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Spatial-temporal evolution and
influencing factors of ecological
resilience in urban
agglomerations: a case study of
Shanxi section of the Yellow
River Basin

Jinfang Wang1, Zhihong Lv2, Ye Cao1, Shifeng Wang3 and
Zhilei Zhen1*
1College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, Shanxi, China, 2School of
Arts Communication, Jinzhong College of Information, Taigu, Shanxi, China, 3Shanxi Yituo Land
Engineering Consulting Co., Ltd., Taiyuan, Shanxi, China

Scientific assessment of the development status and factors influencing the urban
ecological resilience of the Yellow River Basin (YRB) is highly significant for
promoting its development. This study constructed an evaluation index
system for urban ecological resilience considering the four dimensions of
pressure, state, response, and innovation. The spatiotemporal ecological
resilience of the urban agglomeration (UA) in the Shanxi section of the YRB
from 2012 to 2021 was studied using kernel density estimation, Dagum Gini
coefficient, and standard deviation ellipse, and the influencing factors of urban
ecological resilience were analyzed using a geographic detector. This research
revealed that (1) the ecological resilience of cities in the Shanxi section of the YRB
experienced a fluctuation process of rise—fall—rise. The urban ecological
resilience generally reflected a gradient decreasing spatial pattern of Central
Shanxi UA > South Shanxi UA > North Shanxi UA, and gradually changed from the
dual core of “Taiyuan—Jincheng City” to the single core of Taiyuan City. (2) The
migration trajectory of urban ecological resilience center of gravity fluctuated in
the direction of “northwest-southeast,” and moved 12.63 km to the southeast
overall. (3) The water supply per ten thousand Yuan GDP, occupied area of
construction land per ten thousand Yuan GDP, green coverage rate in built-up
areas, ratio of research and experimental development funds (R&D) to GDP,
proportion of science and technology expenditure in local fiscal expenditure, and
patent licensing quantity index have a high influence on urban ecological
toughness at all stages. This influence was further strengthened by the
interaction between factors. This study provides an important scientific basis
for shaping high-quality development advantages in the YRB and creating a
resilient and livable environment.

KEYWORDS

Yellow River Basin, urban ecological resilience, spatiotemporal evolution, high quality
development, influencing factors

OPEN ACCESS

EDITED BY

Xiaoping Wang,
Northwest A&F University, China

REVIEWED BY

Wang Juan,
Soil and Water Conservation Monitoring Center
of Pearl River Basin, Pearl River, China
Zhenyu Zhang,
Nanjing University, China

*CORRESPONDENCE

Zhilei Zhen,
zhencheng@sxau.edu.cn

RECEIVED 14 February 2024
ACCEPTED 11 March 2024
PUBLISHED 21 March 2024

CITATION

Wang J, Lv Z, Cao Y, Wang S and Zhen Z (2024),
Spatial-temporal evolution and influencing
factors of ecological resilience in urban
agglomerations: a case study of Shanxi section
of the Yellow River Basin.
Front. Environ. Sci. 12:1385604.
doi: 10.3389/fenvs.2024.1385604

COPYRIGHT

© 2024 Wang, Lv, Cao, Wang and Zhen. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 21 March 2024
DOI 10.3389/fenvs.2024.1385604

5

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1385604/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1385604/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1385604/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1385604/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1385604/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1385604/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1385604&domain=pdf&date_stamp=2024-03-21
mailto:zhencheng@sxau.edu.cn
mailto:zhencheng@sxau.edu.cn
https://doi.org/10.3389/fenvs.2024.1385604
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1385604


1 Introduction

With continuously advancing urbanization and
industrialization, the excessive use of resources, environmental
pollution, climate change, and other problems have a serious
impact on the ecosystem (Li and Wang, 2023b), which weakens
the ecological carrying capacity, increases the ecological risk,
threatens the regional and even entire ecological security, and
finally leads to a decrease in ecological resilience. The Yellow
River Basin (YRB) is the birthplace of Chinese civilization and is
an important economic zone and ecological barrier in China. It plays
an important role in maintaining ecological security and promoting
economic growth (Huang et al., 2023). In September 2019, China
formally established a strategy for ecological protection and high-
quality development of the YRB. The “Outline of the Plan for
Ecological Protection and High-quality Development of the YRB”
was issued in October 2021, which provides an important basis and
action guide for the ecological environment protection of the YRB
for the present and future.

Urban agglomeration (UA) is an important factor in YRB
development. The key to realizing the development of ecological
resilience in YRB lies in the effective improvement of urban
ecological resilience in the UA (Wang et al., 2024). Shanxi
Province is rich in mineral resources and is an important
national energy base. Because of its special natural conditions
and layout of economic and industrial structures, Shanxi
Province has one of the most fragile ecological environments and
weakest foundations in the YRB. The Shanxi section of the YRB is
located in the arid and semi-arid regions of northern China, with an
uneven distribution of resources, lack of water resources, and
sensitive and fragile ecosystem. Cities in this region are relatively
less resilient to disasters and their risks. Therefore, scientifically
evaluating the spatiotemporal evolutionary characteristics and
influencing factors of urban ecological resilience in the Shanxi
section of the YRB is highly significant to determine the current
status of urban ecological resilience in the region and explore ways to
improve the adaptability and resilience of urban ecosystems to cope
with increasingly serious environmental pressures and
natural disasters.

In urbanized areas, the fragmentation of natural habitats,
homogenization of species composition, destruction of
hydrological systems, and changes in energy flow and nutrient
cycling reduce cross-scale ecological resilience (Alberti and
Marzluff, 2004). The “urban ecology” category includes human
wellbeing, urban livability, ecosystem services, complex adaptive
systems, and urban resilience, which emphasize the sustainable
development of cities (Wu, 2014). Improving the resilience of
urban ecosystems and building resilient cities to resist eco-
environmental risks have become research hotspots. The
connotations and research strategies for urban ecological
resilience are constantly being updated. From the perspective of
evolution theory, urban ecological resilience is an inherent property
of urban ecosystems that undergoes non-deterministic dynamic
evolution with time and emphasizes the learning ability and
innovation of the system (Hosseini et al., 2016). Under the
increasingly complex situation of system development and
change, “evolutionary resilience” is more suitable for the current
study of urban ecological resilience, which is helpful in realizing the

leap from stable equilibrium to dynamic development (Boschma,
2015). Urban ecological resilience is based on “social-ecological”
aspect, which enables urban ecosystems to adjust its structure and
change its path to achieve transformation and development
(Hosseini et al., 2016), reflecting the ability of urban ecosystem
to resist pressure, respond and recover when it is affected by pressure
and disturbance (Meerow et al., 2016). China’s ecological
environment resilience showed a increasing trend in fluctuations
by the longitudinal and horizontal pull-out grading method (Li et al.,
2023). Zhou et al. (2022) used the entropy and the linear weighting
methods and the obstacle degree model to calculate the ecological
resilience level and study its influence factors of UAs in Chengdu-
Chongqing Economic Circle, suggesting an upward trend of
ecological resilience level and disasters was the main influencing
factors. When constructing an urban ecological resilience evaluation
system, Yang et al. (2022) used the entropy weight method to
evaluate the resilience level of cities in the Chengdu-Chongqing
Economic Circle and used the Fuzzy Set Qualitative Comparative
Analysis method to analyze the influencing factors, suggesting a
relatively low urban resilience level and financial and innovation
were the key driving factors. Lately, Liao and Zhang (2023)
constructed an urban ecological resilience evaluation model based
on resistance, adaptability, and resilience, and evaluated the
spatiotemporal change pattern of urban ecological resilience in
Guangzhou from 2000 to 2020, which suggested that the areas
with low ecological resilience expanded to the northeast and
southeast, while the areas with high ecological resilience
decreased obviously. To sum up, the analysis showed that
evaluation system and evaluation indicators remains in the
exploration and improvement stages. At present, an evaluation
system for urban ecological resilience research has not yet been
developed for the YRB.

In this study, we considered the UA in the Shanxi section of the
YRB as the research object, constructed an urban ecological
resilience evaluation system from the four dimensions of
“pressure-state-response-innovation”, and revealed its
spatiotemporal evolution characteristics based on urban
socioeconomic data from 2012 to 2021. The Dagum-Gini
coefficient was used to analyze spatial differences and their
causes, and a standard deviation ellipse was used to analyze the
spatial location and development trends of urban ecological
resilience. Finally, geographical detectors were used to analyze
the driving factors affecting urban ecological resilience. This
research will help understand the evolutionary trends of urban
ecological resilience in the Shanxi section of the YRB, clarify the
development gaps between different UAs, and provide empirical
support for shaping the high-quality development advantages of the
YRB and creating a resilient and livable environment.

2 Data and methods

2.1 Study area

The Shanxi section is located in the middle reaches of the YRB.
The Yellow River enters from Laoniuwan, Pianguan County,
Xinzhou City, and exits from Nianpangou, Yuanqu County,
Yuncheng City, with a total length of 965 km, nearly 1/5 of the
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total length of the Yellow River. The Shanxi section of the YRB is
located in Huangtu plateau, with various topographical features,
with mountains and hills accounting for greater than 80%, and
plains and basins in mountain valleys for approximately 20%.
Shanxi Province has a temperate continental monsoon climate
with four distinct seasons. The average annual temperature is
4.2°C–14.2°C and the annual precipitation is 350–625 mm. Based
on the administrative unit of Shanxi section of the YRB and
considering the integrity of the research region, the study area
was defined as Shuozhou City, Xinzhou City, Lvliang City,
Taiyuan City, Jinzhong City, Linfen City, Jincheng City and
Yuncheng City. The study area was divided into North Shanxi
UA (Shuozhou, Xinzhou), Central Shanxi UA (Lvliang, Taiyuan,
Jinzhong), and South Shanxi UA (Linfen, Jincheng,
Yuncheng) (Figure 1).

2.2 Data sources

The data used in this study were obtained from the Statistical
Yearbook of Shanxi Province from 2012 to 2021 (https://tjj.shanxi.
gov.cn/tjsj/), Statistical Yearbook of Urban Construction of China
(https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/jstjnj/
index.html), Bulletin of Water Resources of Shanxi Province

(https://slt.shanxi.gov.cn/), Bulletin of Environmental Status of
Shanxi Province (https://sthjt.shanxi.gov.cn/zwgk/hjgb/hjzkgb/
index.shtml), Statistical Bulletin of the National Economic and
Social Development of Prefecture-Level Cities, and Final
Accounts Report of the Government. The normalized vegetation
Index (NDVI) was obtained from the Resource and Environmental
Science and Data Center of the Chinese Academy of Sciences (http://
www.resdc.cn/). Missing data were supplemented using linear
interpolation. The initial data can be found in
Supplementary Table S1.

2.3 Methods

2.3.1 Comprehensive evaluation model of urban
ecological resilience
2.3.1.1 Entropy method

The entropy method (Wang et al., 2018; Chen et al., 2021) was used
to assign the weight of the urban ecological resilience index of the UA in
the Shanxi section of the YRB. First, the original data were normalized to
ensure comparability (Chen et al., 2022). The formula is as follows:

Positive index: Xij
′ � Xij − Xmin( )/ Xmax − Xmin( ) (1)

Negative index: Xij
′ � Xmax − Xij( )/ Xmax − Xmin( ) (2)

FIGURE 1
Urban agglomeration (UA) in Shanxi section of the YRB.
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Here, Xij is the original value of the index j in year i, Xmax and
Xmin are the maximum and minimum values of the same index,
respectively, and Xij

′ is the normalized value.
Second, the specific gravity (Pij) of index j in the ith year is

calculated as follows:

Pij � Xij
′/∑n

i�1Xij
′ (3)

Third, the information entropy (ej) and utility value (dj) of
index j are calculated as follows:

ej � −k∑n

i�1Pij ln Pij (4)
dj � 1 − ej (5)
k � 1/ln n( ) (6)

Finally, the weight (Wj) of each index was obtained and the
value of urban ecological resilience (Y) was calculated as follows:

Wj � dj/∑n

j�1dj (7)
Y � ∑Xij

′Wj (8)

2.3.1.2 Evaluation model
Based on existing documents (Li andWang, 2023b; Huang et al.,

2023), this study constructed an index system of urban ecological
resilience from the four dimensions of “pressure-state-response-
innovation” (Table 1). Among the dimensions, pressure indicates

the disturbance and impact of human production and living
activities on the urban ecosystem (Zhou et al., 2022); state refers
to the recovery state of the urban ecosystem in the face of pressure in
terms of ecological environment and biological resources (Zhou
et al., 2022); response is the ability to adjust the function and
structure of the ecosystem upon disturbance (Li and Wang,
2023b); and innovation is the ability of the ecosystem to achieve
ecological resilience evolution and development through learning
and innovation (Wang et al., 2024).

2.3.2 Kernel density estimation
Kernel density estimation describes the distribution

characteristics of random variables using continuous density
curves (Zambom and Ronaldo, 2013) and is a nonparametric
estimation method for studying spatially unbalanced
distributions. The formula is as follows:

f x( ) � 1
nh

∑n

h
k

Xi − x
h

( ) (9)

Here, f(x) is the kernel density function, Xi is the ecological
resilience of city i, x is the average ecological resilience of each city, n
is the number of cities, h is the bandwidth, and k(Xi−x

h ) is the
Gaussian function.

2.3.3 Dagum Gini coefficient
The Dagum-Gini coefficient can measure several sub-regions

decomposed from the study area and calculate overall, intra-

TABLE 1 Index system of urban ecological resilience.

Target layer First-level
index

Secondary index Unit Attribute Weight
(%)

Urban ecological
resilience

Pressure
dimension

Water supply per ten-thousand Yuan GDP (X01) m3/ten-thousand
yuan

- 2.20

Comprehensive power consumption per ten-thousand Yuan GDP (X02) kw·h/ten-
thousand yuan

- 2.65

Occupied area of construction land per ten-thousand Yuan GDP (X03) km2/yuan - 0.46

Industrial sulfur dioxide emissions per ten-thousand Yuan GDP (X04) t/ten-thousand
yuan

- 1.66

State dimension Total water resources per unit area (X05) m3/km2 + 8.79

Normalized vegetation index (X06) + 1.93

Green coverage rate in built-up area (X07) % + 1.18

Excellent air days (X08) day + 2.13

Response
dimension

Centralized treatment rate of sewage treatment plant (X09) % + 0.64

Harmless treatment rate of municipal solid waste (X10) % + 2.51

Comprehensive utilization rate of general industrial solid waste (X11) % + 5.80

Ratio of expenditure on energy conservation and environmental
protection to local fiscal expenditure (X12)

% + 12.58

Innovation
dimension

Ratio of research and experimental development funds (R&D) to
GDP (X13)

% + 16.24

The proportion of science and technology expenditure in local fiscal
expenditure (X14)

% + 13.90

Patent licensing quantity index (X15) Number + 27.32
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regional, and inter-regional differences (Zhang et al., 2022). The
formula is as follows:

G � ∑k
j�1∑k

h�1∑nj
i�1∑nh

r�1 xji − xhr
∣∣∣∣ ∣∣∣∣

2n2�x
(10)

Here, n represents the number of cities in the Shanxi section, �x
represents the average development level of urban ecological
resilience in the Shanxi section, and k represents the number of
divided study areas (three in this study). nj and nh represent the
number of cities in j and h, respectively; xji and xhr represent the
development level of urban ecological resilience in j and h,
respectively.

The Dagum–Gini coefficient can be divided into three parts:
intra-regional difference Gw, inter-regional difference Gnb, and
hypervariable density Gt. The formula is as follows:

G � Gw + Gnb + Gt (11)
Gw � ∑k

j�1GjjPjSj (12)

Gjj � ∑nj
i�1∑nh

r�1 xji − xjr
∣∣∣∣ ∣∣∣∣

2�xn2
j

(13)

Gnb � ∑k

j�2∑
j−1
h�1Gjh PjSh + PhSj( )Djh (14)

Gjh � ∑nj
i�1∑nh

r�1 xji − xhr
∣∣∣∣ ∣∣∣∣

njnh �xj + �xh( ) (15)

Gt � ∑k

j�2∑
j−1
h�1Gjh PjSh + PhSj( ) 1 − Djh( ) (16)

Djh � djh − Pjh

djh + Pjh
(17)

djh � ∫∞

0
dFj x( )∫

x

0
x − y( )dFh y( ) (18)

Pjh � ∫∞

0
dFh x( )∫

x

0
x − y( )dFj y( ) (19)

Here, Gjj is the Gini coefficient in partition j, Gjh is the Gini
coefficient between the areas between j and h, Djh is the influence
degree of relative contribution rate between j and h divisions, djh is
the difference in contribution rate between regions, Pjh is the
difference in the contribution rate of the remaining terms of the
cross-influence between j and h subregions.

2.3.4 Standard deviation ellipse
Using the standard deviation ellipse model, the main spatial

layout and dynamic development trend of UA urban ecological
resilience in the Shanxi section of the YRB were analyzed for the
study period (Yuill, 1971; Song et al., 2017). The formula is
as follows:

�X � ∑n
i�1WiXi

∑n
i�1Wi

; �Y � ∑n
i�1WiYi

∑n
i�1Wi

(20)

S � πσXσY (21)

Here, n is the number of cities, ( �X, �Y) is the center of gravity
coordinates of urban ecological resilience, (Xi, Yi) is the
geographical coordinates of city i, Wi is the development level of
ecological resilience of each city, σX and σY are the standard
deviations of X and Y axis, respectively; S is the center of gravity
migration distance.

2.3.5 Geographic detector
A geographic detector is a first-order statistical method for

detecting spatial differentiation and indicating the driving force
behind it (Wang and Xu, 2017). The formula is as follows:

q � 1 − ∑L
h�1Nhσ2

h

Nσ2
� 1 − SSW

SST
(22)

Here, h is the stratification of variable Y or factor X, Nh and
N are the number of units of layer h and the entire region,
respectively; σ2h and σ2 are the variance of layer h and Y value of
the entire region, respectively; SSW and SST are the sum of
variance in the layer and the total variance of the entire region,
respectively; q is the influence of the influence factor on urban
ecological resilience, with a value from 0 to 1. The higher the q
value, the more clear the influence.

Interaction detection identifies the interaction effects of different
influencing factors and evaluates the effect of increasing or
weakening the dependent variable when these factors work
together (Wang et al., 2010). First, the q values of the two factors
are calculated, recorded as q(x1) and q(x2), respectively, and then
the superimposed q values of the two factors are calculated as
q(x1 ∩ x2). By comparing the relationships among q(x1), q(x2),
and q(x1 ∩ x2), five interaction types were obtained (Table 2).

3 Results and analysis

3.1 Temporal evolution characteristics of
urban ecological resilience in shanxi section
of the YRB

During the period 2012–2021, the average level of ecological
resilience in UAs of the Shanxi section of YRB was relatively low,
and had experienced a fluctuation trend of “rise—fall—rise,”with an
overall upward trend (Figure 2). The average urban ecological
resilience increased from 0.192 in 2012 to 0.233 in 2013, fell to a
minimum of 0.188 in 2015, and then slowly rose to 0.319 by 2021,
with a average of 0.213 from 2012 to 2021. The urban ecological
resilience of the Central Shanxi UA was always higher than the
average level of the study area, with an annual average of 0.269 and
an average annual growth rate of 8.15%. The urban ecological
resilience of South Shanxi UA was slightly lower than average,
with an annual average of 0.194 and an average annual growth rate
of 4.92%. The development in the North Shanxi UA was relatively

TABLE 2 Interaction types of two independent variables on dependent
variables.

Criterion Interaction

q (x1 ∩ x2)<min (q (x1),q (x2)) Nonlinear weakening

min (q(x1),q (x2))<q (x1 ∩ x2)<max (q (x1),q (x2)) One-factor nonlinear
weakening

max (q (x1),q (x2))<q (x1 ∩ x2) Two-factor enhancement

q (x1 ∩ x2)>q (x1)+q (x2) Independent

q (x1 ∩ x2) = q (x1)+q (x2) Nonlinear enhancement
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backward, with an annual average of 0.158 and an average annual
growth rate of 1.44%.

The kernel density estimate (Figure 3) revealed that the Shanxi
section of the YRB had an overall right shift in 2012 and 2021. The
kernel density curves in Central Shanxi UA and South Shanxi UA
gradually shifted to the right to different degrees, indicating
improvements in the level of urban ecological resilience and
some achievements in the ecological protection of the YRB. The
curve of North Shanxi UA had a small movement to the right, and
with no noticeable improvement in urban ecological resilience.

In terms of the curve distribution pattern (Figure 3), the main
peak of the kernel density curve in the Shanxi section of the YRB
decreased, and the width gradually increased after fluctuation,
indicating a gradually increasing absolute difference in urban
ecological resilience in the study area. The width and height of
the main peak of the North Shanxi UA decreased slightly, with no
large change overall, indicating that the absolute difference in urban
ecological resilience in the region was stable, with a decreasing trend.
The height of the main peak of the Central Shanxi UA first increased
and then decreased, and the width fluctuated and then decreased
slightly, indicating that the absolute difference in urban ecological
resilience in the region tended to decrease. The main peak of the
South Shanxi UA exhibited a downward trend and the width
increased slightly, indicating a gradual expansion in the absolute
difference in urban ecological resilience.

From the perspective of the curve distribution ductility
(Figure 3), the left trailing distribution of the Shanxi section of
the YRB remained unchanged, the right trailing gradually elongated,
and the extension of the curve expanded. High values of urban
ecological resilience have appeared and gradually increased in this
region. The curve of the North Shanxi UA was basically unchanged
on the left trailing and slightly elongated on the right trailing, with
little change overall, indicating that the curve of the North Shanxi
UA had a certain extension convergence, with more synchronous
urban development in the region. The curves of the Central Shanxi
UA and South Shanxi UA shortened annually, while the right

trailing gradually lengthened, indicating that the extension of
these regional distribution curves was expanding.

In terms of polarization characteristics, the kernel density curves
of the Shanxi section of the YRB and the three urban agglomerations
were all single peaks, indicating that the level of urban ecological
resilience was in a single equilibrium, with no noticeable
polarization.

3.2 Spatial evolution characteristics of urban
ecological resilience in shanxi section of
the YRB

3.2.1 Spatial distribution characteristics
As suggested by Fan (2023) and the actual situation of urban

ecological resilience in the Shanxi section of the YRB, the UAs was
divided into five levels by the deviation ratio around the average of
0.213: low, medium-low, medium, medium-high, and high
(Table 3). The urban ecological resilience of the Shanxi section of
the YRB generally exhibited a gradient of decreasing spatial pattern
in the order Central Shanxi UA > South Shanxi UA > North Shanxi
UA (Figure 4). In Central Shanxi UA, the ecological resilience of
Taiyuan City was high, rising from 0.299 in 2012 to 0.485 in 2021.
The level of ecological resilience in Jinzhong City improved
significantly from 0.184 in 2012 to 0.545 in 2021. The level of
ecological resilience in Lvliang City increased slowly from 0.172 in
2012 to 0.296 in 2021. In the South Shanxi UA, the ecological
resilience of Jincheng City was high, ranging from 0.240 in 2012 to
0.408 in 2021, Yuncheng City from 0.151 in 2012 to 0.211 in 2021,
and Linfen City from 0.164 in 2012 to 0.235 in 2021. The two cities
in Northern Shanxi UA were below the medium level, and the level
of resilience was low.

From 2012 to 2021, the urban ecological resilience gradually
changed from Taiyuan—Jincheng City spatial dual-core leadership
to Taiyuan City as a single core. The ecological resilience of Taiyuan,
the capital of the Shanxi Province, was significantly higher than that
of the other cities, resulting in a decrease in ecological resilience from
the core to the peripheral cities. Economic and industrial
development in North Shanxi has been restricted by resources
for a long time. The ecological environment base is weak, and
the improvement of urban ecological resilience is slow. In future
developments, special attention should be paid to the ecological
protection and governance of other cities.

From the changes in the urban ecological resilience grade in the
Shanxi section of the YRB (Figure 5), a city with amedium-high level
of ecological resilience in 2012 was optimized to a high level by 2021.
Of the four cities that were at medium-low level in 2012, two
developed to a high-level, one developed to a medium-high level,
one remained at a medium-low level. Of the two cities that were at
low-level in 2012, one developed to a medium-level, one developed
to a medium-low level. One high-level cities in 2012 remained
unchanged by 2021. The ecological resilience level of each city
showed a trend of continuous optimization, generally floating at
two adjacent levels, which indicates that although Shanxi Province
attached great importance to the protection of the ecological
environment and the industrial structure has gradually adjusted
in the past 10 years, the urban eco-environmental problems have not
been fully alleviated.

FIGURE 2
Trend of urban ecological resilience of UAs in Shanxi Section of
the YRB.

Frontiers in Environmental Science frontiersin.org06

Wang et al. 10.3389/fenvs.2024.1385604

10

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1385604


3.2.2 Characteristics of spatial differences
The Gini coefficient of ecological resilience in the UAs of the

Shanxi section of the YRB remained relatively low with a fluctuating
upward trend (Figure 6). It decreased during 2013–2016 and
2018–2019, indicating a narrowing gap in urban ecological
resilience and improved spatial balance during these periods. The
increase in the Gini coefficient during 2012–2013, 2016–2018, and
2019–2021 indicated an expanding gap in urban ecological
resilience, with evident spatial disequilibrium during these

periods. The Gini coefficient in 2021 was the highest over the
past decade, indicating that efforts should be made to narrow the
differences between cities in the Shanxi section of the YRB.

The average Gini coefficient of the UAs was in the order: Central
Shanxi (0.142) > South Shanxi (0.099) > North Shanxi (0.036)
(Figure 6). The Central Shanxi UA had the highest Gini
coefficient, indicating that the difference in ecosystem
adaptability and resilience was owing to economic growth
between cities within the UA. The ecological resilience of the
North Shanxi UA was affected by geographical factors and the
economic industrial structure. The regional differences were small
and far lower than the average level in the Shanxi section of the YRB.
Central Shanxi UA exhibited a fluctuating change with a decreasing
trend. The regional difference in South Shanxi UA first decreased
and then suddenly increased from 2020 to 2021, surpassing the
Central Shanxi UA. The North Shanxi UA exhibited a fluctuating
decreasing trend, the difference in ecological resilience between the
two cities in the region gradually decreased, and development was
gradually balanced.

The order of the average Gini coefficients among the three UAs
in the Shanxi section of the YRB was: North and Central Shanxi

FIGURE 3
Kernel density estimation of urban ecological resilience of UA in Shanxi Section of the YRB. (A) Shanxi section of the YRB. (B) North Shanxi UA. (C)
Central Shanxi UA. (D) South Shanxi UA.

TABLE 3 Classification of urban ecological resilience.

Level Deviation ratio Interaction

Low −25% and below (0,0.1598]

Medium-Low (−25%,−10%] (0.1599–0.1918]

Medium (−10%,10%] (0.1919–0.2344]

Medium-High (10%,25%] (0.2345–0.2663]

High 25% and above (0.2664–0.5452]
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(0.252) > Central and South Shanxi (0.191) > North and South
Shanxi (0.118). The gap in natural conditions, economic and social
development, and ecological level between the North, Central, and
South Shanxi UAs led to the greatest difference in ecological
resilience between the North and Central Shanxi UAs and the
smallest difference between the North and South Shanxi UAs.
Evolutionally, although differences in the urban ecological
resilience among the three UAs displayed several fluctuations in
2013, 2016, and 2018, overall they exhibited an upward trend, and
the differences among the UAs gradually increased (Figure 7). The
urban ecological resilience of Central Shanxi UA has grown rapidly
in the past 10 years, and the difference between this and the other
two UAs has gradually increased. The natural environment
foundation of North Shanxi UA is weak, the infrastructure is not
perfect, social and economic development is relatively lagging, and
the improvement in urban ecological resilience is relatively slow.

The contribution rate of differences among UAs (65.82%) >
differences within UAs (24.59%) > transariation (9.59%) (Figure 7).
The development of differences within the UAs in the Shanxi section
of the YRB was relatively stable, and exhibited a narrowing trend.
The difference in change was mainly caused by the difference among

the UAs, and this difference exhibited a rising trend. Combined with
the above results, we should pay attention to the development of
urban ecological resilience in North Shanxi UA and narrow the
differences among the regions of North, Central, and
South Shanxi UAs.

3.3 Characteristics of center of
gravity transfer

From 2012 to 2021, the ecological resilience of UAs in the Shanxi
section of the YRB demonstrated a north-south distribution and
moved slightly to the southeast (Figure 8). The azimuth decreased
from 4.02° in 2012° to 3.73° in 2015, then increased to 4.38° in 2018,
and finally decreased to 3.11° in 2021, indicating a counterclockwise
shift in urban ecological resilience (Table 4). The centers of urban
ecological resilience in 2012, 2015, 2018, and 2021 were located in
Lvliang Wenshui County (112.159591°E, 37.325122°N), Jinzhong
Pingyao County (112.177048°E, 37.295967°N), Lvliang Wenshui
County (112.158105°E, 37.344768°N), and Jinzhong Pingyao
County (112.234174°E, 37.227414°N), respectively. The trajectory

FIGURE 4
Spatial distribution of urban ecological resilience of UA in Shanxi Section of the YRB.
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of the center of gravity fluctuated in the northwest-southeast
direction and moved 3.61 km from 2012 to 2015, 5.88 km from
2015 to 2018, 14.76 km from 2018 to 2021, and 12.63 km to the

southeast overall. The standard deviation elliptical long axis
continuously shortened from 452.53 km in 2012 to 406.45 km in
2021, the short axis increased from 152.91 km in 2012 to 160.39 km
in 2021, and the oblateness decreased from 0.662 in 2012 to 0.605 in
2021. This indicates a clear agglomeration effect on the urban
ecological resilience of the YRB along the long axis and an
expansion trend along the short axis. From 2012 to 2021, the
elliptical coverage area decreased from 54,346.16 km2 to
51,200.56 km2, with a total reduction of 3,145.6 km2, which
further indicates a gradual enhancement in the single core
agglomeration model of the urban ecological resilience in Shanxi
section of the YRB and a strengthening of the radiation effect of
Central Shanxi UA on other cities.

3.4 Influencing factors of urban ecological
resilience in Shanxi section of the YRB

We considered the value of urban ecological resilience in the
Shanxi section of the YRB as the dependent variable and the
15 influencing factors in Table 1 as independent variables. First,
the data for each factor were converted into grade data using the
natural breakpoint method. Then, the explanatory power q of each
factor was calculated by introducing a geographical detector, that is,

FIGURE 5
Change of ecological resilience grade of the UA in Shanxi Section of the YRB.

FIGURE 6
Difference of urban ecological resilience of the UA in Shanxi
Section of the YRB.
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FIGURE 7
Difference and contribution rate of urban ecological resilience of UAs in Shanxi Section of the YRB.

FIGURE 8
Standard deviation ellipse and center of gravity trajectory of urban ecological resilience in Shanxi section of the YRB.
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the influence of each factor on urban ecological toughness. The
results indicated the top five influencing factors were X01 > X07 >
X13 > X05 > X06 in 2012; X01 > X14 > X06 > X12 > X13 in 2015; X07 >
X14 > X13 > X03 > X15 in 2018; and X03 > X15 > X10 > X12 > X07 in
2021 (Figure 9). Although the degree of influence of each factor on
urban ecological resilience was different during different periods, the
water supply per ten-thousand Yuan GDP, occupied area of
construction land per ten-thousand Yuan GDP, green coverage
rate in built-up areas, ratio of research and experimental
development funds (R&D) to GDP, proportion of science and
technology expenditure in local fiscal expenditure, and patent
licensing quantity index were higher at each stage, which had a
higher influence on urban ecological resilience.

The results of the factor interaction detection revealed that most
types of factor interactions were nonlinear enhancements
(Figure 10). The q values of the interactions among the
15 factors in 2012, 2015, 2018, and 2021 increase significantly,
indicating that the degree of interaction among the factors is
significantly greater than a single factor. In 2012, X01, X07, and
X13 had the most significant interactions with other factors; in 2015,
X01, X06, and X14 had the most significant interactions with other
factors; in 2018, X03 and X07 had the most significant interactions

with other factors; and in 2021, X03 and X15 had the most significant
interactions with other factors. The evolution of the interaction
between two factors from 2012 to 2021 further shows that these
factors are the leading factors affecting urban ecological resilience,
and their influence tended to increase annually.

4 Discussion

Due to the development of urbanization and industrialization,
the urban ecological environment is under great pressure. Resource-
based cities have a long history and resource advantages, and have
been the driving force of rapid economic development (Mohamed
et al., 2021; Al-Housani et al., 2023). However, overdevelopment and
serious environmental degradation are inevitable side effects of the
development of resource-based cities (Taelman et al., 2018). As a
province with large coal resources, Shanxi’s economic and industrial
structure is relatively simple, the problem of ecological
environmental debt is prominent, and ecological protection
remains arduous.

Urban ecological resilience provides a set of new methods
and tools for exploring the nonlinear relationship between urban

TABLE 4 Standard deviation ellipse parameters of urban ecological resilience of UA.

Year Center of gravity coordinates Long axis (km) Short axis (km) Area (km2) Oblateness Azimuth angle

2012 112.159591°E, 37.325122°N 452.526 152.910 54,346.161 0.662 4.016

2015 112.177048°E, 37.295967°N 446.540 152.638 53,531.803 0.658 3.727

2018 112.158105°E, 37.344768°N 424.909 152.934 51,037.457 0.640 4.383

2021 112.234174°E, 37.227414°N 406.445 160.392 51,200.562 0.605 3.108

FIGURE 9
Explanatory power of different detection factors.
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ecosystems (Bottero et al., 2020; Zhao et al., 2021). Based on the
theory of landscape ecology, the research paradigm of ecological
network “identifying ecological source-building resistance
surface-extracting ecological corridor” is established to
explore how to enhance the resilience of ecosystem from the
ecological point of view (Qiao et al., 2023; Wang et al., 2023).
However, these studies often ignore the importance that
ecological resilience is affected by human social activities. At
present, The index system for evaluating urban ecological
resilience still has limitations, and it is necessary to consider
the impact of social activities on the ecosystem more
comprehensively (Scheffer et al., 2015; Jia et al., 2023). When
constructing the index system, we drew lessons from previous
research results and highlighted the importance of ecosystem
innovation ability. The weight assignment result of the entropy
method further illustrates the important position of innovation

development in the evaluation system. The analysis of the
spatiotemporal evolution of urban ecological resilience reveals
that the overall level of urban ecological resilience in the study
area is low, which is consistent with existing research results of
urban ecological resilience in the YRB (Li et al., 2023a; Wang
et al., 2024). The results of this study reveal that the level of
urban ecological resilience in the Shanxi Section of the YRB has
an overall growth trend; however, the growth process of each UA
fluctuates is slow, and the growth rate varies greatly. Since the
18th Communist Party of China National Congress made the
strategic decision to “vigorously promote the construction of an
ecological civilization,” the traditional development model of
the YRB has improved, and the average level of ecological
resilience of UAs in the Shanxi section of YRB improved
during the study period. However, the process of
improvement is difficult and must be repeated. In 2012, the

FIGURE 10
Results of interactive detection of urban ecological resilience factors.
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level of urbanization gradually improved, the social and
economic levels developed, and the natural growth rate of the
population increased, exceeding the carrying capacity of
ecological resources, which further affected the development
of urban ecological resilience. Since 2015, with the vigorous
promotion of supply-side reforms, Shanxi has begun to explore
the transformation of its resource-based economy. The Soil and
Water Conservation Plan of Shanxi Province (2016–2030) was
declared in 2017, and the ecological restoration of “two
mountains, seven rivers, and one watershed” was launched in
2018, guaranteeing the improvement of urban ecological
resilience.

Taiyuan, the provincial capital city, has a leading advantage in
terms of ecological resilience. The integrated development of
Taiyuan, Xinzhou, and Jinzhong City is strengthening the
coordinated development of surrounding cities. However,
regional development in the North Shanxi UA lags behind, and
is insufficient and unbalanced, which is the main reason for the
difference in urban ecological resilience with other UAs. The results
of the center-of-gravity migration also indicate that the development
power of the North Shanxi UA is insufficient, and the center of
gravity has moved to the southeast. According to the Outline of the
National Plan for the Protection of Ecologically Fragile Areas
(https://www.mee.gov.cn/), the two cities in Northern Shanxi
belong to ecologically fragile areas and are most affected by
human activities because of their special natural geographical
conditions and concentrated mineral resources. The regional
development of North Shanxi urgently needs to strengthen its
ties with other regions and form a mutual aid link for overall
development to enhance the urban ecological resilience of
Shanxi Province.

Tong et al. (2023) suggested that both natural and human
factors affected the spatial distribution of ecological resilience of
the northernslope of Tianshan Mountain. Shi et al. (2022)
suggested that socio-economic development was the main
influencing factors of urban ecological resilience. In the
present study, X01 and X03 in the pressure dimension had
relatively high explanatory power, indicating the pressure of
urban ecological resilience in the Shanxi Section of the YRB,
mainly from urban water consumption intensity and land
development intensity. In the state dimension, X07 reflected
the level of urban greening, with higher influence level,
indicating that increasing the green coverage area in built-up
areas can effectively improve the quality of the urban ecological
environment. In the response dimension, X09, X10, and X12 had
the same intensity of forces, indicating that environmental
governance, improvement in human settlements, and level of
investment in environmental protection play important roles in
the improvement of urban ecological resilience. The three
factors X13, X14, and X15 in the innovation dimension had
strong explanatory power, which demonstrates the
importance of urban ecosystems in adapting to external
disturbances and obtaining ecological resilience through
learning and innovation functions. Considering the factors
that restrict the development of urban ecological resilience,
there are a few suggestions for the development of the Shanxi
Section of the YRB.

(1) Scientific and technological innovations play a positive role in
promoting urban ecological resilience. To improve urban
ecological resilience, we should focus on the advantages of
scientific and technological innovation, increase the
introduction and training of researchers, and attach
importance to investing scientific and technological funds
and research and experimental development funds in the
North Shanxi UA. Moreover, we should improve the output
of scientific research in Central Shanxi and enhance the
transformation capacity of urban ecosystems.

(2) The pressure of urban ecological resilience should be
transformed and industrial transformation and upgradation
encouraged, a green industrial system should be built, and the
urban development model for high energy consumption
changed. Strengthen common links among UAs, benign
interactions among cities have to be encouraged, and a
multidimensional cooperation mechanism established.

(3) Continue increasing efforts to promote ecological restoration
and management of the YRB. The level of water resource
management should be improved and water quality
significantly improved, forest coverage and green coverage
in built-up areas increased, urban green spaces expanded, the
comprehensive utilization rate of general industrial solid
waste strengthened, harmless treatment rate of domestic
waste improved, centralized treatment rate of sewage
treatment plants, and other urban pollution control efforts
implemented.

It is necessary to acknowledge the limitations of this work.
Considering the data availability, this study selected prefecture-level
cities in the Shanxi Section of the YRB as the research objects. The
sample size was relatively small, and the research scale was not
detailed enough. Counties can be added for further detailed
exploration to reflect the developmental status of urban
ecological resilience more accurately. In addition, the related
research on urban ecological resilience is still under exploration,
with relatively limited references, The evaluation system is also still
being improved, which needs to be further refined.

5 Conclusion

By constructing an evaluation index system for urban ecological
toughness, this study explores the spatiotemporal evolution
characteristics and dynamic development trends of urban
ecological resilience in the Shanxi section of the YRB and
discusses the influencing factors.

(1) From 2012 to 2021, the average level of urban ecological resilience
in the Shanxi Section of the YRB was relatively low. The urban
ecological resilience gradually transformed from the dual core of
Taiyuan—Jincheng City to Taiyuan City as a single core,
exhibiting a decreasing trend from the core to the peripheral cities.

(2) The spatial differences in the ecological resilience of the UAs
in the Shanxi Section of the YRB are mainly caused by
interregional differences, and this difference has an
increasing trend. The largest regional differences were
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observed between Central Shanxi UA and North Shanxi UA,
and those between North Shanxi UA and South Shanxi UA
are minimal. During the study period, the standard deviation
ellipse of urban ecological resilience in the UA in the Shanxi
section of the YRB displayed a counterclockwise shifting
trend; the oblateness decreased by 0.057, and the ellipse
coverage area decreased by 3,145.6 km2. The center of
gravity migration trajectory fluctuated in the “northwest-
southeast” direction, and overall moved 12.63 km to
the southeast.

(3) The water supply per ten-thousand Yuan GDP, occupied area
of construction land per ten-thousand Yuan GDP, green
coverage rate in built-up area, ratio of research and
experimental development funds (R&D) to GDP,
proportion of science and technology expenditure in local
fiscal expenditure, and patent licensing quantity index have
relatively high factor explanatory power at each stage. Most
factor interaction types are nonlinear enhancements and the
degree of influence of the interaction between factors is
greater than a single factor.
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The environment of the Mu Us Sandy Land, northern Shaanxi, is fragile, so the
temporal and spatial evolution of drought can provide a reference for ecological
construction and agricultural production. Based on the daily precipitation data of
five meteorological stations from 1967 to 2020, the spatial and temporal
evolution characteristics of drought in the Mu Us Sandy Land of northern
Shaanxi were analyzed using the methods Standardized Precipitation Index
(SPI) and run-length theory. The results show that 1) the smaller the time
scale, the higher the sensitivity of the SPI to primary precipitation. 2) The
annual, summer, autumn, and winter SPI showed an upward and a wetting
trend, and the fastest wetting speed is observed in summer, while spring
showed an increasing trend of drought. 3) In the past 54 years, the duration,
degree, and intensity of drought events at SPI-3 and SPI-12 scales in the Mu Us
Sandy Land of northern Shaanxi showed an insignificant decreasing trend, but the
decreasing rate at the SPI-12 scale was faster than that at the SPI-3 scale. The
serious periods of drought are November 2018 toMay 2019 and April 1999 to July
2021. 4) The duration of drought events at two timescales in each region showed
a decreasing trend. The longest durations of drought were in Yulin and Jingbian;
Shenmu and Dingbian are the regions with the fastest reduction rate of drought
degree at the two scales. Hengshan shows rapid reduction of drought intensity at
the two scales and also the region with large average drought intensity. These
results are helpful in understanding and describing drought events for drought
risk management under the condition of global warming.

KEYWORDS

sandy, drought events, Standardized Precipitation Index, spatio-temporal characteristic,
global warming

1 Introduction

Drought is a natural disaster caused by insufficient precipitation for a long period of
time, with the characteristics of wide influence range, high occurrence frequency, and long
duration, making it one of the main climate disasters (Zhang et al., 2021; Cao et al., 2022). In
typical arid areas in Northwest China, drought leads to dry land, which directly affects the
growth and development of xerophytes (Kang et al., 2020), and it easily causes continuous
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desertification of land and becomes the source of sandstorms (Yang
et al., 2021). Therefore, research on drought in Northwest China has
attracted much attention (Luo et al., 2021a; Li et al., 2022; Wang
et al., 2022).

Droughts represent an extended imbalance between water
supply and demand with devastating and extended impacts often
requiring long periods to reverse the recorded damages (Soulsby
et al., 2021; Zhu et al., 2022). Therefore, continuous drought
monitoring must be carried out to provide decisive policy
support for medium- and long-term planning of mitigation
measures. Initially, hydrological and meteorological elements
(e.g., soil moisture, stream flow, temperature, and
precipitation) were adopted as the main input for the
generation of indices for quantitative modeling of drought
severity in the early last century (Munger, 1916; Kincer, 1992).
Subsequently, more than hundreds of indices used for drought
studies were identified under space and time at different scales
(Niemeyer, 2008). At present, there are two kinds of indicators in
the analysis and research of drought. One indicator reflects the
physical process of drought through drought mechanisms,
represented by the Palmer Drought Severity Index (PDSI)
considering multiple factors (Zhu et al., 2021). The other is to
study the statistical distribution of precipitation using
meteorological methods to reflect the characteristics of
drought, represented by the Standardized Precipitation
Evapotranspiration Index (Camarero et al., 2021) (SPEI) and
the Standardized Precipitation Index (Xu et al., 2021) (SPI). The
potential evapotranspiration is often used in the calculation of
the SPEI, while it is often greater than the actual
evapotranspiration, resulting in deviations in the calculation
results (Ortiz-Gómez. et al., 2022), whereas the SPI index has
the advantages of simple calculation, strong adaptability, and
sensitive response to drought changes (Hayes et al., 1999), and
hence is the drought index recommended by the World
Meteorological Organization. Many studies (Yang et al., 2017;
Tja et al., 2020) showed that SPI, as a drought reconstruction
index, is suitable for Northwest China, and its multi-timescale
application characteristics can serve in water resource assessment
and drought monitoring at different timescales.

As a key area for the construction of an ecological security
barrier in China, the Mu Us Sandy Land belongs to semi-arid
climate, located in a climate sensitive area characterized by fragile
ecological environment and frequent drought disasters. It is an
agricultural–pastoral ecotone. At present, many research studies
on the Mu Us Sandy Land mostly focus on the multi-timescale
climate change characteristics, such as the multi-timescale change
characteristics and change trend of main climate factors (Ding et al.,
2021; Wei et al., 2021), and the change characteristics of
precipitation and extreme temperature (Zhou et al., 2020).

Our overarching purpose is to assess regional drought across the
Mu Us Sandy Land, northwest China, using the SPI. The specific
objectives of this study are to (1) analyze the temporal distinctions of
the SPI with 1-, 3-, and 12-month timescales of the Mu Us Sandy
Land and (2) reveal the characteristics of drought intensity, drought
duration, and drought frequency of the SPI at different timescales.
The findings from this study are helpful in understanding and
describing drought events for drought risk management under
the condition of global warming.

2 Materials and methods

2.1 Study area

As a transitional area from the Ordos Plateau to the Loess
Plateau in northern Shaanxi, the Mu Us Sandy Land is a staggered
area of agriculture, forestry, and animal husbandry, belonging to
a typical ecologically fragile area located north of the first line of
the Great Wall in Yulin City, Shaanxi, with an area of 16,300 km2,
including Dingbian (DB), Jingbian (JB), Hengshan (HS), Yulin
(YL), and Shenmu (SM) and other counties of Yulin City
(Figure 1). The land regulation and development of this
region has made an important contribution to the dynamic
balance of the total cultivated land in Shaanxi Province. The
sandy land is inclined from northwest to southeast, with an
altitude of 1,000–1,500 m, mainly composed of sand dunes
and meadows. This study area belongs to the semi-arid
climate zone of the middle temperate zone, with a gradual
decrease in annual average precipitation from 400 to 450 mm
in the southeast to approximately 250 mm in the northwest
region, the annual average temperature is 6°C–9°C, and the
annual average evaporation is 2,100–2,600 mm. Sandy land
has less precipitation but its occurrence is more, resulting in
abundant surface water and groundwater resources. There are
several main rivers, such as Kuye River, Tuwei River, and
Wuding River.

2.2 Data

The daily precipitation data of DB, JB, HS, YL, and SM
meteorological stations, from 1967 to 2020, in the Mu Us Sandy
Land in Northern Shaanxi was used in this paper, which comes from
the China surface climate data daily dataset (V3.0) in the China
meteorological data sharing service network (the missing rate is less
than or equal to 10%), with good consistency, reliability, and
representativeness (http://data.CMA.CN).

2.3 Method

Taking the Mu Us Sandy Land in northern Shaanxi as the
study area, the drought characteristic indexes of each station are
obtained using the SPI and run-length theory in 1 month (SPI-1),
3 months (SPI-3), and 12 months (SPI-12). The regional annual
and seasonal SPI values were obtained by arithmetic average
(spring: March, April and May; summer: June, July and
August; autumn: September, October and November; and
winter: December, January and February). Based on linear
regression, Daniel’s test, ArcGIS, and other methods, the time-
varying trend and spatial distribution characteristics of the
standardized precipitation index, drought duration, drought
degree, and drought intensity of each scale were identified. The
SPI-3 and SPI-12 scale indexes that can significantly identify
hydrological drought are selected to study the variation
characteristics of duration, drought degree, and intensity of
hydrological drought in the Mu Us Sandy Land in northern
Shaanxi in the past 54 years.
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2.3.1 Standardized Precipitation Index
Because the precipitation distribution is a partial distribution,

not a normal distribution, and the precipitation changes greatly in
different space–timescales, it is difficult to compare the precipitation
on different space–time scales. Therefore, in the precipitation
analysis, the gamma distribution probability is used to describe
the change of precipitation, which is normalized first, and finally, the
SPI value is obtained from the standardized precipitation cumulative
frequency distribution. The specific calculation formula is found in
relevant literature, and the classification of meteorological drought
grade in our manuscript (Table 1) is formulated by the National
Climate Center.

2.3.2 Run-length theory
In this paper, the three characteristic indexes of drought

duration, drought degree, and drought intensity are used to
represent the drought characteristics of a drought event, which
can be obtained by run-length theory (Xiao et al., 2012).
According to the run-length theory, the series of the same
symbols that meet certain conditions is called a “run,” and the

number of occurrences of the same symbol in a run is called the
length of the run. Long-lasting SPI <0 events will lead to drought-
related problems, so 0 is taken as the cut-off level of the run. When
SPI ≤ 0, it is defined as a drought event, and drought duration D is
the run length. During drought event, the absolute value of the
cumulative SPI value is drought degree, and the ratio of drought
degree to drought duration is drought intensity (I), which can be
obtained from drought classification, where 0 ≤ I < 1 is mild
drought, 1 ≤ I < 1.5 is moderate drought, 1.5 ≤ I < 2 is heavy
drought, and I ≥ 2 is extreme drought.

2.3.3 Linear regression
The change trend and its significance level are judged by the

slope of the regression equation between the Standardized
Precipitation Index, drought duration, drought degree, drought
intensity, and time series. When the slope is > 0, the research
object has an upward trend, and when the slope is < 0, it has a
downward trend. In addition, Daniel’s test is used to judge whether
the change trend of the research object is significant, and the
significance level is judged according to the statistics. When p ≤
0.05, the research object has a significant upward or downward trend
in the time series, and when p > 0.05, the research object has no
significant change trend.

3 Results

3.1 SPI sensitivity analysis

It can be seen from the analysis in Figure 2 that there is a
fluctuation in the SPI value, but there are significant differences in
the sensitivity of different timescales. The smaller the timescale is,

FIGURE 1
Administrative scope and distribution of study areas in the Mu Us Sandy Land.

TABLE 1 Standardized Precipitation Index drought grading.

Drought grade SPI

Extreme drought SPI≤−2.0

Heavy drought −2<SPI≤−1.5

Moderate drought −1.5<SPI≤−1.0

Mild drought −1<SPI≤−0.5

Normal SPI>−0.5
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the more obvious the fluctuation is and the higher the sensitivity is.
It even shows the phenomenon of a dry–wet sharp turn.
Furthermore, The larger the time scale is, the more gentle the
fluctuation tends to be and the lower the sensitivity is. SPI-1 is
closely related to monthly precipitation, and its value fluctuates
greatly, reflecting the influence of monthly precipitation on drought.
SPI-3 has hysteresis and has no significant response to monthly
precipitation. Only precipitation in a long period of time will lead to
its fluctuation, reflecting the drought caused by seasonal
precipitation shortage. The SPI-12 value is relatively concentrated
with a relatively slow change trend, which can reflect the change
trend of annual timescale drought in the study area, especially
around 1971–1973, 1975–1976, 1980–1981, 1999–2001, and
2005–2006. Following the integrated analysis, the SPI values of
different timescales show an increasing trend. From 1967 to
2020, the frequency of drought, extreme drought, heavy drought,
moderate drought, and mild drought in SPI-1 was 37.8 times/10a,
2.7 times/10a, 4.9 times/10a, 11.1 times/10a, and 11.9 times/10a,
respectively; that of SPI-3 was 37.4 times/10a, 3.1 times/10a,
3.1 times/10a, 12.9 times/10a, and 18.2 times/10a; SPI-12 was
34.7 times/10a, 2.2 times/10a, 8.5 times/10a, 11.6 times/10a, and
12.4 times/10a, respectively. These results demonstrated the
extension of the timescale. The frequency of drought, extreme
drought, and severe drought is not significantly different, while
the frequency of moderate drought and mild drought is significantly

different. The occurrence time of different drought grades identified
by SPI-1, SPI-3, and SPI-12 is obviously different, and it shows the
contrast between drought and flood in some specific years. For
example, in 2017–2020, SPI-1 and SPI-3 identified moderate and
above drought grades, while SPI-12 has almost no drought in this
time period, which indicates that there is an obvious scale effect and
time heterogeneity in regional annual precipitation distribution and
drought grades.

3.2 Drought variation characteristics

Based on the SPI-12 value, the annual drought characteristics in
the study area were analyzed (Figure 3A). The annual SPI showed an
extremely significant upward trend (Daniel’s test p < 0.01), with the
variation rate being 0.206/10a, the drought year being 16a, and the
drought occurrence frequency being 29%. The SPI value
was −1.64 in 2000, indicating severe drought, and there was
moderate to mild drought in other years. From the interdecadal
variation characteristics of drought shown in Figure 3B, the SPIs of
1970s, 1980s, 1990s, and 2000s were negative, and there were five
times, four times, three times, and four times of drought years,
respectively, which was the arid period. The 1970s was the most arid
period, 2010s was the most humid period, while there was no
drought event during the period.

FIGURE 2
Variation of the SPI at different time scales in the Mu Us Sandy Land in northern Shaanxi over 54 years.
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As shown in Figure 4, spring SPI in the study area showed a
downward trend from 1967 to 2020, with the rate of 0.076/10a.
Summer, autumn, and winter SPI showed an upward trend, with the
rate of 0.171/10a, 0.145/10a, and 0.006/10a, respectively. Daniel’s
test showed that the SPI in summer showed a significant upward
trend (p < 0.05) and that the values in other seasons did not pass the
significance test, indicating that there was a wetting trend during
summer, autumn, and winter, and the wetting rate was the fastest in
summer, while there was an increasing trend of drought in spring.
The seasonal droughts in the Mu Us Sandy Land, northern Shaanxi,
from 1967 to 2020 are shown in Table 2. Drought occurred in spring
for 14 years, and the frequency of drought was 26%. The SPI values
in spring of 2020 and 1971 were −2.39 and −1.58, respectively, which
indicate extreme drought and severe drought. During the summer,
the drought season lasted for 17 years, with the frequency of drought
occurrence of 31%, which was moderate to mild drought; the
autumn drought spanned 19 years, with a drought frequency of
36%, including the autumn of 1991, with an SPI value −1.84,
indicating severe drought; winter drought lasted for 9 years, with
a drought frequency of 17%, including the winter of 2018, with an
SPI value −2.86, indicating extreme drought. In addition, seasonal
drought occurred frequently during the study period, with varying
degrees of seasonal drought occurring in 36 of 54 years. The above
analysis showed that seasonal drought occurs frequently in the study
area, and the highest frequency of drought occurs in summer and

autumn, characterized by mainly mild drought; this is followed by
spring, when moderate drought occurs mostly; and the lowest
frequency of drought occurs in winter, with mostly moderate and
mild drought.

