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Editorial on the Research Topic 


New molecular pathways in thyroid biology: role of coding and noncoding genes in thyroid pathophysiology, volume II


In Volume II of the Research Topic “New molecular pathways in thyroid cancer and pathophysiology: Role of coding and noncoding genes,” we continued to explore recent advances in the understanding of thyroid biology, especially those involved in thyroid oncogenesis and progression.

Thyroid cancer is often a curable disease detected predominantly as papillary thyroid cancer (PTC), the most common variant: it is classified as a well-differentiated tumor (DTC) that maintains a certain similarity to a normal thyroid gland, mainly the ability to concentrate iodine. However, a small fraction of PTC cases may exhibit more aggressive behavior and an enhanced probability of recurrence, often resulting in poor outcomes. In this context, Liu et al. investigated how the molecular genetic background of DTC could help predict the risk of recurrence and reported that high-risk DTC often exhibits late-hit genetic alteration. Moreover, Liu et al. analyzed the differential expression of high- and low-risk dedifferentiation PTC and found that, besides the thyroid differentiation score (TDS), the signatures of 17 differentially expressed genes (DEGs) were associated with dedifferentiation and that the complement pathway was a key component, with CD55 being overactivated in the high-risk group and tall-cell PTC.

In the process of cancer progression, metastasis dissemination is an indicator of recurrence and poor prognosis, as tumor cells escape from primary sites and acquire more migratory and invasive characteristics. Hu et al. investigated the differential expression of metastatic papillary microcarcinoma by RNAseq and identified the increase in thrombospondin 4 (THBS4) as a potential new biomarker for predicting lymph node metastasis dissemination, which correlates with the presence of PDGFRA+ inflammatory cancer-associated fibroblasts in the tumor. Additionally, Wang et al. showed PMAIP1/NOXA is a new player in follicular thyroid cancer (FTC) progression and metastasis by inducing the transcription factor FOSL3 via the Wnt signaling pathway and contributing to cell migration and invasion of FTC.

Using an extensive strategy irrespective of genetic background or variant, Zou et al. investigated a common intersection in the transcriptome among different variants of metastatic thyroid cancer derived from transgenic mouse models and found a signature that points to immune cell microenvironment modulation. In this environment, the metastatic cells produce more inflammatory cytokines and chemokines, such as IL6 and IL6R, and express the immunomodulatory PDL1. Additionally, Ma et al. investigated the impact of Hashimoto thyroiditis (HT) on the PTC microenvironment using single-cell RNA sequencing analysis and identified a tumor microenvironment where immune and stromal cells are different from non-HT, creating a TSH-inhibiting environment for PTC growth.

Meanwhile, Li et al. investigated the expression of genes related to PANoptosis, a new type of cell death that combines key features of pyroptosis, apoptosis, and necroptosis, and identified the signatures of eight key genes, including the tumor necrosis factor receptor superfamily (TNFRSF) and PMAIP1 cited previously, linking inflammatory cell death to immune microenvironment dysregulation in thyroid cancer.

To identify new vulnerabilities for thyroid cancer cells, Ma et al. bring new aspects of thyroid cancer biology linked to the deregulation of circular RNAs (circRNAs), a class of noncoding RNAs with a covalent continuous closed loop. CircRNAs may act as competing endogenous RNAs (CeRNAs) that displace miRNA-mediated regulation at target genes, acting as miRNA sponges, thus modulating signaling pathways involved in tumorigenesis and cancer progression. Another interesting context of the role of noncoding RNA deregulation is shown by Chen et al., who reported a case report and literature review of thyroblastoma, a singular disease that presents distinctive primitive characteristics and shows prevalent mutations in DICER1, a key nuclease in the microRNA biogenesis pathway. Finally, correct diagnosis of thyroid cancer is essential for the assessment of prognosis and clinical practice. Wu et al. built a risk stratification model based on the FNA washout DNA copy number variation using low-coverage whole-genome sequencing to identify high-risk lymph node metastasis.

In sum, we hope the Research Topic “New molecular pathways in thyroid cancer and pathophysiology: Role of coding and noncoding genes, Volume II,” has contributed to accelerating the understanding of this thrilling field of thyroid biology and that further studies can bring fruitful applications for thyroid pathology treatment.
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Background

Papillary thyroid microcarcinoma (PTMC) is defined as a papillary carcinoma measuring ≤ 10 mm. The current management of PTMC has become more conservative; however, there are high-risk tumor features that can be revealed only postoperatively. For thyroid cancer, BRAF mutations and somatic copy number variation (CNV) are the most common genetic events. Molecular testing may contribute to clinical decision-making by molecular risk stratification, for example predicting lymph node (LN) metastasis. Here, we build a risk stratification model based on molecular profiling of thyroid fine needle aspiration (FNA) washout DNA (wDNA) for the differential diagnosis of thyroid nodules.



Methods

Fifty-eight patients were recruited, FNA wDNA samples were analyzed using CNV profiling through low-coverage whole genome sequencing (LC-WGS) and BRAF mutation was analyzed using quantitative PCR. FNA pathology was reported as a Bethesda System for Reporting Thyroid Cytopathology (BSRTC) score. Ultrasound examination produced a Thyroid Imaging Reporting and Data System (TIRADS) score.



Results

In total, 37 (63.8%) patients with a TIRADS score of 4A, 13 (22.4%) patients with a TIRADS score of 4B, and 8 (13.8%) patients with a TIRADS score of 4C were recruited after ultrasound examination. All patients underwent FNA with wDNA profiling. CNVs were identified in 17 (29.3%) patients. CNVs were frequent in patients with a BSRTC score of V or VI, including eight (47.1%) patients with a score of VI and five (29.4%) with a score of V, but not in patients with a score of III, II, or I (0%). BRAF mutation was not significantly correlated with BSRTC score. LN metastasis was found more frequently in CNV-positive (CNV+) than in CNV-negative (CNV–) patients (85.7% vs. 34.6%, odds ratio = 11.33, p = 0.002). In total, three molecular subtypes of thyroid nodules were identified in this study: 1) CNV+, 2) CNV– and BRAF positive (BRAF+), and 3) CNV– and BRAF negative (BRAF–). For the CNV+ subtype, 10 (83.3%) lesions with LN metastasis were found, including four (100%) small lesions (i.e. ≤ 5 mm). For the CNV– and BRAF+ nodules, LN metastases were detected in only seven (60.0%) larger tumors (i.e. > 5 mm). For CNV– and BRAF– tumors, LN metastasis was also frequently found in larger tumors only.



Conclusions

It is feasible to identify high-risk LN metastasis thyroid cancer from FNA washout samples preoperatively using wDNA CNV profiling using LC-WGS.





Keywords: thyroid cancer, genome sequencing, washout-DNA, chromosome instability, LC-WGS



Introduction

Thyroid cancer is the most common malignant tumor in the endocrine system and in head and neck tumors (1). In recent years, the incidence of thyroid cancer has increased rapidly throughout the world, and the percentage of papillary thyroid microcarcinoma (PTMC) has presented the most growth and the fastest increase, but its mortality rate has remain stable (2). PTMC is defined by the WHO as papillary carcinoma of the thyroid measuring ≤ 10 mm (3). Most PTMCs are indolent and rarely develop into clinically significant thyroid cancer, and some are even asymptomatic for life; however, a small proportion of PTMCs are associated with highly aggressive features, and local invasion, lymph node (LN) metastasis, or distant metastases may occur at an early stage (4). Currently, treatment of PTMC can be controversial, focusing mainly on the necessity and scope of surgery. In accordance with guidelines issued by the American Thyroid Association in 2015, patients with low-risk PTMC are recommended to choose active surveillance (AS) rather than surgical treatment (5). The consensus statement on PTMC (2016) formulated by the Chinese Association of Thyroid Oncology (CATO) recommended that the need for surgical treatment of PTMC should be based on a preoperative risk assessment. For patients with low levels of psychological stress and no obvious risk factors (e.g. LN metastasis, high-risk molecular subtypes, family history, radiation exposure history, pathological high-risk subtypes), timely follow-up can replace surgery (6). However, the description of high-risk molecular subtypes in the statement remains unclear.

Fine needle aspiration (FNA) guided by ultrasonography has been used to obtain samples of thyroid neoplasms to prepare cytology smears for several decades (7, 8). FNA is the most accurate examination method for preoperative diagnosis of thyroid cancer and has been routinely used in clinical practice (9). However, by comparison with histopathology, about 10%–40% of thyroid cancer remains indeterminate using FNA (10). In the past 5–10 years, as the understanding of the molecular mechanisms underlying thyroid cancer has increased, several biomarkers have been developed for the diagnosis of thyroid cancer, including RET/PTC, RAS, and BRAF mutations (11). For example, since the early 2000s the BRAF gene mutation has been widely used as a hot diagnostic and prognostic marker for thyroid cancer in clinical practice, and the BRAF mutation test has been shown to improve diagnostic sensitivity to thyroid cancer (12). However, the BRAFV600E mutation occurs in only 50%–70% of papillary thyroid carcinomas (PTCs), and BRAF mutations can distinguish between only benign neoplasm and malignant thyroid tumors at present, but there is a lack of evidence supporting the correlation between the BRAF mutation and the malignancy of thyroid cancer (13). In addition, most of the studies involved in the current literature used postoperatively histological specimens for gene testing, which could not provide appropriate guidance for the surgical management of patients.

Chromosomal instability (CIN), which was first proposed by Boveri nearly a century ago, refers to changes in chromosome number and structural aberrations caused by errors in chromosome separation in tumor cells during mitosis and was considered a hallmark of cancer (14). CIN is prevalent in various tumor types and is a manifestation of heterogeneity within tumors. In addition, CIN has been associated with metastasis, drug resistance, and poor prognosis in a wide range of cancers (15). Studies have shown that CIN is also common in thyroid cancer, including chromosomal rearrangement, copy number variations, and focal amplifications. Recent studies have shown that different types of thyroid cancer have chromosome copy number abnormalities, manifested as loss of heterozygosity (LOH), and chromosome 9p, 13p, and 22q LOH frequently occurs in thyroid tumor tissues, accounting for approximately 40% of cases (16). Patients with poorly differentiated thyroid cancer mostly have chromosomal abnormalities and loss of chromosome 9 copy number, and the 2-year survival rate is< 30% (17). In recent years, next-generation sequencing and analysis methods have greatly promoted the identification and cataloging of somatic cell copy number variations (CNVs), providing new possibilities to better detect dynamic changes of CIN (18). Scheinin et al. developed a low-coverage whole genome sequencing (LC-WGS) assay, which is a simple, economical, and reliable CNV identification technique (19).

The present study investigated the incidence of CIN in FNA washout samples from thyroid nodules. In addition, we investigated the significance of CIN in washout samples for the diagnosis of thyroid carcinoma.



Methods


Patient characteristics and ethics statement

A cohort study was conducted involving 58 patients with thyroid nodules (Table 1), with the approval of an ethics committee (approval number 2021-K006) and the informed consent of all patients. Informed consent was obtained from every patient prior to clinical trial participation. All patients underwent fine needle aspiration biopsy (FNAB) sampling at admission to identify aberrations and cytology of the chromosomes.

Table 1 | Patient characteristics.


[image: Table listing various clinical and pathological parameters with their subtypes, frequencies, and percentages. Parameters include gender, age, CNV, BRAFV600E washout and tissue, clinical pathology, lymph node status, TIRADS, thyroid nodule size, BSRTC, multi-foci presence, tumor size, and ETE. Percentages indicate the distribution for each subtype, such as 81% female, 51.7% age over 45, 29.3% positive CNV, and 63.8% with TIRADS 4a.]


DNA extraction

The washout samples were centrifuged at a g-force of 300g for 10 min, and the washout DNA (wDNA) was isolated using a QIAGEN (Hilden, Germany) circulating nucleic acid kit.



Low-coverage whole genome sequencing

LC-WGS was carried out as previously described (20). Libraries were prepared using the KAPA HyperPrep Kit (Roche, Basil, Switzerland) with custom adapters [Integrated DNA Technologies (IDT) and Broad Institute], starting with 3–20 ng of cell-free DNA input (median 5 ng), or approximately 1,000–7,000 haploid genome equivalents, for low-pass whole genome sequencing. Up to 22 libraries were pooled and sequenced using 150-bp pair-end runs over 1 × lane on a HiSeq X Ten (Illumina Inc., San Diego, CA, USA). Segment copy numbers were derived using a customized workflow ultrasensitive chromosomal aneuploidy detector (UCAD). The sample was excluded if the median absolute deviation of copy ratios (log2 ratio) between adjacent bins, genome-wide, was 0.38, suggesting poor-quality sequence data.



BRAFV600E amplification refractory mutation system assay

Analysis of the BRAFV600E mutation was performed using an amplification refractory mutation system, that is, using a BRAF Gene V600E Diagnostic kit (AmoyDx, Xiamen, China) on a real-time PCR system in accordance with the manufacturer’s instructions.



Statistical analyses and data visualization

The wDNA was isolated and sequenced using a HiSeq X Ten. At least 10 paired-end reads were collected per sample. The sequences were then aligned to the human reference genome hg19. The genomic coverage and depth were calculated using the Samtools software package (20). The average coverage was calculated for each 200k bin. Data were normalized by z-score transformation using the following formula:

[image: Coverage normalized equals coverage raw minus mean coverage controls raw divided by standard deviation of coverage controls raw, labeled as Formula 1.] 

Significant genomic breakpoints and CNVs were identified using the circula binary segmentation algorithm in the R package “DNACopy” (21). A p-value of< 0.05 was considered statistically significant. The chi-squared test was used to analyze categorical variables. All statistical analyses were performed by SPSS software (version 17.0). The proportional trend test was used to analyze the correlation between positive UCAD screening and clinicopathological parameters. Data were presented as mean and standard deviations, median and quartile ranges, and hazard ratios or odds ratios (ORs) with 95% CIs. Missing data were deleted from the analysis. All analyses were performed using R software, version 3.4.3. The anonymized data and the R code used for statistical analysis can be provided on request.




Results


Patient characteristics

At the time of manuscript preparation, 58 patients with potentially malignant tumors according to an ultrasound examination Thyroid Imaging Reporting and Data System (TIRADS) score of 4 (i.e. 4A, 4B, 4C), and who had a clinician’s recommendation for and whom had consented to FNAB, were recruited. Among the 58 patients, 47 (81.0%) were women and 11 (19.0%) were men; 37 (63.8%) had a TIRADS score of 4A, 13 (22.4%) a TIRADS score of 4B, and eight (13.8%) a TIRADS score of 4C. The numbers of patients with thyroid nodule sizes measuring < 5 mm, 5 mm–10 mm, and > 10 mm were five (8.6%), 31 (53.4%), and 22 (37.9%), respectively. The specific malignant indications of recruited patients evaluated by ultrasound as shown in sTable 1, including hypoechogenicity, irregular margins, calcifications and taller-than-wider shape. Furthermore, 11 (19.0%) patients with multiple lesions were identified. The tumor size was also measured in patients who underwent surgery. The STARD (Standards for the Reporting of Diagnostic Accuracy Studies) flow diagram is shown in Figure 1.

[image: Flowchart showing the patient recruitment and analysis process. Fifty-eight patients underwent ultrasound examinations, categorized by TIRADS 4. They received fine-needle aspiration biopsies (FNAB), with DNA washout analyzed for LC-WGS/BRAF mutations. Results: 17 CNV positive (3 undetermined, 14 PTC); 22 CNV negative/BARF positive (2 benign, 20 PTC); 19 CNV positive/BRAF negative (6 PTC, 13 benign).]
Figure 1 | The STARD flowchart for participant recruitment.



Cytology reports of fine needle aspirations

All patients were further investigated using fine needle investigations. Fifteen (25.9%) patients were reported as having a Bethesda System for Reporting Thyroid Cytopathology (BSRTC) score of VI, 19 (32.8%) patients with a BSRTC score of V, and six (10.3%) patients with a BSRTC score of III. The remaining 18 (31.0%) patients were reported as having a BSRTC score of I/II (Table 1).



Pathological reports

As shown in Table 2, 40 patients underwent surgical treatment, including all 15 (100%) patients who had a BSRTC score of VI, 17 out of the 19 (89.5%) patients who had a BSRTC score of V, and three out of the six (50%) patients who had a BSRTC score of III (Table 2). All patients were confirmed with malignancy after pathological examinations. Five out of the 18 (27.8%) patients who had a BSRTC score of I/II also underwent surgical treatment. In addition, three out of 40 (7.5%) patients were confirmed with extrathyroidal extension (ETE): two patients with a BSRTC score of VI and one patient with a BSRTC score of III.

Table 2 | Pathology findings for different BSRTC score patient groups.


[image: Table comparing clinical pathology and no surgery cases. PTC shows 40 cases (69.0%). For BSRTRC categories: VI has 15 clinical, 0 no surgery; V has 17 clinical, 2 no surgery; III has 3 clinical, 3 no surgery; II/I has 5 clinical, 18 no surgery.]


Washout cells showed high-consistency BRAFV600E mutations status with matched tissue

As shown in Table 3, of the 54 samples with wDNA and tissue DNA matching available, high levels of consistency of BRAF mutations were found. The FNA washout predicted 31 out of 34 (91.2%) BRAF mutations. Furthermore, wDNA revealed one additional BRAF mutation. The overall consistency between washout and matched tissue was 93.1%.

Table 3 | Comparison between washout and matched tumor tissues.


[image: Table showing mutation counts and percentages for BRAF^V600E. Tissue results: mutated 31, wild type 3, with 91.2% percentage. Washout results: mutated 1, wild type 23, with 95.8% percentage. Overall percentage is 93.1%.]


Washout cells showed copy number variations

Chromosomal aberrations were frequently identified on chromosomes 22 and 17. Chr22q deletions were present in 11 (19.0%) samples. Chromosome 17 gains were identified in three (5.2%) samples. In patients who underwent surgery, all patients with deletion of chr22q were diagnosed with PTC. All chromosome 17 gains were among patients with a BSRTC score of II. In patients with chromosome 17 gains, gains continued to be observed during the follow-up period. No pathological examinations were reported.

Frequent CNVs were found in patients with a higher BSRTC score, including eight (53.3%) patients with a score of VI and five (26.3%) patients with a score of V. Fewer chromosomal copy number changes were identified in patients with a score of III (0/6 = 0%) or I/II (3/18 = 16.7%). The results indicate that chromosomal instabilities may be associated with tumor aggressiveness (Figure 2).

[image: Table displaying data on gender, age, TIRADS, BSRTRC, BRAF V600E, and UCAD results. The gender row includes male and female markers. Age ranges from 26 to 72. TIRADS values are primarily 4A and 4B. BSRTRC varies, with frequent VI and V categories. BRAF V600E shows positive and negative results. UCAD displays a mix of numerical values and "ne" entries.]
Figure 2 | Overview of genetics changes and patient characterizations.



The adding of washout copy number variations profiling increased detection sensitivity

As shown in Table 4, BRAFV600E mutations were found in 55.2% and 58.0% of the samples in our dataset and The Cancer Genome Atlas (TCGA) dataset, respectively. Somatic copy number alterations (SCNAs) were found in 29.3% and 16.1% samples in our dataset and of the TCGA PTC dataset, respectively. The addition of SCNA increases the detection positive rate to 62.1% and 65.1% for our dataset and the TGCA PTC dataset, respectively.

Table 4 | The addition of washout copy number profiling increases cancer detection sensitivity.


[image: Table comparing event frequencies between "This study" and "TCGA" groups. For "This study," BRAF^V600E or SCNA occurs at 62.1%, BRAF^V600E at 55.2%, Washout SCNA at 29.3%. In "TCGA," BRAF^V600E or SCNA occurs at 65.1%, BRAF^V600E at 58.0%, Washout SCNA at 16.1%.]


Variations in copy number and tumor size correlated with lymph node metastasis in papillary thyroid carcinoma

It is difficult to determine preoperative LN metastasis of PTC in clinical practice. As shown in Table 5, we found that the CNV was statistically correlated with LN metastasis [p = 0.002, OR = 11.33 (95% CI 2.07 to 62.11]). The tumor size was also correlated with LN metastasis [p = 0.026, OR = 4.72 (95% CI 1.15 to 19.41]). However, there was no significant correlation between the BRAF mutation, ETE, and LN metastasis [p = 0.689, OR = 1.6 (95% CI 0.31 to 8.30) and p = 0.614, OR = 1.90 (95% CI 0.16 to 22.75), respectively].

Table 5 | The correlation between CNV, BRAF and tumor size with LN metastasis of PTC.


[image: Table showing the distribution of CNV, BRAF mutation, size, and ETE across N0 and N1 stages with corresponding total counts, odds ratios, and p-values. Key findings include a significant association of CNV+ and larger size with lymph node status, indicated by p-values of 0.002 and 0.026, respectively. ETE and BRAF mutation show no significant association. Abbreviations: CNV, copy number variation; ETE, extrathyroidal extension.]
The receiver operating characteristic curves were plotted to identify the diagnostic value of the three variables to predict LN metastases. As shown in Figure 3, CNV gave the best performance for the prediction of LN metastasis. The order of these three variables to predict LN metastasis was CNV followed by tumor size followed by BRAF. The area under the curve (AUC) of CNV was 0.733 (95% CI 0.574 to 0.892), which was higher than that of tumor size (AUC 0.668, 95% CI 0.496 to 0.840) and BRAF (AUC 0.534, 95% CI 0.352 to 0.715) for all patients In addition, as shown in Table 6, the prediction performance is significantly higher than that of BRAF (p=0.015).

[image: ROC curve showing sensitivity versus 1-specificity for three variables: CNV (red), BRAF (green), and Size (blue). Areas under the curve (AUC) are 0.733 for CNV, 0.534 for BRAF, and 0.668 for Size. P-values are 0.012, 0.715, and 0.07, respectively. A reference line is dashed gray.]
Figure 3 | Genomic classifier to predict lymph node metastasis risk. ROC of CNV, BRAF, and tumor size of lymph node prediction in all surgical patients (n = 40). ROC, receiver operating characteristic; AUC, area under curve.

Table 6 | CNV, BRAF, and tumor size in predicting lymph node metastasis.


[image: Table comparing diagnostic values for CNV, BRAF, and Size. CNV: AUC 0.733, TN 17, TP 12, FN 9, FP 2, PPV 85.7%, NPV 65.3%, Sensitivity 57.1%, Specificity 89.5%, Accuracy 72.5%. BRAF: AUC 0.534, TN 4, TP 18, FN 3, FP 15, PPV 54.5%, NPV 57.1%, Sensitivity 85.7%, Specificity 21.1%, Accuracy 55%. Size: AUC 0.668, TN 10, TP 17, FN 4, FP 9, PPV 65.4%, NPV 71.4%, Sensitivity 81%, Specificity 52.6%, Accuracy 67.5%. CNV vs. BRAF, p=0.015.]
A binary logistic regression model was established to evaluate the effects of CNV, BRAF mutation, and tumor size on LN metastasis in patients with PTC. As shown in Table 7, the final logistic model was statistically significant. The model could correctly classify 72.5% of the subjects. Sensitivity and specificity were 57.1% and 89.5%, respectively. The positive predictive value and negative predictive value were 85.7% and 65.4%, respectively. Among the three independent variables included in the model, CNV and tumor size were statistically significant, and their ORs were 14.122 (95% CI 2.099 to 95.35) and 6.624 (95% CI 1.088 to 36.073), respectively.

Table 7 | Binary logistic regression model for LN metastasis in PTC.


[image: Binary logistic regression model table for LN metastasis prediction. The observed N stage shows 9 for N1 and 17 for N0, with a correct prediction rate of 89.5% for N1 and 57.1% for N0, resulting in an overall accuracy of 72.5%. The variables CNV and Size have coefficients (B) of 2.648 and 1.835, respectively, with significant p-values. The constant has a B of -1.908.]


Variations in copy number correlated with lymph node metastasis in papillary thyroid microcarcinoma

We further classified PTC into three molecular subtypes based on the mutation of CNV and BRAF: 1) CNV positive (CNV+), 2) CNV negative (CNV–) and BRAF positive (BRAF+), and 3) CNV– and BRAF negative (BRAF–).

As shown in Table 8, for PTMC with a tumor size< 5 mm, LN metastasis was identified in four (100%) CNV+ patients but was not identified in CNV– patients (OR > 10, p = 0.001). For PTMC with a tumor size > 5 mm, LN metastasis was found in eight (80.0%) CNV+ patients and in seven (63.6%) CNV– and BRAF+ patients (OR 2.283, p = 0.635).

In summary, copy number variations and a tumor size > 5 mm could predict high-risk PTC with LN metastasis risk, whereas BRAF mutation showed no prediction value for LN metastases.




Discussion

Thyroid nodules have become a common clinical problem, and differentiated thyroid cancer is becoming more and more prevalent (5). The differential diagnosis of thyroid nodules and the risk stratification of malignancy require multidisciplinary expertise, including local ultrasound practice and specific FNA cytology (22). Even in this multidisciplinary setting, some of the cytopathological results of FNA are still undetermined as benign or malignant (23). However, there is growing evidence that this limitation can be overcome by using molecular diagnostic methods through comprehensive genomic analysis (11). There is, however, no suitable biomarker to indicate the malignant degree of thyroid cancer and so it is of great clinical significance to find biomarkers with high specificity and sensitivity to establish a rapid, economic and reliable detection technology.

Molecular diagnosis of FNA is an important complement to FNA cytology; it can significantly reduce unnecessary surgery and help to better determine whether or not surgery is required for thyroid nodules in patients with uncertain FNA cytology. For example, the greatest benefit has come from the use of BRAF mutations in the diagnosis of malignancies, as BRAF mutations are highly specific for malignancies when detected using well-validated techniques (24). However, more than 10% of thyroid cancers are wild-type BRAF, and these tumors may be more aggressive, as they have been reported to harbor chromosomal aberrations (25).

In this study, 58 thyroid FNA biopsy samples were analyzed using LC-WGS, and chromosomal changes and BRAFV600E mutations were identified. We found a coincidence rate of 93.1% between BRAF mutations detected in wDNA using this technique and the results of routine clinical tests. Furthermore, we found that an additional three (5.1%) patients were identified as wild-type BRAF in routine tests, but BRAFV600E mutations were identified using LC-WGS profiling. Combination genetic testing can improve the detection rate of BRAF mutations.

The treatment of low-risk PMTC (T1aN0M0) has become a major clinical problem in recent years. Although many AS clinical trials for low-risk PTMC have reported favorable outcomes, not all PTMCs are suitable for AS (26). According to the current AS guidelines for PTMC, indications include the presence of LN metastases or distant metastases, aggressive subtypes, and suspected invasion of important structures in the neck (recurrent laryngeal nerve or trachea). Tumors located near these structures should be treated immediately with surgery. Among these tumors, cervical LN metastasis is a risk factor for an increased rate of recurrence in patients with PTMC (27). There are many factors for central LN metastasis of PTMC, including age, tumor diameter, and thyroid capsule invasion (28). Potential central LN metastases have been found to occur in the early stage of PTMC, especially in the central region (29). Central LN dissection may increase the risk of recurrent laryngeal nerve and parathyroid gland injury, and these complications are often the main factors in medical disputes (30, 31). Furthermore, this discomfort can have a huge impact on the patient’s subsequent quality of life and mental health. Hence, a correct preoperative evaluation is important in deciding whether or not to perform prophylactic central LN dissection (32). So far, there is no effective biomarker for the preoperative evaluation of LN metastases.

In this study, we determined that CNV was significantly associated with LN metastasis in PTC, but BRAF was not, especially for PTMC ≤ 5 mm. As shown in Table 8, LN metastases were confirmed after surgery in all four patients with positive CNV. Among these patients, a patient with a TIRADS score of 4B and a BSRTC score of II who did not receive timely surgical intervention was, on subsequent surgery, confirmed to have PTMC with LN metastasis. Among CNV– patients, none underwent surgery or developed LN metastasis. In addition, we followed up two patients who were CNV– and BRAF+ without surgery for 14 and 18 months, respectively, and found no abnormalities. These findings suggest that patients with PTMC< 5 mm are at a higher risk of LN metastasis if CNV is positive, whereas CNV– patients belong to a low-risk subtype and AS can be used instead of surgery.

Table 8 | Association of three molecular subtypes with LN metastasis of PTC.


[image: Table displaying lymph node (LN) sizes associated with CNV+ and BRAF+ genetic statuses. Columns represent CNV+, CNV- and BRAF+, CNV- and BRAF-, including odds ratios (OR) with confidence intervals (CI) and p-values. Categories of LN sizes are ≤ 5 mm, > 5 mm, and all sizes. Specific numerical data and statistical values are included, emphasizing significant findings with p-values such as 0.001, 0.006, and 0.003.]
Furthermore, in this study, tumor size was found to be a risk factor for LN metastasis in PTC (OR = 4.72). For PTMC ≤ 5 mm, the incidence of LN metastasis was 28.6%. In the absence of CNV+, there is no evidence of LN metastasis. However, in our study, when the tumor size was > 5 mm, the proportion of LN metastasis increased significantly (65.3%). LN metastasis tended to occur independently of CNV (Table 5). These results were consistent with previous reports on the relationship between tumor size and LN metastasis. For example, in a retrospective cohort study, central LN metastases were found to be associated with tumor size (> 5 mm) but not with the BRAF mutation (33).

Genomic instability, generally considered to be a promoter of solid tumor progression, usually occurs in three forms: microsatellite instability, aneuploidy, or intrachromosome instability (34). Although much is known about the underlying mechanisms of microsatellite instability and aneuploidy, less is known about the molecular basis of intrachromosome instability (35). In fact, it now appears that intrachromosomal instability can be subdivided into several independent forms, each of which may have its own molecular origin, which is evident when different analytical methods are used (36). In this study, we clarified features of genomic instabilities described in thyroid carcinomas. As shown in Figure 2, 14 out of 58 (24.1%) cases presented chromosome instability detected by LC-WGS, including chromosome 22q loss, chromosome 17p loss, and chromosome 1q gain. Most patients with positive CIN underwent surgery and were confirmed as having thyroid cancer by postoperative pathology.

Frequent allelic deletions of, for example, chromosome 22q could suggest genetic areas to be evaluated to detect the presence of suppressor genes associated with follicular thyroid cancer (37). The consistency of the Ch22q deletion pattern in PTC suggests that this genetic lesion may represent a distinct subgroup of these tumors. The consistency of the chromosome 22q deletion pattern in PTC suggests that the genetic lesion may represent a unique subtype of these tumors.

In this context, it should be noted that a large number of Chr22q deletions are associated with tumor aggressiveness and a distinct subtype of malignant follicular carcinoma and, therefore, may indicate a precursor lesion. However, we were unable to associate any clinical or pathological parameters with specific CNV populations, other than the statistically significant association between chromosome 22q deletion groups and young age. It is worth noting that these two wild-type BRAF PTCs support the notion that PTCs can broadly belong to follicular or papillary neoplasms, each with different molecular and clinical characteristics.

Taken together, in the study, LC-WGS detected CNV and BRAF mutation status of FNA wDNA. We found that the detection of the CNV and BRAF mutation increased the sensitivity of FNA. In addition, CNV has a significant correlation with LN metastasis of PTC, especially for PTMC< 5 mm, which is of clinical significance. We also found that tumor size was a risk factor for LN metastasis. Therefore, we conclude that CNV and a larger tumor (i.e. > 5 mm) are risk factors for PTC LN metastases. CNV detection can be used for the preoperative risk stratification of PTC.
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Papillary thyroid cancer (PTC) is the most common type of thyroid malignancy, and its global incidence has been gradually increasing. For advanced PTC, the mortality rates are also increasing yearly. Despite advancements in diagnosis and treatment, some advanced PTC exhibit aggressive behaviors, leading to a poor prognosis. CircRNAs are a class of non-coding RNAs characterized by a covalently closed loop structure. Their stability and abundance have positioned them as promising diagnostic and prognostic biomarkers. Numerous studies have identified dysregulated circRNAs in PTC tissues and cell lines, suggesting their involvement in PTC initiation and progression. In this review, we provide an overview of circRNAs and systematically discuss their role in PTC. CircRNAs affect cancer progression by regulating the Wnt/β-catenin, PI3K/AKT, MAPK pathways, and others. Furthermore, circRNAs have been implicated in PTC metastasis and chemoresistance. We highlight their potential value as diagnostic markers, therapeutic targets, and prognostic indicators. In conclusion, circRNAs play a critical role in PTC, and dysregulated circRNAs influence multiple signaling pathways and cellular processes involved in tumorigenesis and metastasis. It represents a promising avenue for advancing the diagnosis, management, and treatment of PTC.
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1 Introduction

Thyroid cancer (TC) is the most common endocrine malignancy and accounts for nearly one-third of all malignant tumors of the head and neck. For individuals with advanced TC, new systemic treatments and management are being investigated (1). The global prevalence of TC has been gradually increasing, particularly among young adults and teenagers. The age-standardized incidence of TC is approximately three times higher in women (10.1 per 100,000) than in men (3.1 per 100,000) (2). According to the latest cancer statistics reports in 2022, the number of TC survivors has jumped to the third highest rate in women, and the high-risk age range is 30-45 years old (3). Based on the Adolescents and Young Adults (AYAs) 2020 statistics, the 15-29 age group has the highest incidence of TC (4). Furthermore, TC incidence rates also show significant differences across settings, such as more than a 15-fold difference in incidence rates among women in different regions of the world (2). There are three main histological types of TC, differentiated thyroid cancer (DTC), anaplastic thyroid cancer (ATC), and medullary thyroid cancer (MTC). DTC includes papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). PTC is the most common type of TC, accounting for nearly 85% of cases. Some aggressive PTC with local or distant metastasis, structural recurrence, and even progression to high-grade cancer can be life-threatening (5). The 5-year survival rate for patients with advanced PTC is only 59% (6). Recently, WHO has made significant adjustments to the classification of TC, highlighting differences in cellular origin, pathological features, molecular classification, and biological behavior into benign, low-risk, and malignant tumors, while also emphasizing the role of biomarkers in aiding diagnosis and determining prognosis (7).

Currently, sampling via ultrasound-guided fine-needle aspiration (FNA) is a commonly used diagnostic way for evaluating malignant thyroid nodules (8). Studies have shown that FNA reduces unnecessary thyroid surgery by 25%. Nonetheless, approximately 30% of thyroid nodules remain undiagnosed by pathology (6, 9), which even leads to misdiagnosis (9). In addition, the diagnostic value of FNA is relatively low for FTC (10). Unnecessary FNA can also add to the burden on the health care system and cause considerable anxiety for patients (11). Therefore, greater focus on accurate diagnosis, management, and treatment of TC is imperative. Understanding the underlying molecular mechanisms of TC can aid in the development of targeted and specialized treatments.

Circular RNAs (circRNAs) are a new class of non-coding RNA molecules and have been found to be widely expressed in various human cancers. Recently, they have emerged as a hot topic due to their potential role in carcinogenesis and tumor progression (12). Unlike linear RNA molecules, circRNAs are generated by head-to-tail splicing and form a closed-loop structure without 5’ to 3’ polarity and a polyadenylated tail. They are highly stable and resistant to degradation and play important regulatory roles in gene expression and other cellular processes (13–15). The study of circRNAs in PTC has been growing rapidly, and recent findings have shed light on their contribution to the development and progression of this disease (12–14). In this review, we give a brief description of circRNAs, then systematically discuss the role of circRNAs in PTC and their potential value in diagnosis, prognosis, and treatment.




2 Circular RNAs

CircRNAs were first discovered in the 1970s but were initially thought to be rare and non-functional byproducts of RNA splicing. It was not until the advent of high-throughput sequencing technologies in the early 2010s that circRNAs were found to be widespread and abundant in eukaryotic cells, including human cells. It has undergone rapid development in the past decade and has opened up new avenues for research into gene regulation, biological processes, and cellular signaling. They are mainly categorized according to their genomic origin and the way they are generated. Exonic circRNAs (ecircRNAs) are mainly derived from single or multiple exons, representing the majority of circRNAs (more than 80%). Intronic circRNAs (ciRNAs) contain only introns and are the most common transposons in the genome. Exon-intron circRNAs (EIciRNAs), which contain both exons and introns. In addition, a novel class of circRNAs, namely tRNA intronic circRNAs (tricRNAs), are formed by pre-tRNA splicing. Currently, most of the identified circRNAs belong to ecircRNA (16).

The massive number of circRNAs identified so far suggests that they may have complicated and diverse roles. To date, the functions of circRNAs that have been reported are diverse and include competing endogenous RNAs (ceRNAs) or miRNA sponges, interacting with RNA-binding proteins (RBPs), regulating the splicing or transcription of genes, translation into proteins or small peptides, epigenetic regulation, and modulating the stability of mRNAs (17). What’s more, studies have reported that circRNAs can function in gene regulation by competing with linear splicing (18). Ho et al. (19) found that heterogeneous nuclear ribonucleoprotein M (HNRNPM) can control circRNA biogenesis and thus promote solid tumor development. The most thorough research has focused on circRNAs acting as miRNA sponges. CDR1as, also known as ciRS-7, harbors more than 70 conserved binding sites, is highly expressed in human and mouse brains and was reported to function as a sponge for miR-7 (20). In addition, circITCH, a recently discovered circRNA, similarly acts as a miRNA sponge via miR-7 to promote osteosarcoma migration and invasion (21). All these findings above indicate that circRNAs could function as miRNA sponges to contribute to the regulation of cancer. For the RBPs mechanism, it has been shown that EWS RNA-binding protein 1 (EWSR1) promotes circNEIL3 biogenesis in gliomas (22). Research found that NOVA2 can act as a neural-enriched RBP to promote circRNA biogenesis in the mouse brain (23).

There is also high tumor specificity in the peptide encoded by circRNAs. For example, Zhang et al. found that SHPRH-146aa generated from circSHPRH exhibited tumor specificity, and this encoded peptide was abundantly expressed in the normal human brain and downregulated in 81% of glioblastomas. SHPRH-146aa was able to protect full-length SHPRH from DTL-induced ubiquitination. As a key tumor suppressor, SHPRH contributes to the inhibition of tumorigenesis and progression (24). CircRHOT1 was highly expressed in advanced hepatocellular carcinoma (HCC) tissues and inhibited HCC progression by recruiting TIP60 to initiate NR2F6 transcription. It was strongly associated with the prognosis of HCC (25). Currently, there are two main known modes of translation initiation for circRNAs, the internal ribosome entry site (IRES) and the N6-methyladenosine (m6A). m6A modification is one of the most common types of RNA modification in eukaryotes. It is widely involved in the regulation of biogenesis, splicing, translation, stability, and degradation of RNA. A recent study reviewed the functional crosstalk between m6A and circRNAs in cancer (26). Another mechanism has been proposed to activate the cap-independent pathway through the IRES, which is located in the 5′ UTR of mRNA. IRES initiates translation by directly recruiting ribosomes, an IRES-driven mechanism that has been explored in recent studies. Fan et al. (27) showed that certain short elements other than known IRES are sufficient to initiate circRNA translation. CircRNA-translated proteins also have certain biological roles. For example, during myogenesis, circZNF609 can undergo splice-dependent and cap non-dependent translation into proteins that specifically control myoblast proliferation (28).

In addition, the identification of differences in gene expression levels between cancer and control samples is a critical component of cancer biology research. Analyses involving multiple tumor cells and corresponding normal cells have found aberrant expression levels of circRNAs in different malignancies. A growing number of studies have shown that circRNAs are closely associated with the development of cancer and can be used as biomarkers (29–32). The main distinct advantage is their ability to be detected via RT-PCR of samples, as well as their great circulatory stability. Abnormal expression of circRNAs is correlated with tumor size, TNM stage, lymph node metastasis (LNM), and poor overall survival in TC (33). However, the relationship between PTC and circRNAs is still poorly understood. Those potential new roles of circRNAs need to be thoroughly investigated further.




3 CircRNAs in PTC

To date, a number of circRNAs have been found to be aberrantly expressed in PTC. They can regulate the progression of PTC through various aspects. However, the precise mechanisms by which circRNAs influence PTC development and progression remain unclear. Therefore, we summarize the dysregulated circRNAs in PTC reported in recent studies (Table 1). We can see most of the circRNAs are up-regulated in PTC. Moreover, they could act as miRNA sponges to carry out their functions. Some circRNAs have one or more miRNA binding sites that enable them to sequester miRNAs and further regulate the expression of their downstream target genes. illustrates the function of circRNAs in PTC. Further, we generalize the regulatory uniqueness of circRNAs in PTC in Figure 1.

Table 1 | Dysregulated circRNAs in PTC.
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Figure 1 | The regulatory uniqueness of circRNAs in PTC progression.



3.1 CircRNAs act as ceRNAs involved in PTC biological processes

Current research has found that circRNAs could act as ceRNAs to absorb miRNAs and participate in the regulation of PTC. CeRNA was first proposed by Pandolfi’s team in 2011 (83). They found that ceRNA molecules can compete to bind the same miRNAs through miRNA response elements (MREs) to regulate each other’s expression levels. It is known that miRNAs can cause gene silencing by binding to the 3’-UTR matched by mRNAs through the seed region, while ceRNA can regulate gene expression by competitively binding miRNAs.

According to multiple previous studies, some circRNAs could participate in one or more miRNA sponge pathways. For example, CircFN1 (hsa_circ_0058124) acts as an oncogenic driver that promotes PTC cell proliferation, tumor invasion, and metastasis. It could bind miR-218-5p to modulate the expression of GATAD2A, which plays an important role in transcriptional regulation. Likewise, it can bind to miR-940, which regulates the expression of MAPK1, an essential MAP kinase that integrates various biochemical signals to regulate cellular processes such as proliferation, differentiation, and transcriptional regulation (34). Moreover, circFN1 interacts with miR-370-3p to modify the expression of LMO4, which has the potential to function as an oncogene or a transcriptional regulator (35). Additionally, circFN1 promotes the progression of PTC by sponging miR-873-5p while restraining the malignancy of PTC cells by binding to FSTL1 (84).

Chu et al. (36) found that circRUNX1_005 (hsa_circ_0002360) promoted DDHD2 expression by sponging miR-296-3p. This gene encodes the protein phospholipase DDHD2, which is involved in membrane transport between the endoplasmic reticulum and the Golgi apparatus, thereby enhancing the proliferation, migration, and invasion of PTC cells. Similarly, silencing of circPSD3 (hsa_circ_0004458) significantly downregulated RAC1 expression by sponging miR-885-5p. It produces small plasma membrane-associated GTPases that bind to a variety of effector proteins to regulate cellular responses, thereby promoting PTC cell cycle arrest and apoptosis (42).

CircPVT1 has been reported to promote the expression of VEGFA to induce endothelial cell proliferation, promoting cell migration, inhibiting apoptosis, and inducing vascular permeabilization by sponging miR-195 (38), or by evaluating Bax/Bcl-2/PCNA to regulate apoptosis or proliferation of cells by sponging miR-126 (39). Similarly, circMMP2 (hsa_circ_0039411) (40, 41) regulates SOX4 expression by sponging miR-423-5p and translating a transcription factor protein. CircMMP2 also sponges miR-1179 to regulate the expression of ABCA9, transporting and translocating various molecules through extracellular and intracellular membranes. Moreover, it can bind miR-1205 to regulate the expression of MTA1, which is involved in transcription, migration, invasion, and glycolysis of PTC cells.

According to recent research, circLDLR (hsa_circ_0003892) functions as a sponge for miR-195-5p to regulate the catalytic lipid-mediated enzyme, lipase H (LIPH) (43). Moreover, circLDLR interacts with miR-637 to impact the expression of LMO4 and also interacts with miR-326 to regulate the expression of LASP1. LASP1 encodes for an actin-dependent signaling protein that binds to the actin cytoskeleton at the cell membrane’s extension to promote cell viability, migration, and invasion (44, 45). A novel oncogenic RNA, circBACH2, could be involved in the progression of PTC by acting as miR-139-5p sponge and then relieving suppression of the target LMO4 (64).

Furthermore, circPRKCI (hsa_circ_0067934) has been found to serve as a sponge for miR-1304 to modulate the expression of CXCR1, which encodes the receptor for IL8 (46). In addition, it interacts with miR-545-3p to modify the expression of SLC7A11 (47). This encoded protein has been recognized as the primary mediator of Kaposi’s sarcoma-associated herpes and is allowed to follow fusion and entry into cells. Also, circPRKCI acts as a sponge for miR-1301-3p to modulate the expression of HMGB1, which encodes a non-histone nuclear DNA-binding protein that regulates transcription and DNA organization (48). This protein is involved in various cellular processes, such as inflammation, cell differentiation, and cell migration.

