reference population during multi-breed genetic evaluations. The most important factors that affect the reliability of genomic breeding value estimation are the proportion of genetic variance explained by SNPs and trait heritability (Steyn et al., 2019; van Grevenhof et al., 2019). These genetic parameters are directly related to the size and structure of the training population as well as the range, quality, and quantity of phenotypic and genomic information available for individuals in the training population. To ensure accurate genomic breeding value estimation, it is important to minimize the relationship between genotyped individuals within the training population and maximize the relationship between the training and prediction populations. Because ssGBLUP generates genomic breeding values for cows, it is particularly useful for cows with only parental average information. The single-step genomic evaluation combines information from all countries, considering potential duplicate counting of the same information, thereby ensuring more accurate estimation of genomic breeding values. Adding carefully selected cows to the training population can expand the population, improve its structure and relationship with the prediction population, and reduce selection bias. However, in this study, a large proportion of the chip data came from cows, with relatively fewer bulls for validation, probably being a reason for the poor prediction performance.
The ssGBLUP method can simultaneously analyze phenotypic, genomic, and pedigree information from both genotype and non-genotype animals by integrating external information. This method is particularly convenient when using foreign paternal genetic material. For example, during the Interbull evaluation of Brown Swiss bulls, a country can obtain genomic information from multiple countries and MACE information. Combining external MACE information with ssGBLUP can complement paternal information from different countries and provide pseudophenotypic information for foreign paternal lines with no or few offsprings. This research result suggests that we can conduct cross-country genetic evaluations with the Brown Swiss bull origin introduced during the breeding of Xinjiang Brown cattle, which could improve the reliability of genomic predictions for Xinjiang Brown cattle.
4.3 Reliability of genetic evaluation in joint reference populations
In theory, a model that assumes the closest distribution of SNP effects to their true distribution can achieve the highest reliability in genomic prediction. The GBLUP model assumes that all SNP effects follow the same normal distribution and compresses the effects of all SNPs to the same degree because different models have different assumptions about the distribution of SNP effects (Villar-hernÁndez et al., 2021). Several methods have been proposed to improve the accuracy of genomic prediction in small populations of dairy cattle (Marjanovic et al., 2021), and one effective approach is to use joint reference populations by combining reference data from different populations (Steyn et al., 2019; van Grevenhof et al., 2019). This method has reported significant benefits in genomic prediction for North American Holstein, European Holstein, Chinese Holstein, and Brown Swiss populations (Vanderick et al., 2017; van den berg et al., 2016). However, the accuracy of genomic prediction is dependent on the relationship between candidate and reference animals, requiring the reference population to be sufficiently close to the target population (Xu et al., 2019). Therefore, for multi-breed joint genetic evaluation between Xinjiang Brown and Chinese Holstein cattle, considering only the added number of animals is insufficient. Further in-depth analysis of important influencing factors, including assumptions about SNP effects (van den berg et al., 2019) and the weights of the A- and G-matrices in the H-matrix (Karaman et al., 2018; Botelho et al., 2021), is required to improve the accuracy and unbiasedness of predictions (Botelho et al., 2021).
Including cows in the genotyping reference population is necessary because of the limited number of cows with reliable phenotypic information available for predicting offspring traits. To improve the genomic breeding values of the population, it is necessary to include a certain number of validated bulls with reliable phenotypic information in the reference population (Vanraden et al., 2020). Previous studies have reported that the inclusion of cows in the validated bull reference population can improve the accuracy of genomic prediction (Ding et al., 2013). Although the phenotypic information for cows is less accurate than that for bulls with offspring validation, additional information can still be significant (Cole et al., 2021), considering the large number of cows available as reference animals.
5 CONCLUSION
The genetic structure of mature Xinjiang Brown and Chinese Holstein cows is different, and the individual kinship between these two populations is relatively distant. This increases the impact of genetic structure and kinship on the reliability of genomic breeding value estimation. Through comparisons of parameters, including heritability, breeding value reliability, and unbiasedness, it was initially determined that including 600 and 900 Chinese Holstein cows in the joint reference population positively impacted the genomic prediction of Xinjiang Brown cattle to some extent. In multi-breed genome selection, it is necessary to pre-evaluate the genetic structure and genetic relationship of the population. It is feasible to combine the Chinese Holstein cattle population into the Xinjiang brown cattle population to form a joint reference group for cross-breed genetic assessment. It can provide theoretical guidance for applied genomic genetic assessment and multi-breed genomic genetic assessment of Xinjiang brown cattle, and also provide reference for genome selection of other dual-use cattle and small population breeds.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.
ETHICS STATEMENT
The animal studies were approved by Experimental animal Welfare Ethics Committee, Xinjiang Agricultural University. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent was obtained from the owners for the participation of their animals in this study.
AUTHOR CONTRIBUTIONS
MZ: Investigation, Writing–original draft, Writing–review and editing. LX: Data curation, Writing–review and editing. HiL: Writing–original draft. HnL: Methodology, Writing–original draft. JZ: Formal Analysis, Investigation, Writing–review and editing. DW: Investigation, Writing–review and editing. XZ: Investigation, Writing–review and editing. XH: Conceptualization, Resources, Supervision, Writing–review and editing. YW: Conceptualization, Writing–original draft, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was funded by the Xinjiang Uygur Autonomous Region Science and technology Aid Xinjiang Project (Grant No. 2018E02052), The Xinjiang Uygur Autonomous Region University Scientific Research Project (Grant No. XJEDU 2017I005) and National Modern Agriculture Industrial System Project (Grant No. CARS-36).
ACKNOWLEDGMENTS
We greatly thank the Xinjiang Tianshan Animal Husbandry Bio-Engineering Co., Ltd., Xinjiang Uygur Autonomous Region local state-owned Urumqi cattle farm, Yili Xinjiang Brown cattle farm, Tacheng Agriculture and Animal Husbandry Technology Co., Ltd., China for data and samples collection.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., and Lawlor, T. J. (2010). Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93 (2), 743–752. doi:10.3168/jds.2009-2730
	 Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19 (9), 1655–1664. doi:10.1101/gr.094052.109
	 Amaral, A. J., Megens, H., Crooijmans, R. P. M. A., Heuven, H. C. M., and Groenen, M. A. M. (2008). Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179 (1), 569–579. doi:10.1534/genetics.107.084277
	 Boichard, D., Ducrocq, V., Croiseau, P., and Fritz, S. (2016). Genomic selection in domestic animals: principles, applications and perspectives. Comptes Rendus Biol. 339 (7-8), 274–277. doi:10.1016/j.crvi.2016.04.007
	 Botelho, M. E., Lopes, M. S., Mathur, P. K., Knol, E. F., Guimarães, S. E. F., Marques, D. B. D., et al. (2021). Applying an association weight matrix in weighted genomic prediction of boar taint compounds. J. Anim. Breed. Genet. 138 (4), 442–453. doi:10.1111/jbg.12528
	 Brøndum, R. F., Su, G., Janss, L., Sahana, G., Guldbrandtsen, B., Boichard, D., et al. (2015). Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. J. Dairy Sci. 98 (6), 4107–4116. doi:10.3168/jds.2014-9005
	 Christensen, O. F., and Lund, M. S. (2010). Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. Paris. 42 (1), 2. doi:10.1186/1297-9686-42-2
	 Cole, J. B., Dürr, J. W., and Nicolazzi, E. L. (2021). Invited review: the future of selection decisions and breeding programs: what are we breeding for, and who decides?J. Dairy Sci. 104 (5), 5111–5124. doi:10.3168/jds.2020-19777
	 Consortium, T. B. H., Gibbs, R. A. A., Taylor, J. F. A., Van Tassell, C. P., Barendse, W., Eversole, K. A., et al. (2009). Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324 (5926), 528–532. doi:10.1126/science.1167936
	 Dassonneville, R., Brndum, R. F., Druet, T., Fritz, S., Guillaume, F., Guldbrandtsen, B., et al. (2011). Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations. J. Dairy Sci. 94 (7), 3679–3686. doi:10.3168/jds.2011-4299
	 de Roos, A. P. W., Hayes, B. J., and Goddard, M. E. (2009). Reliability of genomic predictions across multiple populations. Genetics 183 (4), 1545–1553. doi:10.1534/genetics.109.104935
	 Ding, X., Zhang, Z., Li, X., Wang, S., Wu, X., Sun, D., et al. (2013). Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. J. Dairy Sci. 96 (8), 5315–5323. doi:10.3168/jds.2012-6194
	 Edel, C., Schwarzenbacher, H., Hamann, H., Neuner, S., Emmerling, R., and Götz, K. U. (2011). The German-Austrian genomic evaluation system for Fleckvieh (Siemmental) cattle[J]. Interbull Bull. (44), 152–156. 
	 Farnir, F., Coppieters, W., Arranz, J., Berzi, P., Cambisano, N., Grisart, B., et al. (2000). Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10 (2), 220–227. doi:10.1101/gr.10.2.220
	 George, R., Wiggans, J. B. C. S., Hubbard, S. M., and Sonstegard, T. S. (2017). Genomic selection in dairy cattle: the USDA experience. Annu. Rev. animal Biosci. 5, 309–327. doi:10.1146/annurev-animal-021815-111422
	 Hayes, B., Meuwissen, T., and Goddard, M. (2016). Genomic selection: a paradigm shift in animal breeding. Anim. Front. 6 (1), 6–14. doi:10.2527/af.2016-0002
	 Hill, W. G. (1974). Estimation of linkage disequilibrium in randomly mating populations. Heredity 33 (2), 229–239. doi:10.1038/hdy.1974.89
	 Jorjani, H., Jakobsen, J., Hjerpe, E., Palucci, V., and Dürr, J. W. (2012). Status of genomic evaluation in the Brown Swiss populations. Interbull (46), 46–54. 
	 Karaman, E., Lund, M. S., Anche, M. T., Janss, L., and Su, G. (2018). Genomic prediction using multi-trait weighted GBLUP accounting for heterogeneous variances and covariances across the genome. G3 (Bethesda, Md.) 8 (11), 3549–3558. doi:10.1534/g3.118.200673
	 Legarra, A., and Reverter, A. (2019). Correction to: semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genet. Sel. Evol. 51 (1), 69. doi:10.1186/s12711-019-0511-5
	 Liu, G. C. (2013). Special history of China's dairy industry. Beijing: China Agriculture Press. 
	 Lund, M. S., Roos, A. P. W. D., Vries, A. G. D., Druet, T., Ducrocq, V., Fritz, S., et al. (2011). A common reference population from four European Holstein populations increases reliability of genomic predictions. Genet. Sel. Evol. Paris. 43 (1), 43. doi:10.1186/1297-9686-43-43
	 Lund, M. S., Su, G., Janss, L., Guldbrandtsen, B., and Brøndum, R. F. (2014). Genomic evaluation of cattle in a multi-breed context. Livest. Sci. 166, 101–110. doi:10.1016/j.livsci.2014.05.008
	 Ma, Y. (2015). Genetic variations of chinese holstein bullsin fak gene regulation zone identification andits associated with semen quality analysis (Shandong: Shandong Normal University). 
	 Marjanovic, J., Hulsegge, B., and Calus, M. P. L. (2021). Relatedness between numerically small Dutch Red dairy cattle populations and possibilities for multibreed genomic prediction. J. Dairy Sci. 104 (4), 4498–4506. doi:10.3168/jds.2020-19573
	 Metta, M., Kanginakudru, S., Gudiseva, N., and Nagaraju, J. (2004). Genetic characterization of the Indian cattle breeds, Ongole and Deoni (Bos indicus), using microsatellite markers - a preliminary study. BMC Genet. 5 (1), 16. doi:10.1186/1471-2156-5-16
	 Odani, M., Narita, A., Watanabe, T., Yokouchi, K., Sugimoto, Y., Fujita, T., et al. (2006). Genome-wide linkage disequilibrium in two Japanese beef cattle breeds. Anim. Genet. 37 (2), 139–144. doi:10.1111/j.1365-2052.2005.01400.x
	 Palombo, V., Pegolo, S., Conte, G., Cesarani, A., Macciotta, N. P. P., Stefanon, B., et al. (2021). Genomic prediction for latent variables related to milk fatty acid composition in Holstein, Simmental and Brown Swiss dairy cattle breeds. J. Anim. Breed. Genet. 138 (3), 389–402. doi:10.1111/jbg.12532
	 Park, L. (2012). Linkage disequilibrium decay and past population history in the human genome. PloS one 7 (10), e46603. doi:10.1371/journal.pone.0046603
	 Pryce, J. E., Gredler, B., Bolormaa, S., Bowman, P. J., Egger-Danner, C., Fuerst, C., et al. (2011). Short communication: genomic selection using a multi-breed, across-country reference population. J. Dairy Sci. 94 (5), 2625–2630. doi:10.3168/jds.2010-3719
	 Steyn, Y., Lourenco, D. A. L., and Misztal, I. (2019). Genomic predictions in purebreds with a multibreed genomic relationship matrix1. J. Animal Sci. 97 (11), 4418–4427. doi:10.1093/jas/skz296
	 van den Berg, I., Boichard, D., and Lund, M. S. (2016). Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds. J. Dairy Sci. 99 (11), 8932–8945. doi:10.3168/jds.2016-11073
	 van den Berg, I., Meuwissen, T. H. E., Macleod, I. M., and Goddard, M. E. (2019). Predicting the effect of reference population on the accuracy of within, across, and multibreed genomic prediction. J. Dairy Sci. 102 (4), 3155–3174. doi:10.3168/jds.2018-15231
	 Vanderick, S., Gillon, A., Glorieux, G., Mayeres, P., Mota, R., and Gengler, N. (2017). Usefulness of multi-breed models in genetic evaluation of direct and maternal calving ease in Holstein and Belgian Blue Walloon purebreds and crossbreds. Livest. Sci. 198 (1), 129–137. doi:10.1016/j.livsci.2017.02.019
	 van Grevenhof, E. M., Vandenplas, J., and Calus, M. P. L. (2019). Genomic prediction for crossbred performance using metafounders. J. animal Sci. 97 (2), 548–558. doi:10.1093/jas/sky433
	 Vanraden, P. M., Tooker, M. E., Chud, T. C. S., Norman, H. D., Megonigal, J. H., Haagen, I. W., et al. (2020). Genomic predictions for crossbred dairy cattle. J. Dairy Sci. 103 (2), 1620–1631. doi:10.3168/jds.2019-16634
	 Villar-Hernández, B. D. J., Pérez-Elizalde, S., Martini, J. W. R., Toledo, F., Perez-Rodriguez, P., Krause, M., et al. (2021). Application of multi-trait Bayesian decision theory for parental genomic selection. G3 (Bethesda) 11 (2), jkab012. doi:10.1093/g3journal/jkab012
	 Weigel, K. A. A., de Los Campos, G. A., Vazquez, A. I. A., Rosa, G. J. M., Gianola, D., and Van Tassell, C. P. (2010). Accuracy of direct genomic values derived from imputed single nucleotide polymorphism genotypes in Jersey cattle. J. Dairy Sci. 93 (11), 5423–5435. doi:10.3168/jds.2010-3149
	 Weller, J. I., Ezra, E., and Ron, M. (2017). Invited review: a perspective on the future of genomic selection in dairy cattle. J. Dairy Sci. 100 (11), 8633–8644. doi:10.3168/jds.2017-12879
	 Whelan, S., and Goldman, N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18 (5), 691–699. doi:10.1093/oxfordjournals.molbev.a003851
	 Xu, L., Wang, Z., Zhu, B., Liu, Y., Li, H., Bordbar, F., et al. (2019). Theoretical evaluation of multi-breed genomic prediction in Chinese indigenous cattle. Anim. (Basel) 9 (10), 789. doi:10.3390/ani9100789
	 Zhang, M. H., You, Z. C., Wei, C., Li, J. F., Ge, J. J., Chen, G. L., et al. (2021). Analysis of influencing factors on production performance of Chinese Holstein cattle and Xinjiang brown cattle in Xinjiang region. Chin. J. Animal Sci. 57 (5), 246–252. doi:10.19556/j.0258-7033.20201113-04
	 Zhang, C., Dong, S., Xu, J., He, W. M., and Yang, T. L. (2019). PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35 (10), 1786–1788. doi:10.1093/bioinformatics/bty875
	 Zhang, M., Luo, H., Xu, L., Shi, Y., Zhou, J., Wang, D., et al. (2022). Genomic selection for milk production traits in Xinjiang Brown cattle. Animals 12 (2), 136. doi:10.3390/ani12020136
	 Zhou, L., Heringstad, B., Su, G., Guldbrandtsen, B., Meuwissen, T. H. E., Svendsen, M., et al. (2014). Genomic predictions based on a joint reference population for the Nordic Red cattle breeds. J. Dairy Sci. 97 (7), 4485–4496. doi:10.3168/jds.2013-7580
	 Zumbach, B., Jorjani, H., and Dürr, J. (2010). Brown Swiss genomic evaluation. Interbull Bull. (42), 44–45. 

Conflict of interest: Author JZ was employed by Shijiazhuang Molbreeding Biotechnology Co., Ltd.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Zhang, Xu, Lu, Luo, Zhou, Wang, Zhang, Huang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.






 


	
	
ORIGINAL RESEARCH
published: 02 May 2024
doi: 10.3389/fvets.2024.1382897








[image: image2]

Effects of nonsynonymous single nucleotide polymorphisms of the KIAA1217, SNTA1 and LTBP1 genes on the growth traits of Ujumqin sheep
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Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep. In this study, high-resolution resequencing data from four sheep breeds (Dorper sheep, Suffolk sheep, Ouessant sheep, and Shetland sheep) were analyzed. The nonsynonymous single nucleotide polymorphisms of three candidate genes (KIAA1217, SNTA1, and LTBP1) were also genotyped in 642 healthy Ujumqin sheep using MALDI-TOFMS and the genotyping results were associated with growth traits. The results showed that different genotypes of the KIAA1217 g.24429511T>C locus had significant effects on the chest circumferences of Ujumqin sheep. The SNTA1 g.62222626C>A locus had different effects on the chest depths, shoulder widths and rump widths of Ujumqin sheep. This study showed that these two sites can be used for marker-assisted selection, which will be beneficial for future precision molecular breeding.
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1 Introduction

Sheep (Ovis aries) are economically one of the most important animals in the world (1), providing humans with a stable and high-quality source of animal protein and animal products such as skin, hair, and milk. Since sheep were domesticated (2), they have inhabited all parts of the world following the migration of humans. In this process, both the natural environment and artificial selection have had a profound impact on the domestication of sheep, resulting in large differences in the appearances, phenotypes, and morphological structures of sheep in different regions. For example, Dorper sheep native to South Africa and Suffolk sheep (3, 4) from the United Kingdom are famous for their fast growth rates and high meat production. The average adult sheep weight range can reach 85–120 kg. In sharp contrast, small sheep, such as Ouessant sheep and Shetland sheep (5, 6), have average adult body weights ranging from 45 to 75 kg. The growth traits of sheep (such as weight, height and length) can directly reflect the growth rates and fat growth rates of sheep and are also an important indicator of the growth performance of sheep. Therefore, understanding sheep growth traits is highly important for livestock production. At present, the common sheep varieties in China include Ujumqin sheep, Hu sheep, Xiaowei Han sheep, Tibetan sheep and others (7–10). As an excellent local variety differentiated from Mongolian sheep, Ujumqin sheep gradually developed after long-term selection and breeding and are well known for their fast growth rate and delicious meat.

In recent years, following the rapid development of biotechnology and genomics, molecular marker technology has improved. Single-nucleotide polymorphisms (SNPs) are third-generation molecular markers after restricted fragment length polymorphisms (RFLPs) and microsatellite polymorphisms (MPPs) (11). SNPs refer to DNA sequence polymorphisms caused by single nucleotide variations in the genome, including single base insertions, deletions, transitions, and transversions (12). SNPs can be classified into nonsynonymous single nucleotide polymorphisms (nsSNPs) and synonymous single nucleotide polymorphisms (sSNPs) according to their effects on gene transcription and protein translation. Nonsynonymous single nucleotide polymorphisms represent common genetic variants that alter the translated amino acid sequence, and this may affect the structure or function of the expressed protein (13). This genetic variation may lead to alterations in individual traits, such as body length and height growth traits. In this context, the results of an increasing number of studies have shown that nsSNPs have important effects on the growth traits of sheep (14, 15). By continuously mining and verifying major gene loci related to sheep economic traits, including the MSTN gene affecting sheep muscle growth and development, the TBXT gene affecting sheep tail type, and the FGF5 candidate gene related to wool length, researchers have applied these polymorphisms of major genes in production practice through gene editing and other technologies. This approach can greatly increase the economic value of sheep; for example, biallelic knockout of MSTN expression in sheep was successfully achieved using CRISPR/Cas9 gene editing. Compared with wild-type (WT) sheep, MSTN knockout sheep have greater muscle mass and muscle fiber diameters, but their meat quality and taste are not affected (16). CRISPR/Cas9-mediated deletion of the FGF5 gene not only results in the loss of its activity but also promotes the growth of sheep wool and cashmere, thereby increasing length and yield (17). These achievements have brought new optimism and opportunities for the development of animal husbandry. Nevertheless, the major gene loci involved in sheep growth traits still require research, especially with the deepening of our understanding of the sheep genome driven by biotechnology. There are still some potentially important gene loci that have not been revealed. Therefore, it is of great theoretical and practical significance to identify and verify the relevant sheep growth trait sites; it is expected that this investigation will provide a breakthrough for improving sheep production performance and economic benefits. It is important to identify potential genetic markers that affect the growth traits or reproductive characteristics of sheep and to accelerate the sheep breeding process.

In this study, resequencing data from four sheep breeds were divided into high-yield and low-yield groups according to body size, and population differentiation index (FST) analysis was used to identify genes and mutation sites related to the body size of the sheep. Based on the FST results, we performed GO and KEGG enrichment analyses for the top 5% of the candidate genes. Twenty-four nsSNPs across three candidate genes, KIAA1217, STNA1 and LTBP1, were identified. However, whether these nsSNPs have an effect in Ujumqin sheep is unclear. Therefore, we collected blood from 642 Ujumqin sheep for genotyping of the above sites, matched the genotyping results with body size data, and verified the molecular markers of the main effect growth trait sites in the genomes of Ujumqin sheep.



2 Materials and methods


2.1 Sample collection

The experimental animals used in this study were bred in their country of origin and were not crossed with other sheep breeds. A total of 642 Ujumqin sheep (260 males +382 females) were obtained from the East Ujumqin Banner breeding farm in Xilin Gol League, Inner Mongolia. All healthy animals were fed freely under the same natural conditions. Venous blood collection was performed on sheep using a vacuum blood collection vessel, and the sample storage conditions were −20°C. The body size data of the sheep were measured manually. For detailed measurement methods, see a previously published article (18).



2.2 Data sources

The raw data for this study were downloaded from the BioProject database of NCBI (PRJNA624020). The dataset contained resequencing data for four breeds of sheep (Dorper sheep, Suffolk sheep, Ouessant sheep and Shetland sheep), for a total of 37 samples.



2.3 Sequence read mapping and SNP calling

Approximately 82.86 Gb of the original sequence was obtained from each sample, with an average depth of 27.4× covering the clean reads (Supplementary Datas 1, 2). Using default parameters, the 150 bp counterpart reads were mapped to the sheep reference genome Oar v.4.0 using the Burrows–Wheeler Aligner (19). The mapping results were then converted to BAM format and sorted using SAMtools (20). After mapping, we made SNP calls to all individuals using the Bayesian method implemented in SAMtools and the Genome Analysis Toolkit (GATK) (21). Then, SnpEff software (22) was used to annotate the structures of the mutation sites.



2.4 FST analysis

The four breeds of sheep were divided into two groups according to their body sizes (high-yield group: Dorper sheep, Suffolk sheep; low-yield group: Ouessant sheep, Shetland sheep). The FST value was estimated using a 100 kb sliding window on each chromosome with a window step size of 10 kb. The average FST values are the values for the entire genomes of different populations. When the FST value of the sliding window was greater than 95% of the FST value of the genome range, it was selected as a significant window. The overlapping significant windows were then merged into segments that were considered highly differentiated regions between populations. Genes within these regions of differentiation are considered candidates for selective elimination. We used the VCFtools 0.1.16 software package (23) for data collection for the FST calculation method: (1) Calculation of in-population genetic variation: For each genetic marker, the allele frequency of each population was calculated. The degree of heterozygosity (Ho) or allelic diversity within each population was calculated. (2) Calculation of interpopulation genetic variation: The average allele frequency of all populations was calculated. These mean frequencies were used to calculate the expected heterozygosity (Ht) of the population. (3) Calculation of FST:

[image: Equation illustrating F_ST as the formula \((H_t - H_s) / H_t\), where \(F_ST\) represents a measure of genetic differentiation, \(H_t\) is total genetic diversity, and \(H_s\) is subpopulation genetic diversity.]

Here, Ht is the overall expected heterozygosity between populations, and Hs is the weighted average expected heterozygosity within populations.



2.5 Enrichment analysis of key genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for the top 5% of the FST genes. GO enrichment analysis was performed using the online tool g: Profiler (24), and GO classifications included biological processes (BP), cellular components (CC), and molecular functions (MF). The significantly enriched GO items were selected according to p < 0.05. KOBAS 3.0 (25) was used for KEGG pathway enrichment analysis, and p < 0.05 was considered the screening criterion for significant enrichment.



2.6 Design and synthesis of primers and classification of SNPs

Based on the FST analysis results of this study and referring to previous results (26), primer design was performed using the upstream and downstream 200 bp sequence information of nsSNPs of common genes significantly selected by XP-CLR in the top 5% of FSTs. The primers were designed using the Agena online software Design Suite 2.0.1 The designed primer sequence was derived and then synthesized by Invitrogen. The mutation sites were identified by stroma-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The genotyping system used was the MassARRAY® MALDI-TOF system developed by Agena.



2.7 Statistical analysis

The phenotypic data of Ujumqin sheep were statistically analyzed using Excel 2021 software. SPSS 22.0 software (27) was used to analyze the correlation between genotypes and phenotypic traits. P < 0.05 indicated significant differences, and p < 0.01 indicated extremely significant differences. The following general linear model (GLM) was used for analysis: Y = μ + G + m + e.

Y, trait measurement value; μ, population mean; G, genotype effect; m, sex effect; e, random residual.



2.8 nsSNP protein structure prediction

TBtools (28) was used to extract CDS information before and after mutation based on reference genome information. RNAfold2 online software was used to predict the secondary structure of mutated mRNAs. SOPMA (29) was used to predict protein secondary structure. After the amino acid sequence using CDS sequence can be converted to SWISS-MODEL3 online software to forecast the mutant protein tertiary structure before and after.




3 Results


3.1 Selection of candidate genes for sheep body size

To identify candidate genes that affect sheep body size, we conducted FST selection signal analysis on the high-yield and low-yield groups of sheep (Figure 1), and a total of 1747 significant genes were selected as the top 5% of the FST. Analysis of these 1747 genes revealed that three genes (KIAA1217, SNTA1 and LTBP1) were significantly selected by the XP-CLR method used in previous studies. Therefore, we selected nsSNPs of the above three genes for further study (Table 1).

[image: Bar chart showing F\(_{ST}\) values across 27 chromosomes, labeled 1 to X on the x-axis. Bars alternate between red and blue, demonstrating genetic differentiation. The y-axis ranges from 0 to 1.]

FIGURE 1
 Genome-wide distribution of FST in the high-yield and low-yield groups; the X-axis represents chromosomes, the Y-axis represents FST values, and the black dashed line represents the significance threshold.




TABLE 1 The nonsynonymous single nucleotide polymorphism sites in the KIAA1217, SNTA1, and LTBP1 genes.
[image: A table listing genetic variants. Columns include SNP, Gene name, Mutation type, Position, REF, and ALT. Examples: SNP g.24086608A>C in gene KIAA1217 shows a missense variant at position Chr13:24086608 changing from A to C. Other gene names include SNTA1 and LTBP1. Most mutations are missense variants with position data specified.]



3.2 Enrichment analysis of candidate genes

To investigate which GO enrichment terms and signaling pathways were associated with the top 5% of genes significantly enriched in the FST, we conducted GO and KEGG enrichment analyses of these 1747 genes (Figure 2). According to the GO classification statistics, 214 terms were grouped into three GO categories: cellular components, molecular functions, and biological processes. Among the three GO categories, the most significantly enriched were cytoplasm, protein binding and developmental process. GO enrichment analysis revealed that most of these genes were involved to varying degrees in the development of organisms (Figure 2A).

[image: Panel A displays a bar graph categorizing biological processes, cellular components, and molecular functions with bars indicating significance levels (-log10 p-values). Panel B shows a bubble chart illustrating the enrichment of various pathways. Bubble size represents count, while color indicates p-value significance, with key pathways noted such as "Metabolic pathways" and "Cell cycle."]

FIGURE 2
 The results of GO/KEGG enrichment analysis of the top 5% of genes in the FST selection signal. (A) The results of GO enrichment analysis. Green, orange and blue represent biological processes, cell components and molecular functions in GO enrichment terms, respectively. (B) The results of KEGG enrichment analysis. The X-axis represents the ratio of differentially enriched genes to the total gene number of this term, and the Y-axis represents the enriched function/pathway. The color represents the degree of enrichment significance, and the closer to red the color is, the more significant the enrichment is. The size of the circle represents the number of genes enriched.


In addition, we performed KEGG pathway enrichment analysis to explore the most active pathways related to these genes. The results showed that most of the enriched pathways were related to biological development, such as the phospholipase D signaling pathway, the PI3K/Akt signaling pathway, the TGF-β signaling pathway, and cell cycle (Figure 2B).



3.3 Correlations between growth traits and nsSNPs in Ujumqin sheep

The DNA of 642 Ujumqin sheep was genotyped and the next step was to analyze the loci with more than 95% detection rate. Among the 24 nsSNPs, only 2 met the above conditions, namely, KIAA1217 g.24429511T > C and SNTA1 g.62222626C > A (Figures 3A,B). Analysis of the genotype frequencies and allele frequencies of these two loci revealed 3 genotypes at each locus. The TC genotype in the KIAA1217 g.24429511T > C locus was the dominant genotype, and the genotype frequency was 0.48, indicating moderate polymorphism (0.25 < PIC<0.5). At the SNTA1 g.62222626C > A locus, the CC genotype was the dominant genotype, the genotype frequency was 0.84, and the polymorphism frequency was low (PIC<0.25). In addition, according to the χ2 test, both of the above two SNPs reached HWE (p > 0.05) (Table 2). The results of the association analysis between the typing results of the two loci and the 6-month-old body size data of Ujumqin sheep are shown in Table 3. The presence of different genotypes at the KIAA1217 g.24429511T > C locus had significant effects on the chest circumference of Ujumqin sheep (Figure 3C), and the chest circumference of individuals with the TC genotype was significantly greater than that of individuals with the TT genotype (p < 0.05). The chest depths of Ujumqin sheep with an AA genotype at the SNTA1 g.62222626C > A locus were greater than those of CC genotype and CA genotype sheep (Figure 3F), and the difference was significant (p < 0.05). The shoulder widths of CA genotype sheep were significantly greater than those of CC genotype sheep (Figure 3E) (p < 0.05), and the differences in rump width were highly significant (p < 0.01), as shown in Figure 3D.

[image: Graphical data on genotype effects, displaying two scatter plots (A and B) and four bar charts (C to F). Scatter plots show genetic variation impacts on height, categorized by color and shape for different genotypes: KIAA1217 in A and SNTA1 in B. Bar charts (C to F) present measurements of chest circumference, rump width, shoulder width, and chest depth, comparing genotypes KIAA1217 and SNTA1, highlighting statistical differences indicated by letters above the bars.]

FIGURE 3
 Results of site genotyping and association analysis; (A,B) show the genotyping results of KIAA1217 g.24429511T > C and SNTA1 g.62222626C > A in the Ujumqin sheep population, respectively. The genotypes near the X-axis were of low molecular weight, and those near the Y-axis were of high molecular weight. Blue and orange represent pure genotypes, green represents heterozygous genotypes, and red represents undetected samples. (C–F) Show the effects of different genotypes of two SNP loci on Ujumqin sheep production traits. (C) The chest sizes of sheep with the TC genotype at KIAA1217 g.24429511T > C were significantly greater than those of sheep with the TT genotype. At the SNTA1 g.62222626C > A locus, sheep with the (D) CA genotype were significantly wider than sheep with the CC genotype, (E) sheep with the CA genotype were significantly wider than those with the CC genotype, and (F) sheep with the AA genotype were significantly deeper than those with the CC and CA genotypes. Different letters on the shoulder of the same column of data indicate statistically significant differences, lowercase letters represent significant differences (p < 0.05), and uppercase letters represent extremely significant differences (p < 0.01).




TABLE 2 Genetic parameters of nsSNPs in the experimental population of Ujumqin sheep.
[image: Table showing SNPs KIAA1217 and SNTA1 with associated genotypes, genotype frequencies, alleles, allele frequencies, He, Ho, PIC, and HWE (χ²) values. KIAA1217 has genotypes CC, TT, TC with varied frequencies; SNTA1 has AA, CC, CA. Allele frequencies range from 0.08 to 0.92. He values are 0.48 and 0.15. Ho values are 0.52 and 0.85. PIC values are 0.35 and 0.14. HWE (χ²) values are 0.62 and 0.04.]



TABLE 3 Genetic parameters of nsSNPs in the experimental population of Ujumqin sheep.
[image: Table showing the comparison of various physical traits across different genotypes for SNPs KIAA1217 and SNTA1. It includes metrics such as body slanting length, height at wither, hip height, chest depth, shoulder width, rump width, and chest circumference. Significant differences are indicated by different uppercase or lowercase letters.]



3.4 Prediction of nsSNP protein structure related to growth traits of Ujumqin sheep

To better understand how the above two mutation sites affect the expression of genes involved in the growth trait changes of Ujumqin sheep, we used TBtools to extract the CDSs of genes before and after the mutation and used online software to predict the secondary structures of mRNA and the secondary structures and tertiary structures of encoded proteins. The results showed that mutations at both sites resulted in changes in the original amino acid sequence, and mutations at KIAA1217 g.24429511T > C resulted in a change in amino acid 1,493 from the original phenylalanine to leucine (Figures 4A,B). Amino acid 260 at SNTA1 g.62222626C > A changed from tryptophan to leucine (Figures 4C,D). Secondary structure analysis of mRNA before and after mutation revealed that the minimum structural free energy of mRNA before and after the KIAA1217 g.24429511T > C mutation changed from −1983.90 kcal/mol to −1984.40 kcal/mol. The minimum structural free energy of the mRNA before and after the SNTA1 g.62222626C > A site changed from −692.50 kcal/mol to −695.50 kcal/mol, and the stability increased (Supplementary Figure 1). By analyzing the changes in amino acids at the mutation sites and their effects on protein secondary structures, it was found that the proportion of α-helix and random coils increased after mutation at KIAA1217 g.24429511T > C, and the proportion of β-turn and extended strands decreased. There was no change in the proportion of secondary structures after the SNTA1 g.62222626C > A mutation (Table 4).

[image: Four panels labeled A to D depicting molecular structures with blue and orange strands. Each panel includes a close-up view highlighted by a red arrow pointing to a specific site on the structure. Various bindings and configurations are shown, represented with gray and red elements for focus.]

FIGURE 4
 Protein tertiary structure prediction map before and after mutation at 2 mutation sites; (A–D) represent the wildtype and mutant proteins encoded by KIAA1217 and the wildtype and mutant proteins encoded by SNTA1, respectively.




TABLE 4 Results of protein secondary structure prediction.
[image: Table showing the secondary structure percentages for wild type and mutant forms of genes KIAA1217 and SNTA1. For KIAA1217, wild type has 25.21% alpha-helix, 2.95% beta-turn, 9.68% extended strand, and 62.16% random coil; mutant has 25.41%, 2.85%, 9.52%, and 62.22%, respectively. For SNTA1, both wild type and mutant have 29.11% alpha-helix, 5.74% beta-turn, 21.98% extended strand, and 43.17% random coil.]




4 Discussion

Against the background of natural selection, some selective intervention behaviors of humans may cause mutations in some sites of the animal body so that the genetic traits of the organism are diverse. Phenotypic alterations are often caused by functional mutations in genes that control the trait, so such mutations can serve as valid molecular markers for marker-assisted breeding (30). Among these mutations, missense mutations are considered to affect the body phenotype by affecting the mRNA expression of the related genes and the structures of the proteins. In this study, the g.24429511T > C and g.62222626C > A mutations, which are missense mutations that cause differences in growth traits, were located in exon 19 and exon 4 of the gene, respectively. Although both sites lead to changes in amino acids encoded, there are some differences between the two mutations. The g.24429511T > C missense mutation caused the encoded amino acid to change from phenylalanine to leucine, and the amino acid properties changed from polar to nonpolar after the mutation, which may have led to changes in protein properties. Further analysis revealed that mutation of this site resulted in a decrease in the minimum structural free energy of the mRNA secondary structure, an increase in stability, an increase in the proportion of α-helix and random coils, and a decrease in the proportion of β-turn and extended strands. After the missense mutation at g.62222626C > A, the encoded amino acid changed from tryptophan to leucine and from a polar amino acid to a nonpolar amino acid. However, from the perspective of protein secondary structure, the mutation at this site did not cause changes in the proportions of α-helix, extended strands, β-turn or random coils. The main reason may be that amino acids form extended strands in the secondary structure before and after mutation. The SNTA1 gene encodes a cytoplasmic peripheral membrane scaffold protein. In terms of tertiary structure, changes in the amino acids of the protein may affect the structure of the protein, thus affecting the binding of related proteins and leading to the emergence of different phenotypes.

KIAA1217 (a sickle tail protein homolog) has a curly helix region and an actin interaction domain. The proteins it encodes are necessary for normal disc development, dendritic spine morphogenetic regulation, embryonic skeletal system development by regulating cell migration, multicellular biological development, and substrate adhesion-dependent cell proliferation. Mutations in KIAA1217 are associated with malformations in the human backbone and tail vertebrae, and in mice, they affect the development of the spine, resulting in a reduced number of tail vertebrae and a characteristic short tail (31). Recently, researchers have shown that rapid evolution of the regulatory region of this gene in apes may lead to tail loss, which may be related to mutations in specific gene regulatory sequences (32). It has been confirmed that the vertebrae of sheep and humans are most similar in the thoracic and lumbar regions, although they show substantial differences in some dimensions (33). SNTA1 encodes the α1-synthetic protein, a scaffold protein that is a component of the anti-muscular dystrophin-associated protein complex (34). SNTA1 is the link between the extracellular matrix, the intracellular signaling apparatus, and the actin cytoskeleton. SNTA1 is involved in the regulation of the actin cytoskeleton and actin recombination (35). The SNTA1 signaling axis plays an important role in cytoskeletal tissue (36), and researchers have found that the SNTA1 gene is associated with amino acid and ion channel binding in different parts of bovine muscle (37). The sheep LTBP1 gene, located on chromosome 3, encodes TGF-β-binding protein 1 and is a member of the potential TGF-β-binding protein family. One indel of the LTBP1 gene was detected in four sheep breeds, and the effect of the LTBP1 gene on the growth traits of small-tailed cold sheep may be related to sex (38). Cao et al. conducted genome-wide DNA methylation sequencing in a subpopulation of Chinese Mongolian sheep and found that DNA methylation in three regions and two CpG sites in LTBP1 was significantly correlated with its RNA expression, and this gene was also identified as a potential candidate gene associated with weight variation (39). Unfortunately, 5 nsSNPSs of the LTBP1 gene were not detected in the population genotyping results of Ujumqin sheep in this study. Moreover, exploring the influence of the LTBP1 gene on the growth traits of Ujumqin sheep will also constitute a direction of follow-up research.

In recent years, following the development of biotechnology and genome research, an increasing number of SNPs related to the growth traits of livestock and poultry have been discovered. Studies have shown that the g.3148C > T polymorphism of the SIRT1 gene affects the heart circumference of Tibetan sheep, and the g.8074 T > A polymorphism of the SIRT2 gene is significantly correlated with body weight and body length (40). Cao et al. discovered OARX_76354330.1 and s64890.1 to be functional SNPs for growth traits of Hu sheep through genome-wide association analysis of body weight and identified three candidate genes related to body weight in Hu sheep (41): CAPN6, ITGA11 and SCMH1. By using genome-wide high-density SNP data (600 K) for selective scanning tests for important phenotypic traits, researchers have identified genes related to sheep body size, such as RMI1 and SCD5 (42). In the selection of sheep genotypes, it is necessary to comprehensively select SNP genotypes corresponding to the target traits; we therefore need to use different methods to identify additional SNP sites that affect sheep growth traits. Overall, this study used resequencing data from different sheep breeds to mine candidate genes and nsSNPs affecting sheep body size and verified their roles in Ujumqin sheep, thereby obtaining two molecular markers that could be applied in production practice. However, it is not yet clear whether these sites are equally useful in other sheep breeds, and this will be an important direction for our future research. Our results provide new insights into the mining of SNPs related to sheep growth and provide new genetic markers for the genetic improvement in Ujumqin sheep.



5 Conclusion

In this study, resequencing data from four sheep breeds were used to identify three genes related to the body size of sheep. Twenty-four nsSNPs across three genes were identified in Ujumqin sheep. Association analysis revealed that different genotypes of two SNP loci had differences in chest circumference, chest depth, body width and caudal breadth, and mRNA secondary structure stability was enhanced after mutation. These SNPs can be used as a molecular marker for Ujumqin sheep breeding and lay a foundation for future precise molecular breeding.
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Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in southwestern China
Shilin Zhang1, Jing Li1, Yanhua Zhao1, Yujun Tang1, Hao Li1, Tianzeng Song2, Tianwu An3, Jiuqiang Guan3, Xiaowei Li4 and Ming Zhang1,5,6*
1College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
2Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
3Sichuan Academy of Grassland Science, Chengdu, China
4Breeding Fram of Longri, Agriculture and Rural Bureau of Aba Prefecture in Sichuan, Hongyuan, China
5Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
6Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
Edited by:
Zhihong Liu, Inner Mongolia Agricultural University, China
Reviewed by:
Rugang Tian, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, China
Zhixin Chai, Southwest Minzu University, China
* Correspondence: Ming Zhang, zhangming@sicau.edu.cn
Received: 05 February 2024
Accepted: 17 April 2024
Published: 30 May 2024
Citation: Zhang S, Li J, Zhao Y, Tang Y, Li H, Song T, An T, Guan J, Li X and Zhang M (2024) Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in southwestern China. Front. Genet. 15:1382128. doi: 10.3389/fgene.2024.1382128

The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129–0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and FST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.
Keywords: Bos grunniens, whole-genome resequencing, genomic diversity, population genetic structure, selection signature

