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Association between pesticide 
exposure and thyroid function: 
analysis of Chinese and NHANES 
databases
Leiming Xu 1†, Shengkai Yang 1†, Longqing Wang 1, Jinxin Qiu 1, 
Hai Meng 1, Lulu Zhang 1, Wenwen Sun 2* and Aifeng He 1*
1 Binhai County People's Hospital Affiliated to Kangda College of Nanjing Medical University, 
Yancheng, Jiangsu, China, 2 Department of Intensive Care Unit, Changzhou Maternity and Child 
Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China

Background: Pesticides are widely used in agricultural activities. Although 
pesticide use is known to cause damage to the human body, its relationship 
with thyroid function remains unclear. Therefore, this study aimed to investigate 
the association between pesticide exposure and thyroid function.

Methods: The Chinese database used included 60 patients with pyrethroid 
poisoning and 60 participants who underwent health checkups between June 
2022 and June 2023. The NHANES database included 1,315 adults enrolled 
from 2007 to 2012. The assessed pesticide and their metabolites included 
2,4-dichlorophenoxyacetic acid (2,4-D), 4-fluoro-3-phenoxybenzoic acid 
(4F3PB), para-nitrophenol (PN), 3-phenoxybenzoic acid (3P), and trans-
dichlorovinyl-dimethylcyclopropane carboxylic acid (TDDC). The evaluated 
indicators of thyroid function were measured by the blood from the included 
population. The relationship between pesticide exposure and thyroid function 
indexes was investigated using linear regression, Bayesian kernel machine 
regression (BKMR), restricted cubic spline (RCS), and weighted quantile sum 
(WQS) models.

Results: The Chinese data showed that pesticide exposure was negatively 
correlated with the thyroid function indicators FT4, TT4, TgAb, and TPOAb 
(all p  <  0.05). The BKMR model analysis of the NHANES data showed that the 
metabolic mixture of multiple pesticides was negatively associated with FT4, 
TSH, and Tg, similar to the Chinese database findings. Additionally, linear 
regression analysis demonstrated positive correlations between 2,4-D and FT3 
(p  =  0.041) and 4F3PB and FT4 (p  =  0.003), whereas negative associations were 
observed between 4F3PB and Tg (p  =  0.001), 4F3PB and TgAb (p  =  0.006), 3P 
and TgAB (p  =  0.006), 3P and TPOAb (p  =  0.03), PN and TSH (p  =  0.003), PN and 
TT4 (p  =  0.031), and TDDC and TPOAb (p  <  0.001). RCS curves highlighted that 
most pesticide metabolites were negatively correlated with thyroid function 
indicators. Finally, WQS model analysis revealed significant differences in the 
weights of different pesticide metabolites on the thyroid function indexes.

Conclusion: There is a significant negative correlation between pesticide 
metabolites and thyroid function indicators, and the influence weights of 
different pesticide metabolites on thyroid function indicators are significantly 
different. More research is needed to further validate the association between 
different pesticide metabolites and thyroid disease.

KEYWORDS

pesticides, thyroid function, Bayesian kernel machine regression, restricted cubic 
spline curve, NHANES database
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1 Introduction

Pesticides are the most widely used chemical compounds in 
agriculture, mainly for preventing and eliminating pests and reducing 
crop damage risk. Current studies suggest that numerous pesticides 
are more or less harmful to human health. For example, ethyl 
dithiocarbamate (EBDC) is an extensively applied pesticide worldwide 
that can cause hypothyroidism in rats, primarily manifesting as 
decreased FT4 and increased TSH levels (1, 2). Other research has 
identified the same effect of EBDC on human thyroid function, 
resulting in decreased thyroid function and serum TSH concentration 
among people exposed to EBDC compared to those not in contact 
with EBDC (3). Pyrethroid insecticides and herbicides are not new to 
the agricultural field, with pyrethroids observed to disrupt thyroid 
function by binding to hormone receptors due to their structural 
similarities with the receptors (4). Organophosphorus pesticides 
(OPs) are another pesticide class popularly employed in agricultural 
activities. Exposure to these OPs or multiple pesticide classes is 
associated with genotoxicity and adverse neurobehavioral outcome 
markers in exposed populations, especially children and farm workers 
(5). All these research findings highlight that the effects of various 
pesticides on human health cannot be ignored.

2,4-dichlorophenoxyacetic acid (2,4-D), also known as the “king 
of grass,” is a commonly utilized herbicide and synthetic plant 
hormone that controls weed growth by mimicking the effects of 
auxin. Studies have revealed a significant increase in hypothyroidism 
among people using 2,4-D pesticides (6). Moreover, Goldner et al. 
(7) identified a significant association between 2,4-D pesticide 
exposure and hypothyroidism in male pesticide users, whereas no 
such significant association was detected in the female population. 
Similar conclusions have been found recently, the United  States 
Environmental Protection Agency’s (US EPA) Endocrine Disruptor 
Screening Program test, which examines potential interactions 
between 2,4-D and the estrogen, androgen, and thyroid pathways or 
steroid production, found no convincing evidence on the potential 
interaction between 2,4-D and estrogen. However, a potential 
interaction was indicated between 2,4-D and the androgen and 
thyroid pathways (8, 9). Animal studies have also demonstrated that 
rats subjected to different doses of 2,4-D exhibited varied effects on 
thyroid hormone levels as well as on the weight and pathology of the 
thyroid gland (10).

Para-nitrophenol (PN) and trans-dichlorovinyl-
dimethylcyclopropane carboxylic acid (TDDC) are metabolites of the 
extensively employed OPs and insecticides. OPs are mainly used for 
controlling pests, such as mosquitoes and fleas, in agriculture, homes, 
and public places. The primary mechanism of OPs is to produce an 
insecticidal effect by acetylcholinesterase inhibition in the nervous 
system of pests. Researchers have determined that compared to the 
general male population, men exposed to OPs presented with 
significant changes in the Thyroid Stimulating Hormone (TSH) and 
other thyroid hormone levels (11). Consistent with the occupational 
and experimental study findings, OPs can significantly escalate 
hypothyroidism. The hyperthyroidism changes include increased TSH 
levels and a reduction, increase, or no significant changes in the T3 
and/or T4 levels (12). According to the above findings, OPs and 
carbamate insecticides may inhibit brain cholinesterase activity by 
affecting the hypothalamus and pituitary gland via muscarinic and 
nicotinic receptors, thereby altering thyroid function (12).

Phenoxybenzoic acid (3P) and 4-fluoro-3-phenoxybenzoic acid 
(4F3PB) are metabolites of pyrethroids, a class of broad-spectrum 
insecticides popularly used in agriculture and indoor pest control. These 
compounds cause paralysis and death of the insect pests by interfering 
with their nervous system excitability (4). These pesticides are 
ubiquitously used for controlling mosquitoes, moths, fleas, and other 
pests in fields, greenhouses, homes, and public places. Although this 
pesticide type has substantial insecticidal activity and is less toxic to 
humans and mammals, its adverse health effects cannot be ignored. The 
pyrethroid metabolites have been found to act as thyroid disruptors, 
affecting the hypothalamic–pituitary-thyroid axis to varying degrees 
(13). In vitro research has shown that pyrethroids can antagonize thyroid 
receptors and consequently block the thyroid axis, with the possibility of 
pyrethroids or their metabolites interacting with androgens or estrogen 
receptors also being indicated (14). Furthermore, in vivo experiments 
have examined the effects of two pyrethroids (permethrin and beta-
cypermethrin) and three pyrethroid metabolites (3-phenoxybenzyl 
alcohol, 3-phenoxybenzaldehyde, and 3-phenoxybenzoic acid) in 
zebrafish models. The results suggested that pyrethroid insecticides and 
their metabolites influenced thyroid signaling, motor behavior, and 
embryonic development in the zebrafish, implying that thyroid 
disruption may be involved in abnormal larva development (15).

The human body absorbs pesticides not only during agricultural 
work but also via fruit and vegetable dietary intake as well as direct 

GRAPHICAL ABSTRACT

WQS, weighted quantile sum; BKMR, Bayesian kernel machine regression; RCS, restricted cubic spline; 2,4-D, 2,4-dichlorophenoxyacetic acid; 4F3PB, 
4-fluoro-3-phenoxybenzoic acid; 3P, 3-phenoxybenzoic acid; PN, para-nitrophenol; TDDC, trans-dichlorovinyl-dimethylcyclopropane carboxylic acid. 
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pesticide consumption by those attempting suicide. However, 
pesticide absorption in these population groups is generally linked to 
two or more pesticides and not a single pesticide. Hence, the effect of 
multiple pesticides on thyroid function also requires attention. Despite 
this understanding, most current research focuses on the impact of 
individual pesticides on the human thyroid function index. Therefore, 
this study investigated the combined effect of OP, pyrethroid, and 
herbicide metabolites on thyroid function.

2 Materials and methods

2.1 Analysis of clinical patient and control 
data

2.1.1 Patients and controls
This retrospective study selected 60 patients hospitalized for 

pyrethroid pesticide poisoning and 60 healthy control participants who 
had undergone health examinations at Binhai County People’s Hospital 
between June 2022 and June 2023. This study complied with the criteria 
outlined in the Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Committee of Binhai County People’s Hospital 
(approval no: 2023-BHKYLL-018). All patients and controls or their 
relatives provided signed informed consent before study enrollment.

The patient inclusion criteria were as follows: (1) pyrethroid 
pesticide exposure and (2) age > 20 years. Patients were excluded if 
they met the following exclusion criteria: (1) previous thyroid disease 
history or (2) pregnancy or lactation. A total of 60 patients were 
enrolled based on these criteria.

2.1.2 Data collection
All patient data within 48 h after admission were reviewed and 

collected from our hospital’s electronic medical records as raw data. 
Acquired data included age, sex, marriage, education, smoking status, 
alcohol consumption, and laboratory thyroid test results (FT3, FT4, 
TSH, TT3, TT4, TgAb, and TPOAb levels). Details of the thyroid 
function indicators are shown in Supplementary Table S1.

2.2 Analysis of participants in the NHANES 
database

2.2.1 Study design and population
NHANES is a series of cross-sectional, nationally representative 

surveys conducted annually by the National Center for Health 
Statistics of the Centers for Disease Control and Prevention to 
estimate and assess the health and nutritional statuses as well as the 
potential risk factors of the non-institutionalized civilian population 
in the United States. All included participants have provided written 
informed consent before survey inclusion. All NHANES studies 
receive approval from the National Health Statistics Research Ethics 
Review Board.1 All programs comply with the relevant guidelines and 
regulations.2

Three open-access consecutive surveys were retrieved from the 
NHANES website: 2007–2008, 2009–2010, and 2011–2012. The 

1  https://www.cdc.gov/nchs/nhanes/irba98

2  https://www.cdc.gov/nchs/data_access/restrictions

collected data included demographic, inspection, laboratory, and 
questionnaire information. The total sample size in the included 
surveys was 30,442 individuals. Participants <20 years of age and those 
lacking data on the levels of pesticide metabolites, thyroid hormones, 
and antibodies were excluded (n = 28,884). Additionally, pregnant and 
lactating women and those with pre-existing thyroid conditions were 
excluded (n = 101). Lastly, individuals with missing covariate data, 
such as education, marriage, and smoking status, were excluded 
(n = 142). Ultimately, 1,315 individuals were included (Figure 1).

2.2.2 Measurement of pesticide metabolites
The body primarily eliminates absorbed pesticides by excreting 

their associated metabolites via urine. The metabolites of OPs mainly 
comprise 2,4-D. Furthermore, 4F3PB, TDDC, and 3P are pyrethroid 
metabolites, while PN is primarily a herbicide metabolite. Therefore, 
an urine concentration test for the above metabolites is crucial to 
detect pesticide poisoning and determine the disease status in patients 
with pesticide poisoning.

The levels of various pesticide metabolites in the urine were 
measured and quantified from the participants’ urine matrix using an 
automated solid-phase extraction system. The samples were analyzed 
via HPLC and a triple quadrupole mass spectrometer with a heated 
electrospray ionization source (16). The lower limit concentration of 
2,4-D detection was 0.15 μg/L; 4F3PB, 0.10 μg/L; 3P, 0.10 μg/L; PN, 
0.10 μg/L; and TDDC, 0.60 μg/L. Furthermore, data below the lower 
limit of their detection (LOD) were specified as LOD divided by the 
square root of 2 to improve the statistical power and accuracy of effect 
estimation (17). The official website (NHANES 2007–2012) provides 
additional laboratory information concerning the applied methods 
and procedures.

2.2.3 Thyroid hormone
Thyroid blood specimens were processed, stored, and shipped to 

Collaborative Laboratory Services, Ottumwa, Iowa, United States. A 
competitive binding immunoenzymatic assay was used to detect TT3, 
TT4, and FT3 levels. Additionally, a two-step enzyme immunoassay 
was used to determine FT4 concentration, while a third-generation 
two-site immunoenzymatic (“sandwich”) assay was employed to 
estimate TSH levels. Lastly, a simultaneous one-step “sandwich” assay 
was applied to obtain Tg levels, whereas a continuous two-step 
immunoenzymatic “sandwich” assay was performed to measure TgAb 
and TPOAb concentrations. The specific details of the methods are 
available in NHANES 2007–2012.

2.2.4 Covariates
Based on previous studies, relevant variables were selected as the 

predictors of the preliminary analysis to control for potential 
confounding effects. The selected covariables included age, sex, race, 
education level, and obesity. The statistical model was then adjusted 
using the covariates to reduce the confounding bias on the research 
results. The adjusted covariates included demographic characteristics 
such as (a) age (20–39, 40–59, and ≥ 60 years), (b) race (Mexican 
Americans, non-Hispanic whites, non-Hispanic blacks, other 
Hispanics, and other races including multiracial groups), (c) gender 
(male and female), (d) marital status (married, unmarried, and other 
status including divorced or widowed), and (e) education (below 
high school, high school, and above high school), as well as 
characteristics such as (f) smoking status (never smoker, former 
smoker, and current smoker), (g) alcohol consumption 
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(non-drinkers and moderate drinkers: 1–2 drinks/day for men and 
1 drink/day for women; and heavy drinkers: >2 drinks/day for men 
and > 1 drink/day for women), and (h) body mass index (BMI, 
normal: 25 kg/m2, overweight: 25–30 kg/m2, and obese: ≥30 kg/m2). 
The uniform interviews and questionnaires were completed by 
trained medical professionals.

2.3 Statistical analysis

All statistical analyses were performed using StataMP 17 version, 
GraphPad Prism 9.5, and R 4.2.3 software, with three statistical 
packages (“rms,” “gWQS,” and “bkmr”). A p-value of <0.05 (bilateral) 
was considered statistically significant.

2.3.1 Descriptive statistical analysis
Normal continuous data were expressed as mean ± standard 

deviation (mean ± SD), whereas skewed continuous data were 
presented as median and interquartile distance (IQR). Furthermore, 

categorical variables were denoted as numbers (percentages). The 
differences between the age groups were assessed using an 
independent sample T-test and Mann–Whitney U test for continuous 
variables and the chi-square test for categorical variables. The pesticide 
metabolite levels and thyroid function results were naturally 
log-transformed in an approximately normal distribution. Spearman’s 
rank coefficient was applied to measure the correlation between each 
pesticide metabolite.

2.3.2 Bayesian kernel machine regression model
The potential complex nonlinear or linear relationships between 

pesticide metabolites and the various thyroid hormones were 
evaluated using the BKMR model. BKMR is a nonparametric model 
combining Bayesian and statistical learning techniques, providing 
strong adaptability and good model-fitting ability for highly correlated 
variables common in the environmental epidemiological community 
(18, 19). Further, we modeled the exposure-response function using 
a Gaussian approach, followed by the application of the Markov chain 
Monte Carlo algorithm for 25,000 iterations. Thus, the overall effects 

FIGURE 1

Flowchart of study participant selection in the NHANES 2007–2012.
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between pesticide metabolites and different thyroid hormones were 
visualized using BKMR.

2.3.3 Linear regression model
A weighted LRM was employed to determine the correlation 

between the pesticide metabolites and thyroid function indicators. 
Model 1 was not adjusted for confounding factors, while model 2 was 
adjusted for age, sex, race/ethnicity, education level, smoking status, 
alcohol consumption, and BMI. Additionally, age group analysis was 
used to understand the effects of pesticide metabolites on thyroid 
function indexes across different ages. Moreover, we  used 
WTMEC2YR to provide weights for all data to ensure nationally 
representative results. Finally, we conducted several restricted cubic 
spline (RCS) analyses to explore the nonlinear dose relationship 
between pesticide metabolite exposure in the entire population and 
thyroid hormones.

2.3.4 Weighted quantile sum model
Finally, a WQS regression method was utilized to investigate the 

effect of the pesticide mixture on thyroid function indicators. The WQS 
regression technique combines different highly correlated compounds 
into a composite index, followed by regression analysis on that index. 
Additionally, WQS regression uses the bootstrap method to assign 
individual weights to each metabolite, allowing the identification of 
relatively critical components in the pesticide mixture (20). The weight 
of each metabolite ranges from 0 to 1, and the sum of the weights is 1. 
The effect of the metabolite on thyroid function increases with the 
increase in its weight value. The WQS approach provides better 
coverage of real-life mixed exposures and is more sensitive than 
univariate analysis in identifying vital predictors. In this study, 40% of 
the random samples were used to test and 60% to verify the data.

3 Results

3.1 Characteristics of the clinical study 
patients and controls

A total of 120 patients and controls from our hospital were 
included, comprising 60 hospitalized patients with pyrethroid 
exposure and 60 healthy control participants who underwent physical 
examination. As depicted in Table 1 and Figure 2, the mean ± SD of 
the levels of the thyroid function indicators FT4 
(22.304 ± 16.188 pmol/L), TT4 (123.73 ± 52.232 nmol/L), TgAb 
(68.185 ± 119.849 IU/mL), and TPOAb (32.041 ± 60.602 IU/mL) in the 
healthy group significantly differed from those in the pesticide-
exposed group (FT4: 16.488 ± 2.877 pmol/L, p = 0.008; TT4: 
104.834 ± 21.865 nmol/L, p = 0.012; 27.214 ± 10.094 IU/mL, p = 0.011; 
and TPOAb: 14.699 ± 10.316 IU/mL, p = 0.033). Sex, age, education, 
marital status, smoking status, and alcohol consumption were not 
statistically significant.

3.2 Relationship between pesticide 
poisoning and thyroid function indicators

Linear regression modeling was used to evaluate the correlation 
between pesticide poisoning and thyroid function indicators and to 
understand whether any changes occurred in these parameters after 

pesticide poisoning (Table 2). The results of model 1, which was not 
adjusted for covariates, showed that pesticide poisoning in patients 
was negatively correlated with FT4 (p = 0.007), TT4 (p = 0.011), TgAb 
(p = 0.009), and TPOAb (p = 0.031). Further, considering that 
numerous potential factors can affect the thyroid function indicators 
of the patients, covariates such as age and gender were added to 
re-establish an LRM (model 2) to evaluate the correlation between 
them (Table 2). The analysis demonstrated that pesticide poisoning in 
patients was negatively correlated with FT4 (p = 0.007), TT4 (p = 0.01), 
TgAb (p = 0.008), and TPOAb (p = 0.04). Thus, pesticide poisoning 
was negatively correlated with the thyroid function indicators FT4, 
TT4, TgAb, and TPOAb, even after adjusting for relevant confounders.

3.3 Association between the metabolic 
mixture of pesticides and thyroid function 
indicators (based on the BKMR model)

We developed a BKMR model based on the NHANES data, to 
understand the effect of the overall metabolic mixture of pesticides on 
the indicators of thyroid function. Figure 3 illustrates the effects of the 
mixture of the five pesticide metabolites 2,4-D, 4F3PB, 3P, PN, and 
TDDC on thyroid function indexes. The mixture exhibited a negative 
correlation with FT4, TSH, and Tg and with TgAb and TPOAb after 
the 60th and 70th percentiles, respectively. All these results were 
consistent with our clinical data, indicating that the metabolic mixture 
of the pesticides was negatively correlated with thyroid 
function indexes.

3.4 Basic participant information in the 
NHANES 2007–2012

Among the 30,442 participants in the NHANES 2007–2012, 1,315 
were eventually included according to our study inclusion and 
exclusion criteria. Table 3 displays the basic characteristic information 
of the study participants grouped by age. The age groups of 20–39, 
40–59, and ≥ 60 years comprised 437, 430, and 448 individuals, 
respectively. The mean ± SD of the 3P levels was significantly different 
across the age groups of 20–39 (1.528 ± 4.145 μg/L), 40–59 
(1.617 ± 3.802 μg/L), and ≥ 60 (0.954 ± 2.256 μg/L) years. Similarly, the 
mean ± SD of the levels of FT3 (20–39 years: 3.341 ± 0.383 pg./mL, 
40–59 years: 3.183 ± 0.415 pg./mL, and ≥ 60 years: 2.989 ± 0.35 pg./mL), 
FT4 (20–39 years: 0.78 ± 0.127 ng/dL, 40–59 years: 0.775 ± 0.165 ng/dL, 
and ≥ 60 years: 0.813 ± 0.176 ng/dL), TSH (20–39 years: 1.758 ± 1.263 
mIU/L, 40–59 years: 2.03 ± 3.11 mIU/L, and ≥ 60 years: 2.445 ± 3.328 
mIU/L), TT3 (20–39 years: 118.043 ± 20.982 ng/dL, 40–59 years: 
114.286 ± 24.429 ng/dL, and ≥ 60 years: 103.089 ± 20.938 ng/dL), and 
TgAb (20–39 years: 10.722 ± 9.299 IU/mL, 40–59 years: 
8.819 ± 81.876 IU/mL, and ≥ 60 years: 19.664 ± 114.705 IU/mL) were 
significantly different, with all p-values <0.05. Race, marital status, 
smoking status, alcohol consumption, and BMI were also significantly 
different between all age groups, with all p-values <0.05.

Next, we  conducted a Spearman correlation analysis to 
understand the relationship between the metabolites of the different 
pesticides. Supplementary Figure S1 and Supplementary Table S2 
present the correlation coefficients (r) between various metabolites, 
ranging from 0.033 to 0.504. In particular, the r above 0.5 is 3P and 
TDDC, which are moderately correlated. Furthermore, 3P and PN 
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exhibited a slight correlation (r  = 0.5), while the remaining 
metabolites had a weak correlation (r  < 0.3). Lastly, Pearson’s 
correlation coefficients between all metabolites had p-values of <0.05, 
except for that between 2,4-D and TDDC.

3.5 Association between pesticide 
metabolites and thyroid function indicators 
(based on the linear regression model)

Table 4 shows the association between each pesticide metabolite 
and thyroid function indicators in the LRM. In model 1 (without 
adjustment for any confounding factors), 2,4-D and FT3 (p = 0.041) as 
well as 4F3PB and FT4 (p = 0.003) were positively correlated. 
Additionally, a negative association was detected between 4F3PB and 
Tg (p = 0.001), 4F3PB and TgAb (p = 0.006), 3P and TgAb (p = 0.006), 
3P and TPOAb (p = 0.03), PN and TSH (p = 0.003), PN and TT4 
(p = 0.031), and TDDC and TPOAb (p < 0.001). After correcting for 
the confounding factors such as age, sex, race, education, marital 
status, smoking status, and alcohol consumption in model 2, the 

correlations between 2,4-D and FT3 (p = 0.039) as well as 4F3PB and 
FT4 (p = 0.005) remained. Moreover, the negative correlations 
persisted between 4F3PB and Tg (p = 0.027), 4F3PB and TgAb 
(p = 0.024), 3P and TgAb (p = 0.041), 3P and TPOAb (p = 0.047), PN 
and FT4 (p = 0.034), PN and TSH (p = 0.011), PN and TT4 (p = 0.049), 
and TDDC and TPOAb (p = 0.003).

Next, we  re-established an LRM to assess the relationship 
between exposure to pesticide metabolites and thyroid function 
indicators across different age groups (Supplementary Tables S3–S7). 
Our results showed that 4F3PB was negatively correlated with Tg 
(p < 0.001) and TgAb (p = 0.046), while PN demonstrated a negative 
correlation with TSH (p = 0.001) and TPOAb (p = 0.046) in the 
20–39 years age group. In the 40–59 years age group, 4F3PB showed 
a positive correlation with FT4 (p = 0.024) and negative correlations 
with TSH (p = 0.001) and TPOAb (p = 0.005). Furthermore, 3P was 
negatively associated with TSH (p = 0.014), TgAb (p = 0.043), and 
TPOAb (p < 0.001), whereas PN exhibited a negative correlation with 
TSH (p = 0.017) and TDDC was negatively correlated with TSH 
(p = 0.001) and TPOAb (p = 0.001). In the ≥60 years age group, a 
positive correlation was found between 2,4-D and FT3 (p = 0.039), 

TABLE 1  Baseline characteristics of the clinical patients and controls.

Variables Total (n =  120)
Health examination 

control group (n =  60)
Pesticide-exposed 

patient group (n =  60)
p-value

Gender, n (%) 0.449

 � Male 44 (36.667) 24 (40) 20 (33.333)

 � Female 76 (63.333) 36 (60) 40 (66.667)

Age, n (%) 0.063

 � 20–39 years 29 (24.167) 20 (33.333) 9 (15)

 � 40–59 years 38 (31.667) 17 (28.333) 21 (35)

 � ≥60 years 53 (44.167) 23 (38.333) 30 (50)

Educational level (%) 0.929

 � Less than high school 74 (61.667) 38 (63.333) 36 (60)

 � High school graduate 17 (14.167) 8 (13.333) 9 (15)

 � College or above 29 (24.167) 14 (23.333) 15 (25)

Marital status (%) 0.81

 � Never married 21 (17.5) 11 (18.333) 10 (16.667)

 � Married 99 (82.5) 49 (81.667) 50 (83.333)

Smoking status, n (%) 0.338

 � No 92 (76.667) 44 (73.333) 48 (80)

 � Yes 28 (23.333) 16 (26.667) 12 (20)

Drinking status, n (%) 0.071

 � No 85 (70.833) 38 (63.333) 47 (78.333)

 � Yes 35 (29.167) 22 (36.667) 13 (21.667)

Thyroid function index

 � FT3 (pmol/L) 4.748 ± 4.775 5.397 ± 6.643 4.098 ± 1.004 0.139

 � FT4 (pmol/L) 19.396 ± 11.94 22.304 ± 16.188 16.488 ± 2.877 0.008

 � TSH (uIU/mL) 2.412 ± 2.702 2.122 ± 2.114 2.703 ± 3.175 0.24

 � TT3 (nmol/L) 1.809 ± 0.76 1.895 ± 1 1.724 ± 0.388 0.22

 � TT4 (nmol/L) 114.282 ± 40.984 123.73 ± 52.232 104.834 ± 21.865 0.012

 � TgAb (IU/mL) 47.7 ± 87.151 68.185 ± 119.849 27.214 ± 10.094 0.011

 � TPOAb (IU/mL) 23.37 ± 44.152 32.041 ± 60.602 14.699 ± 10.316 0.033

Continuous data are displayed as mean ± standard deviation. Categorical variables are presented as n (%), where n is the number of patients or controls and % is the weighted percentage. 
p < 0.05 was considered statistically significant. Not significant (ns), p > 0.05; *, p < 0.05; **, p < 0.01. The bold type means statistically significant.
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while 4F3PB was positively correlated with FT4 (p < 0.001) and 
negatively correlated with FT3 (p < 0.001), TT3 (p < 0.001), TT4 
(p < 0.001), Tg (p < 0.001), TgAb (p = 0.004), and TPOAb (p < 0.001). 
Additionally, whereas negative correlations were demonstrated 
between PN and TT3 (p = 0.033) and TDDC and TPOAb (p = 0.034).

3.6 Relationship between pesticide 
metabolites and thyroid function index 
(according to the restricted curve spline 
model)

An RCS model was employed to estimate the dose–response 
relationship between individual pesticide metabolites and thyroid 
function indicators (Supplementary Figures S2–S6). In this analysis, 2,4-D 
was positively correlated with FT3 (Supplementary Figure S2), while 
4F3PB exhibited positive correlations with FT4 and TT4 and negative 
correlations with TT3, Tg, and TPOAb (Supplementary Figure S3). 

Furthermore, 3P showed positive associations with FT3, FT4, and Tg and 
negative correlations with TgAb and TPOAb (Supplementary Figure S4), 
whereas PN demonstrated a negative correlation with TSH and positive 
correlations with Tg and TgAb (Supplementary Figure S5). Finally, 
TDDC at <8.731 μg/L was positively correlated with FT4 and Tg and 
negatively correlated with TSH, whereas TDDC at >8.731  μg/L was 
positively correlated with TSH (Supplementary Figure S6).

3.7 Relationship between pesticide 
metabolites and thyroid function index 
(based on the weighted quantile sum 
model)

The results of the relationship between the total WQS index and 
thyroid function indicators as well as the estimated chemical weight of 
each pesticide metabolite are provided in Figure 4. Based on the fully 
adjusted model, 2,4-D had the highest weight (0.50) on FT3, followed 

FIGURE 2

Expression levels of thyroid function indicators in the pesticide-exposed and health examination control groups. (A) The level of FT3 between the two 
groups; (B) The level of FT4 between the two groups; (C) The level of TSH between the two groups; (D) The level of TT3 between the two groups; 
(E) The level of TT4 between the two groups; (F) The level of TgAb between the two groups; (G) The level of TPOAb between the two groups.
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by 3P (0.33). Similarly, 4F3PB demonstrated the highest weight on FT4 
(0.74); PN on TSH (0.32); 3P on TT3 (0.54); PN on TT4 (0.45); 4F3PB 
on Tg (0.47); 3P on TgAB (0.45); and 4F3PB on 3P (0.57).

4 Discussion

In this study, we  initially revealed that pesticide exposure was 
negatively correlated with the thyroid function indexes FT4, TT4, TgAb, 

and TPOAb in patients with pesticide poisoning at our hospital. In a 
subsequent cross-sectional study of an adult population in the 
United States (NHANES 2007–2012), BKMR, linear regression, RCS, 
and WQS models were used to evaluate the individual and combined 
effects of pesticide metabolites on thyroid function indicators. In terms 
of the effects of each pesticide metabolite, positive correlations were 
found between 2,4-D and FT3 and between 4F3PB and FT4. Conversely, 
we observed a negative correlation of 4F3PB with Tg and TgAb, 3P with 
TgAb and TPOAb, PN with TSH and TT4, and TDDC with TPOAb.

FIGURE 3

A BKMR model to estimate the combined risk effect of the pesticide mixture on thyroid function indicators in the general population. The models were 
adjusted for gender, age, race, education, marital status, body mass index, smoking status, and alcohol consumption. (A) FT4; (B) TSH; (C) Tg; (C) TgAb; 
(E) TPOAb.

TABLE 2  Linear regression analysis of the relationship between pesticide exposure in clinical patients and thyroid function indicators.

Outcome Model 1 Model 2

β (95% CI) p-value β (95% CI) p-value

FT3 −1.299 (−3.016 to 0.419) 0.137 −1.224 (−3.055 to 0.607) 0.188

FT4 −5.816 (−10.019 to − 1.613) 0.007 −6.192 (−10.667 to − 1.718) 0.007

TSH 0.582 (−0.393 to 1.557) 0.24 0.549 (−0.447 to 1.546) 0.277

TT3 −0.171 (−0.4451 to 0.103) 0.219 −0.147 (−0.432 to 0.137) 0.306

TT4 −18.896 (−33.372 to − 4.420) 0.011 −20.163 (−35.437 to − 4.889) 0.01

TgAb −40.971 (−71.719 to − 10.222) 0.009 −42.868 (−74.425 to − 11.311) 0.008

TPOAb −17.342 (−33.058 to − 1.626) 0.031 −16.854 (−32.946 to − 0.763) 0.04

Model 1: Non-adjusted model.
Model 2: Adjusted for gender, age, education, marital status, alcohol use, and smoking status.
95% CI, 95% confidence interval. Bold values indicate statistical significance at p < 0.05.
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TABLE 3  Weighted characteristics of the NHANES participants from 2007 to 2012 according to age groups.

Variables Total (n =  1,315)
20–39  years 

(n =  437)
40–59  years 

(n =  430)
≥60  years 
(n =  448)

p-value

Gender, n (%) 0.271

 � Male 652 (49.582) 217 (49.657) 225 (52.326) 210 (46.875)

 � Female 663 (50.418) 220 (50.343) 205 (47.674) 238 (53.125)

Race, n (%) 0.003

 � Mexican American 232 (17.643) 92 (21.053) 81 (18.837) 59 (13.17)

 � Other Hispanic 145 (11.027) 45 (10.297) 55 (12.791) 45 (10.045)

 � Non-Hispanic White 630 (47.909) 187 (42.792) 192 (44.651) 251 (56.027)

 � Non-Hispanic Black 245 (18.631) 87 (19.908) 84 (19.535) 74 (16.518)

 � Other races 63 (4.791) 26 (5.95) 18 (4.186) 19 (4.241)

Educational level (%) 0.337

 � Below high school 371 (28.213) 121 (27.689) 113 (26.279) 137 (30.58)

 � High school 317 (24.106) 99 (22.654) 103 (23.953) 115 (25.67)

 � Above high school 627 (47.681) 217 (49.657) 214 (49.767) 196 (43.75)

Marital status (%) <0.001

 � Married 236 (17.947) 176 (40.275) 43 (10) 17 (3.795)

 � Never married 768 (58.403) 225 (51.487) 282 (65.581) 261 (58.259)

 � Widowed/Divorced/

Separated
311 (23.65) 36 (8.238) 105 (24.419) 170 (37.946)

Smoking status (%) <0.001

 � Never 685 (52.091) 251 (57.437) 207 (48.14) 227 (50.67)

 � Former 317 (24.106) 56 (12.815) 96 (22.326) 165 (36.83)

 � Current 313 (23.802) 130 (29.748) 127 (29.535) 56 (12.5)

Alcohol use (%) <0.001

 � Non-drinker 221 (16.806) 55 (12.586) 58 (13.488) 108 (24.107)

 � Moderate drinker 485 (36.882) 115 (26.316) 153 (35.581) 217 (48.438)

 � Heavy drinker 609 (46.312) 267 (61.098) 219 (50.93) 123 (27.455)

Body mass index (%) <0.001

 � <25 kg/m2 381 (28.973) 161 (36.842) 103 (23.953) 117 (26.116)

 � 25–29.9 kg/m2 472 (35.894) 147 (33.638) 162 (37.674) 163 (36.384)

 � ≥30 kg/m2 462 (35.133) 129 (29.519) 165 (38.372) 168 (37.5)

Pesticide metabolic compound

 � 2,4-D (μg/L) 0.595 ± 1.424 0.528 ± 1.04 0.641 ± 2.008 0.616 ± 1.016 0.465

 � 4F3PB (μg/L) 0.088 ± 0.122 0.087 ± 0.097 0.086 ± 0.095 0.092 ± 0.159 0.746

 � 3P (μg/L) 1.361 ± 3.498 1.528 ± 4.145 1.617 ± 3.802 0.954 ± 2.256 0.009

 � PN (μg/L) 1.366 ± 2.736 1.444 ± 2.964 1.268 ± 2.325 1.386 ± 2.868 0.627

 � TDDC (μg/L) 1.257 ± 3.354 1.154 ± 3.119 1.484 ± 3.728 1.14 ± 3.189 0.233

Thyroid function index

 � FT3 (pg/mL) 3.169 ± 0.409 3.341 ± 0.383 3.183 ± 0.415 2.989 ± 0.35 <0.001

 � FT4 (ng/dL) 0.79 ± 0.158 0.78 ± 0.127 0.775 ± 0.165 0.813 ± 0.176 <0.001

 � TSH (mIU/L) 2.081 ± 2.745 1.758 ± 1.263 2.03 ± 3.11 2.445 ± 3.328 <0.001

 � TT3 (ng/dL) 111.72 ± 23.042 118.043 ± 20.982 114.286 ± 24.429 103.089 ± 20.938 <0.001

 � TT4 (μg/dL) 7.862 ± 1.672 7.803 ± 1.656 7.764 ± 1.676 8.014 ± 1.677 0.057

 � Tg (ng/mL) 16.333 ± 35.266 15.315 ± 31.046 14.103 ± 19.414 19.467 ± 48.357 0.06

 � TgAb (IU/mL) 10.155 ± 82.148 10.722 ± 9.299 8.819 ± 81.876 19.664 ± 114.705 0.005

 � TPOAb (IU/mL) 19 ± 87.976 14.167 ± 79.862 25.638 ± 108.061 17.345 ± 72.499 0.14

Continuous data are displayed as mean ± standard deviation. Categorical variables are presented as n (%), where n is the number of participants and % is the weighted percentage. p < 0.05 was 
considered statistically significant. The bold type means statistically significant.
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TABLE 4  Weighted linear regression analysis of the relationship between pesticide exposure and thyroid function indexes in the NHANES participants 
from 2007 to 2012.

Exposure outcome Model 1 Model 2

β (95% CI) p-value β (95% CI) p-value

2,4-D

FT3 0.017 (0.00–10.033) 0.041 0.019 (0.001–0.038) 0.039

FT4 0.002 (−0.005 to 0.010) 0.536 0.002 (−0.005 to 0.009) 0.525

TSH 0.109 (−0.166 to 0.383) 0.438 0.109 (−0.162 to 0.380) 0.43

TT3 0.431 (−0.408 to 1.270) 0.313 0.457 (−0.354 to 1.267) 0.269

TT4 −0.029 (−0.118 to 0.061) 0.53 −0.006 (−0.088 to 0.076) 0.892

Tg −0.081 (−0.834 to 0.672) 0.833 0.210 (−0.546 to 0.966) 0.586

TgAb 0.621 (−0.998 to 2.240) 0.452 0.488 (−1.137 to 2.113) 0.556

TPOAb 1.141 (−2.272 to 4.554) 0.512 2.012 (−1.361 to 5.384) 0.242

4F3PB

FT3 −0.142 (−0.361 to 0.078) 0.205 −0.108 (−0.289 to 0.0742) 0.246

FT4 0.112 (0.038–0.187) 0.003 0.107 (0.033–0.182) 0.005

TSH −0.077 (−1.054 to 0.900) 0.878 −0.052 (−1.012 to 0.907) 0.914

TT3 −8.388 (−17.922 to 1.147) 0.085 −6.320 (−14.120 to 1.481) 0.112

TT4 0.699 (−0.046 to 1.443) 0.066 0.718 (−0.019 to 1.455) 0.056

Tg −9.226 (−14.84 to −3.611) 0.001 −7.173 (−13.532 to −0.813) 0.027

TgAb −7.835 (−13.383 to −2.287) 0.006 −8.765 (−16.399 to −1.130) 0.024

TPOAb −9.749 (−37.648 to 18.149) 0.493 −10.683 (−36.069 to 14.704) 0.409

3P

FT3 0.002 (−0.005 to 0.009) 0.49 −0.001 (−0.007 to 0.005) 0.795

FT4 0.001 (−0.001 to 0.004) 0.331 0.002 (−0.001 to 0.004) 0.192

TSH −0.020 (−0.0407 to 0.001) 0.059 −0.017 (−0.039 to 0.004) 0.111

TT3 −0.081 (−0.517 to 0.354) 0.714 −0.186 (−0.595 to 0.223) 0.373

TT4 −0.003 (−0.035 to 0.030) 0.868 0.003 (−0.023 to 0.029) 0.804

Tg 0.577 (−0.343 to 1.498) 0.219 0.618 (−0.278 to 1.515) 0.176

TgAb −0.368 (−0.632 to − 0.104) 0.006 −0.282 (−0.553 to − 0.011) 0.041

TPOAb −0.783 (−1.492 to − 0.075) 0.03 −0.795 (−1.579 to − 0.011) 0.047

PN

FT3 −0.005 (−0.018 to 0.009) 0.488 −0.006 (−0.018 to 0.007) 0.38

FT4 −0.002 (−0.005 to 0.001) 0.099 −0.003 (−0.005 to − 0.001) 0.034

TSH −0.044 (−0.073 to − 0.016) 0.003 −0.035 (−0.061 to − 0.008) 0.011

TT3 −0.387 (−0.883 to 0.108) 0.126 −0.270 (−0.739 to 0.199) 0.259

TT4 −0.042 (−0.080 to − 0.004) 0.031 −0.042 (−0.086 to − 0.001) 0.049

Tg 0.299 (−0.313 to 0.913) 0.337 0.329 (−0.273 to 0.932) 0.284

TgAb 1.085 (−1.327 to 3.498) 0.378 1.076 (−1.400 to 3.552) 0.394

TPOAb −0.715 (−1.748 to 0.317) 0.174 −0.302 (−1.458 to 0.854) 0.609

TDDC

FT3 0.001 (−0.006 to 0.007) 0.801 0.001 (−0.004 to 0.006) 0.732

FT4 0.001 (−0.001 to 0.004) 0.278 0.001 (−0.001 to 0.003) 0.339

TSH −0.020 (−0.049 to 0.008) 0.154 −0.022 (−0.052 to 0.008) 0.15

TT3 −0.127 (−0.519 to 0.265) 0.525 −0.079 (−0.474 to 0.317) 0.696

TT4 0.001 (−0.026 to 0.027) 0.971 0.001 (−0.022 to 0.023) 0.95

(Continued)
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In the case of multi-metabolic compounds, the BKMR model 
showed that the metabolic mixture of the different pesticides was 
negatively correlated with FT4, TSH, and Tg as well as with TgAB 
after the 60th percentile and TPOAb after the 70th percentile, 
consistent with the clinical data results of the patients in our hospital.

2,4-D is an extensively used herbicide, particularly in the 
United States and Canada. However, increasing concerns have been 
raised over its endocrine effects. Moreover, other studies have 
demonstrated that 2,4-D is an endocrine disruptor that may affect 
thyroid hormones in male but not in female rodents (8, 9). Similar 
sex-dependent findings were observed in humans, wherein a 
significant association was demonstrated between 2,4-D pesticide 
exposure and hypothyroidism in males, but no such association was 
detected in females (7). In our study, 2,4-D was positively correlated 
with FT3 in the general population, which persisted in the age group 
of ≥60 years. However, no other significant correlation was determined 
for the remaining thyroid function indicators, consistent with the US 
EPA findings. Nevertheless, the RCS dose–response curve revealed 
that thyroid function was affected at a 2,4-D dose exceeding a specific 
range, highlighting that the effect of the herbicide 2,4-D on the human 
body must not be overlooked.

In this study, we also analyzed the effects of the OP metabolites 
PN and TDDC on thyroid function indicators. TDDC is primarily a 
metabolite of dichlorphos, while PN is a metabolite of many OPs, 
including parathion and methyl parathion. Research has found that 
OPs can cause thyroid changes by affecting thyroid hormone 

regulation at the central nervous system level. In this mechanism, 
organophosphorus exposure leads to cholinergic overstimulation that 
further results in somatostatin activation, ultimately inhibiting TSH 
release (21). A cross-sectional study of adults and children in the 
United States found that the urinary organophosphorus metabolite 
3,5,6-trichloro-2-pyridinol was positively correlated with serum total 
T4 and negatively associated with TSH in adolescents and adult males 
(22). Additionally, a rodent model investigation demonstrated that OP 
exposure could induce changes in thyroid hormone levels; however, 
the trends in the specific thyroid hormone levels were inconsistent. In 
particular, rodents that received oral doses of organophosphorus 
malathion exhibited reduced serum T4 and T3 levels and increased 
TSH concentrations compared with the mouse pups exposed to OPs 
in utero and postnatally (23). The above results are partially 
inconsistent with our current study findings, where we  observed 
negative correlations of the OP metabolite PN with TSH and TT4 and 
that of TDDC with TPOAb. This discrepancy could be  because 
different OP metabolites exert distinct effects on the thyroid gland. 
Moreover, the different results from the animal model study could 
be  attributed to the variation in the metabolic pathways, species’ 
acceptance thresholds for OPs, or thyroid gland effects occurring 
during various developmental stages.

Additionally, we  investigated the effects of the pyrethroid 
metabolites 3P and 4F3PB, which are more toxic than the mother 
compounds. The metabolites 3P and 4F3PB are among the most 
detectable substances in human urine and blood as well as animal 

TABLE 4  (Continued)

Exposure outcome Model 1 Model 2

β (95% CI) p-value β (95% CI) p-value

Tg 0.770 (−0.603 to 2.143) 0.271 0.748 (−0.607 to 2.104) 0.279

TgAb −0.151 (−0.886 to 0.584) 0.686 −0.117 (−0.900 to 0.665) 0.769

TPOAb −1.370 (−2.080 to − 0.660) <0.001 −1.228 (−2.037 to − 0.420) 0.003

Model 1: Non-adjusted model.
Model 2: Gender, age, race, education, marital status, body mass index, alcohol use, and smoking status. 95% CI, 95% confidence interval. Bold values indicate statistical significance at p < 0.05.

FIGURE 4

WQS-based weights of pesticide metabolites on thyroid function index. The model was adjusted for covariates, including age, sex, race, marital status, 
education, body mass index, smoking status, and alcohol consumption. (A) FT3; (B) FT4; (C) TSH; (D) TT3; (E) TT4; (F) Tg; (G) TgAb; (H) TPOAb.
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tissues and thus are commonly used as biomarkers to assess pyrethroid 
exposure in humans (24–26). Studies on pyrethroid exposure in 
lizards have found that these pesticides and their metabolites 3P and 
4F3PB have unique endocrine-disrupting mechanisms that can impair 
the thyroid system. Although metabolite exposure did not lead to any 
significant or slightly significant changes in the thyroid gland or 
thyroid hormone levels, significant alterations were observed in the 
expression of the thyroid axis-related genes in the liver and brain of 
the lizards (27). Several researchers have indicated that 3P has no 
significant effect on the human thyroid hormone (28), corroborating 
our current study results. However, apart from thyroid hormone 
examination, our study also assessed thyroid antibody and antibody 
protein levels. We demonstrated that although 3P was not significantly 
correlated with the thyroid hormone, it was negatively correlated with 
TgAb and TPOAb. Moreover, scarce research exists on the impact of 
pesticide exposure on these two indicators. Currently, relatively 
limited information is available on the effects of 4F3PB on thyroid 
function. The present study showed that 4F3PB was positively 
correlated with FT4 but negatively correlated with Tg and TgAB. All 
these thyroid function changes induced by pyrethroids and their 
metabolites may be ascribed to their structural similarity with the 
thyroid hormone receptors.

The previously mentioned findings represent individual analyses 
of the effects of each pesticide and its metabolites on thyroid function 
indicators. However, pesticide absorption by the human body does 
not encompass a single pesticide and generally involves two or more 
types of pesticides. Thus, we further analyzed the effects of pesticide 
mixtures on thyroid function indicators. A previous comparison study 
of the toxicity of four organophosphate pesticides (dichlorvos, 
dimethoate, acephate, and methamidophos) with that of a single 
pesticide in rats demonstrated that the toxicity of a single pesticide 
was weak or even non-toxic, but the combination of the four pesticides 
caused oxidative stress and liver and kidney dysfunction, disrupted 
lipid and amino acid metabolism, and interfered with thyroid function 
(29). This study analyzed the effects of OP, herbicide and pyrethroid 
mixtures on thyroid function in clinical patients in Binhai County 
People’s Hospital. The analyses revealed that the pesticide mixtures 
were negatively correlated with the thyroid function indicators FT4, 
TT4, TgAb, and TPOAb. Subsequently, in order to further validate the 
above findings, the effect of this pesticide mixture on thyroid function 
indicators was investigated in the NHANES database in the 
United States. The results showed that based on the BKMR model, the 
mixture was negatively correlated with FT4, TSH, Tg, and after the 
60th percentile with TgAb and after the 70th percentile with TPOAb. 
These results were generally consistent with the clinical patient data 
from Binhai County People’s Hospital. Next, the weight of the effect of 
each metabolite in the pesticide mixture on thyroid function 
indicators was analyzed by the WQS model. Through the above 
findings, it was speculated that the alteration of thyroid function 
indicators might be caused by various thyroid damage mechanisms 
corresponding to each pesticide metabolite. However, the process by 
which these pesticides interact and cause thyroid damage is not 
known, and this area was not evaluated in our study. Nevertheless, this 
aspect is the direction of our future research. Despite these gaps in the 
literature, various pesticide mixtures have been established to cause 
damage to the thyroid gland. Thus, the potential harm from pesticide 
exposure during daily life, consumption of fruits and vegetables, and 

engagement in agricultural activities should not be  disregarded, 
emphasizing the need to follow protective measures to reduce the 
health consequences on the human body.

Our study has several advantages that are worth mentioning. 
We used clinical data to analyze the relationship between patients with 
pesticide poisoning and thyroid function, along with the NHANES 
data for further evaluation. Moreover, the current study represents the 
first attempt to elucidate the link between herbicides, OPs, and 
pyrethroids (alone and combined) and thyroid function in 
United  States adults. The study results indicated a potential 
relationship between these pesticides and thyroid function, suggesting 
the requirement for further mechanistic studies to explore the 
underlying physiological mechanisms. Another advantage is that 
we constructed WQS and BKMR models to examine the overall effects 
of the mixture of herbicides, OPs, and pyrethroids on thyroid function, 
followed by linear regression and RCS to determine the effects of each 
pesticide metabolite on thyroid function. These statistical strategies 
showed the frequency with which people were simultaneously 
exposed to multiple pesticides in real life. Additionally, combining the 
advantages and disadvantages of various pesticide approaches might 
help us better understand their mixed effects, ultimately enabling us 
to obtain more reliable conclusions and provide valuable scientific 
information on appropriate pesticide utilization. However, our study 
has certain limitations that should be  acknowledged. The main 
limitation of this study is that a causal relationship between pesticides 
and thyroid function could not be  confirmed due to the cross-
sectional research design. Additionally, herbicides, OPs, and 
pyrethroids have shorter half-lives that range from a few hours to 
weeks; thus, the correlation of long-term exposure cannot 
be determined. Finally, the confounding effects of unmeasured factors 
cannot be ruled out from the study, even though adjustments were 
made for some thyroid function-related risk factors.

5 Conclusion

In this study, firstly, pesticides were found to be  significantly 
negatively correlated with thyroid function indicators by analysing the 
data in the clinical patients in Binhai County People’s Hospital, and 
similarly, pesticide metabolites were found to have a significant 
difference on the thyroid function indicators in the NHANES database 
in the United  States. Subsequently, through different statistical 
methods, it was found that there were significant differences in the 
effects of different metabolite weights on different thyroid function 
indicators. We  initially discussed the effects of various pesticide 
metabolites on thyroid function indicators. At a later stage, we need 
to confirm our main findings with a large number of samples, further 
explore their effects on each thyroid disease, and elucidate the 
potential mechanisms between various pesticides and thyroid diseases.
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Understanding the health outcomes of military exposures is of critical 
importance for Veterans, their health care team, and national leaders. 
Approximately 43% of Veterans report military exposure concerns to their VA 
providers. Understanding the causal influences of environmental exposures 
on health is a complex exposure science task and often requires interpreting 
multiple data sources; particularly when exposure pathways and multi-exposure 
interactions are ill-defined, as is the case for complex and emerging military 
service exposures. Thus, there is a need to standardize clinically meaningful 
exposure metrics from different data sources to guide clinicians and researchers 
with a consistent model for investigating and communicating exposure risk 
profiles. The Linked Exposures Across Databases (LEAD) framework provides a 
unifying model for characterizing exposures from different exposure databases 
with a focus on providing clinically relevant exposure metrics. Application of 
LEAD is demonstrated through comparison of different military exposure data 
sources: Veteran Military Occupational and Environmental Exposure Assessment 
Tool (VMOAT), Individual Longitudinal Exposure Record (ILER) database, and a 
military incident report database, the Explosive Ordnance Disposal Information 
Management System (EODIMS). This cohesive method for evaluating military 
exposures leverages established information with new sources of data and has 
the potential to influence how military exposure data is integrated into exposure 
health care and investigational models.
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Introduction

The health implications of military exposures are a major concern 
for clinicians and researchers in the field of Veteran healthcare, with 
43% of Veterans expressing toxic exposure concerns to their Veterans 
Affairs (VA) healthcare providers (1). The recent passing of the PACT 
Act in 2022 expanded VA care and benefits while increasing 
presumptive health conditions for various military deployments and 
exposures. This surge in interest for military toxic exposures 
necessitates the integration of appropriate data to support 
investigations between exposures and health outcomes. Capturing 
the exposome, which measures the multifaceted relationships 
between environment, behavior, biology, and disease over time, is 
essential to this understanding (2) as exposures do not cease after 
military service. Utilizing an exposome model to understand military 
toxic exposures is crucial because it considers the totality of 
environmental influences on individuals across their lifetime (3). 
Similar needs are present in environmental health surveillance 
programs when integrating existing data. Recently, the 
United Kingdom completed pilot programs for data integration in 
communities with high-quality exposure data and paired this data 
with outcomes in their National Health System (4, 5). Also, current 
needs demand an expanded Environmental and Public Health 
Tracking (EPHT) system to emphasize the need of merging, 
integrating and interpreting exposure data and relating to health 
outcomes (6, 7). The proposed LEAD framework aims to support 
efforts to facilitate a unified exposure tracking methodology and help 
to further understand the exposome.

Linked Exposures Across Databases 
(LEAD) framework

The LEAD framework unifies diverse exposure sources using 
common data elements, addressing gaps in sourcing and 
characterization. Focusing on clinical utility, it develops health 
applications for siloed sources like military records and incident 
reports. The LEAD method calculates total exposure dosage as a 
function of intensity and duration. This method of dosage estimation 
is used across fields such as radiation exposure capture (8), toxicity 
research (9) and the military to calculate blast over-pressure as the 
product of pressure over a set period (10, 11). However, such 
applications typically focus on specific exposures. LEAD’s 
methodology employs general definitions of Exposure Common Data 
Elements (ExCDE), enabling comprehensive exposure 
characterization across various sources while utilizing existing 
methods and shaping new approaches. This integration facilitates the 
translation of individual and population-level exposure data for 
clinical purposes and fosters toxic exposure surveillance and 
research applications.

While quantitative measures of exposure intensity (e.g., Pascals 
for blast pressure, micrograms for chemical exposure) and time of 
exposure (measured in seconds) using sensors are the most 
objective and quantifiable form of measurement, such information 
is rarely available at the individual level for Veterans concerned 
about toxic military exposures. Therefore, the LEAD framework 
aims to expand the application of intensity and time-based dosage 

estimation to large sets of qualitative and subjective data. 
Additionally, potential moderating factors such as protective 
controls are considered since these factors could moderate 
exposure-related outcomes.

LEAD characterizes exposure using the following exposure 
common data elementsExCDEs:

	 Exposure Dose f Intensity Time | Moderators~ ×( )

	 Intensity f~ Route,Proximity,Symptoms( )

	 Time f~ Duration,Frequency,Period( )

	 Moderators f~ Environmental Controls, Personal Protective Conttrols( )

The LEAD framework allows for estimating aggregate exposure 
dosages using proxy measures of intensity and duration, along with 
factors that may influence these effects (Figure 1). The goal of the 
LEAD framework is to establish consistent parameters for 
characterizing exposures. However, like clinical practice where some 
features hold more weight due to their perceived impact on outcomes, 
the exposure variables also need to be  weighted when evaluating 
exposure dose. This report provides expert-informed weights for 
specific variables, demonstrating a practical example of exposure dose 
estimation. Future analysis with health outcomes data can employ 
risk-modeling methods (e.g., Cox-Proportion Hazards Model) to 
assign empirical weights.

To illustrate how the LEAD framework can be used to consolidate 
exposure data into a unifiable metric, this report will present 
information from three different exposure data sources relevant to a 
cohort of Explosive Ordnance Disposal (EOD) Veterans, a complex 
and very high environmental exposure military occupation. 
We provide sample data extraction of exposure information from 
multiple databases and their collation in Table 1. Further, examples of 
how the data can be used to compare high and low blast exposure 
using a common scoring methodology is provided in 
Supplementary Tables S1–S3.

Data sources include:

	•	 Explosive Ordnance Disposal Information Management System 
(EODIMS): The EODIMS System is an operations specific 
Classified and Unclassified program for record incident 
reporting with discoverable data managed by the Air Force 
supporting joint service EOD units. Focused use of these 
records for clinically relevant exposure data enables access to 
the immediate post-exposure reports that are less affected by 
recall bias and may represent direct evidence of a possible 
hazardous exposure.

	•	 Veteran Military Occupational and Environmental Exposure 
Assessment Tool (VMOAT): The VMOAT is a self-reported, 
structured, and lifespan-based comprehensive assessment of 
occupational exposures sustained during military service as well 
as during non-uniformed military and civilian work periods. The 
VMOAT includes a demographic information section, a lifespan-
based occupational and environmental history section, and a 
comprehensive exposures section based on evidence-based 
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FIGURE 1

The LEAD Framework defines exposure common data elements to enable exposure information collation from a wide range of different databases and 
obtain a consistent log of exposures. This unform representation of exposures facilitates easy and consistent interpretation to help guide clinical care 
and research.

TABLE 1  Using the LEAD framework, exposures are characterized according to its route, proximity and symptoms at the time of exposure which reflects 
exposure intensity as well as the duration, frequency and period of the exposure event which reflects the exposure’s temporal characteristics.

1. Exposure 
collation

Intensity Time Moderators

Source Exposure Route Proximity Symptoms Period Duration Frequency Protective 
controls

EODIMS Blast Impact 10 feet Lost consciousness
03/01/1999–

03/02/1999
4 h 1 event Suit

EODIMS
Blast/50lbs 

NEW
Impact >150 m None

07/01/2000–

07/02/2000
< 2 min 1 event Bunker

EODIMS
Blast/<5 lb. 

NEW
Impact < 15 m n/a

11/01/2000–

11/02/2000
4 h 1 event Safe area

VMOAT Blast Impact 10 feet Lost consciousness
03/01/1999–

03/02/1999
4 h Frequent Suit

ILER-

PDHA

Vehicle 

accident
Impact n/a

Neck/back injury; LOC 

<5 min; Disorientation

02/11/2000–

02/11/2000
n/a 1 event Seat belt

ILER-

PDHA

Doxycycline 

(Vibramycin®)
ingestion n/a n/a

02/01/2000–

11/01/2000
6 months daily n/a

ILER-

PDHR-A
Sand/Dust Inhalation n/a

Coughing, difficulty 

breathing

04/01/2000–

01/01/2001
10 months n/a n/a

ILER-EIR Fuel
Skin, 

inhalation
10 feet Rash

03/01/1999–

03/02/1999
3 h Less frequent Mask, ventilation

ILER-

POEMS

Food/water 

borne disease
Ingestion n/a

High risk: bacterial 

diarrhea, hepatitis A, 

typhoid fever

Moderate risk: diarrhea-

cholera, diarrhea-

protozoal, brucellosis and 

hepatitis E

04/01/2000–

01/01/2001
daily less frequent

Hepatitis A and 

typhoid vaccination

Food/water 

consumption only 

from approved 

sources

Additionally protective controls used at the time of exposure is also recorded which may moderate the effects of exposure on health outcomes. Transforming exposure information into a 
consistent format as demonstrated in this table enables faster parsing of exposure information and reduces context switching which is necessary when reviewing exposure data across different 
databases.
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exposure categories such as chemical, physical, injuries, 
biological, and psychological (12, 13).

	•	 Individual Longitudinal Exposure Record (ILER): The ILER is an 
individual, electronic record of exposures for each service 
member and Veteran. ILER contains information from other 
sources including deployment dates and locations, all-hazard 
occupation data, environmental hazards, objective monitoring, 
medical encounter information and medical concerns regarding 
possible exposures. ILER aims to deliver capabilities and 
improvements in health care, benefits, collaborations between 
VA, DoD, Congress, beneficiaries, and other stakeholders (such 
as Veterans Service Organizations), as well as research and 
integration of exposure data from VA’s environmental health 
registries (14).

Application of the LEAD to collate 
exposure variables across exposure 
databases

Integrating data into exposure variables to be  analyzed when 
determining exposure dose across various hazard categories is a 
primary function of LEAD. Exposures are categorized according to 
domains: chemical, biological, physical, ergonomic/injury, and 
psychological hazards, as defined by the Department of Labor’s 
Occupational Safety and Health Administration (15). A description of 
each of these variables is detailed, along with examples of exposure 
information available across EODIMS, VMOAT and ILER.

Intensity

Exposure intensity can be directly estimated by assessing the 
amount or concentration of hazardous substances that an individual 
comes into contact. In most cases, intensity exposure characterization 
occurs retrospectively with limited quantitative exposure data. In 
such cases, indirect measures of exposure or proxies for intensity 
such as routes of exposure, proximity to exposure source, and 
symptoms at the time of the exposure event are the only means of 
assessing intensity. Such indirect estimates supplement objective 
information that is often not available.

Route

The route of exposure refers to how a substance enters the body. 
The EODIMS database does not contain extensive documentation of 
exposures routes, but routes may be inferred from the incident type 
and specific exposures reported. For example, an incident report 
documenting post-blast aerosolized particulate matter may be inferred 
to have inhalation and skin contact as possible exposure routes. The 
VMOAT1.0 categorizes exposure routes into the following categories: 
inhalation, ingestion, skin/eye contact, injection. Psychological 
exposures routes are categorized as experiencing, seeing, and/or 
hearing. ILER contains location and group-level exposure records that 
may be probabilistically associated with chemical (e.g., burn pits) and 
biological (e.g., infections) exposures.

Proximity

The proximity to the exposure source is directly related to the 
intensity of exposure, as individuals who are closer to a hazard will 
generally experience higher exposure intensities and, subsequently, 
greater doses. Data from EODIMS can provide valuable information 
regarding proximity, including distances between safe areas and 
incident sites, as well as frequency of travel between these locations and 
others involved in the documented response. Although VMOAT1.0 
did not estimate proximity, VMOAT2.0 aims to assess proximity to 
exposure more effectively. Additionally, proximity estimates can 
be obtained from ILER sources such as VA registries; however, these 
data are limited in scope and depth of information collected.

Symptoms at the time of exposure

Presence of medical signs and symptoms following exposure may 
suggest higher exposure intensities. While the purpose of LEAD is not 
to assess health outcomes, assessing the presence of health changes 
immediately following exposure can be used as a proxy for estimating 
exposure intensity especially when objective exposure intensity data is 
unavailable. We note here that the absence of symptoms or the lack of 
documentation of symptoms should not be  interpreted as a lack of 
exposure, as devastating health consequences may occur years after 
exposures (e.g., mesothelioma in asbestos workers) (16–18). While 
EODIMS documents capture immediate health effects associated with 
each exposure incident, such capture is neither consistent nor uniformly 
documented. ILER does contain limited records that ask subjective 
deployment health questions through DoD’s Post Deployment Health 
Reassessment (PDHRA) such as: “Were you wounded, injured, assaulted 
or otherwise hurt during your deployment?”

Time

The timing of exposure is important and can be directly estimated 
with a variety of approaches, ranging from sensors with high sampling 
rates to subjective reports. Data at the individual level though is sparse 
and often requires interpreting subjective narratives of exposures that 
are incomplete and vary from person to person (for example, some 
individuals recall in detail the timing of an exposure whereas others 
will report a general time during a deployment). Duration and 
frequency of an exposure can be used to estimate exposure timing.

Duration and frequency

The duration of exposure refers to how long someone is exposed 
to a substance or hazard. The longer the duration, such as noise (19), 
or long-term bio accumulation of Polyfluoroalkyl substances (20, 
21), generally the greater the total dose and risk of adverse 
outcomes. Similarly, frequent repeated exposures even at smaller 
intensities, such as repeated blast exposures, can lead to chronic 
health effects (22). The assessment of duration and frequency in 
databases can be  inconsistent due to the lack of standardized 
measures. Databases like EODIMS provide detailed time and 
frequency estimates such as start and completion times, while 
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others like VMOAT measure ‘duration’ in terms of hours per day 
and ‘frequency’ in events within a specific time frame. ILER does 
not have distinct duration and frequency estimates for most cases, 
but some exposure Registry assessments consider the number of 
hours or days an individual may have been exposed in a typical day 
or month (e.g., airborne hazards including burn pits, fumes, dust, 
or other similar exposures).

Period or the time of exposure

The exposure period is associated with occupational history or 
military deployments. The start and end dates for occupational 
periods are assessed either by asking for the start and end times for 
exposures in questionnaires, as done in VMOAT, or through 
administrative records contained in the ILER or EODIMS. Time of 
exposure and date of birth can be combined to estimate (i) age at 
exposure, (ii) time since exposure, and (iii) cohort effects across 
military eras which are key exposure factors that may affect 
health outcomes.

Moderators

Hazard controls play an important role in moderating health risks 
associated with occupational exposure (23). While individual factors 
that affect exposure tolerance (24), are important moderating factors, 
they are not assessed broadly. Given the growing body of literature on 
the exposome and potential health outcomes (25, 26) it is important 
that exposure assessments incorporate these contributing factors as 
exposure science develops.

Environmental and personal protective 
controls

The National Institute of Occupational Safety and Health 
(NIOSH) hierarchy of controls (27) has been developed to control 
worker exposures, reduce or remove hazards, and reduce risk of illness 
or injury. When elimination or substitution (i.e., most effective on the 
hierarchy) of the hazard is not possible, engineering controls such as 
ventilation systems, administrative controls of rotating work schedules 
and Personal Protective Equipment (PPE) may reduce cumulative 
exposures (28). The EODIMS records hazard data, personnel hours, 
equipment, disposition, and protective controls for many operational 
and training events. The VMOAT also asks hierarchy of control and 
PPE questions on its subjective exposure questionnaire. ILER 
documents Hazard Controls in Defense Occupational and 
Environmental Health Readiness System (DOEHRS) Industrial 
Hygiene (IH) reports, but these reports are usually done on a cohort 
level as opposed to the individual level.

Sample LEAD framework exposure 
aggregation process

Drawing from the components of the LEAD framework, Table 1 
illustrates the process of collating these exposure components across 

multiple sources into a consistent format. Additionally, 
Supplementary Table S1 illustrates how blast information can 
be  compared to identify high- and low-level exposure using a 
simulated data based on typical EOD exposure concerns. Moreover, a 
translation layer can be used to reduce incompatible scoring between 
sources and improve consistency and interpretability when estimating 
exposure dose rates (Supplementary Tables S2, S3).

Discussion

The Existing exposure assessment tools have limited scope, are 
inconsistently used, and often do not capture metrics that result in 
meaningful data relevant to clinical and research care. The LEAD 
framework outlines a consistent method of exposure information 
aggregation with simplified, exposure common data elements. It aims 
to improve exposure profiles by offering a standardized template for 
integrating exposure information across various sources to formulate 
exposure risk metrics that are easier for clinicians and researchers 
alike to understand, and integrate this information into Veterans’ 
care. Thus, the LEAD framework promotes consistency in exposure 
risk communication and interpretation of exposure-related health 
risks across clinical settings. These efforts aim to advance military 
exposure science and support exposure-informed clinical care for 
all Veterans.

Specifically, this framework provides the foundation to summarize 
exposures that are relevant for clinical care. Ongoing efforts are aimed 
at condensing detailed exposure records (over 100 exposure incidents) 
obtained through the LEAD framework into a single-page summary 
for clinicians, since in many cases, clinicians do not have time to 
review a Veteran’s entire military/exposure history to generate 
meaningful insights since treatment of acute outcomes like pain take 
priority. Thus, a systematic method to aggregate a Veteran’s prior 
exposure data and generate clinically relevant summaries will help 
keep the focus on the patient’s immediate clinical need while also 
considering their past exposures.

The three databases presented in this report are integral exposure 
resources for the reasons detailed in Table  1. However, there are 
limitations to each of these resources; for this reason, it is important 
to integrate and combine information from all three of these sources.

EODIMS records operational incidents with potential exposures, 
some immediate outcomes, occupational duties, and deployment data. 
However, due to the classified nature of the data, extensive redaction 
is necessary before exporting data for healthcare use in VA facilities. 
The LEAD framework streamlines extraction of non-operational 
health information for exposure assessment and care at VA clinics. 
While the examples provided here have a focus on EOD related 
exposures, the methods detailed in the report can generalize across 
exposures from other military occupations and civilian settings.

VMOAT is a detailed questionnaire that takes around 45 min to 
complete. It is not meant to be used as a screener but rather designed 
for Veterans with more complex exposure histories. While the 
VMOAT provides valuable data on exposures, it is a subjective 
questionnaire subject to the limitations of recall biases. Integrating 
VMOAT information with other VA and DoD records into a cohesive 
format also requires extensive exposure training. The LEAD offers a 
potential solution for incorporating VMOAT findings with existing 
exposure databases.
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ILER integrates individual and population-level exposure data 
from VA and DoD databases. However, its reports are extensive 
which makes it difficult for non-occupational medicine 
professionals to understand. Information prioritization is not a key 
focus area, making clinically relevant information extraction time 
consuming. Additionally, most of the information in ILER is 
population-level data which may not reflect individual service 
members’ exposures. Therefore, other sources like EODIMS and 
VMOAT are needed to identify potential individual level exposures. 
LEAD enables a holistic framework for how to merge exposure data 
from multiple sources.

While an expert-informed weighted scoring method can 
estimate dose, empirical weight assignment using health outcomes 
is needed for evidence-based risk estimation. It is important to note 
while interpreting exposures, that exposure-based metrics typically 
reflects exposure-dose, whereas outcome-based risk estimates 
reflect exposure toxicity. Additionally, self-report service dates may 
not reflect official service records (DD214 form). We  hope to 
mitigate this issue by adding both records when available and 
prioritizing self-reports where available since Veterans many face a 
variety of barriers to go the appropriate administrative processes to 
update records. Another inherent limitation is that exposure data 
can vary across military branches given the unique mandates 
specific to each branch. To address this aspect, aggregate statistics 
and sparsity information based on post-hoc analysis specific to each 
branch of service or units could be reported to help provide context 
to the exposure profile. Future iterations of LEAD will aim to 
integrate VA and DoD health records to provide data-driven risk 
scores to include exposure toxicity in addition to exposure dosage.

Conclusion

To address Veteran exposure concerns, the VA should collaborate 
with the DoD and other partners to improve models of how military 
occupational exposures impact health. This can be achieved by using 
subject matter expertise and reviewing literature in occupational and 
environmental medicine. The LEAD framework defines exposure 
common data elements for collecting and extracting exposure 
information from various databases to create consistent, succinct, 
insightful, comprehensive, and clinically relevant exposure profiles. 
Incorporating these elements in future studies ensures consistency, 
comparability, and robustness in data collection and analysis. 
Additionally, the LEAD framework aligns with the PACT ACT directives 
to understand how hazardous exposures affect Veteran health and helps 
identify new presumptive conditions for care and benefits. The long-term 
goal of the LEAD framework is to inform clinically relevant exposure 
summaries utilizing multiple data sources to optimize clinical and 
research processes associated with exposure data acquisition and use.
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Association of heavy metals 
exposure with lower blood 
pressure in the population aged 
8–17  years: a cross-sectional 
study based on NHANES
Yongzhou Liang †, Minjie Zhang †, Wenhao Jin , Liqing Zhao * and 
Yurong Wu *

Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong 
University, Shanghai, China

Background: The existing evidence regarding the joint effect of heavy metals 
on blood pressure (BP) in children and adolescents is insufficient. Furthermore, 
the impact of factors such as body weight, fish consumption, and age on their 
association remains unclear.

Methods: The study utilized original data from the National Health and Nutrition 
Examination Survey, encompassing 2,224 children and adolescents with 
complete information on 12 urinary metals (barium, cadmium, cobalt, cesium, 
molybdenum, lead, antimony, thallium, tungsten, uranium, mercury and arsenic), 
BP, and core covariates. Various statistical methods, including weighted multiple 
logistic regression, linear regression, and Weighted Quantile Sum regression 
(WQS), were employed to evaluate the impact of mixed metal exposure on BP. 
Sensitivity analysis was conducted to confirm the primary analytical findings.

Results: The findings revealed that children and adolescents with low-level 
exposure to lead (0.40  μg/L, 95%CI: 0.37, 0.42), mercury (0.38  μg/L, 95%CI: 0.35, 
0.42) and molybdenum (73.66  μg/L, 95%CI: 70.65, 76.66) exhibited reduced 
systolic blood pressure (SBP) and diastolic blood pressure (DBP). Conversely, 
barium (2.39  μg/L, 95%CI: 2.25, 2.54) showed a positive association with increased 
SBP. A 25th percentile increase in the WQS index is significantly associated with 
a decrease in SBP of 0.67  mmHg (95%CI, −1.24, −0.10) and a decrease in DBP of 
0.59  mmHg (95% CI, −1.06, −0.12), which remains statistically significant even 
after adjusting for weight. Furthermore, among individuals who consume fish, 
heavy metals have a more significant influence on SBP. A 25 percentile increase 
in the WQS index is significantly associated with a decrease of 3.30  mmHg 
(95% CI, −4.73, −1.87) in SBP, primarily attributed to mercury (27.61%), cadmium 
(27.49%), cesium (17.98%), thallium (8.49%). The study also identified a declining 
trend in SBP among children aged 10–17, whereas children aged 11–18 exhibited 
lower levels of systolic and diastolic blood pressure, along with a reduced risk 
of hypertension.

Conclusion: Some heavy metals demonstrate an inverse association with the BP 
of children and adolescents, particularly notable in groups with fish consumption 
and older children and adolescents. Future studies are warranted to validate 
these findings and delve deeper into the interplay of heavy metals.
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1 Introduction

Hypertension is a well-known risk factor for cardiovascular 
diseases, with cardiovascular diseases remaining a leading cause of 
mortality in the United States (1). Over the last two decades, there has 
been a concerning upward trend in the prevalence of hypertension 
among children, with a relative growth rate ranging from 75 to 79% 
between 2000 and 2015 (2). Prolonged elevation of blood pressure 
(BP) in childhood may result in adult hypertension and increase the 
risk of cardiovascular diseases in adulthood (3, 4). Successfully 
reversing childhood hypertension before reaching adulthood could 
substantially decrease the susceptibility to cardiovascular diseases in 
the future (5). Hence, the prevention and management of childhood 
hypertension hold paramount significance in public health strategies.

The onset and progression of hypertension are believed to stem 
from intricate interactions among environmental factors, 
pathophysiology, and genetic susceptibility (6). In recent years, there 
is now a growing interest in the association between metals exposure 
and hypertension risk (7, 8). Studies have shown that exposure to 
arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and barium 
(Ba) can increase the risk of hypertension, whereas molybdenum 
(Mo) is associated with reduced BP (9–12). However, epidemiological 
data on cobalt (Co), cesium (Cs), thallium (Tl), tungsten (W), and 
uranium (U) remains sparse, particularly in children and adolescents. 
Concurrently, research indicates a correlation between Ba exposure 
and elevated BP among children and adolescents (12). Although 
several studies have undeniably examined the impact of heavy metal 
exposure on BP in children, indicating that elevated concentrations of 
urinary antimony (Sb) might escalate BP, while Ba might exert the 
opposite effect (13, 14). The findings from epidemiological research 
regarding the association between environmental heavy metal 
exposure and the risk of childhood hypertension are inconsistent. 
Additionally, due to the enactment of diverse public health strategies, 
the levels of toxic metal exposure in the United States have decreased 
(15, 16). Given the lack of a clear threshold for the negative 
consequences of heavy metal exposure on health (17), it remains 
uncertain whether low-level exposure to multiple heavy metals is 
detrimental to BP among children and adolescents. Thus, further 
exploration of the association between heavy metal exposure and BP 
holds significant clinical and public health implications.

In research, it is necessary to consider the impact of dietary factors 
on the intake of heavy metals, particularly as certain fish species may 
accumulate high levels of heavy metals (18). Hence, the consumption 
of fish could potentially influence the association between heavy 
metals and BP in children (19). Moreover, as children age and undergo 
changes in weight, alterations occur in their physiological status and 
metabolic processes, resulting in variations in heavy metal exposure 
levels across different age and weight categories (14, 20).

Therefore, this study investigated the potential association of 12 
urinary metal concentrations with the levels of BP as well as the risk 
of hypertension in 8-17-year-old individuals participating in the 
National Health and Nutritional Examination Surveys (NHANES). 

Various statistical models were used to study the effects of multiple 
metals on BP, conducting subgroup analyses to further explore the 
correlations between different groups.

2 Methods

2.1 Study population

This cross-sectional study focuses on children and adolescents 
aged 8–17 years. The data was obtained from U.S. NHANES cycles 
spanning from 2007 to 2016 (five consecutive NHANES cycles). The 
NHANES conducts a cross-sectional survey using a complex 
multistage probability design to collect data from the 
noninstitutionalized U.S. population. This involves conducting 
household interviews and physical examinations. Prior to 
participation, all individuals provided written informed consent, and 
the study protocol received approval from the NCHS Research Ethics 
Review Board. Out of the total of 9,386 participants, 7,162 had 
incomplete data, resulting in a final unweighted sample size of 2,224 
individuals. The process of data acquisition is depicted in 
Supplementary Figure S1.

2.2 Blood pressure (BP)

In our study, participants who underwent BP measurements at the 
Mobile Examination Centers (MECs) were instructed to sit in a seated 
position with their feet flat on the floor and rest for a duration of 
5 min. Trained researchers then performed three consecutive BP 
measurements using a mercury manometer and an appropriately sized 
cuff, which were subsequently averaged to obtain the final result (21).

The diagnostic criteria for hypertension were based on the 2017 
clinical practice guidelines and previous studies (17, 22). The specific 
criteria for diagnosis include the following: (1) For children aged 
8–12 years, hypertension is diagnosed when their systolic and/or 
diastolic blood pressure exceeds the 95th percentile compared to 
children of the same age, gender, and height. Alternatively, a diagnosis 
of hypertension can also be made if their SBP exceeds 130 mmHg and/
or their DBP exceeds 80 mmHg. Conversely, for adolescents aged 
13–17 years, hypertension is diagnosed if their SBP exceeds 130 mmHg 
and/or their DBP exceeds 80 mmHg (22); or (2) Irrespective of the BP 
level, patients aged ≥16 or the parents/guardians of patients aged <16 
report the patient’s diagnosis of hypertension or the use of 
antihypertensive drugs (17, 23).

2.3 Urinary heavy metal collection and 
exposure assessment

In the NHANES, most metals were detected in urine samples 
rather than blood samples. The non-invasive, sensitive, and prompt 
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detection capabilities of urine have increasingly positioned it as an 
alternative method for metal detection over blood samples. Therefore, 
all metal detection data in this study was based on urine samples. 
Upon arriving at the MECs, study participants were instructed by the 
coordinator to provide urine samples. Subsequently, urine samples 
undergo processing and analysis using inductively coupled plasma-
mass spectrometry (ICP-MS) to determine the concentrations of 12 
elements, including Ba, Cd, Co, Cs, Mo, Pb, Sb, TI, W, U, Hg, and As.1 
Comprehensive instructions for laboratory methods utilized to 
measure the urinary metal concentrations can be  found on the 
NHANES website.2 In our statistical analysis, the concentrations of 
urinary metals were used as a variable after being transformed with 
natural logarithm (Ln). Approximately 70% of the cleared As from the 
blood is excreted through urine. Thus, we opted to assess As exposure 
by measuring the total concentration of As in urine, rather than 
focusing on speciated As. Moreover, these data pertain to the overall 
healthy population, and restricting the analysis to speciated As may 
lead to an underestimation of long-term exposure levels. Nonetheless, 
this study conducted further analysis on speciated As, namely 
arsenobetaine (AsB), arsenic acid (As(V)), arsenocholine (AsC), 
arsenous acid (As(III)), monomethylarsinic acid (MMA), and 
dimethylarsinic acid (DMA). Exclusion of trimethylarsine oxide from 
the analysis was due to the unavailability of subject data for NHANES 
2013–16 cycle (24).

2.4 Covariates

Based on previous literature, several covariates were extracted as 
potential confounding factors in this study (17, 25, 26). The selected 
covariates included age, sex, race/ethnicity (Mexican American, other 
Hispanic, non-Hispanic White, non-Hispanic Black, and other race), 
family poverty income ratio (PIR, categorical variables: <1.3, 1.3–3.5, 
>3.5 denote low, middle and high income, respectively), serum 
creatinine (an indicator of renal function), urinary creatinine 
(Detection method: Enzymatic Roche Cobas 6,000 Analyzer) and 
serum cotinine levels (25) (considered to reflect exposure to 
environmental cigarette smoke). Physical activity was fell into three 
groups (never, moderate or vigorous, and no record) according to self-
reported activity intensity. Consistent with a previous study, the 
population was divided into three age groups: 8–10 years old, 
11–13 years old, and 14–18 years old, representing primary school, 
junior high school, and senior high school, respectively (27). 
Additionally, the consumption of fish in the past 30 days (Yes or No) 
was included as a covariate in the model to account for the impact of 
dietary factors on urinary heavy metal concentrations. Body mass 
index (BMI) was calculated using the formula weight (in kilograms) 
divided by the square of height (in meters). Underweight was an 
age-and gender-specific BMI below the 5th percentile on the 2000 
Centers for Disease Control and Prevention (CDC) age-and gender-
specific growth charts, normal weight was a BMI below the 85th 
percentile but at or above the 5th percentile, overweight was a BMI 

1  https://wwwn.cdc.gov/Nchs/Nhanes/2007-2008/UHM_E.htm

2  http://www.cdc.gov/nchs/nhanes/index.htm

falling between the 85th and 95th percentiles, and obesity was a BMI 
at or above the 95th percentile (28).

Additionally, all participants in the NHANES are eligible for two 
separate 24-h dietary recall interviews. Nonetheless, fewer participants 
had completed two 24-h dietary recalls. Consequently, the research 
evaluated the daily intake of total energy, calcium, sodium, and 
potassium using data from the first recall (23), which were then 
incorporated as covariates in our analysis.

2.5 Statistical analysis

We utilized the NHANES weighting guidelines to weigh the 
analysis results. Our study incorporated sample weights, sampling 
units, and strata provided by NHANES. We combined two groups of 
5 years to conform two periods for the calculation of a new multiyear 
sample, ensuring that the results represent the nationwide 
non-institutionalized civilian population aged 8–17 years. In 
descriptive analysis, means ± standard deviation (SD) and counts 
(percentage) are applied to, respectively, describe quantitative and 
qualitative data. Spearman’s rank correlation analysis was performed 
to examine the correlations of urinary toxicant concentrations. 
Subsequently, due to the presence of values below the detection limit 
for certain individuals, urinary toxicant concentrations were 
categorized into four quartiles (Q1, Q2, Q3, Q4) as categorical 
variables, with the quartile containing the lowest metal concentrations 
serving as the reference group. Survey-weighted logistic regression 
and survey-weighted multiple linear regression models were employed 
to calculate odds ratios (ORs), β, and 95% confidence intervals (CIs). 
The false-discovery rate (FDR) correction was applied to adjusted for 
errors resulting from multiple testing in regression models.

The WQS approach has been widely utilized to investigate the 
cumulative effect of environmental mixtures on health outcomes and 
to assess the contribution of individual metals (29, 30). The urinary 
metals composing a weighted index were divided into quartiles and 
then applied in the estimation of empirically deduced weights and a 
final WQS index by bootstrap sampling (31, 32). This WQS index 
denotes the cumulative effect of all urinary toxicants on BP. The 
weights sum to 1 and range from 0 to 1, and they can be applied to 
identify important urinary metals (the average weight surpasses the 
threshold of 1 divided by the total number of independent variables) 
in the mixture (33). The WQS index was constructed from the 
quartiles of urinary metals, with 40% of participants in this study 
divided into the test set and 60% into the validation set. Initially, 
we  examined whether the relationship between heavy metal 
concentration and BP is influenced by body weight by adjusting the 
BMI category in the WQS model. Subsequently, we  divided the 
samples into two groups depending on fish consumption in the past 
30 days to investigate the impact of fish consumption on the 
association between heavy metals and BP. Lastly, to investigate the 
impact of heavy metals on BP in children and adolescents across 
different age groups, we categorized the age of pediatric patients into 
seven time intervals based on previous research (34). The first group 
comprised individuals aged 8–14, the second group included those 
aged 9–15, and so on, in order to analyze the trend of the effect of 
heavy metal concentration on BP with changing age.

In our sensitivity analysis, we initially considered the potential 
non-linear and non-additive relationships among urine metals. 
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Bayesian kernel machine regression (BKMR) was employed to assess 
the combined effects of all metals and the dose–response relationship 
between individual metals and BP when fixing other metal 
concentrations. Secondly, participants were excluded if their urine 
samples were categorized as either diluted (urine creatinine <30 mg/
dL, n = 139) or concentrated (urine creatinine concentration > 300 mg/
dL, n = 63), according to previous study (26, 35). Subsequently, WQS 
analysis was conducted.

All statistical analyses were performed with R statistical software 
(V.4.4.0),3 and a two-sided p value <0.05 was considered statistically 
significant. The R packages gWQS and nhanesR were applied to 
construct the WQS model, weighted logistic regression and multiple 
linear regression, respectively.

3 Results

3.1 Baseline characteristics of the 
participants

Supplementary Figure S1 illustrates the process of acquiring the 
study population. Table 1 and Supplementary Table S1 present the 
weighted general characteristics and urinary metal concentrations of 
2,224 children and adolescents aged 8–17 years from NHANES 2007–
2008 to 2015–2016. The weighted average age of the participants was 
12.81 ± 0.08 years, with male and female proportions of 50.63 and 
49.37%, respectively. The overall prevalence of hypertension was 
10.48% (n = 233). Most of the participants were Mexican American and 
had attained higher education levels. Among hypertension patients, 
there was a higher proportion of individuals who were overweight or 
obese, had increased daily energy and sodium intake, and a lower 
proportion of those with unavailable serum creatinine values. 
Additionally, both systolic and diastolic blood pressures were elevated, 
while no significant differences were observed in other general 
characteristics. In comparison to children and adolescents without 
hypertension, hypertensive patients exhibited lower concentrations of 
Co (0.56 μg/L, 95%CI, 0.49, 0.63), Cs (4.37 μg/L, 95%CI, 3.97, 4.78), TI 
(0.18 μg/L, 95%CI, 0.16, 0.20), and As (8.74 μg/L, 95%CI,6.62, 10.86) 
in their urine samples, whereas there were no significant differences in 
the concentrations of Ba (2.38 μg/L, 95%CI, 1.82, 2.94), Cd (0.08 μg/L, 
95%CI, 0.07, 0.10), Mo (75.31 μg/L, 95%CI, 65.28, 85.33), Pb (0.38 μg/L, 
95%CI, 0.32, 0.43), Sb (0.08 μg/L, 95%CI, 0.07, 0.09), W (0.19 μg/L, 
95%CI, 0.15, 0.22), U (0.02 μg/L, 95%CI, 0.00, 0.03), and Hg (0.38 μg/L, 
95%CI, 0.29, 0.46). The proportions of urinary Cd and Hg 
concentrations exceeding the limits of detection (LOD) were the 
lowest, at only 65.47 and 76.35%, respectively, whereas the proportions 
of other urinary metals exceeding the LOD were all above 80% 
(Supplementary Table S1).

3.2 Correlation of the urinary metals

Supplementary Figure S2 displays weak to moderate correlations 
(−0.02 ≤ r ≤ 0.67) among all toxic metals, as calculated using 

3  https://www.R-project.org

Spearman’s rank correlation analysis. Cs and TI exhibit the strongest 
correlation (r = 0.67, p < 0.05), followed by Mo and W, while the 
correlation between Cd and W is the weakest. Consequently, it may 
be necessary to construct a multi-pollution model to detect the impact 
of toxic metals on BP.

3.3 Association of single metal exposure 
with blood pressure

Survey-weighted logistic regression and multiple linear regression 
models were utilized to investigate the association between 
Ln-transformed urinary metal concentrations and BP. These models 
were adjusted for selected potential confounding factors. The results 
presented in Supplementary Table S2 indicate a null significant 
correlation between urinary metal concentrations and hypertension 
(all p for trend >0.05). Supplementary Table S3 revealed a negative 
association between an increase in urinary concentrations of Pb (p for 
trend =0.036), Hg (p for trend =0.036) and SBP. Moreover, an increase 
in Ln-transformed Mo concentration was associated with a decreasing 
trend in DBP (p for trend <0.001). However, for the remaining urinary 
metal concentrations, no significant trend effects on BP were observed 
in the single-metal models.

3.4 Association of urinary metal 
co-exposure with blood pressure

The WQS regression model was employed to examine the impact 
of mixed metals on BP. After adjusting for all selected confounding 
factors, null association was observed between low concentrations of 
urinary metal mixtures and the risk of hypertension (ORindex: 0.08, 
95%CI: −0.31, 0.47, p = 0.681) (Table 2; Figure 1A). Conversely, these 
mixtures were correlated with lower SBP (βindex: −0.67, 95%CI: −1.24, 
−0.10, p  = 0.002) and DBP (βindex: −0.59, 95%CI: −1.06, −0.12, 
p = 0.036) (Table 2). Metal mixtures primarily affected SBP through Pb 
(23.62%), As (19.22%), Hg (18.62%), and Co (18.52%) (Figure 1B), 
while the effects on DBP were primarily attributed to Cs (24.48%), Mo 
(15.22%), U (14.74%), and Co (11.24%) (Table  2; Figure  1C). 
Furthermore, excluding the degree of obesity from the model yielded 
similar results to the obesity-corrected model (Figures 1D–F). Subgroup 
analyses were conducted to determine how fish consumption 
influenced the impact of heavy metals on BP. The analyses were based 
on participants’ fish consumption in the past 30 days. The results 
indicated that heavy metal exposure did not significantly affect BP 
values in the subgroup without fish consumption (Figures  1G–I). 
However, in the subgroup with fish consumption, heavy metals were 
associated with lower SBP (βindex: −3.30, 95%CI: −4.73, −1.87, p ≤ 0.001) 
(Table 2; Figures 1J–L). The main contributors were Hg (27.61%), Cd 
(27.49%), Cs (17.98%), and TI (8.49%) (Table 2; Figure 1K).

Following the consideration of potential confounding factors, the 
impact of urinary heavy metals on the BP of children and adolescents 
across various age groups was investigated using the WQS regression 
model. The findings are outlined as follows: within the 10–17 age 
group, a 25th percentile increase in the WQS index corresponded to 
a 1.48 mmHg (95% CI, −2.66, −0.30) reduction in SBP. Meanwhile, in 
the 11–18 age group, each 25th percentile rise in the WQS index led 
to reductions of 1.42 mmHg (95% CI, −2.44, −0.40) in SBP and 
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2.62 mmHg (95% CI, −4.00, −1.22) in DBP, contributing to a 0.42 
times (95% CI, −0.81, −0.03) decrease in hypertension risk. Notably, 
no significant association between heavy metal exposure and BP was 
observed among the 8–15 and 9–16 age groups (Table 3).

To examine the association between speciated As and BP, 
we adopted the WQS to model these categories, comprising AsB, 
As(V), AsC, As(III), MMA, and DMA (Supplementary Table S4; 
Figures 2A–C). A 25th percentile increase in the WQS index was 
associated with a decrease in SBP by 0.88 mmHg (95% CI, −1.62, 
−0.13), predominantly influenced by As (III) (40.00%) and AsC 
(34.04%) (Supplementary Table S5).

3.5 Sensitivity analysis

The results of the BKMR model reveal that when utilizing the 
median concentration (50th percentile) of all metals as the reference 
exposure level, a concentration of the mixture at or above the 55th 
percentile is associated with a downward trend in both systolic and 
diastolic blood pressure (Figures 2D–F). Furthermore, regardless of the 
percentile level (25th, 50th, or 75th) of other metals, Ba exhibits a 
significant association with elevated SBP (Supplementary Figure S3). 
The analysis yielded consistent results with the preliminary analysis, not 
just in the subgroups analyzed based on fish consumption, but also 
among participants with a urine creatinine concentration ranging 
between 30 mg/dL and 300 mg/dL (Supplementary Table S6; 
Supplementary Figures S4, S5).

4 Discussion

Several studies provide undeniable epidemiological evidence 
supporting the link between heavy metal exposure and BP in 
children and adolescents (12–14). This study is innovative in its 
investigation of the potential influence of weight and fish 
consumption on the relationship between heavy metal exposure and 
BP, and in exploring whether the effects of heavy metal exposure on 
BP differ across different age groups. The study employed both single 
metal and mixed metal chemical analysis models to assess the 
impact of urinary heavy metal concentrations on BP in children and 
adolescents. The findings are as follows: (1) Single-metal analysis 
indicated that Pb and Hg were associated with lower SBP. Likewise, 
Mo demonstrated a reduction in DBP. Moreover, the findings from 
the analysis of mixed metals further substantiated the impact of Pb, 
Hg, and Mo on BP reduction. Nevertheless, the BKMR model 
revealed that Ba was associated with an elevation in SBP; (2) Mixed 
metal exposure led to reduced systolic and diastolic pressures 
regardless of participants’ body weight; (3) Consumers of fish exhibit 
lower SBP, mainly attributed to exposure to Hg (27.61%), Cd 
(27.49%), Cs (17.98%), and TI (8.49%); (4)The effects of heavy metal 
exposure on BP varied across different age groups. A downward 
trend in SBP was noted in children aged 10–17, while children aged 
11–18 exhibited lower SBP and DBP, along with a reduced risk 
of hypertension.

It is well known that lifestyle-risk factors can affect BP, but an 
increasing number of studies have implicated heavy metals as a latent 
risk factor for hypertension (7, 36). Heavy metals are naturally existing 
substances widely distributed in the environment and are widely used 

in industry, households, agriculture, medicine and other fields (37). 
Children and adolescents are inevitably exposed to these metals 
simultaneously in their daily activities, of which the most prominent are 
Pb, Cd, and Hg (22). Our study revealed an association between Pb 
(0.40 μg/L, 95%CI, 0.37, 0.42), Hg (0.38 μg/L, 95%CI, 0.29, 0.46), Mo 
(75.31 μg/L, 95%CI, 65.28, 85.33) and lower BP in both the single metal 
chemical model and the mixed metal chemical model, providing further 
evidence of children and adolescents’ susceptibility to Pb and Hg 
exposure in their daily activities. Additionally, the BKMR model exhibits 
an association between Ba (2.39 μg/L, 95%CI, 2.25, 2.54) and higher SBP.

Currently, there is inconsistent research evidence regarding the 
relationship between Pb，Hg and BP. A study in in Brazilian adults 
revealed that blood Pb levels (1.97 μg/dL, 95% CI, 1.90–2.04 μg/dL) 
were correlated with elevated DBP and an augmented hypertension 
risk (38). Conversely, a study focusing on children and adolescents 
showed no significant relationship between urinary Pb levels 
(0.31 μg/L, IQR, 0.18–0.57) and systolic or diastolic blood pressure 
(17). Another study with children and adolescents found no association 
between blood Hg (From 0.52 to 0.74 μg/L) and SBP. Nonetheless, a 
correlation was observed between total Hg and methylmercury, 
resulting in a DBP reduction (17). Conversely, data from adult 
epidemiological studies suggests that urinary Hg (0.433 μg/g, 95% CI, 
0.400–0.469) was related to hypertension (9, 10). Our study diverges 
from these findings. Initially, we  selected urine samples as the 
biomarker for assessment. Additionally, our study focuses on children 
and adolescents as the target population, who may exhibit lower 
exposure levels. Furthermore, this trend may stem from the limited 
focus in most studies solely on single metal analyses. In fact, the 
accumulation of Pb and Hg in the human body promotes arterial 
atherosclerosis through various mechanisms such as lipid peroxidation, 
vascular inflammation, endothelial dysfunction, and inhibition of 
nitric oxide (39, 40). Pb appears to activate the adrenergic system, 
potentially altering arterial tension, and it may also activate endothelin, 
resulting in vasoconstriction (40). Consequently, these 
pathophysiological consequences result in elevated SBP (39).

A study conducted on children and adolescents has demonstrated 
that a two-fold increase in urinary Ba concentration was associated 
with a rise of 0.41 mmHg in SBP and 1.04 mmHg in pulse pressure 
(12). Ba, by means of oxidative stress and inflammation, induces a 
reduction in the activity of nitric oxide synthase and the bioavailability 
of nitric oxide (NO), leading to endothelial dysfunction, heightened 
systemic vascular resistance, and SBP (41, 42). As an essential trace 
element, Mo is a cofactor of a variety of metabolic enzymes, including 
xanthine oxidase, sulfite oxidase and nitrate reductase (43). Studies 
have demonstrated that molybdate and metabolic enzymes containing 
Mo can improve vascular smooth muscle contraction, leading to a 
decrease in BP by reducing oxidative stress, enhancing nitric oxide 
(NO) synthesis, and promoting the release of vascular prostanoid (a 
vasodilator) (44–46). These findings align with our research results, 
supporting the conclusion that Ba is capable of inducing an elevation 
in BP, whereas low concentrations of Mo exhibit a hypotensive effect.

Recent studies have shown a positive association between urinary 
heavy metal exposure and obesity in children and adolescents (34). A 
study investigating the impact of heavy metal exposure on 
hypertension revealed that participants with a BMI ≥ 30 exhibited a 
positive association between heavy metal exposure and hypertension, 
whereas no association was found among those with a BMI < 30 (20). 
Furthermore, within the normal weight range for children and 
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TABLE 1  Distribution of general characteristics of in children and adolescents in NHANES 2007–2016.

Characteristic Overall No-hypertension Hypertension p-value

(n  =  2,224) (n  =  1991) (n =  233)

Mean ± SDa

Age, years 12.81 ± 0.08 12.85 ± 0.09 12.41 ± 0.24 0.100

Cotinine, ng/ml 5.89 ± 1.07 5.58 ± 1.08 8.78 ± 3.96 0.430

SBP, mmHg 105.69 ± 0.33 104.27 ± 0.31 118.80 ± 0.81 < 0.001

DBP, mmHg 57.69 ± 0.43 56.96 ± 0.40 64.45 ± 1.31 < 0.001

Urinary creatinine, μg/L 121.60 ± 2.06 122.48 ± 2.13 113.52 ± 6.68 0.200

Total energy, kcal/day 2092.83 ± 25.54 1962.84 ± 47.84 2106.90 ± 28.23 0.020

Calcium intake, mg 1063.62 ± 20.13 1010.67 ± 43.19 1069.35 ± 22.61 0.260

Sodium intake, mg 3361.77 ± 52.46 3145.20 ± 98.43 3385.21 ± 55.96 0.030

Potassium intake, mg 2234.94 ± 27.50 2169.04 ± 65.84 2242.07 ± 29.09 0.300

N (%)b

Sex 0.970

Female 1,098(49.37) 989(49.91) 109(49.70)

Male 1,126(50.63) 1,002(50.09) 124(50.30)

Race/ethnicity 0.060

Mexican American 638(55.78) 579(56.40) 59(50.07)

Other Hispanic 536(14.82) 469(14.38) 67(18.81)

Non-Hispanic White 521(13.63) 455(13.12) 66(18.28)

Non-Hispanic Black 281(8.94) 259(9.17) 22(6.86)

Other race 248(6.83) 229(6.92) 19(5.99)

Obesity 0.002

Underweight 60(2.7) 57(2.52) 3(0.74)

Normal weight 1,271(57.15) 1,161(57.73) 110(47.04)

Overweight 380(17.09) 338(18.22) 42(16.52)

Obesity 513(23.07) 435(21.53) 78(35.70)

PIR 0.920

Low income 950(42.72) 841(30.02) 109(35.30)

Middle income 807(36.29) 715(37.91) 92(40.72)

High income 467(21) 435(32.08) 32(23.98)

(Continued)
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TABLE 1  (Continued)

Characteristic Overall No-hypertension Hypertension p-value

(n  =  2,224) (n  =  1991) (n =  233)

Education 0.080

Primary school 686(30.85) 602(24.82) 84(33.34)

Junior high school 644(28.96) 581(27.75) 63(27.34)

Senior high school 894(40.2) 808(47.42) 86(39.32)

Fish consumption 0.760

No 1,271(57.15) 1,129(59.76) 142(61.06)

Yes 953(42.85) 862(40.24) 91(38.94)

Activity 0.580

Never 109(4.74) 97(4.70) 12(5.14)

Moderate or vigorous 217(11.97) 197(12.23) 20(9.53)

No record 1898(83.30) 1,697(83.08) 201(85.33)

Serum creatinine 0.020

No 952(42.81) 838(34.38) 114(44.76)

Yes 1,272(57.19) 1,153(65.62) 119(55.24)

Complex sampling weights were used for the results.
SBP, systolic blood pressure; DBP, diastolic blood pressure; PIR, family poverty income ratio; SD, standard deviation.
aWeighted mean ± weighted SD.
bSample size (weighted percentage).
Bold values indicate statistical significance p < 0.05.
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adolescents, the study found that a BMI ranging from the 25th to the 
84th percentile was positively associated with higher BP and an 
increased risk of hypertension (47). These findings suggest that body 
weight acts as a significant confounding factor in the relationship 
between heavy metal exposure and BP. However, our study revealed 
that, even after adjusting for obesity, heavy metal exposure exhibited 
a significant association with lower BP, indicating its independence 
from body weight in children and adolescents. Further investigation 
is required to determine the specific mechanisms underlying 
this relationship.

Fish helps establish a cardioprotective dietary pattern, as 
advocated by the Mediterranean and Dietary Approaches to Stop 
Hypertension (DASH) diet (48, 49). Fish provides essential nutrients 
such as iodine, selenium, vitamin D, and ω-3 long-chain 
polyunsaturated fatty acids, but it also poses risks of Hg and organic 
As exposure (50). Reports have suggested that As can induce 
hypertension through oxidative stress, inflammation, and 
endothelial dysfunction (51). Our study revealed that the reduction 
in BP observed in individuals who consume fish is primarily 
attributed to Hg, suggesting that some fish types can increase Hg 
exposure. Although there is a correlation between As exposure and 
decreased SBP, this connection was not evident in fish consumers. 
To investigate the antihypertensive effects of As, we examined the 
correlation between speciated As and BP, in addition to total urinary 
As. Analysis of speciated As including AsB, As(V), AsC, As(III), 
MMA, and DMA revealed the significant roles of As(III) (40.00%) 
and AsC (34.04%) in WQS model. However, the detection rate of 
AsC was only 6.43%, which might not fully account for its impact on 
BP. Previous research has confirmed the association between As(III) 
and the risk of hypertension (52). Notably, the single-metal model 

indicated a relationship between Pb and Hg exposure and decreased 
SBP. The BKMR model demonstrated associations of Hg, and As 
with reduced SBP, and Ba with increased SBP. Furthermore, Pb, Hg 
and As contributed to lowered SBP in the WQS model, but these 
findings were inconsistent. Previous studies have highlighted that 
Ba, Pb, and Hg primarily cause hypertension through oxidative 
stress, inflammation, and endothelial dysfunction (9, 10). 
Surprisingly, our study revealed a connection between Pb, Hg, As, 
and decreased BP, contrary to previous studies. In mice, exposure to 
low levels of methylmercury notably raised plasma renin levels, 
leading to elevated BP, whereas co-exposure to Pb and Hg reversed 
this effect (10, 53). These results suggest antagonistic interactions 
between mixed metal components, aiding in the understanding of 
our findings. Overall, consuming specific types of fish can lead to 
heightened exposure to some heavy metals, which warrants 
further research.

This study confirms that low-level exposure to heavy metals is 
associated with lower SBP and DBP in older children and is also 
linked to a lower risk of hypertension. However, the study did not 
attempt to investigate the long-term effects of chronic heavy metal 
exposure on BP. More precisely, it only emphasizes whether there 
are differences in the effects of heavy metal exposure on BP among 
children and adolescents of different age groups. This limitation 
arises because most metals detected in urine reflect recent exposure. 
For instance, inorganic As is excreted within 4 days, Ba is mostly 
eliminated within 3–42 days after exposure, and the half-life of Hg 
is generally no longer than 3 months (50). Currently, research on 
the impact of heavy metal exposure on BP in different age groups 
of children and adolescents is relatively limited. A previous study 
focused on preschool children, showing no significant association 

TABLE 2  Association of WQS indices with blood pressure.