3.3 Temporal variation characteristics of
drought events

3.3.1 Variation characteristics of drought
event duration

In SPI-3 and 12-month scale, the beginning time of a drought
event was determined with the name of the event. SPI-3 and SPI-12
were selected for analyzing the variation characteristics of drought
event duration (Figures 5A, B). From the time series, the duration of
drought events at the SPI-3 scale showed an insignificant decreasing
trend (Daniel’s test p > 0.05), with a change tendency rate of −0.074/
10a. The result of the 5-year moving average showed that the
duration of drought events at the SPI-3 scale was relatively stable
before the 1970s and 2007–2015 and showed an upward trend since
2015. The other periods showed a sharp fluctuation of increase and
decrease. During 1965–2020, a total of 96 drought events occurred in
the Mu Us Sandy Land, northern Shaanxi, with an average of
3.40 months. The longest drought events occurred in February
1980 and April 2000, lasting 12 months, followed by drought

FIGURE 3
Annual SPI variation and interdecadal drought frequency in the Mu Us Sandy Land in northern Shaanxi.
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events in February 1972 and January 1997, lasting 11 months. From
the perspective of interdecadal changes, the dispersion degree of
drought event duration is also gradually flat. The duration of
drought events in 1970s, 1980s, 1990s, and 2000s is 3.76 months,
3.20 months, 3.82 months, and 3.25 months, respectively. The
shortest duration of drought in 2010s is 3.00 months, and the
minimum number of drought events is 17.

The duration of drought events in the SPI-12 scale had a
decreasing trend similar to that in SPI-3 (Daniel’s test p > 0.05),
but the decrease was faster, and the change tendency rate
was −0.282/10a. The 5-year moving average showed that the
duration of drought events at the SPI-12 scale increased first and
then decreased from 1970s to the early 1980s and was relatively
stable from 1980s to 2000s and then showed a downward trend.
Compared with SPI-3, SPI-12 drought events occurred 32 times, but
the duration increased significantly, with an average of 9.34 months

between 1 and 36 months. The drought event in August 1974 lasted
the longest, for 36 months, followed by the drought events in April
1999 and June 2005, which lasted for 28 months.

3.3.2 Variation characteristics of the drought
degree during drought events

According to Figures 5C, D, the drought degree of drought
events at the SPI-3 and SPI-12 scales in the study area did not show
an insignificant downward trend (Daniel’s test p > 0.05). The
drought degree of the SPI-3 scale drought events was 0.06–12.60,
with the average value of 2.68. The most serious drought event
occurred in October 2018, with a drought degree of 12.60, followed
by drought events in August 1991 and December 1967, with drought
degrees of 10.29 and 10.17, respectively. The drought degree of the
SPI-12 scale drought events fluctuated between 0 and 40.79, with an
average drought degree of 8.13. The most serious drought event

FIGURE 4
SPI changes in four seasons in the Mu Us Sandy Land in northern Shaanxi.

TABLE 2 Statistics on the frequency of seasonal drought in the Mu Us Sandy Land in northern Shaanxi from 1967 to 2020 (%).

Season Extreme drought Heavy drought Moderate drought Mild drought Sum

Spring 1.85 1.85 12.96 9.26 25.93

Summer 0.00 0.00 9.26 22.22 31.48

Autumn 0.00 1.82 7.27 27.27 36.36

Winter 1.85 0.00 7.41 7.41 16.67

Year 0.00 1.85 9.26 18.52 29.63
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occurred in April 1999, with a drought degree of 40.79, followed by
drought events in August 1971 and August 1974, with drought
degrees of 37.84 and 31.71, respectively. The result of the 5-year
moving average showed that the drought degree and drought
duration of drought events at different scales had a similar
change trend as a whole, basically showing the characteristics
that the longer the drought duration was, the more serious the
drought degree was. According to SPI-3 and SPI-12, the drought
events lasting from November 2018 to May 2019 and April 1999 to
July 2021 were the most severe periods of drought in the Maowusu
sandy land of northern Shaanxi in the past 54 years at
different scales.

3.3.3 Variation characteristics of drought intensity
in drought events

According to Figures 5E, F, the drought intensity of drought
events at SPI-3 and SPI-12 scales showed an insignificant decreasing
trend (Daniel’s test p > 0.05), with the change tendency rates
of −0.003/10a and −0.085/10a, respectively. At the SPI-3 scale,
there were three severe drought events (2018/11, 2018/01, and
1971/03), 10 moderate drought events, and 83 mild drought
events. The strongest drought event occurred in April 2018, with
a value of 1.8, which was a severe drought event. At the SPI-12 scale,
there were one severe drought event, four moderate drought events,
and 27 mild drought events. The strongest drought event occurred
in August 1971, with a value of 1.5, which was a severe drought
event. From the 5-year moving average, drought intensity has a
similar trend with drought duration and drought degree, but it is
different from the two in specific time. Both of the scales of drought
events were dominated by mild drought, but the intensity variation

trends were slightly different. The intensity of drought events at the
SPI-3 scale decreases slower than that at the SPI-12 scale, and the
average and fluctuation range of drought intensity are larger,
indicating that the intensity of agricultural drought in the study
area is larger than the hydrological drought intensity.

3.4 Spatial variation characteristics of
drought events

3.4.1 Spatial characteristics of drought
event duration

There are differences in the variation characteristics of drought
event duration in different regions of the Mu Us Sandy Land,
northern Shaanxi, at the same timescale (Figures 6A, D). At the
SPI-3 scale, the duration of drought events in the whole region
shows a decreasing trend, with the change tendency rates of DB, JB,
HS, YL, and SM from west to east being −0.213/10a, −0.133/
10a, −0.043/10a, −0.076/10a, and −0.270/10a, respectively.
According to Daniel’s test, the duration of drought events in SM
andDB shows a significant decreasing trend (p < 0.05). SM decreases
the fastest, followed by DB, JB, and HS. The duration of drought
events in the YL area showed an insignificant decreasing trend (p >
0.05), and the decrease was slow; in the past 54 years, the largest
number of 109 drought events occurred in the DB area, but the
average duration was only 2.95 months. The lowest number of
drought events occurred in JB, which is 91 times, but the average
duration was the longest, 3.81 months.

The duration of drought events in the whole region showed an
insignificant decreasing trend (p > 0.05) at the SPI-12 scale. DB and

FIGURE 5
Variation of the duration, degree, and intensity of the SPI-3/12 drought event.
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YL had the fastest decreasing speed, with trend rates of −3.350/10a
and −3.542/10a, respectively. In terms of the average duration of
drought events in each region, the duration of drought events in JB
was the shortest, 9.58 months, and that in YL was the longest,
12.21 months. These results show that the duration of drought
events at two timescales in the Mu Us Sandy Land, northern
Shaanxi, shows a decreasing trend. The duration of hydrological
drought in the Shenmu region decreases the fastest, while the
duration of hydrological drought in DB and YL undergoes the
fastest decrease. JB is the region with the longest duration of
hydrological drought, and YL is the region with a longer
duration of hydrological drought.

3.4.2 Spatial characteristics of the drought degree
of drought events

As shown in Figures 6B, E, the drought degree of drought events
in all regions has shown a decreasing trend at the SPI-3 scale, while
that in SM and DB has shown a significant decreasing trend (p <
0.05), with the change tendency rates being −0.297/10a and −0.148/
10a, respectively. The maximum average drought degree is 2.78 in
JB, and the minimum is 2.12 in DB. The drought degree in all
regions, except Jingbian, showed an insignificant decreasing trend
(p > 0.05) at the SPI-12 scale. the drought degree in Dingbian had the
fastest decrease, followed by Yulin, with the change tendency rates

of −4.175/10a and −2.668/10a, respectively. The maximum average
drought degree was 9.16 in HS, and the minimum was 8.31 in SM.
In summary, drought degree in SM and DB decreases fastest at
SPI-3 and SPI-12 scales, respectively, indicating that the water
deficit in this region has been alleviated, while the spatial
distribution of the average drought degree of drought events
shows different spatial distribution patterns. At the same time,
the agricultural water deficit and hydrological water deficit are
large in JB and HS, respectively.

3.4.3 Spatial characteristics of the drought intensity
of drought events

As shown in Figures 6C, F, the drought intensity of SPI-3 and
SPI-12 drought events has similar distribution characteristics with
the drought degree. The drought intensity of each region shows a
decreasing trend at the SPI-3 scale, of which JB, HS, and YL show a
significant decreasing trend (p < 0.05). From the average drought
intensity of drought events in the past 54 years at the two scales, the
maximum values at the SPI-3 and SPI-12 scales are in HS, and the
minimum values at SPI-3 and SPI-12 scales are in JB and DB,
respectively. In summary, in HS, the drought intensity of drought
events at two scales decreases rapidly, with large average drought
intensity, indicating that serious hydrological drought events and
hydrological drought events occur frequently.

FIGURE 6
Drought characteristics of SPI-3 and SPI-12 drought events of the Mu Us Sandy Land.
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4 Discussion

As a parameter, the SPI describes the status of water in an
ecosystem more immediately than meteorological indexes (Luo
et al., 2021b; Duan et al., 2021) (e.g., precipitation and
evaporation). Estimating the climatic warming and
humidification and drought at regional or global scales using an
algorithm based on the SPI has become critical to cope with possible
climate change. In this study, based on the sensitivity analysis shown
in Figure 2, SPI reveals that the drought change trend affected by the
accumulated precipitation in the early stage of different timescales
(short term, medium term, and long term), with obvious function
for short-term drought, seasonal drought, and annual scale drought,
and can reflect the hydrological drought. The purpose is to
determine whether the SPI can be used as a climate change
evaluation index for sandy land, northern Shaanxi, Yellow River
Basin. The precipitation data in our manuscript for 1965–2020 are
considered most desirable as long records provide more reliable
statistics for the SPI, given that it is a statistical approach. Many
studies found that the SPI, which has more advantages in reflecting
the drought trend and climate change because it does not consider
potential evaporation, underlying surface, crops, and other relevant
factors, has gained importance in recent years as a potential drought
indicator permitting comparisons across different precipitation
zones (Kalisa et al., 2020; Mga et al., 2021).

Based on the SPI, this study provides a strong indication that
changes in climate altered the hydrothermal condition in the Mu Us
Sandy Land, northern Shaanxi, Yellow River Basin. The findings
show that the inter-annual, summer, autumn, and winter droughts
in the study area showed a wetting trend, while the spring drought
showed an increasing trend. Moreover, the directions of changes in
the hydrothermal condition by climate change (i.e., precipitation) in
this study are in line with hydrological studies in tropical regions, as
proposed by Tian et al. (2015) and Xu et al. (2017). It is well known
that the climatic warm–wet situation may cause not only an increase
in the precipitation which significantly increases recharge for both
soil water and groundwater but also promotes vegetation growth in
the semi-arid area. The reliable water supply from soil and
underground affects crop production in the growing season (Wu
et al., 2021). However, in the present study, we find that regional
drought characteristics are unevenly distributed, especially in spring,
which shows an increasing trend. The spatial–temporal
heterogeneity of precipitation, which is controlled by multiple
scales and complex physical mechanisms, may probably be the
main reason for the significant impacts on increasing of spring
drought. In Northwestern China, air temperature in spring increases
with the surface temperature affected by solar radiation. It is difficult
to form precipitation conditions because of dry surface and air
conditions. Moreover, precipitation in China mainly comes from the
water vapor transported by the southeast monsoon of the Pacific
Ocean and the southwest monsoon of the Indian Ocean. Under the
action of the Hawaiian low-pressure system and the Asian high-
pressure system, the southeast wind is mainly blowing, while the
south is closer to the landing point of the summer wind. As the
summer wind moves northward, the moisture content becomes less
and less, and the rainfall in the north also decreases.

Several studies (Zhang et al., 2019; Jiang et al., 2020; Mu et al.,
2020; Huang et al., 2021) have investigated the correlation between

climate and drought in semiarid regions, and the results are
similar to ours.

There are some potential socio-economic impacts of an
appropriate drought (Asish et al., 2022; Espinosa-Tasón et al.,
2022), such as agricultural losses and economic losses. As an
agricultural–pastoral ecotone, the Mu Us Sandy Land has a semi-
arid climate, located in a climate sensitive area characterized by a
fragile ecological environment and frequent drought disasters.
Spring precipitation and soil moisture play an important limiting
role in crop growth in the region. The results of this article show an
increase in spring drought, which could lead to reduced water
availability for irrigation, resulting in crop failures and livestock
losses. This can have a direct impact on farmers’ livelihoods and
food security and also affect food prices and availability in the
markets. It is important to note that the impacts of drought can vary
depending on factors such as the severity and duration of the
drought, the socioeconomic conditions of the affected regions,
and the availability of coping mechanisms and adaptive
strategies. Effective drought management and preparedness
measures, such as water conservation practices, early warning
systems, and drought-resistant crop varieties, can help mitigate
these impacts.

5 Conclusion

(1) The smaller the timescale of the SPI, the higher its sensitivity
to a single precipitation, and vice versa. SPI-1, SPI-3, and SPI-
12 have identification functions for short-term drought,
seasonal drought, and annual scale drought, respectively,
and can reflect the hydrological drought situation in the
Mu Us Sandy Land in northern Shaanxi.

(2) There are differences in the frequency and level of drought
identified by the SPI at different scales in different spaces
and times.

(3) In the past 54 years, the SPI values of the Mu Us Sandy
Land in northern Shaanxi have shown a decreasing trend
only in spring, while drought has an increasing trend. The
duration, degree, and intensity of drought events at the
SPI-3 and SPI-12 scales have not significantly decreased,
but the duration, degree, and intensity of drought events at
the SPI-12 scale have decreased faster than those at the SPI-
3 scale.
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To investigate the soil improvement effects of different vegetation restoration
measures during the operation and maintenance of photovoltaic power plants in
the Hobq Desert. This study determined the soil grain size composition and soil
nutrient content of 0–5 cm under four vegetation restoration measures and
within the mechanical sand barriers by laser diffraction techniques and chemical
experiments. The results showed that: (1) Soil particle size composition in the
study area is predominantly sandy, with 1.02%, 6.63%, 5.34% and 2.61% less sand
in Leymus chinensis (YC), Glycyrrhiza uralensis (GC), Artemisia ordosica Krasch
(YH) andHedysarum scoparium (HB), respectively, compared tomechanical sand
barriers (CK). Soil particle distributions of YC, GC, and HB showed better sorting
and more concentrated patterns, and all four vegetation restoration measures
had higher fractal dimensions than CK. (2) AN (Alkali-hydrolyzable Nitrogen) content
performance: The content of YC, GC, andHBwas significantly higher than that of YH
and CK, AP (Available Phosphorus) content did not differ significantly between
measures, AK (Available Potassium) content was higher than that of CK in all
measures, with YC content being the highest and SOM content being the highest
for GC. (3) Soil total nutrient is unstable across vegetation restoration measures.
Overall, the performance showed that the three vegetation restoration measures,
YC, GC, and HB, were more evident in the soil total nutrient content improvement.
Each particle size characteristic parameter and soil nutrient response vegetation
restoration measures ameliorate sandy soil in PV power plants during operation and
maintenance. YC and GC have the most apparent effect on soil amelioration.

KEYWORDS

photovoltaic vegetation restoration Hobq desert, solor, photovoltaic, rehabilitation of
vegetation, particle size characteristics, soil nutrients

Introduction

With global fossil energy consumption increasing and greenhouse gas (CO2) emissions
rising every year A global warming worsens, the transition from traditional energy to new
energy has become inevitable (Sinke, 2019). Faced with market demand, photovoltaics, a
cleaner form of energy that is expected to occupy a significant place in energy development
over the next decade, has made impressive progress in terms of scale of deployment, cost
reductions, and performance improvements after several generations of updates, PV power
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generation technology is becoming more and more mature (El
Chaar and El Zein, 2011; Lupangu and Bansal, 2017).

As one of the eight significant deserts in China, the Hobq Desert,
with its vast area, low vegetation cover, and frequent and strong
wind and sand activities, is the primary source of wind and sand
sources in Beijing and Tianjin (Du et al., 2014; Ren et al., 2022).
Therefore, it is necessary to adopt effective desert control and sand
fixation methods in the Hobq Desert region according to local
conditions. The construction of photovoltaic power plant in the
desert not only effectively use the land but also can achieve the
purpose of desert control, two birds with one stone. Yuan et al.
(2022) found through their research that the erection of photovoltaic
panels is conducive to transforming and consuming the power
source of sandstorms and wind-sand flow in desert areas,
reducing the occurrence of sandstorms. Photovoltaic
development in desert areas changes the environment in which
vegetation grows and increases surface roughness, providing new
ideas for combating desertification. Chang et al. (2020) found that
constructing photovoltaic panels in the desert can effectively reduce
the role of high winds in the sand flow, prevent wind, and fix sand.
Its effect is three times the effect of mechanical sand barriers.
Photovoltaic panels of the rain effect can promote the growth of
vegetation in the desert. Yue et al. (2021) found that the shaded
portion of PV panels helped to reduce soil temperature and increase
soil moisture. Wang et al. (2021) found that the erosion intensity
without any restoration measures under the PV panels is
significantly higher than with restoration measures and outside
the PV plant. However, most scholars have found through
research that the construction of photovoltaic power plants in
desertified areas will accelerate the development of desertification
if corresponding restoration measures are not constructed (Yue
et al., 2021). Tang et al. (2021) found that large-scale photovoltaic
power plants will accelerate the process of surface erosion in the
power plant after the completion of the surface erosion process
caused by the geomorphological changes seriously affect the
production, operation, and maintenance of solar energy.

It is urgent to carry out vegetation ecological restoration and
reconstruction measures in response to the destruction of the
ecological environment in the sandy area during the construction
of photovoltaic power plant projects and the prevention and control
of sand damage in photovoltaic power plants. Previous studies have
concluded that the construction of photovoltaic power plants is
prone to erosion of the lower part of the panels. However, in desert
areas where evaporation is more significant than rainfall, the rain-
collecting effect of photovoltaic panels is precious. The reasonable
tilt angle of the photovoltaic panels behind the panels can form a
wind-blocking effect, which is more conducive to constructing
measures to restore the vegetation in desert areas (Chang et al.,
2020; Yue et al., 2021). Revegetationmeasures reduce the intensity of
wind and sand activity, increase soil erosion resistance, and improve
soil fertility (Huang, 2020). Soil properties directly influence the
processes of vegetation growth, development and succession, and
conversely, the processes of vegetation growth, development, and
succession closely influence the physical and chemical properties of
soils (Hong et al., 2006). Plant roots are intertwined in a network
that improves soil structure and consolidates the soil; the biological
crust makes the soil more stable and enhances the soil’s resistance to
erosion (Zhang et al., 2006).

Therefore, adopting vegetation measures during the operation
and maintenance of desert photovoltaic power plants is very
effective, and the planting of vegetation in desertified areas is
beneficial to desertification control efforts and can also bring
local side income. Liu X. et al. (2020) found that the ecosystem
service function provided by composite system land is 24 times
higher than that of naturally restored land (Rodriguez-Pastor et al.,
2023). Planting plants under photovoltaic panels during the hot
season helps to reduce the module temperature and thus increases
the power generation rate.

The above studies as well as the previous studies are mostly on
the impact of PV panels on the environment and the impact of the
environment on PV panels, etc., while there are relatively few studies
on vegetation restoration measures and traditional sand fixation
measures during the operation and maintenance period of desert PV
power plants. Based on this study, this study takes several vegetation
restoration measures such as planting Leymus chinensis (from now
on referred to as YC),Glycyrrhiza uralensis (from now on referred to
as GC), Artemisia ordosica Krasch (from now on referred to as YH),
Hedysarum scoparium (from now on referred to as HB) under the
PV panels in Yili 200 MP PV plant in Hobq Desert, and setting up
local commonly used mechanical sand barriers (from now on
referred to as CK) as a control group, YC, GC, YH, and HB are
widely distributed in the Hobq Desert, and all are locally dominant
species that play a significant role in fixing local mobile sands, and
analyses different restoration techniques in terms of their
physicochemical properties (Soil particle size characteristics, and
soil nutrients), and combines them with the different vegetation’s
growth habit, economic value, adaptability, and survival rate. The
purpose of this study is to analyze different aspects and perspectives
of different vegetation restoration techniques, such as growth habit,
economic value, adaptability, and survival rate, in order to explore
the most suitable path of vegetation restoration measures in the
Hobq Desert PV power station and also to provide a theoretical basis
for the restoration of other photovoltaic power stations, and
contribute to the construction of the ecological environment.

Methods

Study area and patch characteristics

The study area is located in Yili Photovoltaic Ecological Park
(40°26′7″N, 108°50′8″E), Duguitara Town, Hangjin Banner, Ordos
City, Inner Mongolia Autonomous Region, with an altitude of
1103 m. It is in the northwestern part of Ordos City, spanning
the Ordos Plateau and the Hetao Plain, and is situated in the
transition zone of temperate arid steppe and desert steppe, and
has the typical temperate continental climate, with the average
annual temperature of 5°C–8°C; arid and little rain, spring
drought every year, the average rainfall is 245mm, 60% of rainfall
is concentrated in July - September, the average evaporation is
2720mm; the average annual wind speed is 3.0 m/s, generally seen in
the spring, the maximum wind speed reaches 28.7 m/s, and
accompanied by sandstorms, and the wind direction is
dominated by the north-west wind. The study area was mostly
flowing sandy land before restoration measures were taken; very
rarely were Phragmites australis, Ammopiptanthus mongolicus,
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Agriophyllum squarrosum, and Tamarix chinensis Lour An overview
map of the study area is shown in Figure 1 below.

The angle of the photovoltaic panels to the ground is 36°, and a
single set of photovoltaic panels consists of two rows and 18 columns
of 1950 mm × 990 mm. The specification of the whole photovoltaic
panel is 4 m × 18 m, and the height of the back edge of the panel
from the ground is 2700 mm. The height of the front edge of the
panel from the ground is 300 mm. The panels face south and run
east-west, and the spacing between two neighbouring PV panels is
8 m. A schematic diagram of the PV plant is shown in Figure 2.

Research methodology

Experimental design and sample collection
Sample collection was carried out in June 2022. YC, GC, YH,

HB, and CK, which are typical restoration measures in the sample
area, were selected as the collection sites for the experimental
samples, and five 1 m × 1 m sample squares were randomly
selected from each sample area. Five points were selected from
each sample square according to the five-point method. The soil
sampling was carried out in the 0–5 cm soil layer after removing the

FIGURE 1
Overview map of the study area.

FIGURE 2
Schematic diagram of restoration measures within a photovoltaic power plant.

Frontiers in Environmental Science frontiersin.org03

Cai et al. 10.3389/fenvs.2024.1380421

33

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1380421


dead debris and humus from the ground surface. Five samples
obtained from each sample square were mixed equally, and the
quadratic method selected enough soil samples. After removing
surface litter and humus, soil samples were taken from the 0–5 cm
soil layer; the five samples obtained from each sample square were
mixed equally, and then enough soil samples were selected by the
quadratic method and sealed in self-sealing bags and then put
into ice boxes to be brought back to the laboratory. The soil
inside the plastic bags was placed in a cool and dry place to be
naturally air-dried and then sieved after drying. After
removing the impurities, it was divided into two parts:
characterizing the soil particle size and determining the soil
nutrient content.

Measurement methods
Determination of soil mechanical composition: An Analysette

22 Micro-Tec Plus model laser particle sizer determined soil particle
size composition. The classification was based on the grain size
composition of the US-made soil: clayey (<2 μm), chalky (2–50 μm),
very fine (50–100 μm), alumina (100–250 μm), medium
(250–500 μm), coarse (500–1,000 μm), very coarse
(1,000–2000 μm), and gravelly (>2000 μm). Screening outputs
particle diameters corresponding to cumulative volume fractions
of soil particles of 5 percent, 10 percent, 16 percent, 25 percent,
50 percent, 75 percent, 84 percent, 90 percent, and 95 percent for
later calculations.

Φ � − log2 D (1)

Using the Udden-Wenworth grain size criterion, a logarithmic
transformation was performed according to Kumdein’s algorithm,
which converted the previously output particle diameters
corresponding to the cumulative volume fraction of each soil
particle into Φ-values (Blair and McPherson, 1999), respectively,
to facilitate subsequent calculations, the conversion equation is:
where D is the diameter of soil particles.

The soil particle size parameters such as mean particle size (d0),
standard deviation (σ0), skewness (SK) and kurtosis (Kg) were
calculated based on the graphical method of Folk and Ward
(1957). Determination of the volume content of different soil
particle sizes using a laser particle sizer and characterization of
the soil fractal model using the particle size volume distribution to
calculate the fractal dimension (Armstrong, 1986; Ahmadi et al.,
2011); the formula is:

d0 � 1
3

Φ16 +Φ50 + Φ84( ) (2)

σ0 � Φ84 −Φ16( )
4

+ Φ95 −Φ5( )
6.6

(3)

SK � Φ16 +Φ84 − 2Φ50

2 Φ84 −Φ16( ) + Φ5 + Φ95 − 2Φ50

2 Φ95 −Φ5( ) (4)

Κg � Φ95 − Φ5

2.44 Φ75 − Φ25( ) (5)

V r<Ri( )
Vt

� Ri

Rmax
( )

3−D
(6)

Where: D is the fractal dimension; Ri denotes the measured soil
particle size; Rmax is the diameter of the largest particle; V (r < Ri) is
expressed as the volume percentage of soil grain size smaller than the

measured grain size (Ri); Vt is expressed as the total volume
percentage of the volume of each grain size of the soil.

Soil organic matter (SOM) content was determined using the
potassium dichromate volumetric method with external heating
(Nelson and Sommers, 1983); Quick-acting potassium (AK) by
NH4OAc leaching-flame photometric method (Zheng and Zheng,
2022); Quick-acting phosphorus (AP) was determined by leaching
with 0.5 mol-L-1NaHCO3, followed by spectrophotometric
determination of the test solution (Munhoz et al., 2011); Alkaline
nitrogen (AN) is determined by the alkaline diffusion method (Chen
et al., 2016); Total Nitrogen (TN) was determined using the semi-
micro Kjeldahl method (Kirk, 1950); Total phosphorus (TP) was
determined by NaOH melting-molybdenum antimony colorimetric
method (Bremner and Mulvaney, 1983); Total potassium (TK) was
determined by NaOH melting and flame photometric method (Gao
et al., 2018).

Processing and analysing data
Excel 2021 and Origin 2023 software were used to collate and

analyze the data, as well as graphical work. SPSS 25 software was
used to perform one-way ANOVA and principal component
analysis on the data.

Results

Mechanical composition of soil particles
under different vegetation restoration
measures in a photovoltaic power plant

As can be seen from Table 1, the soil grain size composition of
the five restoration measures in this study, YC, GC, YH, HB and CK,
all showed a predominance of sand grains, were all above 90%, with
CK having a significantly higher sand content than the other four
restoration measures (p < 0.05); The content of sticky meal grains
increased by 1.02%, 6.63%, 5.34% and 2.61% for the four restoration
measures compared to CK, respectively; further analysis of the sand
particles reveals that the YC wonderful sand is significantly lower
than the other three restoration measures (p < 0.05), the acceptable
sand content of YH was significantly lower than the other measures
(p < 0.05), and the performance of the medium sand content did not
differ significantly among the restoration measures (p > 0.05), the
overall content of coarse and very coarse sand also showed higher
(p < 0.05) for the YH restoration measure than for the other
restoration measures. The sticky grain content of each restoration
measure did not exceed 1%, except for GC, and showed a non-
significant difference in sticky grain content under each
restoration measure.

Soil particle size parameters of different
vegetation restoration measures in
photovoltaic power plants

From Table 2, it can be seen that the mean particle size of all five
restoration modes showed significant differences (p < 0.05), the YH
recovery mode has the smallest average grain size, the HB recovery
mode has the largest average grain size, and the HB recovery mode
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has the largest average grain size; According to the Folk Ward
diagrammatic classification criteria, they belonged to chalk, fine
sand, medium sand and coarse sand, respectively, and differed
significantly (p < 0.05) from each other; The standard deviations
were significantly different from each other (p < 0.05), with better
sorting for YC and moderate sorting for GC and HB, YH and CK
were poorly sorted; Significant differences (p < 0.05) were found
between restoration measures for bias; Only YH was negatively
biased for the five recovery measures, indicating that the grain size
of YH was moving towards finer grains; In terms of peak state
performance, GC was significantly higher than the other four
measures (p < 0.05), and the difference between the other four
was not significant (p > 0.05); The fractal dimension of CK was
significantly lower (p < 0.05) than the other four vegetation
restoration measures, indicating that the content of fine-grained
material within CK was significantly lower than the other four
restoration measures.

Scatter plots were produced with the soil particle size
parameters of the four vegetation restoration measures and
CK, respectively, which allowed direct observation of the
distribution of soil particle size parameters in the five sample
plots. From Figure 3., it can be seen that there are apparent
boundaries between the two restoration measures of GC and YH
and the restoration measures of YC and HB, which can be clearly
distinguished by the scatter plots of each granularity parameter,
and the difference between the two restoration measures of YC
and HB is not significant, and the performance site is evident on

d0-Kg and d0-D, and the rest of the plots can be clearly identified.
From the scatter plot of particle size parameters, it can be seen
that CK recovery measures have the most extensive distribution
range of each particle size parameter, YC has the most
concentrated distribution range, followed by GC, and YH and
HB are worse.

Soil particle frequency distribution curves
for different vegetation restoration
measures in photovoltaic power plants

Soil particle frequency distribution curves are often used to
analyze the size distribution of particles, not only to obtain the
skewness, kurtosis, and other information qualitatively but also
to determine the deposition dynamics of the particles and the
source of the material from the peak properties of the curve.
Particle distribution curves were made with the mean surface soil
particle size of the four vegetation restoration measures and the
control group (CK), respectively. It can be seen that there are
differences between the samples, among which there are apparent
differences between the YH restoration measure and the other
samples, with the YH restoration measure showing a bimodal
state and the remaining four samples showing an unimodal state.
Soil particle size was concentrated near 200–300 μm in the single
peak state, and the first part of the double peak state was
concentrated near 200–300 μm. It appeared in the second peak

TABLE 1 Soil particle size content under different restoration measures.

Rehabilitation
measures

Agglomerate Granule Grit

Extremely fine
sand

Fine
sand

Alumina Coarse
sand

Very coarse
sand

YC 0.51 ± 0.05b 1.70 ± 0.11b 0.63 ± 0.04bc 69.62 ±
0.81c

26.53 ± 0.95b 0.17 ± 0.12a 0.83 ± 0.40a

GC 1.08 ± 0.06a 6.74 ± 0.12a 3.74 ± 0.14a 59.43 ±
2.41c

26.27 ± 1.40a 1.03 ± 0.28bc 1.70 ± 0.32b

YH 0.76 ± 0.03bc 5.77 ± 0.31a 6.07 ± 0.27a 47.75 ±
0.38d

17.78 ± 1.02b 14.1 ± 1.17a 7.77 ± 1.16a

HB 0.89 ± 0.10a 2.91 ± 0.21a 3.02 ± 0.32a 71.93 ±
0.61c

20.03 ±
0.84 ab

0.42 ± 0.36 ab 0.77 ± 0.08c

CK 0.26 ± 0.05a 0.93 ± 0.03c 0.38 ± 0.01d 64.46 ±
0.76a

31.51 ± 0.57c 0.53 ± 0.11a 1.85 ± 0.32a

Note: Peers with different lowercase letters in the table indicate significant differences between the restoration measures(p < 0.05).

TABLE 2 Soil particle size parameters for different restoration models.

Soil particle size parameters Average particle size Standard deviation Skewness Peak state Fractal dimension

YC 2.17 ± 0.01c 0.47 ± 0.01d 0.11 ± 0.00c 1.01 ± 0.01b 2.05 ± 0.02c

GC 2.26 ± 1.31b 0.84 ± 0.02b 0.35 ± 0.01a 1.71 ± 0.01a 2.24 ± 0.01a

YH 1.78 ± 0.28e 1.47 ± 0.00a −0.17 ± 0.00e 0.98 ± 0.26b 2.25 ± 0.01a

HB 2.32 ± 1.17a 0.59 ± 0.03c 0.18 ± 0.00b 1.16 ± 0.05b 2.16 ± 0.03b

CK 1.58 ± 0.52d 1.87 ± 0.01e 0.06 ± 0.00d 1.00 ± 0.01b 1.95 ± 0.05d
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state near 1,000 μm, and before 100 μm, several restoration
measures, YC, GC, HB, and CK, were slightly lower than YH
restoration measures. It can be found that the content of clayey
silt and wonderful sand of YH is higher than that of other
measures, and the content of coarse sand and very coarse sand
of other measures is significantly lower than that of YH, which is
also more resistant to wind erosion, it can also be seen that YH is
less concentrated in particle size than the other three measures.
The cumulative frequency distribution curve can reflect the
distribution of soil particles; generally, the steeper the curve,
the more uniform the distribution of particles; at the same time, it

can characterise the proportion of soil particles. As can be seen
from Figure 4, the soil particle uniformity of YC, GC, and HB in
the sample plot was higher than that of YH, and the curve
suddenly became steeper at 100 μm and smoother at 500 μm,
indicating that the soil particle size characteristics were
concentrated in the range of 100–500 μm. Moreover, near
400 μm, the YH restoration measure became flat and less steep
than the remaining four measures, indicating that YH is less
sortable and homogeneous than the other four vegetation
restoration measures. The cumulative frequency curve of soil
particles also showed that coarse and very coarse sand content
was significantly higher in YH than in CK, YC, GC and HB.

Soil available nutrient content under
different vegetation restoration measures in
photovoltaic power stations

Figure 5 shows that the content of available nutrients between
the PV array panels of all four vegetation restoration measures
has been improved to different degrees compared with the
traditional sand fixation measures. Specifically, the AK content
of the four vegetation restoration measures as a whole was
significantly higher than that of CK, and the AK content of
YC was the highest, and the AK content of YC was the highest;
several other restoration measures had significantly lower AK
levels than YC. In terms of AP content performance, only the HB
restoration measure was comparable to the other three restoration
measures and CK; there were individual groups of CK that had
higher AP content than the HB recovery measure, and YC and GC
were stable in AP content and did not differ significantly from each
other; The content of AN was shown to be significantly higher than
that of CK for all four vegetation restoration measures, with YC, GC,
and HB showing the most significant. Figure 3 shows that the
combined quick nutrient content YH of the four vegetation
restoration measures was not significantly different from each
other. However, each of them was not high, while the other three
restoration measures all showed significant differences among the
three available nutrient contents.

Soil total nutrient and organic matter
content under different restoration
measures in a photovoltaic power plant

From Figure 6, it can be found that the SOM content of GC >
HB > YC>CK > YH, only the SOM content of YH was reduced by
34.51% compared with that of CK. The remaining three types of
vegetation restoration measures were enhanced by 45.49%,
365.49%, and 148.63%, respectively, compared with that of
CK. There were apparent differences between the vegetation
restoration measures and CK, most evident in GC. TN content
of GC and HB was significantly higher than that of the other two
vegetation restoration measures and CK, the minimum content of
YC and YH was even lower than that of CK, the median was also
lower than that of CK, and the spacing between the upper edge
and the lower edge was lower than that of CK, the unique values
of the four vegetation restoration measures and CK were within

FIGURE 3
Scatter plot of particle size parameters. d0-σ0 (A), d0-SK (B), d0-
Kg (C), d0-D (D), σ0-SK (E), σ0-Kg (F), σ0-D (G), SK-Kg (H), SK-D (I), Kg-
D (J).
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the confidence interval, the figure showed the TN content of soil
of the four vegetation restoration measures, and the TN content
of soil of the three restoration measures increased by 45.49%,
365.49% and 148.63% respectively compared with CK. The soil
TN content of the four vegetation restoration measures was
stable, as shown in the figure TP content was higher than that
of CK in YC and HB, as shown in the box plot, in which the
content of YC was higher than CK’s; although HB’s content was
higher than CK’s, the difference was not noticeable. The soil TP
content of GC and YH was significantly lower than that of CK,
and the confidence interval of GC and YH was more significant
than that of CK, which indicated that the distribution of the TP
content of GC and YH was not as concentrated as that of CK. TK
content was not as concentrated as that of CK. The TK contents
of YC and CK were significantly higher than those of the
other three vegetation restoration measures, with the lowest
content in YH, and the total potash contents of GC and
HB were in the range of 35–43 g/kg. The TK contents of GC,
YH, and HB were 55.09%, 112.17%, and 74.42% less than
those of CK.

Discussion

Effects of different restoration measures on
soil particle size characteristics between
photovoltaic panels

The PV power stations in the study area are subjected to severe
wind erosion during operation and maintenance, and the desert area
is windy and sandy, with frequent and intense wind and sand
activities; during the wind and sand movement, the surface fine-
grained material is lost, which leads to an increase in the content of
coarse-grained material in the mechanical composition of the soil
material, and the surface is coarsened significantly. Pan et al. (2020)
found that vegetation can effectively improve the fine-grained
tendency of soil and can increase the roughness of the ground
surface. Similarly, in this study, the content of sticky and powdery
particles in the mechanical sand barriers of the control group
differed significantly from the remaining four vegetation
restoration measures, and the content of the mechanical sand
barriers was significantly lower than that of the four vegetation
restoration measures. The higher the content of fine-grained matter,
the more microporosity of the soil, the higher the complexity of the
soil, and the greater the fractal dimension of the soil, indicating a
decrease in the degree of sanding of the soil. Some scholars (Liu Y.
et al., 2020) found that the content of fine-grained matter in soil
particle size parameters under vegetation with high vegetation cover
and lush foliage was significantly higher than that under vegetation
with low vegetation cover and depression. Qi et al. (2018) found that
the value of soil fractal dimension was significantly positively
correlated with the content of clay and powder particles and
significantly negatively correlated with the content of sand
particles, indicating that the less clay and powder particles or the
higher the proportion of sand particles in the soil, the higher the
roughness and inhomogeneity of the soil particle composition. The
results of this study found similar patterns to the above results, we
found that the content of sticky and powdery particles in GC and YH
was significantly higher than that of the other two restoration
measures and CK. The fractal dimension was also higher than
that of the other two vegetation restoration measures because the

FIGURE 4
Scatter plot of particle size parameters.

FIGURE 5
Soil available nutrient content of different restoration measures.
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FIGURE 6
Organic matter (A), Total nitrogen (B), Total phosphorus (C), Total potassium (D).

FIGURE 7
Heat map of soil physical and chemical properties.
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vegetation cover of GC and YHwas higher than that of the other two
vegetation restoration measures, and the branching and foliage of
Chengdu were also higher. From the above findings, it was found
that GC and YH were the most obviously fine-grained in terms of
particle size characteristics and particle size parameter performance,
and the trend of fine-graining was also more apparent.

Effect of different restoration measures on
soil nutrients between PV panels

Different vegetation restoration measures mainly influenced the
differences in soil nutrients between locations between photovoltaic
panels. This study showed that with the restoration of soil
vegetation, the degree of change of soil fast-acting soil nutrients
was higher than that of full-acting nutrients, especially AN and AK,
which indicated that soil fast-acting nutrients were more sensitive
than full-acting nutrients to the changes in the restoration of the
plant community, which was in line with the results of the previous
study. As the number of years of vegetation restoration increased,
more plant litter was returned to the soil due to vegetation
restoration, which increased the organic matter content of the
soil. Figure 3, 4 show that the quick-acting nutrient content of
each vegetation restoration measure was higher than that of CK
except for a few locations. However, each vegetation restoration
measure’s full-acting nutrient and organic matter content was lower
than CK’s. Huang et al. (2020) found that the content of soil
nutrients increased significantly with the increase of restoration
time. However, Weltzin and Coughenour (1990) found higher
concentrations of nitrogen and organic carbon in shallow soils
near tree trunks, suggesting a negative effect of nutrient inputs
from tree trunks and shading on soil nutrient loss. It showed that
vegetation can sometimes hurt the soil and that most of the surface
soil nutrients under vegetation come from deadfall; therefore, it can
be explained that the nutrient content of some of the vegetation
restoration measures in this study was lower than that of CK, which
may be due to the short years of vegetation restoration in this study
or the loss of soil nutrients due to the shading effect of vegetation.,
Some scholars (Wu et al., 2020) found that vegetation degradation
leads to a significant decrease in soil nutrients, and conversely, an
increase in vegetation richness leads to an increase in soil nutrients.
Combining the present study with the above studies, it can be seen
that the adoption of vegetation restoration measures in PV power
plants can effectively improve the soil nutrient content and play a
positive role in the improvement of soil quality in PV power plants.

An investigation of the combined value of
four vegetation measures within a
photovoltaic power plant in the hobq desert

In this study, four types of local sandy vegetation were selected as
restoration measures, aiming to find a green and long-lasting
vegetation restoration measure during the operation and
maintenance of PV power stations in the Hobq Desert. In order
to prevent and control secondary sand damage during the operation
of the PV plant, if it can be done to increase local income, it is just
like the icing on the cake, and it can be done on the basis of green

management to restore the vegetation and increase income. Leymus
chinensis is rich in diversity and ecological adaptations, widely
distributed in the inland areas of China, and is not only able to
provide genetic material for forage improvement but also a potential
contributor of genes for resistance to harsh environments (Wu et al.,
2020). Glycyrrhiza uralensis it is an excellent medicinal herb, and in
addition to its medicinal uses, Glycyrrhiza uralensis is a drought-
tolerant and deep-rooted plant that is important for windbreaks,
sand fixation, and soil formation in semi-arid ecosystems (Weltzin
and Coughenour, 1990). Artemisia ordosica Krasch is a dry,
deciduous, multi-stemmed shrub (Sha et al., 2014), and is a
typical sandy half-shrub of the Maowusu Sand. It has dry, linear-
lobed leaves that form scrubby sand mounds of about 0.5–1 m. Its
primary roots reach up to 3 m below the surface, and it is endemic to
Ordos in northern China, where it is absolutely dominant (Liu et al.,
2007). Although its sand-fixing capacity is strong, and it was once
fly-seeded over large areas in northwestern China, the pollen of
Artemisia oleifera causes allergic rhinitis in residents (Li et al., 2021).
Hedysarum scoparium has the characteristics of sand burial, wind
erosion resistance, and strong sprouting capsule force, which is
widely used for windbreak and sand fixation, and it is one of the
excellent pioneer tree species in creating windbreak and sand
fixation forests in desert areas (Kobayashi et al., 1995). It is a
perennial shrub, which is the main tree species for windbreak
and water retention. It is resistant to wind erosion and sand
burial, and after sand burial, it can rapidly sprout adventitious
roots with substantial windbreak and sand fixation. its horizontal
root system is well developed, so it is suitable for flowing sand areas
(Xiao et al., 2020). Although theHedysarum scoparium is suitable for
flowing sand if planted in the photovoltaic power station, with the
growth of the recovery years, the plant height and crown width of the
flower stick will increase, which will be involved in the later stage will
be shading photovoltaic panels and the later flat stubble
maintenance and so on.

In this study area, the four vegetation restoration measures and
the control group (mechanical sand barriers) were planted
individually, and no mixed planting was used. From this study,
combined with the correlation of hot map (Figure 7), it was found
that most of the soil physicochemical properties in this study area
showed a positive correlation, with a positive correlation
accounting for 72.2% of the total, which indicated that the soil
physicochemical properties were in a certain degree in mutual
constraints; A few showed negative correlations and only AN and
TN stood out in terms of very positive correlations. The results of
this study showed that none of the restoration measures were
outstanding in terms of physical and chemical properties but only
in one or more of the indicators. Based on the above studies, we can
infer that planting vegetation under the inter-slabs of photovoltaic
panels with a mixed vegetation planting method will be superior to
planting a single species (Li, 2022). Rodríguez-Loinaz et al. (2008)
found that soil physicochemical properties showed a positive
correlation with biodiversity through her research, and the
species richness of herbaceous plants showed a significant
positive correlation with the functional diversity of soil. Some
scholars (Chandra et al., 2016) the results of the study showed that
in oak marriages located in the temperate zone, the soil carbon,
nitrogen, and phosphorus contents were relatively high, as well as
the microbial activity.
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Conclusion

(1) The following conclusions were reached by analyzing
the soil particle size characteristics and soil nutrients
within the four vegetation restoration measures and the
control group (grass square sand barriers) during
the operation and maintenance of the Hobq Desert
PV plant:

(2) The soil particle size distribution in the study area was
concentrated, with sand grains dominating. The
percentage of sand grains of the four vegetation
restoration measures was reduced compared with CK
by 1.02%, 6.63%, 5.34%, and 2.61%, respectively. YC,
GC, and HB were better sorted, and their distribution
was more concentrated; the fractal dimension of the four
vegetation restoration measures was higher than
that of CK.

(3) The AP content of each vegetation restoration measure was
slightly higher than that of HB, and the difference in content
between several other restoration measures was not apparent;
the AN content of YC, GC, and HB was significantly higher
than that of YH and CK; and the AK content of the
four vegetation restoration measures was higher than
that of CK, of which YC had the highest content.
Regarding the performance of SOM content, the content
of GC was the highest, the content of YC and HB was also
higher than that of CK, and only YH was lower than
that of CK.

In terms of allosteric nutrient performance, the TN content
of GC and HB was higher than that of CK, and the remaining
two restoration measures were more minor than or close to
CK; the TN content was significantly higher only for YC than
that of CK, and the remaining three restoration measures were
lower than CK, with some individual contents close to CK.
The content of TP was higher only for goatgrass than that of
CK, and the remaining three measures were significantly lower
than that of CK. Combined with the soil particle size
composition, particle size parameters, and soil nutrient
content, the development of fine-grained soil and the
accumulation of soil nutrients indicate that YC and GC are
more suitable for the PV plant in the study area. Vegetation
restoration measures in the study area have begun to have an
effect, and the unique habitat characteristics formed by the PV
power plant, which are different from the local environmental
background, are essential for the development of local
production.
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Spatial downscaling analysis of
GPM IMERG precipitation dataset
based on multiscale
geographically weighted
regression model: a case study of
the Inner Mongolia Reach of the
Yellow River basin

Lihui Tu1,2,3 and Limin Duan1,2,3*
1Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot,
China, 2Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China,
3Collaborative lnnovation Center for lntegrated Management of Water Resources and Water
Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China

The Inner Mongolia Reach of the Yellow River Basin is characterized by a relative
scarcity of meteorological stations. While satellite precipitation products can
complement observations from meteorological stations, their limited spatial
resolution restricts their efficacy in regional studies. This study utilizes the
GPM IMERG precipitation dataset, considering various factors that influence
the spatial distribution of precipitation, such as the Normalized Difference
Vegetation Index (NDVI), elevation, slope, aspect, and topographical relief, to
construct a multiscale geographically weighted regression (MGWR) model. A
spatial downscaling method for the GPM IMERG precipitation dataset is
proposed, and its reliability is validated through an accuracy assessment.
Moreover, the scale differences in the impact of different factors on the
spatial pattern of precipitation in the Inner Mongolia Reach of the Yellow River
Basin are scrutinized. The results indicate that: 1) The downscaled GPM IMERG
precipitation data (1 km × 1 km) exhibit enhanced accuracy compared to the pre-
downscaled data (approximately 11 km × 11 km). The correlation coefficient, Bias,
and RMSE of the annual precipitation data after downscaling of GPM IMERG are
0.865, 6.05%, and 68.50 mm/year, respectively. For the monthly downscaled
precipitation data, the correlation coefficient, Bias, and RMSE are 0.895, 6.09%,
and 16.25 mm/month, respectively. The downscaled GPM IMERG precipitation
dataset exhibit high accuracy on both annual and monthly temporal scales. 2)
Different factors demonstrate localized effects on precipitation in both dry and
wet years. Elevation is the dominant factor influencing the spatial heterogeneity
of annual precipitation. The findings from this study can provide technical support
for hydrological modeling, droughtmonitoring, andwater resourcemanagement
in data-scarce areas of the Inner Mongolia Reach of the Yellow River Basin.
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1 Introduction

Precipitation is a crucial component of the global water cycle
and a key driver of surface hydrological processes (Zhang et al.,
2014). Obtaining high temporal and spatial resolution raster
precipitation data is of great importance in fields such as ecology,
hydrology, and meteorology (Ma et al., 2021; Xue et al., 2022; Li
et al., 2023). Conventional approaches to precipitation data
collection rely on spatial interpolation of data from rain gauge
measurements. However, the accuracy of interpolation is limited
by the coverage and representativeness of the rain gauge stations,
making it difficult to obtain precise regional precipitation spatial
distribution information, especially in arid and semi-arid areas with
complex terrain and sparsely distributed stations (Fang et al., 2013;
Wang et al., 2022).

Satellite remote sensing-based precipitation estimation offers
comprehensive coverage, continuous time series, and convenient
data acquisition, making it an effective approach for regional or
global-scale precipitation measurements (Kidd and Levizzani,
2011; Tang et al., 2020). Using satellite remote sensing
technology, applications like the Tropical Rainfall Measuring
Mission Multi-satellite Precipitation Analysis (TMPA)
(Huffman et al., 2007), Integrated Multi-satellite Retrievals for
Global Precipitation Measurement (GPM IMERG) (Nan et al.,
2021), Global Satellite Mapping of Precipitation (GSMaP)
(Kubota et al., 2007), Multi-Source Weighted-Ensemble
Precipitation (MSWEP) (Beck et al., 2017), Climate Prediction
Center Morphing technique (CMORPH) (Joyce et al., 2004), and
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR) (Ashouri et al., 2015) have been developed.
However, the spatial resolution of the precipitation dataset is
coarse (approximately 11km–28 km) (Joyce et al., 2004; Huffman
et al., 2007; Kubota et al., 2007; Ashouri et al., 2015; Beck et al.,
2017; Nan et al., 2021), limiting its ability to accurately depict
precipitation distribution patterns at the scale of small
watersheds (Yu et al., 2020). Spatial downscaling methods can
be used to effectively overcome this limitation (Kofidou
et al., 2023).

Downscaling methods include dynamic and statistical
downscaling. Dynamic downscaling involves scale reduction by
simulating atmospheric physical processes using models (Sylla
et al., 2009; Hu et al., 2018). Although this method possesses a
clear physical basis, its applicability is limited due to high
computational costs and extensive data requirements. Statistical
downscaling relies on empirical statistical relationships between
the target variable and explanatory variables to achieve
downscaling (Kofidou et al., 2023). It is characterized by
relatively lower computational demands, flexibility in application,
and ease of operation. It is, therefore, widely used in downscaling
studies of satellite remote sensing precipitation products. Immerzeel
et al. through the analysis of the correlation between TRMM
precipitation and annual scale NDVI, established a regional
precipitation downscaling model based on an exponential
regression (ER) model, obtaining TRMM precipitation dataset for
the Iberian Peninsula in Spain with a spatial resolution of 1 km
(Immerzeel et al., 2009). Building upon the research by Immerzeel
et al., Jia et al. considered that the spatial distribution of precipitation

is influenced by more than a single variable. They included
topographic factors within the scope of their variables and
established a Multiple Linear Regression (MLR) model between
TRMM, NDVI, and topographic factors, enhancing the TRMM
precipitation dataset for the Qaidam Basin in China from a 0.25°

resolution to 1 km (Jia et al., 2011). Jing et al. demonstrated that
using the random forest (RF) model for precipitation downscaling
achieves higher simulation accuracy than both the exponential
regression and the linear regression models (Jing et al., 2016).
However, these models assume that the relationships between
precipitation and environmental variables are homogeneous in
space and do not account for the spatial non-stationarity between
precipitation and variable factors, because their relationship should
vary with changes in spatial location (Brunsdon et al., 1998). The
Geographically Weighted Regression (GWR) model can account for
the spatial non-stationarity between precipitation and explanatory
variables in downscaling studies of precipitation (Xu et al., 2015).
However, the GWR model assumes that all variable factors have the
same optimal bandwidth, neglecting scale differences in the effects of
different influencing factors on precipitation (Arshad et al., 2021).
Thus, Fotheringham et al. proposed the Multi-Scale Geographically
Weighted Regression (MGWR) model, based on the GWR model,
which considers different spatial bandwidths for various influencing
factors (Fotheringham et al., 2017). This model better reveals scale
differences in the mechanisms of various factors affecting
precipitation. Noor et al. applied the MGWR model and the RF
model to downscale the TRMM precipitation dataset (Noor et al.,
2023), while Arshad et al. used the MGWR model and the GWR
model for downscaling the TRMM precipitation dataset over the
Indus River Basin (Abdollahipour et al., 2021). The results showed
that the simulation accuracy of the MGWR model was superior to
the other two models. Therefore, the MGWR model can be widely
used in precipitation downscaling studies.

Currently, downscaling studies based on the MGWR model are
relatively scarce and primarily focused on the TRMM precipitation
dataset. The TRMM mission ceased operation on 8 April 2015, and
its successor, the Global PrecipitationMeasurement (GPM)mission,
has ushered in a new era of satellite precipitation measurement
(Tang et al., 2016). The GPM Core Observatory (GPMCO) is
equipped with a dual-frequency radar (Ku and Ka bands),
capable of detecting lower minimum echo intensities and
employing a high-sensitivity mode for staggered sampling (Hou
et al., 2014). Additionally, the microwave radiometer at the GPMCO
has four high-frequency channels, providing more accurate data for
light precipitation intensity and solid precipitation (Hou
et al., 2014).

Currently, there are relatively many studies on downscaling of
GPM IMERG precipitation datasets in humid areas (Ma et al., 2018;
Min et al., 2020; Yan et al., 2021a), but relatively few in arid and
semi-arid areas. The Inner Mongolia Reach of the Yellow River
Basin is located in an arid and semi-arid area, where the terrain is
diverse and complex, and precipitation exhibits distinct regional and
seasonal variations (Wang et al., 2023). In this study, we focused on
the Inner Mongolia Reach of the Yellow River Basin. We selected the
GPM IMERG precipitation dataset and used NDVI, elevation, slope,
aspect, and topographical relief as explanatory variables to construct
aMulti-Scale GeographicallyWeighted Regression (MGWR)model.
This model was used to generate precipitation data at a resolution of
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1 km at both monthly and annual scales for the years 2001–2019.
The resulting dataset offers essential support for meteorological and
hydrological research within the basin.