INTRODUCTION
Yaks are a unique livestock species in the plateau region, displaying high-altitude adaptation to extreme and harsh environments, including cold and hypoxia (Wiener et al., 2003; Aguiar et al., 2018; Qi et al., 2019). They hold significant importance in local animal husbandry, providing meat, milk, wool, labor, fuel, and other essential resources to the local herdsmen (Wiener et al., 2003). Additionally, yaks serve as a valuable gene bank for genetic studies (Qiu et al., 2012).
The exploration of population genetic structure of yak has become a prominent field in domestic animal. Studies have been conducted on the genetic diversity of yaks using microsatellites and mitochondrial DNA (Qiu et al., 2015; Wang et al., 2021; Hameed et al., 2022; Ma et al., 2022). Moreover, the assembly and publication of the first yak reference genome in 2012, followed by subsequent improvements, have resulted in a highly complete and accurate yak reference genome at the chromosome level (Qiu et al., 2012; Ji et al., 2021; Zhang et al., 2021). This achievement has laid a robust foundation for investigating genetic variation at the whole-genome level in yaks, leading to the widespread use of whole-genome resequencing technology. This technology has enabled analyses of genetic variation in yaks, covering aspects such as their origin, domestication (Medugorac et al., 2017; Chai et al., 2020; Meng et al., 2022), genetic diversity and structure (Wang et al., 2014; Zhang et al., 2016; Lan et al., 2018; Wang et al., 2019; Li et al., 2022), high-altitude adaptation (Qiu et al., 2012; Qiu et al., 2015; Guang Xin et al., 2019b; Lan et al., 2021; Gao et al., 2022) and selection pressures (Lan et al., 2018; Xie et al., 2018; Guang Xin et al., 2019a; Li et al., 2022).
Southwestern China, specifically Sichuan Province’s Garze Tibetan Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, and Yunnan Province’s Diqing Tibetan Autonomous Prefecture, serves as the primary production area for yaks (Lan et al., 2018). In this region, several yak breeds, including Jiulong yak, Maiwa yak, Muli yak, Jinchuan yak, Changtai yak, and Zhongdian yak, have been officially recognized as excellent indigenous breeds by the government (Lan et al., 2021). Each of these yak breeds possesses unique characteristics and outstanding traits. For example, the Jinchuan yak stands out with approximately 52% of individuals having 15 thoracic vertebrae and 15 pairs of ribs, one more thoracic vertebra and one more pair of ribs than other yak breeds (Lan et al., 2018). Additionally, multi-ribbed Jinchuan yaks demonstrate higher meat and milk production, as well as superior reproductive performance compared to other breeds (Mipam et al., 2012). Maiwa yaks, on the other hand, produce milk with a protein content 40%–60% higher than that of native bovine milk (Chen et al., 2021). Protecting, developing, and utilizing the genetic resources of yak populations in this region holds great significance for the advancement of China’s yak industry. However, comprehensive studies on genetic variation detection, and selection signal analysis at the whole-genome level for multiple yak breeds in this region remain unreported.
To address the genetic gap, this study detected genetic variation, elucidate the genetic diversity, explore population genetic structure and genome-wide selection using six yak populations including four from Sichuan (Maiwa yak, Muli yak, Jinchuan yak, and Changtai yak), one from Yunnan (Zhongdian yak), and a collection of Tibetan yak populations. Our findings provide a scientific and theoretical basis for the protection, development, and genetic improvement of yak genetic resources in Tibet and southwestern China.
MATERIALS AND METHODS
Sample collection and whole-genome resequencing
In this study, we collected a total of 69 blood samples from Maiwa yak (MW) (The altitude of each sampling location ranges from 3400 m to 3600 m), 20 from Zhongdian yak (ZD), and 59 from Tibetan yak (XZ). Additionally, we collected 18 tissue samples each from Muli yak (ML) and Changtai yak (CT), and 14 tissue samples from Jinchuan yak (JC). The Tibetan yak population includes 16 Niangya yaks (NY), 11 Chawula yaks (CWL), 6 Sibu yaks (SB), 17 Dangxiong yaks (DX), 3 Naqu yaks (NQ), and 6 Pali yaks (PL) (Supplementary Figure S1; Supplementary Table S1). Genomic DNA was extracted using the TIANamp Genomic DNA Kit (Tiangen Biotech Co., Ltd., Beijing, China). 59 qualified Tibetan yak genomic DNA samples were sent to Biomarker Technologies (Beijing, China) for paired-end sequencing on the Illumina HiSeq 2500 platform. The remaining yak genomic DNA samples were sent to BGI Genomics (Shenzhen, China) for paired-end sequencing on the T7 platform, with each read length of 150 bp.
Read mapping and SNP calling
The raw data were filtered through the quality control process conducted by fastp 0.20.0 (Chen et al., 2018). The high-quality clean reads were mapped to the latest yak reference genome (BosGru3.0, GCA_005887515.2) using Burrows–Wheeler Aligner (BWA, v0.7.8-r455) software and SAMtools (Li and Durbin, 2009) to get the original mapping results stored in BAM format. Then, the results were dislodged duplication by Picard (http://broadinstitute.github.io/picard/). After genome mapping we undertook SNP calling for all individuals using SamTools, v1.13, and The “mpileup” command was executed to identify SNPs with the parameters as -m 2 -F 0.002 -d 1000 -u -C 50 (Li et al., 2015). The genotype data were filtered using PLINK 1.9 based on minor allele frequencies, missing genotype rates, and biallelic alleles with parameter: -geno 0.2 --maf 0.05 --biallelic-only. SnpEff (Cingolani et al., 2012) was used for functional annotation of variants. The variation data reported in this paper have been deposited in the Genome Variation Map (GVM) (Li et al., 2021) in National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation (CNCB-NGDC Members and Partners, 2022), under accession number GVM000675 (https://bigd.big.ac.cn/gvm/getProjectDetail?Project=GVM000675).
Population genetic diversity analysis
We estimated the genomic nucleotide diversity (Pi) of each yak population using VCFtools (v0.1.16) (Danecek et al., 2011) with the parameters (-window-pi 50,000 -window-pi-step 20,000). VCFtools was also used to calculate the average observed heterozygosity (HO) and expected heterozygosity (HE) as well as the average inbreeding coefficient (F) for six yak populations using the -het parameter. The pattern of linkage disequilibrium (LD) among 198 yaks from six populations can be effectively reflected by calculating the coefficient of determination (r2) between pairwise SNPs using PopLDdecay (Zhang et al., 2019) with default parameter.
Population genetic structure and phylogenetic tree analysis
Linkage sites in the genomic data were removed with parameters (-indep-pair-wise 50 10 0.2) using PLINK (v1.9) software. The genetic structure was analyzed using ADMIXTURE (v1.3.0) and the optimal clustering was also calculated to determine the best K value using ADMIXTURE’s cross-validation procedure. The smartpca module in EIGENSOFT (Patterson et al., 2006) was used to perform principal component analysis (PCA) on six yaks populations. The results were plotted using the ggplot2 package in R for the first principal component (PC1) and the second principal component (PC2). Based on the pairwise distance matrix among samples, a neighbor-joining (NJ) tree was constructed by MEGA (v11.0.11). The original tree file was visualized and beautified using the ggtree package in R. VCFtools was used to calculate the fixation index (FST) between six yak populations.
Genome-wide selective sweep and functional enrichment analysis
Based on the results of FST, we used the Muli yak as the control group and the Maiwa yak as the selection group to perform selection sweep based on two analysis methods, nucleotide diversity (Pi), and the genome-wide distribution of pairwise fixation index (FST). Pi and FST was calculated with 50 kb sliding windows and 20 kb steps between adjacent windows using the VCFtools. The windows with the top 5% FST and -log10 Pi values were considered as candidate region under strong selection and the candidate genes in the regions were identified. The intersection of two analysis results was taken as the final selected genes and a Venn diagram was drawn using the online website jvenn (http://jvenn.toulouse.inra.fr/app/index.html). The functions of the selected genes were further explored by conducting the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/anno_iden.php).
RESULTS
Genome resequencing and genetic variation
Sequencing of 59 Tibetan yaks yielded 967.591 Gb of raw data and 953.379 Gb of filtered clean data. An additional 139 yaks were sequenced, producing 5274.237 Gb of raw data and 5084.898 Gb of filtered clean data (Supplementary Table S2). After mapping to the yak reference genome (BosGru3.0), the sequencing depth of the 59 individual Tibetan yaks ranged from 3.45 to 4.31×, while the sequencing depth of the remaining 139 yaks ranged from 9.12 to 25.42× (Supplementary Table S3). The mapping rate for all samples was above 96.68%. In total, we obtained 44,262,798 high-quality SNPs. The highest number of SNPs (5,145,209) was detected in Tibetan yaks, followed by Changtai yaks (3,007,140), Jinchuan yaks (2,955,926), Muli yaks (2,951,598), and Maiwa yaks (2,764,492), while the lowest number of SNPs was detected in Zhongdian yaks (2,640,551). Most SNPs were distributed in intergenic and intronic regions, with 63.90% located in intergenic regions and 33.84% in intronic regions. Only 0.61% of SNPs were distributed in exonic regions. Of the SNPs in exonic regions, 39.62% were synonymous and 36.53% were non-synonymous (Table 1).
TABLE 1 | SNP functional annotation results.
[image: Table listing categories of SNPs, their numbers, and proportions. Categories include Upstream, UTR3, UTR5, Exonic (with subcategories like Stop gain and Synonymous), Intronic, Splicing, Downstream, Upstream/downstream, and Intergenic. Numbers and proportions vary, with Intergenic showing the highest number, four million two hundred three thousand eight hundred eighty-one, and proportion, sixty-three point eight hundred ninety-five percent.]Population genomic diversity
Pi among the six breeds of yaks ranged from 0.00104 to 0.00153 (Figure 1A). Changtai yak exhibited the highest Pi at 0.00153, while Tibetan yak had the lowest at 0.00104. Apart from Tibetan yak, which showed relatively low Pi, the other yak populations generally exhibited high Pi, ranging from 0.00129 to 0.00153, (Supplementary Table S4). Except for Tibetan yak (0.05707), the F of the other five yak breeds was relatively low (−0.07969 to 0.01778) (Supplementary Table S4, Figure 1B). Muli yak had the lowest average inbreeding coefficient at −0.07969. The LD analysis showed that Muli yak had the highest average LD (r2), followed by Jinchuan yak, Changtai yak, Zhongdian yak, and Maiwa yak. In contrast, Tibetan yaks had the lowest average LD (r2) (Figure 1C). Results for heterozygosity indicated that the differences between observed heterozygosity (Ho) and expected heterozygosity (He) among the six breeds of yaks were small (Figure 1D). Muli yak had the highest Ho and He, at 0.36546 and 0.33848, respectively, while Tibetan yak had the lowest Ho and He, at 0.27363 and 0.29020, respectively (Supplementary Table S4). This suggests that Tibetan yak had the fastest LD decay rate among these six breeds, while Muli yak had the slowest decay rate.
[image: Four data visualizations labeled A through D. A: Box plots show F coefficients for six breeds, each represented by colored dots. B: Scatter plot displays breed differences in a specific genetic metric. C: Line graph illustrates linkage disequilibrium decay over distance in kilobases for six breeds, each marked by a different color line. D: Two scatter plots show breed-specific genetic diversity metrics, differentiated by color and breed labels.]FIGURE 1 | Analysis of genomic diversity, Pi, F and LD for these yak breeds/populations in southwestern China. (A) Box plots of nucleotide diversity (Pi). (B) the average inbreeding coefficient (F). (C) Decay of linkage disequilibrium (LD). (D) The observed heterozygosity (Ho) and expected heterozygosity (He) CT: Changtai yak, JC: Jinchuan yak, ML:Muli yak, MW: Maiwa yak, XZ: Tibet yak, ZD: Zhongdian yak.
Population genetic structure
To examine the population genetic structure and relationships among six different yak breeds, we conducted a series of genome-wide analyses, including population genetic structure, PCA, and phylogenetic analysis. The results of the ancestral component analysis showed that the K value was equal to 3 and the lowest value of the cross-validation (CV) error was reached, proving that the optimal population grouping was when the ancestor population was 3 (Figure 2A). Moreover, when K = 2, the six yak breeds were grouped into two ancestral populations, distinguishing Muli yak from the other yak breeds. When K = 3, a new ancestral population emerged, further distinguishing Muli yak, Tibetan yak, and the other yak breeds. Most Muli yak samples have a relatively homogeneous ancestral population, while Tibetan yak showed a small number of mixed third ancestry. The majority of the other yak breeds showed a composition of three ancestries. When K = 4, the overall ancestry composition of each breed remained consistent with the results at K = 3 (Figure 2B). However, there was an uneven distribution phenomenon in the ancestry composition ratio of each sample of Maiwa yak.
[image: Panel A shows a line chart of cross-validation error against K values. Panel B depicts a color-coded cluster analysis bar chart at different K values. Panel C features a scatter plot showing PCA components one and two, with data points in various colors. Panel D presents a circular phylogenetic tree with branches highlighted in different colors to indicate distinct groups.]FIGURE 2 | Population genetic structure of six yak breeds/population. (A) Cross-validation (CV) errors. (B) Analysis of ancestor components. (C) Principal components analysis. (D) Phylogenetic tree construction by neighbor-joining method. CT: Changtai yak. JC: Jinchuan yak. ML:Muli yak. MW: Maiwa yak. ZD: Zhongdian yak. XZ: Tibet yak, and it includes CWL, NQ, DX, NY, SB and PL poputation.
According to the PCA results (Figure 2C), we observed that the Muli yak population formed a distinct and separate cluster from the other yak populations. On the other hand, most Maiwa yaks overlapped with the Jinchuan yaks, Changtai yaks, Tibetan yaks, and Zhongdian yaks, forming a clustered group together.
Based on genome-wide data, the NJ tree revealed that Muli yaks and Zhongdian yaks were grouped into two distinct branches, with Maiwa yaks forming a separate branch (Figure 2D). Some individuals from the Changtai yak and Jinchuan yak populations clustered together within the Maiwa yak branch, indicating close genetic relatedness. Similarly, some individuals from the Changtai yak and Tibetan yak populations formed another branch within the Maiwa yak group, suggesting a close genetic relationship between them. Notably, one individual from the Zhongdian yak population exhibited significant hybridization and formed a separated branch from the main population to form its own branch. Furthermore, one individual from the Jinchuan yak population clustered with the Tibetan yak population. Within the Tibetan yak population, the Pali yaks displayed a relatively pure bloodline, reflecting their distant geographic distribution from other Tibetan yaks.
The average FST of Muli yak was found to be the highest at 0.0898 (Table 2), indicating a moderate degree of genetic differentiation between Muli yak and other yak populations. On the other hand, the average fixation index of other yak populations was relatively low, with Maiwa yak having the lowest average differentiation index at 0.0345.
TABLE 2 | FST values between pairwise populations.
[image: Table listing the population values for different sheep breeds and locations: Chagtai, Jinchaun, Muli, Maiwa, Tibet, and Zhongdian. Columns labeled JC, ML, MW, XZ, ZD, and Mean contain respective numerical values.]Genome-wide selective sweeps and functional enrichment analysis of candidate genes
According to the results of genetic differentiation between populations, we observed that the average FST between Muli and Maiwa yak was the highest, indicating a moderate level of differentiation. Consequently, we designated Muli yak as the control group and Maiwa yak as the selection group for the selection sweep analysis using two methods, Pi and FST. Subsequently, we identied the top 5% of scanning results as candidate regions (Figures 3A, B). As a result, a total of 1935 genes (Pi) and 2344 genes (FST) were identified, with 187 genes overlapping between the two analyses (Figure 3C). These candidate genes were subject to strong selection and mainly participated in biological processes such as growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), neural development (ST3GAL3, KIAA0319L, and SFPQ), lipid metabolism and accumulation (CYP27A1, AGMO, and KBTBD2), lactation (SNX13 and CPM), bone development (ZNF687 and PPP2R2B), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair development (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2).
[image: Graphical overview of genetic analysis in five panels. Panels A and B show Manhattan plots, highlighting specific genes with statistical significance. Panel C is a Venn diagram illustrating the overlap between two gene sets: PL_genes and RL_genes. Panel D is a bubble chart of gene ontology enrichment, with bubbles sized by count and colored by significance. Panel E is a dot plot for pathway analysis, showing p-values and count as dot size.]FIGURE 3 | Genome-wide selective sweeps and functional analysis of Maiwa yak. Manhattan map based on FST (A) and Pi (B) selected detection methods. (C) Venn diagram based on two selected detection methods. (D) Top-30 GO items. (E) KEGG enrichment analysis of candidate genes for strong selection. Black arrow indicates candidate genes for strong selection in Figures 3A, B.
Functional enrichment analysis using Gene Ontology (GO) was performed on candidate genes, revealing GO terms with a significance level of p < 0.05 (Figure 3D). The analysis showed that The 187 selected genes were predominantly enriched in functions associated with immune regulation, reproductive regulation, regulation of heart rate, cell apoptosis, mitosis, digestive synthesis and metabolism, transmembrane substance transport, epithelial cell proliferation and wound healing, hormone secretion and regulation, bone resorption, heme transport, and ventricular septum development. Furthermore, KEGG pathway enrichment analysis was performed, identifying pathways with a significance level of p < 0.1 (Figure 3E). The identified pathways were linked to virus infection, propanoate metabolism, proteasome, inflammatory mediator regulation of TRP channels, estrogen signaling, and melanoma.
DISCUSSION
Genetic diversity reflects the adaptability of a population to its environment and its evolutionary history. It holds significant value for the protection and further utilization of animal genetic resources. In this study, we observed that the nucleotide diversity of Tibetan yak is low, likely due to their isolated geographical location, leading to limited genetic interchange with other populations. Chai et al. (2020) classeified 91 domestic yaks from 31 populations into three groups based on their phylogenetic relationships.They noted that the nucleotide diversity and genetic diversity of the yak population in the central Tibetan region were both low, aligning with our study results.
The observed heterozygosity (Ho) of Muli yak, Jinchuan yak, and Changtai yak was higher than the expected heterozygosity, and the inbreeding coefficient was generally lower. This suggests that these populations abundant exhibit genetic diversity and a low degree of inbreeding. This may be attributed to the large-scale purebred breeding and hybrid improvement efforts carried out on yaks in Sichuan in recent years. As a result of this work, several yak varieties have been developed for breeding populations and core breeding groups. On the other hand, the observed heterozygosity of Tibetan yak was low, while the inbreeding coefficient was high. This suggests a lack of genetic diversity, possibly due to the traditional feeding practices in the region that have led to significant inbreeding and a decline in reproductive performance. The LD decay analysis results indicated that Muli yak, Jinchuan yak, and Changtai yak have experienced more intense artificial selection in recent years, as evidenced by their slower LD decay rate. as evidenced by their slower LD decay rate. In contrast, Tibetan yak exhibited a faster LD decay compared to other populations, indicating less human intervention. This aligns with previous LD decay analysis results for Jinchuan yak and Tibetan yak (Wang et al., 2020).
In previous studies, Lan et al. (2018) investigated the population genetic structure of Jinchuan yaks at the whole-genome level. The results from phylogenetic tree and PCA analysis both indicated that Jinchuan yaks form an independent branch within the domestic yak population and are distantly related to Zhongdian yak, Tibetan yak, and Qinghai yak. Additionally, the ancestral component analysis results revealed that when K = 3, the Jinchuan yak population was separated from the rest of the domestic yak population. In the present study, the ancestral component analysis, PCA analysis, and FST statistics results of the six yak populations all pointed towards Muli yak exhibiting a relatively independent population genetic structure and distant relationship with other yak populations. Most of the Maiwa yak showed a high degree of hybridization, characterized by the smallest average differentiation index and a complex genetic background. This genetic variation is likely influenced by the diverse geographical environment of the two primary yak breeding regions. Muli yak and Maiwa yak are classified as the “Hengduan Mountains type” and “Qinghai-Tibet Plateau type,” respectively, based on their ecological characteristics. Muli yak predominantly inhabits mountain valleys, leading to grassland fragmentation and restricted gene flow, resulting in isolated breeding populations with. artificial selection. Conversely, Maiwa yak is primarily found in high-altitude terrains with espansive grasslands, where primitive year-round grazing is common, leading to a lower degree of artificial selection. It is speculated that the Maiwa yak population in this study may have originated from two distinct large populations due to the establishment of a core breeding group for Maiwa yak and the implementation of various effective breeding practices. One population may have introduced Jinchuan and Changtai yak bloodlines, while the other population retained a relatively pure genetic lineage without external influences.
The identification of selective signatures in a population is crucial for understanding its evolutionary history and economic traits. A total of 187 candidate positively selected genes were identified in the Maiwa yak population, and their potential effects on relevant important traits were discussed. For example, the CLDN1 gene, a component of endothelial tight junctions, has been demonstrated to decrease intestinal permeability and improve immune adaptability in calves through the upregulation of its expression (Ghaffari et al., 2021). It also plays an effective role in repairing the rumen epithelial barrier of slow-growing yaks (Hu et al., 2019). Thus, the CLDN1 gene may be associated with the stronger gastrointestinal immune function of Maiwa yaks, enabling them to adapt to the challenging high-altitude wetland grassland environment. The GNB4 gene can control cattle growth by influencing the expression of growth-related hormones in the pituitary gland (Lu et al., 2020). The HMGA2 gene, a transcription factor of insulin-like growth factor gene 2 (IGF2), plays a significant role in the growth trait of navel length in beef cattle (Aguiar et al., 2018). Similarly, the TRPS1 gene is significantly associated with the increase in both cattle body weight and eye muscle area (Lee et al., 2011). Therefore, the GNB4, HMGA2, and TRPS1 genes are likely to be closely associated with the growth and development of Maiwa yak.
This study also identified several genes that are specifically associated with reproduction. For instance, PI4KB is responsible for regulating actin aggregation during sperm capacitation (Etkovitz et al., 2007). DYNC1I1 participates in transporting molecules and organelles during oocyte maturation and is the most prevalent transport system in cells (Racedo et al., 2008). GRIP1 has been validated as a marker for detecting cow estrus (Hlaing et al., 2001; Lee et al., 2017). CARPT is a novel regulatory factor for ovarian function during follicular wave emergence in cows and is thought to play a potential role in dominant follicle selection during the follicular wave period in single-ovulating species as an “ovulation quota gatekeeper” (Mihm et al., 2000; Lv et al., 2009; Smith et al., 2010). These genes may have an impact on maintaining a stable reproductive pattern of Maiwa yak in the harsh high-altitude environments.
The challenging high-altitude environment and extensive productionpractices have resulted in the strong selection of genes associated with immunity and adaptation to hypoxia in the genome of Maiwa yak. For example, the reduction of the CD200 gene has a significantly affects on the quantity of pulmonary epithelial cells in radiation conditions (Beach et al., 2023). This finding might elucidate the relevant mechanism that enables the Maiwa yak to adapt to high-altitude with intense radiation and maintain lung function without harm. The IL1RAP gene has been identified as a central gene encoding the interleukin-1 receptor accessory protein, which plays a significant role in the immune system (Dos Santos Silva et al., 2019). Furthermore, three genes, NDUFB6, PRKN, and MRPS9, are closely linked to mitochondrial structure and normal function (Buggiotti et al., 2021; Fang et al., 2022; Zhang et al., 2022). Their influence on respiratory and energy metabolism efficiency may be be associated with Maiwa yak’s adaptation to high-altitude hypoxic environments.
In addition, this study identified lactation-related genes SNX13 and CPM among the selected genes of Maiwa yak. The SNX13 gene is highly correlated with milk production traits in cows, while the CPM gene has a significant effect on the fatty acid content in cow milk (Rincón et al., 2009; Shi et al., 2020). The SUCLG2 gene has been identified as a candidate biomarker for beef tenderness in cattle (Li and Li, 2021).
Three keratin family genes, KRT24, KRT25, and KRT26, have been identified. The KRT24 gene play a crucial role in hair growth and follicle development in yaks (Bao et al., 2022). The long and dense wool of Maiwa yak helps them retain heat and withstand cold weather at high altitudes. It is worth noting that a pigment deposition-related gene, Additionally, an OCA2 gene related to pigment deposition has been identified, potentially influencing black pigment deposition in Maiwa yak’s wool (Grønskov et al., 2007; Caduff et al., 2017; Ballan et al., 2022).
CONCLUSION
In conclusion, this study systematically investigates the genetic diversity, population genetic structure, kinship relationships, genetic differentiation, and gene selection of several yak breeds (populations) in Tibet and southwestern China at the whole-genome level. Overall, all six populations exhibit rich genetic diversity. Muli yak shows higher differentiation from other yak populations and forms an independent cluster. The Maiwa yak population demonstrates a complex genetic structure. The candidate genes identified for Maiwa yak are associated with various functions such as growth, reproduction, immunity, lactation, hypoxia adaptation, hair development, meat quality, digestion and absorption, and pigment deposition. These findings provide a scientific and theoretical foundation for the exploration and conservation of yak genetic resources in this region, as well as for the selection and breeding of yak breeds.
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The hypothalamus is an essential neuroendocrine area in animals that regulates sexual development. Long non-coding RNAs (lncRNAs) are hypothesized to regulate physiological processes related to animal reproduction. However, the regulatory mechanism by which lncRNAs participate in sexual maturity in goats is poorly known, particularly from birth to sexual maturation. In this study, RNAseq analysis was conducted on the hypothalamus of four developmental stages (1day (D1, n = 5), 2 months (M2, n = 5), 4 months (M4, n = 5), and 6 months (M6, n = 5)) of Jining grey goats. The results showed that a total of 237 differentially expressed lncRNAs (DELs) were identified in the hypothalamus. Among these, 221 DELs exhibited cis-regulatory effects on 693 target genes, while 24 DELs demonstrated trans-regulatory effects on 63 target genes. The target genes of these DELs are mainly involved in biological processes related to energy metabolism, signal transduction and hormone secretion, such as sphingolipid signaling pathway, adipocytokine signaling pathway, neurotrophic signaling pathway, glutamatergic synapse, P53 signaling pathway and GnRH signaling pathway. In addition, XR_001918477.1, TCONS_00077463, XR_001918760.1, and TCONS_00029048 and their potential target genes may play a crucial role in the process of goat sexual maturation. This study advances our understanding of lncRNA in hypothalamic tissue during sexual maturation in goats and will give a theoretical foundation for improving goat reproductive features.
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1 Introduction

The sexual maturity of animals strongly influences their reproductive capacity. Animals go through puberty after birth to reach sexual maturity, a process involving complex physiological changes (1). Early-maturing ruminants experience a younger age of first birth, leading to enhanced reproductive longevity and fecundity (2). The hypothalamus, the gonadal axis’ most upstream tissue and organ, secretes GnRH to stimulate the synthesis of pituitary gonadotropins and gonadal steroid hormones, which are vital for an animal’s sexual development (3–5). The hypothalamus receives signals from the periphery and others that act directly or indirectly on GnRH and its associated reproductive neurons, which in turn affect the synthesis, secretion, and morphology of GnRH, ultimately leading to the occurrence of puberty and sexual maturation (6–8).

Long non-coding RNAs (lncRNAs) are a prevalent class of non-coding RNAs found in mammals, typically exceeding 200 nt in length and devoid of protein-coding capabilities (9, 10). It has been demonstrated to play a significant role in diverse biological processes through transcriptional, post-transcriptional, or epigenetic regulation (11). Currently, lncRNAs have been widely reported to be involved in embryonic development (12), muscle development (13), metabolism (14), and reproductive regulation (15). Recent research has demonstrated that lncRNA Meg3 can regulate the expression of GnRH and Kiss-1 in hypothalamic cells, and knockdown of lncRNA Meg3 can delay puberty in female rats (16). Additionally, the lncRNA MSTRG.33887.2 has the potential to influence goat reproduction by regulating target genes involved in hypothalamic folate metabolism and energy metabolism homeostasis (17). Mouse hypothalamic lncRNA AK044061 plays a crucial role in energy balance by mediating NF-kβ. Neurons with high expression of lncRNAs AK044061 in ARC cells lead to energy imbalance and obesity in mice (18).

However, there is a scarcity of research investigating the dynamic expression patterns of lncRNAs throughout the sexual maturation process in female goats, specifically from birth to the completion of sexual maturation. The Jining grey goat, a well-known high-breeding goat breed in China, exhibits non-seasonal estrus, strong fecundity, and precocious puberty. Sexual maturity in these goats is reached at 3 to 4 months of age, with puberty commencing as early as 2 months of age (19). This trait makes it an ideal animal model for investigating goat fecundity. Hence, it is highly significant to investigate the regulatory mechanism of hypothalamic lncRNAs in the sexual maturation process of female goats.

In this study, the lncRNA of hypothalamic tissue of 1-day-old, 2-month-old, 4-month-old, and 6-month-old (D1, M2, M4, and M6; n = 5) female Jining grey goats were sequenced. This study aimed to uncover the expression profile characteristics of lncRNAs during goat sexual maturation, identify lncRNAs associated with hypothalamic development and sexual maturation, and elucidate their molecular regulatory mechanisms. Our research will provide a theoretical basis for the genetic improvement of goat reproductive traits.



2 Materials and methods


2.1 Animals and sample collection

The experimental goats were all from the Jining Grey Goats Breeding Farm (Jiaxiang, Shandong, China). Under the same feeding management conditions, 20 healthy and disease-free female Jining grey goats were selected. The selected goats were divided into four groups according to age: 1 day old (D1, n = 5; body weight (BW): 2.08 ± 0.11 kg), 2 months old (M2, n = 5; BW: 4.42 ± 0.24 kg), 4 months old (M4, n = 5; BW: 7.62 ± 0.50 kg), and 6 months of age (M6, n = 5; BW: 8.82 ± 0.53 kg). The body condition of Jining grey goats was similar in each group. The experimental goats were slaughtered on the same day, and after the electric shock, the hypothalamic tissue was quickly slaughtered and collected, and stored at −80°C.



2.2 RNA extraction and library construction

Total RNA was extracted from 20 hypothalamic tissues using TRIzol® reagent (Thermo Fisher Scientific, Waltham, MA, United States). Screening of qualified RNA samples for RNA strand-specific library construction. The rRNA was removed from total RNA samples using the Ribo-Zero rRNA Removal Kit (Illumina, Inc., San Diego, United States), and then a sequencing library was generated using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB E7420) for Illumina to generate sequencing libraries. The enriched RNA was fragmented using a fragmentation buffer to yield small fragments. Then, the fragmented RNA served as a template for reverse transcription with the addition of 6 bp random primers (random hexamers) to synthesize the first cDNA strand. This was followed by the addition of buffer, dNTPs (with dTTP replaced by dUTP), DNA polymerase I, and RNase H to synthesize the second cDNA strand. The synthesized double-stranded cDNA was purified and enriched via PCR. The PCR product was then purified to obtain the final strand-specific library. After reverse transcription and PCR amplification, 150 bp paired-end reads were sequenced using the Illumina Novaseq6000 platform (Illumina, Inc., San Diego, United States).



2.3 Reads mapping and transcriptome assembly

To obtain high-quality sequencing data, we utilized Fastp (v0.23.1) to eliminate sequences containing poly-N, low-quality reads, and adapters from the obtained sequencing data. The high-quality reads obtained are used for downstream data analysis. We generated an index of the reference genome by employing HISAT2 (v2.0.5.) Subsequently, we aligned the clean reads with the goat reference genome (GCF_001704415.2_ARS1.2) using HISAT2 (20). Transcript assembly is performed using Stringtie (v1.3.3b), and gene expression levels are calculated (21). Gene expression levels were normalized using fragments per kilobase of exon model per million mapped reads (FPKM).



2.4 lncRNA identification

The novel lncRNAs were identified in hypothalamic tissue following the steps shown in Figure 1: (1) removing transcripts with an exon number of 1, (2) removing transcripts less than 200 nt in length, and (3) screening out transcripts that overlapped the exon region annotated in the database by gffcompare software (v0.10.6) (22); (4) CPC2 (v3.2.0) (23), Pfam (v1.6) (24), and CNCI (v2.0) (25) were used to predict the encoding potential of lncRNAs, and the transcripts that were predicted in the three software without coding potential were intersected, and (5) the low-expression lncRNAs (FPKM <0.5) were filtered out.

[image: Flowchart depicting RNA-seq data processing. It begins with four datasets, each with five samples, leading to transcription alignment using Hisat2 and assembly with Stringtie. Transcripts are filtered by exon number, length less than two hundred base pairs, coding potential, and protein domains. Final selection includes transcripts with FPKM greater than or equal to 0.5, resulting in 8,954 novel and 1,676 annotated lncRNAs.]

FIGURE 1
 Pipeline for identification of long non-coding RNAs (lncRNAs).




2.5 Differential expression analysis of lncRNAs

The DEseq2 (v1.20.0) package was utilized to examine the differential expression of lncRNAs (DELs) across various developmental stages. The readcounts from the sequencing data were used as the input matrix, and the p-value was adjusted utilizing the Benjamini & Hochberg method. The DELs were screened according to the threshold |log2 (Fold change)| ≥1 and False Discovery Rate (FDR) <0.05. Cluster analysis of FPKM values of lncRNAs was performed using the ggplot2 package (v3.4.4). Data for lncRNAs were normalized [log2(X + 1)] and then standardization (z-score).



2.6 Prediction and functional analysis of potential target genes of lncRNA

lncRNAs can regulate the expression of potential target genes through cis-or trans-regulatory methods. Based on the location information of lncRNAs, mRNAs within 100 kb upstream and downstream of lncRNAs are defined as cis-target genes of lncRNAs (26). There will be a significant correlation with lncRNA expression (|R| > 0.95 and p < 0.05) is defined as a potential trans-target gene for lncRNA.

Subsequently, we used clusterProfiler software (v3.8.1) to perform Gene Ontology (GO) functional analysis of these differentially lncRNAs predicted target genes (27). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis is performed by KOBAS (http://bioinfo.org/kobas; Accessed: 12.19, 2023) (28). p < 0.05 was considered to be significantly enriched.



2.7 Quantitative real-time PCR

Six lncRNAs were randomly selected and the accuracy of the lncRNA sequencing results was verified by qRT-PCR. First, we used PrimeScript™II First strand cDNA synthesis kit (Takara Bio Inc., Dalian) to reverse transcrib total RNA from goat hypothalamus tissue into cDNA. Then qRT-PCR was performed in a Roche LightCycler 96 using the SYBR PrimeScript™ RT-PCR Kit (Takara Bio Inc., Dalian). GAPDH was used as an internal reference gene to correct gene expression levels and normalize the data. The primers designed using Primer 5.0 (Supplementary Table S1). The relative expression levels of lncRNAs were calculated by 2−ΔΔCT (29). One-way ANOVA was performed with SPSS 17.0, and the results were expressed as mean ± standard error. Three repetitions are performed for each set. p < 0.05 was considered statistically significant.




3 Result


3.1 Overview of RNA sequencing data

RNA was isolated from the hypothalamic tissues of female Jining grey goats at four developmental stages (D1, M2, M4, and M6), and 20 lncRNA libraries were constructed. Sequencing of the libraries was conducted on the Noveseq 6000 platform, resulting in a total of 1,803,310,692 raw reads. Following quality control procedures, we obtained 1,764,056,912 clean reads (Supplementary Table S2). The alignment of these clean reads to the goat reference genome was performed using HiSAT2, achieving alignment rates ranging from 86.05 to 95.99%, with unique mapping reads alignment rates between 75.1 and 91.98% (Supplementary Table S2). Subsequent analysis only considered the uniquely mapped reads.



3.2 Identification and characterization of lncRNAs

A total of 10,630 lncRNAs were identified according to the steps shown in Figure 1, of which 1,676 were annotated and 8,954 lncRNAs were newly identified. Cluster analysis showed that most of the lncRNAs were expressed at low levels at the D1 stage (Supplementary Figure S1). Further analysis of the identified lncRNA signatures showed that showed that about 62% of the lncRNAs had 2 exons, and a few lncRNAs (3%) had more than 6 exons (Figure 2A). In addition, the length distribution of the identified lncRNAs ranged from 122 to 73,429 bp. More than 50% of the lncRNAs were less than 1,000 bp in length, about 83% were in the 0–3 kb range, and a few (17%) were greater than 3 kb (Figure 2B). About 35.2% of the lncRNAs are located in the intergenic region. Only 12.4% of the lncRNAs are from the antisense region, and about 32.9% of the lncRNAs are from the intron region (Figure 2C).
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FIGURE 2
 Identification and characterization of goat hypothalamic lncRNAs. (A) Pie plot of lncRNA exon number distribution. (B) Pie plot of lncRNA length distribution. (C) Pie chart of lncRNA classification.




3.3 Differential expression analysis of lncRNAs

According to the screening criteria of |log2 (Fold change)| ≥1 and padj < 0.05, the lncRNAs of four different developmental stages (D1, M2, M4 and M6) in hypothalamic tissue were compared and analysed. This analysis resulted in the identification of 237 differentially expressed lncRNAs (Figure 3A).
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FIGURE 3
 Differentially expresses lncRNA (DELs) characteristics in different comparison groups. (A) Cluster analysis of differential lncRNAs. Each column represents a grouping and each row represents a differential lncRNA. (B) Histogram of DELs. (C) The upset plot shows the distribution of DELs in the different comparison groups.


A total of 135 DELs (31 up-regulated and 104 down-regulated) were identified in M2 vs. D1, 68 DELs (38 up-regulated and 30 down-regulated) were identified in M4 vs. M2, and 16 DELs (11 up-regulated and 5 down-regulated) were identified in M6 vs. M4. A total of 53 DELs (16 up-regulated and 37 down-regulated) were identified in M4 vs. D1, 33 DELs (15 up-regulated and 18 down-regulated) were identified in M6 vs. D1, and 69 DELs (48 up-regulated and 21 down-regulated) were identified in M6 vs. M2. Interestingly, Figure 3B shows different expression patterns for these DELs, and Figure 3C shows that the M2 vs. D1 group has the most unique DELs, with 72. The M6 vs. M4 group had the lowest number of DELs with 3. Remarkably, 9 DELs were the same in the three comparison groups of M2 vs. D1, M4 vs. D1, and M6 vs. D1. This suggests that TCONS_00076225, TCONS_00148767, TCONS_00191611, TCONS_00102342, TCONS_00192735, TCONS_00032355, TCONS_00032357, TCONS_00053700, and TCONS_00070238 may be significant in the postnatal sexual development of goats.



3.4 lncRNA target gene prediction and functional analysis

lncRNAs have been implicated in influencing gene expression through cis-or trans-interactions. To investigate the role of lncRNAs in the goat hypothalamus, we predicted the potential regulatory roles of the identified DELs on both cis and trans target genes. Specifically, based on a distance threshold of 100 kb between lncRNAs and their target genes, 221 DELs were predicted to regulate 693 target genes in a cis manner (Supplementary Table S3).

The Gene Ontology (GO) analysis results showed that the target genes were significantly enriched in 50 categories (Supplementary Table S4) These cis-target genes are involved in many biological processes, such as regulation of catalytic activity, regulation of molecular function, regulation of hydrolase activity, and dephosphorylation (Figure 4A). In addition, KEGG analysis showed that these target genes were significantly enriched in sphingolipid signaling pathway, protein processing in endoplasmic reticulum, progesterone-mediated oocyte maturation, adipocytokine signaling pathway, neurotrophin signaling pathway, oocyte meiosis, sphingolipid metabolism, glutamatergic synapse, cGMP-PKG signaling pathway, inositol phosphate metabolism, phospholipase D signaling pathway and other pathways (p < 0.05) (Figure 4B and Supplementary Table S5).
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FIGURE 4
 The functional enrichment analysis of DELs target genes (A) DELS cis-target gene GO analysis. (B) DELS cis-target gene KEGG analysis. (C) DELS trans-target gene GO analysis. (D) DELS trans-target gene KEGG analysis.


According to |R| > 0.95 and p < 0.05, 24 lncRNAs were found, which had 63 trans target genes (Supplementary Table S6 and Supplementary Figure S2). The number of trans-target genes identified in lncRNAs was significantly lower than that in cis, suggesting that lncRNAs may function mainly by cis-regulating gene expression. The GO analysis results showed that we found that these cis-target genes were involved in many biological processes, such as signal receptor binding, hormone activity, NADH dehydrogenase activity, transferase activity, transfer aminoacyl, etc. (Figure 4C and Supplementary Table S7). In addition, KEGG analysis showed that these target genes were significantly enriched in neuroactive ligand receptors, multiple apoptosis, adipocytokine signaling pathway, GnRH signaling pathway, JAK-STAT signaling pathway, and p53 signaling pathway (p < 0.05) (Figure 4D and Supplementary Table S8).

The results suggest that these lncRNAs may be involved in hormone secretion, signal transduction processes, and thus regulation of sexual maturation in goats by modulating cis and trans target genes. Interestingly, LOC108634846, LOC108635405, LOC108637396, AGRP, and PIK3C2G were predicted in both cis and trans target genes. Among these, PIK3C2G is the trans-target gene and the cis-target gene of TCONS_00038560.



3.5 Interaction analysis

To better understand the role of goat hypothalamic DELs in the process of sexual maturation, we selected the target gene of DELs involved in reproduction. Construction of lncRNA-mRNA regulatory networks for DELs and their cis-and trans-target genes, respectively (Figure 5). A total of 31 lncRNAs regulated 34 target genes.
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FIGURE 5
 Network diagram of interaction between DELs and target genes. (A) Network diagram of interaction between DELs and cis-target genes. (B) Network diagram of interaction between DELs and trans target genes. Sky blue represents DELs, light green represents target genes, and pink represents pathway.




3.6 Verify lncRNA expression using qRT-PCR

To verify the accuracy of the sequencing results, we randomly selected 6 lncRNAs (XR_001297374.2, XR_001917241.1, TCONS_00176496, XR_001919854.1, TCONS_00032357, and TCONS_00074891) for qRT-PCR detection. The results showed that the expression patterns of these lncRNAs and those found in the transcriptome data were consistent with the sequencing results (Figure 6). This further illustrates the high reliability and accuracy of RNA-seq.

[image: Six bar graphs compare qRT-PCR and RNA-seq expression data for different introns: XR_001297374.2, XR_001917241.1, TCONS_00176496, XR_001919854.1, TCONS_00032357, and TCONS_00074891. Each graph shows expression levels across four conditions: D1, M2, M4, and M6. Green bars represent qRT-PCR data, and black lines with triangles indicate RNA-seq results. The expression trends vary, highlighting differences in data from both methods in each condition.]

FIGURE 6
 qRT-PCR verification of lncRNA expression levels in hypothalamus at four developmental stages of Jining grey goat.





4 Discussion

The hypothalamus is an important neuroendocrine center in mammals and plays an important role in the sexual development of animals. lncRNAs are non-coding RNAs that are more than 200 nt in length and do not have protein-coding functions. Many studies have shown that lncRNAs play an important role in reproductive regulation through transcriptional regulation or epigenetic modification (30, 31). Investigating the role of hypothalamic lncRNAs during sexual maturation in female goats is critical to understanding reproductive mechanisms in this species.

This study conducted lncRNA sequencing on hypothalamic tissue samples obtained from four postnatal developmental stages (D1, M2, M4, and M6) of female Jining grey goats. A total of 10,254 lncRNAs were identified according to rigorous screening criteria, including 1,676 known lncRNAs and 8,954 novel identified lncRNAs. Characterization of lncRNAs revealed that the majority of them consisted of 2–3 exons (84%), and approximately 54% were under 1 kb in length, consistent with previously reported profiles of lncRNAs in goats (32). A total of 236 DELs were identified by differential analysis of lncRNAs. The number of DELs is highest between M2 and D1, totaling 135, while the DELs are least frequent between M6 and M4, with only 16 instances. These results indicated that the number of DELs decreased with the gradual maturity of goats, and the development of Jining grey goats from birth to 2 months of age was an important developmental stage.

Recent studies have shown that lncRNAs are involved in the regulation of gene expression through both cis-and trans-regulatory mechanisms and play an important role in a wide range of biological processes (33, 34). The results showed that 220 DELs regulated 693 target genes through cis. These target genes are involved in the sphingomyelin signaling pathway, progesterone-mediated oocyte maturation, neurotrophin signaling pathway, oocyte meiosis, sphingomyelin metabolism, glutamatergic synapses, cGMP-PKG signaling pathway, phosphoinositide metabolism, and phospholipase D signaling pathway. These pathways are involved in hypothalamic neuronal development, energy metabolism, and reproductive processes (35–38), suggesting that lncRNAs may play an important role in the sexual maturation of goats. Based on this result, we constructed a lncRNA-mRNA regulatory network. Among them, XR_001918477.1, TCONS_00077463, XR_001918760.1, and TCONS_00029048 target GRIN3A, MAP2K1, NOTCH1, and LEP, respectively, and these genes are involved in sexual maturation and reproductive hormone secretion (39–42). GRIN3A is a member of the glutamate-regulated ion channel superfamily, and the expression level of GRIN3A is significantly increased before estrus in mice, which may be related to enhanced glutamate receptor signaling in preovulatory GnRH neurons (43). In mammals, LEP acts on neural circuits in the hypothalamus to regulate feeding and energy metabolism (44), and in addition, leptin can be involved in the regulation of puberty through mTOR (9).

The trans target genes of lncRNAs are predicted by calculating the correlation of mRNA to lncRNAs. This approach enables lncRNAs to regulate mRNA away from their transcription sites (9). In this study, a total of 23 lncRNAs were negatively correlated with 63 protein-coding genes. These target genes are mainly enriched in neuroactive ligand and receptor interactions, JAK-STAT signaling pathway, p53 signaling pathway, and GnRH signaling pathway. Based on this, we speculate that these lncRNAs may be involved in various biological processes, such as hormone secretion and signal transduction, during goat sexual maturation by regulating the expression of these target genes (45–47). Furthermore, we constructed a regulatory network related to reproduction, including 6 lncRNAs and 6 target genes involved in the interaction between neuroactive ligands and receptors and the GnRH signaling pathway. Among them, TCONS_00123911 acts on neuropeptide Y (NPY) through trans regulation. Studies have shown that NPY plays an important role in energy homeostasis and reproductive hormone secretion (48). In addition, NPY has been shown to play an important role in sexual maturation by regulating GnRH secretion patterns and luteinizing hormone secretion (49, 50). In addition, we have identified XR_001917998.1 that can trans-modulate GnRHR. GnRHR plays an important role in the regulation of mammalian reproduction (51). Studies have shown that after hypothalamic GnRH stimulation, GnRHR regulates the activity of the HPG axis through signal transduction, thereby participating in the synthesis and release of LH and FSH, and regulating gonadal function (52, 53).

The identified DELs potentially play a role in the sexual maturation process of goats by modulating target genes through cis-trans regulation. However, experimental validation is required to confirm the functions of lncRNAs. Subsequent research will focus on unraveling the molecular mechanisms through which lncRNAs regulate sexual maturation in goats at both the molecular and cellular levels.



5 Conclusion

In summary, we described the characteristics of the expression profile of lncRNA in the hypothalamus at four developmental stages in goats and analyzed the regulatory mechanism of lncRNAs in the process of sexual maturation in goats. In this study, a total of 237 DELs were identified and their cis-trans target genes were predicted, and functional analysis showed that the cis-trans target genes of these DELs were mainly involved in sphingomyelin signaling pathway, glutamatergic synapse, neuroactive ligand and receptor interaction, p53 signaling pathway, GnRH signaling pathway, hypothalamic development and hormone secretion. This work enriches the goat lncRNA database, lays a theoretical foundation for elucidating the molecular mechanism of goat sexual maturation in the future, and will provide a theoretical basis for the improvement of goat genetic traits.
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Many studies have shown that long non-coding RNAs (lncRNAs) play key regulatory roles in various biological processes. However, the importance and molecular regulatory mechanisms of lncRNAs in donkey intramuscular fat deposition remain to be further investigated. In this study, we used published transcriptomic data from the longissimus dorsi muscle of Guangling donkeys to identify lncRNAs and obtained 196 novel lncRNAs. Compared with the coding genes, the novel lncRNAs and the known lncRNAs exhibited some typical features, such as shorter transcript length and smaller exons. A total of 272 coding genes and 52 lncRNAs were differentially expressed between the longissimus dorsi muscles of the low-fat and high-fat groups. The differentially expressed genes were found to be involved in various biological processes related to lipid metabolism. The potential target genes of differentially expressed lncRNAs were predicted by cis and trans. Functional analysis of lncRNA targets showed that some lncRNAs may act on potential target genes involved in lipid metabolism processes and regulate lipid deposition in the longissimus dorsi muscle. This study provides valuable information for further investigation of the molecular mechanisms of lipid deposition traits in donkeys, which may improve meat traits and facilitate the selection process of donkeys in future breeding.
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1 Introduction

Long non-coding RNA (lncRNA) is a class of non-coding RNAs with a length greater than 200 nucleotides. Increasing evidence suggests that lncRNA plays important roles in various biological processes, such as embryonic development (1, 2), gene expression regulation (3, 4), reprogramming (5, 6), and genomic imprinting (7, 8). Additionally, many lncRNAs have been found to be involved in regulating lipid metabolism. For example, lncRNA IMFNCR promotes chicken myoblast differentiation by sequestering miR-128-3p and miR-27b-3p (9), lncRNA 332,443 inhibits preadipocyte differentiation by targeting Runx1, p38 MAPK, and ERK1/2-MAPK signaling pathways (10), and LncLSTR forms a molecular complex with TDP-43 to regulate the expression level of Cyp8b1, thereby affecting the FXR regulatory pathway, leading to increased apoC2 levels and influencing triglyceride levels. LNCLSR directly binds to TDP-43 to inhibit Cyp8b1 expression and subsequently regulate triglyceride levels (11).

Guangling donkeys are distributed in Guangling County, Shanxi Province, China, and they are a local dominant breed that is carefully reared by local people using traditional production practices (12). Guangling donkeys have a stout physique and full muscles. Guangling donkeys used for meat production have a high intramuscular fat (IMF) content; however, the underlying molecular mechanisms underlying the IMF variation among donkey species are not fully understood.

IMF, also known as marbling, is an important indicator of the lean meat-to-fat ratio, which directly affects the tenderness, juiciness, and flavor of the meat (13). IMF content is one of the most important indicators used to evaluate meat quality (14). IMF content is a polygenic trait that is regulated by many genes affecting adipogenesis and lipid metabolism (15). At present, the underlying molecular variations affecting IMF content among donkey breeds are unclear.

This study used published transcriptome data from the longissimus dorsi muscle of a Guangling donkey to identify lncRNA and conducted differential expression studies of coding genes and lncRNA, constructing an expression regulation network, which lays the foundation for further analyzing the molecular mechanisms of lipid deposition traits in donkeys.



2 Materials and methods


2.1 Data sources

A total of 30 Guangling donkeys were raised on a commercial donkey farm in Fanshi County, Xinzhou City, Shanxi Province, China, and 6 donkeys with IMF differences and similar ages were selected (age: 2–3 years old, weight: 232–245 kg; female) for use in this study. All Guangling donkeys were reared under the same natural conditions of uncontrolled room temperature and light with unrestricted access to food and water. The longissimus dorsi samples at the 13th rib were aseptically and quickly obtained within 30 min of harvest. The collected samples were stored in liquid nitrogen for immediate storage, and long-term storage was carried out at −80°C. According to the China National Standard GB5009.6-2016 “Determination of Fat in Foods in National Food Safety Standard,” the IMF content was determined by the Soxhlet method. A Soxhlet extraction apparatus was used to remove fat and dry the ground meat samples for fat extraction. Petroleum ether was used as a solvent. This was recycled and dried for 8 h. Then, it was weighed to obtain the weight of the bottle containing fat. The IMF content was calculated by a formula. The three longissimus dorsi samples with the highest IMF contents and the other three with the lowest IMF contents were selected for transcriptome analysis (12). A total of six RNA-seq datasets were obtained from a previously published study and downloaded from the NCBI’s GEO database (PRJNA658642) (12). The donkey gene annotations were downloaded from https://ftp.ensembl.org/pub/release-110/gtf/equus_asinus. Moreover, the Non-Redundant Protein Sequence (NR) Database was downloaded from ftp://ftp.ncbi.nih.gov/blast/db/. The uniref90 database was downloaded from https://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90.



2.2 RNA-seq reads mapping and transcriptome assembly

The quality of sequencing reads was evaluated by FastQC command. The raw reads were filtered and trimmed by Trimmomatic (version 0.39) with default parameters (16). The clean reads were then mapped to the donkey reference genome [Ensembl: ASM1607732v2 (GCA_016077325.2)] by HISAT2 v2.2.1 with the default parameters (17–20). StringTie (version 2.2.1) was used to assemble the mapped reads with default parameters (17). Then, the merge tool of StringTie was used to merge the six assembled transcript files (GTF format) of the two groups into a non-redundant transcriptome. In addition, by using the assembled GTF file, StringTie software was used to estimate the expression levels of genes and transcripts in all samples for subsequent studies with the parameters “-e” and “-B” (17, 18, 21).



2.3 LincRNAs identification pipeline

The pipeline for lincRNA (long intergenic non-coding RNA) identification was as follows (Figure 1): (1) retained those transcripts with “u” category categorized by using gffcompare, which indicated intergenic transcripts (20, 21). (2) According to the merged GTF file, the transcripts with single exons and less than 200 bp in length were removed (18, 21). (3) The CPC2, CNCI, PLEK and LGC were used to assess the protein-coding potential of complete transcript sequences, and the transcripts that cannot encode proteins based on protein-coding potential were retained (22). (4) The HMMER was used to identify the transcripts translated in all six possible frames with homologs that were concluded in any of the known protein family domains in the Pfam database, and transcripts that matched to the Pfam hit (E-value < 1e-5) were excluded (18–21, 23). (5) BLASTX program (24) was used to filter out any transcripts that have similarities to known proteins in the NCBI NR and UniRef90 databases (E-value < 1e-5) (20, 21). (6) Reserve transcripts with FPKM values greater than 0 in at least one sample (18–20).
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FIGURE 1
 Pipeline for the identification of putative lincRNAs in this study. The frames in the direction of the arrow show the filtering process and the number of screened transcripts. “u”: Unknown, intergenic transcript; CPC2: coding potential calculator 2; nr: non-redundant protein sequence database; FPKM: fragments per kilobase of transcript per million mapped reads.




2.4 Comparisons between lncRNAs and protein-coding transcripts

We selected the transcripts annotated as “protein-coding” in the gene annotation file, and the obtained lncRNAs were screened with “known” and “novel” by “blastn” command. The transcript length, exon length, and exon number of lncRNAs were compared with those of protein-coding transcripts (20).



2.5 Analysis of differentially expressed genes and differentially expressed lncRNAs

DESeq2 tool was used to perform differential expression analysis of protein-coding genes and lncRNAs between the high (H) fat group and low (L) fat group (25). |log2 fold change | ≥ 1 and adjusted p-value (padj) < 0.05 were used to screen differentially expressed genes (DEGs) and lncRNAs (26).



2.6 Prediction of potential target genes

We predicted the molecular functions of protein-coding genes regulated by RNA in cis and trans. First, the neighboring protein-coding genes near DELs (<100 kb) were identified based on cis-prediction principles using Bedtools (18–20, 27, 28). For the trans-regulation of DELs, we calculated the Pearson’s correlation coefficient (r) between DELs and protein-coding genes. We selected protein-coding genes with a Pearson’s correlation coefficient |r| ≥ 0.95, p-value ≤ 0.01 as potential target genes (PTGs) of DELs (21, 29).



2.7 Functional enrichment analysis

Gene Ontology (GO) enrichment analysis was performed by clusterProfiler (30, 31). KOBAS v3.01 was used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (32). A p-value of less than 0.05 was considered statistically significant (33).




3 Results


3.1 Summary of RNA-seq data mapping and transcripts assembly in longissimus dorsi muscles

RNA-seq data involving two groups of Guangling donkeys were obtained from a previously published study (12). The six longissimus dorsi muscles (three in each group) with the lowest and highest IMF contents were named the L group and H group, respectively. The individual samples in the groups were named L1, L2, L3, H1, H2, and H3. The clean reads were mapped to the donkey reference genome using HISAT2. Approximately 86.02–90.51% of clean reads from each library were mapped to the donkey reference genome, and 79.76–84.78% of the reads were uniquely mapped to the genome. Then, the transcriptome was assembled for each library by StringTie, and all transcripts were synthesized into non-redundant transcripts using StringTie-Merge. After merging non-redundant transcripts, approximately 1.07% (944 of 87,886) of the transcripts were intergenic transcripts. The 196 putative lincRNAs were obtained according to the illustration shown in Figure 1 (Supplementary Table S1).



3.2 Comparison of coding genes and lncRNA features

Previous studies showed that there are many differences between protein-coding transcripts and lncRNAs (18–20, 27, 34–36). According to the assembled transcriptome, the characteristics of lncRNA and protein-coding transcripts were compared. A total of 51,112 protein-coding transcripts, corresponding to 20,553 protein-coding genes annotated in donkeys, were acquired. In addition, the donkey annotation file contains 7,615 known lncRNA transcripts that correspond to 4,709 lncRNA genes (Supplementary Table S1).