Recently, studies reported that circNRIP1 could bind miR-195-5p and miR-653-5p to regulate the expression of PBX3, a transcription regulator critical for animal organ and neuronal development, as well as regulation by RNA polymerase II (49, 50). Additionally, circNRIP1 can sponge miR-541-5p, playing a role in the regulation of PKM2, a crucial glycolytic enzyme (51).

Another hotly studied circRNA, circKIAA1199 (hsa_circ_0000644) can sponge miR-1205, which regulates the expression of E2F3 (52). Notably, E2F3 is involved in the regulation of genes essential for cell cycle progression and is a crucial oncogene in several tumors. Also, circKIAA1199 has been reported to function as a sponge for miR-671-5p, which leads to the regulation of ANXA2 expression (85). ANXA2 is a member of the membrane-linked protein family and acts as an autocrine factor, promoting osteoclast formation and bone resorption.

Overall, increasing efforts have been made to explore the mechanisms by which circRNAs regulate PTC progression. Such findings provide new insights into the physiological and pathological processes of PTC.




3.2 CircRNAs involved in associated signaling pathways in PTC

CircRNAs have been shown to function as tumor suppressors or oncogenes by regulating gene expression and modulating signaling pathways. Multiple signaling pathways are involved in the development and progression of PTC, including PI3K/AKT, Wnt/β-catenin, MAPK/ERK, AMPK/mTOR, and others. Figure 2 demonstrates the involvement of circRNAs in relevant signaling pathways in PTC. These pathways are frequently dysregulated in PTC and play critical roles in regulating cell proliferation, migration, invasion, metastasis, apoptosis, angiogenesis, glycolysis, and EMT.
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Figure 2 | The involvement of circRNAs in relevant signaling pathways in PTC.



3.2.1 PI3K/AKT signaling pathway

The PI3K/AKT pathway is frequently activated in various human cancers, making it an attractive therapeutic target (86). It is frequently activated by mutations in genes such as PIK3CA, PTEN, and AKT. In PTC, activation of the PI3K/AKT pathway increases cell survival and resistance to apoptosis, as well as angiogenesis and migration. PI3Ks are divided into three classes and contain many lipid kinase enzymes. Receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), RAS, and Rho-GTPases all have the ability to activate Class IA PI3Ks. The downstream signaling events mediated by PIP3 result in cell growth, proliferation, autophagy, and apoptosis (87).

Several circRNAs have been found that regulate the PI3K/AKT pathway and induce PTC progression. For example, circNDST1 was reported to be significantly up-regulated in PTC. After knocking down circNDST1, the proliferation, migration, and invasion abilities of PTC cells were obviously suppressed. Meanwhile, it inhibited the activation of the PI3K/AKT pathway (53). The circSSU72/miR-451a/S1PR2 axis could also regulate PTC progression by the AKT pathway, which could serve as a novel therapeutic target in PTC (54). Moreover, circRAPGEF5 (hsa_circ_0079558) could activate the MET/AKT pathway via miR-26b-5p, which subsequently promoted the progression of PTC (55). CircUBAP2 (hsa_circ_0003141), an oncogenic molecule, is highly expressed in PTC tissues and cells. It may regulate PTC development through the PI3K/Akt pathway (56). Similarly, circ_0067934 was highly expressed in PTC. It was found to promote EMT and activate the PI3K/AKT pathway to facilitate the malignant behavior of PTC (88). In contrast, circ_100395 may play an anti-oncogenic role in PTC cells through the inhibition of the PI3K/AKT/mTOR pathway (82).




3.2.2 Wnt/β-catenin signaling pathway

The Wnt/β-catenin signaling pathway is a highly conserved signaling cascade that regulates cell proliferation, differentiation, and tissue homeostasis during embryonic development and in tissues. The pathway is activated by the binding of Wnt ligands to Frizzled (FZD) receptors and low-density lipoprotein receptor-related protein (LRP) co-receptors on the cell surface. It is transduced in cells via the β-catenin-dependent/canonical or β-catenin-independent/non-canonical pathways. It was reported that the abnormal activation of the Wnt/β-catenin signaling pathway is closely related to the progression of PTC. Moreover, dysregulation of the Wnt pathway is associated with the loss of tumor suppressor genes, such as APC and AXIN, and the activation of oncogenes, such as β-catenin and cyclin D1.

There are several circRNAs that have been reported to regulate the Wnt pathway in PTC (89). For instance, Chen et al. found that circNEK6 (hsa_circ_0088483) affects FDZ8 expression via the Wnt pathway. Its overexpression successfully enhanced the proliferation and invasion of PTC cells (90). Besides, it was reported that the Wnt/β-catenin signaling pathway was also significantly promoted by the overexpression of circPVT1 (38). Additionally, miR-370-3p was reported to regulate the Wnt pathway in a variety of cancers. Hsa_circ_0003141 was reported to regulate the Wnt pathway by miR-370-3p to play its role in PTC. Knockdown of hsa_circ_0003141 inhibited cell proliferation and invasion, while induced cell apoptosis of PTC (56). CTNNBIP1 is a β-catenin-interacting protein. CircRNA_102171 could exert a pro-carcinogenic role in PTC. It was found that circRNA_102171 could bind to CTNNBIP1, which in turn promoted the formation of the β-catenin/TCF complex and activated the Wnt/β-catenin pathway (57). Furthermore, FZD8 is reported as a Wnt receptor in the canonical Wnt signaling pathway that has been identified as a therapeutic target for cancer (91). MiR-345-5p, which was sponged by circPRS28 (hsa_circ_0049055), was a direct regulator of the functional gene FZD8 during PTC cell development (92). The relationship between circRPS28/miR-345-5p/FZD8 and the Wnt signaling pathway is left unexplored.




3.2.3 MAPK/ERK and AMPK signaling pathway

The MAPK pathway is a signal-transduction system. Its constitutive activation is crucial for the growth of PTC. Through critical proteins, such as receptor tyrosine kinases, MAPKs control crucial physiological processes involved in cell proliferation, differentiation, and development. Growth factor binding to a receptor tyrosine kinase receptor triggers the activation of downstream pathways. For example, Li C et al. (49) reported that up-regulation of circNRIP1 inverted the inhibitive function of miR-195-5p on the P38 MAPK pathway. The AMP-activated protein kinase (AMPK) is an energy-sensing protein that regulates cellular metabolism and maintains energy homeostasis. AMPK acts as a potential tumor suppressor since it is located at the entrance of a tumor suppression network that regulates cell growth and proliferation in stress responses. The AMPK pathway is activated by various stimuli that increase the cellular AMP/ATP ratio, such as nutrient deprivation, exercise, and hypoxia. It plays an important role in regulating tumor growth and metabolism, including in PTC. Activating AMPK may promote tumor survival and growth by maintaining AMPK activity and the ability to adapt to metabolic stress (93). CircUGGT2 (has_circ_0008274) deletion was found to impair the AMPK pathway by decreasing AMPK phosphorylation (p-AMPK) and promoting the mTOR pathway by increasing mTOR phosphorylation (p-mTOR) in TPC-1 cells. CircUGGT2 attenuation inhibited the AMPK/mTOR signaling pathway (58). Furthermore, studies have shown that AMPK activation can enhance the sensitivity of TC cells to chemotherapeutic agents, such as doxorubicin and cisplatin, suggesting that AMPK activation may be a promising therapeutic strategy for treatment.




3.2.4 Other signaling pathways

The NOTCH signaling pathway regulates cell differentiation and has been linked to several types of cancer, including PTC. It is frequently activated by mutations in genes, such as NOTCH1 and JAG1. The function of NOTCH1 in tumorigenesis has been extensively studied. In vitro studies have confirmed that overexpression of NOTCH1 was associated with resistance to cancer therapy. Research has identified that circAGTPBP1, as an oncogene, could regulate the NOTCH pathway through the miR-34a-5p/NOTCH1 axis and promote the progression of PTC (79). Besides, circFN1 was reported to promote PTC tumorigenesis and invasiveness through the NOTCH3 pathway. The knockdown of circFN1 significantly decreased cell viability, migration, and invasion. Furthermore, silencing circFN1 significantly suppressed cell migration (34). CircNRIP1 was found to modulate the JAK/STAT pathways and affect the cell functions and growth of xenografts (49).

In summary, the regulation of related signaling pathways plays a critical role in PTC progression. Those findings go far toward the progression of a novel therapy for PTC. However, the molecular mechanisms underlying the circRNAs’ regulation of those pathways in PTC are largely unknown. The exploration of circRNAs may provide new insights into PTC pathogenesis, and targeting those pathways may be a promising therapeutic approach for treatment.





3.3 Role of circRNAs in EMT in PTC

Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features. EMT confers metastatic properties to cancer cells by enhancing cell migration and invasion, which is considered a marker of carcinogenesis (94, 95). In recent years, a growing number of studies have focused on the role of circRNAs in EMT in PTC. A study reported that circNDST1 (hsa_circ_0006943) overexpression boosted PTC progression through the activation of EMT in a CSNK2A1-dependent manner (53). Circ_102002 was found to facilitate metastasis of PTC by regulating the miR-488-3p/HAS2 axis. Inhibition of circ_102002 downregulated HAS2 levels, suppressed the phosphorylation of FAK and AKT, regulated expressions of E-cadherin and N-cadherin, and inhibited PTC metastasis (59). CircPI4KA (hsa_circ_0062389) is also involved in EMT via sponging miR-1179 and thus regulates HMGB1 expression. They found that circPI4KA depletion significantly increased E-cadherin and decreased N-cadherin (60). Moreover, silencing of circ_007293 inhibited EMT, as indicated by suppressed N-cadherin and vimentin expressions and increased E-cadherin expression (69). Besides, circPRKCI (hsa_circ_0067934) had a similar effect on promoting PTC progression by regulating EMT (88). Overall, these important features in EMT confirm the potential role of circRNA in PTC therapy.




3.4 Role of circRNAs in glycolysis in PTC

A hallmark of cancer cells is a change in energy metabolism, characterized by the preferential use of glycolysis for energy production. Although not as efficient as oxidative phosphorylation in terms of net ATP production, cancer cells adapt by increasing glucose uptake and promoting the rate of glycolysis. Moreover, intermediates of glycolytic metabolism play a key role in macromolecular biosynthesis. Targeting glycolysis remains an attractive intervention, and recent preclinical studies support its efficacy. Several studies have explored potential therapeutic opportunities for the cancer-specific effects of glycolysis inhibitors (96).

There are several circRNAs that are involved in the glycolytic process in PTC. CircNRIP1 enhances glycolysis in PTC cells by upregulating PKM2 levels and sponging miR-541-3p and miR-3064-5p (51). Li Y et al. (61) showed that knockdown of circPUM1 impedes cell growth, metastasis, and glycolysis of PTC via enhancing MAPK1 expression by sponging miR-21-5p. Downregulation of circPUM1 resulted in decreased expression of hexokinase 2 (HK2) and blocked glycolysis in PTC. Hsa_circ_0023990 promotes tumor growth and glycolysis in dedifferentiated TC via positively regulating the miR-485-5p/FOXM1 axis (62). Data demonstrated that glucose uptake, lactate production, and glycolytic genes (GLUT1, HK2, and LDHA) were all inhibited by circ_100395 overexpression (82). Hsa_circ_0011290 regulates glycolysis by regulating the miR-1252/FSTL1 axis. Meanwhile, glucose metabolism was significantly switched with decreased glucose uptake and lactate production (97). Also, it is found that circCCDC66 promotes the proliferation and migration of PTC cells by regulating miR-211-5p/PDK4, which in turn regulates glucose metabolism (98). CircRAD18 is involved in reprogramming glucose metabolism, and silencing of circRAD18 significantly inhibits cellular glucose uptake and lactate production in PTC cells by regulating miR-5166/PDK1 (99).





4 Clinical implications of circRNAs in PTC

Likewise, circRNAs have potential value as biomarkers in diagnosis, prognosis, and even treatment. Due to the lack of specific symptoms, PTC is often difficult to diagnose at an early stage. Early identification of the advanced PTC among many thyroid cancers is an urgent clinical issue to be addressed. A number of circRNAs have tissue-specific and developmental stage-specific expression patterns.



4.1 Role of circRNAs as diagnostic biomarkers

Most circRNAs have been found to be upregulated in PTC tissues or cells compared to normal. Bai C et al. (63) found that hsa_circ_000121 had good sensitivity and specificity for diagnosing PTC lymph node metastasis, with a cut-off value of 0.796. Cai X et al. (64) found that circBACH2 had a good diagnostic value for PTC with an AUC of 0.8631. In addition, hsa_circ_0082003 has potential as a biomarker for the diagnosis of PTC (65), as well as hsa_circ_0027446 (66). CircPSD3 (hsa_circ_0002111) was suggested as a potential diagnostic tumor marker for PTC, with an AUC of 0.833 (95% CI = 0.77-0.89, p < 0.01) (67). Similarly, circMAN1A2 has an AUC of 0.734 (100), hsa_circ_047771 has an AUC of 0.876 (95% CI = 0.78-0.94), and hsa_circ_007148 has an AUC of 0.846 (95% CI =0.75-0.96) (68). Studies have shown that exosomal circ_007293 regulated PTC cell invasion, migration, proliferation, and EMT, as well as induced PAX6 expression by sponging miR-653-5p (69). Further studies found that three differentially regulated circRNAs, including has_circ_007293, has_circ_031752, and has_circ_020135, were upregulated and confirmed in the serum of PTC patients (101). Additionally, these findings suggest that exosome circRNAs might be potential diagnostic molecular biomarkers for PTC.




4.2 Role of circRNAs as prognostic biomarkers

Recently, several studies have found that dysregulation of circRNAs is associated with a poor prognosis in PTC, including tumor size, LNM, TNM stage, and even postoperative recurrence. The correlation between circRNAs and clinical features of PTC is shown in Table 2.

Table 2 | The correlation between circRNAs and clinical features of PTC.
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In addition, data obtained by COX regression analysis also supports the potential value of circRNAs in terms of prognosis. For example, it was found that patients with high expression of has_circ_0067934 showed a lower survival period. Cox model analysis indicated that hsa_circ_0067934 was an independent risk factor for prognosis (RR = 4.385, 95% CI = 1.087-17.544, p = 0.038) (88). Several high expression levels of circRNAs were associated with a poor prognosis of PTC, such as hsa_circ_102002 (59), circPUM1 (61), circBACH2 (64), hsa_circ_0027446 (66), hsa_circ_0008274 (70), circCCDC66 (71), and hsa_circ_0011058 (73). In contrast, low circ_100395 expression was linked to a poor prognosis in PTC (82). However, low hsa_circ_047771 expression was associated with the BRAFV600 mutation, LNM, and TNM stage (p < 0.05). Furthermore, a high expression of hsa_circ_007148 was significantly correlated with LNM (P < 0.05) (68).




4.3 Role of circRNAs in treatment

CircRNAs have garnered growing interest in tumor research and hold promise for intervention or regulatory therapy. Drug resistance is a key factor affecting cancer outcomes. Several studies have demonstrated the association of circRNAs with chemoresistance in cancer treatment. For instance, the circEIF6/miR-144-3p/TGF-α pathway was found to be associated with reduced sensitivity of ATC to cisplatin resistance. CircEIF6 could promote tumor growth by regulating miR-144-3p/TGF-α, while knockdown of circEIF6 enhanced cisplatin sensitivity in vivo. This finding suggests a potential therapeutic target for overcoming cisplatin resistance in TC (103). However, the downstream signaling molecules of TGF-α need to be further investigated. Additionally, due to the undifferentiated phenotype of TC and its aggressive nature, resistance to conventional treatments such as radiotherapy and chemotherapy is frequently observed in ATC, including cisplatin resistance (104). In breast cancer, circCDYL2 was able to maintain downstream AKT and ERK1/2 activity, thus promoting trastuzumab resistance in HER2-positive breast cancer patients (105). Furthermore, circCPM promoted resistance to 5-FU in gastric cancer and modulated autophagy by targeting PRKAA2 (106). In endometrial cancer, resistance to paclitaxel was found to be mediated by the key oncogenic circ0007534 (107). These studies suggest that circRNA-targeted therapy may have a role in reversing cancer chemoresistance.

In addition, circRNAs demonstrate promise as a drug carrier for the treatment of cancer. They exhibit robust stability and resistance to degradation by nucleases. These characteristics enable prolonged circulation in the body. CircRNAs can achieve targeted therapy by interacting with specific miRNAs. In PTC, certain miRNAs may be dysregulated, contributing to cancer progression. CircRNAs can be engineered to bind to these miRNAs, thereby restoring their normal levels and inhibiting cancer cell growth and dissemination. Also, aberrant expression of specific key genes closely correlates with cancer development in TC. CircRNAs serve as drug carriers, delivering specific siRNA or gene sequences to target genes. Pisignano G et al. (108) summarized ongoing research on evaluating the potential therapeutic effects of circRNA application in clinical practice for cancer patients. A study attempted to develop therapeutic mesenchymal stem cells (MSCs) containing a suicide-inducing gene, and they demonstrated the effectiveness of this approach in ATC therapy (109). The immunogenicity of extracellular vesicles derived from MSC is relatively low, making them potential alternatives to cell therapy. A recent review highlights the therapeutic options and biological applications of MSCs-derived extracellular vesicles. They are capable of transmitting signals or delivering biological materials to diseased sites in the body and then regulating therapy (110). However, the research on utilizing MSCs as carriers to load circRNAs for the treatment of TC remains in its early stages. More intensive studies in aggressive TC are highly needed to provide novel approaches for tumor therapy.





5 Discussion

PTC is a multifactorial disease, the prevalence of which is increasing year by year, and its diagnosis, treatment, and prognosis are still controversial in clinical practice (111). A recent study on the Chinese population found a rapid increase in the incidence of TC and a modest increase in mortality from 2005 to 2015 (112). In addition, based on decades of global epidemiological data, the overall incidence of TC was found to have increased by 3% per year between 1974 and 2013, with a concomitant 1.1% per year increase in mortality based on incidence. For advanced PTC, the incidence and mortality rates are also increasing annually in most countries (113). PTC accounts for approximately 85% of TC and includes follicular, diffuse sclerosing, hypercellular, and columnar cell subtypes. Of these, the diffuse sclerosing subtype has a 100% LNM rate, often occurs in children and young adults, and shows a poor prognosis. Tumor diagnosis and treatment have now moved into the era of precision medicine, and several molecular markers such as BRAF, RAS, RET/PTC, and PAX8/PPARγ have been used to improve the accuracy and timeliness of thyroid nodule diagnosis, as well as to reach the molecular level of the subtype classification of PTC. Recently, patients with RET/NTRK fusion were found to have worse clinical outcomes than patients with BRAF-mutated disease (114). Therefore, the early identification of highly aggressive, poorly differentiated, and poorly prognosed TC is of great importance. We provided a detailed review of recent findings in the field of circRNAs for PTC. Focusing on the biological functions of circRNAs and their related signaling pathways in PTC, as well as discussing the role of circRNAs in the EMT and glycolysis processes. Then, we discussed the clinical implications of circRNAs in PTC and found that circRNAs may be a new therapeutic approach for the treatment of TC.

CircRNAs have been found to be widely expressed in various cancers and are associated with tumorigenesis and progression. Because of the specific features of circRNAs, such as good stability, abundance, sensitivity, and specificity, they are gradually being proposed as biomarkers. The detection of circRNA in serum and FNA samples as a non-invasive diagnostic tool for PTC has several advantages over traditional diagnostic methods. Firstly, circRNA has the potential to improve the accuracy of PTC diagnosis as it is specific to cancer cells and could be used to differentiate between benign and malignant tumors. Secondly, it is less invasive than a tissue biopsy, and samples are more readily available. Further, this modality has the potential to improve the management of PTC by providing an early and accurate diagnosis, which could contribute to timely and appropriate treatment. Current studies have provided promising and informative evidence that confirms the viability of circRNAs as biomarkers.

With increasing evidence revealing the role that circRNAs play in multiple signaling pathway processes, this provides more focus points for PTC treatment. Among the processes associated with PTC, one of great importance is EMT. Several studies have reported that circRNAs have a distinct, easily measured, and observed corresponding expression during EMT, which is thought to be of potential value in inhibiting the malignant progression of TC. In spite of these exciting advances, the research on circRNAs still faces a few limitations. Firstly, due to the different sequencing methods, data analysis pipelines, and detection tools, the current databases of circRNAs are not uniform and very complete. This makes it difficult to compare the results of different studies. Furthermore, the limited sample sizes of studies make it difficult to generalize the results to larger populations. Numerous circRNAs have been identified and found to have multiple functions through diverse mechanisms. This complexity makes it challenging to fully understand their role in PTC.




6 Future perspectives

In recent years, significant achievements have been made in the fields of circRNAs and PTC, yet the clinical application of circRNAs in PTC still faces numerous challenges. Firstly, existing studies are mainly focused on the PTC, while other subtypes of TC are insufficient, particularly MTC and ATC. Future research should allocate more attention to circRNAs in these subtypes. Secondly, due to the predominantly low expression levels of circRNAs, investigating efficient extraction and detection methods for circRNAs could enhance their utility as biomarkers. It is necessary to monitor relapse and progression using reliable biomarkers in long-term follow-up studies. Additionally, reliance on a single circRNA may not provide adequate support for cancer diagnosis or prognosis prediction. Hence, the utilization of a combination of cancer-related circRNA panels could prove valuable as biomarkers in the future. Moreover, despite the broad potential applications of circRNAs, current research predominantly focuses on their role as miRNA sponges, which is overly narrow. Other mechanisms of circRNAs warrant further investigation. Last but not least, an increasing number of studies are delving into the role of circRNAs in chemoresistance and cancer therapy. This represents a novel avenue for future investigation and merits thorough exploration. Nevertheless, additional research and validation are indispensable prior to the clinical implementation of circRNA-targeted treatments. Addressing concerns pertaining to safety, efficacy, drug release, and in vivo targeting is imperative.

In conclusion, circRNAs undoubtedly have enormous potential for cancer diagnosis and treatment. Through further research on circRNAs biogenesis and other mechanisms, alongside the development of detection technologies and comprehensive clinical trials, circRNAs will play a significant role in the diagnosis, monitoring, and treatment of PTC.
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Background

Thyroid cancer is the most common malignancy of the endocrine system. PANoptosis is a specific form of inflammatory cell death. It mainly includes pyroptosis, apoptosis and necrotic apoptosis. There is increasing evidence that PANoptosis plays a crucial role in tumour development. However, no pathogenic mechanism associated with PANoptosis in thyroid cancer has been identified.





Methods

Based on the currently identified PANoptosis genes, a dataset of thyroid cancer patients from the GEO database was analysed. To screen the common differentially expressed genes of thyroid cancer and PANoptosis. To analyse the functional characteristics of PANoptosis-related genes (PRGs) and screen key expression pathways. The prognostic model was established by LASSO regression and key genes were identified. The association between hub genes and immune cells was evaluated based on the CIBERSORT algorithm. Predictive models were validated by validation datasets, immunohistochemistry as well as drug-gene interactions were explored.





Results

The results showed that eight key genes (NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, and PMAIP1) exhibited good diagnostic performance in differentiating between thyroid cancer patients and controls. These key genes were associated with macrophages, CD4+ T cells and neutrophils. In addition, PRGs were mainly enriched in the immunomodulatory pathway and TNF signalling pathway. The predictive performance of the model was confirmed in the validation dataset. The DGIdb database reveals 36 potential therapeutic target drugs for thyroid cancer.





Conclusion

Our study suggests that PANoptosis may be involved in immune dysregulation in thyroid cancer by regulating macrophages, CD4+ T cells and activated T and B cells and TNF signalling pathways. This study suggests potential targets and mechanisms for thyroid cancer development.
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Introduction

Thyroid cancer (THCA) is one of the most common malignant tumours in the world, and in recent years, the incidence of thyroid cancer has been increasing every year. Compared with the total data in 2000, the incidence of thyroid cancer has increased 20 times (1, 2). The incidence of thyroid cancer in women is 3-4 times higher than in men. According to clinical and pathological typing thyroid cancer can be divided into papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), medullary thyroid carcinoma (MTC), and undifferentiated thyroid carcinoma (ATC) (3, 4). PTC and FTC collectively referred to as differentiated thyroid carcinoma (DTC) is the most common pathological type of thyroid cancer, accounting for more than 90% of all thyroid cancers. The treatment of choice for most patients with thyroid cancer is surgical resection, and thyroid-stimulating hormone suppression and radioactive iodine (RAI) therapy are required for patients with high-risk features, with some patients with thyroid cancer progressing to RAI-refractory thyroid cancer and death (5). There is a lack of effective treatment strategies for patients with advanced thyroid cancer. The development, invasion, and metastasis of thyroid cancer are closely related to changes at the gene level and dysfunctional regulation of related signal transduction pathway. These molecular changes are the hallmarks of thyroid cancer diagnosis and prognosis, as well as potential targets for biological therapy.

PANoptosis is an inflammation-driven programmed cell death that combines key features of pyroptosis, apoptosis and necrotic apoptosis, yet cannot be characterised by any of these modes of death alone (6, 7). PANoptosis was first named in 2019 by the American scholar Malireddi, who proposed that the innate immune sensors ZBP1 and TAK1 kinase play important roles in the regulation of the PANoptosis vesicle complex (7). Three types of PANoptosis vesicles have been identified, ZBP1 PANoptosis vesicles, RIPK1 PANoptosis vesicles and AIM2 PANoptosis vesicles. Viruses, bacteria and other non-infectious factors such as cytokines in tumours can trigger host cells to undergo PANoptosis (8, 9). Pancytopenia is closely related to homeostasis maintenance, embryonic development, and immune regulation.

BRAF V600E and RAS gene variants are the most common mutations in thyroid cancer. These mutations constitutively activate the MAPK signalling pathway, and patients with advanced thyroid cancer develop other genetic variants in addition to these common mutations and become more aggressive and less differentiated (10, 11). The genetic variants and mechanisms that drive the development of thyroid cancer are becoming better understood, but researchers still do not fully understand the determinants and functional basis of certain genetic variants (12). The study of genomic profiles of thyroid cancer patients can help predict the prognosis of thyroid cancer patients and for subsequent immunotherapy. PANoptosis plays a crucial role in many diseases such as infections, tumours, and inflammatory diseases (13–16). There are no data from studies evaluating the impact of PANoptosis-related genes in THCA disease progression. Therefore, the present study proposes that PANoptosis-related genes may also be involved in thyroid cancer disease progression. We first analysed the expression levels of PANoptosis-related genes in THCA. The pathogenic mechanisms of PANoptosis-related genes were explored based on functional enrichment analysis. A PANoptosis risk score model was established by LASSO regression, and the diagnostic efficiency of key genes was verified in the validation dataset. Finally, we analysed the immune infiltration characteristics of THCA to reveal the association between key genes and the immune microenvironment. We aimed to explore the potential link between PANoptosis-related genes affecting the genetic variants of THCA, and to provide a theoretical basis for guiding the prognosis and immunotherapy of thyroid cancer patients.





Materials and methods




Data acquisition

The thyroid cancer datasets GSE33630 and GSE3467 were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds). The training dataset GSE33630 consisted of 60 THCA patient samples and 45 control samples. Transcriptome information for 512 thyroid cancer samples was obtained from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). The validation dataset GSE3467 included 9 THCA patient samples and 9 controls. The obtained dataset was analysed based on R software (version 4.3.1). PANoptosis-related genes were downloaded from the GeneCards database (https://www.genecards.org/).





Analysis of PANoptosis related differentially expressed genes

We used the “combat” function in “sva” to remove the batch-to-batch difference to obtain the differentially expressed genes between the THCA group and the control group (17). The screening criteria were |logFC| > 1.5, p-value < 0.05. The obtained differentially expressed genes and PANoptosis related genes were imported into the jvenn online platform (https://jvenn.toulouse.inrae.fr/app/example.html) to obtain PANoptosis related differentially expressed genes (PRGs).





Functional enrichment analysis

Differentially expressed genes were imported into the DAVID (https://david.ncifcrf.gov/) online platform for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. GO mainly includes molecular function (MF), biological pathway (BP) and cellular component (CC). Visualization was performed using the “ggplot2” package in R software (18). The interaction network between PRGs was constructed using the STRING database. In addition, the metscape database (https://metascape.org/) was used to explore the functional mechanisms among PRGs.





Screening for prognostic markers

Least Absolute Shrinkage and Selection Operator (LASSO) regression is a regularization method for linear regression problems, which can be used to reduce the complexity of the model, prevent overfitting, and select important feature variables (19). We used the LASSO regression model to screen for diagnostic markers. Patients with THCA in the training dataset were divided into high-risk and low-risk groups. Predictive model accuracy was assessed by area under the receiver operating characteristic curve (ROC). GSE3467 was used as a validation dataset to validate the expression of the key genes mentioned above and the area under ROC (AUC) value to measure the predictive power of the algorithm(P<0.05). We validated the predictive power of the algorithm in the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/) to verify the expression levels of key genes in thyroid cancer tissues. The relationship between the core genes and the prognosis of thyroid cancer patients was explored by the clinical information in the TCGA database.





Immune cell correlation analysis

The CIBERSORT algorithm was used to calculate the immune cell infiltration between the thyroid cancer group and the control group in the training dataset (20). Stacked plots were used to show the distribution of immune cells in each sample. Box plots show the relative proportions of the immune cell types between the two groups. The “ggcorrplot” package was used to explore the correlation between biomarkers and immune cell infiltration.





Drug screening and predicting transcription factor regulatory networks

The Drug Gene Interaction Database (DGIbd) is a database for exploring drug-gene interactions. Transcription factors are key regulators of gene expression, and the activity of these proteins determines cellular function and response to environmental perturbations. We predicted TF regulatory networks and TF- miRNA regulatory networks of key genes by NetworkAnalyst 3.0 online tool (https://www.networkanalyst.ca/) (21). Analyses and presentations were performed using Cytoscape 3.7.2.






Results




Identification of differentially expressed genes of THCA

We obtained a total of 2219 differentially expressed genes by analysing the training dataset GSE33630. The screening criteria were |logFC|>1.5, P>0.05. The volcano plots and heatmaps in Supplementary Figures 1A, B demonstrate the differential expression patterns of DEGs in the dataset GSE3360. These DEGs were mainly enriched in the positive regulation of inflammatory response, cell migration, extracellular matrix structure, and protein fusion (Figure 1A). KEGG pathway analysis focused on Phagosome、Cytokine-cytokine receptor interaction、Rheumatoid arthritis and ECM-receptor interaction (Figure 1B).

[image: Panel A shows three bubble plots for biological processes (BP), cellular components (CC), and molecular functions (MF) enriched in a dataset. Points size indicates genes count, color reflects p-value. Panel B presents a KEGG pathway enrichment analysis, with similar p-value and count representations. Both panels use enrichment score as a metric.]
Figure 1 | Functional enrichment analysis of thyroid cancer-related differentially expressed genes. The size of the ball represents the number of genes. The colours of the balls correspond to different P values. (A) The top 10 significantly enriched GO annotations, including biological process, cellular component, and molecular function, were selected separately. (B) The top 20 significantly enriched KEGG pathway analyses. GO, the Gene Ontology; KEGG, the Kyoto Encyclopedia of Genes and Genomes analyses.





Identification of differentially expressed genes associated with PANoptosis

A total of 2219 DEGs were obtained in GSE33630 and 204 PANoptosis genes were obtained from GeneCards, and the intersection of the two datasets was taken to obtain 38 PRGs as shown in Figure 2A. The heatmap in Figure 2B demonstrates the differential expression of the 38 PRGs in GSE33630. We constructed a protein interaction network in which 31 genes had interaction relationships (Figure 2C). To explore the links between these genes, we calculated their correlations using the “corrplot” package (Figure 2D) and found significant synergistic effects, with most of the genes being significantly positively correlated with each other.

[image: Venn diagram, heatmap, protein interaction network, and correlation matrix are displayed. The Venn diagram shows overlap between datasets GSE33630 and PANoptosis. The heatmap illustrates gene expression differences between THCA and normal groups, with a color scale indicating expression levels. The protein interaction network visualizes connections between various proteins. The correlation matrix shows relationships among genes, with values from negative one to one.]
Figure 2 | Identification of PANoptosis -related differentially expressed genes in the thyroid cancer training dataset. (A) Venn plots of 204 PANoptosis genes and 2216 DEGs. (B) Heatmap of the expression of 38 PRGs in the training dataset. Red: low expression level; green: high expression level (C) Interaction network graph of PRGs in the STRING database. (D) Correlation heatmap of PRGs in the training dataset. THCA, thyroid cancer; DEGs, differentially expressed genes.





Constructing functionally enriched networks

To investigate the relationship between PANoptosis genes and the pathogenesis of thyroid cancer, we further explored the functional pathways of PRGs through the metscape database. Functional enrichment analysis showed that the 38 genes were mainly enriched in the positive regulation of apoptosis, pyroptosis, cytokine signalling in the immune system, and regulation of lymphocyte proliferation, etc. (Figure 3A). KEGG analysis showed that the genes were mainly related to the TNF signalling pathway. The network graph between the enriched pathways is shown in Figure 3B. Nodes with the same pathways tend to cluster together.

[image: Bar chart comparing various biological pathways by their significance, labeled -log10(P). Top pathways include apoptosis modulation and signaling, positive regulation of apoptotic process, and regulated necrosis. Network diagram visualizing pathway interactions, with nodes colored to correspond to pathways listed in the legend, such as apoptosis modulation and TNF signaling pathway.]
Figure 3 | Functional enrichment analysis of PANoptosis -related differentially expressed genes in the thyroid cancer training dataset. (A) Bar graph of 20 enriched biological pathways, coloured by p−values. (B) Network of enriched terms for specified genes analysed by Metascape, coloured by cluster ID.





Construction of a PANoptosis risk score model for thyroid cancer

To further screen PRGs for key genes that play a regulatory role in thyroid cancer disease progression, we constructed a PANoptosis risk score model based on the TCGA database using LASSO regression against 38 PRGs. The LASSO analysis identified eight genes associated with THCA prognosis: NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB. We established a PANoptosis risk score and survival analysis for THCA as well as the differential expression of these 8 genes in this model (Figure 4). We chose the following formula as the risk score formula: lambda.min=0.0062 Riskscore=(0.4977)*NUAK2+(0.0437)*TNFRSF10B+(-0.385)*TNFRSF10C+(-0.2139)*TNFRSF12A+(0.0165)*UNC5B+(0.5133)*PMAIP1+(-0.253)*IL18+(-0.006)*GZMB. We also analysed the ROC curves of this risk model at different times with AUC. the AUC values for 3-year, 5-year and 10-year OS were 0.854, 0.736 and 0.868, respectively (Figure 4C). Where the higher AUC value indicates the better predictive ability of the model. In addition, we also calculated the AUC values of these eight candidate genes in the GSE33630 dataset, and all of them, except GZMB, had an AUC greater than 0.7 (Figures 5A–H).

[image: Graphical representation of statistical analysis in three panels. Panel A: A plot showing coefficients versus L1 norm for various variables, each represented by a distinct colored line. Panel B: A plot of partial likelihood deviance versus log(lambda) with red and gray lines, showing error bars. Panel C: Three subplots. The top subplot displays risk scores for high and low-risk types with status indicated by color-coded points for alive (red) and dead (blue). The middle subplot is a survival probability plot over time comparing high and low-risk groups. The bottom subplot shows a heatmap of gene expression with a z-score scale from negative to positive values.]
Figure 4 | Biomarker identification using LASSO regression based on thyroid cancer dataset in TCGA database. (A) Least absolute shrinkage and selection operator (LASSO) regression analysis. (B) Cross validation for adjusting parameter selection in LASSO regression. (C) Modelling of pan-apoptotic risk score and survival analysis.

[image: Eight ROC curve graphs (A-H) show the performance of biomarkers: GZMB, IL-18, NUAK2, PMAIP1, TNFRSF10B, TNFRSF10C, TNFRSF12A, and UNC5B. The AUC values are 0.557, 0.734, 0.746, 0.704, 0.815, 0.923, 0.821, and 0.799, respectively. Each graph plots sensitivity against specificity, with a diagonal reference line for comparison.]
Figure 5 | ROC curves of the diagnostic value of the eight biomarkers in the thyroid cancer training dataset. (A–H) Subject operating characteristic curves (ROC) of candidate diagnostic markers NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB in the training dataset.





Immune cell infiltrability analysis of the training dataset

The immune system of THCA patients plays an important role in disease progression. To investigate the differences in immune cell infiltration between THCA patients and controls, we used the CIBERSORT algorithm. The proportions of immune cells between the two groups are shown in Figure 6A. The THCA group showed significantly higher proportions of activated T cells, activated DC cells, naïve B cells, NK cells, and helper T cells compared with the control group (Figure 6C). Neutrophils were positively correlated with seven genes except NUAK2. TNFRSF10B, TNFRSF10C, and TNFRSF12A were positively correlated with macrophages, DC cells, and mast cells (Figure 6B).

[image: Panel A shows a stacked bar graph illustrating the proportion of various immune cells in tumor versus control samples, with a legend identifying cell types. Panel B presents a heatmap of correlations between immune cells and specific genes, with color gradients indicating correlation strength. Panel C displays box plots comparing the fraction of different immune cells in control and tumor groups, using colors to distinguish the groups.]
Figure 6 | Assessment and visualization of immune cell infiltration in the thyroid cancer training dataset. (A) Proportion of immune cell infiltration in the thyroid cancer group and control group. (B) Heatmap of 8 biomarkers correlating with immune cells. (C) Box line plot of immune cells differentially expressed between thyroid cancer group and control group. (* represented P < 0.05, ** represented P < 0.01 and *** represented P < 0.001).





Construction of hub gene-TF-miRNA transcriptional network

To further explore the potential biological processes of candidate genes in thyroid cancer, we analysed the interactions among candidate genes, transcription factors and miRNAs through the Networkanalyst platform. The TF-gene interaction network was constructed in the ENCODE (https://www.encodeproject.org/) database (Supplementary Figure S2A). The TF-miRNA interaction network was obtained in the Regnetwork (http://www.regnetworkweb.org) database (Supplementary Figure S2B). The regulatory network was then imported into Cytoscape 3.7.2 for visualization. Combining the regulatory networks revealed that IKZF1 potentially transcriptionally activates PMAIP1, TNFRSF10B and GZMB. The TF-genes network contained 179 TFs, 8 hub genes, and 248 edges. In the TF- miRNA regulatory network, a total of 90 edges and 81 miRNAs interacted with 7 hub genes.





Validation of candidate diagnostic markers

To validate the accuracy of the prediction model, we examined the expression of the candidate genes in the validation dataset GSE3467 and ROC analysis. The results showed good diagnostic performance of the predictive model. It is possible that the sample size of the analysis was limited and the difference in the expression of GZMB in the validation dataset was not statistically significant (Figure 7A). NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, and IL18 were expressed in the validation dataset in agreement with the analysis of the assay dataset (Figures 7B–H). TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, and IL18 had increased expression in thyroid cancer tissues, while NUAK2 was decreased. The ROC curves showed that the AUC values of the seven candidate genes were greater than 0.8 except for GZMB (Figures 8A–H). Then we verified the protein expression of the candidate genes in the tissues at the protein level. The results showed that except for TNFRSF10B, the expression of other genes was generally consistent with the above analysis. It proved that the PANoptosis prediction model based on 8 key genes was feasible (Figures 9A–H).

[image: Box plots display the gene expression levels of eight genes (GZMB, IL-18, NUAK2, PMAIP1, TNFRSF10B, TNFRSF10C, TNFRSF12A, and UNC5B) in tumor and normal tissues. Each plot compares the expression levels, with colored boxes indicating medians and interquartile ranges. Wilcoxon p-values are shown, indicating statistical significance in differences between tumor and normal conditions.]
Figure 7 | Expression analysis of biomarkers in 8 in the thyroid cancer validation dataset. (A–H) Expression levels of candidate diagnostic markers NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB in the validation dataset.

[image: Eight ROC curve charts labeled A to H, each depicting sensitivity versus specificity. A: GZMB, AUC 0.691. B: IL-18, AUC 0.926. C: NUAK2, AUC 0.877. D: PMAIP1, AUC 0.815. E: TNFRSF10B, AUC 0.963. F: TNFRSF10C, AUC 1.000. G: TNFRSF12A, AUC 0.889. H: UNC5B, AUC 1.000. Each chart features a red ROC curve with a diagonal reference line.]
Figure 8 | ROC curves for the diagnostic value of the eight biomarkers in the thyroid cancer validation dataset. (A–H) Subject operating characteristic curves (ROC) of candidate diagnostic markers NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB in the validation dataset.

[image: Eight pairs of histological images comparing normal and tumor tissues. A: TNFRSF10C, no staining in normal, medium in tumor. B: TNFRSF12A, no staining in normal, medium in tumor. C: TNFRSF10B, high staining in normal, medium in tumor. D: NUAK2, medium staining in normal, low in tumor. E: UNC5B, no staining in normal, medium in tumor. F: PMAIP1, high staining in both normal and tumor. G: IL18, no staining in normal, low in tumor. H: GZMB, no staining in either tissue.]
Figure 9 | Protein expression levels of eight thyroid cancer biomarkers were analysed based on the HPA database. (A–H) Protein expression of candidate diagnostic markers TNFRSF10C, TNFRSF12A, TNFRSF10B, NUAK2, UNC5B, PMAIP1, IL18, and GZMB in thyroid normal and tumour tissues.





Drug-gene interaction prediction

We imported 8 key targets from the above screening into the DGIbd database for screening small molecule compounds for the treatment of thyroid cancer. In total, 36 drugs interacted with TNFRSF10C, TNFRSF12A, PMAIP1, IL18, GZMB and TNFRSF10B. Visualization was performed using Cytoscape (Figure 10). 1 drug targets TNFRSF12A. 1 drug targets PMAIP1. 9 drugs target TNFRSF10B. 19 drugs target IL18. 1 drug targets TNFRSF10C. 5 drugs target GZMB. No potential drugs were identified for UNC5B and NUAK2. Details of these drugs are in Supplementary Table S1.

[image: Network diagram showing relationships between proteins and drugs. IL18, TNFRSF10B, and GZMB are central nodes connecting various pharmaceutical agents, indicated by blue ovals, such as Colchicine, Luteolin, and Setanaxib. Arrows link drugs to their target proteins.]
Figure 10 | Drug prediction based on key targets in thyroid cancer. Red represents key targets and blue represents predicted drugs.






Discussion

Thyroid cancer has become the most common endocrine system malignancy. The incidence of thyroid cancer is increasing at the highest rate among all malignant tumours. Treatment options for patients with advanced thyroid cancer are very limited. In recent years, with the rapid development of multi-omics research, the understanding of the pathogenesis of different thyroid cancer subtypes has been greatly enhance (22). In particular, the discovery of new thyroid cancer biomarkers has brought hope for the treatment of advanced thyroid cancer. PANoptosis is a novel mode of programmed cell death. PANoptosis has been extensively studied in colorectal, prostate and gastric cancers and some inflammatory diseases (23–27). No study has yet found a link between PANoptosis and thyroid cancer disease progression. The aim of this study was to explore the role of PANoptosis in thyroid cancer disease progression, with the hope of providing new therapeutic targets for the treatment of thyroid cancer.

In this study, a total of 2219 DEGs were identified by analysing the training dataset. In obtained 38 genes that were differentially expressed in thyroid cancer tissues by taking the intersection set. The functional enrichment of the 38 PRGs was mainly related to the regulation of the immune system, with the most significant enrichment in the TNF pathway. We further identified 8 meaningful signature genes using LASSO regression. Then the diagnostic efficacy of these eight genes for thyroid cancer was verified by ROC curves. Among them, the AUC values of TNFRSF10B, TNFRSF10C and TNFRSF12A in the training dataset were all greater than 0.8. TNFRSF10B, TNFRSF10C and TNFRSF12A belong to the tumour necrosis factor receptor superfamily (TNFRSF) which can bind to the tumour necrosis factor superfamily (TNFSF) through the cysteine-rich domains (CRDs). The TNFRSF system contains 19 ligands and 29 receptors, some of which can bind to multiple receptors and regulate complex cellular networks. TNFRSF can assist in the regulation of a variety of cellular functions, including immune responses, inflammatory responses, and cell proliferation, differentiation, and apoptosis (28–31).