2 Materials and methods

2.1 Study area

The Inner Mongolia Reach of the Yellow River Basin is situated
in the upper reaches of the Yellow River (37°37′–41°50′N,
106°28′–112°50′E), covering a total area of approximately
149,029 km2. This accounts for about 18.63% of the total area of
the Yellow River Basin, with elevations ranging from 843 to 2,315 m
(Figure 1). The study area is located in an arid and semi-arid region,
characterized by drought and scarce rainfall, strong evaporation,
large diurnal temperature variations, and is typical of a mid-
temperate continental climate (Wang et al., 2023). It has an
annual average precipitation of 305 mm and an average annual
temperature of 6.5°C (Zhang et al., 2023). Annual average
Precipitation gradually decreases from east to west (Table 1). In
the basin, grasslands account for 74.20%, cultivated land for 18.95%,
and forests for 6.85% (Zhang et al., 2023).

2.2 Data preparation

2.2.1 GPM IMERG
IMERG is a new generation of multi-satellite combined

precipitation data introduced through the GPM program. It offer
three types of products (Early, Late, and Final) based on different
data inversion algorithms. The IMERG Final product is considered
more accurate owing to its incorporation of rain gauge data from the
Global Precipitation Climatology Centre (GPCC) (Wang et al.,
2017). The IMERG V06 integrates information from available
GPM and TMPA sensors. This integration involves mutual
calibration, merging, interpolation, and fusion to generate
consistent precipitation estimates from June 2000 to the present
(Yu et al., 2022). For this study, we selected IMERG V06 (IMERG_
Final) daily data for the period 2001–2019, which we obtained from
the official NASA website (https://www.nasa.gov/). This dataset has
a spatial resolution of 0.1 ° × 0.1 ° (approximately 11 km × 11 km),
and annual and monthly precipitation data were derived from the
daily dataset.

2.2.2 Environment variables
Shuttle Radar Topography Mission (SRTM) data, accessible at

http://www.gscloud.cn, were utilized to derive a Digital Elevation

FIGURE 1
Location of the Inner Mongolia Reach of the Yellow River Basin and the meteorological stations in the study area.
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Model (DEM) with a spatial resolution of 90 m × 90 m. Within
ArcGIS 10.7, topographic factors such as elevation, slope, aspect, and
topographical relief were extracted from the DEM data. NDVI data,
sourced from the Moderate Resolution Imaging Spectroradiometer
(MODIS) on the Terra satellite, were obtained from NASA at https://
ladsweb.modaps.eosdis.nasa.gov/. MOD13A3 monthly composite
NDVI data, with a spatial resolution of 1 km × 1 km, were used.
The MOD13A3 data underwent preprocessing using the MODIS
Reprojection Tool (MRT) software, and annual NDVI data were
derived was generated using a maximum value composite method. To
maintain consistency with the GPM IMERG precipitation dataset and
MGWR downscaling, NDVI, elevation, slope, aspect, and
topographical relief data were resampled to two spatial scales, 0.1°

and 1 km, in ArcGIS 10.7. This resampling was performed using the
cubic convolution method because it offers good smoothing
performance, detail preservation, and edge sharpening. Cubic
convolution yields more satisfactory results compared to the
Nearest Neighbor and Bilinear Interpolation methods (Molinaro
et al., 2005).

2.2.3 Rain gauge data
Meteorological station precipitation data from 2001 to

2019 were acquired from the China Meteorological Data
Network (http://data.cma.cn) to validate the accuracy of both the
original GPM IMERG precipitation data and the downscaled
precipitation data. A total of 24 meteorological stations were
chosen, with observed precipitation data having an accuracy of 0.
1 mm. Daily data from these stations were aggregated into monthly
and annual precipitation values. Basic information about these
stations is available in Table 1.

2.3 Methods

2.3.1 Multiscale geographically weighted
regression (MGWR)

The Multiscale Geographically Weighted Regression (MGWR)
model is a regional regression model, that is widely used to study
dynamic relationships between target and explanatory variables

TABLE 1 Basic information of meteorological stations in the study area.

Number Name Latitude (E°) longitude (N°) Elevation(m) Annual mean precipitation (mm)

1 Wuyuan 41.05 108.28 1023.3 177.9

2 Dayutai 41.01 109.08 1078.7 241.4

3 Guyang 41.02 110.03 1360.4 308.1

4 Wuchuan 41.05 111.28 1637.3 354.4

5 Dengkou 40.20 107.00 1055.3 143.9

6 Haggin Rear 40.51 107.07 1024.0 137.4

7 Urad Front 40.44 108.39 1020.4 219.8

8 Baotou 40.32 109.53 1004.7 301.0

9 Tumd Right 40.33 110.32 998.6 381.1

10 Dalad 40.24 110.02 1011.0 326.2

11 Hohhot 40.51 111.34 1153.5 418.2

12 Tumed Left 40.43 111.10 1042.7 402.3

13 Suburb of Hohhot 40.45 111.42 1045.4 405.4

14 Togtoh 40.15 111.15 1015.9 372.3

15 Zhuozi 40.52 112.34 1451.7 390.0

16 Liangcheng 40.31 112.28 1268.9 410.9

17 Ikwusu 40.03 107.50 1180.3 189.1

18 Etuoke 39.05 107.58 1381.4 284.4

19 haggin 39.49 108.43 1414.0 304.5

20 Dongsheng 39.50 109.59 1461.9 393.2

21 Ejin Horo 39.34 109.43 1367.0 375.7

22 Wushenzhao 39.06 109.02 1312.2 437.7

23 Jungar 39.52 111.13 1221.4 426.3

24 Qingshuihe 39.55 111.40 1208.0 437.4

Note: The annual mean precipitation is the annual mean precipitation during 2001–2019.
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(Fotheringham et al., 2017). It allows each explanatory variable to
vary at different spatial scales, facilitating the capture of spatial non-
stationarity relationships among them. The MGWR model is
expressed as follows:

Yi � β0 μi, ]i( ) +∑n

i�1βbwj μi, ]i( )Xij + εi (1)

where Yi represents the target variable; β0(μi, ]i) is the intercept; n is
the number of observation points; βbwj(μi, ]i) is the regression
coefficient for the jth variable at location i, with bwj being the
bandwidth used for calibrating the jth variable; Xij is the jth
explanatory variable; and εi is the error term. The regression
coefficient is calculated as follows (Noor et al., 2023):

β μi, ]i( ) � XT W μi, ]i( )X(( )−1 XTW μi, ]i( )Y( ) (2)

where β(μi, ]i) denotes the regression coefficient to be estimated at
the location (μi, ]i); X and Y represent the vectors of the explanatory
and target variables, respectively; andW(μi, ]i) is the weight matrix.

Based on previous studies, the adaptive bi-square was chosen to
solve the weight matrix, with the AICc (corrected Akaike
information criterion) as the bandwidth selection criterion, and
the golden section search method was used to determine the
bandwidth (Chao et al., 2018; Arshad et al., 2021). All processes
were conducted using MGWR 2.2 software. The formula for the
adaptive bi-square is as follows:

wij � 1 − d2
ij

θi k( )
( )

2

, dij < θi k( )

0, dij > θi k( )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3)

FIGURE 2
Flowchart of GPM IMERG downscaling process.

Frontiers in Environmental Science frontiersin.org05

Tu and Duan 10.3389/fenvs.2024.1389587

46

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1389587


where wij represents the weight of the jth observation point for
estimating the coefficient at location i; dij represents the Euclidean
distance between the jth and ith points; and θi(k) represents the size
of the adaptive bandwidth for the kth nearest neighbor distance,
determined by the AICc.

2.3.2 Precipitation downscaling process based
on MGWR

Previous research indicates that NDVI, elevation, slope, aspect,
and topographical relief are important factors influencing
precipitation (Wang et al., 2022; Bai et al., 2023). Considering
the spatial non-stationarity between precipitation and factors
such as vegetation and topography, and the considerable scale
differences in the spatial impact of NDVI, elevation, slope,
aspect, and ruggedness on precipitation, this study used the
MGWR model to downscale the GPM IMERG precipitation
dataset at both monthly and annual scales. The specific steps
were as follows (Figure 2):

(1) Data preparation: Environmental variables with spatial
resolutions of 0.1° and 1 km, as well as the original GPM
IMERG precipitation data at a resolution of 0.1°, were
prepared. The GPM IMERG data spanned the period from
January 2001 to December 2019, and was summarized at both
monthly and annual scales. Environmental variables included
NDVI, elevation, slope, aspect, and topographical relief, with
NDVI aligned with the temporal scale of the GPM IMERG
precipitation data.

(2) MGWRmodel establishment: Duan et al. have found that the
lag time of vegetation response to precipitation in the study
area is approximately 10 days (Duan et al., 2019). Therefore,
at a monthly scale, the current month’s NDVI data was
selected as the explanatory variable for the monthly
precipitation scale model. At monthly and annual time
scales, the GPM IMERG data with a resolution of 0.1°

were used as the target variable, and NDVI, elevation,
slope, aspect, and topographical relief of the same
resolution and time scale were used as explanatory
variables. The MGWR model was constructed at monthly
and annual scales to obtain the regression coefficients
β(μi, ]i), intercept term β0(μi, ]i), and residuals εi for each
explanatory variable at these scales. MGWR 2.2 software was
used to establish the MGWR model.

(3) Parameter interpolation: Using the Kriging method,
intercepts, slopes, and regression residuals from step (2)
were interpolated. This yielded high-resolution (1 km)
raster data of regression coefficients, intercept terms, and
residuals at monthly and annual scales.

(4) Downscaling completion: Based on Eq. 1, monthly and
annual precipitation values at a 1 km resolution were
obtained after downscaling using the MGWR model.

2.3.3 Simulation accuracy assessment
Using the MGWR downscaling approach outlined in Section

2.3.2, downscaled GPM IMERG data for the years 2001–2019 were
generated. The accuracy of the downscaled results (1 km) and the
original GPM IMERG precipitation data (0.1°) at annual and
monthly scales was validated using observed data from

24 meteorological stations in the study area. Three
indicators—correlation coefficient (R), Bias, and root mean
square error (RMSE)—were employed for the validation (Wang
et al., 2022), with the following formulas:

R � ∑n
i Mi − �M( ) Pi − �P( )�������������������

∑n
i Mi − �M( )2 Pi − �P( )2

√ (4)

Bias � ∑n
i Pi

∑n
i Mi

− 1 (5)

RMSE �
�����������
∑n

i Pi −Mi( )2
n

√
(6)

WhereMi (mm) and �M (mm) represent the measured precipitation
amount and its average value corresponding to the meteorological
station, respectively; Pi and �P (mm) represent the original or
downscaled GPM IMERG precipitation raster value and its
average value corresponding to the meteorological station,
respectively; n is the number of meteorological stations.

3 Results

3.1 Accuracy of downscaled GPM IMERG
precipitation

Observed precipitation from 24 meteorological stations in the
study area for the period 2001–2019 were used to validate the GPM
IMERG precipitation data that were downscaled using the MGWR
method. Figures 3, 4 represent the validation results of annual and
monthly downscaled and original precipitation, respectively.

The accuracy of annual precipitation from 2001 to 2019 is
shown in Figure 3 The accuracies of the downscaled precipitation
are better than that of the original precipitation. The annual trends
of three accuracy indicators for the original GPM IMERG and the
downscaled precipitation data were consistent (Figure 3). Overall,
on an annual scale, the downscaled data maintained a certain level of
accuracy while providing an improved reflection of the distribution
of precipitation in the study area. The correlation coefficient of the
downscaled annual precipitation varied from 0.648 to 0.937, with an
average of 0.843, indicating good correlation between the annual
downscaled precipitation and the measured data from the
meteorological stations. The Bias varied from −0.219 to 0.177,
with an average of 0.059. Except for the year 2013, the Bias was
less than 0.2, and Bias values were mostly positive, suggesting that
the simulated annual precipitation was generally overestimated
compared to the measured data from the meteorological stations.
The RMSE ranged from 45.53 mm to 99.88 mm, with an average
of 66.33 mm.

As shown in Figure 4, at a monthly scale, the trends of the three
accuracy indicators for both the original GPM IMERG and the
downscaled precipitation remained consistent. Overall, the accuracy
of the downscaled precipitation was greater than that of the original
precipitation from February to November. However, from
December to the following January, the accuracy of the
downscaled precipitation was lower than that of the original
GPM IMERG. The correlation coefficient for the downscaled
precipitation ranged from 0.552 to 0.932, with an average of
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0.758. Precipitation estimation accuracy in spring and autumn was
higher than that in summer and winter. This was attributed to
higher amount of precipitation in summer and the predominance of
snowfall in winter. The Bias was positive from April to October,
peaking in August (0.134), and negative from November to March,
reaching its lowest value in January (−0.538). This suggested that
increased vegetation growth and precipitation contribute to an
overestimation of monthly downscaled precipitation results. The
RMSE exhibited a unimodal variation pattern correlated with the
amount of monthly precipitation, ranging from 1.075 mm to
31.333 mm, with an average of 12.528 mm.

3.2 Downscaling results of GPM IMERG
precipitation datasets

Figures 5, 6 present a comparison of the spatial distribution of
annual and monthly average precipitation in the study area from
2001 to 2019, before and after downscaling. Downscaling using the
MGWR model considerably improved the spatial resolution of the
annual and monthly average GPM IMERG images compared to the

original GPM IMERG images. While the spatial distribution
remained consistent before and after downscaling, the
representation of precipitation distribution became more refined
post-downscaling. The multi-year average precipitation
demonstrated a decreasing trend from the southeast to the
northwest of the study area. Multi-year average precipitation
ranged from 145.4 to 475.4 mm before downscaling and from
138.8 to 481.3 mm after downscaling. Compared to the original
GPM IMERG data, the range of the downscaling simulation results
increased. While enhancing the spatial resolution, the precipitation
information became more comprehensive. The maximum monthly
average precipitation occurred in July, and the minimum in January.
The spatial distribution trends of monthly average precipitation and
annual average precipitation are consistent.

3.3 Analysis of variable effect scale based on
the MGWR model

To investigate scale differences in the impact of terrain and
vegetation factors on the spatial distribution of precipitation at an

FIGURE 3
Correlation coefficient (R) (A), Bias (B), and root mean squared error (RMSE) (C) of the observed and downscaled annual precipitation from 2001 to
2019. D represents the downscaled precipitation and O denotes the original GPM IMERG precipitation, similarly hereinafter.

FIGURE 4
Correlation coefficient (R), Bias, and root mean squared error (RMSE) values between measured precipitation and monthly precipitation from
2001 to 2019 before and after Downscaling.
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annual scale, this study selected the years 2005 and 2016 as typical
dry and wet years, respectively. The bandwidths in the MGWR
model were used to understand the range of influence of terrain and
vegetation factors in each typical year. Smaller bandwidths indicated
that the variable had a more localized influence on precipitation,
designating it as a local influencing factor, whereas larger
bandwidths suggested that the variable had a regional influence,
designating it as a regional influencing factor (Fotheringham et al.,
2017). Table 2 presents the bandwidth sizes of each variable obtained
from the MGWR model, revealing relatively small differences in the
scale of impact of variables in the dry year and comparatively larger
differences in the wet year. However, variables in each typical year
demonstrated localized impacts. Overall, precipitation in the Inner
Mongolia Reach of the Yellow River Basin exhibited considerable
spatial variation across different terrain and vegetation
cover intervals.

Regression coefficients indicate the extent of the impact of
vegetation and terrain factors on the spatial distribution of
precipitation. The trend of the regression coefficients (RC) of
variables in each typical year was generally consistent (Figure 7).
In dry and wet years, The areas in which NDVI had a positive effect
on the spatial variation in annual precipitation accounted for 59.73%
and 61.88% of the total area in the dry and wet years, respectively.
The positive effect of NDVI on annual precipitation was greater in
wet years than in dry years. This was because the presence of ample
soil moisture in wet years allowed plants to absorb more water from
the soil and release it into the atmosphere through their leaves,
increasing the atmospheric moisture content and promoting
precipitation (Vicente-Serrano et al., 2013). In dry years, areas
where topographical relief, aspect, and slope had a positive effect
on the spatial variation in annual precipitation accounted for
68.05%, 50.40%, and 53.96% of the total area, respectively. In wet
years, these areas where topographical relief, aspect, and slope
positively influenced the spatial variation in annual precipitation
accounted for 68.93%, 55.77%, and 69.53% of the total area,

respectively. Elevation primarily exerted a negative effect on the
spatial variation of annual precipitation, affecting 86.38% and
84.43% of the total area in dry and wet years, respectively. As
elevation, topographical relief, and slope increased, their impact on
annual precipitation gradually diminished due to the weakening
distribution of spatial precipitation influenced by terrain on the
transport and vertical movement of atmospheric moisture (Sokol
and Bliznák, 2009).

Utilizing the absolute values of standardized regression
coefficients to identify the primary factors influencing spatial
precipitation differences, Figure 8 illustrates that, irrespective of
dry or wet years, elevation emerges as the predominant factor in
shaping precipitation variations in the Inner Mongolia Reach of the
Yellow River Basin, encompassing approximately 50% of
the basin area.

4 Discussion

The downscaled simulation data, generated through the MGWR
model, were consistent with the GPM IMERG data in terms of
spatial distribution of precipitation and exhibited improved spatial
resolution and more detailed precipitation information. This is in
agreement with the findings of Arshad et al., who employed the
MGWR model for downscaling TRMM data in the Indus Basin
(Arshad et al., 2021). However, at the monthly scale, the accuracy of
some of the downscaled precipitation data was lower than that of the
GPM IMERG data. Arshad et al. used the Geographically Weighted
Regression Disaggregation Approach (GDA) to implement
corrections based on meteorological station data for downscaled
data with lower accuracy than the original data, and the accuracy of
the resulting downscaled data was superior to that of the original
data (Arshad et al., 2021). In the InnerMongolia Reach of the Yellow
River Basin, the scarcity of meteorological station data and difficulty
in obtaining this data have precluded the possibility of interpolation

FIGURE 5
Spatial distributions of the (A) original and (B) downscaled mean annual precipitation from 2001 to 2019.
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corrections based on meteorological station data for downscaled
simulation data. This highlights the fact that the accuracy of
downscaled data obtained only through linear downscaling may
not consistently be superior to that of the original data. Therefore,
the development of new downscaling algorithms is imperative to

obtain more accurate and reliable precipitation datasets at high
spatial resolution.

The selection of appropriate explanatory variables plays a crucial
role in the precipitation downscaling process and the performance
of the MGWR model. In this study, five explanatory variables were

FIGURE 6
Spatial distributions of the (O) original and (D) downscaled mean monthly precipitation from 2001 to 2019.
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TABLE 2 Differences in factor bandwidths in MGWR.

Variable Total bandwidth
MGWR

NDVI Topographical relief Aspect Slope Elevation

Dry year (2005)
1490

43 47 47 70 43

Wet year (2016) 44 70 99 154 43

FIGURE 7
Variation patterns of regression coefficients of each variable with respect to the variables in typical years.

FIGURE 8
Proportion of Variable Impacts on Precipitation in the MGWR Model. TR represents topographical relief.
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chosen for precipitation downscaling: NDVI, elevation, slope,
aspect, and topographical relief. These variables were selected
based on their regional importance and overall influence on the
spatial variation in precipitation (Lu et al., 2020). The five chosen
explanatory variables are commonly employed in precipitation
downscaling studies across various global basins (Chen et al.,
2014; Zhang et al., 2017; Zhang et al., 2018). It is noteworthy
that additional environmental variables, such as surface
characteristics (soil moisture and evapotranspiration) (Chen
et al., 2019; Yan et al., 2021b) and meteorological factors
(temperature, humidity, radiation, atmospheric circulation, and
cloud cover) (Arshad et al., 2021) can impact the spatial
distribution of precipitation. Future studies should consider
incorporating these environmental variables to further assess the
downscaling performance of precipitation.

5 Conclusion

Analysis of the spatial distribution of data before and after
downscaling indicated that the detailed features were better
represented post-downscaling. Following downscaling, the GPM
IMERG precipitation dataset exhibited a relative increase in
correlation coefficient, Bias, and RMSE when compared to the
values calculated from the measured precipitation data. Overall,
the accuracy of the data after downscaling was somewhat enhanced
and the data reflected the actual precipitation information and
distribution patterns across various time scales in the study area
with greater accuracy.

The MGWR model adopted different bandwidths for different
variables, thereby demonstrating the varying scale of influence of
different factors. The findings of this study indicate that the patterns
of spatial variation in both dry and wet years in the Inner Mongolia
Reach of the Yellow River Basin are determined by multiple spatial
scale processes of several variable factors. The impact of NDVI,
elevation, aspect, slope, and topographical relief displayed a localized
effect on precipitation in both wet and dry years. The MGWR
regression results highlighted elevation as the primary factor
influencing the spatial differentiation of precipitation in both wet
and dry years.

In summary, for the GPM IMERG precipitation dataset, the
application of the MGWR model enhances the spatial resolution
of precipitation data, revealing more detailed features. It also
ensures the consistency of data accuracy and spatial distribution.
This can provide a relatively reliable high-resolution
precipitation dataset for drought monitoring, hydrological
modeling, and water resource management in the Inner
Mongolia Reach of the Yellow River Basin.
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Introduction: With global warming, the disaster losses caused by extreme
precipitation events are increasing. The poor natural conditions and climate
change make the arid and semi-arid mountainous grassland area a sensitive
region of climate change. The study on the spatio-temporal variation
characteristics of extreme precipitation events in this region is helpful to
improve the ability of climate prediction and disaster prevention and
reduction in grassland.

Methods: Based on the daily precipitation data of fourmeteorological monitoring
stations in the Yinshanbeilu from 1970 to 2020, the trend analysis, M-K test and
wavelet analysis were used to select seven typical extreme precipitation
indicators to analyze the temporal and spatial characteristics of extreme
precipitation.

Results and Discussion: The results showed that the precipitation in the
Yinshanbeilu increased in the past 51a, and the number of heavy rain days
increased significantly. The significance test of CDD and CWD showed that
the number of continuous dry days and continuous wet days decreased
abruptly. The spatial analysis showed that the high value areas of R95p, R95d
and PRCRTOTwere all located in Siziwang Banner, and it could be concluded that
the extreme precipitation risk was the highest in Siziwang Banner, while the low
value areas of SDII, Rx1day, R95p and PRCRTOT were all located in Sonid Right
Banner, which could be inferred that the Sonid Right Banner was relatively dry.
The first main cycle of the seven indexes of extreme precipitation almost runs
through the whole time series, and the starting point of the minimummain cycle
changes inconsistent. In addition to the number of consecutive dry days, the
other indices have a good correlation with annual precipitation, flood season and
monthly precipitation from June to September, and July is the peak period of
extreme precipitation events.

KEYWORDS

extreme precipitation, arid and semi-arid regions, Yinshanbeilu, wavelet analysis,
M-K test
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1 Introduction

Precipitation is an important source of water resources (Wang et al.,
2023). Extreme precipitation occurs when the precipitation intensity
exceeds a given threshold or percentile (Li et al., 2024). Extreme
precipitation events are projected to occur more frequently under
climate change (Cardoso Pereira et al., 2020; Tradowsky et al., 2023).
This increase in extreme precipitation may lead to serious natural
disasters such as urban waterlogging and flash floods, especially in
arid areas (Abd-Elaty et al., 2023). The increase in the frequency of
extreme precipitation poses a huge threat to the safety of life and
property on a global and regional scale. (Zia et al., 2023). Therefore,
by studying extreme precipitation events, we can better understand the
supply and demand of water resources and formulate effective water
resources management strategies. it is of great significance in regional
flood prevention and disaster reduction (Mashao et al., 2023).

In recent years, researchers have used trend, abrupt change, and
period algorithms to analyze extreme precipitation events in various
regions. Research and explore the spatiotemporal changes of
extreme precipitation index, summarize its changing rules, and
improve local capabilities to cope with extreme precipitation
(Zhao et al., 2024). For example, Chaubey et al. (2022) found
that the frequency of heavy precipitation in mid-latitude areas
has generally increased in the past 50–100 years Yang et al.
(2024) analyzed the spatiotemporal characteristics of precipitation
use efficiency (PUE) from 2001 to 2021 and studied climate driving
factors. The climate driving force analysis showed that the regional
contribution of precipitation was 19.57%. Wu et al. (2021) Based on
weather station data in the middle and lower reaches of the Yangtze
River from 1970 to 2018, the spatial and temporal distribution of
11 extreme precipitation indices was analyzed, and it was found that
most of the mutations in extreme precipitation indices occurred in
the 1980s and 1990s. In the globe, there is an increasing trend in the
probability of extreme precipitation events, with a significant rise in
the total amount of extreme precipitation. Moreover, tropical
regions experience the highest frequency of extreme precipitation
events (Alexander et al., 2006; Asadieh et al., 2014). Additionally,
regions exhibiting a significant increase in extreme precipitation
volume, intensity, and frequency outnumber those showing a
decreasing trend (Donat et al., 2013). On an intercontinental
scale, previous studies indicate extreme variability in precipitation
levels, albeit lacking spatial consistency. Extreme precipitation in
North America is on the rise (Peterson et al., 2008), while in Central
and Western Africa, it is declining (Aguilar et al., 2009).
Corresponding to global trends, China is witnessing an upward
trend in the frequency and intensity of extreme precipitation events.
From the 1960s to the 1980s, precipitation totals in China showed an
upward trend, but have been declining since the 1980s (Peng et al.,
2020). Regional studies, including those of the Yangtze River Basin
and Northeast China, demonstrate the most pronounced positive
trends (Wang et al., 2011).

The Yinshanbeilu in Inner Mongolia is not only the transition zone
from Yinshan Mountain to the Mongolian Plateau, but also the
transition area from a semi-arid to arid climate (WANG et al., 2005).
The region serves as an extremely important functional area for
windbreak, sand fixation, and biodiversity protection. Its ecosystem is
fragile and highly sensitive to changes in precipitation. In recent years,
extreme precipitation events have occurred frequently in this region,

which are accompanied by flood events and have brought great
challenges to the ecological security of the region. In this study, we
applied precipitation data (1970–2020) from four regional rainfall
stations in the grassland area at the Yinshanbeilu, i.e., Urad Middle
Banner, Siziwang Banner, Damao Banner, and Sonid Right Banner. The
investigation applied trend analysis, Kriging interpolation, M-K abrupt
change analysis, wavelet transform, and correlation analyses to assess the
spatiotemporal transformation characteristics, abrupt change
characteristics, and periodic characteristics of the seven extreme
precipitation indices in the study area. The results of this study may
be applied to support the description of universally applicable rules,
improve our ability to tackle extreme precipitation, and provide a
reference for human and ecological protection, disaster early warning,
and climate change.

2 Study area

Yinshanbeilu grassland area of Yinshan Mountain
(107°25′E −114°26′E, 41°18′N −43°76′N) is located in the north-
central region of Inner Mongolia (Figure 1). It is the transition zone
between Yinshan Mountain and the Mongolian Plateau. It has a mid-
temperate semi-arid continental monsoon climate, with large
temperature differences between winter and summer and between
day and night. Meteorological data from four weather stations in the
statistical study area from 1970 to 2020 were obtained the multi-year
average precipitation is 284 mm, mainly concentrated from July to
September, and the multi-year average evaporation is 2,305 mm. The
annual average temperature is 2.5°C, the annual average sunshine hours
are 3,100 h, and the frost-free period is 83 d. The annual average wind
speed is 4.5 m·s−1, with northerly and northwesterly winds prevailing in
winter and spring. The annual number of windy days is 63, and the
number of sandstorm days is 20–25 (Yang et al., 2024).

3 Data and methods

3.1 Data

Complete daily precipitation data for a total of 51 years
(1970–2020) were used in this study. The data were retrieved
from four national weather stations (https://data.cma.cn/) located
in Urad Middle Banner, Siziwang Banner, Damao Banner, and
Sonid Right Banner in Inner Mongolia (Figure 1).

The World Meteorological Organization (WMO) Expert Team on
Climate Change Detection Monitoring and Indices (ETCCDMI)
recommended 27 core indices (https://community.wmo.int/en/
climate-change-detection-and-indices) to define the extreme
precipitation index (Booth et al., 2012; Indices, 2019). Table 1
describes the seven extreme precipitation indices selected to
quantitatively analyze the extreme precipitation characteristics in the
study area. To calculate the heavy precipitation threshold and extremely
heavy precipitation threshold, we first arranged the daily precipitation
data (Daily precipitation≥1 mm) from 1970 to 2020 in ascending order
(x1, x2, x3, . . . , xn) and then calculated the probability of a certain
value ≥ xm. The calculation formula was as follows (Bonsal et al., 2001):
P � m − 0.31n + 0.38, where n is the number of precipitation
data points.
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3.2 Research methods

We applied the linear trend analysis method with a 10a moving
average to analyze the time series of each extreme precipitation
index year by year from 1970 to 2020. Mann–Kendall (M-K) abrupt
change analysis and sliding T-test were applied to analyze the abrupt
change characteristics of each extreme precipitation index time
series (Li et al., 2020). The wavelet analysis method was used to
study the periodicity of each extreme precipitation index
(Rathinasamy et al., 2019). Correlation analysis was conducted
using Origin software and correlation heat maps were produced
using Kriging in the spatial analysis module of ArcGIS 10.7.

3.2.1 M-K test
TheM-K test was used to analyze the abrupt change characteristics

of each extreme precipitation index (Sa’adi et al., 2019). TheM-K test is
a widely used non-parametric test method in time series trend analysis.

The null hypothesis H0 is a time series (x1,/, xn), which is n
independent samples with the same distribution of random
variables, and there is no certain upward or downward trend. The
M-K test calculated UF and UB for each time series and its reverse
series. A sequence of one rank is constructed for a long sequence of n
samples as follows: for calculation methods, see Eqs 1 and 2

Sk � ∑k

i�1mi
n!

r! n − r( )! (1)

UFK � Sk − E Sk( )| |������
var Sk( )√ , k � 1, 2,/, n (2)

where Sk is the cumulative number of cases in which xi exceeded
xj(1< j< i). When k = 1, UF1 � 0, where E(Sk) is the mean value
of Sk. We calculated UBK using the same process in reverse time
series and make UBK � −UFK(k � n, k � n − 1 . . . , 1). When
k � 1, UB1 � 0. For a significance level of α = 0.05, the critical
value U0.05 � ± 1.96.

FIGURE 1
Study area location and site distribution map.

TABLE 1 Description of the seven extreme precipitation indices applied in this study.

Name Abbreviation Definition Unit

Total annual precipitation PRCPTOT Sum of daily precipitation in the year ≥1 mm mm

Precipitation intensity SDII Ratio of total annual precipitation to number of precipitation days mm·d−1

Extreme precipitation R95p Annual daily precipitation > sum of 95th percentile precipitation mm

Extreme precipitation days R95d Annual daily precipitation >95th percentile number of precipitation days d

Maximum daily precipitation Rx1day Maximum daily precipitation per year (or month) mm

Consecutive dry days CDD The number of consecutive days with daily precipitation <1 mm d

Consecutive wet days CWD The number of consecutive days with daily precipitation ≥1 mm d

Frontiers in Environmental Science frontiersin.org03

Li et al. 10.3389/fenvs.2024.1403490

56

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1403490


A value of UF > 0 indicates that the variable is increasing, while
UF < 0 indicates that the variable is decreasing. A UF line and UB
line exceeding the critical straight line indicates that this upward or
downward trend is statistically significant. If the curves of UF and
UB intersect, and the intersection is positioned between the two
critical lines, then the moment corresponding to the intersection
indicates the time when the abrupt change begins, described in this
study as the abrupt change year.

3.2.2 Wavelet analysis
The wavelet analysis method was selected to study the periodicity of

each extreme precipitation index (Beecham and Chowdhury, 2010).
Each extreme precipitation index is represented by a cluster of wavelet
function systems to reveal the multiple changing trends and periods
present in the time series. The following equation was used to calculate
the wavelet coefficient: See Eq. 3 for calculation method

Wf a, b( ) � 1��
a

√ ∫
∞

−∞
f t( )Ψ* t − b

a
( )dt (3)

whereWf(a, b) is the wavelet coefficient, a is the scale factor, which
determines the wavelet width; b is the translation factor, which
reflects the parameter of the wavelet position movement; and Ψ* is
the complex total function.

The real-part coefficients of the wavelet were obtained from
wavelet analysis using MATLAB software, and Origin drawing
software was used to draw the real-part contour map of the
wavelet coefficients. The isoline diagram of the real part of the
wavelet coefficient can be used to reflect the periodic changes of the
time series at different time scales and its distribution.

4 Results

4.1 Extreme precipitation index changes

The interannual variation diagram and statistical table of the
extreme precipitation indices in various regions at the Yinshanbeilu
during 1970–2020 are shown in Figure 2 and Table 2, respectively.
The 10a moving average curve indicates that there was a general
increasing trend in precipitation intensity (SDII) in the study area,
with a non-significant change rate of 0.08 mm·d−1·(10a)−1 (Figure 2).
There was a rapid decrease in SDII in the early 1980s, with the
minimum value (i.e., 2.6 mm·d−1) occurring in 1982. The SDII was
relatively stable until the early 1990s, and it showed a V-shaped
fluctuation change from 1990 to 2010. The maximum 1-day
precipitation (RX1day) demonstrated a fluctuating upward trend,
with a change rate of 0.87 mm·(10a)−1. The 10a moving average

FIGURE 2
Interannual changes in extreme precipitation indices in the grassland area at Yinshanbeilu during 1970–2020.
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RX1day continued to decline from the 1980s to the 2010s, reaching a
minimum value of 17.96 mm in 2009, followed by a rapid
increasing trend.

During the study period, both the number of consecutive wet
days (CWD) and the number of consecutive dry days (CDD)
showed a decreasing trend, which reached the 0.05 significance
level. The CDD decreased at a rapid rate, with an average decrease of
3.2 d every 10 years. The maximum CWD (5.77 d) occurred in 2003,
and the minimum (3 d) occurred in 1997. The maximum CDD
(100.84 d) occurred in 2001 and the minimum of 24.56 d occurred
in 1991. Extreme precipitation (R95p) increased slowly at a rate of
1.27 mm·(10a)−1, where the maximum (141.52 mm) and minimum
(47.91 mm) values occurred in 1979 and 2009, respectively. The
change rate of extreme precipitation days (R95d) in the past 50 years
was 0, with a maximum value of 5.12 d in 2003 and a minimum
value of 3.05 d in 1974. The annual total precipitation (PRCPTOT)
showed an upward trend from 1961 to 2010, with a change rate of
7.1 mm·(10a)−1. Its maximum (378.77 mm) and minimum
(152.82 mm) values occurred in 2003 and 2005, respectively.

Overall, although SDII, RX1day, R95p, and PRCPTOT
changed at different rates, they all showed an increasing trend.
This indicates that, under the general trend of global warming
during the study period, precipitation generally showed an
increasing trend at the Yinshanbeilu in the northern arid area.
The number of heavy rain days increased significantly and the
overall climate gradually became humid. This is consistent with a
previous report on the changing trends of extreme precipitation
events in the arid areas in the northwestern China during
1960–2010 (Wang et al., 2023).

4.2 Spatial distribution

The average extreme precipitation indices of the four stations in the
grassland area at Yinshanbeilu were calculated from 1970 to 2020. The
Kriging interpolation method in ArcGIS software was used for spatial
interpolation. The spatial distribution characteristics of each extreme
precipitation index were obtained, as shown in Figure 3.

TABLE 2 Statistics of extreme precipitation indices in the grassland area at Yinshanbeilu during 1970–2020.

SDII (mm·d−1) Rx1day (mm) CWD (da) CDD (da) R95p (mm) R95d (d) PRCPTOT (mm)

Max 5.35 60.2 5.77 100.84 141.52 5.12 378.77

Min 2.6 17.96 3 24.56 47.91 3.05 155.82

Rate of change (10 a)−1 0.08 0.87 −0.15 −3.2 1.27 0 7.1

ap < 0.05 indicates significant level.

FIGURE 3
Spatial distribution of extreme precipitation index at Yinshanbeilu during 1970–2020.
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The extreme precipitation indices SDII and Rx1day in the study
area showed a gradually decreasing trend from southwest to
northeast. The maximum CWD and CDD values were observed
in Damao Banner (5.14 d) and Urad Middle Banner (49.39 d),
respectively. The minimum CWD and CDD values were both
observed in Siziwang Banner, at 4.02 d and 33.10 d, respectively.
The maximum R95p, R95d, and PRCRTOT values were observed in
Siziwang Banner, with values of 107.17 mm, 4.07 d and 310.14 mm,
respectively. The minimum R95p (70.42 mm) and PRCRTOT
(201.85 mm) values were observed in Sonid Right Banner. The
low value area of R95d (2.80 d) occurred in the UradMiddle Banner.

Combined with the spatial distribution map, the highest values
of R95p, R95d, and PRCRTOT all occurred in Siziwang Banner. This

indicates that Siziwang Banner has the highest risk of extreme
precipitation. The minimum SDII, Rx1day, R95p, and PRCRTOT
values all occurred in Sonid Right Banner, indicating that Sonid
Right Banner has a low precipitation level and is relatively dry. The
extreme precipitation indices show significant spatial differences
across the study area, with the risk of extreme precipitation
significantly greater in the southeast than in the northwest.

4.3 Abrupt change analysis

Using the M-K test method, we conducted an abrupt change
analysis for extreme precipitation indices in the grassland area at

FIGURE 4
M-K mutation trend of extreme precipitation index in the grassland area at Yinshanbeilu from 1970 to 2020 (UF (Upward Fluctuation) and UB
(Downward Fluctuation) curve distributions represent the changes in upward and downward trends in time series data).
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Yinshanbeilu during 1970–2020 (Figure 4), with a significance level
of 0.05. The UF curves of CWD and CDD (Figure 4) exceed the
critical line and UF < 0. Other indices only exceed the critical line for
a few years and UF > 0, indicating a clear downward trend in the
regional precipitation intensity and the number of continuous
precipitation days. The other indices show a non-significant
upward trend.

The UB and UF curves of each extreme precipitation index have
intersection points and are within the confidence interval (Figure 4),
indicating that the precipitation index has experienced multiple
abrupt changes over the study period. The abrupt change points of
CDD, R95d, and PRCPTOT were all in the 20th century.
Comparative analysis combined with the sliding T-test showed
that the abrupt change point of SDII appeared in 2012, and that
of R95d appeared in 1994, indicating that the precipitation intensity
and the number of extreme precipitation days in the grassland area
at Yinshanbeilu suddenly increased. Both passed the significance
test, but there was no clear abrupt change. The abrupt changes in
CDD and CWD occurred in 1993 and 1979, respectively. They
reached significant levels and the abrupt changes were evident,
indicating that the number of consecutive dry and consecutive
wet days suddenly decreased. The remaining two extreme
precipitation indices showed no significant abrupt change points.

4.4 Wavelet analysis

With the help of the Wavelet Analyzer tool in MATLAB 2018a
and origin-assisted mapping, the contour maps of the real part of
the wavelet coefficient of the 51-year extreme precipitation index
in the Yinshanbeilu are generated. From cold to warm colors, it
represents the increase in the fingertip precipitation index. The
periods of wavelet analysis of each index are shown in Table 3. The
cyclical characteristics of the extreme precipitation index series
are analyzed (Figure 5). The SDII, CWD, CDD, R95p, and
PRCPTOT indices contain four periods: Rx1day has three
periods, and R95d has one period. The first main period of the
seven indices was 55–56 a, which shows clear cyclical changes of
abundance and drought. The average length of the four SDII
periods were 25 a, 18 a, 24 a, and 5 a. In the entire time series, the
first and second main periods were relatively regular and
prominent, the third main period was not prominent, and the
fourth main period began after 1985 (Figure 5A). The three

average periods of Rx1day were 31 a, 5 a, and 17 a, with clear
changes in the first and third periods. The average periods of
CWD were 33 a, 23 a, 8 a and 4 a. The third and fourth main
periods showed evident patterns after 2013 and 1978, respectively.
The average periods of CDD were 30 a, 12 a, 24 a, and 6 a. Except
for the first main period, the changes in other periods were not
evident. The average periods of R95p were 35 a, 19 a, 23 a, and 4 a,
and the average periods of PRCPTOT were 36 a, 20 a, 23 a, and 4 a.
The period changes of these two indicators were basically the
same. The period of R95p changed significantly throughout the
time series. The fourth main period of PRCPTOT changed
significantly after 1998. The R95d index contained only one
main period, corresponding to an average period of 32 d, and
the change was significant. In general, the average period
corresponding to the first main period of the seven indices of
extreme precipitation had two main variation ranges: 25 a and
30–36 a, and this period continued through almost the entire time
series. The average period corresponding to the minimum main
period was 4–6 a. In addition, we found that the starting point of
each index changes inconsistently and was regional.

4.5 Correlation between extreme
precipitation indices and multi-scale
precipitation

Figure 6 shows a correlation heat map based on correlation
analysis and calculation of each extreme precipitation index and the
total precipitation at each scale. Overall, except for CDD, good
correlations were observed between the extreme precipitation
indices and the annual precipitation, flood season, and monthly
precipitation from June to September. There was a strong positive
correlation between PRCPTOT and the total precipitation in the
flood season, indicating that the precipitation in the flood season had
a significant indicative effect on the annual precipitation. This
indicates that the precipitation in the flood season has a decisive
role in the intensity of annual precipitation, and extreme
precipitation between June and September in the flood season.
The total annual precipitation showed a strong positive
correlation with SDII and R95p, and a positive correlation with
Rx1day and R95d, indicating a significant impact of these indices on
annual precipitation. By comparing the correlation between various
extreme precipitation indices and precipitation in the flood and the

TABLE 3 Cyclical variation characteristics of extreme precipitation indices in the grassland area at Yinshanbeilu during 1970–2020.

Index First main period (Year) Secondmain period (Year) Thirdmain period (Year) Fourth main period
(Year)

SDII (mm·d−1) 55 30 43 7

Rx1day (mm) 55 8 29 –

CWD (d*) 55 35 13 6

CDD (d*) 56 19 30 10

R95p (mm) 56 30 44 6

R95d (d) 55 – – –

PRCPTOT (mm) 55 31 44 7
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non-flood seasons, we observed strong correlations between the
extreme precipitation indices and flood season precipitation.
Further correlation analyses on precipitation from June to
September during the flood season revealed that the correlations

with extreme precipitation indices in July during the entire flood
season were stronger than in other months. This indicates that July is
the main month associated with high occurrence of extreme
precipitation events in the study area.

FIGURE 5
Contour map of the real part of the wavelet coefficient of extreme precipitation index in the grassland area at Yinshanbeilu.
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5 Discussion

In this study, we found that the R95p index in the desert
grassland area at Yinshanbeilu in Inner Mongolia increased
slowly at a rate of 1.27 mm·(10a)−1 from 1970 to 2020,
whereas the change rate of R95d in the past 50 years was 0.
Although SDII, RX1day, R95p, and PRCPTOT demonstrated
changes at different rates, they all showed an increasing trend,
which was opposite to the extreme precipitation indices changes
in the northern semi-arid area during 1961–2010 (Xu et al.,
2021). The characteristics of regional precipitation changes
may be influenced by the unique cyclical nature of each
atmospheric circulation (Li et al., 2015). Li et al. (2015) found
that the change in precipitation in Inner Mongolia has a strong
relationship with the Northern boundary of WASMR, which
moved southward because of the enhanced westerlies, and that
the regional precipitation cycles may be influenced by their own
periods of NAO and PDO. This might be due to the local
characteristics of extreme precipitation, which can present
major differences in spatial distribution within a region. Since
our study was limited by the number of sites, the spatial
distribution characteristics described are somewhat different
from those in large-area studies (Gvoždíková et al., 2019). Our
findings reflect the situation that the global warming trend is still
intensifying, causing the acceleration in water cycle process. It

also indicates that extreme precipitation in the grassland basin
might continue to increase in the future.

Precipitation is directly affected by the atmospheric circulation and
the water vapor supply in the source area (Gimeno et al., 2020; Peng
et al., 2020). Through abrupt change test analysis, we found that CWD
and CDD suddenly declined in 1979 and 1993, respectively. Both
reached significant levels, and were strongly correlated to the
precipitation in July during the flood season. The extreme
precipitation conditions in this study are divided into two categories:
drought conditions and heavy rainfall conditions, which can be
characterized by CDD and R95P, and these two extreme indicators
have good correlation with other indicators. Regimes belonging to the
same category (Huang et al., 2005). In addition, the extreme index has a
good correlation with the ENSO index, among which SDII and R95P
are more sensitive to ENSO. The Lagrangian HYSPLIT backward air
mass trajectory model was used to analyze the movement trajectory of
atmospheric water vapor in the study area during the flood season (July)
of the abrupt change year (1979; Figure 7), and explore the impact of
water vapor on abrupt changes in CDD and CWD (Yang et al., 2020).
During the flood season in 1979, the precipitation mainly came from
local evaporative water vapor in the inland northwest and westerly air
masses, which were mainly continental. By 1993, the water vapor in the
flood seasonmainly came fromArctic Oceanwater vapor. Regardless of
whether the climate became dry or wet, local evaporation in the
northwest of the study area in 1979 was a kind of “dry transport”,

FIGURE 6
Correlation between extreme precipitation indices and multi-scale precipitation in the grassland area at Yinshanbeilu during 1970–2020.
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which was the cause of water vapor leading to drought, and the number
of consecutive wet days decreased. In 1993, the water vapor in the study
area mostly came from the northern ocean circulation. This oceanic
water vapor brought heavy precipitation, with a high number of
precipitation days, thus reducing CDD. It was also accompanied by
the influence of local water vapor circulation (Jacox et al., 2020).

6 Conclusion

In this paper, the temporal evolution and spatial distribution
characteristics of extreme precipitation index in the Yinshanbeilu
during 1970–2020 are analyzed. The main conclusions are as
follows: From 1970 to 2020, the extreme precipitation index
CDD and CWD in the grassland area of the Yinshanbeilu both
passed the significance test and showed a decreasing trend. The
changing trend of the extreme precipitation index indicates that the
precipitation in Yinshanbeilu has an overall increasing trend in the
past 50 years, and the number of heavy rain days has increased
significantly. The mutation point of SDII appeared in 2012, and
R95d appeared in 1994. Both of them passed the significance test,
and the mutation was not obvious. The mutation points of CDD and
CWD appeared in 1993 and 1979, respectively, indicating that the
number of consecutive dry days and consecutive wet days decreased.
The spatial distribution analysis showed that Siziwang Banner had
the greatest risk of extreme precipitation, while Sonid Right Banner
had less precipitation. The average cycle corresponding to the first
main cycle of the 7 indicators of extreme precipitation mainly has
two variation ranges, namely, 25a and 30–36A, and the change of
this cycle is significant. Except for the number of consecutive dry
days, the other indices have good correlation with annual
precipitation, flood season and monthly precipitation from June
to September. July is the high occurrence period of extreme
precipitation events. The research results can provide scientific
theoretical basis for the prevention of meteorological disasters in
arid and semi-arid areas.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Data will be disclosed upon request by
contacting the author. Requests to access these datasets should be
directed to liweixl0012@163.com.

Author contributions

WL: Conceptualization, Methodology, Project
administration, Writing–original draft, Writing–review and
editing. JG: Conceptualization, Methodology, Supervision,
Writing–review and editing. WW: Data curation,
Methodology, Supervision, Writing–review and editing. YW:
Investigation, Methodology, Software, Supervision,
Writing–review and editing. YZ: Formal Analysis, Supervision,
Validation, Writing–review and editing. WZ: Investigation,
Methodology, Project administration, Software,
Writing–review and editing. SW: Project administration,
Resources, Supervision, Visualization, Writing–review and
editing. ZC: Data curation, Methodology, Software,
Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was financially supported by the Yinshanbeilu Grassland Eco-
hydrology Observation and Research Station (Grant YS2022001);
the Fundamental Research Fund of the China Institute of Water
Resources and Hydropower Research (Grant MK 2023J07, MK
2022J06); the Science and technology plan key project of Inner
Mongolia Autonomous Region of China (2021GG0072;
2021GG0020; 2021GG0050; 2020ZD0020).

FIGURE 7
HYSPLIT model output source of precipitation and water vapor in the study area during the flood season in the abrupt change year.

Frontiers in Environmental Science frontiersin.org10

Li et al. 10.3389/fenvs.2024.1403490

63

mailto:liweixl0012@163.com
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1403490


Conflict of interest

Author JG was employed by Yellow River Engineering
Consulting Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abd-Elaty, I., Kuriqi, A., Pugliese, L., Zelenakova, M., and El Shinawi, A. (2023).
Mitigation of urban waterlogging from flash floods hazards in vulnerable watersheds.
J. Hydrology Regional Stud. 47, 101429. doi:10.1016/j.ejrh.2023.101429

Beecham, S., and Chowdhury, R. (2010). Temporal characteristics and variability of
point rainfall: a statistical and wavelet analysis. Int. J. Climatol. A J. R. Meteorological
Soc. 30, 458–473. doi:10.1002/joc.1901

Bonsal, B., Zhang, X., Vincent, L., and Hogg, W. (2001). Characteristics of daily and
extreme temperatures over Canada. J. Clim. 14, 1959–1976. doi:10.1175/1520-
0442(2001)014<1959:codaet>2.0.co;2
Booth, E. L., Byrne, J. M., and Johnson, D. L. (2012). Climatic changes in western

North America, 1950–2005. Int. J. Climatol. 32, 2283–2300. doi:10.1002/joc.3401

Cardoso Pereira, S., Marta-Almeida, M., Carvalho, A. C., and Rocha, A. (2020).
Extreme precipitation events under climate change in the Iberian Peninsula. Int.
J. Climatol. 40, 1255–1278. doi:10.1002/joc.6269

Chaubey, P. K., Mall, R., Jaiswal, R., and Payra, S. (2022). Spatio-temporal changes in
extreme rainfall events over different Indian river basins. Earth Space Sci. 9,
e2021EA001930. doi:10.1029/2021ea001930

Gimeno, L., Vázquez, M., Eiras-Barca, J., Sorí, R., Stojanovic, M., Algarra, I., et al.
(2020). Recent progress on the sources of continental precipitation as revealed by
moisture transport analysis. Earth-Science Rev. 201, 103070. doi:10.1016/j.earscirev.
2019.103070

Gvoždíková, B., Müller, M., and Kašpar, M. (2019). Spatial patterns and time
distribution of central European extreme precipitation events between 1961 and
2013. Int. J. Climatol. 39 (7), 3282–3297. doi:10.1002/joc.6019

Huang, M., Peng, G., Leslie, L. M., Shao, X., and Sha, W. (2005). Seasonal and regional
temperature changes in China over the 50 year period 1951–2000. Meteorology Atmos.
Phys. 89, 105–115. doi:10.1007/s00703-005-0124-0

Indices, E. P. (2019). Analysis of the extreme rainfall events over upper catchment of
sabarmati River Basin in western India using. Adv. Water Resour. Eng. Manag. Sel. Proc.
TRACE 39, 2018.

Jacox, M. G., Alexander, M. A., Siedlecki, S., Chen, K., Kwon, Y.-O., Brodie, S., et al.
(2020). Seasonal-to-interannual prediction of North American coastal marine
ecosystems: forecast methods, mechanisms of predictability, and priority
developments. Prog. Oceanogr. 183, 102307. doi:10.1016/j.pocean.2020.102307

Li, S., Chen, Y., Wei, W., Fang, G., and Duan, W. (2024). The increase in extreme
precipitation and its proportion over global land. J. Hydrology 628, 130456. doi:10.1016/
j.jhydrol.2023.130456

Li, W. B., Li, C. Y., Liu, Z. J., et al. (2015). Distribution of precipitation and its effect
factors analysis in the central and western regions of Inner Mongolia during the last
60 years. J. Inn. Mong. Agric. Univ.(Nat. Sci. Ed.) 36, 84–94.