The average transcript length of the protein-coding transcripts (2,919 bp) was longer than the novel lncRNA transcripts (1,217 bp) and the known lncRNA transcripts (2,394 bp) (Figure 2A). In terms of average exon length, the novel lncRNA is 448 bp in length, shorter than the known lncRNA gene (766 bp) but longer than the protein-coding transcripts (271 bp) (Figure 2B). In addition, we found that the average number of exons in the protein-coding transcripts is 10.7, which is significantly higher than that of the novel lncRNA (2.7) and the known lncRNA (3.1) (Figure 2C).
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FIGURE 2
 Comparison of the characteristics of protein-coding genes and lncRNA genes. (A) Comparison of transcript length, (B) comparison of exon length, and (C) comparison of exon number.




3.3 Differential expression analysis of coding genes and lncRNAs

To explore their potential biological functions, we performed differential expression analysis of coding genes and lncRNAs. A total of 272 DEGs were obtained by comparing the high-fat group with the low-fat group of the longissimus dorsi muscle samples. Among them, 147 genes were upregulated in the high-fat group, and 125 genes were downregulated (Figure 3A). Additionally, 52 differentially expressed lncRNAs (DELs) were identified, with 25 lncRNAs upregulated and 27 lncRNAs downregulated in the high-fat group compared to the low-fat group (Figure 3B).
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FIGURE 3
 Volcano plots in analyzing differentially expressed genes (DEGs) (A) and differentially expressed lncRNAs (DELs) (B) in longissimus dorsi muscles with high and low intramuscular fat contents. The green plot represents upregulated expression in the high group; the blue plot represents downregulated expression in the high group; and the gray plot represents no significance.




3.4 Functional analysis of differentially expressed genes

To investigate the function of DEGs, we performed GO and KEGG analyses, respectively. GO analysis of DEGs showed that integrin-mediated signaling pathway, cellular response to lipopolysaccharide, trachea development, cellular response to molecule of bacterial origin, and positive regulation of myeloid leukocyte-mediated immunity were the most abundant terms in the biological process category. In terms of cellular component category, actin cytoskeleton, phagocytic cup, cell leading edge, TORC2 complex, and basolateral plasma membrane were the top five terms, while rRNA binding, pattern recognition receptor activity, motor activity, protein kinase binding, and ion channel binding were most prevalent in the molecular function (Supplementary Table S2). Some GO terms were significantly associated with lipid metabolisms, such as response to lipids, cellular response to lipids, glycerophospholipid metabolic process, glycerolipid metabolic process, unsaturated fatty acid biosynthetic process, and phospholipid dephosphorylation. KEGG analysis indicated that DEGs were significantly enriched in 62 KEGG pathways, of which several pathways were related to lipid metabolism, such as the Sphingolipid signaling pathway and MAPK signaling pathway. In addition, some other pathways are related to lipid metabolism, namely fatty acid metabolism, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, PI3K-Akt signaling pathway, fatty acid degradation, ether lipid metabolism, cholesterol metabolism, PPAR signaling pathway, TGF-beta signaling pathway, and Wnt signaling pathway (Supplementary Table S3).



3.5 Prediction and functional analysis of lncRNA target genes

Many studies have indicated that lncRNA may regulate adjacent genes in a cis manner (18–20, 29, 37–41). For PTGs regulated by lncRNAs in cis (<100 kb), we identified a total of 323 PTGs, corresponding to 52 DELs (Supplementary Table S4). To explore the function of putative lncRNAs, GO and KEGG analyses were performed on expressed protein-coding genes transcribed near lncRNA (<100 kb). The results indicated that 102 of 323 PTGs were significantly involved in 143 biological processes (Supplementary Table S5). Of them, 59 PTGs significantly participated in 32 pathways (Supplementary Table S6), including 2 pathways related to lipid metabolism, such as biosynthesis of unsaturated fatty acids and fatty acid metabolism.

LncRNAs can not only regulate the expression of neighboring protein-coding genes through a cis mechanism but also regulate the expression of genes located on other chromosomes via a trans mechanism (42). In this study, we carried out the trans analysis to find the PTGs that were significantly correlated (|r| ≥ 0.95, p ≤ 0.01) to the DELs. In total, 3,366 PTGs were highly correlated with 52 DELs. Among these genes, 132 PTGs were differentially expressed in groups as DEPTGs, suggesting that most of the lncRNAs regulated gene expression through trans regulation. GO enrichment analysis showed that 3,366 PTGs were enriched in 835 biological processes and 132 DEPTGs were enriched in 143 biological processes (Supplementary Tables S7, S8). In cases of biological process, some GO terms were significantly associated with lipid metabolism, such as negative regulation of the lipid catabolic process, regulation of the lipid metabolic process, negative regulation of the lipid metabolic process, regulation of the lipid biosynthetic process, cellular lipid catabolic process, negative regulation of the lipid biosynthetic process, regulation of fatty acid transport and regulation of the lipid catabolic process (Figures 4A,C). In addition, 3,366 PTGs and 132 DEPTGs were enriched in 74 pathways and 7 pathways, respectively (Supplementary Tables S9, S10). KEGG pathways were involved in the MAPK signaling pathway, PI3K-Akt signaling pathway, glycerolipid metabolism, ether lipid metabolism, fat digestion, and absorption (Figures 4B,D). The results indicated that DELs had an important role in regulating their PTGs that regulate lipid metabolism in longissimus dorsi muscles.
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FIGURE 4
 Gene Ontology and pathway analysis of PTGs of DELs. (A) Biological processes analysis of PTGs of DELs, (B) pathway analysis of PTGs of DELs, (C) biological processes analysis of DEPTGs of DELs, and (D) pathway analysis of DEPTGs of DELs. PTGs, potential target genes; DELs, differentially expressed lncRNAs; DEPTGs, differentially expressed potential target genes.





4 Discussion

In the present study, transcriptome sequencing of longissimus dorsi tissues with different IMF contents from Guangling donkeys was used to investigate genes and lncRNA related to lipid metabolism in the longissimus dorsi muscle. A total of 20,553 protein-coding genes, 7,615 known lncRNAs, and 196 novel lincRNAs were obtained. We compared the known and novel lincRNAs with the donkey protein-coding genes and found that known and novel lincRNAs have shorter transcript lengths, longer exon lengths, and fewer exon numbers compared with protein-coding transcripts, which is consistent with some previous studies (18–20, 27, 34–36, 43–46).

Differential expression analysis identified 272 DEGs, with 147 genes upregulated and 125 genes downregulated in the high-fat group compared to the low-fat group. Some of these genes may play a key role in lipid metabolism. As expected, GO analysis revealed the involvement of a significant number of DEGs in lipid metabolism-related biological processes, including response to lipid, cellular response to lipid, glycerophospholipid metabolic process, glycerolipid metabolic process, unsaturated fatty acid biosynthetic process, and phospholipid dephosphorylation. KEGG analysis showed significant enrichment of 62 KEGG pathways in the DEGs. Enriched pathways included the sphingolipid signaling pathway, MAPK signaling pathway, fatty acid metabolism, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, PI3K-Akt signaling pathway, fatty acid degradation, ether lipid metabolism, cholesterol metabolism, PPAR signaling pathway, TGF-beta signaling pathway, and Wnt signaling pathway, which are involved in lipid metabolism.

Previous studies indicated that lncRNAs can regulate gene expression in a cis-acting manner (18, 20, 29, 35, 41). In the present study, a total of 196 novel lincRNAs and 7,615 known lncRNAs, were identified. Moreover, 52 DELs were detected, 25 of which were upregulated and 27 downregulated in the high-fat group compared with the low-fat group. To predict the function of these lncRNAs, protein-coding genes transcribed near lncRNAs (<100 kb) were screened. A total of 323 PTGs were identified, corresponding to 52 DELs. Exploration of lncRNA function through GO and KEGG analysis of PTGs revealed that 102 of 323 PTGs were significantly involved in 143 biological processes, and 59 PTGs significantly participated in 7 pathways, including 2 pathways related to lipid metabolism, such as biosynthesis of unsaturated fatty acids and fatty acid metabolism. In addition, four other pathways are related to lipid metabolism, namely the Wnt signaling pathway, glycerolipid metabolism, PPAR signaling pathway, and glycerophospholipid metabolism. These pathways can affect lipid metabolism to some extent.

An intriguing observation is that the same DEL ENSEAST00005078264 acts on both FADS1 and FADS2, which are the key enzymes that catalyze adenylation of flavin mononucleotide (FMN) to form flavin adenine dinucleotide (FAD) coenzyme (47, 48). These two PTGs are involved in the biosynthesis of unsaturated fatty acids and fatty acid metabolism. The DEL ENSEAST00005078264 may be involved in lipid metabolism via biosynthesis of unsaturated fatty acids and fatty acid metabolism signaling pathway. Another DEL ENSEAST00005069204 was found to target AGPAT5, which converts lysophosphatidic acid to phosphatidic acid, the second step in de novo phospholipid biosynthesis (49). These lncRNAs may regulate target genes involved in lipid metabolism pathways through cis-acting mechanisms.

The analysis of PTGs by trans-acting lncRNAs was conducted, and enriched analysis was also performed. Among the 3,366 PTGs, 1,352 were significantly involved in 835 biological processes. Pathway analysis showed that 710 PTGs were significantly involved in 74 pathways, including MAPK signaling pathway, PI3K-Akt signaling pathway, glycerolipid metabolism, ether lipid metabolism, fat digestion, and absorption, all of which are related to lipid metabolism. Other pathways related to lipid metabolisms, such as glycerophospholipid metabolism, fatty acid metabolism, biosynthesis of unsaturated fatty acids, sphingolipid signaling pathway, cholesterol metabolism, adipocytokine signaling pathway, Wnt signaling pathway, fatty acid elongation, regulation of lipolysis in adipocytes, sphingolipid metabolism, TGF-beta signaling pathway, fatty acid biosynthesis, and fatty acid degradation, were also identified. For 132 DEPTG, 56 were significantly involved in 143 biological processes. Pathway analysis showed that 27 DEPTGs were significantly involved in 7 pathways, including arachidonic acid metabolism. Other pathways involved in lipid metabolism have also been identified, including biosynthesis of unsaturated fatty acids, fat digestion and absorption, ether lipid metabolism, fatty acid metabolism, MAPK signaling pathway, PPAR signaling pathway, glycerophospholipid metabolism, and PI3K-Akt signaling pathway.

It was found that SCD, targeted by four DELs (ENSEAST00005042127, ENSEAST00005051768, ENSEAST00005052324, and ENSEAST00005072263), is a key gene that regulates lipid metabolism. Studies have shown that SCD plays an important role in lipid biosynthesis (50–52). In addition, two DELs, ENSEAST00005052438 and ENSEAST00005076477, were all found to act on PLA2G3, which is involved in lipid metabolism and catalyzes the calcium-dependent hydrolysis of the sn-2 acyl bond of phospholipids to release arachidonic acid and lysophospholipids (53–56). It is noteworthy that THRSP was targeted by four DELs (ENSEAST00005042127, ENSEAST00005048792, ENSEAST00005051768, and ENSEAST00005052324). Previous studies showed that THRSP is important for the biosynthesis of triglycerides with medium-length fatty acid chains and plays a role in the regulation of lipogenesis, which may modulate lipogenesis by interacting with MID1IP1 and preventing its interaction with ACACA, may function as a transcriptional coactivator and may modulate the transcription factor activity of THRB (57, 58). These lncRNAs may regulate target genes involved in lipid metabolism pathways through trans-acting mechanisms.

SCD plays an important role in the regulation of lipid deposition, and it can catalyze the conversion of saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) (59). It was found that SCD expression was positively correlated with SCD protein levels, and pigs with higher SCD protein levels had higher levels of IMF, indicating a conserved trend between transcriptional and translational levels (60). Smith et al. (61) found that SCD expression was closely related to marbled adipocyte differentiation and that grain diets increased SCD expression, resulting in higher intracellular levels of MUFA (especially oleic acid), and thus increased adipocyte differentiation. In addition, increased FA levels in IMF tissues were found to be associated with tissue-specific activation of SCD expression under the influence of a low-protein protein diet, and the low-protein protein diet significantly increased the expression and activity of SCD proteins in muscle, but not in subcutaneous adipose tissue (AT) (62). These results suggest that the high specific expression of SCD in IMF cells may be related to meat quality and that reduced protein intake may affect IMF content by modulating SCD activity. Notably, SCD was significantly up-regulated in the high-fat group compared with the low-fat group in this study. The results show that SCD may play an important function in donkey IMF deposition. The thyroid hormone-sensitive protein (THRSP; Spot14; S14) is a nuclear protein that is abundantly expressed in lipogenic tissues such as in the liver, mammary gland, AT and lipogenic breast cancers (63–66). A previous study indicated that the polymorphisms and genotype distribution of THRSP were closely related to the potential for fat production in pig breeds (67). It was found that miR-195 may inhibit lipid accumulation in adipocytes by regulating THRSP (68). THRSP is regulated by insulin both in vivo in human AT and in vitro in adipocytes, and its expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty acid oxidation, its downregulation in human AT could contribute to mitochondrial dysfunction. Furthermore, disturbed sphingolipid metabolism could contribute to metabolic dysfunction in obese AT (69). The current RNA-seq results revealed that THRSP had higher expression in the high-fat group than in the low-fat group, which suggested that THRSP may be a key gene involved in IMF deposition in donkeys. Taken together, some DEGs, including SCD and THRSP, may be key candidate genes for donkey meat quality improvement.

It is noteworthy that SCD was targeted by four DELs (ENSEAST00005042127, ENSEAST00005051768, ENSEAST00005052324, and ENSEAST00005072263). Moreover, four DELs (ENSEAST00005042127, ENSEAST00005048792, ENSEAST00005051768, and ENSEAST00005052324) were found to target THRSP. These lncRNAs may influence donkey IMF deposition by regulating the expression of their target genes. The relationship of these lncRNAs with their target genes and with fat deposition in donkey muscle needs to be further investigated in the future using molecular biology, gene editing, etc. These lncRNAs may improve meat quality and facilitate the selection process of donkeys in future breeding.



5 Conclusion

In the study, we identified 196 putative lncRNAs and analyzed the characteristics of lncRNAs compared with protein-coding genes in the longissimus dorsi muscles of Guangling donkeys. We observed numerous DELs and protein-coding genes in longissimus dorsi muscles with different IMF contents. Some DEGs were found to be involved in various biological processes related to lipid metabolism. Functional enrichment analysis of PTGs by DELs revealed that some lncRNAs (such as ENSEAST00005042127, ENSEAST00005051768, ENSEAST00005052324, ENSEAST00005072263, ENSEAST00005052438, ENSEAST00005076477, ENSEAST00005042127, ENSEAST00005048792, ENSEAST00005051768, and ENSEAST00005052324) may act on PTGs (such as SCD, PLA2G3, and THRSP), participate in lipid metabolism processes, and regulate IMF deposition in the longissimus dorsi muscle. This study provides valuable resources for future analyses of lipid deposition traits and may contribute to the improvement of donkey meat quality and the selection process in donkey breeding.
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Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep.Inner Mongolia Cashmere Goat is a local excellent breed of cashmere and meat dual-purpose, which is a typical heterogeneous indumentum. The hair follicles cycle through periods of vigorous growth (anagen), a regression caused by apoptosis (catagen), and relative rest (telogen). At present, it is not clear which genes affect the cycle transformation of hair follicles and unclear how proteins impact the creation and expansion of hair follicles.we using multi-omics joint analysis methodologies to investigated the possible pathways of transformation and apoptosis in goat hair follicles. The results showed that 917,1,187, and 716 proteins were specifically expressed in anagen, catagen andtelogen. The result of gene ontology (GO) annotation showed that differentially expressed proteins (DEPs) are in different growth cycle periods, and enriched GO items are mostly related to the transformation of cells and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment result indicated that the apoptosis process has a great impact on hair follicle’s growth cycle. The results of the protein interaction network of differential proteins showed that the ribosomal protein family (RPL4, RPL8, RPS16, RPS18, RPS2, RPS27A, RPS3) was the core protein in the network. The results of combined transcriptome and proteomics analysis showed that there were 16,34, and 26 overlapped DEGs and DEPs in the comparison of anagen VS catagen, catagen VS telogen and anagen VS telogen, of which API5 plays an important role in regulating protein and gene expression levels. We focused on API5 and Ribosomal protein and found that API5 affected the apoptosis process of hair follicles, and ribosomal protein was highly expressed in the resting stage of hair follicles. They are both useful as molecular marker candidate genes to study hair follicle growth and apoptosis,and they both have an essential function in the cycle transition process of hair follicles. The results of this study may provide a theoretical basis for further research on the growth and development of hair follicles in Inner Mongolian Cashmere goats.
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1 Introduction

The integument of cashmere goats is separated into two sections: cashmere and wool. The cashmere production process is periodic and is split into three stages: telogen, anagen, and catagen (1, 2). It has been confirmed that the anagen period is from March to September in a year, which is the process of gradual shedding of cashmere in the previous cycle, new hair follicle regeneration, and cashmere growth; From October to December, the hair follicle development stopped in the catagen, and the cashmere continued to grow, in the later stage, the hair follicle structure began to shrink, the cell apoptosis, and the cashmere growth stopped; From January to March, the cashmere enter the telogen, and the hair follicle structure and cashmere remain static (3). This is a complex process regulated by multiple factors. The biggest feature is that there will be obvious gene expression, cell proliferation, and differentiation. Harris (4) studied that IGF-1 is involved in the periodic regulation of hair follicles, specifically by inducing the proliferation and differentiation of cells such as dermal papilla cells and epithelial cells, thereby regulating the periodic circulation of hair follicles. Yano et al. (5) showed that VEGF also plays a role in promoting hair growth in the periodic cycle of hair follicles. Rendl et al. (6) showed that the expression of BMP2 and BMP4 genes in the secondary hair follicles of cashmere goats in the telogen was higher than that in the growth period, which had the effect of inhibiting the transition of hair follicles from the telogen to the growth period and was one of the important factors regulating the periodic growth of cashmere. Although the cycle process of cashmere growth has been extensively verified. However, the molecular regulation mechanism of cashmere entering three stages has not been revealed.

High-throughput sequencing techniques like RNA-Seq can be used to find novel and low-abundance transcripts, allowing researchers to explore the whole range of gene expression and spot transcript variations between samples (7–9). Proteomics is a potent method for revealing the makeup, distribution, alterations, and interactions of proteins in cells, tissues, or organisms. It includes protein and functional patterns (10). Due to the changes in protein abundance, High-abundance proteins with comparable quality or chemical properties can readily obscure low-abundance proteins (11). Mass spectrometry-based comparative proteomics methods, methods like label-free, iTRAQ, and SWATH allow us to pinpoint proteins that exhibit notable alterations in expression levels on a broad scale under particular circumstances (12–14). Proteomics and other omics together provide more valuable information for investigating the cashmere growth and hair follicle development cycle (15). Proteome and transcriptome are two closely connected downstream and upstream genomics (16, 17). Integrating transcriptome and proteome analysis can provide additional insights not available through conventional individual histology and provide a comprehensive understanding of gene expression and regulation at every stage (18).

There, we examined the cashmere growth fluctuations in cashmere goats using the transcriptome and proteome for the first time. We additionally investigated the impact of various periods on cashmere development, transcriptional alterations, and protein levels. Our results fill a gap in the study of cashmere growth and hair follicle development.



2 Materials and methods


2.1 Animal welfare disclaimer

The Yiwei White cashmere Goat Breeding Farm in Erdos, Inner Mongolia, provided grazing conditions for the Inner Mongolian cashmere goats used in this experiment. The Inner Mongolia Agricultural University’s experimental animal management committee has authorized every experimental technique used in this work. The present investigation involved the collection of skin samples by the International Guiding Principles for Biomedical Research involving animals. The experiment was approved by the Inner Mongolia Agricultural University’s Special Committee on Scientific Research and Academic Ethics, which is in charge of approving the university’s biomedical research ethics [Approval No: (2020)056, project title: the International Guiding Principles for Biomedical Research involving animals, approval date: May 6th, 2020]. Three mature cashmere goats at a time, with similar growth, age, and feeding circumstances, serve as samples for three periods. The RNA of the samples is then mixed. Nine cashmere goats from the same family had skin samples taken. In the Department of Surgery, samples were taken from the middle of the scapula at a length of 10–15 cm. The experimental animals were not sacrificed, and after the skin was sampled, they received medication treatments that did not interfere with their normal growth. The 3-cm-diameter skin samples were collected, immediately rinsed with PBS, and quickly frozen in liquid nitrogen. After being transported to the lab in a liquid nitrogen tank, the samples were kept in a freezer at −80°C.



2.2 Protein extraction and digestion

The lysis process involved pulverizing nine skin samples in liquid nitrogen, adding the powder to lysis buffer (8-mg urea and 1% protease inhibitor), then lysing the mixture using ultrasound. The supernatant was then transported to a fresh centrifuge tube after the cell debris was eliminated using a centrifuge set at 12,000 g for 10 min at 4°C. Following the collection of the filtrate, the processed samples were held at −80°C while protein quantification was carried out using the BCA ProteinAssayKit (Abcan, China).



2.3 Mass spectrometry for label-free LC/MS

Peptide data were obtained using information-dependent capture (IDA) and sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) in the Sciex LC–MS/MS system (Framingham, MA, United States). A C18 column measuring 75 μm by 15 cm was used to inject about 2 μg of polypeptide for separation. A linear gradient of 0.1% formic acid in acetonitrile and 0.1% formic acid in water was used to separate the peptides (120 min, 500 nL/min, from 5 to 80%). The IDA parameters were as follows: automated collision energy; 350–1,800 m/z for time-of-flight mass spectrometry collection; 400–1,800 m/z for MS/MS and IDA scan. The nominal resolution was set at 30,000. The following were the SWATH-MS conditions: nominal resolutions of MS1 and MS2, 30,000 and 15,000, respectively; 150–1,200 m/z, MS1 mass range; 100–1,500 m/z, MS2 mass range.



2.4 Label-free LC/MS quantitative and qualitative and profiling

Peptide identification was performed using the UniProt/SWISS-PROT/Capra hircus database1 and Protein Pilot v4.5 software (Sciex, Framingham, MA, United States). A 1% false discovery rate (FDR) was used to filter the results. Trypsin was chosen as the enzyme and two missed cleavage sites were permitted among the search parameters. There was a 15 ppm peptide mass tolerance and a 20 mmu fragment mass tolerance. The data were imported into the software PeakView v2.1 (Sciex, Framingham, MA, United States), and the SWATH database was searched using the ion library produced by Protein Pilot. PeakView produced the extracted ion chromatograms (XICs) by processing the target and nontarget data. The findings were then explained and subjected to a quantitative analysis using the MarkerView v3.0 program (Sciex). With MarkerView, one may quickly examine data to identify the proteins that are differentially expressed (DEPs). The fold change analysis and t-tests were merged into principal component analysis (PCA) and volcano plot analysis. DEPs were identified using a fold change >2 or fold change <0.5, as well as statistical significance (p < 0.05).



2.5 Total RNA extraction from skin and construction of sequencing library

Using an RNAiso Plus Kit (TRIzol technique), total RNA was extracted from the skin of three cashmere (one period) goats. The RNA samples from three goats were combined after the total RNA was examined for purity and integrity using a sterile UV–vis spectrophotometer and an Agilent 2,100 bioanalyzer, respectively. RNA samples were collected in September (anagen), December (catagen), and March (telogen) using the same method and operation. The whole RNA was kept at −80°C in a freezer.

The Illumina TruSeqTM RNA Sample Preparation Kit’s operating instructions were followed while creating the cDNA library for transcriptome sequencing. By combining equal parts of each, the total RNA from the three cashmere goats was combined. After the mRNA was separated into 100–400 bp mRNA, it was purified using oligo-dT magnetic beads. Exonucleases, polymerases, and fragmented mRNA were used to create double-stranded cDNA. Using a Bio-Rad Certified Low-Range Ultra Agarose Kit, the ends of the double-stranded cDNA fragments were blunted, and the double-stranded cDNAs were phosphorylated to ligate the sequencing adapters and poly (A) tail. The sizes of the cDNA recovered were determined to be 200–300 bp. A sequencing library was created by PCR amplification of cDNA, and a TBS-380 device was used for library quality verification. An Illumina HiSeqTM 2000 sequencing platform was used to perform paired-end sequencing of the cDNA. The samples were sequenced by Beijing Baimaike Biotechnology Co., Ltd. using an A2 × 100 bp sequencing test.



2.6 Bioinformatics analysis

Using the Capra hircus genome annotation as background and the David database2 with default parameters, GO functional and KEGG pathway annotation was carried out. Obtained, encompassing analyses of the cellular component (CC), molecular function (MF), and biological process (BP).

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)3 database was used to perform the Protein–protein Interaction (PPI) study of the differentially expressed proteins between goat breeds, as previously mentioned. A minimum needed interaction score of >0.4 was used in the construction of the network. The network was visualized using Cytoscape v.3.9.0 software (Cytoscape Consortium, San Diego, CA, United States). Additionally, the hub proteins of the PPI network were investigated using the McCreight (MCC) approach with the help of the Cytoscape add-on CytoHubba.



2.7 Parallel reaction monitoring validation for differentially expressed proteins

The protein abundances were examined using the parallel reaction monitoring (PRM) approach to verify the accuracy of the SWATH-based proteomic data. The peptides were separated using a liquid chromatography-tandem quadrupole mass spectrometry system and dissolved in liquid chromatography mobile phase A (0.1% formic acid solution). The final step was processing the generated MS data with Skyline (64-bit, 22.2.0.351) (19).



2.8 Quantitative real-time PCR

For quantitative reverse transcription PCR (qPCR) analysis, the cDNA that was previously acquired was utilized. Primer 3.0 software was utilized to create the gene-specific primers for q-PCR, and Sangon Biotech Co., Ltd. (Shanghai, China) synthesized them. Table 1 lists the fragment sizes and primer sequences. For the q-PCR, a 20-μL reaction volume was used together with a PrimeScript RT Reagent Kit (TaKaRa, Beijing), 10 μL of 2 × SYBR Premix Ex Taq II (TaKaRa), 2 μL of cDNA, and 0.5 μL of each primer. A Bio-Rad IQ5 multicolor real-time PCR detection system (Hercules, CA, United States) was used to evaluate the reaction. The reference used was the β-actin. The 2 − ΔΔCT method was used for the qRT-PCR study, and SPSS software (version 17.0) was used for the statistical analysis. The format for values is mean ± standard deviation.



TABLE 1 Primer sequence information of differentially expressed genes.
[image: Table displaying primer information for six genes. Columns include primer name, primer sequences with forward (F) and reverse (R) sequences, and product length in base pairs (bp). The genes listed are VEGFA, RAC1, NOTCH1, LHX2, KRT2, and FGF21, with product lengths ranging from 98 to 212 base pairs.]




3 Results


3.1 Identification of proteins in goat skin

Cashmere goat skin proteome analysis was carried out in three stages using the constructed proteome map liquid chromatography–tandem mass spectrometry approach to examine changes in protein dynamics during the growth of goat wool. The proteome and transcriptome profiling of inner mongolia cashmere goat skin with anagen (Sept), catagen (Dec), and telogen (March) were constructed. Totally, with a false discovery rate (FDR) ≤ 0.01, 1890 proteins and 20,116 distinct peptides were identified in March; 2,460 proteins and 26,191 distinct peptides were identified in September; 2,505 proteins and 27,352 distinct peptides were identified in December. 716, 917, and 1,187 proteins were specifically expressed in March, September, and December (Figure 1A). Among three groups, a total of 2,983 proteins and 38,569 distinct peptides were identified (Figure 1B). We used principal component analysis (PCA) to cluster the protein to evaluate the quantitative consistency of the proteomics data. (Figure 1C). The PCA result showed that most of the samples in the same period were clustered together and crossed in the quadrants of different periods, indicating that proteins were related to different periods of hair follicle development. According to Figure 1G, it can be found that the number of peptides and maps did not change significantly during the transition from the hair follicle growth period to the degenerative period, that is, the basic composition of these proteins did not change. However, in this process, the number of proteins has changed significantly, and the change rule is that the number of proteins in the growth period-degeneration period-rest period changes from more to less and then to more. The number of proteins gradually increased during the growth period to the degenerative period, revealing the important role of these proteins in the development of hair follicles and the growth of cashmere. However, there are two primary phases to the growth of hair follicles, the first is the growth of primary hair follicles, and the second is the creation of cashmere fiber. Different proteins are involved in these two processes, but the total protein number is gradually increasing. Previous studies have shown evidence for the presence of molecular spatial gradients during the formation of hair follicles. The hair follicle structure as a function of the spatial dimension was then examined in our IDA dataset to capture this at the proteome level. The study used IDA data with fold changes ≥2 or < 0.05 and a p-value <0.05 to identify 137 proteins that were found to be highly expressed in anagen compared with telogen, while 656 proteins were highly expressed in telogen compared with anagen (Figure 1D). In anagen VS catagen, 644 up-regulated proteins and 30 down-regulated proteins were identified (Figure 1E). In catagen VS telogen 355 up-regulated proteins and 362 down-regulated proteins were identified (Figure 1F). These proteins play different roles in three stages to promote hair follicle growth and apoptosis.

[image: A multi-panel image containing various data visualizations and charts. Panel A features bar graphs and a Venn diagram comparing different groups. Panel B includes a graph of estimated false discovery rates and a plot showing nonlinear fitting. Panel C presents a principal component analysis (PCA) plot differentiating samples from March, September, and December. Panels D, E, and F show volcano plots comparing Anagen, Catagen, and Telogen stages, with significant proteins highlighted. Panel G features a bar chart depicting the distribution of proteins, peptides, and spectral counts across the Anagen, Catagen, and Telogen stages.]

FIGURE 1
 Identification of proteins of skins from goats. (A) UpSet plots depicting the number of unique and shared expressed proteins between different periods. (B) Estimated False Discovery Rates, Nonlinear Fitting of, Numeric ROC plot, and ProteinPilot Reported vs. Estimated FDR of all protein. (C) Two-dimensional scatter plot of quantitative principal component analysis of protein among samples. (D) Volcano map of differentially expressed proteins in anagen and telogen. (E) Volcano map of differentially expressed proteins in anagen and catagen. (F) Volcano map of differentially expressed proteins in catagen and telogen.




3.2 Functional enrichment analysis of differentially expressed proteins

To explore the potential functions of up-regulated and down-regulated Differentially Expressed Proteins (DEPs) identified in this study, GO and KEGG enrichment analysis was performed on DEPs. The results of GO enrichment in three different periods showed that all categories were enriched, and the biological process items were mainly enriched. The main GO terms of biological processes in the anagen VS catagen groups include translation, positive regulation of cell proliferation, protein stabilization, intracellular protein transport, protein transport, vesicle-mediated transport, etc. (Figure 2A). It shows that 674 differential proteins play an important role in promoting cashmere growth by hair follicles. In the catagen VS telogen comparison group, protein transport, skin morphogenesis, aging, cell death, positive regulation of macroautophagy, etc. were enriched (Figure 2B), indicating that 717 differential proteins were mainly used in hair follicle apoptosis. In the telogen VS anagen comparison group, translation, intracellular protein transport, cell differentiation, ubiquitin-dependent ERAD pathway, regulation of translational initiation, positive regulation of protein import into the nucleus etc. were enriched (Figure 2C), it is indicated that the role of the up-regulated protein in the transition from telogen to anagen is hair follicle apoptosis, while the role of the down-regulated protein is the growth or maintenance of cashmere.

[image: Four-panel image depicting enrichment analysis and a network diagram. Panels A, B, and C show bar graphs with biological processes (BP) and KEGG pathways on the Y-axis, and -log10(p-value) on the X-axis, categorized by color. Dot sizes indicate counts, with larger dots representing higher counts. Panel D presents a network diagram with interconnected nodes, highlighted in either red or green, indicating different functional groups.]

FIGURE 2
 Differentially expressed protein analysis. (A) GO function and KEGG pathway analysis of differentially expressed proteins in anagen and catagen. (B) GO function and KEGG pathway analysis of differentially expressed proteins in catagen and telogen. (C) GO function and KEGG pathway analysis of differentially expressed proteins in telogen and anagen. (D) Protein–protein interaction regulatory network.


We performed KEGG enrichment analysis on all DEPs. Within these three divisions, DEPs were mainly enriched in Metabolic pathways, Oxidative phosphorylation, and Estrogen signaling pathways. For the anagen VS catagen group, DEPs were significantly enriched in Phagosome, Proteasome, Protein digestion and absorption, Apoptosis, mTOR signaling pathway, and PPAR signaling pathway (Figure 2A). For the catagen VS telogen group, DEPs were significantly enriched in Pathways of neurodegeneration-multiple diseases, AMPK signaling pathway, Glutathione metabolism, and Leukocyte transendothelial migration (Figure 2B). For the telogen VS anagen group, Protein processing in the endoplasmic reticulum, Glutathione metabolism, Biosynthesis of amino acids were significantly enriched (Figure 2C). From the results of different pathways enriched from different periods, it is further verified that different proteins are enriched and functioned at different periods to maintain the cycle of cashmere and the cycle of cashmere growth.

Protein–protein interaction (PPI) network utilizing STRING was created to ascertain the relationships among these DEPs. The PPI network of DEPs contains 11,621 edges and 1,064 nodes. Additionally, the top 50 proteins in the network were obtained based on the analysis using Cytoscape Degree (Figure 2D). Ribosomal protein family (RPL4, RPL8, RPS16, RPS18, RPS2, RPS27A, RPS3), Elongation Factor family (EEF1G, EEF2, EFTUD2), Translation Initiation Factor family (EIF2S1) and Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) interacted strongly with each other. In addition, we found these proteins were significantly enriched in translation, cell differentiation, positive regulation of cell proliferation, negative regulation of translation, etc. based on PPI and function enrichment results. We speculated that the ribosomal protein might be involved in development regulation, cell differentiation, and apoptotic in hair follicles of cashmere goats at different stages.



3.3 Analysis of differences in gene expression

To explore the molecular mechanism of initiating periodic changes in hair follicles at the genomic level. Three skin samples from cashmere goats aged 3, 9, and 12 months were subjected to transcriptome sequencing analysis using the Illumina sequencing technology. The raw read count that was retrieved was 173,925,724. Over 94% of bases with a mass value greater than 30 (and an error rate of less than 0.1%) were found in all sequenced samples. 169,651,142 clean readings were obtained thereafter data filtering. The retrieved 220,696,075 mapped reads had a comparability rate of 92.58–93.22% with the reference genome of cashmere goats (Table 2).



TABLE 2 The mapping of clean data.
[image: Table showing sequencing data for three libraries: March, September, and December. March has 83,697,110 raw reads and 81,577,244 clean reads with 53.07% GC content, 0.0111% N, and 94.54% Q30. September has 82,490,126 raw reads, 80,504,704 clean reads, 53.28% GC, 0.0113% N, and 94.57% Q30. December shows 7,738,488 raw reads, 7,569,194 clean reads, 52.98% GC, 0.0112% N, and 94.5% Q30.]

By comparing the levels of gene expression in each sample, Differentially Expressed Genes (DEGs) were identified. Totally, 775, 882, and 1,034 DEGs were determined in comparison of anagen VS catagen, catagen VS telogen, and telogen VS anagen (q ≤ 0.05, |FC| > 2). Furthermore, 58 DEGs that overlapped were found in each of the three comparison groups (Figure 3A). Cluster analysis of DEGs found that most of the DEGs in the anagen were down-regulated, most of the DEGs in the telogen were up-regulated, and the DEGs in the catagen period were in between (Figure 3B).

[image: Venn diagram and heatmap depicting gene expression differences in hair growth phases. Panel A shows a Venn diagram with counts: Anagen vs Catagen (275), Telogen vs Anagen (439), Catagen vs Telogen (325), and overlaps. Panel B presents a heatmap with hierarchical clustering, illustrating expression levels across comparisons. Color scales indicate count and expression intensity.]

FIGURE 3
 (A) Venn diagram of differentially expressed genes in Zhongwei goat skin at three developmental stages. (B) Cluster analysis of gene expression in three groups.




3.4 Integrated analysis of transcriptome and proteome

The DEPs and DEGs were compared within each group to assess the correlation between the transcriptome and proteome data. Three clusters of genes with 16, 34, and 26 overlapped copies were found (Figures 4A–C).

[image: Three Venn diagrams labeled A, B, and C compare genes and proteins across hair growth phases. Diagram A shows overlap between anagen and catagen. Diagram B compares catagen with telogen. Diagram C contrasts anagen with telogen. Below, plots D, E, and F depict log fold change data for each phase comparison, with colors indicating different logFC statuses. Each plot shows axes labeled logFC_gene and logFC_pro.]

FIGURE 4
 Analysis of differentially expressed genes between transcriptome and proteome. (A) Proteome and transcriptome different expression Venn diagrams of anagen and catagen. (B) Proteome and transcriptome different expression Venn diagrams of catagen and telogen. (C) Proteome and transcriptome different expression Venn diagrams of telogen and anagen. (D) Nine-quadrant diagram of differentially expressed genes between transcriptome and proteome in anagen and catagen. (E) Nine-quadrant diagram of differentially expressed genes between transcriptome and proteome in catagen and telogen. (F) Nine-quadrant diagram of differentially expressed genes between transcriptome and proteome in telogen and anagen.


Translational regulatory mechanisms explain the correlation between transcriptome and proteome data. At this point, nine-quadrant association analyses can be very helpful. Among the 16 genes/proteins expressed in anagen VS catagen, TCHH was enriched in the 1 quadrant; in the 2 quadrants, COL2A1 is enriched; in the 4 quadrant, API5, CDSN, FBN1, TPPP3, UCHL3 were enriched. HSPA8, LDHB, OGN, PON3, RPS24, SBSN, and SOAT1 were enriched in the 5 quadrants. In the 6 quadrants, GNG12 and CCT2 were enriched (Figure 4D). Of the 34 genes/proteins expressed in catagen VS telogen, COCH was enriched in the 1 quadrant; APOA1, COL1A2, EIF4A2, MYH11, and RPL27A were enriched in the 2 quadrant; ALDOC, API5, KRT10, SLC25A24, TGFBI, and UCHL3 were enriched in the 4 quadrants; FBLN5, LDHBC4, AHCY, DCN, DNAJA2, DPT, FBN1, GANAB, LUM, MMP2, PADI3, QSOX1, SLC1A5, and TES were enriched in the 5 quadrants; AdipoQ, GNG12, PLIN3, PRDX4, and PSMC4 were enriched in the 6 quadrants; PCP4L1 and CDSN were enriched in the 7 and 8 quadrants (Figure 4E); The 26 genes/ proteins expressed in telogen VS anagen, RPL23 was enriched in the 2 quadrantss; DNAJA2, DPT, GPX3, PCP4L1, RPL21, RPL22, and SLC25A24 were enriched in the 4 quadrant; ACTG2, COCH, EIF4A2, GLUL, GSR, GSS, HSPH1, MAOA, PMM2, RPL10, RPL4, TPM2, TPPP3, TXN2, and UCHL3 were enriched in the 5 quadrant; API5 an lation-level regulation may be the reason why certain proteins abundant in the sixth, eighth, and ninth quadrants had higher abundances than RNA, whereas some proteins in the first, second, and fourth quadrants had lower abundances than the comparable RNAs. From the anagen-catagen and the catagen-telogen, both are expressed by API5; the high expression of RPL family members was found in the process of telogen-anagen.



3.5 Key protein structure domain analysis

The main function of the gene is to store and transmit genetic information, through the process of transcription and translation, and ultimately the formation of protein, and then play a role in the body. Proteins account for 50% of the dry mass of cells and play a role in everything the organism does, they are all composed of the same 20 amino acids. The API5 sequence length of 504, 56.1% is Helix, 1.2% is Strand, and 42.7% is non-helical and non-folded random structure. On Solvent Accessibility,42.1% of the area is Buried and 48.7% is Exposed (Figure 5).

[image: Protein structure analysis includes a colorful ribbon diagram of a protein on the left. The center features predicted features with data visualization on secondary structure, solvent accessibility, and more, using a color-coded bar chart. At the bottom, three pie charts illustrate amino acid composition, solvent accessibility, and secondary structure composition, showing various distributions.]

FIGURE 5
 Structural analysis of key proteins. Primary, secondary, and tertiary structure analysis of API5 protein.




3.6 PRM quantitative results

To confirm the correctness of the proteomic data in three comparison groups, three proteins were chosen for PRM quantification based on the expression level of the DEPs. The findings of the SWATH data analysis and PRM detection ratio showed a steady general trend, suggesting that the proteomic data were dependable and repeatable (Table 3).



TABLE 3 PRM result compared with SWATH-based quantitative result.
[image: Table showing gene expression data for TPM4, SNX2, and PSMA1 during telogen, anagen, and catagen phases. Data includes peptide sequences and expression values measured by PRM and SWATH methods.]



3.7 Quantitative real-time PCR validation

Six DEGs were chosen at random to verify the correctness of the transcriptome data (Figure 6). Since the transcriptome results matched the DEGs’ real-time fluorescence expression patterns, our transcriptomic data were considered reliable.

[image: Bar graphs display the expression levels of six genes (VEGFA, RAC1, NOTCH1, LHX2, KRT72, FGF21) during telogen, anagen, and catagen phases. Each graph compares RNA-seq and qRT-PCR data, showing variations in expression levels across different hair cycle stages. VEGFA and NOTCH1 show higher expression in the anagen phase, while RAC1, LHX2, KRT72, and FGF21 display significant variation among the phases. RNA-seq data generally shows higher expression levels than qRT-PCR in these comparisons.]

FIGURE 6
 mRNA expression levels for six genes in the skin samples of different period cashmere goats examined, via quantitative polymerase chain reaction, to verify the RNA sequencing data.





4 Discussion

From phenotypic to molecular processes, researchers have attempted to investigate the periodic changes in cashmere goat hair follicles since the 1960s. Dynamic changes in gene regulation and protein expression occur during this process (20). Since gene expression at the RNA and protein levels varies with time and tissue, transcriptome sequencing provides a direct means of investigating changes in gene expression, while proteome identification provides a direct means of investigating changes in protein function (21). We used multi-omics technology to jointly analyze the cycle conversion mechanism of cashmere goat hair follicles.

Firstly, the protein expression at different stages was identified. As the hair follicle began to grow and develop to the hatching hair grew out of the body surface and then to the hair follicle atrophy and apoptosis, the number of proteins was consistent with its changes. We speculate that there are specific proteins that function at different stages and promote the growth and apoptosis of hair follicles. The differential proteins were analyzed, and the enriched functional results including cell proliferation, protein transport cell death, etc., were as we speculated. Secondly, we performed gene mining on skin samples at different stages through transcriptomics. It was found that, like proteomics, the number of gene expressions fluctuated with the growth and apoptosis of hair follicles, and specific expression genes appeared at different stages. Among the 2,691 DEGs identified, 76 DEGs were overlapped with DEPs. Subsequently, we focused on the genes/proteins of 76 and finally locked the Nuclear protein Apoptosis Inhibitor 5 and ribosomal protein (RP) through correlation analysis.

Nuclear protein Apoptosis Inhibitor 5 (API5) prevents cells from going through the apoptotic process. This protein was first discovered in serum-deprived cells that survived, and it was subsequently discovered to be overexpressed in some malignancies and to control apoptosis in both vertebrates and invertebrates (22–24). In our study, we found that the API5 protein is regulated by post-transcriptional and translational levels, and the target gene inhibits its translation during the anagen-catagen and catagen-telogen periods. In these two stages, hair follicle cells undergo a process from initial apoptosis to complete apoptosis, and the expression of API5 shows a continuous downward trend, which is consistent with the cycle transition of goat hair follicles. During the telogen-anagen period, the API5 protein is regulated by post-transcriptional and translation levels, and the target gene promotes its translation. At this stage, hair follicles begin to grow and develop, API5 functions to inhibit apoptosis, and API5 expression increases; Numerous studies have demonstrated that API5 is up-regulated in human cancers of the cervix, prostate, lung, colon, and other related tissues in mouse fibroblasts, and has significant anti-apoptotic ability (22, 24–26). However, there is no relevant report on the skin cycle of goats. In our study, API5 protein showed a trend of increasing first and decreasing in the process of telogen-growth-degeneration, and the gene expression pattern was the same trend. For the first time, we discovered that in goats, API5 is connected to both apoptosis and hair follicle growth. Combined with functional analysis, API5 was enriched in Apoptosis in the biological process, which further confirmed the important role of API5 in the expression of hair follicle cycle transition in goats. Therefore, API5 will also be the focus of the study of the skin cycle.

Ribosomal protein (RP) is a general term for all proteins involved in the formation of ribosomes. It has a significant role in intracellular protein biosynthesis and has been found in many organisms. It is expressed in different organs and tissues of the human body. Currently, eukaryotic cells contain about 80 different types of ribosomal protein (RP). These RPs are referred to as ribosomal protein large (RPL) and ribosomal protein small (RPS) based on where they originate from—big and small subunits, respectively. A variety of studies have found that RP not only has the function of protein translation but also participates in the regulation of DNA replication, transcription, repair, RNA splicing, modification, cell proliferation, apoptosis, and other functions (27–29). In this study, RPL family members are the most connected proteins in the protein interaction network. In the co-expression module of DEGs and DEPs, they are highly expressed in the telogen-growth period. This may mean that the ribosomal protein caused a significant shift in the internal molecular microstate of the epidermis when the hair follicle transitioned from the resting phase to the new round of cycle growth phase.

According to our research, ribosomal protein and apoptosis inhibitor 5 had an impact on the growth and development of hair follicles in Inner Mongolian Cashmere goats. This will support our ongoing research into the mechanisms behind the proliferation and death of hair follicles in Inner Mongolian cashmere goats.



5 Conclusion

We provide comprehensive proteomic and transcriptomic data for inner mongolia cashmere goat skin with different three development stages. The gene expression at different stages and the function of protein volatilization were systematically studied. The data revealed the API5 may be involved in hair follicle apoptosis and influence the process of hair follicle cycle transition, and the transition of hair follicles from telogen to anagen is facilitated by the high expression of the RPL family, which also stimulates hair growth. The results provide a useful transcriptomic and proteomic resource and a broad understanding of the proliferation apoptosis mechanism underlying hair follicles.
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Yunling cattle is a new breed of beef cattle bred in Yunnan Province, China, which has the advantages of fast growth, excellent meat quality, improved tolerance ability, and important landscape value. Copy number variation (CNV) is a significant source of gene structural variation and plays a crucial role in evolution and phenotypic diversity. Based on the latest reference genome ARS-UCD2.0, this study analyzed the genome-wide distribution of CNVs in Yunling cattle using short-read whole-genome sequencing data (n = 129) and single-molecule long-read sequencing data (n = 1), and a total of 16,507 CNVs were detected. After merging CNVs with overlapping genomic positions, 3,728 CNV regions (CNVRs) were obtained, accounting for 0.61% of the reference genome. The functional analysis indicated significant enrichment of CNVRs in 96 GO terms and 57 KEGG pathways, primarily related to cell adhesion, signal transduction, neuromodulation, and nutritional metabolism. Additionally, 111 CNVRs overlapped with 76 quantitative trait loci (QTLs), including Subcutaneous fat thickness QTL, Longissimus muscle area QTL, and Marbling score QTL. Several CNVR-overlapping genes, including BZW1, AOX1, and LOC100138449, overlap with regions associated with meat color and quality QTLs. Furthermore, Vst analysis showed that PSMB4, ERICH1, SMC2, and PPP4R3A were highly divergent between Yunling and Brahman cattle. In summary, we have constructed the genomic CNV map of Yunling cattle for the first time using whole-genome resequencing. This provides valuable genetic variation resources for the study of the Yunling cattle genome and contributes to the study of economic traits in Yunling cattle.

Keywords
Yunling cattle, copy number variation, single-molecule sequencing, Vst, genome selection


1 Introduction

The cattle (Bos taurus), since its domestication about 10,000 years ago, has been a multipurpose domestic animal, occupying an important position in the development of animal husbandry and holding significant importance in national economic growth. It provides human with livestock products such as milk, meat, and leather, and is also used for cultivation and transportation (1). Environmental factors, geographic isolation, and human activities have significantly impacted the genome of cattle, contributing to the development of modern cattle and determining their phenotype, adaptability, and productive performance. Genetic variants, such as single nucleotide polymorphisms (SNPs) and insertion deletions (INDELs), have been extensively studied in different cattle populations to understand cattle evolution, including population structure, selection, population history and gene introgression (2–4). Some candidate genes related to reproduction, meat, milk and environmental adaptation have been identified (5).

Copy number variation (CNV) is a significant aspect of genomic structural variation. It refers to duplications or deletions of genomic segments, ranging in size from 50 bp to several Mp, which vary among individuals or species (6). CNV can interfere with gene expression and exert a greater impact on phenotypes compared to SNPs (7, 8). The current methods for detecting CNVs include comparative genomic hybridization arrays (CGH arrays), SNP arrays (such as the Illumina BovineHD BeadChip and Illumina BovineSNP50 BeadChip), whole genone sequencing, and long-reads sequencing. While whole genone sequencing and long-reads sequencing offer higher precision breakpoints, sensitivity, and resolution compared to array technologies, limited studies have been conducted to detect CNVs in cattle genomes using long-reads sequencing due to its high cost (5).