WQS mixture resulta p-value Component (weights)b

Hypertension

Un-adjusted by obesity −0.05(−0.34, 0.44) 0.791 NA

Adjusted by obesity 0.08(−0.31, 0.47) 0.681 NA

Not fish consumption −0.59(−1.32, 0.14) 0.114 NA

Fish consumption 0.20(−0.37, 0.77) 0.477 NA

SBP

Un-adjusted by obesity −0.74(−1.35, −0.13) 0.012 Pb (23.26%), As (20.05%), Hg (18.82%), Co (17.64%)

Adjusted by obesity −0.67(−1.24, −0.10) 0.002 Pb (23.62%), As (19.22%), Hg (18.62%), Co (18.52%)

Not fish consumption −0.21(−1.48, 1.06) 0.749 NA

Fish consumption −3.30(−4.73, −1.87) <0.001 Hg (27.61%), Cd (27.49%), Cs (17.98%), TI (8.49%)

DBP

Un-adjusted by obesity −0.60(−1.19, −0.01) 0.034 Cs (24.45%), Mo (15.39%), U (15.09%), Co (11.13%)

Adjusted by obesity −0.59(−1.06, −0.12) 0.036 Cs (24.48%), Mo (15.22%), U (14.74%), Co (11.24%)

Not fish consumption −1.51(−3.31, 0.29) 0.101 NA

Fish consumption −1.19(−2.72, 0.34) 0.125 NA

aThe estimated parameters (ORindex or βindex) for the metal mixture in each model, along with the corresponding 95% confidence interval (CI) and p-value, were reported. ORindex indicates the 
change in risk of hypertension corresponding to a 25th percentile increase in the WQS index, whereas βindex represents the change in blood pressure associated with a 25th percentile increase in 
the WQS index.
bThe component (weights) represent the metals in the model that exhibit significant effects and indicate their corresponding percentages.
Bold values indicate statistical significance p < 0.05.
SBP, systolic blood pressure; DBP, diastolic blood pressure; NA, not applicable.
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between urinary Ba concentration and DBP among different age 
groups (ages 2–3, 4, 5, and 6 years) (14). Additionally, an animal 
experimental study has indicated that Pb exposure during infancy 
disrupts bone metabolism, with more noticeable effects on bone 
microstructure compared to childhood and adolescence (54). 
Similarly, these findings suggest the presence of an important 
critical period for the effects of heavy metal exposure on BP in 
children and adolescents, but the specific mechanisms need 
further elucidation.

This study examined the potential association between urinary 
metal concentrations and BP as well as hypertension risk in children 
and adolescents using diverse statistical models. Inevitably, this study 
has several limitations. Initially, following the methodology of prior 
studies where missing covariates were coded as categorical variables 
(55), we categorized the serum creatinine into two groups: available 
and unavailable. While this study incorporated urinary creatinine, it 
may not offer an optimal solution, necessitating further investigation 
in future research. Moreover, covariates associated with BP, such as 

FIGURE 1

The weights of each metal in WQS model regression index for blood pressure. (A–C) Models were adjusted for sex, age, race/ethnicity, family poverty 
income ratio (PIR), obesity, education, serum cotinine, serum creatinine, urinary creatinine, fish consumption, total energy, calcium intake, sodium 
intake, potassium intake and activity. (D–F) Obesity was excluded from the models. (G–I) Non-fish consumers. (J–L) Fish consumers. (A,D,G,J) 
Presented hypertension; (B,E,H,K) presented systolic blood pressure (SBP); (C,F,I,L) presented diastolic blood pressure (DBP).
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dietary factors (excluding fish), were not completely controlled in this 
study. Additionally, as a cross-sectional study, it prevents drawing 
causal inferences that metal exposure causes BP changes. Further 

studies with a prospective design are necessary to validate these 
discoveries. Furthermore, given the complex composition of metal 
mixtures in the environment, it is essential to elucidate the synergistic 
and antagonistic mechanisms among heavy metals to regulate each 
metal at its optimal exposure level.

5 Conclusion

Our study revealed a negative correlation between low-level 
heavy metal exposure and BP in children and adolescents, 
particularly notable in groups with fish consumption and older 
children and adolescents. In future research, validating our 
findings through a prospective cohort study, elucidating the 
potential interactive mechanisms of heavy metals, and specifying 
the possible windows of susceptibility affecting childhood BP 
are crucial.
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FIGURE 2

The effects of speciated As and metal mixtures on blood pressure. (A–C) The weights of speciated As in WQS model regression index for hypertension, 
systolic blood pressure (SBP) and diastolic blood pressure (DBP). (D–F) Joint effects of metal mixtures on hypertension, SBP and DBP using Bayesian 
kernel machine regression (BKMR). The results were adjusted for sex, age, race/ethnicity, family poverty income ratio (PIR), obesity, education, serum 
cotinine, serum creatinine, urinary creatinine, fish consumption, total energy, calcium intake, sodium intake, potassium intake and activity.

TABLE 3  Trend analysis of the combined effect (WQS indices) of metal 
mixtures.

Ranges of age WQS mixture result p-value

Hypertension, OR (95%CI)

8 ~ 15 0.02 (−0.43, 0.47) 0.940

9 ~ 16 −0.02 (−0.51, 0.47) 0.591

10 ~ 17 −0.39 (−0.84, 0.06) 0.173

11 ~ 18 −0.42 (−0.81, −0.03) 0.021

SBP, β (95%CI)

8 ~ 15 −1.01 (−2.09, 0.07) 0.065

9 ~ 16 −1.18 (−2.40, 0.04) 0.061

10 ~ 17 −1.48 (−2.66, −0.30) 0.013

11 ~ 18 −1.42 (−2.44, −0.40) 0.007

DBP, β (95%CI)

8 ~ 15 −1.29 (−2.70, 0.12) 0.071

9 ~ 16 −1.35 (−2.90, 0.20) 0.089

10 ~ 17 −1.01 (−2.08, 0.07) 0.065

11 ~ 18 −2.62 (−4.00, −1.22) <0.001

Association of WQS index with blood pressure in different age groups was reported, 
presented as ORindex or βindex (95% confidence interval, 95%CI).
Bold values indicate statistical significance p < 0.05.
SBP, systolic blood pressure; DBP, diastolic blood pressure.
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3D printer emissions elicit 
filament-specific and 
dose-dependent metabolic and 
genotoxic effects in human 
airway epithelial cells
LMA Barnett 1, Q. Zhang 1, S. Sharma 1, S. Alqahtani 2,3, 
J. Shannahan 2, M. Black 1 and C. Wright 1*
1 Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States, 2 School of 
Health Sciences, Purdue University, West Lafayette, IN, United States, 3 Advanced Diagnostic and 
Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology 
(KACST), Riyadh, Saudi Arabia

Three-dimensional (3D) printers have become popular educational tools in 
secondary and post-secondary STEM curriculum; however, concerns have 
emerged regarding inhalation exposures and associated health risks. Current 
evidence suggests that filament materials and site conditions may cause differences 
in the chemical profiles and toxicological properties of 3D printer emissions; 
however, few studies have evaluated exposures directly in the classroom. In 
this study, we monitored and sampled particulate matter (PM) emitted from 
acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA) filaments during a 
3-hour 3D printing session in a high school classroom using aerosol monitoring 
instrumentation and collection media. To evaluate potential inhalation risks, 
Multiple Path Particle Dosimetry (MPPD) modeling was used to estimate inhaled 
doses and calculate in vitro concentrations based on the observed aerosol data and 
specific lung and breathing characteristics. Dynamic light scattering was used to 
evaluate the hydrodynamic diameter, zeta potential, and polydispersity index (PDI) 
of extracted PM emissions dispersed in cell culture media. Small airway epithelial 
cells (SAEC) were employed to determine cellular viability, genotoxic, inflammatory, 
and metabolic responses to each emission exposure using MTS, ELISA, and high-
performance liquid chromatography-mass spectrometry (HPLC-MS), respectively. 
Aerosol monitoring data revealed that emissions from ABS and PLA filaments 
generated similar PM concentrations within the ultrafine and fine ranges. However, 
DLS analysis showed differences in the physicochemical properties of ABS and 
PLA PM, where the hydrodynamic diameter of PLA PM was greater than ABS PM, 
which may have influenced particle deposition rates and cellular outcomes. While 
exposure to both ABS and PLA PM reduced cell viability and induced MDM2, an 
indicator of genomic instability, PLA PM alone increased gamma-H2AX, a marker 
of double-stranded DNA breaks. ABS and PLA emissions also increased the 
release of pro-inflammatory cytokines, although this did not reach significance. 
Furthermore, metabolic profiling via high performance liquid chromatography-
mass spectrometry (HPLC-MS) and subsequent pathway analysis revealed filament 
and dose dependent cellular metabolic alterations. Notably, our metabolomic 
analysis also revealed key metabolites and pathways implicated in PM-induced 
oxidative stress, DNA damage, and respiratory disease that were perturbed across 
both tested doses for a given filament. Taken together, these findings suggest that 
use of ABS and PLA filaments in 3D printers within school settings may potentially 
contribute to adverse respiratory responses especially in vulnerable populations.
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Introduction

Fused filament fabrication (FFF) is a form of three-dimensional 
(3D) printing that employs heating and extrusion of thermoplastics in 
layers onto a print bed surface to form multi-dimensional objects. FFF 
has become the most common form of 3D printing and is a popular 
hands-on educational tool in secondary and higher education settings. 
However, these benefits are coupled with potential health hazards due 
to the release of potentially harmful emissions during 3D printing.

3D printers pose potential respiratory hazards to users because 
they emit ultrafine particles at rates of 2 × 108 to 2 × 1012 min−1 in 
tandem with gas phase emissions (1–4). This is concerning because 
ultrafine particles can cause both local and systemic toxicity by 
penetrating deep into the respiratory tract, passing through the 
alveolar–capillary barrier, and distributing throughout the body (5). 
Additionally, 3D printers emit metals such as Cr, As, Pb, Cd, and Co 
(6–8) and volatile organic compounds (VOCs) such as styrene, 
formaldehyde, acetaldehyde, ethylbenzene, methylene chloride, 
methyl-methacrylate, toluene, lactide, and caprolactam that are 
International Agency for Research on Cancer (IARC) class 1 or 2 
carcinogens and/or respiratory hazards (1–3, 9–12). Moreover, total 
VOC and individual VOCs released by 3D printers have been shown 
to exceed national and international indoor air quality (IAQ) 
standards (10, 11). This is especially concerning for indoor 
environments that are poorly filtered and ventilated, such as older 
homes, schools, and small offices.

Importantly, the chemical composition of 3D printing emissions 
depends on printer settings and filament formulations. For example, 
acrylonitrile butadiene styrene (ABS) filaments have been shown to 
emit 3 to 4-fold higher emissions than polylactic acid (PLA) filaments 
(1, 2, 6, 13). This could be  because ABS filaments require higher 
extrusion temperatures relative to PLA filaments and contain 
unknown additives that elevate emissions (4, 14). Accordingly, 
regardless of the filament type (ABS vs. PLA), higher extrusion 
temperatures have been shown to increase particle and VOC 
emissions from 3D printers (15, 16).

Conversely, relatively few studies have compared different printer 
settings and filament formulations in terms of their toxicological 
effects. A recent in vitro study from Zhang and coworkers revealed 
that ABS and PLA 3D printer emission exposures caused a reduction 
in cell viability and oxidative stress in both macrophages and airway 
epithelial cells (4). Farcas and coworkers revealed dose-dependent 
increases in pro-inflammatory cytokine and chemokines, oxidative 
stress, and cytotoxicity due to ABS emission exposures in small airway 
epithelial cells (17). Animal studies investigating 3D printing 
emissions have also found concerning results where 3 h exposures to 
1 mg/m3 of ABS aerosols induced substantial impairments to 
cardiovascular function in rats (18). Moreover, a recent health survey 
revealed approximately 60% of participants using 3D printers in 
commercial prototyping facilities, educational settings, and public 
libraries experienced weekly respiratory issues along with strong 

associations between hours worked per week and asthma or allergic 
rhinitis development (19). Given the rising popularity of 3D printers 
in educational and residential settings, research on how 3D printer 
emissions may alter indoor air quality and enhance exposure to 
hazardous chemicals is critical to protecting human health.

In this study, we  characterized the particulate emissions and 
potential respiratory toxicity resulting from a 3 h 3D printing session 
at a high school and compared two different filament types, ABS and 
PLA. Scanning mobility particle sizer (SMPS) and optical particle 
sizer (OPS) technology were used to compare particle sizes and 
concentrations and dynamic light scattering (DLS) was used to 
determine physicochemical properties of ABS and PLA particles 
including hydrodynamic diameter and zeta potential. Dosimetric 
analyses using multiple-path particle dosimetry (MPPD) 
computational software were performed to estimate rate of deposition 
of 3D printer emissions within the human lung using parameters 
obtained during aerosol monitoring. Potentially inhaled doses and 
extrapolated in vitro concentrations were calculated using aerosol data 
consisting of count median diameter, geometric standard deviation, 
and aerosol concentration along with breathing parameters. 
Additionally, primary small airway epithelial cells (SAEC) were 
exposed to ABS and PLA-emitted particles collected and extracted 
from filters for 24 h, followed by assessments of cell viability, DNA 
damage, inflammation, and metabolomic responses. Our results 
suggest that ABS and PLA 3D printing emissions reduce cellular 
viability, induce genotoxic effects, and elicit metabolic changes in 
SAEC. Furthermore, metabolic pathways related to oxidative stress, 
DNA damage, inflammation, and respiratory disease were altered by 
ABS and PLA across both tested doses. Ultimately, these results 
advance our understanding of the potential toxicity of 3D printer 
emissions and their impact on respiratory health.

Methods

Sampling sites and generation of 3D printer 
emissions

Airborne particulate matter (PM) was collected from a high 
school located in Atlanta, GA. There were two locations studied for 
each filament material; one science, technology, engineering, and 
mathematics (STEM) lab classroom with a 3D printer (hereinafter 
referred to as the printer room) and an adjacent classroom without a 
3D printer (the control room). In the printer room, PM was sampled 
within one meter of the printer.

One fused filament fabrication (FFF) 3D printer was operated in 
the printer room for 3 h to generate a cube. Black ABS (extrusion 
temperature = 245°C, printer chamber temperature = 85°C) or black 
PLA (extrusion temperature = 200°C, printer chamber 
temperature = 40°C) filaments were used on two separate days. On 
each day, PM was monitored during printing in both the printer room 

40

https://doi.org/10.3389/fpubh.2024.1408842
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Barnett et al.� 10.3389/fpubh.2024.1408842

Frontiers in Public Health 03 frontiersin.org

and control room. Support filaments (SR30 for ABS at 240°C and PVA 
(polyvinyl alcohol) for PLA at 200°C) were loaded to enable printer 
function following manufacturer’s instruction and accounted for a 
minimal fraction of the printed part.

PM monitoring, sampling, and extraction

Aerosol size distributions were assessed using a scanning 
mobility particle sizer (NanoScan SMPS, TSI 3910) and an optical 
particle sizer (OPS, TSI 3330) to detect a particle size range of 10 nm 
to 10 microns. Fine PM (PM2.5, less than 2.5 μm) were collected 
during printing using PTFE (polytetrafluoroethylene) filters (37 mm, 
0.45 μm pore size), personal modular impactors, and portable pumps 
at a flow rate of 4 L/min. The weight of PM collected on the filter was 
analyzed using a microbalance (Mettler Toledo XS3DU) by 
subtracting pre-sampling filter weights from post-sampling filter 
weights. Filter collected particles were extracted using a solvent-
based (75% methanol) method coupled with sonication. Extractions 
were then concentrated using a vacufuge to remove the solvent 
extraction fluid and refrigerated until toxicological analysis.

Estimation of inhaled and in vitro doses

Estimated inhaled doses were determined by inputting measured 
aerosol data into the Multiple-Path Particle Dosimetry 2 (MPPD2) 
computational model. The parameters used by MPPD2 to calculate 
deposition comprise four areas: the type of airway morphometry was 
age-specific (14 years old) symmetric; the particle properties included 
count median diameter (CMD), geometric standard deviation (GSD), 
and averaged aerosol mass concentration; the exposure was a constant 
exposure at the measured PM concentration. The exposure time was 
assumed to be  6 h per day, 5 days per week for a school year of 
36 weeks. The total deposited mass across the airways (Generations 
1–21) was divided by the surface area of those regions, which provided 
the total deposited dose within the small airways. To convert the total 
deposited dose to an in vitro dose or concentration, the total deposited 
dose (μg/cm2) was multiplied by the surface area of one well within a 
96 well plate (0.33 cm2) then divided by the total exposure volume 
(100 μL).

Dynamic light scattering

Extracted particles were submerged in cell culture media and 
analyzed on a Zetasizer Ultra (Malvern Panalytical, Malvern, 

United Kingdom). Samples were loaded into folded capillary cells/
cuvettes (Malvern Panalytical, DTS1070) and polystyrene cells/
cuvettes (Malvern Panalytical, DTS0012) for analysis of zeta potential 
and particle size, respectively.

Cell culture and 3D printer PM exposure 
parameters

Normal small airway epithelial cells (SAEC) were cultured in 
small airway basal media (SABM) (Lonza, Walkersville, MD) 
supplemented with bovine pituitary extract (BPE), 
hydrocortisone, human epidermal growth factor (hEGF), 
epinephrine, transferrin, insulin, retinoic acid, triiodothyronine, 
gentamicin, and amphotericin-B (GA-1000). SAEC were 
maintained in a humidified atmosphere of 37°C and 5% CO2 with 
media renewal every 2–3 days. For 3D printer exposure 
assessments, SAEC were seeded in 96 well plates at a density of 
10,000 cells/well and grown to 70–80% confluency for 5–7 days. 
Cells were exposed to 5 μg/mL or 10 μg/mL of PM extracts from 
the printer room and control room for 24 h to cover the range of 
estimated in vitro doses from the MPPD2 model (Table 1). PM 
extracts were diluted in cell culture media and administered in a 
volume of 100 μL in triplicate for each dose. In addition, 
untreated cells in culture media were used as a negative 
control (NC).

MTS assay

Cell viability was measured after 24 h of exposure to PM using 
the CellTiter 96 Aqueous One Solution Cell Proliferation Assay 
(Promega Corp., Madison, WI). This test is based on the reduction 
of the tetrazolium salt MTS (3-[4,5-dimethylthiazol-2-yl]-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) into 
a soluble purple formazan product by dehydrogenase enzymes in 
metabolically active cells. After removing the exposure media 
containing ABS or PLA PM, cells were washed twice with 1X 
phosphate buffered saline (PBS). A 1:10 dilution of MTS reagent: 
cell culture media was added to each well for 45 min and 
absorbance was read at 490 nm using a microplate reader 
(Cytation 1, Biotek). Triplicate readings were blank-corrected and 
averaged for each control and sample. In addition, cells that were 
treated with a hypotonic solution (0.1% Triton-X) served as a 
positive control (PC). Cells were also treated with blank filter 
extracts to account for residual solvent during the 
extraction process.

TABLE 1  Aerosol characterization, estimated inhaled doses, and calculated in vitro doses of particles emitted during 3  h of 3D printing.

Sample location Count median 
diameter (nm)

Geometric 
standard deviation

Aerosol concentration 
(μg/m3)

Inhaled dose 
(μg/cm2)

In vitro dose 
(μg/mL)

Control room 125 ± 4.0 1.77 ± 0.12 4.22 ± 0.48 2.08 6.87

Printer room during 

ABS printing

87.4 ± 4.9 1.94 ± 0.24 4.33 ± 0.81 1.46 4.81

Printer room during 

PLA printing

130 ± 3.0 1.77 ± 0.32 4.44 ± 0.79 2.16 7.14
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Endotoxin assay

The Pierce Chromogenic Endotoxin Quant Kit (Pierce 
Biotechnology, Rockford, IL) was used to assess the potential for 
bacterial endotoxin contamination when cells were exposed to 
particulate matter samples. Due to limited sample, cell lysates were 
assessed rather than cell culture supernatants. All steps were 
performed according to the manufacturer’s protocol. Briefly, 50 μL 
lysates, standards, and blanks were added in triplicate to a 96-well 
plate. After adding 50 μL Amebocyte Lysate Reagent to each well, the 
plate was incubated at 37°C for the time indicated on the lysate vial. 
Next, 100 μL/well of Chromogenic Substrate Solution was added, 
followed by 6 min incubation at 37°C. To stop the reaction, 50 μL Stop 
Solution was added to each well. Absorbance was read at optical 
density (OD) 405 nm using a Cytation C10 plate reader (Agilent, Santa 
Clara, CA). The blank-corrected absorbance for standards and 
samples was calculated by subtracting the average absorbance of blank 
wells. The corresponding endotoxin concentration of each sample was 
calculated by plotting a standard curve of the average blank-corrected 
absorbance of each standard vs. the known endotoxin concentration 
in EU/mL.

DNA damage evaluation

The MILLIPLEX 7-Plex DNA Damage/Genotoxicity Magnetic 
Bead Kit (Millipore Sigma) was used to measure changes in a panel of 
7 DNA damage and repair pathway markers, including phosphorylated 
Chk1 (Ser 345), Chk2 (Thr68), H2A.X (Ser139), and p53 (Ser15) as 
well as total protein levels of ATR, MDM2, and p21. Following 24 h 
exposure to PM, SAEC were lysed, and protein was collected using 
mammalian protein extraction reagent (MPER, Thermo Fisher) 
according to the manufacturer’s protocol. Protein extracts were diluted 
to 1 mg/mL and analyzed according to the assay protocol. The Median 
Fluorescence Intensity (MFI) was measured on a Luminex Flexmap 3D 
system. Triplicate readings were blank-corrected and averaged for 
each control and sample.

Cytokine analysis

Cytokines were detected and quantified in media collected from 
SAEC following 24 h exposure to PM using the Quantibody® Human 
Cytokine Array (QAH-CYT-1) full testing ELISA service provided by 
Raybiotech Life, Inc. (Peachtree Corners, GA). Media samples were 
centrifuged at 250 × g for 1 min prior to cytokine analysis. A panel of 
20 cytokines, including IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, 
IL-12p70, IL-13, GM-CSF, GRO, IFNg, MCP-1, MIP-1α, MIP-1β, 
MMP-9, RANTES, TNFα, and VEGF, were analyzed. Quantibody® 
employs matched pairs of antibodies for target protein detection in 
which multiple capture antibody arrays are printed on a standard 
slide. After blocking, unknown samples are incubated with the arrays, 
followed by a wash step to remove non-specific protein binding. A 
cocktail of biotinylated detection antibodies was then added to the 
array along with streptavidin-conjugated fluorescent reagents that 
were subsequently detected using a fluorescence laser scanner. Array-
specific predetermined protein standards were utilized to generate an 
8-point standard curve of each target protein. Concentrations of each 

cytokine were calculated in unknown samples using the standard 
curve and Q analyzer software.

Metabolite profiling, sample preparation, 
and extraction

Protein removal and sample extraction were performed by adding 
500 mL of methanol to 200 mL of cell supernatant. Solutions were 
vortexed and centrifuged at 16,000 g for 8 min. The supernatants were 
transferred to separate vials and evaporated to dryness in a vacuum 
concentrator. The dried polar fractions were reconstituted in 60 mL of 
diluent composed of 95% water and 5% acetonitrile, containing 0.1% 
formic acid.

High performance liquid 
chromatography-mass spectrometry 
(HPLC-MS) and bioinformatic analyses

HPLC-MS and bioinformatic analyses were performed as 
described in our previous publication (20). Separations were 
performed on an Agilent 1,290 system (Palo Alto, CA), with a mobile 
phase flow rate of 0.45 mL/min. The metabolites were assayed using a 
Waters HSS T3 column (1.8 μm, 2.1 × 100 mm), where the mobile 
phases were A (0.1% formic acid in ddH2O) and B (0.1% formic acid 
in acetonitrile). Initial conditions were 100:0 A:B, held for 1 min, 
followed by a linear gradient of 80:20 at 16 min, then 5:95 at 21 min, 
held for 1.5 min. Column re-equilibration was performed by returning 
to 100:0 A:B at 23.5 min and holding until 28.5 min. The mass analysis 
was obtained in positive ionization mode using an Agilent 6,545 
Q-TOF mass spectrometer with ESI capillary voltage +3.5 kV, nitrogen 
gas temperature 325°C, drying gas flow rate 8.0 L/min, nebulizer gas 
pressure 30 psig, fragmentor voltage 135 V, skimmer 45 V, and OCT 
RF 750 V. Mass data (from m/z 70–1,000) were collected using Agilent 
MassHunter Acquisition software (v. B.06). Mass accuracy was 
improved by infusing Agilent Reference Mass Correction Solution 
(G1969-85001). MS/MS was performed in a data dependent 
acquisition mode. Peak picking and annotation was performed using 
MS-DIAL (v. 4.7).1 Adduct ions selected were [M + H]+, [M + Na]+, 
[2 M + H]+, [2 M + Na]+. After blank peak removal, 1,141 sample 
related peaks were observed. Peak annotations were performed using 
the MassBank of North America metabolomics MS/MS library, based 
on authentic standards (v. 16).2 Mass tolerances were 0.005 Da for MS1 
and 0.01 Da for MS2. Statistical analysis was performed using 
MetaboAnalyst 5.0.3 Data imputation, normalization, and 
comparisons were made with significance threshold set at p < 0.05.

Pathway analysis

For each condition, a 4-column table of m/z features, p-values, t 
scores, and retention time was inputted into the MS Peaks to Pathways 

1  http://prime.psc.riken.jp/compms/msdial/main.html

2  http://prime.psc.riken.jp/compms/msdial/main.html#MSP

3  https://www.metaboanalyst.ca/
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module on MetaboAnalyst 5.0 (see text footnote 3). The Mummichog 
algorithm was selected as the analysis parameter, and the human 
KEGG pathway library was selected. Significantly enriched pathways 
were selected with an adjusted p < 0.05.

Statistical analysis

Results obtained from the MTS, DNA, and cytokine assays were 
assessed for statistical significance using one-way ANOVA followed 
by a Dunnett’s post-hoc analysis using GraphPad Prism version 
10.1.2 (Boston, Massachusetts, United  States) to compare each 
treatment group to the untreated negative control (NC). For 
metabolomics, all statistical analyses were performed using 
MetaboAnalyst 5.0 (see text footnote 3). The level of statistical 
significance was p < 0.05 for all analyses. HCA heatmaps were made 
using MetaboAnalyst 5.0. Venn diagrams were made using Venn 
Diagram Plotter version 1.6.7458.4 All other graphs were made 
using GraphPad Prism version 10.1.2.

Results

Indoor aerosol characterization and 
dosimetry

Aerosol characteristics, estimated inhaled and in vitro dose are 
described in Table 1. Details of particle number distribution are 
shown in Supplementary Figure S1. Particles emitted during ABS 
printing fell within the nanoscale range and were smaller, but more 
concentrated relative to particles in the control room. The estimated 
inhaled and in vitro deposited doses were smaller for ABS-emitted 
particles compared to particles in the control room, and this was 
likely because smaller-sized particles contributed to less mass 
deposition. On the other hand, particles in the PLA printing room 
were slightly larger and more concentrated than particles in the 
control room. The size, average concentration, and estimated inhaled 
and in vitro deposited doses of particles emitted in the printer room 
during ABS printing were consistently lower than the corresponding 
characteristics of particles emitted during PLA printing. This could 
be due to a combination of variables such as printer emission rate, 
local ventilation conditions, occupancy, and in-room activities that 
likely differed during the dates of sampling.

4  https://github.com/PNNL-Comp-Mass-Spec/Venn-Diagram-Plotter/releases

Size, polydispersity, and surface charge of 
submerged PM samples

We performed dynamic light scattering (DLS) to assess the 
physical properties of PM upon submersion in cell culture media 
(Table 2). The size of PM from all sampling locations increased 
upon submersion in media, as indicated by hydrodynamic diameter 
or z-averages relative to the count median diameters summarized 
in Table 1. PLA PM had a greater hydrodynamic diameter compared 
to ABS PM. Additionally, PM from all sample locations had similar 
polydispersity, with control room PM being the most polydisperse. 
Finally, the surface charge of all PM was negative, with control 
room being the most negatively charged, followed by ABS, and 
then PLA.

Effect of 3D printer emissions on cellular 
viability

The MTS assay was used to determine the metabolic capacity and 
viability of SAEC after 24 h of exposure to PM emitted during 3D 
printing (Figure 1A). 5 μg/mL and 10 μg/mL PM were used as the 
administered concentrations to cover the range of extrapolated in vitro 
doses described in Table 1 and to identify the biologically effective 
dose. Cells exposed to extracts from blank filters did not display 
decreased viability (data not shown). In comparison to untreated cells, 
cells exposed to control room PM did not experience significant 
reductions in cellular viability (Figure 1A). Exposure to 10 μg/mL PM 
emitted during printing with ABS significantly reduced cellular 
viability to 51%, while exposure to 5 μg/mL had a slight but 
non-significant effect (74.1% viability). Exposure to both doses of PM 
emitted during printing with PLA also significantly reduced cell 
viability. Specifically, cells exposed to 5 μg/mL and 10 μg/mL PLA were 
44 and 59% viable, respectively. We also confirmed that SAEC lysates 
contained minimal levels of endotoxin. These levels were not 
significantly different from levels in negative control cells and are 
below the available FDA limits for sterile water and medical device 
eluates (0.25 and 0.5 EU/mL, respectively). Therefore, bacterial 
contamination had a minimal effect on the toxicological endpoints 
measured (Supplementary Figure S2).

Genotoxicity of 3D printer emissions

To explore the potential genotoxicity of ABS and PLA emissions, 
we  measured a panel of seven DNA damage and repair pathway 
proteins in SAEC after 24 h of exposure to 5 μg/mL and 10 μg/mL 
doses of PM emitted during 3D printing (Figure 1B). Although most 

TABLE 2  Characteristics of collected PM when submerged in SAEC media as measured by dynamic light scattering (DLS).

Sample location Z-average (nm) Polydispersity index (PDI) Zeta potential (mV)

Control room 261.21 ± 24.52 0.546 ± 0.11 −21.556 ± 0.86

Printer room during ABS 

printing

1269.26 ± 33.02 0.444 ± 0.12 −18.824 ± 3.44

Printer room during PLA 

printing

1515.85 ± 205.53 0.502 ± 0.092 −13.411 ± 5.89
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proteins did not change significantly in response to ABS or PLA 
emissions at either dose, murine double minute clone 2 (MDM2) 
increased upon exposure to ABS and PLA-emitted PM at 10 μg/
mL. Additionally, gamma-H2AX increased in response to 10 μg/
mL PM collected during PLA printing.

Effect of 3D printer emissions on release of 
pro-inflammatory factors

To determine the effect of exposure to PM emitted during 3D 
printing on inflammation, we measured a panel of 20 cytokines, 
chemokines, and other pro-inflammatory factors in SAEC 
supernatants. Exposure to ABS and PLA emissions increased the 
release of some pro-inflammatory cytokines relative to untreated 
cells, although these increases did not reach statistical significance. 
Specifically, exposure to PM emitted during printing with PLA 
increased IL-1β at both doses (Figure 1C). Exposure to PM emitted 
during printing with ABS and PLA at both doses increased MMP-9 
release. Finally, exposure to ABS and PLA at 5 μg/mL 
elevated RANTES.

Effect of 3D printer emissions on the 
metabolome

Using HPLC MS/MS, we characterized the metabolites released 
by SAEC exposed to ABS, PLA, and control classroom emissions, 
alongside untreated negative control (NC) cells (Figure  2). 
Hierarchical clustering analysis (HCA) of all detected metabolites 
yielded separate clusters for NC, cells exposed to control classroom 
PM, and cells exposed to 3D printer emissions (Figure 2A). This was 
the case for both low (5 μg/mL) and high (10 μg/mL) exposures. This 
suggests that 3D printer emissions and ambient classroom air both 
have distinct effects on cellular metabolic profiles. Notably, in the high 
dose exposure, ABS and PLA-exposed cells were not clustered 
separately from one another, suggesting that at higher doses, printer 
filament types may differ less in terms of their effects on 
cellular metabolism.

To further examine the metabolomic responses revealed by the 
HCA, we identified metabolites that were significantly altered relative 
to NC cells at each dose for each treatment group (Figure  2B; 
Supplementary Tables S1–S6). SAEC exposed to PLA emissions 
yielded the highest number of significantly altered metabolites at both 

FIGURE 1

Toxicological effects of 24  h exposure to PM emitted during 3  h of 3D printing in SAEC. Each graph represents the effect of exposure to 5  μg/mL and 
10  μg/mL  PM collected during printing with ABS, PM collected during printing with PLA, or PM collected from the control room on (A) SAEC cell 
viability as measured by the MTS assay; (B) expression of DNA damage and repair markers; and (C) release of pro-inflammatory cytokines. Error bars 
represent the standard error of the mean. n  =  3–4. *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0 .0 0 0 1  relative to untreated negative control cells (NC).
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the low (n = 470) and high (n = 404) dose (Figure 2B). For the low dose 
exposure group, this was followed by cells exposed to the control room 
emissions (n = 377) and then ABS emissions (n = 318). For the high 
dose exposure group, this was followed by cells exposed to ABS 
emissions (n = 390) and then control room emissions (n = 347).

We also compared the overlap in significantly altered metabolites 
across filaments and doses (Figures  2C,D). Although ABS and 
PLA-exposed cells shared 228 and 257 significantly altered metabolites 
at low and high doses respectively, we still identified metabolites that 
were uniquely altered for each filament type (Figure 2C). Additionally, 
222 metabolites were shared between low and high doses for ABS, and 
262 metabolites were shared between low and high doses for PLA 
(Figure 2D).

Pathway analysis of metabolic changes

To determine the biological significance of the metabolic changes 
noted above, we  used the MS Peaks to Pathways module on 
Metaboanalyst to identify metabolic pathways that were significantly 
enriched in SAECs exposed to ABS emissions and PLA emissions 
relative to untreated negative control (NC) cells 
(Supplementary Tables S7–S12). Next, we compared the overlap in 
significantly enriched pathways between ABS and PLA filaments at 
each tested dose (5 μg/mL and 10 μg/mL, respectively) (Figure 3). 
Although ABS and PLA-exposed cells shared some significantly 
enriched pathways at each dose (Figures 3A,C), we also identified 
pathways that were uniquely enriched for each filament type 
(Figure 3B). At the low dose, ABS-enriched pathways were primarily 

related to carbohydrate metabolism, whereas PLA-enriched 
pathways were related to metabolism of cofactors and vitamins and 
amino acid metabolism (Figure 3B; Supplementary Tables S8, S9). 
Conversely, for the high dose exposure, ABS-enriched pathways were 
primarily related to amino acid metabolism, whereas PLA-enriched 
pathways were primarily related to carbohydrate metabolism 
(Figure 3B; Supplementary Tables S11, S12). These results support 
our differential metabolomics data by suggesting that ABS and PLA 
have distinct effects on cellular metabolism, this time at the 
pathway level.

To distinguish the effect of dose on metabolic pathway 
enrichment, we  compared the pathways that were significantly 
enriched for both low and high doses of a given filament (Figure 4). 
Specifically, six pathways were shared between both doses for ABS 
(Figures 4A,C) and seven pathways were shared between both doses 
for PLA (Figures  4B,D), suggesting that the effects of a given 3D 
printer filament exposure on metabolic pathways vary greatly 
depending on the dose.

Discussion

In this study, we characterized and sampled particulates emitted 
from ABS and PLA filaments during 3 h 3D printer operation at a 
high school. We also exposed small airway epithelial cells (SAEC) to 
the sampled emissions and studied effects on cell viability, DNA 
damage, inflammation, and cellular metabolomics after 24 h of 
exposure. By evaluating a single classroom exposure and comparing 
across different doses, this field investigation builds on previous 

FIGURE 2

Metabolic changes in SAEC exposed to low (5  μg/mL) and high (10  μg/mL) doses of PM collected during 3D printing. (A) Heatmaps depict HCA of all 
metabolic features detected in cells exposed to ABS emissions (red), PLA emissions (light blue), control room PM (green), and untreated (NC) cells (dark 
blue). (B) Volcano plots depict the significantly altered metabolites for each exposure (p  <  0.05 relative to NC). Venn diagrams compare the significantly 
altered metabolites (p  <  0.05 relative to NC) between (C) each filament for a given dose and (D) between doses for a given filament.
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metabolomics studies conducted in laboratory settings (20). In 
doing so, it reveals important insights into the potential respiratory 
consequences of 3D printing exposure and the metabolic changes 
that govern these effects.

Our toxicological data suggests that ABS and PLA-emitted 
PM are potentially cytotoxic and genotoxic. Specifically, exposure 
to emissions from both filament types reduced airway epithelial 
cell viability, which was previously observed in laboratory studies 
(16, 17, 20, 21). In addition to impacting cell viability, exposure 
to PM emitted from both ABS and PLA filaments increased levels 
of murine double minute clone 2 (MDM2), which is observed in 
different types of cancers and promotes genomic instability (22). 
Specifically, increased MDM2 can negatively regulate p53  in 
order to reduce DNA repair activity. Although p53 did not 
decrease in the present study, MDM2 can also function 
independently of p53 to inhibit DNA breakage repair through 
associating with the Mre11/Rad50/Nbs1 DNA repair complex 
(22). Future studies should explore the impact of ABS and 

PLA- emitted PM on these different mechanisms of MDM2-
mediated genomic instability.

Additionally, we found that exposure to PM emitted during 
3D printing with PLA filaments, but not ABS filaments, induced 
DNA damage in SAEC as measured by increased gamma-
H2AX. Formation of gamma-H2AX occurs upon phosphorylation 
of the Ser-139 residue of the histone variant H2AX and is an early 
response to DNA double-strand breakage that recruits DNA 
repair proteins (23). Given that DNA damage and reduced DNA 
repair capacity are both involved in asthma development (24, 25), 
these findings reveal potential mechanisms that mediate the 
development of asthma-like symptoms in 3D printer users 
(26, 27).

In support of our toxicological data, several metabolic 
pathways that function during DNA damage and repair were 
perturbed in cells exposed to ABS and PLA-emitted 
PM. Specifically, purine and pyrimidine metabolism, amino sugar 
and nucleotide sugar metabolism, and intermediates from glucose, 

FIGURE 3

Metabolic pathways altered by ABS vs. PLA emissions at each dose. (A) Venn diagrams depict the overlap between significantly enriched pathways 
(p  <  0.05 relative to NC cells) in ABS and PLA-exposed cells. Histograms list the significantly enriched pathways (p  <  0.05 relative to NC cells) that were 
(B) unique to ABS or PLA and (C) shared between ABS and PLA.
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glutamine, and aspartate metabolisms were perturbed by 3D 
printer filament exposure in the present study. Importantly, these 
metabolic pathways function to regulate the pool of nucleotides 
available for DNA repair (28). Additionally, ABS and PLA-emitted 
PM disrupted cysteine metabolism and glutathione metabolism, 
respectively, at the high dose, suggesting that 3D printer emissions 
may additionally induce genotoxicity through de-regulating redox 
homeostasis (28). Taken together, these results provide additional 
support for the potential genotoxicity of ABS and PLA-emitted 
PM at the level of cellular metabolism.

Additionally, exposure to 3D printer-emitted PM altered 
several metabolites and pathways that are implicated in respiratory 
disease. Specifically analysis of the serum, plasma, blood, urine, 
and exhaled breath condensate of asthma patients have observed 
dysregulated tyrosine, arginine, purine, and phenylalanine 
metabolites (29, 30). Arginine and phenylalanine are also 
dysregulated in COPD patients (31). According to an additional 
study, arginine expression was elevated in the plasma of patients 
with chronic obstructive pulmonary disease (COPD) compared to 
the healthy population and was further elevated in acute 
exacerbation of COPD (AECOPD) (32). Furthermore, pathway 
analysis of altered metabolites in serum samples collected from 
patients with allergic rhinitis revealed that purine metabolism was 
enriched relative to healthy controls and that the associated 
metabolites hypoxanthine and urate could be potential biomarkers 
(33). Therefore, the metabolic changes noted in this study provide 
early indicators that 3D printer-emitted PM may induce adverse 
respiratory consequences.

Moreover, several pathways that were altered by 3D printer-emitted 
PM in this study were also associated with PM exposure from ambient 
air pollution, indoor classroom air, and occupational exposures in other 

studies. Specifically, in patients with silicosis, arginine and proline 
metabolism was the major perturbed pathway relative to healthy controls 
(34). Furthermore, the abundance of L-arginine was negatively correlated 
with the predicted percentage of forced vital capacity in these patients, 
which is a measure of lung function. In children exposed to ambient 
classroom air, both PM0.5 exposure and decreased pulmonary function 
were associated with dysregulated purine metabolism (35). In plasma 
from patients with COPD, arginine and proline metabolism was affected 
by PM2.5 exposure, and arginine was positively associated with acute 
exacerbation of COPD (AECOPD). Taken together, these findings 
suggest that perturbed amino acid metabolism and purine metabolism 
may play a role in the adverse respiratory effects associated with 3D 
printer emissions exposures.

We previously found that exposure to ABS and PLA-emitted 
PM triggered formation of reactive oxygen species (ROS), increased 
total glutathione, and release of pro-inflammatory cytokines in 
airway epithelial cells (4, 20). Although we  did not measure 
oxidative stress in the present study, ABS and PLA emissions 
exposures perturbed metabolic pathways that have previously been 
observed alongside PM-induced oxidative stress and inflammation, 
which are key events responsible for the increased risk of COPD, 
asthma, and other lung diseases associated with PM exposure (36, 
37). Specifically, tyrosine metabolism was enriched in blood from 
healthy volunteers 2 h following exposure to ambient air pollution. 
In the same cohort, tyrosine levels correlated with fibrinogen levels, 
which increase in the presence of inflammation (38). Altered purine 
metabolism was observed alongside disrupted pro-oxidant/
antioxidant balance in rodents exposed to PM2.5 via intratracheal 
instillation (39). Purine metabolism was also altered in mice with 
PM2.5 exposure-induced asthma. Furthermore, five inflammatory 
cytokines (IL-4, IL-5, IL-13, IL-1β, IL-8) were positively correlated 

FIGURE 4

Metabolic pathways altered by low (5  μg/mL) vs. high (10  μg/mL) doses for a given filament. Venn diagrams depict the overlap between significantly 
enriched pathways (p  <  0.05 relative to NC cells) in (A) ABS-exposed cells at each dose and (B) PLA-exposed cells at each dose. Histograms depict the 
enrichment factor for significantly enriched pathways (p  <  0.05 relative to NC cells) that were shared between high and low doses for (C) ABS-exposed 
cells and (D) PLA-exposed cells.
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with levels of uric acid, which is a product of purine metabolism 
(40). Additionally, exposure to PM2.5 perturbed purine metabolism 
and arginine and proline metabolism in BEAS-2B cells. This was 
coupled with significant increases in oxidative stress markers 
including reactive oxygen species (ROS), malondialdehyde (MDA), 
and nitric oxide (NO) pro-inflammatory cytokines (TNF-α, IL-6 
and IL-1β), and metabolic reprogramming from oxidative 
phosphorylation to glycolysis (41). Furthermore, in two studies, 
purine metabolism and pyrimidine metabolism were enriched 
alongside increased alongside increases in gamma-H2AX in rats 
exposed to long-term low-level PM2.5 and O3 through ambient air 
pollution. Results also showed that the DNA damage biomarker 
gamma-H2AX in the lungs was positively correlated with ADP and 
N-acetyl-D-glucosamine, which are two serum metabolites involved 
in these pathways (42, 43). Given that 3D printers emit fine and 
ultrafine particles, the above studies reveal how the metabolic 
changes noted in this study may be  mechanistically linked to 
respiratory symptoms reported by occupational users of 3D printers.

Our data additionally suggest that the toxicological and 
metabolic effects of 3D printer emissions differ depending on the 
filament used, with PLA impacting more of the endpoints studied. 
For example, although both ABS and PLA-emitted PM impacted 
cell viability, MDM2, and increased MMP-9, only PLA increased 
gamma-H2AX, IL-1β and RANTES. The metabolomic alterations 
observed in this study additionally support this. Specifically, PLA 
exposure resulted in larger numbers of significantly altered 
metabolites relative to ABS at both tested doses. Pathway analysis 
further revealed that ABS primarily altered pathways related to 
carbohydrate metabolism at the low dose and amino acid 
metabolism at the high dose. Conversely, PLA exposure altered 
pathways related to cofactor and vitamin metabolism at the low 
dose and carbohydrate metabolism at the high dose. Taken together, 
these results agree with our previous finding that ABS and PLA 
exposure perturbed different metabolic pathways (20).

A combination of physical and chemical properties of 3D 
printer-emitted particles was likely responsible for the filament-
specific differences in cellular outcomes. PLA-emitted PM 
potentially produced more toxicological effects and altered more 
metabolites in the present study because of particle kinetics that 
caused a larger effective dose relative to ABS-emitted particles. 
Specifically, our aerosol characterization data predicted higher 
deposition of PLA-emitted PM relative to ABS, which was likely due 
to the larger size of PLA-emitted particles. In addition to size, 
differences in the effective density of ABS and PLA-emitted PM may 
have increased the effective dose of PLA-emitted PM relative to ABS 
when particles were dispersed in cell culture media. Specifically, 
particles with effective densities lower than the cell culture media 
will exhibit buoyancy, which may alter particle deposition and 
dose–response relationship (44). To support this, the raw material 
density of PLA is higher than the density of cell culture media 
(1.25 g/cm3 vs. ~1.0 g/cm3) (44–46). Conversely, ABS PM may float 
or settle at a lower rate in cell culture media due to a similar density 
(1.05 g/cm3) (47), which may have contributed to certain differences 
found in genotoxicity and metabolic profiling. Therefore, future 
studies should measure the physicochemical properties of 3D 
printer emissions including effective density alongside markers of 
genotoxicity to distinguish which filament and PM properties 
produce these effects.

It is important to note that this study is not without limitations. 
First, we were unable to control for other sources of particulate 
emissions in the printer room that could have resulted from 
classroom activities. Second, due to scheduled classroom activities, 
we  were only allowed to sample and collect PM on restricted 
occasions for each experimental group. Future studies should 
consider more sampling occasions and duplicates to better monitor 
the environments. Third, we  did not characterize the chemical 
composition of 3D printer emissions. Although we  previously 
characterized VOCs and metals present in ABS and PLA 3D printer 
emissions (4, 20), future studies should measure physical and 
chemical properties of emissions alongside toxicological outcomes 
to distinguish their contributions to toxicity. Fourth, as discussed 
above, SAEC were exposed to PM in a submerged format, which 
may have altered the particle kinetics and cellular uptake of PM 
despite equivalent administered doses. Notably, we addressed this 
limitation, as well as the potential for external sources of PM in 
ambient air, in a previously published laboratory study by 
measuring metabolomic responses in cells cultured in air-liquid 
interface in real-time during 3D printing (20). Furthermore, SAEC 
were exposed to PM after sampling and extraction from filters, 
which raises the possibility of particle alterations due to the solvent 
extraction method employed. As the present study is a field study 
conducted in a non-laboratory setting, this limitation was 
unavoidable. Finally, because particulates were sampled outside of 
a laboratory setting, SAEC may have been subjected to bacterial 
contamination. To address this, we confirmed that the endotoxin 
levels in cells exposed to PM were below FDA limits and were not 
significantly different from the levels detected in untreated negative 
control cells. Therefore, the toxicological and metabolic changes 
observed in this study were likely due to PM exposure rather than 
due to bacterial contamination.

Conclusion

The data presented here suggest that after a single printing job 
in a high school classroom, 3D-printers emit fine and ultrafine 
particles, which may compromise cellular viability and induce 
genotoxic effects in airway epithelial cells. Furthermore, to 
determine molecular mechanisms governing these effects, 
we measured metabolic responses to 3D printer emissions exposure 
in SAEC, which varied depending on the filament used. Although 
SAEC metabolic responses also varied depending on the dose, 
we identified metabolic pathways that were enriched across both 
doses for a given filament. Importantly, some of these pathways play 
known roles in oxidative stress, DNA damage, and inflammation 
induced by PM exposures and are implicated in respiratory diseases 
such as asthma, allergic rhinitis, and COPD. Taken together, these 
results reveal early molecular events that may drive 3D printer-
induced respiratory toxicity.
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Metal-based nanoparticles have garnered significant usage across industries, 
spanning catalysis, optoelectronics, and drug delivery, owing to their diverse 
applications. However, their potential ecological toxicity remains a crucial 
area of research interest. This paper offers a comprehensive review of recent 
advancements in studying the ecotoxicity of these nanoparticles, encompassing 
exposure pathways, toxic effects, and toxicity mechanisms. Furthermore, it 
delves into the challenges and future prospects in this research domain. While 
some progress has been made in addressing this issue, there is still a need for 
more comprehensive assessments to fully understand the implications of metal-
based nanoparticles on the environment and human well-being.

KEYWORDS

metal-based NPs, exposure pathway, toxic effects, toxicity mechanisms, review

1 Introduction

Metal-based nanoparticles (NPs) are metal-based particles with nanometric dimensions. 
Due to their exceptionally large specific surface area, these particles possess exceptional 
physicochemical properties, including catalysis, light absorption and magnetic properties 
(1–3). Metal-based NPs have diverse applications in electronic devices, energy storage, and 
conversion (4–6). For example, FeN4 graphite nanosheets show promise for improving oxygen 
electrocatalytic activity and durability in zinc-air batteries (7); and gold NPs (AuNPs), for the 
photothermal enhancement of tumor vascular destruction (8). Copper sulfide NPs are an 
inexpensive and widely available plasma material that exhibits high photothermal conversion 
efficiency, making it suitable for solar evaporation and water purification applications (9). 
Fe7Se8 NPs supported on nitrogen-doped carbon nanofibers are utilized as a high-rate anode 
material for sodium ion batteries (10).

However, there are also potential risks to the environment and human well-being 
associated with the widespread use of metal-based NPs. Metal-based NPs can be released into 
the environment during manufacture, use and disposal and then cause ecotoxicity through 
various exposure pathways (11). The ecotoxicity of metal-based NPs refers to their adverse 

OPEN ACCESS

EDITED BY

Annangi Balasubramanyam,  
Autonomous University of Barcelona, Spain

REVIEWED BY

Becky Hess,  
Pacific Northwest National Laboratory (DOE), 
United States
Shamali De Silva,  
Environmental Protectio Authority (EPA), 
Australia
Yi Gao,  
Shanxi Medical University, China

*CORRESPONDENCE

Gang Zhang  
 zhanggangbbmm@126.com  

Xiangming Huang  
 13607717704@163.com  

Peizheng Xiong  
 xiongpeizheng@cdutcm.edu.cn

†These authors have contributed equally to 
this work

RECEIVED 22 February 2024
ACCEPTED 03 July 2024
PUBLISHED 15 July 2024

CITATION

Wang F, Zhou L, Mu D, Zhang H, Zhang G, 
Huang X and Xiong P (2024) Current research 
on ecotoxicity of metal-based nanoparticles: 
from exposure pathways, ecotoxicological 
effects to toxicity mechanisms.
Front. Public Health 12:1390099.
doi: 10.3389/fpubh.2024.1390099

COPYRIGHT

© 2024 Wang, Zhou, Mu, Zhang, Zhang, 
Huang and Xiong. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Review
PUBLISHED  15 July 2024
DOI  10.3389/fpubh.2024.1390099

51

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2024.1390099&domain=pdf&date_stamp=2024-07-15
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1390099/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1390099/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1390099/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1390099/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1390099/full
mailto:zhanggangbbmm@126.com
mailto:13607717704@163.com
mailto:xiongpeizheng@cdutcm.edu.cn
https://doi.org/10.3389/fpubh.2024.1390099
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2024.1390099


Wang et al.� 10.3389/fpubh.2024.1390099

Frontiers in Public Health 02 frontiersin.org

effects on the survival, growth, and reproduction of organisms in the 
environment, including microorganisms, plants, and animals. The 
mechanisms of ecotoxicity include physical and chemical effects such 
as oxidative stress, DNA damage, and Cell membrane damage (12, 
13). Research on the ecotoxicity of metal-based NPs is still in its 
infancy, and there are many challenges in the research process. The 
first challenge is how to measure the exposure of metal-based NPs to 
organisms. Metal-based NPs are difficult to measure due to their small 
size and aggregation properties. The second challenge is how to 
accurately assess the toxicity of metal-based NPs. Metal-based NPs 
have different toxicities in different organisms and under different 
conditions. Therefore, it is necessary to conduct toxicological 
experiments under controlled conditions to obtain accurate 
toxicity data.

In this review, we  summarize recent advances in ecotoxicity 
studies of metal-based NPs, including their exposure pathways, 
ecotoxicological effects and toxicity mechanisms. For metal-based 
NPs of natural origin, their toxicity may differ from that of synthetic 
NPs. Naturally occurring NPs are often encapsulated or stabilized by 
other substances found in nature, which may affect their biological 
activity and toxicity. In addition, natural NPs are often less 
concentrated and have evolved and dispersed in the environment over 
a long period of time, which may have reduced their potential toxicity. 
Since there are relatively few toxicity studies on natural metal-based 
NPs, we  focus on the ecotoxicity of engineered metal-based NPs. 
We also discuss the challenges and prospects for ecotoxicity studies of 
metal-based NPs and how to comprehensively assess the impact of 
metal-based NPs on the environment and human health (Figure 1).

2 Exposure pathways to metal-based 
NPs

Due to the distinctive characteristics of NPs, their impact on 
organisms is expected to manifest through various exposure pathways 
(14). NPs are small in size and can thus pass through the cell 
membrane, cytoplasm, and nucleus, entering directly into the cell 
interior, making its mode of exposure significantly different from that 
of other particles (15–17). Generally, NPs enter the organism through 
absorption, diffusion, contact, and binding. This exposure mode can 
largely reflect the direct effects of NPs on organisms.

2.1 Exposure pathways of aquatic 
organisms enrichment

The enrichment exposure pathway of metal-based NPs in aquatic 
ecosystems is a matter of great concern. These NPs may have 
far-reaching effects on aquatic organisms and the entire ecosystem due 
to their unique physical and chemical properties.

First, metal-based NPs can enter aquatic organisms through 
direct contact. Metal-based NPs enter freshwater ecosystems through 
wastewater discharges and agricultural runoff. These NPs, such as 
copper and gold, can be taken up by tissues within aquatic organisms 
and accumulate, leading to the transfer of metals from aquatic to 
terrestrial ecosystems (Figure 2) (18). In addition, the presence of 
organic matter can influence the behavior and toxicity of metal-
based NPs, for example, it can reduce the toxicity of AgNPs to 

bacteria and protozoa (19). This suggests that the bioaccumulation 
process of metal-based NPs is influenced by organic matter in 
the environment.

Metal-based NPs can also spread in aquatic ecosystems 
through biotransfer mechanisms. Biotransfer is the process by 
which one organism transfers substances from the environment to 
another organism (20). For example, AgNPs can be transferred 
and biomagnified to Tetrahymena thermophila through the food 
chain (19). In addition, the transformation, bioavailability, and 
toxic effects of metal-oxide-based NPs in fresh water on 
invertebrates suggest a potential risk of their delivery in the food 
chain (21).

Finally, the ability of metal-based NPs to bioaccumulate and 
biomagnify depends on a variety of factors, including the 
physicochemical properties of the NPs, the physiological properties of 
the organism, and environmental conditions. For example, studies of 
the accumulation dynamics of silver NPs with different coatings in 
simple freshwater food chains have shown that diet is the main uptake 
pathway for silver NPs (22). The ability of marine invertebrates to 
bioaccumulate heavy metals is also influenced by their physiological 
and biochemical processes.

2.2 Exposure pathways of plant enrichment

The pathways of plant uptake of metal-based NPs mainly include 
roots, leaves and other ways, which are affected by various factors such 
as the physicochemical properties of metal-based NPs, environmental 
conditions, and plant species and size.

2.2.1 Absorption of metal-based NPs by leaves
Metal-based NPs can enter the plant through adsorption and 

penetration on the leaf surface. For example, studies on gold NPs 
(AuNPs) have shown that smaller-sized AuNPs (3, 10 nm) adhere 
more readily to leaf surfaces and are able to penetrate more efficiently 
through the epidermal layer into the plant compared to 
polyvinylpyrrolidone (PVP) coatings (23). In addition, the 
physicochemical properties of the NPs, such as size, surface charge, 
and chemical composition, affect their uptake and transport in the leaf 
(Figure 3) (24).

2.2.2 Uptake of metal-based NPs by plant roots
Plant roots are another important pathway for metal-based NPs 

to enter the plant. The Fe(II) transporter protein encoded by the iron-
regulated transporter (IRT1) gene was found in Arabidopsis thaliana, 
suggesting that plants can take up divalent Fe ions from roots via 
specific transporter proteins (24). In addition, some metal-based NPs, 
such as AgNPs, can also enter the plant via root uptake and may affect 
the physiological activity of the plant (25).

2.2.3 Translocation of metal-based NPs in the 
plant vascular system

Once metal-based NPs enter the plant, they can be translocated 
through the plant’s vascular system. Studies have shown that metal-
based NPs can be efficiently translocated from leaves to other parts of 
the plant, such as shoots and roots (23). This process may involve 
complex mechanisms within the plant, including metal transport 
involving organic molecules (26).
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2.3 Exposure pathways of human and 
animal enrichment

Animals are exposed to metal-based NPs in a variety of ways, 
including inhalation, oral and dermal contact. These exposure modes 
reflect the behavior of NPs in the environment and their migration 
pathways within the organism, as well as their potential impact on the 
health of the organism. Therefore, these different exposure pathways 
need to be  considered when assessing the effects of NPs on 
animal health.

2.3.1 Inhalation exposure to metal-based NPs
Inhalation is a primary means of exposure to metal-based NPs, 

particularly in occupational settings or laboratories, where individuals 
may inhale them through respiration (27). Inhalation toxicity is 
mainly dependent on the physical and chemical properties of NPs, 
such as particle size, shape, surface chemistry, and biological activity 
(28, 29). The inhalation toxicity of metal-based NPs is closely related 
to their particle size, as demonstrated by inhalation toxicity studies. 
Generally, NPs with smaller particle sizes are more likely to penetrate 
the cell membrane and enter the cell interior, thus causing greater 

harm to the human body. Here, we summarize the inhalation exposure 
to some metal-based NPs (Table 1).

For instance, Zhu et al. (37) compared the toxic effects of iron 
oxide NPs of different sizes on the lungs and found that nanosized 
Fe2O3 particles increased the microvascular permeability and cell lysis 
in the lung epithelium and significantly interfered with coagulation 
parameters compared with submicron Fe2O3 particles. Another study 
found that the deposition distribution of AuNPs in the lungs was age 
independent, that AuNPs was mainly deposited in the lung bases and 
cleared by mucus, and that in the long term, the clearance of AuNPs 
in the lungs and secondary organs was mainly mediated by 
macrophages (38).

The production of industrially manufactured TiO2 NPs is on the 
rise, posing a growing threat of inhalation exposure to professionals 
and consumers. Kreyling et al. (39) investigated the 28-day biokinetic 
pattern of the inhaled nanoparticulate material TiO2 NPs and found 
that NPs are redistributed within the alveoli over a long period 
through alveolar macrophage-mediated scavenging and reentry into 
alveolar epithelial cells. In addition, significant time-dependent 
differences were found in the accumulation and clearance process of 
TiO2 NPs in vivo compared with aerosol particles of the same size. 

FIGURE 1

The schematic shows the ecotoxicity induced by metal-based NPs from the exposure pathways (grey), ecotoxicological effects (pink) to toxicity 
mechanisms (blue).
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In addition, Kim et al. (40) conducted research on inhaled nanomixes 
and found that the removal of Silver NPs (AgNPs) followed a 
two-phase model with rapid and slow dissolution rates, while the 
removal of AuNPs could be described by a single-phase model with a 
longer half-life. When exposed to both AuNPs and AgNPs, it was 
observed that the removal of AgNPs was affected by the presence of 
AuNPs. This change may be  due to various interactions between 
AgNPs and AuNPs that influenced the solubilization and/or 
mechanical removal of AgNPs in vivo. After inhalation exposure, a 

minor proportion of the inhaled AgNPs dose that reaches the lungs is 
rapidly eliminated within the initial 72 h. The remaining portion of the 
dose is then slowly excreted. It appears that the inhaled dose cleared 
from the lungs is transferred to the body’s circulation between 48 and 
72 h after inhalation (41).

2.3.2 Oral ingestion exposure to metal-based NPs
Metal-based NPs may be ingested during production and use, 

especially in food and pharmaceuticals. After oral ingestion of 

FIGURE 2

Schematic representation of the transfer of metal-based NPs from aquatic to terrestrial ecosystems (18). Copyright 2023, American chemical society.

FIGURE 3

A schematic diagram of the uptake and translocation of NPs in plants through foliar application or root exposure treatment (24). Copyright 2023, 
Molecular Diversity Preservation International (MDPI).
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metal-based NPs, they may adhere to the gastrointestinal tract 
mucosa, causing local inflammation, ulcers, and other adverse 
reactions, and enter the blood system, causing damage to other organs 
and tissues (42–44). For example, some studies have shown that oral 
administration of TiO2 NPs, which are commonly used as food 
additives in candies, chocolates, and beverages, can affect the course 
of acute colitis and exacerbate the onset, prolong the course, and 
inhibit the recovery of ulcerative colitis (Figure 4) (45).

By contrast, Jones et  al. (46) examined the gastrointestinal 
absorption of NPs in humans and in vitro using titanium dioxide as a 
model compound. They compared the behavior of NPs with larger 
particles and found no evidence that TiO2 NPs were more easily 
absorbed into the gut than micron-sized particles. Tang et al. (47) 
compared the detailed toxicity of copper NPs with CuCl2∙2H2O 
(copper ions) in vivo. They also examined the oral toxicity of four sizes 
of copper particles (30 n, 50 nm, 80 nm, and 1 μm) in rats. The 
researchers compared acute LD50 values of CuCl2∙2H2O and other 
copper materials under acute exposure. After administering a single 
equivalent dose (200 mg/kg) of five copper materials, researchers 
evaluated the kinetics of copper and found that the acute toxic effects 
produced by Cu NPs were strongly associated with particle size. 
Furthermore, repeated exposure to copper NPs produced toxic effects 
that differed from those observed with single exposure. The size of the 
NPs may be responsible for the organ-targeting effects. This could 
explain the observed differences in organ-specific accumulation. Here, 
we summarize the Oral ingestion exposure to some metal-based NPs 
(Table 2).

2.4 Dermal exposure to metal-based NPs

Metal-based NPs may have irritating effects on the skin and cause 
skin inflammation and allergic reactions. Some studies have shown 
that these NPs may adhere to the skin surface, have toxic effects on 
skin cells, and induce skin inflammation and allergic reactions. In 
addition, metal-based NPs may enter the body through broken skin 
and cause damage and irritation to deeper skin cells and tissues (52, 
53). AuNPs are used for many applications, but available data are 
lacking on their dermal absorption. Filon et  al. (54) conducted 
experiments utilizing the Franz diffusion cell technique to examine the 
penetration of intact and compromised human skin by AuNPs. Their 
findings revealed that AuNPs are capable of permeating human skin 
in an in vitro diffusion cell system. The growing utilization of palladium 
NPs (PdNPs) in various chemical processes, jewelry production, 
electronic gadgets, automotive catalytic converters, and medical uses 

has resulted in a notable rise in palladium exposure. Exposure of the 
skin to palladium can lead to allergic contact dermatitis. For example, 
Filon et al. (55) found that PdNPs can significantly penetrate the skin.

3 Toxic effects of metal-based NPs

The widespread use of metal-based NPs has also led to their 
potential toxic effects on organisms. Such ecotoxicity effects are closely 
related to factors such as the type, size, surface properties, and 
concentration and exposure duration of NPs. Herein, we summarize 
various ecotoxicity effects such as toxicity to aquatic organisms, plants, 
animals and human.

3.1 Toxicity of metal-based NPs to aquatic 
organisms

In recent years, scholars have begun to focus on the toxic effects 
of metal-based NPs on aquatic organisms, and have achieved certain 
results. Current studies have mainly concentrated on the toxic effects 
of metal-based NPs on aquatic animals. However, research has shown 
that these NPs have various effects on aquatic organisms (56–58). The 
toxic effects of metal-based NPs on aquatic organisms are complex 
and diverse. The degree of toxicity varies depending on the type of 
metal-based NPs, with each type possessing unique physical, chemical, 
morphological, and biological characteristics that influence their 
impact on aquatic organisms.

3.1.1 Toxicity to fish
Studies have shown that the amount of NPs in the water column 

and the form in which they are present in the water column can have 
an effect on fish. Marinho et al. (59) conducted an analysis on the 
impact of exposure to various AgNPs concentrations on zebrafish 
tissues, discovering a substantial reduction in acetylcholinesterase 
(AChE) activities in both the brain and muscle. Another study 
observed that exposure to AgNPs decreased levels of l-histidine, 
l-isoleucine, and l-phenylalanine, crucial amino acids in fish gills. 
This suggests that AgNPs may disrupt amino acid metabolism, 
potentially affecting fish health and function. Furthermore, AgNPs 
altered citric acid levels, possibly disrupting the citrate cycle, essential 
for energy production. This disruption could lead to decreased 
energy production and metabolic dysfunction in fish gills. The 
present findings stress the potential consequences of AgNPs on fish 
metabolism, emphasizing the requirement for more research on the 

TABLE 1  Inhalation exposure to some metal-based NPs.

Materials Dose (mg) Model Typical effects Ref.

In2O3 0.05–0.6 Rats Lung damage (30)

ZnO 0–1 Monkeys Pulmonary inflammatory (31)

La2O3 0.5–10 Rats Alveolar proteinosis (32)

NiO 0.1, 0.2 Rats Alveolar macrophages damage (33)

WC 10 Rats Pulmonary toxicity (34)

MnO2 15, 30 Rats Altered spontaneous cortical activity (35)

Fe2O3 0.014–0.128 Mice DNA strand breaks (36)
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effects of NP exposure on aquatic lifeforms (Figure 5) (60). Another 
study on TiO2 NPs revealed that the treatment dose of these NPs was 
directly linked to increased motility and bacterial population in 
water. Notably, the zebrafish exhibited a significant rise in the 
bacterial load in its gills and caudal fins (61).

3.1.2 Toxicity to shellfish
As an important component of aquatic animals, the health status 

of shellfish is of great significance in maintaining the stability of the 
entire ecosystem. Shellfish have a strong bioconcentration effect on 
heavy metals and other pollutants and show different degrees of 
enrichment patterns in different sea areas. Elevated levels of ZnO NPs 
had a significant impact on various physiological parameters in the 

thick-shelled mussel, Mytilus coruscus. These effects included a 
decrease in total hematocrit, phagocytosis, esterase, and lysosomal 
contents, as well as an increase in hematocrit and ROS levels. 
Furthermore, the combination of high ZnO NPs concentrations and 
low pH had a negative synergistic effect on the mussels (62). AgNPs 
are frequently used in consumer products due to their antimicrobial 
and exceptional properties, leading to increasing concerns about 
their potential impact on aquatic ecosystems. Duroudier et al. (62) 
found that PVP/PEI-coated AgNPs ingested through the food web 
accumulated significantly in mussel tissues and adversely affected cell 
and tissue levels in autumn and spring. Furthermore, the total 
hematocrit, phagocytosis, esterase, and lysosomal contents of mussels 
were found to decrease at low pH and elevated concentrations of TiO2 
NPs. Conversely, the hematocrit and ROS levels were observed to 
increase with increasing TiO2 NPs concentration under low pH 
conditions (63). The majority of recent studies have primarily 
concentrated on the toxic effects of individual metal NPs on mussels. 
However, further research is required to comprehensively examine 
the toxic impact of metal NPs on mussels as a whole.

3.2 Toxicity of metal-based NPs to plants

In recent years, the ecotoxicological response of plants to NPs has 
gradually become a research topic. The toxicity of metal-based NPs to 

FIGURE 4

Short-term intake of TiO2 NPs induces mild colitis and exacerbates the development of ulcerative colitis (45). Copyright 2023, Springer Nature.

TABLE 2  Oral ingestion exposure to some metal-based NPs.

Materials Dose 
(mg)

Model Typical effects Ref.

TiO2 0–300 Mice
Prolonging the UC 

course
(45)

Cu 60–180 Rats Fetal development (48)

MgO 250–1,000 Rats Genotoxicity (49)

Y2O3 30–480 Rats Apparent genotoxicity (50)

NiO 500–1,000 Rats Metabolic abnormality (51)
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plants is mainly manifested in two aspects: plant growth inhibition 
and the influence of plant metabolic processes.

3.2.1 Plant growth inhibition
Plant growth is affected by several factors, including soil, 

temperature, moisture, and light. Although soil is the most 
significant factor impacting plant growth, certain NPs can also 
exhibit inhibitory effects on plants. During the early growth stage, 
the inhibitory effect of NPs on plants is primarily manifest as a 
suppression of germination and seedling development (64, 65). For 
example, Zhang et al. (66) carried out research into the influence 
of ZnO NPs on the germination of seeds and the growth of roots 
in maize and cucumber. Their findings indicated that the inhibitory 
effect of ZnO NPs on root growth in maize was predominantly 
attributed to the NPs, as opposed to the Zn2+ ions. Conversely, the 
Zn ions released from ZnO only inhibited root elongation in 
cucumber. The toxicity level of ZnO NPs was found to be dependent 
on its concentration (67). The phytotoxicity ranking shows that 
CuO NPs have the highest toxicity, followed by the binary mixture 
(CuO + ZnO) NPs, and then ZnO NPs. This significant toxicity and 
uptake in germinating seedlings is observed when exposure 
concentrations exceed 10 mg/L (Figure 6) (68).

3.2.2 Influence on plant metabolic processes
When metal-based NPs are introduced into plants, they enter 

the cell and affect plant metabolic processes by altering the 
intracellular environment. Chloroplasts, mitochondria, and 
peroxisomes, which have high oxidative metabolic activity and 
electron flow rates, are the primary sources of ROS in plant cells. 
The production of ROS by these organelles can lead to lipid 
peroxidation, membrane fluidity and permeability changes, and 
nutrient acquisition difficulties, ultimately impeding overall plant 
growth and development. NPs can also affect these processes, 
causing further damage to plant cells (69). In addition, metal-
based NPs can affect the metabolites of secondary metabolites 
such as amino acids (Figure 7) (70). NPs have the potential to 
induce DNA damage, including DNA mismatch damage, DNA 
strand breaks, and chromosome damage. TiO2 NPs are known to 
be especially detrimental in this regard (70).

3.3 Toxicity of metal-based NPs to animals

The toxicity of NPs can be attributed to their physicochemical 
properties, such as size, surface chemistry, and redox potential, and is 
associated with the dissolution and release of toxic metals. Metal-
based NPs are significantly toxic to human, including to the immune 
system (48, 71, 72).

For example, metal-based NPs can cause structural and functional 
damages to the ovary and testis. One research study discovered that 
Cu NPs induced both intrinsic and extrinsic apoptotic pathways in 
oxidative stress-induced ovarian dysfunction and controlled important 
ovarian genes, leading to harm to ovarian tissue (73). Subsequent 
study has shown that Cu NPs are a greater threat to reproduction than 
copper particles. This is due to the direct damage caused by Cu NPs to 
the ovary and their impact on ovarian hormone metabolism (74). Yang 
et al. (75) discovered that exposure to CdSe/ZnS quantum dots impairs 
the repair of double-strand breaks in spermatocytes, disrupts meiotic 
progression, and causes apoptosis and reduced sperm production.

Indeed, the potential for NPs to cross the alveolar-capillary barrier 
and enter the bloodstream, thereby reaching other organs, is a legitimate 
concern. For example, Nemmar et al. (76) discovered that mice exposed 
to CeO2 NPs exhibited a dose-dependent infiltration of inflammatory 
cells, including macrophages and neutrophils, in their lung sections. 
These findings suggest that acute lung exposure to CeO2 NPs triggers 
pulmonary and systemic inflammation, oxidative stress, and promotes 
in vivo thrombus formation. Similarly, TiO2 NPs exhibit size-dependent 
genotoxicity, with smaller particles being more significantly toxic (77). 
Kim et  al. (30) found that a single inhalation exposure to anosized 
indium oxide (In3O2) resulted in worsening of lung damage such as 
chronic active inflammation, foamy macrophage infiltration, and 
granulomas. Early-onset and persistent pulmonary alveolar proteosis, 
even at very low doses, indicates an urgent need to reassess occupationally 
recommended exposure limits for In3O2 NPs to protect workers.

Compared with ordinary metal ions, metal-based NPs are more 
likely to penetrate into cell membranes or cells, causing excessive 
generation of intracellular superoxide anions, damaging membrane 
integrity and thus causing oxidative damage leading to cell death, and 
resulting in toxic effects on the digestive and nervous systems, among 
others (78, 79).

FIGURE 5

Schematic diagram of nano-silver toxicity in carp gills (60). Copyright 2021, Elsevier.
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3.4 Toxicity of metal-based NPs to human

These metal-based NPs, particularly noble metals such as gold, 
silver and platinum, have shown significant potential in the treatment 
of various diseases, including cancer, pneumonia and Parkinson’s 
disease, due to their unique optoelectronic properties and ease of 
surface functionalisation (80, 81).

However, metal-based NPs can enter the human body through 
multiple pathways and affect different tissues and systems. Its toxic 

effects are multifaceted and include effects on the immune system, 
cytotoxicity and genotoxicity. For example, copper oxide NPs are able 
to activate the production of reactive oxygen species and 
pro-inflammatory cytokines in human lung epithelial cells (82), 
whereas silver, gold, and platinum NPs can enter the human body 
through therapeutic applications and cause damage to erythrocytes, 
including hemolysis, agglutination, and membrane damage (83). In 
addition, metal-based NPs can affect the systemic system by being 
deposited through the respiratory tract and taken up by phagocytes in 

FIGURE 6

Images showing radish seedlings exposed to varying concentrations of different NPs (68). Copyright 2019, Springer Nature.

FIGURE 7

Diagram of the uptake of PbS NPs in plants (70). Copyright 2020, Elsevier.
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the lung (84). It can enter the human body through skin exposure, and 
although the skin barrier prevent the penetration of NPs to some 
extent, it has been shown that NPs are able to cross the skin barrier 
under certain conditions (85, 86).

Notably, the morphology of metal-based nanoparticles has a 
significant effect on the toxicity of skin pathogens and HaCaT 
keratinocytes. It was shown that the toxicity of different shapes of 
AgNPs to bacteria and HaCaT cells varied, with truncated plate-
shaped AgNPs showing the highest cytotoxicity (87). The 
biodistribution and metabolic consequences of metal-based NPs have 
also been the focus of research. Several studies have shown that metal-
based NPs can migrate in vivo to locations far from the site of 
administration, requiring careful monitoring of their migration 
pathways and potential toxic effects (88). For example, inhaled 
ultrafine manganese oxide NPs can migrate to the central nervous 
system via the olfactory nerve pathway, causing inflammatory 
changes (89).

For human exposure assessment of metal-based NPs, a 
comprehensive approach is needed to consider their safety. For 
example, a study of Italian nanomaterials workers developed a human 
biomonitoring method based on single-particle inductively coupled 
plasma mass spectrometry to assess the level of NPs exposure in the 
workplace (Figure 8) (90).

4 Toxicity mechanisms of metal-based 
NPs

The mechanism of toxicity for metal-based NPs is multifaceted 
and intricate. In terms of the interaction between NPs and living 
organisms, the size and shape of metal-based NPs have a 
significant impact on their interactions with cells. For instance, 
smaller NPs tend to accumulate more easily in cells, potentially 
causing damage to cellular structures and disrupting normal cell 
function. Furthermore, the surface properties of metal-based NPs 
can influence their interactions with proteins and other 

biomolecules, leading to adverse effects on cell health. Therefore, 
a better understanding of the mechanisms underlying the toxicity 
of metal-based NPs is essential for the development of effective 
safety measures and the design of more biocompatible materials 
(91, 92).

4.1 Cell membrane damage

The cell membrane is a barrier for the exchange of substances 
inside and outside the cell, preventing harmful substances from 
entering the cell and protecting the internal structure of the cell. 
Studies have shown that metal-based NPs may cause direct damage to 
the cell membrane, resulting in altered cell membrane permeability 
(93), the disruption of cell membrane integrity (94), and the alteration 
of cell membrane structure (95), among others. For example, zinc 
oxide NPs induce toxicity by affecting cell wall integrity pathways, 
mitochondrial function, and lipid homeostasis in Saccharomyces 
cerevisiae (96). Chen et al. (12) studied the biological effects of TiO2 
NPs on the unicellular green alga Chlamydomonas reinhardtii. The cell 
surface morphology of Chlamydomonas reinhardtii was found to 
be  altered on scanning electron microscopy, indicating that 
photocatalytic TiO2 NPs disrupted the cell surface.

4.2 Intracellular oxidative stress

In a normal environment, intracellular ROS are generated at a low 
production rate and rapidly eliminated by antioxidant defense systems 
such as glutathione and antioxidant enzymes, thus maintaining cellular 
redox balance. However, when ROS are overproduced, the redox 
reaction becomes unbalanced, triggering a series of biochemical 
reactions that lead to cellular damage (97, 98). The mechanism of action 
of metal-based NPs is, on the one hand, to increase the production of 
ROS, and the generation of excess ROS is the precursor to oxidative 
damage effects. Direct contact of NPs with the mitochondria or storage 

FIGURE 8

A human biomonitoring method based on single particle inductively coupled plasma mass spectrometry (90). Copyright 2023, Molecular Diversity 
Preservation International (MDPI).
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in the acidic environment of lysosomes allows for the direct cellular 
production of ROS (99, 100). On the other hand, metal-based NPs 
cause the intracellular antioxidant enzyme system to be underproduced. 
The antioxidant enzyme system includes superoxide dismutase, 
catalase, and glutathione peroxidase (101, 102). For example, when Ag 
NPs are used as a stressor, Cryptobacterium hidradii nematodes can 
regulate oxidative stress through the p38 MAPK pathway (103).

4.3 Cellular inflammation

NF-κB-regulated inflammatory response plays an important role 
in the differentiation, value addition, and expression of biological 
proteins and biological enzymes. When mouse hearts were exposed 
to TiO2 NPs, cardiomyocyte swelling and inflammatory cell infiltration 
were observed, as a significant increase in NF-κB promoted the 
expression of IL-1β and TNF-α (104). Another study revealed that 
ZnO NPs play an important role in regulating the inflammatory 
response of vascular endothelial cells through NF-κB signaling, which 
may be important for the treatment of vascular diseases (105). The 
inflammatory response of ZnO NPs was also confirmed in another 
study (106). In addition, metal oxide NPs can activate human lung 
epithelial cells to produce ROS and pro-inflammatory cytokines such 
as interleukin 8 and granulocyte-macrophage colony-stimulating 
factor, which activate and recruit immune cells (82).

4.4 Regulation of gene expression

Abnormalities in gene expression levels can be  caused by 
mutations, environmental factors, or dysregulation of intracellular 
regulatory mechanisms (107, 108). For example, metal-based NPs may 
interfere with gene transcription, affecting the binding of DNA to 
RNA polymerase, leading to abnormal gene transcription, which in 
turn affects protein expression and function (109). Alternatively, they 
may affect the DNA methylation status, which in turn affects the 
regulation of gene expression. Methylation is an important mode of 
gene expression regulation, and metal-based NPs may affect gene 
expression and function by altering the DNA methylation state (13).

5 Challenges and prospects for the 
ecotoxicity of metal-based NPs

Some progress has been made in the research on the ecotoxicity of 
metal-based NPs, but there are still many challenges and problems to 
be solved. First, the ecotoxicity assessment of metal-based NPs requires 
an integrated assessment approach. Integrated biomarker response has 
been shown to be an effective tool for assessing the toxic effects of 
metal-based NPs on environmental biomass. In addition, computational 
toxicology applications such as quantitative structure–activity 
relationships and read across techniques are important for predicting 
nanotoxicity and filling data gaps. Second, it is necessary to strengthen 
the research on the interactions and mechanisms between metal-based 
NPs and living organisms, including their direct effects on living 
organisms and potential risks. In addition, experimental studies and 
field investigations should be actively conducted to assess the potential 
impacts of metal-based NPs on the environment and human health.

In order to manage the ecotoxicity risks of metal-based NPs, 
appropriate regulatory measures need to be developed. This includes 
the classification and labelling of nanomaterials and the setting of 
hazard threshold levels for human health and the environment. 
Furthermore, research should focus on increasing the body’s resistance 
to the harmful effects of metal-based nanoparticles in order to 
mitigate their potential toxic effects.

To achieve this goal, interdisciplinary collaboration is essential, 
involving researchers from a wide range of fields, including chemistry, 
physics, biology, and environmental sciences, to promote the in-depth 
development of ecotoxicity research on metal-based NPs. Looking 
ahead, with continuous progress and innovation in science and 
technology, we are confident that the impacts of metal-based NPs on 
the environment and human health can be better understood and 
controlled. At the same time, there is a need to strengthen public 
education on scientific literacy, improve public awareness and 
understanding of nanotechnology, and promote the sustainable 
development and application of nanotechnology.
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Exploring the association 
between atmospheric pollutants 
and preterm birth risk in a river 
valley city
Jiajia Gu , Jimin Li , Lang Liu , Meiying Cao , Xi Tian , Zeqi Wang  
and Jinwei He *

Medical School of Yan’an University, Yan’an, China

Objective: To investigate the association between exposure to atmospheric 
pollutants and preterm birth in a river valley-type city and its critical exposure 
windows.

Methods: A retrospective cohort study was used to collect data from the 
medical records of preterm and full-term deliveries in two hospitals in urban 
areas of a typical river valley-type city from January 2018 to December 2019. A 
total of 7,288 cases were included in the study with general information such 
as pregnancy times, the number of cesarean sections, occupation, season of 
conception and regularity of the menstrual cycle. And confounding factors 
affecting preterm birth were inferred using the chi-square test. The effects of 
exposure to each pollutant, including particulate matter 2.5 (PM2.5), particulate 
matter 10 (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide 
(CO) and ozone (O3), during pregnancy on preterm birth and the main exposure 
windows were explored by establishing a logistic regression model with 
pollutants introduced as continuous variables.

Results: Maternal age, pregnancy times, number of births, number of cesarean 
sections, season of conception, complications diseases, comorbidities diseases, 
hypertension disorder of pregnancy and neonatal low birth weight of the 
newborn were significantly different between preterm and term pregnant 
women. Logistic regression analysis after adjusting for the above confounders 
showed that the risk of preterm birth increases by 0.9, 0.6, 2.4% in T2 and by 1.0, 
0.9, 2.5% in T3 for each 10  μg/m3 increase in PM2.5, PM10, NO2 concentrations, 
respectively. The risk of preterm birth increases by 4.3% in T2 for each 10  μg/m3 
increase in SO2 concentrations. The risk of preterm birth increases by 123.5% in T2 
and increases by 188.5% in T3 for each 10  mg/m3 increase in CO concentrations.

Conclusion: Maternal exposure to PM2.5, PM10, NO2, CO was associated with 
increased risk on preterm birth in mid-pregnancy (T2) and late pregnancy (T3), 
SO2 exposure was associated with increased risk on preterm birth in mid-
pregnancy (T2).
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1 Introduction

There are approximately 13.4 million preterm births globally in 
2020, accounting for more than one-tenth of all newborns (1). 
Although the number of preterm births has declined compared to 
2010, there has been no measurable change in the global preterm birth 
rate during this decade (1). In China, the status of preterm birth is not 
encouraging. Research data show that China’s preterm birth rate is 
12.0% in 2014, the second highest in the world (2). With the opening 
of China’s two-child policy in 2016, the preterm birth rate has shown 
a trend of gradual increase (3), and the incidence is not balanced 
between regions (4).

Rising rates of preterm birth are accompanied by an increase 
in the number of children under the age of five who die from 
preterm birth complications, with statistics indicating that 
approximately 900,000 children worldwide have died from preterm 
birth complications in 2019 (5). The infants who survive from 
preterm birth events also face great risks, such as lifelong 
disabilities, and these surviving preterm infants are prone to 
comorbidities such as cerebral palsy, progressive developmental 
lag, chronic lung disease or neurological sequelae (6, 7), which can 
impose a heavy burden on both families and society in terms of 
mental and economic aspects. Preterm labor is considered to 
be  triggered by multiple mechanisms, including infection or 
inflammation, uteroplacental ischemia or hemorrhage, uterine 
overstretching, stress, oxidative stress, and other immune-mediated 
processes (8, 9). Besides, there is evidence that preterm birth is the 
result of the interaction of multiple risk factors (10), and in 
addition to well-known risk factors such as maternal demographics 
(11, 12), psychological characteristics (13), pregnancy 
comorbidities (14), and genetic characteristics (15), epidemiological 
studies have suggested that preterm birth is associated with 
atmospheric pollutants (16–18).

In China, with the rapid economic development of 
industrialization and urbanization in the past decades, environmental 
problems have become increasingly serious (19). These are dominated 
by increasing atmospheric pollution and particulate matter in the 
environment, with PM2.5, PM10, SO2, O3, NO2 and CO being the main 
air pollutants. A study on air pollutants conducted in 2015 found that 
the rate of air pollution and persistent air pollution in northern China 
is much higher than that in the south, especially in cities in the Bohai 
Rim and Xinjiang Province (20). It can be seen that there is spatial 
heterogeneity in air pollutant levels in different cities, especially in the 
northern cities of China. Therefore, a typical river valley city located 
in Northwest China was selected for this study, which develops on the 
axis of the Weihe Plain and is dominated by mountains and hills, with 
a slightly more complex geological structure than other surrounding 
cities. The city has a long heating period due to cold winters, which 
increases the amount of coal and carbon consumed, and the pollutants 
released from coal combustion are not easily dispersed due to the 
unique geographic characteristics of the city. It is also due to the 
frequent occurrence of unfavorable weather such as fog and 
inversions, which further contribute to the increase in 
pollutant concentrations.

This study investigates the association between exposure to 
pollutants and the occurrence of preterm birth in river basin cities and 
the main exposure windows, with a view to inform potential risk 
factors of preterm births.

2 Materials and methods

2.1 Study participants

We collect information on all pregnant women with preterm and 
full-term births from January 2018 to December 2019 from two 
hospitals in Baoji city. This includes general maternal information 
(name, age, date of admission, occupation, gestational address), 
current pregnancy (pregnancy times, number of births, number of 
cesarean sections, last menstrual period, season, regularity of 
menstrual cycle, mode of delivery in this case), pregnancy outcome, 
neonatal information [neonatal date of birth, gestational age 
(gestational age was usually calculated from the first day of the 
mother’s last menstrual period), weight (g), number of births], 
complications diseases, hypertensive disorder of pregnancy, 
comorbidity diseases and passive smoking.

Pregnancy comorbidities are a condition in which a pregnant 
woman develops other diseases in addition to the symptoms 
associated with pregnancy, i.e., a state in which a pregnant woman is 
comorbid with one or more diseases. Including combined 
cardiovascular disease, combined hematological disease, combined 
respiratory disease, combined gastrointestinal disease, combined 
urological disease, combined endocrine disease, combined infectious 
disease and combined neoplasm.

Pregnancy complications refer to a variety of conditions that 
occur during pregnancy that may have some impact on the health of 
the mother and the births. These include placenta previa, placental 
abruption, premature rupture of membranes, low amniotic fluid, fetal 
distress and so on.

Inclusion criteria: ① local residence for more than 1 year and 
detailed address; ② no assisted conception (exclusion of fertility 
achieved through unnatural conception and with the help of medical 
technology); ③ age greater than 18 years old; ④ no acute or chronic 
diseases; ⑤ the births was born as a single live birth; ⑥ no 
communication barriers (communication barriers, including hearing 
or visual impairments, neurological disorders or psychological 
disorders, etc.). Exclusion criteria: ① not residing in Baoji city during 
pregnancy or residing locally for less than 1 year; ② assisted conception 
(e.g., in vitro fertilization (IVF)); ③ unmarried women; ④ ectopic 
pregnancy; ⑤ births born as twin or multiple births.

In the case information collected in this retrospective cohort 
study, a total of 7,288 cases were included in the study, of which 372 
cases were preterm pregnant women and 6,916 cases were full-term 
pregnant women. Preterm births were selected from those delivered 
at 28 weeks to less than 37 weeks of gestation from the first day of the 
last menstrual period, and term births were selected from those 
delivered at 37 weeks of gestation.

The questionnaire used to collect information on maternity was 
designed with a clear research objective combined with existing 
research findings and expertise. A small-scale pre-test was conducted 
before its official use, and the questionnaire was further revised and 
improved based on the test results. Validity analyses were also 
conducted to assess the reasonableness of the questionnaire design as 
well as to verify the reliability of the questionnaire through reliability 
analyses. Finally, in order to ensure the high quality of the information 
collected, all investigators were required to receive professional 
training before entering the above hospitals, obtaining the case records 
of all participants, and completing the questionnaire.
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2.2 Methods

2.2.1 Air pollutant exposure assessment
A total of 7 air monitoring stations have been set up in Baoji 

city, the distribution of which can be seen at Figure 1. The actual 
straight-line distance between the pregnant women eventually 
included in the study and each of the above air monitoring stations 
was calculated based on the latitude and longitude of their main 
residential address during pregnancy, and then the nearest 
monitoring station to each of the pregnant women’s residential 
address was selected. The air pollutant concentrations monitored 
at that station were used as the exposure of air pollutants for that 
pregnant woman during her pregnancy period. The air pollutant 
data was obtained from the National Urban Air Quality Real-Time 
Distribution System (https://air.cnemc.cn:18007/) of the China 
Environmental Monitoring General Station of the Ministry of 
Environmental Protection (MEP), and included the concentrations 
of six pollutants, namely, PM2.5, PM10, O3, SO2, CO and NO2. The 
PM2.5, PM10, SO2, CO and NO2 are 24 h moving averages, and O3 is 
the maximum 8 h moving average. To determine the pollutant 
exposure window, we divided the course of pregnancy into three 
stages: 0–12 weeks of gestation was defined as early pregnancy 
(T1), 13–27 weeks as mid-pregnancy (T2), and 28 weeks to the end 
of pregnancy as late pregnancy (T3) (21, 22). According to the time 
period corresponding to the different exposure windows of each 

pregnant women, the daily moving average of each pollutant in 
that time period was found separately, and after averaging, the air 
pollutant exposure level of the pregnant women in a certain 
exposure window was modelled accordingly, so as to determine 
the susceptibility windows for various air pollutants 
during pregnancy.

2.2.2 Statistical methods
Data was collated using Excel and analyzed using SPSS 20.0. 

Normality test was performed for pollutants and the levels of 
exposure to pollutants in different exposure windows were 
described using mean, standard deviation (SD), median, and 
interquartile range (IQR). General maternal data was compared 
using one-way chi-square test to determine whether there is a 
difference between pregnant women with preterm versus term 
births. If they do, they can be considered and evaluated as potential 
confounders and were introduced as covariates in the subsequent 
logistic regression model. After the test, confounding factors are 
maternal age, pregnancy times, number of births, number of 
cesarean sections, season of conception, complications disease, 
comorbidity diseases, hypertensive disorder complicating 
pregnancy and low birth weight. For missing data, it was treated as 
discrete missing values 999  in SPSS software. The relationship 
between each pollutant and preterm birth and the main exposure 
windows were explored by logistic regression modelling, adjusting 

FIGURE 1

Distribution of air quality monitoring stations and topographic map of Baoji city.
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for confounding factors after introducing the pollutant as a 
continuous variable (α = 0.05).

3 Results

3.1 General description of air pollution in 
Baoji city 2017–2019

The air pollutant exposure window for some of the pregnant 
women who gave birth in 2018 was in 2017, so 2017 was included 
when describing the air pollution profile. And we compared the 
concentration of each pollutant with the national secondary 
standard (Level II), respectively. The national secondary standards 
of PM2.5, PM10, SO2, NO2, CO and O3 are respectively 35 μg/m3, 
70μg/m3, 60μg/m3, 40μg/m3, 4mg/m3, 200μg/m3 (Table 1). During 
the period of 2017–2019, PM2.5 and PM10 concentrations were 
significantly higher than the national secondary standards most of 
the time; SO2 and CO concentrations were always lower than the 
national secondary standards; NO2 concentrations showed an 
unstable situation of being sometimes higher and sometimes lower 
than the national secondary standards; and O3 concentrations, 
although they were almost always lower than the national 

secondary standards, showed a different pattern from the other 
pollutants: with peaks in the summer and drops in the winter 
(Figure 2).

3.2 Comparative analysis of general 
maternal information

Analysis of the general data of pregnant women revealed that: 
pregnant women older than 30 years are more likely to have preterm 
births; pregnant women with more than one pregnancy times, births 
and cesarean sections are prone to have preterm births; compared 
with full-term pregnant women, season of conception of preterm 
pregnant women is concentrated in winter (29.3%) and spring 
(27.7%); the proportion of preterm pregnant women suffering from 
pregnancy complications (93.3%), hypertensive disorders of 
pregnancy (18.8%), and pregnancy comorbidities (77.7%) is higher 
than that of full-term pregnant women. At the same time, preterm 
births are more likely to result in low birth weight (46.2%).

Maternal age, pregnancy times, number of births, number of 
cesarean sections, season of conception, complications diseases, 
comorbidities diseases, hypertension disorder of pregnancy, and 
neonatal low birth weight of the newborn were significantly (P < 0.05) 

TABLE 1  Description of exposure levels in preterm and term women across exposure windows in 2017–2019.

Pollutants Preterm birth Full term birth China 
ambient air 

quality 
standards GB 
3095–2012

Mean SD Median IQR Mean SD Median IQR

Trimester 1 Level II

PM2.5 (μg/m3) 54.67 24.82 47.29 46.88 53.79 24.18 46.82 45.14 35

PM10 (μg/m3) 100.71 31.16 103.37 56.59 99.48 31.37 100.89 61.32 70

SO2 (μg/m3) 8.81 3.99 7.56 4.31 8.83 4.06 7.85 4.25 60

NO2 (μg/m3) 37.13 8.06 35.84 14.12 37.29 8.14 35.98 14.19 40

CO (mg/m3) 0.88 0.23 0.8 0.42 0.87 0.23 0.79 0.41 4

O3 (μg/m3) 86.03 32.85 90.65 56.51 85.22 35.15 89.64 60.57 200

Trimester 2 #

PM2.5 (μg/m3) 50.88 25.48 41.88 45.02 54.51 25.36 49.19 47.64 #

PM10 (μg/m3) 94.64 34.06 91.49 62.68 99.50 32.96 102.93 61.39 #

SO2 (μg/m3) 8.52 4.37 6.97 4.85 8.80 4.24 7.59 4.86 #

NO2 (μg/m3) 35.73 9.46 34.52 15.77 36.96 9.06 36.81 14.55 #

CO (mg/m3) 0.83 0.28 0.71 0.43 0.86 0.26 0.84 0.46 #

O3 (μg/m3) 83.80 33.46 96.1 57.69 80.44 32.19 85.39 57.24 #

Trimester 3 #

PM2.5 (μg/m3) 52.17 28.51 42.82 51.69 53.63 27.45 43.64 51.32 #

PM10 (μg/m3) 95.42 39.42 93.73 74.95 97.62 36.45 98.64 69.04 #

SO2 (μg/m3) 8.71 4.75 6.93 4.72 8.77 4.49 7.35 4.76 #

NO2 (μg/m3) 35.97 10.36 35.82 17.45 36.25 9.65 35.66 16.38 #

CO (mg/m3) 0.80 0.30 0.69 0.44 0.82 0.29 0.69 0.46 #

O3 (μg/m3) 82.79 31.85 88.48 53.67 83.23 30.87 90.25 52.72 #

0–12 weeks of gestation was defined as early pregnancy (T1), 13–27 weeks as mid-pregnancy (T2), and 28 weeks to the end of pregnancy as late pregnancy (T3). #: No data or information at this 
location. Level II is a standard, which means acceptable air quality, but some pollutants may have a weak impact on the health of a very small number of unusually sensitive people.
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different between preterm and term pregnant women. Maternal 
occupation, regularity of the menstrual cycle and passive smoking did 
not differ significantly between preterm and term pregnant women. 
And we  did not model newborn sex and other variables, such as 
mother’s education and maternal smoking during pregnancy, because 
of the difficulty to obtain the data in retrospective cohort study and 
large number of missing values (Table 2).

3.3 Comparison of pollutant exposure 
concentrations in preterm pregnant 
women versus term pregnant women

In early pregnancy, mid-pregnancy and late pregnancy, the mean 
levels of exposure concentrations of PM2.5 and PM10 for preterm and 
full-term pregnant women were higher than the national secondary 
standard (Level II), while the concentrations of other pollutants were 
lower than the national secondary standard.

In early pregnancy, the mean levels of PM2.5, PM10, CO and O3 
exposure of preterm pregnant women were 54.67 μg/m3, 100.71 μg/m3, 
0.88 mg/m3 and 86.03 μg/m3, respectively, which were slightly higher 
than those of term pregnant women. The mean levels of SO2 and NO2 
exposure were higher in term than in preterm women. In 
mid-pregnancy, the mean levels of PM2.5, PM10, SO2, NO2 and CO 
exposure for preterm pregnant women were lower than those for term 
pregnant women, and only the mean level of O3 exposure was higher 
than that for term pregnant women, at 83.80 μg/m3. In the late 

pregnancy, the mean levels of PM2.5, PM10, SO2, NO2, CO and O3 
exposure of preterm women were all lower than those of term 
pregnant women. Differences in pollutant exposure levels in the three 
exposure windows between the two groups may be due to the fact that 
full-term pregnant women are generally exposed for a longer period 
of time in late pregnancy than preterm pregnant women, which results 
in higher exposure levels of each pollutant for full-term pregnant 
women than for preterm pregnant women in late pregnancy (Table 1).

3.4 Logistic regression analysis of preterm 
birth

Before adjustment, only PM2.5, PM10, NO2, CO exposure was 
associated with increased risk on preterm birth in mid-pregnancy, and 
exposure to the other pollutants had no association with preterm birth 
in each exposure window. In multivariate analyses of single-pollutant 
models, exposure to PM2.5, PM10, NO2, CO was associated with increased 
risk on preterm birth in mid-pregnancy (T2) and late pregnancy (T3), 
SO2 exposure was associated with increased risk on preterm birth in 
mid-pregnancy (T2). The risk of preterm birth increased by 0.9, 0.6, 2.4% 
in T2 and by 1.0, 0.9, 2.5% in T3 for each 10 μg/m3 increase in PM2.5, PM10, 
NO2 concentrations, respectively. The risk of preterm birth increased by 
4.3% in T2 for each 10 μg/m3 increase in SO2. The risk of preterm birth 
increased by 123.5% in T2 and by 188.5% in T3 for each 10 mg/m3 
increase in CO concentrations. Other pollutants were not associated 
with increased risk on preterm birth in 3 exposure windows (Table 3).

FIGURE 2

Daily variation of air pollutant concentrations in Baoji city, 2017–2019.
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4 Discussion

In this retrospective cohort study, we investigated the association 
between air pollutants and preterm birth in Baoji city in 2018–2019. The 
study showed that preterm births were conceived more often in spring 

and winter compared to full-term births. This may be due to the fact that 
Baoji city has a warm-temperate monsoon climate with cold and dry 
winters, so coal combustion increases during the collective heating phase 
and pollutants are released, which results in higher concentrations of air 
pollutants in spring and winter than in other seasons. There were 

TABLE 2  Comparative analysis of the general data of preterm and term pregnant women.

Covariates Preterm birth Full term birth p

(n =  372) (n =  6,916)

N P (%) N P (%)

Mean maternal age 30.07 29.29 #

Maternal age range 20–43 18–46 #

Maternal age (years)

18–19 0 0.0 22 0.3

0.007

20–24 40 10.8 795 11.5

25–29 144 38.7 3,089 44.7

30–34 123 33.1 2,201 31.8

35 65 17.5 809 11.7

Pregnancy times
1 102 27.4 2,436 35.2

0.002
>1 270 72.6 4,478 64.7

Number of births
≤1 174 46.8 3,789 54.8

0.002
>1 198 53.2 3,118 45.1

Number of cesarean sections
≤1 280 75.3 5,587 80.8

0.008
>1 92 24.7 1,326 19.2

Occupation

National civil servants 4 1.1 117 1.7

0.373

Professional and technical staff 58 15.6 1,162 16.8

Business and services 84 22.6 1,241 17.9

Agriculture 63 16.9 1,338 19.3

Production and transport 8 2.2 164 2.4

Other special occupations 66 17.7 1,163 16.8

Unemployed 73 19.6 1,312 19

Season of conception

Spring 103 27.7 1,712 24.8

0.034
Summer 85 22.8 1,774 25.7

Fall 75 20.2 1,726 25

Winter 109 29.3 1,704 24.6

Regularity of the menstrual cycle
Regularity 366 98.4 6,791 98.2

0.601
Irregularity 4 1.1 97 1.4

Pregnancy complications
Yes 347 93.3 6,077 87.9

0.002
No 25 6.7 839 12.1

Hypertensive disorder of 

pregnancy

Yes 70 18.8 353 5.1
0.000

No 261 70.2 5,751 83.2

Pregnancy comorbidities
Yes 289 77.7 4,804 69.5

0.001
No 83 22.3 2,112 30.5

Low birth weight
≥2,500 g 197 53 6,808 98.4

0.000
<2,500 g 172 46.2 84 1.2

Passive smoking
Yes 10 2.7 160 2.3

0.769
No 274 73.7 4,833 69.9

P (%) means percentage of the number of people with each categorical factor in the preterm and term birth groups, respectively. p-value comes from the chi-square test, at the significance level 
of α = 0.05, the smaller the p-value, the more reason there is to believe that a factor differs between the two groups of pregnant women. Pregnancy times include the current pregnancy. 
Pregnancy comorbidities are a condition in which a pregnant woman develops other diseases in addition to the symptoms associated with pregnancy. Pregnancy complications refer to a 
variety of conditions that occur during pregnancy that may have some impact on the health of the mother and the births. #: No data or information at this location.
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significant differences between preterm births and full-term births with 
respect to maternal age, pregnancy times, number of births, number of 
cesarean sections, season of conception, complications diseases, 
comorbidities diseases, hypertension disorder of pregnancy and neonatal 
low birth weight. In multivariate single pollutant models, exposure to 
PM2.5, PM10, NO2, CO was associated with increased risk on preterm 
birth in mid-pregnancy and late pregnancy, and SO2 exposure was 
associated with increased risk on preterm birth in mid-pregnancy. The 
risk of preterm birth increased by 0.9, 0.6, 2.4% in T2 and by 1.0, 0.9, 2.5% 
in T3 for each 10 μg/m3 increase in PM2.5, PM10, NO2 concentrations, 
respectively. The risk of preterm birth increased by 4.3% in T2 for each 
10 μg/m3 increase in SO2. The risk of preterm birth increased by 123.5% 
in T2 and by 188.5% in T3 for each 10 mg/m3 increase in CO 
concentrations. There was no association between exposure to O3 and 
preterm birth in any stage of pregnancy.

These results are consistent with findings from other studies. The 
exposure of PM2.5 in T1, T2, T3 and E can increase the risk of preterm 
birth (23). And the strongest association was observed in the second 
trimester (24). Exposure to high concentrations of PM10 increases the 
risk of preterm birth (25, 26), the study (25) also suggested that the 
risk may vary according to the clinical subtypes of preterm birth and 
the time window of exposure. Significant association was found 
between NO2 exposure and preterm birth (27, 28) and NO2 exposure 
in only the 3rd trimester was positively associated with PTB (29). It is 
showed that (30) exposure to PM2.5, PM10, and NO2 for 1 week prior 
to delivery increased the risk of preterm birth. One study (31), also 

conducted in a river valley type city, showed that PM10, O3 exposure 
in late pregnancy, SO2 in mid pregnancy, and SO2 exposure in late 
pregnancy were all likely to increase the risk of preterm birth. 
Although the above studies have shown that exposure to PM2.5, PM10, 
NO2, CO and SO2 during pregnancy increases the risk of preterm 
birth, the key exposure windows and associated intensities are not the 
same, which may be attributed to different pollution levels, specific 
study periods and study populations, or other factors.

In our study, we did not observe any association for O3, however 
other studies showed that O3 was associated with preterm birth. A 
study (32) showed that exposure to O3 during pregnancy increased the 
risk of preterm birth. Another study in China (33) also illustrated that 
O3 was one of the risk factors for the occurrence of preterm birth, and 
the susceptibility window was late in pregnancy at T3. These 
inconsistencies may be due to differences in the locations of the studies, 
differences in the experimental design of the studies, or differences in 
the methods of exposure assessment and statistical analyses.

Although this study showed that exposures to certain pollutants in 
later pregnancy is associated with preterm birth, there is no clear 
understanding of the molecular mechanism of the occurrence of 
preterm birth induced by air pollutants. It has been suggested that it is 
fetal growth and development within the placenta that is more sensitive 
and vulnerable to exposure to air pollutants (34), thereby predisposing 
to preterm birth or other adverse pregnancy outcomes. Prenatal 
exposure to air pollution has also been found to be associated with 
nitrosative stress and epigenetic alterations in the placenta (35). Air 

TABLE 3  Associations between pollutants and preterm birth.