In addition, we also analysed the immune cell infiltration in the thyroid cancer group versus the control group in the training dataset. The results showed that activated T cells, NK cells, bone marrow-derived suppressor cells (MDSC), and helper T cells were significantly higher in the tumour group. PANoptosis may be involved in thyroid cancer progression through the immune system. These genes we studied were strongly correlated with mast cell and macrophage infiltration. During the progression of ATC, macrophages shift from the M1 state to the M2 state. The role of macrophages in thyroid cancer progression is worthy of further investigation (2). TNFRSF family-mediated signalling has been a hot topic of research in the field of tumour immunotherapy, with notable findings in CAR-T cell therapy (30, 32, 33). Given that TNFRSF10B, TNFRSF10C and TNFRSF12A are up-regulated in thyroid cancer tissues and correlate with macrophages. They may be able to play an important role in CAR-macrophage therapy in the future. In order to make our study more convincing, the above results were verified again by the validation dataset GSE3467.The expression differences of NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, and IL18 in the validation dataset were statistically significant. And the AUC values of these genes were all greater than 0.8. The PANoptosis diagnostic model based on 8 key genes performed well in the HPA database, except for TNFRSF10B. Although there are individual differences in the expression of TNFRSF10B, this still proves that our predictive model is feasible.





Conclusion

our study has some limitations. The results of our analyses were mainly obtained from public databases and lacked sufficient clinical samples for validation. And our study also requires later molecular biology experiments to further explore the hypothesis of the results of this study. However, we finally identified eight PRDEGs as potential targets for thyroid cancer diagnosis and treatment and predicted potential therapeutic agents through this study. The immune microenvironment of thyroid cancer and the link with PRGs were explored by immune infiltration analysis. It gives us a clearer understanding of thyroid cancer and PANoptosis and provides some new ideas for the clinical treatment of thyroid cancer disease.
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This study investigates the impact of Hashimoto’s thyroiditis (HT), an autoimmune disorder, on the papillary thyroid cancer (PTC) microenvironment using a dataset of 140,456 cells from 11 patients. By comparing PTC cases with and without HT, we identify HT-specific cell populations (HASCs) and their role in creating a TSH-suppressive environment via mTE3, nTE0, and nTE2 thyroid cells. These cells facilitate intricate immune–stromal communication through the MIF–(CD74+CXCR4) axis, emphasizing immune regulation in the TSH context. In the realm of personalized medicine, our HASC-focused analysis within the TCGA-THCA dataset validates the utility of HASC profiling for guiding tailored therapies. Moreover, we introduce a novel, objective method to determine K-means clustering coefficients in copy number variation inference from bulk RNA-seq data, mitigating the arbitrariness in conventional coefficient selection. Collectively, our research presents a detailed single-cell atlas illustrating HT–PTC interactions, deepening our understanding of HT’s modulatory effects on PTC microenvironments. It contributes to our understanding of autoimmunity–carcinogenesis dynamics and charts a course for discovering new therapeutic targets in PTC, advancing cancer genomics and immunotherapy research.
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1 Introduction

As the most common endocrine malignancy in the world, the incidence of thyroid cancer has been increasing over the last three decades (1). The global incidence rate in women is three times higher than in men, and the global cancer burden in women is 5.1% (2). Among them, papillary thyroid cancer (PTC) is the most common subtype of thyroid cancer (accounting for 70%~85.9%) (3). Although PTC progresses slowly, a significant proportion of patients have metastases by the time of diagnosis. In the case of metastasis, the combination of surgery, radioactive iodine (RAI) ablation, and thyroid-stimulating hormone (TSH) suppression can still get a favorable prognosis for most cases. However, there are still some metastatic cases that do not benefit from the above treatment strategies (4, 5). Based on traditional genome and transcriptome sequencing techniques, several diagnostic and progressive genes of PTC, such as BRAF and RAS, have been discovered (6). However, this approach ignores the high heterogeneity of PTC. Different tumor microenvironments around PTC will affect the occurrence, development, and drug resistance of tumors. Several studies have reported the effect of tumor-infiltrating immune cells on prognosis in patients with thyroid cancer (7, 8). Myeloid cells increase in proportion in cancer patients and reduce survival time through immunosuppressive function (9). Tumor-associated macrophages vary in frequency in different subtypes of thyroid cancer (10). Natural killer (NK) cells also play a central role in the immune surveillance of thyroid cancer (11). Lymphocyte density was associated with the overall survival and recurrence rate of PTC (12). These immune cells play their respective roles from different aspects. Therefore, systematic evaluation of the tumor immune microenvironment of PTC is helpful to understand the pathogenesis of cancer and guide clinical rational treatment. Hashimoto’s thyroiditis (HT), also known as chronic lymphocytic thyroiditis (CLT), is a common autoimmune endocrine disease, causing hypothyroidism or hyperthyroidism, and the incidence is also increasing year by year. Approximately 18.9% to 23.2% of PTC patients have been reported to have HT, and PTC patients with HT have a better prognosis than PTC patients without HT. However, at the same time, HT is considered to be a chronic inflammatory response, and various inflammatory cells infiltrating around the thyroid of patients with HT can damage the DNA of interstitial cells, leading to erroneous DNA repair, thereby promoting the occurrence of PTC. When HT and PTC occur at the same time, experts at home and abroad have different opinions on whether the former has a protective or promoting effect on the latter (13–17). This indicates that the role of HT in the formation of the tumor immune microenvironment of PTC is still unclear. Therefore, this research will focus on HT development to promote or inhibit PTC.

In the past, the inferCNV algorithm was usually used to distinguish malignant epithelial cells from non-malignant epithelial cells, which is an effective method and widely used. However, the existing problem is how to screen the results obtained by the inferCNV algorithm. The usual selection of the clustering coefficient K with copy number variation is subjective, which will lead to inaccurate results. To solve this problem, we proposed a method to determine the best clustering coefficient K based on TCGA data, which can effectively solve the problem of subjectivity in coefficient selection and provide a new strategy for the clustering coefficient selection of the inference results of single-cell copy number variation in the future.

With the development of single-cell RNA sequencing (scRNA-seq), solving tumor heterogeneity from the perspective of cells has become a hot spot at the forefront. Several studies have reported the use of scRNA-seq in thyroid cancer, such as a recent study on gender differences in the tumor microenvironment in PTC patients (18), the progression of follicular thyroid cancer and medullary thyroid cancer (19, 20), and the dedifferentiation of anaplastic thyroid cancer and PTC (21). To explore whether HT promotes or inhibits the generation and development of PTC, we conducted a comprehensive analysis of the paratumors, primary tumors, lymph nodes, and distant metastasis sites of 11 PTC patients and systematically compared the differences in tumor microenvironments of PTC patients with and without HT. The developmental trajectories of malignant thyroid epithelial cells (mTEs) and non-malignant thyroid epithelial cells (nTEs) and their interaction with HASCs were indicated. This discovery can help us better understand how HT inhibits the development of PTC by affecting its tumor microenvironment. To expand the role of HASCs, we found the relationship between HASCs and prognosis at the single-cell level, and clinical features in TCGA-THCA were further investigated to find the value of HASCs in clinical application. Based on the HASC subtypes, studies have identified unique genomic and drug sensitivity profiles of different molecular subtypes, and this provides a new idea for the personalized treatment of PTC.




2 Methods



2.1 scRNA-seq data processing

We obtained the number GSE184362 from the Gene Expression Omnibus (GEO) database (22) (https://www.ncbi.nlm.nih.gov/geo/), and a total of 23 samples (6 paratumors, 7 primary tumors, and 10 metastatic tumors), which consisted of 8 samples with HT and 15 samples without HT, were used for analysis via the Seurat R package (23). For each sample, genes were retained with detected expression in more than three cells. Cells with less than 200 detected genes were excluded. Finally, 171,524 cells were preserved. Before correcting batch effects, we used the NormalizeData() function in Seurat to normalize the raw gene expression value by the global-scaling normalization method “Log-Normalize”:

[image: The formula shown is: \( \text{Exp}_{\text{Normalized}} = \log \left( \frac{\text{Exp}_{\text{Raw}}}{\text{Exp}_{\text{Total}}} \times 10000 + 1 \right) \).]	

where Exp(Normalized), Exp(Raw), and Exp(Total) stand for raw gene expression value, normalized gene expression, and the total expression of all genes in one cell, respectively. Then, the “vst” method of the FindVariableFeatures function was used to find the highly variable genes (top 5,000) in each sample. In the process of batch effect correction, we went through three steps. First of all, the SelectIntegrationFeatures function was used to select the integrated dataset required features, and then, the FindIntegrationAnchors function was used to find each anchor point between two datasets. In the end, the IntegrateData function completes the merge of the dataset according to the anchor points identified in the previous step. After batch effect correction, there were 14,0456 cells left over here, and we selected the top 5,000 highly variable genes through the FindVariableFeatures() function, and the top 20 principal components (PCs) were selected based on the JackStraw() function. According to the top 20 PCs, the FindNeighbors() and FindClusters() functions were applied to cluster the cells. The cluster identified 14 cell clusters at a resolution of 0.1, which were annotated into six cell types by marker genes of myeloid cells (LYZ, FCER1G, LYZ, TYROBP), T/NK cells (CD3D, CD3E, IL7R, IL32, TRAC), B cells (CD79A, CD79B, MS4A1, IGKC, CD74), thyroid epithelial cells (TG, CLU, FN1, MGST1, S100A13), fibroblasts (RGS5, IGFBP7, TAGLN, COL1A2, ACTA2), and endothelial cells (TIMP3, RAMP2, CLDN5, TFPI, MGP) (24).




2.2 CNV analysis of epithelial cells

To distinguish malignant thyroid epithelial cells (mTEs) from non-malignant thyroid epithelial cells (nTEs), we used the inferCNV R package to predict the copy-number alterations (CNAs) of cells and compared them to the reference “normal” cells (this refers to paratumor cells) from scRNA-seq data (25). By setting the cutoff parameter of the inferCNV package’s run function to 0.1, the HMM_type parameter to i6, and the HMM_report_by parameter to cell, we get the CNA score for each cell. According to the CNA scores of cells on 22 chromosomes, all cells (including paratumors, primary tumors, and metastatic tumors) were clustered using K-means clustering, and the number of clustering K values ranged from 6 to 15.




2.3 Developmental trajectory inference of mTEs and nTEs

The Monocle2 R package was used to perform the trajectory analysis for mTEs and nTEs (26). Function newCellDataSet() converted the Seurat object to CellDataSet object, and function estimateSizeFactors() and function estimateDispersions() were used to standardize and normalize the gene expression data of cells, respectively. The genes with average log2 fold change greater than 0.5 and adjusted P-values less than 0.05 between HT and non-HT of T/NK cells were used as ordering genes in the trajectory analysis. The DDRTree method of the reduceDimension function was used for dimension reduction. Furthermore, the differentially expressed genes (DEGs) (average log2 fold change >1, adjusted P-value<0.05, and q-value<0.01) that changed along with the pseudotime were identified by the differentialGeneTest() function. The BEAM function was used to find genes that are regulated in a branching way.




2.4 Cell–cell interaction analysis of HASCs

Here, we defined the subset of cells that had a significantly higher percentage of content in PTC samples with HT than in PTC samples without HT as HT-associated specific cells (HASCs). At the same time, the significant difference of this cell subset should be P<0.05, while HASCs are more capable of exhibiting differences in the tumor microenvironment between PTC samples with and without HT. Cell–cell communications among HASCs were mapped using the CellChat R package, a common repository of ligands, receptors, cofactors, and their interactions (27). For cell interaction analysis, expression levels were calculated relative to the total read map of the same set of coding genes in all transcriptomes. Expression values were averaged across each single-cell cluster/cell sample.




2.5 Identification of molecular subtypes based on HASCs in TCGA-THCA

Transcriptome data from The Cancer Genome Atlas (TCGA) of THCA were downloaded from UCSC XENA (28) (https://xena.ucsc.edu/). Consensus clustering is a method that provides quantitative evidence for determining the number and membership of possible clusters in a dataset. This approach has been widely used in cancer genomics, where new disease molecular subtypes have been discovered. To discover various molecular patterns based on HASCs, the ConsensusClusterPlus R package was employed (29).




2.6 The characteristics of molecular subtypes

The ESTIMATE algorithm, which comes true with the IOBR R package, was applied to evaluate the immune score and stroma score of the samples for validation of the molecular subtype signatures found (30, 31). Between the molecular subtypes, the variation in the distribution of genes was depicted by the maftools R package (32). At the same time, the drug sensitivity (IC50 value) of 138 GDSC database drugs was predicted by the pRRophetic R package (33).




2.7 Statistical analysis

All statistical analyses were performed using the R tool (v.4.1.1). The Wilcoxon test was applied to compare the differences between two groups, and the Kruskal–Wallis test was used to compare differences between multiple groups of samples. Here, ns indicates P >0.05, * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001, and **** indicates P<0.0001. Among them, P<0.05 indicates a significant difference. The Kaplan–Meier survival analysis was carried out using the R packages survival and survminer.




2.8 Workflow of the experimental design and analysis

The workflow of this study was divided into four steps as follows (Figure 1): the first step is the processing of single-cell data, the second part is the copy-number variation analysis based on the inferCNV algorithm to distinguish malignant and non-malignant epithelial cells, the third step is the acquisition of HASCs, and the fourth step is the molecular typing of TCGA-THCA samples based on HASCs.

[image: Flowchart illustrating a multi-step analysis process for single-cell RNA sequencing data. Step 1 involves normalization and visualization using t-SNE and cell type annotation. Step 2 focuses on CNV analysis of thyroid epithelial cells using inferCNV and K-means clustering. Step 3 contrasts PTC with and without HT using HASC, monocle2, and CellChat for further analysis. Step 4 employs consensus clustering using TCGA-THCA data, ConsensusClusterPlus, maftools, IOBR, and pRRophetic for comprehensive evaluation. Each step is visually represented with relevant icons and diagrams.]
Figure 1 | Workflow of the effect of HT on the PTC tumor microenvironment at the single-cell level.





3 Results



3.1 Landscape of PTC by scRNA-seq

After rigorous quality screening, a total of 140,456 cells were retained for further analysis (Figure 2A). Six cell types, namely, endothelial cells (TIMP3, RAMP2, CLDN5, TFPI, MGP), fibroblasts (RGS5, IGFBP7, TAGLN, COL1A2, ACTA2), thyroid epithelial cells (TG, CLU, FN1, MGST1, S100A13), B cells (CD79A, CD79B, MS4A1, IGKC, CD74), T/NK cells (CD3D, CD3E, IL7R, IL32, TRAC), and myeloid cells (LYZ, FCER1G, LYZ, TYROBP), were obtained by using t-SNE dimension reduction clustering at low resolution (Figure 2B). All these cell subtypes were shared among tissue sources (Figure 2C), whether with or without HT (Figure 2D), and among samples (Figure 2E). It has a mixed biological origin and was not affected by data preprocessing. Overall, compared with non-HT patients, the immune system was significantly activated in HT patients, with more T/NK cells, B cells, and myeloid cells at the cancer site and fewer fibroblast cells. HT, as an autoimmune disease, leads to excessive activation of the immune system, which may inhibit the development of PTC by alleviating the immunosuppressive effect of tumors (Figure 2F). The chi-square test revealed significant differences in the content of the six types of cells between HT and non-HT (Figure 2G). Among them, the content of immune cells was higher in patients with HT although T/NK cells were excluded, which may be due to the low content of T/NK cells in the HT samples of paratumor tissues. Either way, it is clear that the immune systems of the HT samples were better activated.

[image: Image showing a grid of seven panels representing various data visualizations and analyses related to cell types and conditions. Panel A displays a t-SNE plot categorizing different cell types such as endothelial cells and fibroblasts. Panel B presents a heatmap of mean expression levels across various cell types for specific genes. Panels C, D, and E depict additional t-SNE plots illustrating groupings by metastatic status, HT condition, and original identification, respectively. Panel F shows bar charts of cell type distributions across conditions, and Panel G provides bar charts of the fraction of cells under HT and Non-HT conditions.]
Figure 2 | Overview of scRNA-seq analysis across 11 PTC patients. (A) t-SNE plot visualizing 14 distinct clusters encompassing 140,456 cells from all samples (n = 23), colored by cell type (n = 6). (B) Bubble plots showing the expression levels of marker genes for each cell type. (C) t-SNE plot visualizing cell clusters colored by tissue of origin. (D) t-SNE plot visualizing cell clusters colored by HT and non-HT. (E) t-SNE plot visualizing cell clusters colored by samples. (F) Horizontal bar charts showing the relative abundance of various cell types between HT and non-HT in each tissue of origin. (G) Post-hoc analysis of each cell between HT and non-HT; *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.




3.2 Distinguishing between malignant and non-malignant thyroid epithelial cells

Based on the fact that PTC has abundant copy number variation, we infer chromosome copy number variation (CNV) of cells based on RNA expression profile to distinguish mTEs and nTEs. First, according to the results of cell-type annotation, all thyroid epithelial cells were extracted and the CNV of each cell was inferred by using the cells in the paratumors as the reference standard (Figure 3B). Then, K-mean clustering was used to cluster CNV profiles. To determine the optimal clustering coefficient K, single sample gene set enrichment analysis (ssGSEA) was conducted in the TCGA-THCA dataset with the gene set composed of the top 50 genes that were differentially expressed between mTEs and nTEs in the clustering results of each K value (Figure 3A). This was the method that was created to determine the best K-means clustering coefficient. When K = 11, the difference in the enrichment fraction between tumor and paracancer samples showed the smallest P-value. Therefore, we used K = 11 to cluster CNV profiles. K-means clustering subgroups 5 and 6 were nTEs, and the rest of the subgroups were mTEs (Figure 3C). Overall, in the original mTEs, there were 8 distant metastases, 251 lymph nodes, and 701 primary tumor mTE cells classified as paratumor nTEs, and in the original nTEs, there were 346 paratumor nTE cells classified as primary tumor mTEs.

[image: Panel A shows eight box plots comparing enrichment scores between normal and tumor types across different k-means clustering coefficients. Panel B presents an inferCNV heatmap with hierarchical clustering, illustrating gene expression across genomic regions for various tumor classifications. Panel C displays a heatmap showing modified gene expression levels categorized by k-means class, differentiated into para-tumor and tumor types with a color gradient representing expression intensity.]
Figure 3 | The copy number variation (CNV) profile analysis distinguishing malignant thyroid epithelial cells (mTEs) and non-malignant thyroid epithelial cells (nTEs). (A) The differentially expressed genes of mTEs and nTEs obtained at different K values were used as the ssGSEA results of the gene set in TCGA-THCA tumor and paratumor samples. (B) Chromosomal CNV plots of thyroid epithelial cells. The above box was the control group. The lower box shows the tumor groups. (C) Clustering heatmap of CNV on 22 chromosomes at K = 11.

To further investigate the function of mTEs and nTEs, these two cell subsets were reclustered. mTEs were reclustered into 14 clusters (Supplementary Figure S1A), and the mTE3 clusters in HT patients were significantly higher than those in non-HT patients (Supplementary Figure S1B). Although all mTE clusters were significantly different between HT and non-HT patients, mTE3 clusters had a significant preponderance in HT patients (Supplementary Figure S1C). To understand the function of each mTE cluster, GO enrichment analysis was performed. The results showed that the mTE3 cluster was mainly enriched in the thyroid hormone metabolic process and thyroid hormone generation pathways (Supplementary Table S1). Activation of these pathways would produce more thyroid hormones, which would inhibit the secretion of TSH and thus form a TSH-inhibited environment. One of the effective treatment methods for thyroid cancer is TSH inhibition, indicating that HT patients form a TSH-inhibited environment through the high proportion of mTE3 clusters. Moreover, the occurrence and development of thyroid cancer is delayed. After that, nTEs were reclustered into 11 clusters (Supplementary Figure S2A). Similar to mTEs, the proportion of nTE0 and nTE2 clusters in HT patients is significantly higher than that in non-HT patients (Supplementary Figures S2B, C), and these two clusters are also enriched in the thyroid hormone metabolic process and thyroid hormone generation pathways (Supplementary Figure S2D; Supplementary Table S2). The above results indicate that the TSH-inhibiting environment formed by a high proportion of mTE3, nTE0, and nTE2 clusters in HT patients has an inhibitory effect on PTC.




3.3 Pseudotime analysis of thyroid cells

We next explored the mTE3, nTE0, and nTE2 cluster differentiation trajectories in HT patients by inferring the state trajectories using Monocle2. This analysis showed that nTE0 and nTE2 were at the beginning of the trajectory path, whereas mTE3 was at a terminal state (Figures 4A, B). Furthermore, mTE3 is mainly derived from mTE10, and nTE0 and nTE2 are mainly differentiated into nTE6, nTE8, and nTE10 (Figure 4B). At time transition point 1, the characteristic genes of mTE3 clusters were more likely to change from low expression to high expression, while the characteristic genes of nTE0 and nTE2 clusters were more likely to change from high expression to low expression, which was also found at time transition point 2, which further emphasized the results that nTE0 and nTE2 clusters were in the early stage of differentiation and mTE3 clusters were in the late stage of differentiation (Figures 4C–H). These results indicate that in HT patients, nTE0 and nTE2 clusters may differentiate into mTE3 clusters, but some cells transform into other nTE clusters, which does not affect the environment of TSH inhibition, because mTE10 clusters will differentiate into mTE3 clusters, making up for the increase of TSH caused by the decrease of nTE0 and nTE2. This dynamic transformation creates a TSH-inhibiting microenvironment that effectively inhibits PTC in HT patients.

[image: Composite image showing a series of graphs and heatmaps analyzing cell trajectory and gene expression. Panel A displays pseudotime trajectory on a scatter plot with two components. Panel B illustrates cell differentiation paths with directional arrows. Panels C to H present heatmaps of marker genes expression for different cell types and points, with a color scale indicating expression levels. Each heatmap is accompanied by legends denoting cell types and clusters. The color transitions from blue (low expression) to red (high expression).]
Figure 4 | Trajectory analysis of mTE3, nTE0, and nTE2. (A, B) The trajectory analysis of mTE3, nTE0, and nTE2. mTE3 was from mTE10 and nTE0 and nTE2 were divided into nTE8, nTE10, and nTE6. (C) Heatmap showing two-gene clusters of mTE3 marker genes with different expression signatures at pseudotime point 1. (D) Heatmap showing three-gene clusters of mTE3 marker genes with different expression signatures at pseudotime point 2. (E) Heatmap showing three-gene clusters of nTE0 marker genes with different expression signatures at pseudotime point 1. (F) Heatmap showing three-gene clusters of nTE0 marker genes with different expression signatures at pseudotime point 2. (G) Heatmap showing four-gene clusters of nTE2 marker genes with different expression signatures at pseudotime point 1. (H) Heatmap showing four-gene clusters of nTE2 marker genes with different expression signatures at pseudotime point 2.




3.4 Different tumor immune microenvironments between HT and non-HT patients

Innate immunity and adaptive immunity play important roles in the development of PTC (34). By clustering T/NK cells, B cells, and myeloid cells and counting the differences in the proportion of immune cells, differences in the tumor immune microenvironment (TIM) between HT and non-HT patients were discovered. First, T/NK cells were divided into nine cell types: 1) CD4+ T-cell subsets (n = 3), including naive T (Tn), regulatory T (Treg), and Tn_Treg; 2) CD8+ T-cell subsets (n = 5), including effector T (Teff), exhausted T (Tex), effector memory T (Tem), Tex_Teff, and Teff_Tem cells; and 3) NK cell subsets (n = 1), including NKT_NK cells (Figures 5A, B). The high proportion of CD4_Tn_Treg and CD8_Tex_Teff in HT patients indicates the activation of the immune system (Figures 5C, D). More CD8_Teff and less CD8_Tex can effectively mobilize the immune system to kill PTC, while the high percentage of CD4_Tn_Treg can prevent the excessive activation of the immune system and thus maintain immune homeostasis (35). Second, B cells were divided into five cell types, namely, Plasma_B (MZB1, CD38), Native_B (MS4A1, IGHD), Memory_B (MS4A1, CD27), Intermediate_B (IGHD, CD27) and Germinal_center_B (MS4A1, NEIL1) (Figures 5E, F). Intermediate_B was the only cell with a significantly high proportion in HT patients (Figures 5G, H). Myeloid cells were divided into three cell types, and macrophage cells are the primary type (Figures 5I, J). However, high infiltration of conventional dendritic cells (cDCs) in HT patients predicted stronger activation of T cells. Although plasmacytoid dendritic cells (pDCs) could also activate T cells, their activation capacity was smaller (Figures 5K, L). The above proportion of immune cells indicates that HT patients can better activate their own immune system, and the presence of PTC prevents excessive activation of the immune system to reach homeostasis, which forms a dynamic balance between autoimmune diseases and cancer. This finding enables us to clearly see that HT inhibits the development of PTC by mobilizing CD4_Tn_Treg, CD8_Tex_Teff, Intermediate_B, and cDC.

[image: Panels A, E, and I display tSNE plots showing cell type clusters. Panels B, F, and J show dot plots indicating gene expression levels and percentages in different cell types. Panels C, G, and K are bar graphs showing the proportion of different cell types in HT and Non-HT groups. Panels D, H, and L present stacked bar charts indicating the fraction of cells for each type in HT and Non-HT conditions. The data visualizations compare various immune cell types and their gene expressions across different conditions.]
Figure 5 | The scRNA-seq landscape of immune cells. (A) t-SNE plot visualizing 28 distinct clusters of T/NK cells, colored by cell type (n = 9). (B) Bubble plots showing the expression levels of marker genes for each cell type. (C) Horizontal bar charts showing the relative abundance of various cell types between HT and non-HT. (D) Post-hoc analysis of each cell type between HT and non-HT. (E) t-SNE plot visualizing 20 distinct clusters of B cells, colored by cell type (n = 5). (F) Bubble plots showing the expression levels of marker genes for each cell type. (G) Horizontal bar charts showing the relative abundance of various cell types between HT and non-HT. (H) Post-hoc analysis of each cell type between HT and non-HT. (I) t-SNE plot visualizing 20 distinct clusters of myeloid cells, colored by cell type (n = 3). (J) Bubble plots showing the expression levels of marker genes for each cell type. (K) Horizontal bar charts showing the relative abundance of various cell types between HT and non-HT. (L) Post-hoc analysis of each cell type between HT and non-HT. *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.




3.5 Identification of diverse subtypes of stromal cells

Stromal cells are mainly composed of fibroblasts and endothelial cells. The fibroblasts were divided into 11 cell clusters (Figure 6A), which were cell-type-annotated according to the characteristic genes of the four cancer-associated fibroblasts (CAFs) (36). The characteristic genes of myCAFs were highly expressed in most cell subsets, but iCAFs and irCAFs were highly expressed in cell clusters 4, 7, and 8 (Figure 6B). In particular, cell cluster 4 is an important component of CAF in HT patients, and the expression level of PDGFRA, a marker gene of iCAFs, is the highest (Figures 6B–D). The inflammatory and immune environments formed by iCAFs and irCAFs indicate that CAF in HT patients is more benign, which is superior to myCAF’s role in tissue repair during cancer development. Furthermore, endothelial cells were divided into 15 cell clusters (Figure 6E), and endothelial cell cluster 13 almost only existed in HT patients (Figures 6F, G). In order to understand its biological function, GO enrichment analysis was conducted on all endothelial cell clusters, and consistent with nTE0, nTE2, and mTE3 clusters, the marker gene of endothelial cell cluster 13 was mainly enriched in the thyroid hormone metabolic process and thyroid hormone generation pathways (Figure 6H; Supplementary Table S3). In conclusion, a high proportion of fibroblast cluster 4 and endothelial cell cluster 13 in stromal cells is a major feature of HT patients, which will better inhibit the development of PTC.

[image: The image contains a series of panels displaying data visualization related to cell clusters. Panel A shows a t-SNE plot of fibroblast clusters, while Panel E presents a t-SNE plot of endothelial cell clusters. Panels B and H display dot plots and heatmaps illustrating gene expression levels across different clusters. Panels C, D, F, and G include bar charts showing the fraction of cells in various clusters under different conditions, labeled as "HT" and "Non-HT". The visualizations are color-coded to differentiate clusters and conditions.]
Figure 6 | The scRNA-seq landscape of stromal cells. (A) t-SNE plot visualizing 11 distinct clusters of fibroblasts, colored by cell type (n = 4). (B) Bubble plots showing the expression levels of marker genes for each cell type. (C) Horizontal bar charts showing the relative abundance of various cell types between HT and non-HT. (D) Post-hoc analysis of each cell type between HT and non-HT. (E) t-SNE plot showing endothelial cells colored by clusters (n = 15). (F) Horizontal bar charts showing the relative abundance of various clusters between HT and non-HT. (G) Post-hoc analysis of each cluster between HT and non-HT. (H) GO enrichment analysis of the top 50 marker genes in 15 clusters. *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.




3.6 Multiple cell crosstalk reveals the regulatory mechanism of tumor microenvironment

Through the above systematic analysis, we found that nTE0, nTE2, and mTE3 contents were abundant in HT patients, and the environment that causes TSH inhibition can effectively control the development of PTC. At the same time, it was noticed that the tumor microenvironment of HT patients has a significantly high proportion of CD4_Tn_Treg, CD8_Tex_Teff, Intermediate_B, cDC, fibroblast cluster 4, and endothelial cell cluster 13, indicating that there may be a cross-talk among these cells. We refer to these cells as HASCs. To further understand the underlying regulatory mechanisms, we used CellChat to infer intercellular communication between nTE0, nTE2, and mTE3 and other cell types based on the ligand–receptor (L–R). mTE3 and nTE0 interact more closely with other cells, both in terms of the number and intensity of interactions, and more as senders of cell communication. On the other hand, immune and stromal cells interact with other cells more as receivers of cell communication (Figure 7A). nTE0, nTE2, and mTE3 interact primarily with MIF signaling pathways mediated by CD74 and CXCR4 receptors on immune and stromal cells via MIF ligands (Figure 7B). In the MIF signaling pathway network, nTE0, nTE2, and mTE3 showed a similar interaction relationship with all other cells, that is, nTE0 and mTE3 had interactions with all other cells (Figure 7C), and MIF–(CD74+CXCR4) was dominant in these interactions (Figure 7D). Further studies showed that in the MIF–(CD74+CXCR4) signaling pathway, CD4_Tn_Treg, CD8_Tex_Teff, cDC, and Intermediate_B interact with many other cells in the signaling network (Figure 7E), which can also be seen by the expression value of the L–R pairs (Figure 7F). To further determine the role of these cells in the MIF signaling pathway, a cellular communication network system analysis was performed. The results were consistent with the previous results: nTE0 and mTE3 were mainly signal transmitters, while all the other cells except E were receivers, and CD4_Tn_Treg and CD8_Tex_Teff were very active, playing the four roles of signal sending, receiving, mediating, and influencing (Figure 7G). To more intuitively define the role of all cells in the MIF signaling pathway, we visualized the dominant sender (source) and receiver (target) in 2D space (Figure 7H). There was no doubt that nTE0 and mTE3 were the senders of the signal; Intermediate_B, cDC, and fibroblast cluster 4 were the receivers of the signal; CD4_Tn_Treg, endothelial cell cluster 13, and CD8_Tex_Teff were both the sender and the receiver; and nTE2 was almost neither the sender nor the receiver.

[image: Diagram showcasing MIF signaling pathway networks and interactions. Panel A illustrates the number and strength of interactions. Panel B is a dot plot showing p-values of signaling molecules across different cell sources. Panel C and E display MIF signaling networks with source and target interactions. Panel D is a bar chart illustrating the contribution of ligand-receptor pairs. Panel F has violin plots representing molecule expressions across cell types. Panel G exhibits a heatmap of MIF signaling roles such as sender and receiver. Panel H presents a scatter plot of incoming versus outgoing interaction strength, with bubble size indicating count.]
Figure 7 | Cell–cell communication analysis of HASCs. (A) Net count map of HASC interactions. HASC interaction weight map. The thicker the line, the greater the number of interactions and the greater the weight/intensity of interactions between the two cell types. (B) The significantly related ligand–receptor interactions from the main thyroid epithelial cells to other immune and stromal cells. (C) Hierarchy plot of interactions between selected target cells and other cells in the MIF signaling pathway network. (D) Relative contribution of each ligand–receptor pair to the overall communication network of signaling pathways, which is the ratio of the total communication probability of the inferred network of each ligand–receptor pair to that of the signaling pathways. (E) Hierarchy plot of interactions between selected target cells and other cells in the MIF–(CD74+CXCR4) signaling network. (F) Violin plot showing the expression patterns of signaling genes involved in the inferred signaling network. (G) The network centrality index of each cell population was calculated to identify the role of each type of cell in the MIF signaling pathway. (H) Scatter plot visualizing the dominant sender (source) and receiver (target) in the MIF signaling pathway in 2D space.




3.7 Relationship between HASC infiltration and clinical features in bulk RNA-seq

First, we investigated the association of HASC infiltration with PTC prognosis. Patients in groups CD4_Tn_Treg, CD8_Tex_Teff, and mTE3 with high infiltration had a better prognosis although survival differences were not significant (P > 0.05) (Figures 8A, B, G), which was consistent with previous intercellular communication results that CD4_Tn_Treg and CD8_Tex_Teff play multiple roles in critical cell communication. Since the environment of TSH suppression was mainly created by the high infiltration of mTE3, nTE0, and nTE2, it was logical that patients in the high infiltration group of mTE3 would have a better prognosis, but we observed a paradoxical phenomenon that patients with high infiltration of nTE0 and nTE2 would have a worse prognosis (Figures 8H, I). Through the previous trajectory analysis, we found that nTE0 and nTE2 were in the early stage of differentiation, while mTE3 was in the late stage of differentiation. The high infiltration of nTE0 and nTE2 implies that cell differentiation had not begun or was just beginning when the characteristic genes of nTE0 and nTE2 were not immediately functional and the TSH-suppressive environment had not yet formed. In contrast, the high infiltration of mTE3 cells indicated that cell differentiation was nearing completion, the signature genes of mTE3 had completed their role in thyroid hormone production, and the TSH-suppressed environment effectively prolonged patient survival. The high infiltration of cDC, fibroblast cluster 4, and Intermediate_B as receivers of cell communication meant that cell differentiation had fully started, the TSH-suppressive environment had been established, and the patient’s prognosis was naturally better (Figures 8C, E, F). As a group of tissues that can phagocytose foreign bodies, bacteria, necrosis, and aging and participate in the immune activities of the body, patients with high infiltration of endothelial cell cluster 13 would have a better survival time (Figure 8D). Then, we examined the association of HASCs with clinical features. mTE3 was significantly enriched in patients younger than 60, validating the results of the survival analysis (Supplementary Figure S3A). Significant differences in terms of gender were found in CD4_Tn_Treg and Intermediate_B, where CD4_Tn_Treg was significantly enriched in female patients, while Intermediate_B was significantly enriched in male patients (Supplementary Figure S3B). In terms of tumor metastasis, CD8_Tex_Teff and cDC were enriched in patients without metastasis, revealing their role in preventing tumor metastasis (Supplementary Figure S3C). Most of the HASCs were significantly differentially enriched in the presence or absence of regional lymph node metastasis, indicating that regional lymph node metastasis is an important feature of PTC (Supplementary Figure S3D). The results of tumor T stage and AJCC stage showed the same enrichment trend of HASCs. The changes of mTE3, nTE0, and nTE2 were not obvious, but the immune cells CD4_Tn_Treg, CD8_Tex_Teff, and cDC showed a fluctuating change trend, that was from high to low (Supplementary Figures S3E, F), which reflected the dynamic changes of immune cells in the development of cancer. However, advanced patients usually have fewer immune cells, which is consistent with some existing studies (37).

[image: Nine Kaplan-Meier survival curves labeled A to I show survival probability over time in years, comparing high and low groups. Each graph includes a log-rank p-value to indicate statistical significance. The number at risk is displayed below each chart for specific time intervals.]
Figure 8 | Survival analysis of HASCs in TCGA-THCA. (A–I) Kaplan–Meier curve of OS according to CD4_Tn_Treg (log-rank test: P = 0.14) (A), CD8_Tex_Teff (log-rank test: P = 0.057) (B), cDC (log-rank test: P = 0.22) (C), endothelial cell cluster 13 (log-rank test: P = 0.047) (D), fibroblast cluster 4 (log-rank test: P = 0.013) (E), Intermediate_B (log-rank test: P = 0.00043) (F), mTE3 (log-rank test: P = 0.13) (G), nTE0 (log-rank test: P = 0.024) (H), and nTE2 (log-rank test: P = 0.17) (I).




3.8 Consensus clustering of TCGA-THCA based on HASCs

The HASCs were further utilized for consensus clustering analysis. When the clustering coefficient K = 2, the clustering effect was the best, and the internal consistency and stability of the subgroups were good (Figures 9A–C). Cluster 1 was more abundant in immune cells, in contrast to cluster 2, which was more abundant in stromal cells (Figure 9D). This finding was validated by the results of sample immune scoring and stromal scoring evaluated by the ESTIMATE algorithm (Figures 9E, F). Previous studies have confirmed that high infiltration of immune cells such as CD8+ T cells and CD4+ T cells predicts better prognosis. Next, we compared the mutation status of cluster 1 and cluster 2 and found that the overall tumor mutation burden (TMB) of cluster 1 was higher, indicating that cluster 1 could benefit better from immunotherapy (38). At the same time, we found that the BRAF gene mutation frequency was the highest in both subgroups, which was consistent with previous studies (6). However, we also found that cluster 1 and cluster 2 showed different mutation patterns. Mutations in cluster 1 mainly occurred in TTN and MACF1 genes, while mutations in cluster 2 mainly occurred in NRAS and HRAS genes of the RAS gene family (Figures 9G, H). The IC50 value of 138 drugs in the Genomics of Drug Sensitivity in Cancer (GDSC) database was predicted based on the expression profile of TCGA-THCA. The top 9 drugs with significant differences in drug sensitivity between subgroups were shown here, which were BMS.536924 (Figure 10A), parthenolide (Figure 10B), sunitinib (Figure 10C), AICAR (Figure 10D), VX.680 (Figure 10E), paclitaxel (Figure 10F), KU.55933 (Figure 10G), vinblastine (Figure 10H), and BMS.509744 (Figure 10I). Among them, sunitinib, VX.680, paclitaxel, and vinblastine are anticancer drugs, and cluster 1 showed a stronger drug sensitivity to these drugs, indicating that this cluster had a better response to drug treatment, which was consistent with the previous results of higher TMB. The classification of molecular subtypes in TCGA-THCA samples allows us to more precisely target drug therapy, and this new finding will help in the treatment of PTC patients.

[image: Composite analysis of sample clustering and gene variation. Panel A shows a consensus matrix heatmap for k equals two. Panel B displays the consensus cumulative distribution function (CDF) plot. Panel C illustrates the delta area plot comparing CDF curves. Panel D presents box plots of enrichment scores for various cell types across two clusters, with statistical significance marked. Panels E and F show box plots comparing ImmuneScore and StromalScore between clusters, with significant p-values. Panels G and H are oncoplots depicting gene variants in 148 and 126 samples, showing percentages of altered samples and highlighting specific gene variations.]
Figure 9 | Identification of different molecular subtypes based on HASCs. (A) Consensus clustering matrix when K = 2. (B) Consensus clustering CDF with K values of 2 to 9. (C) Relative change in area under the CDF curve for K = 2. (D) Box plot of the HASC content between cluster 1 and cluster 2. (E, F) Box plot of the difference between immune scores (E) and stromal scores (F) in subtypes based on the ESTIMATE algorithm. (G, H) SNV waterfall of the top 20 (mutation frequency) genes in cluster 1 (n = 148) (G) and cluster 2 (n = 126) (H). *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.

[image: Violin plots compare the estimated IC50 values across two clusters for nine drugs: BMS.536924, Parthenolide, Sunitinib, AICAR, VX.680, Paclitaxel, KU.55933, Vinblastine, and BMS.509744. Each plot displays red for Cluster 1 and brown for Cluster 2, with significant differences indicated by Wilcoxon p-values below 2.2e-16 for most drugs.]
Figure 10 | Variations in drug sensitivity between cluster 1 and cluster 2. (A–I) IC50 box diagram of the nine drugs with significant difference in drug sensitivity in cluster 1 and cluster 2, respectively, in which red indicated cluster 1 and brown indicated cluster 2.





4 Discussion

The present investigation addresses a critical gap in our understanding of PTC by leveraging scRNA-seq, transcending the limitations of conventional bulk RNA-seq methodologies that inadequately delineate cellular heterogeneity (39, 40). By harnessing the high-resolution capabilities of scRNA-seq, we align with prior research highlighting its significance in PTC exploration (41), offering a refined perspective on the disease. Given the autoimmune nature of HT and its potential to modulate immune cell activity—a pivotal factor in PTC management (42)—our study underscores the necessity to elucidate HT’s impact on PTC.

Our work innovates in the approach to distinguish malignant from non-malignant cells, a challenge traditionally addressed through inferential CNV analyses in cancer research (25, 43–48). To overcome the impediment of low CNV variability in PTC, we employed K-means clustering informed by the statistical significance of differential enrichment scores derived from TCGA data. This novel methodology optimizes CNV-based classification, contributing a robust tool for future scRNA-seq studies.

A pivotal discovery lies in the identification of HT-associated specific cell populations (HASCs). Our findings resonate with the therapeutic efficacy of TSH suppression in PTC management (49), revealing that HASC subsets—marked by mTE3, nTE0, and nTE2 cells enriched in thyroid hormone pathways—are conducive to a TSH-suppressive milieu, thereby affirming HT’s positive influence on PTC progression through these cell clusters (50).

Additionally, our study elucidates the intricate interplay between immune and stromal cells with thyroid cells, pinpointing specific cell clusters such as CD4+ Tn Tregs, CD8+ Teff, and others, where the MIF–(CD74+CXCR4) axis emerges as a crucial mediator. This pathway, previously implicated in PTC immunotherapy (51), highlights immune cells’ centrality in TSH milieu regulation, underscoring their potential as therapeutic targets. Notably, CD4_Tn_Treg and CD8_Tex_Teff cell subsets were found to play multiple roles in the cellular communication of HASCs, which was consistent with previous studies on the role of T cells in PTC (24).

A preceding meta-analysis has affirmed the differential impacts of immune and stromal cells in the tumor microenvironment (50). Consequently, we ventured to elucidate the prognostic implications of HASCs at the tissue level. Our findings revealed heterogeneous effects of individual cell types on disease prognosis, with CD4+ Tn Tregs, CD8+ Tex Teffs, and mTE3 exhibiting elevated enrichment in M0, T1, and stage I, concurrently associated with younger patient age. No discernible variation was noted concerning gender or N-stage classification. This cellular heterogeneity underscores the complexity of tumor ecosystems, a characteristic well-documented in TCGA-THCA cohorts (51). To further dissect this heterogeneity, molecular stratification emerges as the premier strategy, endorsed extensively in the literature. Thus, consensus clustering was employed to segregate TCGA-THCA cases into two distinct clusters (cluster 1 and cluster 2), where cluster 1 displayed heightened HASC enrichment, indicative of a correlation with HT, an observation corroborated by the ESTIMATE algorithm. Additionally, our investigation of drug responsiveness revealed cluster 1 to be more susceptible to chemotherapeutic agents like sunitinib, VX-680, paclitaxel, and vinblastine, reinforcing the hypothesis that cluster 1 represents HT-positive PTC, with its enriched immune landscape enhancing sensitivity to anticancer therapies, a pivotal insight for therapeutic strategies.

In aggregate, our research constitutes a comprehensive exploration of cellular subset disparities between HT-positive and HT-negative PTC patients at the single-cell resolution. By isolating HASCs from differential cell populations, we facilitated an in-depth examination of intercellular communication dynamics, unearthing regulatory mechanisms. Expanding upon prior studies, we quantified HASC abundance in bulk transcriptomic datasets and conducted cluster analysis on TCGA samples. This work underscores the significance of HT in modulating PTC progression and identifies the MIF–(CD74+CXCR4) axis as a potential therapeutic target. While acknowledging limitations, our study undeniably illuminates the favorable influence of HT on PTC outcomes, thereby furnishing a fresh perspective and theoretical foundation for subsequent inquiries.
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Background

High-risk differentiated thyroid cancer in 2015 American Thyroid Association risk stratification system (ATA-RSS) exhibits a significantly increased probability of recurrence and poor outcomes. This study aimed to investigate the molecular profiles of high-risk differentiated thyroid cancer and to assess the role of molecular testing in enhancing prognostic risk stratification.





Methods

In a single-center study conducted at Fujian Cancer Hospital, Fujian Province, China, a consecutive cohort of differentiated thyroid cancer patients identified as high-risk under 2015 ATA-RSS criteria were retrospectively assessed, spanning from November 1, 2019, to March 31, 2022. Molecular characterize groups were conducted using an 18-gene next-generation sequencing assay. Patients harboring mutations in the TERT promoter, TP53, or PIK3CA genes were categorized as the high molecular risk group, while all others were assigned to the non-high molecular risk group.