The Yunling cattle is the fourth new breed of beef cattle with completely independent intellectual property rights bred by the Yunnan Academy of Grassland and Animal Science, and it is the first breed bred in China through the ternary crossbreeding method. Yunling cattle are a beef cattle breed that has been carefully cultivated for over 30 years. They are selected from three breeds of cattle: Brahman cattle, Murray Grey cattle, and Yunnan Yellow cattle, using crossbreeding selection. It is characterized by rapid growth, high reproductive survival rates, good heat tolerance, and excellent meat quality (9). To date, only a limited number of studies have investigated the genomic distinctions between Yunling cattle and other breeds of cattle at the level of SNPs and INDELs. These differences have identified candidate genes associated with growth, muscle development, neurotransmitter concentration, and heat tolerance (9, 10). However, the research on copy number variation in Yunling cattle only focuses on the impact of CNV of a single gene on growth traits, such as VAMP7, DYNC1I2, PLA2G2A, SYT11, etc. (11–14).

This study combines high-coverage short-read data and long-read data for genome-wide CNV analysis, with a view to generate a comprehensive CNV landscape of Yunling cattle, investigating and compare the diversity and population genetic characteristics of CNV regions (CNVRs) in Yunling cattle. In addition, we conducted in-depth analyses of CNV functions and explored the population genetic characteristics of CNV using selective sweep analysis. This laid the foundation for determining the formation mechanism of economically important traits in Yunling cattle and provided a theoretical basis for future Yunling cattle breeding.



2 Materials and methods


2.1 Samples collection and genome sequencing

In this study, we collected sequencing datasets of 130 Yunling cattle and 10 Brahman cattle (Supplementary Table 1). The short-sequencing datasets of 129 Yunnan Ling cattle and 10 Brahman cattle were downloaded from the NCBI public database under the BioProject accession number PRJNA555741. Another sample data was obtained from a 4-year-old male Yunling cattle reared at Chuxiong Jinda Farm, Chuxiong City, Yunnan Province. Genomic DNA was extracted from heart tissue using the standard phenol-chloroform extraction method for DNA sequencing library construction. The integrity of genomic DNA molecules was checked using agarose gel electrophoresis. The BGISEQ DNBSEQ-T7 platform was used for short sequencing (bp) to obtain 161.89 GB of raw data (64X coverage of the estimated genome size), and the PacBio Sequel II platform (CCS mode) was used for single-molecule long-read sequencing to obtain 61.81 GB of raw data for genome assembly. The sequencing work has performed at GrandOmics Biosciences Co., Ltd. (Wuhan, China).



2.2 Sequence alignment to reference genome

After obtaining the downloaded and sequenced raw data from the whole genome sequencing of Yunling cattle, fastp 0.23.4 (https://github.com/OpenGene/fastp) was used to filter the raw data for quality control and retain the relatively high quality sequencing data. The filtered data were then aligned to the latest cattle reference genome ARS-UCD2.0 downloaded from the Ensembl website using BWA-mem with default settings, and the PCR duplicates that could affect the CNV analysis were removed using Picard 2.9.2 (https://broadinstitute.github.io/picard/) and Markduplicates. Additionally, PacBio long-read were mapped to the cattle genome (ARS-UCD2.0) using minimap2 (15) with default settings.



2.3 Detection of CNVs and CNVRs

We used Lumpy and CNVcaller to identify CNVs in Illumina short-read sequencing data, and Sniffles (6) to identify CNVs in PacBio long-read sequencing data. We then merged the CNVcaller results with the Sniffles and lumpy results, aiming to maximize the retention of population-specific variants while reducing rare variants at the individual level. Finally, we obtained results based on CNVcaller corrected for individual PacBio data. Specific details are as follows: Sniffles (version: 1.0.10) was employed to detect structural variants (SVs) based on PacBio long reads with default parameters. The SV analysis outputs were filtered through three steps: (1) removed ambiguous breakpoints (flag: IMPRECISE) and low quality SVs; (2) removed SVs shorter than 50 bp; (3) SVs with less than four supporting reads were removed[8]. CNVs were detected using Lumpy software (v 0.2.13) with default parameters, and CNVs were generated by performing discordant-read pairs and split-read pairs on each sample through the lumpyexpress module. CNVcaller was then utilized to detect CNVs. Manual checking and SURVIVOR (version 0.0.1) (16) were used to combine the results of the three software to determine the final dataset. The CNVs of Yunling cattle is divided into duplication CNVR, deletion CVNR and duplication-deletion CNVR, and the length of CNVR is ≤ 50 kb (deletion and both), and the length of CNVR is <500 kb (duplication) (17). In addition, the distribution of these regions on the chromosomes of Yunling cattlewas analyzed using Bioconductor's RIdeogram software package (18).



2.4 Functional annotation and enrichment analysis of CNVRs

To elucidate the functions associated with the identified CNVs in the Yunling cattle genome, the Yunling cattle annotation file used in this study was downloaded from the NCBI database as ARS-UCD2.0, and the annotation of candidate CNVRs was performed using ANNOVAR (19). GO enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov/) (20) for protein-coding genes only. Biological processes, cellular components and molecular functions were used as GO term categories with a significance level of p-value of 0.05. Additionally, cattle quantitative trait loci (QTL) were downloaded from the cattle QTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/BT/summary) (21) and compared with the identified CNVRs. As there are no studies of relevant QTL by ARS-UCD2.0, we only considered QTL reported in ARS-UCD1.2 with confidence intervals <5 Mb. We used the Bedtools-v2.27.1 (22) “intersect” command to detect which QTL overlapped with identified CNVRs.



2.5 Sweep selective analysis of the CNVR

We calculated the Vst (23) between Yunling cattle and Brahman cattle to identify the highly differentiated regions between the two populations. Due to the large difference in the amount of data between the two populations, we randomly selected ten of the 130 Yunling cattle short-read data and one Yunling cattle long-read data to form the Yunling cattle dataset for Vst analysis. Vst is a method similar to the Fst method for calculating selection between populations and is therefore used to calculate data on population differences based on copy number. The formula is Vst = (Vt - Vs)/Vt, where Vt is the variance between all uncorrelated individuals and Vs is the average variance within each population, weighted according to population size (24). Subsequently, CNVRs with the top 10% of Vst values were then used as candidate CNVRs and functional enrichment analysis was performed on these regions.




3 Results


3.1 The landscape of copy number variation in Yunling cattle

We collected sample data from 130 Yunling cattle and 10 Brahman cattle. Among the 140 samples, we newly performed long-read and short-read sequencing on 1 Yunling cattle sample and obtained 61.81 and 161.89 GB of raw data, respectively. The other 139 genome sequences are available online. Among them, the average coverage depths of 25 X and 64 X were obtained for the self-sequenced long and short data, and 4.2263 X to 7.529 X for the online-accessible data, and an average coverage of 99.73% was obtained after mapping the reads to the cattle reference genome ARS-UCD2.0 (Supplementary Table 1). An average coverage depth between 4x and 8x, as reported in the literature, can provide sufficient power for CNV detection using read depth-based methods (25). We constructed confidential CNV datasets by applying three software packages, Sniffles, lumpy and CNVcaller, to Nanopore long-read sequencing data and Illumina short-read sequencing data. We generated CNVR datasets for two cattle breeds, with a total of 16,507 CNVs detected in Yunling cattle. After merging CNVs with overlapping genomic locations, 3,728 CNV regions (CNVRs) were obtained (Figure 1A; Supplementary Table 2), including 2,175 duplication CNVRs, 1,401 deletion CNVRs, and 152 duplication and deletion CNVRs (Figure 1B), and a total of 3,633 CNVRs detected in Brahman cattle, including 2,186 duplication CNVRs; 1,321 deletion CNVRs; and 126 duplication and deletion CNVRs. Here, we focused on analyzing the CNVRs of Yunling cattle with a total length of 16,392,409 bp and an average length of 4,397 bp, covering 0.61% of the reference genome. The length of CNVRs was mainly distributed in the range of 1,000–2,000 bp, accounting for about 76% of the detected CNVRs (Supplementary Figure 1). Furthermore, the number of CNVRs decreased with increasing length (>500 bp). Furthermore, our results showed that CNVRs were unevenly distributed throughout the genome, with 66.5% of CNVRs (3,676) located in intergenic regions and only 1.3% in exonic regions (Figure 1C).
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FIGURE 1
 Genomic diversity and distribution of CNVR in Yunling cattle. (A) Autosomal distribution of CNVR. The colors painted on the chromosomes represent gene densities, and the different colored positions outside the chromosomes represent duplications (green), deletions (purple), and duplications and deletions (orange). (B) Frequency of different types of CNVRs. (C) Functional classification of detected CNVRs.




3.2 Functional annotation of CNVRs

Genes annotated corresponding to 3,728 CNVRs using the NCBI ARS-UCD2.0 reference genome. When CNVRs and genes overlapped by more than 1 bp, the relevant gene was annotated, otherwise the closest gene was annotated. When other genes were present within 1kb, additional annotation was required because it could affect the expression of that gene. Eventually, 3,728 CNVRs were annotated to a total of 1,572 genes. In order to further understand the effects of CNV on various aspects of growth in Yunling cattle, this study used the DAVID website to perform GO enrichment analysis and KEGG pathway analysis on the genes in the CNVRs. The result showed 96 GO terms were enriched (p-value >0.01), including 35 biological processes, 36 cellular components and 25 molecular functions (Supplementary Table 3), which were involved in cell adhesion, neuromodulation, immunomodulation and metabolism. Specifically, ATP binding (GO:0005524), calcium ion binding (GO:0005509), signal transduction (GO:0007165), neuron projection (GO:0043005), actin binding (GO:0003779), etc. In addition, KEGG pathway analysis showed that CNVR-carrying genes were enriched in 57 pathways (p-value >0.05, Figure 2; Supplementary Table 4), including signal transduction (bta04014:Ras signaling pathway, bta04015:Rap1 signaling pathway, bta04022:cGMP- PKG signaling pathway, bta04024:cAMP signaling pathway and bta04020:Calcium signaling pathway), nutrient metabolism (bta00230:Purine metabolism, bta04911. Insulin secretion and bta04974:Protein digestion and absorption), Regulation of lipolysis in adipocytes (bta04923) and ABC transporters (bta02010).
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FIGURE 2
 KEGG pathway enrichment analysis in Yunling cattle.




3.3 QTLs overlapping with identified CNVRs

In order to further reveal the CNVRs associated with economic traits in Yunling cattle and to verify their genetic effects, the detected CNVRs were compared with QTLs in the cattle QTL database. The results showed that 111 CNVRs overlapped with 76 QTLs by more than 1 kb, including Subcutaneous fat thickness QTL (17 CNVRs), Longissimus muscle area QTL (16 CNVRs), Multiple birth QTL (12 CNVRs), Marbling score QTL (8 CNVR), meat color and quality QTL (10 CNVRs) (Supplementary Table 5). Some CNRV genes associated with economic performance of Yunling cattle were identified, such as XKR4, ZBTB7C, CCDC15 genes relevant to Longissimus muscle area QTL. NHLRC3, LOC132342211, SLCO3A1 genes relevant to Marbling score QTL. BZW1, AOX1, LOC100138449 genes linked with meat quality QTL.



3.4 CNVRs diverging among populations

Vst statistic was utilized to analyze the population differentiation of CNVR between Yunling cattle and Brahman cattle. The method was similar to Fst in estimating population-specific selection pressure at the gene level. However, Vst showed the average value of detected response CNVR reached 0.3061 by utilizing CNVR-annotated protein-coding genes (Supplementary Table 6). As shown in Figure 3 and Supplementary Table 6, the different CNVRs were unevenly distributed across the chromosomes, and the Manhattan plot showed the results of Vst with the chromosomes in the horizontal coordinates and the VST values in the vertical coordinates. To understand the genes with a high degree of variation between varieties, genes with Vst >0.5 (up to 98th percentile) were examined. Result revealed that there were 10 CNVR overlapping genes or loci, including LOC101906606, LOC132346850, LOC112447126, POLN, LOC615258, SMC2, PSMB4, ERICH1, PPP4R3A, LARGE1. Remarkably, PSMB4, ERICH1, SMC2, and PPP4R3A genes play crucial roles in growth and development.
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FIGURE 3
 Vst values of the autosomal copy number variation region (CNVR) in Yunling cattle and Brahman cattle with a average Vst of 0.1268.





4 Discussion

During domestication and diversification, the frequency of CNV in the genomes of species responds to selection pressures. Considerable effort has been devoted to identifying causal mutations and genes. However, screening selected genomic copy number genetic markers is complex. Although population genetics in cattle has been extensively studied based on SNPs, little is known about the effects of CNVs on phenotypic and evolutionary traits. CNVs cover a larger region of the genome than SNPs and can affect gene function in a number of ways, including altering gene structure and dosage, altering gene regulation and exposing recessive alleles (26). Over the past decades, high-throughput sequencing technologies and bioinformatics tools have been increasingly used to construct genome-wide CNV profiles (17). CNV diversity has been extensively explored in Bos Taurus, Bos Indicus, and their crossing populations (27).

Yunling cattle have good fattening performance, significant body proportions, high meat yield, good carcass traits and good fatty acid composition in meat, which is an important source of beef production in China (28). In our study, we firstly used different sequencing platforms (short-reads and long-reads) to sequence high quality whole genome data of 140 Yunling and Brahman cattle to detect CNV with a high pairwise ratio (average pairwise ratio: 99.73%) compared to the newly reported reference genome (ARS-UCD2.0) (Supplementary Table 1). compared to the UMD 3.1 reference genome. Its improved reliability in screening CNVs (29). Short-reads sequencing has high base identification accuracy, which is an advantage in detecting shorter structural variants, but has an inherent disadvantage of exhibiting a high false-positive rate when detecting complex or long CNVs (30). Long-reads sequencing has the potential to substantially improve the reliability and resolution of structural variant detection. With an average read length of 10 kbp or more, reads can be more confidently compared to repetitive sequences that often mediate the formation of structural variants. Long-reads sequencing are also more likely to cross structural variant breakpoints with high confidence comparisons. However, long-reads sequencing also have the disadvantage of a high error rate in sequencing (31). Therefore, it happens that long and short reads data complement each other perfectly, providing us with the accuracy of detecting CNVs. We used three software programs for CNV detection, which used different algorithms to obtain accurate estimates of copy number at breakpoints and structurally variable sites, to construct a confidential CNV dataset for Yunling cattle, which also ensured that we obtained a highly confidential CNV dataset. In total, we detected 3,728 CNVRs in 130 Yunling cattle (Figure 1A) and 3,633 CNVRs in 10 Brahman cattle, which are similar to the CNVR levels in other cattle breeds (32). For better statistics, the variants were classified into three categories: duplication, deletion and duplication-deletion. The number of duplication was higher than the number of deletions (Supplementary Table 2). And the length of most CNVRs ranged from 1 to 2 kb (Supplementary Figure 1). In addition, the locations of CNVRs were not uniformly distributed in the cattle genome and they were not randomly distributed on chromosomes. Annotation revealed that CNVRs were mostly annotated in intergenic or intronic regions of the cattle genome (Figure 1C). Previous studies also support that many CNVRs are located on highly variable genes (17).

In this study, the ANNOVAR tool was used to identify genes located within CNVRs, and then DAVID was used to search for GO terms and KEGG pathway information for genes contained within CNVRs, and the purpose of obtaining these results was to speculate on the functions of these genes and the possible effects of CNVRs on economic traits in Yunling cattle. Existing studies have found that genes in CNVRs are mainly involved in immunity, sensory perception of the external environment (involving olfaction, vision, and taste), response to stimuli, and neurodevelopment, with relatively little involvement with nucleic acid binding, metabolism, and cell proliferation (33). This may be due to the fact that the emergence of genes with important functions CNV is the result of strong purifying selection. When CNVs occur in coding regions where the affected gene plays an important role in growth, it is highly likely that the occurrence of the variant will be harmful to the organism and therefore quickly eliminated. This is consistent with the results of our analyses. Three thousand seven hundred and twenty-eight CNVRs were annotated to a total of 1,572 genes. GO analyses revealed that these genes were mainly cell adhesion, neuromodulation, immunomodulation, and metabolism, while a small number of genes were involved in cell differentiation and organ development (Supplementary Table 3). Independent CNVs between different breeds may contribute to breed differences to varietal differences (34). In KEGG pathway analysis, CNVR genes were significantly enriched in signal transduction, nutrient metabolism, and ABC transporter proteins (Figure 2; Supplementary Table 4). Studies in mammals have revealed that ABC transporter proteins can carry a variety of endogenous metabolites, such as amino acids, peptides, and sugars, across lipid membranes, thereby facilitating the absorption and utilization of these nutrients (35).

The CNVRs detected in this study were compared with the QTLs reported in the cattle QTL database. It was found that QTL affecting economic traits of livestock genetic variation can be identified by screening the genome for relevant genes contained in the CNVR (36). After integrating CNVR into QTL, we identified 111 CNVR overlapping with 76 cattle QTL regions in this study (Supplementary Table 5). Many of the CNV overlapping genes, such as XKR4, ZBTB7C, CCDC15, AOX1, were located in growth and carcass QTL regions.The XKR4 gene was identified to be associated with growth traits especially Heritabilities for carcass weight (37, 38). The ZBTB7C gene controlled the expression of MMPS, which is the zinc-containing endopeptidases that play roles in cell proliferation, migration, differentiation, angiogenesis, and apoptosis (39). CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles (40). The levels of 2-pyrrolidone and glycerophospholipids are regulated by the gene expression of AOX1, which further affects the levels of volatiles, 2-pyrrolidone and decanal, respectively (41). NHLRC3, LOC132342211, and SLCO3A1, are located in the marbling scoring QTL region. Therefore, these identified CNV-carrying genes provide candidate molecularly relevant markers for future Yunling cattle breeding.

Selective scanning can reveal putative regions subject to environmental and artificial selection during local adaptation and domestication (9). In genomes, calculation of paired Vst values can be used to screen for key CNVRs that differ significantly between populations (42). In this study, five CNVRs carrying the PSMB4, POLN, LARGE1, SMC2 and PPP4R3A genes showed significant pairwise differentiation between Yunling Cattle and Brahman cattle (Figure 3; Supplementary Table 6). PSMB4 has been reported as a key gene regulating muscle growth and development, which determines postnatal growth rate, muscle fiber diameter and density, and fiber type in pigs (43). This function of PSMB4 gene may play an important role in good carcass traits in Yunling cattle. Subsequently, Yang et al. also demonstrated that PSMB4 overexpression inhibited cardiomyocyte apoptosis and I κBα expression, promoted the activation of NF-κB (44). DNA polymerase v (pol v), encoded by the PLON gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Takata et al. showed that a function of pol v in meiotic homologous recombination in processing specific substratess (45). A previous study found that Large myd/Largemyd (myd) mice lack expression of like-acetylglucosaminyltransferase-1 (Large1) and exhibit severe muscle pathophysiology, impaired mobility, and a markedly reduced life span (46). The SMC2 gene is considered a candidate gene associated with growth and meat production traits in sheep (47). The Protein phosphatase 4 regulatory subunit 3A (PPP4R3A), forms a highly conserved trimeric complex called protein phosphatase 4 (PP4) with PPP4C and PPP4R2. This complex plays a role in regulating the cellular processes, including DNA damage repair. PPP4R3A is widely expressed in various tissues and organs, participating in multiple cellular functions, such as cell proliferation, apoptosis, and cell cycle regulation (48). Some of the genes associated with physical traits in Yunling cattle were artificially selected in a targeted manner during domestication. Thus, under these selective pressures, CNVs may accumulate in Yunling cattle populations, thus forming the genetic basis for economically important traits.



5 Conclusion

In current study, we conducted comprehensive analyses to explore genetic variation in Yunling cattle. Based on a high-quality cattle reference genome, we constructed a CNV map of Chinese Yunling cattle using whole genome resequencing data. We defined common and breed-specific CNVRs and further analyzed the possible functions of overlapping CNVR genes using enrichment analysis and QTL database search. Based on paired Vst statistics, we examined CNVR-based population differentiation between Yunling cattle and Brahman cattle and revealed potential genomic regions that may be subject to selection. Our results provide a valuable resource for genome-wide variation in Yunling cattle and help to elucidate the genetic basis of superior traits in Yunling cattle. In addition, these results will contribute greatly to the future selection and development of economic traits in Yunling cattle.
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Tail type of sheep, which may be affected by many genes with a complex mechanism, is an important economic trait concerned by both raiser and consumers. Here, we employed two sheep breeds with extreme phenotypes - Mongolian sheep (short-fat-tailed) and Bamei Mutton sheep (long-thin-tailed) to analyze the genetic differences at the genomic level and find candidate genes associated with tail phenotype. The results of population structure analysis showed that the LD decay rate of Mongolian sheep was greater than that of Bamai Mutton sheep. When K = 2, the two populations were obviously separated with a certain degree of mixing. From 49 sheep individuals, 20,270,930 and 2,479,474 SNPs and Indels were identified, respectively. Selection signals were detected based on FST, π-Ratio, and XP-EHH. These three methods identified 85 candidate genes, of which PDGFD, GLIS1, AR, and FGF9 were reported to be associated with tail fat deposition, while VRTN associated with tail length in sheep tail phenotype; the others were novel genes that may play important roles in sheep tail phenotype formation. Gene annotation revealed that these candidate genes mainly participate in pathways associated with fat deposition or lipid metabolism. This study provided insight into sheep tail type development and a guide for molecular breeding.
Keywords: sheep, tail type, selection signature analysis, FST, π-ratio, XP-EHH

1 INTRODUCTION
Sheep (Ovis aries), as a major source of meat, milk, fiber and leather for mankind, has been domesticated since Mesolithic period, ∼11,000 years ago (Chessa et al., 2009; Alberto et al., 2018; Deng et al., 2020). During this long procedure sheep has evolved diverse phenotypes such as coat color, horn, tail type, etc., under natural and artificial selection (Kijas et al., 2009). Of these phenotypes, tail type is an important economic trait concerned by both producers and consumers. According to its length and fat deposition, sheep tail can be divided into five major types: long-fat tail, short-fat tail, long-thin tail, short-thin tail, and fat-rumped tail. It is widely believed that the wild ancestors of sheep were thin-tailed, while the fat-tailed sheep breeds emerged as an adaptive response to harsh and challenging environmental conditions (such as climate fluctuation, drought, and food scarcity) (Atti et al., 2004; Pourlis, 2011; Moradi et al., 2012; Kalds et al., 2021). Fat-tailed sheep could deposit up to 20% of their carcass weight as fat in the tail (Yousefi et al., 2012). The large amount of tail fat serves as an energy source for sheep, and also provided people valuable edible fat in the era of material scarcity. Nowadays, however, with the increasing incidences of obesity and cardiovascular disease, people prefer a diet low in fat and high in protein. On the other hand, with the popularization of intensive and semi-intensive feeding management, fat-tail of sheep has lost its original advantages and brought inconvenience to production management, such as inconvenience for mating (Kridli and Said, 1999) and locomotion (Orihuela and Ungerfeld, 2019). In addition, a large amount of fat deposition in tails may reduce feed conversion rate and even affect the carcass quality (Safdarian et al., 2008; Yousefi et al., 2012). Yousefi et al. found that the thin-tailed breed accumulated more intramuscular fat in longissimus dorsi muscle and had lower shear force and better eating quality, tenderness, and drip loss than the fat-tailed breed (Yousefi et al., 2012). In practice, tail docking (O’Donovan et al., 1973; Shelton et al., 1991; Bicer et al., 1992; Moharrery, 2007; Wang et al., 2018) and cross-breeding (Kashan et al., 2005; Khaldari et al., 2008; Abdullah et al., 2010) are usually taken to reduce tail size and length. It was reported that tail docking may improve lambs’ growth, slaughter performance and mutton quality (Atti and Mahouachi, 2011; Marai et al., 1987; Bicer et al., 1992; Abouheif et al., 1993; Bing et al., 2006). However, tail docking is stressful and risky, and has been banned in several countries to improve animal welfare (Eck et al., 2019). Cross-breeding takes time and efforts, and the results are usually unsatisfactory. Currently, how to breed short-thin-tailed sheep through molecular breeding methods has become a focus of sheep breeders, and the key to solve this problem is to identify genes related to tail phenotype of sheep. There were some research on tail phenotype and several promising genes such as PDGFD, BMP2 and TBXT, etc., associated with tail phenotype had been suggested (Yuan et al., 2017; Zhi et al., 2018; Dong et al., 2020; Mastrangelo et al., 2019; Pan et al., 2019; Moradi et al., 2012), but most of the studies focused either on fat deposition or tail length, and the results are usually inconsistent. The genetic mechanics underlying tail phenotype still remain unclear.
Mongolian sheep, short-fat-tailed (Figure 1A), is the most widely distributed and abundant sheep breed in China. It is mainly distributed in Inner Mongolia Autonomous Region, northeast, north, and northwest of China. Mongolian sheep is an ancient indigenous breed formed by natural and artificial selection for a long time, and is favored by local herdsman and consumers because of its rough feeding resistance, cold resistance, drought resistance, and high-quality meat. Bamei Mutton sheep, which is long-thin-tailed (Figures 1B, C), is the first dual-purpose breed that was bred in China by crossing local fine-mixed sheep as the maternal line with German Merino sheep as the paternal line. It contains 6.25% bloodline of Mongolian sheep. Bamei Mutton sheep is mainly distributed in Bayannur City of Inner Mongolia Autonomous Region, China. It is characterized by resistance to rough forage, strong stress resistance, good adaptability, rapid weight gain in lamb fattening, and early sexual maturity. In the present study, we performed whole genome resequencing of the two breeds with extreme tail phenotypes to investigate selection signatures and candidate genes associated with tail phenotype (fat vs. thin and long vs. short) based on three statistical tests, including fixation index (FST), π-Ratio, and cross-population extended haplotype homozygosity test (XP-EHH). The candidate genes identified in our study provided the basis for understanding the molecular mechanism of tail phenotype in sheep.
[image: Three images labeled A, B, and C show different types of sheep. A depicts two sheep with white bodies and black faces standing on grass. B shows two light brown sheep on dry ground. C captures a single white sheep beside a body of water. Each image presents distinct breeds in varying environments.]FIGURE 1 | Tail phenotype of sheep. (A) Short-fat-tailed Mongolian sheep. (B) Long-thin-tailed Bamei Mutton sheep after docking. (C) long-thin-tailed lamb of Bamei Mutton sheep before docking.
2 MATERIALS AND METHODS
2.1 Sample collection, DNA extraction, and sequencing
A total of 28 Mongolian sheep (MG) and 21 Bamei Mutton sheep (BM) were selected from Inner Mongolia Autonomous Region, China. The sheep were raised and managed under the same condition. All individuals were typical of the breeds and unrelated according to pedigree records or owner’s information. Blood samples were collected and returned to laboratory on dry ice. Genomic DNA was extracted from the blood samples following the standard phenol-chloroform extraction procedure. DNA samples that passed the test (D260 nm/D280 nm = 1.7–1.9) were randomly interrupted into fragments of 500 bp in length. Paired-end sequencing libraries were constructed according to the manufacturer’s instructions (Illumina Inc., San Diego, CA, USA) and sequenced on the Illumina HiSeq Xten Sequencer (Illumina Inc.) with PE150 module.
2.2 Alignments and variant identification
After filtering out low quality reads, the 150-bp paired-end clean reads were mapped onto the sheep reference genome Oar v.4.0 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2) with BWA-MEM using the default parameters (Li and Durbin, 2009). After alignments, SNP calling was performed using SAMtools and Genome Analysis Toolkit (GATK, v.3.8) (Nekrutenko and Taylor, 2012). All SNPs were filtered using the ‘Variant Filtration’ module of GATK with the standard parameters as below: Window 4; Variants with QD (quality depth) < 4.0; FS (Phred-scaled p-value using Fisher’s exact test to detect strand bias) > 60.0; MQ < 40.0; -G_filter “GQ < 20”.
The implementation of SAMtools mpileup (v.1.8) (Li, 2011) was run in a multi-sample mode to calculate genotype likelihoods from the aligned reads for all samples simultaneously. The parameters -E and -t were used to recalculate (and apply) base alignment quality and produce per-sample genotype annotations, respectively. Then, the estimated genotype likelihoods were converted into genotypes using BCFtools call using the -v and -m flags to output variable sites only, and permitted sites to have more than two alternative alleles, respectively.
Based on the annotation file of the sheep reference genome Oar v.4.0, a transcript FASTA file for database was built using the retrieve_seq_from_fasta.pl module of ANNOVAR, and then the functional annotation for each SNP was performed using the table_annovar.pl module of ANNOVAR (Wang et al., 2010).
2.3 Population structure analysis
SNPs were pruned the in high levels of pair-wise LD using PLINK v.1.9 (Purcell et al., 2007) with the parameter (−-indep-pair-wise 50 5 0.2) to perform principal component analysis (PCA) and ADMIXTURE analysis. PCA of whole-genome SNPs for all 49 individuals was conducted using the GCTA v.1.24.2 (Yang et al., 2011). Furthermore, population structure analysis was carried out using the ADMIXTURE v1.3 (Alexander and Lange, 2011) with kinship (K) ranged from 2 to 5. The unrooted Neighbor-joining (NJ) tree was constructed with TASSEL using the matrix of pairwise genetic distances and visualized with iTOL (https://itol.embl.de/). The LD decay for each group was measured using PopLDdecay (Zhang et al., 2019) with default parameters.
2.4 Genome-wide selective sweep test
To identify the selective sweep regions, we performed genome-wide scans of selection signals using three metrics: allele frequency based methods FST (Weir and Hill, 2002), π-Ratio (Danecek et al., 2011), and haplotype-based method XP-EHH (Sabeti et al., 2007a).
The SNPs were filtered with parameters (--maf 0.05 -max-missing 0.90) using PLINK v.1.9 (Purcell et al., 2007). The FST was calculated using VCFtools (Danecek et al., 2011) with parameter “--weir-fst-pop group1 --weir-fst-pop group2 --fst-window-size 50000 --fst-window-step 20000 --maf 0.05 --max-missing 0.90”. Then the FST values were normalized (ZFST) using the Ztransformation method (Rubin et al., 2010). The genetic diversity (π-Ratio) was calculated using VCFtools with parameters “--keep gropu1/gropu2 --window-pi 50000 --window-pi-step 20000 --maf 0.05 --max-missing 0.90” and python scripts. The overlap of the top 5% windows in each method was considered as candidate signatures of selection.
The XP-EHH was performed for every SNP using the default settings by selscan v.1.1 (Szpiech and Hernandez, 2014), and genotypes were phased using Beagle (Browning and Browning, 2007) with default parameters. The genome-wide raw XP-EHH statistics were standardized to a distribution with zero mean and unit variance. SNPs in the top 0.1% are taken as significant SNPs. Significant regions are identified by combining SNPs of significant XP-EHH scores that are less than 200 kb apart. If two SNPs both have significant XP-EHH scores and were less than 200 kb apart, then the two SNPs formed a region.
In the π-Ratio and XP-EHH tests, the BM sheep were used as the target population, and the MG sheep as the reference population.
2.5 Gene ontology enrichment and KEGG pathway analyses
According to genome annotation, a gene was assumed to be under positive selection if it overlapped with a selection signal. To obtain an in-depth view of the biological significance of the candidate genes, online Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted by retrieving O. aries in self-built database (No.AH96240) on AnnotationHub website (https://annotationhub.bioconductor.org/). Protein-Protein Interaction (PPI) analysis was performed using STRING database (https://cn.string-db.org/).
3 RESULTS
3.1 Overview of sequencing quality
After sequencing and data quality control, more than 100 million clean reads were obtained in the MG and BM groups, respectively. The number of clean bases in the BM group was found to be more than 4G greater than that in the MG group. The mapping rate is greater than 98% in both groups with an average depth of 7.31 × (Table 1; Supplementary Table S1).
TABLE 1 | Overview of sequencing statistics.
[image: Table showing data for two groups, MG and BM. MG has 113,552,917 clean reads, 17.03 clean bases, 99.30% map rate, and 6.47 effective depth. BM has 143,757,312 clean reads, 21.56 clean bases, 98.73% map rate, and 8.14 effective depth.]3.2 SNP identification
In total, 29,926,218 and 23,122,081 SNPs, 3,755,604 and 5,005,409 Indels were identified in MG and BM sheep, respectively, among which, 20,270,930 SNPs and 2,479,474 Indels are common in MG and BM sheep (Figure 2). Functional annotation of the polymorphic sites showed that the vast majority of SNPs and Indels were present either in intergenic regions (62.2% and 60.8%, respectively) or in intronic regions (34.8% and 36.3%, respectively). Exons contained 0.60% of the total variation (Table 2). These results indicate that the variants on the MG and BM genomes differ.
[image: A Venn diagram illustrating two overlapping circles. The left circle, labeled MG, is red and contains 29,926,218, while the right circle, labeled BM, is blue and contains 23,122,081. The overlapping area is purple, labeled MG, with a value of 20,270,930.]FIGURE 2 | SNPs identified in BM and MG sheep.
TABLE 2 | Annotation of SNPs/Indels.
[image: Table showing counts of SNP and Indel for various variant types. In summary, intergenic variants have the highest counts with 12,609,201 SNPs and 1,782,495 Indels, while exonic and ncRNA exonic splicing have lower counts.]3.3 Population genetic structure
Following the identification of the SNPs, PCA, phylogenetic relationship analysis, and population genetic structure analysis were conducted for all the individuals. The PCA results showed that the BM and MG sheep were clearly separated (Figure 3A), and the NJ tree also produced similar results, with BM and MG sheep divided into 2 clades (Figure 3B), which indicated that there is a certain degree of genetic distance between BM and MG sheep. The results of population genetic structure (Figure 3C) showed that for the BM group, the consistency within groups was better when K = 2 and K = 4, while for the MG, it was better when K = 2 and K = 3, indicating that the consistency of the individuals within the groups was better, and that differences existed between the groups. Furthermore, when K = 2, BM and MG sheep were obviously divided into two subgroups, but with a certain degree of mixing, which was consistent with the fact that BM sheep contains a certain amount of ancestry of MG sheep. When K = 3, no new subgroups appeared in the experimental population. The aforementioned results demonstrate that there are distinctions between BM and GM sheep, which may be attributed to tail phenotype variation. In order to further explore the genetic diversity, linkage disequilibrium, in terms of the correlation coefficient (r2), was calculated for BM and MG sheep populations. As shown in Figure 3D, the faster LD decay was observed in the MG population, which indicates that MG sheep had higher genetic diversity, and BM sheep had higher degree of domestication and greater intensity of selection.
[image: Panel A shows a scatter plot of principal component analysis with two distinct clusters: MG and BM. Panel B is a circular dendrogram differentiating MG in blue and BM in pink. Panel C displays bar plots for K-values from two to five, showing genetic structure differentiation between BM and MG. Panel D is a line graph illustrating linkage disequilibrium decay over distance in kilobases for both BM and MG, with BM showing a slower decay rate.]FIGURE 3 | Population genetic structures of BM and MG sheep. (A) Principal component analysis (PCA) of 49 sheep individuals. (B) Neighbor-joining (NJ) tree constructed from SNPs data of the two populations. (C) Model-based clustering of sheep individuals using ADMIXTURE with K = 2–5. (D) Correlation coefficients (r2) were calculated for the MG and BM sheep over 50-kb windows.
3.4 Detection of selective sweeps
Due to the genetic separation between MG and BM sheep, selective sweep analysis using FST, π-Ratio and XP-EHH were performed to investigate selection signals in BM sheep, which would facilitate the identification of target genes. The results demonstrated that the majority of SNPs exhibited moderate genetic variance within the population (Figure 4A, FST < 0.15). Additionally, some SNPs exhibited high genetic variance and high genetic variability on chromosomes 13, 16, and 17, suggesting that these SNPs may be mutations specific to the BM and MG populations. A further 544,123 SNPs were identified under the conditions of FST ≥ 0.2 and π-Ratio ≤0.397 (Figure 4B). The combined analysis of FST and π-Ratio revealed that 1884 genes (representing the top 10% of genes) were identified by log2 (Pi_BM/GM)_ZFST, while 294 genes were identified by XP_EHH (Figure 4C). Eventually, a total of 85 overlapping genes were identified as candidate genes by log2 (Pi_BM/GM)_ZFST and XP_EHH (Figure 4D; Supplementary Table S2). Of these candidate genes, some were known to be related to sheep tail phenotype, such as fat deposition associated genes PDGFD, GLIS1, AR, FGF9, and vertebral number variation associated gene VRTN; some were novel genes that may have relationship with sheep tail phenotype formation.
[image: A: A Manhattan plot displaying Fst values across chromosomes with highlighted genes like GLIS1, INRIP1, and VRTN. B: A scatter plot of 2D Fst against log10 distance. C: A line graph showing genetic variation with colored regions. D: A Venn diagram with three overlapping circles labeled XP, SDS, and log2 data.]FIGURE 4 | Genomic Selection analyses. (A) Selective signals detected by FST. (B) Selective signals detected by log2 (Pi_BM/GM)_ZFST. (C) Selective signals detected by XP_EHH. (D) Overlapping genes identified by log2 (Pi_BM/GM)_ZFST and XP_EHH.
3.5 Function annotation of the selected genes
Functional association of the 85 candidate genes was further investigated by GO and KEGG analysis. For GO analysis, the biological processes mainly focused on ‘cellular response to organic substance’, ‘cellular response to lipid’, ‘cellular response to organic cyclic compound’, ‘negative regulation of cell development’, ‘beta stimulus regulation of DTPase activity’, and so on (Figure 5A) (p < 0.05). In terms of KEGG, several signaling pathways related to lipid metabolism were significantly enriched, including ‘phospholipase D signaling pathway’, ‘glycerophospholipid metabolism’, ‘glycerolipid metabolism’, and ‘fatty acid elongation’ (Figure 5B). In addition, some significant pathways were also enriched, such as ‘MAPK pathway’, ‘P13K Akt signaling pathway’, ‘Calcium signaling pathway’ and ‘ras signaling pathway’. The interaction of KEGG pathways and the relationship between genes and pathways was show in Figure 5B. Furthermore, these candidate genes showed close functional association (Figure 6).
[image: Grouped image with two main panels labeled A and B. Panel A includes three bar charts representing "Biological Process," "Cell Component," and "Molecular Function," each with different colored bars. Panel B contains a KEGG bubble diagram, a KEGG network with interconnected nodes, and a heatmap of KEGG pathways and genes, depicted with varying shades for intensity.]FIGURE 5 | GO and KEGG analysis of the 85 candidate genes. (A) GO analysis. (B) KEGG analysis.
[image: Diagram showing a network of interconnected genes or proteins represented as colored nodes linked by lines. Each node is labeled with an identifier, and lines vary in color and thickness, indicating different types of interactions or relationships.]FIGURE 6 | Protein-Protein Interaction (PPI) of the 85 candidate genes.
4 DISCUSSION
In the past decade, the improvement of sheep tail phenotype has gradually developed from utilization of traditional hybridization or tail-docking to molecular breeding technology. To date, several methods are employed to detect the selective sweeps in various livestock genomes. In the present study, we used three metrics, allele frequency-based methods FST, π-Ratio, and haplotype-based method XP-EHH, to identify genome-wide selective sweep regions. The power of each test was different, and any set of candidate genes may contain some false positives (Nielsen et al., 2007). FST measures the genetic differentiation between populations (Holsinger and Weir, 2009); π-Ratio identifies the differences in nucleotide divergence between populations (Sun et al., 2020); XP-EHH detects ongoing or nearly fixed selective sweeps by comparing haplotypes between the two populations (Sabeti et al., 2007b). Combining multiple tests can improve the power of detecting selection signatures (Zeng et al., 2007), making the results more reliable. We considered the overlapping genes derived from three methods as candidate genes and eventually identified 85 candidate genes. Among these genes, PDGFD (Dong et al., 2020; Zhu et al., 2021; Pan et al., 2019; Mastrangelo et al., 2019; Zhao et al., 2020; Li et al., 2020a; li et al., 2020b; Wang et al., 2022; Wei et al., 2015; Luo et al., 2021), GLIS1 (Luo et al., 2021), NRIP1 (RIP140) (Xu et al., 2017), AR (Moradi et al., 2022), FGF9 (Moioli et al., 2015), and VRTN (Mastrangelo et al., 2019; Zhu et al., 2021; Moioli et al., 2015) were formerly reported to be involved in regulation of tail fat deposition or tail length.
Many studies have recently highlighted the platelet-derived growth factor D (PDGFD) gene as a new sheep tail phenotype pattern maker (Wei et al., 2015; Pan et al., 2019; Dong et al., 2020; Li Q. et al., 2020; Li X. et al., 2020; Luo et al., 2021; Mastrangelo et al., 2019). Dong et al. found that the expression of the PDGFD gene is higher in fat-tailed breeds than in thin-tailed breeds, and a similar result was observed in obese mice and human after analyzing a public transcriptomic data (Dong et al., 2020). Overexpression of PDGFD in ovine preadipocytes could promote adipogenic differentiation, and the expression levels of two adipogenesis marker genes (PPARc and LPL) increased after PDGFD overexpression (Li Q. et al., 2020). Furthermore, oil red O staining showed that the number of lipid drops was higher in the PDGFD-overexpressing group than in the control group (Li Q. et al., 2020). These studies indicated that PDGFD gene plays a positive regulation role in the fat deposition process of sheep tail. Interestingly, there were also different discoveries about the expression profile of the PDGFD gene. Li X. et al. (2020) identified four PDGFD transcripts (I, II, III, and IV), and transcript I was the most differentially expressed transcripts between the thin-tailed and the fat-tailed/fat-rumped sheep breeds. Notably, PDGFD expression (at the mRNA and protein levels) was consistently negatively correlated with fat deposition in sheep tails (Li X. et al., 2020). The highest PDGFD gene expression level was observed in the thin-tailed Chinese Merino sheep, followed sequentially by the small fat-tailed Han sheep, the large fat-tailed Han sheep, and the fat-rumped Altay sheep (Li X. et al., 2020). The authors inclined to the idea of involving the PDGFRb signaling (a receptor of PDGFD) in inhibiting the differentiation of white adipocytes by regulating the expression of two key transcriptional regulators of adipogenesis (PPARc2 and C/EBPa) (Olson and Soriano, 2011; Kalds et al., 2021). In the present study we found that PDGFD gene was strongly selected by Bamei Mutton sheep, combined with previous researches, indicating that PDGFD was involved in regulating the fat deposition process of sheep tail, but how to regulate this process still needs more in-depth research.
GLIS1 is a zinc finger protein that acts as both an activator and repressor of transcription (Kim et al., 2002). The temporal and spatial expression of GLIS1 is consistent with mesoderm differentiation during mouse embryonic development (Nakashima et al., 2002). Later, Tosic et al. discovered that GLIS1was highly expressed in bipotent muscle satellite cells. But when overexpressed, increased occupancy of GLIS1 is observed at the promoters of adipogenic genes Adipoq, Cebpa and Ucp1, and drives brown adipogenesis both in vitro and in vivo, indicating that GLIS1 was a novel pro-adipogenic transcription factor (Tosic et al., 2018). Most recently, GLIS1was detected as a candidate gene of selective signature of sheep tail phenotype (Luo et al., 2021). A non-synonymous point mutation (g.27807636G > T) was found within GLIS1 in two fat-tailed Chinese indigenous sheep breeds (Mongolian sheep and Small Tail Han sheep) compared with two thin-tailed dairy sheep (DairyMeade and East Friesian), and resulted in a Pro to Thr substitution (Luo et al., 2021). In our study, GLIS1 was also strongly selected in Bamei Mutton sheep compared with Mongolian sheep. Taken together, GLIS1, as a pro-adipogenic factor, may plays a key role in mesodermal cell differentiation during fetal development in fat-tailed sheep to initiate differentiation of pre-adipocytes and fat accumulation (Luo et al., 2021).
Nuclear receptor interacting protein one gene (NRIP1, also known as RIP140), encodes a nuclear protein also known as receptor-interacting protein 140 (RIP140). RIP140 is widely expressed and plays an important role in regulating lipid and glucose metabolism (Leonardsson et al., 2004; Ho et al., 2011; Hochberg et al., 2015). RIP140 interacts with multiple adipocyte-specific genes, such as uncoupling protein 1 (UCP1), mitochondrial fatty acid transporter carnitine palmitoyl transferase 1 (CPT1) and lipid droplet protein cell death-inducing DFFA-like effector A (CIDEA). The expression of these genes is characteristic of brown adipose tissue (Nautiyal et al., 2013). Previous studies in adipocyte cell models also revealed that RIP140 functions as a corepressor of catabolic pathways, including fatty acid oxidation, oxidative phosphorylation, glycolysis and tricarboxylic acid cycle (Christian et al., 2005; Powelka et al., 2006). Moreover, Xu et al. conducted a genome-wide association study using phenotypes and genotypes of two breeds of contrasting tail types (Small-tailed and Large-tailed Han sheep breeds) to identify functional genes and variants associated with fat deposition, and revealed that RIP140 was a strong candidate for fat deposition in the tails of sheep (Xu et al., 2017), which is consistent with our results.
It has been proved that androgen receptor (Ar) gene gets participate in lipid binding (Huang et al., 2009), and has a negative function in fat deposition in both mice and human beings (Rubinow et al., 2015; Kim et al., 2019). Adipose tissue macrophages express the androgen receptor (AR) and regulate adipose tissue remodeling. Thus, testosterone signaling in macrophages could alter the paracrine function of these cells and thereby contribute to the metabolic effects of androgens in men (Rubinow et al., 2015). In order to determine whether the loss of AR signaling in hematopoietic cells results in greater fat accumulation, Rubinow et al. performed a metabolic phenotyping study in male mice. C57BL/6J male mice (ages 12–14 weeks) underwent bone marrow transplant from either wild-type (WT) or AR knockout (ARKO) donors (n = 11–13 per group). Mice were fed a high-fat diet (60% fat) for 16 weeks. At baseline, 8 and 16 weeks, glucose and insulin tolerance tests were performed, and body composition was analyzed with fat-water imaging by MRI. No differences in body weight were observed between mice transplanted with WT bone marrow [WT (WTbm)] or ARKO bone marrow [WT (ARKObm)] prior to initiation of the high-fat diet. After 8 weeks of high-fat feeding, WT (ARKObm) mice exhibited significantly more visceral and total fat mass than WT (WTbm) animals. Resultant data indicate that AR signaling in hematopoietic cells influences body fat distribution in male mice, and the absence of hematopoietic AR plays a permissive role in visceral fat accumulation. These findings demonstrate a metabolic role for AR signaling in marrow-derived cells and suggest a novel mechanism by which androgen deficiency in men might promote increased adiposity (Rubinow et al., 2015). Kim et al. also discovered that blocking AR can decreases the expression of CPTI (one of long-chain fatty acid (LCFA) transport proteins) in the skeletal muscle, which reduces fat metabolism. Thus, reducing sex hormones or suppressing the sensitivity of AR can inhibit energy efficiency and fat metabolism by suppressing CPTI (Kim et al., 2019). However, the effect of AR gene on fat deposition in sheep is rarely reported. In our study, AR was identified as a promising candidate gene of sheep tail phenotype, and the same results were found in two Iranian thin- and fat-tailed sheep Breeds (Moradi et al., 2022). Combined with the above studies, we speculate that AR may promote energy efficiency and fat metabolism of sheep, thereby inhibit fat deposition in tail.
Fibroblast growth factor 9 (FGF9) is a protein-coding gene that plays an important role in the regulation of embryonic development, cell proliferation, cell differentiation, and cell migration (Moioli et al., 2015). FGF9 expressed not only in white adipose tissue (WAT) of human, but also in brown adipose tissue (BAT) while exposed to cold, regulating the development of adipose tissue (Mejhert et al., 2010; Grefhorst et al., 2015). In mammals, WAT stores fat and BAT dissipates fat to produce heat. FGF9 was selected as a candidate gene associated with tail phenotype in both our and a recent study (Moioli et al., 2015), indicating that FGF9 may plays a role in fat deposition and metabolism of sheep, but the mechanism underlying it is unclear.
In addition to fat deposition, the number of caudal vertebrae also affects tail phenotype by affecting the length of sheep tail. It has been reported that Vertnin (VRTN) gene is a key candidate gene associated with the variation of vertebral number in sheep and pigs (Duan et al., 2018; Zhang et al., 2017). As a transcriptional inhibitor, VRTN independently regulates the expression of BMP2 gene in the dorsoventral axis through combination with its regulatory sequence, thereby enabling normal development of embryos along the dorsoventral axis (Shao et al., 2017). In a study of genome-wide scan of selection signatures of sheep tail phenotype, Mastrangelo et al. identified VRTN as a key candidate gene; and the tail of the five fat-tailed sheep breeds where this signature was detected was definitively longer than the tail of the thin-tailed breeds (Mastrangelo et al., 2019). The same results were also found in Moioli et al., Zhu et al., and our study. In the current study, the tail length of Bamei Mutton sheep is longer than that of Mongolian sheep, with the caudal vertebrae number is 20–30 and 10–14, respectively. These results indicated that VRTN may be an important gene involved in regulating the development of sheep caudal vertebrae, and affect the tail phenotype of sheep by affecting the tail length.
Except for above mentioned genes, the rest of the candidate genes may also play important roles in regulating sheep tail phenotype, although there was not enough evidence at presence based on publicly available information. Therefore, further studies and experiments are needed to confirm the soles and mechanisms of these genes in formation of sheep tail phenotype. In conclusion, our results provide a strong foundation for studying the regulation of tail phenotype in sheep and do offer hope that the causal mutations and the mode of inheritance of this trait will soon be discovered by further experimentation.
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Dorper sheep is popular among farming enterprises with strong adaptability, disease resistance, and roughage tolerance, and an unique characteristic of natural shedding of wool. In a large number of observations on experimental sheep farms, it was found that the wool of some sheep still had not shed after May, thus manual shearing was required. Therefore, understanding the molecular mechanisms of normal hair follicles (HFs) development is crucial to revealing the improvement of sheep wool-related traits and mammalian skin-related traits. In this study, transcriptome analysis was performed on skin tissues of adult Dorper ewes in the shedding (S) and non-shedding (N) groups in September 2019, January 2020, and March 2020, respectively. The results identified 3,278 differentially expressed transcripts (DETs) in the three comparison groups within the S group, 720 DETs in the three comparison groups within the N group, and 1,342 DETs in the three comparison groups between the S-vs-N groups. Time-series expression analysis revealed 2 unique expression patterns in HF development, namely, elevated expression in the anagen phase (A pattern) and the telogen phase (T pattern). DETs with stage-specific expression had a significant presence in processes related to the hair cycle and skin development, and several classic signaling pathways involved in sheep HF development, such as Rap1, estrogen, PI3K-Akt, and MAPK, were detected. Combined analysis of DETs, time-series expression data, and weighted gene co-expression network analysis identified core genes and their transcripts influencing HF development, such as DBI, FZD3, KRT17, ZDHHC21, TMEM79, and HOXC13. Additionally, alternative splicing analysis predicted that the isoforms XM_004004383.4 and XM_012125926.3 of ZDHHC21 might play a crucial role in sheep HF development. This study is a valuable resource for explaining the morphology of normal growth and development of sheep HFs and the genetic foundation of mammalian skin-related traits. It also offers potential insights into factors influencing human hair advancement.
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Introduction

The hair follicles (HFs) of sheep constitute a “micro-organ” of the skin (1, 2). They are essential for sebum and sweat secretion, temperature regulation, homeostasis maintenance, and the regeneration and repair of skin stem cells (2). Additionally, HFs are an important source of tissues, which promote wool growth and determine the periodic growth characteristics of hair (3). Sheep HFs comprise primary hair follicles (PHFs) with medullated hair and secondary hair follicles (SHFs) without medullated hair. Sheep wool is derived from the SHF structures in the skin (4, 5). The HFs of sheep and wool growth and development follow a cyclic pattern of anagen, catagen, and telogen phases, which are influenced mainly by external environmental factors and specific genetic factors (6). The Wnt signaling pathway plays a crucial role in epidermal development, HF morpho-genesis, and regeneration (7). Gab1, which is downstream of receptor tyrosine kinase and upstream of Shp2 and Mapk, is involved in the regulation of the HF cycle and self-renewal of follicular stem cells (8). In normal skin, BMP controls epidermal homeostasis, HF growth, and melanogenesis (9). The APC (exon skipping), POFUT1 (intron retention), and TGFBR3 (cassette exon) genes, which are associated with HF development, are regulated by selective splicing (10). Transcription factors such as KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3 are specifically expressed in HF morphogenesis (11). Moreover, wool growth is a seasonal and cyclic phenomenon in animals that is controlled by photoperiod, inhibitory signaling, and the endocrine system (12, 13).