Pollutants Unadjusted Adjusted

OR 95% CI p OR 95% CI p

Trimester 1

PM2.5 (μg/m3) 0.999 0.994–1.003 0.495 0.991 0.983–0.999 0.034

PM10 (μg/m3) 0.999 0.995–1.002 0.463 0.993 0.987–0.999 0.023

SO2 (μg/m3) 1.002 0.976–1.028 0.904 0.984 0.947–1.023 0.426

NO2 (μg/m3) 1.003 0.990–1.016 0.701 0.994 0.972–1.015 0.553

CO (mg/m3) 0.911 0.582–1.425 0.683 0.730 0.335–1.588 0.427

O3 (μg/m3) 0.999 0.996–1.002 0.667 0.999 0.994–1.004 0.674

Trimester 2

PM2.5 (μg/m3) 1.006 1.002–1.010 0.007 1.009 1.003–1.014 0.001

PM10 (μg/m3) 1.004 1.001–1.008 0.006 1.006 1.002–1.010 0.002

SO2 (μg/m3) 1.016 0.991–1.043 0.210 1.043 1.009–1.077 0.011

NO2 (μg/m3) 1.015 1.003–1.027 0.011 1.024 1.009–1.038 0.002

CO (mg/m3) 1.743 1.167–2.603 0.007 2.235 1.358–3.678 0.002

O3 (μg/m3) 0.997 0.993–1.000 0.051 0.992 0.987–0.996 0.000

Trimester 3

PM2.5 (μg/m3) 1.002 0.998–1.006 0.319 1.010 1.002–1.018 0.011

PM10 (μg/m3) 1.002 0.999–1.005 0.260 1.009 1.003–1.015 0.002

SO2 (μg/m3) 1.003 0.980–1.027 0.806 1.061 0.999–1.126 0.053

NO2 (μg/m3) 1.003 0.992–1.014 0.589 1.025 1.001–1.051 0.044

CO (mg/m3) 1.324 0.919–1.907 0.131 2.885 1.377–6.042 0.005

O3 (μg/m3) 1.000 0.997–1.004 0.790 1.001 0.994–1.008 0.770

What increase in pollutant are the results reported for “per 10 μg/m3” or “per 10 mg/m3.” Adjustment factors: maternal age, pregnancy times, number of births, number of cesarean sections, 
season of conception, complications disease, comorbidity diseases, hypertensive disorder of pregnancy, low birth weight.
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pollution particles may be transferred into and across the placental 
barrier, leading to placental oxidative and nitrosative stress due to the 
ability of pollution particles to produce reactive oxygen species/reactive 
nitrogen species (ROS/RNS) in a direct or indirect manner; another 
important target of the early life effects of air pollution is the induction 
of epigenetic alterations of the placenta, including DNA methylation, 
histone and noncoding RNA modifications, and changes in chromatin 
remodeling. The Developmental Origins of Health and Disease 
(DOHaD) hypothesis similarly suggests an association between 
perinatal complications induced by prenatal exposure to air pollutants 
(preterm birth or fetal growth restriction), and placental epigenomics 
(36). In contrast, another study found that the onset of preterm birth 
inversely enhances the toxicity of air pollutants through oxidative stress 
and placental function (37), which means that air pollution particles 
affect the anatomical structure and/or physiological function of the 
developing lungs and related systems through oxidative stress, which 
also contributes to placental aging leading to preterm birth, and that 
the occurrence of preterm birth during this critical period may further 
enhance the ensuing alterations in lung function and physiology.

The strength of this study is that all data was collected from two of 
the largest hospitals in the city, which are the top hospitals in China’s 
healthcare system, with a high level of medical technology and quality of 
service. As a result, large amounts of medical data can be collected and 
the data tends to be more accurate and reliable, contributing to more 
accurate conclusions. This study also has some limitations. First, using 
ambient monitoring data, we could not account for the differences in 
pollutant concentrations between the daily living and working 
environments of the study subjects. And assessing pollutant exposure 
levels of the study subjects based only on their home addresses may lead 
to some errors and may bias the association; Secondly, although the 
nearest monitoring site method is able to obtain more accurate data than 
the global average method used in previous studies, it still has some 
limitations. For example, in some cases, the quality of data collected may 
be poor due to errors in monitoring equipment, improper maintenance, 
etc., affecting the accuracy of the analyzed results. In addition, the large 
number of missing important confounders, such as child sex, maternal 
education level, and marital status is an important limitation of this study.

5 Conclusion

In conclusion, we observed an association between exposures to 
PM2.5, PM10, NO2, CO in mid-pregnancy and late pregnancy and 
increased risk on preterm birth, but little evidence of associations 
with O3.

In light of importance of air quality on maternal health and birth 
outcomes, measures to improve air quality, its monitoring and health 
educations for women especially in reiver valley cities need to 
be public health priorities.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by Medical School 
of Yan’an University. The studies were conducted in accordance with 
the local legislation and institutional requirements. The participants 
provided their written informed consent to participate in this study. 
Written informed consent was obtained from the individual(s) for the 
publication of any potentially identifiable images or data included in 
this article.

Author contributions

JG: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Project administration, Writing – 
original draft, Writing – review & editing. JL: Conceptualization, 
Formal analysis, Investigation, Methodology, Writing – original 
draft, Writing – review & editing. LL: Investigation, Methodology, 
Project administration, Software, Writing – original draft, Writing 
– review & editing. MC: Investigation, Methodology, Project 
administration, Software, Writing – original draft, Writing – review 
& editing. XT: Data curation, Methodology, Writing – original 
draft, Writing – review & editing. ZW: Data curation, Methodology, 
Writing – original draft, Writing – review & editing. JH: Funding 
acquisition, Supervision, Writing – original draft, Writing – review 
& editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by the National Natural Science Foundation of China (No. 
41761100); and the Natural Science Basic Research Program of 
Shaanxi (No. 2018JQ4013); and the 2022 National Innovation and 
Entrepreneurship Training Program for College Students of Yan’an 
University (No. 202210719043).

Acknowledgments

The authors thank the National Natural Science Foundation of 
China (41761100), the Natural Science Basic Research Program of 
Shaanxi (2018JQ4013).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

71

https://doi.org/10.3389/fpubh.2024.1415028
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Gu et al.� 10.3389/fpubh.2024.1415028

Frontiers in Public Health 09 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be  evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
	1.	Ohuma EO, Moller AB, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, 

et al. National, regional, and global estimates of preterm birth in 2020, with trends from 
2010: a systematic analysis. Lancet. (2023) 402:1261–71. doi: 10.1016/
S0140-6736(23)00878-4

	2.	Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D, et al. 
Global, regional, and national estimates of levels of preterm birth in 2014: a systematic 
review and modelling analysis. Lancet Glob Health. (2019) 7:e37–46. doi: 10.1016/
S2214-109X(18)30451-0

	3.	Deng K, Liang J, Mu Y, Liu Z, Wang Y, Li M, et al. Preterm births in China between 
2012 and 2018: an observational study of more than 9 million women. Lancet Glob 
Health. (2021) 9:e1226–41. doi: 10.1016/S2214-109X(21)00298-9

	4.	Zou L, Wang X, Ruan Y, Li G, Chen Y, Zhang W. Preterm birth and neonatal 
mortality in China in 2011. Int J Gynaecol Obstet. (2014) 127:243–7. doi: 10.1016/j.
ijgo.2014.06.018

	5.	Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong KL, et al. Global, 
regional, and national causes of under-5 mortality in 2000-19: an updated systematic 
analysis with implications for the sustainable development goals. Lancet Child Adolesc 
Health. (2022) 6:106–15. doi: 10.1016/S2352-4642(21)00311-4

	6.	Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and 
national causes of child mortality: an updated systematic analysis for 2010 with time 
trends since 2000. Lancet. (2012) 379:2151–61. doi: 10.1016/S0140-6736(12)60560-1

	7.	Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental 
outcomes after intrauterine and neonatal insults: a systematic review. Lancet. (2012) 
379:445–52. doi: 10.1016/S0140-6736(11)61577-8

	8.	Burris HH, Baccarelli AA, Wright RO, Wright RJ. Epigenetics: linking social and 
environmental exposures to preterm birth. Pediatr Res. (2016) 79:136–40. doi: 10.1038/
pr.2015.191

	9.	Proietti E, Röösli M, Frey U, Latzin P. Air pollution during pregnancy and neonatal 
outcome: a review. J Aerosol Med Pulm Drug Deliv. (2013) 26:9–23. doi: 10.1089/
jamp.2011.0932

	10.	Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of 
preterm birth. Lancet. (2008) 371:75–84. doi: 10.1016/S0140-6736(08)60074-4

	11.	Torchin H, Ancel PY. Epidemiology and risk factors of preterm birth. J Gynecol 
Obstet Biol Reprod. (2016) 45:1213–30. doi: 10.1016/j.jgyn.2016.09.013

	12.	Ye CX, Chen SB, Wang TT, Zhang SM, Qin JB, Chen LZ. Risk factors for preterm 
birth: a prospective cohort study. Zhongguo Dang Dai Er Ke Za Zhi. (2021) 23:1242–9. 
doi: 10.7499/j.issn.1008-8830.2108015

	13.	Barfield WD. Public health implications of very preterm birth. Clin Perinatol. 
(2018) 45:565–77. doi: 10.1016/j.clp.2018.05.007

	14.	Jiang M, Mishu MM, Lu D, Yin X. A case control study of risk factors and neonatal 
outcomes of preterm birth. Taiwan J Obstet Gynecol. (2018) 57:814–8. doi: 10.1016/j.
tjog.2018.10.008

	15.	Crawford N, Prendergast D, Oehlert JW, Shaw GM, Stevenson DK, Rappaport N, 
et al. Divergent patterns of mitochondrial and nuclear ancestry are associated with the 
risk for preterm birth. J Pediatr. (2018) 194:40–46.e4. doi: 10.1016/j.jpeds.2017.10.052

	16.	Alman BL, Stingone JA, Yazdy M, Botto LD, Desrosiers TA, Pruitt S, et al. 
Associations between PM2.5 and risk of preterm birth among liveborn infants. Ann 
Epidemiol. (2019) 39:46–53.e2. doi: 10.1016/j.annepidem.2019.09.008

	17.	Hansen C, Neller A, Williams G, Simpson R. Maternal exposure to low levels of 
ambient air pollution and preterm birth in Brisbane, Australia. BJOG. (2006) 
113:935–41. doi: 10.1111/j.1471-0528.2006.01010.x

	18.	Wilhelm M, Ritz B. Local variations in CO and particulate air pollution and 
adverse birth outcomes in Los Angeles County, California, USA. Environ Health 
Perspect. (2005) 113:1212–21. doi: 10.1289/ehp.7751

	19.	Hu LW, Lawrence WR, Liu Y, Yang BY, Zeng XW, Chen W, et al. Ambient air 
pollution and morbidity in Chinese. Adv Exp Med Biol. (2017) 1017:123–51. doi: 
10.1007/978-981-10-5657-4_6

	20.	Zhan D, Kwan MP, Zhang W, Wang S, Yu J. Spatiotemporal variations and driving 
factors of air pollution in China. Int J Environ Res Public Health. (2017) 14:1538. doi: 
10.3390/ijerph14121538

	21.	Chen Q, Ren Z, Liu Y, Qiu Y, Yang H, Zhou Y, et al. The association between 
preterm birth and ambient air pollution exposure in Shiyan, China, 2015–2017. Int J 
Environ Res Public Health. (2021) 18:4326. doi: 10.3390/ijerph18084326

	22.	Ha S, Hu H, Roussos-Ross D, Haidong K, Roth J, Xu X. The effects of air pollution on 
adverse birth outcomes. Environ Res. (2014) 134:198–204. doi: 10.1016/j.envres.2014.08.002

	23.	Zhang X, Fan C, Ren Z, Feng H, Zuo S, Hao J, et al. Maternal PM2.5 exposure 
triggers preterm birth: a cross-sectional study in Wuhan, China. Glob Health Res. Policy. 
(2020) 5:17. doi: 10.1186/s41256-020-00144-5

	24.	Jiang P, Li Y, Tong MK, Ha S, Gaw E, Nie J, et al. Wildfire particulate exposure and 
risks of preterm birth and low birth weight in the Southwestern United States. Public 
Health. (2024) 230:81–8. doi: 10.1016/j.puhe.2024.02.016

	25.	Zhao N, Qiu J, Zhang Y, He X, Zhou M, Li M, et al. Ambient air pollutant PM10 
and risk of preterm birth in Lanzhou, China. Environ Int. (2015) 76:71–7. doi: 10.1016/j.
envint.2014.12.009

	26.	Han Y, Jiang P, Dong T, Ding X, Chen T, Villanger GD, et al. Maternal air pollution 
exposure and preterm birth in Wuxi, China: effect modification by maternal age. 
Ecotoxicol Environ Saf. (2018) 157:457–62. doi: 10.1016/j.ecoenv.2018.04.002

	27.	Bhardwaj N, Nigam A, De A, Gupta N. Ambient air pollution: a new intrauterine 
environmental toxin for preterm birth and low birth weight. J Obstet Gynaecol India. 
(2023) 73:25–9. doi: 10.1007/s13224-023-01790-8

	28.	Ahn TG, Kim YJ, Lee G, You YA, Kim SM, Chae R, et al. Association between 
individual air pollution (PM10, PM2.5) exposure and adverse pregnancy outcomes in 
Korea: a multicenter prospective cohort, air pollution on pregnancy outcome (APPO) 
study. J Korean Med Sci. (2024) 39:e131. doi: 10.3346/jkms.2024.39.e131

	29.	Ju L, Li C, Yang M, Sun S, Zhang Q, Cao J, et al. Maternal air pollution exposure 
increases the risk of preterm birth: evidence from the meta-analysis of cohort studies. 
Environ Res. (2021) 202:111654. doi: 10.1016/j.envres.2021.111654

	30.	Siddika N, Rantala AK, Antikainen H, Balogun H, Amegah AK, Ryti NRI, et al. 
Short-term prenatal exposure to ambient air pollution and risk of preterm birth—a 
population-based cohort study in Finland. Environ Res. (2020) 184:109290. doi: 
10.1016/j.envres.2020.109290

	31.	He J, Cao N, Hei J, Wang H, He J, Liu Y, et al. Relationship between ambient air 
pollution and preterm birth: a retrospective birth cohort study in Yan’an, China. Environ 
Sci Pollut Res Int. (2022) 29:73271–81. doi: 10.1007/s11356-022-20852-4

	32.	Siddika N, Rantala AK, Antikainen H, Balogun H, Amegah AK, Ryti NRI, et al. 
Synergistic effects of prenatal exposure to fine particulate matter (PM2.5) and ozone (O3) 
on the risk of preterm birth: a population-based cohort study. Environ Res. (2019) 
176:108549. doi: 10.1016/j.envres.2019.108549

	33.	Wang X, Wang X, Gao C, Xu X, Li L, Liu Y, et al. Relationship between outdoor air 
pollutant exposure and premature delivery in China-systematic review and meta-
analysis. Int J Public Health. (2023) 68:1606226. doi: 10.3389/ijph.2023.1606226

	34.	Tosevska A, Ghosh S, Ganguly A, Cappelletti M, Kallapur SG, Pellegrini M, et al. 
Integrated analysis of an in vivo model of intra-nasal exposure to instilled air pollutants 
reveals cell-type specific responses in the placenta. Sci Rep. (2022) 12:8438. doi: 10.1038/
s41598-022-12340-z

	35.	Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, et al. Air 
pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, 
and the aging phenotype? Clin Epigenetics. (2019) 11:124. doi: 10.1186/
s13148-019-0688-z

	36.	Lapehn S, Paquette AG. The placental epigenome as a molecular link between 
prenatal exposures and Fetal health outcomes through the DOHaD hypothesis. Curr 
Environ Health Rep. (2022) 9:490–501. doi: 10.1007/s40572-022-00354-8

	37.	Wright RJ. Preterm birth enhances ambient pollution toxicity: oxidative stress and 
placental function. Am J Respir Crit Care Med. (2022) 205:10–2. doi: 10.1164/
rccm.202110-2338ED

72

https://doi.org/10.3389/fpubh.2024.1415028
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1016/S0140-6736(23)00878-4
https://doi.org/10.1016/S0140-6736(23)00878-4
https://doi.org/10.1016/S2214-109X(18)30451-0
https://doi.org/10.1016/S2214-109X(18)30451-0
https://doi.org/10.1016/S2214-109X(21)00298-9
https://doi.org/10.1016/j.ijgo.2014.06.018
https://doi.org/10.1016/j.ijgo.2014.06.018
https://doi.org/10.1016/S2352-4642(21)00311-4
https://doi.org/10.1016/S0140-6736(12)60560-1
https://doi.org/10.1016/S0140-6736(11)61577-8
https://doi.org/10.1038/pr.2015.191
https://doi.org/10.1038/pr.2015.191
https://doi.org/10.1089/jamp.2011.0932
https://doi.org/10.1089/jamp.2011.0932
https://doi.org/10.1016/S0140-6736(08)60074-4
https://doi.org/10.1016/j.jgyn.2016.09.013
https://doi.org/10.7499/j.issn.1008-8830.2108015
https://doi.org/10.1016/j.clp.2018.05.007
https://doi.org/10.1016/j.tjog.2018.10.008
https://doi.org/10.1016/j.tjog.2018.10.008
https://doi.org/10.1016/j.jpeds.2017.10.052
https://doi.org/10.1016/j.annepidem.2019.09.008
https://doi.org/10.1111/j.1471-0528.2006.01010.x
https://doi.org/10.1289/ehp.7751
https://doi.org/10.1007/978-981-10-5657-4_6
https://doi.org/10.3390/ijerph14121538
https://doi.org/10.3390/ijerph18084326
https://doi.org/10.1016/j.envres.2014.08.002
https://doi.org/10.1186/s41256-020-00144-5
https://doi.org/10.1016/j.puhe.2024.02.016
https://doi.org/10.1016/j.envint.2014.12.009
https://doi.org/10.1016/j.envint.2014.12.009
https://doi.org/10.1016/j.ecoenv.2018.04.002
https://doi.org/10.1007/s13224-023-01790-8
https://doi.org/10.3346/jkms.2024.39.e131
https://doi.org/10.1016/j.envres.2021.111654
https://doi.org/10.1016/j.envres.2020.109290
https://doi.org/10.1007/s11356-022-20852-4
https://doi.org/10.1016/j.envres.2019.108549
https://doi.org/10.3389/ijph.2023.1606226
https://doi.org/10.1038/s41598-022-12340-z
https://doi.org/10.1038/s41598-022-12340-z
https://doi.org/10.1186/s13148-019-0688-z
https://doi.org/10.1186/s13148-019-0688-z
https://doi.org/10.1007/s40572-022-00354-8
https://doi.org/10.1164/rccm.202110-2338ED
https://doi.org/10.1164/rccm.202110-2338ED


Frontiers in Public Health 01 frontiersin.org

Associations of heavy metal 
exposure with diabetic 
retinopathy in the U.S. diabetic 
population: a cross-sectional 
study
Chunren Meng 1,2†, Chufeng Gu 2,3†, Chunyang Cai 1,2, Shuai He 1,2, 
Dongwei Lai 1,2 and Qinghua Qiu 1,2,4,5*
1 Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of 
Medicine, Shanghai, China, 2 Department of Ophthalmology, Shanghai General Hospital, Shanghai 
Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases; 
Shanghai Clinical Research Center for Eye Diseases, Shanghai, China, 3 Department of 
Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China, 4 Department 
of Ophthalmology, Shigatse People’s Hospital, Shigatse, Xizang, China, 5 High Altitude Ocular Disease 
Research Center of Shigatse People’s Hospital and Tongren Hospital Affiliated to Shanghai Jiao Tong 
University School of Medicine, Shanghai, China

Background: Mounting evidence suggests a correlation between heavy metals 
exposure and diabetes. Diabetic retinopathy (DR) is a prevalent and irreversible 
complication of diabetes that can result in blindness. However, studies focusing 
on the effects of exposure to heavy metals on DR remain scarce. Thus, this study 
aimed to investigate the potential correlation between heavy metals exposure 
and DR.

Methods: A total of 1,146 diabetics from the National Health and Nutrition 
Examination Survey (NHANES) between 2005 and 2018 were included in this 
study. Heavy metal levels were measured via urine testing. Weighted logistic 
regression, Bayesian kernel machine regression (BKMR), weighted quantile sum 
(WQS) regression, and restricted cubic spline (RCS) were utilized to investigate 
the potential relationships between exposure to 10 heavy metals and DR. Finally, 
subgroup analysis was conducted based on the glycemic control status.

Results: Among the 1,146 participants, 239 (20.86%) were diagnosed with DR. 
Those with DR had worse glycemic control and a higher prevalence of chronic 
kidney disease compared to those without DR. Moreover, both the WQS 
regression and BKMR models demonstrated a positive relationship between 
exposure to mixed heavy metals and the risk of DR. The results of weighted 
logistic regression revealed a positive correlation between cobalt (Co) and 
antimony (Sb) exposure and the risk of DR (OR  =  1.489, 95%CI: 1.064–2.082, 
p  =  0.021; OR  =  1.475, 95% CI: 1.084–2.008, p  =  0.014), while mercury (Hg) 
exposure was found to promote DR exclusively in the group with good glycemic 
control (OR  =  1.509, 95% CI: 1.157–1.967, p  =  0.003). These findings were 
corroborated by the results of the RCS analysis.

Conclusion: Heavy metal exposure is associated with an increased risk of DR, 
especially Sb, Co, and Hg exposure. Nevertheless, well-designed prospective 
studies are warranted to validate these findings.
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1 Introduction

Diabetic retinopathy (DR) is a prevalent microvascular 
complication of diabetes mellitus that affects approximately one-third 
of diabetic patients (1). It causes varying degrees of visual impairment 
(2), which significantly impacts the quality of life of patients and 
imposes substantial economic burdens on society (3). Notably, its 
pathogenesis is complex and multifaceted, including oxidative stress, 
inflammation, and mitochondrial disorders, among others (4). At 
present, there is a pressing need to identify the risk factors and 
intervention strategies for DR in order to enhance the prognosis of 
patients with DR.

As is well documented, heavy metals are ubiquitously present in 
the air, soil, water, food, and manufactured products (5–9). Exposure 
to heavy metals may increase the risk of various ocular diseases, 
including DR, age-related macular degeneration (AMD), glaucoma, 
and cataracts (10–13). Zhu et al. demonstrated that the accumulation 
of serum cesium (Cs) and cadmium (Cd) was significantly correlated 
with the risk of developing DR (10). Similarly, the findings of Li et al. 
indicated that exposure to certain heavy metals, including lithium 
(Li), Cd, strontium (Sr), and magnesium (Mg), may increase the risk 
of developing proliferative DR, whereas selenium (Se) appears to be a 
protective factor (14). Zhang et al. observed a significant negative 
correlation between serum manganese (Mn) levels and DR 
prevalence in individuals with type 2 diabetes mellitus in the 
United  States (15). However, the correlation between serum Cd, 
mercury (Hg), and lead (Pb), and DR was not statistically significant 
(15). Other studies have determined a potential association between 
cobalt (Co), barium (Ba), molybdenum (Mo), antimony (Sb), 
thallium (Tl), and tungsten (Tu) and the risk of diabetes (16–18), but 
their relationship with DR remains elusive. Although previous 
studies have preliminarily explored the link between heavy metals 
and DR, certain limitations remain. For instance, earlier studies 
exclusively investigated the association between the levels of serum 
heavy metals and DR risk, with a lack of research on the effect of 
urinary heavy metals on DR. Serum heavy metal levels may correlate 
with recent exposure, whereas urine heavy metal concentrations 
reflect long-term exposure (19). Furthermore, heavy metals are 
frequently co-exposed in the environment, and interactions between 
metals may also have an impact on human health (20, 21). However, 
studies on co-exposure to heavy metals and DR risk are lacking. 
Additionally, there is a lack of epidemiological studies to elucidate 
the effects of other heavy metals, such as Co and Sb, on the risk of 
developing DR.

The present study extracted U.S. demographic data from the 
National Health and Nutrition Examination Survey (NHANES) 
between 2005 and 2018 to investigate the relationship between heavy 
metals and the risk of DR. A total of 10 urinary heavy metals, namely 
Ba, Cd, Co, Cs, Mo, Pb, Sb, Tl, Tu, and Hg were analyzed. The effect of 
single and multiple metals on DR risk was evaluated using weighted 
logistic regression analysis. Furthermore, weighted quantile sum 
(WQS) regression and Bayesian kernel machine regression (BKMR) 
model were applied to investigate the relationship between heavy 
metals co-exposure and DR. In addition, dose–response relationships 
between heavy metals and DR were explored using restricted cubic 
spline (RCS) regression. Lastly, subgroup analysis was conducted 
based on glycemic control levels. Our findings are anticipated to 
provide new epidemiological evidence to enhance the understanding 

of the correlation between heavy metals and DR and assist in the 
prevention of DR.

2 Materials and methods

2.1 Study design

2.1.1 Participants
The NHANES aimed to assess the health and nutritional status of 

the US population. By employing a complex multistage probability 
sampling technique, the NHANES collects information on the nation’s 
civilian population every 2 years (22). In the current study, data 
derived from NHANES between 2005 and 2018 (seven NHANES 
cycles) were analyzed, given that participants underwent relatively 
comprehensive urine testing for heavy metals during these cycles. 
NHANES was approved by the Ethics Review Committee at the 
National Center for Health Statistics, and all participants provided 
informed consent. Among the 70,190 participants across the 
NHANES cycles conducted between 2005 and 2018, several groups 
were excluded according to the following criteria: (1) participants who 
were pregnant or lacked data on diabetes (n = 3,744); (2) participants 
with incomplete urinary metal levels (n = 48,050); (3) participants 
who had missing covariate data (n  = 8,806); (4) non-diabetic 
individuals (n  = 7,852); and (5) participants with other missing 
information on diabetic retinopathy (n = 592). The final study cohort 
comprised 1,146 subjects, as illustrated in Figure 1.

2.1.2 Definitions of diabetes and DR
Diagnostic criteria for diabetes comprised any of the following: 

(1) diagnosis by medical professionals during a non-gestational 
period, (2) hemoglobin A1c level (HbA1c) (%) ≥ 6.5, (3) fasting 
plasma glucose level (FPG) ≥ 7.0 mmol/L, (4) random blood glucose 
level ≥ 11.1 mmol/L, (5) 2-h oral glucose tolerance test (OGTT) blood 
glucose ≥11.1 mmol/L, and (6) receiving anti-diabetic medication 
(23). DR was determined through self-report using a dichotomous 
approach. Participants were informed by medical professionals that 
diabetes had affected their eyes (24).

2.2 Metal measurement

Between 2005 and 2018, the levels of 10 heavy metals, namely Ba, 
Cd, Co, Cs, Mo, Pb, Sb, Tl, Tu, and Hg, were detected in urine samples. 
The NHANES website provides all laboratory methods and quality 
control information. Briefly, the concentration of 10 urinary metals 
was determined using inductively coupled plasma-mass spectrometry 
(ICP-MS). If the metal concentration was below the limit of detection 
(LOD), the LOD divided by the square root of two was used as the 
surrogate. In addition, all urinary metal levels were normalized to 
urinary creatinine and reported as μg/g creatinine (25).

2.3 Covariates

Demographic characteristics [gender, age, ethnicity, educational 
background, and family poverty income ratio (PIR)], along with data 
on body mass index (BMI), HbA1c levels, history of hypertension 
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and chronic kidney disease (CKD), smoking status, and drinking 
habits, were acquired through either home interviews or laboratory 
assessments. Ethnicity was classified into five groups: non-Hispanic 
white, non-Hispanic black, Mexican American, other Hispanic, and 
other race/multiracial. PIR was categorized into three levels: <1.30, 
1.30–3.5, and ≥ 3.5 (21). Similarly, BMI was divided into three levels: 
<25, 25–30, and > 30 kg/m2. Glycemic control was classified as well 
(HbA1c < 7%) and poor (HbA1c ≥7%). Drinking status was self-
reported by the participants. Smoking status was determined through 
the evaluation of serum cotinine levels, with a cutoff value of 
≤0.011 ng/mL for nonsmokers and higher levels indicating smoking 
status for both active and second-hand smokers (26). Hypertension 
was defined as any of the following: self-reported hypertension, ever 

or currently taking anti-hypertensive drugs, a systolic blood pressure 
over 140 mmHg, or a diastolic blood pressure exceeding 90 mmHg. 
CKD was defined as any of the following: an estimated glomerular 
filtration rate (eGFR) < 60 mL/min/1.73 m2 or the presence of elevated 
albuminuria (urine albumin creatinine ratio ≥ 30 mg/g) (27).

2.4 Statistical analysis

WTSA2YR is considered the appropriate NHANES sampling 
weight to analyze data on urinary heavy metals. Given the complex 
sampling design of NHANES, weights (1/7 * WTSA2YR) were 
constructed in accordance with the analytic guidelines of 

FIGURE 1

Flow diagram of the screening and enrollment of study participants.
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NHANES. Weighted means (standard errors) were employed to 
present continuous variables, while unweighted frequencies 
(weighted percentages) were utilized to present categorical 
variables. Baseline comparisons were made based on DR status 
stratification. The t-test was used to compare continuous variables, 
whereas the chi-square test was used to compare categorical 
variables. Given the upward trend in heavy metal concentration in 
the human body, an Ln transformation was performed on heavy 
metal concentration data to approximate a normal distribution 
(continuous variable) and divided the heavy metal concentration 
data into quartiles. The relationships between the concentrations 
of the 10 metals were determined using Pearson 
correlation analysis.

First and foremost, weighted logistic regression was employed to 
explore the impact of each metal on the risk of DR. The reference 
group was set as the first quartile (Q1), and the results were expressed 
as odds ratios (ORs) and their corresponding 95% confidence intervals 
(CIs). All covariates, including age, gender, ethnicity, educational 
background, PIR, glycemic control, smoking and drinking status, 
BMI, hypertension, and CKD, were adjusted. Furthermore, a weighted 
logistic regression analysis encompassing all heavy metals was 
conducted to adjust for the effects of other metals.

Secondly, to assess the combined effect of exposure to multiple 
metals on DR risk, a WQS regression analysis was carried out. This 
method was selected owing to its effective characterization of 
environmental mixtures (28). The R package (“gWQS”) was utilized 
to compute the WQS index, which is a weighted sum of the 
concentrations of individual heavy metals (21). The WQS index 
(ranging from 0 to 1) indicated the level of mixed exposure to the 10 
heavy metals. The weight of each metal reflected its relative importance 
for the risk of DR. The WQS analysis results provided information 
about the concurrent influence of adding a quartile to heavy metals 
mixtures on DR risk.

BKMR is a developing statistical method that utilizes kernel 
functions to effectively model the individual and joint impacts of 
mixture exposure on health results (29). The common influences of 
heavy metal mixtures on DR were examined by analyzing the DR 
estimates for every 5 percent increase/decrease in the median 
concentration of metal mixtures (reference) (25). The posterior 
probability of inclusion (PIP) was calculated with a threshold of 0.5 to 
assess the relative contribution of each metal component to the 
outcome (30). The BKMR model was generated via the R package 
“bkmr” through 10,000 iterations (31).

Subsequently, an RCS regression analysis was conducted using the 
R package “rms” to investigate the dose–response association of heavy 
metal exposure with DR risk. RCS regression was used to analyze both 
the linear and nonlinear relationships between heavy metals levels and 
DR risk (32). The number of nodes was selected to maintain the best 
fit and prevent overfitting the principal spline, with a range of 3–7 
nodes considered according to the minimum absolute value of 
Akaike’s information criterion (33). Finally, the 3 knots corresponding 
to the 10th, 50th, and 90th percentiles were chosen.

Finally, the same statistical analysis procedures previously 
outlined were applied to the subgroups based on glycemic control 
(well-controlled group: HbA1c value <7%, poorly-controlled group: 
HbA1c value ≥7%).

Statistical analyses were performed using R software (v4.3.1), with 
p-values less than 0.05 considered statistically significant.

3 Results

3.1 Study population characteristics

This study included 1,146 participants from seven NHANES 
cycles, comprising 550 women (weighted survey sample of 7,898,021) 
and 596 men (weighted survey sample of 8,162,870). Among them, 
239 (20.86%) were diagnosed with DR, including 134 males and 105 
females. Table 1 presents a summary of the baseline characteristics of 
the study participants with and without DR. Consistent with the 
findings of previously published studies, our study confirmed that 
participants with DR exhibited poorer glycemic control than those 
with diabetes without DR. Furthermore, the prevalence of CKD was 
higher in individuals with DR compared to those without DR. The two 
groups were comparable in age, gender, ethnicity, educational 
background, PIR, BMI, drinking and smoking status, and prevalence 
of hypertension.

3.2 Distributions and correlations of the 10 
heavy metals

Supplementary Table 1 lists the distribution of concentrations 
for 10 heavy metals, with detection rates exceeding 93.0% for each 
metal. Interestingly, Mo was the most metal with the highest level. 
Additionally, patients with DR had significantly higher levels of Sb 
compared to those without DR (p  = 0.021). The correlations 
between the 10 heavy metals are detailed in Supplementary Figure 1. 
Co and Tl (r = 0.58), Co and Ba (r = 0.43), Cs and Ba (r = 0.35), Co 
and Cs (r = 0.34), Tu and Mo (r = 0.34), and Tl and Ba (r = 0.31) 
exhibited positive correlations. Other metals had relatively 
weak correlations.

3.3 Association of heavy metals with DR 
risk evaluated by weighted logistic 
regression

As displayed in Table 2, weighted logistic regression was applied 
to analyze the association between each metal and DR risk after 
adjusting for all covariates. When considering the concentrations of 
Co and Sb as continuous variables, an increase of one unit in Ln-Co 
and Ln-Sb concentrations resulted in a 48.9 and 47.5% increase in the 
risk of DR, respectively (all p < 0.05). In addition, a positive correlation 
was observed between Sb and DR when metal concentrations were 
divided into quartiles (p for trend = 0.036). Notably, there was a 
significantly positive correlation found between DR risk and Hg 
concentration in the third quartile (Q3) (OR = 2.322, 95% CI: 1.158–
4.655, p = 0.018), whereas no significant correlation was detected for 
concentrations in the highest quartile (Q4).

Subgroup analysis based on the level of glycemic control was also 
performed (Table 2). In the poorly-controlled group, Sb exerted the 
most significant effect (OR = 1.596, 95% CI: 1.022–2.493, p = 0.04), but 
this relationship was not significantly different from that in the well-
controlled group. In the well-controlled group, Ba concentration in Q3 
(OR = 0.274, 95% CI: 0.120–0.627, p = 0.003) was significantly and 
negatively correlated with DR risk, but Ba concentration in Q4 did not. 
Both Hg concentrations in Q4 and Ln-Hg significantly increased the 
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risk of DR (OR = 3.608, 95% CI: 1.695–7.681, p = 0.001; OR = 1.509, 
95% CI: 1.157–1.967, p = 0.003) in the well-controlled group. Other 
metals have not been shown to have a meaningful association with DR.

To account for the potential influence of other heavy metals, 
weighted logistic regression models that considered all heavy metals 

were applied. As demonstrated in Supplementary Table  2, Hg 
concentration in Q3 significantly increased the risk of DR (OR = 2.407, 
95% CI: 1.264–4.585, p = 0.008). Additionally, each per-unit increase 
in Ln-Co and Ln-Sb concentrations led to a 62.7 and 42.7% higher risk 
of DR, respectively (all p < 0.05).

TABLE 1  Baseline characteristics of study population by DR status.

Variable Total (N =  1,146) Non-DR (N =  907) DR (N =  239) p value

Age, years 58.514 (0.549) 58.745 (0.606) 57.578 (1.183) 0.378

Sex, n (%) 0.342

  Female 550 (49.175) 445 (50.328) 105 (44.502)

  Male 596 (50.825) 462 (49.672) 134 (55.498)

Ethnicity, n (%) 0.473

  Mexican American 217 (9.219) 173 (9.275) 44 (8.991)

  Non-Hispanic Black 275 (13.323) 221 (13.453) 54 (12.796)

  Non-Hispanic White 425 (64.961) 344 (65.232) 81 (63.861)

  Other Hispanic 120 (5.651) 91 (5.847) 29 (4.855)

  Other race 109 (6.846) 78 (6.192) 31 (9.496)

Education, n (%) 0.79

  Greater than high school 478 (49.391) 378 (49.696) 100 (48.154)

  High school or below 668 (50.609) 529 (50.304) 139 (51.846)

  BMI (kg/m2), n (%) 0.82

<25 141 (10.047) 103 (9.666) 38 (11.590)

  25–30 320 (26.132) 253 (26.098) 67 (26.271)

  ≥30 685 (63.821) 551 (64.236) 134 (62.139)

PIR, n (%) 0.481

  ≤1.30 408 (24.080) 310 (23.297) 98 (27.255)

  1.30–3.50 473 (41.302) 386 (42.522) 87 (36.355)

  >3.50 265 (34.619) 211 (34.181) 54 (36.390)

Drinking, n (%) 0.088

  Never 204 (15.090) 149 (13.444) 55 (21.764)

  Former 302 (22.077) 235 (22.170) 67 (21.699)

  Now 640 (62.833) 523 (64.386) 117 (56.537)

Smoking, n (%) 0.833

  Non-smoker 314 (30.365) 247 (30.624) 67 (29.313)

  Smoker 832 (69.635) 660 (69.376) 172 (70.687)

Glycemic control, n (%) <0.0001

  Well-controlled 606 (56.183) 511 (60.711) 95 (37.829)

  Poorly controlled 540 (43.817) 396 (39.289) 144 (62.171)

Hypertension, n (%) 0.346

  No 301 (27.458) 242 (28.240) 59 (24.287)

  Yes 845 (72.542) 665 (71.760) 180 (75.713)

CKD, n (%) 0.002

  No 681 (64.623) 574 (67.894) 107 (51.365)

  Yes 465 (35.377) 333 (32.106) 132 (48.635)

Continuous variables were presented as weighted means (standard errors) and categorical variables are expressed as unweighted numbers (weighted percentages). DR, diabetic retinopathy; 
BMI, body mass index; N, numbers of subject; %, weighted percentage; NHANES, National Health and Nutrition Examination Survey; PIR, Poverty Income Ratio; CKD, chronic kidney 
disease. P value was calculated by chi-squared test and Student’s t-test. Bold: p < 0.05.
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TABLE 2  Associations of single urinary metals with DR risk in the study population.

Metal (μg/g 
creatinine)

Continuous Q1 Q2 Q3 Q4 p for trend

OR (95% CI) p value OR (95% CI) OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Ba

Total 0.974 (0.809, 1.171) 0.773 ref 0.574 (0.336, 0.980) 0.042 0.836 (0.472, 1.482) 0.536 0.914 (0.504, 1.655) 0.763 0.868

Well-controlled 0.872 (0.671, 1.133) 0.301 ref 0.712 (0.326, 1.552) 0.387 0.274 (0.120, 0.627) 0.003 0.840 (0.349, 2.021) 0.693 0.537

Poorly controlled 1.083 (0.854, 1.374) 0.506 ref 0.441 (0.215, 0.906) 0.027 1.411 (0.671, 2.968) 0.359 1.007 (0.465, 2.178) 0.986 0.359

Co

Total 1.489 (1.064, 2.082) 0.021 ref 0.917 (0.529, 1.589) 0.755 1.021 (0.602, 1.733) 0.937 1.547 (0.849, 2.819) 0.152 0.145

Well-controlled 1.508 (0.956, 2.377) 0.076 ref 0.717 (0.334, 1.539) 0.388 0.761 (0.359, 1.613) 0.472 1.798 (0.829, 3.901) 0.135 0.129

Poorly controlled 1.427 (0.940, 2.167) 0.094 ref 0.994 (0.464, 2.130) 0.988 1.190 (0.551, 2.569) 0.654 1.318 (0.503, 3.454) 0.569 0.494

Cs

Total 1.294 (0.799, 2.096) 0.292 ref 0.696 (0.368, 1.316) 0.261 0.934 (0.502, 1.737) 0.827 1.281 (0.668, 2.458) 0.452 0.317

Well-controlled 0.790 (0.467, 1.336) 0.374 ref 0.616 (0.256, 1.483) 0.276 0.461 (0.184, 1.157) 0.098 0.802 (0.408, 1.576) 0.517 0.457

Poorly controlled 1.751 (0.948, 3.231) 0.073 ref 0.666 (0.269, 1.649) 0.374 1.722 (0.788, 3.765) 0.170 1.755 (0.694, 4.437) 0.231 0.106

Mo

Total 0.947 (0.651, 1.376) 0.771 ref 1.015 (0.502, 2.053) 0.967 0.901 (0.439, 1.853) 0.775 1.073 (0.555, 2.075) 0.832 0.945

Well-controlled 1.505 (0.764, 2.965) 0.233 1.219 (0.386, 3.853) 0.732 1.828 (0.564, 5.923) 0.310 2.457 (0.802, 7.528) 0.114 0.092

Poorly controlled 0.630 (0.393, 1.009) 0.055 ref 0.870 (0.357, 2.120) 0.756 0.542 (0.188, 1.565) 0.253 0.562 (0.249, 1.272) 0.164 0.12

Sb

Total 1.475 (1.084, 2.008) 0.014 ref 0.799 (0.426, 1.500) 0.481 1.471 (0.770, 2.809) 0.239 1.685 (0.948, 2.992) 0.075 0.036

Well-controlled 1.442 (0.961, 2.165) 0.077 ref 0.586 (0.258, 1.330) 0.198 1.566 (0.646, 3.798) 0.316 1.749 (0.747, 4.093) 0.194 0.094

Poorly controlled 1.596 (1.022, 2.493) 0.040 ref 0.837 (0.346, 2.026) 0.690 1.479 (0.617, 3.549) 0.375 1.632 (0.747, 3.561) 0.215 0.121

Tu

Total 1.101 (0.807, 1.502) 0.538 ref 0.485 (0.264, 0.891) 0.02 1.169 (0.619, 2.210) 0.627 1.148 (0.598, 2.202) 0.675 0.299

Well-controlled 1.643 (0.999, 2.703) 0.051 ref 0.573 (0.260, 1.265) 0.165 2.405 (1.075, 5.381) 0.033 2.065 (0.802, 5.315) 0.131 0.031

Poorly controlled 0.850 (0.572, 1.262) 0.414 ref 0.474 (0.216, 1.041) 0.062 0.760 (0.303, 1.908) 0.554 0.832 (0.337, 2.052) 0.685 0.861

Tl

Total 1.091 (0.737, 1.617) 0.442 ref 1.087 (0.621, 1.902) 0.768 0.849 (0.455, 1.583) 0.603 1.053 (0.619, 1.792) 0.848 0.838

Well-controlled 1.068 (0.605, 1.884) 0.818 ref 1.089 (0.558, 2.124) 0.801 0.921 (0.356, 2.380) 0.863 0.780 (0.371, 1.639) 0.507 0.461

Poorly controlled 1.050 (0.652, 1.690) 0.838 ref 1.155 (0.497, 2.688) 0.734 0.834 (0.361, 1.925) 0.666 1.280 (0.626, 2.617) 0.493 0.742

(Continued)
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3.4 Associations between heavy metal 
mixtures and DR risk evaluated by WQS 
regression

WQS regression was conducted to investigate the correlation 
between heavy metal mixtures and DR risk while adjusting for all 
covariates. In our study, the WQS index was positively correlated with 
DR risk (OR = 1.5, 95%CI: 1.07–2.10, p  = 0.019). In the subgroup 
analysis stratified by glycemic control, the correlation between 
exposure to heavy metals and DR risk was not statistically significant 
in either the well-controlled or poorly-controlled group (all p > 0.05). 
Among the 10 heavy metals, Pb, Mo, Hg, Sb, and Co exhibited the 
highest weight in the whole population (Figure  2A). In the well-
controlled group, Sb was determined to be the highest weighted metal 
(Figure  2B), whereas Cs and Co were the most heavily weighted 
metals in the poorly-controlled group (Figure 2C).

3.5 Associations between heavy metal 
mixtures and DR risk evaluated by the 
BKMR model

Although no statistically significant effect was observed, there was 
a discernible increase in the risk of DR when heavy metal mixture 
concentrations were at or exceeded the 60th percentile (Figure 3A). 
Similar associations were observed in both the well-controlled and 
poorly-controlled groups, as depicted in Figure  3A. When 
concentrations of other metals were fixed at the 25th, 50th, and 75th 
percentiles, Co, Mo, Sb, Tu, Pb, and Hg concentrations all displayed a 
positive correlation with DR risk, with PIP values exceeding 0.55 
(Figure 3B and Supplementary Table 3). Similar trends were observed 
in both the well-controlled and poorly-controlled groups, although 
the correlations were not statistically significant, as delineated in 
Figure 3B. The univariate exposure-response relationship exhibited a 
monotonic upward trend between DR and Co, Sb, Tu, and Pb 
concentrations when the other metals were fixed at the median level. 
However, Ba, Tl, and Cd displayed a monotonic downward trend 
(Supplementary Figure  2). Based on the moderate correlations 
between some metals, the interactions among the 10 heavy metals 
were separately analyzed, revealing underlying interactions between 
specific heavy metals. Supplementary Figure  3 delineates that Co 
interacts with Cs, Sb, Tl, Hg, and Pb, whilst Sb interacts with Tu, Cd, 
and Hg, and Hg interacts with most metals.

3.6 Associations between concentrations 
of heavy metals and DR risk in the RCS 
analysis

Co, Sb, and Hg concentrations, which were closely related to DR risk, 
were further analyzed. The dose–response relationships were evaluated in 
the RCS analysis (Figure 4). Linear and positive associations with DR risk 
were identified for the Ln-transformed concentrations of Co and Sb (all 
pnonlinearity > 0.05, all poverall < 0.05), except for Hg (pnonlinearity = 7e-04). In both 
the well-controlled and poorly-controlled groups, Co and Sb 
concentrations had a linear relationship with DR risk. In the well-
controlled group, the risk of DR generally increased with increasing Co 
concentration (poverall  = 0.011, pnonlinearity  = 0.262). Conversely, in the T
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poorly-controlled group, a positive linear dose correlation between Sb 
concentrations and DR risk was noted (poverall = 0.045, pnonlinearity = 0.790). 
Finally, a linear and positive correlation between Hg concentrations and 
the risk of DR was observed solely in the well-controlled group 
(poverall = 0.01, pnonlinearity = 0.385).

4 Discussion

To the best of our knowledge, this is the first cross-sectional study 
to investigate the effects of urinary heavy metals on the risk of DR in a 
substantial, nationally representative sample utilizing various statistical 
techniques. Herein, the results of weighted logistic regression 
demonstrated that Co, Sb, and Hg were associated with DR risk in the 
single-metal model, and this association was also observed in the multi-
metal model. Both the WQS and BMKR models suggested that mixed 
exposure to these 10 heavy metals was positively associated with DR 
risk. Furthermore, the results of the RCS regression displayed a linear 
and positive correlation between Co and Sb and DR risk but a non-linear 
correlation between Hg concentrations and DR risk. The results of the 
subgroup analyses signaled that the aforementioned associations 
appeared to be more pronounced in the poorly-controlled group.

Co is widely distributed in nature. Humans are commonly 
exposed to Co through multiple routes, including food, environmental 
pollution, occupational exposure, and medical interventions (34). 
Besides, it is an essential element for human health, serving as the 
metallic component of vitamin B12 (35). Despite its vital importance, 
its potential toxicity can elicit adverse health effects after prolonged 
exposure. A cross-sectional study identified a positive correlation 
between diabetes and urinary Co concentrations (16). Consistently, a 
study discovered a strong correlation between elevated urinary Co 
levels and increased levels of FPG and HbA1c in male participants 
(36). At the same time, Cancarini et  al. concluded that the Co 
concentration in the tear film of diabetic patients was higher than that 
in the control group (37). This increase may be attributed to the rise 
in conjunctival vascular permeability caused by diabetes, similar to 

the increase in retinal vascular permeability driven by diabetes (a 
characteristic of DR) (38). In our study, diabetic patients with higher 
urinary concentrations of Co were more likely to develop DR. This 
may be ascribed to the oxidizing effect of Co promoting the formation 
of free radicals, inducing oxidative stress responses, and contributing 
to mitochondrial dysfunction (39). Of note, accumulating evidence 
suggests that oxidative damage and mitochondrial dysfunction 
promote the development of DR (40, 41).

Sb is a toxic heavy metal to which humans are primarily exposed 
through the consumption of food and air, soil, and water exposure. 
Numerous studies have demonstrated that it exerts various toxic effects 
on vital organs, including but not limited to the pancreas, liver, lungs, 
intestines, and spleen (42). A cross-sectional study conducted in the 
USA demonstrated an association between urine Sb concentrations and 
insulin resistance (16). Likewise, a cross-sectional study conducted in 
China found that urinary Sb levels are linked to an increased risk of 
increased FPG levels, impaired fasting glucose, and diabetes (18). 
Furthermore, a prospective study indicated that pregnant women with 
higher exposure to Sb may face an increased risk of gestational diabetes 
mellitus (43). Xiao et al. reported that elevated urinary Sb concentrations 
are linked to a higher incidence of type 2 diabetes, and this process is 
partially implicated in oxidative DNA damage (44). These studies 
collectively imply that Sb exposure may contribute to the development 
of diabetes. However, to date, there has been no report on the correlation 
between Sb levels and DR. Our study uncovered that diabetic patients 
with elevated urinary Sb levels have a significantly increased risk of 
developing DR, especially in those with poor glycemic control.

Hg is a highly toxic heavy metal that can cause significant harm 
to numerous organs in the human body (45). Currently, research on 
the relationship between Hg levels and diabetes risk remains 
inconclusive. Earlier studies found no significant association between 
blood or urine Hg concentrations and an increased risk of diabetes in 
adults (46–48). However, Tsai et al. observed a significant increase in 
Hg levels in the red blood cells of type 2 diabetes patients compared 
to those without the condition (49). A large prospective cohort study 
determined that people with high Hg exposure during early adulthood 

FIGURE 2

Estimated weights of heavy metals for DR by WQS models were adjusted for age, sex, ethnicity, education, poverty income ratio, body mass index, 
drinking alcohol status, smoking status, glycemic control, hypertension and CKD. (A) total population, (B) good glycemic control group, (C) poor 
glycemic control group. Ba, Barium; Cd, Cadmium; Co, Cobalt; Cs, Cesium; Mo, Molybdenum; Pb, lead; Sb, Antimony; Tl, Thallium; Tu, Tungsten; lead, 
Pb; mercury, Hg.
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were at a higher risk of developing diabetes in the future (50). 
Furthermore, research has demonstrated that Hg can selectively affect 
β cells in the pancreas, resulting in cellular dysfunction and apoptosis 
(51). In this study, urine Hg levels among diabetes patients with DR 
were higher compared to those without DR, although the difference 
was not statistically significant. Additionally, a clear non-monotonic 
relationship was identified between Hg levels and the risk of DR. This 
may be due to the fact that the chief source of human exposure to Hg 
is the consumption of marine fish, which are rich in omega-3 fatty 
acids that counteract the toxicity of Hg (52, 53). A significant positive 
correlation was observed between Hg concentrations and DR risk only 
in the well-controlled group, warranting further investigation.

Heavy metals stimulate reactive oxygen species production, leading 
to oxidative damage, which is one of the mechanisms involved in disease 
development (54). The retina is a high-oxygen-consuming tissue that is 
highly susceptible to damage from oxidative stress. Previous studies have 
shown a robust correlation between oxidative stress and retinal vascular 

impairment under hyperglycemic conditions (55). However, the role of 
heavy metals in DR development via oxidative stress mechanisms 
remains unclear. Thus, further experimental validation is necessary.

This study has several advantages. Firstly, it is the first study that 
investigated the correlation between urinary heavy metals and DR risk, 
considering both the single and co-exposure effects of heavy metals. 
In contrast, Zhang et al. focused on the relationship between blood 
heavy metals and DR risk without exploring the combined effects of 
heavy metals on DR (15). Furthermore, our study included a higher 
number of metals than those conducted by Zhang et  al. (15) and 
reported for the first time that urinary levels of Co, Sb, and Hg may 
be associated with DR risk. Secondly, weighted logistic regression, 
WQS regression model, BMKR model, and RCS regression were 
employed to investigate the correlation between heavy metals and DR 
risk in a diabetes population from multiple perspectives. These 
statistical methods have been extensively utilized to explore the effects 
of heavy metals on diabetes and hypertension (21, 56). Finally, previous 

FIGURE 3

The associations of metal mixtures and DR risk evaluated by BKMR model. (A) The joint effects of heavy metal mixtures on DR risk were estimated by 
BKMR models in total population and subgroups, when all the metals at particular percentiles were compared to all the metals at their 50th percentile. 
(B) Associations of single heavy metals with DR risk were estimated by BKMR models in total population and subgroups, when other all metals were 
held at their corresponding 25th (red), 50th (green) or 75th (blue) percentile, respectively. Models were adjusted for age, sex, ethnicity, education, 
poverty income ratio, body mass index, drinking alcohol status, smoking status, glycemic control, hypertension and CKD. Ba, Barium; Cd, Cadmium; 
Co, Cobalt; Cs, Cesium; Mo, Molybdenum; Pb, lead; Sb, Antimony; Tl, Thallium; Tu, Tungsten; lead, Pb; mercury, Hg.
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research has demonstrated a correlation between heavy metal exposure 
and HbA1c levels. High HbA1c level has been established as a risk 
factor for DR. Therefore, subgroup analysis was initially conducted 
based on glycemic control (determined by HbA1c value) to investigate 
the correlation between urine levels of heavy metals and DR risk.

Nevertheless, some limitations of this study merit acknowledgment. 
Given the inherent shortcomings of cross-sectional studies (57), this 
study could not establish a causal relationship between metal exposure 
and the risk of DR. Furthermore, relying on self-report questionnaires 
for DR diagnosis may introduce recall bias. In addition, the dataset 
lacked precise information regarding retinopathy severity, thereby 
limiting further analysis. The concentrations of heavy metals in urine are 
affected by various factors, not all of which were accounted for in this 

study, potentially compromising the reliability of the results. Additionally, 
selection bias selection bias may be present due to missing data and the 
exclusion of participants with incomplete information. Therefore, further 
studies are necessitated to corroborate our findings and to investigate the 
relationship between metal concentrations and DR severity, as well as to 
elucidate the underlying mechanisms by which metals affect DR.

5 Conclusion

Overall, our cross-sectional study demonstrated that several heavy 
metals, including Co, Sb, and Hg, were significantly associated with 
an elevated risk of DR. Furthermore, a linear and positive correlation 

FIGURE 4

Dose–response relationship between Sb, Co and Hg with DR risk were estimated by RCS models in total population and subgroups. Models were adjusted 
for age, sex, ethnicity, education, poverty income ratio, body mass index, drinking alcohol status, smoking status, glycemic control, hypertension and CKD. 
(A) total population, (B) good glycemic control group, (C) poor glycemic control group. Solid line, odds ratios; red-shade, 95% CI.
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was observed between the concentrations of Co and Sb and the risk 
of DR, while a non-linear correlation was identified between Hg levels 
and DR risk. The results of the subgroup analyses signaled that the 
aforementioned associations appeared to be more pronounced in the 
poorly-controlled group. The results of the mixture exposure analysis 
indicated a positive association between mixed metal exposure and 
the risk of DR. This association was observed in both the well-
controlled group and the poorly-controlled group. Due to the 
limitations of the present study, subsequent investigations are required 
to substantiate these findings and to clarify the mechanisms by which 
heavy metals affect DR.
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A case-crossover study of 
ST-elevation myocardial 
infarction and organic carbon and 
source-specific PM2.5 
concentrations in Monroe 
County, New York
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State University of New York, Rensselaer, NY, United States, 7 Division of Cardiology, Department of 
Medicine, University of Rochester Medical Center, Rochester, NY, United States

Background: Previous work reported increased rates of cardiovascular 
hospitalizations associated with increased source-specific PM2.5 concentrations 
in New  York State, despite decreased PM2.5 concentrations. We  also found 
increased rates of ST elevation myocardial infarction (STEMI) associated with 
short-term increases in concentrations of ultrafine particles and other traffic-
related pollutants in the 2014–2016 period, but not during 2017–2019  in 
Rochester. Changes in PM2.5 composition and sources resulting from air quality 
policies (e.g., Tier 3 light-duty vehicles) may explain the differences. Thus, this 
study aimed to estimate whether rates of STEMI were associated with organic 
carbon and source-specific PM2.5 concentrations.

Methods: Using STEMI patients treated at the University of Rochester Medical 
Center, compositional and source-apportioned PM2.5 concentrations measured 
in Rochester, a time-stratified case-crossover design, and conditional logistic 
regression models, we estimated the rate of STEMI associated with increases 
in mean primary organic carbon (POC), secondary organic carbon (SOC), and 
source-specific PM2.5 concentrations on lag days 0, 0–3, and 0–6 during 2014–
2019.

Results: The associations of an increased rate of STEMI with interquartile range 
(IQR) increases in spark-ignition emissions (GAS) and diesel (DIE) concentrations 
in the previous few days were not found from 2014 to 2019. However, IQR 
increases in GAS concentrations were associated with an increased rate of STEMI 
on the same day in the 2014–2016 period (Rate ratio [RR]  =  1.69; 95% CI  =  0.98, 
2.94; 1.73  μg/m3). In addition, each IQR increase in mean SOC concentration 
in the previous 6  days was associated with an increased rate of STEMI, despite 
imprecision (RR  =  1.14; 95% CI  =  0.89, 1.45; 0.42  μg/m3).
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Conclusion: Increased SOC concentrations may be associated with increased 
rates of STEMI, while there seems to be a declining trend in adverse effects of 
GAS on triggering of STEMI. These changes could be attributed to changes in 
PM2.5 composition and sources following the Tier 3 vehicle introduction.

KEYWORDS

myocardial infarction, air pollution, PM2.5, source apportionment, organic carbon, 
case-crossover

Introduction

Ambient air pollution is a growing global public health concern 
(1), particularly fine particulate matter (<2.5 μm; PM2.5), which is the 
fifth-ranking global risk factor for mortality (2). Previous studies have 
demonstrated that elevations in PM2.5 concentrations increase the risk 
of cardiovascular events, partially attributable to the development of 
cardiometabolic risk factors (3–5). Further, some reported associations 
between increased ambient PM2.5 concentrations over the previous 
hours and days and the onset of myocardial infarctions (6–9). Our 
group and others have reported triggering of ST-elevation myocardial 
infarction (STEMI) by ambient pollutant concentrations (including 
PM2.5) in the previous few hours and days in some analyses (7, 8, 
10–12), but not others (13, 14), suggesting work is needed to know 
what components or sources of PM may be driving any associations 
with STEMI.

PM2.5 is a complex mixture that includes organic compounds, 
elemental carbon, ions, and metal oxides, indicating PM2.5 components 
from various sources with different physicochemical characteristics 
and toxicological effects (15). Rich et  al. observed larger odds of 
myocardial infarction associated with increased mass fractions of 
sulfate, nitrate, and ammonium and a lower elemental carbon mass 
fraction (16). Some reported an increased risk of cardiovascular 
admissions and mortality associated with short-term increases in 
elemental carbon and organic carbon concentrations (17–19), 
especially ischemic heart disease admissions (18). Our prior studies 
(13, 14) revealed increased STEMI rates associated with increases in 
ultrafine particles and black carbon concentrations in the previous 
hour. Thus, short-term changes in the concentration of specific PM 
components may trigger cardiovascular events including STEMI.

Organic carbon is classified as either primary organic carbon 
(POC) or secondary organic carbon (SOC), based on whether the 
constituent organic matter is generated from other compounds 
released into the atmosphere. POC is produced mostly from 
combustion processes, whereas SOC is formed through the oxidation 
of volatile organic compounds (VOCs) (20) and contains reactive 
oxygen species (10, 21, 22) that may induce oxidative stress and 
systemic inflammation, contributing to acute cardiovascular events 
(23, 24). To our knowledge, this work is the first epidemiological study 
to examine triggering of STEMI by short-term increases in SOC and 
POC concentrations.

PM2.5 sources emit particles with specific chemical characteristics 
that allow the identification and apportionment of PM to these 
sources. Previously, we employed source apportionment analyses to 
examine whether individual PM2.5 sources were associated with acute 
cardiovascular hospitalizations (25) and hospitalizations and 

emergency department (ED) visits for respiratory infections (26) and 
diseases (27) in adults across New  York State from 2005 to 2016. 
Positive matrix factorization (PMF) was used to estimate the mass 
concentrations of particles corresponding to specific pollution sources 
at six urban sites (Buffalo, Rochester, Albany, Bronx, Manhattan, and 
Queens) in New York (28). There were 12 PM2.5 sources identified, 
including secondary sulfate (SS), secondary nitrate (SN), biomass 
burning (BB), diesel (DIE), spark-ignition emissions (GAS), pyrolyzed 
organic rich (OP), road dust (RD), aged sea salt (AGS), fresh sea salt 
(FSS), residual oil (RO), road salt (RS), and industrial (IND). Rich 
et  al. reported that interquartile range (IQR) increases in GAS 
concentrations were associated with increased rates of hospitalization 
for cardiac arrhythmia and ischemic stroke on the same day, while 
IQR elevations in DIE concentrations were associated with elevated 
rates of hospitalization due to congestive heart failure and ischemic 
heart disease on the same day (25). Increased acute cardiovascular 
hospitalization rates were also associated with increased 
concentrations of RD, RO, and SN over the previous 1, 4, and 7 days.

Over the last decade, air quality in New York State has changed 
resulting from the reduction in sulfur concentrations in fuels, the 
closure of upwind coal-fired power plants, the energy transition from 
coal to natural gas, emissions controls on heavy-duty diesel vehicles, 
the Cross-State Air Pollution Rule, and the phase-out of residual oil 
for space heating in New York City. Furthermore, economic factors 
including the 2008 recession and the shift in the cost of natural gas 
relative to coal and oil, drove changes in electricity-generating unit 
technologies as well as air quality (29, 30). These changes resulted in 
substantial decreases in PM2.5 concentrations across New York State 
from 2005 to 2019 (29, 30), but compositional particle changes also 
occurred. We found that SS and SN concentrations decreased across 
New  York State during 2005–2019, while GAS concentrations 
increased over this period (31, 32). We also observed decreased POC 
concentrations between 2005 and 2016, and an increase in SOC 
concentrations during 2014–2016 after a decline in the early years of 
the 2005–2013 period (28). In 2017, new regulations for Tier 3 light-
duty vehicles began in New York State to improve emissions, and 
specifically to have lower SOC formation. These Tier 3 emission 
controls were only included in vehicles starting in 2017 and are not 
mandated for all vehicles until 2025. Any resulting reduction in 
emissions from these vehicles provided an opportunity to explore if 
the associations between the rates of STEMI and PM2.5 components 
and sources changed after their introduction in 2017 (i.e., early 
implementation period).

Using a dataset of patients whose STEMI was treated at the 
University of Rochester Medical Center (URMC) and ambient air 
pollutant concentrations from the monitoring station in Rochester 
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from 2014 to 2019, we hypothesized that increases in concentrations 
of PM2.5 from motor vehicle and diesel sources (i.e., GAS and DIE) as 
well as SOC would be  associated with an increased rate of 
STEMI. We also explored whether the introduction of Tier 3 light-
duty vehicles from 2017 to 2019 (early Tier 3 implementation period) 
would lead to a reduced rate of STEMI associated with these specific 
PM2.5 sources/components, compared to the 2014–2016 period.

Methods

Study Population and Outcome Assessment: This study included 
STEMI patients treated at the Cardiac Catheterization Laboratory 
(Cath Lab) at URMC in Rochester, New York from January 1, 2014 to 
December 31, 2019, who lived within 15 miles of the pollution 
monitoring site in Rochester. According to the American College of 
Cardiology (ACC)/American Heart Association (AHA) guidelines, a 
STEMI was defined as a myocardial infarction with an ST-segment 
elevation of >1 mm in two or more contiguous precordial leads, two 
or more adjacent limb leads, or a new or presumed new left bundle 
branch block in the presence of angina or angina equivalent on the 
presenting electrocardiogram (33). All STEMI events were diagnosed 
at the time of admission, with symptom onset date and time self-
reported by each patient. If patients were unable to communicate, 
we obtained the information from their relatives. In terms of patients 
who experienced multiple STEMIs during the study period, if the 
subsequent STEMI event occurred ≥72 h after the previous one, it was 
counted as an additional event. In addition, demographic and clinical 
characteristics of patients were obtained from medical history and 
chart review. This study was approved by the University of Rochester 
Medical Center Research Subjects Review Board.

Air Pollution and Meteorology Measurements: PM2.5 
compositional data was obtained from the U.S. Environmental 
Protection Agency (EPA) Chemical Speciation Network.1 Daily 
samples were collected and analyzed every third day in Rochester, and 
organic carbon, including primary organic carbon (POC) and 
secondary organic carbon (SOC), was measured using thermo-optical 
analysis. More details of the sampling methods, analytical protocols, 
and quality assurance and control were described previously (34). 
PM2.5 sources were identified using EPA positive matrix factorization 
(PMF) version 5, with further information on these analyses provided 
previously (28, 32). Eight PM2.5 sources identified in Rochester were 
used in this study, including secondary sulfate (SS), secondary nitrate 
(SN), spark-ignition emissions (GAS), diesel (DIE), road dust (RD), 
biomass burning (BB), pyrolyzed organic rich (OP), and road salt 
(RS). Daily ambient temperature and relative humidity in Rochester 
were measured at the Rochester International Airport and obtained 
from the National Weather Service (National Climate Data Center).2

Study Design and Statistical Analyses: We used a modified time-
stratified case-crossover study design to estimate the rate of STEMI 
associated with each interquartile range increase in SOC, POC, and 
source-specific PM2.5 concentration in the previous 1, 3, and 6 days. 
For each STEMI, the standard time-stratified design (35, 36) would 

1  www.epa.gov/aqs

2  https://www.ncdc.noaa.gov/cdo-web/datatools/lcd

include the day of STEMI symptom onset as the case day (e.g., 
Wednesday July 12, 2023), and then use all of the same weekdays in 
the same calendar month (i.e., Wednesdays July 5, 19, and 26, 2023) 
as control days. All case and control days would be 7 days apart, and 
air pollutant concentrations (e.g., PM2.5 available for every day of the 
study period) would then be matched to each case and control day in 
the dataset for analysis. This time-stratified case-crossover design 
controls for non-time-varying potential confounders such as 
underlying medical conditions, long-term time trends, season, and 
weekday by design. Thus, we would not need to control for weekday 
in our conditional logistic regression models since each case and 
control day have the same value of weekday.

However, for our SOC, POC, and source-specific PM2.5 data (32) 
which were only available every 3rd day, there would be very few 
complete sets of case and control days for analysis using this standard 
time-stratified design (where case and referent days are 7 days apart). 
Therefore, we used a modified time-stratified design, where the day of 
STEMI symptom onset was again the case day (e.g., Wednesday July 
12, 2023), but control days were now all the 6 days intervals before and 
after the case day within the same calendar month (e.g., Thursday July 
6, 2023; Tuesday July 18, 2023; Monday July 24, 2023; Sunday July 30, 
2023). Non-time varying potential confounders, such as underlying 
medical conditions, long-term time trends, and season, are still 
controlled by design. However, weekday is not, since case and referent 
days are no longer the same weekday. Further, air pollutant 
concentrations vary by weekday (28), and weekday has been included 
in acute health effect studies of air pollution and cardiorespiratory 
health events as a potential confounder (37–39). Therefore, using a 
conditional logistic regression model, stratified by each case–control 
set, we regressed case–control status (i.e., case = 1; control = 0) against 
the mean SOC concentration on lag day 0, adjusting for the mean 
residual PM2.5 concentration (i.e., residual PM2.5 = PM2.5–SOC; to 
control for potential confounding by non-SOC PM2.5), weekday, 
holidays, temperature (natural spline with 4 degrees of freed(39)om 
[df]), and relative humidity (linear term) on the same case and control 
days. We also separately re-ran this set of models for the mean SOC 
concentration on lag days 0–3 and 0–6. We then re-ran this set of 
model analyses for POC (including residual PM2.5 = PM2.5–POC) and 
each PM2.5 source in the same manner (residual PM2.5 = PM2.5–source-
specific PM2.5 concentration [e.g., PM2.5–GAS]). For each model, 
we estimated the rate of STEMI associated with each interquartile 
range (IQR) increase in the specific pollutant concentration, and its 
95% confidence interval (CI).

Next, we examined whether the rates of STEMI associated with 
each IQR increase in POC, SOC, and each PM2.5 source concentration 
differed between the 2014–2016 and 2017–2019 periods by adding an 
interaction term (e.g., SOC * 2017–2019_Period) to the model. Since 
we examined three lag times for each pollutant, statistical significance 
was defined as p < 0.017 (0.05/3). All data management and analyses 
were performed using SAS version 9.4 (©SAS Institute Inc., Cary, NC) 
and R version 4.2.3.

Results

The demographic characteristics of the 186 patients with 188 
STEMI events during the study period are provided in Table 1. The 
majority of these subjects were male (72.3%), white (83.4%), and 
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TABLE 1  Characteristics of STEMI patients by period.

Characteristics 2014–2016
(N  =  76)a

n (%)

2017–2019
(N  =  122)a

n (%)

Age (years)

 �  < 50 12 (15.8) 14 (12.5)

 � 50–59 26 (34.2) 30 (26.8)

 � 60–69 25 (32.9) 36 (32.1)

 � 70–79 10 (13.2) 15 (13.4)

 �  ≥ 80 3 (3.9) 17 (15.2)

 � Mean ± SD 60.6 ± 10.8 64.4 ± 13.0

Sex

 � Female 18 (23.7) 34 (30.4)

 � Male 58 (76.3) 78 (69.6)

Race

 � Missing 0 1

 � Caucasian 63 (82.9) 93 (83.8)

 � African American 10 (13.2) 13 (11.7)

 � Asian 2 (2.6) 5 (4.5)

 � Others 1 (1.3) 0 (0)

Ethnicity

 � Missing 1 0

 � Non-Hispanic 71 (94.7) 108 (96.4)

 � Hispanic/Latino 4 (5.3) 4 (3.6)

Body Mass Index (kg/m2)

 � Normal (<25) 15 (19.7) 31 (27.7)

 � Overweight (25 ≤ ~ <30) 36 (47.4) 40 (35.7)

 � Obesity (30 ≤ ~ <35) 15 (19.7) 32 (28.6)

 � Severe Obesity (≥35) 10 (13.2) 9 (8.0)

 � Mean ± SD 28.8 ± 4.9 28.4 ± 5.6

Smoking

 � Missing 0 12

 � Yes 27 (35.5) 45 (45.0)

 � No 49 (64.5) 55 (55.0)

Health Insurance

 � Missing 6 2

 � Private 60 (85.7) 67 (60.9)

 � Medicare 3 (4.3) 31 (28.2)

 � Medicaid 3 (4.3) 12 (10.9)

 � No insurance 3 (4.3) 0 (0)

 � Other (military, non-US) 1 (1.4) 0 (0)

Clinical Presentation

 � Prior Myocardial Infarction 7 (9.2) 20 (17.9)

 � Prior Percutaneous Coronary Intervention 7 (9.2) 14 (12.5)

 � Prior Coronary Artery Bypass Graft 4 (5.3) 3 (2.7)

 � Cardiovascular Disease 5 (6.6) 9 (8.0)

 � Hypertensionb 53 (69.7) 75 (84.3)

(Continued)

88

https://doi.org/10.3389/fpubh.2024.1369698
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhao et al.� 10.3389/fpubh.2024.1369698

Frontiers in Public Health 05 frontiersin.org

non-Hispanic (94.7%) with a mean age of 62.8 years (standard 
deviation [SD]: 10.8 years). Compared to the 2014–2016 period, 
STEMI patients in the 2017–2019 period were older (64.4 ± 13.0 vs. 
60.6 ± 10.8 years) and more likely to be smokers (45.0% vs. 35.5%). 
They were also less likely to be male (69.6% vs. 76.3%). More subjects 
had Medicare (28.2% vs. 4.3%) and Medicaid (10.9% vs. 4.3%) in the 
2017–2019 period than those in the 2014–2016 period. Furthermore, 
a prior history of myocardial infarction and hypertension was more 
prevalent, and diabetes and dyslipidemia were less common among 
the participants in the 2017–2019 period relative to the 2014–2016 
period. Participants in the 2017–2019 period stayed in the hospital for 
4.2 days on average (SD = 4.3 days), shorter than the 2014–2016 period 
(Mean ± SD: 5.2 ± 12.5 days).

Daily concentrations of POC, SOC, and PM2.5 sources are 
summarized in Table 2. From the 2014–2016 period to the 2017–2019 
period, the median concentration of POC and SOC increased by 
34.4% (2014–2016: 0.32 μg/m3; 2017–2019: 0.43 μg/m3) and 41.8% 
(2014–2016: 0.55 μg/m3; 2017–2019: 0.78 μg/m3), respectively. In 
terms of PM2.5 sources, there were substantial increases in median 
concentrations of SN (100%; 2014–2016: 0.15 μg/m3; 2017–2019: 
0.30 μg/m3), GAS (125%; 2014–2016: 0.96 μg/m3; 2017–2019: 2.16 μg/
m3), and OP (71.4%; 2014–2016: 0.21 μg/m3; 2017–2019: 0.36 μg/m3). 
There were large decreases in median concentrations of SS (48%; 
2014–2016: 1.13 μg/m3; 2017–2019: 0.59 μg/m3) and BB (59%; 2014–
2016: 0.44 μg/m3; 2017–2019: 0.18 μg/m3), but little to no change in 
PM2.5, DIE, RD, and RS concentrations. SOC was moderately 
correlated with PM2.5 (r = 0.53) and POC (r = 0.51; Table 3), while SS 
was moderately correlated with PM2.5 (r = 0.64) and OP (r = 0.58). SN 
was negatively correlated with temperature (r = −0.55). DIE was 
positively correlated with RD (r = 0.14) and OP (r = 0.03), but 
negatively correlated with other PM2.5 sources (SS: r = −0.14; SN: 
r = −0.06; GAS: r = −0.12; BB: r = −0.23; RS: −0.14), although these 
correlations were weak.

Inconsistent with our a priori hypothesis, interquartile range 
(IQR) increases in mean SOC concentrations on the same day, and 
previous 3 and 6 days, were not associated with increased rates of 
STEMI (Table  4). However, each IQR increase in mean SOC 
concentration in the previous 6 days was associated with an imprecise, 
but suggestive 14% increased rate of STEMI (Rate ratio [RR] = 1.14; 

95% CI = 0.89, 1.45). Similarly, inconsistent with our a priori 
hypotheses, IQR increases in GAS and DIE on the same day, and 
previous 3 and 6 days, were not associated with increased rates of 
STEMI. There were no increased rates of STEMI associated with POC 
or any other source specific PM2.5 concentration at any lag time 
(Table 4).

We also explored whether rates of STEMI were separately 
associated with increased SOC, POC, and source-specific PM2.5 
concentrations in 2014–2016 and 2017–2019 and whether these 
period-specific rate ratios were different (Table 5). Although increased 
SOC, POC, and source-specific PM2.5 concentrations were not 
associated with increased rates of STEMI during either period at any 
lag time, each IQR increase in SS on lag day 0 was associated with a 
decreased rate of STEMI (RR = 0.63; 95% CI = 0.40, 0.98) during 2017–
2019. Further, although imprecise, rate ratios were substantially 
greater than 1.0 for POC, SOC, SS, and GAS for most lag times in 
2014–2016.

Next, there were significant differences (p < 0.017) in period 
specific rate ratios for SS on lag day 0 (2014–2016: RR = 1.22, 95% 
CI = 0.90, 1.65; 2017–2019: RR = 0.63, 95% CI = 0.40, 0.98) and GAS 
on lag day 0 (2014–2016: RR = 1.69, 95% CI = 0.98, 2.94; 2017–2019: 
RR = 0.79, 95% CI = 0.55, 1.13; Table 5). Although not statistically 
significant, there were substantial differences in rate ratios for POC on 
lag day 0 (2014–2016: RR = 1.20, 95% CI = 0.90, 1.60; 2017–2019: 
RR = 0.79, 95% CI = 0.60, 1.03) and lag day 6 (2014–2016: RR = 1.79, 
95% CI = 0.83, 3.86; 2017–2019: RR = 0.69, 95% CI = 0.43, 1.12), and 
GAS on lag day 6 (2014–2016: RR = 1.63, 95% CI = 0.87, 3.04; 2017–
2019: RR = 0.70, 95% CI = 0.42, 1.17).

Discussion

Inconsistent with our a priori hypothesis, we did not observe 
an increase in rates of STEMI associated with increased PM2.5 
concentrations from GAS and DIE sources (i.e., markers of traffic 
pollution) in Rochester, New York, from 2014 to 2019. However, 
an increase in GAS concentrations was associated with the 
increased rate of STEMI on the same day in the 2014–2016 period, 
but not in the 2017–2019 period. In addition, each IQR increase in 

TABLE 1  (Continued)

Characteristics 2014–2016
(N  =  76)a

n (%)

2017–2019
(N  =  122)a

n (%)

 � Dyslipidemia 42 (55.3) 55 (49.1)

 � Diabetes 21 (27.6) 25 (22.3)

 � Prior Heart Failure 1 (1.3) 4 (3.6)

 � Family History Coronary Artery Disease 16 (21.1) 20 (17.9)

 � Prior Peripheral Arterial Diseaseb 3 (4.0) 3 (2.7)

 � Current Dialysis 1 (1.3) 0 (0)

 � Chronic Lung Disease 8 (10.5) 9 (8.0)

Length of Stay (days)c Mean ± SD 5.2 ± 12.5 4.2 ± 4.3

For any given characteristic, the denominator of percentage is the number of STEMIs events with available data on that characteristic. SD, Standard Deviation.  
aNs were the number of STEMI events. There was a total of 188 STEMI events among 186 patients.
bThe variable of hypertension had 23 missing values in the period of 2017–2019. The variable of prior peripheral arterial disease had one missing value in the 2014–2016 period.
cOne outlier (length of stay = 347 days) removed from the period of 2014–2016.
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TABLE 2  Distribution of daily concentrations (μg/m3) of organic carbon and PM2.5 sources and weather characteristics by perioda.

N Mean Min P5 P25 Median P75 P95 Max IQR

PM2.5 – From composition measurements

 � All years 716 6.90 −0.73 1.81 3.48 5.72 7.95 12.65 88.11 4.47

 � 2014–2016 288 8.02 −0.73 1.64 3.51 5.69 8.78 13.27 88.11 5.27

 � 2017–2019 428 6.13 0.18 1.88 3.48 5.74 7.60 12.49 21.73 4.13

Primary Organic Carbon (POC)

 � All years 716 0.56 −0.47 0.00 0.19 0.37 0.70 1.72 3.74 0.51

 � 2014–2016 288 0.47 0.00 0.00 0.17 0.32 0.54 1.33 3.74 0.37

 � 2017–2019 428 0.63 −0.47 0.00 0.23 0.43 0.79 2.13 3.57 0.55

Secondary Organic Carbon (SOC)

 � All years 716 0.83 0.00 0.10 0.42 0.71 1.06 1.61 11.63 0.65

 � 2014–2016 288 0.83 0.00 0.00 0.30 0.55 1.06 1.74 11.63 0.76

 � 2017–2019 428 0.83 0.13 0.21 0.51 0.78 1.06 1.56 2.62 0.56

PM2.5 – From source measurements

 � All years 716 6.5 0.9 2.2 3.8 6.0 8.2 12.8 21.7 4.4

 � 2014–2016 288 6.7 1.0 2.1 3.8 6.0 8.5 13.5 20.1 4.7

 � 2017–2019 428 6.4 0.9 2.2 3.8 6.0 7.7 12.5 21.7 3.9

Secondary Sulfate (SS)

 � All years 716 1.33 −1.29 −0.40 0.15 0.78 2.06 4.91 11.48 1.90

 � 2014–2016 288 1.92 −0.75 −0.25 0.17 1.13 3.12 6.29 11.48 2.96

 � 2017–2019 428 0.99 −1.29 −0.54 0.11 0.59 1.41 4.20 5.72 1.30

Secondary Nitrate (SN)

 � All years 716 0.89 −0.55 −0.19 0.01 0.26 1.14 4.19 10.55 1.12

 � 2014–2016 288 0.67 −0.40 −0.29 −0.03 0.15 0.98 2.90 7.92 1.01

 � 2017–2019 428 1.02 −0.55 −0.17 0.02 0.30 1.19 4.73 10.55 1.17

Spark-ignition Emissions (GAS)

 � All years 716 1.99 −0.16 −0.03 0.96 1.79 2.68 4.60 8.05 1.73

 � 2014–2016 288 1.28 −0.16 −0.06 0.42 0.96 1.91 4.01 5.07 1.48

 � 2017–2019 428 2.41 −0.10 0.77 1.42 2.16 2.99 5.00 8.05 1.56

Diesel (DIE)

 � All years 716 0.61 −0.29 0.05 0.34 0.60 0.81 1.19 2.43 0.47

 � 2014–2016 288 0.61 −0.12 0.09 0.33 0.60 0.79 1.25 2.10 0.46

 � 2017–2019 428 0.61 −0.29 0.02 0.35 0.60 0.83 1.19 2.43 0.49

Road Dust (RD)

 � All years 716 0.21 −0.12 −0.02 0.07 0.16 0.32 0.61 1.65 0.25

 � 2014–2016 288 0.24 −0.07 0.01 0.09 0.18 0.34 0.61 1.65 0.25

 � 2017–2019 428 0.20 −0.12 −0.04 0.06 0.15 0.30 0.54 1.18 0.24

Biomass Burning (BB)

 � All years 716 0.42 −0.24 −0.09 0.00 0.25 0.63 1.47 3.23 0.63

 � 2014–2016 288 0.58 −0.24 −0.02 0.16 0.44 0.78 1.90 3.23 0.62

 � 2017–2019 428 0.32 −0.23 −0.12 −0.05 0.18 0.53 1.25 2.09 0.58

Road Salt (RS)

 � All years 716 0.07 −0.06 −0.02 0.00 0.01 0.03 0.36 1.89 0.03

 � 2014–2016 288 0.10 −0.03 −0.01 0.00 0.01 0.04 0.56 1.89 0.04

 � 2017–2019 428 0.05 −0.06 −0.02 0.00 0.01 0.03 0.25 1.62 0.03

(Continued)

90

https://doi.org/10.3389/fpubh.2024.1369698
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhao et al.� 10.3389/fpubh.2024.1369698

Frontiers in Public Health 07 frontiersin.org

mean SOC concentration in the previous 6 days was associated 
with an increased rate of STEMI in 2014–2016, despite the lack of 
precision. Similarly, we generally did not find increased rates of 
STEMI associated with increased POC or any other source-specific 
PM2.5 concentrations. In the exploratory analysis by period, 
we found a negative association between SS concentration on the 
same day and the rate of STEMI during 2017–2019 (i.e., after Tier 
3 vehicle introduction). In addition, even in this early Tier 3 
implementation period (2017–2019), there were significant 

differences in the rates of STEMI associated with SS and GAS on 
lag day 0 between the 2014–2016 and 2017–2019 periods. Further 
work will be  needed to examine full implementation of Tier 3 
through 2025.

This finding of a decreased rate of STEMI associated with 
increased SS concentrations in 2017–2019 may be spurious, and just 
a result of an examining effect modification of an overall null 
association in secondary analyses. In this case, the overall effect across 
the 2014–2019 period is null (i.e., RR = 1.0) and we find an increased 

TABLE 2  (Continued)

N Mean Min P5 P25 Median P75 P95 Max IQR

Pyrolyzed Organic Rich (OP)

 � All years 716 0.38 −0.21 −0.02 0.14 0.33 0.55 0.99 2.47 0.41

 � 2014–2016 288 0.33 −0.12 −0.02 0.08 0.21 0.53 1.11 1.59 0.45

 � 2017–2019 428 0.41 −0.21 −0.02 0.22 0.36 0.56 0.95 2.47 0.34

Temperature (°C)

 � All years 716 12.47 −13.97 −5.61 4.55 13.93 20.67 26.03 29.46 −1.65

 � 2014–2016 288 13.81 −11.64 −6.01 7.49 16.00 21.24 27.83 28.83 −4.03

 � 2017–2019 428 11.55 −13.97 −5.00 2.74 12.69 20.42 25.49 29.46 −0.10

Relative Humidity (%)

 � All years 716 67.02 30.33 45.46 58.08 66.33 75.85 89.56 98.25 17.77

 � 2014–2016 288 62.97 30.33 42.98 54.38 61.75 71.17 86.37 96.00 16.79

 � 2017–2019 428 69.78 31.26 50.63 60.25 71.29 78.46 90.37 98.25 18.21

Min, Minimum; P5, 5th Percentile; P25, 25th Percentile; P75, 75th Percentile; P95, 95th Percentile; Max, Maximum; IQR, Interquartile Range.aData on control periods and lag day 0 were used.

TABLE 3  Pearson correlation coefficients between daily pollutant concentrations (μg/m3) and weather measurements during 2014–2019a.

Compositional PM2.5 Measurements

PM2.5 POC SOC Temp RH

PM2.5 1.00

POC 0.34 1.00

SOC 0.53 0.51 1.00

Temp 0.19 0.47 0.24 1.00

RH −0.06 −0.11 −0.09 −0.13 1.00

Source-specific PM2.5 Measurements

PM2.5 SS SN GAS DIE RD BB RS OP Temp RH

PM2.5 1.00

SS 0.64 1.00

SN 0.39 −0.08 1.00

GAS 0.48 0.16 −0.12 1.00

DIE −0.14 −0.14 −0.06 −0.12 1.00

RD 0.15 0.23 −0.03 −0.06 0.14 1.00

BB 0.45 0.32 0.33 0.03 −0.23 0.16 1.00

RS 0.15 0.00 0.34 −0.13 −0.14 0.04 0.22 1.00

OP 0.45 0.58 −0.15 0.31 0.03 0.13 −0.01 −0.15 1.00

Temp 0.22 0.39 −0.55 0.40 0.15 0.11 −0.19 −0.32 0.44 1.00

RH −0.02 −0.11 0.13 −0.08 0.11 −0.27 −0.08 0.01 −0.04 −0.13 1.00

POC, primary organic carbon; SOC, secondary organic carbon; SS, secondary sulfate; SN, secondary nitrate; GAS, spark-ignition emissions; DIE, diesel; RD, road dust; BB, biomass burning; 
RS, road salt; OP, pyrolyzed organic rich; Temp, temperature (°C); RH, relative humidity (%).aData on control periods and lag day 0 were used.
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TABLE 4  Rates of STEMI associated with each interquartile range increase in concentrations (μg/m3) of organic carbon and PM2.5 sources in a 
multivariable modela.

Lag day IQRb N of STEMI OR 95% CI p-value

Primary Organic Carbon (POC)

 � 0 0.51 180 0.94 0.77, 1.15 0.565

 � 0–3 0.53 177 0.89 0.63, 1.26 0.527

 � 0–6 0.55 182 0.87 0.57, 1.34 0.527

Secondary Organic Carbon (SOC)

 � 0 0.65 180 1.00 0.88, 1.14 0.950

 � 0–3 0.45 177 1.06 0.84, 1.33 0.640

 � 0–6 0.42 182 1.14 0.89, 1.45 0.306

Secondary Sulfate (SS)

 � 0 1.90 170 1.00 0.77, 1.31 0.972

 � 0–3 1.51 146 1.18 0.88, 1.59 0.226

 � 0–6 1.61 161 0.99 0.70, 1.42 0.969

Secondary Nitrate (SN)

 � 0 1.12 170 0.95 0.79, 1.13 0.530

 � 0–3 1.18 146 0.90 0.68, 1.19 0.467

 � 0–6 1.24 161 0.93 0.64, 1.34 0.687

Spark-ignition Emissions (GAS)

 � 0 1.73 170 0.97 0.72, 1.31 0.828

 � 0–3 1.52 146 0.92 0.62, 1.36 0.681

 � 0–6 1.33 161 0.96 0.63, 1.46 0.849

Diesel (DIE)

 � 0 0.47 170 0.86 0.66, 1.12 0.254

 � 0–3 0.36 146 0.89 0.63, 1.25 0.492

 � 0–6 0.34 161 1.06 0.72, 1.56 0.765

Road Dust (RD)

 � 0 0.25 170 0.99 0.77, 1.28 0.941

 � 0–3 0.18 146 0.96 0.71, 1.31 0.809

 � 0–6 0.18 161 1.01 0.72, 1.42 0.944

Biomass Burning (BB)

 � 0 0.63 170 0.88 0.67, 1.15 0.335

 � 0–3 0.47 146 1.00 0.72, 1.39 0.977

 � 0–6 0.46 161 0.76 0.54, 1.06 0.104

Road Salt (RS)

 � 0 0.03 170 0.99 0.95, 1.02 0.418

 � 0–3 0.04 146 0.98 0.90, 1.07 0.687

 � 0–6 0.04 161 1.00 0.93, 1.09 0.931

Pyrolyzed Organic Rich (OP)

 � 0 0.41 170 1.03 0.79, 1.34 0.833

 � 0–3 0.34 146 0.99 0.69, 1.43 0.972

 � 0–6 0.31 161 1.08 0.73, 1.61 0.687

STEMI, ST-elevation myocardial infarction; IQR, interquartile range; OR, odds ratio; CI, confidence interval.aFor organic carbons, adjustments included the residuals between PM2.5 (from 
composition measurements) and POC or SOC for the corresponding lag day, weekday, holidays, and temperature (a natural spline with 4 degrees of freedom) and relative humidity (a linear 
term) for the corresponding lag day. For PM2.5 sources, adjustments included the residuals between PM2.5 (from source measurements) and specific PM2.5 source for the corresponding lag day, 
weekday, holidays, and temperature (a natural spline with 4 degrees of freedom) and relative humidity (a linear term) for the corresponding lag day.
bThe IQR for the corresponding pollutant and lag day was calculated using data from the control periods during all years.
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TABLE 5  Rates of STEMI associated with each interquartile range in concentrations (μg/m3) of organic carbon and PM2.5 sources by period, from a 
model including the interaction between pollutant concentrations and perioda.

Lag 
day

IQRb 2014–2016 2017–2019 Period 
Interaction

p-valueN of 
STEMI

OR 95% CI p-value N of 
STEMI

OR 95% CI p-value

Primary Organic Carbon (POC)

 � 0 0.51 74 1.20 0.90, 1.60 0.219 106 0.79 0.60, 1.03 0.083 0.023

 � 0–3 0.53 72 1.48 0.79, 2.78 0.226 105 0.78 0.52, 1.15 0.202 0.066

 � 0–6 0.55 74 1.79 0.83, 3.86 0.139 108 0.69 0.43, 1.12 0.130 0.028

Secondary Organic Carbon (SOC)

 � 0 0.65 74 1.02 0.90, 1.15 0.769 106 0.83 0.57, 1.21 0.335 0.294

 � 0–3 0.45 72 1.13 0.88, 1.44 0.350 105 0.90 0.62, 1.30 0.569 0.274

 � 0–6 0.42 74 1.27 0.96, 1.67 0.092 108 0.84 0.54, 1.30 0.431 0.103

Secondary Sulfate (SS)

 � 0 1.90 67 1.22 0.90, 1.65 0.203 103 0.63 0.40, 0.98 0.040 0.006

 � 0–3 1.51 50 1.30 0.93, 1.80 0.120 96 0.90 0.55, 1.48 0.675 0.170

 � 0–6 1.61 59 1.16 0.80, 1.69 0.426 102 0.60 0.33, 1.09 0.093 0.039

Secondary Nitrate (SN)

 � 0 1.12 67 0.60 0.38, 0.97 0.037 103 1.01 0.85, 1.21 0.908 0.039

 � 0–3 1.18 50 0.73 0.35, 1.53 0.406 96 0.93 0.69, 1.24 0.616 0.546

 � 0–6 1.24 59 0.47 0.19, 1.11 0.086 102 1.10 0.74, 1.64 0.649 0.071

Spark-ignition Emissions (GAS)

 � 0 1.73 67 1.69 0.98, 2.94 0.061 103 0.79 0.55, 1.13 0.199 0.016

 � 0–3 1.52 50 1.42 0.74, 2.72 0.295 96 0.75 0.47, 1.21 0.240 0.109

 � 0–6 1.33 59 1.63 0.87, 3.04 0.125 102 0.70 0.42, 1.17 0.173 0.028

Diesel (DIE)

 � 0 0.47 67 0.67 0.41, 1.07 0.096 103 0.97 0.70, 1.33 0.834 0.196

 � 0–3 0.36 50 0.75 0.42, 1.34 0.326 96 0.97 0.64, 1.47 0.884 0.471

 � 0–6 0.34 59 0.93 0.52, 1.66 0.809 102 1.16 0.71, 1.88 0.551 0.554

Road Dust (RD)

 � 0 0.25 67 0.91 0.63, 1.32 0.635 103 1.07 0.75, 1.51 0.718 0.539

 � 0–3 0.18 50 0.84 0.52, 1.35 0.464 96 1.06 0.72, 1.55 0.775 0.428

 � 0–6 0.18 59 0.77 0.47, 1.25 0.291 102 1.33 0.84, 2.11 0.227 0.097

Biomass Burning (BB)

 � 0 0.63 67 1.05 0.74, 1.48 0.797 103 0.70 0.47, 1.05 0.084 0.125

 � 0–3 0.47 50 1.15 0.74, 1.79 0.522 96 0.86 0.54, 1.37 0.537 0.352

 � 0–6 0.46 59 0.83 0.54, 1.28 0.405 102 0.66 0.40, 1.11 0.118 0.500

Road Salt (RS)

 � 0 0.03 67 0.98 0.94, 1.03 0.490 103 0.99 0.94, 1.04 0.663 0.882

 � 0–3 0.04 50 1.01 0.90, 1.14 0.811 96 0.95 0.84, 1.08 0.413 0.443

 � 0–6 0.04 59 0.99 0.90, 1.09 0.846 102 1.03 0.90, 1.19 0.649 0.627

Pyrolyzed Organic Rich (OP)

 � 0 0.41 67 1.33 0.91, 1.94 0.143 103 0.86 0.61, 1.21 0.395 0.070

 � 0–3 0.34 50 1.32 0.70, 2.50 0.396 96 0.91 0.61, 1.36 0.653 0.289

 � 0–6 0.31 59 1.49 0.83, 2.70 0.184 102 0.92 0.58, 1.45 0.707 0.150

STEMI, ST-elevation myocardial infarction; IQR, interquartile range; OR, odds ratio; CI, confidence interval.aFor organic carbons, adjustments included the residuals between PM2.5 
(from composition measurements) and POC or SOC for the corresponding lag day, weekday, holidays, and temperature (a natural spline with 4 degrees of freedom) and relative humidity 
(a linear term) for the corresponding lag day. For PM2.5 sources, adjustments included the residuals between PM2.5 (from source measurements) and specific PM2.5 source for the 
corresponding lag day, weekday, holidays, and temperature (a natural spline with 4 degrees of freedom) and relative humidity (a linear term) for the corresponding lag day.
bThe IQR for the corresponding pollutant and lag day was calculated using data from the control periods during all years.
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rate ratio in 2014–2016, so there must be a decreased rate ratio in 
2017–2019. Two prior studies, also using STEMI data from the Cath 
Lab, air pollution data from the Rochester monitoring station, and the 
same analysis methods, found no associations between the rate of 
STEMI and PM2.5 concentration in the previous few hours and days 
in Rochester during the 2005–2016 (13) and 2014–2019 periods (14). 
Our null findings with PM2.5 sources and components over 2014–2019 
are consistent with these analyses.

However, there were also studies suggesting positive associations 
using earlier data from the same sources and the same analysis 
methods (7, 8). After rescaling effects with the same IQR (4.47 μg/m3) 
for PM2.5 used in our analysis, Evans et al. reported a 10% increase in 
the rate of STEMI associated with each 4.47 μg/m3 increase in PM2.5 
concentration in the previous hour (RR = 1.10, 95% CI = 0.99, 1.23) 
during 2007–2012 (8). A similar result (IQR = 4.47 μg/m3, RR = 1.11, 
95% CI = 1.01, 1.22) was also found by Gardner et al. using data from 
2007 to 2010 (7). Some, but not all, other case-crossover studies also 
reported that increased PM2.5 concentrations were associated with an 
increased risk of STEMI. For example, each 4.47 μg/m3 increase in 
PM2.5 concentration was associated with estimated RRs of 1.06 (95% 
CI = 1.01, 1.12) in Utah, United States, between 1993 and 2014 (10), 
1.02 (95% CI = 1.00, 1.05) in Beijing in 2014 (12), and 1.72 (95% 
CI = 1.00, 2.19) in Suzhou, China, from 2013 to 2016 (11). The 
discrepancy in these results is likely due to different study locations 
and changes in PM composition over time. However, it could also 
be due to differences in STEMI patient characteristics over time and 
differences in lag patterns of associations.

Although this study did not find associations between GAS and 
DIE sources and the rates of STEMI during the entire period (2014–
2019), each 1.73 μg/m3 increase in PM2.5 concentration from the GAS 
source was associated with an increased rate of STEMI on lag day 0 in 
the 2014–2016 period (RR = 1.69; 95% CI = 0.98, 2.94), but not in the 
2017–2019 period (RR = 0.79; 95% CI = 0.55, 1.13). This can perhaps 
be explained, in part, by our recent study (32). We found that although 
the monotonic trend in GAS over the period of 2010 to 2019 was 
positive and significant, the piecewise analysis found a breakpoint 
occurring around the middle of 2017 and a small downward trend to 
the end of 2019 suggesting changing GAS emissions during this 
period (Figure 1) (32). Alternatively, DIE remained constant according 
to the monotonic trend, but was decreasing slowly from the middle of 
2012 according to the breakpoint analysis. Consistent with our study, 
Rich et al. reported an increased excess rate of hospitalizations for 
myocardial infarction (MI) associated with increased concentrations 
of PM2.5 from the GAS source on lag day 0 in New York State from 
2005 and 2016 (2.3%; 95% CI = 0.1, 4.5%; IQR = 2.56 μg/m3), but not 
from the DIE source (0.4%; 95% CI = −0.5, 1.2%; IQR = 0.53 μg/m3) 
(25). They also found increased GAS concentrations associated with 
increased hospitalizations for ischemic stroke (excess rate = 3.5%; 95% 
CI = 1.0, 6.0%; IQR = 2.56 μg/m3) and an increase in DIE source 
(IQR = 0.53 μg/m3) associated with increased excess rates of congestive 
heart failure (0.7%; 95% CI = 0.2, 1.3%) and ischemic heart disease 
(0.6%; 95% CI = 0.1, 1.1%) hospitalizations on lag day 0. In addition, 
Sarnat et al. observed that cardiovascular emergency department (ED) 
visits were positively associated with same-day PM2.5 concentrations 
from mobile sources (RR range, 1.018–1.025) in Atlanta from 1998 to 
2002 (40). In contrast, another Atlanta study (41) accounting for the 
uncertainty of source apportionment methods, reported no 
associations between mobile source PM2.5 (diesel- and gasoline-fueled 

vehicles) and ED visits for ischemic heart disease during 1998–2010. 
A possible mechanism for traffic PM2.5 sources associated with an 
increased risk of cardiovascular events is that traffic-related particles 
could contribute to both exogenous and endogenous reactive oxygen 
species (ROS).

Multiple prior studies have examined associations between 
organic carbon (OC) and adverse cardiovascular outcomes, with both 
positive (19, 42, 43) and negative (44–46) results reported. In addition, 
the long-term associations between SOC and cardiovascular events 
have been explored and their results were inconsistent (47, 48). 
However, current evidence about the short-term association is limited. 
Pennington et al. found each 1 μg/m3 increase in SOC concentrations 
was associated with ED visits for ischemic heart disease on lag day 0 
(RR = 1.003; 95% CI = 0.997, 1.009) in Atlanta from 1998 to 2010 (41). 
Similarly, despite imprecision, our finding indicated a suggestive 
increased rate of STEMI associated with an increase in SOC 
concentration on lag day 0–6 (RR = 1.14; 95% CI = 0.89, 1.45; 
IQR = 0.42 μg/m3). The possible mechanism for the association 
between SOC and STEMI is likely related to the formation of 
secondary PM species including SOC, alongside the identification of 
increased PM2.5 toxicity, resulting in an increased risk of cardiovascular 
events (16, 49). SOC formation can result in concurrent oxidant 
species, and the related oxidative stress and inflammation could 

FIGURE 1

Trend plots for GAS (A), DIE (B), and SS (C) for the period of 2010 to 
2019. The red line represents the seasonal by loess trends (STL), with 
95% confidence bound as a shaded area. The blue line represents 
the Thiel-Sen monotonic trend, with a 95% confidence interval as 
dashed lines. The black dashed line represents the piecewise trend. 
GAS, DIE, and SS represent spark-ignition emissions, diesel, and 
secondary sulfate, respectively. (Figures from the supplemental 
material of Chen et al. (32)).
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be potential drivers of adverse cardiovascular outcomes (22, 25). The 
imprecision in this study could be attributable to the limited sample 
size of the present study. Another possible factor to be considered is 
that the same pollutant values from one monitoring site were assigned 
for each subject on a specific day, regardless of how far they lived from 
the monitoring site, which likely cause underestimated effects.

Rather than single components being considered as causal, the 
combined effects of multiple constituents that possibly interact with 
environmental factors or combine with socioeconomic and biological 
characteristics may have substantial impacts on cardiac health (3). 
Secondary organic aerosol (SOA), derived from volatile organic 
compounds, is one such component. Fresh SOA is considered to 
contain peroxy radicals and peroxides and be strongly oxidizing (21, 
22, 25, 50). Further, traffic PM sources may not only contribute to 
increased SOC concentrations (25, 26, 31, 49) but are also an 
important source of SOA and its precursors (3, 25, 51, 52).

A recent study (53) examined the association between SOA 
concentrations and cardiorespiratory disease mortality in the 
United  States in 2016. It demonstrated that annual average SOA 
concentrations were strongly associated with county-level 
cardiorespiratory death rates, with a larger association per unit mass 
(β = 8.9 additional deaths per 100,000; 95% CI = 6.0, 12.0) than total 
PM2.5 (β = 1.4 additional deaths per 100,000; 95% CI = 0.5, 2.3). They 
considered that prior inconsistent results about associations of OC 
with adverse health outcomes could be, in part, explained by total OC 
lacking the distinction between primary organic aerosol (POA) and 
SOA (53). Although ambient PM2.5 concentrations are expected to 
decline in the future with strict air quality policies, SOA levels may 
relatively increase, resulting in increased health consequences per unit 
mass (49). Thus, future research should focus on the health effects of 
different PM components, including SOA and its constituents.

We did not observe increased rates of STEMI associated with SS, 
SN, RD, BB, OP, and RS. Similarly, Rich et al. reported no obvious 
associations of MI hospitalizations with SS, RD, BB, OP, and RS, while 
they found an association with SN (excess rate = 1.7%; 95% CI = 0.4, 
3.0%; IQR = 1.53 μg/m3) on lag day 0–3 (25). Another study reported no 
clear associations between MI mortality and SS, SN, and BB (54). SS and 
SN, being unreactive particles, would not provide oxidative potential or 
the resulting reactive oxygen species and oxidative stress (25, 26). OP is 
thought to represent more aged SOA that has been transported into the 
area with little associated ROS (25, 55–57). As a result, the absence of 
OP association might reflect its low ROS concentration. Our null 
findings about RD and BB may be related to their heterogeneities. RD, 
representing non-exhaust traffic emissions, contains deposited soil and 
road surface material. Its effects on STEMI may differ by deposition 
rates, variability in reactivity, and environmental factors. Likewise, BB 
could have different PM compositional patterns due to various biofuels. 
RS does not generally include strongly oxidizing constituents.