Results

Among the 108 cases, 32 (29.6%) fell into the high molecular risk group, characterized by a significantly older mean age (57.8 vs. 42.6 years, p < 0.001), larger tumor size (3.1 cm vs. 2.0 cm, p = 0.003), a higher incidence of aggressive pathological subtypes (43.8% vs. 7.9%, p < 0.001), and an increased occurrence of distant metastasis (34.4% vs. 7.9%, p = 0.001). Over a median follow-up period of 32.5 months, this high-risk group demonstrated an elevated risk of local recurrence (32.1% vs. 9.5%, HR: 3.18, 95% CI: 1.15-8.78) and metachronous distant metastasis (38.1% vs. 2.9%, HR: 12.54, 95% CI: 2.60-60.41). Multivariate COX regression analysis confirmed that molecular characterize groups (HR: 5.77, 95% CI: 2.18-15.23, p < 0.001) and tumor size (HR: 1.32, 95% CI: 1.00-1.74, p = 0.047) independently predicted recurrence-free survival.





Conclusion

ATA-RSS high-risk differentiated thyroid cancer often presents with late-hit genetic alterations, which are strongly associated with increased likelihood of structural recurrence. Molecular testing offers a precise approach to recurrence risk stratification in high-risk cases, enabling personalized follow-up and treatment strategies tailored to the specific prognostic profile.
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1 Introduction

Thyroid cancer has demonstrated the most rapid rise in incidence among endocrine malignancies globally in recent decades. By 2020, the global incidence surpassed 500,000 new cases annually, with over 200,000 in China alone (1, 2). Despite differentiated thyroid cancer (DTC) comprising the majority of cases, often associated with favorable outcomes and low mortality, a subset of patients will experience relapse or metastasis, developing resistance to radioactive iodine (RAI), thus creating a substantial therapeutic obstacle (3). Postoperative management of DTC now primarily relies on risk-based assessments, prioritizing individualized approaches and ongoing adjustments. Prognostic evaluation is currently guided by the 8th edition of the American Joint Committee on Cancer Tumor-Node-Metastasis (AJCC TNM) staging system and the 2015 American Thyroid Association risk stratification system (ATA RSS), both of which are widely adopted methodologies (4). The 8th edition of the AJCC TNM staging system provides a more precise reflection of mortality risk. However, for evaluating postoperative recurrence risk in DTC patients with favorable prognoses, greater reliance on supplementary risk assessment tools is warranted (5). The 2015 ATA RSS serves as a key prognostic framework following DTC surgery. In a study with a median follow-up of 4 years, 31% of patients in the ATA high-risk group achieved no evidence of disease (NED), compared to 52% in the intermediate-risk group and 78% in the low-risk group (6). A separate short-term study reported recurrence rates of 22.8%, 6.7%, and 2.9% for the high-, intermediate-, and low-risk groups, respectively (7). These findings indicate that the ATA RSS stratifies recurrence risk with greater precision. In various regions, including China, the ATA RSS remains a foundational tool for postoperative risk assessment. However, the ATA RSS framework omits several critical individual variables, such as pathological subtypes, multifocality, extranodal invasion, and molecular profiles, resulting in substantial prognostic variability even among cases classified within the same risk group (4). Continued research and accumulating evidence are required to refine and enhance the accuracy of this stratification system. In the three risk classes, persistent and recurrent lesions frequently occur in high-risk DTC cases, posing significant obstacles to effective treatment (8, 9). Further investigation into prognostic factors for patients within this risk category remains essential.

Research into the molecular mechanisms of thyroid cancer has evolved over several decades, with early studies identifying key mutations in BRAF and RAS, along with fusion events in the RET and NTRK genes (10, 11). These genetic alterations critically affect the clinical and pathological characteristics of thyroid cancer by activating the mitogen activated protein kinase (MAPK) and/or PI3K/AKT/mTOR signaling pathways. Such oncogene mutations are present throughout all stages of thyroid cancer and are now recognized as early drivers of tumorigenesis (12). Molecular diagnostic tools that detect common early driver genes, such as BRAF V600E, RAS, RET, and PAX8/PPARG, when combined with fine needle aspiration biopsy (FNAB), have been shown to substantially enhance diagnostic accuracy, a finding supported by numerous studies and widely accepted in the field (13–16). Some of these driver alterations, such as BRAF V600E, RET, NTRK fusion, and ALK fusion, also serve as therapeutic targets for selective kinase inhibitors. Compared to multi-targeted kinase inhibitors, these agents are often preferred due to their superior efficacy and safety profiles, underscoring the heightened clinical value of molecular testing in managing aggressive and RAI-refractory thyroid cancers (17). Mutations in the PI3K/AKT/mTOR pathway, including PIK3CA, AKT1 and PTEN are infrequent in thyroid cancer, though they can act as early driver mutations in certain RAS-like subtypes. More commonly, however, they co-occur with other driver mutations in advanced, poorly differentiated cases (12, 18). Additionally, mutations in the TERT promoter (TERTp) and tumor suppressor genes like TP53 and CNKN2A frequently co-mutate with driver genes. These mutations are closely linked to adverse prognostic indicators, such as recurrence, metastasis, and iodine resistance. Importantly, they are regarded as late-stage mutations that drive thyroid cancer dedifferentiation and progression to high-grade or undifferentiated forms (12, 18). These previous findings have enabled prognostic stratification of certain thyroid cancers through the integration of specific genetic markers in molecular testing. In recent years, several studies have sought to elucidate the association between the molecular profiles of thyroid cancer and clinical risk and prognosis. Yip et al. conducted a case-control study analyzing the genetic variation in DTC patients with distant metastases, proposing molecular risk stratification based on these variations, with distinct groups showing differing predicted rates of distant metastasis (19). Liu et al. and Schumm et al. further validated the relationship between this molecular risk stratification and tumor recurrence through retrospective cohort studies (7, 20). Collectively, these studies have highlighted the feasibility of molecular testing in enhancing current risk assessment models and introduced novel perspectives for its application in thyroid cancer management.

The molecular profiles of ATA high-risk DTC patients and its association with prognosis remain unexplored. This retrospective cohort study analyzed the clinical characteristics and follow-up data of ATA high-risk individuals who underwent 18-gene next-generation sequencing (NGS) test, aiming to evaluate the potential of incorporating molecular profiles to refine postoperative recurrence risk stratification in this high-risk population.




2 Materials and methods



2.1 Patients and clinicopathologic data

This retrospective cohort study analyzed medical records from consecutive patients who underwent primary thyroidectomy with a pathological diagnosis of DTC at Fujian Cancer Hospital, Fujian Province, China, between November 1, 2019, and March 31, 2022, utilizing the hospital’s electronic medical record system. This study was approved by the Ethics Committee of Fujian Cancer Hospital, Fuzhou, China (Ethics Number: K2024-400-01). Preoperative assessment, surgical extent, and postoperative management adhered to the 2015 ATA guidelines and the Chinese National Health Commission’s thyroid cancer diagnosis and treatment protocols. The ATA high-risk category was assigned based on the criteria outlined in the 2015 ATA guidelines (4). This retrospective cohort study analyzed medical records from consecutive patients who underwent primary thyroidectomy with a pathological diagnosis of DTC at Fujian Cancer Hospital, Fujian Province, China, between November 1, 2019, and March 31, 2022, utilizing the hospital’s electronic medical record system. Preoperative assessment, surgical extent, and postoperative management adhered to the 2015 ATA guidelines and the Chinese National Health Commission’s thyroid cancer diagnosis and treatment protocols. The ATA high-risk category was assigned based on the criteria outlined in the 2015 ATA guidelines (Figure 1). Preoperative variables included patient age, sex, and tumor size. Imaging results from Doppler ultrasound, computed tomography (CT), and magnetic resonance imaging were assessed to verify the characteristics of the primary tumor, lymph node involvement, and distant metastasis. Surgical records were examined to determine macroscopic extrathyroidal extension (ETE) and extranodal extension (ENE) based on descriptions of primary tumors and regional lymph nodes. Postoperative pathology reports, reviewed by experienced pathologists, provided confirmation of pathological subtypes, lymph node metastasis, ETE, ENE, multifocality, and other relevant data. Notably, since molecular testing was conducted postoperatively, pathologists were unaware of these molecular findings at the time of initial pathological diagnosis of surgical specimens.

[image: Flowchart depicting patient selection for a study. It begins with 2226 patients undergoing thyroidectomy for primary DTC. Of these, 2060 are classified as low or intermediate risk, and 166 as high risk by ATA RSS. From the high-risk group, 131 undergo molecular testing. Of these, 108 form the study cohort, while 16 show no alterations, and 7 have unavailable follow-up data. Additionally, 35 high-risk patients did not receive molecular testing.]
Figure 1 | Flowchart of patient inclusion and exclusion. DTC, Differentiated Thyoid Cancer; ATA RSS, 2015 ATA Risk Stratification System.




2.2 Molecular testing and molecular characterize groups

Molecular testing for thyroid tumors has not been routinely integrated into the diagnostic and therapeutic protocols in China. At our institution, such testing was recommended post-surgery for cases identified as high risk according to ATA RSS, where its potential clinical benefit was considered substantial. Patients were fully briefed on the associated costs and clinical implications, followed by informed consent if they opted for the testing. Sequencing libraries were constructed using the thyroid cancer 18-genes panel (RigenBio) in adherence to the manufacturer’s protocol. This panel, a multiplex PCR-based NGS assay, was designed to detect point mutations, insertions/deletions, and gene fusions across 18 genes implicated in thyroid cancer, including AKT1, BRAF, CTNNB1, EZH1, GNAS, HRAS, KRAS, NRAS, NTRK, PAX8/PPARG, RET, PIK3CA, PTEN, SPOP, TERTp, TP53, TSHR, and ZNF148. Genomic DNA and total RNA were extracted from formalin-fixed, paraffin-embedded (FFPE) thyroid nodule specimens utilizing the FFPE DNA/RNA Extraction Kit (RigenBio). Total RNA was reverse-transcribed into cDNA, and both DNA and cDNA were amplified via multiplex PCR targeting specific genomic regions. Each amplified library underwent indexing and adapter ligation through an additional round of PCR. Purified indexed libraries were quantified using a Qubit fluorometer (Thermo Fisher), and sequencing was performed on the NovaSeq 6000 platform (Illumina) with 150 bp paired-end reads. Adapter sequences at the 3’ and 5’ ends of the reads were trimmed using Trimmomatic (v0.38) prior to alignment. SNV and InDel calling was performed using VarScan (v2.3.9), and variants were annotated with VEP. Gene fusions were identified by analyzing fusion transcript sequences with a customized script. Following previously reported molecular risk stratification methods (7, 20–22) and integrating the molecular variation data from this study, molecular characterize groups (MCGs) were categorized based on missense mutations, insertions/deletions, and gene fusions identified in molecular testing. Cases with “negative” molecular testing results were excluded from the study cohort. Patients harboring any of the four gene mutations—TERTp, TP53, PIK3CA, and AKT1—were classified into the high molecular risk (HMR) group, while those without these mutations were assigned to the non-HMR group.




2.3 Postoperative management and follow-up

Postoperative assessments were conducted to classify pTNM stage followed the AJCC 8th edition. During follow-up, abnormal neck findings on ultrasound or CT were further evaluated using ultrasound-guided FNAB to confirm structural recurrence (SR). Local recurrence encompassed lymph node metastasis in the neck and upper mediastinum, as well as other thyroid-originating lesions in these regions. Metachronous distant metastasis was primarily identified through biochemical markers, including serum thyroglobulin and thyroglobulin antibodies, alongside imaging modalities such as CT and RAI whole-body scans. Final diagnoses were made by a multidisciplinary team consisting of specialists in thyroid surgery, endocrinology, radiotherapy, radiology, and pathology. The diagnosis of RAI-refractory disease adhered to the criteria specified in the 2015 ATA guidelines (4). The study assessed all-cause mortality using data from medical records and telephone follow-ups, with the endpoint defined as the date of the patient’s last follow-up or death. The follow-up records were concluded as of March 31, 2024.




2.4 Statistical analysis

Normally distributed continuous variables were presented as mean ± standard deviation, and inter-group differences were assessed via Student’s t-test. For non-normally distributed variables, data were expressed as median ± interquartile range (IQR), with the Mann-Whitney U test used for between-group comparisons. Categorical variables were evaluated using the χ² test, with Fisher’s exact test applied when necessary. Univariate logistic regression was employed to assess the association between MCGs and both local recurrence and metachronous distant metastasis. The Kaplan-Meier method was applied to assess the relationship between MCGs and recurrence-free survival (RFS). For the COX regression model, univariate regression analysis initially identified potential variables associated with RFS, focusing on established prognostic factors such as age (<55 or ≥55 years), gender, tumor size (cm), pathological subtype, multifocality, ETE, ENE, N stage, and RAI ablation (23, 24). To avoid omitting potential prognostic variables that could be correlated with the outcome in the multivariable analysis, we have relaxed the significance threshold for this step to p < 0.10, variables with p ≥ 0.10 were excluded. Multivariate analysis then incorporated the remaining variables from the univariate screening alongside MCGs. A proportional hazard regression model was constructed using the likelihood ratio test (Forward: LR) with maximum partial likelihood estimation to identify independent factors related to RFS. Statistical analysis and visualization were performed using IBM SPSS Statistics version 22.0 (IBM Corp., NY, USA). All statistical tests were two-sided, with p < 0.05 deemed statistically significant.





3 Results



3.1 Clinical features

In a cohort of 108 ATA high-risk DTC patients, 59 (54.6%) were female, with a mean age of 47.1 years (SD: 14.6) and a median tumor size of 2.1 cm (IQR: 1.3–4.0). The majority of patients (97.2%) underwent total thyroidectomy with concurrent cervical lymph node dissection, while 3 patients received lobectomy with central lymph node dissection. Postoperative pathology confirmed papillary thyroid carcinoma (PTC) in 105 cases (97.2%), of which 17 (15.7%) exhibited invasive features, including 16 tall cell and 1 columnar cell variant. The remaining 3 cases were identified as widely invasive follicular thyroid carcinoma (FTC). In this cohort, high-risk ATA criteria encompassed macroscopic ETE (93.5%), distant metastasis (14.8%), metastatic lymph nodes with a maximum diameter ≥3 cm (13.9%), incomplete tumor resection (5.6%), FTC exhibiting more than 4 vascular invasions (2.8%), and postoperative serum thyroglobulin (Tg) levels suggestive of distant metastasis (1.9%). Most cases presented with central (89.8%) or lateral neck (54.6%) lymph node metastasis. Among the 17 cases with initial distant metastasis, lung involvement predominated (82.4%), followed by bone metastasis (23.5%). Other metastatic sites included the abdomen and brain, with one case each (5.9%). Among the clinical characteristics, 48 cases (44.4%) presented with ENE, and 70 cases (64.8%) exhibited multifocal lesions. Three patients who initially underwent thyroid lobectomy did not proceed with the recommended total thyroidectomy. Postoperative assessment, which included imaging and RAI whole-body scans for cases with elevated Tg levels, identified 90 patients (83.3%) as NED. Of these, 71.1% underwent RAI ablation or adjuvant therapy as prescribed, while the remainder received only thyroid-stimulating hormone suppression therapy and routine follow-up. The 18 patients with unresectable locally persistent disease or distant metastasis were treated with therapeutic RAI.




3.2 Molecular profiles and molecular characterize groups

A total of 134 genetic variants across eight genes were identified in the study cohort, including 93 missense mutations, 26 upstream promoter mutations, and 15 fusion mutations, with the BRAF V600E mutation being the most prevalent (75%), followed by TERTp mutations (24.1%), RET fusions (12.0%), and PIK3CA mutations (5.6%) (Figure 2). Early driver mutations, such as BRAF V600E, RET fusion, NTRK fusion, and KRAS/NRAS mutations, were present in 92.6% of cases. Of the 8 cases with unidentified driver genes, 7 exhibited the single TERTp C228T mutation, while 1 presented with the single TP53 E271K mutation. Based on the MCGs outlined earlier, 32 cases (29.6%) were assigned to the HMR group, and the remaining 76 cases were categorized as non-HMR. The HMR group demonstrated an older mean age (57.8 vs. 42.6, p < 0.001), more aggressive pathological subtypes (43.8% vs. 7.9%, p < 0.001), larger primary tumors (3.1 cm vs. 2.0 cm, p = 0.003), and a greater incidence of distant metastasis (34.4% vs. 7.9%, p = 0.001) (Table 1). Postoperatively, fewer patients in the HMR group achieved NED status (65.6% vs. 90.8%, p = 0.001). In cases achieving NED after initial treatment, 81.0% of the HMR group and 68.1% of the non-HMR group completed RAI ablation or adjuvant therapy, with no statistically significant difference observed between the groups (p = 0.256). A significant difference was found in ETE (p = 0.025), where 97.4% of the non-HMR group exhibited macroscopic ETE, compared to 84.4% in the HMR group. The female proportion was 40.6% in the HMR group and 60.5% in the non-HMR group, but this difference lacked statistical significance (p = 0.058). Regarding initial surgery, incomplete local tumor resection occurred in 12.5% of the HMR group and 2.6% of the non-HMR group, though this difference was also not statistically significant (p = 0.062).
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Figure 2 | Waterfall plot of molecular profiles and clinical features of 108 patients with ATA high risk differentiated thyroid cancer. ETE, Extrathyroidal extension; MCGs, Molecular characterize groups; HMR, High Molecular Risk; APTC, aggressive papillary thyroid cancer; PTC, papillary thyroid cancer; WIFTC, widely invasive follicular thyroid cancer.

Table 1 | Demographic characteristics and clinical features of patients with ATA high risk differentiated thyroid cancer at initial surgery by Molecular Characterize Groups.


[image: Table compares demographic and clinical features between Non-HMR and HMR groups. Non-HMR has 76 patients, HMR has 32. Key differences: HMR group is older (p < 0.001), higher aggressive PTC percentage (34.4% vs 7.9%), presence of widely invasive FTC (9.4%). Extrathyroidal extension macroscopic in HMR is lower (84.4% vs 97.4%, p = 0.025). Median tumor size is larger in HMR (3.1 vs 2.0, p = 0.003). NED post-surgery is less in HMR (65.6% vs 90.8%, p = 0.001).]



3.3 Outcomes

As of March 31, 2024, the median follow-up for the 108 cases was 32.5 months (IQR: 28–38), with no statistically significant difference in follow-up duration across groups (p = 0.159) (Table 2). In the HMR group, 17 cases (53.1%) and in the non-HMR group, 8 cases (10.5%) underwent therapeutic RAI for distant metastases or inoperable local lesions. Among these, 13 cases (76.5%) in the HMR group and 3 cases (37.5%) in the non-HMR group met RAI refractory criteria, although this difference did not reach statistical significance (p = 0.075). The HMR group exhibiting an elevated risk of local recurrence (HR: 3.18, 95% CI: 1.15-8.78) and metachronous distant metastasis (HR: 12.54, 95% CI: 2.60-60.41). Survival analysis indicated a strong association between MCGs and RFS (p < 0.001) (Figure 3). As described above, we first performed univariate analysis to preliminarily screen the initially identified variables, the results suggested that age, tumor size, N stage, and invasive pathological subtype may influence RFS (p < 0.10). Upon constructing the multivariate regression model, only MCGs (HR: 5.77, 95% CI: 2.18-15.23) and tumor size (HR: 1.32, 95% CI: 1.00-1.74) emerged as independent factors associated with RFS. During the follow-up period, 3 patients (9.4%) in the HMR group died, with survival times of 7, 15, and 22 months, respectively, all deaths attributable to the tumor. No deaths occurred in the non-HMR group, and the difference in mortality between the groups was statistically significant (p = 0.039).

Table 2 | Outcome of patients with ATA high risk differentiated thyroid cancer by Molecular Characterize Groups.
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Figure 3 | Recurrence free survival among 90 patients with ATA high risk differentiated thyroid cancer who had no evidence of disease after initial treatment, stratified by Molecular Characterize Groups. HMR, High Molecular Risk.





4 Discussion

ATA high-risk cases in DTC pose significant treatment challenges and are associated with poorer outcomes. Research on these high-risk cases remains limited, with considerable variation in reported characteristics across studies. A Dutch single-center study by Van Velsen et al., involving 236 ATA high-risk DTC patients, identified FTC in 32% of cases, ETE in 32%, cervical lymph node dissection in 45%, and distant metastasis in 33% (19). In contrast, a retrospective single-center study by Shah et al. in the United States, analyzing 320 ATA high-risk DTC cases, reported FTC in 4.1%, ETE in 94%, cervical lymph node metastasis (N1a+N1b) in 62.5%, and distant metastasis in 13.4%. The cohort characteristics observed in this study align with those reported by Shah et al., with a minimal incidence of FTC, most complicated by ETE, and 14.8% presenting with distant metastasis. These variations likely stem from differences in the pathological composition. In contrast, the higher proportion of FTC in van Velsen et al.’s study may explain the lower rates of ETE and lymph node metastasis, alongside a higher incidence of distant metastasis. Notably, the rate of cervical lymph node metastasis in this study exceeded that of the two aforementioned studies. Potential explanations include: (1) China’s diagnostic and treatment protocols still recommend routine prophylactic central cervical lymph node dissection, leading to the detection of subclinical metastases in cases, including those initially staged as cN0; (2) this study employed a more positive pre-treatment evaluation strategy for lateral cervical lymph nodes. For suspicious lesions detected on ultrasound or CT, ultrasound-guided FNAB combined with Tg measurement in puncture eluent enhanced the detection rate of lateral cervical lymph node metastasis (25). Additionally, 64.8% of the cases in this study involved multifocal lesions, with more than half (54.6%) exhibiting lateral cervical lymph node metastasis, and 44.4% showing ENE. These features align with previous reports on the characteristics of advanced DTC (3).

The NGS molecular assay used in this study incorporated an 18-gene panel, shown in prior research to improve diagnostic precision for FNAB (15). In contrast to widely adopted large NGS panel like ThyroSeq V3 and Afirma GSC, this assay targets the 18 most prevalent genes in Chinese thyroid cancer cases, optimizing cost-effectiveness. Previous studies employing large NGS panel reported variant detection rates ranging from 86.5% to 95.2% (20, 26, 27). In this study, clinically significant variants were identified in 87.8% of ATA high-risk DTC cases, with driver variants detected in 92.6%, reflecting comparable detection efficiency. Additionally, this molecular test covers several key prognosis-related genes, including TERTp, TP53, PIK3CA, AKT1, and PTEN, enhancing the ability to identify high-risk molecular profiles. Nevertheless, given the limited scope of molecular testing in this study, we believe that the molecular backgrounds of the “no alteration detected” cases remains unknown and may vary on an individual basis, which is why they were excluded from the study. Among the ATA high-risk cohort, the most prevalent driver variants were BRAF V600E, NRAS, KRAS mutations, and RET and NTRK fusions, aligning with findings from a recent Chinese study focused primarily on DTC (26). This distribution is also consistent with another report from China involving PTC cases with high recurrence risk (28). In this cohort, TERTp and PIK3CA mutations were identified in 24.1% and 5.6% of cases, respectively, notably exceeding the frequencies reported in other cohorts with varying recurrence risks. For instance, Du et al. reported TERTp and PIK3CA mutations in 6.3% and 1.5% of cases, respectively (26). Similarly, in a meta-analysis focusing solely on PTC, the average incidence of TERTp mutations was 10.1% (21). The elevated frequency of high-risk molecular alterations in the ATA high-risk DTC cohort suggests that prognostic gene detection in this group may hold enhanced clinical relevance. This study found that high-risk molecular alterations were consistently associated with BRAF V600E or NRAS mutations, while no such mutations were detected in the 15 cases exhibiting RET or NTRK fusions, aligning with findings from other large-scale studies. For instance, TCGA reports indicate that TERTp mutations are linked to driver mutations or arm-level somatic copy number alterations, rather than BRAF mutations or gene fusions (29). In the study by Du et al., only one case of RET fusion and one of NTRK1 fusion were accompanied by TERTp mutations (26). However, other studies have noted the co-existence of RET fusions and TERTp mutations, which may impact prognosis and the response to RET and MEK targeted therapies (30). Further investigation into the association between gene fusion variants and late-stage alterations, such as TERTp mutations, is warranted as additional data becomes available.

A 2021 study by Yip et al. first proposed a novel molecular risk classification divided into three categories based on ThyroSeq, version 3 molecular testing and ThyroSeq Cancer Risk Classifier (19). This classification has since been adopted in several subsequent studies, with its clinical relevance consistently validated (7, 20, 22). The present study adapted this classification, modifying the risk grouping to align with the specific molecular tests used and the unique characteristics of the study cohort. Due to the limitations of molecular testing in this study in detecting certain early driver genes (e.g., ALK, DICER1, EIF1AX, etc.) and specific variant forms (e.g., gene expression alterations, copy number alterations, etc.), “concurrent early variants” were not considered a requirement for inclusion in the HMR group. Additionally, possibly influenced by the cohort characteristics, only two cases exhibited “RAS-like” molecular profiles, which were defined as “low molecular risk”. Consequently, the sample size for analyzing “low-risk” cases was insufficient, the non-HMR cases were not further stratified into “low-risk” or “intermediate-risk”. In the study by Liu et al., increasing molecular risk was associated with higher mean patient age, a lower proportion of female patients, larger median tumor size, and more frequent occurrences of aggressive PTC subtypes, ETE, cervical lymph node metastasis, and synchronous distant metastasis (22). Schumm et al. also identified a correlation between higher molecular risk groups and more aggressive clinical features, including larger primary tumors, ETE, and positive surgical margins (20). Similarly, in the HMR group of this study, clinical parameters such as age, tumor size, aggressive pathological subtypes, and distant metastasis demonstrated comparable patterns. Although TERTp mutations are well-documented as being significantly associated with RAI resistance (21, 31), the relationship between molecular risk stratification and RAI refractory status has not been explored. In this cohort, 25 patients underwent therapeutic RAI for unresectable lesions. While the HMR group exhibited a higher prevalence of RAIR cases, the difference was not statistically significant, likely due to the limited sample size. Further investigation is required to determine whether MCGs can reliably predict RAI treatment efficacy, with larger sample sizes necessary.

Previous studies have demonstrated a significant correlation between high-risk molecular variants and both RFS and SR following DTC surgery, with a strong link to distant metastasis. For example, Liu et al. observed a substantially lower 36-month RFS in the high molecular risk group compared to the intermediate and low-risk groups, with a recurrence risk exceeding threefold that of the latter two groups (22). Similarly, Schumm et al. found that patients in the high molecular risk group exhibited an elevated risk of SR (HR: 9.31) and distant metastasis (HR: 42.7) compared to those in the intermediate-risk group (20). In our study, a median follow-up of 32.5 months revealed significant differences in key prognostic indicators, including local recurrence, metachronous distant metastasis, and RFS across various MCGs following initial surgery. Notably, 80% of metachronous distant metastasis cases occurred in the HMR group. In contrast, the non-HMR group exhibited markedly lower rates of SR (10.1%) and metachronous distant metastasis (2.9%) compared to the overall study cohort, and significantly below historical data for ATA high-risk DTC (8, 9). All three recorded deaths occurred within the HMR group. Although between-group differences in mortality were significant, the limited follow-up duration and small number of death cases precluded survival analysis. These results indicate that for ATA high-risk DTC, the presence of high-risk variants serves as a strong predictor of adverse prognostic events during the initial treatment phase.

Some prognostic factors, such as age, tumor size, and pathological subtype, exhibit variability across different MCGs as previously noted, are currently employed to evaluate prognostic risk during the initial treatment phase of DTC (23). We hypothesized that high-risk genetic alterations contribute to the correlation between risk-related clinical features and poor prognosis, a relationship supported by emerging evidence. For instance, age is widely recognized as a key prognostic factor in DTC, as demonstrated in numerous studies (5, 32), and is a critical factor in the 8th AJCC TNM staging system. Nevertheless, research by Heo et al. found that TERTp mutations mediated the effect of age at diagnosis on the mortality rate by 36% in DTC (33). In this study, while age, tumor size, pathological subtype, and N stage appeared to be associated with RFS during initial univariate analysis, only MCGs (HR: 5.77) and tumor size (HR: 1.32) remained independently linked to RFS after incorporating the MCGs variable into a multivariable model. This finding aligns with reports by Liu et al. and Schumm et al., whose multivariate models similarly indicated that recurrence risk was solely related to tumor size and molecular risk (7, 20). Despite differences in cohort composition, the consistent results across these three DTC studies suggest that molecular profiles may be independently and more directly predictive of prognosis.

Several studies on “molecular risk stratification” have highlighted the importance of integrating routine molecular testing via preoperative FNAB, as it offers valuable insights into the molecular risk stratification prior to surgery, thereby shaping the initial treatment approach (7, 20, 22). However, despite its efficacy in informing clinical decisions, the broad adoption of NGS with large panels is hindered by substantial costs and limited access, restricting its routine application in many regions for thyroid cancer management. This study indicated that when NGS testing was employed for prognostic risk stratification in thyroid cancer, the use of small panels targeting key prognostic loci (such as TERTp, PIK3CA, TP53, AKT1, etc.) offered comparable efficiency in risk grouping. In regions where routine preoperative molecular testing is not feasible, a more targeted and cost-effective approach would be better to perform supplementary postoperative molecular testing specifically for ATA high-risk cases, allowing for accurate risk stratification. Given the elevated risk of recurrence and distant metastasis in patients with both high-risk ATA RSS and adverse molecular profiles, closer follow-up is warranted. Further research is needed to determine whether more positive RAI adjuvant therapies or alternative treatments may offer enhanced benefits for this subgroup.

Despite strengths, several limitations affect this study. First, as a retrospective cohort study, only cases with completed molecular testing were included, introducing potential selection bias due to the two-stage process of physician explanation and patient consent required for testing. Second, compliance issues led to incomplete RAI treatment in some cases, potentially skewing overall prognostic outcomes compared to patients who received the full standard treatment. Additionally, this non-compliance complicates a standardized analysis of postoperative serum Tg levels and biochemical incomplete responses within the study cohort. Given the lack of significant differences in case distribution across various MCG groups, this factor is unlikely to decisively affect the prognostic variation between the groups. Additionally, the small sample size limits the feasibility of performing propensity score matching based on different characteristics, which could have enhanced the precision of the statistical analysis. Furthermore, the short follow-up period constrains the study to short-term prognostic outcomes, and the long-term prognostic implications of different MCGs will require extended follow-up for more comprehensive assessment.

In conclusion, our study indicated a higher incidence of structural recurrence and poorer RFS in ATA RSS high risk DTC presented with high molecular risk. Molecular testing and MCGs offer significant potential for refining prognosis in high-risk DTC cases and merit broader application. The potential need for specialized postoperative management strategies for ATA high-risk cases with high molecular risk warrants further investigation.
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Introduction

In thyroid carcinoma (TC), follicular thyroid carcinoma (FTC) represents the second most prevalent pathological type following papillary thyroid carcinoma. Notably, FTC exhibits a more aggressive clinical course and a higher propensity for distant metastasis. However, the underlying mechanisms governing the progression of FTC remain poorly understood. PMAIP1 is a gene implicated in various cancers and biological processes. Investigating the role and mechanism of PMAIP1 in FTC is crucial for enhancing our understanding of FTC and informing clinical treatment strategies. 





Methods

This study examined the expression level of PMAIP1 in FTC through comprehensive analysis of databases, tumor tissues, and cell lines. Following the establishment of a stably transfected plasmid in cell lines, a series of functional assays and subcutaneous xenograft experiment were conducted to investigate the role of PMAIP1 in FTC. Additionally, transcriptome sequencing was employed to identify potential signaling pathways associated with PMAIP1. Mechanistic studies involved a series of rescue experiments to elucidate the regulatory mechanisms of PMAIP1 in FTC. 





Results

PMAIP1 was found to be highly expressed in FTC, and its knockdown significantly inhibited the proliferation and metastasis of FTC cells both in vivo and in vitro. The results of transcriptome sequencing analysis indicated that PMAIP1 may influence the progression of FTC via the Wnt signaling pathway. Subsequent investigations revealed a direct correlation between PMAIP1 expression levels and those of Wnt3 and FOSL1 in FTC. A series of rescue experiments further substantiated the regulatory role of PMAIP1 on Wnt3/FOSL1 in FTC. 





Discussion

In conclusion, our research demonstrated that PMAIP1 emerges as a novel pro-cancer factor in FTC, and its knockdown significantly inhibited the proliferation and metastasis of FTC both in vivo and in vitro. Mechanistically, PMAIP1 regulated FOSL1 by modulating the Wnt signaling pathway, thereby promoting FTC progression. Targeting PMAIP1 may present a promising therapeutic strategy for FTC.
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1 Introduction

Thyroid cancer (TC) is the most prevalent endocrine malignancy, accounting for 586,000 cases globally and ranking ninth in incidence in 2020 (1, 2). The increased utilization of diagnostic imaging and surveillance has revealed a clear trend of rejuvenation in TC, making it a significant type of cancer that warrants attention (3). Among differentiated thyroid cancers, follicular thyroid carcinoma (FTC) has an incidence rate of approximately 10% to 15%, second only to papillary thyroid carcinoma (PTC), but it is notably more invasive (4). FTC is considered a high-risk cancer due to its propensity for hematogenous metastasis to distant sites, particularly the lungs and bones (5). Despite significant advancements in the diagnosis and treatment of FTC, the underlying mechanisms of FTC remain largely obscure. Consequently, investigating potential biomarkers and elucidating their molecular mechanisms in FTC is of paramount importance to address this research gap. Concurrently, such investigations may facilitate the development of novel therapeutic targets for FTC, thereby expanding the repertoire of clinical treatment options.

PMAIP1 (Phorbol-12-myristate-13-acetate-induced protein 1), also known as NOXA or APR, located on chromosome 18q21.32, is a member of the BCL-2 protein family (6). Research indicated that insulin activates the AKT signaling pathway, which subsequently inhibits the RNA translation of NOXA/PMAIP1, thereby promoting the survival of human pluripotent stem cells (7). NOXA/PMAIP1 has the potential as a predictive marker for response and survival in patients undergoing CAR T-cell transfusion. Targeting NOXA/PMAIP1 may enhance the therapeutic efficacy of CAR T cells. However, the functional significance of PMAIP1 in FTC remains unexplored (8). Furthermore, azacitidine was observed to upregulate the expression of PMAIP1, thereby enhancing the sensitivity of preclinical models of acute myeloid leukemia to venetoclax. This finding provided evidence for novel therapeutic strategies aimed at overcoming resistance to current acute myeloid leukemia treatments (9). These studies indicated that PMAIP1 plays a significant role in the biological progression of various diseases and may serve as a potential therapeutic target. Additionally, PMAIP1 was implicated in the pathogenesis and progression of multiple cancers. Research indicated that NOXA/PMAIP1 serves as a marker for an aggressive subtype of pancreatic ductal adenocarcinoma, with NOXA/PMAIP1 expression inducing synthetic lethality upon RUNX1 inhibition in pancreatic cancer (10). The co-expression of PUMA and NOXA/PMAIP1 proteins in benign epithelial cells has been predictive of recurrence following radical prostatectomy (11). Additionally, a study involving 160 patients with colorectal cancer and adjacent tissues demonstrated that NOXA/PMAIP1 was overexpressed in colorectal cancer tumors, even at early stages (12). However, the functional significance of PMAIP1 in FTC remains unexplored.

In this study, we conducted a comprehensive analysis utilizing the databases, supplemented by validation with clinical tumor samples and cell lines, and identified elevated expression levels of PMAIP1 in FTC. Consequently, we postulated that PMAIP1 contributes to the progression of FTC. To substantiate this hypothesis, we examined the impact of PMAIP1 on FTC proliferation and metastasis through both in vivo and in vitro experiments. Additionally, we employed transcriptome sequencing to elucidate the potential pathway through which PMAIP1 may exert its effects in FTC, and subsequently verified the association between PMAIP1 and the pathway by rescue experiments. In this study, we examined the expression levels, functional roles, molecular mechanisms, and clinical significance of PMAIP1 in FTC.




2 Materials and methods



2.1 Clinical samples

Pairs of FTC and adjacent non-tumorous tissue specimens (n=8) were procured from the Department of General Surgery at The First Hospital of Hebei Medical University. The study received ethical approval from the Ethics Committee of The First Hospital of Hebei Medical University (NO: 20230203), and informed consent was obtained from all patients for the collection of tissue samples.




2.2 Bioinformatics analysis

RNA-sequencing expression profiles and corresponding clinical data of FTC were obtained from The Cancer Genome Atlas (TCGA) dataset (https://portal.gdc.cancer.gov/). Normal control datasets were sourced from the Genotype-Tissue Expression (GTEx) data portal (https://www.gtexportal.org/home/datasets). Statistical analyses were conducted using R software (Version 3.5.0). The two-gene correlation map was generated using the ggstatsplot package in R, employing Spearman’s correlation analysis to assess the relationship between quantitative variables that do not follow a normal distribution. P<0.05 was considered statistically significant.




2.3 Cell lines

The FTC cell lines (FTC133 and FTC238) and the non-tumoral thyroid cell line (NTHY-ORI3-1) were used in this study. The human FTC orthotopic cell lines FTC133 (1×106) and the non-tumoral thyroid cell line NTHY-ORI3-1 (1×106) were procured from Procell Life Science&Technology Co, Ltd (Cat NO.: CL-0644; CL-0817). The human FTC lung metastasis cell line FTC238 was procured from YUCHI Biology Co, Ltd (Cat NO.: SC-1458). FTC133 and NTHY-ORI3-1 were maintained in RPMI-1640 medium (Thermo, Gibco, UK) and FTC238 was maintained in DMEM F-12 medium (Thermo, Gibco, UK), all supplemented with 10% fetal bovine serum (Thermo, Gibco, UK) and 1% penicillin-streptomycin (Thermo, Gibco, UK). All cell lines were incubated at 37°C with 5% CO2.




2.4 RNA extraction and quantitative real−time polymerase chain reaction

Total RNA was extracted utilizing the RNA EASY reagent (R701-01, Vazyme, China), followed by reverse transcription with the Prime Script RT Reagent Kit (RR047A, TaKaRa, Japan). The Quantitative real‑time polymerase chain reaction (qRT‑ PCR) system (LightCycler 480II, USA) was prepared using the ChamQ Universal SYBR qPCR Master Mix (Q711, Vazyme, China), cDNA, and specific primers. PCR amplification reactions were conducted in triplicate for each cDNA sample, with β-actin serving as the internal reference gene. All gene-specific primers were designed using NCBI (https://www.ncbi.nlm.nih.gov/) resources and synthesized by Sangon Biotech Co., Ltd (Shanghai, China) (Table 1). Relative gene expression levels were calculated using the 2−ΔΔCt method.

Table 1 | Primer sequences used in this study.


[image: Table displaying gene names, primer sequences, and product lengths in base pairs. PMAIP1 has primers 5' AGGACAACGTCAAGTAGCTG and 5' GGAGTCCCTCATGCAGGTG, length 153. Wnt3 has primers 5' TGACCTGCATCATAAGGGGC and 5' TGGGCTCATGAGCTGTGTG, length 181. FOSL1 has primers 5' GTCCCACAGCATCACCACAT and 5' CCAGTTGTCAGCTCACTGTGTC, length 126. β-actin has primers 5' ACTTATGTTGCCCTAGCCCTT and 5' GTCCACCTTCCACCCTGAA, length 155.]



2.5 Establishment of knockdown and overexpression cell lines

Knockdown plasmid of PMAIP1 (sh-PMAIP1: 5’-GTGCTACTCAACTCAGGAGAT -3’), sh-negative control (sh-NC), over-expression plasmid of PMAIP1 (NM_001382618.1), Vector, knockdown plasmid of Wnt3 (sh-Wnt3: 5’-GCGCTTCTGCCGCAATTACAT-3’), siRNA of FOSL1 (siFOSL1:5’-CCUCAGCUCAUCGCAAGAGUA-3’) and siNC were ordered form Guangzhou Fulengen Co, Ltd. 5μg plasmids (or 5μmol siRNA) were transfected into FTC133 and FTC238 by using Lipofectamine 3000 (Invitrogen, USA) according to the manufacturer’s instructions. The cells were then selected using 1 µg/mL puromycin (Solarbio, China).




2.6 Western blot analysis

Protein was extracted from the cells using RIPA lysis buffer (PMSF: RIPA = 1:100), and the protein concentration was semi-quantified using a BCA protein assay kit. Equal amounts of protein were separated by 12% SDS-PAGE (BIO-RAD kit) and subsequently transferred to a PVDF membrane. The PVDF membrane was blocked with 5% BSA in TBST at room temperature for 2 hours. Following three washes with TBST, the membrane was incubated with primary antibody at 4°C overnight. Afterward, it was washed three times with TBST and then incubated with a secondary antibody at room temperature for one hour. Finally, the protein bands were visualized and analyzed. This experiment was repeated three times.




2.7 Cell counting kit−8 assay

Cells were digested and quantified during the logarithmic growth phase, subsequently seeded in 96-well plates at a density of 1x103 cells per well, and incubated at 37°C with 5% CO2. Each experimental group included four replicates. Upon cell adherence, 10µL of cell counting kit‑8 (CCK‑8) reagent (Abbkine, China) was added to each well at 0h, 24h, 48h, and 72h, followed by incubation at 37°C. After a 2h incubation period, the absorbance of the 96-well plates was measured at 450 nm using a microplate reader.




2.8 Colony formation assay

Cells were digested and counted during the logarithmic growth phase, and 2mL of the medium was added to a 6-well plate, with the cell suspension seeded at a density of 1,000 cells per well. Cells were cultured in a 5% CO2 incubator at 37°C for a duration of 10-14 days, with the medium being replaced every 3 to 4 days. The experiment was terminated upon the observation of significant clonal cell groups. Following the removal of the medium, the cells were washed twice with PBS. Subsequently, 1 mL of 4% paraformaldehyde (Biosharp, China) was added to each well for fixation over a period of 15 minutes. This was followed by the addition of 1 mL of crystal violet ammonium oxalate solution (Solarbio, China) for 30 minutes at room temperature. The wells were then gently rinsed with double-distilled water. After allowing the cells to air dry, the cell clusters were photographed and counted. This experiment was conducted in triplicate.




2.9 Wound healing assay

Following trypsinization and cell counting, the cells were seeded into 6-well plates at a density of 50×104 cells per well. Once the cells had reached confluence, scratches were made perpendicular to the initial horizontal line. Cell debris was subsequently removed using PBS, after administering mitomycin treatment to the cells for a duration of one hour, proceed to wash them with PBS, and fresh medium was added. The cells were then cultured at 37°C in a 5% CO2 atmosphere. The widths of the scratches were measured and recorded at 0h and 24h using an inverted biological microscope, with three fields of view captured at each time point.




2.10 Migration and invasion assay

Add 700 μL of medium (20% FBS, no P/S) to each well of a 24-well plate and subsequently place the chamber into the well containing the medium. Introduce 100 μL of the diluted cell suspension into the chamber, ensuring a total cell count of 10×104. Incubate the cells under standard culture conditions for 24h (37°C, 5% CO2). After the incubation period, remove the chamber from the 24-well plate and gently eliminate any non-migrated cells and residual medium from the polycarbonate membrane using a cotton swab. Fix the cells with 4% paraformaldehyde for 30 minutes, followed by staining with 0.1% crystal violet for 15 minutes. Take a picture under the microscope and count the number of cells. The experiment was repeated 3 times.




2.11 Subcutaneous xenograft

NTG mice (4-6 weeks old) were purchased from Beijing Sibeifu Biotechnology Co., Ltd, and housed under special pathogen-free conditions. Animal experiments were conducted with the approval of the Animal Ethics Committee (NO: MDL2024-04-05-01), ensuring that all mice were provided with adequate water and food. Stable transfection of FTC133 and FTC238 cells with sh-PMAIP1 or sh-NC was conducted, followed by selection using puromycin. Subsequently, FTC133 and FTC238 cells with stable PMAIP1 knockdown were digested and resuspended in PBS at a concentration of 5×106 cells per 100μL. These cells were then injected into the left axillary region of randomly assigned mice (5 mice per group) within one hour. The condition of the mice was monitored, and tumor volume measurements commenced on day 3. Tumor volume was assessed every 3 days using calipers and calculated using the formula: volume (mm³) = 0.5 × length × width². After the mice were euthanized, the tumors were subsequently isolated, photographed, and weighed. The excised tissues were either fixed in 10% neutral-buffered formalin or processed further. Tumor sections from paraffin-embedded blocks were utilized for histological examination.