Li, X. H., Chen, Z. F., and Wang, L. (2020). Analysis of the spatiotemporal variation
characteristics of main extreme climate indices in Sichuan Province of China from

1968 to 2017. Appl. Ecol. Environ. Res. 18 (2), 3211–3242. doi:10.15666/aeer/1802_
32113242

Mashao, F. M., Mothapo, M. C., Munyai, R. B., Letsoalo, J. M., Mbokodo, I. L.,
Muofhe, T. P., et al. (2023). Extreme rainfall and flood risk prediction over the East
Coast of South Africa. Water 15, 50. doi:10.3390/w15010050

Peng, D., Zhou, T., and Zhang, L. (2020). Moisture sources associated with
precipitation during dry and wet seasons over Central Asia. J. Clim. 33,
10755–10771. doi:10.1175/jcli-d-20-0029.1

Rathinasamy, M., Agarwal, A., Sivakumar, B., Marwan, N., and Kurths, J. (2019).
Wavelet analysis of precipitation extremes over India and teleconnections to climate
indices. Stoch. Environ. Res. Risk Assess. 33, 2053–2069. doi:10.1007/s00477-019-
01738-3

Sa’adi, Z., Shahid, S., Ismail, T., Chung, E.-S., andWang, X.-J. (2019). Trends analysis
of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall
test. Meteorology Atmos. Phys. 131, 263–277. doi:10.1007/s00703-017-0564-3

Tradowsky, J. S., Philip, S. Y., Kreienkamp, F., Kew, S. F., Lorenz, P., Arrighi, J., et al.
(2023). Attribution of the heavy rainfall events leading to severe flooding in Western
Europe during July 2021. Clim. Change 176, 90. doi:10.1007/s10584-023-03502-7

Wang, J., Zhuo, L., Han, D., Liu, Y., and Rico-Ramirez, M. A. (2023). Hydrological
model adaptability to rainfall inputs of varied quality. Water Resour. Res. 59,
e2022WR032484. doi:10.1029/2022wr032484

Wang, Q. S., Teng, J. W., Wang, G. J., and Xu, Y. (2005). The region gravity and
magnetic anomaly fields and the deep structure in Yinshan mountains of Inner
Mongolia. Chin. J. Geophys. 48, 348–355. doi:10.1002/cjg2.660

Wu, S., Hu, Z., Wang, Z., Cao, S., Yang, Y., Qu, X., et al. (2021). Spatiotemporal
variations in extreme precipitation on themiddle and lower reaches of the Yangtze River
Basin (1970–2018). Quat. Int. 592, 80–96. doi:10.1016/j.quaint.2021.04.010

Xu, L., Zheng, C., and Ma, Y. (2021). Variations in precipitation extremes in the
arid and semi-arid regions of China. Int. J. Climatol. 41, 1542–1554. doi:10.1002/
joc.6884

Yang, H., Xu, G., Mao, H., and Wang, Y. (2020). Spatiotemporal variation in
precipitation and water vapor transport over Central Asia in winter and summer
under global warming. Front. Earth Sci. 8, 297. doi:10.3389/feart.2020.00297

Yang, Y., Liu, H., Tao, W., and Shan, Y. (2024). Spatiotemporal variation
characteristics and driving force analysis of precipitation use efficiency at the north
foot of Yinshan Mountain. Water 16, 99. doi:10.3390/w16010099

Zhao, Y., Zhu, D., Wu, Z., and Cao, Z. (2024). Extreme rainfall erosivity: research
advances and future perspectives. Sci. Total Environ. 917, 170425. doi:10.1016/j.
scitotenv.2024.170425

Zia, A., Rana, I. A., Arshad, H. S. H., Khalid, Z., and Nawaz, A. (2023). Monsoon flood
risks in urban areas of Pakistan: a way forward for risk reduction and adaptation
planning. J. Environ. Manag. 336, 117652. doi:10.1016/j.jenvman.2023.117652

Frontiers in Environmental Science frontiersin.org11

Li et al. 10.3389/fenvs.2024.1403490

64

https://doi.org/10.1016/j.ejrh.2023.101429
https://doi.org/10.1002/joc.1901
https://doi.org/10.1175/1520-0442(2001)014<1959:codaet>2.0.co;2
https://doi.org/10.1175/1520-0442(2001)014<1959:codaet>2.0.co;2
https://doi.org/10.1002/joc.3401
https://doi.org/10.1002/joc.6269
https://doi.org/10.1029/2021ea001930
https://doi.org/10.1016/j.earscirev.2019.103070
https://doi.org/10.1016/j.earscirev.2019.103070
https://doi.org/10.1002/joc.6019
https://doi.org/10.1007/s00703-005-0124-0
https://doi.org/10.1016/j.pocean.2020.102307
https://doi.org/10.1016/j.jhydrol.2023.130456
https://doi.org/10.1016/j.jhydrol.2023.130456
https://doi.org/10.15666/aeer/1802_32113242
https://doi.org/10.15666/aeer/1802_32113242
https://doi.org/10.3390/w15010050
https://doi.org/10.1175/jcli-d-20-0029.1
https://doi.org/10.1007/s00477-019-01738-3
https://doi.org/10.1007/s00477-019-01738-3
https://doi.org/10.1007/s00703-017-0564-3
https://doi.org/10.1007/s10584-023-03502-7
https://doi.org/10.1029/2022wr032484
https://doi.org/10.1002/cjg2.660
https://doi.org/10.1016/j.quaint.2021.04.010
https://doi.org/10.1002/joc.6884
https://doi.org/10.1002/joc.6884
https://doi.org/10.3389/feart.2020.00297
https://doi.org/10.3390/w16010099
https://doi.org/10.1016/j.scitotenv.2024.170425
https://doi.org/10.1016/j.scitotenv.2024.170425
https://doi.org/10.1016/j.jenvman.2023.117652
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1403490


Ecological construction status of
photovoltaic power plants in
China’s deserts

Yimeng Wang1,2, Benli Liu1,3*, Yu Xing1,2, Huaiwu Peng4, Hui Wu4

and Jianping Zhong4

1Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands Research Station of
Gobi Desert Ecology and Environment in Dunhuang of Gansu Province, Northwest Institute of Eco-
environment and Resources, Chinese Academy of Sciences, Lanzhou, China, 2University of Chinese
Academy of Sciences, Beijing, China, 3Academy of Plateau Science and Sustainability, Qinghai Normal
University, Xining, China, 4Northwest Engineering Corporation Limited, Xian, China

Solar photovoltaic (PV) is one of the most environmental-friendly and promising
resources for achieving carbon peak and neutrality targets. Despite their
ecological fragility, China’s vast desert regions have become the most
promising areas for PV plant development due to their extensive land area
and relatively low utilization value. Artificial ecological measures in the PV
plants can reduce the environmental damage caused by the construction
activity and promote the ecological condition of fragile desert ecosystems,
therefore yield both ecological and economic benefits. However, the
understanding of the current status and ecological benefits of this approach
in existing desert PV plants is limited. Here we surveyed 40 PV plants in northern
China’s deserts to identify the ecological construction modes and their
influencing factors. We quantified the ecosystem service value (ESV) provided
by these PV plants using remote sensing data and estimated the potential for ESV
enhancement. Our results show that PV plant construction in desert regions can
significantly improve the ecosystem, even with natural restoration measures (M1)
alone, resulting in a 74% increase in average fractional vegetation cover (FVC)
during the growing season, although the maximum average FVC of only about
10%. The integrated mode M4, which combined artificial vegetation planting
M2 and sand control measures M3, further enhance the average growing season
FVC to 14.53%. Currently, 22.5% of plants lack ecological measures, 40% employ
only a singlemeasure, but 92% of newplants since 2017 have adopted at least one
ecological constructionmode. Themain influencing factors include surface type,
policy support, water resources, ecological construction costs, and scientific
management guidance. If artificial ecological construction were incorporated, a
significant ESV could be achieved in these PV plants, reaching $8.9 million (a 7.7-
fold increase) if assuming a targeted 50% vegetation coverage. This study
provides evidence for evaluating the ecological benefit and planning of large-
scale PV farms in deserts.
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1 Introduction

Due to factors such as the growing global energy demand, the
non-renewable energy crisis, and climate change, etc., there is an
international consensus to promote the utilization of renewable
energy and develop a low-carbon society (Riahi et al., 2012;
Hertwich et al., 2015). As one of the most important renewable
resources, solar energy possesses the qualities of clean
environmental protection-friendly and inexhaustibility (Mekhilef
et al., 2011; Hernandez et al., 2015). Currently, photovoltaic (PV)
power generation is the predominant method of solar energy
utilization (Yan et al., 2007). In the past 5 years, the global PV
installed capacity had nearly tripled, increasing from 402.5 GW in
2017 to 1185 GW in 2022 (IEA Photovoltaic Power Systems
Programme, 2018; IEA Photovoltaic Power Systems Programme,
2023). China added 106 GW of new installations in the year of
2022 alone, accounting for 44% of the world’s new installed capacity,
with a total installed capacity of 414.5 GW, solidifying its position as
the largest contribution to the PVmarket for eighth consecutive year
(IEA Photovoltaic Power Systems Programme, 2023).

China has a vast area of deserts (including gravel deserts, sandy
deserts, desert steppes, and alpine deserts), mainly distributed in
northern and northwest parts of the country, and the Qinghai-Tibet
Plateau, which accounts for 27.2% of China’s total land area
(National Forestry and Grassland Administration, 2015). More
than 60% of China’s PV resources and development capabilities
are concentrated in the deserts (Xinhua News Agency, 2021),
together with the flat terrain, low population density, and limited
land expenditure costs, which making the deserts ideal for the
growth of large-scale PV farms (Xiao et al., 2011; Wu et al.,
2014; Tanner et al., 2020). Besides, the construction of PV farms
in deserts can improve the utilization rate of degraded land and
enable the spatial coexistence of PV with other industries, such as
farming and livestock raising (Yan et al., 2007; Marco et al., 2014).
The National Development and Reform Commission and the
Energy Bureau issued a notice titled “Planning and Layout
Scheme for Large-scale Wind and Solar Power Bases with a Focus
on Desert” in 2022, which plans the construction of large-scale wind
and PV farms focusing on desert in northwest China, with a total
capacity of 455 GWby 2030 (People’s Daily Overseas Edition, 2023),
of which 284 GW are in Kubuqi, Ulanbh, Tengger and Badain Jaran
deserts (China Securries Journal, 2022). By the end of 2022, the
cumulative grid-connected capacity of PV plants in the desert
regions such as Gansu, Qinghai, Xinjiang, Ningxia, Inner
Mongolia, Shaanxi, and Tibet has reached 96.19 GW, accounting
for 24.54% in China’s total cumulative grid-connected capacity and
still holding great development potential (National Energy
Administration, 2023).

The land surface and the overall ecological environment are
fragile in deserts, which can be easily affected or aggravated by
irresponsible human activities (Wu et al., 2014; Borrelli et al., 2020).
As the quantity and scale of PV installations continue to grow, so
does the scrutiny regarding their impact on the local ecological
environment. Some studies indicate that the construction of large-
scale PV farms will disturb the land surface, destroy surface
vegetation and soil crusts, and cause severe wind erosion, posing
a significant threat to the normal operation of PV plants and the
local ecological environment (Grodsky and Hernandez, 2020;

Scarrow, 2020). However, the construction of PV plants in
deserts can usually facilitate plant growth. After installation, the
PV arrays can increase surface roughness, reduce the surface wind
speed, and decrease wind-driven sand and dust (Wu et al., 2014;
Chang et al., 2016). Simultaneously, a large area of PV panels can
effectively reduce direct solar radiation and surface water
evaporation, thereby promoting vegetation growth and aiding in
the restoration of damaged ecosystems (Wu et al., 2014; Liu et al.,
2020; Xia et al., 2022b). Nevertheless, these positive factors are hard
to yield significant effects if relying solely on natural process, and
artificial vegetation is often required to accelerate the ecosystem
improvement process (Marrou et al., 2013; Li Y. et al., 2018; Liu
et al., 2020). In desert, a composite system of PV plus agriculture and
animal husbandry is possible to construct by manually installing
sand fences and sand barriers, tying grass grids to the surface, and
sowing and breeding in PV farm (Semeraro et al., 2022). Current
research mainly focuses on the use of remote sensing data to study
the changes in vegetation cover before and after the construction of
PV power plants (Marrou et al., 2013; Li Y. et al., 2018; Xia et al.,
2022a; Xia et al., 2022b; Semeraro et al., 2022), or in-depth studies of
the ecological impacts and values of PV power plants on a small scale
(Li Y. et al., 2018; Luo et al., 2023). However, no regional-scale field
research on the ecological construction condition of PV power
plants in desert areas has been conducted so far, and there is a
lack of comprehensive understanding and assessment of their
existing status.

In light of the fact that many large-scale PV farms have already
been constructed in the vast China’s deserts, it is of great importance
to understand the existing wind-sand prevention measures and
ecological construction status of desert PV plants, as well as the
environmental improvement and ecological service value (ESV)
enhancement benefits that brought by ecological construction
activities, which are essential for preventing and eliminating any
negative impact of power plants construction on the environment
and guiding ecological construction activities. This paper aims to: 1)
assess the ecological environment status of PV plants in China’s
deserts through field survey and investigate the wind-sand control
measures, ecological construction, and vegetation growth conditions
and 2) estimate the ESV and potential ecological service function
that can be brought by the ecological construction measures in the
large-scale PV plants in deserts.

2 Material and methods

2.1 Study area

The study area is located in the Badain JaranDesert, TenggerDesert
and surrounding areas in northwest China (98°79′E−105°95′E,
37°05′N-42°20′N), which includes the western portion of Inner
Mongolia Autonomous Region, northern Gansu and western
Ningxia provinces (Figure 1A). With an area of 52,162 km2, the
Badain Jaran Desert is the second largest desert in China (Zhu
et al., 2010). The Tengger Desert is the fourth largest desert in
China with an area of 42,700 km2 (Wu et al., 1980). This region has
abundant solar energy resources and is home to the greatest
concentration of grid-connected solar power farms in China (Xia
et al., 2022a). The sunshine duration is between 2661 and 3406 h,
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and the average annual solar radiation reaches 1550–1819 kWh/(m2·a)
(Figure 1A), which is higher than the lower limit of 1400 kWh/(m2·a)
for the economic development feasibility of solar projects (Guo and
Wang, 2014). The altitude of this region is between 800 and 1500 m,
with an area of about 33.69 × 104 km2. This region has a temperate
continental arid climate with scarce water resources, high evaporation
(about 1000 mm), an average annual temperature of 7.2°C, and average
annual precipitation of 50–150 mm which concentrates in the plant
growing season (fromMay to September). The natural landscape here is
dominated by dunes, gravel desert, and desert grasslands. The natural
vegetation is relatively sparse, mostly shrubs and semi-shrubs including
Artemisia desertorum, Agriophyllum squarrosum, Allium mongolicum,
Haloxylon ammodendron, Tamarix ramosissima, Halogeton

arachnoideus, Peganum harmala, Neotrinia splendens, Calligonum
mongolicum, Ephedra przewalskii, etc (Sun, 2018).

The used data in this paper come from a field investigation of 40 PV
plants and remote sensing data in the study area. We used face-to-face
questionnaire interviews with the operators of each plant. Figure 1B
displays all the surveyed sites, including 23 gravel desert PV plants
(Figure 1C) and 17 sandy desert ones (Figure 1D). The survey contents
include basic information about PV plants, wind-sand disaster
situations, wind-breaking and sand-fixing measures and their
implementation areas, the types and growth conditions of natural
vegetation, ecological construction measures and artificial planting
vegetation types, the cleaning and maintenance cycle of PV panels,
and so on (View the Supplementary Table A1 for the details of

FIGURE 1
Map of the distribution of solar horizontal irradiance and large deserts in China [Data from TheWorld Bank (Solar Energy Industries Association SEIA,
2022)]. Location of the Badain Jaran Desert and Tengger Desert (A), locations of the surveyed PV plants (B), gravel surface (C), sandy surface in PV plants
(D) and PV plants subject to sand accumulation and wind erosion problems (E).
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questionnaire’s contents). According to the survey, the wind and sand
control and ecological construction of PV plants in desert can be
classified into five modes: no measures (M1), artificial planting (M2),
sand-prevention measures (M3), sand-prevention measures + artificial
planting (M4), and sand-prevention measures + farming or animal
husbandry (M5). The five modes are categorized for discussion
according to the land surface type and policy impact. Additional
information of each plant is provided in the Supplementary Table A2.

2.2 Ecological construction modes of
PV plants

2.2.1 No measures (M1)
This mode (Figure 2A) refers to the natural restoration of

ecosystems in PV plants without human intervention. This is
because PV panels and their supports can reduce soil
evaporation, block wind and sand, and decrease surface wind
speed, thereby facilitating plant growth (Lu, 2013). In this mode,
natural vegetation growth relies on precipitation and water from PV
panel cleaning at no additional cost. However, this mode has the
problems of relatively long vegetation restoration period and limited
application areas (only in regions with relatively high rainfall and
stable ground surface) (Cui et al., 2017).

2.2.2 Artificial planting (M2)
This mode involves artificial planting of native shrubs or herbs,

such as Haloxylon ammodendron, Hippophae rhamnoides, inside and
around the perimeter of the PV plants. Additionally, low drought-
tolerant windbreak and sand-fixing plants like Agriophyllum

squarrosum, Medicago sativa, and Calligonum mongolicum, etc., can
be planted beneath the PV equipment to serve as barrier against wind
and blown sand (Cui et al., 2017; Mai and Bai, 2023) (Figure 2B). This
mode is frequently visited in the PV plants at gravel desert. The gravel
desert is flat, and the surface is predominantly covered with gravel of
varying sizes. The strong winds allow the blown sand to travel through
the PV equipment area rapidly. In these plants, accumulation, erosion,
and other wind-related hazards are not severe, and sand control and
fixing measures are not indispensable.

2.2.3 Sand-prevention measures (M3)
The M3 mode refers to the implementation of wind and sand

control measures, including artificial sand fences, sand barriers with
straw, high density polyethylene (HDPE) or clay, gravel coverage, and
the establishment of grass grids that beneath, between, and around PV
equipment to prevent wind and sand disasters (Lu, 2013; Cui et al.,
2017; Shen et al., 2021; Mai and Bai, 2023). Artificial sand-prevention
measures can increase the roughness of surface, reduce the wind speed,
weaken the mobility of sand, and create more favorable conditions for
the growth of natural plants, together with the improving of local
climatic conditions by PV systems, so that it can also contribute to
promoting plant growth (Cui et al., 2017; Shen et al., 2021; Yue et al.,
2021; Mai and Bai, 2023). The lifespan of straw barrier is typically
around 3 years. They offer effective sand control with relatively low
costs, making them the preferred sand control method for PV plants
(Figure 2C). Gravel coverage is also a common measure that mimics
gravel desert surfaces, protects sand-fixing plants from wind erosion
and burial while improving soil moisture conditions, which are
beneficial for plant survival and growth. Nevertheless, due to the
higher cost involved, gravel coverage is employed only selectively in

FIGURE 2
Different ecological constructionmodes status in PV plants. PV plants adoptingmodes of M1 (Nomeasures) (A), M2 (Artificial planting) (B), M3 (Sand-
prevention measures) (C), M4 (Sand-prevention measures + Artificial planting) (D), and M5 (Sand-prevention measures + Artificial planting) (E).
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the plants, typically applied to maintenance roads, the first several rows
of PV panels at the boundary of the plants, and the vicinity of
equipment foundations in order to effectively reduce surface wind
erosion and dust generation from maintenance vehicles.

2.2.4 Sand-prevention measures + artificial
planting (M4)

This mode combines the M2 and M3 modes and can
effectively prevent the severe wind erosion disasters as well as
improve vegetation survival rates in desert PV plants. The
application of this integrated mode can accelerate the
formation of organic crust on desert surfaces and gradually
establish a stable green protective system, thereby promoting a
virtuous cycle of the ecological environment in PV plants (Cui
et al., 2017) (Figure 2D).

2.2.5 Sand-prevention measures + farming or
animal husbandry (M5)

This integrated ecological construction mode combines sand-
prevention and artificial planting measures with agricultural or
livestock industries by means such as “power generation on the
board, planting between the boards, and raising sheep under the
boards (Xiao et al., 2021) (Figure 2E).” This mode can create more
job opportunities, provide convenience for local farmers and
herders, and generate economic, social, and ecological benefits
(Xiao et al., 2021; Jing et al., 2022). In this mode, the PV modules
must be raised from about 50 cm to more than 150 cm above the
ground, while grass grids and drip irrigation pipelines are installed
beneath the PV panels to cultivate forage grass and cash crops
(Zhao and Zhong, 2022). This mode requires cooperation with
neighboring herders to enable livestock access to the PV
equipment area for foraging or to regularly harvest the grass
under the panels for feeding livestock in the breeding area. This
approach not only addresses the issue of excessive grass height in
the PV equipment area, which leads to shading and reduced
conversion efficiency of the modules, but also reduces the risk
of fire in the PV plants (Hernandez et al., 2014; Vaverková
et al., 2022).

2.3 Estimation of ecosystem service value

Costanza et al. (1997) proposed the ESV evaluation method
and assessed the value of ecosystem services on a global scale. The
method has been widely used for assessing the value of world
ecosystem services and natural capital. Xie et al. (2001) further
divided China’s grasslands into 18 ecosystem types and corrected
the unit service function values using a biomass index, and the
results has been referred and adopted by a group of following
studies. Wang and Qin (2007) further improved this method
from a remote sensing perspective, incorporating vegetation
coverage data to better suit the specific context of China’s
ecosystems. In the present study, the predominant land type
found in the investigated PV plants belong to temperate desert
ecosystem. We calculates the ESV per unit area of temperate
desert in 2022 using the values proposed by Xie et al. (2001) for
the year 2000 as the baseline data.

As economic indicators fluctuate over time, the ESV needs to be
adjusted to the 2022 level. This adjustment is performed by Eqs 1, 2
as follows Costanza et al. (2014):

ESV 2022( ) � ICR × ESV 2000( ) + ESV 2000( ) (1)
ICR � CPI 2022( ) − CPI 2000( )

CPI 2000( ) × 100% (2)

in which ESV (2022) and ESV (2000) represent the ESV per unit area of
temperate desert grassland ecosystems in 2022 and 2000 ($ yr−1 ha−1).
ICR is the inflation conversion rate, while CPI (2022) and CPI (2000)
are the US consumer price index in 2022 and 2000. The ESV (2000) per
unit area of temperate desert was 67.9 $ yr−1 ha−1 (Xie et al., 2001). The
CPI (2000) and CPI (2022) are derived from U.S. Bureau of Labor
Statistics data (U.S. Bureau of Labor Statistics, 2023). The U.S. CPI was
used to calculate the inflation conversion rate to ensure comparability
across different time periods, as the original ESV data from Xie et al.
(2001) was estimated in U.S. dollars as well as the majority of following
studies (Costanza et al., 2014; Liu et al., 2020).

The ESV of the PV plants area, which fluctuates over time and is
proportional to the temperate desert ecosystem’s type, area, and
quality, was estimated by adapting the method proposed by
Costanza et al. (1997) of multiplying each biome’s land area by its
unit value. Inspired by Liu et al. (2020), who used biomass proportion
as an ecological parameter, we modified the biomass parameter with
the more readily available vegetation coverage data to calculate the
existing ESV and estimated the potential for its increase in the PV
plants area. The calculation formulas Eqs (3, 4) are as follows:

ESVi N( ) � ESV 2022( ) × Si (3)
ESVi P( ) � FVCP

FVCi N( ) × ESV 2022( ) × Si (4)

where ESVi (N) ($ yr
−1) represents the existing ESV of the ith PV plant.

ESVi (P) ($ yr
−1) indicates the value of ecosystem services that can be

improved when ith PV plant takes ecological construction and reaches
the threshold of vegetation coverage improvement. Si is the area (ha) of
ith PV plant, and FVCi (N) is the existing growing season vegetation
coverage of the ith PV plant. FVCp is the threshold of vegetation
coverage. i = 1, 2, 3... 40, which represents the 40 investigated PV plants.

Existing total value of ecological services (ESVN) and total value
of ecological services improvement potential (ESVP) of the
40 investigated PV plants are calculated by summing up the
corresponding value of every plant as Eqs 5, 6:

ESVN � ∑n

i�1ESVi N( ) (5)
ESVP � ∑n

i�1ESVi P( ) (6)

In addition, we calculated the 95% confidence intervals for the
mean fractional vegetation cover (FVCi (N)) at each surveyed PV
power plant to quantify the margin of error in the derived potential
ecological service values.

2.4 Other data sources

Normalized difference vegetation index data are acquired by the
National Tibetan Plateau Scientific Data Center from the Aqua/Terra-
MODIS satellite sensor MOD13Q1 product and land use data with a
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250 m spatial resolution (Gao et al., 2023a). The FVC data at growing
season are based on the vegetation index data set and calculated using
the normalized difference vegetation index pixel dichotomy model,
also with a 250 m spatial resolution (Gao et al., 2023b). The potential
vegetation coverage used as the threshold value in Eq. 4 is set to 50%,
because this value in a desert is sufficient to achieve sufficient
windbreak and sand fixation benefits (Zhao, 2016).

3 Results

3.1 The current status of ecological
construction in desert PV plants

3.1.1 Statistics of surveyed PV plants
We summarized the conditions of the surveyed PV plants based

on five ecological constructionmodes as classified in Section 2.2. The
total area of the plants is 112.85 km2, and the total installed capacity
is 7029.97 MW. The large-scale PV plants (≥30 MW) are mainly
distributed in the southeast and southwest parts of the Tengger
Desert and the western part of the Badain Jaran Desert, while the
middle and small scale plants (<30 MW) are mostly distributed in
the desert margins and external areas (Figure 3A).

3.1.2 Statistics of ecological construction modes of
the PV plants

The proportion of PV plants adopting each of the five ecological
construction modes is shown in Figure 3B. It can be seen that the
number of PV plants adopting the M4 is the largest of thirteen,
followed by M1 and M3 with nine each. There are seven PV plants
taking M2, accounting for 17.5%. The plants adopt the combination
of sand-prevention measures and farming or animal husbandry
(M5) have the least number of only two.

Although a large number of PV plants take the M4 mode, there
are still 22.5% of PV plants that have not taken any measures, 40% of
PV plants without sand-prevention measures, and 45% of PV plants
that have not taken any artificial vegetation measures. In PV plants
that adopt M1, there are serious wind and sand hazards (inter-panel
sand accumulation and under-panel scouring), and sparse natural
vegetation (Figure 1E). In the PV plants with M3, the wind-sand
disaster is substantially controlled, the surface beneath and
surrounding the PV panels is usually free of sand, and the
vegetation density in the areas with sand control measures is
significantly higher than the areas without measures. The
M4 and M5 plants have the best treatment effects. There is no
obvious sand damage in these plants, the vegetation is rich in variety
and grows vigorously, and the average cleaning cycle of PV panels is
reduced by 3–5 times per year on average.

3.1.3 Differences in ecological construction mode
of PV plants over desert surface types

Figure 4A shows that the PV plants with M1 and M2 are
primarily distributed on gravel desert, the ones with M3 and
M4 mainly on sandy desert, and the number of PV plants with
M5 is equally distributed on two kinds of deserts. From the
perspective of the area (Figure 4B), installed capacity (Figure 4C),
and power generation (Figure 4D) of the investigated PV plants, the
proportion of plants adopting M4 is the largest in the sandy desert,
which is 83.88%, 89.93% and 90.88%, respectively. The proportion
of plants adopting M2 in the gravel desert is the largest, which is
56.40%, 54.54% and 57.74%, respectively. The PV plants in the
sandy desert have a higher proportion of taking ecological
construction than that of the gravel desert. This is due to the fact
that wind and sand disasters on gravel desert are less severe, allowing
for simpler measures, while sandy desert requires more
ecological measures.

FIGURE 3
Spatial distribution map of installed capacity of PV plants (Satellite data from 2022 The ArcGIS Satellite) (A), pie chart of the proportions of five
ecological construction modes in PV plants (B).
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3.1.4 Changes in ecological construction mode of
PV plants over time

The distribution of the number and scale of PV plants over time is
shown inFigure 5A.All the surveyed PVplantswere constructed between
2011 and 2022. Since 2011, both the construction number and total
installed capacity of PV plants declined until 2017, when the construction
number rebounded with an average installed capacity of 556MW per
plant. Compared to the situation before 2017, the average installed
capacity of PV plants has increased by 7.9 times, indicating a recent
emphasis on the development of large-scale PV farms in desert regions.

Figures 5B–E displays the change of each ecological construction
mode adopted by PV plants over time. For the PV plants that built
before 2017, the number of M1 is the largest, accounting for 29.6%.
Among the PV plants built after 2017, M4 has the largest proportion
(50%). From the perspective of the plant number, the proportion of
M1 and M2 in the newly built PV plants after 2017 has both
decreased by 21.3% and 1.9%, respectively, while the proportion
of M3 and M4 has increased by 2.8% and 24.1%, respectively
(Figure 5B). From the perspective of construction area
(Figure 5C), installed capacity (Figure 5D), and annual average

FIGURE 4
The ratios of number (A), area (B), installed capacity (C), and annual average power generation (D) of the investigated PV plants with fivemodes over
sandy deserts and gravel deserts.
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power generation (Figure 5E) of PV plants, the proportion of plants
adopting M4 after 2017 increased to 75.1%, 83.0% and 83.3% from
41.7%, 49.0% and 47.3% before 2017, respectively. We observed a
significant change in the ecological construction mode adopted by
PV plants around 2017, and we will discuss the reasons in the
following sections.

3.2 Analysis of ESV changes in PV plants
investigated under different modes

The statistical analysis of the growing season vegetation
coverage in the surveyed PV power plants under different
ecological construction modes (Table 1) reveals a significant
enhancement in vegetation. As the ESV is linearly related to the
FVC, the improvement in ESV can be represented by the changes of
FVC. In the M1 mode plants that rely solely on the natural
restoration of vegetation after the construction, the average FVC
at growing season increase from initially 5.92%–10.31% by 2022,

resulting in an increase of 74% of the ESV. The M2 mode plants
experienced a 5.73% increase in FVC, with the ESV being enhanced
by 102%. The M3 mode and M5 mode had relatively lower ESV
enhancements of 16% and 12%, despite their higher initial FVC. It is
worth noting that the M5 mode plants that incorporate grazing
activities within the site still exhibited overall increasing trend in
vegetation coverage, despite being significantly influenced by human
activities. However, due to the limited sample size of only two PV
power plants in the M5 mode, further validation of this result is
required. TheM4mode achieved the highest average growing season
FVC among the five modes, reaching 14.53%, with the ESV being
enhanced by 58%.

These findings demonstrate that PV plants can facilitate vegetation
restoration and enhance ecological service functions, with a 74%
increase in the average growing season FVC of the nine PV plants
adopting the M1 mode. However, ecological improvement activities,
such as sand control measures and artificial vegetation planting, can
significantly increase the upper limit of FVC in desert regions from
10.31% (M1) to 14.53% (M4). The M4 mode is the most effective in
improving FVC and ESV, followed by the M2 mode. Notably, the
M5 mode not only facilitates ecological restoration but also provides
additional economic benefits to local residents, suggesting considerable
development potential for a sustainable future that balances
environmental conservation with socio-economic growth.

3.3 Estimation of ESV potential of PV plants

The PV plants that carry out ecological construction can
produce significant biomass increase, promote rapid vegetation
growth, and have a high ESV (Liu et al., 2020; Xia et al., 2022b).
From 2011 to 2022, the average FVC in the vegetation growing
seasons of the surveyed PV plants (under all ecological construction
modes) increased from 8.5% to 10.5%, with an average annual
increase of 0.2%. While this growth rate is limited, the maximum
fractional growing season vegetation coverage increased from 33.6%
to 57.9% during the same period (Figure 6), with the highest value
observed in a PV plant adopting the M4 mode, indicating the
substantial potential for ecological restoration in PV plants.
However, to fully realize this potential, it is essential for all PV
plants to adopt comprehensive sand control measures and artificial
ecological construction. With these measures, the FVC can be
increased to about 50% in the future, which is the threshold
required to fix the sandy surface in the desert and significantly
reduce wind and sand problems (Zhao, 2016). It provides additional
ecological and environmental benefits by enhancing carbon fixation,
which in turn reduces the negative impact of PV plants construction.
It also has a positive impact on the planning, policy and
management, and sustainability of large-scale PV systems.

Using the ESV assessment model, the total ESV provided by the
surveyed PV plants at the current stage and after implementing
ecological construction were calculated (Table 2). The results show
that the investigated PV plants can provide an average of
approximately $1.2 million of ESV per year, and if artificial
ecological construction is effectively implemented and given
sufficient growing time, the ESV provided by the plants could be
increased by 7.7 (7.1–8.3, confidence interval, and the same below)
times to approximately $8.9 (8.2–9.5) million per year.

FIGURE 5
Distribution of the number and installed capacity of investigated
PV plants by construction time (A), percentage of number (B), area (C),
installed capacity (D), and average annual power generation (E) of the
five ecological construction modes before and after 2017.
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4 Discussion

4.1 Ecological construction contributes to
enhancing ESV in desert

Desert has become the hot development zone of large-scale wind
and PV farms. According to China’s Renewable Energy Development
Plan, the total installed capacity of wind and solar power farms in
desert will reach 200 GW in 2025 and 455 GW in 2030 (National
Development and Reform Commission and National Energy
Administration, 2021). The rapid development of renewable
energy in desert faces great challenges, as wind and sand
activities, as well as the expansion of desertification land, pose
serious threats to the safety and sustainable development of PV
plants. Previous studies have indicated that the construction
activities of PV plants, especially the leveling of ground, can
disrupt the original soil environment, leading to a significant

decline in vegetation coverage and very fragile surface soil (Wu
et al., 2014; Hernandez et al., 2015).

However, in most deserts, the degradation of vegetation caused
by the construction of PV plants is small. This is partially due to the
fact that these regions may have very little vegetation prior to the
installation of the plants, but more importantly that the vegetation
removed during the construction process can be recovered after the
completion of the PV plants (Wu et al., 2014; Uldrijan et al., 2021;
Xia et al., 2022b). Furthermore, the installation of PV plants can alter
the local microclimate, regulate the thermal balance in desert, reduce
the amount of wind-blown sand, and contribute to the improvement
of growth conditions for plants in arid regions (Chang et al., 2016).
Previous studies utilizing remote sensing imagery, field monitoring,
and surveys have found that the construction of PV plants has
resulted in significant vegetation changes, with most PV plants
showing positive vegetation growth, while a few PV plants
resulted in vegetation degradation (Chang et al., 2018; Liu et al., 2020;

TABLE 1 Growing season vegetation coverage and ESV change rate in the surveyed PV power plants under different ecological construction modes.

Modes Number of plants Initial FVC (Avg.) (%) Existing FVC (Avg.) (%) Change rate of FVC and ESV (%)

M1 9 5.92 10.31 74

M2 5 5.61 11.35 102

M3 7 10.30 11.95 16

M4 9 9.22 14.53 58

M5 2 12.56 14.03 12

Note: Initial FVC (Avg.) represents the FVC, in the year of PV, plant construction and grid connection. Existing FVC (Avg.) denotes the 2022 FVC., The plants that were newly built in 2022 were

not selected in the calculation.

FIGURE 6
Average and maximum growing season FVC changes in the surveyed PV plants.
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TABLE 2 The existing ecosystem service value (ESVN) and the potential for enhancing ecosystem service value (ESVP) of the surveyed PV plants.

i PV plants
name

Latitude Longitude Area
(ha)

Ecological
construction modes

Initial FVC
(construction year)

FVCi in
2022

ESVi(N) (104

$ yr−1)
ESVi(P) (104

$ yr−1)
Confidence
interval

1 Shengyang 105°01′16″ 37°35′20″ 100 M3 8.35 (2013) 10.78 1.02 4.34 [4.13, 4.55]

2 CHN Zhongwei 105°04′62″ 37°53′80″ 152.67 M3 9.33 (2013) 9.62 1.56 7.50 [7.21, 7.79]

3 Hengjiweiye 105°20′13″ 37°51′51″ 200 M4 11.58 (2015) 11.59 2.04 7.80 [7.16, 8.44]

4 CHNE Tengger 105°20′ 37°51′ 1866.67 M4 9.02 (2022) 9.02 19.06 103.12 [101.70, 104.50]

5 Tianyun 105°31′35″ 37°63′33″ 273.77 M1 10.07 (2015) 18.5 2.80 6.71 [5.92, 7.49]

6 Meiliyun 105°17′71″ 37°63′07″ 93.33 M4 31.07 (2019) 26.88 0.95 1.32 [1.14, 1.50]

7 CECEP Tengger 105°07′53″ 37°67′41″ 66.67 M3 8.60 (2015) 9.68 0.68 3.22 [3.07, 3.38]

8 CECEP Alashan 105°38′07″ 37°93′02″ 201.33 M4 13.84 (2011) 18.58 2.06 5.28 [4.40, 6.17]

9 Shenghao 105°38′36″ 38°74′76″ 24 M4 9.93 (2018) 13.43 0.25 0.82 [0.72, 0.91]

10 Jinxinghalun 105°72′32″ 38°77′13″ 133.33 M3 17.04 (2016) 15.76 1.36 3.87 [3.74, 3.99]

11 CHNE Alashan Left
Banner

105°63′14″ 38°65′10″ 106.67 M1 9.09 (2011) 17.09 1.09 2.66 [2.51, 2.81]

12 CHNE Xinyang 105°64′39″ 38°55′62″ 106.67 M4 6.50 (2015) 18.54 1.09 2.39 [2.13, 2.64]

13 Shenghui 105°65′72″ 38°88′94″ 226.67 M5 15.19 (2013) 14.63 2.31 7.13 [6.53, 7.72]

14 Saihan Taolai 100°53′71″ 41°87′47″ 68.20 M1 2.74 (2017) 7.7 0.70 4.35 [3.47, 5.24]

15 LJRE Subo Naoer 100°96′00″ 41°87′56″ 143.33 M4 0.67 (2014) 1 1.46 159.54 [138.74, 180.35]

16 CHNE Jinta 98°93′95″ 39°95′75″ 64 M1 2.56 (2011) 7.37 0.65 7.52 [0.72, 14.30]

17 GEPIC Huineng 98°93′69″ 39°95′47″ 50 M3 0.28 (2011) 2.07 0.51 13.02 [9.46, 16.39]

18 Power China Jinta 98°97′36″ 39°96′89″ 566.67 M2 3.82 (2022) 3.82 5.79 74.82 [69.11, 80.58]

19 Wuling Power 101°60′27″ 39°25′08″ 180.8 M4 4.05 (2020) 3.18 1.85 29.78 [27.35, 32.12]

20 Zhenfa 102°75′28″ 39°42′72″ 24 M5 6.38 (2016) 5.35 0.25 2.21 [2.21, 2.21]

21 Zhongdian Kexin 102°82′74″ 39°44′43″ 24 M3 7.23 (2015) 5.25 0.25 2.21 [2.02, 2.39]

22 CHNE Minqin 102°48′89″ 39°01′17″ 133.33 M1 5.26 (2013) 4.83 1.36 13.53 [13.03, 14.02]

23 CHNE-GSNE
Minqin

102°46′46″ 38°96′38″ 13.33 M1 4.16 (2013) 5.16 0.14 1.26 [1.17, 1.35]

24 CHNE-GSNE
Huineng

102°51′81″ 38°97′65″ 29.2 M1 5.31 (2013) 5.33 0.30 2.65 [2.61, 2.68]

25 Tianhe Yineng 102°55′98″ 38°91′42″ 276.67 M1 4.41 (2013) 5.98 2.83 22.69 [21.58, 23.79]

(Continued on following page)
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TABLE 2 (Continued) The existing ecosystem service value (ESVN) and the potential for enhancing ecosystem service value (ESVP) of the surveyed PV plants.

i PV plants
name

Latitude Longitude Area
(ha)

Ecological
construction modes

Initial FVC
(construction year)

FVCi in
2022

ESVi(N) (104

$ yr−1)
ESVi(P) (104

$ yr−1)
Confidence
interval

26 CHN Jiuduntan 102°50′58″ 38°03′25″ 1175.93 M4 3.26 (2022) 3.26 12.01 180.12 [176.69, 183.84]

27 CEEC jiuduntan 102°88′71″ 38°09′79″ 86.07 M3 3.26 (2022) 3.26 0.88 13.18 [12.93, 13.46]

28 CHN Wuwei 102°93′62″ 38°08′05″ 286.13 M4 3.73 (2022) 3.73 2.92 38.72 [36.71, 40.59]

29 Power China Wuwei 102°33′62″ 38°10′97″ 86.07 M1 9.66 (2013) 20.81 0.88 1.76 [1.58, 1.93]

30 CECEP Wuwei 102°29′94″ 38°09′35″ 533.33 M2 6.82 (2011) 23.78 5.45 10.89 [10.41, 11.37]

31 Zhengtai Yongchang 102°31′36″ 38°27′18″ 474 M4 5.25 (2013) 15.72 4.84 13.17 [12.74, 13.58]

32 Sanxia Dazhaitan 102°30′25″ 38°27′61″ 113.33 M4 4.26 (2013) 14.77 1.16 3.38 [3.24, 3.52]

33 Zhenxin 102°13′38″ 38°59′68″ 467 M2 3.86 (2013) 6.92 4.77 32.81 [31.82, 33.78]

34 JinChuan Dongdatan 102°36′85″ 38°49′15″ 522.67 M2 7.19 (2022) 7.19 5.34 34.37 [31.65, 37.13]

35 CHN Shuangwan 102°34′32″ 38°48′56″ 225.67 M2 5.07 (2013) 10.42 2.30 10.21 [8.30, 12.11]

36 CNNL Huanghuatan 103°15′17″ 37°74′13″ 268.63 M3 10.42 (2022) 10.42 2.74 12.15 [9.88, 14.42]

37 CNNL Zhenye
Lvzhou

103°13′79″ 37°76′38″ 386.67 M4 8.26 (2014) 20.51 3.95 7.90 [7.74, 8.05]

38 CEEC Wuwei 103°16′62″ 38°05′79″ 1219.27 M4 22.38 (2022) 22.38 12.45 25.90 [24.06, 27.72]

39 Gulang Poverty
Alleviation

103°46′14″ 38°57′05″ 62 M3 25.96 (2018) 31.08 0.63 0.72 [0.61, 0.83]

40 SPIC Baiyin 103°98′05″ 37°38′91″ 253.33 M2 5.88 (2013) 10.26 2.59 12.11 [11.08, 13.12]

Total - - 11285.39 - 10.5 (Avg.) 115.24 887.11 [821.28, 952.78]
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Uldrijan et al., 2021; Xia et al., 2022b; Luo et al., 2023). The 74% increase
of FVC in the surveyed plants with M1 mode proves this ecological
enhancement ability of PV system. Moreover, the less surface-disturbing
constructionmethods such as the using of screwpile are increasingly used
in the new plants. The Sanxia Dazhaitan (No. 32 in Table 2) plant, as an
example of coexistence between PVpanels andHippophae rhamnoides in
the Tengger Desert near Jinchang, Gansu Province, provides additional
evidence of the function of PV panels in improving the overall
environment against erosion.

In addition, numerous biological soil crusts were found around
the drip lines beneath the PV plants (Figures 7E, F). The presence of
these biological crusts enhances the stability of desert soil, reduces
soil erosion, and fosters the recovery of desert ecosystems (Li X.
et al., 2018; Choi et al., 2020; Luo et al., 2023). This occurrence is
attributed to the periodic cleaning operations required to remove
dust particles from the PV panel surfaces. According to the survey
results, the PV panels are typically cleaned 7–8 times per year.
During the cleaning process, the PV panels intercept a portion of the
cleaning water that drops from the edges and gaps of the panels and
forms drip lines beneath. As substantial cleaning water falling to the
ground, the soil moisture content increases, thereby providing the
growth of vegetation underneath the panels (Figures 7D, E). It is
important to note that although the PV plants are situated in the
desert where water evaporates quickly, the regular cleaning
operations ensure a consistent supply of water to the ground
surfaced, which significantly helps the vegetation growth and
biological crust development.

Unfortunately, the intensity of these positive effects is inherently
limited, and the resulting change processes can be very slow.
Implementing wind-break and sand-fixation measures, as well as

artificial planting (M4) in PV plants, can effectively prevent and
control wind and sand disasters, protect soil from erosion, enhance
vegetation coverage, and provide higher ESV. This approach enables
the simultaneous development of ecology and economy, achieving a
synergy effect between environmental and economic benefits. All of
these suggest that vegetation construction in desert PV plants has a
promising future.

4.2 Restrictions of ecological construction in
current PV plants

The rapid development of PV industry necessitates a heightened
focus on its ecological functions (Semeraro et al., 2022). However,
22.5% of the surveyed PV plants still did not take any sand
prevention or vegetation construction measures, and 45% of
them did not take artificial vegetation construction measures. In
addition to the differences of surface landforms, the implementation
of ecological construction measures for PV plants is also affected by
resource shortages and economic costs.

The scarcity of resources in desert is primarily due to the
prevalent aridity and water scarcity. It is estimated that the
northwest China’s deserts will require an additional 20 billion
cubic meters of water per year from 2010 to 2030, and the water
scarcity crisis will exacerbate due to climate change and human
activity (Wu et al., 2014). Water is mainly sourced from water
tankers and groundwater wells for daily consumption and panel
cleaning in the PV plants, while some PV plants located near towns
could access tap water. However, a substantial portion of the water
used for PV plants cleaning is lost via surface runoff, which can even

FIGURE 7
Cleaning water and rainwater flow down through the gaps between PV panels, forming drip lines (A,B), hydraulic erosion lines (C,D), moss and
biological crusts (E,F) around the drip lines.
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contribute to hydraulic erosion beneath the panel (Figures 7A–D).
The limited water resources are not fully utilized.

The issue of economic cost primarily arises from the significant
human labor and financial resources required for the ecological
construction of PV plants, which may take several years to yield
returns (Jing et al., 2022). The increase in the construction and
operational costs of the PV plants may dampen the desire of owners
to carried out ecological construction practices (Li et al., 2020).
Although the ecological construction of the plants can generate
substantial ESV, these potential values cannot be directly transferred
to the plant owners and operators (Semeraro et al., 2022). Therefore,
additional policy support to encourage investment in ecological
construction initiatives is required if we want to obtain the high
potential ESV (Li et al., 2020). Ecological construction measures and
their economic costs vary largely under different ecological modes
(see 2.2.3), So that the accurate assessment of their economic costs
and benefits requires further study, as well as reasonable financial
policies (regulation, subsidies or taxes).

4.3 Unsatisfactory effects of current
ecological construction measures in
PV plants

The effectiveness of existing sand-prevention and artificial planting
measures in the PV plants may not meet expectations (Mai and Bai,
2023). According to the survey, only 36.4% of the PV plants with
artificial planting would reseed grass in the later stages, while the
remaining plants have not implemented any maintenance measures,
thereby failing to guarantee the survival rate of plants after ecological
construction. Moreover, only 23% of the plants have a vegetation
maintenance regulation, and would irrigate periodically. As a result,
the anticipated ecological and economic benefits may not be achieved.

Our study also revealed that many PV plants lack scientific sand
control and ecological construction guidelines during the
construction phase. In terms of sand control, the surveyed plants
only implemented limited traditional methods such as straw barrier
and surface compaction with gravel, while many updated techniques
such as new materials sand barriers, environmental-friendly
chemical sand stabilization materials, and bio crust were not
utilized. Also, no effective standards were developed for the
implementation area of the sand control measures. Some plants
covered the whole equipment area with sand control measures but
without specific targeting, resulting in the waste of funds. Others
only built barriers at places with severe sand damage without
considering the source or transportation path of sands, leading to
an incomplete protection system with low control effectiveness. In
terms of ecological construction, most surveyed PV plants adopt the
approach of artificial vegetation establishment by sowing mixed
grass species. However, due to the absence of sufficient irrigation, the
lack of a mature irrigation system, and the inadequacy of plant
species selection, issues arise such as low plant survival rates and
excessive plant growth obstructing the PV panels.

It is evident that the current implementation of ecological
construction measures may only address the dichotomous
question of “presence or absence” of such measures, while the
actual ecological outcomes have not received adequate attention.
The future challenges include developing tailored and scientifically

sound ecological construction plans, conducting reasonable
evaluations on the ecological construction effects to quantify the
generated economic and ecological benefits, and correcting
underperforming projects (Shen et al., 2021).

4.4 Strong policies can stimulate the
ecological construction of PV plants

Energy policy plays a crucial role in driving the rapid development of
PV plants in China (Li et al., 2020). Since 2017, the Chinese government
has demonstrated a heightened focus on modes such as “solar energy +
sand control” and “solar energy + ecological restoration,” accompanied
by the implementation of a series of policies designed to foster the
development of desert ecological PV plants. For instance, in 2017, the
Ministry of Land and Resources issued a notification indicating that no
administrative fees would be imposed on PV + projects that change land
use types, thereby reducing land utilization costs (Ministry of Land and
Resources, 2017). In 2019, “PV+” projects received priority in renewable
subsidy payments, providing support for off-grid projects that aimed at
poverty alleviation (Shen et al., 2021). In 2020, the Inner Mongolia
energy regulatory agency prioritized the development of integrated solar
energy projects incorporating desertification control measures,
terminating subsidies for standalone solar PV plants that fail to
contribute to ecological restoration efforts (IMAR Development and
Reform Commission, 2020). Additionally, some regional authorities
have declared more favorable policies for the innovative application
of solar PV projects installed on barren land and deserts (Ministry of
Natural Resources et al., 2023).

In line with the implementation of these boosting government
policies, the construction quantity and scale of PV plants reached a
turning point at 2017, initially declining but subsequently
recovering. The ecological construction modes adopted by PV
plants have undergone a significant transformation since the
same time point. Among the 13 newly built PV plants after 2017,
12 (92%) adoptedM2 toM5modes, with 7 (54%) employingM4 and
M5 modes. The proportion of PV plants employing the M4 mode
has risen substantially in terms of construction area, installed
capacity, and annual average power generation. This shift in
ecological construction modes has led to an increase in the FVC
and corresponding ESV values for the region, with PV plants
adopting M2 to M5 measures experiencing an approximately
7.2% improvement of net ESV from the completion of PV plants
to 2022.We therefore recommend the government to encourage and
guide PV plants in adopting scientific ecological construction
measures, thereby promoting the ecological construction and
sustainable development of PV plants in desert regions.

5 Conclusion

This research presents a comprehensive study based on field
survey and remote sensing investigations of 40 PV plants in the
Badain Jaran Desert and Tengger Desert, two of the hot solar energy
exploration areas in China. We examine the existing ecological
construction mode and key influencing factors of PV plants, and
estimate the current and potential ecosystem service value (ESV)
within the investigated plant areas.
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We found that PV plants without ecological construction
(M1 mode) boost vegetation cover by 74%, highlighting their
capacity to enhance desert ecosystems. However, the highest FVC
only reaches approximately 10%. By implementing sand control and
vegetation planting measures, the average growing season FVC can
be elevated to 14.53%, with a peak of 57.9%. Currently, 22.5% of PV
plants lack ecological construction measures, 40% lack sand control,
and 45% do not employ vegetation, agricultural, or pastoral
measures. Nevertheless, over 92% of PV plants constructed after
2017 have adopted at least one ecological construction mode (M2 to
M5). The key factors influencing the choice of ecological
construction mode are land surface types, policy support, water
scarcity, and ecological construction costs. The surveyed plant areas’
annual ecological service value could surge from $1.2 million to $8.9
(8.2–9.5) million, representing a 7.7-fold (7.1–8.3) increase. This
substantial ESV deserves further attention and policy guidance.

It is noteworthy that large-scale PV farms face several challenges
regarding ecological improvement. These include the lack of
scientific sand control management and ecological construction
guidelines, inadequate evaluation of the ecological service value
(ESV) of implemented ecological construction measures, and the
failure to achieve the desired ecological, economic, and social
benefits. In the future, it is crucial to establish sand control and
ecological construction guidelines tailored to PV plants in desert
areas, considering various factors like land surface types, sand
disaster status, water availability, and vegetation conditions.
Additionally, evaluations must be conducted on the economic
costs of various ecological construction modes, along with on-site
assessments of the ecological service value of large-scale PV plants.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

YW: Data curation, Formal Analysis, Investigation,
Visualization, Writing–original draft. BL: Conceptualization,

Funding acquisition, Methodology, Resources, Supervision,
Writing–review and editing. YX: Data curation, Investigation,
Writing–review and editing. HP: Funding acquisition, Project
administration, Supervision, Writing–review and editing. HW:
Project administration, Supervision, Writing–review and editing.
JZ: Project administration, Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by theNational Key R&DProgram of China (grant number
2022YFB4202102), the National Natural Science Foundation of China
(grant number 42071014), and the Excellent Member of Youth
Innovation Promotion Association CAS (grant number Y202085).

Conflict of interest

Authors HP, HW, and JZ were employed by Northwest
Engineering Corporation Limited.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenvs.2024.1406546/
full#supplementary-material

References

Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., et al.
(2020). Land use and climate change impacts on global soil erosion by water (2015-
2070). Proc. Natl. Acad. Sci. 117 (36), 21994–22001. doi:10.1073/pnas.2001403117

Chang, Z. F., Liu, S. Z., Zhu, S. J., Han, F. G., Zhong, S. N., and Duan, X. F. (2016).
Ecological functions of PV power plants in the Desert and gobi. J. Resour. Ecol. 7 (2),
130–136. doi:10.5814/j.issn.1674-764x.2016.02.008

Chang, Z. F., Wang, Q., and Liu, S. Z. (2018). Sand fixation effect of photovoltaic field
of gobi desert - take Gansu hexi corridor as an example (in Chinese with English
abstract). Soil Water Conservation China. 08, 18–22. doi:10.14123/j.cnki.swcc.2018.
0172

China Securries Journal (2022). The 14th Five-Year Plan" installed capacity of about
200million kilowatts, the second batch of scenery base planning landing. Available at: https://
www.cs.com.cn/cj2020/202202/t20220228_6245405.html (Accessed May 31, 2023).

Choi, C. S., Cagle, A. E., Macknick, J., Bloom, D. E., Caplan, J. S., and Ravi, S. (2020).
Effects of revegetation on soil physical and chemical properties in solar photovoltaic
infrastructure. Front. Environ. Sci. 8, 140. doi:10.3389/fenvs.2020.00140

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997).
The value of the world’s ecosystem services and natural capital. Nature 387 (6630),
253–260. doi:10.1038/387253a0

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J.,
Kubiszewski, I., et al. (2014). Changes in the global value of ecosystem services.
Glob. Environ. Change-Human Policy Dimensions 26, 152–158. doi:10.1016/j.
gloenvcha.2014.04.002

Cui, Y. Q., Feng, Q., Sun, J. H., and Xiao, J. H. (2017). A review of revegetation
patterns of photovoltaic plant in northwest China. Bull. Soil Water Conservation 37 (3),
200–203. doi:10.1016/j.seta.2023.103120

Gao, J. X., Zhang, H. W., Zhang, W. G., Chen, X. H., Shen, W. M., Xiao, T., et al.
(2023a) “Data from: China regional 250m normalized difference vegetation index data
set (2000-2022),” in National Tibetan plateau date center third Pole environment data
center. doi:10.11888/Terre.tpdc.300328

Gao, J. X., Zhang, H. W., Zhang, W. G., Chen, X. H., Shen, W. M., Xiao, T., et al.
(2023b) “Data from: China regional 250m fractional vegetation cover data set (2000-

Frontiers in Environmental Science frontiersin.org14

Wang et al. 10.3389/fenvs.2024.1406546

78

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1406546/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1406546/full#supplementary-material
https://doi.org/10.1073/pnas.2001403117
https://doi.org/10.5814/j.issn.1674-764x.2016.02.008
https://doi.org/10.14123/j.cnki.swcc.2018.0172
https://doi.org/10.14123/j.cnki.swcc.2018.0172
https://www.cs.com.cn/cj2020/202202/t20220228_6245405.html
https://www.cs.com.cn/cj2020/202202/t20220228_6245405.html
https://doi.org/10.3389/fenvs.2020.00140
https://doi.org/10.1038/387253a0
https://doi.org/10.1016/j.gloenvcha.2014.04.002
https://doi.org/10.1016/j.gloenvcha.2014.04.002
https://doi.org/10.1016/j.seta.2023.103120
https://doi.org/10.11888/Terre.tpdc.300328
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1406546


2022),” in National Tibetan plateau date center third Pole environment data center.
doi:10.11888/Terre.tpdc.300330

Grodsky, S. M., and Hernandez, R. R. (2020). Reduced ecosystem services of desert
plants from ground-mounted solar energy development. Nat. Sustain. 3 (12),
1036–1043. doi:10.1038/s41893-020-0574-x

Guo, J. B., and Wang, Y. (2014) Key technology of photovoltaic power plants design.
Beijing: China Electric Power Press.

Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M.,
Allen, E. B., et al. (2014). Environmental impacts of utility-scale solar energy. Renew.
Sustain. Energy Rev. 29, 766–779. doi:10.1016/j.rser.2013.08.041

Hernandez, R. R., Hoffacker, M. K., Murphy-Mariscal, M. L., Wu, G. C., and Allen, M.
F. (2015). Solar energy development impacts on land cover change and protected areas.
Proc. Natl. Acad. Sci. U. S. A. 112 (44), 13579–13584. doi:10.1073/pnas.1517656112

Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., et al.
(2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global
environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. 112 (20),
6277–6282. doi:10.1073/pnas.1312753111

IEA Photovoltaic Power Systems Programme (2018). Snapshot of global PV markets
2018. Available at: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_-_A_
Snapshot_of_Global_PV_-_1992-2017.pdf (Accessed May 25, 2023).