Interactions of multiple signaling pathways and specific genetic factors regulate HF growth and development cycle. The Wnt and Hippo signaling pathways promote Cashmere goat HF growth, whereas the Rap1, PI3K-Akt, NF-kappaB, and cAMP signaling pathways are crucial in the catagen and telogen phases. The PI3K-Akt signaling pathway and extracellular matrix (ECM) receptor interactions play important roles in transitioning from the telogen to the anagen phase, serving as candidate biomarkers for the regeneration process (14). FGF5, FGFRL1, and RRAS genes affect HF development through the MAPK signaling pathway in the Inner Mongolian velvet goat (5). Vimentin regulates the growth cycle of Cashmere goat HFs by affecting the outer root sheath (15). A comparison of molecular signals that initiate HF development on days 45, 55, and 65 in the embryos in Cashmere goats revealed significant differences in the Wnt, TGF-β, FGF, Hedgehog, and NOTCH signaling pathways from E55 to E65. FOXN1, GATA3, and DLX3 may have consistent effects on HF development (10). The Notch signaling pathway plays a crucial role in HF differentiation and maturation, with regulatory factors such as FOXN1, HOXC3, PRR13, and LHX15 potentially having consistent regulatory roles in Cashmere goat HF development (16). KRT25, KRT27, KRT19, KRT10, KRT77, KRT1, KRT24, KRT14, and KRT4 are considered to be markers of the HF cycle (17). Additionally, the genes LAMA5, WNT10A, KRT25, ZDHHC21, FZD1, LRP4, TGFβ2, TMEM79, SOX10, ITGB4, and KRT14 were significantly enriched in epidermal differentiation and development, hair follicle development, and hair follicle morphogenesis, and they were expressed specifically in the wool follicles of sheep at different developmental stages (18). In general, research on hair follicle development in cashmere goats has been widely reported, but research on wool follicles in sheep is relatively rare. In addition, the automatic shedding feature of Dorper sheep saves a certain amount of production costs for breeding companies, while research on some Dorper sheep that do not automatically shed their hair is even less common.

Weighted Correlation Network Analysis (WGCNA) allows for the joint analysis of high-throughput and phenotypic data, categorizing genes with similar expression profiles in modules and defining key modules and genes (19, 20). WGCNA has been used to identify key genes such as WNT10A, KRT14, WNT11, LEF1, WNT5A, KRT1, and KRT6, which are associated with the development of the HF cycle in Inner Mongolian velvet goats. Among these, WNT10A is a crucial gene that regulates the development of HFs (18, 21, 22). ECM-receptor interactions, adhesion patches, the PI3K-Akt signaling pathway, and estrogen signaling pathways are closely related to the cyclic development of HFs. Genes such as COL1A1, C1QTNF6, and COL1A2 play a role in increasing cashmere production (23). In addition, alternative splicing, as an important regulatory modality, has an intrinsic transcriptional regulatory mechanism that results in polymorphisms in transcript and protein structure and function. FGF5 signaling is expressed at a much higher level in the final phase of the anagen phase than in the telogen phase, inducing a transition to the catagen phase. In contrast, FGF5 signaling plays an inhibitory role in the anagen-to-catagen transition in the dermal cells of Cashmere goats (24, 25).

Numerous studies have demonstrated that wool follicle development is regulated by various pathways and specific genes throughout the growth cycle. However, most studies have focused on wool follicles and wool growth in Cashmere goats, with few studies addressing the entire cycle of wool follicle development and growth in sheep. Moreover, there are relatively few reports of Dorper sheep not shedding automatically. Additionally, regulation of the expression of single-gene multiple transcripts generated from mRNA precursors (pre-mRNAs) through different splicing modes during the cyclic changes in wool follicle development and growth in sheep have not been extensively studied, and the regulatory mechanisms that are involved remain largely unexplored. Furthermore, research on the impact of alternative splicing events on HF development in sheep is limited. In this study, transcript expression datasets were analyzed to identify key transcripts, pathways, and variable splicing events affecting the regulatory mechanisms of normal hair follicle development and growth cycles in sheep. Our study aims to provide a theoretical foundation to elucidate the regulatory mechanisms underlying the cyclic wool follicle growth in sheep.



Materials and methods


Animals and sample collection

All adult Dorper ewes used in this study were obtained from Zhong mu Yilin Livestock Co. Ltd. (Yinchuan, China). Sustained observations at the experimental sheep farm revealed that Dorper sheep exhibited a trait-separation phenomenon between shedding and non-shedding wool. By May, some sheep continued to retain their wool and required manual shearing. Consequently, Dorper adult ewes with consistent feeding and management conditions, good body condition, and similar age (2 years) were selected for this study. Ewes were categorized into a shedding group (S) and a non-shedding group (N) to investigate the cyclic development of HFs. Initially, 10 Dorper sheep were selected from the S group and the N group as the experimental model. Five Dorper sheep from the group S and three from the group N with the best phenotype were finally selected for subsequent analysis. The samples were collected in September 2019, January 2020, and March 2020. Skin tissues were collected from the same batch of sheep in group S (5 sheep) and group N (3 sheep) at each time point. Samples were collected from the posterior edge of the last rib at the junction of the rib and the midline of the body (Sample size: 2cm2). For sampling, the wool is first sheared as far as possible. Next, the sampling site was disinfected and injected with an anesthetic drug. Then, after the skin tissue was cut off using scissors, the sheep wounds were sprayed with iodophor. Finally, anti-inflammatory drugs were applied to the wounds, and the wounds were sutured. We have done our best to minimize the suffering of the sheep. Tissue samples were rinsed with phosphate-buffered saline, immediately transferred to RNAase-free cryo-preservation tubes, and preserved in liquid nitrogen. The stages of Group S were labeled as S1, S2, and S3, whereas those of Group N were labeled as N1, N2, and N3 according to the sampling time. Additionally, skin tissues were collected for paraffin sectioning.



Histological staining

After immersing sheep skin samples in 4% paraformaldehyde for 24 h for fixation, the samples were embedded and rinsed for 30 min with running water to eliminate the fixative and then dehydrated in gradient ethanol solutions. The tissue was embedded in paraffin using a JB-P5 machine. Paraffin blocks were sectioned along the horizontal axis using an RM2016 microtome (Germany) to yield Sections approximately 5 μm thick. The sections were photographed at 40× magnification using an OLYMPUS cellSens (BX53) microscope. PHF and SHF diameters were measured using ImageJ software.1 Data analysis was conducted using one-way ANOVA with the Agricola package (v.1.3–7) for R studio software.



Total RNA extraction and transcriptome sequencing

Total RNA was isolated from 24 skin samples using TRIzol reagent (Invitrogen, United States). RNA purity, concentration, and integrity of each sample were checked with a Nanodrop 2000 and an Agilent 2,100 Bioanalyzer with RIN ≥ 8.4, and 1.8 < optical den-sity260/280 < 2.0. An RNA-seq library was constructed using a TruSeq™ RNA sample preparation kit (Illumina; San Diego, CA) following the manufacturer’s instructions. First, ribosomal RNA was removed to maximize the retention of all coding RNAs. The resulting RNA was then randomly fragmented into short pieces of approximately 300 bp. Subsequently, these RNA fragments served as templates for synthesizing the first strand of cDNA using six-base random hexamers. Next, the second strand of cDNA was synthesized by adding buffer, dNTPs (with dUTP instead of dTTP), RNase H, and DNA polymerase I, followed by purification using a QiaQuick polymerase chain reaction (PCR) kit and elution with EB buffer for terminal repair, the addition of base A, and sequencing adapter. Degradation of the second chain was achieved using the enzyme uracil-N-glycosylase. Lastly, PCR amplification and fragment size selection were performed using agarose gel electrophoresis. The constructed sequencing library was then sequenced on the Illumina HiSeq™ 4,000 platform with 150 bp paired-end reads. Each sample generates approximately 6 Gb of sequencing data.



Data quality control, comparison, assembly, and expression calculation

The following analysis was done based on MobaXterm (v.23.1). Quality filtering of raw data was performed using FastQC (v.0.11.9) software to remove reads containing adapter sequences, reads with >10% N content, duplicate reads, and low-quality reads (where bases with a quality value Q ≤ 20 made up more than 50% of the total reads), to obtain clean reads. HISAT2 (v.2.2.1)2 (26) was used to align the reads to the sheep reference genome (Oar_rambouillet_v1.0), and StringTie (v.2.2.0) (27) software was used to assemble the transcripts and calculate the transcript expression in each sample. The expression level is displayed as raw reads count and FPKM. The raw reads count indicates the number of reads contained in the transcript, but due to the influence of sequencing amount and transcript length, the raw reads count is not conducive to the comparison of differential transcripts between samples. To ensure the accuracy of subsequent analysis, we first corrected the sequencing depth, then corrected the length of the transcript, and obtained the FPKM value of the transcript before conducting subsequent analysis.



Bioinformatics analysis


Sample relationship analysis

The following analysis was performed based on R studio. In order to understand the repeatability between samples and assist in excluding abnormal samples. The gmodels package (v.2.19.1) was used to perform principal component analysis (PCA). The corrplot package (v.0.92) was used to perform a Pearson correlation analysis on all samples.



Identification of differential transcripts

Normalization, p-value calculation, and multiple hypothesis testing corrections (false discovery rate, FDR) were conducted using the DESeq2 (v.1.42.0) package on each sample’s read count (28). Differentially expressed transcripts (DETs) were identified using |log2FC| ≥ 1 and P-adjust <0.05 as the criteria. Quantitative relationships of DETs among groups were plotted using GraphPad (v.8.0.1), and the intersecting genes among the DETs were visualized using the UpSetR package (v.1.4.0).



Enrichment function analysis and network visualization

Functional annotation and enrichment of all transcript from sequencing were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) databases. Gene network interactions were visualized using Cytoscape (v3.9.1) (29).



Time series expression analysis

The pheatmap package (v.1.0.12) was used to visualize the clustering among samples, and the STEM software3 was used to classify the expression patterns of DETs and identify the expression patterns and key transcripts related to HF development.



Weighted correlation network analysis

Co-expression networks were constructed using the WGCNA (v.1.72–5) package. Use the pickSoftThreshold function to select the appropriate soft threshold power β value to calculate the network structure. Merging modules with 75% feature transcript similarity using a dynamic tree-cutting technique to ascertain the final module count. Transcript with |MM| ≥ 0.75 in key modules were correlated with hub transcript (Demonstrated as a gene in the main text) related to HF development in sheep to pinpoint the hub transcript (Demonstrated as a gene in the main text) and their regulatory relationships with HF development pathways. In addition, sequence motif enrichment in the promoters of transcripts specifically expressed during the stages related to HF development was analyzed using MEME (v. 5.5.5).



Alternative splicing analysis

Alternative splicing is a crucial gene regulatory mechanism in eukaryotes. RMATS (30) was used to determine 5 variable splicing events, namely, exon skip (ES), retained intron (RI), mutually exclusive exons (MXEs), alternative 5′ splice site (A5SS), and alternative 3’splice site (A3SS) (31). Differential alternative splicing events were screened using the criteria of |IncLevelDiff| ≥ 0.1, p-value ≤0.05, and FDR ≤ 0.05. Key candidate genes related to HF development in sheep were identified via combined analysis of differential alternative splicing events, DETs, and hub genes. The expression, splicing types, and locations of these candidate genes were analyzed in depth. Motifs in the splice site sequences of skipped exons with significant splicing changes were identified using the software XSTREME (v.5.5.5) (32). These splice site sequences replaced the 500 bp downstream sequence of the exon (exonStart-exonEnd: 89851506–89,851,692).




RT-qPCR

Six DETs (MT1C, KRT27, TPRXL, FABP9, KRT23, and S100A14) were randomly selected, and RT-qPCR was used to determine their relative expression. Exon sequences of the relevant transcripts were downloaded from The National Center for Biotechnology Information (NCBI) database, and primers were designed using Primer Premier 6.0, with primer specificity verified using NCBI Primer-BLAST. GAPDH served as the internal reference gene, with primers synthesized by Bioengineering Co. (Shanghai; Supplementary Table S1). cDNA was synthesized from the extracted total RNA using a PrimeScript™ RT kit (Takara, China). qRT-PCR was performed using a TB Green® Premix Ex Taq™ Fluorescence Quantification kit to determine transcript expression. The qRT-PCR reaction system included the following: 10 μL TB Green Premix Ex Taq II (Tli RNaseH Plus), 0.8 μL forward primer (10 μmol/L), 0.8 μL reverse primer (10 μmol/L), 0.4 μL ROX reference dye (50×), 2 μL cDNA, and 6 μL RNase-free water, made up to a total volume of 20 μL. The real-time fluorescence quantitative PCR procedure was as follows: pre-denaturation at 95°C for 30 s; denaturation at 95°C for 10 s, annealing at 57.8°C for 30 s, and extension at 65°C for 5 s, for a total of 40 cycles. Data were organized using Microsoft Excel (v.2019), and relative transcript expression was calculated using the 2-ΔΔCt method. GraphPad software was used to analyze the graphs.




Results


Histological changes in the HFs of sheep

Skin samples were sectioned along the horizontal axis to observe the histological changes in sheep wool follicles during September 2019, January 2020, and March 2020 (Figures 1A,B). In group S, PHFs and SHFs transitioned from the anagen phase to the telogen phase between S1 and S2, with SHFs appearing smaller or even atrophied. Both PHFs and SHFs from S2 to S3 showed signs of developing hair buds and re-entered growth and development. In group N, the PHFs in group N2 still had developing hair buds, and the SHFs did not exhibit significant shrinkage compared with those in group S2. PHFs and SHFs in groups N2 to N3 were in a slow anagen phase. These results indicated that HFs in group S exhibited a rhythmic cyclic development, whereas those in group N lacked a telogen phase, resulting in a continuous growth and development process without a cyclic pattern. Next, we standardized the diameter measurements (μm) of PHFs and SHFs in groups S and N. Highly significant differences were noted between the PHFs in both groups S and N at all 3 time points. However, SHFs were significantly different only in January and not significantly different in either September or March (Figure 1C; Supplementary Table S2). Wool shedding refers to the cycle of growth and development of SHFs, shedding, and regrowth. Therefore, S1, N1, and N2 were initially defined as the anagen phase, S2 as the telogen phase, S3 as the early anagen phase, and N3 as the slow anagen phase. Additionally, the observation of tissue sections provided a reliable basis for selecting samples from specific HF developmental states for transcriptome sequencing and subsequent analysis to identify the transcript related to HF development in sheep.
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FIGURE 1
 Histological comparison of sheep HFs at 3 developmental stages. (A) and (B) display the histological changes in HFs observed in September, January, and March, respectively (magnification: ×40). (A) September (S1), January (S2), and March (S3). (B) September (N1), January (N2), and March (N3). (C) Measurement of HF diameter (μm) of PHFs and SHFs at 3 developmental stages of sheep HFs and one-way analysis of variance (mean ± standard deviation). 20 PHFs and 30 SHFs were selected for each sample to statistically analyze the mean and standard deviation. In total, the diameters of 120 PHFs and 180 SHFs were measured. Note: HF: hair follicle, PHF: primary hair follicle, and SHF: secondary hair follicle. ***p < 0.001indicates extremely significant difference. Z1, Z3, and Z9 represent the sampling years. Z1, Z3, and Z9 represent the sampling years. Z9: September 2019, Z1: January 2020, Z3: March 2020.




Quality assessment results and sample correlation analysis

To investigate the regulatory mechanisms governing HF growth and development in sheep, a total of 24 samples from both groups S (5) and N (3) were analyzed. The experiment yielded 2,178,092,054 clean reads (Supplementary Table S3) and detected 47,660 transcripts through RNA-seq data analysis (Supplementary Table S4). PCA revealed that S1 and S3 samples were closer to each other, whereas S2 samples were farther from both S1 and S3. By combining the sampling time and section results, it was determined that S1 and S3 were in the anagen phase of HF development, whereas S2 was in the telogen phase. N1 and N2 clustered with S1 and N3 showed expression similar to S3, further suggesting that there was no telogen phase in the HFs of group N sheep. Therefore, it was determined that S1, N1, and N2 were in the anagen phase, S2 was in the telogen phase, S3 was in the early anagen phase, and N3 was in the slow anagen phase (Figure 2A). Correlation analysis was conducted on all samples, and the correlation of duplicate samples within the same treatment group was found to be higher than 0.95 (Figure 2B).
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FIGURE 2
 sample correlation analysis. (A) Principal component analysis of 24 samples. (B) Pearson correlation analysis of 24 samples.




RT-qPCR validation of RNA-seq

Six DETs were randomly selected and their comparative expression was determined using RT-qPCR. Results from RT-qPCR for these 6 DETs were consistent with the transcript expression profiles, validating the reliability of the transcript sequencing results (Figure 3).
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FIGURE 3
 RT-qPCR results.


Identification of differential transcripts and their enrichment analysis.

A total of 5,340 DETs were identified using the DESeq2 package with |log2FC| ≥ 1 and P-adjust <0.05 as the screening criteria (Figure 4A; Supplementary Table S5). These included 3,278 DETs for intra-Group S comparisons, 720 DETs for intra-Group N comparisons, and 1,342 DETs for comparisons between Groups S and N. Among the 9 groups that were compared, 3 DET sets were of particular interest, all intersecting with N2 and comprising 627 DETs (Figure 4B). GO and KEGG analyses were performed on 5,340 DETs. In the biological process (BP) category, DETs were mainly enriched in the regulation of developmental processes, cellular component organization, and single-organism developmental processes (Figure 4C; Supplementary Table S6). Within the CC category, DETs were predominantly associated with the extracellular matrix, organelles, and the intermediate filament cytoskeleton (Figure 4C; Supplementary Table S6). Within the MF category, DETs were chiefly related to binding, protein binding, and glycosaminoglycan binding (Figure 4C; Supplementary Table S6). DETs were significantly enriched in the pathways of alcoholism, systemic lupus erythematosus, neutrophil extracellular trap formation, Rap1, estrogen, ECM-receptor interaction, phospholipase D, AMPK, and Ras signaling (Figure 4D; Supplementary Table S7).
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FIGURE 4
 Characteristics of sheep skin tissue at different developmental stages. (A) Relationship between the number of DETs in wool sacs of sheep at different developmental stages. (B) Venn diagram of DETs. Due to the large number of comparison groups, data are presented in the form of an UpSet diagram. (C) Gene Ontology enrichment function results of DETs. biological process (BP), cellular component (CC), and molecular function (MF). (D) Kyoto Encyclopedia of Genes and Genomes enrichment analysis results of DETs (top 25).




Enrichment analysis of hair follicle development-related transcripts

To further identify the biological functions associated with HF development in sheep and their potential key transcripts. Cytoscape software was used to visualize GO terms and KEGG pathways in HF development. Enriched BP terms included hair cycle, hair cycle process, regulation of the hair cycle, follicle development, negative regulation of the hair cycle, positive regulation of follicle maturation, positive regulation of HF development, regulation of HF maturation, HF maturation, dermal development, regulation of epidermal development, positive regulation of epidermal development, and negative regulation of epidermal development. Relevant transcripts include the 23 genes, namely, KRT17, ROCK2, PRKCH, Ldb1, RBPJ, DBI, ERRFI1, DKK1, LRP4, ALOX15B, LAMA5, Trpv3, FZD3, MSX2, SOX9, HOXC13, NGFR, SMAD4, KRT84, TMEM79, LOC101108627, LOC101116039, and LOC654331 (Figure 5A; Supplementary Table S8). Similarly, in pathway analyses, 13 genes (KRT17, PRKCH, RBPJ, DBI, DKK1, FZD3, SMAD4, ALOX15B, LAMA5, NGFR, SOX9, ROCK2, and LOC101108627) were found to be enriched in Wnt, Notch, PPAR, estrogen, metabolic pathway, cAMP, PI3K-Akt, necroptosis, and vascular smooth muscle contraction signaling pathways. Interestingly, alongside the genes associated with GO terms and KEGG pathways, various genes, including LEF1, CTNNB1, WNT6, KRT25, WNT4, KRT40, KRT27, and BAMBI, were associated with our traits of interest (Figure 5B). Analogous to the previous GO and KEGG analyses, GO and KEGG analyses were conducted on the pathways potentially related to sheep wool follicle growth and progression at various stages. Additionally, a gene network diagram for these pathways was constructed according to their respective stages (Figure 5C; Supplementary Figure S1). Our results matched those described above and also uncovered several genes in sheep that may be involved in HF growth and development that interact with the above signaling pathways.
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FIGURE 5
 Visualization of GO terms and DETs connected to the development of HFs in sheep. (A) Gene network diagram of biological process (BP) terms during HF morphogenesis in sheep. Red indicates joint effects across multiple BP terms, whereas blue indicates effects in a single BP term. The transcript numbers corresponding to the genes are listed in Supplementary Table S8. (B) Network visualization of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and their associated genes during HF morphogenesis in sheep. (C) Occurrence of signaling pathways, including Wnt, Notch, PPAR, estrogen, metabolic pathway, cAMP, PI3K-Akt, necroptosis, and vascular smooth muscle contraction, during sheep wool follicle morphogenesis. GO and KEGG functional enrichment analyses on pathways potentially related to sheep HF growth and development at various phases. The visual network diagram is displayed in Supplementary Figure S1.




Dynamic expression patterns of DETs during HF development in sheep

A hierarchical cluster analysis of all DETs was performed to determine the expression patterns of DETs associated with HF development in sheep. This analysis revealed 2 major expression modules, namely, high and low expression during the S2 period (Figure 6A). Next, a time-series expression analysis was conducted on all DETs, which were classified into 10 expression modules based on changes in their expression patterns (Figure 6A). GO functional enrichment analysis was performed separately on these 10 modules, which identified 11 BP terms related to HF development in sheep (Figure 6A; Supplementary Table S9). In Module 2, transcripts associated with HF development were enriched for processes including hair cycle, skin development, positive regulation of epidermis development, regulation of epidermis development, and epidermis development. These transcripts were characterized by low expression at S2 and high expression at N2 (Figure 6B; Supplementary Table S10). Module 4 was associated with similar processes, including regulation of hair cycle, regulation of epidermis development, epidermis development, and positive regulation of epidermis development, with the transcripts also showing low expression at S2 (Figure 6B; Supplementary Table S10). Analysis of the transcripts related to HF development in Modules 2 and 4 revealed that most showed strong expression in the anagen phase (S1), low expression during the telogen phase (S2), and a slight increase in expression during the early anagen phase (S3). In contrast, the N group exhibited a consistent decrease in expression (N1 and N2 in the anagen phase, and N3 in the slow anagen phase), which was defined as the A pattern (Figure 6C). Module 7 plays a key role in the hair cycle and hair cycle processes (Figure 6B; Supplementary Table S10). Its expression pattern is the opposite of that observed in Modules 2 and 4 (low expression at S1, high expression at S2, and slightly reduced expression at S3). In the N group, the expression of N1, N2, and N3 increased consistently, and this was defined as the T pattern (Figure 6C).
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FIGURE 6
 Time-series expression analysis of DETs. (A) Pattern analysis reveals that HFs development in sheep is stage-specific. Heatmap cluster analysis divides DETs into 2 modules, high expression in S2 and low expression in S2 (middle). On the left, DETs are primarily concentrated in 10 expression modules, with the enriched terms related to the corresponding biological processes (Top 4) shown on the right. (B) Genes related to HF development in sheep are primarily concentrated in modules 2, 4, and 7 (p < 0.05). The corresponding biological processes, genes, and TFs are shown on the right. The transcript numbers corresponding to the genes are listed in Supplementary Table 10. (C) Patterns A (intense expression throughout the anagen phase) and T (intense expression during the telogen phase). Bold dashed lines indicate the main modes (average) of A and T patterns. (D) Summary of the A and T pattern of all DETs. (E–G) TFs are mainly enriched in Gene Ontology terms (Top 20). Visualization using enrichment circles and z-score bubble charts. (F–H) TFs are mainly enriched in Kyoto Encyclopedia of Genes and Genomes terms (Top 20). Bubble charts and secondary classification bar charts are shown.


Motif enrichment analysis was performed on the promoters (2000 bp upstream and 500 bp downstream of the transcription start site) of HF development-related transcripts in Modules 2, 4, and 7 to determine whether the stage-specifically expressed transcripts were co-regulated by certain TFs. Motifs for TFs were predominantly enriched in the Kruppel-like factor family, Sp family, and ZNF family (Supplementary Table S11). Analysis of the expression patterns of these TFs revealed significant differences between S2 and N2, suggesting that these TFs may play an important role in regulating normal HF growth cycles (Figure 6B). TFs showed significant enrichment in BPs, including the regulation of gene expression, cellular macromolecule biosynthetic process, macromolecule biosynthetic process, and gene expression (Figures 6E–G). They are also involved in the dynamic regulation of signaling pathways including TGF-β, GnRH, Estrogen, and Apelin pathways (Figures 6F–H). Additionally, for screening A and T pattern transcripts among all DETs, a total of 1,005 A and T pattern transcripts were identified, comprising 605 A pattern and 400 T pattern transcripts (Figure 6D; Supplementary Table S12). KEGG analysis revealed that A pattern transcripts were primarily enriched in pathways related to systemic lupus erythematosus, alcoholism, neutrophil extracellular trap formation, estrogen signaling, necroptosis, and metabolic pathways (Figure 6D; Supplementary Figures S2A,B), whereas T pattern transcripts were mainly enriched in pathways associated with salivary secretion, oxytocin signaling, Apelin signaling, circadian entrainment, cGMP-PKG signaling, and Rap1 signaling (Figure 6D; Supplementary Figures S2C,D). The clustering of A and T pattern transcripts within these signaling pathways suggests a close relationship between A and T pattern transcripts and HF development.



WGCNA analysis identifies stage-specific co-expression modules

The KRT Family Members are one of the main components of wool tissue structure and serve as an important marker for HF growth and development (17). The expression of 26 KRTs in the sequencing results was analyzed in this study. The overall trend of KRTs is shown as A pattern. The homogenization of the expression of 21 KRTs matching this pattern was calculated (Figure 7A; Supplementary Table S13). Correlation analysis between KRT family as an indicator of hair follicle development status (Phenotypic data) and transcript expression. The results showed that groups S1, N1, and N2 had the highest correlation with the development status data, followed by groups S3 and N3, whereas group S2 showed the least correlation (Figures 7B,C). In this clustering, N2 was grouped with S1 and N1, indicating its closer association with the HF anagen period. The expression of KRTs in the S2 stage was significantly lower than that in the S3 stage (the early anagen phase), being only 24% of the anagen phase level, suggesting that S2 represents the telogen phase of HFs (Figure 7A). In summary, the developmental status of HFs in groups S and N was further confirmed, wherein S1, N1 and N2 corresponded to the anagen phase, S2 corresponded to the telogen phase, S3 cor-responded to the early anagen phase, and N3 corresponded to the slow anagen phase. These results correspond with those from PCA and time-series expression analysis.

[image: Graphs and charts detail gene expression and transcriptional factors related to the KRT family. Panel A shows expression trends, B and C display dendrograms with heatmaps, and D presents module-trait relationships and transcription factor motifs. Panel E illustrates signaling pathways involved in hair follicle development, including pathways like WNT and JAK/STAT.]

FIGURE 7
 Weighted gene co-expression network analysis. Note: (A) Normalized expression pattern of the KRT family. The color indicates the expression pattern of 21 KRTs (A pattern). The bold, black dashed line indicates the main pattern of KRTs, whereas the red dashed line represents the deleted value, which does not appear in the subsequent analysis. (B,C) Hierarchical clustering tree of KRTs and sheep skin transcript expression. Figure B shows the clustering of the main pattern of KRTs and 24 samples, and Figure C shows the clustering of 21 KRTs and transcripts at each stage. (D) Expression clustering of transcripts in 3 key modules. Biological process terms related to HF development corresponding to the key modules are enriched on the right, with related TF genes and leading sequence motifs displayed beside each module. (E) Pathways related to HF development in sheep.


To construct the co-expression network of 24 samples, we chose β = 5 to construct the TOM clustering tree and merged similar modules (modules with 75% feature gene similarity), resulting in 9 modules (Supplementary Figure S3). The expression pattern heatmap showed that the MEturquoise (cor = 0.95, p = 4e-12), MEred (cor = 0.81, p = 1e-06), and MEgreen (cor = −0.56, p = 0.004) modules were significantly correlated with KRTs (Figure 7D). Therefore, transcripts from these 3 modules were chosen for GO (BP) and KEGG analyses. The red module was significantly enriched for negative regulation of HF maturation, regulation of the hair cycle, negative regulation of the hair cycle, and epidermis development. The green module was enriched for epithelial cell differentiation, epithelial cell–cell adhesion, and skin epidermis development related to HF development. The turquoise module was mainly enriched for positive regulation of epidermis development, positive regulation of HF development, and regulation of epidermis development (Figure 7D; Supplementary Table S14). In combination with DETs and time-series expression analysis, the gene relationships between Wnt, Ras, PI3K-Akt, MAPK, focal adhesion, and Rap1 pathways using KEGG are shown in Figure 7E (Supplementary Table S14). Grounded in the candidate genes connected to HF development in sheep (Supplementary Table S15), 11 core genes (|MM| ≥ 0.75), namely, DBI, FZD3, KRT17, ZDHHC21, TGM3, DSG4, TMEM79, KRT84, HOXC13, LOC101116039, and MSX2 were identified in the red, green, and turquoise modules as being involved in the control of HF growth and development in sheep.



Analysis of alternative splicing events related to HF development in sheep

Alternative splicing is an important regulatory modality affecting HF development in sheep. To investigate its effect on the cyclic development of sheep HF, rMTAS software was used to analyze transcriptome data of sheep skin. Differential alternative splicing events were identified in the three transition phases (anagen-telogen, telogen-early anagen, early anagen-anagen) within the S group and the N group. All 6 comparison groups showed the most ES-type differential alternative splicing events (Figure 8A; Supplementary Table S16). Among these, the alternative splicing events that were significantly different only in the transition periods of group S were of particular interest as they may be closely related to HF development in sheep (Figure 8B). GO (BP) enrichment function analysis of the 6 comparison groups showed that they were mainly significantly enriched in metabolic process regulation, negative regulation of actin filament depolymerization, and organization of ribonucleoprotein complex subunits. In addition, they were also significantly enriched in skin development and HF development (Figure 8C). Intersecting these results with the genes related to HF development identified the ZDHHC21 (Figure 8D). Among its transcripts, XM_012125908.3, XM_004004383.4, XM_012125943.3, and XM_012125926.3 were consistently expressed in group S but abnormally expressed in group N (Figure 8D).
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FIGURE 8
 Analysis of alternative splicing events related to hair follicle development in sheep. (A) Analysis of differential alternative splicing events across 3 transition periods. (B) Venn diagram showing the 6 comparison groups. Alternative splicing events that are significantly different only in the S group transition period are highlighted. (C) Top 5 biological processes of the 6 comparison groups. (D) Venn diagram of differential alternative splicing events, differentially expressed transcripts and Pattern Analysis. The right side shows the expression of ZDHHC21 transcripts, related TFs, and the top representative sequence motifs. (E) Detailed analysis of alternative splicing positions of the ZDHHC21 gene. IJC indicates the number of relevant reads that support the retention of the skipped exon (exon inclusion), which will appear in the mature mRNA after splicing. SJC records the number of relevant reads supporting the splicing of the skipped exon (exon skipping), which is excised during alternative splicing and does not appear in mature mRNA.


The prediction of transcription factors (TFs) for the ZDHHC21 revealed that FOXK1 (XM_027962013.1) exhibited an expression pattern opposite to that of the ZDHHC21 transcript (Figure 8D). The alternative splicing events in ZDHHC21 were further analyzed. XM_004004383.4 and XM_012125926.3 of ZDHHC21 exhibited exon skipping events at CDS8 (89854756–89,854,889), whereas XM_012125943.3 had an intron retention event at CDS8 (Figure 8E). In the S1-vs-S2 comparison, the SJC_S2 of ZDHHC21 was nearly double that of IJC_S2. In contrast, in the N1-vs-N2 comparison, the difference between SJC_N2 and IJC_N2 was smaller, highlighting a significant contrast with the S1-vs-S2 comparison (Figure 8E). Combining the expression of the 3 transcripts, it was predicted that XM_004004383.4 and XM_012125926.3 of ZDHHC21 might play a decisive role in HF development in sheep (Figures 8D,E). In summary, there were notable differences in the reads of the final processed mRNA transcripts of ZDHHC21 after alternative splicing in groups S and N, which may directly affect the growth and developmental status of HFs.




Discussion

In mammals, each mature HF functions as a regenerative system, enabling animal hair to grow in a regular pattern (33). Understanding the morphological and molecular mechanisms underlying the normal growth and development of wool follicles in sheep is crucial for advancing our knowledge of hair growth biology and the genetic underpinnings of wool traits. In this analysis, we selected skin tissues from Dorper sheep in September, January, and March for histomorphological analysis between the shedding and non-shedding groups. In group S, HFs developed in a rhythmic cyclical manner, from anagen (S1) to telogen (S2) and re-entered the early anagen phase (S3). In group N, HFs in the telogen phase (N2) still exhibited growing and developing hair buds, indicating that the follicles did not follow a cyclic pattern and remained in a constant state of growth and development. Wool shedding was found to be a cyclic process involving the growth and development of SHFs, shedding of wool, and subsequent hair regrowth (4, 5, 34). Standardized diameter measurements (μm) of SHFs in groups S and N revealed highly significant differences in SHFs only in January (telogen phase), with no significant differences observed in September or March. This finding indicated that HFs in the N2 period were in a constant state of growth and development. Additionally, the growth and developmental state of HFs in group S was determined to be in the anagen phase in September, the telogen phase in January, and the early anagen phase in March, which was consistent with that in previous studies (12, 35–37).

From a transcriptome perspective, 3,278, 720, and 1,342 DETs were identified in the S, N, and S-vs-N groups. DETs were significantly enriched in signaling pathways such as the Rap1, estrogen, ECM-receptor interaction, phospholipase D, AMPK, NOTCH, MAPK, and Ras pathways. Previous studies have shown that the PI3K-Akt, MAPK, NOD-like receptor, ECM-receptor interaction and Rap1 pathways are involved in the growth and development of hair follicles in cashmere goats (14, 18). Additionally, the PPAR pathway plays a role in HF development, control of keratinocyte differentiation, and the development of functional skin barrier (38, 39). The MAPK signaling pathway is crucial in mammalian HFs and plays a role in keratinocyte differentiation, epidermal cell differentiation, and multicellular biological development (8, 40). High-throughput transcriptome sequencing identified differences in gene expression between primary and secondary hair follicles and showed that angiogenesis, ECM receptor interactions, and the Wnt/β-catenin/Lef1 signaling pathway are closely associated with hair follicle morphogenesis (34). The Notch pathway plays a key role in determining cell fate, regulating the proliferation and differentiation of epidermal tissue cells, and wound healing (41, 42). Notch signaling plays a role in the late stage of embryonic hair follicle formation, and hair lacking Notch signaling will appear abnormal (43). In addition, during the development of hair follicles in mice, knocking out β-catenin prevents the formation of dermal condensates, underscoring the critical role of the LEF/TCF/β-catenin signaling pathway in regulating dermal condensate formation (44–47). DKK1 inhibits the Wnt signaling pathway by blocking the phosphorylation of β-catenin, thereby inducing hair follicle regression (48). The PI3K/Akt signaling pathway is essential for maintaining and restoring the hair-inductive capacity of human dermal cells and promoting hair follicle regeneration (49, 50). Furthermore, the PI3K/Akt, Wnt, Notch, and BMP signaling pathways participate in the growth and development of hair follicles and skin tissues in Rex rabbits. These pathways also facilitate the transition of hair follicles from the anagen phase to the catagen and telogen phases, affecting hair density in Rex rabbits (51). In this study, the Rap1, Ras, MAPK, phospholipase D, and estrogen signaling pathways were significantly enriched in the S1-vs-S2 comparison group, suggesting that these pathways and their associated genes may regulate the transition of HFs from the anagen to the telogen phase. In the S2-vs-S3 comparison group, the PPAR, ECM-receptor interaction, PI3K-Akt, AMPK, and focal adhesion signaling pathways were significantly enriched, indicating that genes in these pathways may play a role in the transition from the telogen to the early anagen phase, stimulating the generation of new hair shafts and leading to the timely shedding of old wool. The Rap1, estrogen, and Ras pathways were significantly re-enriched in the S3-vs-S1 comparison group, suggesting their crucial role in facilitating the cycling process of HFs from the early anagen phase to the anagen phase. The N1-vs-N2 comparison group did not show significant enrichment in pathways such as Rap1, estrogen, MAPK, and phospholipase D pathways compared with that in the S group. However, these pathways appeared in the N2-vs-N3 comparison group. The Rap1, estrogen, ECM-receptor interaction, and Ras pathways were significantly enriched in the N3-vs-N1 comparison group and were similar to the enrichment results noted in the S3-vs-S1 comparison group. These results indicated that the HFs in group N did not enter the telogen phase. Thus, it could be concluded that the HFs in group N did not follow a cyclic pattern and were always in a state of growth and development. The results of this study align with findings from previous research on cashmere goats, mice, and even human dermal cells. The PI3K-Akt signaling pathway and ECM-receptor interactions play important roles in the transition from the telogen to the anagen phase and serve as candidate biomarkers for this regeneration (14). Compared to our study, the PI3K/Akt pathway in Rex rabbits primarily facilitates the transition of hair follicles from the anagen phase to the telogen, contrary to our findings, suggesting that PI3K/Akt expression may vary across different mammals. Furthermore, The PI3K-Akt signaling pathway is crucial for regulating keratinocyte survival and proliferation, among other functions (52).

Using time series expression analysis and WGCNA, MSX2 (53), HOXC13 (54), DBI, FZD3 (55), ZDHHC21 (56), PRKCH, LOC101116039, KRT17 (57), DSG4 (58), TMEM79 (59), and LOC101108627 were determined to be associated with sheep hair follicle development. Additionally, ALOX15B, LOC654331, SFN, Ldb1 (60), DKK1 (61), NGFR (62), LAMA5 (63), SMAD4 (64), and LRP4 (65, 66) were found to be associated with hair cycle processes, skin development, epidermis development, and hair cycle regulation. The above genes related to hair follicle development showed stage-specific expression, with MSX2, HOXC13, KRT17, DBI, FZD3, and ZDHHC21 showing the highest expression during the anagen phase (A pattern). In contrast, Ldb1, DKK1, NGFR, LAMA5, SMAD4, and LRP4 were highest expressed during the telogen phase (T pattern). In addition, The KRT family is a major component of wool, and the keratins KRT25, KRT27, KRT19, KRT10, KRT77, KRT1, and others are regarded as markers of the hair follicle cycle. They are significantly enriched in estrogen and ECM-receptor interaction signaling pathways and play a very important role in the development of secondary hair follicles (17). KRTs have been associated with the development of the hair follicle in yaks, and gene expression correlation analysis of the keratin family revealed a strong positive correlation of KRTs mainly throughout the hair follicle development cycle (67). TFs such as TCF3, TCF4, ZNF740, EGR1, FLI1, SP1, E2F6, and ZNF148, among others, were predicted to regulate these genes associated with HF growth and development. Signaling pathways were significantly enriched with these TFs, as revealed by functional enrichment analysis such as the TGF-β, GnRH, estrogen, and apelin pathways. Previous studies have demonstrated that transcription factors such as EGR1, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3 have stage-specific roles in HF morphogenesis (11). The study shows that EGR1 is closely associated with HF growth and development and plays a crucial role in embryonic organ formation (68–71). The TFs Lefl and Twisare expressed in the early stages of dermal condensates (44, 47). The role of CUX1 in vitro dermal papilla cell proliferation may be regulated by SP1 and KROX20 (72). Additionally, ZDHHC21 has been identified as the key gene affecting HF morphogenesis in Merino sheep (18). Members of the ZDHHC family mediate post-translational modifications via palmitoylation, with the ZDHHC21 protein being specifically expressed in the skin and restricted to a particular hair lineage. Loss of ZDHHC21 function results in delayed hair shaft differentiation at the gene expression level (56). In the current study, analysis of alternative splicing events in the ZDHHC21 gene revealed a significant exon skipping event in the S1-vs-S2 comparison, with SJC_S2 being almost twice that of IJC_S2, unlike that in the N1-vs-N2 comparison. Based on the transcript expression of the ZDHHC21 gene, we could predict that the isoforms XM_004004383.4 and XM_012125926.3 may play a crucial role in HF development in sheep. Additionally, alternative splicing, a key mode of transcriptional regulation, showed differences in the mRNA reads of the ZDHHC21 Isomers between groups S and N, which may directly influence HF growth and development.