2.12 Immunohistochemical staining

Following dewaxing and rehydration, the tissue sections were immersed in 0.01M citrate buffer and subjected to microwave heating to restore antigenicity. After incubation at room temperature for 10 minutes, the sections were treated with PBS and 1% periodate. Subsequently, the sections were incubated with the primary antibody overnight at 4°C, followed by a 30-minute incubation with the secondary antibody on the subsequent day. The sections were then subjected to a staining protocol that included diaminobenzidine staining, PBS washes, hematoxylin counterstaining, distilled water washes, and PBS rebluing. Dehydration was performed using a graded series of alcohols, with each stage lasting 5 minutes, and concluded with a 10-minute treatment in xylene. Finally, the sections were sealed with neutral gum for microscopic examination. Subsequently, three images of each tissue slice were randomly captured using a microscope, and the staining intensity of these images was analyzed utilizing Aipathwell software (Wuhan servicebio technology Co, Ltd). The staining intensity of the sections was evaluated based on the rate of positive cells and the positive area rate.




2.13 Transcriptome sequencing and analysis

Each experimental group comprised three samples, with each sample containing a volume of 1×107 cells. Following RNA extraction, the integrity of the RNA was rigorously assessed using the Agilent 2100 Bioanalyzer. Upon completion of library construction, preliminary quantification was conducted using the Qubit 2.0 Fluorometer, and the libraries were subsequently diluted to a concentration of 1.5 ng/μL. Following the completion of quality checks, various libraries were pooled in accordance with the manufacturer’s guidelines, taking into account the necessary effective concentration and desired sequencing output. These pooled libraries were then subjected to Illumina sequencing. The resulting raw data underwent quality control and were aligned to the reference genome HG38 for annotation purposes. Comparative analysis of gene expression profiles was performed between sh-PMAIP1 cells and the control group. Subsequently, differentially expressed genes were identified, and enrichment analyses for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were conducted utilizing the R (Version 3.5.0).




2.14 Statistical analysis

In vitro experiments were performed in triplicates. All statistical tests were performed using Graphpad Prism 8.0 (Graphpad Software Inc., San Diego, CA) or the SPSS program (Version 22.0; SPSS, Chicago, IL). The mean ± standard deviation was used for statistical description and the t-test for statistical analysis. Statistical significance was determined at P < 0.05. *P < 0.05, **P < 0.01, ***P < 0.001.





3 Results



3.1 PMAIP1 was upregulated in FTC

We acquired data on 106 FTC samples and 653 normal tissue samples from TCGA and GTEx databases. Comparative analysis of PMAIP1 expression between FTC and normal tissues revealed a significant overexpression of PMAIP1 in FTC tissues (Figure 1A). Additionally, we examined PMAIP1 expression across stages I-IV of FTC relative to normal tissues, finding elevated mRNA levels of PMAIP1 in FTC samples (Figure 1B). To further validate these findings, we collected 8 pairs of FTC and adjacent non-cancerous tissues and assessed PMAIP1 expression differences. The results demonstrated a significant upregulation of PMAIP1 expression in FTC tissues compared to adjacent non-cancerous tissues (Figure 1C). Subsequently, we assessed the expression levels of PMAIP1 across three cell lines. Among these, PMAIP1 was markedly overexpressed in the FTC cell lines FTC133 and FTC238 relative to NTHY-ORI3-1 (Figure 1D). These findings indicated that PMAIP1 was upregulated in FTC.

[image: Four bar graphs showing PMAIP1 mRNA expression levels. Graph A compares normal (N) and tumor (T) samples, with tumor showing higher expression. Graph B details expression across different cancer stages, with significant differences noted among stages I, II, III, and IV. Graph C compares normal and tumor pairs, illustrating increased expression in tumors. Graph D compares cell lines NTHY-ORI3-1, FTC133, and FTC238, with FTC133 exhibiting high expression. Statistical significance is marked by asterisks, where *** indicates highly significant differences.]
Figure 1 | PMAIP1 was upregulated in FTC. (A) RNA-sequencing expression profiles and corresponding clinical data for FTC (n=106) were obtained from TCGA dataset. Normal control datasets (n=653) were sourced from the GTEx data portal. PMAIP1 mRNA expression was higher in FTC tissues relative to normal tissues at all stages, ***P < 0.001. (B) In stages I (n=58), II (n=23), III (n=18), and IV (n=6), the expression level of PMAIP1 was all significantly elevated in FTC tissues compared to normal tissues (n=653), ***P < 0.001. (C) 8 FTC tissues and 8 paired adjacent normal tissues were detected by qRT-PCR, showing that PMAIP1 expression was upregulated in FTC tissues compared with paired adjacent normal tissues, **P < 0.01. (D) Cell lines were used to explore the PMAIP1 level. Compared with NTHY-ORI3-1, PMAIP1 expression was upregulated in both FTC133 and FTC238, ***P < 0.001.




3.2 Knockdown of PMAIP1 significantly inhibited the proliferation and metastasis of FTC in vitro

To construct cell lines with PMAIP1 knockdown, FTC133 and FTC238 cells were transfected with plasmids and subsequently screened using puromycin to construct cell lines with stable knockdown of PMAIP1 and detected by WB. The results indicated that PMAIP1 exhibits a high and stable knockdown efficiency in FTC133 and FTC238 cell lines (Figure 2A). CCK-8 assays demonstrated that the knockdown of PMAIP1 in these cell lines resulted in decreased cell proliferation (Figure 2B). Additionally, the knockdown of PMAIP1 significantly inhibited the colony formation ability of both FTC133 and FTC238 (Figure 2C). To further elucidate the impact of PMAIP1 on the migratory and invasive capabilities of FTC133 and FTC238 cells, wound healing and transwell assays were conducted. Quantitative analysis revealed that the wound healing rate was significantly reduced in the shPMAIP1 group compared to the shNC group (Figure 2D). Migration and invasion assays demonstrated that, in comparison to the shNC group, the knockdown of PMAIP1 significantly decreased the numbers of invasion and migration cells of FTC133 and FTC238 (Figures 2E, F).
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Figure 2 | Knockdown of PMAIP1 significantly inhibited the proliferation and metastasis of FTC in vitro. (A) Stable knockdown of PMAIP1 by shRNA in FTC133 and FTC238 was confirmed by WB, *P < 0.05, **P < 0.01. (B) CCK-8 assay showed that the knockdown of PMAIP1 in FTC133 and FTC238 cells resulted in a significant decrease in cell proliferation compared with the NC group, ***P < 0.001. (C) Colony formation assay showed the knockdown of PMAIP1 markedly decreased the colony formation number of FTC133 and FTC238 cells compared with the NC group, **P < 0.01. (D) The wound healing assay suggested the knockdown of PMAIP1 substantially impaired the wound-healing ability of FTC133 and FTC238 cells, ***P < 0.001. (E) Migration and invasion assay showed the knockdown of PMAIP1 significantly reduced the number of invasive and migrating FTC133 cells, **P < 0.01, ***P < 0.001. (F) Migration and invasion assay showed the knockdown of PMAIP1 significantly decreased the number of invasive and migrating FTC238 cells, ***P < 0.001, *P < 0.05.




3.3 Knockdown of PMAIP1 significantly inhibited the proliferation and metastasis of FTC in vivo

Initially, NTG mice underwent one week of adaptive feeding. Subsequently, FTC133 and FTC238 cells, with stable PMAIP1 knockdown and negative control, were subcutaneously injected into the left forelimb armpit of NTG mice, and tumor tissues were dissected post-experiment for further analysis (Figure 3A). The findings indicated that PMAIP1 knockdown significantly reduced tumor weight and tumor volume. In parallel, the mice in the shPMAIP1 group exhibited a significant increase in body weight compared to those in the shNC group (Figures 3B, C). To assess the impact of PMAIP1 knockdown on tumor proliferation and metastasis, we utilized the proliferation marker Ki67 and the metastasis markers MMP2 and MMP9 for further analysis. The expression levels of Ki67, MMP2, and MMP9 in tumor tissues were determined via immunohistochemical (IHC). The findings revealed that the expression levels of Ki67, MMP2, and MMP9 were reduced in the shPMAIP1 group compared with the shNC group (Figures 3D, E).

[image: Diagram illustrating a study on tumor development in mice. Panel A shows a timeline for injections and measurements. Panels B and C present photos of mice injected with shNC and shPMAIP1, with corresponding graphs showing tumor volume and weight comparisons for FTC133 and FTC238 cell lines. Panels D and E show Ki67, MMP2, and MMP9 staining in tissue samples, with box plots indicating expression levels. Statistical significance is highlighted in graphs and images.]
Figure 3 | Knockdown of PMAIP1 significantly inhibited the proliferation and metastasis of FTC in vivo. (A) Experimental flowchart of subcutaneous tumor transplantation in NTG mice. (B) Compared with the NC group, the weight and volume of tumors of FTC133 were significantly reduced (***P < 0.001) and the body weight of mice was increased (***P < 0.001) by knockdown of PMAIP1. (C) Compared with the NC group, the weight and volume of tumors of FTC238 were significantly reduced (***P < 0.001) and the body weight of mice was increased (**P < 0.01) by knockdown of PMAIP1. (D) Knockdown of PMAIP1 decreased the Ki67 positive cells percentage, MMP2 and MMP9 positive area percentage in FTC133 subcutaneous xenografts determined by IHC staining, ***P < 0.001. (E) Knockdown of PMAIP1 decreased the Ki67 positive cells percentage, MMP2 and MMP9 positive area percentage in FTC238 subcutaneous xenografts determined by IHC staining, ***P < 0.001.




3.4 PMAIP1 activated the Wnt signaling pathway

We extracted RNA from cells of the shNC and shPMAIP1 groups in both FTC133 and FTC238 cell lines, followed by transcriptome sequencing. Differentially expressed genes were annotated to identify disease-associated genes. Intersection analysis of down-regulated genes from both cell lines revealed 82 genes (Figure 4A). Subsequent enrichment analysis of these 82 genes identified their association with several KEGG pathways, including the Apelin signaling pathway, Melanogenesis, Gastric cancer and the Wnt signaling pathway, et al. (Figure 4B). The schematic diagram of the Wnt signaling pathway shows that when PMAIP1 is knocked down, the expression levels of Wnt3, FOSL1, and PLC in the Wnt signaling pathway are correspondingly reduced. Interestingly, FOSL1 is a downstream gene of Wnt3. Therefore, we decided to explore the mechanism of the PMAIP1/Wnt3/FOSL1 pathway in FTC (Figure 4C). Additionally, we extracted data from 106 FTC patients from the TCGA database and conducted a correlation analysis, which revealed a direct proportional relationship between the expression levels of PMAIP1 and those of Wnt3 and FOSL1 (Figure 4D). These findings were consistent with the results obtained from the transcriptome sequencing analysis conducted in this study. Furthermore, we assessed the expression levels of Wnt3 and FOSL1 in both the shNC and shPMAIP1 groups and the results indicated that the knockdown of PMAIP1 led to a reduction in the expression levels of Wnt3 and FOSL1 (Figure 4E).
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Figure 4 | PMAIP1 activated the Wnt signaling pathway. (A) Venn diagram of downregulated genes in FTC133 and FTC238 cells and 82 common genes were detected. (B) The top 10 enrichment KEGG pathways of 82 intersection genes were shown. (C) As the Wnt signaling pathway showed, expression of Wnt, fra-1, and PLC were decreased after the knockdown of PMAIP1. (D) Spearman’s correlation analysis of TCGA dataset suggested that the expression level of PMAIP1 was directly proportional to Wnt3 in FTC and the expression levels of PMAIP1 are directly proportional to FOSL1 in FTC. (E) In FTC133 and FTC238 cell lines, the expression levels of Wnt3 and FOSL1 were both decreased after PMAIP1 was knocked down, *P < 0.05, **P < 0.01, ***P < 0.001.




3.5 PMAIP1 modulated the proliferation and metastasis of FTC by regulating the Wnt signaling pathway

To elucidated the role of PMAIP1 in FTC cancer progression via the Wnt pathway, we conducted a rescue experiment employing shWnt3. Initially, we engineered FTC133 and FTC238 cell lines to overexpress PMAIP1 (Figure 5A). The results indicated that the overexpression of PMAIP1 led to elevated levels of Wnt3 and FOSL1. Conversely, the expression levels of Wnt3 and FOSL1 were significantly diminished in the Vector+shWnt3 group compared to the Vector+shNC group; in the meantime, a comparative analysis revealed that the expression levels of Wnt3 and FOSL1 were significantly reduced in the PMAIP1+shWnt3 group relative to the PMAIP1+shNC group (Figure 5A). This indicated that the knockdown of Wnt3 was successful. The CCK-8 assays demonstrated that cell proliferation in the PMAIP1+shNC group was increased compared with the Vector+shNC group. Furthermore, compared with the Vector+shNC group, proliferation of cells of the Vector+shWnt3 group was significantly decreased. Compared with the PMAIP1+shNC group, proliferation of cells of the PMAIP1+shWnt3 group was significantly decreased (Figure 5B). Cell colony formation numbers of the PMAIP1+shNC group was increased compared with the Vector+shNC group. Compared with the Vector+shNC group, cell colony formation numbers of the Vector+shWnt3 group was significantly decreased. Compared to the PMAIP1+shNC group, cell colony formation numbers of the PMAIP1+shWnt3 group was significantly decreased (Figure 5C). The wound healing assays demonstrated that the wound healing rate of the PMAIP1+shNC group was increased compared with the Vector+shNC group. Furthermore, compared with the Vector+shNC group, the wound healing rate of the Vector+shWnt3 group was significantly decreased. Compared to the PMAIP1+shNC group, the wound healing rate of the PMAIP1+shWnt3 group was significantly decreased (Figure 5D). Migration and invasion assays revealed that the cell invasion and migration numbers of the PMAIP1+shNC group was increased compared with the Vector+shNC group. Compared with the Vector+shNC group, cell numbers of the Vector+shWnt3 group was significantly decreased. Compared to the PMAIP1+shNC group, cell numbers of the PMAIP1+shWnt3 group was significantly decreased (Figures 5E, F).
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Figure 5 | PMAIP1 modulated the proliferation and metastasis of FTC by regulating the Wnt signaling pathway. (A) Overexpression of PMAIP1 in FTC133 and FTC238 was confirmed by qRT-PCR. The overexpression of PMAIP1 led to elevated levels of Wnt3 and FOSL1. Conversely, the expression levels of Wnt3 and FOSL1 were significantly diminished in the Vector+shWnt3 group compared to the Vector+shNC group; in the meantime, a comparative analysis revealed that the expression levels of Wnt3 and FOSL1 were significantly reduced in the PMAIP1+shWnt3 group relative to the PMAIP1+shNC group, **P < 0.01, ***P < 0.001. (B) CCK-8 assay was used to determine the proliferation ability of cells. The proliferation ability of FTC133 and FTC238 in the PMAIP1+shNC group were promoted compared with the Vector+shNC group, ***P < 0.001. Compared with the Vector+shNC group, the knockdown of Wnt3 significantly decreased the proliferation ability of FTC133 and FTC238 in the Vector+shWnt3 group, ***P < 0.001. Compared with the PMAIP1+shNC group, the knockdown of Wnt3 significantly decreased the proliferation ability of FTC133 and FTC238 in the PMAIP1+shWnt3 group, ***P < 0.001. (C) The colony formation numbers of FTC133 and FTC238 in the PMAIP1+shNC group were promoted compared with the Vector+shNC group, **P < 0.01, ***P < 0.001. Compared with the Vector+shNC group, knockdown of Wnt3 significantly decreased the colony formation numbers of FTC133 and FTC238 in the Vector+shWnt3 group, *P < 0.05, **P < 0.01. Compared with the PMAIP1+shNC group, knockdown of Wnt3 significantly decreased the colony formation numbers of FTC133 and FTC238 in the PMAIP1+shWnt3 group, **P < 0.01. (D) The wound-healing rates of FTC133 and FTC238 in the PMAIP1+shNC group were promoted compared with the Vector+shNC group, **P < 0.01. Compared with the Vector+shNC group, the knockdown of Wnt3 significantly decreased the wound-healing rate of FTC133 and FTC238 in the Vector+shWnt3 group, **P < 0.01. Compared with the PMAIP1+shNC group, the knockdown of Wnt3 significantly decreased the wound-healing rate of FTC133 and FTC238 in the PMAIP1+shWnt3 group, **P < 0.01. (E, F) Migration and invasion cell numbers of FTC133 and FTC238 in the PMAIP1+shNC group were increased compared with the Vector+shNC group, **P < 0.01, ***P < 0.001. Compared with the Vector+shNC group, migration and invasion cells of FTC133 and FTC238 significantly decreased in the Vector+shWnt3 group, **P < 0.01, ***P < 0.001. Compared with the PMAIP1+shNC group, migration and invasion cells of FTC133 and FTC238 significantly decreased in the PMAIP1+shWnt3 group, **P < 0.01, ***P < 0.001.




3.6 PMAIP1 regulated the proliferation and metastasis of FTC by FOSL1

These experimental results suggested that PMAIP1 influences the cancer progression of FTC through the Wnt pathway. However, the potential involvement of FOSL1 in this process remains to be elucidated. To investigate this, we transfected FTC133 and FTC238 cells with siRNA targeting FOSL1. The results indicated that, in comparison to the Vector+siNC group, the expression level of FOSL1 was significantly reduced in the Vector+siFOSL1 group: in comparison to the PMAIP1+siNC group, the expression level of FOSL1 in the PMAIP1+ siFOSL1 group was significantly reduced, indicating successful siRNA transfection (Figure 6A). The CCK-8 assays demonstrated that, compared with the Vector+siNC group, proliferation of cells of the Vector+siFOSL1 group was significantly decreased. Compared with the PMAIP1+siNC group, proliferation of cells of the PMAIP1+ siFOSL1 group was significantly decreased (Figure 6B). Compared with the Vector+siNC group, cell colony formation numbers of the Vector+siFOSL1 group was significantly decreased. Compared to the PMAIP1+siNC group, cell colony formation numbers of the PMAIP1+siFOSL1 group was significantly decreased (Figure 6C). The wound healing assays demonstrated that, compared with the Vector+siNC group, the wound healing rate of the Vector+siFOSL1 group was significantly decreased. Compared to the PMAIP1+siNC group, the wound healing rate of the PMAIP1+siFOSL1 group was significantly decreased (Figure 6D). Migration and invasion assays revealed that, compared with the Vector+siNC group, cell numbers of the Vector+siFOSL1 group was significantly decreased. Compared to the PMAIP1+siNC group, cell numbers of the PMAIP1+siFOSL1 group was significantly decreased (Figures 6E, F).

[image: Graphs and images showing experiments on FTC133 and FTC238 cells. Panel A displays bar graphs of PGC1 mRNA expression levels across different treatments, with PMAIP1 and siFOSL1 showing significant increases. Panel B shows growth curves, indicating higher proliferation for PMAIP1 and siFOSL1 treated cells. Panel C depicts colony formation assays, with bar charts highlighting increased colony numbers in PMAIP1 and siFOSL1 treatments. Panel D shows wound healing assays, demonstrating reduced wound closure in PMAIP1 and siFOSL1 groups, supported by bar charts. Panels E and F illustrate migration and invasion assays, with significant increases in cell movement in PMAIP1 and siFOSL1-treated cells, as shown in accompanying graphs.]
Figure 6 | PMAIP1 regulated the proliferation and metastasis of FTC by FOSL1. (A) Knockdown of FOSL1 in FTC133 and FTC238 was confirmed by qRT-PCR. The expression level of FOSL1 were significantly diminished in the Vector+siFOSL1 group compared to the Vector+siNC group; the expression level of FOSL1 were significantly reduced in the PMAIP1+ siFOSL1 group relative to the PMAIP1+siNC group, **P < 0.01, ***P < 0.001. (B) Compared with the Vector+siNC group, the knockdown of FOSL1 significantly decreased the proliferation ability of FTC133 and FTC238 in the Vector+siFOSL1 group, ***P < 0.001. Compared with the PMAIP1+siNC group, the knockdown of FOSL1 significantly decreased the proliferation ability of FTC133 and FTC238 in the PMAIP1+siFOSL1 group, ***P < 0.001. (C) Compared with the Vector+siNC group, the knockdown of FOSL1 significantly decreased the colony formation numbers of FTC133 and FTC238 in the Vector+siFOSL1 group, *P < 0.05, **P < 0.01. Compared with the PMAIP1+siNC group, knockdown of FOSL1 significantly decreased the colony formation numbers of FTC133 and FTC238 in the PMAIP1+siFOSL1 group, **P < 0.01. (D) Compared with the Vector+siNC group, knockdown of FOSL1 significantly decreased the wound-healing rate of FTC133 and FTC238 in the Vector+siFOSL1 group, ***P < 0.001. Compared with the PMAIP1+siNC group, knockdown of FOSL1 significantly decreased the wound-healing rate of FTC133 and FTC238 in the PMAIP1+siFOSL1 group, ***P < 0.001. (E, F) Compared with the Vector+ siNC group, migration and invasion cells of FTC133 and FTC238 significantly decreased in the Vector+siFOSL1 group, *P < 0.05, **P < 0.01, ***P < 0.001. Compared with the PMAIP1+siNC group, migration and invasion cells of FTC133 and FTC238 significantly decreased in the PMAIP1+ siFOSL1 group, *P < 0.05, **P < 0.01, ***P < 0.001.





4 Discussion

Our study innovatively confirmed that PMAIP1 could impact the progression of FTC by regulating the Wnt3/FOSL1 pathway, thereby offered new therapeutic possibilities for FTC. FTC is the second most common histotype of differentiated thyroid cancer, often overshadowed by the more prevalent PTC (13). However, the propensity of FTC for distant metastasis and poor prognosis renders it a critical subtype of thyroid cancer that warrants significant attention (5). Despite the growing body of research on FTC over the years, its pathogenesis remains largely elusive. Identifying potential biomarkers is crucial for advancing our understanding of FTC pathogenesis and for identifying potential therapeutic targets. In this study, we analyzed data from FTC and normal tissues available in the TCGA and GETx databases. Our findings revealed that the expression level of PMAIP1 was significantly elevated in FTC tissues compared to normal tissues. Notably, PMAIP1 was also overexpressed in FTC stages I-IV, suggested that its overexpression may influence the progression of FTC. Furthermore, validation using collected FTC tissues and FTC cell lines yielded results consistent with our initial analysis. Consequently, we hypothesized that PMAIP1 is overexpressed in FTC and may exert a pro-cancer effect.

To validate our hypothesis, we achieved stable knockdown of PMAIP1 in two cell lines, FTC133 and FTC238, resulting in a marked inhibition of cell proliferation and metastatic capability. Additionally, we established a subcutaneous xenograft model using immunodeficient mice. The findings demonstrated that PMAIP1 knockdown significantly suppressed the growth of FTC tumors in vivo, as evidenced by reductions in both tumor weight and volume. This study demonstrated that the knockdown of PMAIP1 inhibited the progression of FTC both in vivo and in vitro. Ki67 was utilized as a significant marker for cell proliferation, while MMP2 and MMP9 served as critical markers for distant metastasis (14–16). IHC results revealed that the knockdown of PMAIP1 was associated with reduced expression levels of Ki67, MMP2, and MMP9. These findings suggested that targeting PMAIP1 could effectively inhibit FTC growth and metastasis, thereby expanding clinical treatment options for FTC.

Additionally, PMAIP1 has been implicated in various biological processes. For instance, long non-coding RNA LOC101928963 regulated the proliferation and apoptosis of spinal glioma by interacting with PMAIP1, providing a foundation for targeted therapy of spinal glioma (17). Plant Homeo Domain Finger Protein 8 regulated mesodermal and cardiac differentiation of embryonic stem cells by mediating the histone demethylation of PMAIP1 (18). Another study elucidated a novel non-epigenetic mechanism of action for the hypomethylating agent 5-azacitidine and its synergistic activity with the BCL-2 selective inhibitor venetoclax. This combination, through the ISR-mediated induction of PMAIP1, could reduce drug resistance in acute myeloid leukemia (19). These findings suggested that PMAIP1 was a critical regulator in disease development and treatment. However, there are limited studies on the role of PMAIP1 in TC. Bortezomib sensitized TC cells to Vemurafenib through mitochondrial dysregulation and the induction of apoptosis, which was accompanied by an increased expression of NOXA/PMAIP1 (20). In this study, the knockdown of PMAIP1 significantly inhibited the proliferation and metastasis of FTC. To elucidate the pro-cancer role of PMAIP1 in FTC, we conducted further investigations. Transcriptome sequencing was utilized to identify differentially expressed genes associated with PMAIP1. Enrichment analysis of the down-regulated gene set revealed an inhibition of the Wnt signaling pathway, accompanied by the down-regulation of Wnt3 and FOSL1. Bioinformatics analysis revealed a direct proportionality between PMAIP1 and the expression levels of Wnt3 and FOSL1, corroborating the findings from transcriptome sequencing. Additionally, we verified that the expression patterns of Wnt3 and FOSL1 were consistent with those of PMAIP1. Overexpression of PMAIP1 resulted in increased expression levels of Wnt3 and FOSL1 as well. Simultaneously, we conducted rescue experiments and verified that the concurrent knockdown of Wnt3, in the context of PMAIP1 overexpression, significantly inhibited the proliferation and metastasis of FTC. These findings suggesteded that PMAIP1 may influence the proliferation and metastasis of FTC through modulation of the Wnt signaling pathway. It is well established that the Wnt signaling pathway was among the most frequently dysregulated pathways in human malignancies, playing pivotal roles in tumorigenesis and targeted therapy (21, 22). Currently, the functional mechanisms of the Wnt signaling pathway have been reported in breast cancer (23), PTC (24), prostate cancer (25) and gastric cancer (26). Notably, the relationship between PMAIP1 and the Wnt signaling pathway has not been previously documented in the literature. Our study may be the first to elucidated the regulation of FTC by PMAIP1 via the Wnt signaling pathway. Consequently, the findings of this research offered a more practical and feasible approach to the clinical management of FTC.

Current research on the apelin pathway primarily centered on its implications for cardiovascular and metabolic disorders. Apelin, a peptide ubiquitously expressed throughout the body, engaged the apelin receptor to facilitate endothelium-dependent vasodilation and inotropy, lower blood pressure, and promote angiogenesis. The apelin system was posited to confer protection against arrhythmias, inhibit thrombosis, and exert significant anti-fibrotic effects (27). Additionally, empirical studies have demonstrated that apelin influences glucose and lipid metabolism and modulates insulin secretion (28). Moreover, evidence suggested that the apelin system was involved in inflammatory responses (29). On the other hand, components of the Wnt signaling pathway have been established as reliable biomarkers and potential targets for cancer therapy. Ongoing or completed clinical trials involving Wnt signaling pathway components indicated that Wnt-targeted therapies hold promising applications in clinical settings (30). Furthermore, updates on inhibitors, antagonists, and activators of the Wnt signaling pathway presented innovative strategies for personalized cancer treatment (21). This emphasized our focus on the Wnt signaling pathway. Our discovery found that PMAIP1 played a cancer-promoting role in FTC, representing a significant finding and identifying a potential target for FTC treatment. This rationale was compelling. However, we aimed for our research to inform clinical practices in the treatment of FTC and to facilitate the rapid translation of these findings into patient benefits. Therefore, investigating the regulatory relationship between the novel FTC oncogene PMAIP1 and the Wnt pathway during FTC progression opened new avenues for dual-targeted therapy of this malignancy, which holds substantial clinical significance. While we prioritized our investigation into the Wnt pathway, we did not overlook Apelin’s potential role in FTC. Moving forward, we will continue to monitor and explore various signaling pathways in FTC—including the Apelin signaling pathway.

Although we have demonstrated that PMAIP1 exerts its effects on FTC through the Wnt signaling pathway. Furthermore, modulation of PMAIP1 expression, either through knockdown or overexpression, correspondingly resulted in the down-regulation or up-regulation of FOSL1 expression levels. FOSL1 (also known as FRA-1) functions downstream of the Wnt signaling pathway and was implicated in promoting metastasis in head and neck squamous cell carcinoma, suggested its role as an oncogene (31). This raised the question of whether PMAIP1 exerts a pro-cancer effect on FTC by regulating FOSL1 downstream of Wnt. To address this, a series of rescue experiments were conducted in this study. The results demonstrated that the proliferation and metastasis of FTC cells were significantly inhibited following the knockdown of FOSL1. The same results were observed when FOSL1 was knocked down in the FTC cell line stably overexpressing PMAIP1. Consequently, we posited that our study substantiates, at least in part, the role of PMAIP1 in regulating the cancer progression of FTC via modulation of the Wnt3/FOSL1 pathway. FOSL1, a transcription factor, has been shown in previous studies to be highly upregulated in bile duct cancer in both humans and mice, correlating with poorer survival outcomes (32). Additionally, FOSL1 has been demonstrated to promote the proliferation, invasion, migration, and epithelial-mesenchymal transition of colorectal cancer cells, and was significantly associated with poor prognosis (33). These findings align with our research outcomes. Our results indicated that FOSL1 contributes to the oncogenesis of FTC by enhancing its proliferation and metastasis, a process regulated by PMAIP1 through the Wnt signaling pathway. This mechanism, which we have identified, could be critical for the progression of FTC and holds potential clinical significance.

Our study has several limitations. Firstly, the sample size of FTC tissues was limited, attributable to the difficulties associated with the clinical diagnosis of FTC. Secondly, the precise interaction between PMAIP1 and the Wnt signaling pathway remains unclear. In future studies, we will continue to collect FTC samples to further substantiate our findings. Concurrently, we will delve deeper into the mechanisms of action of PMAIP1.

In conclusion, our research demonstrated that PMAIP1 was overexpressed in FTC and correlated with the clinical stage of the disease. PMAIP1 emerged as a novel pro-cancer factor in FTC, and its knockdown significantly inhibited the proliferation and metastasis of FTC both in vivo and in vitro. Mechanistically, PMAIP1 regulated FOSL1 by modulating the Wnt signaling pathway, thereby promoting FTC progression. Targeting PMAIP1 may present a promising therapeutic strategy for FTC.
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Introduction

Metastasis is the major cause of thyroid cancer morbidity and mortality. However, the mechanisms are still poorly understood. 





Methods

We performed genome-wide transcriptome analysis comparing gene expression profile of metastatic thyroid cancer cells (Met) with primary tumor cells established from transgenic mouse models of papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), poorly differentiated thyroid cancer (PDTC), and anaplastic thyroid cancer (ATC).





Results

Genes involved in tumor microenvironment (TME), inflammation, and immune escape were significantly overexpressed in Met cells. Notably, IL-6-mediated inflammatory and PD-L1 pathways were highly active in Met cells with increased secretion of pro-inflammatory and pro-metastatic cytokines such as CCL2, CCL11, IL5, IL6, and CXCL5. Furthermore, Met cells showed robust overexpression of Tbxas1, a thromboxane A synthase 1 gene that catalyzes the conversion of prostaglandin H2 to thromboxane A2 (TXA2), a potent inducer of platelet aggregation. Application of aspirin, a TXA2 inhibitor, significantly reduced lung metastases. Mertk, a member of the TAM (Tyro, Axl, Mertk) family of RTKs, was also overexpressed in Met cells, which led to increased MAPK activation, epithelial–mesenchymal transition (EMT), and enrichment of cancer stem cells. Braf-mutant Met cells developed resistance to BRAFV600E inhibitor PLX4720, but remained sensitive to β-catenin inhibitor PKF118-310.





Conclusion

We have identified several overexpressed genes/pathways in thyroid cancer metastasis, making them attractive therapeutic targets. Given the complexity of metastasis involving multiple pathways (PD-L1, Mertk, IL6, COX-1/Tbxas1-TXA2), simultaneously targeting more than one of these pathways may be warranted to achieve better therapeutic effect for metastatic thyroid cancer.
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Introduction

Thyroid cancer is the most common malignancy in the endocrine system and its incidence have been rising in the past few decades with vast majority of this increase being ascribed to papillary thyroid carcinoma (PTC) (1–3). The rise in incidence seems to be due to over-diagnosis, but an actual increase in incidence and mortality cannot be completely ruled out (2, 4). The follicular cell-derived thyroid cancer can be histologically classified into papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC). Differentiated thyroid carcinoma (DTC) has excellent prognosis with a 10-year disease-specific survival of up to 90%, PDTC has poorer prognosis with a 5-year disease-specific survival at 66%. ATC is highly virulent with a mean survival of less than 8 months (5–7). PTC is the most common type of DTC, accounting for more than 85% of all thyroid cancer cases followed by FTC (5-10%), PDTC (4-7%) and ATC (about 2%) (7, 8).

The initiation and progression of thyroid cancer occur through gradual accumulation of multiple genetic alterations, leading to constitutive activation of two crucial signaling pathways: MAPK and PI3K/AKT (9). MAPK activation is considered to be crucial for PTC initiation, through point mutations of BRAF and RAS genes or chromosomal rearrangements of RET/PTC and neurotrophic tropomyosin receptor kinase (NTRK) gene. The BRAFV600E mutation is the most frequent genetic alteration in PTC with overall rate of 48.5% (10). PI3K/AKT activation is critical in FTC initiation and can be triggered by activating mutations in RAS, PIK3CA, and AKT1 as well as by inactivation of PTEN. RAS (HRAS, KRAS and NRAS) mutations occur in 30–45% of FTC (11). The progression and dedifferentiation to PDTC and ATC are thought to arise from preexisting DTC as a result of acquiring additional genetic changes such as mutations in TERT promoter, TP53, EIF1AX, and CDKN2A.TP53 mutations are present in 50–80% of ATC and is one of the pivotal molecular alterations discriminating ATC from PTC or FTC (12).

Distant metastasis is the leading cause of thyroid cancer mortality and morbidity (13, 14). The metastatic cascade represents a multi-step process which includes local tumor cell invasion of the basement membrane, intravasation into the vasculature, survival in the circulation, extravasation from the circulation, and final colonization by the circulating tumor cells at the distal sites (15). Distant metastasis occurs in about 10% of PTC and up to 25% FTC patients. The most common distant metastatic sites are lungs (~80%) and bones (~25%) (16, 17). The five-year survival rate dropped from 77.6% to 15.3% in patients with single organ and multi-organ distant metastasis, respectively (14).

Activation of metastatic reprogramming and survival of circulating tumor cells in the blood with eventual colonization at distant organs are critical steps for thyroid cancer metastasis. These steps are influenced by both tumor intrinsic (genetic mutations and epigenetic modifications) and extrinsic factors (tumor microenvironment or TME) (5, 16). However, detailed mechanisms contributing to thyroid cancer metastasis are still lacking. Understanding the underlying mechanisms would enable targeted intervention. The present study investigated the mechanisms that regulate circulating tumor cell survival in the blood circulation and colonization at lung by using cell lines derived from genetically engineered mouse models of PTC, FTC, PDTC, and ATC, representing the whole spectrum of thyroid carcinogenesis.





Materials and methods




Experimental animals

Athymic BALB/c-nu/nu (nude mice) were acquired from Jackson Laboratory. Mice were provided with autoclaved food and water ad libitum. The study was approved by the Animal Care and Use Committee of the institution and was conducted in compliance with the Public Health Service Guidelines for the Care and Use of Animals in Research (RAC#2230003).





Thyroid cancer cell lines

Four murine thyroid cancer cell lines derived from genetically engineered mouse models of PTC, FTC, PDTC, and ATC were established from primary tumors: PTC with BrafV600E mutation (BVE), FTC with KrasG12D mutation (KGD), PDTC with both KrasG12D and Cdkn2anull mutations (KGDCdkn2a_null), and ATC with both BrafV600E and Trp53null mutations (BVETrp53_null). The establishment of BVE, KGD, and BVETrp53_null strains were described previously (18–21). KGDCdkn2a_null was established by cross-breeding among KrasG12D, TPO-Cre, and Cdkn2anull (strain 01XE4 obtained from The NCI Mouse Repository, (https://frederick.cancer.gov/resources/data-repositories/nci-mouse-repository) (79). PDTC was developed from a 13-month-old mouse with both KrasG12D and Cdkn2anull mutations. The KGDCdkn2a_null cell line was established from the tumor. Thyroid origin was confirmed by genotyping (Supplementary Figure 1). The cell lines were maintained in DMEM/F12 growth medium containing 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin.





Metastatic thyroid cancer cell lines

To establish lung metastatic thyroid cancer cell lines, 1 x 106 BVE, KGD, KGDCdkn2a_null or BVETrp53_null cells were injected to tail vain of 5 nude mice for each group. Six weeks after injection, lung metastatic tumors were collected aseptically from the mice using blunt dissection, then mechanically dissociated by mincing and passing through a 40-μM mesh sterile screen, and suspended in DMEM/F12 growth medium for 3 months with a total of 6 passages to eliminate contaminated stromal fibroblasts, lymphocytes, and microphages present in the tumor cell culture. The primary culture were considered as permanent cell lines after six passages. The established metastatic cell lines were named as BVE-Met1, KGD-Met1, KGDCdkn2a_null-Met1, and BVETrp53_null-Met1, respectively. They were re-injected (1 x 106 cells) to a new group of nude mice (n=5 for each group) via tail vain for enrichment of cells with high metastatic potential. Three weeks following injection, lung metastatic tumors were harvested and propagated in DMEM/F12 growth medium for 3 month with at least 6 passages. The metastatic cell lines were named as BVE-Met2, KGD-Met2, KGDCdkn2a_null-Met2, and BVETrp53_null-Met2, respectively. The experimental procedures were summarized in Figure 1A and representative lung metastatic foci were presented in Figure 1B. The thyroid origin of these cell lines were confirmed by genotyping.

[image: Diagram illustrating a process where tumor cells are injected into a mouse's tail vein, leading to lung metastasis. Cultured metastatic tumor cells (Met1 and Met2) undergo RNA sequencing. Below are microscopic images: (A) shows normal lung tissue at 4x, 20x, and 40x magnification. (B) displays lung tissue with BVE-Met2 metastasis at 4x, 20x, and 40x magnification, highlighting tumor presence with arrows.]
Figure 1 | Experimental lung metastasis. (A) Schematic diagram summarizing experimental lung metastatic procedure. BVE, BVETrp53null, KGD, or KGDCdkn2anull cells (1 x 106 cells) were injected to tail vain of 5 nude mice for each group. Six weeks after injection, lung metastatic tumors were collected to establish Met1 cell lines. The established Met1 cells were re-injected (1 x 106 cells) to a new group of nude mice (n=5 for each group) via tail vain for enrichment of cells with high metastatic potential. Lung metastatic tumors were harvested three weeks following injection to establish Met2 cell lines. Met1, Met2 and primary tumor cells were subject to RNA sequencing to identify differentially expressed genes (DEGs). (B) Lung metastatic foci after tail vain injection of BVE thyroid cancer cells (H&E staining). Metastatic foci are indicated by black arrows and tumor infiltrating monocytes and macrophages are indicated by green arrows.





RNA sequencing analysis

RNA-Seq were used for quantification of differentially expressed genes (DEGs) between primary (BVE, KGD, KGDCdkn2a_null, and BVETrp53_null) and metastatic thyroid cancer cell lines: BVE-Met1, KGD-Met1, KGDCdkn2a_null-Met1, and BVETrp53_null-Met1, or BVE-Met2, KGD-Met2, KGDCdkn2a_null-Met2, and BVETrp53_null-Met2 cell lines. Total RNA from cell lines were isolated and libraries were constructed using an Illumina (San Diego, Ca, USA) TruSeq RNA Library Prep kit according to the manufacturer’s procedure. Sequencing was performed on Illumina HiSeq 4000 with at least 20 million clean reads. The significant DEGs were selected based on the following criteria: Log2-fold change >2, false discovery rate (FDR) <0.001, and P-value from difference test<0.01. Gene list annotation and enrichment of biological pathways were performed using Metascape (https://metascape.org/gp/index.html#/main/step1).





The protein-protein interaction network construction and hub genes identification

Interactions among different proteins were performed using NetworkAnalyst (https://networkanalyst.ca/) to analyze an interactive relationship among DEGs. Genes with the degree of a node >10 (with more than 10 interacting genes) were considered as hub genes. The association of hub gene expression with disease-specific survival was performed by Kaplan–Meier analysis using TCGA-THCA mRNA expression dataset (n=498) and cBioPortal For Cancer Genomics (https://www.cbioportal.org/).





Quantitative real-time reverse transcriptase-PCR

qRT-PCR was used to validate DEGs as described previously (21). The cDNA mix was diluted 10-fold, and 2 μl of the dilution was used for qPCR analysis. The PCR conditions were 94°C for 30 sec followed by 30 cycles of amplification (94°C for 10 sec, 55°C for 5 sec, and 72°C for 10 sec). The PCR primers were listed below: Cd274-F, 5’-ACGGTGGTGCGGACTACAAG-3’(exon 3) and Cd274-R: 5’-TCCAGATTACCTCAGCTTCT-3’ (exon4); Tbxas1-F, 5’-AGAGCCAATTGGAACTCCGAG-3’ (exon 3), Tbxas1-R, 5’-ACCTGCTTGATCATGTCTGG-3’ (exon4); Mertk-F, 5’-CAGCTGGCATTTCATGGTGGAA-3’ (exon2), Mertk-R, 5’-TTCATCTTACAGAAGTACGAC-3’ (exon 3). The resulting concentration of target PCR products was normalized by comparison with β-actin and was used to determine the relative mRNA level of DEGs in Met2 cells.





Cytokine/chemokine measurements

Tumor cells were cultured for 48h and the conditioned media were collected for cytokine and chemokine measurement using MILLIPLEX Mouse Cytokine/Chemokine panel coupled with the Luminex® xMAP® platform according to manufacturer’s instruction (EMD Millipore Corporation, Billerica, MA). The following 32 cytokines and chemokines were measured simultaneously: Eotaxin (CCL11), G-CSF (CSF3), GM-CSF (CSF2), IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, IP-10 (CCL10), KC (CXCL1), LIF(Leukemia inhibitory factor), LIX (CXCL5), MCP-1 (CCL-2), M-CSF (CSF1), MIG (CXCL9), MIP-1α (CCL3), MIP-1β (CCL4), MIP-2 (CXCL2), RANTES (CCL5), TNF-α, and VEGF.





Western blot analysis

Cell lysates were obtained by extraction in RIPA buffer (20mM Tris-HCl, pH7.4, 150mM NaCl, 5 mM EDTA, 1% NP-40) containing Pierce’s Halt Protease Inhibitor Cocktail (Thermo Scientific, Rockford, IL). Proteins (40 µg) were loaded onto a 12% SDS-polyacrylamide gel and were transferred to a PVDF membrane. Western blot analysis was performed using antibodies (1:1000 dilution) from Cell Signaling Technology (Danvers, MA) against phospho-Erk (#4370, RRID: AB_2315112), phosphor-Akt (#4060, RRID: AB_2315049), E-Cadherin (#3195, RRID: AB_2291471), and Vimentin (#5741, RRID: AB_10695459), or antibodies against IL-6 (ab281935, RRID: AB_3661729), IL-6 receptor (ab300582, RRID: AB_300582), and PD-L1 (ab269674) from Abcam (Boston, MA). The experiments were repeated twice.





Flow cytometry analysis for cell surface markers and apoptosis

The expression of Ep-CAM, CD11b, CD24, and CD44 cell surface markers on tumor cells was analyzed by FACS (fluorescence-activated cell sorting) flow cytometer (LSR I; Becton Dickinson, Mountain View, CA, USA) using anti-Ep-CAM-APC (Biolegend, San Diego, CA, USA, CAT#118214, RRID: AB_1134102), anti-CD11b (BD Biosciences, Heidelberg, Germany, CAT# 552850, RRID: AB_394491), anti-CD24-APC (Biolegend, CAT# 101814, RRID: AB_439716) and anti-CD44-PE-Cy7 (Biolegend, CAT#103030, RRID: AB_830787) labelled antibodies. The CSC-like cell subpopulation was identified by gating on CD44high/CD24low cells, while differentiated-like cells were identified as CD44low/CD24high cells (22). Ep-CAM was used to identify epithelial cells and epithelial cell-derived tumor cells, while CD11b was used to mark myeloid-lineage cells such as monocytes/macrophages, neutrophils cells. BVE and BVE-Met2 cells were cultured with different concentrations of PKF118-310, PLX4720, or both for 24h. The apoptosis was analyzed using the Vybrant apoptosis assay kit (Molecular Probes, Eugene, OR, USA).





Preparation and administration of aspirin to mice

The mouse dose equivalent to 100–150 mg/60kg human low dose aspirin was calculated as human equivalency dose (HED) = animal dose (mg/kg) × (animal km)/(human km), where mouse km factor is 3, and human km factor is 37. Aspirin (Chewable Aspirin 81 mg, Bayer) was prepared at 2.5 mg/mL in PBS to administer 10 µl/g body weight to deliver a dose of 25 mg/kg. Mice (n=10) were injected by tail vain of 1 x 106 BVETrp53_null-Met2 cells for lung metastasis. They were divided into 2 groups: group 1 (n=5) were given aspirin 3 times/week by oral gavage for 4 weeks while control mice (group 2) received the same volume of PBS.