IEA Photovoltaic Power Systems Programme (2023). Snapshot of global PVmarkets 2023.
Available at: https://iea-pvps.org/snapshot-reports/snapshot-2023/ (Accessed May 25, 2023).

IMAR Development and Reform Commission (2020). Inner Mongolia electricity
sector Reform plan. Available at: https://www.ndrc.gov.cn/fzggw/jgsj/tgs/sjdt/201610/
W020190906633217378679.pdf (Accessed May 31, 2023).

Jing, R., He, Y., He, J. J., Liu, Y., and Yang, S. B. (2022). Global sensitivity based
prioritizing the parametric uncertainties in economic analysis when co-locating
photovoltaic with agriculture and aquaculture in China. Renew. Energy 194,
1048–1059. doi:10.1016/j.renene.2022.05.163

Li, B., Wang, Y., Xia, G. C., and Jiang, G. (2020). Comparative efficacy of treatments
for patients with knee osteoarthritis: a network meta-analysis. Qinghai Sci. Technol. 25
(05), 27–33. doi:10.1186/s40001-020-00426-1

Li, X., Tan, H., Hui, R., Zhao, Y., Huang, L., Jia, R., et al. (2018a). Researches in
biological soil crust of China: a review. Chin. Sci. Bull. 63 (23), 2320–2334. doi:10.1360/
N972018-00390

Li, Y., Kalnay, E., Motesharrei, S., Rivas, J., Kucharski, F., Kirk-Davidoff, D., et al.
(2018b). Climate model shows large-scale wind and solar farms in the Sahara increase
rain and vegetation. Science 361 (6406), 1019–1022. doi:10.1126/science.aar5629

Liu, Y., Zhang, R. Q., Ma, X. R., and Wu, G. L. (2020). Combined ecological and
economic benefits of the solar photovoltaic industry in arid sandy ecosystems. J. Clean.
Prod. 262, 121376. doi:10.1016/j.jclepro.2020.121376

Lu, X. (2013) The environmental effect analysis of PV power plant construction in
desert gobbi —take dongdongtan million kilowatt solar power demonstration base,
jiuquan city as an example. LanZhou University. [dissertation/master’s thesis],
[LanZhou (GanSu)].

Luo, L. H., Zhuang, Y. L., Liu, H., Zhao, W. Z., Chen, J. Z., Du, W. T., et al. (2023).
Environmental impacts of photovoltaic power plants in northwest China. Sustain.
Energy Technol. Assessments 56, 103120. doi:10.1016/j.seta.2023.103120

Mai, F. J., and Bai, R. L. (2023). Discussion on PV desertification control Scheme (in
Chinese with English abstract). Sol. Energy 01, 30–34. doi:10.19911/j.1003-0417.
tyn20211202.06

Marco, De, Irene, S., Teodoro, P., Rita, M., Aretano, R., and Zurlini, G. (2014). The
contribution of Utility-Scale Solar Energy to the global climate regulation and its effects on
local ecosystem services.Glob. Ecol. Conservation 2, 324–337. doi:10.1016/j.gecco.2014.10.010

Marrou, H., Dufour, L., and Wery, J. (2013). How does a shelter of solar panels
influence water flows in a soil-crop system? Eur. J. Agron. 50, 38–51. doi:10.1016/j.eja.
2013.05.004

Mekhilef, S., Saidur, R., and Safari, A. (2011). A review on solar energy use in
industries. Renew. Sustain. Energy Rev. 15 (4), 1777–1790. doi:10.1016/j.rser.2010.
12.018

Ministry of Land and Resources (2017). Opinions on supporting PV poverty
alleviation and regulating land use for PV power generation industry. Available at:
www.nea.gov.cn/2017-10/10/c_136669687.htm (Accessed july 25, 2020).

Ministry of Natural Resources, PRC., National Forestry and Grassland
Administration., and Administration (2023). Notice on supporting the development
of photovoltaic power generation industry and regulating land use management related
work. Available at: https://www.gov.cn/zhengce/zhengceku/2023-04/03/content_
5749824.htm (Accessed May 20, 2023).

National Development and Reform Commission, and National Energy
Administration (2021). China’s 14th five-year plan for renewable energy
development. Available at: https://www.ndrc.gov.cn/xwdt/tzgg/202206/
P020220602315650388122.pdf (Accessed July 14, 2023).

National Energy Administration (2023). Construction and operation status of
photovoltaic power generation in 2022. Available at: http://www.nea.gov.cn/2023-02/
17/c_1310698128.htm (Accessed June 11, 2023).

National Forestry and Grassland Administration (2015). State bulletin of
desertification and desertification in China. Available at: https://www.forestry.gov.
cn/main/65/20151229/835177.html (Accessed May 31, 2023).

People’s Daily Overseas Edition (2023). Three ministries jointly issue document to
encourage the construction of large-scale photovoltaic power plants in desert. Available at:
https://www.gov.cn/zhengce/2023-04/06/content_5750194.htm (Accessed june 11, 2023).

Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., et al. (2012).
“Energy pathways for sustainable development,” in Global energy assessment: toward a
sustainable future (Cambridge: Cambridge University Press), 1205–1306.

Scarrow, R. (2020). Solar plants versus desert plants. Nat. Plants 6 (8), 908. doi:10.
1038/s41477-020-00753-5

Semeraro, T., Scarano, A., Santino, A., Emmanuel, R., and Lenucci, M. (2022). An
innovative approach to combine solar photovoltaic gardens with agricultural production
and ecosystem services. Ecosyst. Serv. 56, 101450. doi:10.1016/j.ecoser.2022.101450

Shen,W., He, J. J., and Yao, S. H. (2021). Green industrial policy in the post grid parity
era: governing integrated Solar + projects in China. Energy Policy 150, 112129. doi:10.
1016/j.enpol.2020.112129

Solar Energy Industries Association (SEIA) (2022) Data from: global solar atlas 2.0-
solar resource data-global horizontal irradiation. Available at: https://solargis.com/
maps-and-gis-data/download/world.

Sun, J. (2018) Biodiversity of the plant community and ecosystem assessments at
different scales in alxa deserts. LanZhou University. [dissertation/doctoral’s thesis],
[LanZhou (GanSu)].

Tanner, K. E., Moore-O’leary, K. A., Parker, I. M., Pavlik, B. M., and Hernandez, R. R.
(2020). Simulated solar panels create altered microhabitats in desert landforms.
Ecosphere 11 (4). doi:10.1002/ecs2.3089

Uldrijan, D., Kováčiková, M., Jakimiuk, A., Vaverková, M. D., and Winkler, J. (2021).
Ecological effects of preferential vegetation composition developed on sites with
photovoltaic power plants. Ecol. Eng. 168, 106274. doi:10.1016/j.ecoleng.2021.106274

U.S. Bureau of Labor Statistics (2023). Consumer price index summary. Available at:
https://www.bls.gov/news.release/ (Accessed May 20, 2023).

Vaverková, M. D., Winkler, J., Uldrijan, D., Ogrodnik, P., Vespalcová, T., Aleksiejuk-
Gawron, J., et al. (2022). Fire hazard associated with different types of photovoltaic
power plants: effect of vegetation management. Renew. Sustain. Energy Rev. 162,
112491. doi:10.1016/j.rser.2022.112491

Wang, R. J., and Qin, Z. H. (2007). Valuation of Chinese grassland ecosystem services
using MODIS data (in Chinese with English abstract). Chin. J. Grassl. 29 (1), 50–54.
doi:10.3969/j.issn.1673-5021.2007.01.009

Wu, Z. D., Wu, Z., Liu, S., and Di, X. M. (1980) Introduction to deserts in China
(Revised version). Beijing: Science Press.

Wu, Z. Y., Hou, A. P., Chang, C., Huang, X., Shi, D. Q., and Wang, Z. F. (2014).
Environmental impacts of large-scale CSP plants in northwestern China. Environ.
Science-Processes Impacts 16 (10), 2432–2441. doi:10.1039/c4em00235k

Xia, Z. L., Li, Y. J., Chen, R. S., Sengupta, D., Guo, X. N., Xiong, B., et al. (2022a).
Mapping the rapid development of photovoltaic power stations in northwestern China
using remote sensing. Energy Rep. 8, 4117–4127. doi:10.1016/j.egyr.2022.03.039

Xia, Z. L., Li, Y. J., Zhang, W., Chen, R. S., Guo, S. C., Zhang, P., et al. (2022b). Solar
photovoltaic program helps turn deserts green in China: evidence from satellite
monitoring. J. Environ. Manag. 324, 116338. doi:10.1016/j.jenvman.2022.116338

Xiao, J. H., Si, J. H., Liu, C., Li, X. J., Xi, H. Y., Yu, T. F., et al. (2021). Concept,connotation
and development model of Desert Energy Ecosphere (in Chinese with English abstract).
J. Desert Res. 05, 11–20. doi:10.7522/j.issn.1000-694X.2021.00038

Xiao, J.H., Yao, Z. Y., and Sun, J.H. (2011). Reviewonoptimal site selection for grid-connected
solar photovoltaic plants (in Chinese with English abstract). J. Desert Res. 06, 1598–1605.

Xie, G. D., Zhang, Y. L., Lu, C. X., Zheng, D., and Cheng, S. K. (2001). Study on
valuation of rangeland ecosystem services of China (in Chinese with English abstract).
J. Nat. Resour. 01, 47–53. doi:10.3321/j.issn:1000-3037.2001.01.009

Xinhua News Agency (2021). Large-scale wind and photovoltaic power projects in
China’s desert commence in an orderly manner. Available at: https://www.gov.cn/
xinwen/2021-10/30/content_5647888.htm (Accessed May 31, 2023).

Yan, L. G., Xia, X. C., Zhou, F. Q., and Zhao, Z. X. (2007). A development study for Chinese
large scale renewable energy source base and technology (in Chinese with English abstract).
Adv. Technol. Electr. Eng. Energy 26 (1), 13. doi:10.3969/j.issn.1003-3076.2007.01.002

Yue, S. J., Guo, M. J., Zou, P. H., Wu, W., and Zhou, X. D. (2021). Effects of
photovoltaic panels on soil temperature and moisture in desert areas. Environ. Sci.
Pollut. Res. 28 (14), 17506–17518. doi:10.1007/s11356-020-11742-8

Zhao, H. L. (2016) Desertification control science. Beijing: Modern Education Press.

Zhao, Y., and Zhong, Y. J. (2022). Analysis of optimal design of photovoltaic power
generation system (in Chinese with English abstract). Energy Conserv. 04, 16–18. doi:10.
3969/j.issn.1004-7948.2022.04.005

Zhu, J. F., Wang, N. A., Chen, H. B., Dong, C. Y., and Zhang, H. A. (2010). Study on
the boundary and the area of Badain Jaran Desert based on remote sensing imagery (in
Chinese with English abstract). Prog. Geogr. 09, 1087–1094. doi:10.11820/dlkxjz.2010.
09.010

Frontiers in Environmental Science frontiersin.org15

Wang et al. 10.3389/fenvs.2024.1406546

79

https://doi.org/10.11888/Terre.tpdc.300330
https://doi.org/10.1038/s41893-020-0574-x
https://doi.org/10.1016/j.rser.2013.08.041
https://doi.org/10.1073/pnas.1517656112
https://doi.org/10.1073/pnas.1312753111
https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2017.pdf
https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2017.pdf
https://iea-pvps.org/snapshot-reports/snapshot-2023/
https://www.ndrc.gov.cn/fzggw/jgsj/tgs/sjdt/201610/W020190906633217378679.pdf
https://www.ndrc.gov.cn/fzggw/jgsj/tgs/sjdt/201610/W020190906633217378679.pdf
https://doi.org/10.1016/j.renene.2022.05.163
https://doi.org/10.1186/s40001-020-00426-1
https://doi.org/10.1360/N972018-00390
https://doi.org/10.1360/N972018-00390
https://doi.org/10.1126/science.aar5629
https://doi.org/10.1016/j.jclepro.2020.121376
https://doi.org/10.1016/j.seta.2023.103120
https://doi.org/10.19911/j.1003-0417.tyn20211202.06
https://doi.org/10.19911/j.1003-0417.tyn20211202.06
https://doi.org/10.1016/j.gecco.2014.10.010
https://doi.org/10.1016/j.eja.2013.05.004
https://doi.org/10.1016/j.eja.2013.05.004
https://doi.org/10.1016/j.rser.2010.12.018
https://doi.org/10.1016/j.rser.2010.12.018
www.nea.gov.cn/2017-10/10/c_136669687.htm
https://www.gov.cn/zhengce/zhengceku/2023-04/03/content_5749824.htm
https://www.gov.cn/zhengce/zhengceku/2023-04/03/content_5749824.htm
https://www.ndrc.gov.cn/xwdt/tzgg/202206/P020220602315650388122.pdf
https://www.ndrc.gov.cn/xwdt/tzgg/202206/P020220602315650388122.pdf
http://www.nea.gov.cn/2023-02/17/c_1310698128.htm
http://www.nea.gov.cn/2023-02/17/c_1310698128.htm
https://www.forestry.gov.cn/main/65/20151229/835177.html
https://www.forestry.gov.cn/main/65/20151229/835177.html
https://www.gov.cn/zhengce/2023-04/06/content_5750194.htm
https://doi.org/10.1038/s41477-020-00753-5
https://doi.org/10.1038/s41477-020-00753-5
https://doi.org/10.1016/j.ecoser.2022.101450
https://doi.org/10.1016/j.enpol.2020.112129
https://doi.org/10.1016/j.enpol.2020.112129
https://solargis.com/maps-and-gis-data/download/world
https://solargis.com/maps-and-gis-data/download/world
https://doi.org/10.1002/ecs2.3089
https://doi.org/10.1016/j.ecoleng.2021.106274
https://www.bls.gov/news.release/
https://doi.org/10.1016/j.rser.2022.112491
https://doi.org/10.3969/j.issn.1673-5021.2007.01.009
https://doi.org/10.1039/c4em00235k
https://doi.org/10.1016/j.egyr.2022.03.039
https://doi.org/10.1016/j.jenvman.2022.116338
https://doi.org/10.7522/j.issn.1000-694X.2021.00038
https://doi.org/10.3321/j.issn:1000-3037.2001.01.009
https://www.gov.cn/xinwen/2021-10/30/content_5647888.htm
https://www.gov.cn/xinwen/2021-10/30/content_5647888.htm
https://doi.org/10.3969/j.issn.1003-3076.2007.01.002
https://doi.org/10.1007/s11356-020-11742-8
https://doi.org/10.3969/j.issn.1004-7948.2022.04.005
https://doi.org/10.3969/j.issn.1004-7948.2022.04.005
https://doi.org/10.11820/dlkxjz.2010.09.010
https://doi.org/10.11820/dlkxjz.2010.09.010
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1406546


Lag effects of vegetation of
temperature stress on and its
ecological risk assessment

Chenxing Fu1, Hongke Hao1, Te Li1, Yuxin Li2* and Fang Yang3*
1Yangling Vocational and Technical College, Yangling, China, 2College of Basic Medical Science, Inner
Mongolia Medical University, Inner Mongolia Key Lab of Molecular Biology, Hohhot, China, 3State Key
Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental
Sciences, Beijing, China

Extreme high and low temperatures both exert impacts on terrestrial ecosystems.
However, current research still lacks a precise assessment of the risk of vegetation
loss under simultaneous consideration of different temperature stresses and lag
effects. To this end, we propose a methodology for assessing the risk of vegetation
loss under temperature stress that incorporates lag effects, based on weekly
normalized difference vegetation index and temperature data. Quantified risk
probabilities of different terrestrial ecosystems to warming and cooling stresses in
Heilongjiang Province, China. The results of the study revealed a strong association
between vegetation and temperature change during the growing season, reaching
the most sensitive state around 9weeks and 23weeks lag, respectively, with high
spatial consistency. The study identifies the eastern and western edges of the study
area as high-risk zones for vegetation loss, while the risk is comparatively lower in the
northwestern and central regions. The probability of risk increased by about 0.5% for
every 1°C of warming in average temperatures and by about 0.7% for every 1°C of
cooling. This indicates that cooling has a greater impact on vegetation thanwarming.
Farmland ecosystems had a higher change in risk to temperature stress and forest
ecosystems had the least. This study provides new perspectives for understanding
the specific impacts of temperature extremesondifferent ecosystems andprovides a
scientific basis for developing adaptive management measures.

KEYWORDS

temperature stress, lag time, vegetation loss, risk assessment, heilongjiang province

1 Introduction

Amidst global change, climate warming has provoked global concern, especially
regarding its potential impacts on terrestrial ecosystems. Warmer temperatures may
lead to impaired plant physiology and dysfunctional ecological balance, which may
have far-reaching impacts on biodiversity (Khan et al., 2013), soil and water
conservation (Jia et al., 2022), and the global carbon cycle (Hoover et al., 2022). On the
other hand, vegetation serves as an indicator of global climate change, not only maintaining
the Earth’s biodiversity but also regulating atmospheric carbon dioxide levels. It is a key
component in sustaining the Earth’s life systems (National Research Council, Division of
Behavioral, Policy Division, Board on Environmental Change, Committee on the Human
Dimensions of Global Change, and Committee on Global Change Research, 1999; Rani
et al., 2020). Therefore, assessing and understanding the response of vegetation to climate
change under the backdrop of global warming, particularly the potential risk of vegetation
loss, is crucial for predicting and mitigating the impacts of climate change.
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The response of vegetation to environmental changes often
exhibits a temporal lag, and this lag effect may lead to an
underestimation of vegetation’s response to extreme climatic
events. In many instances, vegetation may require an extended
period to manifest physiological and ecological responses to
environmental changes (Becklin et al., 2016; Gillison, 2019). For
example, extreme high temperatures may affect plant
photosynthesis immediately, but changes in plant growth and
community structure may not be apparent until several
subsequent seasons or even years later (De Boeck et al., 2011).
Additionally, rising temperatures may further affect vegetation
status by altering soil moisture evaporation and plant
transpiration processes, which can also exhibit delayed effects.
Conversely, extreme low temperatures can significantly affect
multiple physiological processes in vegetation (Reyer et al., 2013).
Low temperatures decrease the activity of enzymes within plants,
thereby slowing metabolic rates and leading to reduced growth rates
(Bhattacharya, 2022). Particularly under conditions of extreme low
temperatures, the structure of plant cells may be directly damaged,
leading to cell death. However, current research focuses more on
high temperature conditions and ignores the effects of low
temperatures on vegetation. Therefore, this study addresses both
warming and cooling conditions and their impacts on vegetation,
aiming to comprehensively assess and quantify the lag effects of
different temperatures on vegetation and the probability of
associated risks.

Indeed, in areas with scarce precipitation and higher latitudes,
temperature is a key factor influencing vegetation growth (Fu et al.,
2014; Zhao et al., 2018). Wang et al., 2021 research found that
compared to vegetation in humid regions, vegetation in semi-arid
areas responds more quickly to precipitation changes. Deciduous
broadleaf forests exhibit a response lag of approximately 1 month to
temperature changes, and as this lag time increases, the correlation
coefficient also rises (Lu et al., 2020). These studies provide valuable
references for understanding vegetation dynamics and their
response to temperature changes, but they predominantly focus
on the monthly scale interactions between vegetation and
temperature variations. In fact, different types of vegetation
exhibit variations in the lag time of their response to temperature
changes, which may manifest on decadal, weekly, or even daily
scales. It remains difficult to characterize the lagged effect of
vegetation on temperature change on finer time scales.

Based on this, this study selected Heilongjiang province (HLJ),
which has the highest latitude in China. Not only does it experience
significant annual temperature variations, but its rich diversity of
ecosystems also provides favorable conditions for studying
responses to temperature changes. Particularly, as HLJ serves as
China’s largest commodity grain base (ZHOU and CHENG, 2015),
assessing the risk of vegetation loss due to temperature changes is
especially urgent and critical. To this end, we develop a risk
assessment model for vegetation loss that takes into account
temperature lag effects. Using high-resolution climate and
vegetation data, we have developed a framework that
comprehensively evaluates the risk of vegetation loss under
conditions of both warming and cooling stress. The research
methodology and results are expected to provide a more accurate
tool for relevant sectors such as agriculture and risk management to
help them better understand and manage potential risks to

vegetation under temperature change. This will in turn help to
develop effective ecological conservation and climate adaptation
strategies.

2 Materials and methods

2.1 Study region

The HLJ is located in the northeast of China, is China’s
northernmost and highest latitude province, with a total area of
473,105 km2 (Figure 1). The HLJ belongs to the cold temperate and
temperate continental monsoon climate. It is characterized by low
temperatures and dryness in spring, hot and rainy summers, prone
to flooding and early frost in autumn, and cold and lengthy winters
with a short frost-free period. The regional climatic differences
across the province are significant. The annual average
temperature in HLJ ranges from −4–5°C, with average
precipitation exceeding 500 mm. The climate transitions from
temperate in the south to cold temperate in the north, and
exhibits distinct monsoonal characteristics. The province hosts a
diverse array of vegetation types, with forests and agricultural
ecosystems constituting a significant proportion (Liu and Li,
2024). In addition, the HLJ is located in one of the world’s three
largest black land areas, with the largest arable land area in the
country (Pan et al., 2018). Studying the effects of temperature
change on vegetation is key to securing food production.

2.2 Data

The daily maximum temperature data are sourced from the
Climate Prediction Center Global Unified Temperature dataset,
with a spatial resolution of 0.5° on a daily scale (https://psl.noaa.
gov/data/gridded/data.cpc.globaltemp.html). The gridded daily
Normalized Difference Vegetation Index (NDVI) is derived from
the National Oceanic andAtmospheric Administration) Climate Data
Record of Advanced Very High Resolution Radiometer NDVI
Version 5 (https://www.ncei.noaa.gov). The data features a spatial
resolution of 0.05°. To better align with the temperature data, we have
interpolated the NDVI data to a resolution of 0.25°. In addition,
considering the climatic period of vegetation growth within the year,
only data from the growing season (NDVI from the 15th to 39th week
of the year) were selected for this study. Ecosystem delineation data
fromResource and Environmental ScienceData Platform’s 2020 1 km
resolution (https://www.resdc.cn/DOI/DOI.aspx?DOIID=131).

2.3 Methodology

To comprehensively assess the impacts of both warming and
cooling on vegetation, the Spearman correlation between
temperature and NDVI was calculated at various lag times.
Additionally, the optimal lag times for both periods were
determined by identifying the maximum and minimum
correlation coefficients. Further, a copula function was employed
to jointly model the temperature and NDVI variables at their
optimal lag times for both periods. A copula function is a flexible
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method for representing multivariate joint distributions,
unconstrained by the marginal distributions of random variables
or the types of their joint distribution functions. This avoids
assumptions about linearity or underlying probability
distributions (Sklar, 1959; Nelsen, 2006). For any two random
variables and, the corresponding joint distribution is expressed
as follows

F x, y( ) � C u, v( ) (1)
where C represents the cumulative copula distribution function; u
and v represent the marginal distribution functions of the random
variables x and y, respectively.

Further, the kernel functions are employed to fit the marginal
distributions, as described in Eq. 2. Given the properties of different
types of copula functions and the fact that this study is mainly
concerned with the risk scenarios of warming and cooling on
vegetation loss. We used Clayton (Eq. 3) and Gaussian copula
functions (Eq. 4) to fit the joint probability distribution, respectively.

fh x( ) � 1
nh

∑
n

i�1
K

x − xi

h
( ) (2)

where x1, x2, . . . xn are random samples from an unknown
distribution, n is the sample size, K is the kernel smoothing
function, and h represents the bandwidth (Han et al., 2023a).

Cθ u, v( ) � max u−θ + v−θ − 1[ ]−1
θ , 0( ), θ ∈ 0,+∞( ) (3)

∫ϕ−1 u( )

−∞
∫ϕ−1 v( )

−∞
1

2π






1 − θ2

√ exp −s
2 − 2θst + t2

2 1 − θ2( ){ }dsdt, θ ∈ −1, 1( ) (4)

where θ is the Copula parameters, and θ value gained by the
maximum likelihood estimate method in this study.

Based on the joint distribution of the two copula functions
constructed, the Bayesian conditional probability approach can then
be used to assess the conditional probability of the risk of vegetation
loss under temperature stress. In this study, scenarios combining
temperature and vegetation are configured using percentile-based
measures. Given the extensive and patterned nature of the scenario
outcomes, we focus here on the vegetation loss scenarios at the 40th
and 10th percentiles during cooling at the 40th, 30th, 20th, and 10th
percentiles. For better comparison, the warming corresponds to the
60th, 70th, 80th, and 90th percentile scenarios, respectively. In this
case, the conditional probabilities P of temperature and vegetation
can be calculated separately for the combined cooling (Eq. 5) and
warming (Eq. 6) scenarios.

P Y≤y X≤ x|( ) � C FX x( ), FY y( )( )
FX x( ) � C u, v( )

u
(5)

P Y≤y X> x|( ) � FY y( ) − C FX x( ), FY y( )( )
1 − FX x( ) � v − C u, v( )

1 − u
(6)

3 Results and discussion

3.1 Lag effect of NDVI on temperature

In general, vegetation growth is subject to a combination of
climate change and environmental factors. Especially for vegetation
at higher latitudes, the effect of temperature is relatively more

FIGURE 1
Location of the study area and ecosystem delineation.
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pronounced (Huang et al., 2017). Vegetation will vary in its
sensitivity to temperature with different lag times, especially
during the growing season period of vegetation (Wu et al., 2015).
Figure 2A shows the variation of correlation coefficients between
vegetation and temperature changes in HLJ at different weekly time
scales. It is apparent that the maximum positive correlation (r = 0.56,
p < 0.01) and the minimum negative correlation (r = −0.57, p < 0.01)
are achieved at 9 weeks and 23 weeks, respectively. Figures 2B,C
show in detail the changes of NDVI versus temperature in
Heilongjiang Province with a lag of 9 and 23 weeks. In the
period of positive correlation, NDVI shows a synchronous and
stable trend as the temperature increases and decreases. The negative
correlation period shows the opposite change. Relative to changes in
temperature, the variations in NDVI were more pronounced around
the year 2014, beginning with a notable increase from that
year onward.

On the spatial scale, the positive and negative correlation two
periods (Figures 3A,B) showed significance at the 0.05 level for
almost all image elements. They exhibit similar spatial distribution
characteristics, with lower correlation coefficients (regardless of the
direction of correlation) in the central region of HLJ. In the western
and eastern regions, there is a higher level of correlation (direction of
correlation not considered). However, the differences in lag times

are more pronounced. During the period of positive correlation
(Figure 3C), most of the lag times are concentrated within 10 weeks.
In contrast, during the period of negative correlation (Figure 3D),
most lag times exceed 20 weeks, with a noticeable acceleration in lag
as latitude increases. Furthermore, the strong sensitivity between
NDVI and temperature forms the foundation for constructing
bivariate Copula functions, where the direction of correlation
directly influences the outcomes of vegetation loss risk under
various temperature stresses. Therefore, the changes in
correlations illustrated in Figures 2, 3 also provide a good
opportunity to explore the risk of vegetation loss under different
warming and cooling scenarios.

3.2 Risk assessment of vegetation loss under
different levels of temperature stress

Given the complexity and stochastic nature of risk loss (Blauhut,
2020), we have conducted detailed analyses of the probabilities of
vegetation loss at various levels under different temperature stresses
during periods of both positive and negative correlation. During the
period of positive correlation, changes in the probability of
vegetation loss risk as temperatures decrease are displayed

FIGURE 2
Correlation coefficients between NDVI and temperature at different lag times (A), along with changes in NDVI (B) and temperature (C) at
extreme values.
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(Figure 4). It can be observed that as the degree of temperature
reduction intensifies, the risk probability of vegetation loss at the
40th percentile exhibits a significant increasing trend, with the color
deepening to dark red. On the other hand, when the degree of
vegetation loss was at the 10th percentile, it increased with
temperature stress. Although the probability of risk also tended
to increase, it was significantly lower than the probability at the 40th
percentile. Overall, the spatial distribution of risk probabilities under
different scenarios shows a high degree of consistency during the
period of positive correlation. In particular, it tends to have higher
probability values in the eastern and western parts of HLJ, and lower
probability values in the northwestern and central parts of HLJ.

During periods of negative correlation, an increase in temperature
will inhibit vegetation growth. For this reason, we also discussed the
changes in the risk probabilities of vegetation loss due to increases in
temperature (Figure 5). Similar to the results during the period of
positive correlation, as the degree of temperature stress intensifies, the
risk probability of vegetation loss shows an increasing trend.
Moreover, the higher the extent of vegetation loss, the lower the
risk probability becomes. Additionally, the risk probability values
across different scenarios exhibit a high degree of spatial similarity,

mirroring the spatial variations observed in Figures 3A,B. This suggests
that in areas where vegetation is more sensitive to temperature
changes, the risk of loss due to temperature stress is greater. When
we further compare the risk probabilities between the two periods, it is
evident that cooling has a more substantial impact on vegetation than
warming, and the extent of this impact intensifies as the level of
temperature stress increases. Particularly, when cooling reaches the
10th percentile and warming reaches the 90th percentile, the average
difference in the risk probability of vegetation loss at the 10th percentile
is as high as 17%. Risk probability values are greater than 50% for
eastern and western HLJ during cooling. As a result, vegetation growth
conditions in the region are significantly affected by temperature,
warranting increased attention and heat prevention in the area.

3.3 Effects of warming and cooling changes
on ecosystems

In fact, although Figures 4, 5 provide detailed representations of
vegetation loss risk under various scenarios. However, for
government officials and farmers, they might be more concerned

FIGURE 3
Correlation coefficients between NDVI and temperature under periods of positive (A, C) and negative correlation (B, D) and their spatial variation in
lag time.
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about the specific magnitude of temperature changes and their impact
on vegetation. Therefore, we further quantified the risk changes of
vegetation loss at the 40th percentile within each pixel, when
temperatures increase or decrease by 1°C–4°C based on the mean
temperature change (Figure 6). For each 1°C increase in temperature,
the average risk probability increases by approximately 0.5%, while
each 1°C decrease in temperature reduces the risk by about 0.7%. This
indicates that cooling has a greater impact on vegetation thanwarming.
Furthermore, the areas most affected by both warming and cooling are
on the eastern and western sides of the study area, with the smallest
impact observed in the northwest and central regions. These findings
are highly consistent with earlier conclusions and serve to indirectly
validate the accuracy and reliability of this study.

Moreover, we conducted detailed risk analyses for farmland, forest,
grassland and wetland ecosystems separately (Figure 7). Pixel counts for
remaining ecosystem types constitute only about 5% of the total in the
study area, and hence were not considered in this analysis. In both
scenarios, distinct differences in the risk of loss due to temperature stress
are evident across different ecosystems, exhibiting highly consistent
patterns. Among these, the sensitivity to temperature changes ranked
from highest to lowest is farmland, wetlands, grasslands, and forests. The
risk probabilities for each ecosystem increase in a linear fashion.
Simultaneously, this indicates that farmland has the lowest resilience
to temperature stress, while forests exhibit the highest resilience. It has
been shown that farmland ecosystems tend to have low carbon
sequestration capacity and biodiversity, and a relatively weak resilience
in the face of extreme climate events (Seddon et al., 2021). In contrast,

systems such as forests have a higher carbon sequestration capacity and
richer biodiversity. They aremore resilient to climate change, especially in
terms of climate andwater regulation (Roy et al., 2022), and thus relatively
less exposed to risk. These difference not only reveals the vulnerability of
different ecosystems to future climate change, but emphasizes the need to
consider the characteristics of different ecosystems when proposing
measures or strategies such as climate change adaptation.

3.4 Reliability and limitations of the risk
assessment framework

Traditional methods of assessing vegetation risk are common, but
they often rely on deterministic approaches and single-scenario
methods. In contrast to other natural variables such as soil moisture,
runoff, and groundwater, vegetation dynamics are severely dependent
on unilateral changes in precipitation or temperature. For example,
lower precipitation and higher temperatures tend to cause a decrease in
the above variables, thus exacerbating the risk (Han et al., 2021; Han
et al., 2023b). However, vegetation can adjust its state in response to
environmental changes, thus adapting to the evolution of natural
conditions. To this end, this study proposes a model for assessing
the risk probability of vegetation loss from warming and cooling
changes. The risk probability of causing a certain level of vegetation
loss under any temperature stress can be accurately quantified.

Further, we randomly selected a pixel (123.875°E, 46.375°N) and
assessed the reliability of the framework by applying Gaussian and

FIGURE 4
Changes in risk probability of causing different levels of vegetation loss under different levels of temperature stress during the positive correlation
period. Here, X and Y represent temperature and NDVI, respectively, and P denotes the average risk probability value.
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FIGURE 5
Changes in the risk probabilities of vegetation loss at various degrees under different temperature stresses during periods of negative correlation.

FIGURE 6
Changes in risk at the 40th percentile of vegetation loss for warming and cooling of 1°C–4°C compared to average temperatures.
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Clayton copulas to theNDVI and vegetation for both periods (Figure 8).
It can be seen that the distribution ofmost observations and simulations
results is more consistent, i.e., during periods of positive (negative)
correlation, the modelled point changes also show positive (negative)
correlation. More importantly, based on the properties of the copula
function, it can be seen that the Calyton copula function has a more
sensitive lower tail characteristic. Thus, the loss of vegetation under the
cooling scenario can be better captured (Figure 8B). However, several
limitationsmust also be acknowledged in this study. Firstly, althoughwe
chose different copula functions for different scenarios. However, the
uncertainty inherent in the copula model itself also affects and is passed
on to the assessment of the probability of risk (Leng and Hall, 2019).
Secondly, we will only focus on the effect of temperature on vegetation
and lack of consideration of other environmental factors. Therefore,
more environmental factors as well asmore appropriatemethods can be
considered in future studies.

Overall, this study quantifies in detail the effects of warming and
cooling on vegetation loss. It also explores the variability in the response
of different ecosystems to changes in temperature. These provide new
insights into the status of vegetation loss under temperature stress.

4 Conclusion

In this study, two copula functions with Bayesian conditional
probabilities were used to assess the probability of risk to
different vegetation losses under temperature stress in
HLJ. While accounting for lag effects, this study quantified the
impact of temperature increases and decreases of 1°C–4°C on
vegetation loss across different ecosystems. The research
identified that lag effects play a critical role in the risk of
vegetation damage, with varying lag times leading to different

FIGURE 7
Changes in risk at the 40th percentile of ecosystem loss for different ecosystems for warming (A) and cooling (B) 1°C–4°C.

FIGURE 8
Comparison of observed combinations of air temperature and NDVI with simulated random variables using Gaussian (A) and Clayton copula (B),
respectively. Where the red circles and green dots indicate the results of observations and simulations, respectively.
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sensitivities and risks of vegetation loss due to temperature
changes. This study shows that at around 9 weeks and
23 weeks of lag, there is a maximum positive correlation and a
minimum negative correlation with temperature, respectively.
The correlation and risk loss scenarios in HLJ have a similar
spatial distribution. The eastern and western parts of the
province are the most sensitive areas in terms of vegetation
response to temperature and are also at high risk of loss.
Further analysis of the risk changes under warming and
cooling stresses indicates that cooling has a greater impact on
vegetation than warming. Different ecosystems exhibit varied
probabilities of risk under temperature stress, with agricultural
ecosystems showing lower resistance to temperature stress, while
forest ecosystems demonstrate higher resilience.

These findings emphasize the practical importance of integrating
the lagged effects of temperature stress for accurate assessment of
vegetation damage in the context of global climate change.
Additionally, future research should delve deeper into the
interactions between different types of vegetation and their intrinsic
mechanisms for climate adaptability. This would enable a more
comprehensive understanding and prediction of vegetation
responses to temperature stress. Such efforts will provide a scientific
basis for the sustainable management and conservation of ecosystems.
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Effects of enclosure measures on
soil water infiltration and
evaporation in arid and semi-arid
grassland in northern China
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Soil infiltration and evaporation are the main factors affecting the water cycle in
arid and semi-arid areas, and the sealing measures determine the soil water
storage capacity by affecting the evaporation and infiltration process of grassland
soil water, which is the key to the ecological environment restoration of arid and
semi-arid grassland. This study taking the enclosure time of Hulunbuir grassland
for 3 years, 7 years, 10 years and the grazing control grassland as the research
objects by using small evaporation instrument and double-ring infiltration
instrument.To study the effects of enclosure measures on soil water
distribution, soil infiltration and evaporation, and to evaluate the applicability
of the main soil evaporation and infiltration models in enclosed grassland. The
results show that (1) the enclosure measures can effectively improve the soil
water content. In the vertical direction, the soil water content shows a trend of
increasing first and then decreasing. (2) The initial infiltration rate and stable
infiltration rate of grassland at different enclosure time are significantly different
(P<0.05), and the soil infiltration rate and evaporation rate were in the order of
EN10 >EN7 >EN3 >CK. (3) Using three infiltration process models to simulate the
grassland infiltration process at different enclosure times, the Horton model is
able to better model the inflection points of the infiltration process, and the fit
accuracy is higher than that of the Philip and Kostiakov models. (4) The
cumulative evaporation process of grassland at different closure times was
simulated by using Black, Ross, and Power function models.The simulation
values calculated by the Rose model are the closest to the measured value,
and the simulation accuracy is the highest.The comprehensive analysis shows
that the hydrological characteristics of grassland soil change significantly in the
early stage of enclosure phase, and the soil properties have reached a good state
for 3 to 7 years.With the continuous increase of enclosure time, the change of soil
hydrological characteristics is not obvious. The results are helpful for soil and
water conservation and ecological environment management in arid and semi-
arid grassland.
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enclosure measures, soil water infiltration, soil evaporation, model, arid and
emi-arid grassland
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Introduction

Water is the key controlling factor of vegetation growth, which
directly affects the growth and development of vegetation (Chamizo
et al., 2013). Soil infiltration and evaporation is not only an
important part of the surface water cycle in semi-arid regions,
but also a link between surface water, underground water and
atmospheric water. The magnitude of soil water infiltration rate
and the strength of evaporation capacity directly affect the soil water
content (Guan and Cao, 2019). In semi-arid grassland areas,
precipitation is small, evaporation is large, and available water for
vegetation is limited. The growth of vegetation mainly depends on
the water entering into the soil, and the soil evaporation capacity and
infiltration performance directly affect the amount of soil water, and
then indirectly control the growth trend of grassland vegetation
(Zhang, 2021). In Hulunbuir grassland, due to the influence of
climate change and unreasonable grazing activities, the vegetation
coverage, biodiversity and ecological service function of grassland
are decreased, and the large area of grassland was degraded as a
whole (Nie et al., 2021). Grassland enclosure is a simple and effective
way to restore degraded grasslands. In the process of closure and
restoration, the growth and development of grassland vegetation is
limited by soil water. With the increase of enclosure times, the
change of vegetation community structure will alter the soil texture
and water supply conditions and further affect soil infiltration and
evaporation. Therefore, exploring the effects of enclosure measures
on the soil infiltration and evaporation process of grassland, and
determining the optimal enclosure period for soil water
conservation, is the key to restoring the ecological environment
of semi-arid grassland.

The soil water infiltration process determines the ability of
precipitation to transform into soil water, while the soil
evaporation process determines how much infiltration water can
be retained in the surface soil for use. Infiltration and evaporation
directly affect soil water content and vegetation water utilization
efficiency (Yu et al., 2010; Jiao et al., 2017). In recent years,
numerous researchers at home and abroad have studied the
process of soil infiltration and evaporation under different
environmental conditions, mainly focusing on soil infiltration
and evaporation processes under the influence of human factors
in agricultural planting environment (Bristow et al., 2020; Cui et al.,
2021), among which the use of external additives such as biochar
(Sun et al., 2019), fly ash (Yang et al., 2020) and bioactive agent
(Saad, 2018) to change the soil texture and affect the movement of
soil water. A large number of studies have been carried out to clarify
the effects of external additives on soil evaporation and infiltration;
At the same time, some researchers discussed the effects of residual
agricultural film (De Souza Machado et al., 2018) and soil
microplastics (Wan et al., 2019) on soil infiltration and
evaporation, and constructed empirical and semi-empirical
models to simulate the evaporation infiltration process of
agricultural film soil and microplastic soil, and explained the
effect of residual film and microplastics on soil water transport
by blocking pores (Machado et al., 2019). At present, the research on
soil infiltration and evaporation process and its influencing factors is
mainly focused on the agricultural planting soil environment in
various types of farming areas (Liao et al., 2021). While, there have
been relatively few studies of meadow grassland soils in semi-arid

regions, where the ecological environment is relatively fragile, the
geographic spatial span is distinct, and the ability to resist
disturbance is weak. The source of soil water in semi-arid
grasslands is single. How to maintain soil water and reduce
ineffective evaporation is the key to the healthy growth of
grassland vegetation. Through field measurement and indoor
simulation.

The Hulun Buir grassland is located in the interior of northern
China. Long-term unreasonable grazing activities have led to
grassland vegetation degradation, soil desertification and habitat
fragmentation. As an effective means of grassland restoration,
enclosure measures can improve the structure of vegetation
groups, conserve water sources, maintain water and soil, and
ensure the healthy growth of grassland vegetation. This paper
takes grazing grassland and enclosed grassland in Hulun Buir
meadow grassland for 3, 7 and 10 years as the research objects.
Through field measurements and indoor simulations, the effects of
enclosure period on soil infiltration and evaporation characteristics
of grassland were studied, and the simulation processes of main
infiltration and evaporation models were evaluated, so as to provide
a theoretical basis for soil and water conservation and ecological
environment control of meadow grassland in arid and semi-
arid areas.

Materials and methods

Overview of the study area

This research area is located in Baodong Sumu, Xinbarhu
Banner, Hulun Buir City, Inner Mongolia (N
48°27′54.95″~48°28′33.07″, E 117°11′41.26″~117°16′19.68″). It
belongs to the hinterland of the Hulun Buir grassland and is
about 30 km nearby Hulun Lake. Located in northeastern Inner
Mongolia, it belongs to the semi-arid continental climate zone of the
Northern temperate zone. The mean annual temperature ranges
from −0.6°C to 1.1°C, and the annual sunshine duration ranges from
2,694 to 3,131 h. The average annual precipitation ranges from
240.5 to 283.6 mm and is mainly concentrated from July to
September, accounting for over 60% of the annual precipitation,
the annual average evaporation rate ranges from 1455.3 to
1754.3 mm and the annual frost-free period of 110–160 days. The
soil composition is mainly sandy soil and sandy loam with loose
structure and low fertility (Fan and Wang, 2021). The main plant
species in the study area are: Leymus chinensis, Cleistogenes
squarrosa, Stipa sareptana, Artemisia frigida and other vegetation
(Fan and Wang, 2021).

Sample collection and processing

From July to August 2021, the soil evaporation experiment and
infiltration simulation experiment were selected in the research area
for 3 years (EN3), 7 years (EN7), 10 years (EN10) and grazing
control (CK) grasslands in the research area. Of these, the closed
grassland showed severe degradation prior to closure. The grazing
intensity of the control grassland is heavy grazing, and the livestock
carrying rate is 610~680 sheep/km2. Following the grid arrangement
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method, grid points were established at intervals of 500 m for closed
and controlled grassland, 13 points for EN3 grassland, 12 points for
EN7 grassland, 15 points for EN10 grassland and 9 points for heavy
grazing grassland, in which soil samples were collected and analyzed.
According to the requirements of “soil agrochemical analysis,” the
sampling points were set up by X distribution method and triangle
distribution method at each survey site. 0~30 cm soil samples and
ring knife samples were collected in three layers at each sampling
point. After soil samples were layered and mixed, 500 g soil samples
were retained by quarter method, the soil samples were sifted by
1 mm and 0.25 mm. After screening, put it in a sealed pocket for
preservation, and take it back to the laboratory to determine the
physical and chemical indicators such as soil texture composition,
soil volume, porosity, and organic matter. The basic properties are
shown in Table 1. Soil evaporation experiment and double ring
infiltration experiment were carried out at three points with similar
physical structure in different enclosed grasslands, and the
evaporation and infiltration performance of soil was measured.
At the same time, a portable small automatic weather station is
set up in the study area to observe air temperature, humidity, wind
speed, solar radiation, air pressure, soil water content and other
meteorological indicators, and automatically record data per 30 min.

Evaporation experiment

In this study, the soil evaporation experiment was carried out by
using small lysimeter, which is a PVC sleeve with inner diameter
10 cm and height 15 cm, with a leak-proof yarn net at the bottom,
which is a self-developed Chinese national patent (patent number
ZL201620486286.3). For the experiment, 28 typical days were
selected from 22 July to 18 August 2016 and the soil evaporation
was measured at 7:00 and 19:00. Weighing the soil evaporation with
a precision of 0.01 g of electron equilibrium, the mass conservation
principle is used to calculate the soil evaporation. At the same time,
the parameters of soil temperature and the moisture content
were measured.

Infiltration experiment

In this study, the soil water infiltration rate was measured by
using double-ring infiltration instrument with an inner diameter of
50 cm and an outer diameter of 80 cm. Before the start of the

experiment, the grassland was pruned and the topsoil herbaceous
plants were cut off, after which the infiltration ring was slowly
penetrated into the soil layer with an energy-absorbing hammer to
keep the soil from being damaged. Finally, we began the soil
infiltration experiment, using Markov bottle to inject water into
the infiltration ring, keeping the infiltration head at a constant height
of 5 cm, always paying attention to the water level between the two
rings, ensuring flattening, and preventing the lateral infiltration of
water in the inner ring. The water level scale of the Markov bottle
was read at 0, 30, 60, 120, 180 s, 5 min, 7 min, 10 min, 15 min,
25 min, 30 min, and every 10 min after the start of the experiment.
The infiltration temperature and salinity were measured
simultaneously until the end of the two-hour period. Three sets
of repeated experiments were performed at three infiltration test
sites in grasslands with different enclosure periods and control
grasslands, and the characteristic curves of soil water infiltration
were measured in the closed grasslands. At the same time, prior to
the start of the infiltration experiment, the soil around the
infiltration point was drilled to determine the initial water
content, with a sampling range of 0–60 cm.

Evaporation model and infiltration model

Horton model, Philip model and Kostiakov model were used to
simulate grassland soil infiltration (Niu et al., 2016), and Black model,
Rose model and Power function were used to simulate grassland soil
cumulative evaporation (Wang et al., 2017). The effect of the
enclosure time on soil infiltration and evaporation is discussed.

(1) The relationship of Horton infiltration model is as follows:

f t( ) � fc + f0 − fc( )e−kt

In the formula, f(t) is the infiltration rate (mm/min); t is the
infiltration time (min); f0 is the hypothetical initial infiltration rate
(mm/min); fc is the hypothetical stable infiltration rate (mm/min); k
is the empirical constant.

(2) The relationship of Philip infiltration model:
f t( ) � St−0.5 + A

In the formula, f(t) is the infiltration rate (mm/min), t is the
infiltration time (min), S is the soil water absorption rate (mm/min),
A is the stable infiltration rate (mm/min).

TABLE 1 The physical and chemical properties of grassland soil at different confining periods.

Plot Soil bulk density
(g/cm3)

Soil
porosity (%)

Noncapillary
poropsity (%)

Capillary
porosity (%)

Organic matter
(mg·kg−1)

Soil
type

CK 1.52 ± 0.08a 42.64 ± 0.11a 18.35 ± 0.12a 24.29 ± 0.10a 0.63 ± 0.28a Sand soil

EN3 1.48 ± 0.03b 44.34 ± 0.06b 12.74 ± 0.11b 31.6 ± 0.09b 1.64 ± 0.37b Loamy
soil

EN7 1.43 ± 0.03c 46.00 ± 0.04c 9.15 ± 0.17c 36.85 ± 0.13b 2.71 ± 0.51c Loamy
soil

EN10 1.42 ± 0.06c 46.34 ± 0.07d 8.32 ± 0.14d 38.02 ± 0.08b 3.11 ± 0.39d Loamy
soil

Note: Different letters in the same column indicate significant differences; The data are expressed as mean ± standard deviation; n = 27.
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(3) The relationship of Kostiakov infiltration model:

f t( ) � at−b

In the formula, f(t) is the infiltration rate (mm/min), t is the
infiltration time (min), and a and b is an empirical constant.

(4) The relationship of Black evaporation model:

E � F + B
��
t0

√

In the formula, E is the cumulative evaporation (mm), t0 is the
evaporation duration (d), F and B are evaporation parameters.

(5) The relationship of Rose evaporation model:

E � Ct0 +D
��
t0

√

In the formula, E is the cumulative evaporation (mm), t0 is the
evaporation duration (d), C is the stable evaporation parameter, and
D is the water diffusion parameter.

(6) The relationship of power function model:

E � A · t0B

In the formula, E is the cumulative evaporation (mm), t0 is
the evaporation duration (d), A and B are evaporation
parameters.

Data analysis and processing

Statistical analysis of the measurements was performed using
excel2010 and SPSS20.0 software. Relative root mean square error
(RRMSE), mean absolute error (MAE), group residual coefficient
(CRM) and determination coefficient (R2) are used as the evaluation
index of the simulation effect of the model. The smaller the RRMSE,
MAE and CRM values are, the closer R2 is to 1, and the better the
model simulation effect is.

Results

Soil water distribution characteristics of
different enclosed grasslands

Based on the analysis of the distribution characteristics of soil
water in grasslands with different closure periods, Figure 1 shows
that the soil water content initially increases and then decreases as
the soil depth increases. The soil water content of the CK grassland
ranges from 9.36% to 12.72%, with a water variability coefficient of
0.02–0.05. EN3 grassland soil water content ranges from 10.10% to
13.50%, the coefficient of water variation is between 0.02 and 0.07;
The soil water content of the EN7 grassland ranges from 10.71% to
13.37%, and the coefficient of water variation is between 0.01 and
0.05; The soil water content of the EN10 grassland ranges from
10.36% to 13.92% and the coefficient of water variation is between
0.02 and 0.07. Except for the EN10 grassland, where the maximum
soil water content occurs in layers of 20–30 cm, the maximum soil
water content in other grasslands occurs in layers of 10–20 cm, and
the minimum soil water content occurs in layers of 50–60 cm. The
vertical distribution of soil water in the grassland showed significant
differences under different disturbance measures, with enclosure
measures having a large impact on the soil water content. Compared
with grazing grassland, the soil water content in enclosed grassland
was significantly higher than that in grazing grassland (p < 0.01).
Compared with CK grassland, the soil water accumulation
distribution area of CK grassland is mainly concentrated
in10~20 cm, the soil water accumulation distribution area of
EN3 and EN7 grassland is 10~30 cm, EN10 grassland soil water
accumulation region 20~50 cm, and the soil water content showed
as EN10 > EN7 > EN3 > CK.

Soil infiltration process in different
enclosed grassland

Double-ring infiltration experiments with a 5 cm water head
were performed on enclosed grasslands and grazing grasslands, and
the soil infiltration properties of the grasslands were measured under
different interference measures, as shown in Figure 2. At the
beginning of the infiltration process, the water percolates rapidly

FIGURE 1
The vertical distribution of soil water in grassland with different
years of enclosure. Data are the mean ± SD.

FIGURE 2
Soil infiltration rate curve of grassland with different
enclosure time.
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and the soil water infiltration rate rapidly decreases to 40% of the
initial infiltration rate within 3–5 min. As the infiltration time
increases, the downward trend of the infiltration rate slows down
and gradually stabilizes at 14–20 min. The shift law is the same for
soil infiltration rates in closed and grazing grasslands. There was no
significant difference in initial soil infiltration rate between
EN10 grassland and EN7 grassland under the same water head
(p > 0.05), but there was significant difference in stable infiltration
rate among different treatments (p < 0.01). By comparing the initial
infiltration rate and stable infiltration rate of EN3, EN7, NE10 and
CK, it was found that there were significant differences (p < 0.05) in
initial infiltration rate and stable infiltration rate of different closed
time grasslands under the same infiltration head. The overall results
show that EN10 grassland is the largest, EN7 grassland is the second
largest and EN3 grassland is the smallest. The initial infiltration rate
of EN3 grassland was 5.10 ± 0.12 mm/min, and the stable infiltration
rate was 1.57 ± 0.21 mm/min, which was 20.3% and 19.7% higher
than that of CK grassland, respectively. The initial infiltration rate of
EN7 grassland was 5.95 ± 0.17 mm/min, and the stable infiltration
rate was 1.76 ± 0.28 mm/min, which was 40.5% and 33.9% higher
than that of CK grassland, respectively. The initial infiltration rate of
EN10 grassland was 6.23 ± 0.11 mm/min, and the stable infiltration
rate was 1.88 ± 0.23 mm/min, which was 47.1% and 43.4% higher
than that of CK grassland, respectively. The closure measures can
effectively increase the infiltration rate of the grassland soil and
accelerate the supply of water to this area.

Cumulative infiltration is the total amount of infiltrated water
per unit area of the surface over a certain period of time, and the
cumulative infiltration of grassland with different disturbance
measures has been analyzed and can be seen in Figure 3. There
was a significant difference in cumulative infiltration between
different closure periods and grazing grasslands under the same
water head (p < 0.05). The cumulative infiltration amount of
EN10 grassland was considerably higher than that of other closed
time grasslands, which was 233.41 ± 3.27 mm, 1.43 times of CK
grassland, 216.44 ± 5.73 mm of EN7 grassland, 1.33 times of CK
grassland, 197.23 ± 5.14 mm of EN3 grassland, 1.21 times of CK
grassland. Enclosing can be effective in increasing soil water
infiltration and improving water supply conditions for grassland
vegetation, but the rate of increase in grassland water infiltration
decreases with the length of enclosure. Therefore, grazing grasslands

can alter the soil infiltration status and restore soil infiltration
capacity with appropriate enclosure measures.