Interestingly, although the difference in the association between 
SOC and the rate of STEMI between the two periods was not found, 
we observed that SS and GAS concentrations on lag day 0 associated 
with the rates of STEMI were different between the 2014–2016 and 
2017–2019 periods, and their adverse effects on the triggering of 
STEMI might have a declining trend. Concentrations of sulfur-
containing pollutants have been decreasing (58, 59) due to the 
implementation of air quality policies in New  York State, such as 
particle traps required on heavy-duty diesel trucks and reductions in 
the sulfur content of diesel and home heating fuels. Also in Figure 1, 

SS shows a steady monotonic downward trend with only minor 
deviations showing the impacts of coal-fired power plant closures and 
reduced fuel sulfur concentrations. Consistent with our finding, Yount 
et al. (14) found that increased rates of STEMI were associated with 
increases in SO2 concentrations in previous 120 h (RR = 1.26; 95% 
CI = 1.03, 1.55; IQR = 0.59 ppb) during 2014–2016, but not in the 
2017–2019 period (RR = 1.21; 95% CI = 0.87, 1.68). Our finding 
regarding GAS is also similar to our previous study (14), which 
showed an increased rate of STEMI associated with an increase in 
concentrations of black carbon, a marker of traffic pollution, in the 
previous hour (RR = 1.16; 95% CI = 0.99, 1.34; IQR = 0.30 μg/m3) in the 
2014–2016 period instead of the 2017–2019 period (RR = 0.85; 95% 
CI = 0.72, 1.01). The reduction in the impact of GAS may be due to 
changes in PM components and/or PM mixtures resulting from air 
pollution regulations, including the introduction of Tier 3 light-duty 
vehicles. Inconsistent with our exception, we did not observe changes 
in the rate of STEMI associated with SOC after the Tier 3 regulation 
was implemented. It is estimated that only 36% of vehicles registered 
in New York State were Tier 3 in 2020 (14). Thus, the null finding of 
SOC is possibly attributed to the limited penetration of Tier 3 vehicles 
in the early Tier 3 implementation period (2017–2019). Consequently, 
the magnitude of the association between SOC and STEMI is not 
strong enough to be observed. In addition, when accounting for these 
results, some other possible reasons should be considered, such as 
healthcare improvements, public awareness and behavioral changes, 
and differences in study populations, as well as greater access to health 
care and medical insurance over the study period.

This study has several strengths, including the use of a well-defined 
STEMI study population treated at the Cath Lab in Rochester and the 
use of a case-crossover study design to control for non-time-varying 
factors and interactions between them, thereby reducing confounding 
by these factors. However, there are several limitations to be considered 
when interpreting our results. First, since PM2.5 sources and components 
were only measured every 3rd or 6th day, the number of subjects for 
whom exposure data were available largely decreased, thus reducing 
statistical power and precision. Second, all cases were assigned the same 
values of PM2.5 sources and components for a specific day from a single 
monitoring site without considering individual-specific differences, 
such as the distance from the emission source and/or the monitoring 
site, outdoor exposure duration, and protective measures. This 
assumption likely led to non-differential exposure misclassification and 
underestimated effects. Third, it is difficult for case-crossover designs 
combined with conditional logistic regression to fully adjust for possible 
overdispersion (60), which may cause larger confidence intervals than 
reported. Last, the 2014–2016 and 2017–2019 periods were selected 
based on the implementation timing of the new policy for Tier 3 light-
duty vehicles. However, given that 2017–2019 is the early Tier 3 
implementation period and the interventions generally phase in and 
take time to be effective, there are actually no well-defined time windows 
for the policies and emission changes. Therefore, the actual impact of 
this new policy should be further evaluated after the full implementation 
of Tier 3 through 2025.

Conclusion

We used data on STEMI events treated at the University of 
Rochester Medical Center from 2014 to 2019, as well as the 
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concentrations of PM2.5 sources and organic carbon measured in 
Rochester, NY. Inconsistent with our a priori hypothesis, increased 
rates of STEMI were not associated with increased GAS and DIE 
concentrations in the previous few days. However, in the 2014–2016 
period, increased PM2.5 concentrations from the GAS source were 
associated with an increased rate of STEMI on the same day, which 
was not observed in the 2017–2019 period. Despite imprecision, our 
finding suggested that a short-term increase in SOC concentration 
might be associated with an increased rate of STEMI. We also found 
no association between rates of STEMI and POC or any other source-
specific PM2.5 concentration. These negative results may be due to the 
potential changes in traffic emissions as well as the reduced statistical 
power and precision resulting from our limited sample size and 
potential exposure misclassification and effect underestimation. 
Furthermore, we observed significant differences in period-specific 
rate ratios for SS and GAS on the same day between the 2014–2016 
and 2017–2019 periods, with a declining trend regarding adverse 
effects on the triggering of STEMI. This finding may be related to the 
changes in PM components and/or PM mixtures. Future work will 
be  needed to further examine the effects of PM components and 
sources on triggering MI using a large sample after the Tier 3 light-
duty vehicle policy is fully implemented in New York State.
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Investigating how blood 
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Background: The association between exposure to cadmium (Cd) and 
cardiovascular health (CVH) has received considerable scientific interest. However, 
findings thus far have been inconclusive, particularly regarding sex-specific effects 
and dose–response relationships. The aim of our study was to investigate the 
relationships of blood Cd levels with the overall and component CVH scores.

Methods: We used data from the 2011–2018 NHANES to assess CVH using 
indicators such as BMI, blood pressure, lipid profiles, glucose levels, diet, physical 
activity, nicotine use, and sleep quality, each rated on a 0–100 scale. The overall 
CVH score was calculated as the average of these indicators. We employed both 
multiple linear and restricted cubic spline analyses to examine the relationship 
between blood Cd levels and CVH scores, including nonlinear patterns and 
subgroup-specific effects.

Results: Our analysis revealed that higher blood Cd levels were associated with 
lower overall CVH, nicotine exposure, sleep, and diet scores, with nonlinear 
decreases observed in overall CVH and nicotine exposure scores at specific 
thresholds (−1.447 and −1.752 log μg/dL, respectively). Notably, sex differences 
were evident; females experienced more adverse effects of Cd on CVH and lipid 
scores, while in males, Cd exposure was positively correlated with BMI, a link not 
observed in females.

Conclusion: Our study highlights the complex interplay between blood 
Cd levels and various aspects of CVH, revealing significant dose–response 
relationships and sex disparities. These findings enhance our understanding of 
the biobehavioral mechanisms linking Cd exposure to cardiovascular risk.

KEYWORDS

cadmium, cardiovascular health, sex factors, risk factors, NHANES

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide and has a major 
impact on both global health and the economy (1). In 2019, an estimated 523 million 
people were affected by CVD, resulting in 18.6 million deaths (2). As the incidence of CVD 
increases, effective prevention and management strategies are vital. In 2010, the American 
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Heart Association (AHA) implemented the “Life’s Simple 7” (LS7) 
scoring system to measure cardiovascular health (CVH) based on 
seven essential components: body mass index, smoking status, diet, 
cholesterol levels, blood pressure, blood glucose levels, and physical 
activity (3). The scores from these components are combined to 
classify individuals into three CVH categories: poor, intermediate, 
or ideal. Research has consistently shown that higher CVH scores 
are associated with a lower incidence of CVD complications and 
mortality (4–7). In 2022, the AHA updated the LS7 to include sleep 
health, refining the scoring system to better reflect contemporary 
health challenges (8).

Recent research has also highlighted the significant role of 
environmental factors, such as cadmium (Cd) exposure, in CVD 
development (9). Cd, a common heavy metal detectable in blood, 
enters the human body through water, food, and air (10, 11). Recent 
studies have further emphasized the association between blood Cd 
levels and cardiovascular health outcomes. For instance, a 
comprehensive review indicates that elevated blood Cd levels are 
significantly associated with increased incidence and mortality rates 
of CVD, coronary artery disease, and stroke (12). Another study 
reported that higher blood Cd levels were associated with increased 
all-cause and cardiovascular mortality in patients with hypertension 
(13). Despite extensive studies, the relationship between Cd exposure 
and CVD remains unclear, particularly regarding sex-specific effects 
(14, 15). To address this research gap, we utilized the extensive data 
from the National Health and Nutrition Examination Survey 
(NHANES) spanning 2011 to 2018, setting clear research objectives. 
The primary goal is to thoroughly investigate the relationships 
between blood Cd levels and both overall and specific cardiovascular 
health scores. The secondary goal is to examine the potential influence 
of sex differences within these relationships. Our findings can 
inform more targeted and effective CVD prevention and 
management strategies.

2 Materials and methods

2.1 Study population

We used data from the National Health and Nutrition 
Examination Survey (NHANES), which was conducted by the Centers 
for Disease Control and Prevention (CDC). The NHANES aims to 
assess the health and nutritional status of the U.S. population through 
interviews, biological samples, and physical exams. This 
comprehensive survey encompasses various aspects, such as 
interviews, biological sample collection, and physical examinations, 
to gather diverse health and nutrition-related data. Every individual 
involved in the study gave their informed consent, and the Institutional 
Review Board of the National Center for Health Statistics (NCHS) 
approved the research. Our analysis included data from three 
consecutive NHANES cycles (2013–2018), totaling 29,400 
participants. We excluded individuals under 20 years old (n = 12,343), 
those missing key CVH component data (n = 14,460), and those 
lacking blood Cd measurements (n = 939). Our final sample consisted 
of 1,658 adults aged 20 and older with complete datasets for CVH 
score calculation and blood Cd levels (Figure 1). This sample includes 
both healthy individuals and those with various health conditions, 
reflecting a broad spectrum of cardiovascular health statuses.

2.2 Measurement of Cd

Blood Cd levels were measured using inductively coupled plasma 
mass spectrometry (ICP-MS) at the CDC’s National Center for 
Environmental Health. Samples were diluted with a solution 
containing tetramethylammonium hydroxide, EDTA, and other 
stabilizers, then atomized and ionized at high temperatures to quantify 
trace elements based on their mass-to-charge ratios. The detection 
limit was managed precisely, and for elements below this limit, values 
were imputed as the detection limit divided by the square root of two. 
Rigorous quality assurance protocols were followed to ensure the 
accuracy of the results.

2.3 CVH scores

CVH scores were based on eight components: blood pressure, 
BMI, blood glucose levels, blood lipid levels, physical activity, sleep 
duration, nicotine exposure, and diet. Each component was assessed 
on a 0–100 scale, as detailed in Supplementary Table S1 and the 2022 
AHA Presidential Advisory (8). The composite CVH score aggregates 
these individual scores, categorizing CVH status into three levels: high 
(80–100), moderate (50–79), and low (0–49).

2.4 Covariates

Covariates were based on previous literature and assumptions 
related to CVH and included several factors (16–18): age, sex (female, 
male), race/ethnicity (Mexican American, non-Hispanic Black, 
non-Hispanic White, other race), educational attainment (less than 
high school, high school graduate, college or above), marital status 
(married/living with partner, divorced/widowed/separated, never 
married), poverty income ratio (PIR) (<1.3, ≥1.3), alcohol 
consumption status (<12 drinks/year, ≥12 drinks/year), waist 
circumference, and estimated glomerular filtration rate (eGFR). These 
variables were obtained through direct interviews or assessments of 
biological indicators. Alcohol consumption status was defined based 
on the question “Do you consume at least 12 alcoholic beverages per 
year?” The eGFR was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration equation (19).

2.5 Statistical analyses

Descriptive statistics are presented as the mean ± standard 
deviation or median (interquartile range) for skewed distributions 
such as blood Cd, which were logarithmically transformed to achieve 
normality. Baseline characteristics across CVH categories and between 
sexes were compared using t-tests or Mann–Whitney U tests for 
continuous variables and chi–square tests for categorical variables. 
Both univariate and multivariate linear regression analyses explored 
the associations between blood Cd levels and CVH scores. Restricted 
cubic spline (RCS) curves were used to assess dose–response 
relationships, and threshold effect analysis was used to identify 
inflection points. Covariates adjusted in the models included sex, age, 
race, PIR, education, alcohol consumption, marital status, waist 
circumference, and eGFR. Sensitivity analyses, including subgroup 
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analyses presented in forest plots and reanalyzes excluding participants 
with a history of CVD (n = 183), were conducted to confirm the 
robustness of our findings.

All analyses were performed using R Statistical Software (Version 
4.3.1, The R Foundation)1 and the Free Statistical analysis platform 
(Version 1.9, Beijing, China). A two-tailed test was used, and a result 
was considered statistically significant when the p-value was <0.05.

3 Results

3.1 Population characteristics

Table  1 presents the basic characteristics of the study 
population classified by CVH. The study involved 1,658 individuals, 
with an average age of 49.5 ± 17.4 years. Among them, 61.9% were 
male, and 38.1% were female. Male sex, higher economic income 
and education levels, non-Hispanic white race, married/
cohabitating status, a higher eGFR, and a smaller waist 
circumference were associated with a higher CVH score. 
Importantly, participants with high CVH scores had lower blood 

1  http://www.R-project.org

Cd concentrations (p < 0.05). Additionally, we compared baseline 
data between different sexes. Compared to male participants, 
female participants exhibited higher blood Cd concentrations 
(p < 0.05) (Supplementary Table S3).

3.2 Associations between overall and 
component CVH scores and blood Cd 
concentrations

The linear model relationships between the overall and component 
CVH scores and the ln-transformed blood Cd concentrations 
(continuous and categorized) are presented in Table 2. According to 
the adjusted multivariate model, the ln-transformed blood Cd 
concentration was negatively associated with the overall score, 
nicotine exposure score, sleep score, and diet score (overall score: 
β = −3.32, 95% CI: −3.97 to −2.67; nicotine exposure score: β = −19.41, 
95% CI: −20.94 to-17.88; sleep score: β = −1.99, 95% CI: −3.5 to 
−0.47; diet score: β = −5.65, 95% CI: −8.02 to −3.27). When blood Cd 
concentrations were converted into four categorical variables using 
the first quartile as the reference and adjusted for multiple variables, 
consistent results were observed, confirming the impact of excessive 
Cd levels on the overall and component CVH scores.

In addition, RCS curves demonstrated the dose–response 
relationship between the overall and component CVH scores and 

FIGURE 1

The study’s flow diagram.
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blood Cd concentrations (Figure  2). We  found a nonlinear 
correlation between the blood Cd concentration and the overall 
score and between the blood Cd concentration and the nicotine 
exposure score (p for nonlinearity <0.05). Threshold effect analysis 
indicated that when the blood Cd concentration reached 
approximately −1.447 log μg/dL, the CVH rapidly decreased, and 
when the blood Cd concentration reached approximately −1.752 
log μg/dL, the nicotine exposure score also rapidly decreased 
(Supplementary Tables S4, S5).

3.3 Sensitivity analyses

Figure  3 shows consistent correlations between blood Cd 
concentrations, CVH scores, and various subscale scores across age, 
race, education level, income, marital status, and alcohol consumption. 
However, there was a significant interaction effect among sex groups. 
Specifically, among females, the ln-transformed blood Cd levels and 
the total CVH score and lipid score displayed stronger negative 
correlations. On the other hand, ln-transformed blood Cd levels were 

positively correlated with BMI in males but not in females 
(Supplementary Figures S1, S2).

Additionally, after excluding individuals with a history of CVD, 
the associations between the blood Pb level and the overall CVH score 
remained consistent, while other results showed a similar impact of 
blood Cd levels on CVH scores (Supplementary Table S6).

4 Discussion

In this study, we utilized NHANES data from 2011 to 2018 waves 
to investigate the relationships between the blood concentrations of 
Cd and overall and component CVH scores. We found a complex and 
rational relationship among them. Additionally, we  observed sex 
differences in the effects of Cd exposure.

Over the past century, we  have observed a notable increase in 
environmental pollution and consequent human exposure to Cd (20). 
The most common sources of Cd contamination are waste, industrial 
emissions, and soil, which lead to ingestion via food, tobacco smoke, 
and occupational hazards (11). Prospective studies have established a 

TABLE 1  Baseline characteristics of participants classified by their overall CVH score.

Characteristic Total (n  =  1,658) Low CVH 
(n  =  163)

Moderate CVH 
(n  =  1,232)

High CVH 
(n  =  263)

p-value

Sexa < 0.001

 � Male 1,026 (61.9) 96 (58.9) 793 (64.4) 137 (52.1)

 � Female 632 (38.1) 67 (41.1) 439 (35.6) 126 (47.9)

Agea, years 49.5 ± 17.4 48.5 ± 14.5 49.8 ± 17.6 48.7 ± 18.0 0.471

Racea < 0.001

 � Mexican American 160 (9.7) 17 (10.4) 128 (10.4) 15 (5.7)

 � Non-Hispanic White 764 (46.1) 58 (35.6) 569 (46.2) 137 (52.1)

 � Non-Hispanic Black 351 (21.2) 55 (33.7) 271 (22) 25 (9.5)

 � Other race 383 (23.1) 33 (20.2) 264 (21.4) 86 (32.7)

Family poverty-income ratioa < 0.001

 � <1.3 432 (26.1) 58 (35.6) 340 (27.6) 34 (12.9)

 � ≥1.3 1,226 (73.9) 105 (64.4) 892 (72.4) 229 (87.1)

 � Educational levela < 0.001

 � Below high school 265 (16.0) 35 (21.5) 204 (16.6) 26 (9.9)

 � High-school graduate 392 (23.6) 55 (33.7) 301 (24.4) 36 (13.7)

 � College or above 1,001 (60.4) 73 (44.8) 727 (59) 201 (76.4)

MS, (%)a 0.012

 � Married/living with partner 967 (58.3) 88 (54) 700 (56.8) 179 (68.1)

 � Widowed/divorced/separated 378 (22.8) 40 (24.5) 293 (23.8) 45 (17.1)

 � Never married 313 (18.9) 35 (21.5) 239 (19.4) 39 (14.8)

Drinking status, (%)a 0.33

 � No 776 (53.3) 65 (48.5) 576 (53.2) 135 (56.5)

 � Yes 680 (46.7) 69 (51.5) 507 (46.8) 104 (43.5)

Waist circumference, cma 100.0 ± 16.1 113.5 ± 16.9 100.7 ± 15.3 88.5 ± 10.4 < 0.001

eGFR, mL/min/1.73 m2a 96.7 ± 22.9 97.6 ± 22.4 95.8 ± 23.1 100.6 ± 21.6 0.007

log Cd, log μg/dLa −0.8 ± 0.9 −0.5 ± 0.9 −0.8 ± 0.9 −1.1 ± 0.8 < 0.001

CVH, cardiovascular health; Low CVH 0–49; Moderate CVH 50–79; High CVH 80–100.
aContinuous variables are presented as mean ± SD; categorical variables are presented as N(%).
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link between Cd concentrations and adverse CVD outcomes (21–23), 
supported by evidence that Cd-induced endothelial dysfunction could 
accelerate atherosclerosis (24). Our findings align with these scholarly 
insights (25–27), emphasizing the need for stringent monitoring of 
environmental Cd. Intriguingly, we identified a nonlinear relationship 
between blood Cd levels and overall CVH scores, with a marked decline 
in overall CVH scores at a blood Cd concentration of-1.447 log μg/dL, 
akin to the findings of Tellez-Plaza et al. (21). They found that urinary 
Cd levels above 0.57 μg/g were associated with increased CVD mortality. 
Another study found that the exposure-response relationship between 
blood Cd levels and acute coronary events appears to be relatively linear 
up to a blood Cd level of 1 μg/L, after which it levels off (28), suggesting 
a potential benchmark for safe blood Cd ranges. We corroborated this 
threshold and recommend that it be  considered in future health 
guidelines. The biological effects of Cd indicate that at low exposure 
levels, the body might mitigate oxidative stress through natural 
antioxidant systems, thereby not exhibiting significant toxic effects. 
However, when Cd exposure exceeds the processing capacity of the 
body’s antioxidant systems, these systems may be overwhelmed, leading 
to a sharp increase in intracellular oxidative stress and consequently 
causing extensive damage to cell structure and function (29).

Additionally, our subgroup analysis showed significant sex 
differences in the association between blood Cd levels and CVH scores, 
with a stronger negative association observed in females. This finding 
is consistent with existing research, where multiple studies have shown 
correlations between Cd concentrations in the blood and urine of adult 
females and increased incidences of peripheral arterial disease, 
myocardial infarction, and increased intima-media thickness of the 
carotid arteries, whereas these correlations were not found in males 
(24, 30, 31). Studies suggest that females generally have higher levels of 
Cd in their bodies (32). Women might absorb more Cd through the 
gastrointestinal tract, where Cd enters the body, binds with 
metallothionein, and then accumulates in other significant organs and 
tissues, eliciting a more intense inflammatory response (33, 34). In 
addition to increased bodily Cd levels, females may exhibit increased 
expression of the metallothionein IIA gene (35). Animal studies have 
shown that Cd exposure increases the reactivity of male rats’ blood 
vessels to norepinephrine, leading to elevated blood pressure (36). 
Another study revealed that Cd had a reduced lethal effect on 
ovariectomized female rats, indicating that estrogen plays a role in the 
response to Cd exposure (37), which might explain the differences in 
Cd toxicity related to cardiovascular health between males and females. 
However, other scholars have reached differing conclusions, with 
environmental Cd exposure correlating with increased CVD mortality 
rates in males but not in females (22). Another study indicated that 
blood Cd levels are positively correlated with the 10-year risk score for 
atherosclerotic cardiovascular disease (ASCVD), with the risk 
significantly increasing in populations with higher blood Cd levels, 
particularly among men (38). Therefore, future research needs to 
further explore how sex differences affect the impact of Cd exposure 
on cardiovascular health. We also found that blood Cd levels were 
negatively correlated with nicotine exposure, sleep, and diet. This is 
likely because smoking is a primary pathway for Cd exposure (39). 
Moreover, recent research has shown that Cd can disrupt sleep patterns 
by causing sleep interruptions and decreasing the length of rapid eye 
movement (REM) sleep stages (40). Research by Unno et al. has shown 
that Cd in drinking water induces oxidative stress, resulting in an 
elevation of non-REM sleep levels and a reduction in rhythmic physical T
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activity (41). Thus, the findings of previous studies confirming the 
impact of Cd on overall sleep quality are consistent with our findings. 
Additionally, Cd is commonly found in staple foods such as leafy 
vegetables and grains (11). Participants with higher blood Cd levels 
tended to have a diet richer in refined grains, which can reasonably 
explain our conclusions (Supplementary Table S7). Although no 
correlation was found between blood Cd levels and lipid scores in the 
overall population, our subgroup analysis revealed a significant 
negative correlation between these variables in female participants—a 
rare observation. This finding contrasts with studies that did not 

stratify by sex and found no correlation between low-level Cd exposure 
and lipid levels (42). A previous study involving Korean adults revealed 
that the blood Cd concentration was positively correlated with the risk 
of low-density lipoprotein cholesterol in a dose-dependent manner 
(43). The sex differences were notable: for males, high blood Cd was 
associated with an increased risk of low HDL-C and a high triglyceride-
to-HDL-C ratio; for females, this association was weaker, potentially 
due to ethnic differences. Further research is required to confirm these 
findings. Another significant observation is that blood Cd levels in 
males were positively correlated with BMI, indicating a connection 

FIGURE 2

Association between the overall and component CVH scores and blood Cd levels beta-coefficients. Solid and dashed lines represent the predicted 
value and 95% confidence intervals. The models were adjusted for age, sex, race, family PIR, educational level, marital status, drinking status, waist 
circumference, and eGFR. A1, CVH scores; A2, Body mass index scores; A3, Blood pressure scores; A4, Blood lipids scores; A5, Blood glucose scores; 
A6, Physical activity scores; A7, Nicotine exposure scores; A8, Sleep health scores; A9, Diet scores.
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between higher Cd levels and lower BMI—this was not observed in 
females. A study on Chinese adults revealed that blood Cd 
concentrations were negatively associated with overweight status, with 
no sex differences observed (44). Another prospective cohort study in 
Mexico revealed that the effects of prenatal exposure to Cd continues 
into adolescence, affecting obesity, and this relationship was observed 
only in girls, not boys (45). The differences in outcomes might 
be  related to Cd’s endocrine-disrupting properties affecting fat 
distribution. Laboratory studies have revealed interactions between Cd 
and estrogen and between Cd and androgen receptors, which activate 
estrogen receptor alpha (46). The lipid mobilization and fat breakdown 
in the body are regulated by hormone receptors (47), and this 
estrogenic effect might account for the inverse relationship with body 

fat seen in females. Conversely, exposure to Cd in males was linked to 
reduced levels of estradiol and testosterone in circulation, potentially 
elucidating the sex-specific outcomes (48). Therefore, when assessing 
the impact of blood Cd on body weight, these sex differences should 
be considered.

Our study has several advantages. First, the NHANES database 
contains a large amount of detailed information about a diverse 
population in the United  States. The database is maintained with 
consistent data collection techniques and rigorous quality control 
measures to guarantee the precision and dependability of the data. 
Second, the latest CVH scores include behaviors and factors that 
impact CVH. These scores are currently the most advanced, and 
through our comprehensive evaluation, they have promoted new 

FIGURE 3

Subgroup analysis of the association between the overall and component CVH scores and blood Cd levels. Each stratification was adjusted for age, 
sex, race, family PIR, educational level, marital status, drinking status, waist circumference, and eGFR. A1, CVH scores; A2, Body mass index scores; A3, 
Blood pressure scores; A4, Blood lipids scores; A5, Blood glucose scores; A6, Physical activity scores; A7, Nicotine exposure scores; A8, Sleep health 
scores; A9, Diet scores. Except the stratification factor itself. Squares indicate β, with horizontal lines indicating 95% CIs.
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perspectives for understanding the effects of Cd on CVH. Several 
limitations must be  taken into account. First, the cross-sectional 
nature of this database prevents us from establishing causal 
relationships; we  can only infer correlations. Second, despite 
controlling for various confounding variables, there may still 
be unmeasurable factors that could confound the results. Third, due 
to potential variations in Cd exposure environments and differences 
in dietary and lifestyle habits among different countries and 
populations, our conclusions may not be  generalizable to other 
countries or populations.

5 Conclusion

In conclusion, our research revealed complex and multifaceted 
associations of blood Cd levels with overall and component CVH 
scores. Notably, we identified nonlinear correlations of blood Cd 
levels with the overall CVH score and nicotine exposure score, 
with critical thresholds. Furthermore, sex differences were 
observed in the effects on blood Cd levels. Subsequent studies 
might also explore potential preventive and therapeutic 
interventions, refine risk assessment models, and extend these 
findings to broader populations to cement our understanding of 
these relationships.
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SUPPLEMENTARY FIGURE S1

Association between the male overall and component CVH scores and blood 
Cd levels beta-coefficients. Solid and dashed lines represent the predicted 
value and 95% confidence intervals. The models were adjusted for age, sex, 
race, family PIR, educational level, marital status, drinking status, waist 
circumference, and eGFR. A1, CVH scores; A2, Body mass index scores; A3, 
Blood pressure scores; A4, Blood lipids scores; A5, Blood glucose scores; A6, 
Physical activity scores; A7, Nicotine exposure scores; A8, Sleep health 
scores; A9, Diet scores.

SUPPLEMENTARY FIGURE S2

Association between the female overall and component CVH scores and 
blood Cd levels beta-coefficients. Solid and dashed lines represent the 
predicted value and 95% confidence intervals. The models were adjusted for 
age, sex, race, family PIR, educational level, marital status, drinking status, 
waist circumference, and eGFR. A1, CVH scores; A2, Body mass index scores; 
A3, Blood pressure scores; A4, Blood lipids scores; A5, Blood glucose scores; 
A6, Physical activity scores; A7, Nicotine exposure scores; A8, Sleep health 
scores; A9, Diet scores.
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health risks. The case of asthma 
attacks among archival workers: a 
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Objective: To ascertain the prevalence of asthma attacks among archivists and 
identify the associated occupational factors in this understudied professional 
population.

Methods: We conducted a cross-sectional, questionnaire-based study among 
1,002 archival workers. A multiple logistic regression was conducted to identify 
the association between asthma attacks and occupational exposures. The 
Strobe Protocol was applied.

Results: 999 workers were included in the final analysis with the asthma 
prevalence of 33.3%. Main factors associated with asthma attacks (OR [95% 
CI]) were the presence of chemically irritating odors (2.152 [1.532–3.024]), 
mold odors (1.747 [1.148–2.658]), and insects (1.409[1.041–1.907]). A significant 
synergistic effect was observed between chemical irritants and mold, the odds 
ratio was 7.098 (95% CI, 4.752–10.603).

Conclusion: There was a high prevalence of asthma attacks among archival 
workers, an under-studied population. Chemical irritants, molds and insects 
were associated with their asthma attacks. Notably, this study’s data analysis 
has revealed a strong synergy (OR  =  7.098) between chemical odors and 
molds in the workplace. While the existing international literature on this 
specific interaction remains somewhat limited, previous studies have already 
demonstrated the potential for chemical irritants, such as sulfur dioxide and 
ozone, to synergistically interact with inhalable allergens, including fungi, molds 
and dust mites. Consequently, this interaction seems to exacerbate asthma 
symptoms and perpetuate untreated exposure. Furthermore, in damp and 
damaged buildings, the presence of microbial components, such as cellular 
debris or spores released during fungal growth can trigger an inflammatory 
response, potentially served as a shared pathway for the development of asthma 
among individuals exposed to these hazardous factors.
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1 Introduction

Asthma is a heterogeneous clinical syndrome that affects 
approximately 360 million people worldwide. Studies have found 
that up to 25% of adult asthma cases are work-related (1). The 
incidence does not appear to be decreasing (2), which leading to 
significant social and economic burdens. Recently, new cases of work 
related asthma due to workplace exposures in many sectors have 
been reported (3–5). Among all the workplaces, offices are not 
frequently associated with common agents for occupational asthma, 
office workers consequently remain a low risk of contracting 
occupational asthma (6, 7). Among all the workplaces, with relatively 
few exposure conditions associated with the incidence of 
occupational asthma, the risk of occupational asthma in the offices 
is low. However, A prevalence study conducted among office workers 
found totally 9.6% had doctor-diagnosed asthma (8). Anderson et al. 
(9) found that administrative support workers, including clerical 
workers and health service workers had significantly higher 
prevalence ratios (PR 1.5, 95%CI 1.2–1.9) of current asthma than 
prevalence in all industries. Thus, attention should be paid to the 
more specific occupational groups used to be simply classified as 
office workers.

Asthma can be triggered by factors such as exposure to allergens 
or irritants (10). A positive association between HDM allergens, dust, 
indoor air, mold, solvents and respiratory symptoms in office workers 
was reported (8, 11).

Related studies have shown a positive correlation between HDM 
allergens, dust, indoor air, mold, solvents and respiratory symptoms 
in office workers. The influencing factors of asthma are intricate, 
mainly attributed to genetic and environmental factors (12). Some 
researches have pointed out that there is also a certain amount of 
fungal pollution in different working environments, such as 
hospitals, nursing homes, museums and so on (13–15). When the 
fungus is exposed to a certain concentration it can cause asthma 
attacks in residents or staff (16, 17). Among them, archivists are 
susceptible to asthma due to the influence of working area and 
working mode.

Archive workers, a more specific occupational group as part of the 
office workers, besides dealing with relevant works in the office, closely 
expose to archive documents and document storage environment 
resulting. Most documents and files deposited in archives are made of 
paper, which are susceptible to chemical and biological damage. As a 
consequence of the exposed items degradation, VOCs can be formed 
from the paper itself (18), including acetic acid, formic acid, furfural, 
furfural, 4-hydroxy benzoic acid, 4-hydroxy acetophenone (19). 
Cladosporium, Aspergillus, and Penicillium species are almost 
ubiquitous in the archives (20), which induces allergic reactions and 
further developing of asthma (1, 21, 22). Exposure to biological 
allergens such as insect and microorganism is another crucial 
potential risk factor associated with incidence of asthma (23, 24). To 
the best of our knowledge, no studies have investigated asthma among 
archive workers.

Therefore, we  sought to identify the prevalence and factors 
associated with asthma attacks in archival workers. In this study, a 
questionnaire-based study was conducted among archivists to 
investigate the associated factors concerning asthma attacks, and 
concurrently assessed potential interactions that may augment the risk 
of asthma attacks.

1.1 Contribution to the field

The evidence generated in this study suggests the need to further 
study and protect archivists as there is a strong synergy between 
chemical odors and molds in interaction with the potential of 
chemical irritants, such as sulfur dioxide and ozone, to synergistically 
interact with inhalable allergens, including fungi, molds and dust 
mites. Consequently, this interaction seems to exacerbate asthma 
symptom, perpetuate untreated exposure and trigger an inflammatory 
response potentially serving as a shared pathway for the development 
of asthma among individuals exposed to these hazardous factors (add 
here one more paragraph or two clarifying what can this paper 
contribute to knowledge and unknown aspects associated with the 
topic and the population under study, to be  arranged in an 
independent section).

Additionally, the occupational health of archivists, who are the 
participants and executors of the preservation of important historical 
materials in countries and organizations, affects the sustainable 
development of archival undertakings. Archival workers often need 
to deal with all kinds of archival materials, including photo archives, 
physical archives and paper archives, etc., which plays a key role in 
the archives management work. These files may contain a variety of 
pathogenic microorganisms, such as bacteria, viruses, fungi and 
parasites, which may pose a potential risk of pathogenic infection to 
the archivists. A large number of occupational health studies have 
found that the human body will develop allergy symptoms, 
respiratory diseases and other health problems in the poor 
indoor environment.

At present, there are many studies based on the correlation 
between asthma and other occupations, but few studies on 
occupational risk factors for archivists, especially for the prevalence of 
asthma attacks in archivists, no evidence or correlation studies have 
been found. Therefore, the study of occupational hazard factors for 
archivists concerned in this study is a critical and ongoing topic, and 
its related research is of great significance for the protection of the 
health and safety of archival professionals.

2 Subjects and methods

2.1 Subjects

This cross-sectional, questionnaire-based study was conducted at the 
archives nationwide in China in a multi-center setting, including archives 
of enterprises and institutions (74.78%), national comprehensive archives 
(23.22%) and specialized archives (2.10%). Individuals who were 
currently employed in archive setting were included in the study. The 
questionnaire is available as Supplementary material.

2.1.1 Sample size calculation
The results of the total work-life microsimulation conducted by 

Laditka (25) showed that 14.9% (CI 13.4–16.3) of those with low 
trigger exposure risk reported asthma at least once. We  classified 
archivists as having a low risk of triggering asthma exposure and 
considered the prevalence of asthma among archivists to 
be approximately 14.9%, calculated according to the PASS software. 
Based on α = 0.05, δ = 0.03, p = 0.149, the total sample size required 
was calculated to be 573 cases. Considering the possibility of invalid 
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samples in the questionnaire, the final sample size required was 
calculated to be 717 cases.

2.2 Methods

2.2.1 Questionnaire
The questionnaires were sent to all eligible archivists in February 

2022, and archivists were requested to fill out the questionnaires 
within 10 days. Here, we define “asthma attacks and exacerbation of 
asthma attacks among archivists after work” as asthma attacks. Data 
on the following personal factors were collected: sex (male, female), 
age (20–30 years, 31–40 years,41–50 years,51–65 years), education 
(below bachelor degree, bachelor, master’s degree or above), duration 
of employment (≤5 years,6–10 years,11–20 years, ≥21 years) and 
family history of the respiratory system. In order to explore archivists’ 
knowledge of occupational hazard factors, we also collected the data: 
whether knowing the effective protection measures to risk factors in 
the archival profession and well protection in work according to the 
professional protection files? The response to each is either “yes” or 
“no.” Furthermore, work-related factors were gathered: archivists’ 
average frequency of contacting paper files at work (times per day) ≤1, 
1–2, 3–4, ≥5. And the strict separation of the working areas from 
archives warehouses, dampness in the working area, chemically 
irritating odor in working areas, mold odor in working areas, insects 
(roaches, ants, tobacco beetle and dust mite etc.) in working area. The 
answer options in each question are dichotomous (yes or no). To 
further adjust for confounding factors, the self-administered 
questionnaire asked about the protection to adverse factors related to 
archival work, i.e., legislation of protective measures of risk factors in 
the archival profession, having equipment for occupational protection, 
training on occupational protections of archives. Finally, subjects were 
asked to answer if they had asthma or more frequent asthma attacks 
at work (especially when in contact with archival entities), including 
questions about asthma symptoms, namely wheezing, chest tightness 
or shortness of breath which were questions in questionnaire. 
Responses range from always, frequently, occasionally, never. The data 
collected were conducted in an anonymous fashion. Ethical approval 
was obtained from XXX [Anonymized by request from JOEM]. 
Electronic informed consent was obtained for each participant.

2.3 Statistical analysis

All statistical analysis was performed using SPSS 26.0. Initially, 
associations between personal factors (age, sex, duration of 
employment, family history) and asthma attacks were analyzed by 
Chi-square test or the Mann–Whitney-U test. Next, the association 
between the related factors in archival work, i.e., strict separation of 
working areas from archives warehouses, ventilation and its average 
time in warehouse, temperature and humidity of the warehouse in 
summer, chemically irritating odor, mold odor and insects (roaches, 
ants, tobacco beetle and dust mite etc) in working areas and asthma 
attacks were also assessed by Chi-square test. Thereby, logistic 
regression was conducted according to the p value. For the first 
selection of associated factors, univariate logistic regression analysis 
was performed. Subsequently, multiple logistic regression analysis was 
performed to assess independent association, in which the presence 

of asthma attacks was the objective variable and the associated factors 
that showed significant associations in the univariate analysis were the 
explanation variables. For the variables with a p value <0.05 in the 
univariable analysis were entered into the multiple logistic regression 
model. The interaction between the chemically irritating odors and 
mold odors was examined in the logistic regression model. Statistical 
significance was set at p < 0.05.

The Strobe Protocol for Cross-Sectional studies was applied.

3 Results

3.1 Basic characteristics of the subjects

A total of 1,002 people submitted questionnaires, of which 999 
were valid and included in the final analysis, with an effective rate of 
99.7%. The gender, age, education, and duration of employment of the 
respondents substantially matched the statistics of the National 
Bureau of Statistics 2021. As shown in Table  1, individuals with 
asthma attacks accounted for 33%, of which 67% were female. 
Duration of employment were less than 10 years for 45% (n = 453) of 
subjects and 11 years or more for 55% (n = 556). Approximately 66% 
of those archivists with family history of the respiratory system had 
asthma attacks (Table 1).

3.2 Work-related factors

Archive’s daily sanitary measures and status in terms of asthma 
attacks in archivists are shown in Table 2. The archivists who have 
strict separation of the working areas from archives’ warehouses 
tended to respond that they suffered less asthma attacks, and many 
individuals respond that the occurrence of dampness, pungent 
chemical odor, mold odor as well as the harmful insects in the working 
area were significantly associated with the asthma attacks among 
them. Archives’ protective measures thought to be associated with 
asthma attacks were also assessed, the results of which were shown in 
Table  3. Those archivists having documentation of archival 
occupational risk factors in the workplace and achieving standardized 
protection at work were prone to have a lower prevalence of asthma 
attacks. As archival workers are exposed to various hazards in the 
workplace, it is essential for them to take appropriate protective 
measures. However, many archives fail to raise awareness of the 
dangers present in the workplace. Only 135 archivists participating in 
the study have had professional protection protocols in place. This 
study data indicates that chemically irritating odors, mold odors, and 
insects in the workplace are correlated with asthma attacks amongst 
the population studied. Therefore, it suggests that the workplace 
environment plays a key role in the occurrence of asthma attacks, and 
achieving standardized protection at work is prone to promote a lower 
prevalence of asthma attacks in the context studied.

3.3 Factors associated with asthma attacks

The univariate and multivariate analysis are summarized in 
Table 4. In the multivariate logistic regression analysis, sex, working 
years, strict separation of the working areas from archives, mold odor, 
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chemically irritating odor and insects in the workplaces were 
significantly associated with the incidence of asthma attacks (p < 0.05). 
Workers who had work experiences≥21 years (OR, 95%CI: 2.116, 
1.420 ~ 3.153) had the odds of developing asthma attacks 1.1 times 
more than workers who had work experiences between 6 and 10 years. 
Workers without strict separation of the working areas from archives 
warehouses were 0.522 times more likely to develop asthma attacks 
(OR, 95%CI: 1.522, 1.096 ~ 2.113). Workers who found mold odor in 
working areas as well as warehouses had a higher risk of developing 
asthma attacks (OR, 95%CI: 1.747, 1.148 ~ 2.658; 1.666, 1.084 ~ 2.561 
separately). Workers who found chemically irritating odor in working 
areas were 1.152 times more likely to develop asthma attacks (OR, 

95%CI: 2.152, 1.532 ~ 3.024). Workers who found insects in working 
areas were 0.409 times more likely to develop asthma attacks (OR, 
95%CI: 1.409, 1.041 ~ 1.907).

Table  5 shows the results of analysis in which we  tested for 
interactions between chemically irritating odor and mold odor in 
working areas for asthma attacks. A significant synergistic effect was 
observed between chemical irritants and molds, the odds ratio was 
7.098 (95% CI, 4.752–10.603). A program flowchart is presented in 
Figure 1.

4 Discussion

This study found that the prevalence of asthma attacks was 33.3%, 
higher among male archivists. The existence of chemically irritating 
odors and moldy smells within the work environment were associated 
with higher asthma attacks. We also found a significant synergistic 
effect between the two risk factors. To the best of our knowledge, this 
is the first multicenter study focusing specifically on the risk factors 
related to asthma in archivists and provides a fresh perspective on 
occupational asthma.

The present study identified a significant association between the 
presence of chemically irritating odors in archival workplaces and 
high asthma attacks among archivists. Occupational hazards for 
archivists primarily stem from indoor air pollution, including 
conventional indoor chemical pollutants such as formaldehyde, sulfur 
dioxide, volatile organic compound (26). Additionally, there are 
archival-specific chemical pollutants such as acetic acid, hydrogen 
sulfide, ethylene oxide, sulfuryl fluoride, furfural, and other 
compounds (19). It has been reported that exposure to ozone and 
sulfur dioxide has deleterious effects on immune competent cells and 
airway responsiveness (27). Owing to its potential to sensitize airway 
inflammation, ozone exhibits a propensity to induce various 
respiratory ailments, encompassing coughing and wheezing (28). It 
has been extensively elucidated that elevated ozone levels have an 
inflammatory impact on the respiratory system, thereby contributing 
to the progression of asthma (29). Interestingly, a study revealed a 
negative correlation between low-to-moderate atmospheric ozone 
levels and hospital visits by asthma patients (30). However, the 
measured median ozone concentration in office environments is 
9.04 μg/m3 (31), which were consistent with this study’s results. A 
noteworthy association between the frequency of printer usage 
(exceeding seven times per day) and the occurrence of asthma attack 
was demonstrated in our study. A study conducted in Estonia, with 
participation from over 50,000 adults, have revealed a significant 
association between exposure ranging from low to moderate levels of 
indoor air pollutants and asthma (OR = 1.88, 95%CI 1.48 ~ 2.37) (22). 
Inhalation of VOCs, in particular, has been implicated in various 
adverse health effects (32), and their role in triggering asthma is well-
documented. VOCs can activate the immune system, cause oxidative 
stress, and interact with some allergens (33). Metabolites of VOCs 
have also been found to be correlated with markers of oxidative stress, 
which are associated with lung function parameters (33–35). 
Furthermore, multiple studies have reported a connection between 
exposure to formaldehyde and the development of asthma and asthma 
symptoms in adults. Formaldehyde, as a respiratory irritant, exerts its 
effects by inducing inflammation of the airway mucosa and eliciting 
an inflammatory response via cytokines produced by Th2 cells (34). 

TABLE 1  Basic characteristics of the subjects by asthma attacks (n  =  999) 
[n (%)].

Total 
(n =  999)

Non-
asthma 
attacks 

(n =  666)

Asthma 
attacks 

(n =  333)

p-
value

Gender

 � Female 722 499 (74.9) 223 (67) 0.008

 � Male 277 167 (25.1) 110 (33)

Age (years) 0.008a

 � ≤40 286 211 (31.7) 75 (22.5)

 � 41–50 413 265 (39.8) 148 (44.4)

 � ≥51 300 190 (28.5) 110 (33.0)

Education 0.515

 � Below 

bachelor 

degree

157 106 (15.9) 51 (15.3)

 � Bachelor 631 413 (62.0) 218 (65.5)

 � Master’s 

degree or 

above

211 147 (22.1) 64 (19.2)

Duration of employment (years)

 � ≤5 273 208 (31.2) 65 (19.5) <0.001

 � 6–10 180 124 (18.6) 56 (16.8)

 � 11–20 274 176 (26.4) 98 (29.4)

 � ≥21 272 158 (23.7) 114 (34.2)

The average frequency of contacting paper files at work 

(times/day)

 � ≤1 154 110 (16.5) 44 (13.2) 0.031

 � 1–2 313 208 (31.2) 105 (31.5)

 � 3–4 220 158 (23.7) 62 (18.6)

 � ≥5 312 190 (28.5) 122 (36.6)

Family history 

of the 

respiratory 

system

41 14 (2.1) 27 (8.1) <0.001

Exercise 

regularly

673 452 (67.9) 221 (66.4) 0.633

aMann–Whitney test.
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Additionally, transient decreases in lung function have been attributed 
to formaldehyde exposure (36).

In addition, this study has indicated mold as an associated factor for 
asthma among archivists, exhibiting a correlated escalation of 65.1 and 
73.8% in warehouses and workplaces, respectively. Molds, being a potent 
allergens, can trigger allergic reactions, provoke inflammatory responses 
and augment the susceptibility to asthma via the emission of VOCs (26). 
A study has revealed a pronounced elevation of Asthma-COPD Overlap 
Syndrome (ACOS) associated with occupational exposure to mold odor, 

with an odds ratio (OR) of 3.43(95%CI 1.04–11.29) (37). Although 
limited research has been conducted among office workers, previous 
studies have consistently reported a positive correlation between mold 
odor and adult individuals in residential settings (38–40). Furthermore, 
a heightened susceptibility to asthma was detected in relation to 
occupational exposure to mold odor, as opposed to exposure within the 
confines of one’s abode (37). This could be potentially elucidated by the 
more pervasive prevalence of mold issues in archives, coupled with a 
tendency for individuals to expeditiously remedy any mold-related 

TABLE 3  Protection to adverse factors related to archival work (n  =  999) [n (%)].

Non-asthma (n%) Asthma (n %) p-value

Legislation of protective measures of risk 

factors in the archival profession

117 (17.6) 42 (12.6) 0.044

Knowing the effective protection measures 

to risk factors in the archival profession

314 (47.1) 136 (40.8) 0.059

Well protection in work according to the 

professional protection files※

105 (89.7) 30 (71.4) 0.004

※Archivists whose workplace have professional protection files.

TABLE 2  Worker-related factors in archival work [n (%)].

Non-asthma attacks 
(n =  666)

Asthma attacks 
(n =  333)

p-value

Frequency of cleaning in warehouses (times/month) 0.039

 � <1 139 (20.9) 74 (22.2)

 � 1 196 (29.4) 92 (27.6)

 � 2–3 177 (26.6) 67 (20.1)

 � ≥4 154 (23.1) 100 (30.0)

Strict separation of the working areas from archives warehouses 530 (79.6) 230 (69.1) <0.001

dampness in the working area 340 (51.1) 229 (68.8) <0.001

Ventilation in warehouses 0.407

 � Power ventilation 184 (27.6) 105 (31.5)

 � Natural ventilation 372 (55.9) 179 (53.8)

 � Power and natural ventilation 110 (16.5) 49 (14.7)

Average ventilation time of warehouses (hour/day) 0.184

 � Never 132 (19.8) 76 (22.8)

 � 1 210 (31.5) 83 (24.9)

 � 1–2 147 (22.1) 79 (23.7)

 � ≥2 177 (26.6) 95 (28.5)

Warehouse temperature in summer (°C) 0.147

 � 14–24 491 (73.7) 231 (69.4)

 � >24 175 (26.3) 102 (30.6)

Warehouse humidity in summer (%) 0.684

 � <45% 225 (33.8) 119 (35.7)

 � 45–60% 395 (59.3) 195 (58.6)

 � >60% 46 (6.9) 19 (5.7)

Pungent chemical odor in working areas 96 (14.4) 118 (35.4) <0.001

Mold odor in working areas (except warehouses) 263 (39.5) 226 (67.9) <0.001

Mold odor in archives warehouses 294 (44.1) 241 (72.4) <0.001

Insects in working area 257 (38.6) 192 (57.7) <0.001
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problems within their own dwellings. Another biological factor 
encountered in the workplace, i.e., dust mites and cockroaches, may 
contribute to an elevated risk of asthma by 39.5%. A recent study revealed 
that dust mite allergen concentration of 10 μg g-1 has been proposed as 
the threshold for asthma development. While the levels of Der p 1 and 
Der f 1 allergens in dust samples collected from offices in Malaysia were 
found to be  as high as 556 ng/g and 658 ng/g, respectively (8). Our 
findings align with the previous study, as we have observed an increased 
asthma attacks in connection with exposure to dust mites and 
cockroaches (41). Hence, it is crucial to accord primacy to the eradication 
of dust particles and the implementation of sterilization protocols within 
archival repositories.

Notably, our data analysis has revealed a strong synergy 
(OR = 7.098) between chemical odors and molds in the workplace. 

While the existing literature on this specific interaction remains 
somewhat limited, previous studies have already demonstrated the 
potential for chemical irritants, such as sulfur dioxide and ozone, to 
synergistically interact with inhalable allergens, including fungi, 
molds and dust mites. Consequently, this interaction serves to 
exacerbate asthma symptoms and perpetuate untreated exposure 
(42). Furthermore, in damp and damaged buildings, the presence of 
microbial components, such as cellular debris or spores released 
during fungal growth can trigger an inflammatory response, 
potentially served as a shared pathway for the development of asthma 
among individuals exposed to these hazardous factors.

Interestingly, contrary to findings from other studies that 
reported a higher prevalence of asthma among women than men, this 
study revealed that the prevalence of asthma among archivists was 

TABLE 5  The interaction analysis between the pungent chemical odor and mold in working areas.

Factors Number of subjects Odds radio 95%CI p-value

Chemically irritating odor (−) and 

mold odor (−)

451 Ref

Chemically irritating odor (−) and 

mold odor (+)

59 2.345 1.310–4.199 0.004

Chemically irritating odor (+) and 

mold odor (−)

334 2.671 1.935–3.685 <0.001

Chemically irritating odor (+) and 

mold odor (+)

155 7.098 4.752–10.603 <0.001

TABLE 4  Factors associated with asthma attacks among archivists in univariate and multivariable analyses.

Characteristic Univariable Multivariable

Odds radio 95%CI p-value Odds radio 95%CI p-value

Gender

Female Ref Ref

Male 1.474 1.105–1.966 0.008 1.665 1.211–2.289 0.002

Family history of respiratory 

system

4.109 1.909–8.030 <0.001 3.928 1.908–8.085 <0.001

Working years in archives 

Department (years)

<0.001 0.003

 � ≤5 Ref Ref

 � 6–10 1.445 0.949–2.201 0.086 1.315 0.835–2.071 0.238

 � 11–20 1.782 1.228–2.585 0.002 1.522 1.018–2.276 0.041

 � ≥21 2.309 1.598–3.337 <0.001 2.115 1.419–3.152 <0.001

Strict separation of the working 

areas from archives warehouses

0.573 1.294–2.354 <0.001 1.523 1.097–2.115 0.012

Mold odor in working areas 

(except warehouses)

3.236 2.452–4.272 <0.001 1.738 1.14–

2.65

0.010

Mold odor in archives 

warehouses

3.315 2.493–4.407 <0.001 1.651 1.068–2.553 0.024

Chemical irritating odor in 

working areas

3.259 2.386–4.451 <0.001 2.145 1.526–3.017 <0.001

Insects in working area 2.167 1.658–2.832 <0.001 1.395 1.019–1.909 0.038

Dampness in the working area 2.111 1.600–2.785 <0.001 1.042 0.743–1.461 0.813
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1.28 times higher among male workers. Stratified analysis by gender 
demonstrates significantly higher odds ratios (ORs) for males in both 
chemical and biological factors. More precisely, the presence of 
chemically irritating odors and biological agents, such as molds and 
dust mites, in the archival work environment is more robustly 
correlated with declining pulmonary function in males. This finding 
in concordance with a previous study carried out in Italy (43).

In conclusion, this survey revealed that approximately one-third 
of archivists experienced asthma attacks. Chemically irritating odor, 
Mold odor and insects in the workplaces are associated with asthma 
attacks. Moreover, chemically irritating gases and molds in the 
archival workplace were highly associated with asthma attack, with a 
significant interaction between them. However, the health relevance 
and mechanism of the work-related exposure in archives need to 
be further explored by more detailed assessments.

4.1 Strengths and limitations

There are several strengths in this study. First, the participation 
of archivists from various types of archives nationwide, who exhibit 
higher levels of compliance and consistency in their education and 
job type, significantly enhances the credibility and generalizability 
of our findings. Consequently, it is reasonable to extrapolate the 
results to a broader population of office workers. Second, given the 

intricate compositions, relatively low concentrations and inherent 
difficulty in precise measurement of various factors within the work 
environment, pertinent information was gathered through the 
employment of a questionnaire-based approach. Hence, employing 
a questionnaire to gauge the overall extent of exposure among 
archivists represents a judicious methodology within this 
framework. The study revised and adopted recent trends in 
healthcare research and related challenges (44–68).

Also, there are some limitations. First, as was the case for most of the 
previous studies, this was a cross-sectional study. Therefore, the causality 
between the asthma attacks and the associated factors were not clarified 
in this study. Second, current study surveyed subjects via a self-
administered questionnaire, but the reliability and validity of this 
questionnaire was not tested. Second, the lack of quantification 
pertaining to the exposures presents a notable challenge in elucidating 
potential mechanisms of action or dose–response relationships. Third, 
similar to other large-scale population-based surveys, the diagnosis of 
asthma was based mainly on a standardized questionnaire, which could 
potentially have led to the misclassification of some pulmonary diseases.

4.2 Further research

Current study surveyed subjects via a self-administered 
questionnaire, but the reliability and validity of this questionnaire 

FIGURE 1

Program flowchart.

114

https://doi.org/10.3389/fpubh.2024.1397236
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yang et al.� 10.3389/fpubh.2024.1397236

Frontiers in Public Health 08 frontiersin.org

were not tested, especially the diagnosis of asthma. Therefore, future 
research is expected to add some questions, such as the doctor 
diagnosed asthma, asthma medication, etc. In addition, as 
mentioned above, the causality between asthma attacks and 
the  associated factors was not clarified in this study. Clearly, 
future  longitudinal studies are necessary to address this issue. 
Finally, concerning measurement of exposure-related factors. 
Microorganisms, dust particles, etc. in the archive working 
environment can be measured using more accurate measurement 
techniques or culture methods.
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Background: Per- and polyfluoroalkyl substance (PFAS) exposure and 
cardiovascular disease are controversial. We  aimed to assess the association 
between serum PFAS exposure and cardiovascular health (CVH) in U.S. adults.

Methods: We analyzed serum PFAS concentration data of U.S. adults reported in 
the National Health and Nutrition Examination Survey (NHANES) study (2005–
2018). We employed two weighted logistic regression models and a restricted 
cubic spline (RCS) to examine the association between each PFAS and impaired 
CVH (defined as moderate and low CVH). Quantile g-computation (Qgcomp) 
and weighted quantile sum (WQS) analysis were used to estimate the effects of 
mixed exposures to PFASs on impaired CVH.

Results: PFAS were associated with an increased risk of impaired CVH (ORPFNA: 
1.40, 95% CI: 1.09, 1.80; ORPFOA: 1.44, 95% CI: 1.10, 1.88; ORPFOS: 1.62, 95% CI: 
1.25, 2.11). PFOA and PFOS exhibited nonlinear relationships with impaired CVH. 
Significant interactions were observed for impaired CVH between race/ethnicity 
and PFHxS (p  =  0.02), marital status and PFOA (p  =  0.03), and both marital status 
and race/ethnicity with PFOS (p  =  0.01 and p  =  0.02, respectively). Analysis via 
WQS and Qgcomp revealed that the mixture of PFAS was positively associated 
with an increased risk of impaired CVH.

Conclusion: PFNA, PFOA, and PFOS exposure are associated with an increased 
risk of impaired CVH in U.S. adults. Race/ethnicity and marital status may 
influence CVH. Reducing PFAS exposure could alleviate the burden of disease 
associated with impaired CVH.
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cardiovascular health, perfluoroalkyl and polyfluoroalkyl substances, NHANES, Life’s 
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1 Introduction

Cardiovascular disease (CVD) constitutes a significant global 
health burden, exhibiting a rising incidence and a trend towards 
affecting younger individuals (1). The 2024 US Heart Disease and 
Stroke Statistics Report revealed that approximately 127.9 million 
Americans aged ≥20 years (48.6%) are afflicted by CVD, resulting in 
an average annual cost of 42.23 billion dollars (2). The American 
Heart Association (AHA) reported that a substantial number of CVDs 
stem from health and behavioral factors. To address this, they 
developed Life’s Essential 8 (LE8), which emphasizes eight critical 
aspects of cardiovascular health (CVH). These include four health 
behaviors [diet, physical activity (PA), tobacco/nicotine exposure, and 
sleep health] and four health factors [body mass index (BMI), lipids, 
blood glucose, and blood pressure (BP)] (3). Research indicates that 
maintaining high CVH is linked with reducing the risk of multiple 
health risks (4, 5). Despite implementing various public health and 
healthcare policies and programs in the U.S. aimed at preventing 
CVD, the overall CVH scores for U.S. adults have remained largely 
unchanged over the past decade (6).

In parallel with ongoing efforts to manage CVD, emerging 
concerns about environmental contaminants, such as per—and 
polyfluoroalkyl substances (PFASs), have gained attention. PFASs are 
synthetic compounds that are found in humans and animals 
worldwide. Characterized by their distinctive chemical structure and 
properties, PFASs are commonly used in various industries, such as 
surfactants, food packaging, waterproof coatings, and nonstick 
coatings on cookware (7). The half-life of long-chain PFASs can range 
from 3 years to decades, so even a single serum measurement can 
represent long-term exposure to PFASs (8, 9). Owing to their 
resistance to biodegradation, PFAS tend to accumulate in the 
biosphere through the food chain. This results in persistent health 
effects, including endocrine disruption, immune-inflammatory 
responses, and cytotoxicity (10–12). Previous studies linked PFAS 
exposure to an array of CVDs, and a cross-sectional study in the 
U.S. revealed that the risk of total CVD increased with increasing 
levels of PFAS, with the highest quartile of PFAS levels increasing the 
risk of CVD by 45% compared with the lowest quartile (13). 
Furthermore, another study showed that higher levels of 
perfluorooctanesulfonic acid (PFOS) and perfluorononanoic acid 
(PFNA) were associated with an increased risk of stroke in U.S. adults, 
in addition to an increased risk of coronary heart disease with elevated 
PFNA levels (14). PFASs have also been associated with cardiovascular 
risk factors such as insulin resistance, metabolic syndrome, and 
dyslipidemia, and in these high-risk populations, PFAS exposure may 
exacerbate adverse cardiovascular events (12, 15, 16). A prospective 
study of 666 pre-diabetic adults revealed that increased PFAS exposure 
was associated with an increased risk of coronary and thoracic aortic 
calcification (17). However, these studies focused primarily on the 
prevalence of CVD rather than CVH status. Recent evidence has 
challenged the traditional view. Two independent Swedish population-
based cohort studies reported no statistically significant associations 
between PFAS levels and CVD incidence, and a meta-analysis of 
results from five independent cohort studies revealed a modest inverse 
association between perfluorooctanoic acid (PFOA) levels and CVD 
incidence (18). These conflicting findings suggest a multifaceted and 
complex relationship between PFAS exposure and CVD. Thus, 
exploring the direct link between PFASs and CVH may lead to a 

deeper understanding of the systemic effects of PFASs, thereby 
enabling the development of more effective preventive and 
intervention strategies.

In this study, we used the LE8 score to assess CVH and a cross-
sectional approach to examine the relationship between PFAS 
exposure and CVH in U.S. adults based on nationally representative 
National Health and Nutrition Examination Survey (NHANES) data. 
Additionally, we analyzed the associations between PFAS exposure 
and CVH in different subpopulations.

2 Methods

2.1 Study design and population

The NHANES is conducted by the National Center for Health 
Statistics (NCHS) in the U.S. and is a biennial survey of representative 
data on demographics, socioeconomic status, health, and nutrition 
using a stratified multistage probability sampling design. The 
NHANES datasets are publicly available on the official website. This 
study used data from seven NHANES cycles from 2005 to 2018 in a 
cross-sectional design. A total of 15,868 participants were subjected 
to PFAS measurements over the seven survey cycles. We first excluded 
3,461 adolescents under 20 to focus on the adult population. 
We  subsequently excluded another 3,671 participants who lacked 
complete LE8 data. Furthermore, we  excluded participants with 
incomplete covariate information (n = 1,371) and those lacking 
complete PFAS data (n = 181), resulting in a final analysis of 7,184 
participants (Supplementary Figure S1). The study was approved by 
the NCHS Institutional Review Board, and all participants provided 
written informed consent. It was also conducted under the 
Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) guidelines (Supplementary Table S6) (19).

2.2 Measurement of serum PFAS exposure

Our study focused on four PFAS substances, perfluorohexane 
sulfonic acid (PFHxS), PFOS, PFOA, and PFNA, as their detection 
rates exceeded 90% in all analyzed samples from the NHANES (2005–
2018). According to the NHANES data description document, in the 
2005–2012 cycles, NHANES directly quantified these four PFAS, 
whereas in the 2013–2018 cycles, a quantitative analysis of four 
different structural isomers of PFOS and PFOA was performed. The 
NHANES survey analysis guidelines suggest that the total PFOS 
concentration includes linear PFOS (n-PFOS) and the monomethyl 
branched isomers of PFOS (Sm-PFOS), whereas the total PFOA 
concentration is derived by combining linear PFOA (n-PFOA) and 
the branched isomer of PFOA (Sb-PFOA). Samples falling below the 
limit of detection were recorded as the limit of detection divided by 
the square root of 2 (20).

2.3 Assessment of CVH

The LE8 score was used to assess CVH and consisted of two main 
components: four health behaviors and four health factors. For diet 
scores, the Healthy Eating Index 2015 (HEI-2015) was calculated from 
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24-h dietary recall data collected through interviews and phone 
follow-ups and analyzed with the United  States Department of 
Agriculture’s Food Patterns Equivalents Database. The total reported 
weekly duration of moderate or greater activities was used for the PA 
scores. For nicotine exposure scores, questionnaires assessed the use 
of combustible cigarettes, e-cigarettes, other tobacco products, and 
household secondhand smoke exposure. For sleep health scores, self-
reported sleep duration was used. For health factors, BMI scores were 
calculated from weight and height measurements taken by trained 
researchers at the Mobile Examination Center (MEC). For BP scores, 
measurements were taken by trained personnel on the MEC, with 
additional data on antihypertensive medication use obtained from 
questionnaires. For lipid scores, blood samples collected from the 
MEC were analysed in a central laboratory, where non-HDL 
cholesterol was calculated by subtracting HDL cholesterol from total 
cholesterol, with information on lipid-lowering medication use 
gathered from questionnaires. For blood glucose scores, fasting blood 
samples were tested for fasting glucose or HbA1c in a central 
laboratory, and data on diabetes history and glucose-lowering 
medication use were obtained via questionnaires. Each component 
was rigorously scored from 0 to 100 according to AHA guidelines, and 
the total LE8 score was computed as the unweighted average of these 
scores. Based on the total score, CVH was categorized as low (0–49), 
moderate (50–79), or high (80–100). Impaired CVH was defined as 
moderate and low levels of CVH. Details of the LE8 score were shown 
in Supplementary Table S1.

2.4 Assessment of covariates

Information on demographic and health-related factors, including 
age, sex, race/ethnicity, education level, marital status, poverty income 
ratio (PIR), health insurance, medical history, and alcohol 
consumption, was collected via standardized questionnaires. In detail, 
race/ethnicity was divided into non-Hispanic whites, non-Hispanic 
blacks, Mexican Americans, and others. Marital status was divided 
into coupled (defined as married or living with a partner) and single 
or separated. Education level was divided into three categories: high 
school or less, some college or associate degree, and college graduate 
degree or above. Health insurance status was recorded as yes or no 
(21). Alcohol consumption was obtained via 24-h dietary recall and 
categorized according to intake (22). Depression was assessed via the 
PHQ9 scale, with a score of 10 or higher considered indicative of 
depression. Diabetes diagnosis was based on medical and medication 
history and blood glucose levels. The glomerular filtration rate (eGFR) 
was estimated via the CKD-EPI Formula (23). The urinary albumin-
to-creatinine ratio (uACR) and the use of antihypertensive and 
antidiabetic medications were also included in the analysis.

2.5 Statistical methods

To ensure the national representativeness of the research, 
we  followed NHANES guidelines and considered the complex 
sampling design of the survey. Continuous variables that followed a 
normal distribution were compared between groups via t-tests and are 
expressed as the means and standard errors. Non-normally distributed 
continuous variables were compared via Wilcoxon tests and are 
expressed as medians (interquartile ranges). Categorical variables were 

analyzed via chi-square tests, and the data are presented as frequencies 
and weighted percentages (%).

We employed weighted multifactor logistic regression to 
investigate the correlation of each PFAS with impaired CVH. To 
improve the model fit, we log-transformed the concentrations of each 
PFAS (24). We also included the PFAS quartiles in the analysis as 
categorical variables, with the Q1 group (low) as the control, and 
calculated odds ratios (ORs) and their corresponding 95% confidence 
intervals (95% CIs). Two different statistical models were used: the 
crude model without adjustment for any variables and Model 1, which 
accounted for age, sex, race/ethnicity, education level, marital status, 
PIR, alcohol consumption, health insurance, diabetes, depression, 
antihypertensive or lipid-lowering medication, CVD, eGFR, and 
the uACR.

We implemented RCS regression model, adjusting for the 
covariates described in Model 1 to further investigate the potential 
relationship between PFASs and impaired CVH. To ensure the 
representativeness of the results for the U.S. population, RCS 
modelling was performed with NHANES sample weights. The number 
and placement of knots in the RCS model were determined based on 
the Akaike information criterion (AIC) to achieve an optimal balance 
between model fit and avoiding overfitting. In constructing the RCS 
model for PFHxS and PFNA, three knots were positioned at the 10th, 
50th, and 90th percentiles of their respective distributions, with the 
medians used as reference points. In the RCS model for PFOA and 
PFOS, four knots were placed at the 5th, 35th, 65th, and 95th 
percentiles of their distributions, with the inflexion points serving as 
reference points. Moreover, subgroup analyses of age, sex, race/
ethnicity, PIR, education level, marital status, and health insurance 
status were performed to identify potential subgroups and to perform 
interaction tests.

Additionally, we  used quantile g-computation (Qgcomp) and 
weighted quantile sum (WQS) analysis to test the association of mixed 
PFAS exposure with impaired CVH (25). To increase the reliability of 
our findings, we performed a sensitivity analysis and re-evaluated the 
associations via weighted multifactorial logistic regression after 
excluding participants with CVD, diabetes, or depression.

All the statistical procedures were conducted via version 4.3.2 of 
the R software. All the statistical tests were two-sided, with p values 
less than 0.05 indicating statistical significance.

3 Results

3.1 Population characteristics

The participants were categorized into groups with high CVH and 
impaired CVH. As shown in Table  1, the study included 7,184 
participants, with a mean age of 47.97 years. Female participants 
outnumbered male participants (51.27% vs. 48.73%). The average LE8 
score was 68.39, with most participants being non-Hispanic white, 
possessing high school or less, being coupled, enjoying good economic 
status, being mild drinkers, and having health insurance. Overall, 
12.05% of the participants had diabetes, 8.03% had CVD, and 32.89% 
were prescribed medication for hypertension or lowering lipids. A 
total of 5,802 individuals exhibited impaired CVH. Compared with 
those in the high-CVH group, those with impaired CVH tended to 
be older, male, non-Hispanic black, with high school education or less, 
single or separated, economically disadvantaged, former drinkers, no 
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TABLE 1  Baseline characteristics of the study population according to high CVH and impaired CVH.

Variable Total (n =  7,184) High CVH (n =  1,382) Impaired CVH 
(n =  5,802)

p-value

Age (years) 47.97 ± 0.33 42.47 ± 0.56 49.63 ± 0.34 < 0.0001

Age group (n, %) < 0.0001

20–39 2,282 (33.84) 709 (49.38) 1,573 (29.14)

40–59 2,512 (40.29) 409 (34.80) 2,103 (41.95)

> = 60 2,390 (25.87) 264 (15.82) 2,126 (28.91)

Gender (n, %) < 0.0001

Female 3,672 (51.27) 833 (59.72) 2,839 (48.72)

Male 3,512 (48.73) 549 (40.28) 2,963 (51.28)

Race/ethnicity (n, %) < 0.0001

Non-Hispanic Black 1,457 (9.80) 161 (5.06) 1,296 (11.24)

Non-Hispanic white 3,397 (71.55) 707 (75.29) 2,690 (70.42)

Mexican American 1,029 (7.32) 180 (6.63) 849 (7.53)

Other 1,301 (11.32) 334 (13.02) 967 (10.81)

Education level (n, %) < 0.0001

High school or less 3,154 (35.84) 333 (17.19) 2,821 (41.48)

Some college or associate degree 2,185 (31.42) 389 (26.73) 1,796 (32.84)

College graduate or above 1,845 (32.74) 660 (56.08) 1,185 (25.68)

Marital status (n, %) 0.03

Coupled 4,430 (65.75) 899 (69.07) 3,531 (64.74)

Single or separated 2,754 (34.25) 483 (30.93) 2,271 (35.26)

PIR (n, %) < 0.0001

<1.3 2,061 (18.47) 276 (12.29) 1,785 (20.34)

1.3–3.5 2,692 (35.13) 464 (29.26) 2,228 (36.91)

>3.5 2,431 (46.40) 642 (58.45) 1,789 (42.75)

Alcohol consumption status (n, %) < 0.0001

Never 912 (9.63) 213 (11.38) 699 (9.10)

Former 1,207 (13.71) 125 (7.50) 1,082 (15.59)

Mild 2,562 (38.81) 549 (42.77) 2,013 (37.61)

Moderate 1,132 (17.91) 264 (21.79) 868 (16.74)

Heavy 1,371 (19.93) 231 (16.56) 1,140 (20.96)

Health insurance (n, %) < 0.001

No 1,386 (15.17) 237 (11.84) 1,149 (16.18)

Yes 5,798 (84.83) 1,145 (88.16) 4,653 (83.82)

Diabetes (n, %) < 0.0001

No 6,050 (87.95) 1,352 (98.00) 4,698 (84.92)

Yes 1,134 (12.05) 30 (2.00) 1,104 (15.08)

Depression (n, %) < 0.0001

No 6,577 (92.96) 1,339 (97.64) 5,238 (91.55)

Yes 607 (7.04) 43 (2.36) 564 (8.45)

CVD (n, %) < 0.0001

No 6,436 (91.97) 1,325 (97.27) 5,111 (90.37)

Yes 748 (8.03) 57 (2.73) 691 (9.63)

Take anti-hypertensive or lipid-lowering medication (n, %) < 0.0001

No 4,557 (67.11) 1,186 (86.47) 3,371 (61.25)

(Continued)
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health insurance, diabetic, depressed, and on antihypertensive or 
lipid-lowering medication. Additionally, these participants also 
presented lower eGFRs and higher uACR values.

3.2 PFAS concentration distribution

Table 2 shows the distribution of PFAS concentrations. All PFAS 
compounds investigated had detection rates above 98%, with PFOS 
being the highest at 100%. PFOS had the highest median serum 
concentration at 8.40 ng/mL, whereas PFNA had the lowest at 0.90 ng/
mL. The median concentrations of PFNA and PFOA were 1.50 ng/mL 
and 2.57 ng/mL, respectively. The concentrations of PFAS were lower 
in individuals with high CVH than in those with impaired CVH 
(p < 0.001). Supplementary Table S2 lists the minimum detection 
concentrations for each PFAS. Additionally, a noticeable downward 
trend in the median concentrations of each PFAS over the years was 
observed (p < 0.001), as detailed in Supplementary Table S3. Figure 1 
shows the results of the Spearman rank correlation analysis, with 
correlation coefficients ranging from 0.45 to 0.71 for the four PFASs.

3.3 PFAS exposure and impaired CVH

Table 3 shows weighted logistic regression analyses for variables 
related to impaired CVH. Age was positively associated with impaired 
CVH. Men were 56% more likely to have impaired CVH than women 

were. (OR: 1.56; 95% CI: 1.34, 1.82). There were notable racial 
differences, with non-Hispanic white, Mexican American, and other 
individuals showing lower odds of impaired CVH than non-Hispanic 
black individuals. An inverse relationship between education level and 
impaired CVH was demonstrated. Lifestyle factors also showed 
significant associations, with former drinkers and uninsured 
individuals being at greater risk. Health conditions such as diabetes, 
depression, and CVD are linked to an increased likelihood of impaired 
CVH. In particular, each unit increase in the eGFR was shown to have 
a protective effect against impaired CVH.

Table 4 shows the results of weighted logistic regression analyses 
for each PFAS compound on impaired CVH. In the crude model, the 
continuous variables PFHxS, PFNA, PFOA, and PFOS were positively 
associated with impaired CVH (ORln-PFHxS: 1.18, 95% CI: 1.10, 1.27; 
ORln-PFNA: 1.22, 95% CI: 1.10, 1.35; ORln-PFOA: 1.21, 95% CI: 1.09, 1.33; 
ORln-PFOS: 1.30, 95% CI: 1.20, 1.41). Categorizations of PFAS with Q1 
as a reference revealed that higher quartiles, especially Q4, were 
associated with an increased risk of impaired CVH, trend test p < 0.001 
(ORPFHxS: 1.63, 95% CI: 1.33, 1.99; ORPFNA: 1.54, 95% CI: 1.21, 1.96; 
ORPFOA: 1.56, 95% CI: 1.24, 1.95; ORPFOS: 2.20, 95% CI: 1.72, 2.81).

3.4 Dose–response relationship between 
PFAS and impaired CVH

Figure  2 shows the RCS curves for each PFAS in relation to 
impaired CVH, adjusting for the covariates described in Model 1. 

TABLE 1  (Continued)

Variable Total (n =  7,184) High CVH (n =  1,382) Impaired CVH 
(n =  5,802)

p-value

Yes 2,627 (32.89) 196 (13.53) 2,431 (38.75)

eGFR (mL/min/1.73 m2) 93.49 ± 0.42 97.74 ± 0.72 92.21 ± 0.43 < 0.0001

uACR (mg/g) 30.36 ± 2.92 12.76 ± 1.38 35.69 ± 3.75 < 0.0001

LE8 68.39 ± 0.31 86.76 ± 0.20 62.84 ± 0.23 < 0.0001

Diet score 38.95 ± 0.60 59.15 ± 1.05 32.85 ± 0.57 < 0.0001

Physical activity score 72.11 ± 0.69 94.41 ± 0.58 65.37 ± 0.77 < 0.0001

Nicotine exposure score 71.67 ± 0.74 92.73 ± 0.61 65.31 ± 0.86 < 0.0001

Sleep health score 83.93 ± 0.43 92.83 ± 0.46 81.24 ± 0.50 < 0.0001

Body mass index score 60.41 ± 0.64 84.95 ± 0.76 52.99 ± 0.64 < 0.0001

Blood lipids score 63.78 ± 0.53 82.29 ± 0.80 58.18 ± 0.60 < 0.0001

Blood glucose score 86.25 ± 0.34 97.12 ± 0.42 82.96 ± 0.40 < 0.0001

Blood pressure score 69.96 ± 0.55 90.35 ± 0.60 63.79 ± 0.62 < 0.0001

NHANES 2005–2018. CVH, cardiovascular health; LE8, Life’s Essential 8; PIR, the ratio of family income to poverty; CVD, cardiovascular diseases; eGFR, estimated glomerular filtration rate; 
uACR, urinary albumin, and creatinine.

TABLE 2  Distribution of PFAS concentrations by cardiovascular health status.

PFAS (ng/mL) Total Detection Ratea High CVH Impaired CVH p-value

PFHxS Median (IQR) 1.50 (0.89, 2.60) 98.51% 1.37 (0.75, 2.35) 1.50 (0.90, 2.70) < 0.0001

PFNA Median (IQR) 0.90 (0.52, 1.39) 98.30% 0.80 (0.50, 1.23) 0.90 (0.57, 1.40) < 0.001

PFOA Median (IQR) 2.57 (1.57, 4.20) 100% 2.40 (1.47, 3.70) 2.63 (1.60, 4.30) < 0.001

PFOS Median (IQR) 8.40 (4.60, 14.90) 99.80% 6.94 (4.00, 12.00) 9.00 (4.80, 15.90) < 0.0001

aDetection rates for PFOA and PFOS were calculated for 2005–2012 cycles, because in cycles 2013–2018 PFOA and PFOS were measured as isomers. PFOA, perfluorooctanoic acid; PFOS, 
perfluorooctane sulfonic acid; PFNA, perfluorononanoic acid; PFHxS, perfluorohexane sulfonic acid.
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There was a linear relationship between PFNA levels and impaired 
CVH (p = 0.001; p for nonlinearity = 0.179). In contrast, the serum 
PFOA and PFOS levels exhibited a nonlinear relationship with 
impaired CVH (p for nonlinearity = 0.015 and p for nonlinearity 
<0.001, respectively). The minimum thresholds for a favorable 
association were identified at 1.61 ng/mL for PFOA and 5.24 ng/mL 
for PFOS.

3.5 Subgroup analysis

Supplementary Figures S2–S5 show the subgroup analysis results. 
A positive association was noted between each PFAS exposure and 
impaired CVH in the 20–39 age cohort. In the 40–59 age group, 
PFHxS, PFOA, and PFOS were all positively associated with impaired 
CVH, whereas in the 60+ age group, PFOS exposure was of particular 
concern. Among males, PFNA and PFOS exposure were positively 
associated with impaired CVH, with similar caution advised for 
females regarding PFOS. Non-Hispanic white individuals were 
positively associated with impaired CVH for all four PFAS 
compounds, and among Mexican Americans, PFHxS, PFNA, and 
PFOS were all positively associated with CVH impairment. In terms 
of education, PFOS exposure was consistently associated with 
impaired CVH across all levels of education, with notable concern also 
directed at PFHxS exposure among those with less than a high school 
education and a college degree or above and PFOA and PFNA 
exposure among those with a college degree or above. With respect to 

economic status, as measured by PIR, serum PFAS levels were 
predominantly associated with impaired CVH at 1.3–3.5 and 3.5 
above the PIR range. For marital status, all four PFAS compounds 
were associated with a greater risk of impaired CVH in coupled 
individuals, a trend also observed among those with health insurance. 
Interaction analyses revealed that race/ethnicity influenced the 
associations between PFHxS and PFOS exposure and impaired 
CVH. Marital status influenced the associations between PFOA and 
PFOS exposure and impaired CVH.

3.6 WQS and Qgcomp analysis

Figure 3 shows the results of the analysis of the WQS model. The 
results of the WQS via a positive model revealed that each quartile 
increase in mixed PFASs was associated with an increased risk of 
impaired CVH (OR: 1.15, 95% CI: 1.06, 1.25), with PFOS having the 
largest positive weight (0.86). In contrast to WQS, Qgcomp allows 
weights to move in either direction, reflecting the complex interplay 
within the mixture. The analysis conducted by Qgcomp revealed that 
each quantile increase in the serum concentration of all PFASs was 
associated with increased odds of impaired CVH (OR: 1.10, 95% CI: 
1.02, 1.19). In particular, PFOS and PFNA contributed the main 
positive weights to the outcome, with PFOS having the largest positive 
weight (0.61) and PFNA following 0.39; PFHxS and PFOA had 
negative weights, with PFHxS having the largest negative weight at 0.93 
and PFOA having a negative weight of 0.07 (Supplementary Figure S6).

FIGURE 1

Correlations among the serum PFAS concentrations.
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TABLE 3  Weighted univariate logistic regression analyses of variables associated with impaired CVH.

Variable OR 95% CI p-value

Age (years) 1.03 1.03 (1.02, 1.03) <0.0001

Gender

Female Reference Reference Reference

Male 1.56 1.56 (1.34, 1.82) <0.0001

Race/ethnicity

Non-Hispanic Black Reference Reference Reference

Non-Hispanic white 0.42 0.42 (0.35, 0.51) <0.0001

Mexican American 0.51 0.51 (0.40, 0.66) <0.0001

Other 0.37 0.37 (0.29, 0.48) <0.0001

Education levels

High school or less Reference Reference Reference

Some college or associate degree 0.51 0.51 (0.41, 0.63) <0.0001

College graduate or above 0.19 0.19 (0.15, 0.23) <0.0001

Marital status

Coupled Reference Reference Reference

Single or separated 1.22 1.22 (1.02, 1.44) 0.03

PIR

<1.3 Reference Reference Reference

1.3–3.5 0.76 0.76 (0.62, 0.94) 0.01

>3.5 0.44 0.44 (0.36, 0.54) <0.0001

Alcohol intake status

Never Reference Reference Reference

Former 2.6 2.60 (1.97, 3.44) <0.0001

Mild 1.1 1.10 (0.88, 1.37) 0.40

Moderate 0.96 0.96 (0.74, 1.26) 0.77

Heavy 1.58 1.58 (1.18, 2.11) 0.002

Health insurance

No Reference Reference Reference

Yes 0.7 0.70 (0.57, 0.85) <0.001

Diabetes

No Reference Reference Reference

Yes 8.68 8.68 (4.94, 15.26) <0.0001

Depression

No Reference Reference Reference

Yes 3.83 3.83 (2.51, 5.84) <0.0001

CVD

No Reference Reference Reference

Yes 3.8 3.80 (2.74, 5.28) <0.0001

Take anti-hypertensive or lipid-lowering medication

No Reference Reference Reference

Yes 4.04 4.04 (3.29, 4.96) <0.0001

eGFR (mL/min/1.73 m2) 0.99 0.99 (0.98, 0.99) <0.0001

uACR (mg/g) 1 1.00 (1.00, 1.01) 0.05

CVH, cardiovascular health; PIR, the ratio of family income to poverty; CVD, cardiovascular diseases; eGFR, estimated glomerular filtration rate; uACR, urinary albumin and creatinine.
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3.7 Sensitivity analysis

Supplementary Table S4 shows the outcomes of the sensitivity 
analysis. The exposure levels of PFNA, PFOA, and PFOS in the highest 
quartile were still positively associated with impaired CVH (ORPFNA: 
1.49, 95% CI: 1.14, 1.94; ORPFOA: 1.50, 95% CI: 1.13, 1.98; ORPFOS: 1.74, 
95% CI: 1.30, 2.33). Similarly, ln-PFNA, ln-PFOA, and ln-PFOS were 
found to be associated with an increased risk of impaired CVH (ORln-

PFNA: 1.18, 95% CI: 1.04, 1.33; ORln-PFOA: 1.17, 95% CI: 1.03, 1.32; ORln-

PFOS: 1.21, 95% CI: 1.09, 1.34).

4 Discussions

In this nationally representative study, we determined that PFAS 
were associated with a greater risk of impaired CVH. After controlling 
for covariates, the risk of impaired CVH was increased by 40, 10, and 

25% for PFNA, PFOA, and PFOS, respectively, in the highest group 
compared with the lowest group. Similar statistical results were obtained 
when PFAS was used as a continuous variable. Trend tests validated the 
persistence of the positive relationships, and subgroup analysis results 
underscored the universality of this association across different 
subpopulations. The sensitivity analysis reinforced the robustness of the 
statistical results. The RCS curve revealed that PFNA maintains a 
positive linear relationship with impaired CVH, whereas PFOS and 
PFOA exhibit a nonlinear relationship with impaired CVH. The results 
of the Qgcomp analysis and WQS model revealed that mixed exposure 
to PFASs is linked to impaired CVH. PFOS had the most positive 
weight, as did PFHxS, which had the largest negative weight.

Previous studies have linked serum PFAS exposure and CVD, 
such as coronary heart disease, stroke, carotid artery thickness, and 
lower limb arterial occlusion (11, 26). These investigations relied 
primarily on medical history for diagnosis and lacked a direct focus 
on CVH. Given that young people have a lower risk of CVD, we used 

TABLE 4  Results of weighted multivariable logistic regression analyses for PFAS compounds and impaired CVH.

PFAS exposure (ng/
ml)

Crude model Model 1

OR 95% CI P-value OR 95% CI P-value

PFHxS

 � ln-PFHxS 1.18 1.10, 1.27 <0.0001 1.07 0.99, 1.17 0.09

 � Q1 (low) 1 Reference 1 Reference

 � Q2 1.48 1.20, 1.83 <0.001 1.33 1.05, 1.69 0.02

 � Q3 1.38 1.10, 1.73 0.01 1.09 0.85, 1.40 0.49

 � Q4 (high) 1.63 1.33, 1.99 <0.0001 1.21 0.95, 1.54 0.13

 � p for trend <0.0001 0.33

PFNA

 � ln-PFNA 1.22 1.10, 1.35 <0.001 1.14 1.02, 1.28 0.03

 � Q1 (low) 1 Reference 1 Reference

 � Q2 1.08 0.89, 1.32 0.41 1.13 0.91, 1.39 0.28

 � Q3 1.30 1.04, 1.62 0.02 1.22 0.97, 1.54 0.09

 � Q4 (high) 1.54 1.21, 1.96 <0.001 1.40 1.09, 1.80 0.01

 � p for trend <0.001 0.01

PFOA

 � ln-PFOA 1.21 1.09, 1.33 <0.001 1.15 1.02, 1.29 0.02

 � Q1 (low) 1 Reference 1 Reference

 � Q2 1.14 0.93, 1.40 0.2 1.13 0.91, 1.41 0.25

 � Q3 1.18 0.94, 1.48 0.15 1.14 0.88, 1.49 0.32

 � Q4 (high) 1.56 1.24, 1.95 <0.001 1.44 1.10, 1.88 0.01

 � p for trend <0.001 0.02

PFOS

 � ln-PFOS 1.30 1.20, 1.41 <0.0001 1.18 1.08, 1.30 <0.001

 � Q1 (low) 1 Reference 1 reference

 � Q2 1.07 0.85, 1.34 0.58 0.98 0.78, 1.24 0.86

 � Q3 1.44 1.14, 1.81 0.002 1.27 1.01, 1.59 0.04

 � Q4 (high) 2.20 1.72, 2.81 <0.0001 1.62 1.25, 2.11 <0.001

 � p for trend <0.0001 <0.0001

Crude model: no covariates were adjusted. Model 1: age (as a continuous variable), gender, race/ethnicity, educational level, marital status, PIR, alcohol consumption, health insurance, 
diabetes, depression, take anti-hypertensive or lipid-lowering medication, cardiovascular disease, eGFR, and UACR. PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonic acid; 
PFNA, perfluorononanoic acid; PFHxS, perfluorohexane sulfonic acid. OR, odds ratio; 95% CI, confidence intervals.
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LE8 to examine the associations between PFASs and CVH and 
included a wider range of health indicators.

In the present study, exposure to almost all PFOS was positively 
associated with impaired CVH in the young and middle-aged groups. 
The association was particularly significant in the middle-aged group. 
This possibly reflects the cumulative effect of chronic exposure with age, 
as confirmed by Supplementary Table S5, which shows the cumulative 

effect of increasing PFAS concentrations with age. In contrast, for older 
adults aged 60 years and older, despite having longer cumulative 
exposure concentrations, only the presence of an effect of PFOS 
exposure on impaired CVH was found, hinting at a potential relevance 
of age, which is in line with the findings of a previous German study 
that reported that, relative to older adults, PFAS have a greater risk of 
increasing cardiometabolic outcomes in people younger than 54 years 

FIGURE 2

Restricted cubic splines were used to determine the relationship between PFAS exposure concentration and the risk of impaired CVH in adults.

FIGURE 3

WQS regression index weights for each PFAS in the PFAS mixture.
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(16). Although the physiological mechanisms are not understood, 
multiple CVH risk factors are already present in older adults, including 
metabolic abnormalities, medications, and ageing; these issues increase 
the degree of competing risk and may mask the independent effects of 
PFASs. Our finding that exposure to PFNA and PFOS was more 
significantly associated with impaired CVH in males than in females 
suggests that there may be biological or environmental factors that 
increase the susceptibility of males to the negative effects of these 
chemicals on CVH. Consistent with our results, Sun and colleagues 
reported higher serum PFAS concentrations in men than in women 
(25). Pan and colleagues reported that males exposed to PFNA, PFOA, 
and PFOS have a greater risk of hypertension than females do, which 
may be influenced by differences in hormone levels and body clearance 
by sex (27). Non-Hispanic whites and Mexican Americans are more 
susceptible to PFAS for CVH. According to Liddie et  al. (28), the 
detection of PFASs in community water systems in the U.S. was 
positively associated with the number of sources of PFASs and the 
proportion of people of color served by these water systems, 
highlighting the role of race in environmental health inequities. 
Additionally, our study revealed a linear relationship between PFNA 
levels and impaired CVH, suggesting that the risk increases with 
increasing exposure. In contrast, there was a nonlinear trend for PFOA 
and PFOS, with the ratio of impaired CVH increasing as concentrations 
reached a certain threshold, beyond which the risk stabilized. These 
findings suggest that complex biological mechanisms may reduce risk 
at higher exposures. Individuals who are coupled have an increased risk 
of impaired CVH risk following exposure to four PFASs, and further 
research may be  needed to investigate the relationships between 
different lifestyles and environmental factors and PFASs and 
CVH. Given the cross-sectional study design, it is important to consider 
that high CVH might enhance PFAS elimination. The HOME study 
involving 166 mother–child pairs revealed that physical exercise 
modified the impact of PFOA exposure on cardiac metabolic risk 
scores, visceral fat area, and insulin resistance, suggesting that lifestyle 
interventions could mitigate some adverse effects of PFAS exposure (29).

The mechanism by which PFASs affect CVH is not fully 
understood. Previous evidence has suggested that PFAS may 
be associated with the aggravation of CVD risk factors and events 
through endocrine disruption and possibly a direct vascular toxic effect 
(30). Endothelial dysfunction is widely recognized as a foundational 
pathology of various CVDs. Earlier experimental research suggested 
that PFAS exposure can induce inflammation, initiate the generation 
of reactive oxygen species, increase endothelial cell permeability, and 
increase the expression of adhesion molecules, such as intercellular 
adhesion molecule-1, thus attracting monocytes to atherosclerotic 
lesions and exacerbating atherosclerosis (31, 32). Omoike et al. (33) 
reported that PFAS exposure was linked to increased serum markers of 
chronic inflammation and oxidative stress, such as lymphocyte count, 
serum iron, albumin, and bilirubin. In animal experiments, PFAS has 
been found to cause cardiotoxicity in rats by increasing cell apoptosis 
and proinflammatory cytokine expression (34). DNA methylation, an 
important epigenetic modification predominantly occurring on 
cytosine–phosphate–guanine islands in gene promoter regions and 
regulated by DNA methyltransferases, has recently been connected to 
the expression of genes linked to CVD (35). Research indicates that 
PFAS exposure is correlated with epigenetic alterations, including DNA 
methylation, in adults and birth cohorts (36, 37). Lin’s study revealed 
an association between PFOS exposure and elevated 5mdC/dG levels, 

highlighting the potential relevance of DNA methylation in the 
pathophysiology of PFOS-related atherosclerosis (38). Another 
potential pathway involves PPAR receptor activation, which is crucial 
for fatty acid and metabolism regulation and is a potential drug target 
for reducing atherosclerosis risk; however, this pathway is associated 
with increased cardiovascular events (39, 40). PFAS interaction with 
PPARs has been shown to lead to hypertension (41). Additionally, 
PFOS preferentially accumulates in platelets, affecting the stability of 
the plasma membrane and altering membrane fluidity, which affects 
platelet activation and aggregation, leading to thrombosis (42).

This study is the first to measure and diagnose impaired CVH risk 
associated with PFASs via the LE8 score. This method has several 
advantages. First, we use NHANES data to ensure data quality and 
national representativeness by adjusting for appropriate weights and 
confounders. Second, the LE8 score is employed as a comprehensive 
CVH assessment criterion. Directly linking PFAS exposure to 
quantifiable changes in CVH facilitates early identification of at-risk 
individuals. Third, applying multiple statistical analysis techniques 
strengthens the robustness of the findings by identifying specific 
subpopulations and elucidating complex relationships.

Our study has several clear limitations. First, we only analyzed 
data from a single measurement of serum PFAS concentrations rather 
than from repeated measurements, which would be more appropriate 
for estimating the cumulative effects of PFAS exposure over many 
years. Second, since certain metrics are derived from self-report 
questionnaires, this may introduce potential biases. Third, although 
our study controlled for a wide range of confounding factors, there are 
still potential confounding factors that could affect the results. Finally, 
we  cannot determine the inherent causal relationships given the 
limitations of the study type.

5 Conclusion

In summary, our research revealed a significant association 
between PFAS exposure and elevated risk of impaired CVH, with 
almost consistent results across diverse subpopulations. These findings 
contribute to the advancement of understanding PFAS risks in public 
health and environmental studies, to identify individuals at risk before 
major health events occur and potentially alleviate the overall burden 
of diseases in the population. Furthermore, there is a pressing need for 
future longitudinal studies on populations with high PFAS exposure 
and emerging PFAS compounds to confirm the current findings. 
Finally, in-depth experimental research is essential to uncover the 
potential mechanisms behind this association.
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Paralysis caused by dinotefuran at 
environmental concentration via 
interfering the Ca2+–ROS–
mitochondria pathway in 
Chironomus kiiensis
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Introduction: Dinotefuran as the third-generation of neonicotinoid insecticides 
is extensively used in agriculture worldwide, posing a potential toxic threat to 
non-target animals and humans. However, the chronic toxicity mechanism 
related to mitochondria damage of dinotefuran to non-target animals at 
environmental concentration is unclear.

Methods: In this study, the mitochondria damage and oxidative stress of 
dinotefuran on Chironomus kiiensis were investigated at environmental 
concentrations by long-term exposure. At the same time, relevant gene 
expressions of these toxicity indexes were measured as sensitive ecotoxicity 
biomarkers to reflect the toxic effects of dinotefuran on Chironomidae.

Results: Our present study showed that chronic exposure to environmental 
concentrations of dinotefuran resulted in behavioral inhibition in the larvae 
of Chironomidae. For burrowing inhibition of 10  days, the lowest observed-
effect concentration (LOEC) and 50% inhibitory concentration (IC50) were 0.01 
(0.01–0.04) and 0.60 (0.44–0.82) μg/L, respectively. Dinotefuran promoted the 
release of intracellular calcium ions (Ca2+) in Chironomidae via dysregulating the 
gene expressions of atp2b, camk ii, and calm. Subsequently, the disruption of 
the Ca2+ signaling pathway induced oxidative stress by raising reactive oxygen 
species (ROS), hydrogen peroxide (H2O2), and malonaldehyde (MDA) levels. 
Thus, the over-release of Ca2+ and ROS disordered the normal functioning 
of mitochondrial-related pathways by dysregulating the expressions of 
mitochondria-related genes of atpef0a, sdha, and cyt b.

Conclusion: Our findings showed that low environmental concentrations 
of dinotefuran caused paralysis of the midge via interfering the Ca2+–ROS–
mitochondria pathway. These results provided data support for assessing the 
potential environmental risk of dinotefuran.
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neonicotinoid insecticides, long-term exposure, mitochondria, Chironomidae, 
environmental dose
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1 Introduction

Neonicotinoid insecticides are the fastest-growing systemic 
pesticides in the world due to being considered to be less toxic to 
mammalian species than traditional insecticide classes, such as 
organochlorines and organophosphates (1). Dinotefuran, which is a 
third-generation neonicotinoid insecticide, has a tetrahydrofuran ring 
but no halogen elements of other neonicotinoids (2). It has more 
excellent properties than first-and second-generation neonicotinoids, 
such as higher insecticidal activity, quicker uptake, smaller resistance, 
broader spectrum, and safer for the environment and humans (3). 
Nowadays, dinotefuran has been widely used, accounting for more 
than 25% of the global pesticides used (4). Excessive use and high 
water solubility of dinotefuran unavoidably remained in residues in 
surface waters, causing harm to aquatic organisms and humans (5).

Dinotefuran was less studied in previous reports compared with the 
other neonicotinoid insecticides. A few studies reported the detection of 
waterborne dinotefuran in various regions. Xiong et al. (6) detected 
neonicotinoid insecticides from a paddy field to receiving waters in the 
Poyang Lake basin of China, showing that dinotefuran was the dominant 
neonicotinoid with a mean concentration of 200 ± 296 ng/L and the 
maximum concentration of 802 ± 139 ng/L. Dinotefuran was detected 
with a concentration of 12.7–75.5 ng/L in rivers near maize fields in 
Ontario, Canada (7) and 1.60–134 ng/L in streams across the 
United States (8). Putri et al. (9) analyzed neonicotinoid occurrence in 
tropical environmental waters of Indonesia, the highest concentration of 
dinotefuran was 23.12 ng/L in estuaries and mangrove areas. Thompson 
et al. (10) investigated neonicotinoid insecticides in well tap water and 
human urine samples in eastern Iowa, the max concentration of 
dinotefuran was 3.9 ng/L in groundwater samples and 2.9 μg/g in 
urine samples.

It is well known that the toxicity target of neonicotinoids is the 
nicotinic acetylcholine receptors (nAChRs) of insects. They act on 

nAChRs and disrupt the central nervous system of insects, thus, insects 
become paralyzed and even die due to overexcitement (11). Even so, 
numerous recent reports have found neonicotinoids could cause 
unintended toxic effects on non-target organisms, even humans. 
Therefore, the exploration of their additional toxic mechanism has 
become the emerging focus of public attention. Although the toxicity of 
dinotefuran is low, the toxicity to non-target organisms cannot 
be  ignored. Liu et  al. (12) showed that more than 1.0 mg/kg of 
dinotefuran caused oxidative stress and genetic toxicity in earthworms 
(Eisenia fetida) during the 28 d exposure. Dinotefuran (0.1, 0.5, and 
2.0 mg/L) induced oxidative stress and DNA damage in juvenile Chinese 
rare minnows (Gobiocypris rarus) after 60 d exposure (13). Though these 
toxicities of dinotefuran have been studied in some organisms, little is 
known about Chironomidae, especially for environmental concentrations 
and long-term exposure. Chironomid larvae are the main invertebrates 
in freshwater ecosystems and play important ecological functions 
because they are natural baits for many other aquatic organisms (14). In 
addition, Chironomidae are more sensitive to neonicotinoids compared 
with a lot of other aquatic invertebrates (5). Therefore, it is necessary to 
study the chronic toxicity mechanism of dinotefuran to Chironomidae 
as representative organisms at environmental concentrations. In 
addition, as the experimental animal chironomid is a lower invertebrate 
and belongs to the class of insects of the invertebrate phylum, therefore 
no ethical review is required.

In this study, Chironomus kiiensis was chosen as the test organism. 
Compared to the commonly used Chironomus dilutus (approximately 
60 days), the life cycle of Chironomus kiiensis is shorter, only approximately 
23 days, which is more time-saving on biological tests. The mitochondria 
damage and oxidative stress of dinotefuran on Chironomus kiiensis were 
investigated at environmental concentrations by long-term exposure. At 
the same time, relevant gene expressions of these toxicity indexes were 
measured as sensitive ecotoxicity biomarkers to reflect the toxic effects of 
dinotefuran on Chironomidae. These results will improve our 
understanding of the potential toxic mechanisms of dinotefuran to 
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Chironomidae and provide data support for assessing neonicotinoid 
insecticides’ potential environmental risks.

2 Materials and methods

2.1 Materials

Dinotefuran (CAS: 165252-70-0), thiamethoxam-d3 (internal 
standard), and imidacloprid-d4 (surrogate standard) were purchased 
from Dr. Ehrenstorfer GmbH (Augsburg, Germany) with purity 
>98%. The midges, Chironomus kiiensis (C. kiiensis) were cultured in 
Jiaying University according to the standard protocol of USEPA2000 
proposed by the U.S. Environmental Protection Agency.

2.2 Toxicological assay

Test water was freshly prepared by a range of concentrations (0.1, 
0.5, 1, 5, 10, and 50 μg/L) of dinotefuran (DIN_1, DIN_2, DIN_3, 
DIN_4, DIN_5, and DIN_6) into reconstituted moderately hard water. 
Negative control and solvent control were tested in the meantime. A 
0.5 cm layer of quartz sand and 200 mL of testing solution were 
introduced into each 500 mL beaker. Ten 1st instar larvae of C. kiiensis 
were randomly added into each beaker with 3–5 replicates per 
treatment group or control group. The entire exposure period ended 
until the first pupa appeared (approximately 10 days). The test solution 
was changed once on day 5. The organisms were fed ground fish food 
every 2 days per beaker. Water quality parameters (i.e., conductivity, 
pH, temperature, and dissolved oxygen) in the test solution were 
monitored every day and ammonia nitrogen was monitored on days 
0, 5, and 10. At the end of the exposure period, the survival larvae were 
evaluated for a series of toxicity indexes, including lethality, burrowing 
inhibition, cellular responses, and the corresponding gene expressions. 
For burrowing inhibition, under normal circumstances, a larva of 
Chironomidae burrows into sand for nesting. If more than half of its 
body fails to burrow successfully, burrowing behavior is considered 
inhibited. The exposed solution was sampled at 5 and 10 days in three 
replicates and analyzed for dinotefuran actual concentrations using 
HPLC-MS/MS following a previously developed method by Wei et al. 
(15). More details on the quantification of dinotefuran are shown in 
the Supplementary material and qualification parameters for the 
analyte are listed in Supplementary Table S1.

2.3 Intracellular calcium ion level

Survival organisms in each group of control and three treat groups 
(DIN_1, DIN_2, and DIN_3) were used to measure the content of the 
intracellular Ca2+. The concentration of Ca2+ was measured using a 
Fura-2/AM probe (Beyotime, Haimen, China). Survival midge larvae 
were homogenized in 3 mL of phosphate buffer solution (PBS) using a 
glass homogenizer and sieved with a 75 μm cell strainer. The homogenate 
was centrifuged twice for washing purposes at 1000 g and 4°C. The cell 
precipitate was resuspended in PBS. The cell suspension was preloaded 
with 2 μmol/L Fura-2/AM at 37°C for 30 min and was centrifugated at 
1000 g for 5 min after being washed in PBS solution. Then the cells were 
resuspended in PBS and moved into 6-well plates (1 × 105 cells/well). The 

fluorescent signal was measured using a microplate spectrophotometer 
(Biotek, Synergy H1, United States) with emission wavelength at 510 nm 
and excitation wavelength at 340 and 380 nm. The relative amount of 
Ca2+ was calculated as the ratio of F340/F380 relative to control.

2.4 Oxidative stress indexes

Survival larvae in control and three treat groups (DIN_1, DIN_2, and 
DIN_3) were homogenized in 1 mL PBS for 3 min and the solution was 
centrifuged at 10,000 g at 4°C for 10 min. The supernatants were used for 
measuring protein content, hydrogen peroxide (H2O2) concentration, and 
malondialdehyde (MDA) content using commercial assay kits according 
to the manufacturer’s protocols (Beyotime).

For H2O2 levels, 50 μL of supernatant sample or standard was added 
to the test well followed by 100 μL of H2O2 detection reagent to each well. 
The mixture solution was gently shaken and remained at room 
temperature for 30 min and immediately determined 560 nm. The 
concentration of H2O2 was calculated according to the standard curve.

For the MDA content, 100 μL of the standard products with 
different concentrations or 100 μL of the supernatant sample were 
added to the centrifuge tube. Then 200 μL of MDA detection fluid was 
added. The mixture was heated in a boiling water bath for 15 min and 
cooled to room temperature. After centrifugation at 1000 g for 10 min 
at room temperature, 200 μL of supernatant was added to the 96-well 
plate, and then the absorbance was measured at 532 nm.

ROS levels were measured using a commercial ROS assay kit 
(Beyotime) following the manufacturer’s protocol. Surviving midge larvae 
were cut into small pieces with scissors. The fragment of tissue was gently 
rubbed on the 300 mesh nylon net which was put on the small test tube. 
Cell suspension was collected, and centrifuged at 500 g for 10 min, then 
the supernatant was removed. The cell precipitation was washed with PBS 
1–2 times. The cell suspension was suspended in the DCFH-DA probe 
and incubated in a cell incubator at 37°C for 20 min. Subsequently, the 
mixture was inverted and mixed every 3–5 min so that the probe was in 
full contact with the cells. The cells were washed three times with serum-
free cell culture solution to fully remove DCFH-DA that did not enter the 
cells. The concentration of ROS was detected at 488 nm excitation 
wavelength and 525 nm emission wavelength.