Colony formation assay

The sensitivity of BVE and BVE-Met2 cells to BRAFV600E and β-catenin inhibitors were determined by colony formation assay. BVE and BVE-Met2 cells were plated into 6-well plates with different low cell seeding number (50 to 200 cells/well) for 14 days in the presence or absence of different concentrations of PLX4720, PKF118-310 or both. Cells were then fixed with methanol for 10 min and stained with 0.5% crystal violet dye in methanol:de-ionized water (1:5) for 10 min. After three washes with H2O to remove excess crystal violet dye, colonies containing more than 50 individual cells were counted using a microscope. Three separate experiments were performed and average were presented. Colony forming efficiency (CFE) was calculated using the formula: CFE = (number of colonies counted/number of cells plated) × 100.





Sphere formation assay

Tumor sphere assay was performed as described previously (23). Briefly, thyroid tumor cells (10000 cells/ml) were cultured in ultra-low attachment plates (Corning) in DMEM-F12 (Life Technologies) containing stem cell culture supplements (4% FBS, 1% antibiotics, 1% glutaMax, 2% B-27, 20 ng/ml EGF, 20 ng/ml bFGF, 500 ng/ml hydrocortisone, 5 µg/ml insulin, and 2 U/ml heparin). After 10 days in culture, spheres >50 μm were counted. Three separate experiments were performed and average were presented.





Statistical analysis

Student’s t-test (two-tailed) was used to compare two groups and one-way ANOVA was used to compare multiple groups. A P value of 0.05 or less was considered significant.






Results




Genome-wide transcriptome analysis to identify critical genes in thyroid cancer metastases

To identify common genes and pathways driving thyroid cancer metastasis, we performed a comprehensive gene expression profile of primary and Met cell lines carrying single oncogenic driver mutations (BrafV600E or KrasG12D) or in combination with inactivation of tumor suppressor genes (BrafV600E and Trp53null or KrasG12D and Cdkn2anull). Many differentially expressed genes (DEGs) that were not detected in the Met1 cells appeared in the Met2 cells (Supplementary Figure 2). Additionally, Met2 cells formed lung metastases 3 weeks faster than Met1 cells (3 vs 6 weeks), indicating enrichment of tumor cells with high metastatic potential. Transcriptome analysis identified 88 up-regulated and 22 down-regulated genes (log2 fold-change >2) present in all four Met2 cell lines (Figure 2A; Supplementary Table 1). Gene ontology and pathway analysis showed that regulation of cytokine production, inflammatory and negative regulation of immune response, neutrophil migration and phagocytosis, and cytokine- or receptor-mediated pathways were the top enriched ontology clusters (Figure 2B). PPI network analysis by STRING identified 18 hub genes: Tnf (degree of node 47), Fgfr1 (46), Was (30), Itgb2 (27), Ncf1 (25), Fcer1g (20), C1qa (19), Inpp5d (19), Il2rg (18), Shank3 (15), Nckap1 (13), Nod1 (13), Card11 (12), Csf2rb (12), Cybb (11), Fcgr4 (11), Nlrp3 (11), Csf1r (10) (Figure 2C). Consistent with STRING results, 5 were also identified as hub genes by InnateDB (innate immunity database): Tnf (degree of node 41), Inpp5d (28), Csf1r (20), Was (18), and Nlrp3 (10) (Figure 2D). Intriguingly, Irf8, the most significant hub gene (with degree of node 272) was not identified by the STRING. The detailed function of these hub genes and their biological roles in cancer metastasis were listed in Supplementary Table 2. We next analyzed the association of these hub gene over-expression with disease-specific survival of PTC patients using thyroid carcinoma dataset (TCGA, PanCancer Atlas) (n=498). The over-expression of 4 hub genes (Tnf, Nckap1, Nlrp3, and Card11) was associated with poor disease-specific survival (Figure 2E). These 4 genes are involved in the inflammation and/or epithelial-mesenchymal transition (EMT) pathways, indicating the critical role of these pathways in thyroid cancer metastases, and may be useful biomarkers to predict disease prognosis.

[image: Panel A shows a heatmap indicating expression levels of genes across samples, with colors ranging from red to blue. Panel B is a bar chart illustrating significant gene ontology terms, ranked by -log10 p-values. Panels C and D display network diagrams with nodes representing genes, where node size correlates with gene degree. Panel E contains four Kaplan-Meier survival curves evaluating disease-specific survival, comparing treated versus untreated groups, displaying differences in survival probabilities over time.]
Figure 2 | Genome-wide transcriptome analysis of DEGs in Met2 cells. (A) Heatmap of DEGs present in all 4 Met2 cells (BVE-Met2, BVETrp53null-Met2, KGD-Met2, and KGDCdkn2a_null-Met2). Several key genes involved in inflammation, immune checkpoint regulation and cancer stem cells are indicated by an arrow. (B) Top 20 Enriched ontology clusters of DEGs by Metascape analysis. Regulation of cytokine production, inflammatory response, phagocytosis pathway, negative regulation of immune system, and regulation of IL6 production are the top 5 enriched pathways. (C) PPI network and hub genes identification by NetworkAnalyst. STRING interactome with high confidence score of 900 (of maxium1000) was chosen for hub gene identification. Eighteen genes with the degree of a node >10 (bigger red nodes) were selected as hub genes (D) PPI network based on InnateDB. Six genes with the degree of a node >10 (bigger red nodes) were selected as hub genes. (E) Kaplan-Meier analyses of hub gene expression on disease-specific survival of PTC patients. Overexpression of 4 hub genes (Tnf, Nckap1, Nlrp3, and Card11) was associated with poor disease-specific survival. TCGA-THCA mRNA dataset (n=498) was used for Kaplan-Meier analysis.





Increased production of inflammatory cytokines by metastatic tumor cells

To assess whether over-expression of above genes in Met2 cells correlated with more inflammatory cytokine/chemokine production, we analyzed 32 cytokine and chemokine levels in the conditioned media of both primary and Met2 cells. As shown in Figure 3A, Met2 cells produced more inflammatory cytokines or chemokines such as CSF1 (colony stimulating factor 1 or macrophage colony-stimulating factor), CSF2 (colony-stimulating factor 2 or granulocyte-macrophage colony-stimulating factor), CSF3 (colony-stimulating factor 3 or granulocyte colony-stimulating factor), CCL2 (monocyte chemoattractant protein-1), CCL11 (eosinophil chemotactic protein), CXCL5 (epithelial-derived neutrophil-activating peptide 78, a chemotactic chemokine known to activate neutrophil during acute inflammatory responses), IL-1α and IL-6. We further confirmed increased expression of IL-6 and/or IL-6 receptor in Met2 cells by Western blot (Figure 3B). These cytokines/chemokines have been reported to promote tumor cell immune escape and metastasis by recruitment of tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated neutrophils (TANs), and regulatory T (Treg) cells (24). Consistent with the reported roles of these cytokines/chemokines in mobilizing immunosuppressive inflammatory cells, there were increased monocyte and macrophage infiltration in TME (Figure 1B) and overexpression of Arg1 (arginase1), an immunosuppressive signal found predominantly on TAMs, in Met2 cells (Figure 2A; Supplementary Table 1). It has been shown that breast cancer-derived CSF2 regulates Arg1 to promote an immunosuppressive TME (25). Primary and Met2 cells were also analyzed by FACS for the expression of Ep-CAM (epithelial cell marker) and CD11b (myeloid cell marker highly expressed on the surface of monocytes/macrophages, and some CD8+ cytotoxic T cells) to rule out the possibility that increased inflammatory cytokine/chemokine production observed in the Met2 cells was due to contaminating monocytes, macrophages, and tumor-infiltrating lymphotyes. As shown in Figure 3C, majority of tumor cells were Ep-CAM+ with minimal CD11b+, indicating that Met2 cells were epithelial origin without significant contaminating monocytes/macrophages. The small fraction of CD11b+ cells (<5%) may be due to increased EMT in Met2 cells.
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Figure 3 | Cytokine/Chemokine production by Met2 cells. (A) Cytokine/Chemokine production was detected in conditioned media of both primary and Met2 cells using MILLIPLEX mouse ELISA assay. Increased production of inflammatory cytokines and chemokines were observed in Met2 cells. (B) Western blot analysis of IL-6 and IL-6 receptor expression in primary and Met2 cells. Increased IL-6 and IL-6 receptor expression were observed in Met2 cells. (C) FACS analysis of Ep-CAM and CD11b staining of both primary and Met2 cells. Ep-CAM is an epithelial cell marker, while CD11b is a myeloid cell marker highly expressed on the surface of innate immune cells, including macrophages and neutrophils. CD11b-positive cells were present in less than 5% of Met2 cell population *P<0.05, **P<0.01, ***P<0.001.





Identification of druggable genes and pathways in metastatic tumor cells

The approach to identify common DEGs present in all 4 Met2 cell lines irrespective of their underlying genetic defects yielded encouraging results above. This strategy significantly reduced the number of DEGs to be analyzed from more than 2200 in each Met2 cell line to 110 (Figure 2A; Supplementary Figure 2), which increased the efficiency to identify drug targets and decreased false identification. We then focused on these genes to identify drug targets that could be applicable to all 4 tumor types. Tumor cell-induced platelet aggregation is a well-recognized mechanism for paraneoplastic thrombocytosis and a potential cause of reduced response to immune checkpoint inhibitors in hematogenous metastasis. Tbxas1, a thromboxane A synthase 1 gene which catalyzes the conversion of prostglandin H2 to thromboxane A2 (TXA2), was highly expressed in Met2 cells (Figures 2A, 4A). TXA2 is a potent inducer of platelet aggregation. The overexpression of Tbxas1 would trigger coagulation cascade and may explain the significant RBC infiltration observed in pre-metastatic niche of lung metastases (Figure 4C). Importantly, treatment with a low-dose of aspirin, an irreversible inhibitor of TXA2, significantly reduced the size and number (6.8 ± 1.5 vs 25 ± 3.4, p<0.01) of lung metastatic foci after intravenous injection of BVETrp53_null-Met2 cells to nude mice (n=5) (Figures 4D, E), thus, confirming the role of Tbxas1in promoting platelet aggregation and metastatic niche formation. Moreover, Met2 cells over-expressed not only two immune checkpoint regulators, CD274 (PD-L1) (Figures 4A, B) and CD52 (Figure 2A, Supplementary Figure 2), but also Mertk, a member of the TAM (Tyro, Axl, Mertk) family of receptor tyrosine kinases (Figures 2A, 5A). Mertk has been reported to activate multiple signaling pathways (JAK/STAT, MAPK, PI3K/AKT, EMT, and PD-1/PD-L1) to promote tumor cell migration, immune escape, and cancer stem cell (CSC) transformation, and act as bypass mechanisms to EGFR blockade (26). Indeed, up-regulation of several down-stream signaling targets of Mertk was observed in Met2 cells such as increased expression of PD-L1 (Figure 4B), increased expression of vimentin and decreased expression of E-cadherin (EMT↑), and increased p-Erk (MAPK↑) (Figure 5B). Increased expression of p-AKT was found only in BVETrp53null-Met2 cells (Figure 5B). Taken together, these data strongly suggest the contribution of these genes/pathways to immune escape of metastatic tumor cells.

[image: Bar chart (A) shows fold change of Cd274 and Tbxas1 in different Met2 conditions. Western blot (B) analyzes PD-L1 and GAPDH expression. Histological images (C) depict tumor cells at 40x and 100x magnification. Macroscopic images (D) compare control and aspirin-treated samples with a bar graph indicating a significant reduction in metastatic foci with aspirin. Microscopy images (E) demonstrate cellular morphology differences in control and aspirin-treated samples at 1x and 40x magnifications.]
Figure 4 | Contribution of Cd274 and Tbxas1 in pulmonary pre-metastatic niche formation. (A) Overexpression of Cd274 (PD-L1) and Tbxas1 mRNA in Met2 cells as compared to primary cells detected by qRT-PCR analysis.*p<0.01. (B) Western blot analysis of CD274 expression. Increased CD274 expression were observed in Met2 cells. (C) Microscopic metastatic foci of KGD-Met2 cells. Significant infiltration of RBCs, lymphocytes, and macrophages are noted at the interface between metastatic tumor foci and lung. Tumor cells are indicated by green arrows and marked as TC. Increased infiltration of monocytes and macrophages is indicated by black arrows. Increased RBC aggregation is noted and platelets aggregation on tumor cells is indicated by a blue arrow. (D) Lung metastasis of BVETrp53null-Met2 upon low dose aspirin treatment. The metastatic foci on the lung surface were counted and plotted as a bar graph. Significant reduction of lung metastatic foci was observed when mice were given aspirin (25 mg/kg) by oral gavage for 4 weeks. Data are presented as mean ± SEM. Representative metastatic foci are indicated by an arrow. (E) Histology (H&E staining) of lung metastases of thyroid tumor cells. The size and number of metastatic foci were reduced after aspirin treatment.

[image: Bar graphs, western blots, flow cytometry plots, and microscopy images illustrate protein expression, gene expression changes, and cell morphology across different experimental conditions. The data compare various treatments on cell lines, highlighting differences in cell signaling pathways, protein levels, and colony formation efficacy. Quantitative charts show significant differences with asterisks marking statistical significance. Microscopy images reveal cellular structures with scale bars of one hundred micrometers. The panels are labeled A to J, showing different experiments and results systematically.]
Figure 5 | Up-regulation of MerTK-mediated signaling. (A) Mertk mRNA overexpression in Met2 cells detected by qRT-PCR analysis. *p<0.01. (B) Western blot analysis of E-cadherin, vimentin, p-Erk, and p-AKT expression in Met2 cell lines. Increased expression of vimentin and p-Erk and decreased expression of E-cadherin were demonstrated in all Met2 cells. Increased p-AKT expression was present only in the BVEtrp53null-Met2 cells. (C) FACS analysis of CD44/CD24 expression in Met2 cells. Increased CD24lowCD44high staining was observed in Met2 cells. (D) Tumorspheres formation in ultralow attachment stem cells culture conditions. Representative tumorspheres are shown. (E) The number of spheres was counted and plotted as a bar graph. The number of tumorspheres was increased in Met2 cells, *p<0.01. (F) Inhibition of tumorspheres by PKF118-310. Significant reduction of tumorspheres was noted upon treatment with 1µM PKF118-310, *p<0.01. (G) Sensitivity of BVE-Met2 cells to BRAFV600E and β-catenin inhibitors. BVE and BVE-Met2 cells were cultured in different low cell seeding numbers. A representative colony formation assay was shown. (H) The number of colonies was counted and plotted as a bar graph. Increased colony formation was observed in low seeding number of BVE-Met2 cells, which were resistant to BRAFV600E inhibitor PLX4720 but remained sensitive to β-catenin inhibitor PKF118-310.  *P<0.05, ****P<0.0001, NS, not statistically significant. (I) Flow cytometric analysis of apoptotic BVE and BVE-Met2 cells after treatment with BRAFV600E or β-catenin inhibitors. (J) Flow cytometric analysis of apoptotic BVE and BVE-Met2 cells after combined treatment of BRAFV600E and β-catenin inhibitors.





Metastatic tumor cells retain features of CSCs and resistance to monotherapy with BRAFV600E inhibitor PLX4720

The role of WNT/μ-catenin pathway in thyroid cancer progression is well established (27). Met2 cells showed over-expression of Limb-Bud- and-Heart (LBH) (Figure 2A; Supplementary Table 1), a WNT/β-catenin target required for normal mammary stem cell self-renewal (28) and an oncogene specifically expressed in tumor-initiating CD24low/CD44high breast CSCs with high metastatic potential (29). Given Mertk is also involved in CSC transformation, we investigated CD44 and CD24 expression in Met2 cells. As shown in Figure 5C, increased CD44 and decreased CD24 expression was observed in Met2 cells, indicating either increased transformation to CSCs or enrichment of CSCs. Tumorsphere and colony formation are two in vitro stemness functional assays. Met2 cells showed more tumorsphere formation (Figures 5D, E) that was significantly reduced (more than 70% as compared to the control) after treatment with 1 µM β-catenin inhibitor PKF118-310 (Figure 5F). Only 10% reduction in tumorsphere formation was observed in BVE-Met2 and no reduction in BVETrp53null-Met2 cells upon treatment with 2 µM of BRAFV600E inhibitor PLX4720 (Supplementary Figure 4), indicating resistance to BRAFV600E inhibitor. In the colony formation assay, BVE-Met2 cells showed increased formation of colonies at low seeding numbers (19.7 ± 1.2 vs 11.3 ± 1.7, p<0.05) and resistance to 1 µM BRAFV600E inhibitor PLX4720 (10.8 ± 0.7 vs 1.5 ± 0.3 colonies, p<0.01) (Figures 5G, H). Both BVE and BVE-Met2 cells remained sensitive to 0.5 µM of β-catenin inhibitor PKF118-310 (11.3 ± 1.7 in BVE control vs 2.5 ± 0.3 colonies in BVE treatment, p<0.01; 19.7 ± 1.2 in BVE-Met2 control vs 1.5 ± 0.3 in BVE-Met2 treatment, p<0.01) (Figures 5G, H). Furthermore, as compared to 3 µM PLX4720 alone, PLX4720-induced apoptosis was significantly enhanced by combination of 1 µM PLX4720 and 1 µM PKF118-310: 8.8% vs 93.1% in BVE cells, and 7% vs 65.2% in BVE-Met2 cells (Figures 5I, J). Collectively, metastatic thyroid tumor cells expressed stemness features and became more resistance to BRAFV600E inhibitor PLX4720, but were still sensitive to β-catenin inhibitor PKF118-310. Combinational therapy with low doses of PLX4720 and PKF118-310 showed synergistic effect in BVE-Met2 cells.






Discussion

In the present study, we investigated the transcriptome landscape of metastatic tumor cells from 4 different thyroid cancer transgenic mouse models ranging from well-differentiated (PTC and FTC) to poorly-differentiated (PDTC) and anaplastic thyroid cancer (ATC). Despite different genetic mutations driving oncogenic transformation, we identified a group of metastatic genes and pathways shared by all four tumor types. The simultaneous activation of several key genes and pathways involved in endoplasmic reticulum (ER) stress and inflammation, platelet aggregation, negative immune regulation, and Mertk receptor tyrosine kinase provided insight into how metastatic cells evade immune elimination, survive in the circulation, and finally colonize at distant sites. The metastatic process and potential drug targets are illustrated in Figure 6.

[image: Diagram showing the metastatic cascade from primary tumor to metastatic site. It illustrates tumor progression, invasion, intravasation, circulation, extravasation, and colonization. Key elements like tumor cells, immune cells, and factors such as genetic changes and cytokine storm are depicted. Drug interventions like Pembrolizumab are also shown, along with a legend for cell types and structures involved.]
Figure 6 | Schematic diagram of metastatic cascade of thyroid cancer cells and potential drug targets. Genetic changes and epigenetic modifications drive tumor progression and metastatic reprogramming. To evade immune elimination and survive in the blood circulation, metastatic cells express high levels of ‘Don’t eat me’ signals such as Cd274 (PD-L1) and Cd52 as well as Tbxas1 and Mertk. At the metastatic site, the metastatic cells induce a cytokine storm by secreting a large amount of inflammatory cytokines and chemokines to help form a pre-metastatic niche and eventual colonization at the distant site.

Tail vein injection may not be the ideal method for studying metastasis mechanisms because it bypasses the first two steps of metastasis process (tumor cell invasion of the basement membrane and intravasation into the vasculature). Successful colonization of the secondary organ is the rate-limiting step in the metastatic process. However, since mouse models of thyroid cancer do not develop spontaneous metastases, we used tail-vein injection methods to interrogate key factors required for cancer cell colonization of secondary organs. This approach has been used for a high-throughput in vivo screening method in the mouse for identifying regulators of metastatic colonization (30) and is still valid for studying how tumor cells survive in the circulation, extravagate from the circulation, and colonize at the distal organs.

Currently, the main goal of anti-cancer therapies relies on the effective elimination of cancer cells by apoptosis (31). Paradoxically, cell-death-inducing therapies can enhance metastasis by inducing changes in TME triggered by a cell-death-driven cytokine storm and tumor-associated macrophages (32–36). Conod et al. have demonstrated that tumor cells that survive impending death become stable pro-metastatic tumor cells. These cells exhibit features such as metastatic reprogramming, stemness, cytokine storm, and ER stress, which could induce neighboring tumor cells to acquire pro-metastatic states and form distant metastases in vivo (37). Indeed, Met2 cells demonstrated these features such as stemness, increased inflammatory cytokine production, and ER stress. In a recent study of anaplastic transformation in thyroid cancer, Lu et al. uncovered the spectrum of ATC transformation: inflammatory PTC cells (iPTCs) → inflammatory ATC cells (iATCs) → mesenchymal ATC cells (mATCs), indicating inflammation plays an important role in ATC transformation (38). They further demonstrated that mATCs contributed to poor overall survival with aneuploid genomes, mesenchymal phenotypes, and overexpression of collagen genes (i.e., COL1A1, COL1A2, COL3A1, COL5A1, COL5A2) (38). Interestingly, Col6a3, a member of collagen family of genes, was over-expressed in Met2 cells and associated with poor disease-specific survival in PTC patients (TCGA-THCA dataset, Supplementary Figure 3).

NADPH oxidase isoform 2 (NOX2) is a multicomponent enzyme complex including 5 subunits: Cyba, Cybb, Ncf1, Ncf2, and Ncf4 and expressed almost solely in myeloid cells such as monocytes, macrophages and neutrophilic granulocytes. It generates reactive oxygen species (ROS) in defense against microbial pathogens. A recent study has showed it promotes melanoma pulmonary metastasis by inhibiting adjacent lung-infiltrating cytotoxic T and NK cells (39, 40). Two of NOX2 subunits (Ncf1 and Cybb) were highly expressed in Met2 cells, which may induce ER stress in TME and promote pulmonary metastatic colonization. The increased Ncf1 and Cybb expression in Met2 may reflect EMT and metastatic reprograming.

PD-L1 expression was elevated in all Met2 cells. Given nude mice has no functional T cells, the immune evasion is likely mediated by inhibition of NK cells. PD-1/PD-L1 blockade enhances anti-tumor efficacy of NK cells (41, 42). Various signaling pathways regulate PD-1/PD-L1 expression. PI3K/AKT, MAPK, JAK/STAT, Wnt/β-catenin, NF-κB, and Hedgehog pathways have all been reported to increase the expression of PD-1/PD-L1 axis (43). PD-L1 is highly glycosylated in tumor cells to maintain its stability via IL-6/JAK1-mediated phosphorylation and subsequent glycosylation (44). Since IL6 is a pro-inflammatory cytokine known to promote cancer metastasis and induces PD-1 expression in activated T cells, blocking IL6 pathway may reduce tumor immune escape in TME and enhance anticancer immunity (44). IL6 antibody siltuximab, IL6 receptor antibody tocilizumab, JAK1/2 kinase inhibitor ruxolitinib, and PD-L1 antibody (Atezolizumab, Avelumab, Durvalumab) have been approved by the FDA, simultaneously targeting both PD-1/PD-L1 and IL6/JAK1 may be more effective than single agent in cancer immunotherapy (45, 46).

Barkal et al. have recently identified CD24, a glycosylphosphatidylinositol (GPI)-anchored protein, as a novel ‘don’t eat me’ signal expressed on tumor cells to evade macrophage-mediated phagocytosis by binding to Siglec10 inhibitory receptor expressed on tumour-associated macrophages (47). Although CD24 overexpression was not found in Met2 cells, another GPI-anchored protein CD52 was highly expressed in all Met2 cells, which binds to the same inhibitory receptor Siglec10 to suppress immune cell function (48, 49). The Siglec10 is widely expressed in immune cells, such as B cells, monocytes, dendritic cells, NK cells, and a subset of activated T cells. CD52 may function as a novel ‘don’t eat me’ signal and potential drug target.

Tumor-secreted cytokines and chemokines play an important role in promoting cancer metastasis. CCL2, a potent chemokine in macrophage recruitment and polarization during inflammation was produced abundantly in Met2 cells. CCL2-secreting breast cancer cells have been shown to interact with CCR2+ macrophages to facilitate their metastasis to lung and bone (50). Similarly, CCL3 (macrophage inflammatory protein-1 α), a pro-inflammatory chemokine implicated in tumor metastasis, was highly expressed in Met2 cells. The CCL3-CCR5 axis regulates intratumoral trafficking of leukocytes and fibroblasts to promote angiogenesis and subsequent lung metastasis (51). IL6 production was elevated in Met2 cells (52). Tumor cell-secreted IL6 has been reported to induce CCL5 expression in lymphatic endothelial cells and accelerate metastasis in triple-negative breast cancer (53).

Platelets contribute to tumor metastasis via multiple mechanisms at different stages of metastatic cascades (54). Met2 cells expressed high levels of Tbxas1 for platelet activation. Activated platelets are involved in the formation of metastatic niche, which could be inhibited by aspirin (55). The benefit of aspirin in reducing cancer metastasis has been confirmed in clinical trials (56). The current study provides a mechanistic explanation for targeting COX-1/Tbxas1-TXA2 pathway against metastatic thyroid cancer. It has been reported that platelets could increase PD-L1 expression on tumor cells via NF-κB and TGFβ signaling (57). Furthermore, PD-L1 protein can be transferred from tumor cells to platelets to suppress anti-tumor immune response (58). The transfer of PD-L1 protein from tumor cells to platelets may explain the high levels of PD-L1 transcripts and subtle increase of PD-L1 protein in Met2 cells. The platelet aggregation and transfer of PD-L1 to platelets would create a physical and molecular shield to protect tumor cells. Thus, targeting COX-1/TXA2 signaling may improve the efficacy of PD-L1 immunotherapy by disrupting this protective shield. Given unwanted gastrointestinal side effects of aspirin, a potent and selective TXA2 receptor antagonist, Ifetroban, has been re-evaluated for the treatment of metastatic cancer and is currently under Phase II clinical trial (NCT03694249) (59).

One of the significant findings reported in this study was Mertk overexpression in Met2 cells. Mertk is known to activate multiple signaling pathways (MAPK, PI3K/AKT, JAK/STAT, and PD-1/PD-L1) in many types of cancer to promote immune tolerance, tumor progression and metastasis, and drug resistance (26, 60, 61). It likely plays a pivotal role in Met2 cell resistance to BRAF inhibitor and survival of NK cell-mediated immune elimination. Mertk signaling in tumor cells could increase PD-L1 expression to foster immune escape and survival (62). Paolino et al. have reported TAM inhibition enhances NK cell activity, leading to markedly reduction in murine mammary cancer and melanoma metastases (63). They have further showed that low-dose warfarin, which inhibits TAM receptor activity without affecting coagulation, exerts anti-metastatic activity in mice via Cbl-b/TAM receptors on NK cells (63, 64). Several Axl/Mer inhibitors, such as INCB081776 (NCT03522142) and PF-07265807 (NCT04458259), are currently under Phase I clinical trial in patients with advanced or metastatic solid tumors (65).

In summary, we have uncovered several key genes and pathways driving thyroid cancer metastasis. They act in synchrony to promote inflammation, cytokine storm, platelet aggregation, and subsequently pre-metastatic niche formation. Given that cancer cells utilize multiple pathways to evade immune elimination and extensive cross-interactions among these pathways, combinational therapy against PD-L1, Tbsax1, and/or IL-6 may offer better therapeutic outcome.
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Background and objective

The diagnosis of thyroblastoma initially identified as a thyroid malignant teratoma was subsequently classified as a distinct entity by the World Health Organization (WHO) in 2022. This classification was based on the observation that the tumor presents with independent primitive multilineage elements and is frequently associated with DICER1 hotspot mutations.The objective of this study was to explore and investigate the clinicopathologic characteristics, molecular features and treatment strategies of patients with thyroblastoma, followed by a review of the previous relevant literature.





Methods

The clinical manifestations, pathological characteristics, molecular features and treatment strategies of the initial case of thyroblastoma pathologically confirmed in China were analyzed.





Results

The tumor was revealed to have high invasive potential, rapid disease progression, and primitive multilineage elements of pathology, including immature thyroid epithelium, spindled mesenchymal proliferations, and neuroepithelial blastema. Next-generation sequencing (NGS) confirmed the presence of germline DICER1 heterozygous pathogenic mutation at p.G1784* in patient, accompanied by the somatic hotspot mutation at p.E1813D of the RNase IIIb domain. Despite local thyroid tumor resection, the disease continued to progress rapidly. However, chemotherapy with BEP led to a reduction in the tumor. The patient’s progression-free survival (PFS) reached 15 months following the administration of BEP chemotherapy in conjunction with local radiotherapy. The patient ultimately died of cardiac arrest resulting from the progression of the cancer thrombus to the right atrium and right ventricle.





Conclusion

Although thyroblastoma has been treated as a separate entity with its distinctive morphologic and molecular characteristics, its clinicopathological features, diagnosis and treatment methods and prognosis remain poorly understood, which requires more accumulated clinical case data to provide basis for the correct diagnosis and treatment in the future.
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1 Introduction

Thyroblastoma was formally recognized as a distinct tumor entity by the World Health Organization (WHO) in 2022. Previously frequently misdiagnosed as thyroid teratoma, the recent redefinition highlights its distinctive primitive characteristics. These include thyroid epithelium, spindle cells with rhabdomyoblastic differentiation, and immature neuroepithelium. It is often observed that this tumor presents with DICER1 hotspot mutations. Clinically, it differs significantly from other thyroid tumors. It is highly aggressive, progresses rapidly, and has a poor prognosis, with approximately 50% of patients succumbing to the disease. Globally, no more than 10 cases of thyroblastoma have been reported in medical literature to date, and no standardized treatment protocol currently exists. This article presents a comprehensive examination of the clinical and pathological characteristics, molecular basis, and the diagnostic and therapeutic trajectory of a newly diagnosed thyroblastoma with DICER1 mutation. The objective of this study is to integrate findings with existing literature and contribute valuable insights for future clinical practices in the diagnosis and management of this rare malignancy.




2 Case report

The patient is a 23-year-old unmarried male, visited our hospital on November 11, 2022 due to a thyroid mass that had been progressively enlarging for two months. The patient has no significant past medical history or family medical history. Upon admission, a physical examination revealed pronounced neck thickening, tracheal deviation towards the right, absence of jugular vein distension, and a palpable neck mass measuring approximately 8 cm × 6 cm. Bilateral thyroid enlargement (grade III) was observed, exhibiting a hard texture, uneven surface, absence of tenderness, and mobility with swallowing. Enlarged cervical lymph nodes were palpable, while thrill and vascular murmurs were absent. An ultrasound examination conducted at our institution on November 18, 2022, revealed the presence of multiple solid thyroid nodules, suggestive of thyroid cancer, and enlarged lymph nodes in regions II, III, IV, and VI of both neck (suggestive of metastasis) (Figures 1A, B). On November 23, 2022, a PET/CT scan indicated: 1. An irregular hypermetabolic mass was observed in the left lobe of the thyroid with calcification, suggestive of malignancy. This mass was found to be compressing the trachea, resulting in local tracheal stenosis and deviation to the right; 2. The presence of multiple hypermetabolic enlarged lymph nodes in the left neck (levels II-V) and mediastinum (map 1), is suggestive of metastasis; possible tumor thrombus and thrombosis in the superior vena cava and left brachiocephalic vein (Figures 2A, B).

[image: Panels A and B show ultrasound images of a thyroid, with surrounding data indicating measurement specifics and settings. Panel C displays an echocardiogram, highlighting heart structures.]
Figure 1 | Color ultrasound examination of thyroblastoma. (A, B) Ultrasound results obtained on November 18 indicated an increased volume of both thyroid lobes, with heterogeneous internal echoes and multiple solid hypoechoic nodules, accompanied by calcification. (C) On May 20, 2024, cardiac ultrasound revealed the presence of a slightly hyperechoic mass within the right atrium, accompanied by enlargement of the right atrium and right ventricle.

[image: A set of nine medical imaging scans showcasing various angles and types of scans, including PET, CT, and cross-sectional views, illustrating detailed internal anatomy. Each panel, labeled A to I, presents different perspectives and imaging techniques, such as coronal and axial views, highlighting anatomical features, possibly for clinical analysis or diagnostic purposes. The images present a comprehensive overview of the thoracic area, emphasizing the lungs, chest, and related structures.]
Figure 2 | Imaging examination of thyroblastoma. (A, B) (November 23, 2022) PET/CT revealed irregular high-metabolic masses in the thyroid gland (more prominent in the left lobe) with calcification, compressing the trachea, causing local tracheal narrowing and rightward deviation; Multiple thromboses and cancerous thrombi were found in the superior vena cava, bilateral brachiocephalic veins, bilateral internal and external jugular veins, and the right subclavian vein. (C) (November 30, 2022) CT suggested rapid progression of thyroid tumor; (D) After two cycles of BEP regimen chemotherapy, enhanced CT (December 27, 2022) showed that the thyroid tumor had shrunk, the trachea was centered, and subcutaneous edema had decreased. (E) On August 25, 2023, follow-up PET/CT showed multiple low-density nodules with calcification in the thyroid, which were significantly smaller in volume than before, and metabolism had basically returned to normal, indicating that tumor activity was largely suppressed after treatment. The previously high-metabolic lesions in the superior vena cava and left brachiocephalic vein had returned to normal. (F) On March 15, 2024, PET/CT showed that the size of the thyroid lesion was unchanged and metabolism remained normal, suggesting suppressed tumor activity after treatment; however, new high-metabolic lesions in the superior vena cava and right atrium suggested cancer thrombi. (G) On March 19, 2024, CTA showed cancer thrombus formation in the lower lobe pulmonary arteries of both lungs, the right atrium, and the superior vena cava and its branches. (H) On June 12, 2024, CTA showed that cancerous thrombi had increased in size in the right atrium, right ventricle, superior vena cava, and left brachiocephalic vein. (I) On June 15, 2024, CT revealed multiple metastatic tumors in both lungs.

On November 27, 2022, due to acute respiratory distress and upper airway obstruction, the patient required emergency tracheotomy and resection of the thyroid tumor. Intraoperatively, diffuse bilateral thyroid enlargement with a hard texture and adhesion to surrounding tissues was noted, along with tracheal compression causing rightward deviation. Partial resection of the thyroid isthmus tumor was performed, and a tracheotomy tube was inserted to relieve upper airway obstruction. Postoperative pathology report (Figure 3) indicated that the lesion was situated within the thyroid tissue. The tumor exhibited components of primitive multipotential origin, including thyroid epithelial, spindle stromal, and primitive neuroepithelial elements. The tumor tissue within the thyroid exhibited immature cells with a high nuclear-cytoplasmic ratio, forming daisy-shaped cluster structures, large nuclei with coarse chromatin, and frequent apoptosis and mitosis. The immunohistochemistry results indicated the following findings: Thyroid epithelial components exhibited the following characteristics: SALL4(+), TTF-1 partial (+), P16(+), PAX-8 weak (+), CD99 partial (+); Immature neuroepithelial components: Syn partial (+), NSE(+), Nestin(+) and CD56(+); Stromal rhabdomyoblastic components: vimentin(+), desmin(+) and myogenin (+); Other markers: TG(-), CT(-), CK7(-), CK19(-), CK20(-), MC(-), Galectin-3(-), BRAFV600E(-), CK(-), EMA(-), S-100(-), SOX10(-), H3K27Me3(-), SMA(-), CD117 weak (+), inhibin(-), CgA(-), WT-1 cytoplasmic (+), HMB45(-), Melan-A(-), INI-1 intact, Ki67 positive rate approximately 60%(+). The diagnosis of thyroblastoma was made on the basis of the tissue morphology and immunohistochemistry results. NGS gene mutation testing revealed a heterozygous germline pathogenic mutation in the DICER1 gene p.G1784* in peripheral blood leukocyte DNA. Furthermore, a somatic mutation DICER1 gene p.E1813D was identified in plasma-free DNA, which is a hotspot mutation in the DICER1 gene RNase IIIb domain (Table 1).

[image: Histological examination showing six panels labeled A to F. Panels A, B, and C display densely packed cells with varying degrees of staining, typical of different tissue types or conditions under a microscope. Panels D, E, and F show stained regions with differential color intensities, likely indicating specific protein expressions or cellular components. Each panel offers a different staining technique, highlighting variations in tissue morphology and cellular composition.]
Figure 3 | Pathological characteristics of thyroblastoma. (A) HE x100 The primitive tumor cells diffusely infiltrate between thyroid tissues; (B) HE x400 The immature cells with high nucleus-to-cytoplasm ratio are arranged in rosette-like structures; (C) HE x400 The tumor cells show evident apoptosis and mitotic figures, with local myogenic differentiation; (D) IHC x200 TTTF-1 is expressed in the primitive thyroid epithelial cells; (E) IHC x200 The area of rhabdomyoblastic differentiation shows immunoreactivity for Myogenin; (F) IHC x200 The primitive neuroepithelial components are positive for Nestin.

Table 1 | NGS results of patient tissue specimens.


[image: Table displaying genetic information including gene name, chromosomal coordinate, exon, nucleotide change, amino acid change, zygosity, frequency, and significance. Genes listed are DICER1 and ASXL1 with corresponding data. DICER1 at chr14:95557628 and exon 25 has a nucleotide change c.5439G>T causing p.E1813D, heterozygous, 13.33% frequency, significant. Another DICER1 entry at chr14:95560239, exon 24, shows c.5350G>T causing p.G1784*, heterozygous, 47.50% frequency, significant. ASXL1 at chr20:31019399, exon 9, has c.896G>A causing p.G299D, heterozygous, 48.80% frequency, not significant. ERCC4 at chr16:14042201, exon 11, shows c.2748G>C causing p.K916N, heterozygous, 49.80% frequency, not significant.]
Following surgery, the patient initially experienced temporary relief from respiratory distress for three days. However, subsequent CT indicated rapid progression of the thyroid tumor (Figure 2C). Fiberoptic bronchoscopy confirmed the growth of the tumor, which had compressed the airway, necessitating the placement of a tracheal stent. On December 6, 2022, the patient underwent emergency BEP chemotherapy (bleomycin, etoposide, cisplatin), resulting in the alleviation of respiratory distress symptoms post-treatment. A follow-up CT scan conducted on December 27, 2022, demonstrated a reduction in the size of the thyroid tumor (Figure 2D), prompting the continuation of the second course of BEP chemotherapy. From January 2023 to April 2023, the patient received four subsequent courses of BEP chemotherapy, achieving partial remission (PR) as the best response during this period. From April 12, 2023, to May 31, 2023, the thyroid tumor and cervical lymph node area were subjected to radiotherapy at a dose of 60Gy/30F. After radiotherapy, the tumor exhibited further reduction in size but did not achieve complete remission (CR).

After treatment, the patient was administered rivaroxaban for anticoagulation and underwent periodic follow-up examinations. The condition remained stable (Figure 2E). In March 2024, the patient presented to our department due to sudden syncope. The CT and PET/CT findings indicated multiple hypodense thyroid nodules with calcification, which was consistent with previous observations and indicative of essentially normal metabolism. These findings suggest inhibited tumor activity post-treatment. However, new hypermetabolic foci were detected in the superior vena cava and right atrium, suggesting the presence of a tumor thrombus. Computed tomography angiography (CTA) confirmed partial arterial involvement in the lower lobes of both lungs, right atrium, superior vena cava, bilateral brachiocephalic veins, internal and external jugular veins, and subclavian veins. Multiple collateral circulations were observed (Figures 2F, G). Cardiac ultrasound revealed the presence of slightly hyper-echoic masses within the right atrium, accompanied by enlargement of both the right atrium and right ventricle (Figure 1C). On March 24, 2024, and April 14, 2024, the patient received VIP chemotherapy (etoposide, ifosfamide, cisplatin). On May 13, 2024, the patient presented with a fever, cough, and respiratory distress, and was unable to assume a recumbent position. The follow-up CT scan indicated that the postoperative changes in the thyroid remained consistent, and the multiple tumor thrombi in the right atrium and superior vena cava were unchanged. The patient was treated for bilateral pneumonia with anti-infective agents, spasmolytics, and bronchodilators, resulting in clinical improvement and subsequent discharge. On June 12, 2024, the patient presented to the emergency department with sudden upper abdominal pain and vomiting. A CT scan revealed enlargement of tumor thrombi in the right atrium, right ventricle, superior vena cava, and left brachiocephalic vein, along with multiple pulmonary metastases (Figures 2H, I). After receiving anticoagulation and respiratory support, the patient’s condition did not improve. Despite resuscitation efforts, the patient suffered a sudden cardiac arrest and died on June 15, 2024. A timeline chart has been created to illustrate the progression, diagnosis, and treatment of the patient’s disease (Figure 4).

[image: Timeline graphic detailing a patient's medical journey with thyroid cancer. It spans from the disease's onset on November 11, 2022, through diagnosis, treatments, disease progression, and ending with the patient's death on June 15, 2024. Key events include physical examination findings, treatments like chemotherapy and radiotherapy, CT scan and PET/CT scan results, genetic testing, symptoms management, and echocardiography findings. The timeline illustrates changes in tumor size and metabolism, symptom alleviation, and the eventual cardiac arrest outcome. The arrow at the top indicates the progression from onset to death.]
Figure 4 | Timeline of the patient’s disease progression, diagnosis, and treatment.




3 Discussion

According to the new classification in the 2022 WHO 5th edition of the “Classification of Endocrine and Neuroendocrine Tumors” (1), this case has been diagnosed as thyroblastoma. The literature on this particular tumor type is currently scarce, both within the domestic and international contexts. Previously classified as malignant thyroid teratoma, it is known that teratomas often occur in the reproductive system, while those occurring in the thyroid are very rare. Benign and immature teratomas mainly occur in infants, young children, and adolescents with a good prognosis, whereas malignant teratomas are more common in adults and have an aggressive course. The significant differences in clinical progression and prognosis suggest that benign/immature teratomas and malignant teratomas are completely independent solid tumors, rather than variations within a single tumor type. Thyroblastoma is primarily composed of primitive multipotential components. Thyroid follicles appear small and round, with scant cytoplasm and ovoid nuclei. Glial tissue is rare or absent, and some follicles may fuse, forming a microfollicular pattern. Spindle cell components typically exhibit a primitive undifferentiated state, with occasional short spindle and stellate shapes, often accompanied by significant mucinous degeneration and capillary proliferation. Some spindle cells exhibit rhabdomyoblastic differentiation (2–5). In contrast, benign/immature teratomas exhibit a broader spectrum of tissue components, including squamous epithelium with adnexal structures, respiratory epithelium, gastrointestinal epithelium, pancreatic parenchyma, hepatic parenchyma, pulmonary parenchyma, smooth muscle, skeletal muscle, cartilage, bone, and fibroadipose tissue. Immunohistochemistry resultsindicate the presence of immature neural elements, spindle cells exhibiting rhabdomyoblastic differentiation, and thyroid follicular-like epithelium in malignant teratomas (2, 6, 7). Typically, Pan-CK, TTF-1, and PAX8 are positive, with partial positivity for TG. Myogenic markers like Desmin and Myogenin are expressed in most spindle-shaped stromal cells, while S-100, CD99, TTF-1, and p63 may vary in expression. Primitive neuroepithelial components such as SALL4, NSE, Nestin and Syn are generally positive, with occasional positivity for Glypican-3 and TTF-1. In this case, the thyroid tissue lesion comprised multiple primitive multipotential components, including thyroid epithelial components, spindle stromal components, and primitive neuroepithelial components. Dual positivity for TTF1 and PAX8 suggests an origin from thyroid epithelium. Additionally, abundant undifferentiated spindle stromal cell components with rhabdomyoblastic differentiation were observed.Thyroblastoma needs to be differentiated from the following tumours: (1) Undifferentiated carcinoma of the thyroid (mesenchymal carcinoma): Undifferentiated carcinomas can show heterogeneous differentiation overlapping with that of thyroblastoma, including rhabdomyoblastoid cells or cartilaginous components. However, mesenchymal thyroid carcinomas occur in the elderly, usually show more pronounced cellular pleomorphism, and rarely have DICER1 mutations. Tumour cells are positive for CK, vimentin and PAX8, mutant p53 is often diffusely and strongly positive, TTF-1 is rarely positive, and neuroepithelial markers (Syn, CD56 and Nestin, etc.) are often negative (8); (2) Hypofractionated thyroid carcinoma (Insular carcinoma): Not only island-like, trabecular and microfollicular structures can be seen in poorly differentiated thyroid carcinoma, which overlap with immature fused follicles of thyroblastoma, but also some of poorly differentiated thyroid carcinomas that occur in children or adolescents have DICER1 mutations, which need to be differentiated. Hypofractionated carcinomas lack the polyblastic component of thyroblastoma and are negative for neuroepithelial labelling by Syn and Nestin (9).