Evaporation process of different
enclosed grassland

Soil evaporation was analyzed in grasslands and grazing
grasslands with different enclosure periods from July 22 to
August 18. As shown in Figure 4, the change law of soil
evaporation of the grassland with different disturbance measures
was the same, showing a fluctuating state, and the soil evaporation
rate showed EN10 > EN7 > EN3 > CK. The cumulative soil
evaporation in EN10 grassland was the highest at 52.19 mm,
which was 1.05, 1.14, and 1.17 times higher than that of
EN7 grassland, EN3 grassland, and CK grassland respectively.
The cumulative soil evaporation of EN3 grassland was close to
that of CK grassland, which was 45.91 mm and 44.65 mm,
respectively, and the difference was not significant (p > 0.05).
During the observation period, there were four peaks in daily soil
evaporation in the grassland, all of which occurred after rainfall
events, with the largest daily evaporation occurring on 1 August,
which could reach 3.15–3.62 mm/d. It can be seen that this phase is
primarily a control phase of atmospheric evaporation. As a result of
the rainfall on 30 July, the soil water content increased substantially
and approached saturation. The coefficient of variation for soil
evaporation in each enclosed grassland exceeds 0.3, with the CK
grassland exhibiting the highest coefficient of variation at 0.39.
Additionally, EN3 grassland shows a coefficient of variation of
0.37, while EN7 and EN10 grasslands exhibit coefficients of
variation of 0.34 each. These findings indicate that different
treatments applied to the grasslands are significantly influenced
by external factors, resulting in greater variability and diversity in
soil evaporation patterns, aligning with the general principles
governing soil evaporation.

Simulation of soil infiltration and
evaporation in different enclosed grasslands

The calculated parameters of the model are given in Table 2. In
the simulation of the infiltration process, the Horton model

FIGURE 3
Soil cumulative infiltration curve of grassland with different
enclosure time.

FIGURE 4
Soil evaporation of grassland with different enclosure time.
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parameter f0 represents the initial infiltration rate, which ranges
from 4.7 to 7.09. fc are stable infiltration rates, ranging from 1.32 to
1.89. The value of k, a soil characteristic parameter, varies widely
among closed grasslands, with a coefficient of determination R2

ranging from 0.91 to 0.94. The parameter A in the Philip model
represents the steady infiltration rate, and S represents the initial
infiltration rate. Affected by the initial water content in the soil, the
initial water content of each closed grassland is significantly different
(p < 0.05), and the determination coefficient R2 is between 0.92 and
0.99. In Kostiakov model, parameter a represents the speed of
infiltration rate decay, EN10 grassland infiltration rate attenuates
fastest and reaches stability at first, b represents the trend of soil
infiltration rate changing with time, its variation range is 0.14~0.17,
the variation range is tiny, and the determination coefficient R2 is
between 0.74 and 0.85. In the simulations of the cumulative
evaporation process, the Black model F is the regulation
coefficient and B represents the rate of soil evaporation, which
ranges from 11.35 to 13.06. CK and EN3 grasslands have smaller
values of B, and EN10 grasslands have rapid changes in soil
evaporation. The coefficient of determination R2 for this model is
between 0.90 and 0.91. The Ross model parameter C represents the
steady evaporation rate and D represents the water diffusion rate.
The stable evaporation dimension of grassland at different enclosure
periods is 1.58–1.85 and the difference in water diffusion is large.
The EN7 grassland has the smallest water diffusion rate, with a
determination coefficient R2 of 0.93. The parameters A and B of the
Power function model are varied by one bit, and the coefficient of
determination R2 of the model is also 0.93. Further evaluation of the
simulation effects of the two models is needed.

The fit effects of the three infiltration models are analyzed. As
shown in Figure 5, the measured values of the soil infiltration process
are compared with the calculated values of the three infiltration
models. The simulation effect of Horton model on water
infiltration process of three kinds of enclosed grassland and
grazing grassland is excellent, the initial infiltration rate and stable
infiltration rate are close to the measured values, the relative error of
initial infiltration rate is less than 0.76%, and the relative error of stable

infiltration rate is less than 0.94%. The Horton model is able to better
model the inflection point of the infiltration process during the
infiltration transient phase. The Philip model is second only to the
Horton model for the simulation of the initial infiltration rate and the
steady infiltration rate, with relative errors of less than 5.01 percent
and 1.94 percent, respectively, but the transient inflection point model
performs poorly. The Kostiakov model has a poor simulation for the
initial infiltration rate, with a relative error of more than 23.9 percent
for the initial infiltration rate, and a relatively good simulation for the
steady infiltration rate, with a relative error of less than 2.1 percent.
The simulation results of the three models are close to those of the
steady infiltration and can better simulate the steady infiltration phase.

We analyze the effect offitting the three evaporationmodels. It can be
seen in Figure 6 that the measured values of the cumulative evaporation
process of the soil are compared with the calculated values of the three
evaporation models. The Black model exhibits some bias in simulating
cumulative evaporation for enclosed grasslands and grazing grasslands,
with a downward shift in the starting point and a relative error ranging
from 5.27% to 6.67%. In contrast, both the Rose model and Power
function model provide relatively more favorable simulations, accurately
capturing initial evaporation rates and final accumulation values of
cumulative evaporation. The error between simulated and measured
values for the Rose model ranges from 2.67% to 3.08%, while that for the
Power function model is between 0.15% and 3.52%.

Three infiltration models and three evaporation models can
simulate the evaporation process and infiltration process of
grassland soil in arid and semi-arid areas, but there are certain
differences in the final simulation effect. The simulation effect of
some models is relatively close, and it is impossible to judge the
advantages and disadvantages of the model intuitively. Therefore,
the simulation effect of the infiltration model and evaporation
model is evaluated by using the relative mean square root error
RRMSE, average absolute error MAE and the whole group residual
coefficient CRM. As can be seen from Table 3, the RRMSE of the
Horton model is lower than the Philip model and the Kostiakov model
in the three enclosure time grasslands, and only higher than the Philip
model in the grazing grassland, but lower than the Kostiakov model;

TABLE 2 The fitting parameters of infiltration model and evaporation model.

Infiltration simulation Horton model Philip model Kostiakov model

f0 fc k R2 S A R2 a b R2

CK 4.70 1.32 0.63 0.91 1.48 1.09 0.91 2.26 0.14 0.80

EN3 5.18 1.58 0.51 0.93 2.03 1.30 0.92 3.07 0.17 0.85

EN7 5.82 1.76 0.76 0.94 2.25 1.45 0.88 3.19 0.15 0.74

EN10 7.09 1.89 0.72 0.93 2.36 1.52 0.92 3.48 0.15 0.81

Evaporation simulation Black Model Rose Model Power Function Model

F B R2 C D R2 A B R2

CK −17.75 11.35 0.91 1.58 0.28 0.93 1.73 0.98 0.93

EN3 −18.10 11.57 0.90 1.66 0.11 0.93 1.73 0.98 0.93

EN7 −20.15 12.62 0.91 1.81 0.04 0.93 1.79 1.01 0.93

EN10 −20.38 13.06 0.91 1.85 0.34 0.93 2.03 0.98 0.93
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MAE in the grazing grassland and the enclosure 3-year grassland is
higher than the Philip model, but lower than the Kostiakov model,
which is the lowest in both 7 years of enclosed grasslands and 10 years

of enclosed grasslands; the Horton model is lower than 0.1 in the CRM
ofCK andEN7 grassland, with amaximumvalue of 0.2, while the Philip
model is only lower in EN3 grassland, the maximum value is 0.27. And

FIGURE 5
The effect of infiltration model simulation.

FIGURE 6
The effect of evaporation model simulation.
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the CRM value of the Kostiakov model is greater than 0.2. For the
simulation of soil cumulative evaporation process of the three models,
the RRMSE and MAE of the Black model are higher than the Rose
model and the Power functionmodel, and the RRMSE andMAE of the
Rose model are less than or equal to the Power function model. Except
for grazing grassland, the CRM of the Black model is higher than the
Rose model and the Power function model. The CRM of the Rose
model in CK is higher than the Power function model, and the rest is
lower than the Power functionmodel. The simulated value of soil water
infiltration process calculated by Horton model is the closest to the
measured value, and the simulation accuracy is the highest. The
simulation value of the soil water accumulation evaporation process
calculated by the Rose evaporation model is the closest to the actual
measured value, and the simulation accuracy is the highest.

Discussion

The soil water content of grasslands in arid and semi-arid regions is
a major factor affecting the ecological environment of grasslands.
Human activities such as over-grazing contribute to grassland
degradation by affecting water supply and nutrient transport
through the topsoil. For the restoration and improvement of
degraded grassland, closure measures also make use of long-term
vegetation decay and decay to form aggregates, improve soil texture,
optimize soil water storage conditions, improve water use efficiency,
and support grassland vegetation recovery and growth (Zhang et al.,
2012). Hulunbuir Grassland is located in the arid and semi-arid climate
zone in northern China, with little precipitation and large evaporation,
and poor anti-interference ability of grassland ecological environment.
Due to the influence of grazing activities, a large area of grassland has
been degraded. The use of enclosuremeasures to restore the growth and
development of grassland vegetation has effectively alleviated the
grassland degradation caused by overgrazing to a great extent (Zhao
and Yang, 2010). There are differences in soil water storage in grassland
with different sealing time. The effect of enclosure time on grassland soil
was significant in the early stage of enclosure, and the depth of soil water

storage area gradually expanded with the increase of enclosure time, but
the increase of water storage area became slow when the enclosure time
increased to a certain value. This result is consistent with the study of
soil water and vegetation community structure of grassland by different
disturbance methods conducted by Wang et al. (2020) in desert steppe
of Ningxia. Closure measures can increase the activity of soil water and
change the depth of water storage area.

The soil infiltration process of grassland was mainly affected by
vegetation cover, soil texture, bulk density, porosity, initial water
content and other factors, in addition to the intensity of water
supply. At the initial infiltration stage, influenced by matrix
potential, soil water content was the main controlling factor, and
the infiltration rate gradually decreased with the increase of
infiltration time (Sochorec et al., 2015). The enclosed grassland
indirectly affects soil texture structure and changes soil porosity
through vegetation growth alternations, thus affecting the
infiltration process of the grassland soil. The soil permeability
and soil water storage energy of the enclosed grassland for
10 years and 7 years were significantly higher than those of the
enclosed grassland for 3 years and grazing grassland. Mainly due to
the long closure restoration, the vegetation cover of the grassland
increased significantly. Every year vegetation grows and dies, and the
litter is converted into humus to provide more organic matter to
improving soil structure. At the same time, long-term closed
grassland will grow surface vegetation with lush roots, and a
large number of capillary heels will increase soil pore diameter
during the growth process, and enhance soil infiltration and
moisture retention ability. This situation is consistent with the
results of Lu et al. (2018) research on soil infiltration
characteristics of different vegetation communities in the
northwest wind-blown sand region, both of which concluded that
the better the vegetation growth status of grassland, the stronger the
soil infiltration performance. With the increase of enclosure time,
the soil infiltration performance of the grassland was limited,
indicating that the extension of enclosure time did not improve
the overall quality of the grassland after the grassland was restored
from degradation to normal state. This result is consistent with the

TABLE 3 Error analysis of infiltration model and evaporation model.

Infiltration model Horton model Philip model Kostiakov model

RRMSE MAE CRM RRMSE MAE CRM RRMSE MAE CRM

CK 0.086 0.089 0.002 0.081 0.072 0.010 0.212 0.168 0.045

EN3 0.060 0.087 0.017 0.060 0.074 0.002 0.162 0.193 0.027

EN7 0.030 0.045 0.003 0.122 0.167 0.027 0.258 0.320 0.020

EN10 0.061 0.087 0.020 0.074 0.111 0.010 0.209 0.273 0.035

Evaporation Model Black Model Rose Model Power Function Model

RRMSE MAE CRM RRMSE MAE CRM RRMSE MAE CRM

CK 0.091 1.829 0.005 0.040 0.611 0.011 0.040 0.618 0.009

EN3 0.093 1.886 0.013 0.039 0.658 0.006 0.045 0.951 0.018

EN7 0.089 1.935 0.017 0.037 0.696 0.006 0.037 0.696 0.006

EN10 0.090 2.041 0.024 0.035 0.641 0.008 0.035 0.648 0.009
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research of Xu et al. (2020) on grassland productivity in meadow
steppe. The main reason is that long sealing time will lead to serious
accumulation of ground litter, and a large amount of litter will
inhibit the growth of vegetation seedlings and delay the regeneration
rate of grassland (Nie et al., 2022), thus affecting the soil
infiltration rate.

Soil evaporation is not only an important link of groundwater return
to the atmosphere, but it is also amajor way of soil water loss. In arid and
semi-arid areas, the soil water supply comes primarily from precipitation,
the vegetation growth of grassland is mainly controlled by soil water
content. Therefore, inhibiting ineffective evaporation and improving the
water use efficiency of grassland vegetation are of great significance for
ecological restoration of grazing grassland. The process of soil
evaporation is affected by the external natural environment and soil
water content. When the water content is saturated, soil evaporation is
carried out at the evaporation rate of water surface. With the decrease of
soil water content, soil water supply is transformed into capillary water
supply and finally into water vapor diffusion (Dam et al., 2022). Soil
evaporation is the main link of soil water loss in arid and semi-arid areas,
and effective suppression of evaporation can alleviate soil water shortage
to a greater extent. On the basis of improving the characteristics of
grassland vegetation community, enclosure measures affect soil structure
and soil water storage function through vegetation growth, and enclosure
of grassland surface vegetation cover can also effectively slow down soil
water evaporation (Liu et al., 2019). In this study, the soil evaporation of
the enclosed grassland for 10 years was greater than that of the grassland
with other disturbance measures, and the result was different from the
soil evaporation characteristics measured by Liu et al. (2019) in the alpine
steppe of the Tibetan Plateau. Liu et al. (2019) believed that the greater the
surface cover biomass, the lower the evaporation. The reason for this
difference is that, in the process of measuring soil evaporation of
grassland with different enclosure periods, the surface covering
vegetation and litter were artificially removed, and the bare soil
evaporation experiment was conducted under different disposal
measures, mainly to identify the differences in soil evaporation caused
by enclosure measures on soil structure and eliminate the influence of
vegetation cover on soil evaporation. Grazing forbedden and enclosure
can improve soil porosity, increase soil water transfer capacity and water
conservation capacity of grassland. The initial effect of sealing was
obvious and reached the peak in 3 ~ 7 years. With the further
increase of sealing time, the soil hydrological characteristics did not
change significantly. This result is consistent with the results of Zhang’s
research on the soil water characteristics of the alpine meadow in the
source of the Yellow River (Zhang et al., 2023). Proper closure is
conducive to the restoration of the grassland ecosystem, but long-
term closure cannot achieve a good grassland ecosystem.

Conclusion

(1) Grassland enclosure measures can effectively improve soil
water content, and the overall soil water content shows that
the grassland with 10 years of enclosure > the grassland with
7 years of enclosure > the grassland with 3 years of
enclosure > the grazing grassland. In the vertical direction,
the soil water content increased first and then decreased.
Compared with grazing grassland, the soil water storage
depth could be widened by increasing the time of enclosure.

(2) The changes of initial infiltration rate and stable infiltration
rate of grassland with different sealing time were significant
(p < 0.05). The highest was found in the grassland with
10 years of sealing, followed by the grassland with 7 years
of sealing, and the lowest was found in the grassland with
3 years of sealing. The variation of soil evaporation in different
enclosed grasslands was consistent, the soil evaporation rate
was the grassland with 10 years of enclosure > the grassland
with 7 years of enclosure > the grassland with 3 years of
enclosure > the grazing grassland. The soil hydrological
characteristics of grassland changed significantly in the early
stage of enclosure, and reached the peak in 3–7 years. With the
increasing of enclosure time, the soil hydrological
characteristics did not change significantly.

(3) The Hortonmodel, the Philip model and the Kostiakovmodel
can be used to model the infiltration process in grasslands at
different closure times. The Horton model is able to better
model the inflection point of the infiltration process, and the
fit accuracy is higher than that of the Philip and Kostiakov
models. Black model, Rose model and Power function model
simulated the cumulative evaporation process of grassland
soil at different sealing times. The simulated value calculated
by Rose model was the closest to the measured value, and the
simulation accuracy was the highest.
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Spatial-temporal changes of
landscape ecological risk in the
Liuchong river basin from the
perspective of
production-life-ecological space

Jintong Ren1,2, Yanqin Dong3, Panxing He4 and Hanyu Lu1,2*
1School of Ecological Engineering, Guizhou University of Engineering Science, Bijie, China, 2Guizhou
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China, 3School of Civil and Surveying Engineering, Jiangxi University of Science and Technology,
Ganzhou, China, 4Ministry of Education Key Laboratory for Biodiversity Science and Ecological
Engineering, School of Life Sciences, Fudan University, Shanghai, China

Promoting the construction of ecological civilization and sustainable
development in karst mountainous areas by analyzing the spatial and temporal
changes of landscape ecological risks is critical in karst mountainous watersheds.
In this study, the land use transfer matrix, landscape ecological risk evaluation
model, ecological contribution rate of land use change, and spatial
autocorrelation analysis were combined to quantitatively analyze the land use
and landscape ecological risk of a typical karst watershed, Liuchong River Basin,
over the past 20 years. The results revealed that: 1) From 2000 to 2020, the
functional classification of land use in the Liuchong River Basin was dominated by
the woodland ecological space, and the most significant shifting characteristics
were the increase in the area of watershed ecological space and industrial
production space and the decrease in woodland ecological space, with shifts
in the middle reaches of the Liuchong River being the most drastic; 2) Generally,
the change of the regional landscape pattern was related to the transformation of
the land use function type of “production-life-ecological space,” and the spatial
aggregation of ecological risk level showed a gradual weakening trend. 3) The
conversion of the watershed ecological space to the grassland ecological and
agricultural production spaces, the conversion of urban living space to the
agricultural production space, and the conversion of the rural living space to
the agricultural production space were the dominant factors affecting ecological
improvement, whereas the conversion of the woodland ecological space to the
grassland ecological space, the woodland ecological space to the agricultural
production space, and the grassland ecological space to the agricultural
production space contributed to ecological degradation. The study findings
can be used as a reference for the coordinated development of “production-
life-ecological space” in karst watersheds and provide a scientific basis for
ecological environmental protection and sustainable utilization.

KEYWORDS

landscape ecological risk, production-life-ecological space, spatial and temporal
changes, Liuchong river basin, ecological risk
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1 Introduction

Ecological risk is the amount of risk an ecosystem and its
components are exposed under natural or anthropogenic
disturbances (Yu et al., 2022). Landscape ecological risk
assessment can reflect the effect of landscape patterns on
ecological processes and functions (Liu et al., 2022; Ran et al.,
2022). Urban growth patterns in China exhibit a trend of
sprawling expansion, which has led to a considerable increase in
the level of urbanization and a drastic expansion in the scale of land
use. However, urbanization has caused several problems, including
encroachment on productive agricultural and ecological land,
deepening landscape fragmentation, and ecological pollution.
These problems have resulted in an imbalance in the ratio of the
production-life-ecology spatial structure (Bai et al., 2019; Qi, 2020;
Zhang et al., 2021; Lu et al., 2022). Especially in the karst
mountainous areas of southwest China, the frequent natural and
human activities and the increasing level of economic development
and urbanization have exerted a considerable ecological and
environmental pressure on the ecologically fragile and
environmentally change-sensitive karst mountain belt. In this
context, the 18th Party Congress proposed ecological civilization
construction to control the development intensity and adjust the
spatial structure and balance population, resources and
environment, and unify economic, social and ecological benefits,
for promoting intensive and efficient production space, livable and
moderate living space, and beautiful ecological space, with nature
restoration, good land for agriculture, and a beautiful home with
blue sky, green land, and clean water for future generations. Thus,
the construction of ecological civilization has gradually become the
prime focus of national land space development.

By providing novel perspectives for regional ecological risk
research, the landscape pattern index method has become a
research hotspot (Guo and Guo, 2022; Li et al., 2023). To
construct landscape ecological risk evaluation models,
corresponding parameters are chosen according to the specificity
of landscape patterns in various research regions. This approach has
been applied in many risk control regions, yielding excellent results.
For example, Hayes et al. used a relative risk model to assess regional
ecological risk in the near-coastal marine environment of northwest
Washington and identified ship traffic, mountainous urban, and
agricultural land use, and shoreline recreational activities as the
ecological risk factors in the marine nearshore area (Hayes and
Landis, 2004). Ayre analyzed (Ayre and Landis, 2012) a forested
landscape in northeastern Oregon from a landscape disturbance,
habitat, and ecological resource perspective based on a Bayesian
network model with an ecological risk assessment framework.
Paukert conducted a landscape-scale ecological risk assessment of
land use, waterway development and diversion, and human
development in the lower Colorado River basin at four watershed
scales (Paukert et al., 2011). Studies in China have investigated the
factors affecting landscape ecological risk (LER) from the
perspective of landscape ecology and elucidated the dynamics of
LER and its spatial and temporal patterns. Kang constructed a LER
index for the Manas River basin from the proportion of landscape
components during 2000–2015 and then compared the distribution
of various levels of LER and spatial and temporal distribution in the
region (Kang et al., 2020). Based on the landscape ecological risk

index and geographically weighted regression model, Wang revealed
the interconnection between the levels of LER and urban expansion
in Yuanzhou district from 2000 to 2018 (Wang et al., 2021). Liu
constructed an ecological risk evaluation model from the watershed
scale and water source protection zone scale to examine the spatial
and temporal changes of ecological risk in the Miyun Reservoir
watershed during 1990–2018 (Liu et al., 2023). Lan evaluated the
spatial and temporal evolution characteristics of ecological risk in
Guilin city at the overall and county scales based on the spatial
correlation between land use and ecological risk in the city during
2000–2020 (Lan et al., 2023). Although studies on LER evaluation
are relatively mature, limited research has been conducted on LER in
karst mountains (Wang et al., 2022a). In addition, most studies have
focused on a single land use type, and fewer studies have analyzed
LER from the perspective of “production-life-ecological space” (Su
et al., 2020; Wang et al., 2022b).

The continuous development of the global economy,
technology, and population has further strengthened the effect of
human activities on the natural environment. The karst region has
considerably higher ecosystem fragility and environmental
vulnerability than other regions because of its unique geological
and climatic conditions. Being an important region, effectively
promoting the healthy development of ecological environment in
the watershed is a concern. Therefore, this study analyzed the spatial
and temporal evolution patterns of ecological risk in the Liuchong
River Basin from the spatial perspective of “three lives,” based on the
land use data of 2000, 2010, and 2020. Furthermore, by integrating
the results with geographical information system (GIS) spatial
analysis and LER index, the spatial evolution of production-
ecology in the context of rapid socio-economic development was
clarified. The spatial evolution process of life ecology and LER in the
context of rapid socio-economic development was considered to
provide a reference for ecological risk management and landscape
pattern optimization in typical karst mountainous basins.

2 Materials and methods

2.1 Study area

Liuchong River is the largest first-order tributary of the Wujiang
River system, with a total length of 273.4 km and a natural drop of
1,243 m. Because of geomorphology and hydrogeology constraints,
the river is tortuous, with deep valley, narrow surface and large
drop. The Liuchong River Basin is located in Bijie City, northwestern
Guizhou Province and southwestern Zhenxiong County, Yunnan
Province, with longitude and latitude ranges of 104°20′-160°07′E
and 26°31′-27°30′N, respectively. The total area of the basin is
10,874 km2 (Figure 1). The basin is a typical karst mountainous
watershed with karst landform development and complex
topography. The watershed belongs to a subtropical cool and
humid monsoon climate, with moderate water and heat
resources. The annual average temperature is approximately
18 °C, and the precipitation is concentrated in May-September,
with an annual average precipitation of 848.6–1394.4 mm.
Because of the fragile ecological environment in the watershed,
the ecological landscape security in the watershed is has attracted
considerable research attention because of the continuous
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urbanization and accelerated comprehensive development and
utilization of the watershed in the past 20 a.

2.2 Data

Land use data of the Liuchong River Basin for three
periods from 2000 to 2020 (2000, 2010, 2020) were
obtained from the Resource and Environment Science Data
Center of the Chinese Academy of Sciences (http://
wwwresdc.cn), with the spatial resolution of 30 m. Using

ArcGIS 10.6, the land use data were projected and
transformed, spliced, and cropped. Based on the development
objective of building the efficient production space (PS), livable
space (LS), and beautiful ecological space proposed by the
government and the actual situation of the watershed and
according to the land use classification system, PLES was
classified into eight secondary categories, namely agricultural
production space, industrial production space, urban living
space, rural living space, forest ecological space, grassland
ecological space, water ecological space, and other ecological
spaces (Table 1).

FIGURE 1
Location map of the study area.

TABLE 1 Classification of dominant land use functions.

Primary functional
classification

Secondary functional
classification

Tertiary land classification

Production space Agricultural space 11 (paddy field), 12 (dry land)

Industrial space 53 (industrial and mining construction land)

Living space Urban space 51 (urban residential land)

Rural space 52 (rural residential land)

Ecological space Forested space 21 (forested land), 22 (shrub land), 23 (open forest land), and 24 (other forest lands)

Grass space 31 (high-cover grassland), 32 (medium-cover grassland), and 33 (low-cover
grassland)

Water space 41 (rivers and canals), 42 (lakes), 43 (reservoir ponds), 44 (permanent glaciers), 45
(mudflats), 46 (mudflats)

Other spaces 61 (sandy land), 62 (Gobi), 63 (saline land), 64 (marshland), 65 (bare land), 66 (bare
rocky gravel land)
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2.3 Methods

2.3.1 Division of the LER assessment unit
To make the LER index reflect the ecological risk status caused

by landscape changes in a certain area, a quantitative expression was
used to portray the degree of spatial ecological risk, according to the
basic requirements and principles of landscape ecology, and using
2–5 times the average patch area for the grid is appropriate,
considering the study area and landscape spatial heterogeneity.
After repeated debugging, a square grid of 3 km × 3 km was
selected as the study area. The center point of each grid was
considered to be the sampling point, totaling 1240 sampling
points. The ecological risk index was calculated for each of the
1240 cells in the study area based on this grid division and used as
the ecological risk value of the sample area center point for spatial
interpolation analysis.

2.3.2 The LER assessment model
To examine the spatial and temporal variability and

characteristics of landscape ecological risk in the Liuchong River
Basin, a landscape ecological risk evaluation model was constructed
using the calculation of the LER from previous studies (Su et al., 2020).

ERIk � ∑
n

i�1

Aki

Ak
× Ri (1)

Here, ERIk denotes the regional LER index of the k-th sampling
area, n denotes the total number of landscape types, Aki denotes the
area of landscape type i in the k-th plot, Ak denotes the total area of
the k-th plot, and Ri denotes the landscape loss degree index, which
is obtained by the product operation of landscape fragility Si and
landscape disturbance Ui. The formula and ecological meaning of

the corresponding calculation of landscape pattern index are
presented in Table 2.

2.3.3 Ecological contribution rate of PLES land use
transformation (LEI)

LEI refers to the land use types leading to ecological risk changes.
Quantifying the impact of land use type shifts on the ecological
environment from both positive and negative aspects can help in
discriminating between the land use types that affect changes in
regional ecological quality and identifying the dominant factors for
changes in the regional ecological environment (Liang et al., 2022). It
is calculated using the following formula:

LEI � LEt1 − LEt0( )LA/TA (2)
where LEI indicates the ecological contribution of the regional land
use transformation type. The value of LEI ranges from −1 to 1, with a
positive number indicating a positive contribution that increases the
ecological risk, and a negative number indicating a negative
contribution that decreases the ecological risk. LEt1 and
LEt0 refer to the ecological risk index of a specific land type
before and after transformation, respectively; LA is the area of
that change type; TA is the total area of the study area.

3 Results

3.1 Quantitative change and type shift of
land use in the PLES

The changes of PLES area and the proportion of PLES in the
Liuchong River Basin for 3 years are presented in Table 3, revealing

TABLE 2 Calculation method for the landscape pattern index and its ecological meaning.

Landscape pattern index Formula and its ecological meaning

Landscape fragmentation Ci � ni/Ai ; where ni is the number of patches of landscape type i; andAi is the total area of landscape type i. Landscape fragmentation
characterizes the degree of fragmentation of landscape types, reflecting the complexity of landscape spatial structure, which is caused
by natural or man-made disturbance of the landscape from a single, homogeneous, and continuous whole tends to complex,
heterogeneous, and discontinuous patch mosaic process

Landscape Separation Ni � 1
2

����
ni/A

√ · Pi, Pi � A/Ai ; where A indicates the proportion of the total area of the landscape patches. The degree of landscape
separation characterizes the degree of separation of various elements or individual distribution of patches in a landscape type, and the
greater the degree of separation is, the more dispersed the landscape is in terms of geographical distribution and the more complex
the landscape distribution is

Number of landscape sub-dimensions Fi � 2 ln(pi/4)/ lnAi , where pi is the perimeter of the landscape type and indicates the complexity of shape and spatial stability of the
landscape patches

Landscape disturbance degree Ui � aCi + bFi + cDi ; where: a, b, and c denote the corresponding weights of landscape fragmentation, separation, and dominance,
respectively, based on a previous study (Zhan et al., 2009), and are assigned the corresponding weights of 0.5, 0.3, and 0.2, with a + b
+ c = 1. The landscape disturbance degree indicates the degree to which the ecosystems represented by various landscape types are
disturbed by human activities

Landscape fragility The landscape vulnerability index is a critical quantitative index that indicates the stability of the landscape to maintain its physical
and chemical properties under the influence of external factors, also called the landscape external disturbance resistance, with
reference to existing research results (Chen et al., 2022a), and combined with the actual situation of the study area. The eight
secondary land categories in the study area were assigned values from low to high: urban living space, 1; rural living space, 2;
woodland ecological space, 3; grassland ecological space, 4; agricultural production space, 5; watershed ecological space, 6; industrial
production space, 7; and other ecological spaces, 8, with normalized sizes of 0.03, 0.06, 0.08, 0.11, 0.14, 0.14, 0.17, 0.19, and 0.22,
respectively

Landscape loss degree Ri � Ui × Si ; Ri indicates the degree of loss of natural attributes of the ecosystems represented by various landscape types when
subjected to natural and anthropogenic disturbances
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that the area of “production-life-ecological space” in the Liuchong
River Basin varied greatly from 2000 to 2020, and the land use
function classification in 2000–2020 is woodland ecological space,
followed by an agricultural production space. During the study
period, the area of woodland and grassland ecological spaces
exhibited an overall decrease, with the woodland ecological space
of 93629.73 km2 in 2000 decreasing to 93202.41 km2 in 2020,
grassland ecological space shrinking from 31878.41 km2 in
2000–31331.05 km2 in 2020, and the agricultural production
space shrinking from 49624.98 km2 in 2000–48403.52 km2 in
2020. The area of the water ecological space showed an
increasing trend, from 406.02 km2 in 2000 to 1046.64 km2 in
2020, whereas the area of other ecological spaces did not
significantly change. From the perspective of the living space, the
area of urban living space and rural living space increased from
251.95 to 240.57 km2 in 2000 to 681.24 and 310.16 km2 in 2020,
respectively. From the perspective of the production space, the area
of the industrial production space continued to increase from
106.62 km2 in 2000 to 1167.96 km2 in 2020, whereas the area of
the agricultural production space exhibited a slightly decreasing
trend from 49,624.98 km2 in 2000 to 48,403.52 km2 in 2020.

According to the change patterns in the distribution of PLES in
the study area from 2000 to 2020 (Figure 2), the industrial
production space underwent the most rapid expansion, the area

of urban living, rural living, and watershed ecological spaces
exhibited a gradual increase, corresponding to a gradual
reduction in the area of agricultural production space, and the
woodland ecological space and grassland ecological space
exhibited a slight change. Although the area of industrial
production space decreased in 2000, which was only sporadically
distributed around the urban living space, by 2020, a large expansion
was observed along the perimeter of the city, with significant
changes in the area.

PLES land use area, in addition to the quantitative increase or
decrease, also shows distinct types of transfer. Figure 3 reveals that
during the 20-year period, the area transferred out of woodland
ecological space was 3667.46 km2, reaching the historical maximum,
of which 655.33 km2 was transformed into the grassland ecological
space, and 160.90 km2 was transformed into the agricultural
production space. The amount of transfer in was only
319.34 km2, whereas the amount of transfer out was considerably
larger than the amount of transfer in, which indicated that the area
of woodland ecological space decreased during the study period.
Second, the amount of the agricultural production space transferred
out was 3459.94 km2, mainly to the woodland ecological and
grassland ecological spaces, with an area of 222.91 km2, and the
amount of transfer in was 280.11 km2, converted from the grassland
ecological and woodland ecological spaces, with an area of

TABLE 3 Area and change of land use types in the Liu Chong River Basin from 2000 to 2020.

Land use
Functional classification

Area/km2 Area of change/km2

2000 2010 2020 2000–2010 2010–2020

Forest ecological space 93629.73 95618.42 93202.41 1988.69 −2416.01

Grass Ecological Space 31878.41 29584.88 31331.05 −2293.53 1746.16

Water Ecological Space 406.02 687.99 1046.64 281.97 358.64

Other Ecological Spaces 40.25 29.73 30.39 −10.51 0.66

Urban Living Space 251.95 358.33 681.24 106.38 322.90

Rural Living Space 240.57 270.24 310.16 29.68 39.91

Industrial production space 106.62 244.18 1167.96 137.56 923.78

Agricultural production space 49624.98 49386.65 48403.52 −238.33 −983.13

FIGURE 2
PLES distribution pattern in the Liuchong River Basin in 2000 (A), 2010 (B), 2020 (C).
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279.30 km2. The grassland ecological space was the type with the
most amount of land transfer in, and the area converted from
woodland ecological and grassland. The area transformed from
woodland ecological space and grassland ecological space
amounted to 750.09 km2.

3.2 Temporal variation in ecological risk in
PLES landscapes

Based on the PLES land use raster data of 2000, 2010, and 2020 in
the Liuchong River Basin, the ecological risk indexes of each landscape
were calculated using Fragstats 4.2 software and combined with the
formula 1 and formulas in Table 2; subsequently, the results were
compiled (Table 4). As depicted, for over 20 years, the index of
fragmentation of agricultural production space remained unchanged;
the degree of separation first decreased and subsequently increased,
indicating that the aggregation of its landscape type has increased; the
fragmentation and separation of industrial production space and rural
living space were high, and the values decreased year by year, indicating
that their distribution in space is highly dispersed; and the ecological
stability increased considerably with the increase in the area. The
increase in the area of the urban living space covered the
surrounding small patches, resulting in a decrease in fragmentation

and separation of the urban living space annually. The fragmentation of
the woodland ecological space increased, whereas the fragmentation
and separation of grassland, water, and other ecological spaces
continued to decline, with the decline for other ecological spaces
being linear. Second, the values of the sub-dimension of each
landscape type in the Liuchong River Basin were low and exhibited
a decreasing trend, indicating that the shape of the landscape types in
the study area tended to be simple and the intensity of disturbance by
human activities was decreasing. The change trend of the disturbance
index of each landscape type was similar to that of the sub-dimension;
however, the disturbance index of rural living space and other ecological
space was large, with both reached the historical peak at the beginning
of the study, indicating that the disturbance index of human activities
on rural living space and other ecological space was large in 2000, which
reached the historical minimum in 2020, indicating a decrease in the
disturbance of human activities on the landscape.

3.3 Analysis of spatial and temporal changes
in LER

The ecological risk distribution maps of the study area in
2000, 2010, and 2020 were obtained through kriging
interpolation. According to the natural breakpoint method, the

FIGURE 3
PLES land use transfer in the Liuchong River Basin.
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ecological risk of the study area landscape was classified into
low, lower, medium, higher, and high ecological risk
zones (Figure 4).

The distribution of the ecological risk level of the landscape
strongly correlated with the distribution of PLES land types, with
high-risk andmedium-high-risk areas in the northeast and southeast

TABLE 4 Land Use Transfer Matrix for production-life-ecological space in the Liuchong River Basin (Unit: km2).

Type Year Fragmentation
degree

Separation
degree

Separation
dimension

Interference
degree

Loss
degree

Rural Living Space 2000 0.014 0.1 0.396 0.117 0.016

2010 0.014 0.097 0.396 0.115 0.016

2020 0.014 0.1 0.002 0.038 0.005

Industrial production
space

2000 0.07 9.608 0.293 2.976 0.565

2010 0.045 2.81 0.339 0.933 0.177

2020 0.035 1.008 0.004 0.321 0.061

Urban Living Space 2000 0.004 0.937 0.354 0.354 0.011

2010 0.003 0.547 0.375 0.24 0.007

2020 0.002 0.348 0.006 0.106 0.003

Rural Living Space 2000 0.113 7.082 0.308 2.243 0.135

2010 0.087 4.838 0.321 1.559 0.094

2020 0.082 4.503 0.007 1.393 0.084

Forest ecological space 2000 0.004 0.049 0.411 0.099 0.008

2010 0.004 0.048 0.412 0.099 0.008

2020 0.005 0.059 0.002 0.021 0.002

Grass Ecological Space 2000 0.009 0.104 0.398 0.115 0.013

2010 0.009 0.112 0.396 0.117 0.013

2020 0.008 0.088 0.003 0.031 0.003

Water Ecological
Space

2000 0.041 3.485 0.329 1.132 0.192

2010 0.008 0.574 0.374 0.251 0.043

2020 0.007 0.506 0.005 0.156 0.027

Other Ecological
Spaces

2000 0.063 31.581 0.221 9.55 2.101

2010 0.06 29.713 0.225 8.989 1.978

2020 0.039 11.157 0.015 3.369 0.741

FIGURE 4
LER class distribution for 2000 (A), 2010 (B), 2020 (C).
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regions exhibiting a trend of “scattering-clustering” from 2000 to 2020,
and expanding outward by 2020. The aforementioned areas are
dominated by the industrial production and urban living space, and
the strong human activities lead to the instability of the ecosystem.High
landscape separation and sub-dimension number considerably
influence the formation of the landscape pattern and are sensitive to
external disturbances. For the medium-risk areas, the aggregation areas
located in the central-western and south-central regions gradually
declined. Furthermore, lower-risk areas were concentrated in the
periphery of medium-risk areas, including the woodland ecological
and grassland ecological spaces, with low landscape fragmentation and
weak human activities. During 2010–2020, this space increased
considerably, and most medium-risk areas converted into lower-risk
areas. The low ecological risk areas were concentrated in the peripheral
areas, and in 2020, a large distribution in the northwest of the
watershed, mostly the woodland ecological space, with low
population density and complex and diverse topography, was
observed. These low-risk areas are not easily disturbed by human
activities, leading to the predominance of these areas.

The area and proportion of each risk level area were counted to
analyze the changes in increase and decrease of the ecological risk
(Figure 5). From the temporal perspective, in 2000, the ecological risk
was dominated by low-risk, lower-risk, and medium-risk areas, among
which the lower-risk area occupied the largest area, reaching
4078.91 km2, which was 41.25% of the total study area. The
ecological risk situation deteriorated from 2000 to 2010 and
improved considerably from 2010 to 2020. This phenomenon
indicates that the ecological environment quality improved and the
ERI level decreased during the study period.

3.4 Spatial autocorrelation analysis of
ecological risk in the landscape

The global Moran’s I value of ERI in the study area in 2000,
2010, and 2020 were 0.3881, 0.3456, and 0.3100, respectively, all of
which are greater than 0, indicating that ERI is positively
correlated in space and exhibits a certain spatial convergence.
Furthermore, the global Moran’s I value from 2000 to
2020 exhibited an overall decreasing trend, reflecting the
weakening of the ERI and spatial convergence. Compared with
the global Moran’s I, the local Moran’s I accurately reflects the
spatial distribution of ecological risk values in the landscape. As
displayed in Figure 6, high-high (HH) and low-low (LL) clustering
dominated ecological risk values in the three periods, as presented
in the LISA clustering of ecological risk indices in the Liuchong
River Basin from 2000 to 2020 (Figure 6), with the high
concentration exhibiting a northeast-southeast trend. By 2020,
the HH agglomeration declined and part of the internal grid
became nonsignificant. By contrast, LL agglomerations were
distributed around the study area and were dispersed. The
agglomerated areas exhibited a gradual convergence, whereas
the dispersed areas showed gradual dispersion. High-low (HL)
and low-high (LH) phenomena are rare and discrete in
distribution. Quantitatively, both the spatial autocorrelation and
the number of grids in the HH clustered areas declined over time,
and the number of positively correlated grids that passed the
significance test (p > 1) decreased. Therefore, the spatial
clustering characteristics of ERI in the Sixchon River basin
are weakening.

FIGURE 5
. Proportion and change of area of the ecological risk class area.
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3.5 Effect of PLES land use conversion on
ecological risk

In terms of the contribution of the dominant PLES land use
conversion (Table 5), the dominant factors affecting ecological
improvement are the conversion of the watershed ecological
space to the grassland ecological and agricultural production
spaces, the conversion of the urban living space to the
agricultural production space, and the conversion of the rural
living space to the agricultural production space in the Liuchong
River Basin from 2000 to 2020, with a combined contribution of
83.37%. By contrast, the conversion of the woodland ecological
space to the grassland ecological space, the woodland ecological
space to the agricultural production space, and the grassland
ecological space to the agricultural production space were the
dominant factors leading to ecological degradation, with a
combined contribution of 63.26%. The expansion of the urban
living space during the study period was attributed mainly to the
reduction of the agricultural production space. The transformation
of the agricultural production space to the urban living space

indirectly changes landscape fragmentation, landscape
separateness, and landscape fractional dimension index,
eventually increasing the regional ecological risk.

4 Discussion

Examining the interactions between PLES land use changes and
landscape patterns in the Liuchong River Basin, a typical karst basin,
can help analyze the correlation at the macro level. In this study, we
investigated the land use and LER changes in the Liuchong River Basin
from the perspective of PLES. We constructed a LER assessment model
by referring to existing studies (Yang et al., 2018; Qi, 2020; Chen and
Shi, 2021; Chen et al., 2022b;Wang et al., 2022c; Guo and Guo, 2022; Li
and Wu, 2022; Liang et al., 2022). Furthermore, by using land use
change ecological contribution ratio and spatial autocorrelation
analysis, we quantitatively analyzed the LER of the Liuchong River
Basin in karst areas. By comparing data of different years, we
summarized the spatial and temporal change patterns of LER in the
region in the past 20 years. The results revealed that, first, the stability of

FIGURE 6
LISA cluster map of land use ecological risk index in the Liuchong river basin in 2000 (A), 2010 (B), 2020 (C).

TABLE 5 Landscape index calculation results of production-life-ecological space.

Transformation of
“production-life-ecological
space” (leading to
improvement of ecological
environment)

Index
change

Contribution
share (%)

Transformation of the
“production-life-
ecological space” (leading
to ecological degradation)

Index
change

Contribution
share (%)

III -VI 0.000000000043 2.05 VI-V −0.0000003654 8.25

III - I 0.000000000202 9.65 VI-I −0.0000000799 1.80

II -VI 0.000000000079 3.76 V-VI −0.0000017575 39.69

IV-II 0.000000000055 2.62 V-I −0.0000002609 5.89

IV-V 0.000000000085 4.07 VI-I −0.0000004836 10.92

IV - I 0.000000000612 29.19 I-III −0.0000000980 2.21

VII -VI 0.000000000590 28.15 I-II −0.0000003156 7.13

VII -V 0.000000000068 3.25 V-I −0.0000006928 15.65

VII - I 0.000000000343 16.38 I-VII −0.0000001495 3.38

Note: I is agricultural production space; II, is industrial production space; III, is urban living space; IV, is rural living space; V is woodland ecological space; VI, is grassland ecological space; VII,

is water ecological space.
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the ecosystem in the karst region was severely disturbed by human
activities. In this study, the functional classification of land use in the
Liuchong River Basin in the past 20 years was dominated by the
woodland ecological space, but a trend of decreasing woodland
ecological space was observed, whereas the area of the industrial
production space increased. This phenomenon indicates that the
impact of current human activities on the karst ecosystem is
intensifying, and effective measures are required to protect and
restore the ecosystem. Second, the distribution of high and low
ecological risk levels in the landscape is strongly correlated with the
distribution of PLES land types. The high-risk and medium-high-risk
areas are distributed in the northeast and southeast regions, which are
dominated by the agricultural production, industrial production, and
urban living spaces and are disturbed by human activities. Although the
lower and low-risk areas aremostly in the periphery of themedium-risk
area, including the woodland ecological and grassland ecological spaces.
Therefore, targetedmeasures should be enacted to protect high-risk and
medium-high-risk areas. Moreover, coordinated management with
agriculture, industry, and towns should be conducted to ensure
environmental quality and ecosystem stability. Finally, the
conversion of the watershed ecological space to the grassland
ecological and agricultural production spaces, the conversion of the
urban living space to the agricultural production space, and the
conversion of the rural living space to the agricultural production
space are the dominant factors affecting ecological improvement. This
phenomenon indicates that the agricultural production and grassland
ecological spaces should be protected and restored to ensure ecological
environmental protection in karst areas. Further, to promote
agricultural modernization and sustainable development, the
occupation of land resources by urban and rural living spaces
should be reduced and transformed into the agricultural production
space as much as possible.

This study has some shortcomings. First, LER assessment is a
complex process requiring the consideration of multiple
uncertainties. These factors determine the comprehensive evaluation
results. When assessing ecological risks, these factors determine the
integrated evaluation results. In the LER assessment of complex karst
areas, the method and process should be improved. Second, this study
selected only the Liuchong River Basin as the study object and did not
cover other regions. In the future, more study sites can be selected for
cross-sectional comparative analysis to improve the generalizability and
reliability of the results. Finally, we did not consider the differences in
human activities and influence, especially under different topographic
conditions, human production, living, and other activities. These factors
considerably influence the evolutionary process of PLES land use, spatial
and temporal patterns, and the extent of their effect on the ecosystem.
Therefore, these factors were not included to elucidate the complexity
and diversity of land use and its ecological environment in the Liuchong
River Basin. Future research should use improved methodology and
advanced technologies in land use analysis and ecological risk
evaluation, and expand the scope of the study area to achieve
effective protection and management of karst watershed ecosystems.

5 Conclusion

In this study, the land use classification system was constructed
from the perspective of PLES based on the land use cover data in

2000, 2010, and 2020. Using GIS spatial analysis technology and
Fragstats 4.2 software, the land use transfer matrix, LER evaluation
model, ecological contribution rate of land use flow, and spatial
autocorrelation analysis were combined. Furthermore, the spatial
and temporal patterns of PLES land use and its LER in the Liuchong
River Basin over the past 20 years were quantitatively analyzed. The
conclusions are as follows:

(1) From 2000 to 2020, the functional classification of land use in
the Liuchong River Basin was dominated by the woodland
ecological space, accounting for more than 53% of the total
area, and the industrial production space underwent the most
rapid expansion. The most significant transfer characteristics
of PLES land use were the increases in the ecological space of
watershed and the area of industrial production space and a
decrease in the woodland ecological space; the transfer was
the most drastic in the middle reaches of the main stream of
the Liuchong River, whereas the surrounding areas of
Hezhang County are stable ecosystems due to higher
altitude and less disturbance by human activities.

(2) The distribution of high and low LER levels correlated
strongly with the distribution of PLES land types, with
high-risk and medium-high-risk areas distributed in the
northeast and southeast regions, and medium-risk areas
clustered in the west-central and south-central regions of
the basin and exhibiting a gradual decrease. Furthermore, the
lower and lowest risk areas were concentrated in the
periphery of the medium-risk areas, including the
woodland ecological and grassland ecological spaces, with
low landscape fragmentation and weakly affected by human
activities.

(3) The spatial aggregation characteristics of ecological risk levels
gradually weakened from 2000 to 2020. HH and LL are
concentrated in distribution, HL and LH phenomena are
rare and discrete in distribution, and the clustering of HH
and LL is obvious in local areas, showing a northeast-
southeast trend and a strip-like distribution in space. These
areas predominately comprise the agricultural production
space, industrial production space, and urban living space
and are strongly affected by anthropogenic activities.

(4) The conversion of the watershed ecological space to the
grassland ecological and agricultural production spaces,
urban living space to the agricultural production space,
and rural living space to agricultural production space
were the predominant factors contributing to ecological
improvement, with a combined contribution of 83.37%. By
contrast, the conversion of woodland ecological space to
grassland ecological space, woodland ecological space to
agricultural production space, and the grassland ecological
space to the agricultural production space were the factors
contributing to ecological degradation.
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The effects of grazing and the
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Introduction: Affected by global climate warming and changing rainfall patterns,
the degree of soil desiccation in arid grasslands has increased and soil wind
erosion has become a major environmental concern. Understanding and
controlling the characteristics of sand flux and wind erosion caused by the
degradation of grassland vegetation, as well as their changing patterns, has
become a top priority in combating grassland degradation. Therefore, the aim
of this study is to clarify the extent of wind erosion in desert grasslands and its
influencing factors in order to provide a theoretical basis and data support for the
restoration of grassland vegetation and the sustainable development of grassland
livestock production.

Methods: Use of SAS and Origin statistical software to perform multifactorial
analysis of variance on variables such as year, stocking rate, meteorological
conditions and wind-sand flux to determine the degree of influence of
different factors on sand flux and the magnitude of interactions among
different factors.

Results and discussion: The results showed that wind-sand flux was higher when
rainfall was low and stocking intensity was high. Specifically, the wind-sand flux
increased by 50.3% and 83.6% in the moderate and high grazing treatments,
respectively, compared to the control. The data obtained also showed that there
was a significant interaction between climate and grazing intensity, suggesting
that an increase in one factor may attenuate the differences in wind-sand flux at
different levels of other factors. There is likely to be a threshold effect of stocking
rate of moderate grazing on the variation of wind-sand flux influenced by
different factors. In summary, the factors affecting wind-sand flux in the arid
desert steppe are numerous and complex, with stocking rates below moderate
grazing being key to reducing wind-sand flux.
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1 Introduction

The increasing aridity of grassland soils in dryland zones,
driven by global warming and altered rainfall patterns, has
intensified soil wind erosion. This pervasive issue has led to a
decline in grassland vegetation, exposing bare soil, heightening
susceptibility to wind erosion, and exacerbating land
sandification. Such degradation not only severely impacts
grassland ecology but also poses substantial challenges to
ecological security and human settlement in these arid regions
(Liu J et al., 2021; Zhang et al., 2021). Consequently,
understanding the characteristics of wind-sand flux and the
dynamics of wind erosion, precipitated by vegetation
deterioration, has become essential in addressing grassland
degradation and developing management plans.

The Inner Mongolia Autonomous Region, situated on the
Mongolian Plateau, straddles semi-arid and arid climates and is
primarily afflicted by wind erosion as the predominant form of
soil degradation (Caiyun et al., 2021). The central and western
areas of Inner Mongolia, characterized by desert grasslands with
thin, loose soil layers, are highly vulnerable to external
disturbances. The region endures severe desertification,
accounting for 90% of China’s desertified grasslands (An
et al., 2022). The region is also plagued by frequent and
intense dust storms, largely due to its sparse vegetation and
friable soil (Piao et al., 2017). Overgrazing is a principal causal
agent in grassland degradation, accentuating soil erosion and
vegetation decline, thereby underscoring the critical issue of
grassland wind erosion (Tao et al., 2015). The interplay of
grassland grazing and climate change on soil wind erosion
unfolds as follows: Overgrazing results in excessive
consumption of pasture vegetation, which in turn reduces the
soil’s resistance to wind erosion, thereby exacerbating the issue
(Chen et al., 2008; Zhang et al., 2020; Hao et al., 2022).
Furthermore, grazing damage to pasture plants and soil
compaction from trampling can lead to increased soil
erodibility and structural loosening, fostering wind erosion
(Zhang et al., 2023). Thus, climatic conditions and
overgrazing collectively heighten the risk of wind erosion
through their impact on vegetation composition, above- and
below-ground biomass, soil structure, and soil crust cover (Piao
et al., 2017).

To address these concerns, this study makes use of the long-
term grazing experimental platform in Inner Mongolia
(established in 2004) to analyze wind-sand fluxes in desert
grasslands under different grazing intensities (Zhang et al.,
2023). Amidst the combined effects of climate and grazing on
grassland wind erosion, we sought to answer the following
questions: 1) How does interannual variation in climate and
stocking rate influence wind-sand flux in desert grasslands? 2) Is
there an interaction between climate and stocking rate that
affects wind-sand flux? 3) Which climatic factors contribute to
interannual differences in wind-sand fluxes?

Addressing these questions will not only illuminate the extent of
wind erosion in desert grasslands but also identify contributing
factors, providing a theoretical framework and empirical support for
the restoration of grassland vegetation and the sustainable
management of grassland animal husbandry.

2 Material and methods

2.1 Physical and geographic overview of the
study area

The research site was located in Wangfu 1, Siziwangqi, Ulanqab
City, within the Inner Mongolia Autonomous Region (41°47′17″N,
111°53′46″E). The site’s elevation is 1,450 m, and it is situated 30 km
from the governmental center of Siziwangqi, Wulanhua (Zhang
et al., 2023).

The topography of Siziwangqi is varied, comprising 4%
mountains, 39% plateaus, and 66% hills, with a relative elevation
difference of 1,100 m between the lowest and highest points, which
range from 1,000 to 2,100 m. Its location on the southern edge of the
Inner Mongolia Plateau makes it susceptible to persistent winds
throughout the year. Predominant winds are westerly and
northwesterly during the spring and winter, while southerly and
southeasterly winds prevail in the summer and autumn. The average
annual wind speed exceeds 4.4 m/s.

The region experiences significant thermal variation, with an
annual temperature range of 34°C–37°C and daily temperature
fluctuations of approximately 13°C–14°C. The temperature
gradient aligns with the terrain, descending from north to
south; summers are relatively short and warm, while winters
are extended and notably cold, with January being the coldest
month. Spring temperatures rise swiftly, with substantial
variability from March to May. July records the highest
temperatures, and autumn witnesses a rapid decline in
temperature starting in the latter half of September, averaging
a 2°C drop every 5 days. The area typically enjoys a brief frost-free
period averaging 108 days annually. The longest recorded frost-
free period was in 2,000, lasting 142 days, whereas the shortest
spanned only 78 days in 1965.

The average weather indicators for the growth seasons from
2019 to 2021 in the test area are provided below.

The study area is located in a dry, semi-arid region of inland
high latitudes, receiving an average annual precipitation ranging
from 110 to 350 mm. Despite the ample sunlight, the region
suffers from insufficient rainfall. The predominant soil type at the
test site is compact, light chestnut calcic soil, characterized by low
water permeability and poor aeration. This often results in
noticeable surface runoff following precipitation events. The
vegetation is sparse, typically reaching heights of 10–15 cm, and
consists mainly of short-flowered needlegrass (Stipa breviflora
Griseb.), indicative of the desert grassland zonal vegetation typical
of the region.

2.2 Experimental design

This study was based on a sheep grazing experiment platform
with a grazing intensity gradient established in 2004. A completely
randomized block design was used to divide 12 fenced grazing plots
(each covering an area of 4.4 hm2) into three blocks, and four
different stocking rate levels were randomly arranged within each
block: control (CK), light stocking rate (LG), moderate stocking rate
(MG), and heavy stocking rate (HG). Stocking rates were set at 0
(CK), 0.91 (LG), 1.82 (MG), and 2.71 (HG) sheep hm−2·year−1
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during the grazing season (early June to late November), and the
actual number of sheep grazed were 4, 8 and 12 in the light,
moderate and heavy grazing areas, respectively (Figure 1).