2.5 Mitochondria indexes

Mitochondrial membrane potential (MMP) was measured using a 
commercial MMP assay kit with JC-1 (Beyotime) following the standard 
procedure by the manufacturer’s protocols. Mitochondrial depolarization 
was measured by the relative ratio of red to green fluorescence on a 
multifunctional microplate reader. Red fluorescence was detected at 
excitation light 525 nm and emission light 590 nm. Green fluorescence 
was detected at excitation light 490 nm and emission light 530 nm.

Adenosine triphosphate (ATP) level was measured using a 
commercial ATP assay kit (Beyotime) according to the manufacturer’s 
protocols. A total of 100 μL of ATP test fluid was added to the test 
tube, which was placed at room temperature for 3–5 min, so that all 
the background ATP was consumed, thereby reducing the 
background. A total of 20 μL of sample or standard was introduced in 
the detection tube and mixed quickly, and the response by the 
chemiluminescence mode was measured after at least 2 s.
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2.6 Measurements of gene levels

Survived larvae (DIN_1, DIN_2, and DIN_3) were immediately 
frozen with liquid nitrogen before use. Total RNA was isolated using 
an RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s protocol. Expressions of 9 genes 
(Supplementary Table S2) were quantified using a real-time 
quantitative polymerase chain reaction (RT-qPCR) according to the 
method of the previous study by Wei et al. (15). In brief, β-actin was 
chosen as an internal control. The RNA samples were reversely 
transcribed into cDNA by using a Bestar™ qPCR-RT Kit (DBI-2220, 
German). RT-qPCR was performed in an ABI 7500 fluorescence 
quantitative PCR instrument (ThermoFisher, United States). The fold 
changes of the target genes were calculated using a 2−ΔΔCT method.

2.7 Statistical analysis

The concentration-effect curve was fitted by the GraphPad Prism 
5.0 software (San Diego, CA, United States). Differences among the 
treatments were analyzed with one-way ANOVA by SPSS 17.0 
software (SPSS Inc., Chicago, Ill., United States). The p-value <0.05 
was considered statistically significant.

3 Results

3.1 Phenotypic toxicity

Dinotefuran concentrations in exposure solutions varied little 
under the experiment duration (Supplementary Table S3). Survival 
and burrowing behavior of the larva were impaired by dinotefuran 
in a concentration-dependent manner at 4, 8, and 10 days 
(Figures  1A,B and Supplementary Table S4). There was no 
significant difference in larva lethality between negative control 
and solvent control (Supplementary Figure S1). For lethality of 
4 days, the lowest observed-effect concentration (LOEC), and 10 
and 50% lethal concentrations (LC10 and LC50) were 0.46 (0.15–
1.61), 1.40 (0.55–3.25), and 36.4 (21.5–61.6) μg/L (mean (95% 
confidence interval)), respectively (Table  1). For burrowing 

inhibition of 4 days, LOEC, and 10 and 50% inhibitory 
concentrations (IC10 and IC50) were 0.24 (0.07–0.93), 0.66 (0.24–
1.72), and 13.9 (8.6–22.5) μg/L, respectively (Table 1). For lethality 
of 8 days, the LOEC, LC10, and LC50 were 0.09 (0.02–0.43), 0.38 
(0.12–1.06), and 23.3 (13.0–41.6) μg/L, respectively (Table 1). For 
burrowing inhibition of 8 days, LOEC, IC10, and IC50 were 0.06 
(0.02–0.17), 0.13 (0.06–0.29), and 1.66 (1.16–2.37) μg/L, 
respectively (Table 1). For lethality of 10 days, the LOEC, LC10, and 
LC50 were 0.01 (0.002–0.12), 0.08 (0.02–0.33), and 13.4 (6.7–26.8) 
μg/L, respectively (Table 1). For burrowing inhibition of 10 days, 
LOEC, IC10, and IC50 were 0.01 (0.01–0.04), 0.04 (0.02–0.08), and 
0.60 (0.44–0.82) μg/L, respectively (Table 1).

3.2 Intracellular Ca2+ concentration

Dinotefuran significantly stimulated the release of intracellular 
Ca2+ concentrations of the midges above concentrations of 0.5 μg/L 
(DIN_2-DIN_3) after 10 d exposure (p < 0.05) (Figure  2A and 
Supplementary Table S5). The gene expressions of atp2b (Ca2+ 
transporting ATPase plasma membrane), camk ii (calcium/
calmodulin-dependent protein kinase II), and calm (calmodulin) 
related to the calcium pathway were significantly upregulated after 
exposure to dinotefuran above the concentrations of 0.1 μg/L 
(DIN_1-DIN_3) or 0.5 μg/L (DIN_2-DIN_3) (Figures  3A–C and 
Supplementary Table S6).

3.3 Oxidative stress

The levels of ROS were significantly increased after 10 d 
exposure to dinotefuran at 0.5–1 μg/L (DIN_2-DIN_3) in larva 
(Figure 2B). The H2O2 levels were significantly upraised at 0.1 and 
1 μg/L (DIN_1 and DIN_3) by dinotefuran (Figure 2C) but except 
for 0.5 μg/L (DIN_2). Similarly, the MDA contents were 
significantly increased at 0.1–1 μg/L (DIN_1-DIN_3) of 
dinotefuran (Figure 2D). The gene expressions of cat (catalase) 
and sod (superoxide dismutase) related to oxidative stress were 
significantly upregulated relative to the control group at 
DIN_1-DIN_3 and DIN_2-DIN_3 groups, respectively 

FIGURE 1

Lethality (A) and burrowing inhibition (B) of the larva of Chironomus kiiensis after exposure to dinotefuran. Data are expressed as mean  ±  standard error 
(n  =  5). The dotted line represents solvent control.
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(Figures  3D,E). Conversely, the gene expressions of akt (RAC 
serine/threonine-protein kinase) were significantly 
downregulated at DIN_1–DIN_3 groups relative to the control 
group (Figure 3F).

3.4 Mitochondrial dysfunction

The levels of MMP and ATP were decreased after exposure to 
dinotefuran (Figures  2E,F). Significant reduction (p < 0.05) was 
observed at concentrations of 0.5 and 1 μg/L (DIN_2–DIN_3). In 
addition, the related gene expressions of atpef0a (F-type H+-
transporting ATPase subunit a) were significantly downregulated at 
0.1–1 μg/L of dinotefuran (DIN_1–DIN_3) (Figure  4A). Other 
important genes, sdha (succinate dehydrogenase (ubiquinone) 
flavoprotein subunit) and cyt b (cytochrome b) were significantly 
downregulated at 0.5–1 μg/L of dinotefuran (DIN_2–DIN_3) 
(Figures 4B,C).

4 Discussion

Neonicotinoid insecticides are widely used as alternatives to 
traditional pesticides due to less toxic to mammals. They were usually 
detected in the environment (source water, tap water, fruit, and vegetable), 
even in human samples (16–19). Dinotefuran, as the third generation of 
neonicotinoid insecticides, was more safe for the environment and 
humans (3). However, our present study demonstrated that chronic 
(10 days) exposure to environmental concentrations (0.1–1 μg/L) of 
dinotefuran resulted in behavioral inhibition of the larvae, even death. 
Xiong et al. (6) reported that dinotefuran was detected with a mean 
concentration of 200 ± 296 ng/L and a maximum concentration of 
802 ± 139 ng/L from a paddy field to receiving waters in the Poyang Lake 
basin of China. Meanwhile, dinotefuran was detected with a concentration 
of 12.7–75.5 ng/L in rivers near maize fields in Ontario, Canada (7) and 
1.60–134 ng/L in streams across the United States (8). Our present report 
revealed that the LC10 values (0.38 (0.12–1.06) and 0.08 (0.02–0.33) μg/L) 
of dinotefuran after 8 and 10 days exposure to 1st instar larva of C. kiiensis 

TABLE 1  Effect concentrations (μg/L) of dinotefuran exposed to 1st instar larva of Chironomus kiiensis (Data are expressed as mean ± standard error (n = 5)).

Toxicity index Effect concentration 4  d 8  d 10  d

Lethality (mean (95% 

confidence interval))

LOECa 0.46 (0.15–1.61) 0.09 (0.02–0.43) 0.01 (0.002–0.12)

LC10
b 1.40 (0.55–3.25) 0.38 (0.12–1.06) 0.08 (0.02–0.33)

LC50
c 36.4 (21.5–61.6) 23.3 (13.0–41.6) 13.4 (6.7–26.8)

Burrowing inhibition (mean 

(95% confidence interval))

LOEC 0.24 (0.07–0.93) 0.06 (0.02–0.17) 0.01 (0.01–0.04)

IC10
d 0.66 (0.24–1.72) 0.13 (0.06–0.29) 0.04 (0.02–0.08)

IC50
e 13.9 (8.6–22.5) 1.66 (1.16–2.37) 0.60 (0.44–0.82)

aLOEC, lowest observed-effect concentration.
bLC10, 10% lethal concentration.
cLC50, median lethal concentrations.
dIC10, 10% inhibitory concentration.
eIC50, median inhibitory concentration.

FIGURE 2

Intracellular calcium ion (A), oxidative stress (B–D), and mitochondria (E,F) indexes in 1st instar larva after exposure to dinotefuran until the first pupa 
appears. Data are expressed as mean  ±  standard error (n  =  3). The asterisk denotes a significant difference from the solvent control (p  <  0.05). ROS, 
reactive oxygen species; H2O2, hydrogen peroxide; MDA, malondialdehyde; MMP, mitochondrial membrane potential; ATP, adenosine triphosphate.
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were lower than the environmental concentrations (0.1–0.8 μg/L) (6, 8). 
Moreover, after 10 d exposure, the behavioral inhibition effect IC50 (0.60 
(0.44–0.82) μg/L) was also lower than the environmental concentrations. 
These results suggested that choric exposure to dinotefuran in actual 
environment could cause lethality and paralysis to Chironomidae, even 
other aquatic organisms.

The toxicity target of neonicotinoids is the nAChRs of insects. First, 
they activate the nAChRs, then interfere with the central nervous system 
of insects, leading to overstimulation. Thus, insects become paralyzed 
and even die (11). Although the main modes of action (MoAs) of 
neonicotinoids to target species have been well characterized, numerous 
recent reports have found the unintended toxic effects of neonicotinoids 
on non-target organisms, even humans. Therefore, the exploration of 
their additional toxic mechanism has become the emerging focus of 
public attention. The nAChRs are pentameric ligand-gated ion channels 
selective for cations, including permeable to Ca2+. The entry of Ca2+ 
through nAChR channels has been demonstrated to regulate Ca2+-
dependent cellular processes, such as the release of many 
neurotransmitters (20). Calcium is essential to adjust a large number of 

neuronal processes. Our present study demonstrated that dinotefuran 
enhanced Ca2+ influx via dysregulating the gene expressions of atp2b, 
camk ii, and calm at environmental concentrations. The gene atp2b is 
related to Ca2+ transporting ATPase plasma membrane. ATPase pumps 
played an important role in Ca2+ transporting (21). The gene calm is 
related to the protein Calmodulin is the predominant intracellular 
receptor of Ca2+ and is a highly conserved Ca2+ sensor, which is 
ubiquitously expressed in mammalian cells (22). The two genes calm and 
camk ii were involved in the synthesis of calcium ion regulatory proteins. 
Our previous studies also revealed that imidacloprid significantly 
interfered with the expressions of these genes and related proteins (15). 
Similarly, neonicotinoid insecticides (dinotefuran, nitenpyram, and 
acetamiprid) amplified Ca2+ influx via activating the store-operated Ca2+ 
entry (SOCE) in mice liver (23). Intracellular calcium signaling through 
nAChRs was activated by imidacloprid (10–100 μmol/L) in the 
dopaminergic Lund human mesencephalic (LUHMES) cell line (24). 
Imidacloprid overloaded Ca2+ influx by activating the nAChRs (25). 
However, most of the current studies did not take into account the reality 
of environmental concentrations, therefore most of the studies were 

FIGURE 3

Genes expressions related to calcium ion (A–C) and oxidative stress (D–F) in 1st instar larva after exposure to dinotefuran until the first pupa appears. 
Data are expressed as mean  ±  standard error (n  =  3). The asterisk denotes a significant difference with p  <  0.05 compared with the solvent control.

FIGURE 4

Genes expressions related to mitochondrial function (A–C) in 1st instar larva after exposure to dinotefuran until the first pupa appears. Data are 
expressed as mean  ±  standard error (n  =  3). The asterisk denotes a significant difference with p  <  0.05 compared with the solvent control.

134

https://doi.org/10.3389/fpubh.2024.1468384
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wei et al.� 10.3389/fpubh.2024.1468384

Frontiers in Public Health 07 frontiersin.org

conducted at high concentrations of acute exposure. Given this, 
we selected from low to high concentrations (0.1–1 μg/L) of dinotefuran 
for long-term exposure to chironomids. Our results revealed that 
dinotefuran under environmental concentrations (0.5–1 μg/L) and 10 d 
exposure, disrupted the calcium signaling pathway of midge by 
increasing the Ca2+ levels. Guzman-Vallejos et  al. (26) revealed that 
250–500 μmol/L of imidacloprid evoked more calcium changes in 
differentiated human neuroblastoma cells SH-SY5Y neurons by 
molecular docking analysis. Taha et al. (27) reported that neonicotinoid 
insecticides may be  involved in a CaMKK/AMPK pathway in the 
regulation of neuron nAChRs, meanwhile, the calcium-calmodulin-
dependent protein kinase inhibitor, STO-609, inhibited currents induced 
by neonicotinoids and the increase of intracellular calcium. To sum up, 
the genes, atp2b, calm, and camk ii of the calcium pathway might be the 
key biomarkers for dinotefuran.

The increase of intracellular Ca2+ was closely related to the 
overproduction of ROS. Our results suggested that dinotefuran increased 
ROS levels, along with the increase of H2O2 and MDA concentrations. 
ROS are highly active radicals formed upon unpaired electrons of oxygen 
(e.g., hydroxyl radical (•OH) and superoxide (•O2

−)). Excessive ROS in 
biological systems could induce oxidative stress, which is closely related 
to physiological and pathological processes, such as aging and the 
development of cancer (28). When ROS levels exceed antioxidant 
defense capabilities, lipids, and proteins damage would be triggered, 
leading to lipid peroxidation (29). Accordingly, our study found that the 
MDA level of the midge, an indicator for lipid peroxidation, was 
significantly increased after exposure to dinotefuran. Meanwhile, the 
expressions of three key genes (akt, cat, and sod) of midge were altered 
exposed to above 0.1 μg/L of dinotefuran. A previous study reported the 
disorder of calcium signaling overproduced ROS concentration (30). Li 
et  al. (23) reported that Ca2+ overload caused by dinotefuran was 
associated with the overproduction of ROS through the manipulation of 
SOCE protein expression because ROS scavenger n-acetylcysteine could 
attenuate Ca2+ overload induced by neonicotinoid insecticides. Previous 
reports found that AKT, as the key protein of oxidative stress, was also 
affected by neonicotinoid insecticides. For example, the phosphorylation 
of AKT (p-AKT) was reduced by imidacloprid in mice and human cells 
(31). Imidacloprid significantly decreased the ratio of p-AKT/AKT in the 
SH-SY5Y cells (15). Similarly, Wang et al. (38) revealed that intracellular 
ROS levels were markedly raised, and the activity of the cellular 
antioxidant enzymes (CAT, SOD, and GPx) was diminished when 
chicken lymphocyte lines were exposed to 110 μg/mL imidacloprid 
for 24 h.

The mitochondrion is a major producer of ROS in cells. In 
the present study, long-term exposure to dinotefuran reduced the 
levels of MMP and ATP of the larva, suggesting the mitochondrial 
dysfunction of the larva. Ca2+ overload is sufficient to induce the 
mitochondrial permeability transition (MPT), which is important 
in necrosis and apoptosis (32). The opening of mitochondrial 
membrane permeability transport pores can cause the breakdown 
of MMP. The reduction of MMP which was the key factor of 
mitochondrial homeostasis and oxidative phosphorylation, could 
induce the deficiency of ATP production. Mitochondrial damage 
can cause an imbalance between ROS production and removal, 
resulting in net ROS production. Inversely, increasing ROS or 
decreasing ATP necessary for repair, may exacerbate 
mitochondrial dysfunction (33). Some previous reports revealed 
that mitochondria are important neonicotinoid targets (34). After 

exposure to environmental-related concentrations (5 and 
50 μg/L) of dinotefuran for 21 days, mitochondria fusion of 
Xenopus laevis tadpoles was excessively manifested and the 
mitochondrial respiratory chain was also disturbed, which 
brought about the rise of ROS production and a reduction of the 
ATP levels (35). Thus, cardiotoxicity associated with 
mitochondrial disorders was induced by dinotefuran. 
Neonicotinoid insecticides imidacloprid also led to mitochondrial 
damage via inhibiting FoF1-ATPase activity in rats (36). The 
concentrations of imidacloprid in the human urinary were 
significantly correlative with the mitochondrial DNA copy 
number, suggesting the possibility of dose-dependent 
mitochondrial damage (37). In the present study, the expressions 
of mitochondria-related genes of atpef0a, sdha, and cyt b were 
significantly downregulated in exposure groups, indicating the 
potential biomarkers for dinotefuran. These results suggested 
that dinotefuran disrupted the mitochondrial electron transport 
chains (ETCs). In vitro assays based on SH-SY5Y cells, 
neonicotinoid inhibited the expressions of these genes encoding 
mitochondrial oxidative phosphorylation complexes I  and III 
(e.g., CytB, and CYC1), while increasing the production of ROS 
(37). Our previous study has revealed that imidacloprid 
significantly decreased the expression of important genes, 
atpef0a/d, atpev1g, and cox2 related to the mitochondrial pathway 
in larvae of C. dilutus (15). Additionally, 110 mg/L imidacloprid 
upregulated the gene expressions of mitochondrial apoptosis 
(Caspase 3, Caspase 9, Bax, and Cyt-c) and necroptosis (Caspase 
8, RIPK1, RIPK3, and MLKL) related factors of chicken 
lymphocyte lines (38). Thus, the disruption of the Ca2+ signal 
pathway and mitochondrial dysfunction disrupted the nerve 
system by interdicting normal neurotransmission, inhibiting 
behaviors, and eventually leading to the death of the midge.

In summary, calcium signaling was the key biomarker for 
dinotefuran. The excess Ca2+ influx led to the ROS overproduction. The 
interference of the Ca2+–ROS pathway would damage the mitochondrial 
function. Meanwhile, mitochondria are the sites of ROS production, the 
mitochondrial dysfunction would affect the production of ROS. Thus, 

FIGURE 5

Toxicity pathway of dinotefuran acted on chironomid larvae.
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the neurotransmission depended on Ca2+/calmodulin-mediated signal 
transduction was intercepted, triggering aberrant behaviors of the midge 
larva (Figure 5). Meanwhile, dysregulated genes (atp2b, calm, camk ii, 
atpef0a, sdha, and cyt b) in these response pathways at environmental 
concentrations may be important early biomarkers of dinotefuran.

5 Conclusion

The mechanism by which neonicotinoids cause behavioral 
inhibition and thus death in insects via acting on targets has been 
well known. However, the discovery of a large number of new 
toxicities, especially for non-target organisms, has stimulated the 
exploration of new toxicity mechanisms. In addition, most of the 
past toxicity reports were based on acute toxicity studies at high 
concentrations. However, the environmental concentrations of 
neonicotinoids are relatively low. At environmental 
concentrations, some studies have shown neonicotinoids 
negatively impact the health of aquatic organisms, even humans. 
Therefore, it is urgent to explore the mechanism of chronic 
toxicity at environmental concentrations. Our present study 
showed that long-term (10 days) exposure to environmental 
concentrations of dinotefuran resulted in behavioral inhibition of 
the larvae, even death of the Chironomidae larvae. Dinotefuran 
promoted the release of intracellular Ca2+ in Chironomidae. 
Subsequently, the disruption of the calcium signaling pathway 
induced oxidative stress by ROS overproduction, Thus, the over-
release of Ca2+ and ROS disordered the mitochondrial-related 
pathway by dysregulating the expressions of mitochondria-related 
genes. Our findings showed low environmental concentrations of 
dinotefuran caused paralysis of the midge via interfering the Ca2+–
ROS–mitochondria pathway. Dysregulated genes (atp2b, calm, 
camk ii, atpef0a, sdha, and cyt b) in these response pathways at 
environmental concentrations may be important early biomarkers 
of dinotefuran. However, more validation is necessary to support 
the current results. Calcium signaling and mitochondrial 
dysfunction were identified as the potential early warning 
responses for neonicotinoids, providing key biomarkers for 
aquatic risk assessment.
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Volcanic eruptions pose significant health risks to inhabitants of affected regions, 
with volcanic gases, including carbon dioxide (CO2), being a notable concern. 
This review examines the implications of long-term exposure to volcanic CO2 
emissions on public health, highlighting the shift in understanding from acute to 
chronic health effects. Recent studies have underscored the need to reevaluate 
the adverse health impacts of CO2 beyond acute toxicity symptoms. While previous 
guidelines deemed an indoor (residential) acceptable long-term exposure range 
(ALTER) of ≤3,000 parts per million (ppm) in residential housing areas, emerging 
evidence suggests that even concentrations within the range of 3,000 to 1,000  ppm 
may induce deleterious health effects. International agencies now advocate for 
lower safe indoor CO2 levels (600–1,000  ppm), necessitating a reassessment 
of public health strategies in volcanic areas. This review argues for increased 
awareness among local and public health authorities about the chronic toxicity 
of CO2 exposure and emphasizes the importance of safeguarding populations 
from the adverse health effects induced by CO2 exposure.

KEYWORDS

volcanic CO2 emissions, health risks, chronic exposure, public health, mitigation 
strategies

1 Introduction

Volcanism stands as one of the most potent geological phenomena, exemplifying the dynamic 
activity within the Earth’s interior and the shifts of its crust (1). During volcanic eruptions, vast 
quantities of pyroclastic material, ashes, and gases are expelled, often projected over considerable 
distances (2). Intriguingly, around 500 million people globally reside within potential exposure 
zones of volcanoes, which can also induce climatic changes with global ripple effects (3, 4).

Among the array of volcanic gases, carbon dioxide (CO2) is notably prevalent in volcanic 
and geothermal regions worldwide (5). It is emitted in substantial quantities by soils around 
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active and post-eruptive volcanoes (6, 7). While CO2, a naturally 
occurring trace gas in the atmosphere, is involved in essential 
processes such as cellular respiration, organic matter fermentation, 
and the combustion of fossil fuels, its elevated concentrations can 
be hazardous (8). The current atmospheric concentration of CO2 is 
approximately 412 parts per million (ppm), or about 0.04% (9). 
Elevated levels of CO2 can lead to intoxication by impacting oxygen 
and serum bicarbonate levels (10), and it is classified as an asphyxiant 
by international standards (11).

The implications of CO2 on human health extend beyond 
asphyxiation (12); it poses significant risks to human health, manifesting 
both acute and chronic adverse effects (13). Considering that volcanic 
zones may continuously emit CO2 across vast areas over extended 
periods, it becomes imperative to assess the health risks for potentially 
exposed populations (14). This exposure is notably prevalent in 
occupational settings such as metallurgy, welding, and the production 
of carbonated beverages, where CO2 is commonly encountered (15, 16).

From a toxicological view, CO2 is absorbed passively through the 
lungs and is primarily excreted via the lungs after being transported 
in the blood as bicarbonate, a process facilitated by the enzyme 
carbonic anhydrase (17).

Cases of CO2 poisoning have been documented in medical 
literature since the 1950s (18), often resulting from accidental exposure 
to CO2 from sources such as dry ice, fermentation, or inadvertently 
opened liquid CO2 tanks (19). Additionally, cases of CO2 poisoning 
stemming from suicide attempts or even homicides have been reported 
(20). Notably, fatalities from asphyxiation due to the accumulation of 
CO2 from volcanic sources have also been recorded (3, 5, 21).

Populations residing in volcanic regions, whether active or dormant, 
face significant risks from diffuse CO2 emissions. Anomalous gas 
emissions are a common occurrence in areas with recent volcanic activity 
(7, 22, 23). Particularly vulnerable are areas where residential and tourist 
activities converge near emission sites, such as Colli Albani (Italy), and 
Stromboli and Vulcano Islands (Aeolian Archipelago, Italy) (23, 24), 
Rotorua city in New Zealand (25), La Palma Island in the Canary Islands 
(Spain) (26), and Sao Miguel Island in Azores Archipelago (Portugal) 
(27). Some of these areas feature sites of continuous high gas emission, 
with intermittent periods of increased release.

Considering these factors, the aim of this study is to assess the 
adverse effects experienced by populations inadvertently exposed to 
volcanic CO2. Given the scarcity of comprehensive data on health risks 
associated with volcanic CO2 exposure beyond its fatal outcomes, this 
critical review synthesizes both scientific and gray literature to assess 
the chronic and acute health risks to populations exposed to variable 
CO2 concentrations.

2 Toxic effects of CO2: current 
understanding

As previously discussed, CO2 is not inherently toxic, although it 
could also act as a toxicant. It constitutes a component of air 
(412 ppm), and it is generated and employed in many human processes.

The gas’s odorless and colorless nature renders detection without 
specific testing devices impossible, and its high density in comparison 
to oxygen and nitrogen results in high concentrations being condensed 
in the lower layers of both indoor and outdoor air, heightening its 
danger. CO2 may accumulate in lower spaces, leading to oxygen 
deficiency. Consequently, CO2 concentrations tend to be higher in 
environments such as mines, sugar refineries, distilleries, grain silos, 
and drains (28).

Although CO2 emissions from volcanic sites can indeed be fatal, 
such incidents are rare. However, it is crucial to remember that CO2 
was implicated in the deaths of approximately 1,700 people in 
Cameroon, West Africa, in 1986 (as well as a similar event at Lake 
Monoun, also in Cameroon, in 1984) following a massive release of 
gas from these volcanic crater lakes (29, 30). Similarly, on February 20, 
1979, in Dieng Plateau (Indonesia), 149 people perished and 1,000 
others were injured after being enveloped in a gas cloud produced by 
a phreatic eruption (24, 31).

In addition to these major incidents, recent fatal accidents in 
Western countries have also been attributed to exposure to high 
concentrations of volcanic-origin CO2. Notably, during a period of 
significant degassing at La Fossa crater in the 1980s, two children and 
numerous small wild animals lost their lives on Vulcano Island, Italy. 
During this time, emissions reached up to 1,350 tons per day, with 
outdoor CO2 concentrations recorded as high as 9.8% (98,000 ppm) 
(32). Moreover, D’Alessandro and Kyriakopoulos (2013) reported 
three additional fatalities in the 1990s linked to CO2 accumulation in 
the Pausanias thermal baths on the northern coast of the Methana 
Peninsula (Greece) (14). In 1992, two fatalities were reported in the 
Azores archipelago, Portugal, inside a lava cave where diffusely 
released CO2 reached indoor concentrations of 10% (100,000 ppm) 
(21). Furthermore, in 1998, other fatality was reported in Mammoth 
Mountain (California, United States) when a cross-country skier fell 
into a snow well where CO2 concentration soared to 70% (33). 
Interestingly, in some of these cases, the recorded CO2 concentrations 
were not excessively high, suggesting that even initial exposure to low 
concentrations can be hazardous. This is attributed to the fact that 
exposure to gradually increasing CO2 concentrations, starting from 
atmospheric levels, can induce unconsciousness due to the narcotic 
properties of CO2, often without the victims perceiving any imminent 
danger (34, 35).

Additionally, the significant tourist activity in volcanic regions 
and geothermal fields globally necessitates attention to the risks faced 
by tourists in degassing zones. This is particularly crucial in coastal 
areas where tourists might be  sunbathing close to the ground, a 
position that increases the risk of inhaling concentrated CO2 in the 
absence of wind. Monitoring activities that could lead to exposure to 
high CO2 concentrations is therefore essential for the safety of visiting 
tourists. Notably, cases of intoxication among tourists have been 
documented in volcanic regions. Documented cases of CO2 
intoxication among tourists in volcanic regions underscore this risk. 
For instance, in April 2015, a 9-year-old French child experienced 
severe intoxication from gases emitted by an undersea vent near the 

Abbreviations: CO2, carbon dioxide; ppm, parts per million; WHO, World Health 

Organization; ILO, International Labor Organization; OECD, Organization for 

Economic Co-operation and Development; OSHA, Occupational Safety and 

Health Administration; NIOSH, National Institute for Occupational Safety & Health; 

CDC, Centers for Disease Control and Prevention; ALTER, acceptable long-term 

exposure range; TWA, time-weighted average; EPA, Environmental 

Protection Agency.
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shoreline on Vulcano Island, Italy (36). In 2019, three fatalities were 
reported among tourists visiting the “Solfatara,” geothermal area near 
Naples, Italy (37). Moreover, tourists in Sao Miguel (Azores Islands, 
Portugal), Hawaii (Hawaiian Islands, United States), and Mammoth 
Mountain (California, United States) have also suffered adverse health 
effects due to CO2 exposure (38–41).

The intoxications mentioned above can be attributed to the fact 
that CO2 poisoning typically involves life-threatening hypoxia and 
hypercapnia, resulting in varying levels of consciousness impairment 
ranging from drowsiness and confusion to deep coma and respiratory 
acidosis. In cases of inadvertent exposure to increasing CO2 levels, 
severe hypercapnia can lead to cerebral edema and respiratory center 
paralysis. Podlewski et al. have stated that CO2 concentrations of up 
to 1% (10,000 ppm) may induce drowsiness in some individuals, while 
concentrations above 3% (30,000 ppm) can disrupt gas exchange at the 
pulmonary membrane, altering pH and causing hypercapnia 
associated with brain damage and loss of consciousness. Breathing air 
with CO2 concentrations exceeding 5% (50,000 ppm) can lead to 
breathlessness, anxiety, and stimulation of the respiratory center. At 
levels between 7 and 10%, individuals may experience dizziness, 
headaches, visual and auditory impairments, and may rapidly become 
unconscious. It has been documented that CO2 concentrations of 9% 
inhaled for more than 10 min, and higher concentrations inhaled for 
less than 10 min, are poorly tolerated or not tolerated at all due to 
symptoms including exhaustion, anxiety, dissociation, or acidosis 
(pH < 7.2), despite normal oxygenation (42). Concentrations 
exceeding 10% are known to cause hallucinations and significantly 
impaired consciousness, potentially resulting in coma and convulsions. 
Furthermore, exposure to concentrations above 20% (200,000 ppm) 
typically results in death within minutes, while levels exceeding 30% 
(300,000 ppm) lead to instantaneous death (43). Acute effects of CO2 
intoxication are shown in Table 1.

International recommendations and occupational guidelines 
regarding indoor CO2 levels suggest a time-weighted average (TWA) 
of 5,000 ppm (0.5%; for an 8-h weighted average) or a short-term 

TWA (15 min) of 30,000 ppm (44, 45). However, considering that 
elevated CO2 levels may disrupt placental development, it is essential 
to provide specific protection for pregnant women. Consequently, the 
US Navy’s toxicity experts have lowered short-term exposure limits 
and 24-h emergency exposure limits for submarines with female crew 
members to 0.8% (8,000 ppm) (46). In fact, most countries have set 
references values between 1,000 ppm to 1800 ppm in school, and 
working environments (47).

Although low levels of CO2 have long been regarded as a toxicant 
with no immediate lethal effects, recent studies have sparked interest 
in its potential health implications, particularly concerning chronic 
and/or intermittent long-term exposure. Such exposure has been 
associated with pathological conditions, including DNA alterations, 
nasal inflammation, and pulmonary inflammation (48). Notably, 
during the SARS-CoV-2 pandemic, the wearing of face masks has 
contributed to increased resistance and dead space volume, resulting 
in the re-breathing of CO2. Elevated blood CO2 levels are a key feature 
of the Mask-Induced Exhaustion Syndrome (49). In addition, rising 
indoor CO2 concentrations have been associated with symptoms 
characteristic of Sick Building Syndrome. These symptoms include 
headache, drowsiness, lethargy, tiredness, mental fatigue, reduction in 
decision-making performance, dizziness, as well as upper respiratory 
and mucosal symptoms, and skin irritation, such as itching, stinging, 
or dryness (50–52).

Nevertheless, given the current global trend of rising outdoor 
atmospheric CO2 concentrations, it is imperative to re-evaluate the 
effects of low-level CO2 exposure on human health. Indeed, it has been 
documented that CO2 can produce various hazardous health effects 
even at relatively low concentrations (13, 51). Long-term exposure to 
air polluted with CO2 from soil diffuse degassing sites has been linked 
to an increased risk of developing pulmonary restrictive diseases and 
exacerbating chronic obstructive pulmonary diseases, particularly 
among asthmatic and older adults (53). Residents of volcanic areas 
chronically exposed to high concentrations of CO2, such as Furnas in 
the Azores Islands, Portugal, exhibit a high incidence of chronic 
bronchitis and other respiratory disorders (54). Likewise, a high 
prevalence of non-infectious respiratory diseases has been observed 
among residents living in geothermal areas, such as Rotorua, 
New Zealand (25). Even more so, recent studies suggest that increased 
CO2 exposure may contribute to obesity, potentially playing a role in 
the rising trends of obesity and diabetes after chronic exposures to 
around 500 ppm CO2 (55–57).

Considering these findings, it is worth noting that while an 
acceptable long-term exposure range (ALTER) of ≤3,000 ppm for CO2 
in residential indoor air had initially been established (58), Satish 
reported that even indoor concentrations ranging from 3,000 to 
1,000 ppm may lead to deleterious health effects. These effects include 
mucous membrane or respiratory symptoms, decreased test 
performance, and neurophysiological symptoms (e.g., headache, 
fatigue) (51). Gall et al. define a level of concern for CO2 exposure, 
particularly regarding adverse cognitive impacts, as average personal 
exposure exceeding 1,000 ppm for exposures greater than 2.5 h (59). 
Consequently, international agencies have adopted an acceptable long-
term exposure range (ALTER) of ≤1,000 ppm for CO2 in residential 
indoor air (54, 56).

Furthermore, although not directly related to the harmful 
effects of CO2, it is pertinent to note that CO2 naturally carries 
radioactive radon gas, a well-known carcinogen (60). Long-term 

TABLE 1  Short-term effects based on CO2 concentration levels.

CO2 concentration (ppm) Short-term effects

1,000–10,000 Drowsiness, headache, fatigue, 

concentration difficulties

10,000–30,000 Dizziness, headache, visual and 

auditory impairments, rapid onset of 

unconsciousness

30,000–50,000 Severe hypercapnia, breathlessness, 

anxiety, stimulation of the respiratory 

center

50,000–98,000 Increased risk of unconsciousness, 

severe intoxication symptoms (e.g., 

exhaustion, anxiety, dissociation, 

acidosis with intact oxygenation)

>100,000 Hallucinations, impaired 

consciousness, coma, convulsions

>200,000 Death within minutes

>300,000 Instant death

ppm, parts per million.
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inhalation exposure to radon has been linked to respiratory 
disorders and lung cancer (61, 62). Higher cancer incidence rates 
have been reported in volcanic areas compared to non-volcanic 
areas, with CO2 potentially acting as a carrier for radon gas (63). 
Populations residing in volcanic areas with chronic exposure to 
environmental factors resulting from volcanic activity show a 
higher risk of certain cancers, such as lip, oral cavity, pharynx, and 
breast cancers (64). Indeed, biomonitoring studies in the Azores 
Islands, Portugal, have revealed a higher incidence of 
micronucleated cells in oral epithelium (a recognized predictive 
biomarker of cancer risk) in individuals inhabiting volcanically 
active environments, suggesting an increased risk of cancer (65), 
thus underscoring the need for further investigation into the health 
effects of low levels of CO2 long-term exposure. Potential adverse 
health effects related to long-term CO2 exposure are summarized in 
Table 2.

3 Discussion

In light of these considerations, akin to urban populations residing 
in highly polluted regions, it is evident that safeguarding the 
inhabitants of volcanic areas from the adverse effects associated with 
relatively low-dose/long-term CO2 inadvertent exposure is imperative.

In volcanic regions featuring degassing sites, all the subtle/chronic 
effects of CO2 must be duly considered by Public Health Authorities 
when implementing measures aimed at reducing gas concentrations 
and mitigating the associated health risks. While ventilation with 
ambient air is a common strategy for reducing indoor CO2 levels, it 
may not always be suitable in volcanic degassing sites where outdoor 
CO2 levels are also elevated. Consequently, in such instances, 
evacuating volcanic/geothermal areas may be necessary, mirroring the 
evacuation ordered in the Port of Volcano (Volcano Island, Italy) in 
2021 when outdoor CO2 levels of approximately 12.5% (125.000 ppm) 
were recorded (66). This proactive approach should be prioritized by 
Public Health Authorities in volcanic regions where sporadic and 
unpredictable releases of CO2 may occur, resulting in inadvertent 
population exposure to escalating CO2 levels (27).

Moreover, the existence of population subgroups more susceptible 
to the toxic effects of CO2 must also be taken into consideration. For 
instance, the exposure of older adults, pregnant women, cardiac or 
pulmonary patients, and children to CO2 warrants careful oversight 
(46, 49).

In this scenario, in volcanic regions it would be  necessary to 
be able to set dangerous levels at which chronic CO2 exposure capable 
of producing subtle health effects is occurring. Unfortunately, 
measurement of bicarbonate levels or blood pH in populations 
chronically exposed to increasing CO2 concentrations is neither 
useful, nor possible, as arterial blood gasometry tests are invasive and 
cannot be repeated continuously for an individual tracking. Similarly, 
while the quantification of exhaled CO2 through capnography is 
valuable for assessing hypoventilation, there is no scientific evidence 
supporting its efficacy in diagnosing CO2 intoxication or exposure. In 
fact, to diagnose chronic or even acute CO2 intoxication, exposure to 
this gas must be confirmed in a manner akin to practices in forensic 
and occupational medicine (15, 19), namely, by quantifying the CO2 
levels in the suspected area. In any case, in long-term exposures, it 
may be  possible to rely on the presence of neurophysiological 
symptoms, (e.g., headache, or fatigue), and to perform decision-
making tests, as described by Satish et al.

Implementing measures to protect the population from 
anthropogenic high indoor CO2 levels is feasible, given the extensive 
regulations and recommendations governing indoor CO2 exposure 
levels both internationally and occupationally. However, mitigating 
the effects or controlling emissions from outdoor CO2 sources poses 
significant challenges, being enormously complex and often 
hardly feasible.

Indeed, outdoor CO2 concentrations are not typically regulated, 
and research into the toxic effects of CO2 in open environments 
remains scarce. In the context of volcanic degassing sites, Public 
Health faces several challenges. These include the inability to control 
emission sources, which often produce unpredictable peaks of 
extremely high CO2 levels, and the absence of regulatory thresholds. 
This is due to limited evidence on the health effects of CO2 exposure 
on the general population, both short- and long-term, which 
complicates decision-making processes.

Further prospective studies are warranted to advance our 
understanding of the chronic health effects of volcanic emissions, 
including gases like CO2, as well as aerosols and ashes. Ongoing 
studies, such as the studies on the island of La Palma (Spain), could 
be instrumental in defining safe versus dangerous concentrations of 
CO2 for the population (65, 66). This would enable International 
Agencies and institutions to establish guidelines and recommendations 
for protecting health in outdoor areas affected by volcanic gas 
emissions. Such insights would be invaluable for Local Authorities in 
conducting health impact assessments and making informed planning 
decisions, especially concerning the placement of human settlements 
in volcanic zones.

In summary, although the scientific evidence on lethal incidents 
due to CO2 degassing in volcanic zones is generally limited, the 
potential for such incidents cannot be ignored, particularly in active 
volcanic areas where extraordinarily high concentrations of CO2 have 
been recorded both indoors and outdoors. This is particularly 
concerning in areas with significant residential and tourist activity.

Considering the “precautionary principle” in health impact 
assessments, which emphasizes the avoidance of unnecessary risks to 
population health (67). In case of population exposed to volcanic 
emissions, Public Health Authorities have adopted several measures 
to prevent or minimize individual hazards. These measures included: 
(a) Establishing a sensor network to continuously monitor CO2 
concentrations indoors and outdoors (68); (b) Strictly controlling 

TABLE 2  Potential chronic adverse health effects related to long-term 
(chronic/intermittent) CO2 exposure.

Mental fatigue, impaired work performance, decrements in decision-making 

performance

Development of restrictive lung diseases,

Exacerbation of chronic obstructive pulmonary diseases

Increased incidence of chronic bronchitis

Potential contribution to obesity and diabetes

DNA damage

Elevated cancer risk

Lung cancer

DNA, Deoxyribonucleic Acid.
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access to areas with the highest CO2 concentrations to mitigate the risk 
of accidental exposures in areas with elevated (potentially lethal) CO2 
levels (66); (c) Prioritizing efforts to keep vulnerable populations 
(children, older adults, pregnant women, individuals with pre-existing 
respiratory or cardiovascular conditions) away from such areas (49); 
(d) Enhancing information dissemination to affected populations 
(including tourists) through informative meetings to foster 
cooperation and shared responsibility for the implemented measures 
(40). Thus, raising awareness and disseminating information about the 
“hidden” dangers of CO2 is essential.

Finally, as highlighted by Pefferkorn et  al., it is crucial not to 
overlook the importance of adhering to safety protocols and utilizing 
appropriate respiratory protection near eruptive zones, even in open 
environments, due to the potential invisible dangers posed by volcanic 
areas (69).
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Lung cancer remains the leading cause of cancer-related mortality globally, 
with environmental pollutants identified as significant risk factors, especially for 
nonsmokers. The intersection of these pollutants with epigenetic mechanisms 
has emerged as a critical area of interest for understanding the etiology and 
progression of lung cancer. Epigenetic changes, including DNA methylation, histone 
modifications, and non-coding RNAs, can induce alterations in gene expression 
without affecting the DNA sequence and are influenced by environmental factors, 
contributing to the transformation of normal cells into malignant cells. This review 
assessed the literature on the influence of environmental pollutants on lung cancer 
epigenetics. A comprehensive search across databases such as PubMed, Web 
of Science, Cochrane Library, and Embase yielded 3,254 publications, with 22 
high-quality papers included for in-depth analysis. These studies demonstrated 
the role of epigenetic markers, such as DNA methylation patterns of genes like 
F2RL3 and AHRR and alterations in the miRNA expression profiles, as potential 
biomarkers for lung cancer diagnosis and treatment. The review highlights the 
need to expand research beyond homogenous adult male groups typically found 
in high-risk occupational environments to broader population demographics. 
Such diversification can reduce biases and enhance the relevance of findings to 
various clinical contexts, fostering the development of personalized preventive 
and therapeutic measures. In conclusion, our findings underscore the potential 
of innovative epigenetic therapies, such as DNA demethylating drugs and histone 
modification agents, to counter environmental toxins’ carcinogenic effects. The 
growing interest in miRNA therapies and studies aiming to correct aberrant methylation 
patterns indicate significant strides toward better lung cancer management and 
a healthier future for global communities.
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1 Introduction

Lung cancer is the most prevalent malignant tumor afflicting 
humanity, consistently occupying the highest rank in both global 
cancer incidence and mortality rates (1–3). According to 
GLOBOCAN estimates of incidence and mortality for 36 cancers in 
185 countries worldwide, lung cancer is the most commonly 
diagnosed cancer in 2022, with nearly 2.5  million new cases and 
accounting for one in eight cancers worldwide (4). In our country, 
including the Macao Special Administrative Region, lung cancer 
ranks first in incidence and mortality rates among all malignant 
tumors (3, 5). Non-small cell lung cancer (NSCLC) comprises 
approximately 85% of all cases and includes adenocarcinoma, 
squamous cell carcinoma, and large cell carcinoma, among others (2, 
6). Although smoking is a recognized primary risk factor for lung 
cancer, a significant number of lung cancer cases, particularly among 
Asian women who have never smoked, are associated with air 
pollution and environmental pollutants (7–9). These pollutants, 
including particulate matter, toxic metals, and nitrogen oxides, 
threaten everyone’s health (10–12). These pollutants penetrate the 
human respiratory system, potentially inducing epigenetic changes 
that lead to the transformation of normal cells into cancerous cells 
(13–16).

Due to the insidious onset of lung cancer, most patients are 
diagnosed at an advanced stage, missing the best opportunity for 
surgical treatment. Chemotherapy and targeted therapy are the 
main treatments for these patients. Chemotherapy often comes 
with many adverse reactions, and targeted therapy frequently 
leads to issues such as drug resistance, which results in many 
patients being unable to tolerate the drug treatment (10–12, 17). 
Over the past two decades, epigenetic research has advanced by 
leaps and bounds, offering a glimmer of hope for novel diagnostics 
and treatments of lung cancer. Epigenetics orchestrates the 
regulation of gene expression without altering the DNA sequence 
itself, thus revealing the intricate process of lung cancer formation 
from a genetic perspective. Alterations in epigenetics have been 
identified as crucial prognostic elements and potential therapeutic 
targets, with studies indicating that methylation patterns of 
specific genes, such as RASSF1A and RUNX3, are correlated with 
the prognosis and recurrence of lung cancer (16, 18). Epigenetic 
modifications, such as DNA methylation, histone modification, 
and non-coding RNAs, play a pivotal role in the onset and 
progression of lung cancer by regulating gene expression, 
impacting cell cycles, genomic imprinting, and X-chromosome 
inactivation (19–22). A deeper understanding of the underlying 
biological pathways elucidates how environmental pollutants 
induce such epigenetic changes. For instance, the p16INK4a 
pathway, often silenced by promoter hypermethylation, is crucial 
for cell cycle regulation and is frequently altered in lung 
carcinogenesis. Similarly, the PI3K/AKT signaling pathway can 
be activated by the demethylation of certain genes, contributing 
to tumorigenesis. Mediators such as reactive oxygen species (ROS) 
generated by pollutants can lead to oxidative stress, subsequently 
causing DNA damage and altered methylation patterns. 
Additionally, histone deacetylases (HDACs) and DNA 
methyltransferases (DNMTs) have been identified as critical 
enzymes that mediate these epigenetic changes, making them 
potential targets for therapeutic interventions. Hence, 

contemporary etiological studies of lung cancer are also focusing 
on the intersection of environmental pollutants and epigenetic 
mechanisms. An in-depth examination of these mechanisms 
provides novel strategies for treating lung cancer (23–25).

As industrialization accelerates, the incidence and mortality rates 
of lung cancer have surged dramatically, necessitating the 
implementation of urgent public health measures and innovative 
research to prevent and combat this disease (26–28). This article 
encapsulates the impact of environmental pollutants on the epigenetic 
alterations associated with lung cancer, and the underlying 
physiological mechanisms induced by these contaminants (Figure 1). 
Understanding the molecular mechanics of epigenetic changes and 
their correlation with environmental pollutants can pave the way for 
the development of novel therapeutics and preventive measures for 
lung cancer, ultimately enhancing patient survival quality and 
prognosis, and prolonging patient lifespan (29–32).

2 Methods

2.1 Search strategy

Utilizing the electronic databases PubMed, Web of Science, 
Cochrane Library, and Embase, we carried out an exhaustive literature 
search for publications released prior to November 2023. The search 
was conducted using key terms that encompass the following: 1: 
environmental pollution (environmental biomarkers, air pollution, 
radiation, tobacco smoke pollution, aromatic hydrocarbons); 2: 
epigenetics (DNA methylation, histone, non-coding RNA); 3: lung 
cancer (primary bronchogenic carcinoma, non-small cell lung cancer, 
small cell lung cancer). The schema for the search is depicted in 
Table 1. Additionally, manual searches were also performed within the 
bibliographies of published articles and reviews. Adhering to the 
inclusion criteria, we discussed 22 high-quality papers from the initial 
pool of 3,254. The outcome of the search and the inclusion and 
exclusion process are shown in Figure 2.

2.2 Inclusion and exclusion criteria

The criteria for inclusion of literature were as follows: (1) Studies 
that exclusively investigate primary bronchogenic carcinoma; (2) 
Research defining air pollution factors according to the 
“Environmental Health” (33) criteria established by the World Health 
Organization, which includes environmental biomarkers, air 
pollution, radiation, tobacco smoke pollution, and aromatic 
hydrocarbons; (3) Studies involving any epigenetic mechanisms, 
inclusive of DNA methylation, histone modifications, and non-coding 
RNA; (4) Research conducted in human subjects; (5) The study 
designs included analyses of cohort, cross-sectional and longitudinal 
studies, as well as randomized, non-randomized and semi-
randomized studies.

Exclusion criteria were: (1) Literature pertaining to metastatic 
lung cancer or studies not concerning lung cancer; (2) Studies without 
relevant environmental pollutant exposure; (3) Research lacking 
examination of epigenetic mechanisms; (4) Animal studies; (5) 
Academic theses, conference abstracts, books, reports, or 
non-empirical articles.
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2.3 Data extraction

Two reviewers, A.J. Zhang and X.X. Luo, independently screened 
the titles, abstracts, and full texts of the retrieved articles, and sorted 
out the studies that met the inclusion criteria. Any disagreements 
between reviewers were resolved by discussion and reaching a 
consensus, with the contribution of a third independent reviewer, 
Y. Li, made the final decision when necessary.

Data were extracted from the included literature using a standardized 
data extraction form. The collected information included: (1) Basic 
details: author’s name, year of publication, region of publication, and 
number of cases included; (2) Type of study; (3) Clinical and pathological 
data of participants; (4) Experimental methods; (5) Outcome measures.

2.4 Assessment of evidence quality

As the included articles employed disparate methodological 
approaches, we employed a multi-method quality framework to assess 
the quality of the articles according to standardized criteria (34). The 
framework was categorized into four main quality categories: truth 
value, applicability, consistency and neutrality. In addition, 

we considered the context of the study, potential benefits and harms, 
and patient value systems when interpreting the results. A score was 
assigned to each category, with the average score across the four 
categories indicating that the overall quality of the article was rated as 
robust, high, moderate, low, or very low.

3 Results

The search terms identified a total of 3,254 articles. A rigorous 
selection process led to the exclusion of some studies: 10 concerning 
metastatic lung cancer or not involving lung cancer, 7 with undefined 
types of environmental pollutants, 15 lacking examinations of 
epigenetic mechanisms, 14 based on non-human subjects, and 11 
non-empirical articles. Ultimately, 22 published studies met the 
predetermined inclusion criteria (Table 2).

3.1 Characteristics of the included studies

Tables 2, 3 summarize the detailed characteristics of the included 
studies. According to quality assessment standards, six studies were of 

FIGURE 1

The mechanisms by which environmental pollutants lead to lung cancer. Environmental contaminants exert influence on non-coding RNA, DNA 
methylation, and histone modification, thereby instigating the onset of lung cancer.
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good quality, and 16 were of moderate quality. The identified research 
employed a variety of methods to detect alterations in lung cancer 
epigenetics: 16 studies conducted assays of specific candidate genes as 
shown in Table  4, which included F2RL3 and AHRR (35–38), 
CDKN2A, DLEC1, CDH1, DAPK, RUNX3, APC, WIF1, and MGMT 
(39), SATα, NBL2, and D4Z4 (40, 41), DNMT1, DNMT3a, DNMT3b, 
TET1, TET2, TET3 (42), L3MBTL1, NNAT, PEG10, GNAS Ex1A, 
MCTS2, SNURF/SNRPN, IGF2R, RB1, and CYP1B1 (43), CYP1A1 
(44), miRNA (45–50). Additionally, some studies assessed the impact 
of environmental pollutants using different mediators, such as raised 
levels of DNA methyltransferase enzyme (DNA MTase) (51) and 
chemical modifications 5mC and 5hmC (52); 1 study conducted a 
whole-genome DNA methylation analysis using the Illumina Infinium 
HumanMethylation450 platform (36); 4 studies reviewed the effect of 
environmental pollutants on epigenetics (53–56).

3.2 Participant demographics

The inquiries predominantly explored the demographic of male 
adults, with a preponderance of professions including drivers and 
laborers. These investigations unveiled a considerable overlap in 

samples, as three studies (40, 41, 52) recruited truck drivers from 
China for analysis. The pathological phenotypes were most frequently 
assessed through DNA methylation patterns, some of which involved 
levels of gene expression. However, other epigenetic pathways, such as 
histone modifications or non-coding RNAs, have yet to 
be thoroughly examined.

3.3 Types of pertinent environmental 
pollutants

According to the research conducted by Xue et  al. (57), 
environmental pollutants associated with lung cancer are 
categorized into two types: outdoor and indoor air pollutants 
(Table 5).

3.3.1 Outdoor air pollutants
Eight studies identified within the pertinent body of research 

analyzed the hazards posed by outdoor environmental pollutants, 
focusing primarily on particulate matter (PMs) and polycyclic 
aromatic hydrocarbons (PAHs) (35, 40, 41, 43, 45, 52, 53, 58). The 
composition of atmospheric particulates is complex, encompassing 
organic compounds (such as polycyclic aromatic hydrocarbons, 
dioxins, and benzene) and inorganic substances (like carbon, 
chlorides, nitrates, and sulfates) and metals. Due to their substantial 
surface area and robust adsorption capacity, PMs not only carry 
toxic metals and organic constituents but can also adsorb bacteria 
and virus (59). These pollutants enter the lungs via the respiratory 
system and could potentially elevate the risk of developing 
lung cancer.

3.3.2 Indoor air pollutants
An additional 10 studies discussed the possibility of indoor 

environmental pollutants—including tobacco smoke and coal for 
curing—inducing epigenetic modifications associated with lung 
cancer (36–39, 44, 46, 48–51). Indoor smoking and exposure to 
secondhand smoke are significant risk factors for lung cancer. Long-
term exposure to environmental tobacco smoke, including 
secondhand aerosols from tobacco or electronic cigarettes, increases 
the risk of lung cancer (49, 51). Moreover, some reports suggest that 
the cumulative toxicity of co-existing air pollutants is an important 
consideration to take into account (57).

3.4 Alterations in the epigenetics of lung 
cancer

Epigenetic alterations—including changes in microRNAs 
(miRNAs), DNA methylation, and histone modifications—are major 
determinants in the development of disease phenotypes following 
exposure to air pollution (53, 55). The different types of lung cancer 
driven by epigenetic changes driven by environmental pollutants are 
shown in Figure 3.

3.4.1 The mechanisms of DNA methylation in 
driving lung cancer

DNA methylation represents a significant epigenetic change 
underlying the pathogenic mechanisms induced by air pollution (55). 

TABLE 1  Search strategies for English databases or Chinese databases.

Number Search terms

#1 Environmental Pollution [MeSH]

#2 Environmental Biomarkers [MeSH]

#3 Air Pollution [MeSH]

#4 Air Pollution, Radioactive [MeSH]

#5 Air Pollution, Indoor [MeSH]

#6 Tobacco Smoke Pollution [MeSH]

#7 Radiation [MeSH]

#8 Hydrocarbons, Aromatic [MeSH]

#9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8

#10 Epigenomics [MeSH]

#11 DNA Methylation [MeSH]

#12 #10 OR #11

#13 Lung Neoplasms [MeSH]

#14 Small Cell Lung Carcinoma (SCLC) [MeSH]

#15 Non small cell lung cancer (NSCLC) [MeSH]

#16 Lung Cancer Cell Lines[MeSH]

#17 #13 OR #14 OR #15 OR #16

#18 #9 AND #12 AND #17

#19 #9 keywords translated into Chinese

#20 #12 keywords translated into Chinese

#21 #17 keywords translated into Chinese

#22 #19 AND #20 AND #21

MeSH, Medical Subject Headings; The formular of Search by PubMed with: (“Environmental 
Pollution”[Mesh]) OR “(Environmental Biomarkers”[Mesh]) OR (“Air Pollution”[Mesh] OR 
“Air Pollution, Indoor”[Mesh] OR “Air Pollution, Radioactive”[Mesh]) OR “(Tobacco Smoke 
Pollution”[Mesh]) OR “(Radiation”[Mesh]) OR “(Hydrocarbons, Aromatic”[Mesh]) AND 
“(Epigenomics”[Mesh]) OR “(DNA Methylation”[Mesh]) AND “(Lung Neoplasms”[Mesh]) 
OR “(Small Cell Lung Carcinoma”[Mesh]) OR “(Carcinoma, Non-Small-Cell Lung”[Mesh]) 
OR “Lung Cancer Cell Lines”[Mesh].
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Changes in DNA methylation occurred after exposure to PMs (56). 
PM2.5 exposure suppresses p53 expression through promoter 
hypermethylation mediated by the ROS-protein kinase B (Akt)-
DNMT3B pathway, suggesting that PM2.5 exposure could increase 
the risk of lung cancer (53). Furthermore, compounds produced by 
smoking (36–38) and perfluoroalkyl substances [PFAS, (42)] have 
been shown to affect gene expression in lung cancer cells by altering 
DNA methylation patterns. This alteration may lead to dysregulation 
of the cell cycle and apoptosis pathways, thereby promoting the onset 
and progression of lung cancer. The A549 lung cancer cell line serves 
as a research model, providing crucial experimental evidence for 
understanding how these environmental factors impact lung cancer 
(42, 44).

3.4.2 The mechanisms of histone modifications in 
driving lung cancer

Some studies also show that differential histone modifications 
involve PM-induced inflammatory responses and oxidative stress, 
particularly leading to pulmonary diseases (53). Long-term exposure 
to PM2.5 downregulates the expression of histone demethylase 
Kdm6a in lung macrophages, which may result in increased 
methylation of H3K4 and H3K9 in the promoter regions of IL-6 and 

IFN-β. Exposure to cigarette smoke reduces the activity of histone 
deacetylases (HDACs) and decreases the expression of HDAC1, 
HDAC2, and HDAC3 in macrophages, resulting in an inflammatory 
response. Exposure to particulates leads to an imbalance in the 
expression of histone acetyltransferases (HATs) and HDACs in human 
bronchial epithelial cells, as well as an increase in the acetylation of 
certain histones, such as H4, which in turn triggers inflammation (55).

3.4.3 The mechanisms of miRNAs in driving lung 
cancer

Sima et al. (47) analyzed the expression of miRNAs associated 
with exposure to air pollutants and lung cancer. Twenty-five 
miRNAs were correlated with exposure to air pollution and lung 
cancer, with miR-222, miR-21, miR-126-3p, miR-155, and 
miR-425 being the most significant. They play pivotal roles in 
promoting or inhibiting angiogenesis, inflammation, and the 
progression of lung cancer. Additionally, a specific set of 
upregulated or downregulated miRNAs was observed in the 
progression of bronchogenic carcinoma in smokers, ranging from 
normal lung to hyperplasia, metaplasia, carcinoma in situ, and 
finally, to lung squamous cell carcinoma (LUSC) (46). Exposure 
to cigarette smoke leads to an early, pronounced reduction in the 

FIGURE 2

Flow diagram for the included and excluded articles.
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TABLE 2  Record of citation analyses and full texts reviewed.

Name Region/
Country

Types Participants Exposure Methodology Analysis Results

Alhamdow 

et al. (35)

Sweden Research 

article

151 chimney sweeps, 19 

creosote-exposed workers and 

152 unexposed workers 

(controls), all men

PAHs Measured monohydroxylated 

metabolites of phenanthrene and 

fluorene in urine using liquid 

chromatography-mass spectrometry.

Unadjusted and multivariable linear 

regression models were fit to evaluate 

associations.

Increasing fluorene exposure, among chimney sweeps, was 

associated with lower DNA methylation of F2RL3 and 

AHRR, markers for increased lung cancer risk.

Baglietto, 

et al. (36)

France Research 

article

Participants were from the 

EPIC-Italy cohort and the 

MCCS cohort, including cases 

of lung cancer and controls, 

with over 700 case–control 

pairs in total.

Tobacco Used Illumina Infinium 

HumanMethylation450 array to measure 

DNA methylation in pre-diagnostic 

blood samples.

Conditional logistic regression 

models, stratified by smoking status, 

and fixed effect models for pooled 

ORs.

Identified six CpGs associated with lung cancer risk, 

hypomethylation observed in current smokers, and 

increased methylation post-quitting.

Fasanelli 

et al. (37)

Italy Research 

article

132 case–control pairs in the 

NOWAC cohort and an 

additional 664 case–control 

pairs tightly matched for 

smoking from the MCCS, 

NSHDS and EPIC HD 

cohorts.

Tobacco Genome-wide DNA methylation 

analyses were performed on pre-

diagnostic blood samples using the 

Illumina Infinium 

HumanMethylation450 platform.

Performed mediation analysis to 

assess whether methylation of 

cg05575921 (AHRR) and cg03636183 

(F2RL3).

The most significant associations with lung cancer risk are 

for cg05575921 in AHRR and cg03636183 in F2RL3, 

previously shown to be strongly hypomethylated in 

smokers. These associations remain significant after 

adjustment for smoking.

Guo et al. 

(40)

China Review 

article

Truck drivers and office 

workers in Beijing

PMs Multilevel mixed-effect regression 

models

The data were analyzed using 

multilevel mixed-effect regression 

models to account for the lack of 

independence between repeated 

measures.

Interquartile increases in personal PM2.5 and ambient 

PM10 levels were associated with significant covariate-

adjusted decreases in SATa methylation.

Guo et al. 

(53)

China Review 

article

N/A PM2.5 Epidemiological and toxicological 

studies, biomarker investigations.

N/A Results indicate PM2.5 exposure is associated with 

oxidative stress, inflammation, DNA damage, and 

epigenetic changes, potentially leading to respiratory 

diseases.

Hammons 

et al. (51)

USA Research 

article

55 human donors (smokers 

and nonsmokers)

Tobacco RT-PCR analysis, DNA MTase enzyme 

assay

Data were analyzed statistically by 

ANOVA using Sigma-Stat software, 

with Tukey test evaluating differences 

between means.

DNA MTase mRNA levels were significantly higher in 

smokers.

Hou et al. 

(41)

China Research 

article

60 truck drivers and 60 office 

workers in Beijing

PM Blood DNA methylation measured, 

personal exposure assessment

GEE models adjusted for covariates, 

FDR applied

Positive associations between PM elemental components 

and DNA methylation changes in a Beijing population, 

with NBL2 methylation linked to silicon (Si) and calcium 

(Ca) in truck drivers, and SATa methylation linked to 

sulfur (S) in office workers.

(Continued)
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TABLE 2  (Continued)

Name Region/
Country

Types Participants Exposure Methodology Analysis Results

Huang 

et al. (39)

China Research 

article

87 lung cancer patients and 31 

healthy subjects

Smoky coals Genomic DNA extracted from tissues 

and plasma; candidate gene promoter 

methylation status determined using 

Nested Methylation-Specific PCR 

(nMSP).

Sanger sequencing verified nMSP 

results; methylation frequencies 

compared across tissue and plasma 

samples.

Seven of eight genes showed high methylation frequencies 

in tissues (39–74%). Methylation in plasma was detected 

for five genes with frequencies of 45% for CDKN2A, 48% 

for DLEC1, 76% for CDH1, 14% for DAPK, and 29% for 

RUNX3. Healthy controls showed no methylation.

Jabeen, M 

et al. (42)

USA Research 

article

A549 lung carcinoma cells 10-, 200-, and 

400 μM 

concentrations 

of PFAS

Cell culture, MTT assay, qRT-PCR, 

UPLC-MS, HS-DFM.

Used GraphPad Software for statistical 

tests and analysis.

Exposure to per- and polyfluoroalkyl substances (PFAS) 

can cause epigenetic modifications in A549 lung cancer 

cells. Lower doses of PFAS compounds promote cell 

proliferation, whereas higher concentrations induce 

apoptosis, potentially impacting patients with pre-existing 

lung conditions or contributing to lung carcinogenesis.

Lee et al. 

(38)

South 

Korea

Research 

article

330 adults (46 to 87 years of 

age)

Tobacco Pyrosequencing was performed to 

measure DNA methylation of AHRR 

and F2RL3.

The Kruskal-Wallis ANOVA test was 

used to compare data. Pearson tests 

were performed to assess any 

correlation between methylation 

values.

AHRR and F2RL3 genes were significantly hypomethylated 

in current smokers. AHRR methylation is significantly 

associated with the risk of lung cancer (OR = 0.96, 

p = 0.011).

Li et al. 

(54)

China Review 

article

N/A PMs English-language publications focusing 

on PM, epigenetic changes, and lung 

cancer were reviewed.

Reviewing English-language 

publications and conducting a 

comprehensive comparison approach.

PM2.5 is associated with the increased lung cancer risk and 

mortality. PM-induced epigenetic changes may play 

important roles in the pathogenesis of lung cancer.

Liang et al. 

(43)

China Research 

article

19–23 years old students PM2.5 Mixed-effects models were used to 

evaluate the influence of PM2.5 and its 

constituent exposure on DNAm while 

controlling for potential confounders.

Used MethylTarget to determine and 

analyze DNAm of imprinted genes in 

blood samples. Statistical analysis 

included natural logarithmic 

transformation of methylation data 

and mixed-effects models.

No significant correlation between DNAm and personal 

PM2.5 exposure mass. However, DNAm changes in eight 

imprinted control regions (ICRs) and a non-imprinted 

gene were significantly associated with PM2.5 constituents.

Mukherjee 

et al. (55)

India Review 

article

N/A Air pollution Literature review and analysis of 235 

articles

N/A DNA methylation represents the most prominent 

epigenetic alteration underlying the air pollution-induced 

pathogenic mechanism. Several other types of epigenetic 

changes, such as histone modifications, miRNA, and non-

coding RNA expression, have also been found to have been 

linked with air pollution.

(Continued)
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TABLE 2  (Continued)

Name Region/
Country

Types Participants Exposure Methodology Analysis Results

Pan et al. 

(45)

China Research 

article

105 patients with untreated 

lung adenocarcinoma (AD) or 

squamous cell carcinoma 

(SCC)

Smoky coals MicroRNA microarray analysis, 

quantitative RT-PCR, cell culture assays, 

luciferase reporter assays, animal studies

Volcano Plot filtering, Median 

normalization, Student’s t-test, 

Pearson correlation analysis

miR-144 was significantly down-regulated in NSCLCs from 

HPR; miR-144 targets oncogene Zeb1; overexpression of 

miR-144 inhibits NSCLC cell migration and tumor 

progression.

Sanchez-

Guerra 

et al. (52)

USA Review 

article

60 truck drivers, 60 office 

workers in Beijing

PMs ELISA for global 5mC and 5hmC; 

mixed-effects regression models

Adjusted mixed-effects regression 

models were used to evaluate 

associations.

PM10 exposure associated with increased 5hmC levels, no 

correlation with 5mC.

Sato & 

Ishigami 

(44)

Japan Review 

article

Human lung adenocarcinoma 

(A549) cells

HTPs, RC Cell treatment with aerosol extracts, 

global DNA methylation analysis, gene 

expression profiling.

Cell culture treated with aerosol 

extracts, followed by various assays 

(dot blot, RRBS, DNA microarray, RT-

qPCR).

The HTP extract affected gene expression. In particular, the 

HTP extract markedly affected the mRNA expression and 

promoter methylation of cytochrome P450 family 1 

subfamily A member 1 (CYP1A1), which is associated with 

carcinogenic risk.

Schembri 

et al. (46)

USA Research 

article

20 volunteers (10 current 

smokers, 10 never smokers)

Tobacco The methodological approach of the 

study involved microarray profiling of 

miRNAs and mRNAs, in vitro 

transfections to modulate miRNA levels, 

and real-time PCR validations to assess 

the effects on gene expression changes in 

response to cigarette smoke exposure.

The article analyzed data using 

microarray preprocessing, 

normalization, Welch’s t-test, and 

Pearson correlation, followed by 

GSEA and hierarchical clustering.

The study found 28 miRNAs differentially expressed in 

smokers, with mir-218 significantly down-regulated, which 

modulates airway epithelial gene expression response to 

cigarette smoke.

Sima et al. 

(47)

Czech 

Republic

Review 

article

N/A Air pollution Literature review, data synthesis, and 

analysis of miRNA deregulation in 

relation to air pollution and lung cancer.

Data analysis involved literature 

search, miRNA pattern comparison, 

and identification of commonalities in 

miRNA deregulation.

Detected a total of25 miRNAs meeting the criteria, among 

them, miR-222, miR-21, miR-126-3p, miR-155 and miR-

425 being the most prominent.

Tellez et al. 

(48)

USA Research 

article

Immortalized human 

bronchial epithelial cells 

(HBEC)

Tobacco In vitro model, gene expression analysis, 

immunoblot, chromatin 

immunoprecipitation assay.

qRT-PCR, immunoblot, chromatin 

immunoprecipitation, bisulfite 

sequencing, statistical analysis using 

Pearson correlation and t-tests.

Carcinogen exposure induces EMT and stem cell-like 

properties in HBECs through epigenetic silencing of miR-

200 and miR-205.

(Continued)
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TABLE 2  (Continued)

Name Region/
Country

Types Participants Exposure Methodology Analysis Results

Wang et al. 

(49)

USA Research 

article

Healthy nonsmokers and 

healthy smokers

Tobacco miRNA microarray analysis, qRT-PCR 

validation, bioinformatics tools

Processed Affymetrix miRNA array 

data using Partek, performed two-way 

ANOVA, and validated with qRT-

PCR.

The study found that smoking induces persistent 

dysregulation of 12 miRNAs in the small airway epithelium 

even after smoking cessation, which may contribute to the 

increased risk of COPD and lung cancer in former 

smokers.

Wu et al. 

(56)

China Systematic 

review and 

meta-

analysis

38 articles were included in 

this study: 16 using global 

methylation, 18 using 

candidate genes, and 11 using 

EWAS, with 7 studies using 

more than one approach.

Air pollution Systematic search, meta-analysis, and 

candidate-gene, epigenome-wide 

association studies (EWAS)

Meta-analysis, heterogeneity assessed 

with Cochran Q test and I2 statistic, 

sensitivity and publication bias tests 

using R Studio and Stata.

Imprecise inverse association between PM2.5 and global 

DNA methylation; candidate-gene results suggest 

hypermethylation in ERCC3 with benzene and SOX2 with 

PM2.5 exposure; 201 CpG sites and 148 differentially 

methylated regions associated with air pollution.

Xi et al. 

(50)

USA Research 

article

Normal human respiratory 

epithelial cells and lung cancer 

cells

Tobacco Array techniques, qRT-PCR, Ago-CLIP, 

luciferase assays, ChIP, MeDIP, MNase 

protection

Methodology for data analysis 

includes qRT-PCR, Western blot, 

Ago-CLIP, luciferase reporter assays, 

ChIP, MeDIP, MNase protection 

assays, and statistical tests.

These findings indicate that miR-487b is a tumor 

suppressor microRNA silenced by epigenetic mechanisms 

during tobacco-induced pulmonary carcinogenesis and 

suggest that DNA demethylating agents may be useful for 

activating miR-487b for lung cancer therapy.

PAHs, polycyclic aromatic hydrocarbons; PMs, particulate matter; HTPs, Aerosol extracts of heated tobacco products; RC, reference cigarette.
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expression of the tumor-suppressor miR-487b through promoter 
methylation, thereby facilitating lung oncogenesis through Wnt 
signaling (50). Similarly, tumor suppressor miR-196b is silenced 
early through promoter methylation in the same experimental 
model, giving a selective growth advantage to precancerous cells. 
A case–control study showed a strong correlation between 
methylation of miR-196b in sputum and the occurrence of lung 
cancer (48).

4 Discussion

Epigenetic characteristics mirror the shifts in cellular 
environments and are also discernible within the human circulatory 
system across a spectrum of diseases (60, 61). Exploration of these 
epigenetic attributes may lead to the identification of sensitive 
biomarkers, which hold promise for the early screening of lung cancer 
as well as the monitoring of the clinical treatment outcomes. This 
study is dedicated to revisiting the extensive interplay between 
environmental pollutants and lung cancer, with a comprehensive 
analysis of current research highlighting the crucial role that 
epigenetic modifications play in the etiology of lung cancer. 
Specifically, DNA methylation of genes such as F2RL3 and AHRR is 
accentuated (62–65), aberrant miRNA expression patterns stand out 
as additional key epigenetic markers (49, 66–68). In the future, these 
could serve as potential targets for diagnosing and treating lung 

cancer. However, such studies are predominantly confined to specific 
demographics, primarily consisting of adult males exposed to highly 
polluted environments, which may introduce biases and affect the 
objectivity of the data.

Corresponding research indicates that the impact of 
environmental pollutants on diverse populations is multifaceted, 
with contributing factors encompassing genetic characteristics, 
occupation, lifestyle choices, and socioeconomic status (69). In 
particular, alterations in DNA methylation at specific genomic loci 
constitute a fundamental aspect of the initiation and progression of 
lung cancer (70–73). Epigenetic variations observed within the 
CDKN2A gene, engendered by exogenous environmental elements, 
exemplify the paradigmatic mechanisms of tumor formation 
instigated by external environmental factors through the genesis of 
heterotypic cells (74).

The horizon of avant-garde therapeutic approaches brims with 
potential. Although minimization of exposure remains an unwavering 
pillar, the advent of molecular treatment regimens, ingeniously 
devised to rectify epigenetic aberrations, heralds a significant leap 
forward in therapeutic innovation. Pertaining to DNA demethylation 
(75–77), histone modification pharmacologic (75, 78, 79) and miRNA 
therapeutic interventions (54, 80, 81). Research into histone-
modifying drugs and miRNA therapies may revolutionize the 
treatment approaches for individuals exposed to environmental 
toxins, heralding a paradigm shift in managing pollution-related lung 
cancer. The development of these treatments necessitates rigorous 

TABLE 3  Record of citation score.

Validate Suitability Therapeutic Consistency Overall score

Alhamdow et al. (35) 5 5 4 5 Good (5)

Baglietto, et al. (36) 4 4 3 4 Moderate (4)

Fasanelli et al. (37) 4 5 3 4 Moderate (4)

Guo et al. (40) 3 3 2 4 Moderate (3)

Guo et al. (53) 5 5 4 4 Good (5)

Hammons et al. (51) 5 5 4 5 Good (5)

Hou et al. (41) 3 3 2 4 Moderate (3)

Huang et al. (39) 5 4 3 4 Moderate (4)

Jabeen, M et al. (42) 4 5 3 4 Moderate (4)

Lee et al. (38) 5 5 4 5 Good (5)

Li et al. (54) 4 5 3 4 Moderate (4)

Liang et al. (43) 4 4 3 4 Moderate (4)

Mukherjee et al. (55) 5 5 4 5 Good (5)

Pan et al. (45) 4 4 4 5 Moderate (4)

Sanchez-Guerra et al. 

(52)
3 2 3 3 Moderate (3)

Sato & Ishigami (44) 4 4 3 4 Moderate (4)

Schembri et al. (46) 4 3 3 4 Moderate (4)

Sima et al. (47) 4 4 2 3 Moderate (3)

Tellez et al. (48) 4 3 3 3 Moderate (3)

Wang et al. (86) 5 5 4 5 Good (5)

Wu et al. (56) 4 3 3 3 Moderate (3)

Xi et al. (50) 4 4 5 4 Moderate (4)
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investigations to ascertain their safety and efficacy. Clinical trials 
examining the effectiveness of agents like azacitidine in correcting 
methylation patterns associated with pollution-induced lung 
malignancies are imperative (82, 83), as well as clinical trials evaluating 
the effectiveness of drugs like azacitidine in correcting methylation 
patterns in pollution-related lung cancers. Further assessment of the 
anti-inflammatory properties of HDAC inhibitors is also imperative 
(84, 85). Such endeavors in therapeutic experimentation bear the 
potential to catalyze transformative changes in care for individuals 
plagued by environmental toxins. Consequently, the research must 
be conducted meticulously to ensure beneficial outcomes.

4.1 Limitations

The limitations of our review merit recognition and warrant 
attention. Initially, the caliber of evidence extracted from the 18 
documents included was heterogeneous, with some studies potentially 
needing more rigorous methodological design, comprehensive data 
collection, or extensive peer-review processes. Such imperfections in 
quality may impinge upon the reliability and universality of the 
research findings, as lower quality investigations could introduce 
biases or overlook critical variables, our literature search was confined 
solely to published articles in English, introducing a language bias that 
may have excluded pertinent studies published in other tongues, 
which could provide insights into the epigenetic impacts of 

environmental pollutants on lung cancer. Consequently, our findings 
do not encompass the complete scope of global research and may lead 
to an incomplete understanding of the subject matter.

The robustness of the discussions presented might also 
be  questioned, as they may not have considered all alternative 
explanations, counterarguments, or the full breadth of complex 
interactions between environmental pollutants and genetic 
susceptibility across different populations. The discussions may also 
need more comprehensiveness in resolving the heterogeneity of the 
study populations and methodologies, potentially limiting the 
strength of the conclusions drawn.

These limitations underscore the necessity for a cautious 
interpretation of the review outcomes. Future research should strive 
to include a broader scope of studies, encompassing multiple 
languages and more diverse populations, to offer a more 
comprehensive understanding of the effects of environmental 
pollutants on lung cancer through epigenetic alterations. Furthermore, 
ensuring that discussions in future reviews are grounded in extensive 
consideration of all pertinent factors and opposing viewpoints will 
enhance the research findings’ validity and practical applicability.

5 Conclusion

The current review delves into an increasing body of evidence that 
underscores how environmental pollutants act as catalysts for 

TABLE 4  The types of candidate genes for detecting alterations in lung cancer epigenetics.

Candidate gene type Authors Exposure General characteristics 
of epigenetic changes

F2RL3, AHRR Alhamdow et al. (35) PAHs DNA methylation

Baglietto, et al. (36) Tobacco

Fasanelli et al. (37) Tobacco

Lee et al. (38) Tobacco

CDKN 2A, DLEC 1, CDH 1, DAPK, RUNX 3, APC, WIF 1 and MGMT Huang et al. (39) Smoky coals

SATα, NBL2 and D4Z4 Guo et al. (40) PMs

Hou et al. (41) PM

DNMT1, DNMT3a, DNMT3b, TET1, TET2, TET3 Jabeen et al. (42) 10-, 200-, and 400 μM 

concentrations of PFAS

L3MBTL1, NNAT, PEG10, GNAS, Ex1A, MCTS2, SNURF/ SNRPN, 

IGF2R, RB1 and CYP1B1

Liang et al. (43) PM2.5

CYP1A1 Sato & Ishigami, (44) HTPs, RC

HATs and HDACs Guo et al. (53) PM2.5 Histone modifications

Kdm6a (55) Air pollution

miRNA Guo et al. (53) PM2.5 microRNAs

miRNA Li et al. (54) PM

miR-144 Pan et al. (45) Smoky coals

mir-218 Schembri et al. (46) Tobacco

miR-222, miR-21, miR-126-3p, miR-155, and miR-425 Sima et al. (47) Air pollution

miR-196b, miR-200, and miR-205 Tellez et al. (48) Tobacco

miRNA Wang et al. (49) Tobacco

miR-487b Xi et al. (50) Tobacco

PAHs, polycyclic aromatic hydrocarbons; PMs, particulate matter; HTPs, Aerosol extracts of heated tobacco products; RC, reference cigarette.

154

https://doi.org/10.3389/fpubh.2024.1420933
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al.� 10.3389/fpubh.2024.1420933

Frontiers in Public Health 12 frontiersin.org

carcinogenesis within pulmonary tissues, focusing on epigenetic 
mechanisms. Studies on epigenetic markers—particularly DNA 
methylation of pivotal genes such as F2RL3 and AHRR, as well as 
alterations in miRNA profiles affecting gene expression—have 
emerged as significant indicators for diagnosing and treating lung 
cancer. However, focusing solely on homogenous male adult 
populations within specific high-risk occupational environments may 
fall short of a comprehensive picture, as it fails to encapsulate the 
demographic and occupational diversity prevalent in a broader 
population base. Additionally, as suggested by prior comprehensive 
reviews, these epigenetic characteristics may extend beyond the 
biomarkers for lung cancer, representing the organism’s response to 
environmental stressors.

In light of these findings, it is imperative to expand the research 
scope to include more diverse population groups, thereby mitigating 
the risk of biased data that may not represent the entirety of vulnerable 
cohorts. Widening the demographic reach of these studies can greatly 
enhance the validity of research outcomes and facilitate their 
application across varied clinical settings. Moreover, it allows for 
formulating of personalized preventive measures and interventions, 
considering the intricate interplay products between unique 
epigenomic landscapes, environmental exposures, lifestyles, and 
genetic susceptibilities.

Looking ahead, the pursuit of innovative treatments such as 
drugs targeting DNA demethylation and histone modification 
offers new avenues for combatting pollution-induced malignancies. 

TABLE 5  Types of environmental pollutants that trigger epigenetic changes in lung cancer.

Type Authors Environmental 
pollutants

Epigenetic changes in lung cancer

Outdoor Air Pollutants Alhamdow et al. (35) PAHs PAHs induced hypomethylation of F2RL3 and AHRR, epigenetic changes 

linked to lung cancer risk.

Hou et al. (41) PM PM exposure induced hypomethylation in tandem repeats SATa and NBL2 

among study participants, potentially impacting lung cancer risk.

Guo et al. (40) PMs PM exposure is linked to hypomethylation of tandem repeats SATa, NBL2, 

and D4Z4, potentially impacting lung cancer risk.

Guo et al. (53) PM2.5 PMs induces epigenetic alterations such as DNA methylation, histone 

modification, and miRNA dysregulation, contributing to lung 

carcinogenesis.
Li et al. (54) PM

Sanchez-Guerra et al. (52) PMs PM10 exposure linked to increased blood 5-hydroxymethylcytosine (5hmC), 

indicative of epigenetic changes in lung cancer risk.

Liang et al. (43) PM2.5 PM2.5 exposure induced changes in DNA methylation of imprinted genes, 

potentially affecting lung cancer pathways and susceptibility.

Indoor Air Pollutants Baglietto, et al. (36) Tobacco Smoking exposure induced hypomethylation of AHRR and F2RL3, 

associated with increased lung cancer risk.Fasanelli et al. (37) Tobacco

Lee et al. (38) Tobacco

Hammons et al. (51) Tobacco Tobacco was associated with increased expression of hepatic DNA 

methyltransferase, which indicate a greater susceptibility to cancer.

Schembri et al. (46) Tobacco Tobacco induce down-regulation of miR-144, affecting Zeb1 expression and 

promoting epithelial-mesenchymal transition in lung cancer cells.

Sato & Ishigami (44) HTPs, RC RC reduced 5-mC and 5-hmC; HTPs altered CpG, affecting CYP1A1 mRNA 

and methylation, linked to cancer risk.

Tellez et al. (48) Tobacco Tobacco induces epigenetic changes including promoter hypermethylation 

and H3K27me3 enrichment, leading to silencing of tumor-suppressive 

miRNAs.

Wang et al. (86) Tobacco Tobacco induces epigenetic repression of miR-487b and alters microRNA 

expression, contributing to lung carcinogenesis.

Xi et al. (50) Tobacco Tobacco induces demethylation of miR-487b, alters nucleosome positioning, 

and increases DNA methylation, leading to its repression and lung cancer 

progression.

Huang et al. (39) Smoky coals Smoky coals induced aberrant methylation in promoters of lung cancer-

related genes, potentially serving as epigenetic biomarkers for early 

detection.

Pan et al. (45) Smoky coals Smoky coals induced down-regulation of miR-144, associated with increased 

Zeb1 expression and EMT phenotype in lung cancer.

HTPs, Aerosol extracts of heated tobacco products; RC, reference cigarette.

155

https://doi.org/10.3389/fpubh.2024.1420933
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al.� 10.3389/fpubh.2024.1420933

Frontiers in Public Health 13 frontiersin.org

Rigorous scrutiny and clinical trials of these emerging therapeutic 
modalities, coupled with the burgeoning interest in miRNA 
therapies, highlight their potential to significantly impact on 
individuals affected by the deleterious effects of environmental 
toxins. Research aimed at correcting aberrant methylation patterns 
with drugs like azacitidine, as well as exploring the anti-
inflammatory properties of HDAC inhibitors represent scientific 
endeavors and steps toward a healthier future for the 
global community.
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FIGURE 3

Environmental pollutants drive epigenetic changes and contribute to lung cancer.
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Assessment of human health risks 
posed by toxic heavy metals in 
Tilapia fish (Oreochromis 
mossambicus) from the Cauvery 
River, India
Nikita Gupta 1,2 and Sathiavelu Arunachalam 2*
1 School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India, 2 VIT School of 
Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, India

Heavy metal toxicity is a serious threat to human health due to its bioaccumulation, 
biomagnification, and persistent nature in the environment including aquatic 
systems. In the recent past, heavy metal contamination in the environment has 
occurred due to various anthropogenic sources. The concentration of potentially 
toxic heavy metals was determined by Atomic Absorption Spectroscopy in Tilapia 
(Oreochromis mossambicus), a highly farmed and consumed fish species in southern 
parts of India. The mean levels of Fe were found to be higher in major organs of 
the fish with the highest levels in liver (Mean 1554.4  ±  1708.7  mg/kg) and lowest 
in the muscles (Mean 130.757  ±  33.3  mg/kg). Correlation Matrix analysis revealed 
relationships between the occurrence of various heavy metals in different organs 
of fish and indicated similar origins and chemical properties. Target hazard quotient 
for Cd, Co, Pb, and Cr in the Liver, Co and Cr in the Gills, and Co in Muscle were  >  1 
for adults, which showed a significant health risk from the combined effects 
of these metals. The potential health risk to humans, according to the cancer 
risk (CR) assessment is attributed mainly to Cd and Cr levels. Overall, moderate 
fish consumption is advised to limit the bioaccumulation of heavy metals over 
prolonged exposure and associated health risks.

KEYWORDS

aquatic pollution, Cauvery River, environmental pollution, heavy metal, health risk 
assessment, Tilapia fish, toxicity

1 Introduction

The anthropogenic pollution of freshwater bodies is of major concern globally and so is in 
India (1). In this study, the authors emphasized the impact of anthropogenic activities on the 
fish fauna in the Ujjani Reservoir in Maharashtra, India. They also reported higher levels of 
heavy metals in the fish from the reservoir than normal. India is a country with rich biodiversity 
along with a number of freshwater reserves in the form of rivers, lakes, ponds, etc. However, 
in the past decade, there has been an indiscriminate discharge of industrial and agricultural 
pollutants into the water bodies through various anthropogenic activities creating severe 
deterioration of water quality, thereby affecting aquatic life (2–5). Over the years, efforts have 
been made by different environmental protection agencies to control the amount of pollutants 
dumped into the rivers. The government also supported some studies on anthropogenic 
activities and their influence on heavy metals in Indian rivers (6). Nevertheless, much needs 
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to be done to restore the water bodies to their native state and mitigate 
the impact of pollution on aquatic and human health.

Trace heavy metals present in the aquatic ecosystem are released 
through agriculture and industries which accumulate at various 
trophic levels of the food chain. However, this accumulation can slowly 
reach hazardous levels and turn into an environmental problem. There 
have been several studies about the prominent presence of heavy 
metals on sediments and their impact on seawater, and aquatic 
organisms (7–9). A few studies on rivers in India have also discussed 
the potential impacts of heavy metals on humans (2, 4). Several studies 
have explored the bioaccumulation of heavy metals in fishes (10–12).
The consensus seems to be that fishes in heavy metal-contaminated 
areas tend to absorb certain heavy metals in ionic forms from their 
immediate environment. Environmental factors such as pH and 
temperature modulate this uptake. The gills and skin, directly exposed 
to the contaminated water act as hotspots for its absorption. Following 
the uptake, heavy metals are transported to various organs via blood 
flow where the coupling of heavy metals with various proteins takes 
place. Although, fishes do regulate their body metal concentration to 
some degree via excretion through gills, skin, kidneys, and bile. Studies 
all around the world have reported various risks and health hazards 
associated with fishes’ bodies which results from disturbances in 
normal cellular activities, oxidative damage to biological 
macromolecules such as DNA and RNA caused by heavy metals (12, 
13). Accumulation of heavy metal also depends on the habitat of the 
fishes, sedimentary fishes that stay in stagnant water in muddy streams 
that are contaminated have been reported to have higher heavy metal 
content (14). Heavy metal accumulation has a multidirectional toxic 
effect on fish. In some cases, it manifests changes in the physiochemical 
processes of the body. Structural lesions and functional disturbances 
could also result from the bioaccumulation of metals (15).

Eating fish contaminated with heavy metals can have significant 
adverse effects on human health. Heavy metals such as cadmium, 
mercury, lead, and arsenic, when accumulated in fish tissues, can pose 
severe health risks when these fish are consumed by humans. These 
metals are known to be potent carcinogens and mutagens. Cadmium is 
known to be primarily toxic to the kidneys, cadmium can accumulate in 
the human body over time, potentially leading to kidney damage. 
Mercury is shown to affect the central nervous system, and high exposure 
can lead to neurological and behavioral disorders. Mercury is particularly 
dangerous to pregnant women as it can affect fetal development. Lead 
exposure can cause damage to the nervous system, kidney function, and 
the cardiovascular system. In children, lead exposure can result in 
developmental issues and reduced cognitive function. Arsenic exposure 
can lead to skin lesions, cancer, cardiovascular diseases, and diabetes. 
Long-term exposure to heavy metals through contaminated fish 
consumption can result in chronic conditions such as Alzheimer’s 
disease, Parkinson’s disease, muscular dystrophy, multiple sclerosis, and 
other neurological and muscular diseases. Allergies and increased cancer 
risk are also associated with prolonged heavy metal exposure (16, 17).

In India, fishes are considered a staple food source and the per 
capita consumption in some states reaches as high as 29.29 kg/year 
(18). Most of the fishing needs are met with inland fish production 

which is more susceptible to various sources of water pollution. Inland 
fishes thus are more hazardous to human health. Consumption of a 
heavy metal-contaminated diet can lead to the depletion of vital 
nutrients which can cause severe damage to immunological defenses, 
malnutrition-related disabilities, and impaired psychosocial behavior. 
Hence, the regular risk assessment of these heavy metals intake via 
diet is of utmost concern (19–21).

Mozambique Tilapia (Oreochromis mossambicus) is a variety of 
edible freshwater fish that has an omnivorous nature with high local 
demand in several developing countries like Malaysia. Commercial 
production of Tilapia fish takes place in almost 10 countries around the 
world (22, 23). It is one of the most important farmed fishes in the world 
next to carp and salmon. The low cost and high production coupled 
with its suitability for aquaculture and marketability make it a lucrative 
option for people in developing countries. Tilapias can adapt to various 
environmental conditions and demonstrate higher resistance to diseases 
but are susceptible to leachate toxicity (24). The wide acceptability of the 
Tilapias is evident from the production boost over the last decade 
resulting in a four-fold increase in its production (25, 26).

The present study is focused on monitoring the levels of various 
heavy metals in Tilapia, an exotic fish of the Cauvery River. Tilapia fish 
(Oreochromis mossambicus) is widely popular and highly consumed 
in southern parts of India (27, 28–33). It has high nutritional value 
and is a rich source of proteins, amino acids, vitamins, minerals, 
PUFA (polyunsaturated fatty acids), and some essential heavy metals. 
Heavy metals such as Manganese, Zinc, and Iron in optimal 
concentrations are supportive for the normal growth of humans and 
animals (34). However, some heavy metals such as arsenic, cadmium, 
mercury, lead, etc. do not play any beneficial role in the biological 
systems and can lead to a variety of diseases (1). Despite fish aiding in 
fulfilling our food, particularly protein demand, which in turn reduces 
the burden on agriculture, the presence of high amounts of essential 
as well as harmful heavy metals poses a serious risk to human health.

In the current scenario, Genetically Improved Farmed Tilapia 
(GIFT), is considered a candidate species for aquaculture in India. Its 
affordability and animal protein content make it a fish of choice among 
consumers (35). Various business organizations positively argue for 
the expansion of tilapia production in India to meet fish and marine 
export goals. This species has a relatively high survival rate and faster 
growth makes it lucrative for small-scale and large-scale GIFT farmers 
(36, 37). On the other hand, environmentalists argue over responsible 
aquaculture and strict regulations. Overall, Tilapia is currently seen as 
the next billion-dollar enterprise in India. Our study aims to 
understand and estimate the heavy metal content in this widely 
consumed, and important fish species in India, whose consumption is 
further likely to be increased in the coming years (34). Therefore, a 
study on this species not only provides us with the overall scenario of 
heavy metal load in the Cauvery River but also acts as a reference for 
further studies in the upcoming years with the aim to determine the 
levels of heavy metal concentrations in various organs of Tilapia fish.

2 Materials and methods

2.1 Ethics statement

Our study did not require ethical board approval because it did 
not contain human or animal trials. The fish used in this study were 

Abbreviations: HM, Heavy Metal; PI, Pollution Index; EDI, Estimation of Daily Intake; 

THQ, Target hazard quotient; CR, Cancer Risk; CMA, Correlation matrix analysis; 

RfD, Reference dose; CSF, Cancer Slope Factor.
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procured dead from local fishermen. All surgical operations were 
performed on dead fish. Care was taken to ensure that the least 
number of fish was utilized to reach satisfactory statistical conclusions.

2.2 Sample collection

The Cauvery River in southern India is vital for agriculture, 
industry, and urban populations in Karnataka and Tamil Nadu, but it 
faces significant metal contamination due to anthropogenic activities. 
Agricultural runoff, industrial discharges, and urban waste contribute 
to the presence of heavy metals like lead, chromium, and cadmium in 
the river (38). These metals bio-accumulate in fish, posing health risks 
to humans and disrupting aquatic ecosystems (39). Effective 
mitigation requires stringent regulatory measures, sustainable 
agricultural practices, and robust waste management systems, 
alongside regular monitoring and community engagement (40). 
Figure 1 represents the four sampling sites near the Erode region 
across the Cauvery River in Tamil Nadu state in India. The sampling 
sites were carefully chosen to cover the maximum stretch of the river 
possible, there is also quite a few textile industries and other industries 
in the area near Erode. The sampling stations were as follows: R1 
(11°74′75.34” N; 77°78′69.66″ E); R2 (11°43′36.68” N;77°68′27.9″ E); 
R3 (11°31′02.94” N;77°77′87.36″ E); R4 (11°15′72.31” N;77°88′11.61″ 
E). A total of sixteen (16) fresh and adult, Tilapia fish involved in the 

study were purchased from the local fishermen in each area depending 
on the sites from where the fish were planned to be sampled (41, 42). 
Samples collected were the maximum feasible given only one species 
of fish was targeted with similar size and body weight. All the fish were 
dead and stored in ice after purchase and carried forward for further 
analysis. On arrival, all the samples were labeled and stored at -20°C 
for further analysis. All 16 samples collected were analyzed as per the 
standard protocols published and raw data is provided as 
Supplementary file S1.

2.3 Sample analysis

The fishes collected had average lengths and weights of 17.7 cm 
(measured with a ruler) and 112.5 g (measured with a weighing 
balance (Mettler Toledo ME204)), respectively Supplementary file S1. 
Fish sample collection was done in the pre-monsoon period. A 
stainless-steel scalpel was used to dissect various portions of the raw 
sampled fish, which were Muscle, Liver and Gills and taken for further 
analysis. A digestion tube containing 0.1–1 g of the sample (dry 
weight) was weighed, and 5 mL of HNO3 and 5 mL of H2SO4 were 
then added. The reaction was allowed to complete, and when it did, 
the tubes were put in a hot-block digestion device from BioBee® with 
12 slots and temperature control and heated for 30 min at 60°C before 
being heated again to 150°C. When the samples’ color turned black, 

FIGURE 1

Location map of the study area showing sampling locations and important places.
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the tubes were taken out of the experiment. After allowing the tubes 
to cool, 1 mL of H2O2 was added. The tubes were repositioned on the 
block after a strong reaction. Slowly adding H2O2 made the sample’s 
solution appear clear. The tubes were taken out, and the sample 
solution was diluted with deionized water to a volume of 50 mL 
(12, 43).

The heavy metals (Cr, Cd, Fe, Ni, Zn, Co, Pb, and Cu) 
concentration was determined using a Varian - Atomic Absorption 
Spectrophotometer (AA240 Atomic Absorption Spectrometer). To 
test the instrument’s accuracy, standard solutions, and samples were 
run simultaneously. Analytical conditions for the measurement of the 
heavy metals in the sample using AAS were tabulated in Table 1. All 
the fish samples were measured in triplicates and the mean was taken 
forward for further calculation and reported as it is, as no 
randomization was performed given the samples were collected 
directly from rivers. All chemicals and reagents were of analytical 
reagent-grade quality. Before use, all glass and plastic ware were 
soaked in 14% HNO3 for 24 h. The washing was done with distilled 
water. Measurements were done simultaneously for each group to 
avoid batch effects if any. Data analysis was performed on a 
Spreadsheet and GraphPad Prism (Version 8.0).

2.4 Relevant parameter estimations

2.4.1 Calculation of heavy metal (HM) in tissues
The concentration of minerals is calculated according to the 

equation given below (44),

	

( )
( )

50

mgMineral =
L

made up volume
Reading of  mineral in AAS×

weight of  sample g
−

 
 
 

2.4.2 Pollution index (PI)
To determine the PI of the elements, statistical analysis was 

performed on the elemental concentrations in fish samples. The PI is 
the ratio of element x concentration in the sample to the element’s 
maximum allowable level (41).

	
( ) Metal concentration in the samplePI x =

Permissible limit or background value

It is generally accepted that if an element’s PI value is  
more than 1.0, the element is highly likely to have contaminated the 
sample and may even be  dangerous at the amount it is  
present.

2.4.3 Estimated daily intake (EDI)
The estimated daily intake (EDI) was calculated using the 

following formula (45).

	

-310F D F

AB A

E × E ×FIR×C ×CEDI = ×
W ×T

where ED, EF, CF, WAB, FIR, C, and TA stand for the exposure 
duration (60 years), exposure frequency (365 days annually), 
conversion factor (0.208) to convert fish’s dry weight to wet weight, 
average adult weight of the body (70 kg), consumption rate (25.2 g per 
day), heavy metal concentrations in fish’s muscle tissues, and average 
exposure time, respectively (45–49). The daily intake values were 
compared with reference values established by the United  States 
Environmental Protection Agency (50), making the USEPA the 
legislation that will serve as the bibliographic tool in the comparative 
analysis. All the calculations in this study were made for adult human 
with standard fish intake over lifetime.

2.4.4 Target hazard quotient (THQ) or 
non-carcinogenic health hazard

THQ measures the risk of side events other than cancer by 
comparing the exposure dosage to the reference dose (RfD). The 
exposure level is lower than the RfD if it is less than 1. This suggests that 
lifetime unfavorable effects are unlikely to result from daily exposure at 
this level and vice versa. Standard assumptions from the integrated 
USEPA risk study were used to construct the dosage estimations 
(41, 50).

The target hazard quotient (THQ) was estimated using the 
following formula.

	

EDITHQ =
RfD

In this study, the total THQ was calculated as the arithmetic sum 
of the individual THQ values of the metal of concern (51).

	

( )
( ) ( ) ( )

Total THQ TTHQ =
THQ toxicant 1 +THQ toxicant 2 +…THQ toxicant n

2.4.5 Carcinogenic risk or cancer risks (CR)
The Cancer Risk over a lifetime of Cd, Pb, and Cr exposure was 

calculated by applying the following formula (45, 46).

	 CR = EDI ×CSF

TABLE 1  Analytical conditions for the measurement of the heavy metals 
in the sample using AAS.

Heavy 
Metal

Wavelength Slit (nm) Lamp 
current 

(mA)

Cd 228.8 0.5 4

Cu 222.6 0.2 4

Cr 428.9 0.5 7

Fe 372.0 0.2 5

Pb 283.3 0.5 5

Zn 213.9 1 5

Co 304.4 0.5 7

Ni 341.5 0.2 4
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2.5 Data analysis

2.5.1 Principal component analysis (PCA)
Principal Component Analysis was used to reduce the 

dimensionality of the dataset. It was used to identify patterns in the 
distribution of heavy metals across different fish organs. The analysis 
was performed in GraphPad Prism version V.10. Principal Component 
Analysis transformed the original variables into a new set of 
uncorrelated variables which are also known as principal components 
these components are ordered by the amount of variance they explain 
in the data. This method allows for the visualization of the data 
structure and the identification of the most significant variables 
contributing to the observed variance. PCA can identify linear 
relationships between different inter-associated variables. PCA 
extracts eigenvalues and eigenvectors from the covariance matrix of 
the original associated variables. The principal component (PC) is an 
orthogonal variable, which is attained by multiplying the eigenvector 
with the original associated variables. The first few principal 
components, which capture the majority of the variance, were used to 
interpret the relationships between the heavy metal concentrations 
and the fish organs. Since there were various factors influencing the 
accumulation of heavy metals in fish muscles, Principal Component 
Analysis was used to explore the effects of size and body weight of fish 
on the accumulation of heavy metals in different organs using the 
analyzed heavy metal concentrations matrix.

2.5.2 Correlation matrix analysis
A correlation matrix was computed to analyze the associations 

between the various concentrations of heavy metals within various 
organs of fish. The correlation matrix was also analyzed with 
GraphPad Prism v.10. The correlation matrix is a summary of all the 
pair-wise correlations between the variables, measured by means of 
Pearson correlation coefficients. Correlations are meaningful, and a 
heatmap is used to see significant correlations in the matrix. A 
correlation coefficient-the value ranging from −1, for a perfect inverse 
relation, through 0, for no relation, to 1, for a perfect direct relation-
evaluates any two variables on a scale from −1 to 0 to 1. High values 
and positive significant correlation may indicate chemical affinity 
between the metals, common genetic origin and /or a background 
level present in the samples; negative correlation might point toward 
different origins for the metals or a non-chemical relationship. 
Considering the various trends in the level of correlation, we explained 
the strength of the correlation of heavy metals within each organ 
separately. Beyond the statistical tools used in this study, additional 
hidden features and strength of the data set could be unearthed by the 
linkage of variables using non-linear tools.

3 Results

3.1 Heavy metal concentrations

The metal concentrations in various body organs of Tilapia fish 
species are presented in Figure  2. Since most of the heavy metal 
concentrations did not significantly differ between the sample sites 
(R1 – R4), all four sites were combined for further analyses and 
correlation studies. In fish samples, iron concentration was found to 
be  relatively higher than the other metals. The heavy metal 

concentration varied across different organs in the following sequence: 
Muscle Fe > Ni > Cr > Co > Pb > Cd > Zn > Cu, Gills Fe > Ni > Co > Cr >  
Pb > Cd > Zn > Cu, Liver Fe > Ni > Cr > Co > Cu > Pb > Cd > Zn. The 
maximum Fe levels were detected in the Liver (Mean: 
1554.4 ± 1708.7 mg/kg) of Tilapia, while the minimum Fe levels were 
observed in the muscles (Mean: 130.757 ± 33.3 mg/kg). Muscles 
contained a low Fe level compared to the other organs. Apart from 
Iron other heavy metals like Cr, Co, Pb, and Cd were also found to 
be  well above the standard permissible limits (Table  2) for the 
respective heavy metals in respective tissue samples.

3.2 Pollution index (PI) of the heavy metals

To assess the degree of contamination or pollution linked to the 
obtained fish samples, the PI of heavy metals in the Tilapia fish 
samples was determined. Table  3 displays the PI values for the 
analyzed metals. We found that Zn and Cu pollution index were lower 
than 1 across the various organs. Fe, Cd, Pb, Cr, Ni, and Co had high 
pollution index across all the organs. Overall, the pollution index 
values for heavy metals in Gills and Liver far surpassed those 
in Muscle.

3.3 Human health risk assessment

3.3.1 Estimation of estimated daily intake (EDI) 
and target hazard quotient (THQ)

According to the United  States Environmental Protection 
Agency’s (50), recommended oral reference dose is shown in Table 4. 
Our results showed that the EDI for the investigated metals was lower 
than the RfD (oral reference dose) with some exceptions which are 
Liver (Cd, Co, Pb, and Cr), Gills (Co and Cr), Muscle (Co). The THQ 
of each metal from ingestion of Tilapia was generally less than 1 except 
in the Liver (Cd, Co, Pb, and Cr), Gills (Co and Cr), and Muscle (Co) 
(see Table 5). THQ values for Cd, Co, Pb, and Cr in the Liver, Co and 
Cr in Gills, and, Co in Muscle were > 1 for adults (see Table 6).

3.3.2 Calculation of the cancer risk (CR) for cd, 
Pb, and Cr

Figure 3 showcases the estimated cancer risk factors for Cd, Pb, 
and Cr. The USEPA has assigned a 10–5 acceptable limit for the 
lifetime carcinogenic risk. Based on the findings, the muscle, liver, and 
gills Pb cancer risk factor determined in this study is within the 
established tolerable level. However, Cd and Cr are higher than the set 
tolerable limit.