The defining molecular alteration in thyroblastoma is the acquired DICER1 hotspot mutation. The DICER1 gene, located on chromosome 14q32.13, encodes an RNase III family endoribonuclease, which is responsible for processing microRNA precursors into mature microRNAs. In thyroblastoma, mutations typically occur in specific codons of the RNase IIIb domain, such as E1705, D1709, G1809, D1810, and E1813 (10). These missense mutations disrupt normal microRNA synthesis and expression, thereby leading to tumorigenesis. DICER1 syndrome, a rare autosomal dominant familial tumor predisposition syndrome, that often manifests in infants and children under 30 years of age, is associated with heterozygous germline DICER1 mutations (11). The global incidence of DICER1 syndrome remains uncertain, characterized by diverse clinical manifestations where patients may develop one or multiple related tumors. Variability is notable even within families, with different members presenting different tumor types. Common DICER1-associated tumors include pleuropulmonary blastoma, ovarian Sertoli-Leydig cell tumor, and various thyroid diseases such as papillary, follicular, poorly differentiated carcinomas, and multinodular goiter. Less common tumors encompass nasal chondromesenchymal hamartoma, ciliary body medulloepithelioma, and pineoblastoma (12). DICER1 germline mutations outside hotspot regions, and a “second hit” - somatic mutations in the DICER1 RNase IIIb domain, contribute to the development of both benign and malignant tumors. Additionally, somatic DICER1 mutations can result in comparable tumour manifestations in patients lacking germline mutations (13). In recent years, advancements in molecular detection have led to the expanding scope of DICER1-related tumors. As of 2020, primary DICER1-related central nervous system sarcoma (14) and primitive sarcoma similar to pleuropulmonary blastoma and DICER1-related renal sarcoma (15) have been recognized. Now, thyroid blastoma has been newly classified among the DICER1-related malignant tumors. Rooper et al. (16) conducted next-generation sequencing (NGS) on 8 cases of thyroid teratoma (4 malignant, 3 benign, and 1 immature), revealing a DICER1 hotspot mutations in all 4 malignant cases, while no other clinically significant gene mutations were detected in the benign and immature cases. Study revealed that all 10 published cases meeting the genetic testing criteria for thyroid blastoma exhibited DICER1 hotspot mutations, including p.E1813Q (n=1, also had p.K868Ter), p.E1705K (n=3,one also had p.Y819fs), p.D1810H (n=1), p.E1813G (n=2), p.E1813K (n=1), p.G1809R (n=1), and p.D1709N (n=1) (6, 17). Among these, 4 cases had non-hotspot mutations that inactivated other DICER1 alleles, while 2 cases had TP53 mutations, 1 case had an NF1 mutation, and another 1 case had an ATM mutation. Notably, in one case confirmed via NGS, the patient was found to harbour a pathogenic heterozygous germline DICER1 gene mutation, p.G1784*, and a somatic mutation p.E1813D. This suggests that the inherited embryonic DICER1 mutation led to a secondary somatic cell mutation and subsequent development of thyroid blastoma. Heterozygous germline mutations at p.G1784* had not been previously reported.

As the range of tumors with DICER1 mutations expands, it is worth noting that despite their appearance in various anatomical locations, these tumors exhibit similar multi-germ layer components.These components include rhabdomyoblastic differentiation, primitive neuroepithelial components, immature cartilage or bone islands, and epithelial differentiation towards the organ of origin. The histological resemblance between the multi-germ layer components of thyroid blastoma and other DICER1-related malignancies suggests that the treatment approach for thyroid blastoma could be informed by DICER1-related malignancies. The treatment of tumours associated with DICER1 syndrome primarily relies on the tumor type and surgical pathology staging, with a combination of surgery and chemotherapy being the prevalent method. The International Pleuropulmonary Blastoma Registry recommends a chemotherapy regimen consisting of ifosfamide, doxorubicin, vincristine, and dactinomycin (18). For patients with pleuropulmonary blastoma who have residual disease post-surgery, recurrence, or metastasis, radiotherapy may also be employed. The primary treatment for DICER1 syndrome-related ovarian sex cord-stromal tumors is surgical resection, often followed by adjuvant chemotherapy, typically a platinum-based combination such as BEP or PEI (cisplatin, etoposide, and ifosfamide). Although the prognosis for malignant thyroid teratomas is generally poor, Ting et al. (19) reported successful treatment in 4 patients using surgery combined with chemotherapy. Regimens included CISCA (cyclophosphamide, doxorubicin, cisplatin), BEP, POMB (vincristine, methotrexate, bleomycin, and cisplatin), and ACE (dactinomycin-D, cyclophosphamide, and etoposide). A review of the published literature reveals that the primary treatment options for thyroid blastoma include total or subtotal thyroidectomy, combined with neoadjuvant chemotherapy, and adjuvant chemotherapy with or without adjuvant radiotherapy. The most commonly employed chemotherapy regimens include paclitaxel and carboplatin (4), PEI, and EVID (etoposide, vincristine, ifosfamide, and dactinomycin) (2), and so on. Reported survival times for patients range from 10 months to 125 months, yet the specific factors influencing survival prognosis remain unclear. The chemotherapeutic regimens previously reported in the literature for thyroblastoma include paclitaxel and carboplatin, PEI (cisplatin, etoposide, and ifosfamide), EVID (etoposide, vincristine, isocyclic aminophosphate, actinomycin), etc. Thyroblastoma was often diagnosed as teratoma, which was a type of germ cell tumour, and based on the above information, we chose the BEP(bleomycin, etoposide, cisplatin) regimen, which was a commonly used chemotherapeutic regimen for germ cell tumours, and was proved to be effective in this patient. The BEP regimen has become the ‘gold standard’ of chemotherapy for malignant germ cell tumours since 1994 (20), and after more than 30 years of clinical application, the efficacy of the BEP regimen has been widely verified by clinics, and it is the recommended regimen for the guidelines of the NCCN(National Comprehensive Cancer Network) and the CSCO(Chinese Society of Clinical Oncology) guidelines, the CR rate of germ cell tumour using BEP regimen is about 80%, and the 7-year OS rate is 69%. And side effects are manageable, with lower haematological toxicity compared to VIP(cisplatin, etoposide, and ifosfamide) regimens (21). Following the diagnosis of this patient, due to the challenges of achieving complete surgical resection and the rapid tumor progression, we opted for the BEP regimen. This approach resulted in a significant reduction in the size of the thyroid tumor and improvement in respiratory function. The combination of chemotherapy with local radiotherapy resulted in a progression-free survival (PFS) of 15 months for the patient. However, significant thrombosis and cancer thrombus were present at the onset, which led to subsequent tumor progression, primarily manifesting as cancer thrombus progression. Despite effective control of the local thyroid tumors with chemotherapy and radiotherapy, the patient ultimately died of cardiac arrest caused by the cancer thrombus progression to the right atrium and right ventricle.

Thyroid blastoma is classified as a distinct solid tumor due to its distinctive morphological and molecular characteristics. Table 2 summarizes the clinical and pathological features of all 11 published cases of confirmed thyroid blastoma, along with our current case. This new classification provides clinicians with a more comprehensive understanding of these challenging tumours, facilitating more effective diagnosis and treatment. Nevertheless, additional clinical cases are required in order to enhance our comprehension of their clinical characteristics, treatment, and prognosis.

Table 2 | Published cases of thyroblastoma with morphologic and molecular characteristics.


[image: Table detailing 11 cases of neck mass diagnoses, mainly malignant teratomas. Includes patient sex, age, mass size, presentation, diagnosis, treatment, outcomes, molecular findings, and references. Outcomes include no evidence of disease, metastatic sites, and cases where patients died due to disease. Molecular findings often list DICER1 gene mutations. Treatments vary, including surgeries, chemotherapy, and radiation.]
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Background

Cervical lymph node metastasis is a major factor influencing recurrence after surgery for papillary thyroid cancer. Molecular markers that can predict the presence of lymph node metastasis and assess the aggressiveness of papillary thyroid microcarcinoma (PTMC) remain poorly understood. The research question addressed whether specific genes, such as thrombospondin-4 (THBS4), could serve as predictive biomarkers for guiding surgical strategies, particularly in cases where current imaging modalities fail to detect LNM in the central region, and the decision for prophylactic central neck dissection remains controversial.





Methods

Transcriptome sequencing was employed to screen for differentially expressed genes and perform enrichment analysis. The study defined two groups of PTMC patients: LNM(n=50) and NLNM(n=50). 10 samples from each group were used for transcriptome sequencing. The expression of THBS4 was evaluated in both groups. Additionally, the correlation between THBS4 expression and cancer-associated fibroblasts (CAFs), specifically the PDGFRA+ inflammatory CAFs, was investigated to understand the stromal regulatory protein’s role in PTMC aggressiveness.





Results

The analysis of sequencing data revealed that THBS4 expression was significantly higher in LNM PTMC compared to the NLNM group (Fold Change > 1.6 and P < 0.05). LNM PTMCs were also associated with a higher presence of PDGFRA+ inflammatory CAFs (P < 0.05), while no significant difference in the quantity of SMA+ myofibroblastic CAFs was observed between the two groups(P>0.05). Immunohistochemical analysis demonstrated increased THBS4(P < 0.01) and PDGFRA(P < 0.001) expression in LNM groups, while SMA staining showed no significant intergroup differences(P>0.05).





Conclusion

This study’s findings indicate that THBS4 could be a potential biomarker for predicting the risk of lymph node metastasis in papillary thyroid microcarcinoma, thus potentially guiding more personalized surgical interventions. Further validation in larger patient cohorts and the interactions between THBS4 and CAFs are necessary.





Keywords: papillary thyroid microcarcinoma, tumor immune microenvironment, thrombospondin-4, lymph node metastasis, cancer-associated fibroblasts subsets




1 Introduction

Thyroid cancer (TC) is the most prevalent endocrine malignancy and has seen a striking rise in global incidence rates (1). Within TC, differentiated thyroid cancer (DTC) constitutes the majority of cases, with papillary thyroid cancer (PTC) being the most frequent subtype (2). Papillary thyroid carcinoma is prone to cervical lymph node metastasis, and extensive cervical lymph node metastasis also occur in papillary thyroid microcarcinoma (PTMC, traditionally defined as PTCs ≤ 1.0 cm in size), especially in some high-risk histologic subtypes (3). Rationally standardized cervical lymph node dissection is the primary treatment modality for these patients. However, Current imaging techniques, such as ultrasound, lack the sensitivity to reliably detect LNM, particularly in zone VI or in small lymph nodes (4, 5). This limitation hinders clinicians’ ability to effectively identify metastatic lymph nodes. The need for prophylactic lymph node dissection, especially central neck dissection (CND), in these patients in whom no lymph node metastasis is detected at preoperative examination is still controversial in various guidelines (6–9). The benefits of preventive CND remain unclear. Therefore, effective identification of cervical lymph node metastasis is an urgent issue to be explored. Nonetheless, a subset of PTMCs presents with adverse pathologic features and aggressive clinical behaviors, including lymph node metastasis, distant metastasis, and structural recurrence following surgery (10–13). In severe instances, these tumors can be fatal, with progression to high-grade carcinoma often observed in metastatic lymph nodes (14, 15).

To address these diagnostic challenges, molecular diagnostic techniques are increasingly used to complement radiographic examinations. Although BRAFV600E is the most common mutation in papillary thyroid cancer, its role as a reliable risk factor for lymph node metastasis is yet to be determined (16, 17). Hence, there is a pressing need to identify new molecular markers that can predict the likelihood of lymph node metastasis.

Advances in high-throughput sequencing technology have facilitated the discovery of molecular markers for PTMCs. Despite recent advances (18–21), the genomic differences between PTMC with and without lymph node metastasis remain underexplored. In this study, we employed transcriptome sequencing to investigate the genomic characteristics of PTMC, identifying genomic features that diverge from previous reports. After performing further screening we found that thrombospondin-4 (THBS4) and its corresponding proteins were associated with whether PTMC developed lymph node metastasis or not. AS an extracellular matrix protein, THBS4 is usually considered to play a key role in tissue growth and remodeling under physiological conditions (22–24). In the context of tumor biology, THBS4 may contribute to tumor growth, proliferation, and migration, thereby promoting aggressive tumor behavior (25–27). Notably, THBS4 expression in some tumors is not directly secreted by tumor cells but rather by cancer-associated fibroblasts (CAF) (27–29). For this reason, we further explored the correlation between THBS4 and CAF in PTMC. Our results suggest THBS4 may serve as a molecular marker for predicting lymph node metastasis in PTMC.




2 Materials and methods



2.1 Biospecimen collection, pathological assessment, and public data processing

This retrospective study was approved by local ethical committees (The First Hospital of Wenzhou Medical University), and written informed consents were obtained from all patients. FFPE tissue samples (stored within six months) and corresponding haematoxylin-eosin stained slides from 100 PTMC patients were obtained from the Department of Pathology, First Affiliated Hospital, Wenzhou Medical University, and 20 of these were used for RNA sequencing. We performed simple random sampling using R (v4.0.3) with the command set.seed(); selected_LNM<-sample(1:50, size=10, replace=FALSE), selected_NLNM<- sample(51:100, size=10, replace=FALSE).Two pathologists independently performed histopathological review of the tumor sections. TNM stage of the disease was defined by pathologists according to the 8th AJCC/UICC staging system. All enrolled patients with thyroid carcinoma met the following inclusion criteria (1): Primary tumor;(2) Maximum tumor diameter ≤1 cm;(3) Histologically confirmed papillary thyroid carcinoma;(4) At least central neck dissection performed during surgery;(5) Surgical excision of suspicious regional lymph nodes identified during preoperative evaluation;(6) Absence of distant metastasis (M0). RNA-sequencing counts, and clinical data of 48 PTC and normal thyroid tissue were acquired from The Cancer Genome Atlas Program (https://portal.gdc.cancer.gov/projects/TCGA-THCA). Use ComBat and ComBat_seq from the SVA package to correct for batch effects.




2.2 Nucleic acid extraction and library construction

Total RNA from FFPE samples was extracted using miRNeasy FFPE kit (QIAGEN). Ribosomal RNA was depleted using KAPA Stranded RNA-seq Kit with RiboErase (HMR) (KAPA Biosystems). Library preparations were performed with KAPA Stranded RNA-seq Library Preparation Kit (Roche). Library concentration was determined by KAPA Library Quantification Kit (KAPA Biosystems), and library quality was accessed by Agilent High Sensitivity DNA kit on Bioanalyzer 2100 (Agilent Technologies), which was then sequenced on Illumina Novaseq6000 NGS platforms (Illumina).




2.3 Gene expression analysis and sequent analysis

Base calling was performed on bcl2fastq v2.16.0.10 (Illumina, Inc.) to generate sequence reads in FASTQ format (Illumina 1.8+ encoding). Quality control (QC) was performed with Trimmomatic (version 0.33) (30). STAR (version 2.5.3a) (31) is used for transcriptome mapping followed by isoform and gene level quantification performed by RSEM (version 1.3.0) (32). Differential expression analysis was conducted by R packages DESeq2 (version 1.16.1) (33) and edgeR (version 3.18.1) (34). Differentially expressed genes of cohort were selected by Fold Change > 1.6 and P value < 0.05. Data from one of the samples was removed as an outlier. Differentially expressed genes of TCGA dataset were selected by Fold Change > 2 and P value < 0.05. Corresponding volcano plots and heatmaps were generated by in-house R scripts. GO and KEGG enrichment analysis were performed by ClusterProfiler (version 3.6.4) (35). Gene set enrichment analyses (GSEA) were performed using the GSEA software. The NMF package was used to perform an NMF clustering. K-M survival curves coupled with Logrank test were performed using the R packages “survival” (v.3.4–0) and “survminer” (v.0.4.9). The relative abundance of immune cell populations was then calculated using the R package “immunedeconv” (v.2.0.4) (36), which allows the community to perform integrated deconvolution using seven approaches including xCell (37) (Detailed data are provided in the Supplementary Material). Receiver operating characteristics (ROC) analysis was performed using the R package pROC (version 1.17.0.1) to obtain AUC.




2.4 Survival analysis

We downloaded the harmonized and standardized pan-cancer dataset from the UCSC (https://xenabrowser.net/) database and the previously published TCGA prognostic study in Cell (38). Prognostic dataset from UCSC (https://xenabrowser.net/datapages/), and TARGET follow-up data from UCSC (https://xenabrowser.net/datapages/) As a supplement, samples with expression level of 0 were filtered and samples with follow-up shorter than 30 days were excluded, and a log2(x+0.001) transformation was performed for each expression value to exclude cancers with less than 10 samples in a single cancer type. We calculated the optimal cut-off value of ENSG00000113296(THBS4) using the R package maxstat, and set the minimum number of group samples to be greater than 25% and the maximum number of group samples to be less than 75% to finally obtain the optimal cut-off value, based on which the patients were divided into high and low groups, and further analyzed the prognostic difference between the two groups using the survfit function of the R package survival, and the significance of the prognostic difference between the samples of different groups was assessed using the logrank test method. The prognostic differences between the two groups were further analyzed using the survfit function of the R package survival, and the significance of the prognostic differences between the samples of different groups was assessed using the logrank test method.




2.5 Immunohistochemistry staining and quantification

Immunohistochemistry was performed. Briefly, sections were dewaxed and rehydrated. Antigen retrieval was performed by pretreating the slides in citrate buffer (pH 6.0; Thrombospondin 4) in a pressure cooker for 1 minute or EDTA (pH 8.0; PDGFRA and SMA) boiling for 20 minutes at 95°C. The slides were incubated with PBS containing 3% hydrogen peroxide for 10 min and subsequently incubate in the primary antibody (dilution ratios 1:150, Thrombospondin 4 antibody, catalog number orb1289935, biorbyt; dilution ratios 1:50, PDGFRA antibody, catalog number ZA-0377, ZSGB-BIO; dilution ratios 1:200, SMA antibody, catalog number ZM-0003, ZSGB-BIO) at 40°C for 1 hour. The slides were then probed with horseradish peroxidase conjugated secondary antibody for 20 mins at 40°C, followed by reaction with diaminobenzidine and counterstaining with Mayer’s hematoxylin. Immunohistochemistry sections were digitally scanned using a whole slide image scanner. FIJI software was utilized for the quantitative assessment of average density within the region of interest.




2.6 Statistical analysis

All analyses were performed using R software v4.0.3 (https://cran.r-project.org/). T test was used to compare the distributions of continuous variable. Then chi-square test was performed to compare the composition differences of categorical variable. Correlation was obtained with Spearman correlation test. Unless otherwise noted, a p-value < 0.05 was considered statistically significant.





3 Result



3.1 Research process and clinicopathologic features

The process of this study is shown in Figure 1. We defined PTMC as two groups; those with pathologically confirmed at least one regional lymph node metastasis, which we termed the LNM group, and those without, termed the NLNM group. There were no significant differences in baseline characteristics between the two groups (Table 1).

[image: Flowchart depicting a study methodology. It begins with patient enrollment divided into two groups: LNM and NLNM. There is random sampling for RNA sequencing, with one outlier excluded. This leads to DESeq2 differential gene analysis. Simultaneously, TCGA-THCA PTC and control samples yield differential genes overlapping with the cohort. NMF clustering is performed. Subsequent GSEA, GO, KEGG screening identifies genes of interest like THBS4. The process culminates in immunochemistry staining and quantification, immunoinfiltration analysis, and correlation analysis between THBS4 and iCAF. Inclusion criteria for patients are detailed at the top.]
Figure 1 | The flowchart of this study. PTC, papillary thyroid carcinoma; LNM. lymph node metastasis; NLNM, non-lymph node metastasis; THBS4, thrombospondin-4; CAF, cancer-associated fibroblasts; iCAF inflammatory CAF.

Table 1 | Patients’ clinicopathologic features.


[image: Table comparing variables between NLNM and LNM groups, each with 50 subjects, showing categories like age, gender, nodule diameter, T stage, minimal extrathyroid extension, BRAF mutation, and subtype. P-values are noted for each variable, with a statistical analysis footnote explaining the tests used.]



3.2 Differential gene expression analysis between LNM and NLNM PTMC

Transcriptome sequencing revealed 61 differentially expressed genes (DEGs) between the two groups. 55 of these were long non-coding RNAs and 6 were messenger RNAs (Figure 2A, Supplementary Table S2). Subsequently, Gene Set Enrichment Analysis (GSEA) was conducted on all expressed genes, revealing significant enrichment in 13 pathways. Notably, these pathways encompass focal adhesion, the PI3K-Akt signaling pathway, proteoglycans in cancer, and regulation of the actin cytoskeleton (Figure 2B). ROC analysis showed good differentiation of the two tumor groups by expression level of GP6 and THBS4 (Figure 3). To further screen for genes of interest, we obtained RNA sequencing data and clinical information from the TCGA-THCA dataset for PTC, selecting 48 cases each of tumor samples and normal thyroid samples. Using the normal thyroid tissue transcriptome from TCGA as a control, we identified DEGs between tumor and normal tissues separately. Our cohort data revealed 7348 DEGs and TCGA 4458 DEGs. Among the 3105 overlapping genes, 1746 were simultaneously upregulated and 1078 were simultaneously downregulated in both cohorts (Figures 2C, D). These DEGs were then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (Figures 4A, B), which highlighted significant effects on extracellular matrix organization and ligand-receptor interactions, including extracellular matrix (ECM)-receptor interaction. Non-negative Matrix Factorization (NMF) clustering grouped the 20 samples into three clusters, with clusters 1 exhibiting a higher proportion of LNM tumors (Figure 2D). Next, we performed an enrichment analysis of cluster 1 and showed that pathways such as PI3K-Akt signaling pathway and ECM-receptor interaction were up-regulated (Figure 4C). We analyzed the impact of THBS4 on the prognosis of patients with THCA and several other tumors using the TCGA database. Kaplan-Meier survival analyses showed that the higher THBS4 expression group typically had worse overall survival (Figure 5). These results suggest that tumor impact on the mesenchyme may significantly influence the probability of biological behavior of tumors including lymph node metastasis. We therefore selected THBS4, a gene involved in PI3K-Akt signaling pathway and associated with mesenchymal components, for further exploration. Additionally, we compared the abundance of immune cells in the microenvironment of both groups using seven common algorithms. In our cohort, the two groups did not differ significantly in the composition of the immune microenvironment, with only differences observed in the abundance of NK cells (Figure 6).

[image: Panel A shows an mRNA heatmap displaying expression levels of genes such as GP6, EMX2, and HOXC6, colored from blue to red. Panel B presents a line graph of pathway enrichment scores for focal adhesion and PI3K-Akt signaling, with p-values and adjusted values. Panel C features a Venn diagram comparing RNAseq and TCGA datasets, showing 4,243 and 1,353 unique elements, respectively, with 3,105 in common. Panel D is an RNA heatmap illustrating expression levels across clusters and groups, with a color scale indicating differences.]
Figure 2 | (A) Heatmap of differentially expressed genes encoding messenger RNAs. (B) The Gene Set Enrichment Analysis (GSEA) of all DEGs. (C) DEGs in the two cohorts and (D) NMF clustering of differentially expressed genes.

[image: Six ROC curve plots (A-F) displaying sensitivity versus 1-specificity for different markers: GP6, THBS4, TRABD2B, EMX2, ESM1, and HOXC6. Each graph features an AUC value indicating performance accuracy and confidence intervals.]
Figure 3 | Receiver operating characteristic (ROC) curves and the associated areas under curves (AUCs) of six gene for the PTMC cohort. (A) GP6,glycoprotein VI platelet; (B) THBS4,thrombospondin 4; (C) TRABD2B,TraB domain containing 2B; (D) EMX2,empty spiracles homeobox 2 (E) ESM1,endothelial cell specific molecule 1; (F) HOXC6,homeobox C6;

[image: Three-paneled image showing gene and pathway enrichment data. Panel A: GO Enrichment with terms on the y-axis and GeneRatio on the x-axis, with dots color-coded by p-value and size by count. Panel B: Path Enrichment with similar layout and details. Panel C: Horizontal bar graph showing pathways on the y-axis and negative to positive GeneRatio on the x-axis, with bars indicating statistical significance through color.]
Figure 4 | (A) Gene Ontology (GO) and (B) KEGG analysis of DEGs in two cohorts. (C) Gene Ontology analysis of DEGs in cluster 1.

[image: Six Kaplan-Meier survival curves (A-F) compare low (L) and high (H) expression groups of the gene ENSG00000113296 (THBS4) across different conditions. Each plot shows survival probability versus overall survival time with shaded confidence intervals. Hazard ratios, p-values, optimal thresholds, and numbers at risk are provided for each curve. Plots highlight significant differences in survival between expression groups.]
Figure 5 | (A–F) Kaplan-Meier survival analysis showing overall survival for TCGA-THCA, TCGA-GBMLGG, TCGA-LGG, TCGA-BLCA, TCGA-COAD and TCGA-ALL-R.

[image: Box plot comparing xCell scores of various immune cell types between NLNM (red) and LNM (blue) groups. Scores are on the y-axis, ranging from 0 to 0.6, with cell types on the x-axis.]
Figure 6 | Differences in infiltrating immune cells between LNM and NLNM groups.




3.3 THBS4 is highly expressed in LNM PTMC

THBS4, one of the genes we identified, is involved in the focal adhesion and PI3K-Akt signaling pathways and is highly expressed in the LNM group. According to recent studies, the origin of THBS4 varies in different tumors, either from tumor cells or mesenchymal stromal cells, suggesting heterogeneity of THBS4 expression among tumors (29, 39). Immunohistochemical analysis of THBS4 expression in LNM and NLNM PTMC tissues revealed more positive staining in the tumor cytoplasm of the former, while fibroblasts in the tumor mesenchyme were barely stained (Figures 7A, B).

[image: Panel A shows two sets of histological images comparing NLNM and LNM tissues at 100x and 400x magnification, with LNM showing increased staining. Panel B displays a box plot graph illustrating higher THBS4 expression in LNM compared to NLNM, indicating a significant difference marked by two asterisks.]
Figure 7 | (A) Representative image of the immunohistochemistry of THBS4. (B) Average optical density (AOD) of immunohistochemical staining image. **P < 0.01 by Wilcoxon rank-sum test.




3.4 Increased abundance of PDGFRA+CAFs in LNM PTMC

In some studies, THBS4 regulates tumor biological behavior by affecting CAF (27), whereas a similar process has not been intensively investigated in papillary thyroid carcinoma. CAF is usually the most abundant mesenchymal cell component and may play a number of important biological functions in papillary thyroid carcinoma. Through single-cell sequencing, several studies have identified more functional subsets of CAF in various tumors (40–42). As with papillary thyroid carcinoma, CAFs have been broadly categorized into myofibroblastic CAFs (myoCAFs) and inflammatory subset (iCAFs) (43, 44). So, we next assessed the abundance of both CAFs in our cohort.

We assessed the abundance of both CAF subsets in our cohort, using marker gene expression averages derived from single-cell sequencing, as in previous studies (45) (Supplementary Table S1). We found that myoCAF scores did not differ between the two groups, whereas iCAF scores were higher in the LNM tumors, suggesting an increased presence of iCAFs in these cases (Figure 8A). Considering that there is no exclusive marker for either subset, after referring to previous studies (44), we used SMA and PDGFRA to label myoCAF and iCAF, respectively, and immunohistochemical staining showed an abundant presence of myoCAFs in both groups, while iCAFs were relatively scarce and primarily located at the infiltrating leading edge of the tumor in LNM PTMC (Figure 8B). Also, A significant positive correlation was observed between THBS4 expression and iCAF scores (Supplementary Figure S1. R=0.738, p<0.001, Spearman rank correlation).

[image: Box plots and immunohistochemistry images comparing NLNM and LNM. Box plots show iCAF and myCAF scores, indicating significant difference for iCAF (PDGFRA) and no significance for myCAF (SMA). Microscopic images at 100X and 400X magnifications display PDGFRA and SMA expression in tissue samples.]
Figure 8 | (A) Marker gene scores for CAF subsets in the LNM and NLNM groups. p=0.0433 or p=0.0753 by Wilcoxon rank-sum test. (B) Representative image of immunohistochemistry of PDGFRA and SMA, and corresponding average optical density (AOD). The dotted line shows the fibrous band between the tumor and normal tissue *P < 0.05 or ***P < 0.001 by Wilcoxon rank-sum test. ns, no significance.





4 Discussion

In our study, we investigated the genomic disparities between PTMC with and without LNM, yielding new insights through transcriptome sequencing. Though the six mRNAs (TRABD2B, GP6, THBS4, ESM1, HOXC6, EMX2) lack direct experimental evidence of interaction in our study, emerging literature suggests their potential convergence in metastatic progression. THBS4 and ESM1 may cooperatively modulate TGF-β bioavailability—a known EMT inducer—and endothelial activation (23, 46). EMX2 has been implicated in epithelial plasticity regulation via epigenetically silenced (47, 48). As a platelet-specific collagen receptor, GP6 is known to mediate platelet adhesion and activation, which may indirectly influence tumor progression through platelet-tumor microenvironment crosstalk (49). Intriguingly, HOXC6 might participate in stromal reprogramming (50) and stem cell identity maintenance (51). While this hypothetical framework requires experimental validation, the genes’ collective enrichment in “extracellular matrix organization” and “ECM-receptor interaction” implies a plausible biological synergy warranting further investigation.

From the DEGs identified in our discovery cohort, THBS4 emerged as the prime candidate for three synergistic reasons (1): Its expression exhibited superior diagnostic accuracy in distinguishing LNM from NLNM tumors (AUC=0.9), outperforming other candidates; (2) Functional triangulation through GSEA, TCGA cohort validation, and NMF clustering convergently implicated PI3K-Akt signaling and ECM remodeling – pathways directly modulated by THBS4; (3) Pan-cancer survival analysis revealed that THBS4 overexpression universally predicted poor prognosis, suggesting its conserved role in metastatic progression. We therefore propose THBS4 as a promising marker gene for predicting lymph node metastasis and for guiding surgical strategies, yet the precise mechanisms by which it influences PTMC behavior remain unclear. We hypothesized that THBS4 may alter the composition of CAF subsets in the PTMC mesenchyme, and our findings support the notion of increased iCAF presence in LNM group. These discoveries enhance our comprehension of PTMC.

Previous studies have provided some characterization of PTMC transcriptome features. Fan Yang et al. identified nine core genes that may be used to predict the development of PTMC (18). A group of genes, including collagen type I alpha 1 (COL1A1), fibronectin 1 (FN1), laminin subunit gamma 2 (LAMC2), periostin (POSTN), transforming growth factor beta induced (TGFBI), are involved in extracellular mesenchymal organization and affect tumor behavior, akin to our findings. However, the impact of these genes on lymph node metastasis was not investigated. Other studies compared the transcriptome characteristics of patients with or without lateral lymph node metastasis. Consistent with our study, the differences in genetic characteristics between the two groups were relatively modest (19). Dilmi Perera et al. identified several DEGs, but they do not share a common molecular pathway or a single gene expression profile, making it difficult to explain the underlying physiological processes that the occurrence of LNM (20). The role of epithelial-mesenchymal transition and cancer stem cell-like properties in extensive lymph node spread of PTMC has been noted, as have the associations of lncRNA and circRNA with LNM (52–54). Overall, these studies have primarily focused on tumor parenchymal cells in search of markers predicting adverse behavior. A recent large sample study categorized PTMC into PTMC-proliferation (PTMC-Pro) and PTMC-inflammatory (PTMC-Inf) types based on their respective marker genes (55). PTMC- Inf was related with activated immune cell signaling and interferon-γ response and had a lower 5-year PFS rate than PTMC-pro. In contrast to our study, there were more differences in immune cell abundance between PTMC-Pro and PTMC-Inf. This suggests that in addition to clinical features, PTMC are heterogeneous in immune microenvironment, potentially leading to early-stage extensive lymph node metastasis. Our study, therefore, centered on tumor-microenvironment interactions, particularly the roles of THBS4 and CAFs.

Thrombospondin-4 (THBS-4) is a member of the thrombospondin protein family, which consists of five highly homologous members. In human tissues, THBS4 is abundantly expressed in cardiovascular, skeletal muscle, tendon and nerve tissues, with roles in cardiovascular and skeletal muscle being the most extensively studied. In the healthy heart, THBS4 prevents interstitial ECM deposition and cardiac hypertrophy (56, 57). And in skeletal muscle, THBS4 is important for proper motor unit assembly and function, and both muscle and tendon require THBS4 for attachment (58). In vitro, experiments have confirmed that THBS4 inhibits collagen synthesis in human fibroblasts and endothelial cells. All of these functions may be related to the regulation of ECM by THBS4, and THBS4 deficiency results in cardiac interstitial ECM deposition and skeletal muscle ECM deficiency.

Recently, high expression of THBS4 was found in several tumors. Interestingly, in most tumors, THBS4 promoted tumor progression. Similar to our findings in PTMC, in hepatocellular carcinoma, bladder cancer and prostate cancer, high expression of THBS4 in tumor cells promoted tumor growth, proliferation and invasion (25, 26, 59). In contrast, in colon cancer, the THBS4 gene is methylated and silenced, while increased expression of THBS4 in colon cancer colonies significantly inhibits tumor growth (60). The role of THBS4 on tumors is not only complex, but also varies in its origin in tumors. A typical example is gastric adenocarcinoma where, in contrast to PTMC, THBS4 is derived from tumor-associated fibroblasts in diffuse gastric adenocarcinoma, whereas THBS4 expression is not detectable in tumor cells (28, 29, 61). Another study in gallbladder cancer found that THBS4 is secreted by a variety of cells, but its main source is also CAF (27); in addition to CAF, the abundance of tumor-associated macrophages can also be regulated by THBS4 and play a role in tumor invasiveness (62). The specific regulatory mechanism of THBS4 in both normal and tumor tissues is not well understood, among which transforming growth factor β (TGF-β) signaling has been shown to be closely related, and it has been reported that SMAD3 is involved in the regulation of THBS4 by TGF-β (23).

The tumor microenvironment (TME) is a concept that has emerged in recent years and is defined as the surrounding microenvironment in which tumor cells exist, including peripheral blood vessels, immune cells, fibroblasts, myeloid-derived inflammatory cells, a variety of signaling molecules, and extracellular matrix (ECM). In current studies, CAF is typically one of the most abundant components of the TME (63). Some studies have shown that CAF is associated with LNM, upregulation of immune checkpoints, enrichment of immune cells, and tumor-associated macrophage polarization in PTCs (64). However, the heterogeneity of CAF in TME was not well recognized in PTMC until the widespread use of single-cell sequencing technology. Previous studies of PTC have used only SMA-labeled CAF, leaving the impact of CAF subsets on tumors poorly understood (65). A recent multi-sample single-cell sequencing study revealed distinct subsets of CAF in PTC (44). One subset is associated with cell motility, contraction, and extracellular matrix, and the other subset is associated with an abundance of immunomodulatory molecules and chemokines. iCAF is often hypothesized to carry out intercellular communication to influence the biological behavior of tumors, which may consequently undergo adverse pathologic features (66–68). Another single-cell sequencing of a single sample yielded similar results (43). In other tumors, CAF isoforms exert immunomodulatory functions through the expression of various cytokines, a typical molecule being interleukin-6 (69, 70). However, the situation in PTC is somewhat different. Weilin Pu et al. hypothesized through bioinformatics analysis that myoCAF tends to exert mechanical and chemical influences on tumor progression, whereas iCAF exerts immunomodulatory functions by recruiting and crosstalking various immune cells through chemokines such as CCL5, CCL3L3 and other chemotactic factors in the TME (44).

To our knowledge, no biological validation of the CAF subset in PTMC has been performed. Here, we compared data from samples from our center with previous studies, similar to iCAF with less cellular abundance than myoCAF, only iCAF differed between LNM and NLNM PTMC, and the expression level of THBS4 was positively correlated with the iCAF score. Based on previous studies and our results, we speculate that tumor cells and CAF in PTMC may be involved in bidirectional regulation through THBS4 and TGF-β signaling pathways, which needs to be further confirmed in in vitro and in vivo experiments. In addition, in the available bulk RNA sequencing study, CAF did not show an effect on the biological behavior of PTC, probably because iCAF accounted for a small proportion of the total CAF (55).

Our study demonstrates the potential clinical utility of using THBS4 and PDGFRA as biomarkers to predict PTMC lymph node metastasis. Regrettably, there are several limitations to this study. First, this is a single-center study, and the generalizability of its results needs to be validated by a larger cohort. Second, we did not analyze the prognosis of patients in this cohort because of the short follow-up time. Thirdly, although no significant differences were observed in baseline patient characteristics, certain selection biases existed in the histological subtype selection of our cohort. This limitation was primarily attributable to the exclusion of rare histological subtypes from our study population, and secondly, to the inherent propensity of certain subtypes to exhibit higher rates of lymph node metastasis (3). Furthermore, in the AJCC 8th edition, extrathyroid extension that is only visible microscopically does not increase the T stage because it does not affect the patient’s prognosis (71). However, tumor invasion of the vasculature or nerves in the soft tissue can sometimes be seen. Although it is unclear whether this leads to enhanced metastatic potential, this pathological categorization may nevertheless introduce potential confounding factors. In addition, we did not distinguish the pattern of lymph node metastases in detail, which may have introduced confounding bias. Whether different metastatic patterns represent different underlying mechanisms remains to be investigated in larger samples and cohorts. Finally, we did not investigate the causal relationship between THBS4 expression and iCAF abundance in tumors. We were unable to provide evidence of a direct association between THBS4 and iCAF. Further mechanistic studies are essential to elucidate the exact interaction between THBS4 and iCAF and to identify potential therapeutic targets.

In conclusion, our study integrated transcriptome sequencing and TCGA RNA sequencing data and identified THBS4 as a potential biomarker for predicting lymph node metastasis in papillary thyroid microcarcinoma (PTMC). Our findings suggest that THBS4 expression levels may influence the composition of CAF subsets in the tumor microenvironment. Despite these promising results, our study has limitations, including its single-center design and the need for further studies on the interaction between THBS4 and iCAFs. Future studies should validate these findings in larger cohorts and explore the predictive value of THBS4 and PDGFRA as biomarkers of PTMC lymph node metastasis.
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Objective

We initially found that the thyroid differentiation score (TDS) was associated with the prognosis of papillary thyroid carcinoma (PTC) patients. Therefore, this study aimed to investigate the influencing factors and construct a discriminative model of high-risk dedifferentiation, and to explore the possible mechanisms.





Methods

Data were sourced from the TCGA database. The influences of the TDS, tumor mutation burden, and immune score on the progression-free interval (PFI) were assessed by the Kaplan-Meier method and multivariable Cox regression. Then, logistic regression analyses were utilized to explore the factors of dedifferentiation and a nomogram model was conducted. Additionally, differentially expressed genes (DEGs) were identified using RNA sequencing data, while their regulatory pathways were determined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, the differential expression of key genes of major pathways was explored.





Results

This study included 391 PTC patients. After analyzing the influences of the three indicators on survival, only TDS showed an association with PFI. Multivariable logistic analysis revealed that the disease duration and PTC subtypes influenced dedifferentiation. The nomogram model based on these two variables showed improved discriminative capability. The study identified 17 overlapping DEGs associated with the dedifferentiation and three primary enrichment pathways, with complement and coagulation cascade pathways being the most significant (P<0.001). The central gene was CD55, which showed high expression in high-risk dedifferentiated and tall cell PTC, and the expression level increased as the disease progressed.





Conclusion

This research may contribute to promising identifying high-risk dedifferentiated PTC and also provide a potential therapeutic target.





Keywords: thyroid differentiation score, papillary thyroid carcinoma, dedifferentiation, differentially expressed genes, CD55




1 Introduction

Thyroid cancer (THCA) is the most prevalent endocrine system malignancy, with 821,000 new cases worldwide in 2022, accounting for 4.1% of all new cancer cases globally and ranking 7th among malignant tumors (1, 2). Papillary thyroid carcinoma (PTC) is the most common subtype of THCA, accounting for approximately 80%-90% of all cases (3). PTC originates from follicular epithelium (4). It includes more than ten subtypes, such as classical/usual PTC, infiltrating follicular PTC, tall cell PTC (TCPTC), and columnar cell PTC (5). PTC is highly differentiated and prone to regional lymph node metastasis at an early stage, with low local infiltration and recurrence rate, resulting in a better prognosis. The 5-year survival rates of PTC range from 83% to 98%, while well-differentiated classic PTC has a 10-year survival rate of up to 97% (6, 7). However, some PTC subtypes may undergo dedifferentiation, making the tumor cells more aggressive and losing iodide uptake capacity, then leading to increased disease progression and mortality (8–10). Compared to identifying dedifferentiation through histopathology alone, the thyroid differentiation score (TDS) integrates the mRNA expression levels of 16 genes associated with thyroid metabolism and function, providing a more consistent method for identifying dedifferentiation (11, 12).

With the advancements in immuno-oncology, immune checkpoint inhibitor (ICI) therapies have revolutionized cancer treatment. However, these groundbreaking therapies also have side effects (13). Tumor mutation burden (TMB), as an emerging biomarker, is considered to be a promising predictor of response to ICI therapy (14). Research has demonstrated that elevated TMB is associated with the response to ICI in several types of tumors. For example, in non-small cell lung cancer, high TMB is linked to significantly improved progression-free interval (PFI) in patients receiving combined Nivolumab and Ipilimumab treatment (15). Similarly, increased TMB is associated with improved survival rates in head and neck cancer and bladder cancer patients undergoing ICI therapy (16).

The tumor immune microenvironment (TIME) plays a crucial role in cancer progression and influences treatment outcomes and prognosis (17). In TIME, the key cluster cells that are most likely to influence clinical outcomes of THCA may be immune cells (18). Currently, immune scores can be obtained using multiple computer algorithms such as Cibersort, Timer, and ImmuCellAI, which can assess immune cell infiltration by RNA-seq expression data (19–21). PTC immune infiltrating cells such as dendritic cells, biased M2 phenotype tumor-associated macrophages, and mast cells are associated with tumor differentiation or anti-tumor immune responses (22–24). Several studies have investigated the relationship between known differentially expressed genes (DEGs) in PTC, TIME, and prognosis (25–27). However, these studies did not include currently unproven immune-related genes or prognostic genes that were not differentially expressed in the analysis. In addition, models that incorporate multiple genes limit the feasibility of their clinical application. To address these limitations, this study employed the ESTIMATE algorithm to calculate immune scores for PTC cases.

Dedifferentiation, gene mutation, and immune microenvironment significantly impact the biological behavior and clinical prognosis of PTC. In this study, we initially explored the effects of these three markers on PFI in PTC patients, revealing that only TDS influenced prognosis. Subsequently, the influencing factors and mechanisms were explored for TDS to guide intervention strategies.




2 Materials and methods



2.1 Data acquisition and preprocessing

The transcriptome data and clinical information data of the PTC patients were from the Cancer Genome Atlas (TCGA) genome database (https://portal.gdc.cancer.gov/). PTC samples in the TCGA database were collected and sequenced primarily between 2010 and 2015. We obtained 507 PTC patients’ data, and 391 of them with complete TDS, TMB, and immune scores data were analyzed. Perl version 5.24.3 software was utilized to transform original RNA sequencing data into an RNA expression matrix.




2.2 Calculation of immune score, TDS, and TMB in PTC patients

ESTIMATE, a computerized algorithm, can infer the level of stromal and immune cell infiltration in tumor tissue based on expression profiles (28). The immune score of the immune microenvironment in PTC patients was calculated by the ESTIMATE algorithm.

TDS encompasses the expression levels of 16 thyroid metabolic and functional mRNAs (12). The log2 normalized RSEM values were first centered on the median of each sample to derive the log2 (fold-change) (FC), and then the TDS of each tumor tissue was obtained by summing the 16 genes of each sample. The calculation formula was as follows: TDS = log2 (FC) average of 16 genes (29, 30). The genes involved were DIO1, DIO2, DUOX1, DUOX2, FOXE1, GLIS3, NKX2-1, PAX8, SLC26A4, SLC5A5, SLC5A8, TG, THRA, THRB, TPO, and TSHR.

TMB was defined as the number of somatic, coding, base substitution, and insertion-deletion variants per megabase (Mb) of the examined target genomic region (14). The formula was calculated as follows: sample TMB = number of mutations/exon region size (31). The TMB distribution for patients was directly acquired from the TCGA database.