We placed a BSNE (Big Spring Number Eight) dust sampler
(Custom Products, United States) in the center of every grazing plot
(Figure 2). These sand and dust sampler sets feature adjustable-
height samplers within their support bars. The samplers are
equipped with rotatable shafts and wind blades and can be
positioned at various heights along the bar. Each sampler
includes a sand trap measuring 2 cm in width by 5 cm in height,
boasting a sand collection efficiency exceeding 90% within the BSNE
system. Air carrying sand particles enters the trap, where it is

collected. Mounted on each 1.5 m tall BSNE support rod are four
sets of BSNE, with seven sand-collecting boxes at different heights
(0, 0.1, 0.3, 0.5, 0.7, 1.0, and 1.2 m). Across all plots, there were
19 sand-collection boxes per plot, with a total of 228 boxes for the
entire study area (Zhang et al., 2023).

2.3 Wind-sand flux calculations

The wind-sand flow is an airflow that carries sand particles; it
can be created by wind that is blowing up and migrating fine particles
close to the ground. The horizontal flux of sand flow (Q), defined as the

FIGURE 1
The map of the location of research objects and experimental plots.

FIGURE 2
BSNE dust sampler field photo.
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mass of sand and dust per unit time per unit breadth at a specific height
perpendicular to the wind direction, is made up of sand flow q[z] at
various heights from the ground. Since the horizontal fluxes q[z] per
unit area at different heights satisfy the following relationship, Q can be
composed of wind-sand flow q[z] at different heights. Q[z] is obtained
by using the fitting method to obtain different sets of equations:

q z( ) � ce az2+bz( ) (1)
where z is the height of the sand collecting opening (m), a, b, and c
are the fitting parameters, and both sides of the equation are
calculated logarithmically, that is to say:

lnq z[ ] � az2 + bz + lnc (2)

We used SPSS 13.0 (Zhang et al., 2023) to fit a polynomial to Eq.
1, to provide the three constant terms, a, b, and c. Additionally, the
height of the sand collection z and the horizontal fluxes q at various
vertical heights can be related by establishing the equation q[z] using
the quadratic polynomial function.

2.4 Statistics and analysis of data

We considered the following three factors that might
influence wind-sand flux: year (2019, 2020, 2021), height
above ground (0, 0.1, 0.3, 0.5, 0.7, 1.0, and 1.2 m), and
stocking rate (control, low, medium, high). We analyzed
these variables using a 3-factor ANOVA model and
transformed the variables X and Y using the SQRT (Ln(X +
1)) to better approach normality.

We calculated average temperature, average precipitation,
average relative humidity, and average wind speed for each

growing season (May-October) of each year. The intervals
were categorized based on the average results; a year with
a value of 1 was assigned to be greater than the mean, and a
year with a value of 0 was assigned to be less than the mean
value. The average wind speed for the 3-year period coincided
with the same amount of precipitation (Table 1), so in
2019 the wind speed (precipitation) is assigned a value of 1,
2020 and 2021 a value of 0, just as the average temperature is
assigned a value of 1, 0 and 1, and the average relative humidity
a value of 0, 1 and 1. In this case, the stocking rates and
height above ground were considered in conjunction with
the analysis of variance (ANOVA) of the four factors
(temperature, precipitation, stocking rates, and height),
which resulted in the retention of only the two factors of
temperature and precipitation. This constructed multifactorial
influence on the wind-sand homogeneity was caused by the fact
that the relative humidity and wind speed were implicitly
included in the precipitation variable, and that both the
precipitation and wind speed elements were assigned the
same value.

The ANOVA procedure was used, followed by Duncan’s
multiple range test on all main effect means. We used SAS
9.21 for statistical analysis, Excel 2019 to summarize the data
tables, and Origin 2022 for charting.

3 Results

3.1 Effect of different influences on wind-
sand fluxes

All three factors (year, stocking rate, and sampling height)
showed significant differences in wind-sand flux (Table 2).
Moreover, wind-sand flux varied significantly with height
across years and with height across stocking rate, but there
was no significant interaction between stocking rate and year
(Table 2). Sampling height contributed most to the variance
(48.5%), followed by year (19.3%) and stocking rate (7.8%),
with the interactions year × height (7.3%), stocking rate ×
height (4.3%), and year × stocking rate (0.8%) the lowest and
exerting the least influence on wind-sand fluxes. The cumulative
variance contribution of these factors was 88.0%, indicating that
the ANOVA model closely fits the original data and that the
results were both statistically significant and indicative. Height is
the factor with the highest contribution rate, which indicates a
significant difference in the wind-blown sand flux collected at
different heights. This may be due to the obstructive effect of
vegetation or the migration effect of wind-blown sand on
the surface.

TABLE 1 Growing season averages of climate factors in the test area, 2019–2021.

Year Temperature (°C) Average annual precipitation (mm) Relative humidity (%) Wind speed (m/s)

2019 14.72 249.20 42.34 3.24

2020 13.54 171.10 52.36 2.97

2021 14.56 178.06 52.25 2.93

TABLE 2 ANOVA table for 3 factors affecting wind-sand fluxes.

Source DF SS MS F value Pr > F

Model 47 13.21 0.28 31.82 <0.0001

Year 2 2.90 1.45 163.97 <0.0001

Stocking rates 3 1.17 0.39 44.21 <0.0001

Height 6 7.28 1.21 137.43 <0.0001

Year × stocking rate 6 0.12 0.02 2.21 0.0439

Year × height 12 1.10 0.09 10.39 <0.0001

Stocking rate × height 18 0.64 0.04 4.03 <0.0001

Error 204 1.80 0.01

Total 251 15.01
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FIGURE 3
Differences in wind-sand flux between different years.

FIGURE 4
The impact of interannual variations and grazing intensity on wind-sand flux.
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3.2 Comparison of wind-sand fluxes in
desert grasslands between years

During the 3-year study period, wind-sand fluxes showed a
year-over-year increasing trend (Figure 3). During the annual
growing season, the wind-sand flux gradually increased, while the
difference in fluxes between different stocking rates decreased
(Figure 4). It is worth noting that the MG treatment area
consistently exhibited a relatively large proportion compared
to the CK, and over the 3 years, there was a pattern of mutual
growth and decline between the MG and HG treatment areas,
indicating a potential threshold effect of wind-sand flux in the
gradient of stocking rates. When the grazing intensity reaches the
level of the MG test area, the protective effect of vegetation
against wind erosion is almost eliminated. The increase in wind-
sand flux in 2021 and the reduced variation in fluxes among

different stocking rates implies that years with higher wind-sand
fluxes may also experience smaller variations in fluxes among
different stocking rates.

3.3 Effects of stocking rate on wind-
sand fluxes

Overall, wind-sand fluxes were greater in higher stocking
rates (Figure 5A), up to the medium rate. At low stocking rates, a
marked difference in wind-sand fluxes was noted among the years
(Figure 5B). The rate of change between the CK and LG treatments was
significantly greater than that in the MG and HG treatments
(Figure 5B). Notably, even when wind-sand fluxes were substantially
higher in the year 2021 than year 2020, the MG treatment area
remained consistent. This observation suggests that areas with high

FIGURE 5
Differences in wind-sand fluxes under control (CK), low (LG), medium (MG), and high (HG) stocking rate (A), and variation in wind-sand fluxes
between stocking rates and year (B).

FIGURE 6
Wind-sand fluxes at different heights from the ground (A), and the interacting effects of height and year (B) and height and stocking rate (C) onwind-
sand fluxes.
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stocking rates may diminish the interannual variability of wind-sand
fluxes. Moreover, in years with lower wind-sand fluxes, the vegetation
above ground might not effectively protect the soil from wind erosion.

3.4 Effect of height on wind-sand fluxes

Wind-sand flux was the highest at 10 cm above the ground
(Figure 6A), reaching 19.87 g m−2 d−1. The next highest flux was at
ground level (0 cm), at 10.61 g m−2 d−1, and the minimum wind-
sand flux was at 120 cm above the ground, at only 3.47 g m−2 d−1.
Due to the interactions between wind-sand flux at different
heights and the variables of year and stocking rate, high wind-
sand flux years weakened the differences in wind-sand flux
between different heights (Figure 6B), and high stocking rate
treatment areas weakened the differences in wind-sand flux
between different heights (Figure 6C). A high level of any
factor weakens the variability in wind-sand flux between
different levels of other factors.

3.5 Effects of interannual climatic factors on
wind-sand fluxes

Temperature, precipitation, livestock load, and heights all show
significant differences in wind-sand flux during the observation
period (p < 0.001). There were significant two-way interactions
between livestock load and height, temperature and height, and
significant three-way interactions among temperature, precipitation
and height, as well as temperature, precipitation, and livestock
load (Table 3).

The variance contributions of height, precipitation,
(temperature*precipitation) and livestock load, temperature,
livestock load and height, (temperature*precipitation) and
height, temperature and height, livestock load are 48.5%,
10.3%, 9.9%, 8.8%, 7.8%, 5.4%, 4.3%, 1.0% respectively.
Therefore, differences in wind-sand flux were greatest at

different heights from the ground, and the effect of
temperature had the smallest impact on wind-sand flux. The
combined effect of temperature and precipitation on wind-sand
flux reached 18.7%. The total variance contribution of all factors
was 96.0%, suggesting that the variance analysis model fits the
original data well. The results indicate that precipitation has the
highest contribution among meteorological elements, followed
by temperature. This suggests that precipitation reduces the dust
density in the air, increases soil moisture, and increases the
threshold wind speed to reduce wind erosion, with its impact
on wind erosion being greater than temperature.

4 Discussion

4.1 Influence of meteorological factors on
wind-sand fluxes

While grazing can influence the dynamics of wind-sand
fluxes in grasslands, it is the climatic conditions that
fundamentally drive these changes. Key meteorological factors
such as temperature, wind speed, precipitation, and relative
humidity significantly impact these fluxes, often in complex
interplays (Wiesmeier et al., 2015; Han et al., 2021; Zhao
et al., 2022). The desert grassland has a dry climate, low
vegetation cover, and the soil is more prone to weathering and
erosion, so this paper chooses precipitation, temperature,
humidity, and wind speed (four meteorological factors,
precipitation and wind speed, have the same value, and
relative humidity is exactly the opposite of its value, so only
temperature and precipitation are retained, and relative humidity
and wind speed are implied in precipitation variables) as the four
representative indicators to be analyzed as climate factors.

Temperature and precipitation ultimately drive wind erosion in
their effects on aboveground and belowground net primary
productivity, vegetation recovery and compensatory capacity,
abundance of perennial species, belowground biomass, and root

TABLE 3 Response of wind-sand fluxes to meteorological factors, stocking rate and height above ground level.

Source DF SS MS F value Pr > F

Model 47 14.408 0.307 104.16 <0.0001

Temperature 1 0.147 0.147 49.98 <0.0001

Precipitation (Wind speed OR Relative humidity) 1 1.548 1.548 525.91 <0.0001

Stocking rate 3 1.171 0.390 132.66 <0.0001

Height 6 7.282 1.214 412.37 <0.0001

Stocking rate × height 18 0.640 0.036 12.08 <0.0001

Temperature × height 6 0.811 0.135 45.94 <0.0001

Temperature × precipitation (Ws OR Rh) × height 6 1.491 0.248 84.43 <0.0001

Temperature × precipitation (Ws OR Rh) × stocking rate 6 1.318 0.220 74.64 <0.0001

Error 204 0.600 0.003

Total 251 15.008
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distribution (Zhang et al., 2017; Zhongju et al., 2018; Niu, 2020; Qu
et al., 2023). Warmer wetter areas tend to have more vegetation that
protects against erosion.

However, temperature and rainfall also have proximate
effects as well. The high rainfall in 2019, lower rainfall in
2021, and the occurrence of consecutive droughts, led to an
increase in the wind-sand flux over the 3 years of our study.
Precipitation had a much greater independent effect than
temperature at our site. As temperatures rise, surface water
evaporation increases, leading to drier soil surfaces, which in
turn can result in increased wind-sand flux. In areas with low
precipitation, the surface temperature rises more rapidly than in
surrounding areas, intensifying convection with cold air,
leading to more severe wind effects on the surface, and
ultimately increasing wind-sand flux. Different regions show
varying responses of wind-sand flux to climatic factors (Ren
et al., 2018; Yang et al., 2018). In the northeast region of China,
the main meteorological factors affecting soil erosion during the
non-growing season are wind speed and temperature, with the
contribution of precipitation increasing during the growing
season while the contributions of wind speed and
temperature decrease (Zhu et al., 2012). In the alpine
meadow region, wind speed and moisture content are the
main factors affecting wind-sand flux (Munkhtsetseg
et al., 2017).

Climate factors often do not act alone, but may have synergistic
effects with each other, or with other factors (Tabeni et al., 2014).We
found that the combined contributions of temperature and
precipitation, in conjunction with other factors, was greater than
25% of variance explained in the models. The impact of temperature
and precipitation on soil erosion is a complex physical process, and
wind-sand flux varies under different temperature and precipitation
conditions (Schönbach et al., 2011; Zhang et al., 2015; Liu X et al.,
2021). Under extreme weather conditions, climate factors lead to a
decrease in vegetation recovery capacity, exacerbating grassland
wind erosion and causing more severe damage to grassland
productivity (Miri et al., 2019).

4.2 Effects of grazing on the wind-sand flux

Grazing is one of the significant factors exacerbating soil wind
erosion. Desert grasslands, due to their unique geographical factors,
exhibit noticeable variation in wind-sand fluxes under different
grazing intensities (Du et al., 2019; Li et al., 2020). Grazing
affects soil wind erosion primarily through the degradation of
vegetation, reduced protection of soils, and physical disruption of
the soil structure by livestock trampling (Li et al., 2017; Hou et al.,
2019). Our results show wind-sand flux was greater in plots with
more livestock. Interestingly, in the moderately grazed treatment,
the proportion remained consistent even when wind-sand fluxes
were significantly higher in the 2021 compared to 2020, indicating
that intense grazing diminishes the year-to-year variability in
wind-sand flux.

Grazing directly impacts soil structure through animal
foraging, leading to increased wind erosion and dust storms,
and indirectly affects plant community composition and
structure. Surface characteristics such as soil crust, bare ground

ratio, and gravel cover also influence wind-sand fluxes (Chen et al.,
2013; Bösing et al., 2014; Ren et al., 2016). Further studies in the
same experimental area have demonstrated that in control and
lightly grazed zones, the existing plant community and litter play a
crucial role in reducing wind erosion, while plant community
height and coverage have a more significant impact in the
moderate and heavily grazed areas (Gao et al., 2013). This
suggests that the observed threshold effect in the moderate
treatment area may be due to lower vegetation and litter levels
caused by high grazing pressure, reducing the protective effects
on the soil.

In terms of height, the maximum wind-sand flux occurs at a
height of 10 cm, with the flux decreasing as height increases.
Due to the interaction between wind-sand flux at different
ground heights and the year and stocking rate, high wind-
sand flux years and high stocking rates both have a
weakening effect on the differences in wind-sand flux at
different heights. Prior research indicates that typically
92.2%–95.6% of sand transport occurs at heights of 0–21 cm,
and the wind-sand flux at the same collection height shows an
increasing trend with stocking rate, while the wind-sand flux
decreases with elevation above ground level (Reiche et al., 2015).
Earlier research on desert grasslands has yielded similar
conclusions, with the wind-sand flux in each grazing plot
decreasing monotonically with elevation above ground level
as a negative power function, while nutrient levels increase
with height (Zhang et al., 2023).

We found a significant interaction between year, grazing
intensity and measurement height on wind-sand flux. The year
and stocking rate seem to mutually weaken each other, and the
process of mutual weakening actually reflects the unaffected nature
of the wind-sand flux, indicating more severe wind-induced soil
erosion in grasslands. This suggests that changes in stocking rate and
climate over the years influence wind-sand flux, with complex
interactions among these three factors. Thus, annual fluctuations
in climate appear to be the primary factor influencing wind-sand
flux, moderated by grazing intensity.

This study is based on observational data from 2019 to 2021.
Due to limitations in sample size and observation conditions, there
is still a lack of in-depth exploration into the interactions among
meteorological factors, the specific elements affected by each factor
leading to changes in wind erosion, and the reasons for significant
differences in wind-sand flux collected at different heights. Further
investigation is needed in these areas.

5 Conclusion

(1) In a long-term grazing experimental platform in the
steppes of Inner Mongolia, we found that grazing
intensity and climate significantly increased wind-sand
flux over the 3-year study period. Moreover, an increase
in either of these factors led to a reduction in the
variability of wind-sand flux across the varying levels
of the other.

(2) Among the climate variables, precipitation exerts the most
considerable influence on wind-sand flux, followed by
temperature.
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(3) Moderate grazing acts as a critical threshold in the
relationship between stocking rate and wind-sand flux
under different climatic conditions.
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Envirotyping helps in better
understanding the root cause of
success and limitations of rainfed
production systems
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The current diagnostic agronomy study of the Bankura region of West Bengal, India,
examined the variations in crop yields through a socio-ecological analysis ofmultiple
production system components. Envirotyping for root cause analysis was employed
to delve into the variables that affect the performanceof rainfed production systems.
Mother Earth, man, machine, management, and materials (5Ms concept) were the
five indicators under which the variables were grouped. Findings demonstrated the
fragility of the region’s soils due to its undulating terrain, unpredictable rainfall
patterns, and frequent drought scenarios. The LULC’s NDVI showed that the
agricultural area is about 60% and 43% of the total geographical area in the
Hirbandh and Ranibandh blocks, respectively. Soils are acidic and diagnosed with
deficiency of both macro and micronutrients (phosphorous, sulfur, and boron)
having poor water holding capacity (35 to 55 mm for a 50 cm soil depth). The
sand and soil organic carbon contents ranged between 43.04%–82.32% and 0.17%–
1.01%, respectively with a low bacterial population. These factors are the root cause
for low cropping intensity (106%) and low paddy productivity (3,021 kg/ha). Overall,
the study contributes to designing and scaling-up of sustainable landscape
management practices that could ensure higher cropping intensity and system
productivity in similar agro-ecologies with limited evidence.

KEYWORDS

envirotyping, soil health, rainfed agriculture, soil degradation, climate-resilient
agriculture, crop productivity

1 Introduction

Considering that 17.4% of India’s GDP comes from agriculture and related industries,
which employ 54.6% of the nation’s workforce, agriculture is a key sector of the economy. It is
desirable to use cultivable land as intensively as possible to maximize agricultural output since
there is an inelastic supply of land for cultivation in a country like India, where there is
demand from a high and expanding population for cultivable land. Nonetheless, since the
country’s independence, its net sown area has increased roughly by 20% and has reached a
point where further growth is not currently feasible. There are only two ways to use land to
meet the nation’s growing population’s needs for food and other necessities: either increasing
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the net area under cultivation or intensifying cropping over the
current area. Increasing cropping intensity is one of the tried-and-
true methods for raising agricultural productivity and creating jobs in
rural areas. Nonetheless, the degree of cropping intensity is mostly
determined by the agroecological conditions and the inputs used in
agriculture (Mondal and Sarkar, 2021).

In India, there are many different cropping systems under various
agroclimatic zones, which are primarily determined by soil type,
rainfall, climate, technology, policies, and the socioeconomic status
of the farming community (Gulati and Juneja, 2022). All these factors
have a significant impact on crop productivity and intensity. Bankura
is the western district ofWest Bengal, India, andmuch of the terrain is
undulating, having soils with low available moisture capacity
(National Bureau of Soil Survey and Land Use Planning, 2013).
The soils in Bankura are of inherently poor quality due to erosion
and warm climate. Soil degradation is exacerbated by the conversion
of land uses, such as forests to croplands, and poor farmland
management (De et al., 2022). Due to unpredictable rainfall
patterns, rainfed crops are typically grown with low nutrients, and
the farmers in these areas tend to be resource-poor (Srinivasarao et al.,
2013). As a result, these soils frequently have nutrient deficits, which
make it difficult for crops to produce desirable yields. Long-term
fertilizer studies spanning approximately 30 years showed that organic
manures are essential for maintaining agricultural yield in addition to
enhancing soil organic carbon stock (Srinivasarao et al., 2009).
However, high temperatures oxidize soil organic matter (SOM);
hence, the conservation and maintenance of SOM in tropical
regions is the biggest challenge. Consequently, there is a multi-
nutrient deficiency in these soils.

The four different types of drought situations that can occur in
Bankura are meteorological drought, hydrological drought,
agricultural drought, and socio-economic drought, which affects
human activities (Wilhite and Glantz, 1985; Wilhite, 2000; AMS,
2004; Parry et al., 2007; Bera and Bandyopadhyay, 2017; District
Disaster Management Cell, 2017). Drought coupled with the high
runoff rate of rainwater, inadequate storage facilities, high surface
runoff, and low water holding capacity of the soil exacerbates the
situation during the post-rainy season (Rahim et al., 2011; District
Disaster Management Cell, 2021). The development of sustainable
cropping systems is significantly becoming important in the current
scenario with increased vulnerability to climate change. The UN
Sustainable Development Goals (SDGs) such as #SDG13 and
#SDG15 focus on climate action, and the life on land can be
effectively achieved by the adoption of sustainable agriculture
practices. Consequently, we can achieve land degradation
neutrality (LDN) and climate mitigation.

Large yield gaps between potential, on-station, and farm yields
(Srinivasarao et al., 2010) are attributable to many factors, which
include a range of management techniques that affect crop yield, in
addition to having a high correlation with certain socioeconomic
aspects. “Envirotyping” is an approach proposed by Xu (2016) which
considers all environmental factors in order to determine the impact
of climate change on the growth and production of plants. Batan
(2017) and Xu (2016) classified the envirotyping factors into five
major groups, namely, soil, climate, crop canopy, companion
organisms, and crop management, and these components are
important environmental factors affecting plant growth. However,
the human element (i.e., man) was not considered in the envirotyping

framework, like the role of socio-economic factors, which greatly
influence the decision-making process and adaptation strategies of the
farmer to climate change. The land tenancy system, farm size, skilled
(young) labor, capital (agricultural credit), market and product price,
farm mechanization, access to and knowledge of IT, farm subsidies,
resource management, farm risk, awareness, age of the farmers,
population, rural development, government policies, and religion
are some of the notable socioeconomic barriers that numerous
studies have reported (Roy and Kaur, 2015). As the budgetary
payments to farmers did not counteract the price-depressing
effects of intricate domestic marketing rules and trade policy
measures, it inevitably affected the farmers’ net income and,
consequently, the subsequent investments in agriculture. This led
to the dependency of farmers, particularly small and marginal
farmers, on government schemes and support. Hence, the reasons
for low productivity or cropping intensity cannot be attributed to one
single factor, but it is a complex relationship between tangible and
intangible factors and needs a thorough understanding of inter-
relationship.

In the present investigation, we contributed to answering these
questions by analyzing a case study of the Bankura region of West
Bengal, India, with the objectives (i) to characterize the existing
ecosystem complemented with socio-economic analysis, (ii) to
analyze the root cause for low agricultural productivity and
cropping intensity, and (iii) to recommend site-specific
interventions to address the challenges.

2 Material and methods

2.1 Root cause analysis

Root cause analysis (RCA) was carried out in a small focus
group of about six to eight people in each of the 10 villages using a
flip chart paper, and as the conversation progressed, important
factors were added. The first step is to discuss and agree on the
problem or issue to be analyzed. The broader topic was further
broken down with the help of a tree. The problem or issue is
written in the center of the flip chart, which becomes the “trunk”
of the tree representing the “focal problem.” The next step is to
identify the causes of the focal problem, which become the roots,
and then identify the consequences, which become the branches.
As the study involves envirotyping, the measurements include
both field and laboratory activities such as planning, sample
collection, laboratory tests and analysis, and data handling
(Worthington et al., 2024). To meticulously understand the
concepts of cropping systems in rainfed regions and the root
cause determination (Alpha et al., 2021) behind each of the 5Ms,
the authors attempted to generate a research-based fishbone
concept framework (Kaoru Ishikawa diagram) for the
underlying causes of an event with proper corrective measures
and further prevent any recurrences (Murumbi, 2014).

2.2 Five M’s concept

The present investigation was outlined under the framework of
five M’s, e.g., Mother Earth, man, machine, management, and
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materials (Zielińska-Chmielewska et al., 2021). Several other
methods (Chaudhary et al., 2015; Rao et al., 2019; Reddy et al.,
2021) have also studied vulnerability indicators using different

quantifying methodologies/approaches, but the 5M’s approach
unveiled the opportunities to identify the key root causes of
each problem in the present study. We used this approach to

FIGURE 1
5M concept of the study.

FIGURE 2
Location of the experimental area.
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critically focus on the 5Ms and discuss several sub-elements
(Figure 1) under each M to come up with salient features of the
studied regions. To identify a research problem’s primary reason
or causes, a “five whys” approach was used. Any question will serve
as the starting point and basis for the subsequent question in this
manner. Quality professionals rank fifth for repeating the inquiry
based on their experience and field studies. This approach’s
primary objective was to identify the underlying source of an
issue by asking “why?” a lot.

2.3 Site description

The study area comprises Ranibandh (22.8661°N and
86.7831°E) and Hirbandh (23.0616°N and 86.8145°E) blocks of
the Bankura district (Figure 2) of the south-western part of West
Bengal, India, which is bordered by the Mukutmanipur
reservoir. The geographical areas of the Hirbandh and
Ranibandh blocks are 199 and 418 sq. km, respectively. There
are about 119 villages in Hirbandh and about 184 villages in the
Ranibandh block with diverse socio–agro–economic
characteristics. All the villages in both blocks were clustered
based on the demographic and socio-economic criteria
(Supplementary Table S1), and five representative villages
from each block were selected (Figure 2). The villages,
namely, Tentulia, Sitarampur, Jadurbankata, Kadia, and
Itamara from the Hirbandh block, while Satnala, Gosainidihi,
Dhanara, Ramgarh, and Kama from the Ranibandh block were
selected for the study.

2.3.1 Selection of samples based on landforms
As the topography influences the cropping pattern and

productivity (Kumhálová et al., 2011), 30 farmers from each
village were randomly selected and classified into four categories:
uplands, mid-uplands, mid-lowlands, and lowlands (Jana SK,
2011A). The uplands consist of a mix of non-arable wasteland
and cultivable land with thin topsoil and low water-holding
capacity. The mid-uplands are sandy to sandy loam and
shallow with low organic matter and moisture holding
capacity. The mid-lowlands are loamier than the mid-uplands
and are lower than mid-uplands but higher than lowlands
(Sugata et al., 2017). Low-lying arable land is best suited for
paddy cultivation as water from uplands collects in these types
of plots.

2.4 Soil and water sampling

To analyze the nutrient status and physical and soil
biological properties, 20 composite soil samples were
collected from each of the 10 villages using a stratified soil
sampling method (up-, mid-, and lowlands). Water samples
were collected from drinking water wells, community ponds
near the households used for washing, and from the main
irrigation sources in each of the 10 villages for its quality
assessment. Overall, the sample design comprises
300 household samples, 200 soil samples, and 30 water
samples (Supplementary Table S2).

2.5 Laboratory analysis

Table 1 shows the brief methodology used to analyse various
parameters of soil and water:

TABLE 1 Laboratory protocol used for testing soil and water samples and
please add the right hand border.

Parameter
measured

Method Reference

Chemical properties

pH Soil pH was measured by a glass
electrode using a soil–water
suspension ratio of 1:2

Rhoades (1996)

EC Soil electrical conductivity (EC)
was measured by a calomel
electrode using a soil–water
suspension ratio of 1:2 after
settling the sample overnight
using an EC meter

Rhoades (1996)

Organic carbon Soil samples were ground to pass
through a 0.25-mm sieve for
organic carbon analysis by the
Walkley–Black method

Nelson and
Sommers (1996)

Exchangeable bases Exchangeable bases, e.g., K,
Ca, and Mg, were
determined using the neutral
normal ammonium acetate
method

Okalebo et al. (1993)

Available P Available P in acidic soils was
estimated by using Bray’s extractant
no 1- 0.03M NH4F in 0.025M HCl
Available P in alkaline soils was
estimated by using sodium
bicarbonate (NaHCO3) of pH 8.5 as
an extractant for soils, respectively

Bray and Kurtz
(1945)
Olsen (1982)

Available
micronutrients

Available micronutrients, e.g.,
Fe, Cu, Mn, and Zn, were extracted
by the DTPA reagent of pH 7.3

(Lindsay and
Norvell, 1978)

Available boron Available boron was extracted
from hot water

Keren (1996)

Available S Measured using 0.15% calcium
chloride (CaCl2) as an extractant

Tabatabai (1996),
Sahrawat et al.,
(2009)

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to
detect sulfur and boron, whereas microwave plasma atomic emission spectroscopy
MP-AES was used to quantify macro and micronutrients

Physical properties
The soil samples collected were analyzed for the parameters, viz., water holding
capacity at 0.33 bar (upper limit); permanent wilting point at 15 bar (lower limit),
plant available water (derived value), and profile water storage capacity (derived
value) using standard protocols. This analysis helps us to know the plant available
moisture content and to assess profile water storage capacity

Microbial properties
Microbial biomass count (bacteria, fungi, actinomycetes, nitrogen-fixing bacteria,
and phosphate-solubilizing bacteria) was estimated using 1 g of each soil sample,
which was subjected to serial dilution in 0.9% of sterile saline solution and spread on
nutrient agar medium, potato dextrose medium, actinomycetes isolation agar, and
Jensen’s medium, respectively (Sanders, 2012). The soil respiration rate was estimated
by the alkali trap method (Anderson, 1982)

Water
Water samples were analyzed for presence of nitrates, carbonates, Chemical Oxygen
Demand (COD), and heavy metals using standard protocols.
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2.6 Land use and land cover (LULC)

Detection of changes in land use/land cover patterns is a good
indicator of land degradation and, hence, an essential task for sustainable
natural resources management planning. This section analyses the
changes in land use/land cover for the years 2005–06 and
2020–21 in Hirbandh and Ranibandh blocks. To analyze changes in
land use in the study area, time-series satellite data from 2005–06 and
2020–21 were used. Monthly IRS-P6 AWiFs images were utilized, with
digital numbers converted to reflectance values to normalize multi-date
effects. Top-of-atmosphere (TOA) reflectance was calculated using a
reflectance model built in ERDAS Imagine (Thenkabail et al., 2004;
Velpuri et al., 2009), and normalization was based on available metadata
in header files. A hybrid approach, including decision tree or supervised
MXL or both, was used to classify the data and extract information on
land use/land cover classes and agricultural seasons. This allowed for
regular process repetition at set time intervals. All classeswere reclassified
into major classes such as built-up, rainy season (June to November),
post-rainy (December to March), double crop, fallow land, forest,
wasteland, and waterbodies.

2.7 Cropping intensity and
diversification index

The cropping intensity of the region was estimated to understand
the present utilization efficiency of the land, which is the ratio between
the gross cropped area (GCA) and net cropped area (NCA)
(Brahmanand et al., 2021). The GCA represents the total area sown
once, twice, ormore in a specific year; hence, inGCA, an area is counted
twice when a crop is sown twice on the same plot of land, while the
NCA is the crop-planted area that was only counted once. Crop
diversity is calculated using the Simpson index of diversification
(Simpson, 1949), which measures the diversity by considering both
the total number of species and the relative abundance of each species.

Simpson index of diversification (SID) = 1 − ∑k
i�1p

2
i where

pi � Ai

∣∣∣∣∣∣∣∣∣∑
k

i�1
Ai

⎛⎝ ⎞⎠.

Here, Ai is the amount of land allocated to each ith crop, and∑
k

i�1
Ai is

the total amount of land area cultivated by a farmer for all his crops.

2.8 Statistical analysis

The standard deviation and the standard error mean of the
samples of different villages under two different blocks were
computed using SPSS software- version: 17.0.

3 Results and discussion

3.1 Agronomical challenges in the selected
villages of Hirbandh and Ranibandh

The variation in cropping intensity (CI) has been noticed in the
sample locations (Figure 3A). Jadurbankata and Itamara have a

higher CI, which is around 200%. On the other hand, Sitamara and
Kamo Gora have a lower CI (<100%). The average CI of all the
10 villages was 121%, whereas after the exclusion of the two villages
(viz, Jadurbankata and Itamara), the CI for the rest of the villages
was 106%, thus indicating the low land use efficiency of the study
region (Mondal, 2019). Due to low rainfall and excess draining out
of water, there is less residual soil moisture availability in these areas
during the post-rainy season, thereby making farmers unable to
cultivate multiple crops, and thus, the region witnesses low CI.

Diversified cropping systems, in general, tend to be more
agronomically stable and resilient (Makate et al., 2016). The
average Simpson diversification index (SDI) score was <0.5,
indicating moderate diversification across the villages (Figure 3B).
The highest SDI was observed at Jadurbankata (0.30), indicating
diversification from subsistence crops to more commercial crops.
Studies proved that crop diversification has a significant and positive
impact on the farm income of households (Lama, 2016), and as these
areas have low cropping system diversification and low CI, the
agricultural income is very meager to sustain the livelihoods of small
and marginal farmers in the area. Hence, it is very important to
understand the socio-ecological reason for low CI.

3.2 Status of Mother Earth, man, machine,
management, and materials (5Ms)

The team has brainstormed along with farmers and scientists
about many possible causes and their effects that lead to low
intensity and productivity and are represented in a cause-and-
effect diagram or a fishbone diagram (Figure 4). The factors are
classified into five main groups: Mother Earth, man, material,
methods, and management.

Each node in the framework represents the causes that affect it.
Each cause has its opportunities for improvement and needs to be
analyzed separately. Based on the judgment of the expert team, the
problem is assigned to the pre-described root cause (5M’s). Table 2
shows the important controllable causes of this problem.

3.2.1 Mother Earth
Mother Earth encapsulates the environmental elements such as

weather, soil, water, and other uncontrollable events that fall into
this category. The present study includes weather (rainfall and
temperature), soil health (physical, chemical, and biological), and
water quality parameters under this category.

3.2.1.1 Land use and change detection
A total of eight classes were generated to understand LULC in

Hirbandh and Ranibandh blocks for the year 2020–21 (Figure 5).
Time-series satellite data for the years 2005–06 and 2020–21 were
used to analyze the land use change in the study area. The changes in
land use/land cover classes for the period 2005 to 2020 were
analyzed as a percent difference. Remote-sensing analysis showed
that the agricultural area is about 60% and 43% of the total
geographical area in the Hirbandh and Ranibandh blocks,
respectively. This shows that both blocks are agriculture-
dominant. About 54% and 37% of areas are under the rainy
season, and negligible areas are under the post-rainy season in
Hirbandh and Ranibandh blocks (Table 3). The area under built-up,
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post-rainy, forest, and water bodies has not changed significantly
(<1%) in the Hirbandh block. The area under the rainy season has
increased by 18% due to the conversion of 5.5% of fallow land, 9.5%
of double crop land, and 3.5% of wasteland.

Analysis showed that the areas under built-up, post-rainy,
forest, and waterbodies have not changed significantly (<1%) in
the Ranibandh block. However, only the rainy season area
increased by 13.4% due to the conversion of 7.5% of fallow

FIGURE 3
(A) Cropping intensity of the study area and (B) Simpson diversity index of the study villages.

FIGURE 4
Fishbone conceptual framework.
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land, 3.5% of the double crop land, and 2.5% of wasteland.
Overall, Hirbandh and Ranibandh blocks experienced a
similar type of conversion from one land use class to other
classes. The existing cropping pattern in the region is
presented in Supplementary Table S3, and it shows that paddy
cultivation occupies 99% of the cropped area in the rainy season
and only 6% in the post-rainy season. The post-rainy season was

dominated by mustard (54%), followed by potato (18%) and
watermelon 10%. Vegetables (other than potato) occupy only
6.4% of the cropped area as they are majorly grown from self-
consumption rather than for the market. The post-rainy area
occupies only 52% of the rainy season area (Supplementary Table
S3), highlighting that farming during the post-rainy season is
under constrained conditions. As paddy cultivation occupies

TABLE 2 Controllable root causes of the problem.

Problem Main root cause Assigned M

Low productivity Boron, sulfur, and phosphorous deficiency Mother Earth

Low varietal and seed replacement Material

Selection of varieties according to topography Management

Pest management

Low intensity Low water holding capacity Mother Earth

Low in beneficial bacteria Mother Earth

Low in organic content Mother Earth

Low economic returns from rainy season crop Management/man

Migration Man

FIGURE 5
LULC of Hirbandh and Ranibandh blocks for 2005–06 and 2020–21.
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major portion of the land, the study primarily focuses on paddy
cultivars and the related factors of production.

3.2.1.2 Climate
3.2.1.2.1 Rainfall. The selected blocks fall under the “hot, dry,
sub-humid ecological hub region” with the length of the rainfed
crop-growing period (LGP) being approximately 150–180 days. The

normal rainfall of the blocks was 1,556 mm/annum and 1,464 mm/
annum, and nearly 75% of the total rainfall is received between June
and September (Figure 6) and nearly 15% during the months of
March–May. The post-rainy season receives only 8%–10% of the
rainfall, which could be the main reason for the very low CI. High
rainfall variability was observed during the monsoon season (high:
7%–8%) in the Hirbandh block, which led to decreased runoff

TABLE 3 Percentage of land use/land cover classes of the study area during 2020–21.

Class name Hirbandh Ranibandh

Area (sq.km) Percentage Area (sq.km) Percentage

Built-up 5.84 2.92 22.87 5.46

Rainy 108.32 54.22 155.59 37.18

Post-rainy 0.18 0.09 0.07 0.02

Double crop 14.20 7.11 23.25 5.56

Fallow 0.40 0.20 0.31 0.07

Forest 51.53 25.79 173.68 41.50

Wasteland 3.75 1.88 7.76 1.85

Waterbodies 15.58 7.80 35.00 8.36

Total 199.80 100 418.53 100

FIGURE 6
(A) Seasonal patterns of monthly rainfall in Hirbandh and Ranibandh blocks (B) and (C) long-term temperature changes in Hirbandh and Ranibandh
blocks, respectively, calculated as mean (1992–2006) monthly averages–mean (2007–2021) monthly averages.
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TABLE 4 Soil physicochemical and biological properties of the selected villages under Hirbandh and Ranibandh.

Block Village Topography Sand
(%)

Silt
(%)

Clay
(%)

Textural
class

Volumetric
water

content at
FC

(cm3/cm3)

Volumetric
water
content
at PWP

(cm3/cm3)

Plant
extractable
water in 50-

cm
depth (mm)

Plant
extractable
water in 100-

cm
depth (mm)

pH OC Soil
respiration
rate
(mg CO2/g
soil)

Bacteria
(CFU/g)

Fungi
(CFU/
g)

Actinomycetes
(CFU/g)

Hirbandh Sitarampur Upper 74.93 13.79 11.28 SL 0.22 0.08 69 138 5.09 0.52 18.15 1.2 × 108 0.57 × 105 0.75 × 106

Kendiya 78.65 8.79 12.56 SL 0.14 0.07 38 75 5.69 0.38 23.65 0.41 × 109 0.81 × 105 0.65 × 106

Itamara 59.82 27.62 12.56 SL 0.28 0.09 94 187 5.12 0.6 14.85 VL 0.31 × 105 VL

Tentulia 64.71 13.86 21.43 SCL 0.28 0.13 72 145 4.94 0.65 23.65 VL 0.29 × 106 0.19 × 106

Jadurbankata 67.35 12.56 20.09 SCL 0.27 0.1 85 170 5.3 0.2 22.55 0.31 × 108 1.1 × 105 0.84 × 105

Ranibandh Ramgarh 62.18 20.17 17.65 SL 0.28 0.13 73 146 5.51 0.86 18.94 0.15 × 106 0.41 × 106 0.78 × 105

Satnala 46.98 25.25 27.77 SCL 0.43 0.23 97 194 5.65 1.01 24.75 VL 0.26 × 105 0.27 × 106

Dhanara 54.72 23.9 21.38 SCL 0.34 0.14 102 203 5.26 0.57 12.65 VL 0.41 × 105 0.19 × 106

Kama 62.05 17.71 20.24 SCL 0.31 0.14 86 172 4.99 0.41 21.46 0.12 × 107 0.84 × 106 VL

Gosainidihi 82.32 7.58 10.1 LS 0.21 0.08 65 130 4.72 0.17 25.85 VL 0.95 × 105 0.68 × 106

Average 65.371 17.123 17.51 — 0.276 0.119 78.1 156 5.22 0.513 20.7625 — — —

SD 10.87 6.95 5.70 — 0.08 0.05 18.91 37.78 0.33 0.27 4.92 — — —

SEM 3.44 2.20 1.80 — 0.02 0.01 5.98 11.95 0.10 0.09 1.55 — — —

Hirbandh Tentulia Middle 47.03 20.18 32.79 SCL 0.34 0.19 77 153 5.76 0.61 32.45 VL 0.29 × 105 0.25 × 106

Sitarampur 69.86 8.79 21.35 SCL 0.26 0.14 60 120 5.01 0.59 20.35 VL 0.47 × 105 0.44 × 106

Jadurbankata 64.81 12.57 22.62 SCL 0.3 0.12 93 186 5.62 0.49 22.55 VL 0.56 × 105 0.43 × 105

Kendiya 67.24 12.6 20.16 SCL 0.24 0.11 62 125 5.43 0.53 25.85 0.22 × 107 0.69 × 105 0.21 × 106

Itamara 57.27 17.59 25.14 SCL 0.32 0.16 78 157 5.3 0.54 21.45 VL 0.32 × 105 VL

Ranibandh Satnala 63.38 18.94 17.68 SL 0.34 0.14 98 196 4.88 0.71 29.15 0.21 × 105 0.29 × 106 VL

Gosainidihi 69.74 12.61 17.65 SL 0.28 0.12 83 167 5.07 0.54 6.05 0.61 × 107 1.02 × 105 0.34 × 107

Dhanara 69.69 12.63 17.68 SL 0.31 0.13 87 175 5.12 0.54 24.75 VL 0.28 × 105 VL

Ramgarh 54.28 17.78 27.94 SCL 0.36 0.18 86 172 4.79 0.61 23.41 VL 0.71 × 105 VL

Kama 48.88 17.89 33.23 SCL 0.39 0.23 80 160 5.01 0.58 21.68 VL 0.61 × 106 VL

Average 61.863 14.521 23.62 — 0.314 0.152 80.4 161.1 5.27 0.569 22.825 — — —

SD 8.76 3.75 5.98 — 0.05 0.04 12.12 24.18 0.31 0.07 7.88 — — —

SEM 2.77 1.19 1.89 — 0.01 0.01 3.83 7.65 0.10 0.02 2.49 — — —

Hirbandh Sitarampur Lower 69.83 12.57 17.6 SL 0.31 0.12 94 189 4.79 0.51 24.75 L 0.54 × 106 0.64 × 106

Itamara 74.86 12.57 12.57 SL 0.29 0.1 92 184 5.19 0.56 15.95 VL 0.32 × 105 VL

(Continued on following page)
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TABLE 4 (Continued) Soil physicochemical and biological properties of the selected villages under Hirbandh and Ranibandh.

Block Village Topography Sand
(%)

Silt
(%)

Clay
(%)

Textural
class

Volumetric
water

content at
FC

(cm3/cm3)

Volumetric
water
content
at PWP

(cm3/cm3)

Plant
extractable
water in 50-

cm
depth (mm)

Plant
extractable
water in 100-

cm
depth (mm)

pH OC Soil
respiration
rate
(mg CO2/g
soil)

Bacteria
(CFU/g)

Fungi
(CFU/
g)

Actinomycetes
(CFU/g)

Jadurbankata 46.68 16.5 36.82 SC 0.34 0.2 71 142 7.13 0.86 13.75 0.54 × 108 0.63 × 105 0.42 × 106

Kendiya 69.79 10.07 20.14 SCL 0.22 0.09 65 129 5.26 0.28 11.55 1.6 × 107 0.7 × 105 0.75 × 106

Tentulia 43.74 20.46 35.8 CL 0.36 0.19 82 165 5.04 0.78 22.55 VL 0.16 × 106 0.29 × 106

Ranibandh Ramgarh 54.52 17.69 27.79 SCL 0.31 0.17 69 138 5.49 0.79 16.98 0.67 × 105 0.84 × 106 0.36 × 106

Dhanara 54.69 27.69 17.62 SL 0.3 0.13 84 169 5.16 0.6 8.25 VL 0.27 × 105 VL

Satnala 81.15 7.54 11.31 LS 0.19 0.08 54 108 5.16 0.56 17.05 VL 0.19 × 106 0.19 × 106

Gosainidihi 59.14 12.77 28.09 SCL 0.39 0.19 103 207 5.32 0.73 20.35 0.44 × 105 1.04 × 105 0.98 × 106

Kama 43.04 19.42 37.54 CL 0.48 0.26 110 219 4.97 0.85 15.98 VL 0.74 × 105 0.46 × 106

Average 56.594 16.518 26.89 — 0.319 0.153 82.4 165 5.38 0.61 16.775 — — —

SD 13.53 5.88 10.02 — 0.08 0.06 17.75 35.65 0.72 0.18 5.60 — — —

SEM 4.28 1.86 3.17 — 0.03 0.02 5.61 11.27 0.23 0.06 1.77 — — —

Note: SL, sandy loam; SCL, sandy clay loam; CL, clay loam; LS, loamy sand; L, less; VL, very less.
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during the monsoon season (2007–2021). The rainfall variability in
the Ranibandh block is observed low (2%) during the
monsoon season.

3.2.1.2.2 Temperature. Although the period between May and
June is the hottest with temperature as high as 45°C, the onset of
southeast monsoons brings down temperature. The winter
(November–January) temperature is between 22°C and 25°C
(Figure 6), and this period is most suited for the cultivation of a
variety of good quality vegetables. The meteorological data obtained
from the local meteorological department indicate that the
maximum temperature in Hirbandh and Ranibandh during the
monsoon season increased by 0.20°C–0.40°C (winter) and
1.30°C–1.40°C (summer) (February/March), respectively.
However, there was a decreasing trend in temperatures in May in
both the blocks.

3.2.1.3 Soil health
3.2.1.3.1 Soil physical properties. The sand content of 30 soil
samples ranged from 43.04% to 82.32%, silt content ranged from
7.54% to 27.69%, and clay content ranged from 10.10% to 37.54%
(Table 4). Light textured soils (high sand) have a low water holding
capacity and require frequent rains or irrigations, as compared to
heavy textured soils (high clay) which have a high water holding
capacity (Pathak et al., 2009). The upland soils are light textural soils,
and lowland soils are heavy textural soils as the clay content is
comparatively higher (Table 4). Simple water budgeting obtained
from model simulations (Supplementary Table S4) showed that
30%–44% of the runoff generated in these blocks is already captured
by existing water storage structures (waterbodies). Although the soil
moisture holding capacity of soils in the Ranibandh block is higher
than that in Hirbandh block, the average water holding capacities of
both soils are poor (35 mm–55 mm for a 50-cm depth of soil).
Similarly, groundwater recharge was found high (9%) due to sandy
loamy soils in both the blocks.

Water retention of Bankura soils at 0.33 bar field capacity (FC)
varies from 0.14 to 0.48 cc/cc, whereas at 15 bar, permanent wilting
point (PWP) varies from 0.07 to 0.26 cc/cc (Table 4). Alfisols are
highly variable in depth, texture, bulk density, and stoniness; their
water retention and transmission properties are very site-specific
and must be judiciously evaluated for the specific areas in which
quantitative studies of soil–plant–water relations are conducted
(El-Swaify et al., 1985). Water availability to crops is affected by
their rooting characteristics and soil physical properties (El-Swaify
et al., 1985). The value of plant extractable water (PEW) for the
Bankura soils in the top 50-mm layer varies from 38 mm to
110 mm, whereas, in the top 100 cm, depth varies from 75 mm
to 219 mm (Table 4). Crop water requirements of various crops are
wheat and maize, 500 to 600 mm; groundnut, 500 to 550 mm;
sorghum/millets, 350 to 500 mm; sunflower, 400 to 500 mm; finger
millet, 400 to 450 mm; chickpea, green gram, and black gram,
350 to 400 mm;mustard, 400 to 450 mm; safflower, 250 to 300 mm;
and sesame, 200 to 250 mm. Since the plant extractable water of
Bankura soils ranges from 75 to 219 mm in the top 100-cm layer
(Table 4), we have to provide supplemental irrigations during
critical crop growth stages during the post-rainy season to grow
these crops successfully without any risk. Even though there is
some rainfall during the post-rainy season but not enough to cover

the water needs of the crops, irrigation water must supplement the
rainwater in such a way that the rainwater and the irrigation water
together cover the water needs of the crop (Brouwer and Heibloem,
1986). The analysis of physical properties indicates that due to the
high sand content, the saturation capacity of both block soils is
40%–60% of their volumetric content, water holding capacity is
low (6%–10%) due to low clay content, and the drainable limit is
good (0.28%–40%), which leads to better groundwater
recharge (Figure 7).

3.2.1.3.2 Soil chemical properties. The soil pH of both blocks
ranged between 4.72 and 7.13, with an average soil pH of 5.29
(Table 4). The soil pH of Hirbandh and Ranibandh blocks was found
to be acidic in reaction, and this might be due to granite being the
parent material, sloppy land, and heavy rainfall, which cause
leaching losses of basic cations, and the laterization process
causes the accumulation of iron and aluminum oxide. More than
50% of soil samples are deficient in available phosphorus (P)
(61.90%), sulfur (S) (70.48%), and boron (B) (94.29%) in the
Hirbandh block (Figure 8). In the Ranibandh block, more than
50% of soil samples are deficient in available calcium (Ca) (68.57%),
S (82.86%), and B (97.14%) (Figure 8). The soil organic carbon
content (SOC) in Hirbandh and Ranibandh blocks varied from
0.17 to 1.01% and was categorized as low-to-high in the range.
Furthermore, the highest SOC content was observed in Satnala
village. Low SOC was observed in the Sitarampur and Jadurbankata
villages of the Hirbandh block. The available potassium is less in the
Sitarampur village (Figure 8).

3.2.1.3.3 Soil biological properties. The bacterial population
was noticeably lower (Table 4) in most of the samples, irrespective of
terrain (upper, middle, and lower), which might be due to the low-
to-medium organic carbon content of the soil and the acidic nature
of the soil. The fungal population (colony-forming units: CFU/g)
was high compared to bacteria, which might be attributed to the
acidic nature of the soil (Rousk et al., 2008). A study was conducted
by Rousk et al., (2010) on the influence of soil pH on bacterial and
fungal communities. The quantitative polymerase chain reaction
(qPCR) results based on 16S rDNA revealed that the abundance of
bacteria was increased four-fold with an increase in pH from 4 to 9,
and no significant influence of pH was observed on fungal
abundance. Similar results were also observed byWang et al. (2022).

In the present study, we observed that sample BN-55 (L) from
Jadurbankata village has a high SOC, i.e., 0.86%, which is the reason
for the comparatively high microbial population (bacteria, fungi,
and actinomycetes), compared to other samples. Therefore, field
bunding in this region is an important intervention that could help
retain moisture, which creates favorable conditions for microbial
growth, resulting in an increase in the microbial population (Van
et al., 2014). One of the most important biological indicators of soil
health, indicating the presence of living organisms and their
activities, is soil respiration. Although soil organic carbon (SOC)
was reported to have a positive correlation with soil respiration, soil
respiration is also influenced by factors like temperature, moisture,
porosity, and soil type (Duan et al., 2021). In the present study, not
all the samples tested for soil respiration had a positive correlation
with SOC, which might be due to the presence of labile carbon
(active carbon pool) that contributes to microbial activity and
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respiration (Cleveland et al., 2007). The samples were observed to
have low-to-medium organic carbon and fewer bacteria compared
to fungi.

As per the total microbial biomass, e.g., bacteria, fungi, and
actinomycetes, it has been observed that the bacterial count was

less in the samples. Soil acidity and low organic carbon content
are contributing to the low microbial activity and less
productivity of the soil. To improve the SOC content,
practices like composting and incorporation of crop stubble
into soil can be practiced. Vermicomposting and aerobic

FIGURE 7
Water retention capacity of the soil.

FIGURE 8
Village-wise percent-deficient soil samples in Hirbandh and Ranibandh blocks, Bankura, West Bengal.
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composting are two proven methods to practice composting at
the rural level. Agroforestry practices and the presence of
vegetation on bunds contribute to the accumulation of plant
residues, fallen leaves, and other organic materials. These organic
inputs gradually decompose, enriching the soil with organic
carbon (Sarvade et al., 2014). The flora diversity found in
agroforestry systems fosters the growth of soil
microorganisms, which are essential for the breakdown of
litter and the release of nutrients (Kumar, 2011).

3.2.1.4 Water characteristics
The chemical analysis of water samples (Table 5) showed that

water is not safe for drinking as arsenic levels are high. Arsenic
(As) contamination poses a serious risk to human health. As per
the World Health Organization (WHO), the minimum permissible
safe limit of As in drinking water is 10 μg L−1, and as per the US
Environmental Protection Agency (USEPA), the approved safe
limit of As in soil is 24 mg kg−1. Drinking water contaminated with
arsenic is the most common route of human exposure to arsenic
contamination (Tandukar and Neku, 2002). The presence of As in
paddy cultivation, if irrigated with arsenic-contaminated water,
may vary depending on the cultivation method, cooking, irrigation
methods, and fertilizer application practices. The immediate
adverse impact of arsenic stress appears through up- or
downregulation of the expression of transporters. Moreover,
arsenic stress causes phytotoxic and genotoxic effects on plants
by escalating lipid peroxidation levels, affecting the permeability of
cell membranes. Arsenic stress reduces seed germination and
growth of seedlings through the lower uptake of water and
lowered amylase activity (Moulick et al., 2018). Grain quality
and yield of rice decrease due to arsenic stress because of the
decreased uptake of essential nutrients and alterations of
physicochemical and biochemical properties of plants (Shri
et al., 2019). The straighthead disease of rice is also caused due

to arsenic stress, which manifests through the presence of distorted
husks, sterile spikelets, unfilled grains, etc.

3.2.2 Material
For site-specific management, a thorough understanding of soil

variability and landscape properties, as well as their effects on crop
yield, is very critical (Jiang and Thelen, 2004). In the two blocks of
the study area, the suitable land for cultivation (midland) is 61%,
which is distributed mostly in the mid-upland and mid-lowland
(Figure 9A), whereas the remaining land (39%) is less productive
due to poor water holding capacity and low fertility (Jana SK, 2011).
The less productive lands are around 40%–50%, which is a major
concern contributing to low cropping intensity and low system
productivity in the study area. Most households in the region are
marginal, with the average land holding below 0.5 ha (Figure 9B).