3.4 Results of principal component analysis 
(PCA)

Two principal components were estimated using the JMP for our 
dataset comprising of body weight, Length and heavy metal 
concentration of different organs of fish (Figure 4). Both components 
together were able to explain ~88% of total variance in the data, with 
PC1 and PC2 accounting for 56.1 and 31.4%, respectively. The general 
trend shows negative loading of heavy metals in various fish organs in 
Tilapia Fish when compared with fish size and body weight. From PC1 
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TABLE 2  The permissible limit of heavy metals in fisheries.

Institute/Organization Zn Cu Pb Ni Cd Mn Fe Cr Reference

MFA (Malaysian Food Act) 100 30 2 - 1 – – MFA (65)

FAO (Food and Agriculture 

Organization) (1983)

30/40 30 0.5 - 0.5 – – FAO (66),

EC (Commission of the European 

Communities)

– – 0.2–0.4 - 0.05 – – – EC (67)

USFDA (Food and Drug 

Administration)

– – 0.5 - 0.01–0.21 – – USFDA (68)

WHO (1989)/(2013) 100/5 30/2.25 2 – 1 1/0.5 100/0.30 – Mokhtar et al. (69)

England 50 20 2 – 0.2 – – Contaminants (70)

FAO/WHO limits 40 30 2 – 0.5 – Joint and Additives (71)

Median International Standard 

(Tolerable levels) (ug/g)

45 20 2 – 0.3 – – 1 Phillips (72), Senarathne 

(73), and Senarathne and 

Pathiratne (74)

USEPA (United State Environmental 

Protection Agency) (ug/g)

5 2.25 0.11 – 0.01 0.02 0.5 – Anim-Gyampo et al. (75)

WPCL (Water Pollution Control 

Legislation)

4.25 2 0.05 – 0.03 0.02 0.45 – Anim-Gyampo et al. (75)

we can observe that heavy metal content more specifically in the Gills 
and Liver is loaded heavily on PC1 and seems to decrease with an 
increase in the length and weight of the fish. However, the loading of 

heavy metals in muscles seems to be dependent on both PC1 and PC2, 
which suggests some other factors influencing the loading apart from 
the length and weight of the Tilapia fish. This observation corroborates 

FIGURE 2

Concentration (mg/kg) of heavy metals in (A) Muscle, (B) Gills, and (C) Liver of Oreochromis mossambicus.
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various similar studies performed by researchers over the past 
decades (52).

3.5 Results of correlation matrix analysis 
(CMA)

Figure  5 shows the Correlation matrix analysis results of the 
studied metals in the Tilapia muscle samples: positive and strong 
significant correlations exist between Cr/Zn and Cr/Ni, also Ni/Zn 
shows some positive correlation. Considering other organs: in the 
Liver, positive and strong significant correlations exist between Cd/
Pb, Co/Pb, Zn/Pb, Co/Zn, Cr/Fe, and Cr/Ni, also some positive 
correlation is displayed between Ni/Co. while strong and negative 

correlation exists between Cu/Co, some negative correlation exists 
between Pb/Cu, Cu/Zn, and Cu/Ni; in Gills, positive and strong 
significant correlations were shown by Zn/Cd, Zn/Co, Ni/Co, Ni/Zn, 
Pb/Cd, Pb/Co, Pb/Zn, Cu/Fe, Cr/Cd, and Cr/Pb, also some positive 
correlation was shown between Ni/Pb.

4 Discussion

Although excessive amounts of iron are linked to heart disease, 
cancer, and reduced insulin sensitivity, iron is a necessary element for 
biological activity (53). High iron content in the fish organs could 
be attributed to the prolonged exposure given that the Cauvery River 
water iron content is high (54, 55). As per prior studies, Iron content 

TABLE 3  Pollution index (PI) of the studied heavy metals in the Tilapia Fish samples.

Pollution index muscle Pollution index liver Pollution index gills

HM R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

Cd 12.42 9.83 10.47 8.22 62.05 41.02 34.35 40.63 22.05 12.00 14.42 20.20

Co 65.82 71.52 85.77 72.27 440.29 342.92 296.75 450.00 154.15 92.05 117.59 190.85

Fe 261.51 225.93 255.35 243.59 1878.87 1615.56 2151.31 6789.50 2430.51 658.47 631.99 737.07

Zn 0.05 0.05 0.06 0.09 0.32 0.22 0.23 0.30 0.15 0.12 0.13 0.17

Ni 50.64 52.75 60.05 62.74 260.12 197.54 192.62 334.25 113.16 68.92 91.55 153.61

Pb 6.72 6.00 7.05 5.19 38.64 28.63 25.82 33.44 12.69 7.44 9.49 12.38

Cu 0.04 0.00 0.00 0.00 1.79 6.30 14.70 1.35 0.23 0.01 0.00 0.00

Cr 21.40 21.01 22.92 24.44 77.82 70.62 69.79 162.69 72.00 20.27 28.69 48.57

TABLE 4  Reference dose (RfD) and cancer slope factor (CSF) for different metals reported in the literature.

Metal RfD CSF (mg/kg/day) Reference

Cd 0.001 6.3 Mohammadi et al. (64) and Adebiyi et al. (41)

Co 0.0003 Saha et al. (49)

Fe 0.3 Adebiyi et al. (41)

Zn 0.3 Adebiyi et al. (41)

Ni 0.02 Miri et al. (45)

Pb 0.004 0.0085 Mohammadi et al. (64) and Adebiyi et al. (41)

Cu 0.04 Adebiyi et al. (41)

Cr 0.003 0.5 Mohammadi et al. (64) and Adebiyi et al. (41)

TABLE 5  Calculation of adult’s estimated daily intake (EDI) for identified elements from eating tilapia fish.

EDI muscle EDI gills EDI liver

HM R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

Cd 0.0009 0.0007 0.0008 0.0006 0.0017 0.0009 0.0011 0.0015 0.0046 0.0031 0.0026 0.0030

Co 0.0014 0.0015 0.0018 0.0015 0.0032 0.0019 0.0025 0.0040 0.0092 0.0072 0.0062 0.0094

Fe 0.0098 0.0085 0.0096 0.0091 0.0910 0.0247 0.0237 0.0276 0.0703 0.0605 0.0805 0.2542

Zn 0.0004 0.0004 0.0004 0.0007 0.0011 0.0009 0.0010 0.0012 0.0024 0.0017 0.0017 0.0022

Ni 0.0019 0.0020 0.0022 0.0023 0.0042 0.0026 0.0034 0.0058 0.0097 0.0074 0.0072 0.0125

Pb 0.0010 0.0009 0.0011 0.0008 0.0019 0.0011 0.0014 0.0019 0.0058 0.0043 0.0039 0.0050

Cu 0.0001 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0040 0.0141 0.0330 0.0030

Cr 0.0016 0.0016 0.0017 0.0018 0.0054 0.0015 0.0021 0.0036 0.0058 0.0053 0.0052 0.0122

165

https://doi.org/10.3389/fpubh.2024.1402421
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Gupta and Arunachalam� 10.3389/fpubh.2024.1402421

Frontiers in Public Health 08 frontiersin.org

TABLE 6  Calculation of target hazard quotient (THQ) for analyzed metals from Tilapia fish consumption by adults.

THQ Muscle THQ Gills THQ Liver

HM R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

Cd 0.930 0.736 0.784 0.616 1.651 0.898 1.080 1.513 4.646 3.072 2.572 3.042

Co 4.600 4.998 5.994 5.050 10.773 6.433 8.218 13.338 30.771 23.966 20.740 31.450

Fe 0.033 0.028 0.032 0.030 0.303 0.082 0.079 0.092 0.234 0.202 0.268 0.847

Zn 0.001 0.001 0.001 0.002 0.004 0.003 0.003 0.004 0.008 0.006 0.006 0.007

Ni 0.095 0.099 0.112 0.117 0.212 0.129 0.171 0.288 0.487 0.370 0.361 0.626

Pb 0.252 0.225 0.264 0.194 0.475 0.279 0.355 0.463 1.447 1.072 0.967 1.252

Cu 0.002 0.000 0.000 0.000 0.013 0.001 0.000 0.000 0.101 0.354 0.825 0.076

Cr 0.534 0.524 0.572 0.610 1.797 0.506 0.716 1.212 1.942 1.763 1.742 4.061

TTHQ 6.446 6.611 7.760 6.621 15.228 8.331 10.623 16.910 39.636 30.803 27.481 41.361

Total Target Hazard Quotient (TTHQ).

FIGURE 3

Estimated cancer risk for analyzed metals associated with consumption of (A) Muscle, (B) Liver, and (C) Gills from Oreochromis mossambicus.

in river water is mostly due to the tributaries from mineralized zones 
(56). PCA points out that Cu concentration in the Liver of Tilapia 
loads positively with the length and size of the fish (57). High 
concentration of Cu in the liver has been demonstrated to have 
significant poisonous effect on fish (58). The loading of rest of the 
metals in Liver and Gills shows negative loading when compared to 
size and weight of the fish. This seems to indicate younger fishes tend 
to have a higher accumulation of heavy metals than older fishes. This 
phenomenon has been observed in some earlier studies on other fish 
species as well. Our study also highlights the higher heavy metal 
concentration is there in the Gills and Liver of fishes when compared 

to muscles this is in line with the previous researches in similar area, 
according to which gills are exposed to the immediate environment 
and hence more exposed to the heavy metal pollution, on the other 
hand the Liver is metabolically active and despite the route of exposure 
be it food or via gills the accumulation of heavy metals take place here 
(59). Mozambique Tilapia are omnivorous and feed on a variety of 
food sources, including algae, detritus, and small invertebrates. This 
diverse diet can lead to the ingestion of metals present in the sediment 
and water, which can then accumulate in their tissues (60). Muscle 
however is not metabolically active and thus high heavy metal 
concentration in Tilapia’s muscles raises concerns. In an earlier study 
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(61), which was performed on three economically important fish 
species (Anguilla anguilla, Mugil cephalus, and Oreochromis niloticus) 
in Turkey, it was also found that the concentrations of cadmium (Cd) 
and lead (Pb) were generally lower in the muscles compared to other 

tissues like the liver and gills, but still present in measurable amounts. 
The study also highlighted that omnivorous fish like Nile tilapia tend 
to accumulate metals in their muscles, albeit at different levels 
depending on the specific metal and environmental conditions.

FIGURE 4

A plot of PCA of heavy metals in various tissue systems (M-Muscle, L-Liver, G-Gills) of Oreochromis mossambicus, (A) Loadings (B) variance covered by 
individual Principal component.

FIGURE 5

Correlation matrix of the studied metals in various tissue systems of Oreochromis mossambicus.
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The strong positive correlation of Chromium (Cr) with Zinc (Zn) 
and Nickel (Ni) may suggest that these are metals from a common 
source or with similar pathways of accumulation in the muscle tissue. 
This can be seen as an indicator of industrial discharge or runoff with 
these metals. The correlation between Nickel (Ni) and Zinc (Zn) 
further supports the above hypothesis to have an equal source or has 
similar environmental behavior, probably from industrial activities or 
urban runoff.

High correlations between Cadmium (Cd), Lead (Pb), Cobalt 
(Co), Zinc (Zn), Chromium (Cr), and Iron (Fe) within the liver organ 
indicate that these metals might be co-contaminants from industrial 
processes, mining activities, or agricultural runoff (62). It is also likely 
that the liver organ contains heavy metals because it is a primary 
detoxifying organ, in which it may accumulate metals reflecting 
environmental presence. The positive covariance of Nickel (Ni) and 
Cobalt (Co) could mean that they share a common source, perhaps 
from either of the metal plating industries or even natural geological 
sources. The negative correlation of Copper (Cu) and Cobalt (Co) 
might be interpreted as competition in uptake or different sources. For 
example, Cu may be more related to agricultural runoff in instances 
of pesticides (63), whereas Co may be  more related to industrial 
discharge. These negative correlations could be  related to other 
sources or antagonist interactions in the environment itself or within 
the fish’s biological system.

Strong positive correlations among these metals in gills suggest 
they should co-exist within the water body, possibly through industrial 
effluent or urban runoff. As gills are directly exposed to the water, they 
could indicate water-borne metal contamination. The positive 
correlation between Nickel and Lead gives further support to a shared 
source from industrial activity.

The amount of heavy metals like Cr, Co, Pb, and Cd needs to 
be strictly regulated given these metals have been established as 
toxic to human health. Studying the Pollution Index shows that the 
Tilapia fish Muscle and Gills samples are contaminated with Cd, Cr, 
Fe, Co, Ni, and Pb given the PI > 1. Other examined metals with PI 
values below 1 include Zn and Cu. This may indicate that the fish 
samples are free of these metals’ contamination. The correlation 
matrix indicated a significant relationship between the analyzed 
metals, suggesting similar sources and/or genetic origin. EDI and 
THQ for certain metals suggest that prolonged consumption of 
Tilapia in higher quantities could lead to serious health impacts. 
Only certain metals such as Cd, Cr, and Pb have been established to 
have cancer-causing roles in humans. The CR factor for Cd and Cr 
were found to be higher than the USEPA set tolerable limit. This 
suggests cancer risk due to Cd and Cr can be there over prolonged 
exposure. Pb in fish organs was found to have no such risk due to its 
presence within the tolerable limit. Overall, the data indicates that a 
higher intake of Tilapia fish might harm the health of the populace 
consuming it.

5 Conclusion and recommendation

Our study looked into a few particular potentially hazardous 
metals and the risks they pose to human health. According to the 
metal pollution index values, the amount of contamination in the 
samples of tilapia fish for Cd, Cr, Fe, Co, Ni, and Pb is greater than 

1. The Target hazard quotient for Cd, Co, Pb, and Cr in the Liver, Co, 
and Cr in Gills, and Co in Muscle were > 1 for adults, which showed 
a significant health risk other than cancer from the combined effects 
of these metals. In the muscle, liver, and gills, the cancer risk (Cd and 
Cr) was higher than the established tolerable level, suggesting that 
consuming tilapia fish may carry a risk of these heavy metals causing 
cancer. There is a growing need for more active monitoring regarding 
the food safety of the Indian population that consumes fish, it would 
also help generate more data on the state of edible fish species in 
other Indian rivers. It would be  prudent to limit the daily 
consumption of tilapia to prevent long-term detrimental effects on 
human health based on the results obtained for the cancer risk. 
Among the metals taken into consideration, the greatest risk for 
human health can be associated with the level of Cd and Cr. Further 
studies and data generation is recommended to study the impact of 
contaminated fish consumption on the local population over the 
extended time period.

6 Limitations

Although our study offers insightful information about the 
levels of heavy metals and related hazards in different fish organs, 
there are a few things to keep in mind. First off, our findings 
might not be as broadly applicable as they could be because of the 
sample size and geographic reach, which might not accurately 
reflect the larger fish population. Furthermore, the results may 
be  impacted by variations in heavy metal buildup brought on 
by fish species, age, and size that were not fully controlled. Even 
with its robustness, the risk assessment based on USEPA 
recommendations might not take into consideration all potential 
exposure situations and individual susceptibilities, like dietary 
habits or pre-existing medical disorders. Moreover, possible 
interactions between various heavy metals that could increase or 
decrease the total risk were not assessed in the study. Future 
research should aim to address these limitations by incorporating 
a larger, more diverse sample set, and by considering additional 
variables and potential synergistic effects of multiple contaminants.
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With the increased worldwide production of plastics, interest in the biological 
hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed 
as environmental pollutants, has also increased. This review aims to provide a 
comprehensive overview of the toxicological effects of MP and NP on in vitro and 
in vivo systems based on studies conducted over the past decade. We summarize 
key findings on how the type, size, and adsorbed substances of plastics, including 
chemical additives, impact organisms. Also, we address various exposure routes, 
such as ingestion, inhalation, and skin contact, and their biological effects on 
both aquatic and terrestrial organisms, as well as human health. Additionally, the 
review highlights the increased toxicity of MP and NP due to their smaller size 
and higher bioavailability, as well as the interactions between these particles and 
chemical additives. This review emphasizes the need for further research into the 
complex biological interactions and risks posed by the accumulation of MP and 
NP in the environment, while also proposing potential directions for future studies.

KEYWORDS

microplastics, nanoplastics, heavy metals, chemical additives, biological effects

Introduction

With accelerated industrialization globally, plastics, widely used in packaging, 
construction, and other industrial sectors have been mass-produced since the 1950s (1, 2). The 
production and consumption of lightweight, convenient, and useful plastics are increasing 
exponentially worldwide owing to their low manufacturing cost, safety, and hygiene (1, 3, 4). 
Following the COVID-19 pandemic in 2020, global plastic production reached 390.7 million 
tons in 2021 and is projected to be 34 billion metric tons by 2050 (5, 6).

MP are generated from various environmental factors and human activities. They are 
transported, dispersed, and deposited by wind flow, direction, and precipitation in the 
atmosphere. Through the atmosphere, which serves as a major pathway for MP transportation, 
all environmental compartments, including freshwater and terrestrial environments, can 
be impacted by MP pollution (7, 8). MP can be released into the air from plastic recycling 
processes in industries and waste disposal, synthetic fibers in carpets and clothing, as well as 
from friction activities like tire wear, which is also known to be a source of MP emissions (9, 10).

Plastic waste introduced into the environment is broken down into MP over time due to 
physical, chemical, and biological factors such as microbial degradation, ultraviolet (UV) 
exposure, and physical abrasion (11). Plastic fragments can be classified into categories based 
on their size, including megaplastics (>100 mm), macroplastics (>20 mm), mesoplastics (5–20 
mm) microplastics (<5 mm), and nanoplastics (1–1,000 nm) (12–16). Both MP and NP are 
considered serious environmental problem due to their persistence and potential to be ingested 
by various organisms (15).
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The most produced plastic polymers include polypropylene (PP, 
19.3%), low density polyethylene (PE-LD, 14.4%), polyvinyl chloride 
(PVC, 12.9%), and high density polyethylene (PE-HD, 12.5%), 
polyethylene terephthalate (PET, 6.2%), polyurethane (PUR, 5.5%), 
and polystyrene (PS, 5.3%), in that order (5, 11). Additionally, 
environmentally friendly plastics are estimated to account for 
approximately 9.8% of global production (5). Consequently, plastic 
waste has become widespread in the environment and has 
accumulated in aquatic ecosystems worldwide, from Antarctica to the 
deep oceans (4, 17–19). By 2016, an estimated maximum of 23 million 
metric tons (Mt), approximately 11% of global plastic waste, had 
reached the aquatic ecosystems. If plastic waste continues to increase, 
the amount of plastic waste entering the world’s aquatic ecosystems is 
predicted to reach 90 Mt/year by 2030 (19).

The number of studies on the toxicity of MP/NP has been increasing 
(20, 21). The MP/NP generated after plastic waste decomposition are 
continuously dispersed accumulated in the environment, exerting toxic 
effects on aquatic and terrestrial wildlife and on humans (1, 21, 22).

MP originate from both primary plastics, which are manufactured 
in small sizes, and secondary plastics, which are created through the 
fragmentation of larger plastic waste (23). Several studies have 
indicated that MP negatively impacts the reproductive and feeding 
functions of crustaceans such as oysters (24) and mussels (25, 26). 
Furthermore, MP have been found in the feces of gentoo penguins in 
Antarctica (27), and research has reported the first occurrence of MP 
in demersal sharks in the UK (28). These findings suggest that MP can 
traverse the food chain, posing serious health risks to organisms (29).

MP degrade in the environment through physical, chemical, and 
biological processes, resulting in the formation of NP. Due to their 
smaller size, NP are more easily ingested by aquatic organisms, which 
can lead to bioaccumulation and serious health impacts on these 
organisms (30). These NP can also bind with heavy metals (31, 32) and 
chemicals (33, 34), exhibiting harmful effects such as reproductive 
toxicity (35, 36), intestinal toxicity (37, 38), and neurotoxicity (39, 40). 
Additionally, there are research studies that have confirmed that 
Antarctic krill, when consuming MP labeled with fluorescent substances, 
break them down into NP during the digestive process through the 
action of digestive enzymes (41). This study indicates that when most 
organisms ingest MP, they effectively consume NP simultaneously. This 
suggests that MP can serve as a resource for the formation of NP.

Also, researchers worldwide are increasingly focusing on the toxicity 
of mixtures formed by the adsorption of MP/NP with the additives used 
in their production and pollutants in the environment. However, current 
knowledge in this area is limited. Therefore, we emphasize the need for 
more research to reveal the interactions and biological hazards of 
chemicals associated with MP/NP accumulating in the environment. 
Our review of literature published over the past 10 years revealed that 
research on the toxicity of MP as well as NP, which are smaller and 
potentially more harmful than the MP, has rapidly increased (42, 43). In 

this review, we emphasized the need for more; the findings from this 
review can contribute to conducting systematic research on the 
biological hazards of not only MP/NP but also composite compounds.

Classification of biohazards of 
microplastics

We conducted a search for articles published from 2012 to 2022 in 
PubMed Central (PMC). To search for papers related to all types of 
MP, we  conducted searches using both the abbreviations and full 
names. Examples of keywords used in the search included PS, 
polymethyl methacrylate (PMMA), PA, PE, PVC, PP, PET, and 
polylactic acid (PLA). Research articles related to the biological effects 
of MP, excluding those from an environmental perspective, reviews, 
and other types of articles such as editorial materials, were selected 
from the retrieved hits. To find papers related to the biological effects 
of MP from 2012 to 2022, data queried using keywords such as the 
abbreviations and full names of MP were classified using Microsoft 
Excel 2019 (Microsoft Corporation, Santa Rosa, California, 
United States). Briefly, the list of papers was filtered using the filter 
function to analyze the data and derive related figures based on the 
type and size of the plastic and the presence or absence of additives. 
Supplementary Figure S1 presents a schematic of the literature search 
and process for extracting numerical data related to the biological 
impact of plastics. Supplementary Figure S2 shows the number of 
papers published by year. The number of papers related to the 
microplastics has dramatically increased over the last 12 years (2012–
2024). Between 2012 and 2022, a total of 7,899 papers were published. 
In 2023 alone, 4,085 papers were published. In the first half of 2024, 
2,490 papers were published, and a similar number is expected for the 
second half, indicating that even more papers will likely be released by 
the end of the year.

Current status of research on the biological 
effects of microplastics

Out of 7,899 papers searched for MP-related keywords in 
PubMed, 457 papers were related to biological impacts (Figure 1A). 
Among the studies focusing on the biological effects of MP, the most 
commonly studied plastic types were PS, PE, PVC, PP, and 
PET. Interestingly, research on PMMA, which is less frequently 
detected in natural ecosystems, has recently been conducted. On 
classifying 457 papers that evaluated biological hazards according to 
the type of MP, PS was the most common (326), followed by PE at 86, 
PVC at 25, and PS at 326. Fourteen articles on PP, 13 on PET, 8 on PA, 
8 on PMMA, and 5 on PLA were published (Figure  1B). After 
classifying papers for NP of each type of plastic, there were 155 papers 
for PS, 6 for PE, 3 for PVC, 1 for PP, 3 for PET, 5 for PMMA, and 1 for 
PLA (Figure 2A). Regarding the MP, there were 210 cases for PS, 84 
for PE, 23 for PVC, 13 for PP and 10 for PET. Also, there were 
published in 8 cases for PA, 5 for PMMA and 5 for PLA (Figure 2B). 
For papers evaluating the biological hazards of adding mixtures, such 
as heavy metals, according to the type and size of MP, 32 papers on PS 
were investigated for NP (Figure 2C). Among the NP, only PS has been 
used to evaluate biological hazards using mixtures, and the addition 
of mixtures to other types of NP has not yet been published. However, 

Abbreviations: PP, Polypropylene; PE-LD, Low density polyethylene; PVC, Polyvinyl 

chloride; PE-HD, High density polyethylene; PET, Polyethylene terephthalate; 

PUR, Polyurethane; PS, Polystyrene; DEHP, Di-(2-ethylhexyl) phthalate; BPA, 

Bisphenol A; PBDE, Polybrominated diphenyl ether; BHA, Butylated hydroxyanisole; 

PMC, PubMed Central; PMMA, Polymethyl methacrylate; PLA, Polylactic acid; PA, 

Polyamide; HDF, Human-derived dermal fibroblasts; PBMC, Peripheral blood 

mononuclear cells; ROS, Reactive oxygen species.
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in studies evaluating the biological hazards of adding mixtures to MP, 
PS was the most common with 33, followed by PE with 19, PVC with 
5, and PP was investigated in 1 article, PET in three articles, and 

PMMA in one article. No study has yet been conducted to evaluate the 
biological hazards of mixtures of microsized PA (MP-PA) and 
microsized PLA (MP-PLA) (Figure 2D). Based on an investigation of 

FIGURE 1

Research status of papers related to microplastics. (A) Overview of research on the biological effects of microplastics. (B) Classification of research by 
type of plastic.

FIGURE 2

Current status of research on classification and additives according to size and type. Research classification of each type of plastic classified into 
(A) nano size and (B). Micro size, (C) additive and nano sized, (D) additive and micro sized plastic.
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papers published on MP over the last decade, extensive research has 
been conducted to evaluate their biological hazards. Therefore, 
we summarized the type- and size-based characterization of MP in 
vitro and in vivo and the toxic effects of combined exposure to MP and 
additives, providing new evidence and insights into the potential 
biohazards of MP.

Evaluation of the biological effects of 
micro/nanosized plastics on specific 
organs in biological samples

MP present in the environment can have harmful biological 
effects by penetrating not only fish and land mammals but also the 
human body by inhalation of air or consumption of food contaminated 
with MP. However, the unique characteristics and complexity of 
biological samples make the detection of MP in them more difficult 
than that in environmental samples. Therefore, we  compiled an 
overview and analysis of methods used for detecting MP in recently 
published papers (Tables 1–4) with the aim of providing a reference 
for research exploring the distribution and characteristics of MP in 
biological samples from fish, terrestrial mammals, and humans. 
We conducted a recent literature search to compile information on the 
types, exposure durations, methods, and concentrations of MP 
detected in biological samples from fish, terrestrial mammals, and 
humans. We categorized the data based on the organs, including the 
skin, intestines, lungs, and brain, and summarized the associated 
biological effects.

Skin
Table  1 summarizes the effects of microsized polypropylene 

(MP-PP) on skin cells. Human-derived dermal fibroblasts (HDF) were 
exposed to various concentrations of MP-PP for 48 h. MP-PP showed 
cytotoxicity in HDF, rodent macrophages (Raw 264.7), and human 
peripheral blood mononuclear cells (PBMC), linked to increased 
reactive oxygen species (ROS). Cytokine production (IL-6, TNF-α, 
histamine), associated with immune responses, also varied with 
particle size and concentration (44).

In another experiment, HDFs treated with various concentrations 
of microsized polystyrene (MP-PS) for 24 h showed particle 
penetration and accumulation within the cells. This induced the 
inflammatory cytokine IL-6, indicating potential local inflammation. 
Moreover, MP-PS infiltration into the cytoplasm triggered acute 
inflammatory responses in immune cells, increased ROS production, 
and released cytokines, leading to higher cell death in fibroblasts (45, 
46). However, in an experiment using rodents and terrestrial mammals 
in which MP-PP was orally administered for 4 weeks, there was no 
toxicity or mutagenic potential. Additionally, 3D reconstructed 
human skin cell culture models showed no signs of skin irritation. 
This suggested that PP exposure does not have a negative effect on 
humans (47).

In a 96-h experiment with zebrafish embryos, exposure to 
nanosized polystyrene (NP-PS) reduced survival rates and damaged 
skin keratinocyte villi. Also, this exposure inhibited antioxidant 
responses, induced oxidative stress, caused mitochondrial damage, 
and led to ionocyte death, impairing ion uptake, pH regulation, and 
ammonia excretion (48). In conclusion, MP can induce cytotoxicity 
in skin cells, increase inflammatory cytokines, and trigger acute 

inflammatory responses in immune cells. Additionally, experiments 
using zebrafish embryos demonstrate that MP can reduce survival 
rates and damage skin keratinocytes.

Intestine
Table 2 summarizes the effects of plastics on the intestine. Human-

derived colon cell lines (HT-29, Caco-2, and CCD 841CoN) were 
treated with nanosized polystyrene (NP-PS) at various times and 
concentrations. The results showed that PS was absorbed by colon 
cancer cells in a time- and concentration-dependent manner, leading 
to cytotoxicity. Specifically, HT-29 cells internalized PS, resulting in 
ultrastructural changes and cell death. Co-exposure to PS and 
F-further increased HT-29 cell death (38). The biological effects of 
exposing zebrafish to microsized PE (MP-PE) in water tanks were 
investigated. MP-PE reduced the range of intestinal goblet cells and 
altered the abundance of dominant microorganisms in the intestines. 
This exposure also activated intestinal immune network pathways 
responsible for mucosal immunoglobulin production (49). In 
experiments using terrestrial mammals, such as rodents and chickens, 
MP-PS was provided as drinking water and food, and its biological 
effects on the intestines were evaluated (50–52). In a mouse colitis 
model, PS disrupted colonic epithelium, induced liver inflammation, 
and exacerbated colitis, suggesting long-term exposure to PS poses 
significant health risks despite no significant accumulation in 
intestinal tissues (50). In chickens exposed to MP-PS in drinking 
water, PS damaged the intestinal vascular barrier, disrupted intestinal 
flora, caused intestinal necrosis, and induced inflammatory cell death 
(pyroptosis) due to microbial infections. Additionally, PS triggered 
hepatic immune responses, leading to lipid metabolism disorders and 
cell death in the liver (51). In mice, PS exposure primarily caused gut 
microbiota dysbiosis, tissue inflammation, and plasma lipid 
metabolism disorders, without significant PS accumulation in the 
intestines or liver. Gut microbiota changes were closely related to PS 
concentration and size, while intestinal damage and abnormal lipid 
metabolism were not significantly linked to PS exposure (52). In 
conclusion, plastics induce cytotoxicity in a size-dependent manner, 
with smaller sizes leading to internalization and subsequent cell death. 
Furthermore, MP has been shown to reduce the range of goblet cells 
and alter gut microbiota composition in zebrafish. In mammals, they 
cause damage to the colonic epithelium, liver inflammation, and 
disruption of gut microbial communities, which may result in gut 
microbiota dysbiosis and tissue inflammation.

Lung
Table 3 shows results for the biological effects of plastics on lungs. 

Research using human lung carcinoma cells (A549) investigated the 
biological effects of different-sized PS, PE, and PET particles (53–55). 
PS could be internalized by cells through phagocytosis, and could the 
findings facilitate the understanding of health risks caused by such 
accumulation (53). At 1,000 μg/mL, PE slightly reduced A549 cell 
viability and induced high levels of nitric oxide (NO) and nitrite. This 
suggests PE exposure may increase susceptibility to NO-mediated 
toxicity and immune modulation (54). PET was internalized by A549 
cells, reducing cell viability at high concentrations and inducing 
oxidative stress. Increased PET concentrations correlated with 
decreased mitochondrial membrane potential and higher levels of 
reactive oxygen species (ROS), leading to an increase in late-stage 
apoptotic cells (55). In experiments with terrestrial mammals, 
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TABLE 1  Summary of the biological effects of microplastics and nanoplastics on the skin.

Reference Model Polymer Size Route Duration Dose Additive Limitation Actual result

(44) Human-derived dermal 

fibroblasts (HDF cells)

PP ~20 μm, 25–200 μm In vitro 48 h 10, 50, 100, 500, 

1,000 μg/mL

x Elevated ROS levels induced 

toxicity and larger particles 

demonstrated lower cellular 

toxicity

(45) Human-derived dermal 

fibroblasts (HDF cells)

PS PS (10, 40, 100 μm), PS-

FITC (460 nm, 1 μm, 3 μm)

In vitro 24 h 0, 1, 10, 100, 

500 or 1,000 μg/

mL

x Hemolytic impact of 

nano-sized PS was 

unknown

Small-sized PS particles induced 

hemolysis in red blood cells

(46) Human-derived dermal 

fibroblasts (HDF cells)

PS 5–25 μm, 25–75 μm, 75–

200 μm

In vitro 1 and 4 d 10, 100, 

1,000 μg/mL

x PS generated reactive oxygen 

species (ROS)

(47) Human skin 

reconstructed 3D model

PP 86 μm In vitro (3D-reconstructed 

epidermal tissue)

22 h 40 mg x The 3D reconstructed 

human skin model 

lacks pores

No cell toxicity

(48) Skin keratinocytes in 

zebrafish embryos

PS 25 nm In vitro (zebrafish embryos) 96 h 10, 25, 50 mg/L x PS induced mitochondrial damage 

and ionocyte apoptosis

TABLE 2  Summary of the biological effects of microplastics and nanoplastics on the intestine.

Reference Model Polymer Size Route Duration Dose Additive Limitation Actual result

(49) Adult zebrafish (Danio 

rerio)

PE 30 μm Oral (in 

water)

7 d 1, 10, 100, 1,000 μg/

mL

x Altered intestinal microbiota activated the 

intestinal immune network

(50) Mouse PS 5 μm Oral 42 d 100 μg/L x PS disrupts the homeostasis of colonic 

epithelium

(52) Mouse PS 40–60 μm, 

60–100 μm

Oral 21 weeks 50, 500 mg/kg food x Significant PS accumulation was not 

observed in the intestine or liver

Imbalance in gut microbiota, tissue 

inflammation

(51) Chickens (Gallus gallus) PS 5 μm Oral 6 weeks 1, 10, 100 mg/L x Lack of data that PS disrupt the 

intestinal barrier and penetrate into the 

gut

PS disrupts the intestinal vascular barrier, 

disturbs gut microbiota, and promotes the 

accumulation of lipids and carbohydrates

(38) Human colonocytes 

(HT-29, Caco-2, CCD 

841 CoN)

PS 100 nm In vitro 24, 48, 72 h PS-NP: 50, 100, 

250, 500 μg/mL, F−: 

1 mM

Fluoride Intracellular internalization of PS in cells 

was conducted solely through TEM

Alterations in cellular microstructure
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intranasal administration of NP-PS and MP-PS to mice induced nasal 
microbiota imbalance, with MP-PS showing a stronger effect on lung 
microorganisms. Suggesting microbial changes could serve as 
biomarkers for PS-induced airway imbalance (39). Inhalation 
exposure to intratracheal PS via spray induced dose-dependent 
pulmonary fibrosis in mice, increasing α-SMA, vimentin, and Col1a 
expression. This exposure also caused intensive lung oxidative stress, 
suggesting PS inhalation may lead to pulmonary fibrosis through 
oxidative stress and Wnt/β-catenin signaling activation (56). In 
conclusion, plastic particles can be internalized by cells, increasing 
health risks, reducing the viability of lung cells, and inducing oxidative 
stress while affecting immune modulation. Additionally, in mammals, 
nanosized plastics have been shown to disrupt lung microbiota 
balance, and inhalation exposure may lead to pulmonary fibrosis, 
potentially linked to oxidative stress.

Brain
Table 4 summarizes the search results for the biological effects of 

plastics detected in the brain. Zebrafish embryos exposed to MP-PS 
exhibited seizures, increased seizure-like brainwave signals, and 
altered seizure-related gene expression. PS disrupts cholinergic, 
dopaminergic, and GABAergic neurotransmitter systems, impacting 
brain development in zebrafish embryos (57). In experiments with 
adult zebrafish, exposure to NP-PE and NP-PP in aquariums increased 
brain catalase activity but inhibited lactate dehydrogenase at high 
doses. Brain respiratory chain complexes II and IV significantly 
decreased, indicating impaired mitochondrial function. In the liver, 
mitochondrial respiration was also impaired, correlating with 
decreased mitochondrial membrane potential due to respiratory chain 
complex inhibition (58). In an experiment with common carp 
(Cyprinus carpio), exposure to NP-PE and MP-PE in aquariums 
significantly reduced acetylcholinesterase (AChE), monoamine 
oxidase (MAO), and nitric oxide (NO) levels in the brain. Smaller PE 
particle sizes correlated with more pronounced reductions in these 
markers. Additionally, damage such as necrosis, fibrosis, capillary 
changes, tissue disintegration, edema, and degenerative connective 
tissue was observed in cerebellar neurons, ganglion cells, and the 
retina, indicating potential neurotoxic effects of PE exposure (59). 
Furthermore, an experiment in terrestrial mammals investigated the 
effects of consuming MP-PS in drinking water. It found that PS 
disrupted the blood-brain barrier, increased brain dendritic spine 
density, and induced hippocampal inflammation. Mice exposed to PS 
exhibited impaired cognition and memory, with concentration-
dependent effects on learning abilities, irrespective of PS particle size 
(60). In experiments with chickens exposed to MP-PS in drinking 
water, significant effects on the brain were observed, including 
hemorrhage, microthrombi formation, and loss of Purkinje cells. 
Plastic-induced brain hemorrhage triggered inflammation, disrupted 
mitochondrial function, and activated signaling pathways like 
ASC-NLRP3-GSDMD and AMPK (61). In conclusion, plastics impact 
neurotransmitter systems in zebrafish embryos, while they increase 
brain catalase activity and inhibit lactate dehydrogenase in adult 
zebrafish. In common carp, exposure to plastics leads to decreased 
levels of acetylcholinesterase (AChE), monoamine oxidase (MAO), 
and nitric oxide (NO). Furthermore, in mammals, the blood-brain 
barrier is disrupted, resulting in impaired cognition and memory, with 
significant observations in chickens, including brain hemorrhage and 
loss of Purkinje cells.
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Assessments of biological effects of 
combined exposure to micro/
nanoplastics and additives

Recently, the number of studies evaluating the biological hazards 
of mixtures containing MP and heavy metals or additives, rather than 
focusing solely on the biological toxicity of individual MP substances, 
is increasing. In this section, findings from studies that have assessed 
the biological effects of mixtures involving MP/NP of varying sizes 
and types combined with heavy metals or additives are summarized.

A summary of the combined exposure of 
nanoplastics with heavy metals or additives

Nanoplastics with heavy metals
Chen et al. (62) demonstrated that co-exposure of cadmium (Cd) 

and NP-PS in grass carp (Ctenopharyngodon idellus) decreases 
antioxidant enzyme activity and causes organ damage. Feng et al. (31) 
showed that co-exposure to MP-PS and lead (Pb) in female mice 
aggravated ovarian toxicity and increased Pb bioaccumulation. Estrela 
et  al. (63) demonstrated that zinc oxide nanoparticles (ZnO) in 
combination with NP-PS influenced the behavior of Ctenopharyngodon 
idella (C. idella) in mirror tests, inducing inactivity and showing signs 
of DNA damage and increased oxidative stress. In mice, Estrela et al. 
(40) evaluated the toxicity of ZnO and NP-PS through intraperitoneal 
administration, revealing increased levels of nitric oxide (NO), 
reactive oxygen species, decreased acetylcholinesterase (AChE) 
activity, and brain accumulation of nanomaterials, indicating their 
potential neurotoxicity. Yu et al. (32) used single-cell sequencing to 
reveal heterogeneous effects of NP and Pb on zebrafish intestinal cells. 
Simultaneous exposure to NP-PS and Pb altered immune recognition, 
induced cell death, and caused oxidative stress, lipid metabolism 
disturbance, and similar intestinal toxicity.

Nanoplastics with chemicals
Steckiewicz et al. (38) demonstrated that fluoride alone was not 

cytotoxic but enhanced the cytotoxicity of NP-PS in colonocytes, 
causing ultrastructural changes through cellular internalization. Yu 
et  al. (37) demonstrated that co-exposure to MP/NP and 
oxytetracycline in zebrafish led to altered intestinal histopathology, 
microbiome changes, and increased antibiotic-resistance genes. Li 
et al. (35) found that NP-PS enhanced the adverse effects of di-(2-
ethylhexyl) phthalate (DEHP) on the male reproductive system in 
mice, causing gene and pathway alterations. Also, Liao et al. (64) 
showed that DEHP exacerbates the toxicity of NP-PS through 
histological damage and intestinal microbiota dysbiosis in freshwater 
fish. Wang et al. (65) demonstrated the Simultaneous exposure to 
NP-PS and BDE-47  in zebrafish exacerbated developmental 
deformities, decreased survival rates, and caused tissue damage. 
Santos et  al. (66) demonstrated combined exposure to NP and 
phenmedipham (PHE) in zebrafish embryos exhibited greater toxicity 
than single exposures. Martínez-Álvarez et  al. (67) showed that 
combined exposure to NP-PS and benzo(a)pyrene (B(a)P) in brine 
shrimp larvae and zebrafish embryos increased toxicity. Qin et al. (68) 
showed that chlorine disinfection increased NP-PS toxicity in human 
cells by inducing mitochondria-dependent apoptosis. Liu et al. (69) 
showed that NP and avobenzone (AVO) exposure affected neural and T

A
B

LE
 4

 S
u

m
m

ar
y 

o
f 

th
e 

b
io

lo
g

ic
al

 e
ff

ec
ts

 o
f 

m
ic

ro
p

la
st

ic
s 

an
d

 n
an

o
p

la
st

ic
s 

o
n

 t
h

e 
b

ra
in

.

R
e

fe
re

n
ce

M
o

d
e

l
P

o
ly

m
e

r
Si

ze
R

o
u

te
D

u
ra

ti
o

n
D

o
se

A
d

d
it

iv
e

Li
m

it
at

io
n

A
ct

u
al

 r
e

su
lt

(5
7)

Ze
br

afi
sh

 

em
br

yo

PS
1,

 6
, 1

0,
 2

5 μ
m

In
 v

itr
o 

(z
eb

ra
fis

h 

em
br

yo
s)

6 
hp

f (
ho

ur
s p

os
t-

fe
rt

ili
za

tio
n)

 ~
 12

0 

hp
f

50
0,

 5
,0

00
, 

50
,0

00
 p

ar
tic

le
s/

m
L

x
N

eu
ro

to
xi

ci
ty

 (s
ei

zu
re

 e
ffe

ct
s)

(5
8)

A
du

lt 
ze

br
afi

sh
 

(D
an

io
 re

rio
)

PE
, P

P
17

9 ±
 77

 n
m

O
ra

l (
in

 w
at

er
)

21
 d

1 m
g/

L
x

M
ito

ch
on

dr
ia

l r
es

pi
ra

tio
n 

de
fic

ie
nc

y

(5
9)

C
om

m
on

 c
ar

p,
 

(C
yp

rin
us

 

ca
rp

io
)

PE
M

aP
s >

 5
 m

m
, 

5 m
m

 >
 M

Ps
 >

 10
0 n

m
, N

Ps
 

<1
00

 n
m

O
ra

l (
in

 w
at

er
)

15
 d

10
0 m

g/
L

x
Be

ha
vi

or
al

 e
xp

er
im

en
t d

at
a 

ar
e 

ne
ed

ed
 to

 a
ss

es
s t

he
 

ne
ur

ot
ox

ic
ity

 o
f P

E

N
eu

ro
to

xi
ci

ty
 (d

ec
re

as
ed

 

ac
et

yl
ch

ol
in

es
te

ra
se

 (A
C

hE
), 

m
on

oa
m

in
e 

ox
id

as
e 

(M
A

O
), 

an
d 

ni
tr

ic
 o

xi
de

 (N
O

))

(6
0)

M
ou

se
PS

1,
 4

, 1
0 μ

m
O

ra
l

18
0 

d
10

0,
 1

,0
00

 μg
/L

x
Th

e 
un

de
rly

in
g 

m
ec

ha
ni

sm
s o

f 

ne
ur

ot
ox

ic
ity

 a
nd

 co
gn

iti
ve

 

dy
sf

un
ct

io
n 

in
du

ce
d 

by
 P

S 
w

as
 

un
cl

ea
r

Th
e 

de
st

ru
ct

io
n 

of
 th

e 
bl

oo
d-

br
ai

n 
ba

rr
ie

r, 

in
cr

ea
se

d 
de

nd
rit

ic
 sp

in
e 

de
ns

ity
, 

in
fla

m
m

at
io

n 
re

sp
on

se
s i

n 
th

e 

hi
pp

oc
am

pu
s, 

an
d 

im
pa

ire
d 

co
gn

iti
on

 a
nd

 

m
em

or
y

(6
1)

C
hi

ck
en

PS
5 μ

m
O

ra
l

6 w
ee

ks
1,

 1
0,

 1
00

 m
g/

L
x

Im
m

un
oh

ist
oc

he
m

ic
al

 st
ai

ni
ng

 

m
et

ho
ds

 to
 sh

ow
 cl

ea
rly

 th
e 

pr
es

en
ce

 o
f h

em
or

rh
ag

e

Br
ai

n 
he

m
or

rh
ag

e, 
lo

ss
 o

f P
ur

ki
nj

e 
ce

lls

M
aP

s, 
m

ac
ro

pl
as

tic
s.

178

https://doi.org/10.3389/fpubh.2024.1458727
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hong and Kim� 10.3389/fpubh.2024.1458727

Frontiers in Public Health 08 frontiersin.org

retinal development in zebrafish. Liu et al. (70) demonstrated NP-PS 
and butyl methoxydibenzoylmethane (BMDBM) affected zebrafish 
brain development and inhibited motor activity. Wu et  al. (34) 
showed that parental co-exposure to NP-PS and microcystin-LR 
(MCLR) aggravated hatching inhibition in zebrafish offspring, 
affecting enzyme activity, disrupting the cholinergic system, and 
impairing muscle development. Similarly, Zuo et  al. (71) 
demonstrated that combined exposure to NP-PS and MCLR altered 
the expression of HPT axis-related genes and GH/IGF axis genes in 
F1 zebrafish larvae, exacerbating growth inhibition and increasing 
MCLR transfer to offspring. Wang et al. (33) demonstrated the NP-PS 
and bisphenol A (BPA) in human cells showed increased adsorption 
and cytotoxicity. Singh et  al. (72) demonstrated that NP-PS and 
polycyclic aromatic hydrocarbons (PAHs) altered nanoparticle 
stability and toxicity, leading to DNA damage in zebrafish. He et al. 
(36) demonstrated co-exposure to NP and triphenyl phosphate 
(TPhP) in zebrafish led to significant reproductive impairment. Yan 
et al. (73) demonstrated NP and tetracycline (TC) in gastric cancer 
cells reduced cell viability and induced oxidative stress. Zhang et al. 
(74) showed NP-PS combined with roxithromycin (ROX) in 
freshwater fish red tilapia (Oreochromis niloticus) increased 
bioaccumulation and disrupted metabolism. Chen et al. (75) showed 
that NP and 17α-ethynylestradiol (EE2) exposure in zebrafish 
suppressed locomotor activity and altered swimming behavior. 
Bhagat et al. (76) demonstrated that co-exposure to NP and metal 
oxide nanoparticles (nMOx) like aluminum oxide and cerium oxide 
induced oxidative stress in zebrafish embryos. Zhao et al. (77) showed 
that NP-PS and synthetic phenolic antioxidants like butylated 
hydroxyanisole (BHA) in zebrafish disrupted thyroid function 
and metabolism.

Nanoplastics with others
Alaraby et al. (78) demonstrated antagonistic interactions between 

silver compounds and NP-PS in Drosophila, where nanosilver, known 
for inducing oxidative stress, significantly decreased oxidative stress 
and DNA damage when combined with NP-PS, thereby reducing 
genotoxicity. In contrast, Ilić et al. (79) showed a synergistic interaction 
between silver nanoparticles (AgNP) and NP-PS in human intestinal 
cells, with combined exposure leading to increased cell death, 
expression of inflammatory cytokines (IL-6, IL-8, and TNF-α), 
oxidative stress, and mitochondrial dysfunction. Guo et  al. (80) 
showed that NP-PS significantly altered the gut microbial community 
in zebrafish, with commercial PS having stronger toxic effects, which 
were mitigated by co-treatment with enrofloxacin (ENR). Brandts 
et al. (81) demonstrated the immunomodulatory effects of NP and 
humic acids on European seabass. The study assessed whether NP-PS 
act as stressors in juvenile European seabass, affecting immune 
response, and whether humic acid mitigates these effects. Shi et al. 
(82) found that NP-PS and phthalate esters together reduced cell 
viability in human lung epithelial A549 cells, emphasizing their 
combined toxic effects and risks of co-exposure to NP and organic 
pollutants in humans. Hou et  al. (83) showed significant NP 
accumulation in human intestinal organoids, investigating their 
absorption, toxicity in human intestinal cells, and proposing inhibiting 
intracellular uptake as a potential therapy to reduce NP toxicity 
in humans.

In conclusion, combined exposure to NP and heavy metals or 
additives has been shown to increase cytotoxicity, resulting in 

reproductive and intestinal toxicity, as well as organ damage. This 
exposure leads to heightened DNA damage and oxidative stress, 
which in turn contributes to increased inflammation. Additionally, 
alterations in gut microbial communities have been observed.

A summary of the combined exposure 
of microsized plastics with heavy 
metals or additives

Microsized polystyrene

Microsized polystyrene with heavy metals
Wang et  al. (84) reported distinct adverse outcomes on 

erythrocytes’ lipid profiles following single and combined exposure 
to Cd and MP. Co-treatment of MP-PS and CdCl2 showed a clear 
antagonistic relationship, indicating impaired membrane function of 
red blood cells (RBCs). Chen et  al. (85) demonstrated that 
co-exposure to MP-PS and Cd in early-stage zebrafish reduced body 
weight and intensified growth abnormalities, oxidative stress, and cell 
death-related gene expression compared to individual exposures. 
These findings suggest that MP may worsen Cd’s adverse effects 
during early zebrafish development. Zhang et al. (86) studied the 
combined toxicity of MP and Cd in zebrafish embryos. They exposed 
the embryos to varying concentrations of MP along with 
environmentally relevant levels of Cd, which adversely affected their 
survival and heart rate (HR). Yan et al. (87) showed that the individual 
and combined toxicogenetic effects of MP and heavy metals (Cd, Pb, 
and Zn) disrupted gut microbiota and gonadal development in 
marine medaka. This affected gut function and specific bacterial 
species in male fish. Lu et al. (88) found that MP increase Cd levels 
in zebrafish organs, including the liver, viscera, and gills. This 
combined exposure to MP and Cd resulted in increased toxicity, 
leading to oxidative damage and inflammation. The study emphasizes 
the chronic risks of MP and Cd exposure in zebrafish. Zuo et al. (89) 
demonstrated the individual and combined effects of MP and Cd on 
juvenile grass carp (Ctenopharyngodon idellus). They found that 
intestinal Cd levels were elevated in grass carp exposed to both Cd 
and MP-PS. Histological analysis showed significant intestinal 
damage following acute exposure, accompanied by changes in 
proinflammatory cytokine expression. Yang et al. (90) compared the 
combined toxicity of MP-PS and different Cd concentrations in 
zebrafish. They found that MP-PS increased Cd toxicity at low 
concentrations (LCd) but reduced toxicity at high concentrations 
(HCd), indicating a concentration-dependent interaction between 
MP-PS and Cd in zebrafish. Zhang et al. (91) found that combined 
exposure of goldfish to MP and Cu induced oxidative stress, 
inflammation, apoptosis, and impaired autophagy in the pancreas 
and intestines. MP enhanced Cu accumulation in the liver, pancreas, 
and intestines, worsening oxidative stress. This combined exposure 
also leads to inflammation, excessive cell death, and impaired 
autophagy in the liver and pancreas, further emphasizing the risks 
associated with MP-mediated heavy metal adsorption. Zheng et al. 
(92) found that particles, rather than Zn2+ released from ZnO 
nanoparticles, exacerbated MP toxicity in early-stage exposure in 
zebrafish and their offspring. ZnO particles attached to MP surfaces 
facilitated ZnO transport into larvae, intensifying effects on growth 
inhibition, oxidative stress, apoptosis, and GH/IGF axes.
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Microsized polystyrene with chemicals
Yu et al. (37) showed that combined exposure to MP/NP and 

oxytetracycline in zebrafish affected intestinal histopathology and 
microbiome. Co-exposure increased antibiotic resistance gene 
abundance in the intestine. Cheng et al. (93) studied the combined 
effects of MP-PS and BPA on human embryonic stem cell-derived 
liver organoids, highlighting metabolism-related health risks even at 
low doses equivalent to human internal exposure levels. Wang et al. 
(33) studied the combined effects of BPA and NP-PS, MP-PS on 
particle uptake and toxicity in human Caco-2 cells. They examined 
how BPA adsorbs onto different sizes of PS particles using colon 
cancer Caco-2 cells and assessed resulting cell toxicity, confirming 
increased toxicity with BPA adsorption during MP exposure. Sun et al. 
(94) discovered that simultaneous ingestion of MP-PS and 
epoxiconazole increases health risks in mice due to synergistic 
bioaccumulation. Intestinal damage caused by EPO allows significant 
PS penetration, impacting gut microbiota and exacerbating oxidative 
stress and metabolic disorders. Lu et al. (95) investigated the combined 
toxicity of MP-PS and sulfamethoxazole (SMZ) on zebrafish embryos. 
Despite observing an antagonistic effect between PS and SMZ toxicity, 
which slightly reduced their combined impact, co-exposure still 
exhibited significant toxicity. Jiang et al. (96) investigated the effects of 
MP and tributyltin (TBT), alone and combined, on bile acid and gut 
microbiota interactions in mice. They observed that MP, either alone 
or with TBT, induced liver inflammation, altered gut microbiota 
composition, and disrupted fecal bile acid profiles. However, 
combined exposure to MP and TBT mitigated the toxic effects 
observed with individual exposures. Domenech et al. (97) showed the 
interaction of silver nanoparticles and silver nitrate with PS as metal 
carriers and their effects on human intestinal Caco-2 cells. In this 
study, we confirmed that a composite of silver compounds and PS was 
internalized by Caco-2 cells, exhibiting harmful cellular effects, such 
as genetic toxicity and oxidative DNA damage. Xu et  al. (98) 
investigated the toxic effects of MP and phenanthrene in zebrafish. 
Combined exposure led to higher accumulation in zebrafish and 
increased expression of immune and oxidative stress genes due to 
oxidative stress. MP also demonstrated a synergistic effect by altering 
gut microbiota, thereby enhancing the toxicity of phenanthrene. He et 
al. (36) demonstrated enhanced toxicity of triphenyl phosphate 
(TPhP) in zebrafish when combined with MP and NP. MP-PS was 
used to study TPhP toxicity, revealing that MP further inhibited 
sperm and oocyte formation and significantly impaired zebrafish 
reproductive performance compared to TPhP alone. Li et al. (99) 
showed that hydrogen sulfide (NaHS) mitigates MP-PS-induced 
hepatotoxic effects by upregulating the Keap1-Nrf2 pathway. NaHS 
significantly reduced inflammation, cell death, and oxidative stress in 
the liver caused by MP-PS, promoting Nrf2 accumulation and 
alleviating its hepatotoxic effects. Yang et al. (100) discovered that 
MP-PS reduced 6:2 chlorinated polyfluorinated ether sulfonate 
(F-53B) bioaccumulation in larval zebrafish while promoting its 
adsorption, thereby lowering its bioavailability. This combined 
exposure also induced inflammatory stress in the zebrafish larvae. 
Wang et  al. (101) showed that MP and DEHP together induced 
pancreatic cell apoptosis in mice through oxidative stress and 
activation of the GRP78/CHOP/Bcl-2 pathway. This study showed 
increased ROS levels, inhibited antioxidant enzyme activity, and 
altered expression of key pathway proteins, ultimately leading to cell 
death. Hanslik et al. (102) studied biomarker responses in zebrafish 

(Danio rerio) exposed long-term to MP-bound chlorpyrifos (CPF) 
and benzo(k)fluoranthene (BkF). They found that CPF, an 
organophosphate insecticide, adsorbed onto MP-PS during exposure 
to adult zebrafish, while BkF, a polycyclic aromatic hydrocarbon 
(PAH), adsorbed onto microsized polymethyl methacrylate 
(MP-PMMA). Importantly, these MP-bound substances did not 
induce adverse effects in aquatic ecosystems. Luo et al. (103) showed 
that exposure to both MP-PS and imidacloprid (IMI) in adult 
zebrafish led to enhanced liver toxicity by affecting genes involved in 
glycolipid metabolism and inflammation. This highlights the 
synergistic hepatotoxic effects of MP and IMI in zebrafish.

Microsized polystyrene with others
Qiao et al. (104) explored the combined effects of MP-PS and 

natural organic matter (NOM) on Cu accumulation and toxicity in 
zebrafish. They found that smaller MPs absorbed more Cu, and NOM 
facilitated Cu adsorption onto MPs. This combination increased Cu 
accumulation in the liver and gut in a size-dependent manner, 
suggesting heightened Cu toxicity in these organs. Deng et al. (105) 
demonstrated that MP worsen the toxicity of organophosphorus flame 
retardants (OPFRs) in mice. Co-exposure increased lactate 
dehydrogenase levels and decreased AChE activity, alongside 
significant metabolic changes in amino acid pathways and energy 
metabolism compared to controls. Zhang et al. (74) demonstrated that 
MP-PS interact with ROX to enhance its bioaccumulation and 
distribution in freshwater red tilapia. Co-exposure to PS and ROX 
potentially affects ROX metabolism in the liver of red tilapia. Zhao 
et al. (77) showed that microplastics worsened the developmental 
toxicity of synthetic phenolic antioxidants in zebrafish by disrupting 
thyroid function and metabolism, leading to increased BHA 
accumulation, lower hatching rates, more deformities, and reduced 
bone calcification. Yan et al. (73) investigated the toxicity of TC in 
combination with PS spheres in gastric cancer cells. They confirmed 
that PS had a concentration-dependent adsorption capacity for TC 
using two different sizes of PS. Moreover, the PS-TC mixture reduced 
the viability of gastric cancer cells (AGS) by inducing oxidative stress, 
ultimately leading to cell death.

In conclusion, the combined exposure of MP with heavy metals 
or additives has been shown to increase cytotoxicity, negatively impact 
erythrocytes, and induce developmental abnormalities. Furthermore, 
this combined exposure may enhance toxicity through accumulation 
in organs, leading to intestinal damage and alterations in gut 
microbial communities.

Microsized polyethylene

Microsized polyethylene with heavy metals
Tarasco et  al. (106) studied the effects of pristine and 

contaminated MP-PE on zebrafish development, finding impaired 
reproductive capacity with BaP and MP-PE co-exposure. They noted 
increased skeletal deformities and bone disorders during 
development, alongside intestinal inflammation indicated by 
histological analysis. Banaee et al. (107) investigated the effects of Cd 
and MP particles on common carp (Cyprinus carpio), focusing on 
biochemical and immunological parameters. They found that 
combined exposure to Cd and MP reduced lysozyme and alternative 
complement (ACH50) activity, as well as total immunoglobulin and 
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complements C3 and C4 levels compared to controls. These changes 
indicated heightened toxicity on immunological parameters. 
Miranda et al. (108) investigated the neurotoxic, behavioral, and 
lethal effects of Cd, MP, and their mixtures on juvenile pomatoschistus 
microps under lab conditions. They found that while mortality rates 
did not significantly differ between groups exposed to Cd alone 
versus the MP-Cd mixture, MP did influence the sublethal 
neurotoxic effects of Cd. Luís et al. (109) demonstrated that MP 
influence the acute toxicity of chromium (Cr) (VI) in early juvenile 
common gobies (Pomatoschistus microps). They found a significant 
decrease in predatory performance and inhibition of AChE activity 
when juveniles were co-exposed to Cr (VI) and MP-PE. Additionally, 
confriming that co-exposure led to increased lipid 
peroxidation (LPO).

Microsized polyethylene with chemicals
Menéndez-Pedriza et  al. (110) investigated the lipidomic 

impacts of MP-PE and PCBs on human hepatoma cells. They found 
that while MP-PE alone was non-toxic, its combination with PCBs 
led to concentration-dependent changes in lipid composition and 
membrane permeability, indicating potential adverse effects from 
this interaction. Huang et al. (111) investigated the combined impact 
of MP and tetrabromobisphenol A (TBBPA) on the human gut using 
in vitro simulations with human colon cancer cells and microbial 
communities. They found that this combined exposure disrupted gut 
homeostasis and metabolic pathways in gut microbiota, leading to 
significant adverse effects. Yu et  al. (112) found that cosmetic-
derived plastic microbeads enhance TBBPA adsorption and increase 
oxidative stress in zebrafish. The integrated biomarker response 
(IBR) index revealed significant detrimental effects from combined 
PE and TBBPA exposure. Zhang et al. (113) studied the combined 
effects of PE and 9-nitroanthracene (9-NAnt) on zebrafish, finding 
that this co-exposure induced neurotoxicity, disrupted energy 
metabolism, and altered gut microbiota composition. Deng et al. 
(114) demonstrated that phthalate-contaminated MP increased PAE 
accumulation in the liver and intestine of male mice, leading to 
enhanced reproductive toxicity. Combined exposure to PAEs and 
MP adversely affected sperm physiology and formation. Deng et al. 
(52) found that MP adsorb and transport PAEs to the mouse 
intestine, where they accumulate. Combined exposure to MP and 
PAEs increased intestinal permeability, altered gut microbiota, and 
exacerbated inflammation and metabolic disorders more than 
individual exposures. Sheng et al. (115) demonstrated that different 
types of MP affect triclosan (TCS) adsorption, accumulation, and 
toxicity in zebrafish. PE increased TCS accumulation in the liver and 
intestines by adsorbing TCS. Combined exposure to TCS and PE led 
to increased lipid toxicity due to TCS accumulation. Deng et al. 
(105) showed that MP worsen the toxicity of organophosphorus 
flame retardants (OPFRs) in mice. Mice exposed to MP-PE along 
with OPFRs like TCEP and TDCPP experienced more pronounced 
changes in biochemical markers and metabolites compared to 
exposure to these substances individually, indicating increased 
toxicity from the combined exposure. Tong et al. (116) demonstrated 
that MP-PE cooperate with Helicobacter pylori to promote gastric 
injury and inflammation in mice. In this study, exposure to a 
combination of Helicobacter pylori and MP-PE resulted in increased 
infiltration of inflammatory cells into gastric or intestinal tissues, 
along with an elevation in inflammatory factors.

Microsized polyethylene with others
Khan et al. (117) found that MP-PE beads did not significantly 

change silver (Ag) absorption and localization in zebrafish. However, 
MP-PE increased Ag accumulation in the intestines, suggesting 
alterations in the bioavailability and absorption of metal 
contaminants. Boyle et  al. (118) demonstrated that PVC plastic 
fragments release bioavailable Pb additives in zebrafish. They 
compared the impact of PVC exposure with PE-HD and PET 
exposure, noting that PE did not significantly alter biomarker 
expression. Schirinzi et  al. (119) studied the cytotoxic effects of 
nanomaterials and MP on human cerebral and epithelial cells. They 
assessed individual cell toxicity for PE, metal nanoparticles (nMOx), 
and carbon nanomaterials, observing heightened oxidative stress in 
both cell lines. This suggests that combined exposure to PE and these 
additives induces cellular toxicity. Batel et al. (120) found that PE 
transferred BaP to Artemia nauplii and zebrafish in a food web 
experiment. PE moved through zebrafish intestines without causing 
significant damage but was absorbed by epithelial cells. It also 
facilitated the release of persistent organic pollutants (POPs) in the 
intestines, transferring them to the intestinal epithelium and liver. 
Araújo et  al. (121) examined the combined effects of emerging 
pollutants and MP-PE on zebrafish, focusing on genotoxicity and 
redox balance. They found that both MP-PE alone and in combination 
with new pollutants caused DNA damage and nuclear abnormalities 
in erythrocytes. This indicates that the combined exposure did not 
increase toxicity beyond that of MP-PE alone, highlighting complex 
interactions among substances in aquatic environments. Batel et al. 
(122) investigated the long-term ingestion effects of differently sized 
MP on zebrafish. Their study focused on BaP combined with PE, 
demonstrating that BaP-PE particles accumulated in the zebrafish 
intestine but particles were transported along the intestine and 
excreted without inducing adverse effects.

In conclusion, the combined exposure of MP with heavy metals 
and additives has been shown to enhance cellular toxicity and induce 
developmental disorders, neurotoxicity, and dysbiosis in gut 
microbiota. Additionally, as bioaccumulation within the body 
increases, it may lead to organ damage and alterations in the 
bioavailability of these substances.

Microsized polyvinyl chloride

Microsized polyvinyl chloride with heavy metals
Chen et al. (123) used the SBRC (Soluble Bioavailability Research 

Consortium) digestion model to study the bioaccessibility of heavy 
metals (As, Cr, Cd, Pb) associated with MP and PVC. They found that 
Pb (II) exhibited higher bioaccessibility compared to As (V), Cr (VI), 
and Cd (II), highlighting potential health risks related to the 
interactions between heavy metals and MP. Boyle et  al. (118) 
demonstrated that PVC plastic fragments release bioavailable Pb 
additives in zebrafish. Their study assessed the effects of PVC and Pb 
additives on zebrafish biomarker expression, confirming that MP-PVC 
serves as an environmental reservoir for Pb, impacting biomarkers. 
Hoseini et  al. (124) demonstrated severe hepatic stress and 
inflammation in common carp (Cyprinus carpio) exposed to copper 
(Cu) and MP-PVC. The combined exposure induced significant liver 
damage and inflammation, as evidenced by hepatic transcriptomic 
and histopathological responses.
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Microsized polyvinyl chloride with chemicals
Wang et al. (125) demonstrated that single exposure to MP-PVC 

and DEHP delayed hatching and caused mortality in juvenile 
zebrafish. Single exposure affected cardiac development, while 
combined exposure showed an antagonistic effect. Sheng et al. (115) 
studied the impact of different MP types on triclosan (TCS) 
adsorption, accumulation, and toxicity in zebrafish. They observed 
PVC’s ability to adsorb both forms of TCS, altering its tissue 
distribution and increasing TCS accumulation in the liver and 
intestines. This highlights potential harmful effects of PVC-TCS 
mixtures on zebrafish.

In conclusion, combined exposure to MP with heavy metals and 
additives has been shown to induce significant hepatic stress and 
inflammation, leading to liver damage. Furthermore, this exposure 
may also result in developmental disorders and has the potential to 
adsorb and accumulate specific substances in the liver and intestines, 
which could pose harmful effects.

Microsized polypropylene

Sheng et  al. (115) studied the impact of different MP types, 
including PP, on triclosan (TCS) adsorption, accumulation, and 
toxicity in zebrafish. They found that MP-PP had the highest TCS 
adsorption capacity, leading to increased accumulation in the liver and 
intestines. Co-exposure to MP-PP and TCS also heightened oxidative 
stress, lipid peroxidation in the liver, and neurotoxic effects in 
the brain.

Microsized polyethylene terephthalate

Boyle et  al. (118) found that PVC plastic fragments release 
bioavailable Pb additives in zebrafish. They studied both PVC and 
microsized polyethylene terephthalate (MP-PET) regarding Pb release 
in zebrafish. The study concluded that PET did not alter biomarker 
expression in zebrafish larvae, indicating it had no effect on Pb release. 
Liu et al. (126) found that MP-PET reduced the bioaccumulation of 
SMZ in various tissues of mice but worsened its effects on gut 
microbiota and antibiotic resistance genes. While SMZ levels in the 
liver, lungs, spleen, heart, and kidneys were lower with MP-PET, the 
interaction exacerbated impact of SMZ on gut microbiota and 
antibiotic resistance gene profiles. Cheng et al. (127) studied the effects 
of MP fibers and granules on zebrafish embryos, both alone and in 
combination with Cd. They found that PET granules (p-PET) 
increased blood flow velocity and heart rate and inhibited embryo 
hatching, while PET fibers (f-PET) reduced Cd accumulation in the 
chorion by dissolving in the culture medium. Overall, both p-PET and 
f-PET decreased Cd toxicity, with fibers showing a stronger 
detoxification effect.

Microsized polymethyl methacrylate

Hanslik et  al. (102) studied biomarker responses in zebrafish 
exposed long-term to MP-associated chlorpyrifos (CPF) and benzo(k)
fluoranthene (BkF). They found that BkF adsorbed onto MP-PMMA 
in zebrafish, and combined exposure reduced BkF bioavailability 

compared to exposure to BkF alone, suggesting no adverse effects 
from PMMA-bound BkF in zebrafish.

Discussion

In this review, we set a 10-year period from 2012 to 2022 and 
conducted a comprehensive search for relevant studies in PubMed. 
We identified any biological hazards depending on the size and type 
of plastic and classified and organized the results of mixed exposure 
with chemicals and heavy metals included during plastic preparation 
as well as numerous chemicals pre-exposed in the environment.

Hazard tests conducted on various organs, including the skin, 
intestine, lungs, and brain, to assess the biological effects of exposure 
to MP/NP revealed that in the skin they inhibit antioxidant responses, 
induce oxidative stress, and lead to cell death, potentially damaging 
skin function (45–48). In the intestines, they alter the microflora, 
cause tissue inflammation, destruct the vascular barrier, and cause 
metabolic disorders (38, 50–52). In the lungs, they cause an increase 
in oxidative stress and an imbalance in nasal microorganisms, 
potentially causing lung fibrosis (39, 53, 54, 56). Finally, in the brain 
they impact the regulatory disorders associated with seizures. They 
could cross the blood-brain barrier, induce inflammatory responses 
in the hippocampus, and trigger inflammatory cell infiltration into the 
brain as a result of brain hemorrhage, potentially leading to 
intracerebral inflammation (57, 60, 61). These findings suggest that 
the toxic effects induced by MP/NP could be significant, potentially 
reaching humans at the top of the food chain (128).

Majority of the global plastic is produced for use as packaging 
material in food, cosmetics, and pharmaceuticals (2, 129). Plastics are 
composed of numerous compounds including various chemicals. 
When manufacturing plastics for specific purposes, various chemical 
additives such as lubricants, plasticizers, antioxidants, heat stabilizers, 
and pigments are used during production and formulation (20, 130, 
131). Plastics manufactured by incorporating numerous chemicals, 
when exposed to various environments, decompose into MP and cause 
biological hazards because of their ability to adsorb contaminants from 
the surrounding environment (93, 94, 110, 114, 122, 132).

DEHP, a commonly used plasticizer enhances the toxic effects on 
the male reproductive system when simultaneously exposed with 
plastics (35), causing histological damage microbial imbalance in the 
intestine (52, 64). Similarly, BPA, an endocrine-disrupting substance, 
has been used as an additive to render plastics transparent. Concurrent 
exposure to BPA and plastics increases metabolism-related hazards in 
human embryonic stem cell-derived liver organoids and can cause 
diseases (93). Simultaneous exposure to plastics and PBDE, which are 
used as flame retardants in plastics and fabrics, induces morphological 
developmental disorders, damages muscle and cartilage tissues, and 
exacerbates toxic effects on the thyroid (65). Additionally, BHA, an 
antioxidant widely used in plastics, food, and cosmetics, accumulates 
in plastics, disrupts thyroid function and metabolism, and worsens 
developmental toxicity (77).

Heavy metals such as Pb, Cd, Al, and ZnO are also used during 
plastic manufacturing and exist in a relatively stable form within 
plastics (133). However, studies have also demonstrated that MP/NP 
break down into small particles (134), and adsorb heavy metals 
present in the surrounding environment. These composite compounds 
have been shown to induce various side effects and diseases (76, 92, 
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108, 124). Co-exposure to Pb and plastics increases Pb accumulation 
in the ovaries of female mice, exacerbating ovarian toxicity (31). In 
aquatic organisms such as zebrafish (Danio rerio), they induced 
toxicity and immune recognition disorders in intestinal epithelial cells 
(32), and disrupted intestinal microbial homeostasis and reproductive 
development (87). Cd co-exposure with plastics causes damage to the 
gills, kidneys, liver, and muscles of aquatic organisms (62) and has 
negative effects on growth, survival, and heart rate (85). Moreover, 
when Al is co-exposed with plastics, they inhibit efflux pumps and 
induce oxidative stress in zebrafish embryos (76). When co-exposed 
with plastics, another heavy metal, ZnO, can cause DNA damage in 
zebrafish (72), leading to growth inhibition and cell death (92). In 
mice, the accumulation of nanomaterials in the brain because of 
co-exposure results in cognitive impairments (40). A variety of 
models, including aquatic organisms, higher terrestrial organisms, 
and human-derived cells, have been utilized in such research, and the 
experimental results varied depending on the size and type of plastics 
and additives (44, 52, 93, 118).

In this review, we searched PMC for papers related to MP over the 
past 10 years. Through this, we were able to visualize comprehensive 
information on the current status of MP research. According to our 
data, many publications over the past 10 years have confirmed the 
growing interest of researchers in MP/NP. MP/NP, which exist after 
plastic waste enters the environment and decomposes into fragments 
of various sizes, are already exposed to living organisms through oral 
ingestion, inhalation, or skin contact. Many studies have been 
conducted to date on the hazards caused by these various exposure 
routes. In addition, research has shown that decomposed plastic 
fragments can combine with various adsorbents, such as various 
surrounding chemicals or heavy metals, and that these composite 
compounds can cause more toxic reactions than the previously known 
harmful effects of MP/NP. However, research on the toxicity 
mechanisms of MP/NP is limited, and studies on the toxicity of 
composite compounds formed by various adsorbents are either biased 
towards specific sizes or types or lack sufficient evidence for 
established results.

Adsorbents and additives play a crucial role in shaping the fate 
and toxicity of MP and NP. This review critically assesses how different 
types of adsorbents and additives influence the bioavailability, 
persistence, and transport of plastics in various environments. 
Additionally, we  explore the potential synergistic or antagonistic 
effects that may arise from the combination of plastics with different 
adsorbents and additives.

Building on the existing body of knowledge, this review proposes 
a new understanding that synthesizes the complex interactions 
between MP and NP, adsorbents, additives, and biological systems. By 
acknowledging the multifaceted nature of these interactions, we aim 
to move beyond a simplistic view of plastic pollution and biological 
hazards. This nuanced perspective allows for a more accurate 
assessment of risks and the formulation of targeted mitigation 
strategies. The added value of this review lies in its synthesis of 
disparate research findings, offering a comprehensive and up-to-date 
overview of the biological hazards associated with micro- and nano-
plastics in the presence of adsorbents and additives.

By establishing a new position that considers the interplay of 
multiple factors, this review provides a roadmap for future research, 
guiding scientists, policymakers, and stakeholders toward more 
effective and sustainable solutions for mitigating the impacts of plastic 
pollution. This review contributes to the evolving discourse on the 

biological hazards of MP and NP by providing a nuanced 
understanding of the role of adsorbents and additives. By recognizing 
the complexities inherent in these interactions, we pave the way for 
targeted research efforts and informed decision-making to address the 
challenges posed by plastic pollution.

This review emphasized the need for further research to 
understand and establish the biological hazards of MP/NP and their 
interactions with plastic additives and different chemical substances 
in the environment. This review will provide researchers around the 
world with an understanding of the interactions of MP/NP with 
additives and suggests new research directions.

Conclusion

Accordingly, it is expected that this paper will contribute to active 
research on the toxicity mechanisms of MP/NP, or the toxic effects of 
composite compounds that have not been revealed to date.
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multiple volatile organic 
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ultrasound-defined hepatic 
steatosis and fibrosis in the adult 
US population: NHANES 2017–
2020
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Gallstone Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China, 
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Supervision), Shanghai, China

Objective: Volatile organic compounds (VOCs) are pervasive environmental 
pollutants known to impact human health, but their role in liver steatosis or 
fibrosis is not fully understood. This study investigates the association of urinary 
VOC mixtures with the risk of liver steatosis and fibrosis in U.S. adult population.

Methods: Data of 1854 adults from the National Health and Nutrition 
Examination Survey (NHANES) from 2017.01 to 2020.03 were collected. 
Vibration Controlled Transient Elastography (VCTE) assessed hepatic steatosis 
and liver fibrosis via the controlled attenuation parameter (CAP) and liver 
stiffness measurement (LSM), respectively. The study examined the relationship 
between urinary exposure biomarkers for 20 VOCs and liver health outcomes 
using multivariate logistic regression and Bayesian Kernel Machine Regression 
(BKMR) to evaluate the effects of both individual and mixed VOC exposures.

Results: Multivariate logistic regression analysis revealed that exposure 
biomarkers for acrolein and crotonaldehyde were positively associated with 
hepatic steatosis. Conversely, biomarkers for styrene, ethylbenzene, and 
propylene oxide were negatively associated with hepatic steatosis. Furthermore, 
biomarkers for 1,3-butadiene and xylene were positively associated with liver 
fibrosis, while ethylbenzene was negatively associated with this condition. 
BKMR analysis identified a significant positive joint effect of VOC biomarkers 
on CAP. Notably, when other VOC-EBs were held at median levels, biomarkers 
for acrolein and 1,3-butadiene exhibited linear correlations with Ln CAP and 
hepatic Ln LSM, respectively.

Conclusion: The study highlights the potential hepatotoxic effects of VOC 
mixtures, particularly noting the roles of acrolein and 1,3-butadiene in 
exacerbating liver steatosis and fibrosis. These findings advocate for further 
research to explore the mechanistic pathways and conduct longitudinal studies 
to establish causality and enhance understanding of VOCs’ impact on liver 
health.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) affects approximately 
25% of the adult population and has become the most prevalent 
chronic liver disorder (1). By 2030, it is projected that NAFLD will 
affect 33.5% of the adult population (2). NAFLD encompasses a 
disease continuum related to metabolic dysfunction, ranging from 
steatosis to steatohepatitis, fibrosis, cirrhosis, and eventually 
hepatocellular carcinoma (1, 3). Although the specific pathogenic 
factors have not been fully elucidated, it is clear that genetic, 
epigenetic, and environmental factors influence liver steatosis and 
fibrosis progression (4). Recent evidence suggests that persistent 
exposure to certain environmental contaminants can initiate and 
promote the pathogenesis of NAFLD (5). Elucidating how these 
environmental contaminants, particularly volatile organic compounds 
(VOCs), either independently or in combination, affect hepatic 
steatosis and fibrosis is critical for disease prevention.

VOCs are among the most common environmental pollutants, 
originating from a variety of anthropogenic and natural sources, 
including cigarette smoke (6), vehicular exhaust (7), biomass burning, 
and industrial emissions (8). The United  States Environmental 
Protection Agency (US EPA) has classified VOCs such as toluene, 
xylene, styrene, propylene oxide, 1,3-butadiene, vinyl chloride, 
trichloroethylene, tetrachloroethylene, acrylamide, acrylonitrile, 
acrolein, and carbon disulfide as hazardous air pollutants (9). Human 
exposure to VOCs through inhalation (the main exposure route), 
ingestion, and dermal contact is ubiquitous in daily life (10). Exposure 
to VOCs is associated with increased risks of leukemia, cancer, 
respiratory illnesses, birth defects, and neurocognitive impairment in 
humans (8). Tobacco smoking, a major source of VOC exposure, has 
been linked to sarcopenia, a condition characterized by reduced 
skeletal muscle mass and strength. Recent studies have demonstrated 
the association between smoking and muscle health, including 
reduced handgrip strength (11) and impaired respiratory muscle 
function (12). Sarcopenia, which is prevalent in advanced liver disease, 
has also been identified as a significant comorbidity in aging 
populations, with smoking serving as a key contributing factor (13). 
Additionally, sarcopenia is emerging as a therapeutic target, given its 
shared pathophysiology across multiple chronic diseases (14). These 
findings underscore the importance of considering smoking and VOC 
exposure as contributors to both sarcopenia and liver-related  
outcomes.

As the central hub of xenobiotic metabolism, including VOCs, the 
liver is a general target for the toxicity of environmental chemicals (15, 
16). After exposure, VOCs quickly reach the liver via systemic 
circulation and are metabolized by hepatic cytochrome P450 
(CYP450) enzymes (17, 18). In the liver, VOCs are transformed into 
water-soluble metabolites that are subsequently excreted in urine. Due 
to their specificity and longer half-lives in the human body compared 
to their parent compounds, urinary VOC metabolites may serve as 
reliable biomarkers of exposure (VOC-EBs) (19). Previous studies 
have demonstrated that workers occupationally exposed to VOCs can 
develop liver injury (20, 21). The scientific plausibility of VOCs 

influencing liver health and function is also supported by animal 
studies (22). However, most studies have primarily consisted of 
vulnerable or occupational populations and were usually based on 
recognized hazardous materials. Recent epidemiological studies 
conducted among 663 United States adults reported that metabolites 
of residential VOCs were positively associated with alkaline 
phosphatase (ALP), a biomarker for cholestatic injury (23). Another 
study involving 3,950 Canadian adults found that certain compounds 
in the benzene series were associated with poor liver function 
parameters (24).

Moreover, the association between VOCs and both NAFLD and 
liver fibrosis in humans remains unclear. A recent epidemiological 
study illustrated the relationship between VOC exposure and NAFLD, 
where NAFLD was defined using the US fatty liver index (USFLI) and 
the hepatic steatosis index (HSI), based on 12 serum markers (25). 
However, serum scores (HSI and FLI) performed poorly in detecting 
NAFLD and grading steatosis (26). These serum biomarkers can 
appear normal in patients with NAFLD and are influenced by 
comorbid conditions, potentially lacking sensitivity in defining 
NAFLD (26, 27). Liver vibration-controlled transient elastography 
(VCTE) using FibroScan, known for its high sensitivity and specificity, 
can directly assess hepatic steatosis and liver fibrosis via the controlled 
attenuation parameter (CAP) and liver stiffness measurement (LSM), 
respectively (1, 26–28). In the 2017–2018 survey cycle, for the first 
time, NHANES employed VCTE to measure CAP, indicating liver 
steatosis, and LSM, indicating liver fibrosis.

Thus, this study aims to examine the cross-sectional association 
between urinary VOC-EB levels and the prevalence of liver steatosis 
(measured by median CAP) and liver fibrosis (quantified as liver 
stiffness) detected by VCTE in NHANES participants from 2017 
to 2020.

2 Materials and methods

2.1 Data source and study population

The NHANES is a national, multi-year, population-based, cross-
sectional study conducted by the US National Center for Health 
Statistics (Centers for Disease Control and Prevention, Atlanta, GA, 
United States). Approval for the NHANES was granted by the National 
Center for Health Statistics Research Ethics Review Board, ensuring a 
representative sample of the non-institutionalized civilian US 
population. Liver steatosis and hepatic fibrosis were assessed using 
VCTE exclusively during the 2017.01–2020.03 cycle of NHANES; 
thus, this study is based on the dataset from this specific cycle.

A total of 15,560 eligible participants aged 6 years and older were 
included. Initially, participants with unavailable or incomplete VCTE 
exams were excluded (n = 6,537). Subsequently, we  excluded 
participants younger than 20 years (n = 1,627); those with positive 
HBV surface antigens (n = 40), confirmed HCV antibodies (n = 165), 
or incomplete body indices and questionnaire data (n = 1,333). 
Further exclusions were made for participants lacking data on urine 
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VOC metabolites (n = 4,004). Ultimately, 1,854 participants with 
complete data were enrolled (Figure 1).

2.2 Quantification of urine VOCs 
metabolites

Urine specimens were processed, stored, and shipped to the 
Division of Laboratory Sciences at the National Center for 
Environmental Health, Centers for Disease Control and Prevention, 
for analysis. Measurement of VOC metabolites was performed using 
ultra-performance liquid chromatography coupled with electrospray 
tandem mass spectrometry (UPLC-ESI/MSMS), as previously 
described (19). Twenty-one VOC metabolites were quantified in 
urine, including N-ace-S-(3,4-dihidxybutl)-L-cys (DHBMA), N-A-S-
(4-hydrxy-2-butenyl)-L-cys (MHBMA3), 2-methylhippuric acid 
(2MHA), 3-methipurc acd + 4-methipurc acd (3MHA +4MHA), 
N-ace-S-(2-carbxyethyl)-L-cys (CEMA), N-ace-S-(3-hydroxypropyl)-
L-cys (3HPMA), N-ace-S-(2-carbamoylethyl)-L-cys (AAMA), N-ac-
S-(2-carbmo-2-hydxel)-L-cys (GAMA), mandelic acid (MA), 
phenylglyoxylic acid (PGA), N-ace-S-(1-cyano-2-hydroxyethyl)-L-cys 
(CHEMA), N-ace-S-(2-cyanoethyl)-L-cys (CEMA), N-ace-S-(2-
hydroxyethyl)-L-cys (2HEMA), N-ace-S-(4-hydroxy-2-methyl-2-
buten-1-yl)-L-cys (IPMA3), N-ace-S-(N-methlcarbamoyl)-L-cys 
(AMCC), 2-aminothiazoline-4-carboxylic acid (ATCA), N-ace 

-S-(benzyl)-L-cys (BMA), N-ace-S-(n-propyl)-L-cys (BPMA), N-ace-
S-(2-hydroxypropyl)-L-cys (2HPMA), N-ace-S-(3-hydrxprpl-1-
metl)-L-cys (HPMMA), and 2-Thioxothiazolidine-4-carboxylic acid 
(TTCA). As indicated by previous studies (17, 23, 25), when VOCs 
possess two or more metabolites, the levels of these metabolites are 
summed to represent the total exposure to the parent VOCs in this 
study, including ΣUBUM for 1,3-butadiene (DHBMA+MHBMA3), 
ΣUXM for xylene (2MHA + 3MHA + 4MHA), ΣUACLM for acrolein 
(CEMA+3HPMA), ΣUAAM for acrylamide (AAMA+ GAMA), 
ΣUSEBM for styrene and ethylbenzene (MA+PGA), and ΣUACLNM 
for acrylonitrile (CHEMA+ CEMA+2HEMA). TTCA was excluded 
from this study to maintain adequate statistical power, as it is the only 
metabolite of carbon disulfide with a detectable rate below 60%. 
Values below the lower limit of detection (LOD) for each metabolite 
were replaced by LOD/√2 (19). Finally, 13 urinary VOC-EBs were 
included in this analysis. Supplementary Table S1 lists 20 VOC 
metabolites, their parent compounds, and detectable rates.

2.3 Assessment of liver steatosis and 
fibrosis outcomes

CAP and LSM, indicators of liver steatosis and fibrosis respectively, 
were measured using VCTE. Trained technicians conducted VCTE 
assessments using a FibroScan model 502 V2 Touch (Echosens, Paris, 

FIGURE 1

Flowchart illustrating the selection of the study population (N = 1854) for the final analysis, after applying exclusion criteria. Data were derived from the 
National Health and Nutrition Examination Survey (NHANES) conducted in the United States from 2017 to 2020.
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France) equipped with either a medium (M) or extra-large (XL) probe. 
The medium probe was initially used. An XL probe was utilized if 
recommended by the manufacturer’s instructions. Examinations were 
deemed reliable if participants had fasted for at least 3 h before the 
exam, at least 10 complete stiffness measures were obtained, and the 
liver stiffness interquartile range to median LSM ratio was less than 
30%. Detailed procedures are available in the Liver Ultrasound 
Transient Elastography Procedures Manual. Liver steatosis was 
defined as a CAP of ≥274 dB/m, a threshold demonstrating 90% 
sensitivity in identifying NAFLD (29). A threshold of LSM ≥8 kPa was 
established for liver fibrosis.

2.4 Assessment of covariates

Potential confounders associated with levels of VOC-EBs and liver 
steatosis/fibrosis, derived from NHANES questionnaires, 
examinations, and laboratory data, included gender, age, race-
ethnicity, education level, smoking status, alcohol use, diabetes, 
hypertension, physical activity, and PIR (poverty income ratio). Given 
that the liver regulates energy homeostasis in a sex-dependent 
manner, we have included sex as one of the covariates. Covariate 
categories included: gender (male or female), race-ethnicity (Mexican 
American, Hispanic, non-Hispanic white, non-Hispanic black, or 
other), education level (high school or less, college, graduate or 
higher), smoking status (never: <100 cigarettes in lifetime; former: 
>100 cigarettes in lifetime and currently not smoking; current: >100 
cigarettes in lifetime and smokes every day or occasionally), alcohol 
use (30) (never drinkers; low-moderate drinkers: ≤2 drinks per day 
on average for men and ≤1 drink per day on average for women, on 
days alcohol was consumed during the past year; heavy drinkers: >2 
drinks per day on average for men and >1 drink per day on average 
for women, on days alcohol was consumed during the past year), 
diabetes (defined by an FPG level ≥ 7.0 mmol/L, an HbA1c ≥ 6.5%, 
or a self-reported history of diagnosis by a physician), overweight/
obesity (BMI ≥ 25 kg/m2), hypertension (defined as systolic blood 
pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg, or a self-
reported history of hypertension diagnosed by a physician), and 
physical activity (identified as having regular physical activity if they 
engaged in vigorous or moderate recreational activities). Additionally, 
to control for the urinary dilution effect of spot urine samples, urinary 
creatinine levels were adjusted for in all models as a covariate.

2.5 Statistical analysis

Descriptive statistics for continuous predictors, such as age, were 
obtained by calculating the mean value and standard deviation. 
Descriptive statistics for categorical variables were determined by 
calculating the number and frequency distributions for factors 
including gender, race, education, smoking status, alcohol use, 
diabetes, overweight/obesity, hypertension, physical activity, and 
PIR. We adjusted urinary VOC-EB concentrations for creatinine to 
minimize the effects of urine dilution. Although samples in the 
NHANES survey were weighted to reduce selection bias across 
subgroups based on age, sex, and ethnicity, we utilized unweighted 
estimations in our regression models, as the variables used for sample 
weighting were already incorporated in our study (31).

Initially, Pearson correlation coefficients were calculated between 
pairs of creatinine-adjusted VOC-EBs. These coefficients were 
categorized as weak (r ≤ 0.3), medium (0.3 < r ≤ 0.8), and strong 
(r > 0.8).

Secondly, we  utilized multiple logistic regression models to 
evaluate the odds ratios (OR) with 95% confidence intervals (CIs) 
for the relationship between creatinine-adjusted VOC-EBs and liver 
steatosis and fibrosis. Creatinine-adjusted VOC-EB concentrations 
were categorized into quartiles, with the lowest quartile (Q1) serving 
as the reference group. The logistic regression analysis was adjusted 
for age, gender, race, obesity, diabetes, hypertension, smoking status, 
alcohol use, physical activity, education level, and poverty income 
ratio (PIR). Given that energy homeostasis exhibits sexual 
dimorphic traits and fatty liver diseases exhibit a strong sexual bias 
(32, 33), we  constructed separate regression models for males 
and females.

Subsequently, the Bayesian kernel machine regression (BKMR) 
model, a non-parametric Bayesian variable selection framework, was 
employed to assess the joint effects of creatinine-adjusted VOC-EBs 
on liver steatosis and fibrosis (31). Data for CAP and LSM were 
transformed to natural logarithms to achieve a normal distribution. 
The BKMR model estimates the posterior inclusion probability (PIP) 
for each creatinine-adjusted VOC-EB, as well as the overall effect of 
VOC-EB mixtures on Ln CAP and Ln LSM, with adjustments for 
potential confounders. The final model utilized 10,000 iterations in a 
Markov Chain Monte Carlo (MCMC) sampler (31). A PIP threshold 
of 0.5 is commonly applied to determine the significance of the 
VOC-EBs. Estimates at any percentile, where the 95% confidence 
intervals excluded zero relative to the 50th percentile, were considered 
statistically significant (25, 34).

Data analysis was performed using R version 4.2.3, and BKMR 
analyses were conducted using the “bkmr” package. A two-tailed 
p-value of less than 0.05 was considered to indicate 
statistical significance.

3 Results

3.1 Baseline characteristics of study 
population

A total of 1,854 participants were included in the study. 
Descriptive characteristics of the study population are detailed in 
Table  1. Among the participants, 44.0% (816/1,854) had liver 
steatosis and 10.0% (186/1,854) had liver fibrosis. Participants with 
liver steatosis and fibrosis were predominantly male, tended to 
be older, of Mexican American ethnicity, past smokers, and had 
conditions such as diabetes, overweight/obesity, hypertension, and 
lower levels of physical activity. The distribution, parent compounds, 
and detectable rates of 20 VOC metabolites among the 1,854 
participants are detailed in Supplementary Table S1. Strong 
correlations were observed between HPMMA and ΣUACLM 
(r = 0.92), HPMMA and IPMA3 (r = 0.92), HPMMA and 
ΣUACLNM (r = 0.86), ΣUACLM and ΣUACLNM (r = 0.84), IPMA3 
and ΣUACLNM (r = 0.81), and IPMA3 and ΣUACLM (r = 0.85), as 
shown in Supplementary Figure S1. The concentrations of 
creatinine-adjusted urinary VOC-EBs from four consecutive 
NHANES cycles are shown in Supplementary Figure S2. A 

190

https://doi.org/10.3389/fpubh.2024.1437519
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sh
ao

 et al.�
10

.3
3

8
9

/fp
u

b
h

.2
0

24
.14

3
7519

Fro
n

tie
rs in

 P
u

b
lic H

e
alth

fro
n

tie
rsin

.o
rg

TABLE 1  Descriptive characteristics of participants stratified by the presence of liver steatosis (CAP score ≥ 274 dB/m) and fibrosis (LSM score ≥ 8 kPa).

Characteristics Total (n = 1,854) Stestosis (CAP score ≥ 274 dB/m) Fibrosis (LSM ≥ 8 k.Pa)

No (n = 1,038) Yes (n = 816) p-value No (n = 1,668) Yes (n = 186) p-value

Gender (%) <0.001 0.002

Male 922 (49.73) 474 (45.66) 448 (54.90) 809 (48.50) 113 (60.75)

Female 932 (50.27) 564 (54.34) 368 (45.10) 859 (51.50) 73 (39.25)

Age (years) 50.28 (16.76) 48.28 (17.34) 52.83 (15.63) <0.001 49.76 (16.84) 54.99 (15.31) <0.001

Race-ethnicity (%) <0.001 0.137

Mexican American 217 (11.70) 85 (8.19) 132 (16.18) 192 (11.51) 25 (13.44)

Hispanic 174 (9.39) 98 (9.44) 76 (9.31) 152 (9.23) 20 (10.75)

Non-Hispanic White 657 (35.44) 353 (34.01) 304 (37.26) 587 (35.19) 70 (37.63)

Non-Hispanic Black 491 (26.46) 313 (30.15) 178 (21.81) 439 (26.32) 52 (27.96)

Others 315 (16.99) 189 (18.21) 126 (15.44) 296 (17.75) 19 (10.22)

Education (%) 0.083 0.074

High school or less 763 (41.15) 407 (39.21) 356 (43.63) 677 (40.59) 86 (46.24)

College 616 (33.23) 347 (33.43) 269 (32.97) 551 (33.03) 65 (34.95)

Graduate or higher 475 (25.62) 284 (27.36) 191 (23.41) 440 (26.38) 35 (18.82)

Smokers (%) 0.042 0.584

Never 1,058 (57.07) 594 (57.23) 464 (56.86) 954 (57.19) 104 (55.91)

Former 465 (25.08) 242 (23.31) 223 (27.33) 413 (24.76) 52 (27.96)

Current 331 (17.85) 202 (19.46) 129 (15.81) 301 (18.05) 30 (16.13)

Alcohol use (%) 0.292 0.197

Never drinkers 492 (26.54) 276 (26.59) 216 (26.47) 434 (26.02) 58 (31.18)

Low-moderate drinkers 687 (37.06) 370 (35.65) 317 (38.65) 617 (36.99) 70 (37.63)

Heavy drinkers 675 (36.41) 392 (37.76) 283 (34.68) 617 (36.99) 58 (31.18)

Diabetes (%) <0.001 <0.001

No 1,611 (86.89) 963 (92.77) 648 (79.41) 1,487 (89.15) 124 (66.67)

Yes 243 (13.11) 75 (7.23) 168 (20.59) 181 (10.85) 62 (33.33)

Overweight/obesity (%) <0.001 <0.001

No 481 (25.94) 416 (40.08) 65 (7.97) 463 (27.76) 18 (9.68)

Yes 1,373 (74.06) 622 (59.92) 751 (92.03) 1,205 (72.24) 168 (90.32)

Hypertension (%) <0.001 <0.001

(Continued)
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continuous increasing trend in the concentrations of creatinine-
adjusted urinary ΣUBUM, ΣUACLM, ΣUAAM, ΣUSEBM, and 
BPMA was observed.

3.2 Association of single urinary VOC-EBs 
with liver steatosis and fibrosis

Binary logistic regression models were employed to assess the 
individual effects of each urinary VOC-EB on hepatic steatosis and 
fibrosis. As depicted in Figure  2, after adjusting for covariates, a 
significant positive association was observed between ΣUACLM and 
liver steatosis in a dose–response pattern (p-trend < 0.05). Additionally, 
HPMMA was positively associated with liver steatosis in the third 
quartile compared to the first quartile [OR 1.51 (95% CI 1.02–2.23)]. 
Meanwhile, negative associations with liver steatosis were observed for 
ΣUSEBM and 2HPMA. The adjusted OR for liver steatosis was 0.62 
(95% CI 0.40–0.96) among participants in the highest urinary 
ΣUSEBM quartile. The adjusted OR for urinary 2HPMA with liver 
steatosis was 0.66 (95% CI 0.47–0.93) in the Q3 compared to Q1. 
Notable differences were observed in the sex-stratified analysis. For 
example, ΣUACLM and ΣUSEBM exhibited similar correlations in 
both men and women. However, high concentrations of ACTA and 
HPMMA were positively associated with liver steatosis, while high 
concentrations of IPMA3 were negatively associated with liver 
steatosis in men. For women, high concentrations of AMCC and 
2HPMA were negatively associated with liver steatosis (Figure 2).

Regarding liver fibrosis, as illustrated in Figure 3, binary logistic 
regression analysis indicated that participants in the highest quartile 
of ΣUBUM (Q4 vs. Q1: OR = 1.91, 95% CI: 1.02–3.57) and ΣUXM 
(Q3 vs. Q1: OR = 1.64, 95% CI: 1.00–2.68) exhibited a higher 
prevalence of liver fibrosis compared to those in the first quartile. 
Additionally, a negative association was observed between ΣUSEBM 
and liver fibrosis in the third quartile compared to the first quartile 
[OR 0.42 (95% CI 0.21–0.84)]. However, the analysis stratified by sex 
revealed several inconsistencies. High concentrations of ΣUXM were 
positively associated with liver fibrosis in men, a finding consistent 
with the overall population. Meanwhile, high concentrations of 
ΣUSEBM and AMCC were negatively associated with liver fibrosis, 
and high concentrations of ΣUACLM were positively associated with 
liver fibrosis in women. Associations of urinary VOC-EBs mixture 
exposure with Ln CAP and Ln LSM.

Ln-transformed CAP, LSM, and concentrations of each VOC-EB 
were treated as continuous variables, and the BKMR model was fitted 
to assess their joint effects on CAP and LSM. Although the confidence 
intervals were broad, a significant decrease in Ln CAP was observed at 
the 35th percentile or below compared to the 50th percentile, indicating 
a significant positive association (Figure 4A). A decreasing trend was 
observed in the Ln LSM values, although these did not reach statistical 
significance (Figure 4B). The PIPs of ΣUACLM and ΣUACLNM for Ln 
CAP exceeded 0.5 (Supplementary Table S2), suggesting these 
VOC-EBs largely contributed to the observed increase in Ln 
CAP. Significant associations for ΣUACLM and ΣUACLNM with Ln 
CAP were observed regardless of other VOC-EBs being fixed at their 
25th, 50th, or 75th percentiles (Supplementary Figure S3A), similar to 
BPMA and ΣUBUM with Ln LSM (Supplementary Figure S3B).

The dose–response relationships of the 13 VOC-EBs were 
illustrated after adjusting for covariates with other VOC-EBs set at T
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their median levels (Figure  5). Positive exposure-response 
relationships were observed between ΣUACLM and Ln CAP, 
whereas negative associations were noted for ΣUSEBM and 
ΣUACLNM (Figure 5A). Variable patterns were noted in Ln LSM: 
ΣUBUM demonstrated a positive relationship, while ΣUSEBM, 
AMCC, BPMA, and 2HPMA showed inverse relationships 
(Figure 5B).

4 Discussion

To our knowledge, this study is the first to characterize the 
distributions of 20 urinary VOC metabolites in the general 
population from 2011 to 2020 and to assess their associations with 
hepatic steatosis and liver fibrosis using VCTE and diverse statistical 
methods. The results demonstrated a continuous increasing trend 

FIGURE 2

Association between individual urinary VOC-EB concentrations and the risk of liver steatosis, analyzed overall and stratified by sex, using multivariable 
logistic regression models. All VOC-EB concentrations were normalized to urinary creatinine levels (units: μg/g creatinine). Results are presented as 
odds ratios (OR) with 95% confidence intervals (CI). The regression model was adjusted for age, gender, race, obesity status, diabetes status, 
hypertension status, smoking status, alcohol use, physical activity, education level, and poverty income ratio (PIR). A bold segment indicates a p-value < 
0.05.
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in several urinary VOC-EBs from 2011 to 2020. On one hand, from 
2017 to 2020, multivariate logistic regression indicated that several 
urinary VOC-EBs were significantly associated with an increased 
risk of hepatic steatosis and liver fibrosis, while several urinary 
VOC-EBs significant negative associations. Furthermore, the 
relationships of VOC-EBs with liver steatosis and fibrosis in men 
and women were found to be sporadic and inconsistent. On the 

other hand, BKMR analysis revealed that overall mixed exposure 
was significantly positively associated with Ln CAP. The univariate 
exposure-response function identified associations between several 
urinary VOC-EBs and the risk of hepatic steatosis and liver fibrosis. 
Both multivariate logistic regression and BKMR analysis found that 
ΣUACLM (acrolein metabolites) was positively associated with 
hepatic steatosis, ΣUBUM (1,3-butadiene metabolites) with liver 

FIGURE 3

Association between individual urinary VOC-EB concentrations and the risk of liver fibrosis, analyzed overall and stratified by sex, using multivariable 
logistic regression models. All VOC-EB concentrations were normalized to urinary creatinine levels (units: μg/g creatinine). Results are presented as 
odds ratios (OR) with 95% confidence intervals (CI). The model was adjusted for age, gender, race, obesity status, diabetes status, hypertension status, 
smoking status, alcohol use, physical activity, education level, and poverty income ratio (PIR). Segments highlighted in bold indicate a p-value < 0.05.
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FIGURE 4

Overall association of VOC-EB mixtures with Ln CAP and Ln LSM using the Bayesian Kernel Machine Regression (BKMR) model. (A) Association of the 
urinary VOC-EB mixture with Ln CAP. (B) Association of the urinary VOC-EB mixture with Ln LSM. Both panels depict results adjusted for age, gender, 
race, obesity status, diabetes status, hypertension status, smoking status, alcohol use, physical activity, education level, and poverty income ratio (PIR).

FIGURE 5

Univariate exposure-response functions displaying the associations of selected VOC-EBs with Ln CAP (A) and Ln LSM (B). Each function is plotted with 
95% confidence intervals (CIs) and analyzes the relationship while fixing the concentrations of other chemicals at their median values. The BKMR 
models used for these analyses were adjusted for age, gender, race, obesity status, diabetes status, hypertension status, smoking status, alcohol use, 
physical activity, education level, and poverty income ratio (PIR).
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fibrosis, and ΣUSEBM (ethylbenzene metabolites) negatively with 
both conditions. These findings underscore the role of 
environmental VOC exposure in the development of hepatic 
steatosis and fibrosis.

VOCs originate from various sources, with road traffic 
emissions constituting the largest share before 2010. The 
replacement of older vehicles and the gradual reduction in gasoline 
consumption contributed to a rapid decline in VOC emissions 
until 2010 (35). From 2010 onwards, the use of solvents is believed 
to have surpassed road traffic as the primary source of VOCs, 
stabilizing pollution levels (36). In this study, we observed a trend 
of continuous increase in the urinary concentrations of ΣUBUM, 
ΣUACLM, ΣUAAM, ΣUSEBM, and BPMA, derived from parent 
compounds such as 1,3-butadiene, acrolein, acrylamide, styrene, 
ethylbenzene, and 1-bromopropane. Most governments have not 
yet to implement regulations on the use of solvents (35), which 
may partially explain these findings. In fact, the US EPA has found 
that the levels of about a dozen VOCs are 2 to 5 times higher inside 
homes than outside, whether in rural or highly industrial areas 
(37). Additionally, VOCs detected in indoor air and tap water are 
often as numerous and varied as those found outdoors (10). 
Clearly, exposure to these ambient VOCs is inevitable in everyday 
life. Further research is required to confirm these findings, and 
increased attention should be directed toward the rising exposure 
to VOCs among the general population.