Conclusion

RNA-seq was used to sequence skin tissues from sheep HFs during the anagen, telogen, and early anagen phases, which led to the identification of key candidate genes and their corresponding transcripts associated with HF development in sheep. For example, HOXC13, DBI, FZD3, ZDHHC21, KRT8, and SMAD4. Several signaling pathways related to HF development, including the Rap1, Ras, MAPK, Jak–STAT, and PI3K-Akt pathways, were identified across the 3 HF development stages. Furthermore, it was found that the XM_004004383.4 and XM_012125926.3 transcripts of the ZDHHC21 gene may play a decisive role in the development of HF in sheep. This study serves as a valuable resource for interpreting the morphology of normal HF growth and development in sheep, elucidating the genetic basis of mammalian skin–associated traits, and offering potential insights into the molecular mechanisms of human hair growth and development.
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Introduction: Identifying genomic regions under selection is the most challenging issue for improving important traits in animals. Few studies have focused on identifying genomic regions under selection in sheep. The aim of this study was to identify selective sweeps and to explore the relationship between these and quantitative trait loci (QTL) in both domestic and wild sheep species using single nucleotide polymorphism markers (SNPs).Methods: Genomic data were obtained from the NextGen project, which included genotyping 20 domestic and 14 wild sheep using the Illumina Ovine SNP50K BeadChip. The XP-EHH, iHS, and RSB methods were employed to detect signatures of positive selection.Results: The results of the iHS method indicated 405 and 275 selective sweeps in domestic and wild sheep, respectively. Additionally, RSB and XP-EHH analyses revealed approximately 398 and 479 selective sweeps in domestic and wild sheep, respectively. Some of the genes associated with important QTL traits in domestic sheep include ADGRB3, CADM1, CAPN2, GALNT10, MTR, RELN, and USP25, while in wild sheep, the relevant genes include ACAN, ACO1, GADL1, MGST3, and PRDM16. Selective sweeps identified in domestic sheep were associated with body weight, muscle weight, milk protein percentage, and milk yield. In contrast, selective sweeps found in wild sheep were linked to average daily gain, bone weight, carcass fat percentage, and dressing percentage.Discussion: These results indicate that selection by humans and the environment have largely progressed in harmony, highlighting the importance of both economic and environmental traits for survival. Additionally, the identification of potential candidate genes associated with economic traits and genomic regions that have experienced selection can be utilized in sheep breeding programs. However, due to the incomplete information regarding the functional annotation of genes in sheep and the limited sample size, further research with a larger sample group is essential to gain a deeper understanding of the candidate genes linked to economic traits in both domestic and wild sheep. Advancing knowledge in this area can significantly enhance the effectiveness of breeding strategies. The quantitative trait loci identified in this study have the potential to be incorporated into breeding plans for both domestic and wild sheep.Keywords: domestic and wild sheep, iHS, RSB, selective sweep, QTL, XP-EHH
1 INTRODUCTION
Animal domestication has significantly influenced human life. Due to their high adaptability to various climates and diets, sheep were among the first animals to be domesticated (Zeder, 2008). Evidence suggests that Iran was a world center for farm animal domestication (Zeder, 1999). Archaeological findings indicate that sheep were domesticated approximately 9,000 years ago in what is now northern Iraq and parts of Iran (Kijas et al., 2009; Zeder, 1999). The wild sheep of Iran include three species: Vignei sheep (Ovis vignei), Asian mouflon (O. orientalis), and hybrids with varying chromosome numbers, which are found in the eastern and western regions and the Alborz Mountain range of northern Iran. Iranian wild sheep are recognized as the ancestors of domestic sheep worldwide, which may account for the diversity of domestic sheep breeds in Iran (Hamadalahmad et al., 2020). Domestic sheep are vital to Iran’s agricultural economy and the livelihoods of its people, serving as a source of milk, meat, and other byproducts. To effectively manage the genetic resources of both wild and domestic animals, it is essential to understand the characteristics of different breeds. These include population size and structure, geographical distribution, optimal environmental conditions for production and performance, and levels of genetic diversity within and among breeds (Javadmanesh et al., 2022). Domestication has significantly altered the behavioral and morphological traits of these animals. In addition to domestication, selective breeding for increased production or specific behavioral and morphological traits has led to the emergence of highly divergent modern breeds (Flori et al., 2009). Post-domestication selection for economic and morphological traits can have lasting effects on the genomes of sheep. This selection, combined with natural adaptation to local environments, has resulted in the development of over a thousand distinct breeds of sheep (Kijas et al., 2012). These genetic features, along with the extensive genomic information related to economic traits, offer an opportunity to identify loci that are under selection (Hayes et al., 2008). Selection can lead to specific changes in both selected and neutral sites, with selection signatures—genomic footprints left by selection—used to identify these target areas (Kreitman, 2000). The recent availability of genomic data from domestic animals, coupled with advances in statistical tools, has made it possible to detect these signatures in specific species (Dong et al., 2013). Identifying selection signatures is a key focus for evolutionary geneticists, as it provides insight into the evolutionary processes that shape genomes and translates genomic data into functional information about important regions (Schlötterer, 2003). Several statistical methods are available for the investigation of selection signatures, including the integrated haplotype homozygosity score (iHS) (Voight et al., 2006), cross-population extended haplotype homozygosity (XP_EHH) (Sabeti et al., 2007), and the ratio of extended haplotype homozygosity between populations (RSB) (Tang et al., 2007). Advances in livestock genomics research have led to the recent development of QTL databases linked to the latest reference genomes of various livestock species, such as sheep, cows, pigs, and fish (Hui et al., 2021). These databases provide precise locations of genes and genomic regions associated with known traits in livestock species. As a result, researchers can use these fine-mapped QTL traits to identify selection signatures related to desired traits in livestock species, which could be useful for breeding programs (Zeraatpisheh et al., 2023).
The current study aimed to detect the regions under natural and artificial selection in two wild and domestic Iranian sheep species using iHS, XP-EHH, and RSB methods. The communication between selective sweep and QTL traits was also identified using single nucleotide markers (SNP).
2 MATERIALS AND METHODS
2.1 Sampling and genotyping
The data utilized in this research were retrieved from the NextGen project (http://projects.ensembl.org/nextgen/). The objective of this project is to assess the genetic diversity of some domestic and wild species such as sheep, goat, and cattle by utilizing whole-genome sequencing and genotyping by microarray. For this particular study, samples were collected from 20 Iranian domestic (O. aries) and 14 Iranian wild sheep (O. orientalis). Samples were taken according to the Helsinki Declaration of 1975 (as revised in 2008) concerning animal rights, and this study was approved by the Animal Ethical Committee (3/51431), Ferdowsi University of Mashad, Mashhad, Iran (Taheri et al., 2022). Ear tissue samples were used for DNA extraction using a Macherey Nagel NucleoSpin 96 Tissue kit, following the manufacturer’s instructions, as per Alberto et al. (2018). To integrate the whole-genome sequencing data with the variations in each animal’s entire genome, the NextGen project’s equivalent of the SNP50 BeadChip array was obtained from every individual utilizing PLINK v1.9 software.
2.2 Quality check and PCA analyses
To ensure the quality of the data, the PLINK version 1.9 application (Purcell et al., 2007) was used to perform quality control for the two populations. Individuals with a genotyping call rate of less than 99% were removed. Additionally, SNPs with a genotyping call rate of less than 99%, a minor allele frequency (MAF) of less than 5%, and a significant deviation from Hardy–Weinberg equilibrium (HWE ) (p < 106) were excluded (Taheri et al., 2023). Following this filtering process, the genotype data for both populations were combined, and common SNPs between them were selected.
To investigate the structures of the domestic and wild sheep populations and to identify animals that did not fit into their respective populations, principal component analysis (PCA ) was conducted using a relative genomic matrix. PLINK version 1.9 was employed to perform this analysis.
2.3 Detection of selection sweep and significant SNPs
The three methods used in this study—iHS, RSB, and XP-EHH—are basically the same, based on the concept of extended haplotype homozygosity (EHH), to increase the accuracy in identifying selection signatures. iHS is designed for use on a specific population, while XP-EHH and RSB are for comparing differences in selection between two populations. Three statistics were calculated using the EHH concept developed by Sabeti et al. (2002).
iHS analysis is a statistical method for identifying haplotype-based selection sweeps which involves the calculation of EHH from both ancestral (iHHA) and derived (iHHD) biallelic SNPs. iHS is a within-population value based on the rate of LD decay at a certain variant and is calculated as per Voight et al. (2006):
[image: Mathematical equation showing: \( iHS = \ln\left(\frac{iHHA}{iHHD}\right) \).]
The “rehh” package (Gautier and Vitalis, 2012) in R was utilized to separately estimate iHS values for SNPs with MAF ≥0.05 within domestic and wild populations. Large positive or negative values of iHS show long haplotypes harboring ancestral or derived alleles, respectively.
RSB is also calculated based on EHH. However, unlike iHS, RSB involves comparing the EHH patterns of the common alleles (as “iES”) between the two populations. Tang et al. (2007) defined RSB as:
[image: Equation showing the natural logarithm of RSB equals the natural logarithm of the ratio of iESpop1 to iESPOP2.]
To estimate RSB values, various iES statistics were estimated using the “rehh” package during the iHS analyses in each of the domestic and wild populations, as described previously. The RSB values were normalized in the R environment. Since the RSB value is directional, positive values indicate selection in the wild population, while negative values indicate selection in the domestic population.
XP-EHH was also utilized to identify any recent selection sweeps within the sheep genome. This method is based on evaluating LD decay across the genome and EHH values. For biallelic SNPs with alleles A and a, EHH was calculated using the following formula (Sabeti et al., 2002):
[image: Equation for Extended Haplotype Homozygosity (EHH) calculating the sum of hx times the combination of ni taken two, divided by the product of combinations of na taken two and nA taken two.]
where nA and na represent haplotype counts with alleles A and a, respectively, ni is the count for the ith haplotype within a sub-population, and hx represents the number of distinct haplotypes in a genomic area up to a distance x from the core locus. All SNPs located within one Mbp interval up- and downstream of a given SNP were taken into account, and EHH was integrated within these intervals for two groups. XP-EHH was estimated according to Sabeti et al. (2007). The highest negative and positive values indicate locations under selection in domestic and wild sheep populations, respectively. The “rehh” software was utilized to estimate XP-EHH, and the top 5% of estimated values were selected for further analysis using both domestic and wild populations (Tao et al., 2020). To increase the power of detecting selection signatures, we selected the overlapping areas between RSB, XP-EHH, and iHS techniques in domestic and wild sheep.
After identifying selection signatures using the three methods, similar locations in both populations were identified separately. The candidate genes related to these common locations were then selected using PLINK V1.9 (Purcell et al., 2007), utilizing a gene list provided from the sheep reference genome (http://ncbi.nlm.nih.gov/genome/?term=sheep).
2.4 Gene ontology and KEGG pathway analyses of genes related to significant SNPs
To identify gene ontology terms and significant metabolic KEGG pathways associated with genes related to significant SNPs, ClueGo version 2.5.6 was used, which is a Cytoscape plug-in that provides biological interpretations of genes (Bindea et al., 2009). Significant genes were then subjected to functional enrichment analysis using the Cytoscape application (Saito et al., 2012) and ClueGO 2.5.6 plug-in (Bindea et al., 2009). Official Gene Symbol was used as the input parameter, and O. aries was selected as the background organism. After Bonferroni correction for multiple testing, p-values <0.05 were considered statistically significant.
2.5 Extraction of QTL traits associated with genes related to significant QTLs
Hu et al. (2022) utilized the AnimalQTL database (www.animalgenome.org/cgi-bin/QTLdb/OA/index) to locate sheep QTL traits previously reported. They then compared the genes identified in regions of high three methods with these QTL traits to determine whether any traits were under selection in Iranian domestic and wild sheep.
3 RESULTS
3.1 Quality control and PCA analyses
After performing quality control on the genomic data, we selected 33,167 and 35,479 SNPs for further analysis in domestic and wild sheep, respectively. To analyze the genetic connection between domestic and wild sheep and characterize their divergence, we conducted principal component analysis (PCA). The results of the PCA showed that domestic and wild sheep were clearly divided as shown in the first and second principal component factors. Furthermore, the results showed that the samples of domestic sheep had lower within-population variation, while the wild sheep had more within-population variation, indicating two possible subpopulations (Figure 1).
[image: Scatter plot showing PCA between wild and domestic sheep. Blue triangles represent Orientalis, and red circles represent Aries. The x-axis is PC1 at 1.47%, and the y-axis is PC2 at 0.49%.]FIGURE 1 | Clustering based on principal component analysis (PCA) using SNP data for domestic and wild sheep.
3.2 Detection of selection sweep, significant SNPs, and their related genes
The study utilized three different statistical tests (iHS, RSB, XP_EHH) to detect any regions of the genome that had potentially undergone recent selection. The iHS test was applied to SNPs across the genome of both domestic and wild sheep populations, and a Manhattan plot was generated to display the distribution of iHS signals across all chromosomes (Figure 2). We adjusted the threshold value to identify the top 5% of SNPs with the highest iHs for each population. The Manhattan plot for the wild sheep population indicated 275 locations with the highest iHS values (iHS>1.91) on chromosomes 13, 18, 6, and 1. The Manhattan plot for the domestic sheep population revealed 405 regions with the highest signals (iHS>1.86) on chromosomes 7, 2, and 3.
[image: Two Manhattan plots display genetic data. Each plot shows chromosome numbers on the x-axis and negative logarithm of p-values on the y-axis. Distinct colors highlight different chromosomes, indicating potential genome-wide associations.]FIGURE 2 | Distribution of iHS values across the genome in wild (above) and domestic (below) sheep; threshold indicates the top 5% SNPs with the largest iHs for each population.
In order to identify selective sweep in the wild and domestic populations, an EHH-based RSB method was also utilized. The distribution of RSB values across sheep autosomal chromosomes is shown in Figure 3. Based on regions with RSB values lower than −1.92, 421 regions were found to be under selection in the domestic sheep population. The lowest RSB values were observed on chromosomes 20, 11, and 6. Similarly, significant positive RSB values (RSB>2.05) were identified in 376 regions in the wild sheep population. The highest RSB values were found on chromosomes 1, 2, and 13.
[image: Two line graphs display genetic data for wild and domestic sheep across twenty-seven chromosomes. Each chromosome is color-coded, showing variations in genetic sequences. The top graph represents wild sheep, and the bottom graph represents domestic sheep, with visible patterns suggesting genetic differences between the two groups. The x-axis lists chromosome numbers, while the y-axis measures genetic variation levels.]FIGURE 3 | Distribution of XP-EHH and RSB across the genome between domestic (lower than 0) and wild (higher than 0) sheep. Thresholds indicate the top 5% SNPs for each population.
Additionally, a Manhattan plot for XP-EHH values within the sheep genome was generated (Figure 3). Based on regions with XP-EHH values lower than −2.04, 467 regions were identified as under selection in the domestic sheep population. The most negative XP-EHH values were observed on chromosomes 25, 5, and 10. Similarly, according to significant selection signatures for XP-EHH values higher than 1.97, 490 regions were detected in the wild sheep population. The highest XP-EHH values were found on chromosomes 1, 2, and 12.
A Venn diagram for the domestic and wild sheep populations indicated that 34 genes in the domestic sheep and 83 genes in the wild sheep were shared by all three methods (Figure 4).
[image: Venn diagram comparing wild and domestic sheep. The wild sheep diagram shows three overlapping circles labeled HSC (purple), RSR (yellow), and XP-EHH (blue) with shared sections showing numbers 108, 83, and 339. The domestic sheep diagram has circles labeled similarly with shared sections showing numbers 54, 34, and 250. Some areas contain unique values such as 168 for wild sheep under HSC and 6.5 for domestic sheep under RSR.]FIGURE 4 | Venn diagram in domestic and wild sheep populations representing overlapping regions between iHS, RSB, and XP-EHH.
3.3 Gene ontology and KEGG pathway analyses of genes related to significant SNPs and associated QTL traits
We discovered that overlapping genes between the iHS, RSB, and XP-EHH methods were related to various processes in domestic (cell adhesion molecules, calcium-dependent cysteine-type endopeptidase activity, and cytoplasm) and wild (metabolic pathways, nucleotide metabolism, and glutamatergic synapse) sheep (Table 1).
TABLE 1 | GO terms and pathways along with the p-value of genes related to significant SNPs in domestic and wild sheep populations.
[image: A table comparing gene categories between wild sheep and domestic sheep. Categories include cellular components (CC), biological processes (BP), KEGG pathways, and molecular functions (MF). Each entry lists a p-value and associated genes. Wild sheep have entries for terms like "Cytosol" and "Metabolic pathways," while domestic sheep include terms like "Calcium-dependent cysteine-type endopeptidase activity" and "Cytoplasm." Each category and term is paired with a corresponding p-value and a list of genes.]The quantitative trait locus report indicated that significant genes identified in the domestic sheep were connected to crucial traits such as body weight, bone density, bone weight, carcass fat percentage, and muscle weight. Additionally, candidate genes identified in the wild sheep were linked to average daily gain, milk fat percentage, milk yield, and muscle weight (Table 2) (more details in Supplementary Tables 1, 2).
TABLE 2 | QTL traits associated with genes related to significant SNPs along with their genomic locations in domestic and wild populations.
[image: Table listing various genetic markers in domestic and wild sheep. Columns include chromosome (CHR), gene, SNP (Single Nucleotide Polymorphism), SNP position, and QTL (Quantitative Trait Loci) with traits linked to each marker. Traits are abbreviated and cover aspects like bone density, fat content, lean meat yield, muscle weight, and more. Each row details a different genetic marker with associated traits.]4 DISCUSSION
The results of the PCA indicated a clear distinction between the wild and domestic sheep populations (Figure 1). The use of genotypic relationship-based PCA has been a valuable tool in various studies to understand population structure and genetic connections between individuals (Sabeti et al., 2007). Domestic samples were collected from different regions, while wild samples were collected from the same region (Taheri et al., 2022). Our analysis revealed a more compact structure within the domestic sheep than the wild sheep, possibly due to intense selection pressure favoring economically desirable traits in domestic sheep (Taheri et al., 2022). However, it is important to note that the limited sample size in this study may lead to an underestimation of the true extent of diversity.
This study used three different methods (iHS, RSB, and XP-EHH) to improve the accuracy of identifying selective sweeps. The wild sheep population showed 135 locations, with the highest iHS values on chromosomes 1, 6, 13, and 18. In contrast, the domestic sheep population had 205 regions, with the strongest signals on chromosomes 2, 3, and 7. Using XP-EHH and FST, 93 candidate genomic regions were identified as harboring putative selective sweeps by Manzari et al. (2019) in three Iranian sheep breeds. The identified signatures of selection were related to multiple candidate genes involved e in skeletal system, energy metabolism, growth, reproduction, and immune and nervous system traits. Eydivandi et al. (2021) applied FST, xp-EHH, Rsb, and FLK tests to identify selective sweeps. Their findings revealed 128, 207, 222, and 252 genomic regions, respectively, as candidates for selective sweeps. Additionally, nine overlapping candidate genes linked to disease resistance and climate adaptation were detected by all four tests. Alipanah et al. (2024) found the highest iHS coefficients under natural selection on chromosomes 3 and 2. Additionally, the XP-EHH results revealed that the highest XP-EHH coefficients under natural selection in European wild sheep, compared to Sardinian wild sheep, were observed on chromosome 3, while the reverse was true for Sardinian wild sheep compared to European wild sheep, with significant findings on chromosome 16.
By analyzing shared regions in the domestic population, we identified the genes ADGRB3, CADM1, CAPN2, COPG2, DLC1, GALNT10, HIP1R, MTR, NEGR1, NRCAM, PML, PTPRM, RELN, RTN1, SDCCAG8, and USP25. These are associated with economic traits such as longissimus muscle area, muscle weight, fecal egg count, milk yield, lean meat yield percentage, carcass fat percentage, bone density, udder attachment, meat palmitoleic acid content, somatic cell score, staple length, useful yield content, carcass bone percentage, meat polyunsaturated fatty acid content, bone weight, and hot carcass weight. ADGRB3 has been identified as possibly related to fertilization and litter size by regulating oocyte development in Hu sheep (Tao et al., 2021a). In a GWAS study, two significant SNPs within introns of this gene were found to be associated with a reduced number of parasite eggs in feces (Becker et al., 2022). ADGRB3, which is linked to the positive regulation of synapse assembly, has been identified in prolific sheep (Hernández-Montiel et al., 2022). CADM plays a crucial role in regulating embryo growth, body weight, fat metabolism, and energy balance. It is believed that this gene is involved in determining variations in body size (Xu et al., 2021). CAPN2 is expressed widely in skeletal muscle, and previous research has linked it with gene expression and meat tenderness in various species (Knight et al., 2012). Ratzka et al. (2008) have shown that the CAPN2 protein is essential for the normal growth of the preimplantation murine embryo.
COPG2 was identified in a study of receptor genes related to the progression of Johne’s disease in inbred sheep (Taylor et al., 2008). Additionally, it was found to be more active in the sheep lung and brain on the maternal side prenatally (Duan et al., 2018). Research in cattle revealed that COPG2 is expressed by both copies during fetal tissue development (Khatib, 2005).
Niciura et al. (2022) identified a link between GALNT10 and weight traits. Similarly, Al Kalaldeh et al. (2019) found that GALNT10, which is responsible for producing a sugar molecule known as mucin-type O-glycan, is associated with the ability of sheep to resist gastrointestinal parasites. Jacobs et al. (2020) revealed that HIP1R is crucial for dendrite growth in sheep brain cells. MTR contains instructions for producing an enzyme known as 5-methyltetrahydrofolate-homocysteine methyltransferase, which plays a key role in converting homocysteine into methionine—an essential building block for proteins in the body (Zhang et al., 2012). Research suggests that MTR influences both the quantity and quality of wool produced by sheep (Rong et al., 2015). NEGR1 is a cell adhesion molecule that belongs to the LON family of immunoglobulins, which also includes other molecules such as limbic system-associated membrane protein and neurotrimin (Noh et al., 2019). NEGR1 has been associated with feed efficiency in beef cattle (Seabury et al., 2017) and somatic cell score in sheep (Mohammadi et al., 2022). Specifically, NEGR1 is more prevalent in the cell adhesion molecular pathway, which plays a role in the body’s defense against disease in cattle (Liu et al., 2020). NEGR1 is a protein that can be activated as needed and is involved in the growth, specialization, and death of cells in blood vessels (Wang et al., 2021).
NRCAM is linked to cells in the nervous system of sheep and with molecules that aid cell adhesion (Alvarez-Franco et al., 2021). Recent studies have demonstrated that NRCAM, produced by uterine lining cells, can enhance the body’s response to progestin hormones by altering gene behavior (Cheng et al., 2022). In ruminants, research has revealed that a specific gene called PML plays a crucial role in inhibiting tumor growth, indicating a potentially enhanced cancer prevention system in these animals (Wang et al., 2019). Increased expression of PTPRM in small intestinal neuroendocrine tumor cells reduces cell growth and division and induces cell death (Barazeghi et al., 2019). RELN has been observed to be more expressed in susceptible animals (McRae et al., 2014). Comparing Suffolk and Texel sheep infected with Teladorsagia circumcincta, RELN was found to be more expressed in Suffolk sheep 3 days post-infection (Ahmed, 2013). Most notably, the expression of RELN is concentrated in the theca cells of dominant follicles, where it modulates downstream signaling pathways through paracrine interaction with LRP8 in granulosa cells (Fayad et al., 2007), regulating the final stages of follicle growth (Nivet et al., 2013). Studies suggest an association between RELN and protein kinase activity, contributing to progestogenic pathways, while also highlighting a negative impact of MAP due to RELN suppression. RELN, a glycoprotein in the extracellular matrix, is involved in various cellular functions, including the MAPK pathway, which is vital for germinal vesicle breakdown and oocyte maturation (Yang et al., 2018). Aboul-Naga et al. (2022) uncovered crucial genetic variations associated with heat tolerance in the gene RTN1. RTN1 is part of the reticulon family residing in the endoplasmic reticulum (ER), which is implicated in hormone release and membrane mobility in nerve cells and is closely linked to ER stress (Chiurchiu et al., 2014). In genome-wide analyses of goats and sheep, SDCCAG8 was identified as under selection, affecting reproduction and the TGF pathway, which governs the number of offspring in goats and sheep (Tao et al., 2021b). SDCCAG8 is also involved in cellular component organization (Han M. et al., 2022). Zhang et al. (2022) confirmed that USP25 is correlated with the annual reproductive cycle in sheep by investigating various sheep breeds with distinct characteristics.
Identifying common segments in the wild population allowed us to accurately locate the genes ACAN, ACO1, AK8, GADL1, GALNTL6, KCNJ10, MGST3, NF1, PLIN5, PRDM16, RALGAPA2, SPAG1, TSC1, and ZNF395. These genes were associated with several economic traits in the wild population, including muscle weight, milk yield, lean meat percentage, carcass fat percentage, bone density, somatic cell score, staple length, meat polyunsaturated fatty acid content, hot carcass weight, testes weight, milk fat percentage, reproductive seasonality, and jaw length. ACAN encodes the aggrecan protein, which is a type of proteoglycan. Aggrecan is the most abundant proteoglycan found in cartilage, a tough and flexible tissue that forms a significant part of the skeleton during early development. The majority of cartilage eventually transforms into bone through a process called ossification, with the exception of the cartilage that remains to cover and protect the ends of bones, along with that found in the nose, airways, and external ears (Mancioppi et al., 2021). ACAN mutations can cause skeletal disorders such as osteochondrosis and skeletal dysplasia, which affect height (Sabeti-Aghabozorgi et al., 2022).
Manzari et al. (2019) investigated genes related to skeletal and tail growth, noting that genes such as ACAN show signs of selection. GALNTL6 is an important gene for the ability of sheep to resist gastrointestinal parasites (Pratap et al., 2024). MGST3 is associated with muscle tissue in sheep and is important for amino acid metabolism (Thameem et al., 2003). NF1 plays a role in various cellular functions and is linked to sheep reproductive performance. It is crucial for increasing the number of lambs in Texel sheep and for adapting to high-altitude hypoxia (XU et al., 2018). PLIN5 is involved in fat metabolism and insulin regulation (Zhang et al., 2022). PRDM16 plays a role in fat cell formation and embryonic development (Chi and Cohen, 2016). SPAG1 was found to influence fertility in mammals (Faraji et al., 2021). TSC1 is linked to body size variability in sheep breeds (Cao et al., 2015), while ZNF395 is associated with growth traits and the development of fat cells. It may also play a role in obesity and metabolic syndrome. ZNF395 expression levels in Lanzhou fat-tailed sheep were notably higher than in small-tailed Han sheep (Erdenee et al., 2020).
ADAM9, ARHGAP42, and CUTC genes were identified as common genes between domestic and wild sheep species. The ADAM9 gene plays a crucial role in the nervous, cardiovascular, and muscular systems. In the nervous system, ADAM9 is involved in neuron migration, axon growth, and synapse formation (Cho, 2012). In the cardiovascular system, it contributes to the proliferation and migration of vascular endothelial cells (Chou et al., 2020). In muscle tissue, ADAM9 is essential for muscle cell proliferation and differentiation (Ahmed et al., 2017). Furthermore, another study showed significant differences in ADAM9 expression in sheep skin tissues with varying wool fineness (Tian et al., 2017). The ARHGAP42 gene is associated with hair follicle development and wool production traits in sheep (Sun et al., 2021). This gene regulates angiogenesis in cattle (Diao et al., 2019). Additionally, this gene has been linked to hypertension in a study examining the interaction between genomics and diet in adult males (Imaizumi et al., 2017). The CUTC gene was evaluated in the methane yield metagenome and metatranscriptome datasets of sheep (Kelly et al., 2019).
Quantitative trait locus analysis revealed that significant genes identified in domestic sheep populations were primarily linked to economically important traits, including body weight, bone structure, and muscle development. In contrast, candidate genes found in wild sheep populations were associated with structural and immune traits, such as reproductive behaviors and resistance to parasites, Salmonella abortusovis, and mastitis. Additionally, there were candidate genes in wild sheep related to performance traits, including body weight, muscle growth, milk yield, and milk fat. These results clearly show that selection for higher performance in domestic sheep makes them more sensitive to environmental stressors and diseases, while there is a balance between performance and biologically important traits in wild sheep population. Lv et al. (2021) demonstrated that domestic sheep may have acquired beneficial alleles of various immune and sensory genes through natural or managed hybridization with their wild sheep.
5 CONCLUSION
Our findings suggest that artificial selection by humans, with an emphasis on economically important traits in domestic sheep, has weakened the balance between economic and environmental traits. This balance appears to be crucial for the survival in wild sheep. By identifying potential candidate genes associated with economic and survival traits, along with their genomic regions that have undergone changes due to selection, these insights can be utilized in breeding programs for sheep. However, due to the incomplete information regarding the functional annotation of genes within sheep species and the limited sample size studied, further research with a larger number of samples is necessary to gain a deeper understanding of candidate genes for critical economic traits in both domestic and wild sheep. Advancing knowledge in this area can significantly enhance the design of effective breeding strategies.
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Secondary hair follicles (SHFs) in cashmere goats produce high-value cashmere fibers, which cyclic regulation is critical for optimizing cashmere yield and quality. This study explores the phenotypic changes and differential protein expression profiles involved in the telogen-to-anagen transition of SHFs. Through histological observations, proteomic analyses, and immunohistochemical validation, we identified key molecular features and regulatory pathways underlying SHF cyclic renewal. Histological analysis showed that telogen-phase SHFs exhibit a reduced volume, decreased dermal papilla cell (DPC) and hair matrix cell (HMC) activity, compact structure, and superficial localization in the dermis. Anagen-phase SHFs exhibit significantly increased volume, deeper dermal penetration, and active cell proliferation. Proteomic analysis identified 3,654 proteins in skin samples, with 458 differentially expressed proteins (DEPs) significantly associated with biological processes such as cell adhesion, signal transduction, protein synthesis, and metabolism. These DEPs were enriched in key regulatory pathways, including Notch, Wnt, Jak–STAT, PI3K-Akt, and ECM-receptor interaction. Protein–protein interaction analysis identified A Disintegrin and Metalloproteinase Domain 17 (ADAM17), Secreted Frizzled-Related Protein 1 (SFRP1), and Protein Phosphatase 1 Catalytic Subunit Alpha (PPP1CA) as core regulators of SHF cyclic transitions. Validation by RT-qPCR, Western blot, and immunohistochemical analyses confirmed that ADAM17, SFRP1, and PPP1CA were predominantly localized in functional regions, including the outer root sheath (ORS), dermal papilla (DP), and hair matrix (HM). Their expression levels were significantly enhanced during anagen. ADAM17 is suggested to promote the growth of SHFs by regulating ORS cells proliferation and mediating signal transduction in DPCs, while SFRP1, as a modulator of the Wnt signaling pathway, likely supports SHFs growth and regeneration by modulating the activity of Secondary hair follicle stem cells (SHFSCs) and promoting the differentiation of HMCs. PPP1CA may enhance cell proliferation and metabolic activity by modulating phosphorylation states. In conclusion, this study identifies key molecular factors and pathways driving the telogen-to-anagen transition in cashmere goat SHFs. It emphasizes the roles of ADAM17, SFRP1, and PPP1CA in SHF renewal and offers insights into SHF development mechanisms and cashmere fiber improvement.
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1 Introduction

SHFs in cashmere goats produce cashmere, a highly valuable natural fiber renowned for its exceptional softness, warmth, and lightness. The growth and shedding of these fibers are tightly regulated by the cyclical activity of SHFs, alternating between telogen and anagen phases (1). Understanding the molecular mechanisms that govern the transition of the SHF cycle is essential for optimizing both cashmere yield and quality.

The hair follicle cycle comprises three distinct phases: anagen, catagen, and telogen. This finely tuned process is orchestrated by the complex interplay of multiple signaling pathways, which regulate the activation of hair follicle stem cells (HFSCs), the function of DPCs, and the dynamic remodeling of the extracellular matrix (ECM). These mechanisms collectively control the transitions between different phases of the follicular cycle (2–4). Among these pathways, the Wnt signaling pathway plays a central role by activating HFSCs to drive the transition from telogen to anagen, while its dysregulation can impair follicular regeneration (5–8). The Notch signaling pathway maintains the balance between HFSC self-renewal and differentiation (9), working synergistically with Wnt signaling to ensure proper follicular regeneration (10). Dysregulated Notch signaling can delay follicular cycle progression (11). The Ras-MAPK signaling pathway, particularly through its ERK and p38 branches, regulates the proliferation and differentiation of DPCs, making it critical for the anagen phase (12–14). Meanwhile, the ECM-receptor interaction pathway sustains follicular microenvironment homeostasis by providing structural support and transmitting biochemical signals, playing a vital role in cycle transitions (15). The Jak–STAT signaling pathway mediates cytokine-driven signal transduction to maintain the quiescent state of hair follicles, and its inhibition facilitates the induction of hair growth from dormant follicles (16, 17). Additionally, the Hippo pathway regulates the proliferation and differentiation of HFSCs through its downstream effectors YAP/TAZ (18). The PI3K-Akt pathway supports anagen by regulating cell survival, proliferation, and metabolism (19), while the TNF signaling pathway promotes the transition from telogen to anagen by activating HFSCs through the AKT/β-catenin pathway (20). Despite advancements in understanding the roles of these signaling pathways in hair follicle cycling, the specific molecular regulators and their dynamic expression patterns during the telogen-to-anagen transition in the SHFs of cashmere goats remain poorly understood.

This study investigates the phenotypic and molecular changes underlying the telogen-to-anagen transition in cashmere goat SHFs. By integrating histological observations, proteomic analyses, and the validation and localization of key proteins, we comprehensively uncover the dynamic regulatory mechanisms governing the cycling of SHFs. Specifically, this study highlights the critical roles of ADAM17, SFRP1, and PPP1CA in regulating the telogen-to-anagen transition and promoting the growth of cashmere fibers. These findings enhance our understanding of hair follicle biology and provide a theoretical foundation for improving cashmere production through molecular breeding or biotechnological approaches.



2 Materials and methods


2.1 Experimental animals and sample collection

Six healthy adult cashmere goats (n = 6, aged 1 year; 3 females and 3 males) were selected from the Yiwei White Cashmere Goat Farm in Ordos, Inner Mongolia, China. All animals were maintained under standard feeding conditions with unrestricted access to food and water. Skin tissue samples were collected from the dorsal, flank, and abdominal regions during the telogen phase (April) and anagen phase (September) of the SHF cycle. These regions were chosen because they represent the primary distribution areas of SHFs and exhibit significant differences in density, developmental state, and cycle activity. The dorsal region has the highest SHF density and the most active anagen-phase follicles, making it the primary source of high-quality cashmere fibers. The flank region shows intermediate follicle density and activity, with structural characteristics between those of the dorsal and abdominal regions. The abdominal region has the lowest follicle density, and some SHFs may be in a degenerated state. Sampling these regions provides a comprehensive representation of the periodic changes in SHFs across the goat’s body and offers a basis for exploring region-specific regulatory mechanisms. The phases of the SHF cycle were determined through histological examination and follicular morphology assessment. The collected skin samples (~1 cm2) were immediately divided into two parts: one part was fixed in 4% paraformaldehyde for histological and immunohistochemical analyses, while the other part was rapidly frozen in liquid nitrogen for RNA and protein extraction, proteomic sequencing, and subsequent analyses.



2.2 Experimental design

As shown in Figure 1, this study employed tandem mass tag (TMT)-based labeling technology combined with LC–MS/MS to identify and quantify the proteome of cashmere goat SHFs during the telogen and anagen phases. Skin tissue samples from six goats were used: three females (TelF1, TelF2, TelF3) and three males (TelM1, TelM2, TelM3) during telogen, and the same three females (AnaF1, AnaF2, AnaF3) and three males (AnaM1, AnaM2, AnaM3) during anagen. Samples were divided into two independent experimental groups for analysis. Proteins were first extracted from skin at both telogen and anagen phases. Samples underwent reduction and alkylation of cysteine residues to minimize disulfide bond interference. Proteins were then digested into peptides using trypsin. The peptide samples were labeled with TMT reagents (TMT10plex), with TMT tags assigned to telogen and anagen samples in each experiment, alongside a reference sample (Ref) composed of an equal mix of all experimental samples. The labeled samples were mixed at a 1:1 ratio for subsequent analysis. The mixed samples were analyzed using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for protein identification and quantification. Mass spectrometry (MS) data were used to generate total spectra, identified spectra, peptide counts, and the protein dataset. Proteomic data were subjected to statistical analysis to identify DEPs, which were then functionally annotated and enriched. Correlation analyses were conducted to further explore biological differences between telogen and anagen. Additionally, key DEPs were validated using real-time quantitative PCR (RT-qPCR) and Western blotting, and their expression patterns and localization were evaluated via immunohistochemistry.
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FIGURE 1
 Workflow of TMT-labeled proteomics analysis of SHFs during the telogen- and anagen-phase transitions. This study utilized TMT labeling combined with LC–MS/MS to identify and quantify the proteome of cashmere goat SHFs during the telogen and anagen phases. Skin tissue samples included six telogen samples (three females and three males) and six anagen samples (the same three females and three males). After protein extraction, cysteine reduction, and alkylation treatment, the proteins were digested into peptides and labeled with TMT reagents. The labeled samples were mixed in a 1:1 ratio and analyzed via LC–MS/MS for protein identification and quantification. DEPs were further analyzed using bioinformatics to elucidate their functions, while the expression patterns and localization of key proteins were experimentally validated.




2.3 Histological and immunohistochemical analysis

Skin samples were fixed in 4% paraformaldehyde, dehydrated, embedded in paraffin, and sectioned at a thickness of 7 μm. The sections were stained with hematoxylin and eosin (H&E) to observe SHF structure and confirm the telogen or anagen phase. For immunohistochemical analysis, paraffin sections were deparaffinized, rehydrated, and subjected to antigen retrieval in boiling sodium citrate buffer. Endogenous peroxidase activity was blocked with 3% hydrogen peroxide. Sections were incubated overnight at 4°C with primary antibodies. The following day, the sections were incubated with HRP-conjugated secondary antibodies for 1 h, followed by DAB staining. Images were captured using an optical microscope (Nikon, Tokyo, Japan). Detailed antibody information is provided in Supplementary Table S1.



2.4 RNA extraction and RT-qPCR

Total RNA was extracted from skin samples using RNAiso reagent (Takara Bio Inc., Shiga, Japan) following the manufacturer’s protocol. RNA purity and concentration were measured using a NanoDrop Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, United States). Complementary DNA (cDNA) was synthesized using the PrimeScript FAST reverse transcription (RT) reagent kit with genomic DNA (gDNA) eraser (Takara Bio Inc., Shiga, Japan). Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was performed on a CFX96 Real-Time PCR System (Bio-Rad Laboratories, Hercules, CA, United States) with TB Green® Premix Ex Taq™ II (Takara Bio Inc., Shiga, Japan). Specific primers were designed for ADAM17, SFRP1, and PPP1CA, with GAPDH as the reference gene for relative expression calculation using the 2^-ΔΔCt method. Primer sequences are listed in Supplementary Table S2.



2.5 Protein extraction and western blot

Total protein was extracted from skin samples using a Mammalian Protein Extraction Kit (CWBIO, Beijing, China) according to the manufacturer’s instructions. Protein concentration was determined using a BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, WA, United States). Equal amounts of protein (20 μg per lane) were separated by SDS-PAGE and transferred to PVDF membranes. Membranes were blocked with 5% non-fat milk at room temperature for 1 h and incubated overnight at 4°C with primary antibodies. After incubation with HRP-conjugated secondary antibodies for 1 h, protein bands were visualized using the Tanon 5,200 Imaging System (Tanon, Shanghai, China). Band intensity was quantified using ImageJ software, and statistical analysis was performed to compare protein expression levels across groups. Detailed antibody information is provided in Supplementary Table S3.



2.6 Proteomic sequencing and bioinformatic analysis

Following protein extraction, protein solutions were reduced with 10 mmol/L TCEP at 37°C for 1 h and alkylated with 40 mmol/L iodoacetamide at room temperature in the dark for 30 min. Trypsin (Promega, Madison, WI, United States) was added at an enzyme-to-protein ratio of 1:50 (w/w) for overnight digestion at 37°C. The resulting peptides were labeled with TMT reagents (Thermo Fisher Scientific, Waltham, MA, United States) and incubated at room temperature for 2 h, followed by a 15-min reaction with hydroxylamine. Equal amounts of labeled peptides were mixed, vacuum-dried, re-dissolved in 0.1% formic acid, and analyzed using a Thermo Scientific Q Exactive mass spectrometer coupled with an EASY-nLC 1,200 nano-liquid chromatography system.

Peptide samples were loaded onto a C18 column (75 μm × 25 cm, Thermo Fisher Scientific, Waltham, MA, United States) and separated using gradient elution with acetonitrile (ACN) containing 0.1% formic acid at a flow rate of 300 μL/min. The mass spectrometer was operated in data-dependent acquisition (DDA) mode, with a full scan range of 350–1,300 m/z at resolutions of 70,000 (full scan) and 35,000 (MS/MS scan), followed by MS/MS analysis of the top 20 most abundant precursor ions. Raw mass spectrometry data were analyzed using Proteome Discoverer™ Software 2.2 against the UniProt goat protein database. The false discovery rate (FDR) for peptide and protein identification was set to ≤1%, with proteins identified by at least one unique peptide.

TMT labeling technology, with the quantification based on the intensity of the reporter ions. To correct for potential technical variances, normalization of the protein expression levels was conducted across samples using total ion intensity normalization. Additionally, inter-TMT batch normalization was performed using an internal reference sample, ensuring consistent protein quantification across independent TMT experiments. This step minimized batch effects and allowed for accurate comparison of protein expression levels across all samples.

Differential protein expression was analyzed using the R statistical package with the t-test function. DEPs were defined as upregulated [p < 0.05 and fold change (FC) > 1.2] or downregulated (p < 0.05 and FC < 0.83). Heatmaps of DEPs were generated using the R package pheatmap. Functional annotation of DEPs was performed using Gene Ontology (GO), while Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was conducted using the clusterProfiler R package. Protein–protein interaction (PPI) networks were constructed using the STRING database and visualized with Cytoscape software.



2.7 Statistical analysis

All data are presented as means ± standard deviation (SD). Student’s t-test was used for significance testing between two groups, while one-way analysis of variance (ANOVA) was applied for comparisons among three or more groups. A significance threshold of p < 0.05 was used.




3 Results


3.1 Significant phenotypic changes observed during the telogen-to-anagen transition of SHFs

Skin samples from the dorsal, flank, and abdominal regions of cashmere goats were examined using hematoxylin and eosin (H&E) staining, along with transverse and longitudinal observations. These analyses revealed significant phenotypic changes in SHFs during the telogen-to-anagen transition, as well as notable structural differences among the regions.

During the telogen phase (Figure 2A), SHFs exhibited significant phenotypic changes, including a substantial reduction in follicle volume, a decrease in number, more superficial positioning within the skin, and a more compact structure. Moreover, the activity of DPCs and HMCs was markedly reduced. Transverse sections revealed that dorsal SHFs had the highest density, compact structures, and relatively well-preserved morphology; flank SHFs showed moderate density and regular morphology; while abdominal SHFs had the lowest density, larger cross-sectional areas, and more pronounced degeneration of secondary structures. Longitudinal sections further demonstrated that dorsal SHFs, despite being positioned closer to the epidermis, maintained greater depth and structural integrity. In contrast, abdominal SHFs were more superficial, with severe degeneration of secondary structures and nearly complete cessation of hair growth activity.

[image: Diagram and histological images compare transverse and longitudinal sections of skin during telogen and anagen phases, labeled with structures like primary and secondary hair follicles (PHF, SHF), outer root sheath (ORS), and hair shaft (HS). Panels A and B illustrate dorsal, flank, and abdomen views, highlighting differences in hair follicle development.]

FIGURE 2
 Morphological changes in cashmere goat SHFs during the telogen and anagen phases. (A) Representative cross-sections and longitudinal sections of SHFs in the telogen phase. Transverse sections show primary and secondary hair follicles in the dorsal, flank, and abdominal regions. Telogen-phase SHFs appear significantly shrunken, with compact, round, or oval structures. Longitudinal sections display shorter telogen-phase SHFs with their bases located close to the epidermis. The DP and HM are underdeveloped, and the overall follicular structure is degenerated. (B) Representative cross-sections and longitudinal sections of SHFs in the anagen phase. Transverse sections reveal enlarged SHFs in the dorsal, flank, and abdominal regions, with increased diameter and well-defined structures. Longitudinal sections demonstrate the deep extension of SHFs into the dermis, with well-developed DP, HM, IRS, and ORS. Scale bar: 100 μm.


During the anagen phase (Figure 2B), SHFs exhibited significant phenotypic changes. The follicle volume increased substantially, structures became more distinct, and follicles extended deeper into the skin. Dorsal SHFs showed the most pronounced growth, with follicle bases reaching the deep dermis, the highest proliferative activity in HMCs, and well-developed SHFs contributing to robust hair growth. Flank SHFs displayed intermediate growth, with follicle bases extending to the mid-dermis and moderately developed structures. Abdominal SHFs exhibited the smallest increase in volume and depth, extending only to the superficial dermis. Poorly developed SHFs in this region resulted in reduced hair production. Transverse sections revealed a significant increase in the number and diameter of SHFs in the dorsal region, followed by the flank, while abdominal SHFs showed the smallest increase. Longitudinal sections further demonstrated that dorsal hair papillae and ORS structures were the most well-developed, whereas abdominal SHFs displayed relatively simple and underdeveloped structures.

In summary, the phenotypic differences between telogen and anagen SHFs were reflected in their size, position, developmental state, and cellular activity. Furthermore, SHFs in the dorsal, flank, and abdominal regions exhibited distinct structural and developmental characteristics. These region-specific features provide an important foundation for further investigations into the molecular mechanisms underlying the telogen-to-anagen transition and the functional diversity of SHFs across body regions.



3.2 Proteomic analysis reveals characteristic protein expression during the telogen-to-anagen transition of SHFs

To elucidate protein expression profiles during the transition of SHFs from the telogen-to-anagen phase, high-throughput proteomic analysis was performed on skin samples from cashmere goat. Telogen-phase skin samples were used as the control group, while anagen-phase samples constituted the experimental group. Each group included six biological replicates (three male and three female goats), with all samples collected from the same six goats to ensure consistency.

Following protein extraction, enzymatic digestion, liquid chromatography-mass spectrometry (LC–MS) analysis, and quality control, a total of 3,654 proteins were identified through database matching (Supplementary Table S4). These identified proteins were associated with multiple key processes related to hair follicle growth and metabolism, providing a foundation for subsequent analysis of DEPs and their roles in regulating the cycle of SHFs.


3.2.1 Data correlation analysis

To evaluate the effects of different growth stages and sexes on protein expression in SHFs, principal component analysis (PCA) was performed on proteomic data from telogen-phase females (pTelF), anagen-phase females (pAnaF), telogen-phase males (pTelM), and anagen-phase males (pAnaM).

For female samples, PCA revealed that PC1 and PC2 accounted for 37.40 and 22.20% of the total variation, respectively. Telogen-phase samples (pTelF) and anagen-phase samples (pAnaF) were clearly separated along the PC1 axis, with anagen-phase samples clustering tightly. This clustering indicated high within-group consistency in protein expression during anagen. In contrast, telogen-phase samples were more dispersed, reflecting greater heterogeneity in protein expression during this phase (Figure 3A).
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FIGURE 3
 PCA of protein expression profiles in telogen- and anagen-phase SHFs of cashmere goats. (A) PCA of protein expression in telogen-phase (pTelF) and anagen-phase (pAnaF) female goats. PC1 (37.40%) and PC2 (22.20%) account for the majority of the variation. Telogen-phase samples (blue triangles) are distinctly separated from anagen-phase samples (red circles) along the PC1 axis. Anagen-phase samples exhibit tighter clustering, suggesting greater consistency in protein expression. (B) PCA of protein expression in telogen-phase (pTelM) and anagen-phase (pAnaM) male goats. PC1 (40.50%) and PC2 (22.40%) account for the majority of the variation. Telogen-phase samples (blue triangles) are clearly separated from anagen-phase samples (red circles) along the PC1 axis, with anagen-phase samples showing tighter clustering, indicating higher consistency in protein expression.


For male samples, PCA showed that PC1 and PC2 explained 40.50 and 22.40% of the total variation, respectively. Similarly, telogen-phase samples (pTelM) and anagen-phase samples (pAnaM) were distinctly separated along the PC1 axis. Anagen-phase male samples also clustered tightly, further supporting the observation of consistent protein expression during anagen, while telogen-phase samples exhibited greater dispersion (Figure 3B).

Overall, PCA results indicated significant differences in protein expression between telogen and anagen phases, regardless of sex. Protein expression in anagen-phase samples was more consistent, while telogen-phase samples displayed greater heterogeneity. These findings provide a foundation for further exploration of DEPs and their regulatory mechanisms in the SHF growth cycle.



3.2.2 Functional annotation and enrichment analysis of DEPs

To identify changes in protein expression during the transition of SHFs from the telogen-to-anagen phase, a two-tailed Student’s t-test was performed to evaluate statistical significance, with a p < 0.05 considered significant. Proteins with a fold change (FC) > 1.2 were classified as upregulated, while those with an FC < 0.83 were classified as downregulated. A total of 458 DEPs were identified (Supplementary Table S5), including 293 upregulated and 165 downregulated proteins, indicating significant differences in protein expression between the two phases of SHFs.

A volcano plot displayed the distribution of DEPs, illustrating that numerous proteins were significantly upregulated in anagen-phase SHFs, while some were markedly downregulated (Figure 4A). A heatmap of the DEPs revealed distinct clustering patterns, indicating clear grouping trends in protein expression between the two phases of SHFs (Figure 4B).

[image: Panel A depicts a volcano plot with points colored red for significantly upregulated (293), blue for significantly downregulated (165), and gray for nonsignificant (3,196) data points. Log2 fold change is plotted on the x-axis while -Log10(p-value) is on the y-axis. Panel B shows a circular heat map with hierarchical clustering of various genes, color-coded from blue (downregulated) to red (upregulated) across different conditions.]

FIGURE 4
 Identification and clustering of DEPs in telogen- and anagen-phase SHFs of cashmere goats. (A) Volcano plot illustrating the distribution of DEPs. The X-axis represents the log2(fold change) of protein expression, while the Y-axis represents the -log10(p-value). Proteins significantly upregulated (log2FC > 0.32, p < 0.05) are shown in red, whereas those significantly downregulated (log2FC < −0.26, p < 0.05) are shown in blue. Gray dots indicate proteins without significant expression changes. A total of 458 DEPs were identified, including 293 upregulated and 165 downregulated proteins. (B) Hierarchical clustering heatmap of DEPs. Samples include telogen-phase male goats (pTelM), telogen-phase female goats (pTelF), anagen-phase male goats (pAnaM), and anagen-phase female goats (pAnaF). Rows represent DEPs, while columns represent biological replicates. Red indicates upregulated proteins, blue indicates downregulated proteins, and yellow indicates proteins with no significant changes. Samples are distinctly clustered into telogen- and anagen-phase groups, highlighting differential protein expression patterns between the two phases.


To investigate the biological functions and signaling pathways involved in the transition from the telogen-to-anagen phase of SHFs, GO functional annotation and KEGG pathway enrichment analyses were conducted on the identified DEPs. GO analysis classified DEPs into three main categories: biological processes (BP), cellular components (CC), and molecular functions (MF).

In the BP category, DEPs were significantly enriched in processes such as rRNA metabolism, RNA catabolic processes, and protein targeting to the endoplasmic reticulum, indicating their critical roles in regulating cellular transcription and translation. In the CC category, DEPs were primarily enriched in ribosomal subunits (both large and small) and intermediate filaments, suggesting their association with cellular organelles and cytoskeletal structures essential for SHF function and morphology. In the MF category, DEPs were significantly enriched in RNA binding, structural molecule activity, and oxygen transport activity, highlighting their involvement in cellular metabolism, protein synthesis, and oxygen delivery (Figure 5A).
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FIGURE 5
 GO and KEGG enrichment analyses of key proteins involved in SHF development and regeneration. (A) GO enrichment analysis of the 458 DEPs identified between telogen- and anagen-phase skin samples. The most significantly enriched GO terms include RNA binding (MF), structural constituent of ribosome (MF), rRNA binding (MF), and cytosolic ribosomal subunit (CC), highlighting their roles in translation, protein synthesis, and cellular structure. (B) KEGG pathway analysis of the 458 DEPs. The DEPs were significantly enriched in pathways such as ribosome, pyrimidine metabolism, PPAR signaling pathway, and Notch signaling pathway, suggesting their involvement in cellular metabolic processes and hair follicle development. (C) GO enrichment analysis of 28 key proteins from 10 hair follicle-related pathways. These proteins were significantly enriched in terms such as cell adhesion (BP), Notch receptor processing (BP), γ-secretase complex (CC), and macromolecular complex binding (MF), indicating their roles in cell communication, protein complex assembly, and signal transduction during the telogen-to-anagen transition. (D) KEGG pathway analysis of the 28 key proteins. These proteins were significantly enriched in pathways such as Notch signaling, Wnt signaling, Hippo signaling, and ECM-receptor interaction, which are critical for hair follicle morphogenesis, regeneration, and stem cell activation.


KEGG pathway enrichment analysis revealed several pathways significantly associated with the transition of SHFs from the telogen-to-anagen phase. Notably, the ribosome pathway, directly associated with protein translation and synthesis, suggested heightened metabolic activity in anagen-phase SHFs. Additionally, the purine metabolism and riboflavin metabolism pathways reflected the increased demand for energy and nucleic acid metabolism to support SHF growth. The PPAR signaling and Notch signaling pathways, both well-known regulators of hair follicle cycling and cell differentiation, were also significantly enriched. Other enriched pathways, including complement and coagulation cascades, myocardial contraction, and tyrosine metabolism, may reflect the metabolic regulation and growth environment required for SHF development and regeneration (Figure 5B).

To further explore the key pathways and protein functions involved in the regulation of the SHF cycle in cashmere goats, we selected pathways related to hair follicle development from the KEGG enrichment analysis of the 458 DEPs and identified a subset of 28 key proteins (Supplementary Table S6). GO functional annotation and KEGG pathway enrichment analyses were subsequently performed on this protein set.

GO analysis showed that in the BP category, DEPs were significantly enriched in processes such as the positive regulation of signal transduction, Notch receptor processing, cell adhesion, and biological adhesion. These findings suggest that these proteins may promote the transition of telogen SHFs to anagen by regulating intercellular signaling and interactions. In the CC category, DEPs were mainly localized in intercellular junctions, protein kinase CK2 complexes, and γ-secretase complexes, implying that these proteins play an important role in intercellular signal exchange and molecular complex regulation. In the MF category, DEPs were significantly enriched in macromolecular complex binding and protein phosphatase activity, indicating their critical roles in protein modification and signal pathway regulation (Figure 5C).

KEGG analysis showed that DEPs were significantly enriched in several signaling pathways closely related to hair follicle development, growth, and regeneration. These included the Notch signaling pathway, Wnt signaling pathway, and Hippo signaling pathway, all of which are known to play central roles in hair follicle cycle regulation and stem cell activation. The PI3K-Akt signaling pathway and MAPK signaling pathway suggested that these proteins may be involved in initiating anagen by regulating cell proliferation and differentiation. ECM-receptor interaction and cytokine signaling pathways (such as TNF and Jak–STAT) further highlighted the importance of ECM remodeling and intercellular communication in the SHF microenvironment during the transition (Figure 5D).

In conclusion, an in-depth analysis of GO and KEGG indicates that the key DEPs involved in the telogen-to-anagen transition of SHFs are primarily associated with biological processes such as the positive regulation of signal transduction, cell adhesion, and protein modification. These proteins are significantly enriched in critical signaling pathways that regulate the hair follicle cycle. Collectively, these findings elucidate the functions and molecular mechanisms of key DEPs during the telogen-to-anagen transition in cashmere goat SHFs, providing valuable theoretical evidence for future research into SHF cycle regulation.