2.3 Key indicators identification

We first explored the influence of immune score, TDS, and TMB on the survival outcome of PTC patients by Kaplan-Meier (KM) method and log-rank test. Due to the long overall survival and tumor-specific survival of PTC patients, this study collected limited mortality data. PFI was used as the survival indicator. PFI is defined as the time interval between the date of diagnosis of the disease and the occurrence of a new tumor event, including disease progression, local recurrence, distant metastasis, the new primary tumor, or death from a tumor (32). In the KM analysis, all the patients were divided into high and low groups according to the optimal cut-off value and median of TDS, TMB, and immune scores. The optimal cut-off value is the minimum P-value cut-off for univariable Cox analysis when PFI is the primary endpoint and is obtained from the R software package “survminer”. We then performed a Cox regression analysis to assess their association with PFI. The factor of PFI was regarded as the key indicator.




2.4 Definition of high/low-risk dedifferentiation

In this study, only TDS showed an association with PFI, thus becoming the research topic in the subsequent analysis. The 391 PTC patients were grouped by the optimal cut-off value (-0.303) of the TDS score. The low-differentiation score group (TDS≤-0.303) was defined as high-risk dedifferentiation, while the high-differentiation score group (TDS>-0.303) was designated as low-risk dedifferentiation. We then compared the baseline data between high and low-risk dedifferentiation groups.




2.5 Collected baseline variables

Relevant variables collected in this study were related to: demographic characteristics (age, sex, race), tumor-related clinical variables (disease duration, tumor size, TNM stage, PTC subtypes, stage, site, and focus type of primary lesions, lymph node preoperative assessment diagnostic imaging type, medical history of the thyroid gland disorder, radiation therapy and response to therapy, postoperative tumor residue after resection) and follow-up (follow-up after radiation treatment, PTC status after initial treatment).

The disease duration was defined as the time interval between initial diagnosis and completion of the TCGA program. Tumors with ≥99% of follicular structures were considered to be follicular variant PTC, and those with tall cells content ≥50% were defined as TCPTC. It has been noted that stage 1 and 2 tumors remain confined to the thyroid gland and have not yet spread to the central compartment of the lymph nodes; in stages 3 and 4, the cancer spreads to the lymph nodes, including other organs (33). Therefore, we combined stage 1 and 2 samples as early-stage samples and stage 3 and 4 samples as advanced-stage samples. Preoperative lymph node imaging was categorized as ultrasound-only or other. The other included computed tomography (CT)-only, magnetic resonance imaging (MRI)-only, or combinations. Response to radiotherapy was classified as complete response or other, with other conditions including partial response, stable disease, and radiographic progressive disease. Residual tumors after resection were categorized as absent or present. Complete resection of the tumor was defined as no tumor residue, resection with residue under a microscope and residue visible to the naked eye was classified as having residue. In the follow-up results, the status of PTC after initial treatment included both no imaging evidence of disease and disease persistence. Disease persistence included persistent locoregional disease and persistent distant metastases. In spite some samples had missing data, which are clinically valuable and worth analyzing, they were retained for baseline and/or subsequent analyses.




2.6 Influencing factors and model construction of high-risk dedifferentiation

After baseline comparison, we conducted a logistic regression analysis to explore the key factors and established a nomogram model for predicting the high-risk dedifferentiation. The performance of the nomogram model was then evaluated by several analyses. The detailed information is shown in the following Statistical analysis section.




2.7 Potential mechanism exploration associated with dedifferentiation

The RNA-seq expression data of PTC patients were normalized using the log2 (X+1) method. Supplementary Table S1 displays the normalized data of 16 TDS-related genes and CD55. The “Limma” package in R software was used to detect the differentially expressed genes (DEGs) between the high-risk dedifferentiation group and the low-risk differentiation group (DEG1), as well as high and low nomogram score groups (DEG2), based on the threshold of adjusted P-value < 0.05 and |log2 (FC)| > 1. Gene expression volcano plots were created with Graphpad Prism 8. Overlapping genes between DEG1 and DEG2 were identified using Venn diagrams (bioinformatics.psb.ugent.be/webtools/Venn/). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to determine the pathways associated with the overlapping genes and identify genes in major pathways. Finally, the expression levels of key genes involved in the major pathways were analyzed for differences between PTC subtypes and dedifferentiation risk groups, and the correlation between gene expression level and disease duration was also assessed.




2.8 Statistical analysis

Continuous variables with non-normal distribution were characterized by medians and quartiles (P25, P75), and the differences between high and low-risk dedifferentiation groups were compared using the Wilcoxon-Mann-Whitney test. Categorical variables were presented as frequencies (n) and proportions (%) and then compared by the Chi-square test/Fisher exact test. Variables that were statistically different from baseline comparisons were included in logistic regression analyses to explore the factors influencing high-risk dedifferentiation in PTC patients. Collinearity analysis was performed due to the joint confirmation of tumor staging by T, N, and M staging indicators, and the potential for interactions among other indicators. Collinearity was considered present when the variance inflation factor (VIF) exceeded 10.

Based on the results of multivariable logistic regression, a model for high-risk dedifferentiation was constructed using the nomogram method. Receiver operating characteristic analysis (ROC) was used to evaluate the performance of the key factors in predicting high-risk dedifferentiation using “pROC” packages, while decision curve analysis (DCA) based on “rmda” packages was used to assess the net clinical benefit of the model. In addition, based on the “dplyr” and “Hmisc” packages in the R software, integrated discrimination improvement (IDI) analysis and net reclassification improvement (NRI) analysis were conducted to explore the improvement in the performance of the models compared to the individual influences. Restricted cubic spline (RCS) analysis via “rms” packages was utilized to explore the association of nomogram score and dedifferentiation. These analyses were performed using R software (version 4.4.1), with statistical significance set at P < 0.05.





3 Results



3.1 The influence of three biomarkers on PFI

The influence of three tumor biomarkers including TDS, TMB, and immune scores on PFI was analyzed in 391 PTC patients. All patients were divided into high and low-score groups according to the optimal cut-off value and median of TDS, TMB, and immune scores. For the TDS score, the high-differentiated group had a better prognosis compared to the low-differentiated group (P<0.05) (Figures 1A, B). Regarding TMB, groups with high mutation burden showed worse prognosis compared to the low mutation burden group (P<0.001) (Figures 1C, D). Immune score showed no significant influence on prognosis (P>0.05) (Figures 1E, F). The results of multivariable Cox regression analysis revealed that on both continuous and dichotomous TDS, TMB, and immune scores categorized by the optimal cut-off value, only TDS remained an influencing factor of PFI after adjusted age, sex, and race (Table 1). Due to the association between TDS and PFI, therefore the differentiation status of PTC patients became the topic of our next analysis.

[image: Six Kaplan-Meier survival plots comparing high and low scores are shown. Panels A and B show TDS with significant differences. Panels C and D display significant differences for TMB. Panels E and F depict immune scores with no significant differences. Survival probability is plotted against PFI in years. Each graph presents a p-value and hazard ratio with confidence interval.]
Figure 1 | Kaplan-Meier survival curves for PFI across various biomarkers. Patients were grouped by (A) optimal cut-off value of TDS; (B) median TDS; (C) optimal cut-off value of TMB; (D) median TMB; (E) optimal cut-off value of immune scores; (F) median immune scores. HR was derived from the results of the univariable Cox regression analysis.

Table 1 | Results of multivariable Cox analysis of the influences of TDS, TMB and immune scores on PFI in PTC patients.


[image: Table comparing COX model 1 and COX model 2. Each model lists variables including age, gender, race, TDS, TMB, and immune score, with their hazard ratios (HR), confidence intervals (CI), and p-values. COX model 1 presents TDS, TMB, and immune score as continuous variables, while model 2 shows them dichotomized. The p-values indicate statistical significance, with values below 0.05 considered potentially significant.]



3.2 Baseline characteristics of high/low-risk dedifferentiation groups

Table 2 demonstrates the differences in baseline data between the high/low-risk dedifferentiation groups. The median age of 391 PTC patients was 46.000 (34.000,58.000). The majority were non-Hispanic (90.064%), with a lower proportion in the high-risk group compared to the low-risk group (86.250% vs. 94.079%, P=0.021). Among the continuous variables, disease duration, tumor length, tumor width, number of examined lymph nodes, and number of positive lymph nodes were higher in the high-risk group than the low-risk group (all P<0.05). Among the categorical variables, 28.302% of patients in the high-risk group had a medical history of thyroid gland disorder, lower than the low-risk group (44.643%) (P=0.006). The percentage of patients with classic/usual PTC was higher in the high-risk group than in the low-risk group (82.065% vs 60.099%) (P<0.001). T3 stage, T4 stage, N1 stage, advanced stage, follow-up after radiation treatment, and residual tumor were more prevalent in the high-risk group than in the low-risk group (all P<0.05).

Table 2 | The baseline information of participants grouped by the risk of dedifferentiation.


[image: A detailed table compares various variables between low-risk and high-risk groups. Variables include age, tumor depth, tumor size, gender, race, and stage, among others. The table provides numerical data for total, low risk, and high risk groups, with P-values indicating statistical significance for each variable.]



3.3 The influencing factors of high-risk dedifferentiation

Collinearity analysis of the 13 significantly different variables revealed no collinearity (all VIF<10) (Supplementary Table S2). The 13 variables were included in the logistic regression analysis. The results of univariable logistic regression showed that except for the number of examined lymph nodes, the other 12 variables were related to dedifferentiation (all P<0.05). Further multivariable logistic analysis containing all variables showed that only disease duration and PTC subtypes were influential factors for high-risk dedifferentiated PTC. Follicular variant PTC was a protective factor for high-risk dedifferentiation (OR=0.207, 95%CI: 0.035-0.872) and tall cell PTC was a risk factor for it (OR=8.035, 95%CI: 1.389-72.04). Longer disease duration increased the likelihood of dedifferentiation (OR=1.192, 95%CI: 1.018-1.427) (all P<0.05) (Table 3). Further analysis revealed that TCPTC had the lowest TDS, and TDS decreased with increasing disease duration (Figures 2A, B).

Table 3 | Results of logistic regression analysis of factors associating with high-risk of dedifferentiation.


[image: A table compares univariable and multivariable analyses for various factors affecting papillary thyroid carcinoma (PTC). Factors include tumor dimensions, lymph node numbers, disease duration, race, PTC subtypes, T and N stages, treatment follow-up, and thyroid disorders. Odds ratios with confidence intervals are provided, indicating significance levels.]
[image: Chart A is a box plot comparing TDS levels across three PTC subtypes: classical/usual, follicular, and tall cell, indicating statistical significance with a p-value less than 0.001. Chart B is a scatter plot with a trend line showing a negative correlation between disease duration in years and TDS level, also significant with a p-value less than 0.001.]
Figure 2 | The levels of TDS in (A) different PTC subtypes and (B) disease duration.




3.4 Nomogram model construction and performance evaluation

Based on the multivariable logistic regression results, the nomogram model was constructed based on disease duration and PTC subtypes. Meanwhile, the calibration curve of the nomogram model was plotted, demonstrating good calibration (Figures 3A, B). The performance of disease duration and PTC subtypes as well as the nomogram model in predicting high-risk dedifferentiation was further evaluated by ROC analysis (Table 4, Figure 3C). Results indicated that PTC subtypes had the highest specificity (0.821), while the nomogram model exhibited the highest AUC (0.740), sensitivity (0.957), Youden index (0.328), and accuracy (0.524). The Delong test revealed that the AUC value of the nomogram model was significantly higher than the AUC values for disease duration alone and PTC subtypes alone (all P<0.001). DCA confirmed that the nomogram model could provide a net clinical benefit, with a risk interval of 0.40-0.76 (Figure 3D). IDI analysis showed that the performance of the nomogram model was improved by 15.3% compared to single disease duration (IDI=0.153, 95%CI: 0.118-0.188, P<0.001) and 18.8% improvement compared to PTC subtypes (IDI=0.188, 95%CI: 0.149-0.228, P<0.001). NRI analysis suggested that nomogram model discriminative performance improved by 25.8% and 5.7% compared to PTC subtypes (NRI=0.258, 95%CI: 0.180-0.337) and disease duration (NRI=0.057, 95%CI: -0.039-0.169), respectively. These results indicated that the constructed nomogram model possessed good discriminative capability.

[image: A four-panel image shows: A) A nomogram with points, disease duration, PTC subtypes, total points, and risk. B) A calibration plot with actual versus predicted probabilities featuring apparent, bias-corrected, and ideal lines. C) A ROC curve comparing sensitivity and specificity for PTC subtypes, disease duration, and nomogram point, with area under the curve values. D) A decision curve analysis showing net benefit against high-risk threshold for the nomogram model, all, and none.]
Figure 3 | The construction and evaluation of the nomogram model. (A) The nomogram model of high-risk dedifferentiation; (B) The calibration curve of the nomogram model; (C) Comparison of ROC between the nomogram model and different variables; (D) The DCA of the nomogram model.

Table 4 | The results of ROC analysis of factors associated with high-risk dedifferentiation.


[image: Table comparing variables with three categories: PTC subtypes, Disease duration, and Nomogram Point. Variables include AUC, Sensitivity, Specificity, Youden index, Accuracy, Best cutoff, with values and confidence intervals. Delong test significance noted as \(P<0.001\) for the first two categories; Nomogram Point lacks a Delong test result.]



3.5 Potential mechanism associated with dedifferentiation

We next explored the potential mechanism associated with the PTC dedifferentiation. RCS analysis initially indicated a linear positive relationship between nomogram score and dedifferentiation risk (P for overall<0.001, P for nonlinear=0.841), suggesting the involvement of common biomarkers between them (Figure 4A). Therefore, we then explored the DEGs between high and low-risk dedifferentiation groups, as well as between high and low-nomogram score groups who were divided by their optimal cut-off value. According to the criteria of |log2 FC)|>1 and adjusted P-value<0.05 (Figures 4B, C), there were 290 DEGs obtained in the different dedifferentiation groups (Supplementary Table S3) and 32 DEGs obtained in the different nomogram score groups (Supplementary Table S4), with 17 overlapping genes between the two groups (Supplementary Table S5; Figure 4D). Among the 17 overlapping genes, we found 11 up-regulated genes and 6 down-regulated genes. KEGG enrichment analysis revealed three significant pathways: complement and coagulation cascades, proteoglycans in cancer, and aldosterone-regulated sodium reabsorption (all P<0.05) (Figure 5A). Among these, the complement and the coagulation cascades pathway were the main pathway, with CD55 identified as a key factor (Figure 5B).

[image: Panel A displays a nomogram plot showing odds ratios with confidence intervals across different points, indicating statistical significance. Panel B is a volcano plot illustrating gene expression changes, with upregulated and downregulated genes marked. Panel C is another volcano plot similar to Panel B. Panel D presents a Venn diagram showing overlap between two gene sets, DEG1 and DEG2, with numbers indicating unique and shared genes.]
Figure 4 | The potential genes and pathways exploration associated with the dedifferentiation. Volcano plots show the differentially expressed genes (DEGs). (A) The restricted cubic spline (RCS) analysis between nomogram point and dedifferentiation; (B) DGE1: DEGs between the high and low-risk dedifferentiation samples; (C) DGE2: DEGs between the high and low nomogram point samples; (D) Venn diagram shows the overlapping DEGs in DGE1 and DGE2.

[image: Graphical data visualization consists of two parts. Part A shows a bubble plot with gene ratios on the x-axis, depicting three pathways: complement and coagulation cascades, proteoglycans in cancer, and aldosterone-regulated sodium reabsorption. Each pathway is represented by a bubble varying in size and color to indicate count and adjusted p-values, respectively. Part B is a circular diagram showing connections among the same KEGG pathways with marked sections for PLAUR, SFN, FN1, and CD55 genes. The color intensity reflects the p-value.]
Figure 5 | Visualization of KEGG enrichment analysis of 17 overlapping DEGs differential pathways. (A) Bubble diagram; (B) Chord diagram.

We further analyzed the expression level of CD55 between groups with different PTC subtypes, disease duration, and dedifferentiation (Figures 6A–C). The results showed significant upregulation of CD55 expression in the high-risk dedifferentiation group. Tall cell PTC exhibited higher CD55 expression levels compared to follicular PTC. Additionally, CD55 expression levels demonstrated an increasing trend with prolonged disease duration.

[image: Three charts show CD55 levels in different contexts. Chart A: Box plots with three PTC subtypes—Classical/usual, Follicular, and Tall cell—all showing varying CD55 levels. Chart B: Two box plots with High-risk and Low-risk dedifferentiation groups, also with different CD55 levels. Chart C: Scatter plot with a trend line and shaded area showing a positive correlation between CD55 levels and disease duration in years, marked significant with P<0.001.]
Figure 6 | The expression levels of CD55 in different variables. (A) PTC subtypes; (B) Dedifferentiation; (C) Disease duration.





4 Discussion

Clinical treatment response and prognosis in PTC patients can be evaluated using dedifferentiation, TMB, and immune scores. Our research utilized high-throughput sequencing data from the TCGA database to calculate TDS, TMB, and immune scores for PTC tumor samples. The influences of the three tumor biomarkers on PFI in PTC patients were further examined. Multivariable Cox analysis revealed that only TDS was an influence factor of PFI, highlighting the crucial role of cellular differentiation levels in patient prognosis. Therefore, investigating the high-risk clinical features and molecular mechanisms of high-risk dedifferentiated populations could facilitate early detection, enabling appropriate therapeutic interventions and potentially improving patient outcomes.

Multivariable logistic regression analysis of high-risk dedifferentiation indicated that PTC subtypes and disease duration were significant risk factors for dedifferentiation. The nomogram model combining PTC subtypes and disease duration demonstrated good discriminative ability and can be clinically beneficial. PTC exhibits various variant subtypes (34). The American Thyroid Association classifies PTC subtypes such as tall cell, diffuse sclerosing, and hobnail as intermediate risk based on their aggressiveness, with TCPTC being the most common aggressive PTC subtype. These subtypes are less differentiated than classic PTC (35–37). Our results also revealed that TCPTC had the highest risk of dedifferentiation compared with classic/usual PTC and follicular variant PTC. In KEGG pathway analysis, we found that FN1 as a marker of epithelial-mesenchymal transition (EMT) was involved in PTC dedifferentiation. EMT plays a key role in PTC invasion and anaplastic transformation (38, 39). It has been suggested that as the disease progresses, some PTCs may undergo dedifferentiation, transforming into anaplastic thyroid cancer (ATC) and poorly differentiated thyroid cancer, accompanied by more aggressive pathological and clinical behaviors (8). A median disease duration transforming PTC into ATC has been reported as 6 years (40). Furthermore, in terms of molecular classification, PTC can be categorized into BRAF-like and RAS-like PTC (41). Different oncogenic drivers may cause PTC to exhibit different degrees of differentiation (or TDS) (42). TDS is a comprehensive indicator related to the expression and function of genes involved in iodine metabolism (43). Low TDS may cause patients to develop radioactive iodine resistance, leading to poor prognosis and high mortality (44).

Further, our study identified 17 genes associated with PTC dedifferentiation. Enrichment analysis of these DEGs revealed core pathways and hub genes, potentially offering new insights into dedifferentiation mechanisms. KEGG analysis demonstrated that the PLAUR gene was involved in the proteoglycans in cancer. Research has shown that the PLAUR gene plays a role in PTC differentiation and HER2-positive breast cancer metastasis (45, 46). Evidence suggests that the PLAUR gene activates the urokinase fibrinogen activator receptor (uPAR). uPAR promotes the activation of fibrinogen, which breaks down the peri-tumor stroma and basement membrane (e.g., fibronectin, proteoglycans), creating conditions for tumor invasion and metastasis (47).

Our analysis revealed that the most important pathways in the KEGG enrichment analysis were the complement and coagulation cascades. The complement system is crucial for eliminating foreign microorganisms and regulating both innate and adaptive immunity (48). Research has demonstrated that the coagulation and complement cascade pathway has multiple positive and negative effects on the incidence, progression, and prognosis of tumors, as well as influencing tumor microenvironment components (49–51). Activation of the complement pathway leads to the formation of membrane attack complexes that induce cellular activity under target cell lysis or shedding. Inappropriate complement activation or altered expression of complement regulatory proteins inhibits the elimination of tumor cells by immune cells, which is associated with a variety of tumors (52, 53) Coagulation begins after complement activation, subsequently triggering platelet activity (54). Activated platelets can influence immune cell function, leading to inflammation (55). The previous study has confirmed thrombocytosis accompanying inflammation-related colorectal cancer and highlighted the crucial role of interleukin-6 (IL-6) in this process (56). Research has shown that IL-6, activin-A, and granulocyte colony-stimulating factor (G-CSF) in the tumor microenvironment promote the dedifferentiation of hepatocellular carcinoma cells as well as thyroid cancer cells (57, 58). In the present study, CD55 was identified as a key gene in the coagulation and complement cascade pathway. Known as a complement decay accelerator, CD55 is involved in tumor dedifferentiation, proliferation, invasion, and migration and its upregulation may be associated with tumor progression (59–61). Previous studies have shown that the complement system is activated in PTC and regulated through CD46, CD55, and CD59 (62). CD55 protects thyroid cancer cells from complement-mediated attack and promotes carcinogenesis by allowing tumor cells to escape from cytolysis (63). The results of our analysis suggested that CD55 expression in patients was up-regulated with increasing disease duration (or in TCPTC), potentially activating complement and coagulation cascade pathway, thus promoting cancer cell dedifferentiation. Based on these results we propose the following clinical recommendations: first, CD55 can be used as a potential prognostic marker for identifying patients at high risk of dedifferentiation, and it is recommended that CD55 immunohistochemical evaluation can be added to postoperative pathology testing and follow-up monitoring should be intensified (e.g., by shortening the interval between follow-ups or by increasing the number of imaging studies) for patients at high risk. Second, more aggressive treatment strategies should be considered for patients with high CD55 expression, such as expanding the extent of surgery or consideration of adjuvant therapies targeting CD55-related pathways (e.g., complement signaling or EMT pathway). In addition, future studies should further validate the predictive value of CD55 and explore its molecular mechanisms to develop possible targeted interventions, such as immunotherapy combined with complement-modulating therapies. Ultimately, the clinical application of CD55 needs to be optimized through multicenter prospective studies to optimize detection criteria and integrate other molecular markers to improve the accuracy of risk stratification.

The innovation of this study is to combine clinical and genetic data to achieve individualized prognostic assessment of PTC patients, providing a more accurate tool for clinical practice and facilitating personalized treatment and management of PTC patients. Nevertheless, there are some limitations of this study: (1) No external validation was performed; (2) There were no clear boundaries for TDS subgroups. In this study, TDS was grouped by the optimal cut-off value, while some studies were grouped by median or 0 (43, 64). Therefore, future research should investigate optimal TDS grouping thresholds; (3) Data were only obtained from the TGCA database, which limited the extrapolation of results due to the influences of region and ethnicity.




5 Conclusion

In terms of clinical features, our findings revealed that disease duration and PTC subtypes were risk factors for high-risk dedifferentiation. At the molecular level, we identified 17 DEGs linked to high-risk dedifferentiation, potentially playing crucial roles in regulating PTC dedifferentiation. The complement coagulation cascade pathway may play a dominant role in PTC dedifferentiation, and the CD55 could be the critical gene for PTC dedifferentiation, but further studies are needed to validate the results of these findings.
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variable and t test for continuous variable
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CircRNAs Target gene/ Biological Function Reference
up-regulated (1) Pathway
circFN1 _055 | miR-218-5p 1 NOTCH3/ promotes cell proliferation, cell invasion, metastasis, and tumorigenicity (34)
(hsa_circ_0058124) | miR-940 GATAD2A
circFN1 _055 | miR-370-3p 1 1MO4 promotes cell viability, colony formation, migration, invasion and (35)
(hsa_circ_0058124) suppresses cell apoptosis
circRUNX1_005 | miR-296-3p 1 DDHD2 promotes cell proliferation, migration, and invasion (36)
(hsa_circ_0002360)
circARID1B_031 | miR-671-5p 1 PI3K/AKT/ITGA2 promotes cell proliferation and migration 37)
(hsa_circ_0001658)
circPVT1 | miR-195 1 Wnt/B- promotes cell proliferation, migration, and invasion (38)
catenin/VEGFA
circPVT1 | miR-126 1 Bax/Bcl-2/PCNA promotes cell viability, migration and invasion (39)
cireMMP2_005 | miR-1179 1 ABCA9 promotes cell growth, migration, invasion and suppresses cell apoptosis (40)
(hsa_circ_0039411) | miR-1205 TMTAL
circMMP2_005 | miR-423-5p 1 SOX4 promotes cell growth, migration, invasion, and glycolysis (41)
(hsa_circ_0039411)
circPSD3_017 | miR-885-5p 1 RACI promotes cell proliferation, suppresses cell cycle arrest and apoptosis (42)
(hsa_circ_0004458)
circLDLR_027 | miR-195-5p 1 LIPH promotes cell proliferation, colony formation, migration, invasion and (43)
(hsa_circ_0003892) suppresses cell apoptosis
circLDLR _027 | miR-637 1 LMO4 promotes cell growth, migration, invasion and suppresses cell apoptosis (44)
(hsa_circ_0003892)
circLDLR_027 | miR-326 1 LASP1 promotes cell proliferation, migration, and invasion (45)
(hsa_circ_0003892)
circPRKCI _020 | miR-1304 1 CXCR1 promotes cell proliferation, migration, invasion and suppresses (46)
(hsa_circ_0067934) cell apoptosis
circPRKCI _020 | miR-545-3p 1 SLC7A1L promotes cell proliferation and suppresses cell apoptosis. (47)
(hsa_circ_0067934)
circPRKCI _020 | miR-1301-3p 1 HMGB1 promotes cell proliferation, migration, invasion and EMT (48)
(hsa_circ_0067934)
circNRIP1 | miR-195-5p 1 P38 MAPK/ promotes cell proliferation, invasion, and suppresses apoptosis (49)
JAK/STAT
circNRIP1 | miR-653-5p 1 PBX3 promotes cell proliferation, migration, invasion and suppresses (50)
cell apoptosis
CircNRIP1 | miR-541-5p 1 PKM2 promotes cell proliferation and glycolysis (51)
1 miR-3064-5p
circKIAA1199_022 | miR-1205 1 E2F3 promotes cell growth, migration, invasion and suppresses cell apoptosis (52)
(hsa_circ_0000644)
circeNDST1 _011 - 1 PIBK/AKT/EMT promotes cell proliferation, migration, invasion, and EMT (53)
(hsa_circ_0006943)
circSSU72_007 | miR-451a 1 AKT/S1PR2 promotes cell proliferation, migration, and invasion (54)
(hsa_circ_0009294)
circRAPGEF5_001 | miR-26b-5p 1 MET/AKT promotes cell proliferation, motility and suppresses cell apoptosis (55)
(hsa_circ_0079558)
circUBAP2_046 | miR-370-3p 1 PI3K/AKT/Wnt promotes cell proliferation, invasion and suppresses cell apoptosis (56)
(hsa_circ_0003141)
circSMURF2 - 1 Wnt/B- promotes PTC progression by activating Wnt/B-catenin pathway in a (57)
(hsa_circ_102171) catenin/CTNNBIPL CTNNBIP1-dependent way
circUGGT2_065 - 1 mTOR/AMPK promotes cell proliferation and invasion (58)
(hsa_circ_0008274)
hsa_circ_102002 | miR-488-3p 1 HAS2 promotes cell proliferation, migration, and EMT (59)
circPI4KA_028 | miR-1179 1 HMGB1 promotes cell proliferation, migration, and EMT (60)
(hsa_circ_0062389)
circPUML | miR-21-5p 1 MAPK1 promotes cell proliferation, metastasis and glycolysis (61)
cireNOX4 _002 | miR-485-5p 1 FOXM1 promotes cell proliferation and glycolysis (62)
(hsa_circ_0023990)
hsa_circ_000121 | miR-4763 1 SRC promotes the aggressiveness and lymph node metastasis (63)
| miR-6775 1 MMP-14
circBACH2_003 | miR-139-5p 1T LMO4 promotes cell proliferation, migration and invasion (64)
(hsa_circ_0001627)
circMET_004 - - promotes cell proliferation, migration and invasion (65)
(hsa_circ_0082003)
circHMGA2_001 1 miR-129-5p 1 CLDN1 promotes cell proliferation, migration, invasion and suppresses (66)
(hsa_circ_0027446) cell apoptosis
hsa_circ_0002111 - - promotes cell proliferation and invasion (67)
hsa_circ_007148 = - associated with LNM (68)
hsa_circ_007293 | miR-653-5p 1 PAX6 promotes cell proliferation, invasion, migration, and EMT (69)
circUGGT2_065 | miR-154-3p 1 SLC7A11 promotes cell migration and adhesion (70)
(hsa_circ_0008274)
circCCDC66 | miR-129-5p 1 LARP1 promotes cell proliferation, invasion, and migration (71)
circVANGLI | miR-194 1 ZEBL promotes cell proliferation, invasion, migration, and EMT (72)
circTMEM222_001 | miR-335-5p 1 YAPL promotes cell proliferation, angiogenesis and radioresistance (73)
(hsa_circ_0011058)
circPSD3 | miR-7-5p 1 METTL7B promotes cell proliferation and invasion (74)
circPRKCI_017 | miR-335 1 E2F3 promotes cell proliferation, invasion, and glycolysis (75)
(hsa_circ_0122683)
circRASSF2_009 miR-766-3p 1 ARFGEF1 promotes cell proliferation, migration, invasion and angiogenesis (76)
(hsa_circ_0059354)
circSLAMF6_001 1 miR-1178-3p 1 YWHAH promotes cell proliferation, migration, invasion and angiogenesis 77)
(hsa_circ_0000144)
circFAM120B_004 miR-330-5p 1 ETV4 promotes cell proliferation and arrest of cell cycle (78)
(hsa_circ_0001666) | miR-193a-5p
| miR-326
circAGTPBP1_006 miR-34a-5p 1 NOTCHI1 promotes cell proliferation, migration, invasion, and metastasis (79)

(hsa_circ_0087391)

CircRNAs

down-regulated ({)

Target gene/
Pathway

Biological Function

Reference

hsa_circ_047771
circdITCH

circFAM53B
(hsa_circ_0000266)

hsa_circ_100395

miR-522-3p
1 miR-22-3p

1 miR-183-5p

| CBL/B-catenin

1 CCDC6

| PI3BK/AKT/mTOR

associated with BRAFV600 mutation, LNM, and advanced TNM stage
suppresses cell proliferation and invasion and promotes cell apoptosis
suppresses cell proliferation, migration, and invasion

suppresses cell migration, invasion, glycolysis and downregulated PI3K/
AKT/mTOR pathway

(68)
(80)

1)

(82)
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Clinical
features

Upregulated circRNAs

Downregulated
circRNAs

Tumor size
>3 cm

Tumor size
22 cm

Tumor size
=lem

LNM

TNM stage

circLDLR (44), circPSD3 (74),
circFOXM1 (102)

hsa_circ_0079558 (55),
hsa_circ_0008274 (70)

circPVT1 (38), circNRIP1 (50),
hsa_circ_0000644 (52),
hsa_circ_0079558 (55),
hsa_circ_0003141 (56), circPUM1
(61), hsa_circ_0082003 (65),
hsa_circ_0002111 (67),
hsa_circ_0008274 (70), circCCDC66
(71), circVANGLI (72),
hsa_circ_0122683 (75),
hsa_circ_0000144 (77), circAGTPBP1
(79), hsa_circ_0000266 (81)

circLDLR (44), hsa_circ_0079558 (55),
circBACH2 (64), hsa_circ_007293
(69), hsa_circ_0008274 (70),
hsa_circ_0011058 (73), circPSD3 (74),
hsa_circ_0001666 (78),

circAGTPBP1 (79)

circPVT1 (38), circLDLR (44),
hsa_circ_0067934 (48), circNRIP1
(50), hsa_circ_0079558 (55),
hsa_circ_0003141 (56), circPUM1
(61), circBACH2 (64),
hsa_circ_0082003 (65),
hsa_circ_0002111 (67),
hsa_circ_007293 (69),
hsa_circ_0008274 (70), circCCDC66
(71), circVANGLI (72),
hsa_circ_0011058 (73), circPSD3 (74),
hsa_circ_0122683 (75),
hsa_circ_0059354 (76),
hsa_circ_0000144 (77),
circAGTPBP1 (79)

hsa_circ_0000266 (81)
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N stage observed
N1 9 12
Overall percentage

Variables in the equation.

B SE
CNV 2.648 0.973
Size 1.835 0.893
Constant -1.908 0.825

Binary logistic regression model for LN metastasis.

No
57.1

‘Wald
741
422

5.345

No

17

df

N stage predicted

N1

Sig.
0.006
0.040
0.021

B, regression coefficient beta; SE, standard error; Wald, Wald chi-square value; df, degree of freedom; Sig., significance, p value.

Percentage correct

89.5
72.5

OR (95% CI)
14.122 (2.099 to 95.035)
6.264 (1.088 to 36.073)

0.148
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OR (95% CI)
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p-value

0.001
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0.006
0.003





OPS/images/fendo.2024.1351776/crossmark.jpg
©

2

i

|





OPS/images/fendo.2024.1351776/fendo-15-1351776-g001.jpg
. CEN\’ c'ﬁcHMGAZ, circITCH’ Cirel. DI
v

C-KCKXAAH%, CIeMIED, CIteNR
{

-‘{QYRKCL circPSD3, CirCUBAp
. 2

miRNA sponge

Apoptosis

g)‘.o

RNA-binding protein

-

transcriptional regulation

: ,>\C protein

translation

Angiogenesis

1112000
e

oo

O.
=
)
=
=
i
=
)
N
N

Epithelial-mesenchymal transition

clj L
"eNDs T1, circPI4K A, Cifc/\mgo

Cy 79’5
AN GL1, circ 0067934, C'““/Om






OPS/images/fendo.2022.888072/table4.jpg
Group

This study

TCGA

Event

BRAFV*F or SCNA
B RA FVSGUE
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B RA FVSGUE
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Frequency (%)
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CNV

BRAF (mutation)

Size (mm)

ETE

CNV, copy number variation;

CNV-
CNV+
BRAF-
BRAF+
<5

>5
Negative

Positive

NoO

17

15
10

18

'E, extrathyroidal extension.

N stage, n (%)
N1

9 (34.6)
12 (85.7)
3 (42.9)
18 (54.8)
4(286)
17 (65.)
19 (51.4)
2 (66.7)

Total (n)

26

33
14
26
37

OR (95% CI)

11.33 (2.07 to 62.11)

1.6 (0.31 to 8.30)

472 (115 to 19.41)

1.90 (0.16 to 22.75)

p-value

0.002
0.689
0.026

0.614
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AUC (95% CI) TN TP FEN FP PPV (%) NPV (%) Sensitivity (%)  Specificity (%)  Accuracy (%)

CNV 0.733 (0.574 to 0.892) 17 12 9 2 85.7 65.3 57.1 89.5 72.5
BRAF  0.534 (0.352 to 0.715) 4 18 3 15 54.5 57.1 85.7 21.1 55
Size 0.668 (0.496 to 0.840) 10 17 4 9 65.4 71.4 81 52.6 67.5

AUCG, area under curve; TN, true negative; TP, true positive; FN, false negative; FP, false positive; PPV, positive prediction value; NPV, negative prediction value. CNV vs. BRA!
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Onset of disease

November 11,
2022

Physical
examination:

A palpable neck
mass measuring
approximately 8 cm
x 6 cm was found.
Bilateral thyroid
enlargement (grade
111) was observed.

PET/CT-
scan(November
23, 2022):

An irregular
hypermetabolic
mass with
calcification was
observed in the
thyroid; multiple
enlarged lymph
nodes with
increased
metabolism;
possible presence
of tumor thrombus
and thrombosis.

Diagnosis

November 27,
2022

Symptoms:

Acute respiratory
distress, upper
airway obstruction.

Treatment:
Tracheotomy with
tube placement
and partial
resection of the
thyroid isthmus
tumor;Tracheal
stent placement.

NGS gene
mutation testing:
A heterozygous
germline
pathogenic
mutation in the
DICERT gene
p.G1784%.

Pathological Diagn
osis:

The lesion is
consistent with
thyroblastoma.

From December 6,
2022, to April
2023

Treatment:

6 cycles of BEP
chemotherapy
(bleomycin +
etoposide +
cisplatin).

Symptoms:
Respiratory distress
symptoms
alleviated.

CT-scan(December
27, 2022):
Reduction in the
size of the thyroid
tumor.

From April 12,
2023, to May 31,
2023

Treatment:
Radiotherapy for
tumor and lymph
node area,
rivaroxaban
anticoagulation
therapy.

Symptoms:
Tumor further
reduced in size.

PET/CT-
scan(August 25,
2023):

Thyroid nodules
decreased in size
with normalized
metabolism, and
previously high-
metabolic lesions in
the superior vena
cava and left
brachiocephalic
vein returned to
normal.

March 2024

CT and PET/CT-

scan:

New cancer
thrombi in the
superior vena cava
and right atrium.

Echocardiography:

Slightly hyper-
echoic mass in the
right atrium, with
enlargement of the
right atrium and
right ventricle.

March 24, 2024,
April 14, 2024

Treatment:

VIP chemotherapy
(etoposide +
ifosfamide +
cisplatin).

June 12, 2024

Symptoms:
Sudden upper
abdominal pain
with vomiting.

CT-scan:

Cancer thrombi
enlarged; multiple
pulmonary
metastases.

Treatment:
Anticoagulation,

respiratory support,

and other
treatments were
ineffective.

Suffered from
sudden cardiac
arrest and died
despite
resuscitation
efforts.
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BSRTC, n (%) Total, n (%)
VI \' I /1

Clinical pathology PTC 15 (100) 17 (89.5) 3 (50) 5(27.8) 40 (69.0)
No Surgery 0(0) 2 (10.5) 3 (50) 13 (72.2) 18 (31.0)
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BRAF"*™*_tissue Mutated 31 3 912
Wild type 1 23 95.8

Overall percentage 93.1
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Parameter

Gender

Age (years)

CNV

BRAFV600E_washout

BRAFVG600E_tissue

Clinical Pathology

Lymph node

TIRADS

Thyroid nodule size (mm) (ultrasound)

BSRTC

Multi_foci

Tumor size (mm)

ETE

Subtype

Male
Female
<45
>45
Negative
Positive
Negative
Positive
Negative
Positive
Benign
PTC
Udx
Negative
Metastasis
4a
4b
4c
<5
5-10
>10
VI

1
108
1
>1
<5
>5
Negative

Positive

Frequency

11
47
28
30
41
17
26
32
24
34
15
40
3
19
21
37
13
8
5
31
22
15
19
6
18
29
11
14
26
37
3

Percentage

19.0
81.0
483
51.7
70.7
293
44.8
55.2
41.4
58.6
259
69.0
52
47.5
525
63.8
224
13.8
8.6
53.4
379
259
32.8
103
31.0
72.5
275
35.0
65.0
92.5
7.5

CNV, copy number variation; PTC, papillary thyroid cancer; Udx, undiagnostic; TIRADS, Thyroid Imaging Reporting and Data System; BSRTC, Bethesda System for Reporting Thyroid

Cytopathology; ETE, extrathyroidal extension.
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Treatment

Original

Diagnosis

Outcomes

Molecular

References

Sex Age Size Presentation
(cm)
1 F 45 2.8 Neck mass
2 F 59 6.7 Rapidly
progressing neck
mass, hoarseness
3 F 65 1.9 Neck mass
4 F 29 10 Neck mass
5 F 42 8 Neck mass
6 M 60 17 Incidental
on imaging
7 M 17 §5 Rapidly
progressing
neck mass
8 F 17 6.3 Rapidly
progressing
neck mass
9 E 19 59 Neck mass
10 B 45 3 Neck mass
11 M 23 15 Rapidly
progressing
neck mass

DOD, dead of disease; NED, no evidence of disease.

Carcinosarcoma Total thyroidectomy,
chemotherapy (taxol and
carboplatin), and radiation
Malignant Neoadjuvant
teratoma chemotherapy (primitive
neuroectodermal tumor/
Ewing sarcoma protocol)
and total thyroidectomy
Malignant Total thyroidectomy and
teratoma chemotherapy
(unknown plan)
Malignant Total thyroidectomy,
teratoma chemotherapy (unknown
plan), and radiation
Malignant Total thyroidectomy,
teratoma chemotherapy (unknown
plan), and radiation
Malignant Total thyroidectomy,
teratoma adjuvant therapy deferred
because of comorbidities
Malignant Subtotal thyroidectomy
teratoma with re-excision of tumor
bed, chemotherapy
(cisplatin, etoposide and
ifosfamide), and radiation
Malignant Total thyroidectomy and
teratoma chemotherapy (etoposide,
vincristine, ifosfamide and
actinomycin; beomycin,
etoposide and cisplatin)
Malignant Surgery, radioactive
teratoma iodine, external-beam
radiation therapy
Malignant Surgery, chemotherapy,
teratoma external-beam radiation
therapy,tyrosine
kinase inhibitor
Thyroblastoma Excision of thyroid

isthmus tumor and
chemotherapy (beomycin,
etoposide and cisplatin)

Lung
metastasis,
DOD at 11 mo

NED at >
48 mo

NED at
125 mo

Para-aortic
and clavicle

metastases,
DOD at 53 mo

NED at 64 mo

Widespread
skeletal
‘metastases,
DOD at 10 mo

NED at 8 mo

Mediastinal
progression,
DOD at 12 mo

NED

DOD

Sudden cardiac

arrest, DOD at
19 mo

DICERI1 p.E1705K

DICER1
p.E1813G.TP53
p.R248Q,TP53
p.Y126_splice,
NF1 p.N1054H

DICERI p.E1705K,
DICERI1 p.Y819fs

DICERI p.E1813G,
DICERI p.V448fs

DICERI p.E1813Q,
DICERI p.K868X

DICERI1 p.D1810H

DICERI p.D1709N,
TP53 p.F134L

DICERI p.G1809R

DICERI1p.Glul705Lys,
ATM variant

DICERI p.Glul813Lys

DICERI p.G1784%,
DICERI p.E1813D

Yang et al. (4)

Rabinowits
etal. (3)

Rooper
et al. (14)

Rooper
etal. (14)

Rooper
etal. (14)

Rooper
etal. (14)

Agaimy
etal (2)

Agaimy
etal (2)

Tikamporn
etal. (5)

Tikamporn
etal. (5)

Current
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Molecular characterize g

Variable
Non-HMR
No. of patients 76(70.4) 32(29.6)
Age(Mean =+ SD, years) 42.6 £ 134 57.8 £ 11.6 <0.001
SEX Female 46(60.5) 13(40.6) 0.058
Non-Aggressive PTC, 70(92.1) 18(56.3)
Cancer type Aggressive PTC 6(7.9) 11(34.4) <0.001
Widely invasive FTC 0 3(9.4)
Lobectomy and CND 2(2.6) 1(3.1)
Total thyroidectomy and CND 33(43.4) 13(40.6) 0.959
Initial surgery
Total thyroidectomy and LND 41(53.9) 18(56.3)
R2 resection 2(2.6) 4(12.5) 0.062
1 1(1.3) 2(6.3)
2 1(1.3) 1(3.1)
T stage 0.452
3 30(39.5) 13(40.6)
4 44(57.9) 16(50.0)
0 6(7.9) 1(3.1)
N stage la 29(38.2) 13(40.6) 0.655
b 41(53.9) 18(56.3)
M stage 1 6(7.9) 11(34.4) 0.001
Macroscopic 74(97.4) 27(84.4)
Extrathyroidal extension 0.025
Microscopic 2(2.6) 3(9.4)
Extra-nodal invasion 31(40.8) 18(56.3) 0.204
Tumor size, median(IQR) 2.0(1.3-2.9) 3.1(2.0-4.5) 0.003
Multifocal 49(64.5) 21(65.6) 0.637
NED after initial surgery 69(90.8) 21(65.6) 0.001

ATA, American Thyroid Association; HMR, High Molecular Risk; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; CND, central neck dissection; LND, lateral neck dissection; NED,
no evidence of disease.
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Molecular characterize groups, No. (%)

Non-HMR HMR
Duration of follow-up, month, median(IQR) 32.5(27.0-36.0) 32.5(30.3-44.0) 0.159
Structural recurrence Locally recurrence' 7(9.5) 9(32.1) 0.012
Metachronous distant metastasis” 2(29) 8(38.1) <0.001
Death 0 3(9.4) 0.039
Ablation or adjuvant therapy 47(68.1) 17(81.0) 0.256
RAI Therapeutic RAI 8(10.5) 17(53.1) <0.001
RAI-refractory disease 3(37.5) 13(76.5) 0.075

'2 patients in Non-HMR group and 4 patients in HMR group who had locally persistent disease were not included.
26 patients in Non-HMR group and 11 patients in HMR group who had distant metastasis at presentation were not included.
ATA, American Thyroid Association; HMR, High Molecular Risk; RAL radioactive iodine.
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Pactin F: ACTTAGTTGCGTTACACCCTT 155

R GTCACCTICACCGTTCCA
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