While epidemiological studies on the association between 
combined VOC exposures and hepatic steatosis or fibrosis are 
sporadic, individual VOC exposures have been implicated in liver 
injury within the general population. A cross-sectional study 
within the Canadian population demonstrated that blood 
concentrations of xylene, styrene, and toluene were associated with 
elevated levels of ALP and AST (24). An earlier study involving 663 
US adults showed a positive association between ALP levels and 
urinary exposure biomarkers for acrolein, xylene, and 
1,3-butadiene (23). Furthermore, a recent study of the US general 
adult population reported significant correlations between urinary 
metabolites of acrolein, 1,3-butadiene, and xylene, and NAFLD as 
defined by the USFLI (25). However, levels of these serum liver 
enzymes may be  comparable in patients with or without liver 
steatosis (38), and these biomarkers are influenced by comorbid 
conditions, potentially reducing their sensitivity in defining 
steatosis (26, 27). According to guidelines from the American 
Gastroenterological Association, VCTE is preferred for the precise 
quantification of liver fat (CAP) and fibrosis (LSM) (39, 40). 
We initially discovered significant associations between urinary 
ΣUACLM (an exposure biomarker for acrolein) and hepatic 
steatosis, and between urinary ΣUBUM and ΣUXM (exposure 
biomarkers for 1,3-butadiene and xylene, respectively) and liver 
fibrosis, as diagnosed by VCTE, aligning with findings from 
previous studies. Interestingly, urinary ATCA and HPMMA was 
positively associated with liver steatosis in men, but not in women, 
while ΣUACLM was positively associated with liver steatosis and 
fibrosis in women, but not in men. The sex differences in the health 
hazards of urinary VOCs have also been reported. A previous 
study showed that sex significantly interacted with ΣUAAM in 
influencing the liver steatosis biomarker (25). Another study 
indicated that increasing levels of VOCs were associated with 
increases in C-reactive protein for women, but not for men (24). 

The hypothesis explains the sex-based differential susceptibility, 
including sex hormones, anatomical differences, gut microbiota, 
and epigenetic effects (33). Furthermore, obesity, with its 
increasing prevalence worldwide, has been recognized as a 
significant contributor to VOC toxicity and a key driver of NAFLD 
onset and progression, including fibrosis. Recent studies have 
demonstrated the association between VOC exposure and obesity 
in the general U.S. population (41), underscoring the complex 
interaction between environmental pollutants and metabolic 
disorders. Furthermore, high body mass index (BMI), a major risk 
factor for NAFLD, frequently coexists with sarcopenia, a condition 
characterized by loss of muscle mass and strength (42). Sarcopenia 
is prevalent in advanced liver disease and is closely associated with 
obesity, forming a “sarcopenic obesity” phenotype that exacerbates 
liver injury and fibrosis progression. Given the role of obesity in 
liver steatosis and fibrosis, and its association with sarcopenia, it is 
plausible that VOC exposure contributes to both conditions. 
Sarcopenia and obesity not only exacerbate NAFLD progression 
but also amplify susceptibility to environmental toxins such as 
VOCs, leading to a compounded health burden. Future studies are 
warranted to explore the mechanistic pathways underlying the 
interaction between VOC exposure, obesity, and sarcopenia.

Traditional generalized linear regression models, including 
multivariable linear and logistic regression, typically offer 
straightforward relationships between individual VOCs and health 
outcomes (43, 44). However, these models often overlook mixed 
environmental exposures, joint effects, and their nonlinear 
interactions, potentially leading to false negative or positive results 
(34, 43, 45). Moreover, a strong correlation among several urinary 
VOC-EBs was detected in our study, which can distort the outcomes 
of generalized linear regression models (46). Thus, we utilized the 
BKMR model, a recently developed nonparametric statistical 
method, to analyze the joint effects of VOC-EBs on liver health. This 
novel mixture modeling approach accommodates a range of 
VOC-EBs, even those with high correlations (31). Furthermore, 
BKMR analysis tests the overall mixture effect and captures 
nonlinear exposure-response relationships, with other chemicals 
fixed at specified levels. In our analysis, a significant positive joint 
effect of the VOC-EBs mixture on Ln CAP was observed, particularly 
when urinary VOC-EB concentrations were below the 35th 
percentile. This finding suggests that VOC-EBs may be linked to the 
severity of liver steatosis. The PIPs of ΣUACL and ΣUACLNM for 
CAP exceeded 0.5, indicating that these VOC-EBs significantly 
contributed to the association with Ln CAP. A previous study 
demonstrated that a mixture of VOC-EBs was positively associated 
with liver steatosis as defined by USFLI, although the results differed 
when defined by HSI (25). This discrepancy may stem from the 
unreliability of serum biomarkers in predicting liver injury, whereas 
liver VCTE is likely more sensitive (38–40). Additionally, no 
associations were found between the mixture of VOC-EBs and 
LSM. A recent study found that a mixture of VOC-EBs was 
associated with liver fibrosis as defined by the Hepamet Fibrosis 
Score (HFS), but not when using the Non-Alcoholic Fatty Liver 
Disease Fibrosis Score (NFS) (25). Indeed, some studies suggest that 
VOC exposure may be linked to liver fibrosis, as smoking—a known 
contributor to advanced liver fibrosis—typically results in higher 
urinary VOC metabolite levels in smokers than in nonsmokers (23, 
47, 48). The association between cigarette smoking and the risk of 
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sarcopenia also warrants attention (11–13). Sarcopenia, common 
across various diseases, is one of the most frequent complications in 
advanced liver disease. This inconsistency could be attributed to low 
levels of VOC exposure in the general population and the adjustment 
for smoking as a confounder, considering that smoking significantly 
contributes to urinary VOC levels and is independently associated 
with sarcopenia. Furthermore, traditional risk assessment 
procedures, based on single chemical evaluations, do not align with 
the characteristics of low-level, multiple chemical exposures typical 
of modern life, thus overlooking the cocktail effect of mixtures, 
which can underestimate the health risks of pollutants. Mixtures at 
concentrations that individually do not cause observable adverse 
effects can produce harmful effects, as reviewed elsewhere (49). A 
possible explanation is that multiple molecular pathways can 
be affected by the same chemical, often exhibiting nonlinear dose–
response relationships, or different pathways are affected by 
chemicals at various doses (50). Further research with larger sample 
sizes is necessary to clarify this association.

The BKMR analysis also allows for the identification of exposure-
response relationships with other chemicals held at fixed levels. In our 
analysis, ΣUACLM (exposure biomarker for acrolein) demonstrated 
a positive association with CAP, consistent with the findings from 
individual VOC analyses, thus reinforcing this result. Furthermore, 
our study is the first to report that ΣUBUM (exposure biomarker for 
1,3-butadiene) displayed a linear correlation with liver fibrosis, a 
finding more pronounced than in individual VOC analyses. Although 
associations between 1,3-butadiene and liver fibrosis have not been 
extensively studied, the liver is considered the primary site of 
1,3-butadiene-induced carcinogenesis (51). DNA damage, the 
primary toxic effect of 1,3-butadiene in hepatocytes (52), also plays a 
crucial role in the pathogenesis of liver fibrosis (53). Additionally, 
ΣUSEBM and ΣUACLNM showed negative associations with 
CAP. Meanwhile, ΣUSEBM and AMCC were negatively associated 
with LSM, especially in the lowest concentration. These results 
contradict previous findings that utilized liver injury markers (20, 54, 
55). Several explanations are possible for these results. First, given the 
lack of significant associations in individual analyses, this negative 
association could be due to complex antagonistic interactions among 
VOCs. The interactions are common among VOCs because VOCs are 
mostly metabolized by CYP450 enzymes in liver (17, 18, 56). Another 
explanation might be  that, unlike high-dose occupational VOC 
exposure, which is positively correlated with liver injury (20, 54), 
generally VOCs exposure may not necessarily exert a same effect. 
Nevertheless, caution should be exercised in interpreting the results, 
and the above hypothetical explanations need to be further validated 
in future studies.

Although the biological mechanisms underlying the 
hepatotoxicity of VOCs have not been fully elucidated, evidence 
from numerous animal studies supports our findings with plausible 
molecular mechanisms. Oxidative stress is a common hepatotoxic 
effect induced by VOCs. Most VOCs are metabolized by CYP450 
enzymes primarily during biotransformation, forming active 
electrophilic intermediates (17). These intermediates then 
conjugate with glutathione (57), the most abundant in  vivo 
antioxidant, thereby indirectly aggravating oxidative stress (58). 
Oxidative stress is considered a potential mechanism for the 
development of liver steatosis and fibrosis (53). The inflammatory 

response plays an integral role in the progression of liver fibrosis 
from liver steatosis. Accumulation of VOCs such as acrolein in the 
liver can induce neutrophil recruitment and activation, leading to 
the formation of neutrophil extracellular traps (59). Exposure to 
1,3-butadiene was found to upregulate genes involved in oxidative 
and inflammatory responses in the lungs of mice (60). 
Furthermore, acrolein can significantly increase the expression of 
endoplasmic reticulum (ER) stress markers in hepatocytes (61), 
Furthermore, acrolein can significantly increase the expression of 
endoplasmic reticulum (ER) stress markers in hepatocytes (62). 
However, the causal role of VOCs in the initiation and progression 
of liver diseases, as discussed in this study, warrants 
further investigation.

There are several limitations of our study. First, the cross-sectional 
design of this study precludes definitive conclusions about the causal 
relationships between urinary VOC mixtures and liver steatosis or 
hepatic fibrosis. Case–control or cohort studies are needed to address 
this methodological limitation. Second, although VCTE offers many 
benefits, it is not the gold standard for diagnosing liver conditions. 
Liver biopsy remains the gold standard for diagnosing liver steatosis 
and fibrosis, but recruiting sufficient participants from the general 
population is challenging. In this study, VCTE was performed by 
trained NHANES health technicians to maximize the accuracy of the 
results. Third, while our models adjusted for many confounders, the 
potential for unmeasured confounding remains. Specifically, data on 
genetic susceptibility, drug usage and dosages, and treatment 
adherence were lacking. Finally, as this study was conducted among 
U.S. adults, the generalizability of our findings to other populations 
is uncertain.

5 Conclusion

In conclusion, our study suggests that exposure to VOC mixtures 
increases the prevalence of liver steatosis among U.S. adults. Acrolein 
may play a significant role in the association between VOC mixture 
exposure and liver steatosis, while 1,3-butadiene may be linked to an 
increased risk of liver fibrosis. These findings underscore the 
significant role of environmental VOC mixture exposure in the 
development of liver steatosis and hepatic fibrosis. Further prospective 
cohort studies and mechanistic research are required to validate 
these conclusions.
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Association between fluoride 
exposure and the risk of serum 
CK and CK-MB elevation in 
adults: a cross-sectional study in 
China
Junhua Wu , Ming Qin , Yue Gao , Yang Liu , Xiaona Liu , 
Yuting Jiang , Yanmei Yang * and Yanhui Gao *

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin 
Medical University, Harbin, China

Background: This study aimed to investigate the relationship between urinary 
fluoride concentration and myocardial disease.

Methods: This is a cross-sectional study that was conducted in three villages 
in Wenshui County, Shanxi Province. A total of 737 villagers were included 
in this analysis. Urinary fluoride was detected using a fluoride-ion selective 
electrode. Myocardial enzymes were detected using an automatic biochemical 
analyzer. Myocardial ischemia and arrhythmia were diagnosed using 12-lead 
electrocardiogram.

Results: The median level of urinary fluoride concentration was 1.32 mg/L. 
Urinary fluoride was associated with serum creatine kinase (CK) elevation (odds 
ratio [OR] = 1.39 [95% confidence interval (CI)]: 1.09–1.78) and CK isoenzyme 
(CK-MB) elevation (OR = 1.49 [95% CI: 1.12–1.97]). Stratified analysis revealed 
that urinary fluoride concentration was associated with CK elevation in villagers 
under the age of 60 years (OR = 1.80 [95% CI: 1.26–2.59]). This study found that 
there was a positive association between urinary fluoride concentration and the 
risk of CK-MB elevation in participants under the age of 60 years(OR = 2.18 [95% 
CI: 1.39–3.42]), those who were of female gender (OR = 1.53 [95% CI: 1.07–
2.19]), those who were overweight/obese (OR = 1.96 [95% CI: 1.28–2.99]), those 
who had central obesity (OR = 1.59 [95% CI: 1.12–2.25]), consumed alcohol 
(OR = 1.49 [95% CI: 1.09–2.05]), and smoked (OR = 1.50 [95% CI: 1.10–2.04]).

Conclusion: Our study suggests that fluoride exposure is associated with the risk 
of serum CK and CK-MB elevation; however, it is not associated with myocardial 
ischemia, arrhythmia, serum lactate dehydrogenase (LDH), serum alpha-
hydroxybutyrate dehydrogenase (α-HBD), or serum aspartate aminotransferase 
(AST). Further investigations are needed to substantiate our findings and explore 
the potential underlying mechanisms.
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1 Introduction

Excessive fluoride exposure is identified by the World Health 
Organization as one of the top ten chemicals that pose significant 
public health problems (1). Long-term exposure to excessive 
fluoride can result in fluorosis, and it may cause systemic health 
problems, including skeletal damage, such as dental fluorosis and 
skeletal fluorosis (2), and non-skeletal damage affecting the 
cardiovascular system, renal function, and the nervous system, 
among others (3). Of particular concern is cardiovascular damage 
that can cause a heavy disease burden in populations with high 
fluoride exposure, potentially becoming a public health concern in 
areas endemic to fluorosis (4).

An increasing number of human epidemiological studies have 
linked fluoride exposure to several cardiovascular diseases. Some 
studies have reported a positive relationship between fluoride 
levels in drinking water and the prevalence of hypertension, 
specifically high systolic blood pressure (5–7). A systematic review 
reports that high fluoride exposure can increase thyroid stimulating 
hormone (TSH) release, which may rise the risk of cardiovascular 
diseases (8). A cross-sectional study reveals a significant positive 
relationship between excessive fluoride exposure and the 
prevalence of carotid artery atherosclerosis (9). Previous studies 
have confirmed that elastic properties of the aorta are impaired in 
fluorosis patients and that fluorosis patients have left ventricular 
diastolic and global dysfunctions despite normal left ventricular 
systolic function (10, 11).

A study involving 61 patients establishes a positive relationship 
between fluoride uptake by the coronary arteries and cardiovascular 
risk (12). Moreover, some studies have revealed the association 
between fluoride exposure and myocardial disease. A case of 
fluoride poisoning in children is presented as ventricular 
arrhythmias (13). A hospital-based study has also confirmed that 
fluoride could develop arrhythmias in children with fluorosis (14). 
However, a cohort study in Sweden investigates that long-term 
drinking-water fluoride exposure is not associated with myocardial 
infarction (15). To the best of our knowledge, no study focuses on 
the relationship between excessive fluoride exposure and 
myocardial ischemia or arrhythmias in adults.

Meanwhile, some human epidemiological studies have focused on 
the relationship between fluoride intake from drinking water and 
myocardial function biomarkers. The National Health and Nutrition 
Examination Survey (2013–2016) among United States adolescents 
finds that fluoride intake from drinking water does not associate with 
the serum aspartate aminotransferase (AST) level (16). An 
epidemiological study on children reports that serum lactate 
dehydrogenase (LDH) activity is associated with fluoride intake from 
drinking water (17). However, no human epidemiological studies have 
investigated the relationship between fluoride intake from drinking 
water and the other effective indicators of cardiac function in adults, 
such as creatine kinase (CK), CK isoenzyme (CK-MB), and alpha-
hydroxybutyrate dehydrogenase (α-HBD).

Therefore, this cross-sectional study, conducted in areas of Shanxi 
Province, China, where fluoride levels in drinking water are elevated, 
aims to investigate the relationship between fluoride exposure and 
myocardial disease, specifically in relation to myocardial enzymes 
in adults.

2 Materials and methods

2.1 Study population

Three villages—Gaoche, Xishe, and Xihan—located in Wenshui 
County, Shanxi Province, China, were selected as the investigation 
sites based on long-term monitoring conducted by the Shanxi Institute 
of Endemic Disease Prevention and Control. The fluoride 
concentration of drinking water in Xishe village was 1.45 mg/L. In 
comparison, it was 1.5 mg/L in both Gaoche and Xihan villages, 
exceeding the Chinese government’s stipulated limit for drinking 
water standards (1.2 mg/L). The inclusion criteria for our study were 
as follows: Villagers aged 18 years or above, who were born and have 
lived in these three villages. A total of 1,096 villagers were included. 
The exclusion criteria were as follows: (i) Villagers with diseases 
related to the heart, liver, muscle, or bone and had taken related 
medications in recent weeks (n = 1); (ii) villagers who did not provide 
a fasting blood sample (n = 311); (iii) villagers who did not provide 
their urinary sample (n = 47). In total, 737 villagers were enrolled for 
subsequent analysis.

2.2 General and physical information 
collection

General and physical information, including demographic data 
(age, sex, education, family income, alcohol consumption, and 
smoking), and disease history, were collected by trained doctoral and 
postgraduate students using face-to-face interviews. The height, 
weight, and waist circumference (WC) were also measured by trained 
doctoral and postgraduate students based on the Chinese government’s 
weight control healthcare service standards (GB/T 34821–2017). 
Blood pressure was measured thrice in the morning using an 
electronic sphygmomanometer. The body mass index (BMI) was 
calculated based on the height and weight.

2.3 Sample collection, determination, and 
quality control

Nurses collected 5 mL of fasting peripheral blood samples from 
each participant. The blood sample was centrifuged at 3,000 rpm for 
10 min in 2 h, and the serum was transferred into 1.5-ml Eppendorf 
(EP, Corning Incorporated, New York, USA) tubes to detect 
myocardial function biomarkers and blood glucose levels. A 5-ml 
morning urine sample was also collected from each participant. All 
serum and urine samples were stored at −80°C in a refrigerator 
until analysis.

Urinary fluoride, an accepted internal measurement index of 
fluoride exposure (18), was detected using fluoride-ion selective 
electrodes according to the industry-standard method in China 
(WS/T 89–2015, Beijing, China). Each sample was analyzed twice, and 
the average result was used as the final urinary fluoride concentration.

Serum CK, serum CK-MB, serum LDH, serum α-HBD, serum 
AST, and blood glucose were measured using an automatic 
biochemical analyzer 3,100 (Hitachi Hi-TECH international TRADE 
Co., LTD, Shanghai, China). The reagent used for the measurement 

201

https://doi.org/10.3389/fpubh.2024.1410056
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al.� 10.3389/fpubh.2024.1410056

Frontiers in Public Health 03 frontiersin.org

was provided by MedicalSystem Biotechnology Co. Ltd. (Ningbo, 
China), and the tests were performed according to standard operating 
procedures (details are shown at https://www.nbmksw.com/). Cut-off 
points of elevation for each myocardial enzyme are shown in 
Supplementary Table S1. These points are based on the industry 
standard of reference intervals for common clinical biochemistry tests 
in China (WS/T 404.1-2012, Beijing, China) and a previous study (19).

2.4 Diagnosis of diabetes mellitus, 
hypertension, skeletal fluorosis, and 
cardiac abnormality

Diabetes mellitus and hypertension were diagnosed through fasting 
blood glucose measurements and blood pressure readings. The cut-off 
points of fasting blood glucose for diabetes mellitus was 6.1 mmol/L, 
which was recommended by the Guideline for the Prevention and 
Treatment of Type 2 Diabetes Mellitus in China (2020 edition). The 
cut-off points of hypertension was 140/90 mm Hg, which was 
recommended by the Chinese Hypertension League Guidelines on 
Ambulatory Blood Pressure Monitoring (2020). Standard simultaneous 
12-lead electrocardiogram (ECG) examinations were recorded at a 
sampling rate of 10,000 Hz (MedEx-1694, Beijing Madix Technology 
Co. Ltd, Beijing, China) and stored for subsequent analysis. The same 
technician conducted all ECG examinations and the diagnoses were 
made by a cardiologist and a specially trained ECG healthcare 
professional. Myocardial ischemia and arrhythmia were diagnosed 
based on the previous studies (20, 21). Skeletal fluorosis was diagnosed 
following the Chinese Diagnostic Criteria of Endemic Skeletal Fluorosis 
(WS 192–2008, Beijing, China).

2.5 Statistical analysis

Mean ± standard deviation (SD) or median (P25–P75) was 
employed to describe the continuous variables, and the categorical 
variables were expressed as numbers (percentages). The normal 
distribution test for the levels of each myocardial function 
biomarker was conducted by P–P chart. The urinary fluoride 
concentration was divided into four categorical values based on 
quartile and was used for further statistical analyses. Based on our 
prior knowledge and the directed acyclic graph, age, sex, 
educational level, family income, alcohol consumption, smoking, 
BMI, WC, diabetes mellitus, and hypertension were selected as 
potential confounders (Supplementary Figure S1). Binary logistic 
regression models were used to investigate the relationship 
between urinary fluoride concentration and myocardial damage.

Stratified analyses by age (<60 years and ≥ 60 years), sex (male and 
female), BMI (normal and overweight/obesity), WC (normal and central 
obesity), alcohol consumption (yes and no), and smoking (yes and no) 
were conducted. Furthermore, sensitivity analyses were used to test the 
robustness of the main results, while participants who had diabetes 
mellitus or hypertension were excluded.

Data analyses were performed using R statistical software (version 
4.2.1; R Core Team, New Jersey, USA) and Statistical Package for the 
Social Sciences (SPSS) version 23.0 for Windows (SPSS, Inc., Chicago, 
IL, United  States), and two-sided p-values less than 0.05 were 
considered statistically significant.

3 Results

3.1 Participant characteristics

The demographic statistics of 737 participants are presented in 
Table 1. The mean (±SD) age of the participants was 57.78 (±11.54) 
years and the age of 47.20% of them were above 60 years. There were 
more female individuals (67.17%) in this study than male counterparts 
(32.83%). The proportion of individuals with higher educational levels 
was low, those with primary or lower accounted for 36.50%, the junior 
high school graduates were 53.03%, and the senior high school or 
higher were only 10.47%. Approximately 19.75% of participants were 
alcohol consumers and smokers. In addition, the family income of 
61.90% of participants was above 10,000 ¥/year.

Physical statistics found that 38.79% of participants had 
hypertension, 8.29% of participants had diabetes mellitus, and 32.47% 
of participants had skeletal fluorosis. The mean (±SD) BMI of 
participants was 25.70 (±3.60) kg/m2 and 67.03% of participants were 
found to be overweight and obese. In addition, the mean (±SD) WC 
was 87.35 (±9.55) cm, and 72.95% of participants had central obesity. 
ECG examinations found that 88 (12.21%) participants had 
myocardial ischemia and 38 (5.27%) participants had arrhythmia.

Urinary fluoride, serum levels of myocardial enzymes, and the 
proportion of myocardial enzyme elevation were also shown in 
Table 1. The median (P25–P75) level of serum CK, CK-MB, LDH, 
α-HBD, and AST were 98.00 (71.00–131.00) U/L, 14.90 (12.90–17.90) 
U/L, 191.80 (174.05–214.73) U/L, 156.50 (140.50–174.03) U/L, and 
21.50 (18.30–26.20) U/L. The level of urinary fluoride concentration 
was 1.32 (0.90–1.81) mg/L.

3.2 Association between urinary fluoride 
concentrations and the risk of myocardial 
damage

The relationship between urinary fluoride concentration and the 
risk of myocardial damage is shown in Table  2. Binary logistic 
regression analysis found that the urinary fluoride concentration was 
positively associated with the risk of serum CK elevation (OR = 1.39 
[95% CI: 1.09–1.78]) and CK-MB elevation (OR = 1.49 [95% CI: 
1.12–1.97]).

Sensitivity analysis showed that the urinary fluoride concentration 
was also positively associated with the risk of serum CK elevation 
(OR = 1.73 [95%CI, 1.25–2.39]) and CK-MB elevation (OR = 1.80 
[95% CI: 1.23–2.63]) when excluding participants with hypertension 
(Supplementary Table S2). In addition, when excluding participants 
with diabetes mellitus, we still found a positive association between 
urinary fluoride concentration and the risk of serum CK elevation 
(OR = 1.56 [95% CI: 1.20–2.02]) and CK-MB elevation (OR = 1.55 
[95% CI: 1.15–2.10]) (Supplementary Table S3).

3.3 Relationship between urinary fluoride 
concentration and the risk of CK and 
CK-MB elevation in different subgroups

Stratified analysis was conducted in subgroups according to age, 
sex, BMI, WC, alcohol consumption, and smoking, with the goal of 
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revealing the association between urinary fluoride concentration and 
the risk of CK elevation, as presented in Table 3. There was a positive 
association between urinary fluoride concentration and the risk of 
serum CK elevation in participants under the age of 60 years 
(OR = 1.80 [95% CI: 1.26–2.59]). In addition, no interaction effect was 
found between urinary fluoride concentration and the remaining 
subgroups regarding the risk of serum CK elevation.

The same stratified analysis was conducted to assess the risk of 
CK-MB elevation in Table 4. There was a positive association between 
urinary fluoride concentration and the risk of CK-MB elevation in 
participants under the age of 60 years (OR = 2.18 [95% CI: 1.39–
3.42]), female (OR = 1.53 [95% CI: 1.07–2.19]), overweight/obesity 
(OR = 1.96 [95% CI: 1.28–2.99]), central obesity (OR = 1.59 [95% CI: 
1.12–2.25]), alcohol consumption (OR = 1.49 [95% CI: 1.09–2.05]), 
and smoking (OR = 1.50 [95% CI: 1.10–2.04]). No interaction effects 
were observed on the risk of serum CK-MB elevation.

4 Discussion

Cell experiments revealed that fluoride could induce damage in 
H9c2 cardiomyocytes (22), and myocardial damage would lead to a 
change in the level of myocardial enzymes. Some studies have reported 
that an association between fluoride exposure and myocardial 
infarction, serum CK, and LDH, although their conclusions remain 
inconsistent. In addition to CK and LDH, the most common 
myocardial enzyme spectrum in clinical practice include CK-MB, 
α-HBD, and AST (23, 24). Therefore, our study focused not only on 
the relationship between urinary fluoride concentration and the risk 
of myocardial enzymes (serum CK, serum CK-MB, serum LDH, 
serum α-HBD, and serum AST) but also on myocardial ischemia and 
arrhythmia in a population-based cross-sectional study. We found that 
urinary fluoride concentration was only positively associated with the 
risk of serum CK and CK-MB elevation; however, it was not associated 
with myocardial ischemia, arrhythmia, or the remaining 
myocardial enzymes.

Our research found the urinary fluoride concentration was not 
associated with myocardial ischemia, which was consistent with the 
study conducted in a large cohort study of 455,619 people in Sweden 
(15). However, our findings regarding the relationship between 
urinary fluoride concentration and arrhythmia were inconsistent with 
previous studies conducted on children with acute fluoride poisoning 
or chronic fluorosis (13, 14). These inconsistent findings of arrhythmia 
might be caused by the different doses of fluoride intake, duration of 
exposure, and specific age group.

There were three tissue- and compartment-specific CK 
isoenzymes, including CK-BB (brain), CK-MM (skeletal muscle), and 
CK-MB (cardiac muscle), which mainly catalyzed the reversible 
conversion of creatine and ATP to phosphocreatine and adenosine 
diphosphate (25). Previous studies have reported considerable 
controversy regarding the relationship between fluoride and 
CK. Animal experiments revealed that fluoride did not affect CK’s 
activity in vitro (26). However, it also found that the activity of serum 
CK was significantly increased with sodium fluoride in another 
animal experiment (27). Our study’s binary logistic regression analysis 
indicated that the urinary fluoride concentration was positively 
associated with serum CK elevation. Moreover, at the same time, this 
kind of positive relationship was confirmed by the sensitivity analyses 
in participants without diabetes or hypertension. According to these 

TABLE 1  Basic characteristics of general population (n = 737).

Characteristics All observations

Age (y, means ± SD) 57.78 ± 11.54

 � < 60 387 (52.80)

 � ≥ 60 346 (47.20)

Sex (n, %)

 � Male 241 (32.83)

 � Female 493 (67.17)

Educational level (n, %)

 � Primary and below 265 (36.50)

 � Junior high school 385 (53.03)

 � Senior high school and above 76 (10.47)

Family income (n, %)

 � < 10 000 ¥/year 277 (38.10)

 � ≥ 10 000 ¥/year 450 (61.90)

Alcohol drinking

 � No 589 (80.24)

 � Yes 145 (19.75)

Smoking

 � No 589 (80.24)

 � Yes 145 (19.75)

Hypertension (n, %)

 � Yes 282 (38.79)

 � No 445 (61.21)

Diabetes mellitus (n, %)

 � Yes 61 (8.29)

 � No 675 (91.71)

Skeletal fluorosis (n, %)

 � Yes 238 (32.47)

 � No 495 (67.53)

BMI (kg/m2, means ± SD) 25.70 ± 3.60

 � Normal 242 (32.97)

 � Overweight/obesity 492 (67.03)

Waistline (cm, means ± SD) 87.35 ± 9.55

 � Normal 198 (27.05)

 � Central obesity 534 (72.95)

Urinary fluoride (mg/L, median, P25-P75) 1.32 (0.90, 1.81)

Myocardial disease (n, %)

 � Myocardial ischemia 88 (12.21)

 � Arrhythmia 38 (5.27)

AST (U/L, median, P25-P75) 21.50 (18.30, 26.20)

 � AST elevation 46 (6.35)

CK (U/L, median, P25-P75) 98.00 (71.00, 131.00)

 � CK elevation 66 (9.11)

CK-MB (U/L, median, P25-P75) 14.90 (12.90, 17.90)

 � CK-MB elevation 51 (7.02)

α-HBD (U/L, median, P25-P75) 156.50 (140.50, 174.03)

 � α-HBD elevation 122 (16.80)

LDH (U/L, median, P25-P75) 191.80 (174.05, 214.73)

 � LDH elevation 60 (8.26)

The number of AST, CK, CK-MB is 727, and α-HBD, LDH is 726.
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analyses, it prompted that the fluoride could be  associated with 
estimated myocardial damage. In addition, our study found that the 
urinary fluoride concentration was positively associated with serum 
CK elevation in people under the age of 60 years. It might be caused 
by more physical labor and muscle in people under the age of 60 years. 
Hence, further research should be  conducted to determine the 
potential underlying mechanisms of this effect.

As a type of CK isoenzyme, CK-MB had higher sensitivity in 
detecting acute myocardial infarction, which was close to 100% (28). 
Animal experiments revealed that sodium fluoride intervention (set 
at 300 mg/mL for 10 days) could increase serum CK-MB in male rats 
(29). Coincidentally, this relationship was also confirmed in a study 
involving a group of male rats exposed to high doses of sodium 
fluoride (administered at 45 and 90 mg F-/kg body weight/24 hours 

treated rats) (30). To the best of our knowledge, there were no studies 
focused on the relationship between urinary fluoride concentration 
and serum CK-MB elevation in a natural population. In addition, in 
contrast to previous studies that focused on male animals, our study 
found that fluoride exposure was a risk factor for CK-MB elevation in 
females rather than males. It might be  caused by the different 
concentrations of calcium between males and females, and further 
studies on female rats should be conducted. Moreover, we also found 
that fluoride exposure was a risk factor for CK-MB elevation in 
participants without alcohol consumption or smoking, which the sex 
distribution might cause. Previous studies revealed that obesity was a 
risk factor for cardiomyopathy caused by the calcium homeostasis 
disequilibrium in mitochondria and oxidative stress (31). Our 
research also found that fluoride exposure was a risk factor for serum 

TABLE 2  Associations between urinary fluoride concentrations and the risk of myocardial damage.

Outcomes
Urinary fluoride

P for trend
Q2 Q3 Q4

Myocardial ischemia 1.07 (0.52, 2.21) 0.95 (0.46, 1.97) 1.53 (0.77, 3.03) 0.242

Arrhythmia 0.90 (0.35, 2.33) 0.63 (0.23, 1.72) 0.72 (0.27, 1.94) 0.404

CK 1.81 (0.79, 4.17). 1.68 (0.72, 3.90) 3.09 (1.39, 6.87) 0.008

CK-MB 1.72 (0.65, 4.55) 1.33 (0.48, 3.70) 3.66 (1.47, 9.09) 0.006

LDH 0.36 (0.13, 0.99) 1.06 (0.49, 2.30) 1.16 (0.55, 2.47) 0.245

α-HBD 1.01 (0.54, 1.90) 1.30 (0.71, 2.38) 1.22 (0.67, 2.24) 0.384

AST 0.61 (0.23, 1.65) 1.17 (0.50, 2.75) 1.11 (0.46, 2.68) 0.523

Models were adjusted for age, sex, educational level, family income, BMI, waistline, alcohol drinking, smoking, hypertension and diabetes mellitus. Q1 as reference group. The bold values 
means the difference among groups have statistical significant.

TABLE 3  Associations between urinary fluoride concentrations and the risk of CK elevation in subgroups.

Subgroup No of events (%)
Urinary fluoride

P-interaction
Q2 Q3 Q4

Age (years) 0.29

 � < 60 35 (9.19) 7.21 (1.51, 34.40) 5.57 (1.15, 26.96) 12.79 (2.69, 60.93)

 � ≥ 60 31 (9.06) 0.64 (0.19, 2.10) 0.74 (0.23, 2.31) 1.22 (0.45, 3.23)

Sex 0.75

 � Male 26 (11.02) 2.37 (0.64, 8.75) 2.05 (0.52, 8.09) 2.88 (0.75, 11.13)

 � Female 40 (8.20) 1.55 (0.52, 4.69) 1.52 (0.52, 4.48) 2.95 (1.09, 8.00)

BMI (kg/m2) 0.25

 � Normal 21 (8.90) 4.39 (0.83, 23.17) 3.36 (0.56, 20.14) 7.94 (1.42, 44.45)

 � Overweight/obesity 45 (9.28) 1.36 (0.49, 3.78) 1.42 (0.53, 3.80) 2.39 (0.94, 6.10)

Waistline (cm) 0.11

 � Normal 14 (7.14) 10.90 (1.13, 104.95) 3.32 (0.26, 42.07) 17.69 (1.59, 197.27)

 � Central obesity 52 (9.89) 1.31 (0.50, 3.41) 1.64 (0.66, 4.08) 2.53 (1.06, 6.04)

Alcohol drinking 0.75

 � No 52 (8.93) 1.39 (0.53, 3.62) 1.61 (0.64, 4.06) 2.97 (1.22, 7.19)

 � Yes 14 (9.86) 4.44 (0.69, 28.57) 2.09 (0.24, 18.19) 4.21 (0.59, 30.07)

Smoking 0.98

 � No 54 (9.26) 1.54 (0.61, 3.91) 1.83 (0.75, 4.44) 2.75 (1.17, 6.48)

 � Yes 12 (8.51) 6.14 (0.59, 63.95) 1.01 (0.05, 19.72) 15.79 (1.23, 203.35)

Models were adjusted for age, sex, educational level, family income, BMI, waistline, alcohol drinking, smoking, hypertension and diabetes mellitus, with stratified variables not adjusted in the 
stratified analysis. P-interaction values was adjusted by FDR - corrected. Q1 as reference group. The bold values means the difference among groups have statistical significant.
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CK-MB elevation in obese participants, which the additive effect of 
fluoride exposure and obesity might cause.

Epidemiological studies in children found that serum LDH 
activity was associated with drinking water fluoride in children (17), 
and this relationship was also found in cell and animal experiments 
(9, 26, 32, 33). However, our study found no significant association 
between urinary fluoride concentration and the risk of serum LDH 
elevation. This inconsistent result in the population study might 
be due to the potential confounders we had controlled in our research, 
but not in those previous studies. α-HBD comprised the total activity 
of some LDH isoenzymes, namely LDH1 and LDH2, which were 
mainly found in myocardial damage (34, 35). As a serological 
biomarker for myocardial alteration, no studies that investigated the 
relationship between fluoride and α-HBD before. Hence, our study 
first reported that fluoride exposure in the population could not 
increase the risk of serum α-HBD elevation.

AST was still the most important biomarker for myocardial injury 
(36). Our study found there was no association between urinary 
fluoride concentration and the risk of AST elevation, which was 
consistent with a study based on 1,742 adolescents (16).

Our research had some limitations. First, our study was a natural 
population cross-sectional investigation, which could not determine 
the exact causality between urinary fluoride concentration and the 
risk of serum CK, CK-MB elevation. Second, some known 
cardiovascular-related confounders were not included in our research. 
Meanwhile, the participants in our research might consume fluoride 
in different ways than drinking water, such as food, which needs 
further evaluation. Third, our assessment of fluoride exposure was 
limited to urinary fluoride measurements, thereby excluding other 
potential sources of exposure, such as drinking water and dietary 

intake. Finally, this was a single-center study and did not include the 
different types of fluorosis, such as brick-tea-type fluorosis or chronic 
coal-burning fluorosis.

5 Conclusion

In conclusion, our study provides population-based evidence for 
the relationship between urinary fluoride concentration and myocardial 
disease related to myocardial enzymes, including CK, CK-MB, LDH, 
α-HBD, and AST. Notably, fluoride exposure may be associated with the 
risk of serum CK and CK-MB elevation in adults but not with 
myocardial ischemia, arrhythmia, serum LDH, serum α-HBD, and 
serum AST. Further investigations are needed to substantiate our 
findings, elucidate the potential mechanism underlying fluoride-
induced elevation of CK and CK-MB, and explore how fluoride-induced 
changes in myocardial enzymes may affect myocardial injury.
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TABLE 4  Associations between urinary fluoride concentrations and the risk of CK-MB elevation in subgroups.

Subgroup
No of 

events (%)

Urinary fluoride
P-interaction

Q2 Q3 Q4

Age (years) 0.26

 � < 60 26 (6.82) 1.37 (0.29, 6.59) 2.89 (0.71, 11.85) 8.70 (2.19, 34.54)

 � ≥ 60 25 (7.31) 1.71 (0.48, 6.17) 0.39 (0.07, 2.27) 1.92 (0.56, 6.56)

Sex 0.99

 � Male 18 (7.63) 2.83 (0.53, 15.25) 2.16 (0.36, 12.90) 4.12 (0.74, 22.84)

 � Female 33 (6.76) 1.30 (0.38, 4.48) 0.98 (0.27, 3.60) 3.46 (1.17, 10.22)

BMI (kg/m2) 0.99

 � Normal 24 (10.08) 1.69 (0.47, 6.10) 1.68 (0.42, 6.77) 1.68 (0.42, 6.73)

 � Overweight/obesity 27 (5.56) 1.55 (0.33, 7.24) 1.29 (0.28, 6.06) 6.22 (1.69, 22.97)

Waistline (cm) 0.99

 � Normal 17 (8.67) 3.15 (0.51, 19.37) 4.38 (0.70, 27.45) 3.39 (0.51, 22.45)

 � Central obesity 34 (6.46) 1.41 (0.42, 4.68) 0.83 (0.21, 3.22) 3.84 (1.32, 11.20)

Alcohol drinking 0.99

 � No 42 (6.34) 1.41 (0.48, 4.16) 1.29 (0.43, 3.88) 3.39 (1.25, 9.17)

 � Yes 9 (7.22) 3.84 (0.31, 48.14) 1.21 (0.06, 25.06) 8.84 (0.70, 110.96)

Smoking 0.93

 � No 42 (6.38) 1.29 (0.45, 3.73) 0.95 (0.31, 2.92) 3.35 (1.32, 8.50)

 � Yes 9 (7.20) - - -

Models were adjusted for age, sex, educational level, family income, BMI, waistline, alcohol drinking, smoking, hypertension and diabetes mellitus, with stratified variables not adjusted in the 
stratified analysis. P-interaction values was adjusted by FDR - corrected. Q1 as reference group. The bold values means the difference among groups have statistical significant.
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Mediating effects of insulin 
resistance on lipid metabolism 
with elevated paraben exposure 
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Introduction: Parabens are commonly used to prevent bacteria from growing in 
cosmetics and foodstuffs. Parabens have been reported to influence hormone 
regulation, potentially leading to metabolic anomalies, including insulin 
resistance and obesity. However, there is a paucity of knowledge regarding the 
relationship between urinary paraben levels and lipid metabolism in the general 
Taiwanese population. Therefore, the objective of this study was to determine 
whether the mediating role of insulin resistance exists between paraben 
exposure and lipid metabolism.

Methods: We selected the data of 264 adult participants from a representative 
survey in five major Taiwan area in 2013. UPLC tandem mass spectrometry was 
used to examine four urine parabens: methyl- (MeP), ethyl- (EtP), propyl- (PrP) and 
butyl- (BuP). Blood samples were analyzed for concentrations of glucose and lipid 
metabolic indices using the DxI 800 immunoassay analyzer and immunoradiometric 
assay kit. The relationship between urinary paraben levels and metabolism indices 
were evaluated through a multiple linear regression analysis. Finally, a mediation 
analysis was employed to understand the underlying mechanism by which paraben 
exposure influences lipid metabolism through insulin resistance.

Results: The significant positive association between MeP exposure and Castelli 
risk index I (CRI-I; β = 0.05, p = 0.049) was found, and also exhibited the similar 
associations between EtP exposure and low-density lipoprotein cholesterol 
(β = 0.10, p = 0.001), total cholesterol (β = 0.06, p = 0.003), and non-HDL 
cholesterol (NHC; β = 0.08, p = 0.005). EtP exhibited a significant positive 
association with triglyceride BMI (TyG-BMI; β = 0.02, p = 0.040). Additionally, 
TyG-BMI was positively associated with CRI-I (β = 0.98, p < 0.001), CRI-II 
(β = 1.03, p < 0.001) and NHC (β = 0.63, p < 0.001). Moreover, insulin resistance 
served as mediators for the effects of EtP exposure on lipid metabolism indices.

Discussion: The results indicate that changes in insulin resistance mediated 
the relationship between urinary paraben and lipid metabolism. Large-
scale epidemiological and animal studies are warranted to identify biological 
mechanisms underlying validate these relationships.

KEYWORDS

parabens, endocrine disruptors, lipid metabolism, insulin resistance, mediation 
analysis
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1 Introduction

Obesity has reached epidemic proportions globally, imposing a 
considerable public health burden in both developed and developing 
countries (1). According to the Nutrition and Health Survey in Taiwan 
(NAHSIT), the prevalence of general and abdominal obesity has been 
increasing from 16–20% and 27–47% from 1993–2016, respectively 
(55), and it increases the risk of chronic diseases such as cardiovascular 
disease, and type 2 diabetes (2). In Taiwan, the average body mass 
index (BMI) of adults is 24.5 kg/m2, which exceeds the standard for 
overweight set by Taiwan’s Health Promotion Administration 
(BMI ≥ 24 kg/m2). The prevalence of overweight and obesity in adults 
was reported to be 50.7%, indicating that approximately half of the 
adult population has obesity (56). Factors such as genetic 
predisposition and lifestyle choices, including diet and physical 
activity, contribute to the complex etiology of obesity (3, 4). There is 
more evidence that certain endocrine disruptors, such as parabens, 
could play a role in the development of obesity and diabetes (5–7).

Parabens are extensively used as artificial preservatives in cosmetics 
and foodstuffs (8, 9) due to their chemical stability, low cost, and broad-
spectrum antimicrobial properties (10). The chemical structure of 
parabens comprises a benzene ring, with a hydroxyl group and an ester 
group on the para position (11). Parabens differ in the alkyl chain 
length on the ester group and can be  categorized into two types, 
including short alkyl-chain parabens (e.g., methylparaben, MeP) and 
long alkyl-chain parabens (e.g., butylparaben, BuP) (9). In addition, 
methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), and 
butyl paraben (BuP) are the most commonly used parabens in 
commercial products (12), with the maximum usage level of 0.4% for a 
single compound and 0.8% for mixtures (13). Moreover, benzylparaben 
(BzP) and heptyl paraben (HeP) were not always incorporated into 
exposure assessments and statistical analyses due to their low frequency 
of detection in previous studies, unless stated otherwise (14).

Typical exposure routes for parabens include inhalation, ingestion, 
and dermal absorption; the latter is the primary exposure route for the 
general population, primarily owing to the widespread use of parabens 
in Personal care products (PCPs) (10). In recent years, the potential of 
parabens to cause endocrine disruption has elevated concerns about 
exposure to these chemicals.

In vitro studies have found that parabens have abilities in 
activating the glucocorticoid receptor and peroxisome proliferator-
activated receptor γ (PPARγ) in 3 T3-L1 preadipocytes. Parabens 
could promote the differentiation of 3 T3-L1 adipocytes and increase 
their adipogenic potency, such as by increasing the synthesis and 
accumulation of triglycerides (15). Furthermore, animal studies have 
indicated that parabens can stimulate adipocyte differentiation and 
lipogenesis in white adipose tissue and liver fat cells in female rats, 

which includes the processes of fatty acid synthesis and subsequent 
triglyceride synthesis (16).

In epidemiology, studies have also evaluated associations between 
paraben exposure and human lipid-related traits. Parabens can cause 
a range of adverse health effects, particularly in the endocrine system. 
A growing body of evidence from epidemiological and toxicological 
studies indicates that paraben exposure may be  associated with 
metabolic disorders, including obesity and diabetes mellitus (DM). A 
longitudinal study conducted on a sub-sample of the Granada EPIC-
Spain cohort (n = 670) revealed that individuals with elevated levels 
of PrP exhibited an elevated risk of developing type 2 diabetes after a 
23-year follow-up period (57). Furthermore, exposure to MeP and EtP 
has been linked to an increased risk of DM, with EtP exhibiting a 
positive association with a higher risk of obesity (17). Blood plasma 
samples were collected from 27 healthy women at various points 
throughout their menstrual cycles in order to examine the potential 
correlation between paraben exposure and obesity (58). The plasma 
levels of methylparaben, as well as the sum of parabens, were found to 
be  positively associated with plasma adipsin levels. Conversely, a 
negative correlation was observed between methylparaben levels and 
glucagon, leptin, and PAI-1.

Some critical indices for assessing lipid metabolism include 
Triglyceride (TG), Total cholesterol (TC), high-density lipoprotein 
cholesterol (HDLC), and low-density lipoprotein cholesterol (LDLC). 
Additionally, other indices such as Castelli risk index (CRI-I and 
CRI-II), non-HDLC (NHC), and the atherogenic coefficient (AC) 
have been used to assess cardiovascular disease status and coronary 
artery disease risk (18–20). Disruptions in glucose homeostasis could 
also affect lipid metabolism. Moreover, insulin resistance can alter 
systemic lipid metabolism, leading to dyslipidemia. It can lead to 
elevated TG and LDLC levels and reduced HDLC levels (21, 22).

The above studies suggest that endocrine disrupters may affect 
human lipid metabolism. Moreover, the literature also reveals that the 
Taiwanese is commonly exposed to parabens (23, 24). However, the 
knowledge gap that exists between paraben exposure and lipid 
metabolism in the general Taiwanese population. Furthermore, fewer 
studies have investigated the mechanism through which insulin 
resistance mediates the relationship between urinary paraben levels 
and lipid metabolism.

To address the aforementioned research gaps, we  aimed to 
investigate the relationship between urinary paraben levels, insulin 
resistance, and lipid metabolism in Taiwanese adults. Additionally, 
we explored whether insulin resistance served as mediators for the 
effects of paraben exposure on lipid metabolism indices. It is 
hypothesized that parabens may contribute to the development of 
obesity and cardiovascular disease through the promotion of insulin 
resistance and dyslipidaemia.

2 Methods

2.1 Characteristics of participants

Participants for this study were selected from the Taiwan 
Environmental Survey for Toxicants (TEST) 2013. A number of 
studies have previously detailed the participant recruitment, 
selection methods and approval from the Institutional Review Board 
of National Yang Ming Chiao Tung University in Taiwan (23–25). 

Abbreviations: AC, atherogenic coefficient; BuP, butylparaben; CRI-I, Castelli risk 

index I; CRI-II, Castelli risk index II; EDCs, endocrine-disrupting chemicals; EtP, 

ethylparaben; HDLC, high-density lipoprotein cholesterol; HOMA-IR, homeostasis 

model assessment of insulin resistance; LDLC, low-density lipoprotein cholesterol; 

LOD, limit of detection; LLOQ, lower limit of quantification; NHC, non-HDL 

cholesterol; PrP, propylparaben; PPARγ, peroxisome proliferator-activated receptor 

gamma; TC, total cholesterol; TG, triglyceride; TyG-BMI, triglyceride body 

mass index.
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For the present study, participants aged ≥18 years were included and 
selected from 11 counties and cities from 5 regions in Taiwan: 
Northern, Central, Southern, Eastern, and one remote island. The 
sampling period spanned from May to December 2013. A total of 
394 individuals were included through events held at elementary 
schools and community centers, yielding a response rate of 
approximately 78%. Before enrollment, all individuals provided 
informed consent and volunteered to participate in the 
NAHSIT. After the participants provided informed consent, their 
first-morning urine samples and fasting blood samples were 
collected; The concentration of parabens in the urine of an individual 
may fluctuate considerably over time due to a number of factors, 
including age, sex, lifestyle, diet, medical history, and environmental 
exposures. The precise impact of these variables on urinary paraben 
exposure among study participants remains unclear. Each 
participant was requested to complete a retrospective questionnaire 
encompassing demographic information (age and sex), BMI (body 
mass index) categories (i.e., <24 kg/m2, 24 < = & <27 kg/m2, 
and ≥ 27 kg/m2), geographical location (northern, central, southern, 
eastern, and remote islands), and educational attainment 
(≤elementary school, junior high school, senior high school, 
and ≥ college/graduates), annual family income (<15,625, 15,625–
31,250, >31,250 USD), lifestyle factors (cigarette smoking and 
alcohol consumption) and PCP uses. Participants were categorized 
into different groups for the purpose of comparison, including 
different age groups (18–40, 40–65, and 65 and older). In addition, 
the term “cigarette smoking” is defined as the act of consuming at 
least one cigarette per day, as reported by the subjects. The subjects 
were self-reported lifelong non-smokers (never-smokers) who had 
involuntarily inhaled smoke from cigarettes or other tobacco 
products. The term “alcohol consumption” is defined as the ingestion 
of at least one bottle of alcohol per week. Subject who self-reported 
using at least one kind of PCPs (personal care products), including 
body wash, lotion, perfume, and nail polishes. The BMI standard for 
adults was divided into three groups: weight standard (BMI < 24 kg/
m2), overweight (24≦BMI < 27 kg/m2) and obesity (BMI≧27 kg/
m2) (59).

Anthropometric variables, including height, body weight, 
percentage body fat, and body mass index (BMI), were measured in 
accordance with standardized procedures outlined by Lohman et al. 
(60). Body height was measured with a portable stadiometer (model 
AD-6227R, manufactured by A&D Co., Ltd., Tokyo, Japan) to the 
nearest 0.1 cm. Body mass (0.1 kg) was evaluated by a bioelectrical 
impedance analyzer (model BC-418, manufactured by Tanita, Japan). 
BMI was calculated by dividing body weight (kg) by body height 
squared (m).

Of the original 394 subjects, a total of 28 were excluded from the 
study due to an insufficient number of urine samples and 27 were 
excluded due to an insufficient number of biochemical indicators. 
Additionally, 75 minors were excluded from the study. Our study 
included 264 TEST participants aged >18 years. Of these participants, 
55 were excluded owing to inadequate urine or blood samples. 
Accordingly, a total of 264 participants were recruited in this study, 
comprising 125 men and 139 women. Participants aged between 40 
and 65 years constituted the largest proportion of our study population 
(47.7%) (Table 1; Supplementary Figure S1). Moreover, 50.0% of the 
participants were of standard body weight, and 24.1 and 26.3% were 
overweight and obese, respectively. Regarding education level, 29.2% 

of the participants held a college degree or above. Furthermore, 58.1% 
of the participants reported having an annual household income of 
<NT$500,000. Approximately 75% of the participants were 
nonsmokers; however, nearly half of the participants were exposed to 
secondhand smoke. In addition, 74.6% of the participants reported 
using PCPs.

2.2 Paraben analysis

Parabens and their metabolites do not accumulate in the body, 
and are eliminated within a few hours of exposure (26, 27). Serum 
paraben concentrations, even after intravenous injection, decline 
quickly and remain low in the blood (28). Given the short half-life of 
parabens in blood, the parent compounds and their metabolites are 
conjugated and excreted in urine. Therefore, urinary measurements 
in humans can be used to estimate paraben uptake (29). Urinary 
levels of parent parabens can be used as biomarkers of recent human 
monitoring (30–33). Significant positive correlations between urinary 
and blood levels were also observed in a Chinese study, suggesting 
that urinary concentrations are good predictors of human exposure 
to parabens and metabolites (34). In the present study, the reagents 
and chemical standards as well as the measurement procedures for 
the four parabens used in our study are comprehensively described 
elsewhere (35). Briefly, spot urine samples were kept and stored at 
−80°C until analysis. For analysis, the collected urine samples were 
thawed at 4°C for 24 h. Each sample was extracted through a 
supported liquid extraction (SLE) column, and the extract was then 
eluted twice with 0.9 mL of dichloromethane. Finally, the extract was 
dried under vacuum conditions, followed by the addition of MeOH 
and Milli-Q water (both 100 μL) were added to reconstitute the 
extract for injection. Paraben concentrations were measured using a 
Waters Acquity UPLC system equipped with a Thermo Scientific™ 
Hypersil Gold™ column (50 × 2.1 mm, 1.9 μm) (35). The coefficient 
of determination for parabens (r2) was higher than 0.9952. 
We observed that the average recovery rates of the parabens at low, 
medium, and high concentrations were 91.6–100.9% (5.4–10.5%), 
84.4–99.5% (1.9–7.1%), and 86.8–98.4% (1.7–13.7%), respectively. 
Furthermore, the within-run and between-run accuracy (>85%) and 
precision (<14.2%) of our measurements were noted to meet the 
standards set by the European Medicines Agency (36). In instances 
where the paraben concentrations fell below the LOD, the measured 
concentrations were substituted with half the LOD. The LOD and 
LLOQ of each paraben were evaluated by SLE using paraben-spiked 
artificial urine and were 0.1 and 0.3 ng/mL, respectively (23, 24, 35). 
The present study has revealed that parabens Urinary creatinine 
levels were measured by spectrophotometry using a picric acid 
reagent with a wavelength of 520 nm (DXC 800 Synchron; Coulter, 
Brea, CA, United States).

2.3 Measurement of concentrations of 
metabolism indices

The UniCel DxI 800 Access Immunoassay System analyzer 
and an immunoradiometric assay kit (DIAsource, Louvain-la-
Neuve, Belgium) were used to measure the concentrations of 
insulin resistance indices (e.g., glucose and insulin) and lipid 
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metabolism indices (e.g., TG, HDLC, LDLC, and TC). The 
measurements were conducted randomly by technicians who were 
not aware of the metabolic status in Taiwan accredited laboratories 
(37, 38). Among our participants, 17.4 and 26.4% exhibited fasting 
blood glucose and insulin concentrations outside the reference 
range, respectively, and 13.6, 9.5, 29.9, and 37.9% exhibited TG, 
HDLC, LDLC, and TC levels outside the reference range, 
respectively. Furthermore, metabolic status was calculated using 
metabolism indices used in previous studies, including TG 
glucose-body mass index (TyG-BMI), CRI-I, CRI-II, NHC, and 
atherogenic coefficient (AC). TyG-BMI is an effective indicator 
for assessing insulin resistance Equation 1. TG metabolites affect 
the insulin sensitivity of adipose and muscle tissues and have been 
extensively studied for predicting diabetes. CRI-I, also known as 

the cardiac hazard ratio, reflects coronary plaque formation 
Equation 2. Moreover, CRI-II and AC are effective predictors of 
coronary artery disease risk Equations 3, 5. NHC is an indicator 
for predicting cardiovascular disease Equation 4. These indices 
can be calculated as follows (18–20, 39):

	

TG glucoseTyG BMI Ln BMI
2

× − = × 
  	

(1)

where glucose represents fasting glucose (mg/dL), and TG (mg/
dL) and BMI (kg/m2) are already defined earlier (39).

	
TCCRI I

HDLC
− =

	
(2)

TABLE 1  Demographic characteristics of the study participants (N = 264).

Variables Item N % Mean ± SD

Gender Male 125 47.3

Female 139 52.7

Age (years, mean ± SD) All 264 53.5 ± 17.1

18–40 62 23.5

40–65 126 47.7

65 and older 76 28.8

BMIa (kg/m2) (mean ± SD) All 264 24.7 ± 4.38

Normal 132 50.0

Overweight 64 24.2

Obese 68 25.8

Region Northern Taiwan 83 31.4

Central Taiwan 36 13.6

Southern Taiwan 73 27.7

Eastern Taiwan 45 17.0

Remote island 27 10.2

Marriage status Single 44 16.7

Married 193 73.1

Divorce/widowed 27 10.2

Education ≤Elementary school 73 27.7

Junior high school 38 14.4

Senior high school 76 28.8

≥College/graduates 77 29.2

Annual family incomeb (NTD) <15,625 147 58.1

15,625–31,250 69 27.3

>31,250 37 14.6

Cigarette smokingc Yes/No 64/200 24.2/75.8

Passive smokerd Yes/No 132/132 50.0/50.0

Alcohol consumptione Yes/No 34/226 13.1/86.9

PCPs usagef Yes/No 197/67 74.6/25.4

aBMI standard for adults: weight standard (BMI < 24 kg/m2), overweight (24≦BMI < 27 kg/m2) and obesity (BMI≧27 kg/m2) (59).
bThe currency exchange rate of converting USD to new Taiwan dollar (NTD) is 1:32.
cSubjects who self-reported consuming at least one cigarette per day.
dSubject who self-reported as lifelong nonsmokers (never-smokers) but involuntary inhalation of smoke from cigarettes or other tobacco.
eSubject consuming at least one bottle of alcohol drink per week.
fSubject who self-reported using at least one kind of PCPs (personal care products), including body wash, lotion, perfume, and nail polishes.
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LDLCCRI II
HDLC

− =
	

(3)

where TC (mg/dL), LDLC (mg/dL) and HDLC (mg/dL) are 
already defined earlier (20).

	 NHC TC HDLC= − 	 (4)

where TC (mg/dL) and HDLC (mg/dL) are already defined 
earlier (19).

	
( )TC HDLC

AC
HDLC
−

=
	

(5)

where TC (mg/dL) and HDLC (mg/dL) are already defined 
earlier (18).

2.4 Statistical methods

The medians and geometric means (GMs) of the concentrations of 
urinary parabens and lipid metabolism indices are first calculated. 
Subsequently, we used the Mann–Whitney U test to assess differences 
in the concentrations of parabens and lipid metabolism indices 
between the genders. The correlation between parabens and lipid 
metabolism indices was evaluated through a Spearman 
correlation analysis.

In this study, a multiple linear regression analysis was 
conducted; for this analysis, the measured concentrations of 
parabens and metabolism indices were subjected to a natural 
logarithm transformation to satisfy the normality assumptions via 
the Kolmogorov–Smirnov test. Moreover, age (continuous), sex 
(categorical), BMI (categorical), education (categorical), income 
(categorical) and use of PCPs (categorical) were selected as 
covariates; this selection was based on the findings of relevant 
studies (17, 40) and on whether the inclusion of any of these 
covariates would engender a > 10% change in the estimated 
coefficient. Additionally, we adjusted for endocrine disease status to 
minimize potential interference effects of endocrine diseases on our 
analysis results. We also adjusted for the metabolite di(2-ethylhexyl) 
phthalate, considering its association with lipid metabolism, as 
indicated in previous research (23–25). Directed Acyclic Graphs 
(DAGs) were utilised to investigate the potential role of confounding 
variables in the association between urinary paraben levels and 
lipid metabolism indicator (see Supplementary Figure S2). The 
minimum sufficient adjustment sets for estimating the total effect 
of urinary paraben levels on lipid metabolism indicator were 
determined to be  age, sex, BMI, education, income and use of 
personal care products (PCPs). The directed acyclic graph (DAG) 
was constructed using a web-based tool (DAGitty® version 3.1; 61). 
A mediation analysis was conducted using PROCESS v4.2 to 
explore the effect of insulin resistance on the relationship between 
parabens and lipid metabolism. In the mediation analysis, both 
indirect and direct effects were assessed, and the proportion of 
insulin resistance mediated the relationship between parabens and 
lipid metabolism was estimated (62). All data analyses were 
performed using SPSS software (version 24.0), and a p-value below 
0.05 was considered statistically significant.

3 Results

3.1 Urinary concentrations of parabens and 
blood lipid metabolism indices

Table 2 presents the detection rate for the parabens as well as the 
medians and GMs of the concentrations of the parabens. The detection 
rate for the parabens was 100%. The parabens could be ordered as 
follows (in descending order) in terms of the GMs of their 
concentrations: MeP (383 μg/L), PrP (109 μg/L), EtP (39.5 μg/L), and 
BuP (6.35  μg/L). After stratifying our participants by gender, 
we observed that the GM of the concentrations of the parabens was 
higher in men than in women (MeP: 411 vs. 360 μg/L; EtP: 40.8 vs. 
38.4 μg/L; PrP: 115 vs. 104 μg/L; BuP: 6.65 vs. 6.10 μg/L). However, 
the Mann–Whitney U test revealed no significant difference in urinary 
paraben concentrations between the genders.

We also observed that the detection rate for all lipid metabolism 
indices was 100% (Table 3). The GMs of the concentrations of TG, 
LDLC, HDLC, and TC were 109, 110, 56.4, and 190 mg/dL, 
respectively. After stratifying our participants by gender, we observed 
that the GM of the concentration of TG was significantly higher in 
men than in women (125 vs. 96.0 mg/dL, p < 0.001). The GM of the 
concentration of LDLC was also higher in men than in women (112 
vs. 107 mg/dL, p = 0.299). By contrast, the concentration of HDLC 
was significantly higher in women than in men (62.5 vs. 50.1 mg/dL, 
p < 0.001), and the concentration of TC was higher in women than in 
men (192 vs. 188 mg/dL, p = 0.334).

3.2 Associations of urinary parabens with 
lipid metabolism and insulin resistance 
indices

As indicated in Table 4 and Figure 1, our Spearman correlation 
analysis revealed a significant positive association between urinary 
parabens and lipid metabolism indices (p < 0.01). EtP was significantly 
positively correlated with LDLC (r = 0.139, p = 0.024) and TC 
(r = 0.123, p = 0.047).

The multiple linear regression model was also used to explore the 
association of urinary parabens with lipid metabolism indices and 
insulin resistance indices (Table 5). After controlling for confounders, 
we observed that MeP exhibited a significant positive association with 
CRI-I (β = 0.05, p = 0.049). EtP also exhibited significant positive 
associations with LDLC (β = 0.10, p = 0.001), TC (β = 0.06, p = 0.003), 
and NHC (β = 0.08, p = 0.005). Furthermore, regarding the 
associations between urinary parabens and insulin resistance indices, 
EtP was positively associated with TyG-BMI (β = 0.02, p = 0.040).

3.3 Associations between lipid metabolism 
and insulin resistance indices

Concerning the association between lipid metabolism and insulin 
resistance indices, TyG-BMI exhibited positive associations with TG 
(β = 3.02, p < 0.001), CRI-I (β = 0.98, p < 0.001), CRI-II (β = 1.03, 
p < 0.001), NHC (β = 0.63, p < 0.001), and AC (β = 1.07, p < 0.001). 
However, a negative association was observed between TyG-BMI and 
HDLC (Supplementary Table S1).
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TABLE 3  Distribution of lipid metabolism indicators in the general Taiwanese adult population by sex (N = 264).

Group DR (%)b N GM (95%CI) Min 25th (95%CI) 50th (95%CI) 75th (95%CI) 95th (95%CI) Max p-valuec

TG (mg/dL)a Adults 100 264 109 (101–117) 35.0 72.0 (66.0–76.5) 102 (94.0–111) 147 (132–164) 284 (258–361) 3,821

Men 100 125 125 (112–139) 35.0 79.5 (74,0–92.5) 119 (103–133) 184 (157–224) 383 (280–582) 1,512 <0.001***

Women 100 139 96.0 (88.5–107) 35.0 66.8 (60.0–72.5) 93.5 (85.0–104) 126 (116–137) 221 (175–274) 3,821

HDLC (mg/dL)a Adults 100 264 56.4 (54.6–58.5) 23.2 46.5 (45.6–48.9) 56.3 (54.4–58.3) 68.7 (64.3–70.8) 85.1 (81.0–96.0) 118

Men 100 125 50.1 (47.7–52.6) 23.2 42.7 (40.8–45.2) 48.9 (46.3–53.3) 58.2 (55.8–62.2) 73.5 (69.9–105) 117 <0.001***

Women 100 139 62.5 (60.2–65.2) 30.7 52.8 (50.7–55.9) 62.2 (59.8–64.4) 73.0 (70.7–77.1) 89.5 (83.1–110) 118

LDLC (mg/dL)a Adults 100 264 110 (105–113) 30.0 90.0 (85.5–95.0) 112 (109–116) 139 (128–145) 174 (166–189) 271

Men 100 125 112 (106–118) 40.0 94.0 (83.0–101) 112 (109–121) 144 (129–149) 175 (161–199) 271 0.299

Women 100 139 107 (101–113) 30.0 88.8 (83.0–94.0) 112 (98.0–118) 134 (124–144) 173 (166–190) 199

TC (mg/dL)a Adults 100 264 190 (186–195) 92.0 168 (163–173) 190 (184–195) 220 (211–229) 263 (252–276) 493

Men 100 125 188 (181–195) 120 166 (155–174) 185 (180–195) 220 (205–230) 263 (246–284) 365 0.334

Women 100 139 192 (185–200) 92.0 168 (162–178) 192 (185–198) 222 (209–234) 267 (248–286) 493

GM = Geometric mean TG = Triglycerides, HDLC = High Density Lipoprotein Cholesterol, LDLC = Low Density Lipoprotein Cholesterol, and TC = Total cholesterol.
aThe laboratory reference ranges of adults for TG, HDL-C, LDL-C, and TC were < 150 mg/dL, > 40 mg/dL, < 130 mg/dL, and < 200 mg/dL, respectively.
bDR = Detection rate: number of urine sample with each lipid metabolism indicators concentration above detection limit/all analyzed urine samples.
cComparison of lipid metabolism indicators concentration between men and women using Mann–Whitney U test; *p < 0.05; **p < 0.01; *** p < 0.001.

TABLE 2  Distribution of parabens concentration (μg/L) in the general Taiwanese adult population by sex (N = 264).

Parabens Group DR (%)a N GM (95%CI) Min 25th (95%CI) 50th (95%CI) 75th (95%CI) 95th (95%CI) Max p-valueb

MeP Adults 100 264 383 (356–412) 64.2 257 (225–277) 399 (360–456) 622 (542–690) 1,025 (936–1,103) 1,188

Men 100 125 411 (369–457) 90.4 266 (239–310) 419 (368–471) 654 (548–767) 1,059 (972–1,116) 1,134 0.152

Women 100 139 360 (323–404) 64.2 234 (209–273) 376 (321–456) 615 (499–697) 1,015 (909–1,094) 1,188

EtP Adults 100 264 39.5 (36.7–42.6) 6.86 25.9 (23.8–28.0) 38.8 (35.1–43.5) 64.3 (56.9–76.7) 107 (99.3–112) 130

Men 100 125 40.8 (36.1–45.3) 6.86 25.9 (22.6–31.1) 40.5 (34.5–44.2) 74.6 (54.5–85.5) 110 (100–120) 130 0.484

Women 100 139 38.4 (34.6–42.5) 7.16 25.5 (21.7–28.1) 37.9 (32.7–45.3) 60.7 (54.3–71.7) 107 (90.2–111) 112

PrP Adults 100 264 109 (102–116) 26.5 77.7 (67.4–82.1) 117 (105–124) 165 (149–180) 226 (217–239) 258

Men 100 125 115 (104–124) 26.5 80.5 (72.1–92.2) 115 (97.1–139) 179 (153–195) 228 (216–238) 253 0.134

Women 100 139 104 (96–114) 31.2 65.6 (57.0–79.7) 117 (101–125) 156 (139–170) 225 (205–243) 258

BuP Adults 100 264 6.35 (5.98–6.77) 1.39 4.46 (4.18–4.92) 6.60 (6.00–7.36) 9.47 (8.93–10.0) 14.2 (13.4–15.0) 16.7

Men 100 125 6.65 (6.08–7.20) 1.40 4.84 (4.21–5.42) 6.84 (5.81–8.02) 9.60 (8.65–10.9) 14.8 (13.9–15.7) 15.8 0.305

Women 100 139 6.10 (5.61–6.74) 1.39 4.34 (3.91–4.84) 6.54 (5.55–7.45) 9.47 (8.36–9.99) 13.4 (12.3–14.7) 16.7

GM = Geometric mean.
aDR = Detection rate: number of urine sample with level of each paraben above detection limit/all analyzed urine samples.
bComparison of urinary paraben levels between men and women using Mann–Whitney U test; *** p < 0.001.
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3.4 Mediating role of insulin resistance in 
the association between urinary paraben 
levels and lipid metabolism

We selected parabens that, upon exposure, were significantly 
associated with lipid metabolism and insulin resistance indices to 
conduct a mediation analysis; in this analysis, we identified that insulin 
resistance could serve as mediators for the effects of paraben exposure 
on lipid metabolism indices. In mediation analysis, TyG-BMI mediated 

17.2% of the association between EtP and NHC (indirect effect = 0.014, 
95% confidence interval [CI] = 0.003–0.029); the mediation effect was 
significant (shown in Supplementary Table S2 and Figure 2).

4 Discussion

Our study revealed that MeP was positively associated with CRI-I 
and that EtP was positively associated with LDLC, TC, and NHC. The 

TABLE 4  Spearman’s correlation coefficients between urinary paraben concentrations in adults and lipid metabolism indicators (N = 264).

MeP EtP PrP BuP TG (mg/dL) HDLC (mg/dL) LDLC (mg/dL) TC (mg/dL) BMI (kg/m2)

MeP (μg/L) 1.000 0.414** 0.613** 0.577** 0.068 −0.044 0.074 0.087 −0.062

EtP (μg/L) 1.000 0.649** 0.548** 0.090 0.027 0.139* 0.123* −0.025

PrP (μg/L) 1.000 0.719** 0.062 0.027 0.074 0.075 −0.037

BuP (μg/L) 1.000 0.028 0.025 0.056 0.070 −0.052

TG (mg/dL) 1.000 −0.482** 0.260** 0.225** 0.443**

HDLC (mg/dL) 1.000 0.066 0.344** −0.314**

LDLC (mg/dL) 1.000 0.849** 0.097

TC (mg/dL) 1.000 −0.023

BMI (kg/m2) 1.000

TG = Triglycerides, HDLC = High Density Lipoprotein Cholesterol, LDLC = Low Density Lipoprotein Cholesterol, and TC = Total cholesterol. *p < 0.05; **p < 0.01; *** p < 0.001 Bold: p < 0.05.

FIGURE 1

Spearman’s correlation coefficients between urinary paraben concentrations in adults and lipid metabolism indices (N = 264).
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TABLE 5  Adjusted regression coefficients (β), 95% confidence intervals (CI), and p-values (p) for change in lipid and glucose metabolism indicators in relation to unit-increased in Ln-parabens (μg/L) in Taiwanese 
adults (N = 264).

Variable MeP (μg/L) EtP (μg/L) PrP (μg/L) BuP (μg/L)

β 95% CI p value β 95% CI P value β 95% CI P value β 95% CI P value

Model 1a

TG (mg/dL) 0.08 (−0.03, 0.18) 0.147 0.06 (−0.05, 0.17) 0.300 0.03 (−0.11, 0.16) 0.711 0.06 (−0.06, 0.19) 0.318

HDLC (mg/dL) −0.03 (−0.07, 0.02) 0.250 0.03 (−0.02, 0.08) 0.192 0.03 (−0.03, 0.09) 0.306 0.01 (−0.04, 0.07) 0.684

LDLC (mg/dL) 0.03 (−0.03, 0.09) 0.340 0.10 (0.04, 0.16) 0.001 0.07 (−0.01, 0.15) 0.083 0.07 (<0.01, 0.14) 0.050

TC (mg/dL) 0.02 (−0.02, 0.06) 0.261 0.06 (0.02, 0.10) 0.003 0.04 (−0.01, 0.09) 0.134 0.04 (−0.01, 0.09) 0.086

CRI-I 0.05 (<0.01, 0.10) 0.049 0.03 (−0.02, 0.08) 0.229 0.01 (−0.06, 0.07) 0.788 0.03 (−0.03, 0.09) 0.312

CRI-II 0.06 (−0.01, 0.13) 0.115 0.07 (> − 0.01, 0.14) 0.059 0.04 (−0.05, 0.13) 0.410 0.06 (−0.02, 0.14) 0.155

NHC 0.04 (−0.01, 0.10) 0.123 0.08 (0.02, 0.13) 0.005 0.04 (−0.03, 0.11) 0.230 0.06 (−0.01, 0.12) 0.096

AC 0.07 (> − 0.01, 0.14) 0.057 0.05 (−0.03, 0.12) 0.205 0.01 (−0.08, 0.11) 0.793 0.04 (−0.04, 0.13) 0.316

TyG-BMI 0.01 (−0.01, 0.03) 0.271 0.02 (<0.01, 0.05) 0.040 0.01 (−0.02, 0.04) 0.648 0.01 (−0.02, 0.03) 0.705

Model 2b

TG (mg/dL) 0.07 (−0.05, 0.18) 0.250 0.06 (−0.05, 0.17) 0.282 0.02 (−0.12, 0.16) 0.798 0.07 (−0.06, 0.20) 0.269

HDLC (mg/dL) −0.02 (−0.06, 0.03) 0.479 0.03 (−0.02, 0.08) 0.189 0.03 (−0.03, 0.10) 0.258 0.02 (−0.04, 0.07) 0.546

LDLC (mg/dL) 0.03 (−0.03, 0.09) 0.347 0.11 (0.05, 0.17) 0.001 0.07 (−0.01, 0.15) 0.075 0.08 (<0.01, 0.15) 0.048

TC (mg/dL) 0.02 (−0.02, 0.07) 0.259 0.07 (0.02, 0.11) 0.002 0.04 (−0.02, 0.09) 0.157 0.04 (> − 0.01, 0.09) 0.075

CRI-I 0.04 (−0.01, 0.09) 0.119 0.03 (−0.02, 0.09) 0.209 <0.01 (−0.06, 0.07) 0.906 0.03 (−0.03, 0.09) 0.374

CRI-II 0.05 (−0.03, 0.12) 0.202 0.08 (0.01, 0.15) 0.034 0.04 (−0.05, 0.13) 0.417 0.06 (−0.03, 0.14) 0.187

NHC 0.04 (−0.02, 0.10) 0.175 0.08 (0.03, 0.14) 0.004 0.04 (−0.03, 0.11) 0.273 0.06 (−0.01, 0.13) 0.094

AC 0.06 (−0.02, 0.13) 0.139 0.05 (−0.02, 0.13) 0.178 0.01 (−0.09, 0.10) 0.899 0.04 (−0.05, 0.13) 0.369

TyG-BMI 0.01 (−0.01, 0.03) 0.361 0.03 (<0.01, 0.05) 0.018 0.01 (−0.02, 0.04) 0.438 0.01 (−0.02, 0.04) 0.546

aModel 1: adjustment for age, sex, BMI, urinary creatinine levels, endocrine disease status, and Ln ΣDEHPm. Bold: p < 0.05.
bModel 2: adjustment for age, sex, education, income, PCPs use, BMI, urinary creatinine, endocrine disease status, and Ln ΣDEHPm. Bold: p < 0.05.
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findings of this study indicate that exposure to parabens may 
be associated with obesity and indicators of lipid metabolism, as well as 
adverse health outcomes, in adults. These findings are consistent with 
those reported in previous epidemiological studies. In an ongoing three-
year cycle cross-sectional biomonitoring programme [KoNEHS Cycle 3 
(2015–2017)], an adult population (aged 19 years or older) was 
investigated to ascertain the current level of exposure to major 
environmental chemicals among the general Korean population. The 
KoNEHS study also revealed a positive association between urinary EtP 
levels in adults and obesity [β = 0.03, p = 0.038; (17)]. A total of 1,454 
children, 891 adolescents, and 3,758 adults (for BMI) and 3,424 adults 
(for TG/HDL) from the Korean National Environmental Health Survey 
(2015 to 2017) were included in this cross-sectional study. The findings 
of Kim’s study suggest that exposure to EDC mixtures is associated with 
elevated BMI and TG/HDL levels in both adolescents and adults. The 
association is more pronounced in adults than in adolescents. Moreover, 
adolescence may signify a critical period for EDC mixtures in terms of 
outcomes (41).

In a related study, blood plasma samples were collected from 27 
healthy women at various points throughout their menstrual cycles in 
order to examine the potential correlation between paraben exposure 
and obesity (58). The plasma levels of methylparaben, as well as the 
sum of parabens, were found to be positively associated with plasma 
adipsin levels. Conversely, a negative correlation was observed 
between methylparaben levels and glucagon, leptin, and PAI-1. These 
inconsistencies in the impact of urinary paraben concentrations on 
lipid metabolism indices could be attributed to differences in study 
design or participant characteristics, including sex, age, or ethnicity.

It is hypothesised that paraben exposure may impact insulin 
sensitivity in human organs, thus providing an underlying mechanism 
that could explain the observed association. Hu et al. (15) found that 
parabens promote adipogenesis in 3 T3-L1 cells, contributing to obesity 
by disrupting lipid synthesis and decomposition via the PPARγ receptor. 
Their findings showed a significant positive association between EtP 
and TyG-BMI. Animal studies suggest that paraben exposure can 
damage pancreatic islet cells. For example, zebrafish embryos exhibited 
enlarged islet areas, abnormal shapes, and increased aberrant β-cells 
(42). Pereira-Fernandes et al. (43) demonstrated that parabens strongly 
bind to and activate PPARγ, a key regulator of insulin sensitivity. Our 
results showed a significant positive association between EtP and 
TyG-BMI, suggesting that paraben exposure may disrupt blood glucose 

regulation and increase insulin resistance risk. These findings align with 
the KoNEHS Cycle 3 study (2015–2017) in South Korea, which reported 
positive associations between MeP (OR = 1.68, 95% CI = 1.08–2.60) 
and EtP (OR = 2.74, 95% CI = 1.77–4.24) with diabetes (17). Similarly, 
Bai et al. (44) found a significant positive association between PrP and 
insulin resistance (OR = 1.72, 95% CI = 1.15–2.57) in NHANES (2009–
2016). A case–control study from the Henan Rural Cohort Study, 
including 1,713 participants (880 with type 2 diabetes and 833 controls), 
used generalized linear regression models to assess the effects of 
parabens on T2DM and insulin resistance indicators (63). The study 
found a linear positive association between MeP or paraben mixtures 
and T2DM risk, while EtP and BuP showed a non-linear association, 
with moderate-to-high exposure levels contributing to T2DM 
development (63). The findings of this study demonstrated that 
exposure to MeP or paraben mixtures was found to have a linear 
positive association with the risk of T2DM. EtP and BuP demonstrated 
a non-linear association with insulin resistance, with moderate-high 
exposure levels contributing to the development of T2DM (63).

A prospective study of 1,087 pregnant women from a single 
tertiary medical center also shows that urinary EtP was associated 
with gestational DM, with risk ratios of 1.12, 1.11 and 1.70 for the 
second, third and highest quartiles, respectively (64). Furthermore, a 
case–control study of adults (n = 101) in Jeddah, Saudi Arabia during 
2015–2016 also found that increased parabens (including MeP, EtP, 
and PrP) exposure could lead to an over six-fold increase in the risk 
of diabetes (65).

We found that insulin resistance indices were positively linked to 
LDLC and lipid metabolism markers but negatively associated with 
HDLC, suggesting a role in dyslipidemia and obesity. Previous studies 
indicate that insulin resistance and type 2 diabetes can elevate TG or 
reduce HDLC levels (45, 46). Insulin resistance may impair VLDL 
degradation, leading to increased VLDL synthesis (47). VLDL 
transports fat from the liver to tissues and converts to LDLC after 
unloading most of its fat (48, 49).

Consequently, insulin resistance may lead to elevated TG levels, 
resulting in hypertriglyceridemia. Insulin resistance also reduces the 
activity of lipoprotein lipase, a key mediator of VLDL clearance (50). 
This reduction in VLDL and LDLC uptake by the liver prolongs the 
duration of these lipoproteins in the plasma (22, 47). Gencer et al. (51) 
confirmed that insulin resistance in polycystic ovary syndrome 
(PCOS) is linked to fasting insulin, HOMA index, BMI, and right 
ovarian volume. In PCOS with Hashimoto’s thyroiditis (PCOS+HT), 
insulin resistance also correlates with fasting insulin, HOMA index, 
BMI, SHBG, and left ovarian volume. Among PCOS patients with 
insulin resistance, 37.5% had increased right ovarian volume, while 
left ovarian volume was elevated in 35.7% of those without insulin 
resistance and 68.8% of those with it. PCOS shares clinical similarities 
with certain thyroid diseases, particularly hypothyroidism and 
autoimmune thyroid diseases (AITDs) (52). Its coexistence with 
hyperthyroidism is rare, suggesting thyroid influence on PCOS 
through metabolism and immunity. Thyroid function affects insulin 
resistance, a key factor in PCOS, with hypothyroidism exacerbating it 
more than hyperthyroidism. The rising prevalence of obesity further 
impacts health, as hypothyroid patients are prone to obesity, and those 
with both PCOS and hypothyroidism often have a higher BMI and 
greater metabolic disease risk. Further research is required to confirm 
these findings and to elucidate the underlying mechanisms. 
Nevertheless, it is evident that strategies to reduce EDC exposure from 
early life stages may be necessary to lower the risk of metabolic disease.

FIGURE 2

Mediation effects of exposure to parabens on the homeostatic 
model assessment of estimated lipid metabolism indices through 
insulin resistance indices (N = 264).
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Our mediation analysis revealed that TyG-BMI could mediate the 
association between EtP and NHC. Therefore, TyG-BMI may be a 
mediator in the association between EtP exposure and NHC. Parabens 
increase the risk of obesity and cardiovascular disease by fostering the 
development of insulin resistance and dyslipidemia. Extensive 
epidemiological and mechanistic studies (both in vivo and in vitro) are 
warranted to validate these associations and elucidate the potential 
corresponding biological mechanisms.

There are four key strengths in this study. First, our current data were 
obtained from a representative survey including participants aged 7 to 
97 years. Therefore, our study can accurately reflect the exposure profile 
of the general population in Taiwan. Second, few studies have explored 
the association between paraben exposure and metabolism indices in the 
general Taiwanese adult. Third, we employed various metabolic indices 
that are currently used in clinical practice but are rarely used in research, 
thus enriching the understanding of overall metabolic conditions. 
Finally, we  conducted a mediation analysis to explore the potential 
mediating role of insulin resistance in the association between paraben 
exposure and lipid metabolism in the general Taiwanese adult population.

Despite its strengths, our study has some limitations that warrant 
consideration. First, we  applied a cross-sectional design; hence, 
we could not establish a causal relationship between exposure and 
health effects. Second, our sample size was relatively small, which 
could potentially affect the reliability and interpretability of our 
statistical findings. Future research should consider a larger sample 
size for improved representativeness and robustness. Third, the 
measurement of urinary paraben concentrations using morning urine 
samples may not fully capture long-term exposure; however, this 
limitation is mitigated by evidence suggesting that daily exposure 
patterns for parabens could be consistent over time (53, 54).

5 Conclusion

The present study has revealed that parabens have the capacity to 
affect metabolic homeostasis. The potential mediation of the 
association between paraben exposure and lipid metabolism by insulin 
resistance is also indicated. The risk of obesity and cardiovascular 
disease is increased by parabens via the fostering of the development 
of insulin resistance and dyslipidemia. Whilst the participants in the 
present study were selected from the general population, the findings 
are limited to Taiwanese individuals. Therefore, future studies must 
include a greater number of samples in order to elucidate these 
underlying mechanisms and increase the generalizability of the results.
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Background: Acrylamide (AA) is a ubiquitous environmental contaminant linked 
to systemic inflammation and oxidative stress in animal studies; however, 
the epidemiological evidence is still lacking. This study aimed to evaluate the 
association of AA exposure with markers of systemic inflammation and serum 
concentrations of an anti-aging protein, α-klotho.

Methods: The study used data of 1,545 adults aged 40–79 years from the 
National Health and Nutrition Examination Survey (NHANES) 2013–2016. 
Internal AA exposure was assessed using hemoglobin adducts of acrylamide and 
glycidamide (HbAA and HbGA, respectively), the sum of HbAA and HbGA (HbAA 
+ HbGA), and the ratio of HbGA and HbAA (HbGA/HbAA). Two novel indicators, 
systemic immune-inflammation index (SII) and system inflammation response 
index (SIRI), were calculated using the lymphocyte, platelet, neutrophil, and 
monocyte counts. The serum concentration of soluble α-klotho was measured 
using enzyme-linked immunosorbent assay. Multivariable linear regression 
models were used to estimate the associations of AA hemoglobin biomarkers 
with systemic inflammation indicators and serum concentration of α-klotho.

Results: Each one-unit increase in ln-transformed HbAA, HbGA, and 
HbAA+HbGA was associated with an increase in SII in models adjusted for 
age, sex, and race/ethnicity [regression coefficient (β) = 32.16, 95% confidence 
interval (CI): 3.59, 60.73; β =36.37, 95% CI: 5.59, 67.15; and β = 37.17, 95% CI: 
6.79, 67.55, respectively]. However, the associations were no longer significant 
after additional adjustment for lifestyle factors. Higher HbAA and HbAA+HbGA 
predicted lower serum α-klotho concentrations (β = −35.76  pg./mL, 95% CI: 
−63.27, −8.25; β = −33.82 pg./mL, 95% CI: −62.68, −4.96, respectively).

Conclusion: The hemoglobin adducts of AA parameters, as biomarkers of 
internal AA exposure, were associated with reduced serum concentrations of 
α-klotho among the United States population in their middle-late adulthood. 
The findings indicated that exposure to AA may have impacts on the molecular 
pathways of aging and related diseases by influencing α-klotho concentrations.

KEYWORDS

acrylamide, glycidamide, systemic immune-inflammation index, system inflammation 
response index, α-klotho
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1 Introduction

Acrylamide (AA) is a reactant extensively used to synthesize 
polyacrylamide polymers, gels, and binding agents (1). AA has 
attracted public attention in the last decades because it can 
be developed via Maillard reaction during food processing at high 
temperatures, such as frying and baking (2). Meanwhile, it is also 
found in the smoke generated when tobacco burns in a lit cigarette (3). 
Thus, AA can be absorbed into the body through ingestion, inhalation, 
and dermal contact with AA-containing products (3, 4). Diet 
contributes to an average daily intake of 0.02–1.53 μg/(kg body weight 
· day) AA for the general population (5). Once absorbed, AA is widely 
distributed to various organs and metabolized to a major metabolite, 
glycidamide (GA), in the liver (6). Hemoglobin adducts of AA 
(HbAA) and GA (HbGA) are validated biomarkers in human 
biomonitoring and commonly found in the United  States (US) 
population (7). The ubiquitous presence of AA has raised health 
concerns worldwide owing to its toxicological effects (1, 2).

AA exposure has been related to various adverse health outcomes, 
such as cancer (8, 9), cardiovascular diseases (10), respiratory diseases 
(11), diabetes (12), and depression (13, 14). It impacts human health 
through multiple mechanisms. Particularly, AA exposure increases 
systemic inflammation (2). In vitro and in vivo studies indicated that 
AA treatment activated the nuclear factor-κB (NF-κB) pathway and 
enhanced the release of pro-inflammatory cytokines (15, 16). 
However, evidence of AA exposure associated with systemic 
inflammation in humans is still scarce. Recently, two novel indicators 
derived from lymphocyte, neutrophil, monocyte, and platelet counts 
were introduced: the systemic immune-inflammation index (SII) and 
the system inflammation response index (SIRI) (17). Initially, SII was 
used to assess the prognosis of patients with liver cancer, whereas 
SIRI predicted survival after chemotherapy in patients with cancer 
(18, 19). These indicators were widely used for evaluating systemic 
inflammation response in the general population because of their 
easy access and biological significance (20, 21).

Another toxicological mechanism of AA-associated health outcomes 
is oxidative stress damage. AA or GA contributes to the depletion of 

glutathione, overproduction of reactive oxygen species (ROS), and 
alteration of the nuclear factor erythroid 2-related factor 2 pathway (22). 
Oxidative stress may be  inhibited by soluble α-klotho, which is a 
transmembrane protein related to the aging process (23). α-klotho 
downregulates ROS-associated stress and prolongs cellular lifespan (24, 
25). It also maintains the anti-aging process and prevents aging-related 
diseases. Therefore, exploring a potential link between AA exposure and 
soluble α-klotho may have significant public health implications.

AA exposure induces systemic inflammation and oxidative stress in 
animals (1); however, the epidemiological evidence related to this is quite 
limited. Previous epidemiological studies suggested that hemoglobin or 
urinary biomarkers of AA and GA were associated with increased levels 
of pro-inflammatory cytokines and inflammatory markers, including 
low-grade inflammation score (INFLA-score), C-reactive protein (CRP), 
circulating mean platelet volume (MPV), and high-sensitivity 
interleukin-6 (IL-6) (10, 26–28). However, few studies have addressed 
the associations of HbAA and HbGA with novel markers of systemic 
inflammation and serum concentrations of α-klotho. Therefore, this 
study aimed to explore the associations of AA exposure with markers of 
systemic inflammation and serum concentrations of α-klotho in general 
adults aged 40–79 years using the National Health and Nutrition 
Examination Survey (NHANES) 2013–2016 cycles.

2 Materials and methods

2.1 Study design and population

The study data were extracted from the NHANES database 
(29). NHANES is a population-based survey aiming to evaluate the 
health and nutrition of participants in the US. This nationally 
representative survey included physical examinations, laboratory 
tests, dietary information, and health-related questionnaires. The 
NHANES team captured informed consent from each participant 
prior to enrollment. The study protocol (Protocol #2011–17) was 
reviewed and approved by the NCHS Research Ethics 
Review Board.
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The NHANES 2013–2014 and 2015–2016 cycles were selected 
owing to data availability. A total of 20,146 participants were 
enrolled in NHANES 2013–2016 cycles (Figure 1). Adults aged 
40–79 years were included (N = 6,853). Pregnant women were 
excluded at the examination (N = 7). Furthermore, participants 
with missing blood cell counts (N = 478), missing HbAA and 
HbGA measurements (N = 4,495), and missing α-klotho 
concentrations in serum (N = 328) were excluded from 
the analysis.

2.2 Measurements of AA and GA 
concentrations

The concentrations of HbAA and HbGA in human whole blood 
or erythrocytes were measured (7) as described in a previous study 
(30). Briefly, the adducts of AA and GA were cleaved using a modified 
Edman reaction. The Edman products were prepared by liquid–liquid 
extraction and quantified using high-performance liquid 
chromatography–tandem mass spectrometry. The limit of detection 
of AA and GA was 3.90 pmol/g Hb and 4.90 pmol/g Hb, respectively. 
Laboratory quality assurance and quality control protocols are 
available on the NHANES website (29).

2.3 Systemic immune-inflammation index

The whole blood specimens were analyzed at NHANES mobile 
examination centers using automated hematology analyzing devices 
(29). After analysis in duplicate, the observed results were averaged to 
improve the data quality. We  calculated SII using the counts of 
peripheral blood cells (1,000 cells/μL):

	

  
 

Platelet count neutrophil count
Lymphocyte count

×

SIRI was also calculated as follows (19):

	

  
 

Monocyte count neutrophil count
Lymphocytes count

×

2.4 Serum concentrations of α-klotho

Serum concentrations of soluble α-klotho from the participants were 
quantified using an extensively validated IBL enzyme-linked 
immunosorbent assay method (31). The sensitivity of the assay was 6 pg./
mL. The samples were analyzed in duplicate to ensure the precision. The 
final values were calculated using the average of the two observed values.

2.5 Covariables

As reported in previous studies (10, 28), several potential 
confounding factors in relation to AA exposure and systemic 
inflammation/α-klotho were considered, including socio-demographic 
characteristics, physical examination, dietary information, and 
lifestyles. The covariables were included if they changed the coefficient 
of AA hemoglobin biomarkers by greater than 10% in simple linear 
regression models. The following covariables were selected: sex, age, 
race/ethnicity, educational level, family poverty-income ratio (PIR), 
body mass index (BMI), cigarette smoking (smoker or non-smoker), 
alcohol consumption (days per year) and physical activity (minutes per 
week). Cigarette smoking was assessed by individual’s self-report. 
Smoker was defined as participants who smoked at least 100 cigarettes 
in life. In the smoking subgroup analysis, an additional continuous 
variable of an average number of cigarettes smoked per day over the 
past 30 days was adjusted in the models for smokers. A continuous 
variable of alcohol consumption was generated from three components: 
consumption of at least 12 alcohol drinks/lifetime (yes or no), 
frequency of drinking alcohol over past 12 months (0 to 365) and days 
of alcohol consumption per week, month, or year. “0” was assigned to 
individuals who did not have at least 12 alcohol drinks/lifetime. The 
amount of alcohol consumption was calculated by day × frequency for 
those who had 12 or more alcohol drinks. Physical activity was 
calculated as the total weekly minutes of vigorous work activities, 
moderate work activities, walking or bicycling, vigorous recreational 
activities, and moderate recreational activities (32).

2.6 Statistical analysis

The general characteristics of participants were summarized 
using the median and interquartile range for continuous variables 

FIGURE 1

The number of participants included in the current analysis in NHANES survey 2013–2016.
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and frequency and proportion for categorical variables. HbAA, 
HbGA, HbAA + HbGA, and HbGA/HbAA were natural logarithm 
(ln) transformed owing to the skewed distribution of residuals. 
Spearman correlation coefficients were calculated to evaluate 
pairwise correlations of AA hemoglobin indicators. Multiple 
imputations with chained equations were applied for a few missing 
covariables, including family PIR, BMI, cigarette smoking, and 
alcohol consumption.

Multivariable linear regression models were used to explore 
the associations of AA hemoglobin biomarkers with SII, SIRI, and 
serum concentration of α-klotho. The collinearity of the linear 
regression models was assessed using a variance inflation 
factor, revealing no multi-collinearity. Regarding covariables, 
three models were used. Model 1 was a crude model without 
any adjustment. Model 2 was a basic model adjusted for sex, 
age, and race/ethnicity. Model 3 was adjusted for all the 
aforementioned covariables as the primary model. Generalized 
additive models with 3-degrees-of-freedom natural cubic 
splines were fitted to estimate the potential nonlinear associations 
of AA hemoglobin biomarkers with markers of systemic 
inflammation and serum concentrations of α-klotho. Tobacco 
smoke is a major source of AA exposure (33). Therefore, an 
interaction term between cigarette smoking and target biomarkers 
(data shown in Supplementary Table S1) was further introduced, 
and then stratified analysis based on cigarette smoking 
was performed.

Statistical analysis was performed using Stata version 17.0 (Stata 
Corp, TX, United States) and R version 4.2.1.1 Statistical significance 
was considered as a two-sided p < 0.05 and p < 0.10 for 
interaction terms.

3 Results

A total of 1,545 participants were included in the present 
analysis. The general characteristics and outcomes are presented in 
Table 1. The frequency and proportion of adults aged 40–59 years 
were 851 and 55.1%, respectively. A majority of participants were 
non-Hispanic White (39.7%) and had higher educational levels 
(54.0%).

HbAA and HbGA were detected in all the samples. The median 
values (25th percentile, 75th percentile) of HbAA, HbGA, and HbAA 
+ HbGA were 41.5 (32.2, 60.6) pmol/g Hb and 36.2 (26.7, 51.0) 
pmol/g Hb and 78.2 (60.1, 111) pmol/g Hb, respectively. The median 
value of HbGA/HbAA was 0.822 (0.689, 0.982) (Table 1). HbAA and 
HbGA were highly correlated with a Spearman correlation coefficient 
of 0.822 (p < 0.001). The median (25th percentile, 75th percentile) SII 
and SIRI values were 455 (332, 623) and 1.07 (0.75, 1.58), respectively. 

1  https://www.r-project.org/

TABLE 1  Descriptive statistics of general characteristics of 1,545 participants from NHANES 2013–2016.

Characteristics N (%) Variables Median (25th-75th 
percentile)

Age (years) BMI (kg/m2) 28.7 (24.9, 33.1)

 � 40–59 851 (55.1) PIR 2.20 (1.15, 4.39)

 � 60–79 694 (44.9) Endpoints

Sex  � SII 455 (332, 623)

 � Male 763 (49.4)  � SIRI 1.07 (0.75, 1.58)

 � Female 782 (50.6)  � α-klotho (pg/mL) 779 (649, 961)

Race/Ethnicity Target analytes

 � Mexican American 265 (17.2)  � HbAA (pmol/g Hb) 41.5 (32.2, 60.6)

 � Other Hispanic 185 (12.0)  � HbGA (pmol/g Hb) 36.2 (26.7, 51.0)

 � Non-Hispanic White 614 (39.7)  � HbAA+HbGA (pmol/g Hb) 78.2 (60.1, 111.0)

 � Non-Hispanic Black 269 (17.4)  � HbGA/HbAA 0.822 (0.689, 0.982)

 � Other race - including multi-racial 212 (13.7)

Education

 � Less than 9th grade 197 (12.8)

 � 9th–11th grade 181 (11.7)

 � High school grade 333 (21.5)

 � Some college 417 (27.0)

 � College graduate or above 417 (27.0)

Cigarette smoking

 � Smoker 738 (47.8)

 � Non-smoker 807 (52.2)

N, frequency; %, proportion; BMI, body mass index; PIR, poverty income ratio; SII, systemic immune-inflammation index; SIRI, system inflammation response index.
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A high correlation was observed between SII and SIRI (Spearman 
correlation coefficient: 0.747, p < 0.001). The median α-klotho 
concentration in serum was 779 (649, 961) pg./mL (Table 1).

Nonlinear and linear associations between AA hemoglobin 
biomarkers and markers of systemic inflammation are displayed in 
Figure  2 and Table  2, respectively. No evidence of statistically 
significant nonlinear associations between AA hemoglobin 
biomarkers and systemic inflammation markers was found (p 
nonlinearity > 0.05, Figure 2). HbAA, HbGA, and HbAA + HbGA were 
significantly positively correlated with SII and SIRI in the crude 
models (Model 1) and basic adjusted models (Model 2). No statistically 

significant association between AA hemoglobin biomarkers and SII 
or SIRI was observed after adjusting for potential confounders in 
Model 3.

Table 3 illustrates the associations of AA hemoglobin biomarkers 
with serum concentrations of α-klotho. Higher HbAA concentration 
in whole blood was statistically significantly related to decreased 
serum concentrations of α-klotho (β = −35.76 pg./mL, 95% CI: 
−63.27, −8.25; p = 0.011), after adjustment for potential confounders. 
A negative association between HbAA + HbGA and serum 
concentrations of α-klotho was also observed (β = −33.82 pg./mL, 
95% CI: −62.68, −4.96; p = 0.022).

FIGURE 2

Dose–response relationships of AA hemoglobin biomarkers and markers of systemic inflammation and α-Klotho concentrations in serum. (A) HbAA 
and SII; (B) HbAA+HbGA and SII; (C) HbAA and SIRI; (D) HbAA+HbGA and SIRI; (E) HbAA and α-Klotho; (F) HbAA+HbGA and α-Klotho. LNAA, ln-
transformed HbAA; LNAA+LNGA, ln-transformed HbAA+HbGA. The dose–response relationships were assessed by generalized additive models with 
adjustment for age, sex, race/ethnicity, educational level, body mass index, family poverty income ratio, cigarette smoking, alcohol consumption, and 
physical activity.
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The interaction term based on the multiplication of cigarette 
smoking and AA hemoglobin biomarkers was statistically significant 
in the associations between HbAA/HbGA and SII, as well as between 
HbAA+HbGA and α-klotho (Supplementary Table S1). After 
stratification by cigarette smoking, HbAA and HbAA + HbGA were 
borderline significantly associated with decreased serum 
concentrations of α-klotho only in smokers (β = −40.69 pg./mL, 95% 
CI: −87.15, 5.77; p = 0.086; β = −39.88 pg./mL, 95% CI: −88.23, 8.47; 
p = 0.106, respectively). No statistically significant association was 
observed with other AA hemoglobin biomarkers in the stratified 
analyses (Figure 3).

4 Discussion

This cross-sectional analysis revealed negative associations of 
HbAA and HbAA + HbGA with serum concentrations of α-klotho; 
the associations were more pronounced in smokers. HbAA and 
HbAA + HbGA showed no association with SII and SIRI, as calculated 
using blood cell counts.

Several epidemiological studies have addressed the association of 
AA exposure at environmentally relevant doses with systemic 
inflammation measured using various indicators. Our findings were 
consistent with those of previous studies (10, 26–28). In a pilot study, 
14 healthy volunteers (6 smokers) were administered 160 g/day 
AA-containing potato chips (27). After 4 weeks, the concentrations 

of inflammation markers, plasma high-sensitivity CRP, high-
sensitivity IL-6, gamma-glutamyltransferase significantly increased 
(p < 0.10) compared with baseline (before consumption) among 
smokers and nonsmokers (27). The urinary AA biomarkers in a 
Chinese population were significantly associated with increased 
concentrations of systemic inflammatory marker plasma CRP (28). 
This increase in plasma CRP concentration mediated 6.34–11.1% of 
the associations of urinary AA biomarkers with reduced pulmonary 
function. In a prospective study, Wang et  al. (10) reported an 
association of the urinary AA biomarkers with 10-year cardiovascular 
disease risks in general adults, mediated by systemic inflammation 
(plasma CRP and circulating MPV), oxidative stress, and plasma 
transforming growth factor-β1. In NHANES 2003–2014 cycles, AA 
hemoglobin biomarkers were related to an increase in cancer 
mortality (mediated by low-grade INFLA-score), an inflammatory 
marker derived from CRP, white blood cell and platelet counts, and 
granulocyte/lymphocyte ratio (26). On the contrary, the present 
study indicated that AA exposure might not increase systemic 
inflammation in general adults. The reasons for inconsistent findings 
may be  due to the heterogeneity between populations, outcome 
measurements, and time window of assessment. We cannot be ruled 
out that manifestations of inflammatory effects of AA may 
be temporarily masked by compensatory processes in this population 
and maybe become apparent in other study population. Moreover, 
CRP used in the previous studies may be a more sensitive biomarker 
in measuring inflammation, compared with SII and SIRI (21). 

TABLE 2  Estimated regression coefficients and 95% CI for markers of systemic inflammation and AA hemoglobin biomarkers.

Model 1 Model 1 Model 1

β (95% CI) P β (95% CI) P β (95% CI) P

SII

HbAA 32.94 (5.05, 60.84) 0.021 32.16 (3.59, 60.73) 0.028 23.48 (−8.12, 55.08) 0.145

HbGA 47.43 (17.53, 77.34) 0.002 36.37 (5.59, 67.15) 0.021 24.88 (−7.85, 57.61) 0.136

HbAA+HbGA 42.17 (12.52, 71.82) 0.005 37.17 (6.79, 67.55) 0.017 26.84 (−6.29, 59.97) 0.112

HbGA/HbAA 27.42 (−23.63, 78.47) 0.293 −2.92 (−56.32, 50.48) 0.915 −0.97 (−58.63, 56.69) 0.974

SIRI

HbAA 0.11 (0.03, 0.18) 0.008 0.08 (0.01, 0.16) 0.036 0.07 (−0.02, 0.15) 0.133

HbGA 0.10 (0.01, 0.18) 0.023 0.08 (−0.01, 0.16) 0.075 0.03 (−0.05, 0.12) 0.456

HbAA+HbGA 0.11 (0.03, 0.20) 0.008 0.09 (0.01, 0.17) 0.034 0.06 (−0.03, 0.15) 0.188

HbGA/HbAA −0.07 (−0.21, 0.07) 0.342 −0.06 (−0.21, 0.08) 0.414 −0.11 (−0.27, 0.04) 0.154

β, regression coefficient; CI, confidence interval; SII, systemic immune-inflammation index; SIRI, system inflammation response index. AA biomarker data was ln-transformed. Model 1 was 
unadjusted. Model 2 was adjusted for age, sex, race/ethnicity. Model 3 was adjusted for age, sex, race/ethnicity, educational level, body mass index, family poverty income ratio, cigarette 
smoking, alcohol consumption, physical activity.

TABLE 3  Estimated regression coefficients and 95% CI for serum α-Klotho concentrations and AA hemoglobin biomarkers.