3.2.3 Protein–protein interaction network analysis

To identify key factors involved in the periodic regulation of DEPs, a PPI network was constructed (Figure 6A). This network consisted of 19 nodes and multiple edges, representing the interactive relationships between proteins. Through topological analysis and functional annotation, three high-degree hub proteins—ADAM17, SFRP1, and PPP1CA—were identified as key regulators of the telogen-to-anagen transition in SHFs.
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FIGURE 6
 PPI networks. (A) Core PPI network of SFRP1, PPP1CA, and ADAM17. Orange nodes represent the target proteins (SFRP1, PPP1CA, and ADAM17), green nodes indicate proteins that directly interact with the target proteins, and gray edges represent the interactions between proteins. (B) Directed interaction network of ADAM17. The orange node represents ADAM17, green nodes indicate its directly interacting proteins, and gray edges represent the interaction relationships. The network highlights ADAM17’s role as a key regulatory factor interacting with multiple proteins. (C) Directed interaction network of SFRP1. The orange node represents SFRP1, green nodes indicate its interacting proteins, and gray edges represent the interaction relationships. The network suggests SFRP1’s potential involvement in ECM regulation and signal transduction. (D) Extensive interaction network of PPP1CA. The orange node represents PPP1CA, green nodes indicate its interacting proteins, and gray edges represent the interaction relationships. The network reveals PPP1CA’s potential roles in ribosomal protein regulation, signaling pathways, metabolism, and cytoskeleton organization.


The interaction network of ADAM17 (Figure 6B) revealed its primary associations with ECM-related proteins, signal transduction-related proteins, metabolism- and oxidative stress-related proteins, and blood-related factors. This suggests that ADAM17 plays a critical role in remodeling the microenvironment of SHFs and mediating signaling pathways.

SFRP1 (Figure 6C) demonstrated close interactions with ECM-related proteins, metabolism-related proteins, signal transduction-related proteins, and cytoskeleton- and structure-related proteins. These findings indicate that SFRP1 is involved in regulating ECM signaling, maintaining structural integrity, and mediating metabolic processes.

The network of PPP1CA (Figure 6D) showed extensive interactions with ribosomal proteins, cytoskeleton-related proteins, signal regulation proteins, and metabolic proteins. This highlights PPP1CA’s role in modulating protein synthesis, cytoskeletal dynamics, and cellular signaling pathways.

Collectively, these findings suggest that ADAM17, SFRP1, and PPP1CA function as critical regulators in the telogen-to-anagen transition by influencing signal transduction, ECM remodeling, and metabolic processes. These results provide valuable insights into the molecular mechanisms underlying SHF cycle regulation.




3.3 Validation of ADAM17, SFRP1, and PPP1CA as key regulators during the telogen-to-anagen transition of SHFs

RT-qPCR and Western blot analyses confirmed that the expression levels of ADAM17, SFRP1, and PPP1CA were upregulated during the telogen-to-anagen transition of SHFs (Figures 7A,B), consistent with the proteomic sequencing data. These findings suggest that these proteins may mediate the SHF cycle transition by regulating signal transduction and cell adhesion, providing a robust experimental foundation for further studies.

[image: Graphs and western blot images depict mRNA and protein expression for ADAM17, SFRP1, and PPP1CA during telogen and anagen phases in hair follicles. Increased expression is noted during anagen. Statistical significance is indicated with asterisks, with alpha-Tubulin serving as a loading control.]

FIGURE 7
 Validation of ADAM17, SFRP1, and PPP1CA as key regulators in the transition from telogen to anagen in SHFs. (A) Relative mRNA expression levels of ADAM17, SFRP1, and PPP1CA in telogen- and anagen-phase SHF samples, measured by RT-qPCR. The results show that the mRNA expression levels of all three genes are significantly higher in anagen samples compared to telogen samples. Samples 1, 2, and 3 represent skin tissues collected from the same three individual goats during the telogen and anagen phases (***p < 0.001; **p < 0.01). (B) Protein expression levels of ADAM17, SFRP1, and PPP1CA in telogen- and anagen-phase SHF samples, analyzed by Western blot with α-Tubulin as the internal control. Semi-quantitative analysis reveals that the protein expression levels of these three molecules are significantly higher in anagen samples than in telogen samples. Error bars represent the mean ± standard deviation (SD), with significance levels indicated as *p < 0.05.




3.4 Immunolocalization of ADAM17, SFRP1, and PPP1CA in telogen and anagen phases of SHFs

Immunohistochemical staining was performed to analyze the expression and localization of ADAM17, SFRP1, and PPP1CA in SHFs from the dorsal region of cashmere goats during the telogen and anagen phases (Figure 8).
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FIGURE 8
 Immunolocalization of ADAM17, SFRP1, and PPP1CA in SHFs during the telogen and anagen phases. Immunohistochemical staining shows the expression and localization of ADAM17, SFRP1, and PPP1CA in transverse and longitudinal sections of SHFs from the dorsal region of cashmere goats during the telogen and anagen phases. Negative controls exhibit no staining, confirming the specificity of the antibodies. Scale bar: 100 μm.


The immunolocalization and functional analysis of ADAM17 in transverse sections revealed its expression in SHFs during the telogen phase. During the anagen phase, its expression significantly increased in SHFs, particularly in the ORS. In longitudinal sections, ADAM17 exhibited weak expression in the ORS and DP of SHFs during telogen. However, its expression was markedly enhanced during anagen and localized primarily to the ORS and DP. These findings suggest that ADAM17 may facilitate the telogen-to-anagen transition by promoting ORS cells proliferation and mediating signal transduction in DPCs.

The immunolocalization and functional analysis of SFRP1 in transverse sections demonstrated its expression in SHFs during the telogen phase, which significantly increased during the anagen phase. Longitudinal sections revealed weak expression of SFRP1 in the ORS and HM of SHFs during the telogen phase. However, during the anagen phase, its expression was markedly enhanced and primarily localized to the ORS and HM of SHFs. As an antagonist of the Wnt signaling pathway, SFRP1 likely supports SHF growth and regeneration by modulating the activity of SHFSCs and promoting the differentiation of HMCs.

The immunolocalization and functional analysis of PPP1CA in transverse sections revealed its expression in SHFs, with significantly heightened levels during the anagen phase, predominantly localized to the ORS. Longitudinal sections demonstrated weak expression of PPP1CA in the ORS during the telogen phase. However, during the anagen phase, its expression markedly increased and expanded to the ORS, HM, and DP. As a phosphatase, PPP1CA may promote the proliferation and differentiation of ORS cells, HMCs, and DPCs in SHFs by regulating the phosphorylation of cell cycle regulators and signaling components.

In summary, immunohistochemical analysis demonstrated dynamic and differential expression of ADAM17, SFRP1, and PPP1CA in hair follicles during the telogen and anagen phases, with primary localization to key regions such as the ORS, DP, and HM. These proteins likely regulate the SHF cycle by modulating signal transduction, stem cell activity, and cell proliferation. These findings provide important evidence for further exploration of the molecular mechanisms underlying SHF regulation.




4 Discussion

Hair follicles are important miniature organs in the skin, composed of both epidermal and dermal components. Their primary function is to produce hair through periodic activity, playing a vital role in thermoregulation, skin barrier formation, and environmental sensing in animals (21). The hair follicle cycle is divided into the anagen, catagen, and telogen. This dynamic periodicity is essential for hair growth, shedding, and regeneration (22, 23). The normal maintenance of the hair follicle cycle relies on a complex molecular signaling network, which is not only significant for understanding the regulatory mechanisms of the SHF cycle but also provides a theoretical basis for improving cashmere quality in cashmere goats.

Proteins, as pivotal molecules in cell signaling and functional regulation, play a central role in orchestrating transitions between different phases of the SHF cycle. Previous studies have primarily focused on the regulation of the hair follicle cycle by pathways such as Wnt, Notch, and Jak–STAT (2, 8, 16, 24). However, systematic studies on the functions, dynamic expression patterns, and mechanisms of specific proteins during different phases of the SHF cycle remain limited. While this study is constrained by a small sample size, we minimized individual variability by collecting telogen and anagen skin samples from the same cashmere goat. Using proteomics, we successfully identified key proteins associated with the SHF cycle. This high-throughput proteomic approach provides a rapid, efficient, and comprehensive method to systematically analyze the dynamic changes in proteins during the SHF cycle, offering new insights into the molecular mechanisms underlying SHF regulation (25).

In this study, we performed LC–MS/MS-based proteomic analysis on skin tissues from telogen and anagen phases in cashmere goats, revealing dynamic protein changes during the telogen-to-anagen transition of SHFs. A large number of proteins were found to be either upregulated or downregulated, indicating significant protein remodeling during this phase, which is likely associated with the reconstruction of the non-permanent region of SHFs. Reconstruction of the non-permanent region is a critical turning point in hair follicle development and marks the initiation of the telogen-to-anagen transition (26). This event involves a series of complex biological processes, including cell proliferation and differentiation, ECM remodeling, signaling pathway regulation, and the activation of HFSCs (27–30). During this process, HFSCs must first transition from a quiescent to an active state, followed by amplification and differentiation to form new hair follicle structures (28). Concurrently, ECM remodeling provides mechanical support and signaling cues for hair follicle growth. Growth factors and cytokines play key roles in regulating HFSCs activation through signaling pathways (31–33). These mechanisms ensure the structural integrity and functional restoration of hair follicles. Additionally, HFSCs activation is tightly regulated by DP signals. As the “regulatory center” of the hair follicle cycle, the DP communicates bidirectionally with HFSCs by secreting signaling molecules, thereby promoting hair follicle regeneration (15).

Our findings revealed that ADAM17 was significantly upregulated during the anagen phase, suggesting that it may facilitate the activation of the telogen-to-anagen transition by cleaving membrane-bound growth factors. ADAM17 is a “sheddase” that cleaves membrane-bound proteins to release their active forms, such as epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) (34–37). Evidence suggests that EGFR ligands, such as EGF, promote the proliferation and migration of ORS cells (38–41). Additionally, the EGFR ligand EREG activates ORS cells and HMCs through EGFR signaling (42). These growth factors are critical for SHFSCs activation and hair follicle regeneration. In cashmere goats, EGFR signaling may play a central role in regulating SHFSCs proliferation and migration, laying the foundation for cashmere fiber formation. EGFR is primarily expressed in the ORS and DP of SHFs, and immunohistochemical analysis showing ADAM17 localization in these regions further supports its role in epithelial-mesenchymal interactions, which are central to SHFs cycle regulation. Previous studies have shown that EGFR-mediated signaling not only promotes HFSC amplification but also maintains the dynamic balance of the hair follicle microenvironment by regulating inflammation and ECM remodeling (43, 44).

As an antagonist of the Wnt signaling pathway, SFRP1 was highly expressed in the ORS and HM during the anagen phase, indicating that it may finely regulate Wnt signaling to balance SHFSCs activation and differentiation. The Wnt signaling pathway plays a dual role in hair follicle regulation: it can activate β-catenin to promote stem cell proliferation or, under certain conditions, inhibit differentiation to maintain stem cell quiescence (45, 46). The high expression of SFRP1 may act as a “regulator,” partially suppressing Wnt signaling to prevent excessive stem cell differentiation, thereby maintaining the normal hair follicle growth cycle (47). This mechanism is particularly important in cashmere goats, as the periodic renewal of SHFs directly determines the growth quality and length of cashmere fibers. Interestingly, the role of SFRP1 in cashmere goat hair follicles differs from studies in mouse models, where SFRP1 was reported to inhibit Wnt-driven hair follicle activation (48). This discrepancy may reflect species-specific differences in hair follicle biology or the unique developmental requirements of SHFs in cashmere goats. Further research into the regulation of Wnt signaling by SFRP1 across species will help elucidate its universal and specific roles in hair follicle cycle regulation.

PPP1CA, a phosphatase involved in cell cycle regulation, was prominently expressed in the ORS, DP, and HM during the anagen phase. This expression pattern suggests a role in maintaining SHFSCs proliferation and differentiation, consistent with its role in promoting glioblastoma growth (49). PPP1CA facilitates the G1/S transition of the cell cycle by dephosphorylating retinoblastoma protein, thereby accelerating cell proliferation (50). Additionally, PPP1CA may regulate the activity of cell cycle-related proteins such as c-Myc (51, 52), supporting the rapid proliferation of HMCs to meet the demands of rapid SHFs growth during the anagen phase. Given the DP’s role as the “signaling center” of hair follicle growth, the high expression of PPP1CA in the DPCs may promote SHFSCs activation and differentiation by regulating the secretion of signaling molecules.

In conclusion, ADAM17, SFRP1, and PPP1CA likely work in concert to regulate the telogen-to-anagen transition and promote cashmere fiber production. ADAM17 activates SHFSCs through the EGFR signaling pathway; SFRP1 balances Wnt signaling to regulate stem cell activation and promoting the differentiation of HMCs; and PPP1CA promotes SHF cell proliferation by modulating phosphorylation states. The precise spatial and temporal regulation of these proteins collectively drives the periodic renewal of cashmere goat SHFs.

Despite the significant findings of this study, several limitations remain. First, the small sample size may limit the generalizability of the results. Second, although the expression patterns of ADAM17, SFRP1, and PPP1CA were characterized, their functions were not validated through gene knockout or overexpression experiments. Future studies should focus on in vivo and in vitro functional analyses to elucidate the specific mechanisms of these molecules. Additionally, exploring the upstream regulators and downstream targets of these proteins will further enhance our understanding of their roles in hair follicle biology.



5 Conclusion

This study, through the integration of morphological analysis, proteomics, and experimental validation, uncovered dynamic changes during the telogen-to-anagen transition in cashmere goat SHFs. Furthermore, it established a connection between key DEPs—ADAM17, SFRP1, and PPP1CA—and the regulation of the SHF cycle. These findings not only deepen our understanding of the molecular mechanisms regulating the SHF cycle but also highlight potential molecular targets for enhancing cashmere fiber quality.
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The Huang-huai goat, indigenous to China’s Huang-Huai Plain, is celebrated for its exceptional reproductive capacity, succulent meat, and superior leather qualities. The Huang-huai goat’s reproductive characteristics, genetic diversity, and the genetic underpinnings of intersexuality, aiming to inform conservation efforts and genetic resource management. Our study at the Huang-huai Goat Science and Technology R&D Center monitored 600–800 female goats and 16–24 male goats from June 2020 to May 2022, adhering to NIH guidelines and with ethical approval from Henan University of Animal Husbandry and Economics. Our findings indicate that these goats exhibit a year-round estrus cycle averaging 19–23 days, a gestation period of 146–150 days, and an average litter size of 2.74, with an annual reproduction rate of 418.96% and a weaning survival rate of 94.75%. Transcriptome sequencing identified eleven candidate genes associated with multiple offspring, including PTX3, MMP13, and NR4A1, which play roles in organ development and hormonal regulation. SNP analysis revealed specific genotypes in GJB6 and PRKAA1 linked to higher lambing numbers, offering molecular markers for selective breeding. The study also highlighted the role of the Polled Intersex Syndrome (PIS) locus in causing both hornless and intersexual traits, emphasizing the importance of genetic screening for maintaining breed health and productivity. The genetic resources of the Huang-huai goat, recognized as a national geographical indication product, are vital for the livestock industry and require strategic conservation for sustainable development. This review highlights the importance of preserving and utilizing the genetic resources of the Huang-huai goat to enhance its contribution to agriculture.
Keywords: Huang-huai goat, hereditary, reproduction, intersexuality, PIS

1 INTRODUCTION
Nestled between 33° and 35.5°N latitude and 113° and 119°E longitude, the Huang-Huai Plain boasts a climate of humidity and ample sunlight, alongside an abundance of natural resources that have historically established it as the cradle of ancient Chinese civilization (Zhou et al., 2014; Hu et al., 2021). The region’s advantageous irrigation systems and substantial agricultural byproducts, particularly crop straw, make it an ideal hub for industrial-scale agriculture and animal husbandry, and it has been duly recognized as a pivotal grain-producing area in China (Xiao et al., 2022). This fertile landscape is especially hospitable to goat farming.
The Huang-Huai goat, also known as the Huai goat, derives its name from the Huang-Huai Plain where it has its origin (Zhou et al., 2020). There are over 10 million of these goats dispersed across the eastern part of Henan, the northern regions of Anhui, and the northern areas of Jiangsu (Li et al., 2022). These medium-sized goats possess short white hair and pink skin. They can be classified into horned (accounting for 43.03%) and hornless (accounting for 56.97%) varieties (Hua et al., 2008). On average, adult male goats weigh 49.08 kg, while adult female goats weigh 37.75 kg (Pan et al., 2011). Since 2000, excessive crossbreeding of Huang-huai goats with Boer goats has led to the degradation of their germplasm advantages–including high fertility, superior meat quality, and premium leather traits–resulting in diminished reproductive efficiency and compromised market reputation (Han et al., 2022). Unrestricted hybridization has resulted in a deterioration in reproductive performance, as well as in the quality of meat and hides (Yang et al., 2021). In particular, the high occurrence rate of intersexuality has hindered the selection and propagation of the hornless trait, posing a threat to the future of this breed (Han et al., 2022; Yang et al., 2021).
To enhance the conservation and efficient use of Huang-Huai goat germplasm resources, the expert team of the Henan agricultural research system of sheep and Goat Industry Technology (HARS-22–15), relying on the Shenqiu Huai Goat Technology R&D Center, has conducted a comprehensive and systematic assessment of its production performance over a period of 5 years. This review summarizes the reproductive characteristics and progress in genetic improvement of the Huang-Huai goat.
2 GENETIC DIVERSITY AND MATERNAL ORIGIN OF HUANG-HUAI GOATS
2.1 Genetic diversity and its significance
Genetic diversity is a crucial indicator for the conservation of germplasm resources. Studies have revealed that the Huang-Huai goat, along with several other local breeds such as the Funiu white goat and Yaoshan white goat, exhibit relatively high genetic polymorphism. This indicates that these breeds possess abundant genetic resources and strong adaptability to the environment.
2.2 Maternal origin analysis
Maternal origin analysis has demonstrated that these breeds mainly originated from the Markhor. There are two maternal lineages, namely lineage A and lineage B, which reveals the complex evolutionary history and genetic background of the Huang-Huai goat.
2.3 Mitochondrial DNA research
Research on mitochondrial DNA (mtDNA) has provided direct evidence for the maternal origin of the Huang-Huai goat. Studies on the mitochondrial D-loop region of domestic goats in the central region have shown that the maternal origin of these breeds is the Markhor. Moreover, the majority of individuals are from lineage A, while a small number are from lineage B, further confirming the hypothesis of multiple maternal origins of the Huang-Huai goat.
3 REPRODUCTIVE PERFORMANCE OF HUANG-HUAI GOATS
The research on the reproductive performance of Huang-Huai goats was carried out at the Huang-Huai Goat Science and Technology R&D Center, which is dedicated to the study, demonstration, and promotion of this particular breed. From June 2020 to May 2022, the center accommodated 600–800 female goats and 16–24 male goats of the Huang-Huai breed. All the animals were taken care of in strict accordance with the guidelines stipulated by the National Institutes of Health regarding the care and use of experimental animals. Moreover, all the procedures and experiments were duly approved by the Animal Care and Use Committee of Henan University of Animal Husbandry and Economics.
3.1 Study design and data collection
A reproduction test was carried out on Huang-Huai goats. Daily observations and data collection were made concerning estrus performance, breeding status, heat duration, and male goat semen quality. Data filtering was implemented to exclude any values that deviated beyond the mean ± standard deviation range for each trait. Statistical analysis was then performed on various parameters, including the first estrus period, estrus duration, breeding cycle, average litter size, lamb weaning survival rate, average number of weaned lambs per female per year, and male goat semen quality.
3.2 Puberty and reproductive characteristics
Male lambs display signs of puberty through behaviors such as sniffing the vulva of female goats, chasing them upon detecting estrus (sexual olfactory reflex), barking after olfactory perception, penile erection, mounting, and ejaculation (Quan et al., 2020). The average age of puberty for male lambs ranges from 75 to 83 days, with an average weight of 15–23 kg. Female lambs exhibit symptoms of puberty like mental excitement, loss of appetite, tail erection, and vulvar swelling accompanied by secretions, although they do not permit male goats to mount them. The average age and weight at puberty for female goats are 63–84 days and 14–22 kg respectively. They reach sexual maturity at 4–5 months of age, with a weight of 18–25 kg. Huang-Huai goats show a relatively higher proportion of estrus in autumn and winter, yet they can experience estrus throughout the year, with an estrus cycle spanning from 18.3 to 22.8 days. The gestation period is 146–150 days, and the average lambing interval is 238.34 days. The average litter size is 2.74, and the annual reproduction rate amounts to 418.96% (Table 1). The weaning survival rate is 94.75%, with an average of 3.97 weaned lambs per female per year (Table 2).
TABLE 1 | The estrus and lambing of female goats in the month from June 2020 to May 2022.
[image: Table presenting monthly statistics on goats over a two-year period: columns include months, number of female goats, estrus goats, delivery female goats, lambs born, and weaned lambs. Total counts for each category are: estrus goats 2,113, delivery female goats 1,930, lambs born 5,280, and weaned lambs 5,003. It notes that female goat numbers are from the end of the last month, and totals are averages over two years.]TABLE 2 | Statistics of different litter size.
[image: Table showing data on lambing female goats. Categories include Single, Double, Triple, Quadruple, and Quintuple. It lists the number of female goats, number of lambs, weaning lamb number, and weaning survival rate. Total: 1,930 goats, 5,280 lambs, 5,003 weaned, 94.75% survival rate.]3.3 Semen quality and reproduction seasonality
Huang-Huai male goats are capable of reproducing throughout the year. Their semen quality reaches its peak in autumn and winter and deteriorates in summer (Table 3). The average ejaculation volume is 1.01 ± 0.11 mL, with an average sperm motility of 84.49% ± 2.26% and a sperm concentration of (21.52 ± 6.86) × 108/mL. The defective sperm rate is 12.16% ± 2.31%, and the semen is usually milky white.
TABLE 3 | Semen quality of male goats in different seasons.
[image: Table displaying seasonal data for male goats: Number of goats, ejaculate volumes, sperm motility rate, sperm concentration, and defective sperm rate are listed for spring, summer, autumn, and winter. Averages are provided for ejaculate volumes, sperm motility rate, sperm concentration, and defective sperm rate.]3.4 Reproductive performance and breeding efficiency
Reproductive performance is a crucial index for evaluating goat production levels, especially in large-scale farming systems. In comparison with other Chinese local breeds and introduced breeds like Boer goats (Wang et al., 2020), Huang-Huai goats reach puberty and sexual maturity at an earlier stage. They can reproduce throughout the year with minimal seasonal impact, attaining an average of 1.57 pregnancies per year, and each female can wean approximately 3.97 lambs annually.
The early sexual maturity and high reproductive performance of Huang-Huai goats confer significant benefits upon breeders. It enables early breeding and shorter generation intervals, which can boost productivity and potentially augment profits (Chu et al., 2011). Although the breed’s inherent characteristics contribute to its early reproductive development, optimal management and a balanced diet are indispensable for maintaining the peak reproductive performance in goat farming.
4 CANDIDATE GENES FOR MULTIPLE LAMBS IN HUANG-HUAI GOATS
To understand the genetic basis of multiple lambs in Huang-Huai goats, 3-year-old healthy female goats with similar body conditions were selected and grouped based on their reproductive records: a single-lamb group (24 females, averaging one lamb per birth) and a multi-lamb group (24 females, averaging over two lambs per birth). Transcriptome sequencing was used to build mRNA libraries for both groups to identify differentially expressed genes (DEGs), followed by functional enrichment analysis and verification with real-time fluorescence quantitative PCR. Blood genomic DNA from goats with different reproductive performances was extracted. Based on preliminary transcriptome analysis and literature review, GJB6 (gap junction protein beta 6) and PRKAA1 (AMP-activated protein kinase catalytic subunit alpha-1) were prioritized for SNP analysis due to their established roles in follicular development and metabolic regulation of reproduction in other ruminants (Domínguez-Ruiz et al., 2024; Wang et al., 2020; Xiao et al., 2020). Candidate genes related to multiple lambs were SNP scanned and genotyped, and the correlation with high lambing frequencies was analyzed. Primers for GJB6 (forward: 5′-CAG​GTG​CTG​GAC​TTC​ATC​CT-3′; reverse: 5′-TGG​CAA​TGT​CAC​AGA​GGA​CA-3′) and PRKAA1 (forward: 5′-GCT​GGA​CCT​CAA​CCT​GAT​GA-3′; reverse: 5′-AGC​CAC​AGG​GTC​TTC​ATG​GT-3′) were designed using Primer-BLAST (NCBI).
Eleven candidate genes related to lambing number in Huang-Huai goats were found by comparing the transcriptomes of the two groups (Gawat et al., 2023): PTX3, MMP13, PAK1, ADAMTS1, COL1A2, CCN1, SLC4A10, FOS, NR4A1, NR4A2, and ADCY8. These genes are involved in animal organ development and hormone secretion in the endocrine system (Yao et al., 2023), and qPCR validation confirmed differential expression patterns (P < 0.05) between single- and multi-lamb groups (Figure 1).
[image: Scatter plot displaying the relationship between qPCR and RNA-SEQ. Points representing genes like NR4A1, ADAMTS, FOS, and PAK1 are plotted. The trend line equation is y equals 0.7632x minus 0.3457 with an R² value of 0.9717.]FIGURE 1 | qPCR validation of gene expression levels in single- and multi-lamb groups. Using GAPDH as the reference gene, qRT-PCR analysis revealed significant downregulation of ADCY8, FOS, PAK1, NR4A2, ADAMTS, and NR4A1 in the ovaries of multiparous Huang-Huai goats compared to uniparous goats, consistent with RNA-seq results. A strong Pearson correlation (R2 = 0.9717, P < 0.01) between RNA-seq and qRT-PCR fold-change values confirmed the high reliability of RNA-seq data (Han et al., 2023b).
Specific primers were designed for the GJB6 and PRKAA1 genes in Huang-Huai goats. After sequencing and genotyping, two synonymous mutations in GJB6 and three SNP sites in the non-coding sequence of PRKAA1 were detected. The TC genotype of g.33691489 T>C and the AT genotype of g.33693395 A>T in PRKAA1 were associated with a higher number of lambs (Table 4). Haplotype analysis further revealed that the TCA haplotype (comprising SNPs g.33691489 T>C, g.33693100 T>C, and g.33693395 A>T) was significantly associated with increased prolificacy (χ2 = 8.24, P = 0.004), aligning with linkage disequilibrium patterns in the PRKAA1 locus.
TABLE 4 | The association analysis between SNPs of GJB6/PRKAA1 gene and lambing numbers of Huai goats (average ±standard deviation).
[image: Table showing genetic data related to the genes GJB6 and PRKAA1. It lists various SNPs, genotypes, their corresponding numbers, and lambing numbers. The SNPs include g.50694819 C>T, g.50694816 T>C, g.33691489 T>C, g.33693100 T>C, and g.33693395 A>T, with associated genotypes like CC, CT, TT, AA, AT, and their respective lambing numbers with standard deviations. Notable differences are marked by letter superscripts A and B, indicating significant differences at P < 0.01.]Transcriptome sequencing helps find DEGs among different phenotypes. Some genes related to follicular development, ovulation, and steroid hormone synthesis are expressed in ovarian tissues of Huang-Huai goats (Ceccobelli et al., 2023). For example, MMP13 is important for follicle formation and ovulation, and ADAMTS1 promotes follicular development and maturation. NR4A1 and NR4A2 are involved in the ARH response related to reproductive function and may regulate lambing (McNulty et al., 2012).
SNPs are related to gene expression and individual trait differences. In Huang-Huai goats, the TC genotype at g.33691489 T>C and the AT genotype at g.33693359 A>T in PRKAA1 are significantly associated with a higher lambing number (Wang et al., 2019). Haplotype analysis shows that the TCA haplotype is also related to increased lambing. These loci can be potential molecular markers for selecting multiple lambing traits.
5 INTERSEX SYNDROME IN HUANG-HUAI GOATS
Six intersex Huang-Huai goats were slaughtered to study their reproductive organ anatomy (Han et al., 2022; Yang et al., 2021). HE staining was performed on ovarian samples to histologically evaluate tissue structure, identify pathological changes (e.g., testicular-like lesions), and confirm the presence of intersex-specific anomalies (e.g., mixed ovarian/testicular tissues), which are critical for diagnosing PIS. Blood samples from 18 intersex and 45 normal goats (12 females and 23 males) were collected. PCR was used to amplify the SRY gene and detect the PIS deletion.
Externally, intersex goats had a smaller vulva. Some had testes but no vulva and had underdeveloped genitals causing dysuria (Figure 2). Internally, sample A had ovarian-like gonads larger than normal ovaries with follicular structures and swollen female reproductive ducts. Sample B had one large and one small gonad with different connections to genital tracts and a nearby penis-like structure. Samples C, D, E, and F had uneven-surfaced gonads, with the left gonad having a spermatic cord and a degenerated uterus (Figure 3).
[image: Six-panel image showing various stages of a veterinary procedure on a dog's ear. Panel A shows an initial injury with slight bleeding. Panel B displays the wound in an early stage of healing, while Panel C captures ongoing treatment. Panel D reveals further healing progress with less redness. Panel E highlights the removal of debris. Panel F depicts the nearly healed ear with minimal scarring, assisted by a gloved hand.]FIGURE 2 | Observation of the external genitalia of intersexual Huang-huai goats. A-F represent external genitalia of intersexual Huang-huai goats. Intersexual Huang-huai goats have female reproductive organs, but with an enlarged, prominent clitoris. The vulva is smaller, and the clitoris resembles a penis. Some individuals may have seemingly male reproductive organs, but they are incompletely developed. Overall, their external genital morphology is intermediate between normal male and female goats (Yang et al., 2021).
[image: Six panels labeled A to F show anatomical specimens in various stages of dissection. Each specimen displays distinct arrangements of tissues and structures, highlighting differences in morphology and complexity. The background is neutral, emphasizing the specimens.]FIGURE 3 | Observation of the internal genitalia of intersexual Huang-huai goats. A-F represent the gonads of intersexual Huang-huai goats. It showed significant morphological differences from typical female ovaries and are larger in size. Histologically, they show a mixed pattern, similar to ovarian tissue with testicular-like lesions or partially differentiated testicular structures. The reproductive system has well-defined female organs (uterus and vagina) but also underdeveloped male components (rudimentary ductal systems or incomplete spermatic cord formation), representing a transitional state between male and female reproductive organ development (Yang et al., 2021).
SRY amplification showed 18 intersex goats had XX sex chromosomes. Using Monteagudo’s and Simon’s methods (Monteagudo et al., 2008; Simon et al., 2020), it was found that the 18 intersex goats had homozygous PIS deletions. Among 45 normal goats, 17 were PIS+/+ homozygous wild-type and 28 were PIS+/− heterozygous. Among 23 male goats, 8 were PIS+/+ and 15 (65.21%) were PIS+/− heterozygous. Among 22 female goats, 9 were PIS+/+ and 13 (59.09%) were PIS+/− heterozygous (Table 5).
TABLE 5 | Distinguishing types of PIS between normal and intersex Huang-huai goats.
[image: Table showing genotype distribution. Two rows: first, PIS⁺/⁺ with 17 individuals, nine female and eight male; second, PIS⁺/⁻ with 28 individuals, 13 female and 15 male.]In normal Huang-Huai goats, 62% carry PIS deletion, with 65.21% of male goats and 59.09% of female goats. Homozygous PIS deletion in offspring causes intersex traits. If carriers aren’t excluded, the intersex gene frequency will rise, reducing population reproduction and economic benefits. So, intersex detection in Huang-Huai goats is urgent. The study found that the PIS locus causes the hornless trait (autosomal dominant) and the intersexual trait (autosomal recessive) in Huang-Huai goats. The two traits are linked, with intersexuality usually in hornless goats and regulated by the PIS region (100 kb on chromosome 1q43, between ATP1B and COP genes, with a 11.7 kb fragment deletion causing the syndrome). The PIS region transcribes genes like FOXL2, PISRT1, and PFOXic.
6 APPLICATION OF GENETIC IMPROVEMENT FOR HUANG-HUAI GOAT
6.1 Enhancing reproductive performance through genetic selection
Our team has made significant strides in the genetic enhancement of the Huang-huai goat by optimizing the breeding core group for multiparous traits. Utilizing genomic tools, we have developed breeding chips that facilitate the identification of multiparous female goats. This technology has been applied across three conservation farms, leading to the establishment of a core breeding group comprising 1,200 goats. This targeted approach has accelerated the enrichment of multiparous genes, concentrating superior genetic traits within the core group and thereby enhancing the overall reproductive performance of the population.
6.2 Incorporating PIS testing to preserve genetic integrity
We have implemented PIS testing for male goats, a crucial step in maintaining the genetic health of the breed. This initiative involved screening 210 local breeding males, resulting in the exclusion of 134 individuals carrying the intersex gene. This proactive measure has substantially reduced the prevalence of intersex traits among Huang-huai goats, safeguarding the genetic integrity of the breeding population and preventing the spread of deleterious genes, which is vital for the sustainable development and reproductive vigor of the breed.
7 DISCUSSION
This review comprehensively elucidates the genetic diversity, reproductive traits, and genetic enhancement strategies of Huang-Huai goats, providing critical insights for breed conservation and sustainable utilization. The high genetic polymorphism and dual maternal lineages (A and B) underscore the breed’s evolutionary resilience, aligning with findings in other indigenous Chinese breeds (Peng et al., 2024). Notably, Huang-Huai goats exhibit exceptional reproductive performance, including year-round estrus, a high annual reproduction rate (418.96%), and robust weaning survival (94.75%), surpassing many local and introduced breeds (Han et al., 2022). The identification of candidate genes (PTX3, MMP13, PRKAA1) and SNPs associated with prolificacy offers novel molecular markers for selective breeding, complementing prior studies on fecundity-related genes in goats (Han et al., 2022). However, functional validation of these genes and their regulatory mechanisms in ovulation and hormone synthesis warrants further investigation.
The linkage between the PIS locus and intersexuality highlights a critical challenge in breeding hornless variants. The high carrier rate (62%) of PIS deletions emphasizes the urgency of genetic screening to mitigate intersex traits, as proposed in Polled goat management (Yang et al., 2021). While this study establishes a framework for PIS detection, broader validation across diverse populations is essential to ensure applicability. Additionally, environmental and epigenetic factors influencing reproductive performance remain unexplored, representing a limitation of the current dataset (Guang-Xin et al., 2018).
Future efforts should focus on expanding genomic databases, integrating multi-omics approaches to unravel gene-environment interactions, and refining breeding chips for precision selection (Liu et al., 2024). Collaborative initiatives to disseminate genetic screening protocols and core breeding strategies will enhance breed purity and productivity. This work lays the foundation for leveraging Huang-Huai goats’ genetic potential, balancing conservation with agricultural innovation in China’s livestock sector.
8 CONCLUSION
The exploration, conservation, and strategic utilization of the Huang-Huai goat germplasm resources are essential for the protection of biodiversity and the advancement of new, distinctive breeds (Zhang et al., 2024; Jin et al., 2020). This study has conducted a thorough examination of the genetic diversity, maternal lineage, and reproductive performance of the Huang-Huai goats. By concentrating on candidate genes associated with multiple births, we have developed a specialized breeding chip for the Huang-Huai goats and have selected a core breeding population. Additionally, to address the intersex syndrome observed in the Huang-Huai goats, a targeted screening protocol has been implemented to identify and exclude male goats carrying intersex genetic markers. These efforts have substantially enhanced the technical infrastructure for the conservation and efficient utilization of the Huang-Huai goat germplasm resources.
AUTHOR CONTRIBUTIONS
KQ: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft, Writing–review and editing. HS: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft. CW: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft. JL: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–review and editing. KL: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft. HW: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft. WS: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–review and editing. HH: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by Henan agricultural research system (HARS-22-15-S), and National natural science foundation of China (youth fund) (32402758), Henan province key research and promotion project (252102110068), and Program for Innovative Research Team (in Science and Technology) in University of Henan Province (25IRTSTHN027).
ACKNOWLEDGMENTS
This study was supported by Henan Institute of Animal Husbandry and Economics of China, Shenqiu County Agricultural and Animal Husbandry Science and Technology Research and Development Center and team members.
GENERATIVE AI STATEMENT
The author(s) declare that no Generative AI was used in the creation of this manuscript.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Ceccobelli, S., Landi, V., Senczuk, G., Mastrangelo, S., Sardina, M. T., Ben-Jemaa, S., et al. (2023). A comprehensive analysis of the genetic diversity and environmental adaptability in worldwide Merino and Merino-derived sheep breeds. Genet. Sel. Evol. GSE 55 (1), 24. doi:10.1186/s12711-023-00797-z
	 Chu, M. X., Lu, L., Feng, T., Di, R., Cao, G. L., Wang, P. Q., et al. (2011). Polymorphism of bone morphogenetic protein 4 gene and its relationship with litter size of Jining Grey goats. Mol. Biol. Rep. 38 (7), 4315–4320. doi:10.1007/s11033-010-0556-6
	 Domínguez-Ruiz, M., Murillo-Cuesta, S., Contreras, J., Cantero, M., Garrido, G., Martín-Bernardo, B., et al. (2024). A murine model for the del(GJB6-D13S1830) deletion recapitulating the phenotype of human DFNB1 hearing impairment: generation and functional and histopathological study. BMC genomics 25 (1), 359. doi:10.1186/s12864-024-10289-z
	 Gawat, M., Boland, M., Singh, J., and Kaur, L. (2023). Goat meat: production and quality attributes. Foods 12 (16), 3130. doi:10.3390/foods12163130
	 Guang-Xin, E., Zhao, Y. J., Chen, L. P., Ma, Y. H., Chu, M. X., Li, X. L., et al. (2018). Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA. Ecol. Evol. 8 (10), 5111–5123. doi:10.1002/ece3.4100
	 Han, H., Yang, S., Li, J., Zhao, J., Wei, H., Ha, S., et al. (2022). Intersex goats show different gene expression levels in the hypothalamus and pituitary compared with non-intersex goats based on RNA-Seq. Veterinary Med. Sci. 8 (1), 367–376. doi:10.1002/vms3.672
	 Han, H., Li, T., Li, S., Song, X., Li, J., Ha, S., et al. (2023a). Polymorphism of GJB6 and PRKAA1 genes and their association with litter size in Huishan goats. Acta Agriculturae Boreali - Sinica. 38 (04): 225–232. (in Chinese). 
	 Han, H., Li, S., Yang, R., Li, M., Li, J., Ha, S., et al. (2023b). Identification of key candidate genes for high fertility in Huishan goats based on transcriptome sequencing. Acta Veterinaria et Zootechnica Sinica. 54 (12): 5077–5090. (in Chinese). 
	 Hu, Z., Wu, Z., Zhang, Y., Li, Q., Islam, A. R. M. T., and Pan, C. (2021). Risk assessment of drought disaster in summer maize cultivated areas of the Huang-Huai-Hai plain, eastern China. Environ. Monit. Assess. 193 (7), 441. doi:10.1007/s10661-021-09224-6
	 Hua, G. H., Chen, S. L., Ai, J. T., and Yang, L. G. (2008). None of polymorphism of ovine fecundity major genes FecB and FecX was tested in goat. Animal reproduction Sci. 108 (3-4), 279–286. doi:10.1016/j.anireprosci.2007.08.013
	 Jin, M., Lu, J., Fei, X., Lu, Z., Quan, K., Liu, Y., et al. (2020). Selection signatures analysis reveals genes associated with high-altitude adaptation in Tibetan goats from nagqu, tibet. Anim. (Basel) 10 (10), 1599. doi:10.3390/ani10091599
	 Li, S., Xiang, C., Ge, Y., Liu, H., Zhang, D., and Wang, Z. (2022). Differences in eating quality and electronic sense of meat samples as a function of goat breed and postmortem rigor state. Food Res. Int. Ott. Ont. 152, 110923. doi:10.1016/j.foodres.2021.110923
	 Liu, Z., Tan, X., Jin, Q., Zhan, W., Liu, G., Cui, X., et al. (2024). Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development. Anim. Biosci. 37 (6), 982–992. doi:10.5713/ab.23.0316
	 McNulty, S. E., Barrett, R. M., Vogel-Ciernia, A., Malvaez, M., Hernandez, N., Davatolhagh, M. F., et al. (2012). Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn. and Mem. (Cold Spring Harb. N.Y.) 19 (12), 588–592. doi:10.1101/lm.026385.112
	 Monteagudo, L. V., Arruga, M. V., Bonafonte, J. I., Ordás, M., Whyte, A., Gallego, M., et al. (2008). Bilateral Leydig cell tumor in a six-year-old intersex goat affected by Polled Intersex Syndrome. Veterinary pathol. 45 (1), 42–45. doi:10.1354/vp.45-1-42
	 Pan, C. Y., Lan, X. Y., Zhao, H. Y., Hu, S. R., Huai, Y. T., Lei, C. Z., et al. (2011). A novel genetic variant of the goat Six6 gene and its association with production traits in Chinese goat breeds. Genet. Mol. Res. GMR 10 (4), 3888–3900. doi:10.4238/2011.November.22.9
	 Peng, W., Zhang, Y., Gao, L., Wang, S., Liu, M., Sun, E., et al. (2024). Examination of homozygosity runs and selection signatures in native goat breeds of Henan, China. BMC genomics 25 (1), 1184. doi:10.1186/s12864-024-11098-0
	 Quan, K., Li, J., Han, H., Wei, H., Zhao, J., Si, H. A., et al. (2020). Review of Huang-huai sheep, a new multiparous mutton sheep breed first identified in China. Trop. animal health Prod. 53 (1), 35. doi:10.1007/s11250-020-02453-w
	 Simon, R., Lischer, H. E. L., Pieńkowska-Schelling, A., Keller, I., Häfliger, I. M., Letko, A., et al. (2020). New genomic features of the polled intersex syndrome variant in goats unraveled by long-read whole-genome sequencing. Anim. Genet. 51 (3), 439–448. doi:10.1111/age.12918
	 Wang, J. J., Zhang, T., Chen, Q. M., Zhang, R. Q., Li, L., Cheng, S. F., et al. (2020). Genomic signatures of selection associated with litter size trait in jining gray goat. Front. Genet. 11, 286. doi:10.3389/fgene.2020.00286
	 Wang, W., Sun, B., Hu, P., Zhou, M., Sun, S., Du, P., et al. (2019). Comparison of differential flavor metabolites in meat of lubei white goat, jining gray goat and boer goat. Metabolites 9 (9), 176. doi:10.3390/metabo9090176
	 Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., et al. (2022). Wheat genomic study for genetic improvement of traits in China. Sci. China. Life Sci. 65 (9), 1718–1775. doi:10.1007/s11427-022-2178-7
	 Xiao, Y., Zheng, X., Li, G., Zhou, C., Wu, C., Xu, Z., et al. (2020). Investigation of the effects of dichlorvos poisoning on AMPK signaling pathway in chicken brain tissues. Environ. Pollut. (Barking, Essex 1987) 261, 114109. doi:10.1016/j.envpol.2020.114109
	 Yang, S., Han, H., Li, J., Zhang, Y., Zhao, J., Wei, H., et al. (2021). Transcriptomic analysis of gene expression in normal goat ovary and intersex goat gonad. Reproduction Domest. animals 56 (1), 12–25. doi:10.1111/rda.13844
	 Yao, Z., Zhang, S., Wang, X., Guo, Y., Xin, X., Zhang, Z., et al. (2023). Genetic diversity and signatures of selection in BoHuai goat revealed by whole-genome sequencing. BMC genomics 24 (1), 116. doi:10.1186/s12864-023-09204-9
	 Zhang, W., Wang, L., Hu, B., Jin, M., and Zhou, J. (2024). Changes in ovarian tissue structure and distribution of oestrogen receptors in Huanghuai goats at different ages. Anat. Histol. Embryol. 53 (3), e13042. doi:10.1111/ahe.13042
	 Zhou, J., Zhang, W., Liu, W., Sheng, J., Li, M., Chen, X., et al. (2020). Histological study of intestinal goblet cells, IgA, and CD3+ lymphocyte distribution in Huang-huai white goat. Folia Morphol. 79 (2), 303–310. doi:10.5603/FM.a2019.0082
	 Zhou, L., Yang, B., Xue, N., Li, F., Seip, H. M., Cong, X., et al. (2014). Ecological risks and potential sources of heavy metals in agricultural soils from Huanghuai Plain, China. Environ. Sci. Pollut. Res. Int. 21 (2), 1360–1369. doi:10.1007/s11356-013-2023-0