Model 1 Model 2 Model 3

β (95% CI) P β (95% CI) P β (95% CI) P

HbAA −31.54 (−55.93, −7.14) 0.011 −30.73 (−55.60, −5.85) 0.016 −35.76 (−63.27, −8.25) 0.011

HbGA −18.22 (−44.45, 8.00) 0.173 −21.92 (−48.75, 4.92) 0.110 −24.98 (−53.51, 3.55) 0.086

HbAA+HbGA −28.63 (−54.59, −2.67) 0.031 −29.64 (−56.12, −3.17) 0.028 −33.82 (−62.68, −4.96) 0.022

HbGA/HbAA 52.52 (7.92, 97.11) 0.021 41.27 (−5.20, 87.73) 0.082 41.50 (−8.73, 91.73) 0.106

β, regression coefficient; CI, confidence interval. AA biomarker data was ln-transformed. Model 1 was unadjusted. Model 2 was adjusted for age, sex, race/ethnicity. Model 3 was adjusted for 
age, sex, race/ethnicity, educational level, body mass index, family poverty income ratio, cigarette smoking, alcohol consumption, physical activity.
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Furthermore, given the short half-life of HbAA in humans, there may 
be exposure misclassification and the relevant time window for AA 
exposure and inflammation may not overlap.

Both in vitro and in vivo experimental studies have indicated that 
AA exposure increased inflammation in various tissues, including the 
neurons, brain, liver, and kidney (1). AA exposure induced an 
inflammatory response in vitro via the nuclear factor-κB (NF-κB) 
pathway in human PC12 cells (16). The transcription of inflammatory 
genes was enhanced after NF-κB activation, and pro-inflammatory 
cytokines, such as tumor necrosis factor-α (TNF-α), interleukin 6 
(IL-6), pro-IL-1β, and pro-IL-18, were released. These findings were 
further observed in rodent models. AA treatment enhanced the serum 
concentrations of cytokines, including TNF-α, pro-IL-1β, and IL-6 
(15, 34).

Several epidemiological studies have reported that reductions in 
serum α-Klotho levels were associated with several environmental 
contaminants, including heavy metals (35), perfluoroalkyl and 
polyfluoroalkyl substances (36), and polycyclic aromatic hydrocarbons 
(37). The exact biological mechanisms of action of AA exposure on 
the reduction in serum concentrations of α-klotho are still unclear. 
The most possible underlying mechanism was AA-induced oxidative 
stress. Several animal and epidemiological studies showed that AA 
exposure increases the levels of oxidative stress markers, such as 
urinary 8-hydroxydeoxyguanosine and 8-iso-prostaglandin-F2α (10, 

15). The α-klotho stimulation upregulated the expression of 
phosphorylation forkhead box protein O3a, inhibiting ROS-related 
oxidative stress damage (24). ROS production and oxidative stress 
damage were negatively correlated with serum concentrations of 
α-klotho (25).

Stratified analyses revealed more prominent associations 
between AA exposure and serum concentrations of α-klotho in 
smokers than nonsmokers. This was also observed previously in 
associations of AA exposure with other health-related outcomes, 
including diabetes (12), cardiovascular diseases (38, 39), depressive 
symptoms (13). Cigarette smoking, a critical source of AA exposure, 
was associated with increases in local and systemic inflammation 
(40) and a reduction in serum concentrations of α-klotho (3, 41). 
Smokers had higher exposure levels of AA and other toxic chemicals, 
such as tar, formaldehyde, polycyclic aromatic hydrocarbons, and 
heavy metals (40), compared with nonsmokers. We cannot exclude 
the possibility that AA in combination with a series of toxic 
chemicals in tobacco smoke contributes to the decrease in serum 
concentrations of α-klotho in smokers. Residual confounding by 
smoking may also play a role in association between AA exposure 
and serum α-klotho concentrations. More epidemiological studies 
should be conducted to assess the exposure to a mixture of toxic 
chemicals associated with systemic inflammation and biological 
aging among active smokers.

This epidemiological study was novel in exploring the associations 
of internal AA exposure with novel systemic inflammation markers 
and serum concentrations of α-klotho in the general population. 
However, this study had several limitations. First, causality could not 
be  inferred between AA exposure and systemic inflammation or 
serum concentrations of α-klotho owing to the observational study 
design, especially for the cross-sectional study design. Second, despite 
adjusting for a broad set of covariables, we could not exclude the 
possibility of residual confounders, such as occupational factors (42), 
and other environmental contaminants (35, 36). These may have 
confounding effects on the exposure-outcome associations. Third, 
HbAA biomarkers were assessed only once and thus reflect AA 
exposure over a short time window (42). This single measurement 
may lead to exposure misclassification, as the relevant time window 
for AA exposure and inflammation may not overlap. Repeated 
measurements would have provided a more accurate or long-term 
assessment of exposure levels.

5 Conclusion

AA exposure assessed using hemoglobin biomarkers was 
associated with decreased serum concentrations of α-klotho in general 
adults aged 40–79 years. The findings of this study provide suggestive 
evidence regarding the potential health effects of AA exposure at 
environmentally relevant doses. Future studies are warranted to 
identify potential biological mechanisms and develop 
intervention strategies.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

FIGURE 3

Stratified analysis by cigarette smoking for associations of AA 
hemoglobin biomarkers with SIRI (A) or serum α-Klotho 
concentrations (B). SIRI, system inflammation response index. 
Models for smokers were adjusted for sex, age, race/ethnicity, 
educational level, family poverty-income ratio, body mass index, 
average cigarettes per day during past 30 days, alcohol consumption 
and physical activity. Models for non-smokers were adjusted for sex, 
age, race/ethnicity, educational level, family poverty-income ratio, 
body mass index, alcohol consumption, and physical activity.
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Nowadays, heavy metal (HM) contamination and their ecological risk in coastal 
sediments are global issues. This research provides insight into the heavy metals’ 
contamination, source apportionment, and potential ecological risks in the 
surface sediments of the Xiang-Shan wetland in Taiwan, which is undergoing 
rapid economic development, mainly by the semiconductor industries. The 
levels of twelve metals and total organic matter (TOM) were measured in 44 
samples of surface sediment during the spring and winter seasons of 2022. 
Subsequently, the single and comprehensive pollution indices were assessed. 
The findings showed that the average of HM contents exhibited a descending 
sequence of Al > Fe > Mn > Zn > Co > Ga > Cr > Cu > In > Ni > Pb = Cd during 
both seasons. The Ef, Igeo, and PI showed that the majority of sediment samples 
were uncontaminated to heavily contaminated by Fe, Al, Zn, Cu, Mn, Cr, Ni, Co 
and Ga, and extremely contaminated by In. Moreover, PLI and mCdeg unveiled 
that the surface sediments of DJ, OB, and KY stations were strongly or extremely 
polluted. PERI revealed that the sediment shows minimal to moderate ecological 
risk. The findings of multivariate analyses suggested that Fe, Al, Cu, Zn, and Ni 
derived from natural sources, while Ga, In, Co, Cr, and Mn originated from both 
anthropogenic and natural origins. Hence, it is critical that HM contamination, 
particularly Co, In, and Ga, be continuously monitored in the study area. Our data 
provide significant insights for more effective prevention and evaluation of HM 
contamination in the aquatic-sedimentary ecosystems of Taiwan.
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sediments, ecological risk, Xiang-Shan, heavy metal, pollution index, sediment quality 
guidelines, wetlands, Taiwan

OPEN ACCESS

EDITED BY

Solomon Dan,  
Beibu Gulf University, China

REVIEWED BY

Orazio Valerio Giannico,  
Local Health Authority of Taranto, Italy
Mostafa Yuness Abdelfatah Mostafa,  
Minia University, Egypt

*CORRESPONDENCE

Ching-Fu Lee  
 leecf@mx.nthu.edu.tw

RECEIVED 03 July 2024
ACCEPTED 18 March 2025
PUBLISHED 09 April 2025

CITATION

​Salah-Tantawy A, Chang C-SG, Young S-S and 
Lee C-F (2025) Multivariate analyses to 
evaluate the contamination, ecological risk, 
and source apportionment of heavy metals in 
the surface sediments of Xiang-Shan wetland, 
Taiwan.
Front. Public Health 13:1459060.
doi: 10.3389/fpubh.2025.1459060

COPYRIGHT

© 2025 Salah-Tantawy, Chang, Young and 
Lee. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  09 April 2025
DOI  10.3389/fpubh.2025.1459060

229

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1459060&domain=pdf&date_stamp=2025-04-09
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1459060/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1459060/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1459060/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1459060/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1459060/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1459060/full
mailto:leecf@mx.nthu.edu.tw
https://doi.org/10.3389/fpubh.2025.1459060
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1459060


Salah-Tantawy et al.� 10.3389/fpubh.2025.1459060

Frontiers in Public Health 02 frontiersin.org

Introduction

Due to fast industrialization and urbanization, heavy metals (HMs) 
in marine ecosystems have been recognized as significant intermediary 
sources for the presence of contamination in marine environments and 
even population health (1). They are a grave hazard to people, living 
creatures, and natural settings owing to their unique physicochemical 
properties, such as high density, toxicity, persistence, bioaccumulation 
traits, and difficulty in removing them by self-purification (2–6). The 
accumulation of HM in living organisms and food webs is another 
manner in which HMs contribute to the deterioration of marine 
environments by diminishing species variety and richness (7, 8). 
Anthropogenically, HMs can enter marine and coastal ecosystems via 
multiple sources, e.g., agriculture, sewage, industries and household 
discharges (9). Additionally, they are triggered naturally by lithogenic 
events, including air deposition (10, 11).

Once heavy metals enter the aquatic system from different origins, 
some of them may dissolve, while others may bind to the suspended 
particles and eventually sink in the sedimentary substrate over time (12, 
13). Due to fluctuations and discontinuities in water movement, 
sediment is an indispensable and dynamic factor in aquatic 
environments. It has biogeochemical and physical properties that assess 
the potential risks to the environment, and it has given us better tools for 
figuring out where heavy metals come from and how they are distributed 
than the water inspection over it (1). As a natural reservoir for the 
preponderance of metal contaminants dispersed into seawater, marine 
sediments can be  utilized to evaluate the contamination level and 
environmental threat posed by HMs in various marine habitats (14–18). 
The evaluation of these characteristics offers crucial data about the 
effects of HM contamination and encourages environmentalists toward 
appropriate remediation solutions (19, 20). Likewise, such data will help 
authorities, legislators, and environmental activists understand the 
associations among coastal improvement and its efficient management 
to safeguard coastlines from global HM contamination (21).

Considering the vitality of the coastal ecosystem, several 
investigations on the contamination of sediments by HMs have been 
accomplished (22–26) and a number of geochemical and pollution 
indices, including the geoaccumulation index (Igeo), contamination 
factor (Cf), enrichment factor (Ef), pollution load index (PLI), 
modified contamination degree (mCdeg), potential ecological risk 
index (PERI), and sediment quality guidelines (SQGs), have been 
established in order to calculate the contamination level and 
environmental risk of HMs in marine sediments (25, 27–35). 
Furthermore, bivariate and multivariate statistical approaches, such as 
the Pearson’s correlation coefficient (PCC), Principle component 
analysis (PCA), and Hierarchical cluster analysis (HCA), are being 
implemented progressively to discover the potential origins of HMs 
and measure their pollution degree in sediments (26, 36–39).

In Taiwan, the government and researchers devoted scant 
attention to environmental issues spurred by sediment pollution with 
heavy metals. Recently, human operations for economic growth, 
mainly by industry, have been consistently and swiftly intensified, 
especially in Hsinchu city. After the 1980s, Hsinchu City had a new 
era of industrial expansion, and Hsinchu Science Industrial Park 
(HSIP) rose to the top position of semiconductor production around 
the globe. Besides, this park contained numerous innovative 
manufacturers of light-emitting diodes, liquid crystal displays, and 
optoelectronic plates, etc. According to the fabrication procedures of 

high-tech devices, a wide variety of substances are utilized in huge 
quantities. Despite stringent surveillance, the ultimate effluent water 
from the treatment plant still contains a significant proportion of 
contaminants (25). In HSIP, the daily water intake exceeds 200 
thousand CMD, and the final wastewater from the wastewater 
treatment plant of the HSIP (over 100 thousand CMD) is released into 
the KeYa river. The Xiang-Shan wetland receives a large amount of 
freshwater from the KeYa stream since the KeYa river is the primary 
terrestrial source of freshwater. Over 40 % of freshwater production is 
wastewater from the treatment plant; approximately 40 % is untreated 
household waste; and less than 20 % is natural water gathered in the 
catchment region of the river. The new era of technological 
advancement introduced different forms of contaminants that settled 
on the surface of sediment and were immobilized by the adsorption 
process (40, 41). Therefore, it is critical to explore the ecological 
concerns and determine the existing level of HM pollution in marine 
sediments as well as the probable sources in Xiang-Shan wetland.

Yet, there is little accessible knowledge regarding the Xiang-Shan 
wetland’s heavy metal pollution and related health threats. Improving 
knowledge of sediment heavy metal pollution helps stakeholders, 
including the government and the public, safeguard the distinctive 
hydrological and biological ecosystem of the Xiang-Shan wetland. 
Therefore, 44 surface sediment samples were collected during two 
seasons to (1) investigate the sediment properties like, granulometric 
analysis (GSA) and total organic matter (TOM), (2) determine the 
total contents of twelve metals (e.g., Zn, Al, Ni, Fe, Cu, Mn, Co, Cr, In, 
Cd, Ga, and Pb), (3) assess the contamination level and possible risks 
associated with the studied elements, and (4) explore the potential 
origins of HMs by utilizing bivariate and multivariate statistical 
analysis. The findings on HM pollution and risks in the Xiang-Shan 
wetland’s surface sediments described herein are likely to be useful to 
environmental researchers and lawmakers.

Materials and methods

Study area

The Xiang-Shan wetland is situated west of Hsinchu city in 
Taiwan, between the KeYa river and HaiShan Fishing Harbor 
(Figure 1). The study area is 17 km2, with an 8-kilometer shoreline. It 
is characterized by fine sediments and a variety of species like 
crustaceans, prawns, benthic invertebrates, shellfish, and endangered 
avian species (42, 43). Since 1980, Hsinchu has been transformed into 
a significant center of high-tech industry, where the Hsinchu Science 
Industrial Park (HSIP) and its environs are home to the information 
technology (IT) industrial complex, commonly recognized as “Eastern 
Silicon Valley.” The HSIP is one of the largest emitters of treated water 
discharges (104,842  m3/d), according to Taiwan’s EPA permit 
registration. In the late 1990s, there were a number of noteworthy 
ecological incidents, such as the foul river water odor, aberrant blood 
test results of local residents, and frequent dead fish episodes in the 
KeYa stream (44, 45). The KeYa River is the main river that runs across 
the industrialized urban area. In fact, the watershed contains over 500 
manufacturing facilities, including factories for electroplating, glass, 
cement, paper, pulp mills, computer chip manufacturing, container 
assembly, dyeing, rubber production, chemical plants, fertilizer 
manufacturing, printing, and metallic analyzing. Nowadays, the KeYa 
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River continues to be the primary water body in Hsinchu City for 
collecting various pollutants dumped from domestic drainage from 
the surrounding population, agricultural and industrial effluent, and 
possibly occasionally illicit disposal of unprocessed wastewater from 
propagated industries (46). As a result, the Xiang-Shan wetland 
receives all of the freshwater from the KeYa river, and all contaminants 
from urban, agricultural, and industrial uses either sink in the 
sediments or are swept away by the shifting tides to the Taiwan Strait. 
Among the many contaminants, anthropogenic metals are extremely 
mobile and bioavailable and can harm aquatic creatures and human 
populations (47, 48).

Sediment sampling and preparation

The study area covers an area of about 1,600 hectares overall, 
with a shoreline of about 8 km and it was split up into nine 
primary stations (KeYa (KY), KeYa Water Supply Center (KW), 
DaJuang (DJ), HuiMin (HM), FongCin (FC), HaiShan (HS), 
Oyster Bed (OB), YenKan (YK), and Mangrove Area (MA)), each 
of which had a number of locations spaced approximately 400 
meters apart that extended from the shore to the interior 
(perpendicular to the coast). The main sampling stations were 

divided into 2, 2, 3, 2, 2, 3, 3, 2, and 3 locations for KY, KW, DJ, 
HM, FC, HS, OB, YK, and MA, respectively (Figure 1). In this 
research, 44 samples of surface sediment (0–5 cm deep) were 
gathered from 22 locations in the spring and winter of 2022. The 
same approach was employed to gather sediment samples in the 
winter as in the spring (n = 22).

At each sampling location, surface sediments were collected in 
labeled plastic bags using a sanitized glass scraper in order to prevent 
possible cross-contamination, and each sample was obtained by 
combining four subsamples. Then, about 500 g of combined sediment 
subsamples were put in a sealed plastic bag to keep the sample clean, 
clearly marked, and immediately transferred to the laboratory in a 
cool container. In our lab, sediment samples were dried in a dust-free 
area. The semi-dried state, it was smashed using an unpolluted glass 
vessel and dried in the oven at 50°C for two hours to eliminate the 
moisture content. Once dry, we removed non-sediment impurities 
such as roots, shells, gravel, and other debris. Following this, each 
sediment sample was split into three groups as follows: 100 g for GSA, 
20 g for TOM, and 50 g for HMs analysis, and preserved at room 
temperature in plastic bags until examination. For heavy metal and 
total organic carbon analyses, about 10 g of each dried sediment 
sample were disaggregated with agate mortar into very fine grains (< 
0.063 mm).

FIGURE 1

Map of the study stations illustrates the sampling locations (Surfer v. 10.7.972).

231

https://doi.org/10.3389/fpubh.2025.1459060
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Salah-Tantawy et al.� 10.3389/fpubh.2025.1459060

Frontiers in Public Health 04 frontiersin.org

Geochemical analyses

Grain size analysis
Mechanical sieve methods were used to perform grain size 

analysis (GSA) for Xiang-Shan sediments (49). The particle-size 
fractions were differentiated by passing 100 grams of dried sediment 
through a stainless-steel sieve. Particle sizes were expressed using the 
phi scale (Φ), since the logarithmic scale is more convenient than the 
equimultiple scale. Seven categories were acquired: gravel 
(Φ−1 > 2000 μm), very coarse sand (Φ0 > 1,000 μm), coarse sand 
(Φ1 > 500 μm), medium sand (Φ2 > 250 μm), fine sand (Φ3 > 125 μm), 
very fine sand (Φ4 > 63 μm) and silt or clay (Φ5 < 63 μm). The 
resultant sediment categories were re-classified into three distinct 
classes: gravel (Φ−1), sand (Φ0 + Φ1 + Φ2 + Φ3), and mud 
(Φ4 + Φ5) (25).

Total organic carbon
The Walkley-Black procedure was employed for quantifying total 

organic carbon (TOC) in surface sediments (50). 0.5 g of pulverized 
sediment was heated exothermically and oxidized with 1 N potassium 
dichromate (Cr2O7

−2) and sulfuric acid (1:2). To eradicate excess 
dichromate, the solution was then adjusted with 0.5 N ferrous sulfate 
heptahydrate (FeSO4. 7H2O) solution after adding o-phenanthroline 
indicator (3 to 4 droplets). Accordingly, the results were multiplied by 
1.8 to get the organic matter values. Likewise, the blank titration was 
carried out to standardize the Cr2O7

−2.

Bioavailable of heavy metals concentrations 
(mg/kg)

Twelve metals were measured in surface sediment samples using 
the acid digestion method (51). To evaluate the heavy metal contents, 
0.5 gram of each homogenized sample was digested by a 12 mL 
combination of hydrochloric and nitric acids (1:3) and then heated 
inside a microwave oven (MarsXpress) for 12 min at 175°C. After the 
digestion process, each extract was dissolved into fifty milliliters of 
high-purity water (Millipore Direct-Q System), filtrated by filter 
paper with a pore size of 40 mm (ADVANTEC, Japan), and Zn, Al, 
Ni, Fe, Cu, Mn, Co, Cr, In, Cd, Ga, and Pb concentrations were 
measured using an inductively coupled plasma (ICP-OES) at National 
Tsing Hua University in Taiwan. The ICP multi-element standard 
solution (1,000 ppm) was employed to generate the calibration 
curves, and the samples were only examined when the r2 was higher 
than 0.995. The instrument was recalibrated if there was a deviation 

of over 10% after the initial calibration and after the analysis of ten 
samples. Also, the recovery rates for the examined heavy metals 
fluctuated between 96.3 and 103%. For quality control, all apparatus 
was cleaned and sterilized for 24 h in a nitric acid solution (10%) 
before being rinsed in double-distilled water. In our research, Merck 
PA reagents were employed throughout the experiments. The results 
were displayed as mg/kg and three digestions of each sample 
were achieved.

Determination of pollution degree

Single pollution indices

Enrichment factor (Ef)
To assess the level of HM enrichment in sediment, the Ef was 

applied by comparing the measured element to a reference 
metal (52).

In our work, Iron (Fe) served as a conservative element to 
standardize the detected metal levels in sediment because it is the 
fourth most prevalent element in the shale, has a natural content that 
tends to be consistent, is a carrier of numerous metals, and has a fine 
uniform surface (53, 54). Ef values are given by the following 
formula (55):

	 ( ) ( )E C Fe / C Fei i i
m m bbf Sample crust= ÷ ÷

Where Ci
m and Ci

b  are the ratios of the sample’s heavy metal i 
value to its earth’s crust value, respectively; whereas Fem and Feb  
are the detected iron level and its value in the crust, respectively. 
Here, we  used the average shale values (ASVs) determined by 
Turwkian and Wedepohl as the reference, which are: Zn: 95, Al: 
80,000, Ni: 68, Fe: 47,200, Cu: 45, Mn: 850, Pb: 20, Cr: 90, In: 0.1, 
Cd: 0.3, and Co = Ga: 19 mg.kg−1 (56). Since the enrichment factor 
technique does not have a recognized classification scheme for 
contamination levels, seven professional classes have been offered 
in Table 1 (57).

Geo-accumulation index (Igeo)
The geoaccumulation index is applied to calculate the HMs 

contamination without taking into consideration geogenic conditions 
(58). Igeo can be calculated as follows:

TABLE 1  Degrees of heavy metal contamination determined by single pollution indices.

Categories Ef Contamination 
degree

Igeo Contamination 
degree

Cf / PI Contamination 
degree

0 < 1 No enrichment < 1 Nil to minor pollution Cf < 1 Low pollution

1 1 ≤ Ef < 3 Minor enrichment 1 ≤ Igeo < 2 Moderate pollution 1 ≤ Cf < 3 Moderate pollution

2 3 ≤ Ef < 5 Moderate enrichment 2 ≤ Igeo < 3 Severe pollution 3 ≤ Cf < 6 Considerable pollution

3 5 ≤ Ef < 10 Heavily enrichment 3 ≤ Igeo < 4 Very severe pollution Cf > 6 High pollution

4 10 ≤ Ef < 25 Severe enrichment 4 ≤ Igeo < 5 Significant pollution

5 25 ≤ Ef < 50 Very severe enrichment Igeo > 5 Extreme pollution

6 Ef > 50 Extremely enrichment

Acevedo-Figueroa et al. (57) Förstner et al. (124) Chakraborty et al. (62) and Tian et al. (109)
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	 ( )2Igeo log C 1.5 Ci i i
m b= ÷

wherein 1.5 represents the baseline matrix adjustment factor that 
mitigates the influences of geological contributions (59, 60). Based on 
the Igeo, sediment samples can be  allocated into different distinct 
categories (Table 1).

Comprehensive pollution indices

Pollution load index (PLI)
PLI is calculated as the nth root of the outcome of n Cf and can 

be used to ascertain the aggregate pollution at the studied stations. 
The subsequent equations were employed to compute Ci

f  and PLI 
(61, 62):

	 ( )iC C Ci i
mf b= 

	
n C C C C CPLI C C C C C

× × × × × =  × × × × 
i Fe Al Mn Zn Cu

Ni Co Cr Ga In

f f f f f
f f f f f

whereas Ci
f refers to the single contamination factor for the metal 

i. As shown in Tables 1, 2, the Ci
f and PLI have been classified into 

several pollution levels.

Modified contamination factor (mCdeg)
Likewise, the comprehensive pollution of multiple elements per 

sampling station was evaluated utilizing the modified degree of 
contamination (mCdeg) approach (30). mCdeg developed by Abrahim 
and Parker (63) and it calculated as follows:

	 ( )C C Ci i i
mf b= 

	 deg
C

m
i
fC n

∑
=

Since n indicates the number of measured elements. The mCdeg is 
classified into various classes; see Table 2.

Nemerow comprehensive pollution index (PN)
The Nemerow comprehensive pollution index (PN) is another 

method for determining the total pollution degree of heavy metals 
throughout all stations (64), and it was estimated using an individual 
pollution index (PI):

	 ( )PI C Ci i
m b= 

	

( ) ( )2 2
e maxPI PI

P
2

i i
av

N
+

=

Where ePIi
av  represents the average singular pollution index 

level of a metal, and maxPIi signifies its maximum level. Based on 
Yang et  al. (65), PN is categorized into five levels of pollution 
(Table 2).

Evaluate the potential ecological risk

Potential ecological risk index (PERI)
This study applied the PERI in order to evaluate the possible risks 

posed by heavy metals (66). This index extensively considers the 
synergy, hazardous threshold, heavy metal content, and environmental 
sensitivity of elements (67–69). The PERI is composed of three 
fundamental factors: potential ecological risk factor (Ei

R), toxic-
response factor (Ti

r), and contamination level (Ci
m). Accordingly, both 

individual (Ei
R) and cumulative (PERI) ecological risks were 

computed via these equations:

	 ( )C C Ci i i
mf b= 

	 E T x Ci i i
rR f=

	 1
PERI E

m
i
R

i=
= ∑

TABLE 2  Categories of heavy metal pollution by comprehensive pollution indices.

Classes PLI Pollution level mCdeg Pollution level PN Pollution level

1 < 1 Unpolluted < 2
Nil to very low 

contamination

< 0.7 Non-polluted

2 1 ≤ PLI < 2 Slightly polluted 2 ≤ mCdeg < 4 Slight contamination 0.7 ≤ PN < 1 Minor pollution

3 2 ≤ PLI < 3 Strongly polluted 4 ≤ mCdeg < 8 Strong contamination 1 ≤ PN < 2 Moderate pollution

4 PLI ≥ 3 Heavily polluted 8 ≤ mCdeg < 16 Heavy contamination 2 ≤ PN < 3 Significant pollution

5 16 ≤ mCdeg < 32 Severe contamination PN > 3 Extremely pollution

6 mCdeg > 32
Extremely 

contamination

Tian et al. (62) Abrahim and Parker (63) Yang et al. (65)
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Where Ci
f  and Ei

R  reflect to the single contamination factor 
and potential ecological risk index for the element i, respectively, 
while Ti

r  is the biological toxic factor of a certain metal that is 
established for Mn = Zn = 1, Cd = 30, Cr = 2, and 
Cu = Ni = Co = Pb = 5 (66).

In this research, eight contaminants involving Zn, Ni, Cr, Pb, 
Mn, Co, Cu, and Cd are considered by the classical PERI method. 
The current work modified the classification guideline for the 
metal’s ecological risk indices as a result of the variation in 
contaminant forms and quantities (70). The greatest value of Ti

r  had 
been chosen to represent the minimal level limit of Ei

R , and the 
subsequent level limits were then doubled. Similarly, by setting the 
rounding digit of Ti

r∑ as the smallest level limit of PERI, the 
subsequent level limits were then doubled (70). The modified 
classification guidelines of PERI in sediment are illustrated in 
Table 3.

Sediment quality guidelines (SQGs)
Our findings were compared with different worldwide 

guidelines to better express the quality and adverse effects of HMs 
in sediment. This method includes four international guidelines: 
(1) the Australian and New  Zealand Environment and 
Conservation Council and the Agriculture and Resource 
Management Council of Australia and New Zealand (71); (2) the 
National Oceanic and Atmospheric Administration of the USA 
(NOAA) (72); (3) the Canadian Council of Ministers of the 
Environment (73); and (4) Taiwan’s national standard guidelines 
(74). For different heavy metals, there are lower and upper limits 
for each of the four typical guidelines. Negative effects 
“infrequently or rarely emerge” if the metal level surpasses the 
lower limit, but they “frequently occur” if the level surpasses the 
upper limit (75).

Statistical analyses

The data were pre-processed utilizing the Excel Pro +2019 
software, and they are demonstrated as averages for the studied 
locations. All descriptive data (e.g., maximum, minimum, average, 
and standard deviation) and the ANOVA were executed by SPSS 
version 25 (p < 0.05) (76, 77). In order to compute the HMs 
pollution and their probably risks in the sediment of the Xiang-
Shan wetland, several ecological pollution indicators were 
computed and visualized by Origin 2021 (v. 9.8). Simultaneously, 

multivariate statistical analyses such as principal component 
analysis (PCA) and hierarchical cluster analysis (HCA) were 
conducted to identify probable heavy metal sources (78). 
Furthermore, the relationship among HMs and sediment properties 
was examined via Pearson’s correlation coefficient (PCC) to validate 
the findings of multivariate analyses (26). PCC and PCA were 
displayed using the “corrplot” package in R programming v. 4.2.2 
(p < 0.001, 0.01, and 0.05) (79, 80) and Origin 2021 (v. 9.8), 
respectively, while the HCA dendrogram was plotted by the 
PC-ORD 5 program (81) according to the Euclidean distance and 
the Ward methods.

Results

Sediment properties

Grain size analysis
The granulometry of surface sediment at Xiang-Shan wetland is 

depicted in Figure 2. Based on the GSA findings, sediment grains 
were divided into seven fractions with various sizes and further 
grouped into three major classes (gravel, sand, and mud). Seasonally, 
the mean particle size of surface sediment fluctuated between (0.00–
0.38%) for gravel, (24.18–68.44%) for sand, and (31.35–75.44%) for 
mud in spring, while in winter it ranged from 0.03 to 0.51%, 29.10 
to 68.64%, and 30.86 to 70.84% for gravel, sand, and mud, 
respectively. Geographically, the surface sediments of KY, KW, and 
HS stations were predominated by sand, while DJ, HM, FC, OB, and 
MA were characterized by mud sediments in both seasons. Overall, 
all studied stations were dominated by mud and sand sediments. In 
contrast, the gravel particles demonstrated minimal proportions at 
all stations.

Total organic matter (TOM)
The mean TOM contents in the surface sediment of the 

Xiang-Shan wetland are illustrated in Figure 3. The TOM levels at 
the surface sediments fluctuated between 0.72–5.45% and 0.65–
3.09% in spring and winter, respectively. Moreover, the greatest 
content of TOM was recorded at KY station, followed by MA, OB, 
and DJ, while the lowest contents were recorded at HS station 
during different seasons. Specifically, the surface sediments of the 
KY and MA stations were highly enriched with TOM in 
both seasons.

Total concentrations of HM in surface 
sediments

Supplementary Table 1 illustrates the average levels of HMs in 
the surface sediment of the examined stations during the two 
seasons. The levels of Iron (Fe), Aluminum (Al), Magnesium 
(Mn), Copper (Cu), Zinc (Zn), Gallium (Ga), Indium (In), Nickel 
(Ni), Chromium (Cr), Cobalt (Co) varied in the ranges of 
24115.00–42123.33, 19234.50–51850.00, 319.15–764.73, 12.17–
117.80, 65.90–252.05, 64.05–121.63, 27.40–56.23, 15.55–45.25, 
55.35–112.87, 69.25–134.60 mg/kg, respectively, for spring, and 
23445.00–38624.67, 20785.00–48285.00, 266.05–667.37, 11.05–
77.15, 60.20–233.80, 57.35–106.40, 17.90–48.57, 16.90–37.05, 

TABLE 3  Classification of ecological risks posed by heavy metal pollution.

Classes ER PERI Single and 
comprehensive 
ecological risk 
level

1 < 30 < 40 Minimal risk

2 30 ≤ ER < 60 40 ≤ PERI <80 Moderate risk

3 60 ≤ ER < 120 80 ≤ PERI <160 Considerable risk

4 120 ≤ ER < 240 160 ≤ PERI <320 Strong risk

5 ER > 240 PERI >320 Extremely risk

Hakanson (66) and Li et al. (70)
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46.90–109.23, 58.35–121.97 mg/kg, respectively, for winter. All 
stations had Pb and Cd concentrations below the detection limit 
for both seasons. Spatially, the maximum levels of HMs such as Al, 
Co, Cr, Ga, and In at DJ station (51850.00, 134.60, 112.87, 121.63, 
and 56.23 mg/kg, respectively) were observed in the spring season, 
while Zn, Cu, and Ni were detected at KY station (252.05, 117.80, 
and 45.25 mg/kg, respectively). OB and MA stations recorded 

high concentrations of Mn and Fe (764.73 and 42123.33, 
respectively). Inversely, surface sediments at KW station exhibited 
the minimum levels of Fe, Al, Co, Cr, and Ga (23445.00, 19234.50, 
58.35, 46.90, and 57.35 mg/kg, respectively), and at YK station for 
Zn, Ni, and In (60.20, 15.55, and 17.90 mg/kg, respectively). Also, 
Mn and Cu concentrations (266.05 and 11.05 mg/kg) were low in 
KY and FC stations respectively, in the winter.

FIGURE 2

Grain size analysis of surface sediments at Xiang-Shan wetland during the spring and winter seasons (KY: KeYa, KW: KeYa Water Supply Center, DJ: 
DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: YenKan, MA: Mangrove Area).

FIGURE 3

The mean contents of total organic matter in the Xiang-Shan wetlands’ sediments during both seasons (KY: KeYa, KW: KeYa Water Supply Center, DJ: 
DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: YenKan, MA: Mangrove Area).
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Assessment of heavy metal- polluted 
sediments

In our research, five reliable indicators were employed to estimate 
the extent of contamination by HMs in surface sediments, of which 
two indicators (Ef and Igeo) were employed to gauge the pollution by 
certain metals, and the other three (PLI, mCdeg, and PN) were used for 
comprehensive pollution assessment.

Enrichment factor (Ef)
Figure 4 depicts the calculated Ef and contamination degree for 

each metal in Xiang-Shan wetland based on Iron (Fe) as the 
reference metal. The ranges (mean) of the Ef of Al, Mn, Cu, Zn, Co, 
Cr, Ni, Ga, and In at the study area during different seasons were 
0.47–0.94 (0.70), 0.54–1.43 (1.02), 0.43–4.51 (1.35), 1.18–4.57 
(1.99), 6.05–8.75 (7.40), 1.05–1.62 (1.31), 0.39–1.15 (0.58), 6.08–
9.17 (7.52), and 334.00–666.93 (554.85), respectively. Based on the 

FIGURE 4

Enrichment factor (Ef) and contamination levels for studied HMs in the XiangShan wetland’s sediments. (KY: KeYa, KW: KeYa Water Supply Center, DJ: DaJuang, 
HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: YenKan, MA: Mangrove Area). (A) Al, (B) Mn, (C) Ni, (D) Cr, (E) Zn, (F) Cu, (G) Co, (H) Ga, (I) In.
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categories of Ef (Table 1), Al, Cd, and Pb showed no enrichment 
(class 0) in all study stations, while Zn, Cu, Ni, and Cr fluctuated 
between class 0 (< 1) and class 2 (< 5). Moreover, Ef for Co and Ga 
were subjected to class 3 (< 10), and class 6 for In (> 50).

Geoaccumulation index (Igeo)
The computed Igeo and contamination degree at all sampling 

stations in two seasons are demonstrated in Figure 5. The ranges 
(mean) of the Igeo of Fe, Al, Mn, Cu, Zn, Ni, Co, Cr, Ga, and In were 
0.10–0.18 (0.13), 0.05–0.13 (0.09), 0.06–0.18 (0.13), 0.05–0.53 (0.17), 
0.13–0.53 (0.25), 0.05–0.13 (0.07), 0.62–1.42 (0.94), 0.10–0.25 (0.17), 
0.61–1.28 (0.94), and 35.92–112.84 (70.54), respectively. According 
to Table  1, the Igeo levels for all investigated metals at all studied 
stations in the spring and winter were unpolluted (< 1), except Co 
and Ga at DJ, OB, and MA stations showed moderate pollution (class 
1), and In values subjected to class 5 (> 5) at all study stations.

Pollution load index (PLI)
The PLI, as a comprehensive index, served to measure the 

deposition levels of HMs in the Xiang-Shan wetland’s surface 
sediments, as shown in Figure 6A. Seasonally, PLI varied from 1.37 to 
2.80 and 1.03 to 1.11 with an average of 1.87 and 1.06 in the spring and 
winter samples, respectively, indicating the range of slightly polluted 
(< 1) to heavily polluted (> 2). The mean values of PLI at most studied 
stations fall under class 1 (1 ≤ PLI < 2) in both spring and winter 
sediment samples, except at 3 stations (KY, DJ, and OB) where they 
were greater than 2 (class 2) in the spring season (Table 2).

Modified contamination degree (mCdeg)
Modified degree of contamination (mCdeg) was implemented to 

compute the overall pollution level of all HMs in surface sediment 
samples (Figure 6B). mCdeg varied from 23.82 to 48.65 with an average 
of 32.88 and from 15.77 to 42.03 with an average of 28.10  in the 
sediments during spring and winter, respectively. According to the mCdeg 
classification (Table 2), the sampling stations fluctuated between severe 
and extremely polluted (classes 5 and 6, respectively) in the spring 
season, while, in the winter, the contamination degree ranged from 
heavy to extremely (classes 4 and 6, respectively) at the studied stations.

Nemerow integrated pollution index (PN)
The PN index was calculated to calculate the comprehensive 

contamination for each metal across all sediment samples; see 
Supplementary Table 2. In our study, the mean levels of PN for each metal 
ranged from 0.00 to 479.66 with average (38.72), reflecting the range of 
unpolluted (PN < 0.7) to extremely polluted (PN > 3). The mean PN values 
for In, Ga, and Co were subjected to class 4 (PN > 3), while the other metals 
ranged from unpolluted (PN < 0.7) to significant pollution (2 ≤ PN < 3).

Determine the potential ecological risks of 
heavy metals

Potential ecological risk index (PERI)
PERI is an integrative indicator that is calculated from the 

individual ecological risk (ER) of each element. As shown in Figure 7A 
and Table 3, the mean ER values for Cr, Mn, Cu, Zn, Pb, Cd, and Ni fall 
under class 1 (ER < 30), while for Co ranged between minimal 
(ER < 30) and moderate risk (30 ≤ ER < 60) throughout the 

Xiang-Shan wetland in both spring and winter. Additionally, PERI 
ranged between 25.32–52.97 (mean = 35.25) in summer and 21.77–
45.37 (mean = 30.74) in winter (Figure 7B). Based on the PERI classes 
(Table 3), all studied stations displayed a minimal ecological risk to 
the environment, with PERI levels below 40 (class 1), except KY and 
OB stations in the spring and DJ in both seasons (class 2, > 40).

Discussion

Sediment characteristics

Granulometric analysis was performed mechanically to 
differentiate the surface sediment particles of the Xiang-Shan wetland 
and consequently establish the accumulation trend of organic matter 
and HMs in relation to the sediment size. The results of GSA revealed 
that mud sediments are the dominant grain size overall, followed by 
sand sediments (p = 0.07), and gravel (p = 0.003) across all sampling 
stations with averages (51.98, 47.82, and 0.19%, respectively). 
Specifically, DJ, HM, FC, OB, and MA stations were dominated by mud, 
while sand grains were dominant in KY, KW, and HS stations. Overall, 
the surface sediments of the Xiang-Shan wetland were characterized by 
fine-grained sediments (mud and sand). This may be attributed to flow 
rate, flow velocity, and calm conditions. Rea and Hovan (82) reported 
that fine-grained sediments are conveyed by suspension in the marine 
setting; therefore, they can readily be distributed throughout the water 
mass and transported for long distances before being re-deposited in 
the calm zone. The percentages of GSA among the studied stations 
decreased in the order of mud > sand > gravel.

Sediment organic matter is composed of light-weight materials, 
typically structural materials from marine creatures (83). In our study, 
KY station had the maximum TOM content with an average of 4.27%, 
followed by MA (2.52%) in both seasons. This could be attributed to 
the KeYa River, which supplies the KY station with an extensive 
amount of freshwater loaded with a high proportion of OM (25). 
Furthermore, the mangrove environment is regarded as a highly 
productive ecosystem with substantial rates of organic matter storage 
(84, 85). Also, DJ and OB stations had relatively significant values, with 
averages of 1.70 and 1.64%, respectively; this may be associated with 
the deposition of fine particles with excessive organic matter levels. 
The magnitude of TOM values among the surface sediments of Xiang-
Shan wetland were in the order of KY > MA > DJ > OB > YK > HM < FC 
> KW > HS for both spring and winter seasons. The ANOVA revealed 
insignificant spatio-temporal variances in TOM (p > 0.05).

Heavy metal concentrations and 
comparison with worldwide studies

Heavy metals are pervasive and tenacious in marine settings, 
probably poisonous, and may be accumulated in food chains (86, 87). 
Multiple pathways, including air deposition, agriculture, and 
industrial activities, have been identified as the origins of HM 
contamination in sediments (88, 89). In our research, there was no 
discernible difference in the concentration of HMs between the spring 
and winter seasons (p > 0.05), despite an overall greater level observed 
during the spring season across all sampling stations. Higher heavy 
metal concentrations in the spring may be caused by seasonal changes 
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in the wetland’s water flows; such as, water replenishment to the 
wetland is restricted in the spring, resulting in less mobility and 
greater deposition of HMs in surface sediments (90).

The average levels of Iron (Fe), Aluminum (Al), Manganese 
(Mn), Cobalt (Co), Zinc (Zn), copper (Cu), Gallium (Ga), Nickel 
(Ni), Chromium (Cr), and Indium (In) in the Xiang-Shan wetland’s 

surface sediments ranged from 23445.00 to 42123.33, 19234.50 to 
51850.00, 266.05 to 764.73, 58.35 to 134.60, 60.20 to 252.05, 11.05 
to 117.80, 57.35 to 121.63, 15.55 to 45.25, 46.90 to 112.87, and 17.90 
to 56.23 mg.kg−1, respectively. While Lead (Pb) and Cadmium (Cd) 
were blow the detection limits at all studied stations in both 
seasons. The average contents of the 12 HMs in the Xiang-Shan 

FIGURE 5

Geoaccumulation index (Igeo) and contamination categories for analyzed HMs in the Xiang-Shan wetlands’ sediments (KY: KeYa, KW: KeYa Water Supply 
Center, DJ: DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: YenKan, MA: Mangrove Area). (A) Fe, (B) Al, (C) Mn, (D) Zn, (E) Cu, 
(F) Ni, (G) Cr, (H) Co, (I) Ga, (J) In.
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wetland’s surface sediments showed a decreasing sequence of 
Al > Fe > Mn > Zn > Co > Ga > Cr > Cu > In > Ni > Pb = Cd. The 
ANOVA revealed discernible variances for Mn, Cu, Co, Cr, and In 
values across stations (p < 0.05).

Spatially, the greatest mean annual Fe, Al, Co, Cr, In, and Ga 
concentrations were observed in the DJ station, Zn, Cu, and Ni in the 
KY station, and Mn in the OB station. This may be attributed to the 
prevalence of fine-grained sediments with considerable amounts of 
OM in these stations, that have a tendency to bind with HMs. In 
addition to the existence of terrigenous freshwater sources and 
unprocessed domestic sewage from the surrounding area (25, 91, 92). 
Previously, Barik et al. (93) and Dar and El-Saharty (94) observed that 
fine-grained sediments have a higher affinity for metals owing to their 
large surface area and abundance of organic matter. Also, this 
observation was consistent with an earlier study by Tian et al. (8), who 
reported that fine sediments serve a critical role in controlling the 
mobility of HMs and subsequently their distributions in sediments. 

Furthermore, the Pearson’s correlation coefficient (Figure 8) revealed 
that most metals have high and significant positive associations with 
mud % and negative associations with sand % and gravel %, 
confirming the higher deposition and retention of metals by fine-
grained sediments in the Xiang-Shan wetland. Conversely, in 
low-depth marine sediments, Giannico et al. (95, 96) investigated the 
concentrations and hazards of organic matters such as PCDD, PCDF, 
and PCBs. This study found high concentrations of dioxins and PCBs 
in marine sediments from Mar Piccolo 1st Inlet, Italian Taranto, due to 
industrial settlements nearby, which are known potential sources of 
PCDD/Fs and PCBs (e.g., groundwater and freshwater pollution in 
the northern area of the basin).

Besides, the obtained results were compared to those previously 
presented in other investigations, as well as the average shale values 
(ASVs), to better comprehend the contamination status of HMs in 
sediments (Supplementary Table 3). The seasonal mean of Fe, Co, 
Ga, and In (30,464.07, 92.27, 91.44, and 36.61 mg.kg−1, respectively) 

FIGURE 6

Comprehensive pollution indices with pollution classes at the studied stations. (A) Pollution load index and (B) Modified contamination degree (mCdeg) 
(KY: KeYa, KW: KeYa Water Supply Center, DJ: DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: YenKan, MA: Mangrove Area).
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was greater than those of most other areas around the globe, such 
as the Western Saronikos Gulf, Greece (97), the Dhaleshwari River 
in Bangladesh (98), the Gulf of Aqaba along the Saudi  Arabia 
coastline (99), Bafa Lake in Turkey (38), the Xiang-Shan wetland in 
Taiwan (100), and the wetlands and main rivers in Taiwan (101). 
While the total average of Al (36690.77 mg.kg−1) was less than 
Changjiang River Estuary, China (102), and more than those of 
other earlier investigations. Likewise, the seasonal mean of Zn and 
Cu (116.52 and 38.21 mg.kg−1, respectively) was greater than those 
observed in other studies (Table 3) but lower than the upper levels 
of baseline concentrations in Taiwan (103). The value of Mn 
(553.50 mg.kg−1) was less than those of the Western Saronikos Gulf, 
Greece (97), but more than the levels in the Iranian Urmia Lake 
(90), and Bafa Lake in Turkey (38). Moreover, the mean annual Ni 
concentration (24.44 mg.kg−1) across all sampling stations was 
lower than those of most previous studies and higher than the 
shorelines of the Bohai and Yellow Seas in China (8), the Aqaba Gulf 
along the Saudi  Arabia coastline (99), and the Western Taiwan 
Strait, China (104), but it was similar to the results of wetlands and 
main rivers in Taiwan (101). When compared with the average shale 

values (ASVs) that were established by Turekian and Wedepohl 
(56), the mean annual levels of all analyzed metals were below the 
ASVs, with the exception of Zn, Co, Ga, and In were comparable 
(Supplementary Table 3).

As a result of the spatial variability observed in the sediments, the 
overall concentration of HMs may not accurately reflect the current 
contamination levels. Hence, the HM concentrations alone are 
insufficient to assess the pollution level of HM in the sediments. 
Further quantitative indicators (e.g., Ef, Igeo, PLI, mCdeg, PN, ER, and 
PERI) that consider the ASVs in the associated sediments 
are required.

Assessment of heavy metals contamination

Single-element contamination indices, such as the enrichment 
factor (Ef) and geoaccumulation index (Igeo), were applied to assess 
the contamination of HM in the sediments (105). These indices 
provide information about how a particular metal is concentrated at 
a location of interest in comparison to the background.

FIGURE 7

Potential ecological risk index with pollution classes for the studied HMs. (A) Single ecological risk (ER) for each metal and (B) Integrated potential 
ecological risk index (PERI) (KY: KeYa, KW: KeYa Water Supply Center, DJ: DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: 
YenKan, MA: Mangrove Area).
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Here, the mean Ef values of Al, Co, Zn, Pb, Cu, Cr, Ni, Ga, In, 
Mn, and Cd were 0.70, 7.40, 1.99, 0.00, 1.35, 1.31, 0.58, 7.52, 
554.85, 1.02, 0.00, respectively. These results revealed that the 
surface sediments of Xiang-Shan wetland were extremely enriched 
with In (Ef > 50), heavily enriched with Co and Ga (5 ≤ Ef < 10), 
and had nil to minor enrichment with the other heavy metals 
(1 ≤ Ef < 3). The mean Ef values of Al, Pb, and Cd were below one 
at all studied stations in both seasons, suggesting no enrichment 
and proving that they are largely originating from shale 
components or natural weathering activities. Conversely, the Ef 
levels for Zn, Cr, Cu, Co, Ni, In, Mn, and Ga are almost more than 
one, implying a tendency from minor to extremely 
anthropogenic enrichment.

Regarding Igeo index, the surface sediments of Xiang-Shan wetland 
were marked as nil or minor polluted with Fe, Cu, Al, Cd, Mn, Ni, Zn, 
Cr, and Pb (Igeo < 1). Moreover, the average Igeo values of Co, and Ga are 
categorized as moderately polluted in DJ, OB, and MA stations. The 
seasonal mean Igeo values of Fe, Cu, Al, Cd, Mn, Ni, Zn, Cr, Ga, Pb, In, 
and Co were 0.13, 0.17, 0.09, 0.00, 0.13, 0.07, 0.25, 0.17, 0.94, 0.00, 
70.54, and 0.94, respectively, indicating the range of uncontaminated 
(Igeo < 1) to extremely polluted (Igeo > 5).

The mean Ef levels for the examined HMs were in the decreasing 
sequence of In > Ga > Co > Zn > Cu > Cr > Mn > Al > Ni > Pb = Cd, 
and the mean Igeo declined in the following order: In > 
Ga ≥ Co > Zn > Cu ≥ Cr > Mn ≥ Fe > Al > Ni > Pb = Cd. As can 
be observed, the HMs have a similar order with regard to the estimated 

Ef and Igeo. Interestingly, Ef and Igeo values for Indium (In) metal at all 
sampling stations showed great values, suggesting extremely 
contamination; this is likely attributed to the industrial effluent from 
Hsinchu Science Industrial Park (HSIP). This park is the biggest 
industrial region in Taiwan, containing various high-tech companies 
producing photovoltaic plates, biomedical materials, liquid-crystal 
displayers (LCD), light-emitting diodes (LED), etc. (46). Gallium and 
Indium are crucial transition elements that are used in large quantities 
in the aforementioned industries, and they are discharged into the 
coastal zone of the study area via the KeYa river during the fabrication 
processes (i.e., cleaning operations, epitaxy, and chip fabrication in the 
production of high-speed semiconductors and LEDs), causing adverse 
impacts on humans (106–108).

To further determine the HM pollution in the surface sediments, 
the integrated pollution indices (PLI, mCdeg, and PN) were used to 
estimate the overall HMs pollution in the Xiang-Shan wetland’s 
surface sediments. These indices were quantified from the 
contamination factor (Cf) or pollution index (PI) of every single 
element. The pollution level identified by Cf or PI in the Xiang-Shan 
wetland was comparable to the findings by Ef and Igeo described earlier. 
The average levels of Cf or PI revealed a decreasing sequence of In 
(351.51) > Ga (4.70) > Co (4.68) > Zn (1.23) > Cu (0.86) > Cr 
(0.83) > Mn (0.64) > Fe (0.63) > Al (0.44) > Ni (0.36) > Pb = Cd 
(0.00). According to the classification of Chakraborty et al. (109) and 
Tian et al. (62) (Table 1), these data suggest that the surface sediments 
of Xiang-Shan wetland were highly contaminated with In (Cf > 6), 

FIGURE 8

The association relationships among the analyzed parameters in Xiang-Shan wetlands’ sediments using Pearson’s correlation coefficient (KY: KeYa, KW: 
KeYa Water Supply Center, DJ: DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: YenKan, MA: Mangrove Area).
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considerably polluted with Ga and Co (3 < Cf ≤ 6), and unpolluted 
with the other metals (Cf < 1).

Due to the great contribution of Indium (In), Gallium (Ga), and 
Cobalt (Co) metals in our study, the obtained data of PLI, mCdeg, and 
PN displayed a certain level of HM contamination. The seasonal mean 
values of PLI ranged between 1.96 and 1.20, indicating the surface 
sediment of the investigated area were slightly polluted (1 ≤ PLI < 2). 
Specifically, the surface sediments of DJ, KY, and OB stations in the 
spring season are greater than 2, suggesting strong pollution with 
heavy metals, and the mean PLI showed the descending order of DJ 
(1.96) > KY (1.65) > OB (1.64) > MA (1.50) > HM (1.47) > HS 
(1.29) > FC (1.24) ≥ KW (1.24) > YK (1.20).

While the annual average mCdeg values at all sampling stations 
fluctuated from 45.34 to 19.80, reflecting the range of severe 
(16 ≤ mCdeg < 32) to extreme pollution (mCdeg > 32). The mean value 
of mCdeg was higher than 32 for DJ and OB stations in both seasons, 
reflecting extremely contamination in the sediments of these two 
stations while other stations’ sediments were heavily or severely 
polluted. The magnitude of mCdeg levels between investigated stations 
was in the sequence of DJ (45.34) > OB (40.89) > MA (32.23) > HS 
(30.82) > HM (30.10) > KY (28.29) > FC (23.74) > KW (23.19) > YK 
(19.80).

Additionally, The Nemerow integrated pollution index (PN) is 
another widely employed proxy to quantify the pollution of HMs 
across all sampling stations. This index was calculated from the single 
pollution index (PI) of HMs mentioned previously. According to the 
mean PN values, the surface sediments of Xiang-Shan wetland were 
extremely polluted with In, Ga, and Co (class 4, PN > 3) in both two 
seasons and unpolluted (class 0, PN < 0.7) to significantly polluted 
(class 3, PN < 3) with the other metals (Table 2). The seasonal mean PN 
levels for the twelve HMs decreased as follows: In > 
Ga > Co > Zn > Cu > Cr > Fe ≥ Mn > Al > Ni > Pb = Cd.

Evaluate the potential risks of metals to the 
environment

The possible hazards related to the examined elements in the 
Xiang-Shan wetland’s surface sediments were evaluated utilizing the 
potential ecological risk index (PERI) and consensus-based sediment 
quality guidelines (SQGs).

PERI demonstrates the risks posed by pollutants and shows the 
susceptibility of ecological communities to given metals (110). The 
average ER of HMs varied considerably. The ER levels for the eight 
elements were ordered descendingly as follows: Co (23.39) > Cu 
(4.29) > Ni (1.79) > Cr (1.65) > Zn (1.23) > Mn (0.64) for both spring 
and winter sediments. Accordingly, all HMs across all sampling 
stations exhibited a minimal risk to the ecology with ER levels below 
30 (ER < 30). Specifically, the ER values for Co exceeded 30 at DJ (in 
both seasons) and OB (in the spring season) stations, indicating Co 
had moderate ecological risk in these two stations. Comprehensively, 
the seasonal mean PERI values of the surface sediments were 39.21, 
24.38, 49.17, 32.59, 24.83, 28.22, 39.61, 23.91, and 35.02 in KY, KW, 
DJ, HM, FC, HS, OB, YK, and MA, respectively, with a total mean of 
32.99. According to the PERI classifications, all sampling stations 
showed minimal ecological risk (PERI <40), with the exception of 
the OB station in the spring season and the DJ station in both 
seasons, which posed a moderate risk (40 ≤ PERI <80) to the 

environment, mostly due to Co contamination. Similar to mCdeg and 
PLI, the average PERI levels of the spring sediments were greater 
than those of the winter season, and they showed the descending 
order of DJ (49.17) > OB (39.61) > KY (39.21) > MA (35.02) > HM 
(32.59) > HS (28.22) > FC (24.83) > KW (24.38) > YK (23.91).

Similarly, sediment quality guidelines (SQGs) are the most 
prevalent conventional approach for determining the likely adverse 
impacts of HMs in sediments (75, 111, 112). Generally, these guidelines 
have low and high limits for various heavy metals. Supplementary Table 4 
juxtaposes our results with numerous SQGs’ reference values. The 
reference data imposed by the National Oceanic and Atmospheric 
Administration of the USA (NOAA) (72) are equivalent to those of the 
Australian and New Zealand Environment and Conservation Council 
and the Agriculture and Resource Management Council of Australia 
and New Zealand (71). Those developed by the Taiwan EPA (74) and 
the Canadian Council of Ministers of the Environment (73) are 
analogous to each other. Overall, the last two have somewhat lower 
values than the previous two, implying that the latter two reflect more 
rigorous values for the SQG technique. In comparison with the values 
of SQGs, the mean value of Cr greatly surpassed CCME’s ISQG, but it 
was close to the lower limit of Taiwan’s EPA. Similarly, the Cu value 
exceeded the lower limits of the CCME’s ISQG and NOAA’s effects 
range-low (ERL). Ni concentration in our work is between the lower 
and upper limits of NOAA’s ERL and ANZECC & ARMCANZ, but it 
is comparable to the Taiwan EPA’s lower limit. Meanwhile, the mean Zn 
value was considerably greater than the Taiwan EPA’s lower limit. 
Finally, the contents of Pb and Cd in our research were below all of the 
referenced levels established in the other guidelines. Overall, the mean 
levels of Zn, Cr, Ni, and Cu in the current research exceeded the lower 
limits of various SQGs, indicating that HM risk rarely occurs in the 
sediment of the Xiang-Shan wetland (105).

Identify the potential sources of HMs in the 
Xiang-Shan wetland’s sediments

The assessment of current contamination alone is inadequate to 
reduce the level of HMs pollution in the Xiang-Shan wetland’s surface 
sediments. Various bivariate and multivariate statistical methods, 
including Pearson’s correlation coefficient (PCC), Hierarchical cluster 
analysis (HCA), and principle component analysis (PCA), have been 
shown to be useful for examining the correlations and identifying the 
possible sources of HMs in sediments (26, 36).

Regarding PCC, a positive correlation among two variables implies 
that they originate from common origins and similar migration ways, 
while a negative correlation reflects distinct origins and is likely related 
to lithogenic or natural activities (39). Statistically, the correlation 
coefficient (r) can be categorized into four levels: r < ± 0.5 negligible, 
0.5 ± ≤ r < ± 0.6 significant, 0.6 ± ≤ r < ± 0.7 high, and r ≥ ± 0.7 strong. 
As shown in Figure 8, there were strong positive correlations (r ≥ 0.7, 
p < 0.001) among some studied variables, and the strongest 
associations, in decreasing order of correlation coefficient, were 
between the content of Cu-Ni (0.96), Co-In (0.95), Al-Ga (0.93), Cr-Ga 
(0.93), Al-Cr (0.92), Zn-Ni (0.91), Co-Cr (0.91), Co-Ga (0.91), Zn-Cu 
(0.89), Fe-Co (0.88), Al-Co (0.88), Cr-In (0.88), Fe-Cr (0.87), Ga-In 
(0.87), Fe-Al (0.84), Fe-Ga (0.81), Fe-In (0.81), Al-In (0.80), Zn-TOM 
(0.78), Ni-TOM (0.78), and Cu-TOM (0.75). In addition, Al-Mud 
(0.67), Ga-Mud (0.64), and Mn-In (0.60) showed high positive 

242

https://doi.org/10.3389/fpubh.2025.1459060
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Salah-Tantawy et al.� 10.3389/fpubh.2025.1459060

Frontiers in Public Health 15 frontiersin.org

correlation (0.6 ≤ r < 0.7, p < 0.01), while Mn-Mud (0.59), Ni-Cr 
(0.57), Mn-Co (0.56), Co-Mud (0.56), Cr-Mud (0.52), Cu-Cr (0.51), 
and In-Mud (0.50) showed significant correlation (0.5 ≤ r < 0.6, 
p < 0.05). Contrarily, most metals had a negative and negligible 
relationship with sand and gravel, respectively. Similar findings were 

observed previously by Liang et al. (113) and Briki et al. (114), who 
confirmed that positive relationships between heavy metals imply 
similar anthropogenic pollution sources and migration processes, 
whereas negative correlations indicate that they originated from 
various sources, which are likely geogenic.

PCA was performed to further investigate the association, HMs 
sources, and the linked interactions of HMs and sediment properties 
(i.e., TOM%, gravel%, sand%, and mud%). The PCA observations 
illustrated that the variance of HMs, TOM, and GSA can be described 
by two principal components that explained 82.98% of the cumulative 
variance. PC1 and PC2 explained 53.33 and 29.65%, respectively. As 
shown in Figure 9, Fe, Al, Co, Cr, Ga, In, Mn, and mud were positively 
associated with the first component (PC1), indicating that these variables 
predominantly came from similar sources, and PCC data confirm the 
possibility that these HMs had common origins. Inversely, sand and 
gravel variables were negatively loaded with PC1, indicating that the 
heavy metal distribution is highly affected by muddy sediments in DJ, 
OB, HM, and MA stations. Moreover, the PC2 had positively loaded Zn, 
Cu, Ni, and TOM, reflecting that these metals came from another source.

Similar to PCC and PCA, HCA (HCA-R mode) was conducted 
using the method of Euclidean distance to study similar heavy metal 
interrelationships and explore their potential origins (26). The HCA 
dendrogram provided data that split the PC1 and PC2 components 
into four distinct clusters with more precise similarities 
(Figure 10A). Cluster 1 contains Fe, Ga, Al, Cr, Co, In, Mn, and 
mud-grained size, proving that these metals emanated from a 

FIGURE 9

Biplot depicts the PCA analysis for HMs, TOM, and GSA in sediments 
of the Xiang-Shan wetland (KY: KeYa, KW: KeYa Water Supply Center, 
DJ: DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster 
Bed, YK: YenKan, MA: Mangrove Area).

FIGURE 10

A dendrogram shows the hierarchical cluster analysis. (A) HCA for HMs, TOM, and GSA, and (B) HCA for studied stations (KY: KeYa, KW: KeYa Water 
Supply Center, DJ: DaJuang, HM: HuiMin, FC: FongCin, HS: HaiShan, OB: Oyster Bed, YK: YenKan, MA: Mangrove Area).
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similar terrigenous source (115–117). Fe and Al elements are 
abundant in the crust of the earth and naturally enter aquatic 
environments, as well as serving a significant role in HMs scavenging 
and their incorporation into sediments (118). As a result, the 
presence of Fe and Al with Ga, Co, In, and Cr can suggest diversity 
in pollutant sources between natural and anthropogenic activities. 
Also, the strong positive correlation among Co, Ga, and In might 
be due to industrial effluent from the industrialized urban area. 
Furthermore, the significant positive relationship of mud with Mn, 
Al, Fe, Co, Cr, Ga, and In indicates that mud-grained particles can 
extensively influence the mobility of these seven metals (25, 119, 
120). Cluster 3 consists of Zn, Ni, Cu, and TOM; this data implied 
that the TOM content may have an influence on the distribution of 
HMs in surface sediments owing to its strong affinity through 
adsorption or complexation (8, 121, 122). Our findings coincided 
with earlier observations by Liu et al. (123), who mentioned that the 
HM concentrations in the Luanhe Estuary sediments were 
influenced by the OM content. Additionally, cluster 2 and 4 
comprise only sand and gravel, respectively; it seems that the gravel 
and sand sediments have a negligible influence on the HM 
distribution. Based on the heavy metal’s distribution (HCA-Q 
mode), the main nine studied stations were categorized into three 
clusters (Figure 10B). The first cluster contains one station (KY). 
This cluster had the greatest contents of Zn, Cu, Ni, and TOM. The 
second cluster comprises four stations (KW, FC, HS, YK, and MA), 
which had the highest percentage of sand (KW) and relative high 
values of TOM, Fe, Ga, Al, Cr, Co, and In (MA). While the third one 
contains three stations (DJ, HM, and OB), which had the greatest 
values of Fe, Al, Co, Cr, In, and Ga (DJ), Mn, and mud (OB). The 
results of HCA were consistent with the PCC and PCA data.

In summary, Fe and Al in cluster 1 enter the sediment of the 
wetland from another natural origin unrelated to organic matter. In 
contrast, In, Ga, Co, Cr, and Mn are primarily derived in the wetland 
sediment from anthropogenic origins, in addition to natural sources 
related to Fe and Al. Unlike cluster 1, heavy metals in cluster 3 (Zn, 
Cu, and Ni) are linked to OM and carried into the wetland while 
affixed to OM that derives mostly from natural origins. These 
outcomes support other findings and are reinforced by the sediment 
contamination indices discussed in this work. Restoration of Xiang-
Shan wetland requires the local government to implement measures 
to prevent HM pollution as a matter of urgency, particularly in 
relation to In, Ga, Co, Cr, and Mn. In order to reveal the full ecological 
risk posed by these HMs, extensive ecotoxicological studies are 
required on the responses of the biota of Xiang-Shan wetland to these 
toxic metals.

Conclusion

The Xiang-Shan wetland is a natural home for millions of 
crustaceans, prawns, benthic invertebrates, shellfish, and endangered 
avian species. Added to that, its economic value to the government of 
Hsinchu City. Thus, it is critical to evaluate the heavy metal 
contamination and identify its ecological threat. The average values of 
the 12 metals in the Xiang-Shan wetland’s surface sediments showed 
a decreasing sequence of Al > Fe > Mn > Zn > Co > Ga > Cr > Cu > In 
> Ni > Pb = Cd. The single pollution indices proved that the majority 
of sampling stations were unpolluted to minor polluted by Fe, Al, Zn, 

Cu, Mn, Cr, and Ni, moderately to heavily polluted by Co and Ga, and 
extremely polluted by In at all studied stations. The findings of PLI 
demonstrated that about 67% of spring sediments and entirely of 
winter sediments were moderately polluted (PLI < 2). Based on PERI, 
about 67% of spring sediment and 89% of winter sediment posed 
“minimal ecological risk” (PERI <40). Multivariate analyses 
demonstrated that Fe, Al, Zn, Cu, and Ni came from natural origins, 
while the sources of Co, Ga, In, Cr, and Mn were both anthropogenic 
and natural. Our research sounds the alarm for stricter management 
of metal discharges, and it is critical for the integrity of the ecosystem 
that heavy metals in aquatic-sedimentary systems in the Xiang-Shan 
wetland are continuously monitored.
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Introduction: Identifying factors that hinder bone development in children 
and adolescents is crucial for preventing osteoporosis. Exposure to polycyclic 
aromatic hydrocarbons (PAHs) has been linked to reduced bone mineral 
density (BMD), although available data, especially in children and adolescents, 
are limited. We  examined the associations between urinary hydroxylated-
PAHs (OH-PAHs) and lumbar spine BMD, pelvic BMD, and total BMD among 
8–19 years participants (N = 1,332) of the 2011–2016 National Health and 
Nutrition Examination Survey.

Methods: Weighted linear regressions were employed to assess the associations 
between urinary OH-PAHs and BMD. Additionally, Bayesian kernel machine 
regression (BKMR) and quantile g-computation (Qgcomp) models were utilized 
to investigate the effect of co-exposure of PAHs on BMD.

Results: Several urinary OH-PAHs exhibited negative associations with lumbar 
spine BMD, pelvic BMD, and total BMD in children and adolescents. For 
instance, an increase of one unit in the natural log-transformed levels of urinary 
1-hydroxypyrene and 2&3-Hydroxyphenanthrene was linked with a decrease 
of −0.014 g/cm2 (95% CI: −0.026, −0.002) and −0.018 g/cm2 (95% CI: −0.032, 
−0.004) in lumbar spine BMD, a decrease of −0.021 g/cm2 (95% CI: −0.039, 
−0.003) and −0.017 g/cm2 (95% CI: −0.033, −0.001) in pelvic BMD, and a 
decrease of −0.013 g/cm2 (95% CI: −0.023, −0.002) and −0.016 g/cm2 (95% CI: 
−0.026, −0.006) in total BMD. The body mass index modified the associations 
between urinary OH-PAHs and BMD, revealing negative effects on BMD primarily 
significant in overweight/obese individuals but not significant in underweight/
normal individuals. Both the BKMR model and the Qgcomp model indicated a 
significant negative correlation between the overall effects of seven urinary OH-
PAHs and lumbar spine BMD, pelvic BMD, and total BMD.

Conclusion: Our findings revealed that exposure to PAHs might hinder bone 
development in children and adolescents, potentially impacting peak bone 
mass—an essential factor influencing lifelong skeletal health.
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polycyclic aromatic hydrocarbons, bone mineral density, children and adolescents, 
Bayesian kernel machine regression, quantile g-computation
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1 Introduction

Osteoporosis is a significant public health concern, with 
approximately 200 million adults worldwide affected by this 
condition (1). Osteoporosis leads to an increased incidence of bone 
fractures and mortality, imposing a substantial burden on families 
and society due to associated medical and caregiving costs. Skeletal 
accumulation occurs during childhood and adolescence, with peak 
bone mass in adolescence being a critical factor in the development 
of osteoporosis in later life (2). Approximately 90% of peak bone mass 
is attained by age 18–20, and failure to achieve optimal bone accrual 
during this window increases lifelong osteoporosis risk (3). 
Adolescents exhibit heightened susceptibility to environmental 
toxicants due to ongoing bone remodeling, rapid growth rates, and 
immature detoxification systems (4, 5). Identifying and addressing 
risk factors that lead to inadequate bone mass accumulation during 
childhood and adolescence is of paramount importance for 
osteoporosis prevention. Nevertheless, there has been limited 
research analyzing the impact of environmental factors on childhood 
and adolescence bone accrual.

Polycyclic aromatic hydrocarbons (PAHs) are a class of widely 
distributed environmental pollutants, and human exposure to PAHs 
can occur through various routes, including inhalation, skin contact, 
and ingestion (6). Children face unique exposure risks due to higher 
respiratory rates, and prolonged outdoor activities and proportionally 
higher intake of contaminated food (7). Emerging evidence suggests 
that urinary 1-hydroxypyrene (1-OHPyr), a key PAH metabolite, is 
30% higher in children aged 6–11 compared to non-smoking adults 
under similar environmental conditions (8). A systematic review and 
meta-analysis of 40 studies involving 12,697 children and adolescents 
further corroborates this finding, demonstrating that urinary 
1-OHPyr levels in pediatric populations are consistently elevated 
compared to non-occupational adults who do not smoke (9). The 
exposure to PAH is not only related to individual susceptibility and 
behavioral patterns, but also significantly influenced by geographic 
heterogeneity and pollution source distribution characteristics (10). 

Multiple studies have shown that the risk of PAH exposure is 
significantly increased in industrial intensive areas, transportation 
corridors, and during the winter heating season (11–13). For 
instance, monitoring in Rome detected 2.5-fold higher PAH levels in 
city centers compared to suburbs during heating seasons (13), while 
industrial cities like Slavonski Brod exhibited PAH concentrations 
40% higher than background urban areas (11).

PAHs may affect bone mineral density (BMD) through multiple 
mechanisms. Experimental studies demonstrate that benzo [a] pyrene 
disrupts bone homeostasis through aryl hydrocarbon receptor (AhR) 
activation, suppressing osteoblast differentiation via ERK/MAPK 
pathway hyperphosphorylation (14). Additionally, PAHs can activate 
AhR pathways to accelerate osteoclast genesis or disrupt estrogen 
signaling, potentially altering bone homeostasis more profoundly in 
growing skeletons (15, 16). This is particularly concerning given that 
pediatric bone turnover rates are higher than adults (9), potentially 
amplifying toxicant impacts. Two previous studies have suggested an 
association between higher urinary hydroxylated-PAH (OH-PAH) 
concentrations in specific gender adult populations and lower BMD 
in different skeletal sites (17, 18).

However, few studies have examined PAH effects during the critical 
bone accrual window of 8–19 years. Current evidence gaps are threefold: 
(1) Limited data on dose–response relationships in pediatric populations; 
(2) Insufficient understanding of the unique susceptibility of developing 
skeletons to PAH exposure; and (3) Lack of analysis of combined 
exposure effects from multiple PAH congeners. Using a nationally 
representative sample from NHANES, this study investigates PAH-BMD 
associations in U.S. adolescents while addressing these knowledge gaps.

2 Materials and methods

2.1 Study design and population

National Health and Nutrition Examination Survey (NHANES) 
utilized a sophisticated multi-stage sampling weight design to 
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ensure the selection of a representative sample from the 
non-institutionalized civilian population of the United States. The 
survey was overseen by the National Center for Health Statistics 
(NCHS), and the data from questionnaires, laboratory tests, and 
physical examinations were made publicly available every 2 years.1 
Participants in the survey provided written informed consent, and 
the research protocol was approved by the NCHS Research Ethics 
Review Board.

Our study focused on children and adolescents aged 8–19, 
utilizing NHANES data spanning the years 2011–2016. Participants 
lacking data on BMD, urinary OH-PAHs, and relevant covariates were 
excluded from the analysis. Ultimately, a total of 1,332 subjects met 
the inclusion criteria for the final analysis. For a visual representation 
of the screening process, please refer to Figure 1.

2.2 Urinary OH-PAHs and BMD

Spot urine samples were collected from participants during their 
appointments at the NHANES Mobile Examination Center (MEC). 
These urine samples underwent processing, storage, and were 
subsequently shipped to the National Center for Environmental 
Health for analysis. The analysis included the measurement of seven 
urinary OH-PAHs, namely 1-Hydroxynaphthalene (1-OHNap), 
2-Hydroxynaphthalene (2-OHNap), 3-Hydroxyfluorene (3-OHFlu), 
2-Hydroxyfluorene (2-OHFlu), 1-Hydroxyphenanthrene (1-OHPhe), 
1-Hydroxypyrene (1-OHPyr), and 2&3-Hydroxyphenanthrene (2&3-
OHPhe). These measurements were carried out using isotope dilution 
high-performance liquid chromatography–tandem mass 
spectrometry. The detailed laboratory protocols can refer to the 

1  https://www.cdc.gov/nchs/nhanes/index.htm

NHANES website.2 When the concentrations of urinary metals fell 
below the limit of detection (LOD), they were replaced by LOD 
divided by the square root of 2. Additionally, the urinary 
concentrations of OH-PAHs in the study participants were adjusted 
for corresponding creatinine concentrations and expressed in units 
of ng/g.

In our study, we assessed three primary outcome variables: lumbar 
spine BMD, pelvic BMD, and total BMD (19). These measurements 
were conducted using Dual-Energy X-ray Absorptiometry (DXA) 
scans, administered by radiology technologists who were both trained 
and certified. Whole-body scans were performed using Hologic 
densitometers (Hologic, Inc., Bedford, Massachusetts). For a more 
comprehensive description of the DXA examination protocol, please 
consult the Body Composition Procedures Manual available on the 
NHANES website.3

2.3 Covariates

The covariates considered in our study, drawn from prior 
research (18, 20), encompassed demographic factors such as age, 
gender, race, and body mass index (BMI), poverty income ratio 
categories (<1, 1–3, >3) (21), education level (below junior school, 
junior school, high school or above), daily protein intake, daily 
calcium intake, daily phosphorus intake and serum cotinine. The 
information about the protein, calcium and phosphorus intake was 
derived from averaging the first and second 24 h dietary recall data. 

2  https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/PAH-I-

PAHS-I-MET-508.pdf

3  https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/manuals/2016_Body_

Composition_Procedures_Manual.pdf

FIGURE 1

Flow chart of study participant selection process.
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In instances where the second 24 h recall was unavailable, data from 
the first recall were utilized. Serum cotinine levels were categorized 
into high and low levels based on the median value (0.033 ng/mL) 
among study participants (22).

2.4 Statistical analysis

Following NHANES analytic guidelines, we incorporated 6-year 
sample weights to ensure that our results are representative of the 
national population aged 8–19 years and to correctly account for the 
complex, multistage sampling design of NHANES. To compare 
characteristics between genders, we  used design-based methods 
appropriate for complex survey data: weighted chi-square tests for 
categorical variables (e.g., race, education) and weighted linear 
regression for continuous variables (e.g., age, BMI) (18, 23). For 
skewed urinary OH-PAH concentrations, natural log transformation 
was applied. Weighted multivariable linear regression models were 
then used to evaluate associations between log-transformed 
OH-PAH levels and BMD, adjusting for covariates. Results are 
reported as estimated BMD changes per unit increase in 
log-transformed OH-PAHs with 95% confidence intervals (CIs). 
Additionally, we employed restricted cubic splines regressions with 
three knots to explore potential non-linear relationships between 
urinary OH-PAH levels and BMD. We used three knots placed at the 
10th, 50th, and 90th percentiles of each OH-PAH exposure 
distribution, following standard recommendations for restricted 
cubic splines that balance flexibility and stability. This approach 
allows for adequate flexibility to detect non-linear relationships 
while avoiding overfitting (24).

We evaluated potential modification effects of gender (male vs. 
female), age group (8–13 years vs. 14–19 years), and BMI 
(underweight/normal vs. overweight/obesity). This assessment 
involved estimating stratum-specific associations within each 
subgroup and introducing a multiplicative interaction term in the 
regression models. An interaction term with a p-value below 0.15 was 
considered statistically significant. The categorization of BMI was 
based on age-and sex-specific percentiles outlined in the Centers for 
Disease Control and Prevention growth charts (25).

Given the simultaneous exposure to multiple PAHs and their 
impact on BMD, we applied two statistical models—Bayesian kernel 
machine regression (BKMR) and quantile g-computation (Qgcomp) 
models—to explore the relationship between urinary OH-PAH 
mixtures and BMD.

	(1)	 The BKMR model enables flexible assessment of the 
multivariable exposure-response function through kernel 
functions, allowing for non-linear and non-additive relationships 
between exposure and response (26). Considering the high 
correlation among urinary OH-PAHs, as illustrated in 
Supplementary Figure S1, all urinary OH-PAHs showed 
significant correlation (p < 0.05), with strong correlations 
observed among 3-OHFlu, 2-OHFlu, 1-OHPhe, 1-OHPyr, and 
2&3-OHPhe (correlation coefficient ≥ 0.79). We employed a 
hierarchical variable selection method to construct the BKMR 
model for the urinary OH-PAHs mixture based on the 
magnitude of correlation among them. Urinary OH-PAHs were 

divided into three groups: Group 1 included 1-OHNap, Group 2 
comprised 2-OHNap, and Group  3 encompassed 3-OHFlu, 
2-OHFlu, 1-OHPhe, 1-OHPyr, and 2&3-OHPhe. The expression 
of the BKMR model is as follows:

	

= = − = −
= − − − −

− +β +

i 1 i 2 i 3
i i i i

T
i i i

Y h[Group 1 OHNap ,Group 2 OHNap ,Group
(3 OHFlu ,2 OHFlu ,1 OHPhe ,1 OHPyr ,
2& 3 OHPhe )] Z e

Where i corresponds to each participant. Yi represents individual 
BMD. h () signifies the unknown exposure-response function. β 
denotes the estimated effects of all covariates Zi. ei indicates residuals. 
We used a Gaussian kernel function to model the exposure-response 
function, capable of handling high-dimensional parameter spaces, 
employing a Markov Chain Monte Carlo (MCMC) algorithm for 
25,000 iterations. The BKMR analysis yielded the following results: 
(1) Overall OH-PAHs mixture effects on BMD, (2) Individual 
OH-PAH effects on BMD. For a detailed description, refer to previous 
researcher (26).

	(2)	 The Qgcomp model is a parametric statistical method that 
merges weighted quantile sum regression and g-computation, 
allowing for the assessment of the effects of exposure mixtures 
(27). This method involves converting all exposure variables 
into quartiles and then fitting a linear model incorporating 
exposure, covariates, and outcomes. The aggregate effect of the 
exposure mixture is quantified as the estimated changes in 
outcomes corresponding to a quartile increase for all exposure 
variables. Additionally, each exposure variable is assigned a 
weight, indicating the significance of the association of each 
variable in either a positive or negative direction. Notably, the 
strength of Qgcomp model lies in its ability to avoid the 
assumption of directional homogeneity. This method allows 
for the computation of both positive and negative associations 
between individual exposure variables and outcomes. The 
detailed description referred to the previous study (27).

Sensitivity analysis comprised two key components: (1) 
Exclusion of individuals with abnormal creatinine values (<30 mg/
dL or >300 mg/dL) was conducted to validate the association 
between urinary OH-PAHs and BMD (28). (2) An extended 
approach utilizing the Qgcompint model, which is an extension of 
the Qgcomp package, was employed to evaluate potential effect 
measure modifications of the overall mixture effect. This model 
incorporates interaction terms between the OH-PAH mixture and 
covariates such as gender, age group, and BMI to assess how these 
factors modify the effect of PAH exposure on BMD (29). (3) Given 
that 1-OHPyr had a detection rate of 85%, we conducted a secondary 
analysis excluding participants whose 1-OHPyr measurement fell 
below the detection limit.

All data analyses were performed with R (4.3.1). Except for the 
interaction p-value, all other significance levels were set at 0.05. 
Weighted linear regression, restricted cubic splines regression, bmkr, 
Qgcomp, and Qgcompint were implemented by R packages “survey,” 
“rms,” “bkmr,” “qgcmop,” and “Qgcompint,” respectively.
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3 Results

3.1 Characteristics of participants

As shown in Table  1, this study involved a total of 1,332 
participants, including 690 males and 642 females. Their weighted 
average age and BMI were 13.6 years and 22.9 kg/m2, respectively. The 
majority of the study subjects were non-Hispanic white, had high 
school or above education, and had a poverty income ratio of 1–3. 
Among males, the intake of serum cotinine, protein, calcium, and 
phosphorus was significantly higher compared to females (p < 0.05).

The weighted average BMD of the participants was 0.888 g/cm2 
for lumbar spine BMD, 1.09 g/cm2 for pelvic BMD, and 0.965 g/cm2 
for total BMD. Female participants exhibited significantly higher 
lumbar spine BMD than males (p < 0.05), while there were no 
significant gender differences in pelvic BMD and total 
BMD. Supplementary Table S1 provides the descriptive statistics for 
the seven urinary OH-PAHs measured in our study. Detection 
frequencies ranged from 85.2% (1-OHPyr) to nearly 100%. The mean 
concentrations were highest for 2-OHNap and lowest for 3-OHFlu. 
Except for 2-OHNap and 2&3-OHPhe, the concentrations of other 
OH-PAHs did not show significant differences between 
different genders.

3.2 Association of urinary OH-PAHs with 
BMD: weighted linear regression model

As shown in Figure  2, the majority of OH-PAHs exhibit a 
significant negative correlation with BMD. Each unit increase of 
natural log-transformed urinary 1-OHNap, 1-OHPhe, 1-OHPyr, 
2-OHFlu, 2&3-OHPhe, and 3-OHFlu was associated with a decrease 
of −0.010 g/cm2 (95% CI: −0.018, −0.002), −0.013 g/cm2 (95% CI: 
−0.024, −0.001), −0.014 g/cm2 (95% CI: −0.026, −0.002), −0.021 g/
cm2 (95% CI: −0.035, −0.007), −0.018 g/cm2 (95% CI: −0.032, 
−0.004), and −0.017 g/cm2 (95% CI: −0.031, −0.003) in lumbar spine 
BMD. Pelvic BMD decreased by −0.013 g/cm2 (95% CI: −0.022, 
−0.004), −0.017 g/cm2 (95% CI: −0.033, −0.001), and −0.021 g/cm2 
(95% CI: −0.039, −0.003) with one unite increase of natural 
log-transformed urinary 1-OHNap, 2&3-OHPhe, and 1-OHPyr. Total 
BMD reduced by −0.010 g/cm2 (95% CI: −0.018, −0.001), −0.016 g/
cm2 (95% CI: −0.026, −0.006), −0.015 g/cm2 (95% CI: −0.026, 
−0.004), and −0.013 g/cm2 (95% CI: −0.023, −0.002) with per unit 
increase of natural log-transformed urinary 3-OHFlu, 2&3-OHPhe, 
1-OHPhe, and 1-OHPyr.

Supplementary Figures S2–S4 illustrate restricted cubic spline 
models depicting the nonlinear associations of urinary OH-PAH 
levels with lumbar spine BMD (Supplementary Figure S2), pelvic 
BMD (Supplementary Figure S3), and total BMD 
(Supplementary Figure S4). These plots suggest non-linear 
relationships between 1-OHPyr and pelvic BMD, as well as between 
1-OHPhe and both pelvic BMD and total BMD (P for nonlinearity 
< 0.05).

Supplementary Figures S5, S6, respectively, illustrate subgroup 
analysis of the associations between urinary OH-PAHs and BMD 
among different gender (males and females) and age group (< 14 years 
and ≥ 14 years). Regarding gender, significant interactions between 
1-OHPhe and gender for pelvic BMD and total BMD are observed, as 

well as between 3-OHFlu and gender for total BMD (all P-interaction 
< 0.15). Specifically, the effect of 1-OHPhe on pelvic BMD is not 
significant in both males and females, and the effect on total BMD is 
significant only in males, while the effect of 3-OHFlu on total BMD is 
significant only in females. Concerning age, only the interaction 
between 2-OHNap and age for the BMD is significant (P-interaction 
< 0.15); the effect of 2-OHNap on lumbar spine BMD and pelvic BMD 
is not significant in both age groups (<14 years and ≥14 years), while 
the negative effect on total BMD is significant only in the ≥14 years 
age group.

As shown in Figure 3, we also identified significant interactions 
between some OH-PAHs and BMI (underweight/normal and 
overweight/obesity) on BMD, such as 1-OHPhe, 2-OHFlu, 2-OHNap, 
3-OHFlu, and BMI on lumbar spine BMD, 2-OHFlu and BMI on 
pelvic BMD, and 2-OHFlu and BMI on total BMD (all P-interaction 
< 0.15). These OH-PAHs exhibited a negative effect on BMD that was 
significant only in overweight/obesity individuals, while not 
significant in underweight/normal individuals.

3.3 Association of urinary OH-PAHs with 
BMD: BKMR model

As illustrated in Figure  4A, the significant negative linear 
associations exist between the overall effects of urinary OH-PAHs 
mixture with lumbar spine BMD, pelvic BMD, and total 
BMD. Figure  4B displays the associations between individual 
OH-PAH and BMD in the BMKR model. The results indicate that 
1-OHPhe is the primary contributor to the decrease in lumbar spine 
BMD and total BMD, while 1-OHPyr is the main contributor to the 
decrease in pelvic BMD. When the concentrations of the other urinary 
OH-PAHs were held constant at the 50th percentile, each increase of 
one quartile range in the natural log-transformed of urinary 1-OHPhe 
was significantly associated with a decrease of −0.013 g/cm2 (95% CI: 
−0.025, −0.001) in lumbar spine BMD and −0.015 g/cm2 (95% CI: 
−0.022, −0.007) in total BMD. Additionally, each increase of one 
quartile range in the natural log-transformed of urinary 1-OHPyr was 
significantly associated with a decrease of −0.016 g/cm2 (95% CI: 
−0.029, −0.003) in pelvic BMD.

Supplementary Figure S7 depicts exposure-response curves for 
the associations between individual OH-PAH and BMD in the BKMR 
model. These findings confirm significant negative associations 
between 1-OHPhe and lumbar spine BMD and total BMD, as well as 
between 1-OHPyr and pelvic BMD.

3.4 Association of urinary OH-PAHs with 
BMD: Qgcomp model

As shown in Supplementary Table S2, the Qgcomp model reveals 
a significant negative association between the overall effect of the 
urinary OH-PAHs mixture and BMD. For one quartile range increase 
in the natural log-transformed of urinary OH-PAHs mixture, lumbar 
spine BMD, pelvic BMD, and total BMD decreased by −0.012 g/cm2 
(95% CI: −0.021, −0.004), −0.014 g/cm2 (95% CI: −0.025, −0.003), 
and −0.010 g/cm2 (95% CI: −0.016, −0.003), respectively. As shown 
in Figure 5, 2&3-OHPhe is assigned the largest negative weight to the 
decrease in lumbar spine BMD (weight = 0.46), while 2&3-OHPhe 
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(weight = 0.30) and 1-OHPyr (weight = 0.28) are the main 
contributors to the decrease in pelvic BMD. Additionally, 1-OHPyr 
has the highest negative weight to the decrease in BMD (weight = 0.42).

3.5 Sensitivity analysis

Supplementary Figure S8 displays the relationships between 
urinary OH-PAHs and BMD in subjects with normal creatinine levels 
(30–300 mg/dL). Except for the significant negative correlation 
between 1-OHPyr and lumbar and pelvic BMD, which shifted to 
marginal negative correlation (p = 0.059 and p = 0.056), the other 

results are consistent with the main analysis results. 
Supplementary Figure S9 demonstrates the differences in the overall 
effects of urinary OH-PAHs mixture on BMD among different 
genders, age groups, and BMI categories. Similar to the stratified 
analysis in the main study, we observe significant interactions between 
urinary OH-PAHs mixture and BMI for lumbar spine BMD 
(P-interaction = 0.05), with the overall negative effect of the mixture 
being significant only in overweight/obesity individuals, not in those 
with underweight/normal subjects. After excluding individuals with 
undetectable  1-OHPyr levels, we  identified significant negative 
associations between urinary 1-OHPyr and BMD 
(Supplementary Table S3), consistent with our primary analysis results.

TABLE 1  Weighted characteristics of participants (N = 1,332).

Characteristics Total Male Female p

Na 1,332 690 642

Age, years 13.6 ± 3.30 13.5 ± 3.39 13.8 ± 3.21 0.283

BMI, kg/m2 22.9 ± 6.31 22.4 ± 5.93 23.4 ± 6.68 0.114

Race, n (%) 0.259

 � Non-Hispanic White 726 (54.5%) 367 (53.2%) 359 (55.9%)

 � Hispanic 304 (22.8%) 158 (23.0%) 146 (22.7%)

 � Non-Hispanic Black 173 (13.0%) 100 (14.4%) 73 (11.4%)

 � Other Race 129 (9.7%) 65 (9.4%) 64 (10.0%)

Education level, n (%) 0.537

 � Below junior school 419 (31.5%) 224 (32.4%) 195 (30.3%)

 � Junior school 397 (29.8%) 211 (30.6%) 187 (29.1%)

 � High school or above 516 (38.7%) 255 (37.0%) 261 (40.6%)

Poverty income ratio, n (%) 0.300

 � <1 310 (23.3%) 149 (21.6%) 161 (25.1%)

 � 1–3 555 (41.6%) 285 (41.3%) 269 (41.9%)

 � >3 467 (35.1%) 256 (37.1%) 212 (33.0%)

Cotinine, n (%) 0.017

 � Low 680 (51.0%) 327 (47.4%) 353 (55.0%)

 � High 652 (49.0%) 363 (52.6%) 289 (45.0%)

Protein, g 74.3 ± 32.7 84.1 ± 36.4 63.8 ± 24.2 <0.001

Calcium, g 1.05 ± 0.518 1.17 ± 0.540 0.922 ± 0.459 <0.001

Phosphorus, g 1.34 ± 0.552 1.49 ± 0.593 1.17 ± 0.448 <0.001

Lumbar spine BMD, g/cm2 0.888 ± 0.186 0.855 ± 0.191 0.924 ± 0.174 <0.001

Pelvis BMD, g/cm2 1.09 ± 0.230 1.07 ± 0.249 1.11 ± 0.205 0.069

Total BMD, g/cm2 0.965 ± 0.150 0.969 ± 0.160 0.961 ± 0.138 0.501

1-OHNap, ng/g 886 (497, 1,631) 862 (481, 1,615) 893 (516, 1,693) 0.892

2-OHNap, ng/g 4,253 (2,580, 7,861) 3,813 (2,319, 6,589) 4,898 (2,830, 8,883) <0.001

3-OHFlu, ng/g 70.5 (44.6, 109) 69.0 (44.2, 106) 71.1 (45.0, 111) 0.570

2-OHFlu, ng/g 156 (111, 245) 153 (107, 244) 163 (117, 246) 0.303

1-OHPhe, ng/g 95.5 (64.7, 142) 90.4 (61.0, 134) 100 (71.7, 153) 0.164

1-OHPyr, ng/g 132 (86.9, 202) 121 (79.8, 196) 142 (100, 211) 0.556

2&3-OHPhe, ng/g 108 (77.9, 155) 107 (74.0, 159) 110 (79.7, 152) 0.023

BMI, Body mass index; BMD, Bone mineral density; 1-OHNap, 1-Hydroxynaphthalene; 2-OHNap, 2-Hydroxynaphthalene; 3-OHFlu, 3-Hydroxyfluorene; 2-OHFlu, 2-Hydroxyfluorene; 
1-OHPhe, 1-Hydroxyphenanthrene; 1-OHPyr, 1-Hydroxypyrene; 2&3-OHPhe, 2&3-Hydroxyphenanthrene.
aUnweighted sample number in the group.
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FIGURE 2

Estimated changes for associations of urinary OH-PAHs with lumbar spine BMD, pelvis BMD, and total BMD after adjusted for gender, age, race, poverty 
income ratio, education level, BMI, cotinine, and daily protein, calcium, and phosphorus intake. OH-PAHs, hydroxy polycyclic aromatic hydrocarbons; 
BMD, bone mineral density; BMI, body mass index.

FIGURE 3

Estimated changes for associations of urinary OH-PAHs with lumbar spine BMD, pelvis BMD, and total BMD in different BMI groups after adjusted for 
gender, age, race, poverty income ratio, education level, cotinine, and daily protein, calcium, and phosphorus intake. OH-PAHs, hydroxy polycyclic 
aromatic hydrocarbons; BMD, bone mineral density; BMI, body mass index.
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4 Discussion

To our knowledge, this is the first study to examine the effects 
of urinary OH-PAHs on BMD among children and adolescents. 
We found that some urinary OH-PAHs were negatively associated 
with lumbar spine BMD, pelvic BMD, and total BMD. BMI 
modified the associations between urinary OH-PAHs and BMD, 
and some OH-PAHs exhibited negative effects on BMD, only 

significant in overweight/obesity individuals, while not significant 
in underweight/normal individuals. In mixture analysis, both the 
BKMR model and the Qgcomp model found a significant negative 
correlation between the overall effect of urinary OH-PAHS 
mixture and lumbar spine BMD, pelvic BMD, and total BMD; 
urinary 1-OHPyr and 1-OHPhe were identified as the primary 
contributors to the decrease in pelvic BMD and total BMD, 
respectively.

FIGURE 4

Associations of urinary OH-PAHs with BMD based BMKR model after adjusted for gender, age, race, poverty income ratio, education level, BMI, 
cotinine, and daily protein, calcium, and phosphorus intake. (A) Overall effect of urinary OH-PAHs mixture on BMD through comparing the estimated 
changes of BMD when urinary OH-PAHs fixing at the 10th-90th percentiles with these when urinary OH-PAHs fixing at the 50th percentiles; (B) Effects 
of individual urinary OH-PAH with BMD through comparing the estimated changes of BMD when each OH-PAH was in the 75th percentile with these 
in its 25th percentile and when all other urinary OH-PAHs were fixed at the 25th, 50th and 75th percentiles, respectively. OH-PAHs, hydroxy polycyclic 
aromatic hydrocarbons; BMD, bone mineral density; BMKR, Bayesian kernel machine regression; BMI, body mass index.

FIGURE 5

Weights of each urinary OH-PAH in associations with (A) lumbar spine BMD, (B) pelvis BMD, and (C) total BMD based on Qgcomp models after 
adjusted for gender, age, race, poverty income ratio, education level, BMI, cotinine, and daily protein, calcium, and phosphorus intake. OH-PAHs, 
hydroxy polycyclic aromatic hydrocarbons; BMD, bone mineral density; Qgcomp, quantile g-computation; BMI, body mass index.
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Currently, there is a lack of research on the impact of PAHs 
exposure on BMD in children and adolescents, making it difficult to 
directly compare our study’s findings with existing literature. There are 
limited studies that have reported associations between PAHs 
exposure in adults and BMD, but the results are inconsistent. For 
instance, Di et al. found a significant negative association between 
adult urinary 3-OHFlu, 2-OHFlu, and 1-OHPhe levels and lumbar 
spine BMD in NHANES 2005–2010 and 2013–2014 (N = 6,766) (20). 
Conversely, another study in NHANES 2005–2010 (N = 1768) found 
that adult lumbar spine BMD was significantly negatively associated 
only with urinary 3-OHPhe at the second tertile, and this study also 
found a significant positive correlation between urinary 1-OHPyr and 
trochanteric BMD (18). Additionally, in NHANES 2001–2004 
(N = 2,987), only female 2-OHPhe levels were significantly negatively 
correlated with total BMD (17). The disparities in these study results 
may be  attributed to differences in sample size, levels of urinary 
OH-PAHs, and the skeletal sites. Our study extends the findings from 
these previous studies, and the discovery of the detrimental effects of 
PAHs exposure on BMD in children and adolescents holds significant 
implications for the field of research on the impact of PAHs exposure 
on bone health in the general population.

Exposure to PAHs, the potential biological mechanisms 
underlying the decrease in BMD remain unclear, but several pathways 
have been identified. First, PAH exposure can disrupt bone turnover 
equilibrium, leading to increased bone resorption (15). In an 
epidemiological study (30), a significant correlation was found 
between urinary OH-PAH levels in adults and elevated N-terminal 
peptide levels (a biomarker reflecting bone resorption). Second, PAHs 
exhibit estrogen-like effects, reducing the inhibitory action of estrogen 
on osteoclasts and increasing bone resorption (16). Third, PAHs can 
induce a pro-inflammatory state in the body, with increased levels of 
inflammatory mediators such as Tumor Necrosis Factor-α and 
Interleukin-6 (31), which can stimulate the expression of receptor 
activator of nuclear factor-κB ligand by osteoblasts. This, in turn, 
activates osteoclasts, leading to a reduction in bone mass (32). Fourth, 
PAHs can generate a substantial amount of reactive oxygen species by 
activating aryl hydrocarbon receptors, which can promote apoptosis 
of mesenchymal stem cells (precursors to osteoblasts), osteoblasts, and 
osteocytes, thereby reducing bone formation (33).

Our findings indicate a significant negative association between 
certain urinary OH-PAH levels and BMD, notably in overweight/
obese children and adolescents. This suggests increased susceptibility 
within this demographic, aligning with previous research 
demonstrating that higher body fat percentage and total fat mass 
negatively impact lumbar spine BMD and total BMD (34). The 
mechanisms by which PAHs negatively influence bone density, 
particularly in the context of obesity, may involve several biological 
pathways: (1) Altered Metabolism and Lipid Homeostasis: PAHs have 
been shown to promote preadipocyte differentiation in adipose tissues 
while potentially disrupting lipid metabolism. Activation of 
peroxisome proliferator-activated receptors (PPARs) by PAHs may 
lead to altered adipocyte function, which can adversely affect bone 
health (35). This dual impact on both fat and bone tissues could 
exacerbate the negative effects of obesity on BMD. (2) Inflammation 
and Bone Remodeling: Obesity is associated with chronic low-grade 
inflammation, which is a known risk factor for bone loss. Adipose 
tissue secretes pro-inflammatory cytokines that can impair osteoblast 
function and promote osteoclastogenesis, leading to decreased bone 

formation and increased bone resorption (36). The presence of PAHs 
may further exacerbate this inflammatory state, intensifying the 
negative effects on BMD in overweight/obese individuals. (3) 
Hormonal Disruption: PAHs are recognized endocrine disruptors that 
may alter hormonal balance, particularly affecting sex hormones, 
which play critical roles in bone health. In adolescents, the relative 
abundance of estrogen and androgens is crucial for achieving peak 
bone mass (3, 16). Disruption of these hormonal signals by PAHs, 
combined with the altered hormonal milieu characteristic of obesity, 
may further contribute to compromised bone health. Previous studies 
have shown a significant positive correlation between urinary 
OH-PAH levels and BMI in children and adolescents, underscoring 
the importance of considering body composition when evaluating the 
health impacts of environmental exposures (37). This correlation 
reinforces our findings, suggesting that weight status amplifies the 
adverse effects of PAHs on bone density.

In real-life situations, the human body is typically exposed to 
various PAHs simultaneously. This study employed BKMR and 
Qgcomp to evaluate the joint effects of PAH mixtures on BMD. These 
models were selected based on their complementary strengths in 
addressing distinct aspects of environmental mixture analysis. The 
BKMR model was chosen to account for potential non-linear dose–
response relationships and interactions among PAHs, which are 
biologically plausible given their diverse mechanisms of toxicity. For 
instance, certain PAHs may disrupt bone homeostasis through AhR 
activation or oxidative stress pathways, and their combined effects 
could be synergistic or non-additive (16, 38). BKMR’s semi-parametric 
framework allows flexible modeling of such complexities without 
assuming linearity a priority (26). Conversely, the Qgcomp model was 
applied to quantify the overall linear effect of the PAH mixture while 
estimating component weights under an additive assumption (27). 
This parametric approach is advantageous for risk assessment, as it 
provides interpretable estimates of cumulative effects, which are 
critical for informing public health interventions. By integrating both 
approaches, this study balances methodological rigor with practical 
interpretability, addressing the dual need to explore mechanistic 
complexity (via BKMR) and quantify actionable risks (via Qgcomp). 
This strategy aligns with recent methodological frameworks 
advocating for multi-model analyses in environmental mixtures 
research (39). Furthermore, both the BKMR and Qgcomp models 
identified urinary 1-OHPyr and 1-OHPhe as the primary contributors 
to the decrease in pelvic BMD and total BMD, emphasizing the need 
for prioritizing the control of these specific PAHs in preventing BMD 
reduction in children and adolescents. However, for lumbar BMD, the 
primary contributors identified by the two models differed: BKMR 
highlighted 1-OHPhe, whereas Qgcomp emphasized 2&3-OHPhe. 
These metabolites, though derived from the same parent PAH 
(phenanthrene), may differentially influence bone health due to 
variations in hydroxylation patterns and bioavailability (40). The 
discrepancy between models could reflect distinct methodological 
approaches—BKMR’s incorporation of nonlinearity and interactions 
versus Qgcomp’s linear additive framework. This suggests both 
metabolites may contribute to lumbar BMD reduction through 
complementary pathways, necessitating further toxicological and 
epidemiological validation.

A critical aspect often overlooked is the potential synergistic or 
additive effects of PAHs in conjunction with other environmental 
contaminants. Studies investigating combined exposures have 
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indicated that phenolic compounds, chlorophenol pesticides, and 
phthalates may exacerbate the detrimental effects of PAHs on bone 
health. For instance, in a study examining the joint effects of these 
compounds, results indicated that co-exposure significantly impacted 
BMD, highlighting the importance of accounting for multiple 
environmental pollutants when assessing bone health (20). Research 
has shown that endocrine disruptors, including PAHs, can interact 
with pathways involved in bone metabolism, further complicating 
their effects (41). For example, a review highlighted that chronic 
exposure to endocrine disruptors like phthalates and per-and 
polyfluoroalkyl substances can lead to alterations in bone remodeling 
processes, which may compound the adverse effects of PAHs on 
BMD (42). The interplay between PAHs and these pollutants can 
create a cumulative burden on bone health, emphasizing the need for 
comprehensive studies that address multiple exposures to adequately 
assess risks to BMD. Despite the existing literature linking PAH 
exposure to impaired bone health, there is still limited research on 
the co-exposure of PAHs with other toxicants and their collective 
impact on bone density. Further investigations are warranted to 
better understand these interactions and their implications for 
public health.

This study has several notable strengths. First, our use of 
NHANES data—a nationally representative sample with rigorous 
protocols—enhances the generalizability of findings to U.S. children 
and adolescents. Second, we focused on a critical yet understudied 
developmental window (8–19 years), during which bone mass 
accrual peaks and environmental insults may exert lifelong 
consequences. Third, we  employed advanced mixture modeling 
approaches (BKMR and Qgcomp) to evaluate co-exposure effects, 
addressing a key limitation of single-pollutant studies. Additionally, 
stratified analyses revealed heightened susceptibility in overweight/
obese individuals, highlighting metabolic status as a modifier of PAH 
toxicity. Our findings underscore the need for targeted interventions 
to reduce PAH exposure in children and adolescents, contributing to 
the prevention of future osteoporosis and associated health outcomes.

However, this study also has the following drawbacks. Firstly, the 
cross-sectional study design cannot establish a causal temporal 
relationship between PAHs exposure and changes in BMD. Secondly, 
urinary OH-PAH levels may significantly change over time due to the 
stochastic nature of exposure and variations in PAH pharmacokinetics 
(43). Using single-point urine samples to measure individual PAH 
exposure concentrations may lead to exposure misclassification. 
Thirdly, this study did not include children under the age of 8 due to 
the lack of BMD data for this age group. As a result, it was not 
possible to explore the effect of PAHs exposure on early childhood 
BMD. Finally, the study focused only on the impact of PAHs exposure 
on BMD in children and adolescents. However, other toxic substances 
in the environment, such as per-and polyfluoroalkyl substances, 
phthalates, and lead, can also contribute to changes in BMD in 
children and adolescents (20, 44, 45). The study did not account for 
these potential confounding factors.

5 Conclusion

In conclusion, we found that higher levels of PAHs exposure in 
children and adolescents are associated with decreased BMD, with a 
potentially greater effect on overweight/obesity individuals. While 

further validation of our findings is necessary, reducing environmental 
PAHs exposure during childhood and adolescence may potentially 
mitigate bone mass loss, thus improving peak BMD and 
preventing osteoporosis.
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