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2025 Quan, Shi, Wei, Li, Liu, Wang, Sun and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
ORIGINAL RESEARCH
published: 12 November 2025
doi: 10.3389/fgene.2025.1439312
[image: image2]
The genetic diversity and population structure of native horse breeds in Xinjiang, China
Chi Tang1,2, Baoyu Yang1,2, Gulibaheti Dawulietihan3, Li Xue4, Shuyuan Liu5, Yinamujiang Yalimaimaiti6, Qingzheng Wang7, Na Yang1,2,7, Xiaoyuan Sun7, Yaru Wang7, Ailifeire Wumaier7, Serik Khizat8, Tolegen Assanbayev9, Zhassulan Kozhanov10, Kursantbek Attokurov11, Elmurat Obdunov11, Hangsen Li7, Aikebaier Reheman7, Xiaoling Zhou7, Wumaierjiang Aizimu2,7, Kairat Iskhan8* and Gemingguli Muhatai1,2,7*
1College of Life Science and Technology, Tarim University, Alar, Xinjiang, China, 2Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang, China, 3Agricultural (Animal Husbandry) Development Service in Tuerhong Township, Fuyun, Xinjiang, China, 4Animal Husbandry Workstation of Fuyun County, Fuyun, Xinjiang, China, 5Animal Husbandry Workstation of Balikun County, Balikun, Xinjiang, China, 6Animal Husbandry and Veterinary Station of Kalayagaqi Town, Yining, Xinjiang, China, 7Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Alar, Xinjiang, China, 8Physiology, Morphology and Biochemistry, Kazakh National Agrarian Research University, Almaty, Kazakhstan, 9Zootechnology and Veterinary Medicine, Toraighyrov University, Pavlodar, Kazakhstan, 10Horse Breeding Department, Kazakh Research Institute of Livestock and Forage Production, Almaty, Kazakhstan, 11Osh State University, Osh, Kyrgyzstan
Edited by:
Fei Hao, Northumbria University, United Kingdom
Reviewed by:
Antoine Fages, Université Toulouse III Paul Sabatier, France
Wei Shi, Chinese Academy of Sciences (CAS), China
Sarah Meirelles, Universidade Federal de Lavras, Brazil
*Correspondence:
 Kairat Iskhan, kayrat_ishan@mail.ru; Gemingguli Muhatai, gmgl-113@foxmail.com
Received: 27 May 2024
Accepted: 26 August 2025
Published: 12 November 2025
Citation:
Tang C, Yang B, Dawulietihan G, Xue L, Liu S, Yalimaimaiti Y, Wang Q, Yang N, Sun X, Wang Y, Wumaier A, Khizat S, Assanbayev T, Kozhanov Z, Attokurov K, Obdunov E, Li H, Reheman A, Zhou X, Aizimu W, Iskhan K and Muhatai G (2025) The genetic diversity and population structure of native horse breeds in Xinjiang, China. Front. Genet. 16:1439312. doi: 10.3389/fgene.2025.1439312
Introduction
Xinjiang is a region renowned for its rich diversity of native horse breeds, making it one of the most affluent equine genetic resource areas in China. While prized for their high adaptability and tolerance to roughage, the conservation of these native breeds faces challenges from the introduction of external breeds and industrial changes. Furthermore, the unknown population structure of Xinjiang horse breeds has hindered effective conservation efforts.
Methods
This study presents the first comprehensive Single Nucleotide Polymorphism (SNP) analysis of seven Xinjiang native horse breeds. We utilized 10X whole-genome sequencing to assess their genetic diversity, population structure, and genetic relationships.
Results
Our findings revealed a high level of population genetic diversity among the Xinjiang native horse breeds. These breeds exhibited significant genetic differentiation from other horse breeds originating from Europe, Central Asia, Western Asia, and other parts of China. Evidence of frequent historical gene flow was detected, particularly among breeds in northern Xinjiang, which were shown to be more closely related to each other.
Discussion
 This study elucidates the distribution patterns, evolutionary characteristics, and substantial genetic diversity of Xinjiang’s native horse breeds. The results provide crucial insights into their unique genetic background and population history. These findings offer valuable theoretical support for establishing core conservation groups of local germplasm, guiding future breeding programs for new cultivars, and further exploration of the characteristics inherent to Xinjiang’s native horse genetic resources.
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1 INTRODUCTION
The domestic horse (Equus ferus caballus) was successfully domesticated approximately 5,500 years ago (Librado et al., 2021). However, recent studies have proposed that the modern domestic horse originated in the western Eurasian steppe around 4,200 years ago (Librado et al., 2021). Subsequently, they spread across Eurasia, giving rise to various breeds adapted to diverse geographic and climatic environments. Horse domestication has enhanced human work efficiency and propelled human civilization (Schubert et al., 2014). According to the Food and Agriculture Organization (FAO), there are over 900 horse breeds globally, with 694 native breeds. Among these, 138 are located in Asia and 371 in Europe (https://www.fao.org/).
The primary purposes for horse keeping include dairy and meat production, racing, equestrian activities, and maintaining free-range populations. However, agricultural advancements have decreased the overall use of horses, significantly reducing the global horse population. Over the past 2,000 years, domestic horses have lost nearly half of their genetic diversity, with genomic heterozygosity decreasing by approximately 16% in the last 200 years (Fages et al., 2019). Genetic diversity and inbreeding are often connected (Spielman et al., 2004), which can inform the efficacy of breeding conservation and offer insights into the sustainable development and utilization of horse populations. This dramatic decline in the global horse population has severely affected the genetic diversity and number of purebred native breeds. The decreased genetic diversity of domestic horses is primarily due to purebred selection practices, which increase deleterious mutations in domestic horse genomes (Orlando, 2020).
China is known for having a diverse and abundant population of horses, with a rich genetic variety (Ling et al., 2011). Furthermore, Chinese horse breeds include the Northern China (NC), Qinghai-Tibetan (QT), and Southwestern (SW) populations (Liu et al., 2019). The Xinjiang Uygur Autonomous Region (XUAR), a prominent horse-producing area in China, has the largest horse population in the country, reaching 1,107,000 horses as of 2022. This region is known for four native (Kazakh, Yanqi, Kyrgyz, Balikun) and two cultivated (Yili and Yiwu) horse breeds, mainly bred for meat. China is the largest global horse meat producer (FAO statistics, 2022), producing 159,068 tons of horse meat, most of which is produced in Xinjiang. Many horses are underutilized and freely grazed for breeding purposes, with only a small number used for meat or riding (Including leisure, competitions, celebrations, etc.). However, the demand for sports events and leisure tourism has changed the use of native horse breeds, with some regions crossbreeding native horses with Thoroughbred and Arabian breeds to achieve better competition results. This practice enhances the genetic diversity and productivity of cultivated horse breeds but significantly threatens the genetic purity of native breeds. Thus, there is a risk of extinction for native horse breeds with small population sizes due to unorganized selection and the introduction of hybrids.
Sequence analysis of mtDNA from eastern Chinese and European horse populations revealed a higher frequency of haplogroup F and a lower frequency of haplogroup D in eastern Chinese populations (Mcgahern et al., 2006). In contrast, European populations exhibited the opposite trend, suggesting a form of genetic isolation and differentiation between these two populations (Mcgahern et al., 2006). This finding was further supported by the mtDNA data from ancient horses in China dating back to 2,000–4,000 years ago (Cai et al., 2009).
Xinjiang, situated in Central Asia, the transitional region between eastern China and Europe, The ancient stone culture in Ili River basin and Boltala River basin in Xinjiang may be related to the early domestication activities (Annie and Dexin, 2020). Xinjiang Kazakh, Yanqi, and Barkun horses exhibit higher Y chromosome diversity than other horse breeds in China, possibly due to the expansive grasslands, traditional animal husbandry practices, and minimal human interference in Xinjiang (Han et al., 2015). Research on the genetic diversity and structure of Xinjiang horse breeds is limited, with most studies focusing on microsatellite markers. However, Whole Genome Sequencing (WGS) has successfully revealed the genetic diversity and structure of various horse breeds, such as the Thoroughbred (Tozaki et al., 2021), Mongolian (Huang et al., 2014), Lichuan, Kazakh (Zhang et al., 2018), and Mavari horses (Jun et al., 2014). Nonetheless, no comprehensive genome-wide study has been used to analyze the genetic information of horse breeds in Xinjiang. There is no molecular data for all the horse breeds in this region.
Therefore, this study investigated the population genetic structure of native horse breeds in Xinjiang. The study utilized WGS technology to gather genetic data from seven native horse breeds (taxa) in Xinjiang, China. The native horse breeds included Kazakh (Altay and Yili region), Yanqi, Kyrgyz, Balikun, and other unexplored breeds, such as the Kunlun (Hotan region, Kunlun Mountains) and Tashkurgan (Tashkurgan Tajik Autonomous County), These horse breeds are divided by the Tianshan Mountains, North of the Tianshan Mountains are the northern horses, which include the Kazakh and Balikun breeds, while the remaining horse breeds are distributed south of the Tianshan Mountains as southern horses. Genetic variations within and between these breeds were analyzed and compared with data from the horse breed sequences in the National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/). The study provides the first collection of genetic information from all Xinjiang native horse breeds. These findings will enhance our understanding of the population genetics of native horse breeds and shed light on the history of horse domestication in Xinjiang.
2 MATERIALS AND METHODS
2.1 Sample collection
In this study, 70 peripheral blood samples were collected from seven horse breeds (taxa), with samples taken from ten horses of each breed. The breeds included Kazakh horse in the Altay region (KA), Kazakh horse in the Yili region (KY), Yanqi (YQ), Balikun (BLK), Kyrgyz (KE), Tashkurgan (TX), and Kunlun (KL) horse. To ensure that the samples were representative of the genetic variation of the breeds, all the samples were collected from different remote pastures, with at least two separate populations sampled for each breed, and we used information provided by the owners to avoid the collection of samples from related horses and exclude parents or progeny. Herders were consulted for background information on the selection and breeding history of their native breeds. Subsequently, the genealogical records were reviewed to ensure that the samples were unrelated but representative of the genetic variation of the breeds. Blood samples from 70 domestic horses were used for Genomic DNA extraction using the TaKaRa MiniBEST Whole Blood Genomic DNA Extraction Kit (Takara Bio, Beijing, China).
The genomic DNA concentration was determined using an INVITROGEN Qubit 4.0 Fluorometer (Invitrogen Inc, CA, United States), and its integrity was assessed through agarose gel electrophoresis. Subsequently, the samples were subjected to whole-genome resequencing on the Illumina HiSeqX Ten platform (Illumina Inc, CA, United States) based on the quality of the whole-genome DNA extraction (the nucleic acid concentrations were all greater than 80 ng/μL, with OD260/280 ratios ranging from 1.8 to 2.0). The genomic DNA samples were stored at −80 °C in a freezer. In addition, sequencing data of 32 horses (including nine domestic horse breeds and one wild horse population) were downloaded from the NCBI (Supplementary Table S1). The ten horse breeds included the Akhal-Teke (n = 1), Arabian (n = 2), Curly (n = 2), Debao pony (n = 5), Mongolian (n = 4), Sorraia (n = 1), Thoroughbred (n = 4), Tibetan (n = 5), Yakut (n = 6), and Przewalski (n = 2).
2.2 Detection and quality control of the SNP sites
The whole genome sequences of 70 domestic horse samples yielded approximately 1831.95 GB of raw data (average of 26 GB/sample), with the Q20 and Q30 base quality exceeding 95.00% and 90.00%, respectively (Supplementary Table S1). After removing low-quality reads, each horse genome had a 10-fold coverage. The high-quality sequencing data from 70 horses, along with the sequencing data of 32 horses obtained from NCBI, were mapped to the domestic horse reference genome, EquCab3.0 (Kalbfleisch et al., 2018), Using the Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2010). Eight samples with low matching rates were removed (Supplementary Table S2). Next, SAMtools v1.3 (Li et al., 2009) and GATK v3.1 (DePristo et al., 2011) were utilized to detect SNPs at variant sites. The 62 equine SNP datasets were merged with the 32 SNP datasets from the NCBI using PLINK v1.9 (Chang et al., 2015). Subsequently, SNP loci with <90% detection rates, a <0.05 minor allele frequency (MAF), and >1% missing genotype rates were filtered out using pi-hat in PLINK v1.9 (Chang et al., 2015), and the pedigree relationships between samples were evaluated (Petersen et al., 2013). The filter parameters were as follows: (1) Fisher test of strand bias (FS) ≤ 60; (2) HaplotypeScore ≤13.0; (3) Mapping Quality (MQ) ≥ 40; (4) Quality Depth (QD) ≥ 2; (5) ReadPosRankSum ≥ −8.0; and (6) MQRankSum > −12.5 (Supplementary Table S3; Supplementary Figures S1–S3). Linkage disequilibrium (LD) was evaluated by calculating r2 at the genome-wide intervals of 25 SNPs with a window size of 100 SNPs. The dataset was further filtered to remove samples with low quantities, retaining others representative of the five horse breeds, using a 0.2 threshold for judging LD (--indep-pairwise 100 25 0.2).
2.3 Analysis of genetic diversity and population structure
The expected heterozygosity (He) and coefficient of inbreeding (Fis) were calculated using the PLINK software. The He for each population was performed through the Hardy-Weinberg test, while Fis was calculated per sample using the number of pure heterozygotes. Furthermore, the principal component analysis (PCA) and population differentiation index (Fst) were determined using smartPCA in the EIGENSOFT software v.4.2 (Price et al., 2006), The proportion of missing data to be ≤10% was allowed. Phylogenetic trees were constructed using the neighbor-joining (NJ) method in FastTree v.2.1.11 (Price et al., 2009), The resulting tree file was subsequently uploaded to the iTol v5 (Letunic and Bork, 2021) for visualization purposes. Phylogenetic networks were visualized in R version 3.5.1. The genetic structure of the population was assessed with the fastSTRUCTURE package (Raj et al., 2014). The results of the fastSTRUCTURE analysis were then visualized using the DISTRUCT software (Rosenberg et al., 2002).
3 RESULTS
The four main Xinjiang horse breeds, developed in diverse environmental conditions, exhibited distinct characteristics (Figure 1). The 94 samples that met the specified quality control criteria generated 26,539,717 SNPs (Supplementary Table S4).
[image: Map displaying the geographical distribution of different horse breeds, labeled KA, KY, KE, TX, KL, YQ, and BLK, across a specific region. Each breed is shown in a photograph connected to a corresponding location on the map by lines. The map includes latitude and longitude markers.]FIGURE 1 | Map of the native horse breed distribution in Xinjiang. KA, Kazakh horse in the Altay region; KY, Kazakh horse in the Yili region; YQ, Yanqi horse; BLK, Balikun horse; KE, Kyrgyz horse; TX, Tashkurgan horse; KL, Kunlun horse.3.1 Analysis of genetic diversity
Table 1 shows that the heterozygosity values across all the breeds and populations were notably similar. The observed heterozygosity (Obs Het) reflects the actual proportion of heterozygosity within the population, The genetic diversity of the Xinjiang native horse breeds was found to be relatively low compared to Mongolian and Tibetan horse (Supplementary Table S5). Furthermore, the Obs Het for all the populations was lower than the expected heterozygosity (Exp Het), suggesting the presence of varying degrees of inbreeding or genetic drift. Additionally, Fisher’s inbreeding coefficient (Fis) provided further insights into the degree of inbreeding; notably, the YQ population exhibited the highest Fis value (0.1844). The Fis results for the Xinjiang native horse breeds indicated generally low levels of inbreeding, with the lowest coefficients observed in the KE and KL populations, likely attributed to differences in stallion distributions within these groups. The polymorphic information content (PIC/Pi) value of 0.2689 indicates that the KL population exhibits higher levels of polymorphism and more pronounced genetic differences among individuals. This elevated Pi value reflects a greater genetic diversity, which is crucial for the adaptation of the assessment population. Understanding this genetic diversity is significant for breeding strategies and overall population management.
TABLE 1 | Comparison of genetic diversity of Xinjiang horse breeds.	Breed/Population	Obs Het	Exp Het	Pi	Fis
	YQ	0.1940	0.2481	0.2632	0.1844
	BLK	0.2207	0.2541	0.2682	0.1336
	KY	0.2330	0.2543	0.2697	0.1013
	KE	0.2294	0.2486	0.2619	0.0915
	TX	0.2248	0.2472	0.2668	0.1061
	KL	0.2408	0.2536	0.2689	0.0781
	KA	0.2285	0.2490	0.2693	0.1026


The genetic differentiation index (Fst) between the horse groups demonstrates the genetic divergence among the different horse populations. The differentiation within the Xinjiang native horse breeds was relatively lower than that of the other breeds. The Fst values for the Xinjiang horse breeds did not surpass 0.01, indicating minimal differentiation among the samples. In contrast, the Arabian and Akhal-Teke horses exhibited higher differentiation from the remaining groups, with the highest Fst compared with the other horse breeds (Figure 2). Although Przewalski’s horses diverged from domestic horses approximately 40,000 years ago, their Fst values with domestic breeds were lower than expected (Figure 2). This pattern may reflect shared ancestral polymorphisms at conserved neutral loci, as captured by the SNP array. Additionally, demographic histories, such as bottlenecks during domestication, may have contributed to the homogenization of diversity at certain loci. This may be related to their breeding strategies. Both horse breeds have undergone long-term closed breeding and intensive selection to preserve their unique and exceptional traits, such as the endurance and elegance of Arabian horses, as well as the speed and endurance of Akhal-Teke horses. While these practices maintain the desired breeding characteristics, they also result in a decrease in genetic diversity and an increase in interpopulation differentiation.
[image: Heatmap showing genetic distances among horse breeds, labeled on the axes. Colors range from light pink to dark red, indicating increasing genetic similarity, with a gradient bar on the right from 0.1 to 0.5.]FIGURE 2 | Heatmap illustrating genetic differentiation among the horse breeds, with population differentiation (FST) values ranging from 0.1 to 0.5, indicated by a gradient from light to dark red.The Xinjiang native horse breeds had consistently lower LD Decay rates than the domestic native and foreign breeds (Figure 3), suggesting a higher genetic diversity than non-Chinese breeds retrieved from NCBI, with BLK having the highest value in this study. In contrast, Thoroughbreds, having undergone extensive and systematic selective breeding and controlled reproduction to meet specific performance requirements, especially for racing, had the lowest genetic diversity.
[image: Line graph showing linkage disequilibrium (LD) decay with r-squared on the y-axis and distance in kilobases (Kb) on the x-axis. Multiple colored lines represent different breeds or populations, labeled to the right, showing varying rates of LD decay.]FIGURE 3 | Linkage disequilibrium decay of the studied horse breeds.3.2 Genetic structure
The PCA revealed limited differentiation among the Xinjiang native horse breeds. These native breeds clustered together with considerable overlap (Figure 4). The results of the Principal Component Analysis (PCA) presented in Figure 4A demonstrate a distinct separation between the native horse breeds of China and the foreign horse breeds, utilizing Przewalski’s horse as the reference population. Among them, the Yakut, Throughbred, Sorraia, and Curly horse breeds were obviously different from Xinjiang native horse breeds, while Throughbred and Yakut showing notable separation from the other horse breeds. Figure 4B shows the distribution of these Xinjiang native horse breeds on principal component PC1 and PC2, with different colored ellipses indicating the 95% confidence intervals for each population. The size and shape of these ellipses reflect the genetic differences between the populations. Among them, the confidence ellipses of KA and KE were smaller and overlapping, indicating that they had a similar genetic background. The Xinjiang native horse breeds are closest in genetic background to Mongolian and Tibetan horses, possibly due to the historical exchanges between these breeds. Furthermore, the PCA results revealed significant genetic differentiation between the Central and Western Asian breeds, including Arabian and Akhal-Teke horses, corroborating the Fst results.
[image: Principal component analysis (PCA) plot showing genetic variation among horse breeds. Two main components, PC1 and PC2, explain 17.2% and 13.3% of variance, respectively. Various horse breeds are plotted with distinct symbols and colors, such as Akhal-Teke, Przewalski, and Thoroughbred. Each breed is clustered, demonstrating genetic diversity. Inset focuses on the clustering of certain breeds, like Debao and Mongolian. Legend provides symbol and color codes for each breed.]FIGURE 4 | Principal component analysis of the first two components of (a) all the horse samples and (b) all the Xinjiang native horses. The ellipses indicate the boundaries for the points corresponding to the breeds, with a confidence level of 0.95. The positions of the breed labels correspond to the central points.The native horses of Xinjiang were classified into a single large taxon, indicating that these horses are largely distinct from non-Xinjiang breeds. This pattern is more likely due to the long-term independent evolutionary history of Xinjiang horses, which has led to the accumulation of unique mutations over generations, rather than solely due to unique genetic characteristics during early domestication. (Figure 5A). Moreover, the Debao horse, which exhibits a unique evolutionary pattern characterized by a distinct genetic lineage, stands out from other breeds. Meanwhile, the remaining Chinese and foreign horse breeds can be broadly categorized into two major genetic clusters. Subsequent classification identified two main groups in southern and northern Xinjiang, highlighting a significant genetic distance between the breeds in these regions and reflecting the geographic distance (Figure 5B). The Debao pony exhibited the most primitive branching, while the Mongolian and Tibetan horses displayed a closer phylogenetic relationship. In Xinjiang, KA, KY, YQ, and BLK were closely related to the northern Xinjiang breeds, whereas KE and TX were more closely related to the southern Xinjiang breeds, which is consistent with the findings of the PCA results.
[image: Phylogenetic trees depicting horse breeds. (a) Horizontal tree with branches labeled by breed, including Przewalski, Akhal-Teke, and Mongolian. Symbols indicate global, China, and Xinjiang ranges. (b) Circular tree displays similar breed relationships and range indicators around the perimeter.]FIGURE 5 | The Neighbor-Joining tree of the horse breeds. The bootstrap value was close to 100%. (a) Breeds, (b) individuals.The population structure was analyzed for all the horse samples, considering a K value between 2 and 10, representing the ancestral groups (Figure 6). At a value of K = 4, we could distinguish the separate groups of horse breeds in China and horse breeds in other countries (Supplementary Figure S4). The population genetic structure analysis revealed that at K = 6, the Xinjiang native horse breeds were distinct. The analysis of K = 10 reveals that the genetic structure of the native horse breed in Xinjiang is highly complex. This complexity arises not only from random genetic drift or mutations but is more likely attributable to prolonged gene flow.
[image: Bar chart displaying genetic structure analysis across different populations, labeled at the bottom. Each of the five rows, marked K=2 to K=10, shows varying color proportions representing genetic clusters. The colors and their proportions change across each population group, illustrating genetic diversity and composition.]FIGURE 6 | Comparative structure of the horse populations with the number of ancestral clusters (K) ranging from 2 to 10. Each bar represents an individual for each breed.4 DISCUSSION
This study included seven Xinjiang native (KY, YQ, BLK, KE, TX, and KL), three Chinese (Mongolian, Tibetan, and Debao pony), and six foreign (Thoroughbred, Curly, Yakut, Sorraia, Arabian, and Akhal-Teke) horse breeds. Xinjiang native horse breeds exhibited typical genetic characteristics that low inbreeding levels, aligning with the traditional open breeding practices on Xinjiang grasslands. This result suggests strong resistance to inbreeding within this population. Furthermore, Thoroughbreds had the lowest genetic diversity due to varying degrees of bottleneck effects caused by closed artificial selection and high levels of inbreeding (Khanshour et al., 2013; Cosgrove et al., 2020). Ethnic groups in Xinjiang prefer specific horse coat colors; for example, Kazakhs favor dark colors (red bay and black bay), and Tajiks favor light color horses. Therefore, selections are based on coat color preferences. Hence, Thoroughbred and Arabian crosses with desired coat colors were introduced. Interestingly, the genetic structure, which was influenced by coat color preferences, has maintained the genetic diversity of the horse breeds (Druml et al., 2009).
Xinjiang horse breeds are genetically distinct from other Chinese, Central Asian, and European horse breeds, This differentiation is likely primarily driven by the long-term independent evolutionary history following the divergence of these horse breeds from other populations. Additionally, other factors such as historical population bottleneck effects, genetic drift, special environmental adaptability, and targeted artificial selection for specific traits (Castaneda et al., 2019) may have further contributed to their genetic distinctiveness. Moreover, Xinjiang horse breeds have a relatively independent genetic structure and are more closely related to Tibetan and Mongolian horses. The genetic makeup of Xinjiang horse breeds, particularly Kazakh horses, aligns with previous research findings (Liu et al., 2019). Crossbreeding practices in Xinjiang involve using native horse breeds as dams and Arabian or Thoroughbred horses as sires to produce offspring with enhanced speed and endurance for competitive events. Thus, this study included all purebred native breeds, suggesting that other breeds were introduced in the past for crossbreeding to improve performance, albeit with challenges in tracing their pedigree and genealogical information due to insufficient records. This study, based on a genetic analysis of 32 horses from outside Xinjiang using genome-wide autosomal SNPs, revealed significant genetic distinctions, reflecting their geographic origin and breed history (Petersen et al., 2013). Conversely, studies on the Kazakh horse mtDNA indicated that native horse breeds in western China have multiple matrilineal origins and exchange genetic material with each other and other horse breeds during mobility (Zhang et al., 2012). The PCA and structural results from this study indicate that Kazakhstan possesses a complex genetic background, with both autosomal and mitochondrial DNA (Gemingguli et al., 2016) findings corroborating each other.
Historical interbreeding probably influenced horse breeds divergence. Archaeological data revealed significant gene flow between populations in the Pamir Plateau and Ferghana Valley, acting as a ‘transmitter’ for exchanges between eastern (Tarim Basin, China) and western (Bactria, Uzbekistan) populations (Hemphill and Mallory, 2004). Horse breeds in the Middle East are closely related to local horse breeds in Xinjiang and may be influenced by human activities. Future research should investigate the gene flow between these populations in conjunction with historical events.
In our analysis, we observed distinct genetic clusters among different horse breeds, which highlights the genetic differentiation between breeds. However, it is important to note that within each breed, there may exist multiple distinct subgroups with significant genetic differences. This intrabreed heterogeneity could be due to factors such as regional differences, selective breeding practices, or historical gene flow events. Genetic differentiation has been observed within various native horse breeds in Xinjiang, particularly in the Northern Xinjiang region. This differentiation is primarily attributed to the introduction of foreign germplasm for crossbreeding. Since herders often introduced Thoroughbreds for crossbreeding, this could seriously affect the purebred germplasm resources and reduce the genetic diversity of the native horse population in Xinjiang.
5 CONCLUSIONS
This study presents the first comprehensive analysis of whole genome sequences of Xinjiang native horse breeds, revealing the genetic diversity and structure of these breeds. Xinjiang native horse breeds exhibited higher genetic diversity, with evidence of gene exchange and similarities in the genetic backgrounds of the different groups. The genetic structure of the southern and northern border breeds differed. Additionally, Tashkurgan and Kunlun horses may represent new cryptic horse breeds. Phylogenetic analysis shows that Tashkurgan and Kunlun horses form a distinct clade separate from other Xinjiang breeds (see Figure 5). These horses also exhibit unique genetic signatures in their SNP profiles, indicating a degree of genetic isolation and differentiation. Further investigation is warranted to fully characterize these potential cryptic breeds. Our findings assessed genetic variability and inbreeding within these horse breeds, thereby laying a foundation for future horse breeding policies. They could inform the delineation of protected areas and breeding grounds to prevent large-scale inbreeding and hybridization and will provide a valuable reference for the conservation and utilization of native horse breeds in Xinjiang.
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Variant type SNP count Indel count
Intergenic | 12609201 1,782,495
Intronic 7053401 1062533
Exonic 135627 3,549
Downstream 119577 20132
UTRS sy 23552
Upstream | 13as 18491
UTRS 90819 14489
neRNA intronic 25381 3,850
Upstream or downstream 3822 655
neRNA exonic 2923 282
 Splicing 412 266
Exonic, splicing 16 2






OPS/images/fgene-15-1509177/fgene-15-1509177-t001.jpg
Clean reads number Clean bases number (G) Map rate (%) Effective depth

‘ MG 113,552,917 ‘ 17.03 99.30 647

‘ BM 143,757,312 ‘ 2156 98.73 8.14
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Joint reference Xinjiang Chinese All data All data-50
population Brown holstein

0.%(SE)  0e*(SE)  h*SE) 0.%(SE) 0c*(SE) h(SE)

485 485 0 Xinjiang 0.174 4043 0.042 0.18 4015 0043
Brown T T T T
(0.073) (0127)  (0017)  (0.079) 0131) | (0019)

785 485 300 Xinjiang 0.143 2721 0.05 0235 2687 0.081
Brown T
(0.073) (0.124)  (0045)  (0.204) 0271) | (0.065)

785 485 300 Chinese 0216 4,026 0.051 0.184 4029 0.044

Holstein T +
(0.077) (0.124)  (0018) | (0.089) 0131) | (0.021)

1,085 485 600 Xinjiang 0.159 2718 0.056 0.106 276 0037

Brown T +
(0.107) (0.18) 0037) | (0.113) 0.181) | (0.039)

1,085 485 600 Chinese 0213 4.033 0051 0234 399 0.056
Holstein
(0.802) (0.129) (0.019) (0.855) (0.127) (0.02)

1,385 485 900 Xinjiang 0177 268 0.062 0.125 2711 0.044
Brown T
(0.088) (0.133) (0.03) (0.083) 0.138) | (0.029)

1,385 485 900 Chinese 0.199 4.039 0.047 0232 3992 0.055
Holstein T
(0.073) 0123)  (0017)  (0.081) 0127) | (0.019)

1,685 485 1,200 Xinjiang 0.139 2891 0.046 0.134 2896 0045
Brown T
(0.039) (0112) | (0013) | (0.055) (0.114) | (0.018)

1,685 485 1,200 Chinese 0218 4.027 0052 02 401 0.048
Holstein
(0.058) 0123)  (0014) | (0.071) 0127) | (0017)

1985 485 1,500 Xinjiang 0.09 2.899 003 0918 289 0031
Brown T T T
(0.046) (0.101)  (0016) | (0.463) (0.104) | (0.016)

1985 485 1,500 Chinese 0226 4.021 0.054 0229 3988 0055
Holstein T
(0.078) (0.124)  (0018) | (0.077) 0.125) | (0.018)

2285 485 1800 Xinjiang 0058 2923 002 0074 2913 0025
Brown T
(0043) | (0095) | (0015) | (0.042) | (0091) | (0.014)

2285 485 1800 Chinese 0208 4.03 0.049 0201 4011 0.048
Holstein
(0.069) 0122)  (0016)  (0.089) (013) (0.021)

2,585 485 2,100 Xinjiang 0057 2.863 002 0.044 2868 0015

Brown T T T
(0.044) 0082)  (0015)  (0.032) (0.084) | (0011)

2585 485 2,100 Chinese 0218 4.024 0052 0.197 4014 0.047

Holstein
(0.082) 0129)  (0019)  (0.099) (0.133) | (0.023)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; A Il data-50" refers to the calculation results after excluding the phenotypic
it af tha 50 vildation intaells o, = addibve itic varines o = fasidtal Vi it < SRl on siatid e
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Joint reference population

485
785
1,085
1,385
1,685
1985
2,285

2,585

Xinjiang Brown

485
485
485
485
485
485
485

485

Chinese holstein

300

600

900
1,200
1,500

1800

2,100

Total population

0172

0272

0.196

0.142

0340

0245

0302

0205

bo
6682
27443
25215
25038

~12.308

~12.074

-14.355

-18.233

by
0171
0271
0201
0129
0312
0242
0201

0257

Validation population

0225

~0.041

0.087

0.04

~0.061

-0.083

~0.033

-0.147

~101.864

~36.453

-38312

~38.802

-64.426

72544

~71.878

-80.443

0056

0.027

-0.037

-0.064

-0.024

-0.13
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Joint reference population

Xinjiang Brown

Chinese holstein

Total population

Validation population

Ricesy  bo Ricesv  bo
185 185 0 0300 | -1492 | 029  -0.141 | -0776  -0083
785 185 300 0414 | 0332 | 0437 0035 | -2114 | 0038
1,085 485 600 0404 | 0236 | 0413 | 0138 | 2734 | 0137
1385 185 900 0374 | 0189 041 | -0065 | -3829  -006l
1685 185 1,200 0379 0271 | 038 0038 3699 0033
1985 185 1,500 0382 | 0227 | 0374 | -0132 | -4211  -0.01
2285 185 1800 0263 | 0303 | 0207 -0.149 | -421 | -0.192
2,585 485 2,100 0424 -0.253 0393 -0.03 -4.451 -0.032
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Breed Trait® umber Minimum Ma: Average SD

Xinjiang Brown 305dMY/kg 7515 814 8444 412649 140571 3407
MFY/kg 2,655 216 43155 168.53 6829 4052

MPY/kg 2,655 203 30272 14371 5142 3578

SCS 2,655 -205 1095 [ 498 216 4337

Chinese Holstein 305dMY/kg 89350 4001 15,000 1011668 2045.07 2021
MFY/kg 89350 8630 101921 398.52 11743 2947

MPY/kg 89,350 | 87.72 951.76 329.92 74.40 2255

sCs 89350 -365 9.65 [ 325 181 55.66

SCS: somatic cell score. SD: Standard deviation.
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Joint reference Xinjiang Chinese All data-50
population Brown holstein

h*(SE)  0.%(SE) 6.%(SE)  h*(SE)

485 485 0 Xinjiang 235810 | 925050 0204 237,340 | 931960 | 0203
Brown
(23428) | (19516) | (0018) = (23720) | (19687) = (0.018)

785 485 300 Xinjiang 395790 | 2495000 0137 605190 | 2378800 0203
Brown T
(256,700) | (292,170) ~ (0.081)  (236900) = (272,020) = (0.072)

785 485 300 Chinese 245370 | 923,400 021 245710 | 930,680 | 0209
Holstein T
(24660) | (19243) | (0019) = (24,693) | (19285) = (0.019)

1,085 485 600 Xinjiang 768210 | 2,324,100 0249 785140 | 2313700 0254
Brown
(205,040) | (181,580) = (0.057) = (192460) = (180370) | (0.054)

1,085 485 600 Chinese 246200 | 922,650 0211 246250 | 930,390 021
Holstein
(24449) | (18966) = (0019) = (24649) | (19962) = (0.019)

1,385 485 900 Xinjiang 635210 | 2316300 0216 544100 | 2,363,400 0188
Brown T T T
(125,820) | (129,040) ~ (0.038) = (122:830) = (136,000) = (0.039)

1,385 485 900 Chinese 243990 | 923970 0209 249,440 | 929320 | 0212
Holstein
(24038) | (19290) | (0018) = (24562) | (19,131) | (0.018)

1,685 485 1,200 Xinjiang 591430 | 2,562,300 0.188 523,940 | 2586200 0.169
Brown T
(130,800) | (123390) = (0037) = (75741) | (110240) = (0.023)

1,685 485 1,200 Chinese 243880 | 923950 | 0209 | 253520 926610 | 0215
Holstein i
(24708) | (19457) | (0019) | (23774) = (19612) | (0018)

1985 485 1,500 Xinjiang 610,630 | 2,556,100  0.193 582,790 | 2,571,100 0.185
Brown
(107.850) | (101,890) = (0.031) = (119430) = (105660) = (0.035)

1985 485 1,500 Chinese 242740 | 923,660 0209 246930 | 929,650 021
Holstein
(24064) | (19028) = (0018) = (24018) | (19202) = (0.018)

2285 485 1800 Xinjiang 629300 | 2,573,000 0.197 637,850 | 2,569,600 0.199
Brown
(97.901) | (92,596) | (0028) = (102810) | (94655) | (0.029)

2285 485 1800 Chinese 244750 | 923220 021 246,040 | 930,360 021
Holstein T T
(23787) | (18710) = (0018) = (25235) | (19941) = (0.019)

2585 485 2,100 Xinjiang | 654250 | 2513800 0207 | 642470 | 2520000 0204
Brown T
(91086) | (85262) | (0026) | (91676) | (83306) | (0.026)

2585 485 2,100 Chinese 242,120 | 924,250 0.208 247,120 929710 021
Holstein

(23562) | (19207) | (0018) = (25612) | (19792) = (0.019)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; “All data-50" refers to the calculation results after excluding the phenotypic
data of the 50 validation animals. o®, = additive genetic variance; o’ = residual variance; h°
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Joint reference Xinjiang Chinese All data-50
population Brown holstein

h*(SE)  0.%(SE) 6.%(SE)  h*(SE)

485 485 0 Xinjiang 211.01 28436 007 22503 28799 0073
Brown T T
(64.235) | (94.068) = (0021) = (67.683) | (97.71) | (0.022)

785 485 300 Xinjiang 260.07 28202 0.085 261.65 28605 0.084
Brown T
(7093) | (92423) | (0023) = (73.108) | (97.286) | (0.023)

785 485 300 Chinese 667.02 10,151 0.062 1,091 98702 01
Holstein T
(62876) | (10568) = (0056) = (663.79) | (10142) = (0.057)

1,085 485 600 Xinjiang 261.42 28217 0.085 260.63 28633 0.084

Brown T
(72708) | (92754) | (0023) = (68761) | (96963) & (0.022)

1,085 485 600 Chinese 1,248 99226 0.112 1594.4 9682.6 0.142
Holstein
(52217) | (70323) | (0045) = (544.89) | (678.09) | (0.046)

1,385 485 900 Xinjiang 2628 28194 0.086 25119 28654 0.081
Brown T
(66.884) | (93.427) = (0021) = (77.111) | (97509) | (0.024)

1,385 485 900 Chinese 10153 10,726 0.087 734.34 10921 0.064
Holstein T
(41444) | (55317) | (0034) = (51115) | (60L11) = (0.043)

1,685 485 1,200 Xinjiang 256.98 28215 0.084 263.17 28609 0.085
Brown T
(67.492) | (94.732)  (0022)  (80748) | (97.523) = (0.025)

1,685 485 1,200 Chinese 715.82 10,683 0.063 838.62 10,581 0.074
Holstein
(37283) | (497.08) | (0032) | (33932) = (467.88) | (0.029)

1985 485 1,500 Xinjiang 253.46 28204 0.083 249.42 28668 0.081
Brown T T
(58914) | (91339) | (0019) = (75035) | (96.106) | (0.024)

1985 485 1,500 Chinese 629.08 10,465 0057 785.9 10349 0071
Holstein T
(1784) | (41727)  (0028)  (285.16) | (399.72)  (0.025)

2285 485 1800 Xinjiang 26636 | 28189 0.087 24233 28717 | 0078
Brown T
(73755) | (97.11) | (0023) = (61402) | (94469) & (0.02)

2285 485 1800 Chinese 717.61 10,529 0.064 75432 10,503 0.068
Holstein
(23988) | (36006) | (0021) = (26609) | (364.18) | (0.024)

2,585 485 2,100 Xinjiang 223.39 28435 0073 1748 2917 0.057

Brown T T T I
(67122) | (91.748) | (0022) = (74579) | (10176) | (0.024)

2585 485 2,100 Chinese 1037.2 10,437 0.091 1139.2 10376 0.099

Holstein
(25692) | (33628) | (0022) = (24942) | (329.61) | (0.021)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; “All data-50" refers to the calculation results after excluding the phenotypic
data of the 50 validation animals. ¢, = additive genetic variance; 0% = residual variance; h? = heritability; SE, standard error.
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Joint reference Xinjiang Chinese All data-50
population Brown holstein

h*(SE)  0.%(SE) 6.%(SE)  h*(SE)

485 485 0 Xinjiang 23844 14294 0.143 246,05 1455.9 0.145
Brown t
(46431) | (48.997) | (0026) = (47902) | (50543) | (0.027)

785 485 300 Xinjiang 253.09 1423.1 0.151 267.32 1446.7 0.156
Brown T
(50485) | (49.704) | (0028) = (48616) | (48525) | (0.027)

785 485 300 Chinese 46333 39567 0.105 45138 39555 0.103
Holstein T T
(47727) | (464.24) ©.1) (3825) | (461.92) | (0.081)

1,085 485 600 Xinjiang 261.17 14194 0.156 264.41 1450.2 0.155
Brown
(48.804) | (47.058) = (0027) = (5141) | (49689) = (0.028)

1,085 485 600 Chinese 7867 39713 0.166 82805 | 39357 | 0174
Holstein T
(310.95) (308.68) (0.061) (280.6) (277.55) | (0.053)

1,385 485 900 Xinjiang 26473 14194 0158 265.12 14505 | 055
Brown T T T
(51675) | (48.283) | (0029) = (47.87) | (49.206) = (0.026)

1,385 485 900 Chinese 544.43 38864 0.123 593.77 3858.1 0.134
Holstein
(188.04) | (22202) | (0041) = (17204) | (20445) | (0.036)

1,685 485 1,200 Xinjiang 255.49 14237 0.153 265.08 1447.8 0.155
Brown T
(49.583) | (48.699) = (0028) = (50392) | (52497) & (0.028)

1,685 485 1,200 Chinese 57671 39584 0128 56076 | 39626 | 0124
Holstein :
(14064) | (17524) | (003) | (14943)  (18338) = (0.032)

1985 485 1,500 Xinjiang 257.41 14222 0.154 250.87 1457.3 0.147
Brown -
(48761) | (48203) = (0027) = (52614) | (52575) @ (0.029)

1985 485 1,500 Chinese 563.84 39809 0.125 576.8 3988.6 0.127
Holstein
(13603) | (15487) = (0029) = (11889) | (15555) | (0.025)

2285 485 1800 Xinjiang 249.04 14242 0.149 261.17 14514 0.153
Brown T
(48.875) | (48.052) = (0.028) | (48.144) (49.9) (0.026)

2285 485 1800 Chinese 653.65 39165 0.144 64501 39183 0.142
Holstein T T
(11542) | (13807) = (0024) = (12801) | (13872) | (0.027)

2,585 485 2,100 Xinjiang 246.36 1427.5 0.148 243.18 1458.6 0.143

Brown T
(41.863) | (47.265) | (0.024) | (52403) (51) (0.029)

2585 485 2,100 Chinese 711274 | 37956 0.158 717.43 37962 0.159
Holstein
(11826) | (12631) | (0025) = (11658) | (11939) | (0.024)

Note: “All data” refers to the calculation results without excluding the phenotypic data of the 50 validation animals; “All data-50" refers to the calculation results after excluding the phenotypic
data of the 50 validation animals. o®, = additive genetic variance; o’ = residual variance; h° = heritability; SE, standard error.
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Breed

Character name (unit)?

Xinjiang Brown Catle milk 305MY (kg) 2,000-1,3000
MEP(%) 2-7
MPP(%) 27
SCC(1,000/mL) 0-25,000
Chinese Holstein Cattle milk [ 305MY(kg) 4,000-15,000
MFP(%) 27
MPP(%) 27
SCC(1,000/mL) 0-25,000

MFP: milk fat percentage; MPP:

S vt pepsiniion S0 sams Gewll vaink:






OPS/images/fgene-15-1394636/fgene-15-1394636-t002.jpg
Phenotype animals Pedigree animals

‘ Xinjiang Brown Cattle 7,516 2207 l 16,795
‘ Chinese Holstein Cattle 93,717 48,464 ‘ 654,390

‘ Total 1,01,233 50,671 [ 671,185
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Joint reference g Xinjiang Brown cattle inese holstein cattle

485 485 0

785 485 300
1,085 485 600
1,385 485 900
1,685 485 1,200
1985 485 1,500
2,285 485 1800
2,585 485 2,100
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SNP

position

Domestic sheep

1 NEGR1 | ss1113654939 50204860 BONE_WT, BONEP, FA-C20:5, FA-C22:5, FATP, LMYP, MUSWT, and PUFA
1 USP25 | ss1116150477 152500264 BONE_WT, BONEP, FA-C20:5, FA-C22:5, FATP, FLYD, LMYP, MUSWT, and PUFA
ss1116154441 152601830
4 COPG2 | 551129997095 103086813 CVED_PRI
551129997769 103151963
4 NRCAM | 551129534548 55685078 CVFD_PRI
4 RELN 551129484817 50358993 CVED_PRI
551129485872 50458109
5 GALNTI0 | 551130834348 68288153 FA-CI6:1
7 RINI 551133283846 74925794 CVED_PRI, SL
9 ADGRB3 | 551134565186 5336181 LMA and MUSWT
551134567992 5535614
12 CAPN2 | 551137368707 29531925 BDENS, FATP, LMYP, and MY
12 SDCCAGS | ss1137447517 36847011 BDENS, FATP, LMYP, and MY
15 CADMI | 551139557872 28497013 FECGEN
17 HIPIR | 551141565009 61655059 BDENS and SCS
18 PML 551141994265 32479250 FA-C20:1, FATP, SL, and TESTWT
2 PTPRM | 51145103439 45903918 FATP, FATWT, HCWT, LMYP, MFY_180D, and MY
25 MTR s51145839414 9173663 CVFD_PRI, MFDIAM, MFPER, SL, TESTWT, and UYC
2 DLC1 551146742924 25957009 MUSWT, Stature, UDDATT, and WORMCT
551146743820 26043393
551146744870
Wild sheep
1 KCNJI0 | ss1115230121 117944910 BDENS, BELUMBS3, BONE_WT, FA-C20:5, FA-C22:5, FATP, FECGEN, LMYP, MDLUMB3, MUSWT, and
PUFA
1 MGST3 | ss1115375784 125162941 BDENS, BELUMBS3, BONE_WT, FA-C20:5, FA-C22:5, FATP, FECGEN, LMYP, MDLUMB3, MUSWT, and
PUFA
2 ACOl | ss1121421351 109766460 FA-CI18:3, FA-C20:4, FA-C20:5, FA-C22:5, HOWT, LATRICH_2, MFPER, and SCS
551121422525 109804281
2 GALNTL6 | ss1121533683 116265153 FA-C18:3, FA-C20:4, FA-C20:5, FA-C22:5, HCWT, LATRICH_2, MFPER, and NFEC
551121534742 116350674
551121534985 116362603
551121536161 116417246
551121537352 116465257
ss1121537767 116500683
551121538473 116534114
551121540364 116594826
ss1121541584 116635922
551121544347 116763390
551121548053 116898149
551121548153 116905792
551121548799 116953479
551121549287 116992107
551121549759 117072252
551121554393 117115355
ss1121568385 117485350
551121570596 117573048
ss1121571444 117612053
551121573654 117702396
551121577773 117736662
551121580557 117849339
2 ZNF395 | ss1158590803 111016299 FA-C183, FA-C204, FA-C20:5, FA-C22:5, HCWT, LATRICH_2, MFPER, and SCS
3 AKS 551124538240 4201867 HFEC and SL
3 TSC1 551124537252 4132992 HEEC and SL
5 PLINS | ss1130359135 18089207 FA-C16:1
9 SPAGI  ss1135395144 84948639 HCWT, LMA, MFY_180D, and MUSWT
551135395539 84978362
1 NF1 551209682579 44753284 HCWT, JAWL, and LATRICH_2
551209684264 44896884
12 PRDMI6 551137575478 53644681 FATP and LMYP
551137575655 53663779
13 RALGAPA2 | 551138263148 41284446 MUSWT and SAOS
ss1138263481 41314389
551138264060 41371630
551138264441 41394956
ss1138264932 41434517
551138265074 41443275
551138265616 41483549
18 ACAN | 551218825229 17861995 FA-C20:1, MY, SL, and TESTWT
19 GADLI | ss1219489564 5622653 ASREP and DRESSING

AMDG, age at maximum daily gain; ADG, average daily gain; BELUMBS3, back fat a third lumbar; BW, body weight; BDENS, bone density; BONE_W'T, carcass bone weight ; BONEP, carcass
bone percentage; FATP, carcass fat percentage; DRESSING, dressing percentage; FATWT, carcass fat weight ; FECGEN, fecal egg count; FCURY, fiber curvature; FLYD, flecce yield; HFEC,
Haemonchus contortus FEC; HO, horns; HCWT, hot carcass weight; IGA, immunoglobulin A level; IGG, immunoglobulin G level; IOA, inherited ovine arthrogryposis; INTFAT, internal fat
amount; JAWL, jaw length; LMYP, lean meat yield percentage; LMA, longissimus muscle area; MFEDIAM, mean fiber diameter; FA-C20:4, meat arachidonic acid content; FA-CI8:1, meat cis-
vaccenic acid content; FA-C22:5, meat docosapentaenoic acid content; FA-C20:5, meat eicosapentaenoic acid content; FA-C20:1, meat gadoleic acid content; FA-C18:2, meat linoleic acid
content; FA-C18:3, meat linolenicacid content; FA-C14:0, meat myristic acid content; FA-C18:1, meat oleicacid content; FA-C16:0, meat palmitic acid content; FA-C16:1, meat palmitoleic acid
content; PUFA, meat polyunsaturated fatty acid content; FA-C14:0, meat stearic acid content; MCARPL, metacarpal length; MFPER, milk fat percentage; MFY_180D, milk fat yield; MLACT,
milk lactose yield; MPUFA, milk polyunsaturated fatty acid content; PP, milk protein percentage; PY, milk protein yield; MYPERS, milk yield persistency; MY, milk yield; MDLUMB3, muscle
depth at third lumbar; MUSWT, muscle weight in carcass; NFEC, Nematodirus FEC; CVED_PRI, primary fiber diameter coefficient of variance; RLEGS, rear leg set; ASREP, reproductive
seasonality; SAOS, Salmonella Abortusovis susceptibility; SCS, somatic cell score; SL, staple length; Stature: stature; SCFA, subcutaneous fat area; SCET, subcutaneous fat thickness; TESTWT,
testes weight; TOTBONE, total bone; LATRICH 2, Trichastrongylus adult and larva count; TFEC_1, Trichostrongylus colubriformis FEC; UDDATT, udder attachment; UYC, useful yield
st WOBMOT: e aomit:






OPS/images/fgene-15-1414717/fgene-15-1414717-t001.jpg
Category

Wild sheep

cc Cytosol 0006 ZNF395, RALGAPA2, COPBI, RAPIGDSI, UAPI, ELP3, CIORF72,
PRDMI6, UBRS, SPAGI, NEK1, TAFS, ACO1, RGS22, DCAF13, SH3GLI,
and PLINS

BP Positive regulation of GTPase activity 0007 RALGAPA2, RAPIGDSI, NF1, and C9ORF72

cc Presynapse 0024 KCNJ10, C9ORF72, and SH3GLI

KEGG Nucleotide metabolism 0.028 UCK2, ENTPDG, and AKS

cc Glutamatergic synapse 0.037 NAPB, ACAN, RNFI194, and SH3GL1

BP Regulation of phosphoprotein phosphatase activity 0.046 TIPRL and TSCI

KEGG Metabolic pathways 0050 UCK2, PAH, MGST3, PRDMI16, ENTPDG6, GADLI, ACOI, UAPI,
GALNTLG, and AK8

Domestic sheep

ME Calcium-dependent cysteine-type endopeptidase activity 0004 | CAPNI3, CAPNS, and CAPN2

cc Cytoplasm 0.005 TENM4, KCNIP1, RALGAPAL, SPATS2, RANBP17, MTR, CHD3,
ARHGAP44, LOC101121185, RELN, XPOT, ELMOL, ARHGEF3, CAPN2,
BBOFI, CPNE2, SDCCAGS, EIFAG1, and TRIM67

cc Golgi membrane 0022 GALNTI4, LOCI01112819, RTN1, COPG2, and GALNTIO

BP Activation of cysteine-type endopeptidase activity involved in 0023 | DLCIL, HIPIR and PML

apoptotic process

KEGG Other types of O-glycan biosynthesis 0024 GALNT14, GXYLTI, and GALNTIO

BP O-glycan processing 0036 GXYLTI and GALNTI0

ME SH3 domain binding 0038 ELMOI, HIPIR, and HCLSI

BP Negative regulation of protein ubiquitination involved in 0042 HFE and PML

ubiquitin-dependent protein catabolic process

BP Negative regulation of angiogenesis 0046 ADGRB3, PTPRM, and PML

ME GTPase activator activity 0048 ARHGAP44, LOCI01109993, RALGAPAL, and DLCI

KEGG Cell adhesion molecules 0049 CADMI, NEGRI, PTPRM, and NRCAM

ME SUMO binding 0050 USP25 and PML

CC, cellular component, BP, biological process, MF, molecular function.
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Haplotype frequencies were analyzed using PHASE, v2.1, and association tests were performed with PLINK v1.9.
Different uppercase letters indicate extremely significant difference (P < 0.01), same letters or not marked indicate no significant difference (P > 0.05) (Han et al., 2023a).
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Number of male Ejaculate Sperm motility Sperm concentration Defective sperm

goats(i volumes (mL) rate (%) (10%/mL) rate (%)

Spring 2 101 £ 0.11 SL12+322 2153 £7.29 1342 £2.92
Summer 20 088 +0.17 8073 + 359 1659 + 8.18 1434 £ 2.67
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Number of lambing female Number of Weaning lamb Lamb weaning survival

goats (n) lambs (n) number (n) rate (%)
Single 4 43 43 100.00
‘ Double | 476 952 950 | 99.79
‘ Triple 1364 4,092 3871 94.60
LQuadruple | 2 168 124 | 7381
‘ Quintuple 5 I 2 [ 15 60.00
‘ Towl | 1930 5,280 [ 5003 | 9475
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Female Number of estrus Number of delivery Number of lambs Number of weaned

goats (n) goats (n) female goats (n) born (n) lambs (n)

January 1242 165 152 433 421
February 1,233 | 144 187 537 442
March 1,238 130 205 565 426
April 1,267 | 143 196 462 468
May 1,241 167 I 174 | 488 457
june | 1,302 | 168 [ 151 [ 435 454
July 1,271 191 133 361 421
August 1,236 | 166 121 302 386
September 1,265 205 136 [ 385 320
October 1,283 | 21 | 154 | 443 371
November 1,303 219 149 402 413
December 1,242 | 191 [ 172 467 424
Towl | - | 2,113 ' 1930 5,280 | 5003

The data are the sum of 2 years, the number of female goats was the statistics at the end of last month, and the number of total female goats was average of 2 years.
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Joint reference population

Xinjiang Brown

Chinese holstein

Total population

Validation population

Ricesy  bo Ricesv  bo
185 185 0 0280 | 223 | 0277 | 0203 | -1654 0136
785 185 300 0465 | -0.307 | 0468 -0066 | -4338 = -0.048
1,085 485 600 0444 0185 | 0458 | 0158 | -5416 0116
1,385 185 900 0421 017 | o018 004 5773 | 0032
1685 185 1,200 0386 028 | 0356 -0.091 | 6293 0079
1985 185 1,500 0399 | 0243 | 0401 = -0259 | -6967 -0213
2285 185 1800 0397 | -0313 | 0504  -0.165 | -59 -0l
2585 185 2,100 0371 | -0234 | 03 0222 | 6578 0176
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Joint reference population  Xinjiang Brown  Chinese holstein Total population Validation population

RPesv  bo RPesy bo
185 185 0 0215 oo | 0249 004 0007 | 0025
785 185 | 300 0255 001 | 0295 o1 | -ooss | -0223
1085 485 600 0234 0008 0232 0002 | -0071 | 0002
1,385 185 900 0221 0007 0207 0062 | -0084 | 0075
1685 485 1,200 0448 0002 0502 04 0084 -0501
1985 185 | 1,500 0248 0006 0255  -0117 | -0089 & 0178
2285 | 185 1800 0254 0002 029 0005 | 0073 | 0006
2,585 485 | 2,100 0.190 0.003 0239 -0.093 [ -0.089 -0.138
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