The average land holding was 0.53 ha/HH, with the highest in
Kamo Gora (0.73 ha/HH) and lowest in Tentulia (0.34 ha/HH). This
indicates the existence of marginalized communities across the
villages, which are exposed to a variety of risks at the individual
or household level (Mahendra, 2012). Studies proved that the farm
size is positively related to technology adoption (Shang et al., 2021);
thus, it depicts the reason for the subsistence level of farming in these
two blocks. As the low size of land holding is not economical, the
returns are affecting the reinvestment on the second crop. With
respect to the paddy cultivars cultivated by the farmers, Swarna
variety was cultivated by 24% of the farmers (Figure 9C), followed by
Lolat (21%) and Khandagiri (14%), constituting about 59% of the
land area under paddy cultivation (IET-10396). The cultivated
paddy cultivars were short-duration cultivars like Lolat, Sindhu,
Bullet, and IR-64, which occupy 31% of the cropped area, and the
remaining cultivars occupy 69%. The varietal adoption pattern
indicates that farmers are continuing the older varieties which
were notified 20–30 years ago. Khandagiri (IET-10396) was
notified in the year 1994 (DRD, Patna), Lolat was prior to it, and

TABLE 5 Chemical analysis of water.

Village Drinking water Irrigation water Pond water

Tentulia Chemical oxygen demand (COD) level of 32 mg/L
Arsenic–0.01 mg/L

CaCO3 – <100 mg/L pH < 6-alkaline
soils

COD–22.40 mg/L

Sitarampur Safe Safe COD–19.2 mg/L
Arsenic–0.01 mg/L

Jadurbankata COD–12.80 mg/L Safe Safe

Kedia Presence of magnesium sulfate
Arsenic–0.02 mg/L

CaCO3 – <100 mg/L COD–12.8 mg/L
Arsenic–0.02 mg/L

Itamara Arsenic–0.02 mg/L COD–41.6 mg/L
Arsenic–0.03 mg/L

Arsenic–0.02 mg/L
Potassium
levels−23.12 mg/L

Satnala COD–57.60 mg/L
Arsenic–0.02 mg/L

Arsenic–0.02 mg/L Arsenic–0.02 mg/L

Gosainidihi Arsenic–0.03 mg/L Arsenic–0.03 mg/L Safe

Dhanara Arsenic–0.04 mg/L Arsenic–0.03 mg/L Arsenic–0.03 mg/L

Ramgarh Arsenic–0.05 mg/L Arsenic–0.03 mg/L High COD
Arsenic–0.03 mg/L

Kama gora Arsenic–0.06 mg/L High Mg concentration–91.90 mg/L (BIS desired safe limit is
30 mg/L)

Arsenic–0.04 mg/L Arsenic–0.04 mg/L
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Swarna Sub-1 in 2009. Even though Swarna Sub-1 was a better
variety under submergence/lowland conditions, because of its
duration, the variety cannot sustain the terminal stress during the
critical stages of growth. This shows that the farmers are not
adopting the climate-resilient cultivars suitable for the region,
and the topography might be due to non-availability in the study
area or demand from the market. For example, Pushpa (notified in
2015) is a non-lodging, non-shattering, drought-tolerant early
variety with 50% flowering in 79 days and seed-to-seed of
105 days during rainy season. Its average yield ranged from
4,500 to 5,000 kg ha−1, and its productivity was 8,216 kg ha−1

(Mallick et al., 2013). Hence, the extension activities with seed
availability and market infrastructure need to be developed. The
data on fertilizer (NPK) use pattern across the villages
(Supplementary Table S5) infer that the application of phosphate
fertilizers (e.g., DAP) was found to be high. The application of
nitrogen fertilizers was less than the recommended dosage of 80 kg/
ha in the majority of villages.

3.2.3 Management
Most of the cultivars grown were old-ranging and cultivated

irrespective of their suitability to the topology. Usually, short-
duration varieties were in the uplands due to water deficit,
medium-duration varieties in mid-lands, and long-duration
varieties in the lowlands. However, the cultivars were grown

irrespective of their suitability to topology (Figure 10A). This is
mainly because of market demand for the varieties from neighboring
districts like Assam, Jharkhand (SEMA, 2023), and Odisha and
international demand from Bangladesh. Most of the previous studies
employed aerobic or upland rice cultivars, whereas modern lowland
cultivars typically exhibit longer growth durations and higher yield
potential, particularly the super hybrid cultivars that are sensitive to
unfavorable conditions and suitable for intensive cultivation
(Bouman et al., 2006; Liu et al., 2019). We observed that in the
uplands, short-duration crop varieties were typically found due to
water scarcity, while medium-duration crop cultivars were found in
the midlands and long-duration crop cultivars in the lowlands. This
suggests that lowland rice cultivars, with their longer growth
duration and higher growth potential, could benefit more from
rainfall (Liu et al., 2019). In upland cultivation, rainfall accounted for
60%–85% of total water use during the growing season. Upland
cultivars are bred with the specialty of shorter growth duration and
lower aboveground biomass accumulation, which accounts for their
lower yield performance under aerobic cultivation in Central China
when compared to lowland cultivars (Zhao et al., 2010).

3.2.4 Methods
Scale-appropriate farm mechanization holds a key to the

successful management of the farmland. Tractors and the
associated machinery are primarily used during land preparation

FIGURE 9
(A) Cropped area distribution by topology; (B) average size of land holding; and (C) share of paddy cultivars in the study area.
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and seeding, whereas other machineries are less important during
crop growth (Supplementary Figure S1). A study on the impact of
farm mechanization on foodgrain productivity revealed that
foodgrain productivity is higher in the states where farm power
availability is high (Buragohain, 2021), which proves the need for
introducing farm power through customer hiring centers (CHCs).
The study revealed that most of the farm operations are carried out
by labor, mostly family labor. The farmers are realizing low
economic returns from the rainy season paddy cultivation.

The net returns observed were negative in many cases when the
cost of family labor was included (Table 6) while calculating the total
cost of cultivation (CoC). The results imply that economic returns
are more relevant as the low net returns from rainy season paddy
cultivation might be one of the essential factors affecting low
investment in post-rainy cultivation. The study observed that
because of low income from rainy season crops, the young
members of the households tend to migrate to nearby towns,
creating acute labor shortage during the post-rainy season. The
average productivity of the existing varieties is 3,021 kg/ha, which is
significantly on the lower side, as compared to the recently
introduced variety, namely, Pushpa. The study further revealed
that the farmers are realizing low economic returns from the
rainy season paddy cultivation. The major reasons are low-
yielding crop cultivars, low seed replacement rate, generalized

selection of rice cultivars at all the typologies (for example,
lowland, midland, and upland), imbalanced use of inorganic
fertilizers, and unavailability of nutrients primarily secondary and
micronutrients. The negative net returns in many cases reduce the
capacity of farmers to invest not only for post-rainy crops but for
next year’s rainy season crops.

3.2.5 Man
Most of the farmers were from the middle age group (<45 years).

The average age of the surveyed farmers was 42 years; the youngest
(~35 years) was observed in Satnala and Jadurbankata, whereas the
oldest (~50 years) was observed in Kadia and Ramgarh
(Supplementary Figure S2). Most farmers were uneducated
(40%), and only 3% of the respondents had completed their
graduation (Supplementary Figure S3). About 50% of illiterates
were observed at Satnala and Tentulia. The lowest level of
illiteracy was found in Ramgarh (28%). The low levels of
education could be attributed to high poverty levels and a lack of
motivation to pursue higher education (Mwango, 2010). Moreover,
low levels of education might affect the farming skills and productive
capabilities of the farmers (Paltasingh and Goyari, 2018).
Agriculture systems should adapt to uncertain climatic conditions
by building sustainable resilience systems which require a dynamic
understanding of agricultural systems and their interaction with

FIGURE 10
(A) Varietal selection across the topography and (B) paddy productivity by topology.
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TABLE 6 Cost of cultivation of paddy.

Operation Kedia Tentulia Itamara Jadurbankata Sitarampur Kamo gora Ramgar Dhanara Gosainidihi Satnala

Land preparation 1,200 1,200 1,200 1,100 1,200 1,000 1,500 1,500 1,000 1,200

Seed 200 150 200 300 350 200 300 320 320 300

Transplanting 600 750 750 800 650 900 700 800 750 750

Fertilizers 500 300 300 150 300 300 200 150 350 300

Pesticide 600 500 500 500 1,000 400 800 600 1,000 1,000

Inter-cultivation + weeding 600 500 500 500 600 400 400 500 600 500

Harvesting 600 1,000 600 1,000 1,200 500 1,200 1,600 750 1,000

Transport 600 600 500 600 600 600 500 500 500 600

Others 350 400 300 400 400 300 300 300 400 300

Total cost 4,900 5,000 4,550 4,950 5,900 4,300 5,600 5,970 5,270 5,650

Cost of family labor (3 + 6 + 7 + 9) 2,150 2,650 2,150 2,700 2,850 2,100 2,600 3,200 2,500 2,550

COC (excluding cost of family labor) 2,750 2,350 2,400 2,250 3,050 2,200 3,000 2,770 2,770 3,100

Gross revenue 4,902 5,175 5,226 6,281 5,130 4,702 5,484 5,655 4,198 5,902

Net revenue (including the family labor cost) 2 175 676 1,331 −770 402 −116 −315 −1,072 252

Net revenue (excluding the family labor cost) 2,752 2,525 3,076 3,581 2,280 2,602 2,884 2,455 1,698 3,352

(INR/decimal* of land); *1 decimal = 0.004046483 ha [Source: Focus Group Discussion (FGD)].
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climate and practices (Abhilash et al., 2021). The adoption of
contemporary paddy varieties and, consequently, the farm
production of adopters have been found to be considerably
influenced by a minimum threshold level of education, according
to Paltasingh and Goyari’s (2018) study on the impact of farmer
education on farm productivity. The likelihood of applying
agricultural inputs rises dramatically with higher education levels
but falls with farmers’ ages (Sagar et al., 2022). Considering that the
age group (>42 years) with low literacy rates is majorly engaged in
rainfed farming, they are less receptive to the adoption of improved
cultivars (Pushpa, MTU1140 TARANGINI, and MTU1001) over
the early 1970s’ traditional varieties (Lolat, Swarna, and Khandagiri)
and climate-smart agricultural technologies.

4 Strategies to enhance 5Ms by farmers
through government schemes

We have determined the primary underlying causes of every
issue that the farming communities who are most at risk are dealing
with, and we have also talked about the best ways to address each of
the 5Ms. Government programsmust, however, play a crucial role in
helping farming communities that are most vulnerable to changes in
the climate, the availability of resources, and other factors that affect
sustainable agriculture. Even with numerous government initiatives
designed to assist small and marginal farms, awareness building is
still necessary.

Low rainfall and excess draining out of water are resulting in
low cropping intensity and low system productivity in the studied
regions of West Bengal. Farmers need to enhance crop
diversification by cultivating multiple crops that positively
impact the farm income of households of small and marginal
farmers (Lama, 2016). There are several schemes initiated by the
Indian government for the benefit of small and marginal farmers in
order to enhance crop productivity. The national scheme,
i.e., Rainfed Area Development (RAD) was launched to support
integrated farming systems (IFS), which emphasize intercropping,
rotational cropping, mixed cropping, and other related practices.
The Pradhan Mantri Kisan Samman Nidhi (PMKISAN) was
launched to help land-holding farmers meet their financial
needs, the Pradhan Mantri Kisan Maan Dhan Yojana
(PMKMY) was launched to provide stability and financial
assistance to the most vulnerable farming households; and the
Pradhan Mantri Fasal Bima Yojana (PMFBY) was launched to
offer farmers a straightforward and reasonably priced crop
insurance solution that would guarantee full crop risk coverage
against all unavoidable natural hazards from planting to harvest, as
well as a sufficient claim amount, and the minimum support price
(MSP) for all required commercial crops with a minimum 50%
return, including rainy and post-rainy seasons.

Due to low soil organic carbon, there are multi-nutrient
deficiencies and poor water holding capacity and, as a result,
declined crop productivity in the dryland farming soils of
studied regions. Hence, there is a great necessity for
improving SOC in these areas to deal with moisture stress
and nutrient deficiencies. The Indian government has taken
several initiatives for soil carbon and water storage
specifically in drylands. The Mahatma Gandhi National Rural

Employment Guarantee Act (MGNREGA) and the National
Mission for Sustainable Agriculture (NMSA) were launched
to maintain agricultural productivity by conserving natural
resources like water and soil while also advancing rainfed
agriculture in India. The Soil Health Card (SHC) mission is
to enhance the soil fertility status by providing fertilizer
recommendations based on soil tests. However, 82% of the
farmers were aware of the SHC plan, only 66% of them could
grasp the guidelines, and only 48% of them applied fertilizer at
the prescribed rate (Reddy, 2019). Hence, it is high time to create
awareness about the SHC among the farmers. The Rashtriya
Krishi Vikas Yojana (RKVY) supports the overall growth of
agriculture and related industries by conserving water and soil,
enhancing farmer effort, reducing risk, and encouraging
agribusiness entrepreneurship.

Farm mechanization and potential management practices are
other major problems that are noticed in the studied regions. In the
investigated areas, the majority of small and marginal farmers lack
formal education; nonetheless, they can still receive assistance and
benefit from government programs. The Sub-Mission on
Agriculture Automation (SMAM) has been launched by the
Indian government to employ drones to apply fertilizer and
pesticides in public areas, as well as to expand the use of farm
automation to small and marginal farmers. The Indian
government has made funds available for plant protection
equipment, tractors, power tillers, self-propelled machinery,
custom hiring centers, hi-tech hubs, and farm machinery banks
under this program. The Per Drop More Crop (PDMC) scheme
uses micro-irrigation technology, such as sprinkler and drip
irrigation systems, to improve farm-level water consumption
efficiency. Furthermore, the scheme Mission for Integrated
Development of Horticulture (MIDH) was launched for the
holistic growth of the horticultural industry.

The global commitments/agreements such as the Paris Climate
Change Agreement and the 4 per mille concept are also committed
by India to the mitigation of GHG emissions and enhance soil
carbon sink. Achieving these goals would immensely contribute to
the overall succession of sustainable development goals (SDGs) such
as #SDG-1: no poverty; #SDG-2: zero hunger; #SDG-13: climate
action; and #SDG-15: life on land, and also help in achieving the land
degradation neutrality (LDN) in the global dryland farming soils.
However, there is no “one-size-fits-all” solution to the complex
problems, primarily pertaining to dryland farming systems. Taking
into account the current situation as identified under the 5M
approach, building soil carbon, increasing cropping system
diversification, improvising farm mechanization, and raising
farmer community awareness of the benefits of various
government schemes are some of the “win–win” strategies to
unlock the potential of dryland soils. These initiatives are
required to be scaled through various national and state
government initiatives, which are present in every
developing country.

5 Conclusion

Envirotyping of agroecology using the 5M concept not only
helps in characterizing and quantifying the environmental factors
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but also complements in achieving system profitability through
tailored advocacy of climate-resilient landscape-specific
technologies, particularly in rainfed agro-ecologies like Bankura,
West Bengal, India. In conditions like low cropping intensity, the
root causes are low organic carbon and soil microbial population,
particularly bacteria and actinomycetes in soils. Farmers need to be
encouraged and facilitated to apply bacterial inoculum/culture
comprising Azospirillum/Rhizobium, phosphate-solubilizing
bacteria (PSB), and vesicular arbuscular mycorrhiza (VAM).
Climate-resilient agriculture practices like cropping system
diversification, cover crops, soil mulching, zero-tillage, biochar,
green manuring, and agroforestry, need to be promoted to build
soil organic carbon and retain the residual soil moisture levels.
Sandy soils with low pH tends to have sulfur deficiency, and soils
rich in iron and bauxites shows boron deficiency due to the
chemical interaction between iron and bauxite and subsequent
leaching of boron. Hence, a basal application or foliar application
of boron is recommended, and sulfur deficiency can be addressed
by replacing urea with ammonium sulfate. Economic returns can
be maximized by forming farmer collectives. Climate-resilient and
topography-suitable varieties need to be promoted through farmer
collectives for the efficient utilization of available soil moisture
regime and thereby enhancing cropping intensity. Farmer
collectives need to encourage where the land holding is small
and net income realization is low. In a nutshell, the present
agronomic diagnostic study could be referred as a model to
help development agencies, government institutions and policy
makers understand the root cause analysis of the pertinent
problems and design suitable interventions/policy frameworks
in a short period for similar agro-ecologies.

The limitation to the study was that the role of government or
enabling systems was not covered by the research team, which is
important for policy advocacy and scaling the recommendations at
landscape level. The diagnostic study was limited to soils with high
sand content where available soil moisture was low for the second
season. The study emphasized more on the scientific evidence, and
the human interaction with the environment was not properly
explored due to the time and budgetary constraints.
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Introduction: Redgram (Cajanus cajan L. Mill sp.), a leguminous crop commonly
grown in tropical and subtropical climates, is highly valued for its high protein
content (21%), which contributes significantly to food and nutritional security.
However, its production faces challenges primarily due to terminal dryness
experienced during critical growth stages because of changing rainfall patterns.
To overcome this, adaptive techniques become imperative as the productivity of
this crop is intricately linked to environmental factors and the crop’s growth cycle.

Methods: Hence, the field experiment was conducted at the National Pulses
Research Centre, Vamban, Pudukkottai, Tamil Nadu, in South India under rainfed
condition, during the kharif (monsoon) seasons of 2017–18 and 2018–19. The
primary objectives were to determine the optimal sowing time and identify
suitable redgram cultivars, especially in the context of the late onset of the
monsoon in Tamil Nadu, a common issue under changing climate conditions.
The experiments tested six different sowing dates with three redgram cultivars.

Results and discussion: The findings highlighted the substantial influence of
different redgram cultivars and sowing times on the crop’s growth characteristics
and yield. Among the six sowing dates tested, planting in later half of June (S6)
resulted in notably higher plant height (201 cm), a greater number of pods per plant
(287), a seed yield of 1,112 kg ha−1, and a benefit-cost ratio of 2.61 Notably, this
sowing period (S6) demonstrated comparable performance with the treatment of
redgram sowing in the latter part of September (S4). CO 6 (V1) is themost productive
of the three redgram cultivars, with the highest mean pant height (200 cm), number
of pods per plant (237), grain yield (1,017 kg ha−1), and benefit cost ratio (2.38).
Extended phenological phases along with extra days to reach phenological stages
could account for the increased yield in comparison to the other cultivars. Among
the two short-duration cultivars, VBN (Rg) 3 (V3) had a significantly highermean grain
yield of 958 kg ha−1 with the benefit-cost ratio of 2.24. Even though CO 6 (V1)
obtained a higher yield due to its long duration nature, it matured in 187 days
whereas VBN (Rg) 3 (V3) matured within 129 days. Consequently, the short-duration
redgram cultivars emerge as highly suitable choices for integrating into crop
sequences, thereby augmenting farm cropping intensity.
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1 Introduction

Global crop production must increase by 60% by 2050 to satisfy
an increasing demand for food, driven by population growth and
rising per capita incomes (Fischer et al., 2014). This challenge is
further compounded by the impacts of climate change, which
threaten agricultural productivity and necessitate the adoption of
resilient and adaptive farming practices. (Surendran et al., 2021).
Climate plays a crucial role in crop adaptation, influencing farmers’
decisions on which crops to cultivate based on their suitability for
the local environment. Approximately 67% of the fluctuations in
crop production over a season can be attributed to weather, which
significantly impacts crop growth and development. The remaining
variations in production are due to agronomic factors such as soil
and nutrient management (Sasane, 2017; Grigorieva et al., 2023). In
dryland environments, instability in crop production is primarily
caused by an imbalance between rainfall distribution and crop water
demand. This issue is particularly pronounced in dryland
agriculture, where soil moisture levels during the crop season are
highly variable and largely dependent on the amount and
distribution of rainfall (Pawar et al., 2020). In India, the activity
of the South-West monsoon and the associated weather patterns are
critical determinants of agricultural success. Agroclimatic
conditions strongly influence crop selection, yield, and
sustainability, underscoring the need for strategies that account
for the variability and unpredictability of weather in dryland
farming systems (Ravi et al., 2022). In the semi-arid regions of
India, agricultural productivity is heavily influenced by climatic
variability, particularly the distribution and timing of rainfall.
Redgram (Cajanus cajan L. Mill sp.), a vital leguminous crop,
plays a crucial role in providing food and nutritional security due
to its high protein content. However, its cultivation faces significant
challenges owing to terminal dryness during critical growth stages,
exacerbated by the erratic nature of monsoons.

Redgram is one of the most important tropical legumes in India
playing a crucial role in the diet and agriculture of the region.
Redgram is made by splitting and boiling grains, and redgram green
pods are used as vegetables. It is a significant protein rich component
of our regular vegetarian diet and has 22 percent protein content,
with an average cooked protein digestibility of 70 percent (Reed
et al., 1989; Mallikarjuna and Devaraja, 2023). Furthermore, it is
adaptable to many cropping systems without altering the main
oilseed and cereal crops, and enhances soil health through
biological nitrogen fixation. Residual plant parts provide good
fodder (Patel et al., 2019). Understanding plant-environment
interactions is essential for improving crop yield. Optimum
sowing time and the selection of appropriate cultivars play a
crucial role in harnessing the yield potential of crops under
complex agro-climatic conditions. The sowing date has been
proven to be one of the most significant non-monetary factors
affecting pulse yields. Suboptimal thermal conditions during the
growing season can significantly affect crop productivity. Therefore,
determining the optimum sowing time is vital to maximize
production by exploiting favourable environmental conditions
during the growth of pulses.

Because of its distinctive morphological characteristics that
encourage deep roots and drought endurance, redgram is suited
to a wide range of unfavourable growing conditions, including

varied soil depth and irregular rainfall (Islam et al., 2008).
Rainfed cultivations are the primary growing conditions in Tamil
Nadu. Most oilseeds, millets, and pulses (80–90%) are restricted to
dryland habitats. Dryland habitat is characterized by small and
marginal farmers, lack of resources, poor infrastructure, and little
investment in inputs and technologies. The main cause of this
region’s declining redgram grain production is erratic rainfall,
which severely impacts the timing of planting. Developing the
right time of sowing and identifying suitable redgram cultivars
can assist these financially constrained farmers in avoiding crop
failure, as they are unable to invest additional costs (Sunil Kumar
et al., 2020). Due to its photo-sensitivity redgram growth, including
plant height, number of branches, the height at which branching
begins, flowering, and pod formationis influenced by the sowing
time. Consequently, Channabasavanna et al. (2015) discovered that
planting time significantly affects redgram vegetative and
reproductive growth stages. The growth, development, and yield
of redgram crops were mostly determined by cultivars and the
sowing date. Since the planting date determines the types of climates
to which the crop’s difficult phenological stages are exposed, it has a
major impact on crop performance (Kumar et al., 2023). To
maximize the benefits of all available natural resources, such as
nutrients, sunlight, and soil moisture, as well as to ensure a sufficient
yield, it is essential to maintain a desired plant population by
optimizing the sowing date as well the cultivars. Developing the
right time of sowing and identifying suitable redgram cultivars can
assist these financially constrained farmers in avoiding crop failure,
as they are unable to invest additional costs. Crop environments
affect yield and yield components, according to Sharifi et al. (2009).
Delays in sowing cause more harm to redgram (Padhi, 1995). A
significant decrease in the number of branches per plant and dry
weight per plant at harvest occurs when delayed planting is done in
contrast to regular sowing. (Reddy et al., 2012). In contrast to early
sowing, late seeding shortened the time required to reach harvest
maturity (Ram et al., 2011). Delays in sowing cause more harm to
redgram, as crop environments affect yield and yield components.
Maintaining optimum plant population under poor soil moisture
conditions is very difficult, given the significant role plant
population plays in determining crop yield. Delayed sowing,
compared to regular sowing, leads to a significant decrease in the
number of branches and dry weight per plant at harvest, while also
shortening the time to reach harvest maturity. Regular efforts are
being undertaken to shorten the redgram growth season, and as a
result, cultivars with medium (155–170 days) and short (120 days)
durations are being produced. Additionally, short-duration cultivars
are noted for their seamless integration into intensive cropping areas
year-round, attributed to their thermo- and photo-insensitivity
(Aruna and Sunil Kumar, 2023). Selecting the optimal sowing
date for each genotype is a crucial decision in agricultural
production, especially when aiming to maximize the genetic
potential of crops (Krsti et al., 2023).

Redgram holds a significant position in the global agricultural
economy, cementing its status as one of the most important pulse
crops worldwide. However, the crop’s duration and genotype vigour
are crucial factors influencing its success. In recent years,
unpredictable and delayed rainfall has challenged redgram
cultivation, particularly when planting occurs after its optimal
period. Therefore, this study aims to standardize the sowing date
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for the late advent of the monsoon in the southern zone of Tamil
Nadu by utilizing potential redgram genotypes from this region. By
addressing the timing and selection of genotypes, this research aims
to enhance redgram productivity under changing climatic
conditions, offering valuable insights for improving agricultural
resilience and sustainability in semi-arid regions.

2 Materials and methods

A field experiment was carried out at the National Pulses Research
Centre, Vamban, Pudukkottai, Tamil Nadu, part of Tamil Nadu
Agricultural University, during the kharif seasons of 2017–18 and
2018–19. The main objectives were to find out the optimum time of
sowing and the suitable redgram cultivars during the late onset of the
monsoon in Tamil Nadu under rainfed condition and to assess the
weed growth due to different sowing dates and redgram cultivars. The
experiment site is located at 8 0 30′ to 10 0 40′N latitude and 78,024′to
790 4′ E longitude, with an altitude of 120 m above the mean sea level
of Pudukkottai district in TamilNadu, South India. The weather data
collected from the National Pulses Research Centre in Vamban,
Pudukottai, is available from a B-class meteorological observatory.
In this observatory, weather parameters were collected regularly
during the cropping period. The average annual rainfall was
940 mm, with 52 rainy days and 38.74°C and 22.14°C mean
annual maximum and minimum temperatures, respectively. The
soil characteristics of the experimental site were sandy clay loam, a
mean pH of 6.55, EC of 0.21 dsm-1,organic carbon of 0.3 percent, and
220, 33.5, and 159.5 kg ha-1 of available N, P, and K respectively. The
experiment was laid out in a factorial randomized complete block
design and replicated three times with the following treatments: factor
‘A’ comprising of six dates of sowing schedule and factor ‘B’ consisting
of three redgram cultivars are given in Table 1.

RedgramVBN (Rg) 3 (110–120 days) and CO (Rg) 7 (130 days) are
short-duration cultivars, andCO6 is a long-duration (180 days) cultivar.
Both years of study, the recommended seed rates of 15 kg ha-1 for CO
(Rg) 7 and VBN (Rg) 3 and 8 kg ha-1 for CO 6 were used for this study.
Seeds were treated with rhizobium and phosphobacteria at the rate of
600 g per hectare using rice gruel. The sowing was taken on 11.8.2017,
24.8.2017, 09.9.2017, 29.9.2017, 6.10.2017, and 30.6.2017 during the first
year, and 10.8.2018, 22.8.2018, 06.9.2018, 19.9.2018, 05.10.2018, and
21.6.2018 in the second year of the experiment, respectively. The
spacing of 60 × 25 cm was adopted for short-duration redgram var.
CO (Rg) 7 and VBN (Rg) 3, and 90 × 30 cm for long-duration redgram
var. CO 6. The recommended dose of 12.5: 25: 12.5: 10 kg ha-1 of
nitrogen through urea, phosphorus through single super phosphate,
potassium through muriate of potash, and sulphur through gypsum,
respectively, at basal. The crop was harvested from 09.11.2017 to

17.03.2018 and 01.11.2018 to 15.3.2019 in first- and second-year
experiments, respectively.

Weed counts, namely, weed density (nos/m2) and weed dry
matter (g/m2) were recorded 30 days after sowing (DAS). The weed
count was assessed using quadrat method and the size of the quadrat
was 0.25 m2. The collected weeds were first air-dried and
subsequently oven-dried at 75°C ± 2°C until a constant weight
was achieved using an electronic balance, and then expressed in
kilograms per hectare. Prior to statistical analysis, weed dry weight
and weed density data underwent transformation using the square
root method (√x+0.5).

To calculate Weed Control Efficiency (WCE) at both 30 and
45 days after sowing (DAS), the following formula was employed:

WCE � X X − Y( )
X

x 100

Where: X = Number or dry weight of weeds in the unweeded plot
Y = Number or dry weight of weeds in the treated plot.

Ten plants were randomly chosen andmarked with waxy-coated
labels in each treatment to monitor growth and yield parameters. At
the time of maturity, observations were made on plant height,
number of branches per plant, and yield parameters such as pod
count per plant, number of seeds per pod and 100-grain weight. The
matured pods were harvested plot-wise using a sickle, cut above the
soil surface, bundled according to treatment, and transported to the
threshing floor. The harvested produce was left to sun dry for 3 days,
then beaten with bamboo sticks to separate grains, and dried again to
facilitate winnowing. The produce continues drying until it reaches a
moisture content of 12 percent. The total plot yield was weighed
according to treatment. To convert this weight to kilograms per
hectare, the measured weight was multiplied by a conversion factor
based on the net plot size.

Based on the local market price cost incurred for this
experiment, gross and net income and benefit cost ratios were
worked out. The costs associated with the application of organic
matter, major and micronutrients, and plant growth regulators were
calculated using current market prices of inputs and redgram seeds.
The cost of cultivation encompasses expenses from field preparation
to harvest, expressed in Indian rupees (₹.) per hectare. Gross return
is determined by calculating the crop yield per hectare and
multiplying it by the prevailing minimum market rate at the time
of the study, which was 60 ₹. per kilogram of redgram. Net return is
then calculated by subtracting the cost of cultivation from the gross
return for each treatment: Net return = Gross return (₹./hectare) -
Cost of cultivation (₹./hectare). Finally, the Benefit-Cost (B: C) ratio
is calculated using the formula: B: C ratio = Gross return
(₹./hectare)/Total cost of cultivation (₹./hectare).

2.1 Statistical analysis

The collected data were subjected to R studio statistical analysis and
tabulation. Statistical scrutiny was conducted following the methods
suggested by Gomez and Gomez (1984). Fisher’s Least Significant
Difference was employed to test for significant differences between
means at a probability level of p ≤ 0.05 via ANOVA. The analysis
focused on the impact of different sowing dates and redgram cultivars as
independent variables on the growth and yield parameters of redgram,

TABLE 1 Treatment structure of the experiment.

Factor A: Sowing schedule Factor B: Cultivars

S1: 1–14
thAugust (1st fortnight)

S2: 15–30
thAugust (2nd fortnight)

S3: 1–14
thSeptember (1st fortnight)

S4: 15–30
thSeptember (2nd fortnight)

S5: 1–14
thOctober (1st fortnight)

S6: 15 to 30thJune (2nd fortnight) (Control)

V1:CO 6
V2: CO(Rg)7
V3: VBN (Rg) 3
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with a one-way ANOVA conducted using Tamil Nadu Agricultural
University AGRES Statistical softwarev 7.01. Non-significant treatment
differences were denoted as “NS.”

3 Results

During the cropping period, a total of 415.1 and 556.9 mm of
rainfall were recorded over 30 and 34 rainy days during 2017–18 and
2018–19, respectively (Figure 1). The mean maximum and
minimum temperatures during these seasons were 33.96°C and
32.84°C, and 24.38 °C and 23.06°C, respectively. In 2018–19, a
25.5% increase in rainfall with a more uniform distribution was
observed during the cropping period.

3.1 Influence of treatments on growth
parameters

The result of the present experiment revealed that redgram
cultivars and different dates of sowing significantly influenced
growth characteristics namely, plant height and number of branches
per plant. Among the six different dates of sowing, crop sown during
the 15 to 30thof June (S6) recorded a significantly higher plant height of

201 cm and a number of branches of 11.82 per plant (Table 2). Sowing
redgram during the 1to 14thof September (S3) resulted in favourable
plant height, which was statistically comparable to sowing in the 15 to
30th of September (S4) and the 15 to 30th of August (S2) in both years of
the study. The lowest plant height (155 cm) was recorded in the 1 to
14th of October (S5) sown redgram crop. From the three redgram
cultivars, var. CO 6 (V1) recorded a significantly higher plant height of
200 cm and a number of branches of 10.90 per plant. Among the two
short-duration cultivars, VBN (Rg) 3 (V3) registered significantly
higher plant height (173 cm), which was on par with CO (Rg)
7 and the number of branches (9.92 per plant). The interaction
effect between different dates of sowing and redgram cultivars on
plant height was found to be significant. Sowing of CO6, in 15 to 30th

the 2nd fortnight of June (V1S6), exhibited the tallest plant height at
234 cm among the six sowing dates and three redgram cultivars.
Following closely was CO 6 sown in the 1st fortnight of September
(1–14) (V1S3), which reached a height of 206 cm.

3.2 Influence of treatments on yield
parameters

Among the six different dates of sowing, crop sown during the
15 to 30th of June (S6) recorded the significantly highest number of

TABLE 2 Effect of different date of sowing and redgram varieties on growth, yield attributes and grain yield.

Treatments
Plant

height (cm)
No. of

branches/plant
No. of

pods/Plant
No. of

seeds/pod
100 seed
weight (g)

Grain yield
(kgha-1)

B:C
ratio

Factor A: Sowing schedule

S1: August 1
st fortnight 190 9.82 204 3.98 9.04 926 2.17

S2: August 2
nd fortnight 178 8.43 200 3.96 8.95 917 2.15

S3: September 1st

fortnight
182 9.07 223 4.02 8.98 967 2.27

S4: September 2nd

fortnight
179 10.25 259 4.11 8.82 1,045 2.45

S5: October 1
st

fortnight
155 8.71 155 3.91 8.82 773 1.81

S6: June 2nd fortnight 201 11.82 287 4.00 8.97 1,112 2.61

S: SE 2.59 0.33 6.90 0.16 0.16 26.20 -

CD (p = 0.05) 8.15 1.03 21.73 0.50 NS 82.56 -

Factor B: Variety

V1:CO 6 200 10.90 237 3.98 8.94 1,017 2.38

V2: CO(Rg)7 171 8.23 201 4.09 8.91 892 2.10

V3:VBN (Rg) 3 173 9.92 226 3.92 8.93 958 2.24

V: SE 2.04 0.21 3.85 0.07 0.10 9.82 -

CD (p = 0.05) 5.96 0.63 11.24 NS NS 28.64 -

Interaction
S x V: SE

5.00 0.53 9.43 0.18 0.23 24.04 -

CD (p = 0.05) 14.59 NS NS NS NS 70.15 -

CV (%) 7.94 9.44 7.38 5.27 4.58 8.22 -
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pods per plant of 287, followed by the sowing of redgram during
15 to 30thof September (S4), which recorded 259 pods per plant.
Crops grown during 1 to 14th of October (S5) recorded the lowest
number of 155 pods per plant. Among the three redgram cultivars,
var. CO 6 (V1) recorded the significantly highest number of 237 pods
per plant. Of the two short-duration cultivars, VBN (Rg) 3 (V3)
registered the significantly highest number of 226 pods per plant.
The number of seeds per pod and 100 seed weight were not
significantly influenced by the treatments (Table 2; Figure 2). The
interaction effect between various sowing dates and redgram
cultivars on yield attributes, including the number of pods per
plant, number of seeds per pod, and 100-seed weight, did not
show statistical significance.

3.3 Influence of treatments on grain yield

The treatments exerted a significant influence on grain yield
(Table 2; Figure 3). Among the six different sowing dates, a higher
mean redgram seed yield of 1,112 kg ha-1 was recorded in crops
sown during 15 to 30th of June (S6), which was comparable to the
yield obtained from redgram sown during 15 to 30thof September
(S4). Sowing of redgram at September 1 to 14th (S3) was on par with
1-14thofAugust (S1) and 15–30

thofAugust (S2). The lowest seed yield
of 773 kg ha-1was recorded for the sowing of redgram on October
1 to 14th (S5). From the three redgram cultivars, CO 6 (V1) recorded
a significantly higher mean grain yield of 1,017 kg ha-1. Among the
two short-duration cultivars, VBN (Rg) 3 (V3) had a significantly

TABLE 3 Effect of different date of sowing and redgram varieties on weed density and weed dry matter on 30 DAS.

Treatments Weed density (nos/m2) Weed dry matter (g/m2)

Factor A: Sowing schedule

S1: August 1
st fortnight 8.29 11.84

(64.83) (141)

S2: August 2
nd fortnight 7.98 11.12

(71.83) (124)

S3: September 1st fortnight 7.86 10.76

(60.17) (116)

S4: September 2nd fortnight 7.82 10.52

(66.83) (111)

S5: October 1
st fortnight 7.87 10.47

(61.67) (110)

S6: June 2nd fortnight 8.16 12.26

(66.67) (142)

S: SE 0.08 0.24

CD (p = 0.05) 0.24 0.76

Factor B: Variety

V1:CO 6 7.80 10.49

(63.33) (111)

V2: CO(Rg)7 8.29 11.96

(67.33) (140)

V3:VBN (Rg) 3 7.90 11.03

(65.33) (122)

V: SE 0.10 0.12

CD (p = 0.05) 0.29 0.36

Interaction S x V: SE 0.25 0.30

CD (p = 0.05) 0.72 0.88

CV (%) 5.35 4.67

Note: Square root log transformed value and Figures in parenthesis indicate original values.
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higher mean grain yield of 958 kg ha-1. Even though CO 6 (V1)
obtained a higher yield due to its long duration nature, it matured in
187 days, whereas VBN (Rg) 3 (V3) matured within 129 days.
According to the experimental results, the redgram cultivar
CO6 produced the highest yield during the second fortnight of
June, while the short-duration redgram cultivarVBN (Rg)
3 demonstrated the highest yield during 15 to 30thof September.
The results revealed that redgram seed yield was significantly
affected by the combination of sowing time and cultivar.
Redgram CO 6, sown during 15 to 30thof June (V1S6), yielded
the highest grain yield of 1,161 kg ha-1 among the six sowing
dates and three redgram cultivars. Close behind was CO 6 sown
in 15 to 30thof September (V1S4), which produced a grain yield of
1,105 kg ha-1.

3.4 Weed density (no/m2) and weed
drymatter production (g/m2)

The weed population in the experimental field was varied and
included broadleaved, sedge, and grass weeds. Dactyloctenium
aegyptium and Chloris barbata were the most common grass-
related weed species, while Cyperus rotundus was the most
common sedge-related weed. The broadleaved weeds included
Flaveria australica, Cleome gynandra, Eclipta alba, Convolvulus
arvensis, Digera arvensis, Vicia spp., and Celosia argentea. The
result revealed that, among the six different dates of sowing, crops
sown at15-30th of September (S4) registered significantly lower weed
density and weed dry matter production of 7.82 nos m-2 and
10.52 g m-2 respectively, followed by the 1–14thof September (S3)

TABLE 4 Effect of different date of sowing and redgram varieties on economics.

Treat
Cost of cultivation (Rs. ha-1) Gross income (Rs. ha-1) Net income (Rs. ha-1)

S1 32,000 69,485 37,485

S2 32,000 68,782 36,782

S3 32,000 72,491 40,491

S4 32,000 78,381 46,381

S5 32,000 57,938 25,938

S6 32,000 83,433 51,433

V1 32,000 76,252 44,252

V2 32,000 67,252 35,252

V3 32,000 71,751 39,751

FIGURE 1
Meteorological parameters observed during the experimental period for both years.
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(Table 3; Figure 4). The highest weed density and weed dry matter
production of 8.29 nos m-2 and 11.84 g m2 respectively, registered the
crop sown on August 1 to 14th. Among the three redgram cultivars,
CO 6 (V1) exhibited significantly the lowest weed density and weed
dry matter production, with values of 7.80 nos. m-2 and 10.49 g m-2,
respectively, followed by VBN (Rg) 3 (V3). The weed density andweed
dry matter production was significantly influenced by interaction
between redgram cultivars and sowing time. Among the six sowing
dates and three redgram cultivars. CO 6, sown during the 15 to 30th

the 2nd fortnight of June (V1S4), yielded the highest grain yield of
7.51 No. m-2 and Weed dry matter 9.61 g m-2) on 30 DAS. It was
followed by redgram CO 6 sown in the 1 to 14thof September (V1S3).

3.5 Economics

Sowing of redgram during the 15 to 30th of June (S6) recorded the
highest gross and net income of ₹. 83,433 and 51,433 ha-1, respectively,
and a B: C ratio of 2.61, followed by the September 15 to 30th (S4) 2.45
(Table 4). Among the three redgram cultivars, CO 6 (V1) recorded
higher gross and net income of ₹. 76,252 and 44,252 ha-1 respectively,
and a B: C ratio of 1: 2.38, followed by VBN (Rg) 3 (V3) at 2.24.

4 Discussion

4.1 Influence of time of sowing

The sowing of long-duration redgram during the second week of
July notably enhanced plant height and the number of branches per

plant in both study years. Unlike other planting dates, seeds sown
early in the second week of July resulted in significantly larger plants.
One plausible explanation for this observation could be that the crop
had sufficient time to mature and capitalize on favourable
environmental conditions for vegetative growth and development,
leading to increased accumulation of photosynthates during the
early stages of crop growth. Similar results were found in studies by
Sandeep et al. (2022) and Dahariyaet al. (2018) about the largest
plant height. Flowering time dictates how long the vegetative phase
lasts, marks the beginning of the reproductive phase, and thus
influences the climatic conditions affecting crop growth
thereafter. As the season progresses, photoperiod ceases to be a
limiting factor, with temperature and soil moisture becoming the
primary climatic variables affecting the rate of progress from
flowering to physiological maturity. Later sowings in the first
fortnight of October accelerated the time to reach physiological
maturity and shortened the duration of vegetative, flowering, and
podding growth phases compared to the second fortnight of
September as earlier sowing dates. These findings are consistent
with prior research indicating the substantial impact of temperature
on (Soybean by Kundu et al., 2016 and in Chickpea by Richards
et al., 2020; 2022) development and the length of growth stages.

The phenology of redgram crop aligns with the resources
available in the production environment, including water,
nutrients, light, and space, as well as with the genetic variability
among redgram cultivars reported by Patel et al. (2000). When crops
were sown early, their leaf area index was higher than when they
were sown later. Planting a high-yielding cultivar at the optimal time
can effectively utilize all production inputs which leads to better
plant growth, leaf area index and maximize yield was reported by
Kittur and Guggari (2017). Positive weather conditions such as light,
temperature, and precipitation may have aided in greater
development, and the genetic composition of the cultivar may
have provided higher growth parameters and yield-related
qualities like the number of pods per plant. It may be the result
of the maximum transfer of photosynthates into seed growth in
crops sown early (Sandeep et al., 2022). The lowest weed density and
dry matter were observed in the sowing of redgram CO6 during the
second week of September. The reasons might be the crop’s
accelerated vegetative and reproductive growth may have resulted
from a combination of favourable weather conditions, including
higher soil moisture content from adequate rainfall from third week
of July to the second week of September in both the years of study
(Subbulakshmi,2021).

4.2 Influence of redgram genotypes

The extended duration redgram cultivar CO6 required 43 days
more for flowering to maturity compared to VBN(Rg)3, which took
17 days less. CO6, the prolonged-duration cultivar, stood 27 cm
taller and produced 12.3 percent more than the early maturing
cultivar CO(Rg)7, while VBN(Rg)3 exhibited a 7.0 percent increase
among the early maturing cultivars, in contrast to CO(Rg)7. These
differences in blooming time, maturity time, plant height, and seed
yield were attributed to variations in the genetic composition and
characteristics of the plants. Consistent with findings from Kithan
et al. (2020), cultivars characteristics in redgram production

FIGURE 2
Effect of sowing times and varieties on the number of redgram
pods per plant at harvest.
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influenced differences in flowering and ripening days, plant height,
and seed yield. For instance, they noted that the yield of cultivar
UPAS 120 was higher (969 kg ha-1) among the three categories tested.
Similarly, Kuri et al. (2018), Chawhan et al. (2019), and Rani and
Reddy (2010) observed varietal differences contributing to yield
variance in redgram in their investigations. Singh (2000) also
highlighted the influence of environmental factors on the source-
sink relationship and its impact on redgram seed yield.

Early-maturing or short-duration cultivars tend to be small in
stature due to their short vegetative growth period, while late-
maturing or long-duration cultivars are typically taller owing to
their extended vegetative phase, as noted by Anil et al. (2023). In
both years of the study, primary branches/plants were greater in
extended-duration redgram cultivars (Reddy, 1990). The interaction
between grain yield and plant height was found to be significant in
both research years, consistent with reports by several researchers
(Mligo and Craufurd, 2005; Reddy et al., 2006; Singh, 2006; Egbe and
Vange, 2008) indicating genetic variation in growth and yield.

Among the various factors influencing redgram production,
sowing time is considered a crucial non-monetary input. Cultivar
choice and planting time are the two most critical elements in
redgram production. Sowing a high-yielding cultivar at the proper

time is a key strategy for optimizing production input consumption
and achieving the best yield. Based on our research, it was concluded
that the best time to sow redgram cultivar CO6 is 15 to 30thof June
for a long-duration crop and in 15 to 30thof September for the short-
duration cultivar VBN (Rg) 3. Although CO6 achieved a higher
yield, VBN (Rg) 3 (V3) matured 58 days earlier than CO6. Hence,
the sowing of redgram cultivar VBN (Rg) 3 during 15 to 30thof
September is suitable for the southern zone of Tamil Nadu.

4.3 Weed growth

The slow initial growth of redgram encourages rapid weed
growth, resulting in intense competition that ultimately reduces
crop yield (Channappagoudar and Birdar, 2007). Early sown led to
stronger crop growth and canopy, which controlled weeds better
than late planting. This early sowing also boosted crop vitality and
faced less weed competition, resulting in higher productivity (Malik
and Yadav, 2014). Lateral expansion of the canopy resulted in
reduced weed density and dry weight, consequently boosting
chickpea grain yield (Dhiman, 2007). Leaves shaded deeper
within the canopy receive diminished levels of photosynthetically

FIGURE 3
Scatter plot of sowing times and varieties on the plant height and grain yield of redgram.
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active radiation and a lower ratio of red to far-red light leads to poor
weed growth (Olabode et al., 2007; Rajesh and PaulPandi, 2015). The
growth and yield of pulse crops are directly influenced by the sowing
date. Sowing at the wrong time in the season can have several
negative effects. If sowing occurs either too early or too late, it can
result in reduced seed germination and poor growth. Additionally,
there may be fewer branches and a smaller crop canopy, allowing
more light to penetrate the ground. This increased light can lead to
higher weed seed germination, further reducing crop yield. Early
sowing may expose young seedlings to frost damage, whereas late
sowing could expose plants to heat stress during important growth
phases, both of which can significantly impact overall crop
productivity. Earlier sowing resulted in significantly lower weed
populations and reduced weed dry weight compared to delayed
sowing. This is likely due to more favourable environmental and
weather conditions that promoted optimal germination and early
establishment of plants, leading to a denser canopy that effectively
suppressed weeds. This enhanced weed control allowed crops to
utilize natural resources more efficiently, with reduced light
transmission at the surface inhibiting weed seed germination
and growth (Chaudhary et al., 2023). The timing of pea sowing
significantly impacts their growth, flowering, and fruiting,
ultimately affecting yield per hectare. Optimal sowing dates
vary based on local climatic conditions and the specific pea
cultivar (Kaur et al., 2024). Pulses sown earlier may undergo a
longer vegetative phase, allowing for more branch development.
Conversely, late sowing may result in shorter vegetative phases,
limiting branch formation (Doraiswamy and Singh, 2001). This is
probably because plants sown early benefit from an extended
growing season and more favourable temperature and light
conditions, which promote pod development. Conversely, late
sowing may expose plants to higher temperatures and during

critical pod development stages, resulting in shorter pods (Al-
Asadi and Kopytko, 2019).

4.4 Yield

The key to maximizing redgram production lies in selecting the
right cultivar and sowing it at the optimal time. By choosing a high-
yielding cultivar and planting it at the correct time, farmers can
effectively utilize production inputs and achieve the highest possible
yield (Anil et al., 2023). The combination of sowing time and cultivar
significantly influenced redgram seed yield. Commencing from the
second half of July, a combination of favourable growth conditions and
yield traits contributed to an increase in seed production. Early sowing
establishes conditions conducive to robust growth and development,
facilitating the formation of larger leaf areas and increased biomass
accumulation, ultimately leading to higher seed yield. These outcomes
could be attributed to variations in precipitation and temperature over
the 2-year period. (Figure 1). The sowing dates and cultivar selections
in modern farming reflect the gradual adaptation and fine-tuning of
cropping systems to suit local conditions and respond to incremental
changes in climate (Minoli et al., 2022).

The decrease in grain yield observed when sowing kharif
mungbean later, from July 5 to August 5, as reported by Singh
et al. (2010), may be attributed to various factors including the
genetic makeup of the cultivar, favourable meteorological
conditions, and physiological processes could be the highest
translocation of photosynthates toward seed development in
redgram. The earlier sowing allowed for optimal growth
parameters and yield-enhancing characteristics such as increased
pod count, facilitated by ideal meteorological conditions including
temperature, light, and precipitation, which promoted better growth.

FIGURE 4
Effect of sowing times and redgram varieties on weed density and weed dry matter on 30 DAS.
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(Sandeep et al., 2022). Moreover, early sowing provides the crop with
sufficient time and favourable weather conditions—adequate light,
warmth, and developmental cues—for optimal growth, development,
and maturation stages. These findings are consistent with those of
Fukugawa and Zhenga (1999), who observed significant increases in
blooms following vegetative growth in early-planted crops.

In contrast, late sowing of redgram can impact seed germination
and yield due to decreased temperatures during the reproductive
and maturity periods, along with increased soil moisture (Dhanoji
and Patil, 2011; Kumar et al., 2008). Similarly, when redgram is sown
later, it often results in shorter plants, longer flowering and maturity
periods, and lower yields compared to earlier sowing conditions
(Kuri et al., 2018; Kittur and Guggari, 2017; Chawhan et al., 2019).
The study findings align with previous research by Kithan et al.
(2020) and Kumar et al. (2008), which demonstrated superior
production and growth characteristics with the 15 to 30th of
September sowing.

The reduction in yield associated with later sowing dates can be
attributed to shortened timeframes for flowering, maturity, and
dry matter production, as evidenced by Arunkumar and Meena
(2018). Interactions between environmental factors and
morphological or physiological characteristics throughout the
pre- and post-flowering phases contribute to variations in grain
legume production. Notably, crops sown in the second and third
weeks of July exhibited increased main and subsidiary branches,
resulting in higher pod production per plant and overall seed yield.
Conversely, delayed seeding led to earlier flowering, reduced
vegetative growth, and premature maturity, all of which
negatively impacted seed production. These observations align
with the findings of Nene and Sheila (1990) and Reddy et al.
(2015), indicating that delays in redgram sowing result in reduced
branching per plant and lower dry weight at harvest compared to
timely sowing (Kumar et al., 2023).

5 Conclusion

The inherent challenges faced in pulse production, particularly the
impact of climate variability resulting from shifting rainfall patterns,
necessitates adaptive techniques to ensure sustainable productivity.
With this background, field experiments were conducted at the
National Pulses Research Centre, Vamban, Pudukkottai, Tamil
Nadu, South India, during the kharif seasons of 2017–18 and
2018–19, focused on optimizing sowing times and identifying
suitable redgram cultivars, especially in the face of delayed
monsoons in Tamil Nadu. The exploration of six distinct sowing
dates alongside three redgram cultivars resulted in a clear correlation
between varied sowing times and redgram’s growth characteristics
and yield. Results showed that the crop sown in 15 to 30th of June
showcased remarkable success, with higher plant growth and yield
attributes and also a profitable B:C ratio. This sowing period exhibited
comparable success to later sowing dates, highlighting its viability
even amidst challenging conditions. Among the redgram cultivars,
CO 6 emerged as the most productive among the redgram cultivars,
attributed to its prolonged phenological phases and extended days to
reach critical growth stages, leading to amplified yields compared to
other cultivars. However, the shorter duration redgram cultivar, VBN
(Rg) 3, despite its lower yield compared to CO 6,matured significantly

faster, within 129 days, offering an advantage for crop sequencing and
enhancing overall cropping intensity of the farm and also sustain the
profitability in harsh climate situations such as drought and erratic
rainfall. The research outcome suggests the need for strategic crop
cultivar selection and timely sowing practices tomitigate the impact of
adverse environmental conditions in changing climatic scenario,
ultimately ensuring sustained redgram productivity in rainfed
agricultural systems.
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Overgrazing leads to steppe degradation and soil structure deterioration, which is
common in desert steppes. Restricted grazing is a sustainable practice, but the
mechanisms by which soil structure responds to restricted grazing have received
little attention. This study examined the effects of two different grazing
management strategies, namely, restricted grazing and free grazing (CK), on
soil structure indicators in the desert steppe. The restricted grazing further
included grazing exclusion (GE) and seasonal grazing (SG). Additionally, a
preliminary exploration was conducted to identify the main factors affecting
the soil aggregate stability. Our results demonstrated that GE significantly
increased clay (<0.002 mm) and silt (0.002–0.02 mm) in the 0–10 cm and
10–20 cm layers by an average of 71.27% and 70.64%, respectively. Additionally,
SG significantly increased clay (<0.002 mm), silt (0.002–0.02 mm), and
macroaggregates (>0.25 mm) in the 0–10 cm layer. GE significantly increased
soil organic carbon in the 0–10 cm and 10–20 cm layers by 7.02 g/kg and
7.45 g/kg, respectively. In addition, SG had no significant effect on soil organic
carbon. The findings obtained from the computations using the boosted
regression tree (BRT) demonstrated that, within the study period, soil porosity
significantly affects soil aggregate stability compared to other factors. Moreover,
it possessed an average explanatory power that surpassed 45%. Overall, the soil
structure is better under GE than under SG, and GE is the key to improving the soil
structure of desert steppe. The research will contribute to a more profound
comprehension of the impact of grazing on soil structure. Therefore, it is
recommended that grazing closures be prioritized in desert grasslands to
promote coordination between grassland restoration and livestock development.

KEYWORDS

soil aggregate stability, desert steppe, soil organic carbon, grazing exclusion,
soil porosity

1 Introduction

Steppe ecosystems are a vital component of the natural environment, covering
approximately 40% of the total land area and serving numerous ecological and
productive roles (Tian et al., 2021; Liu et al., 2023). These ecosystems predominantly
exist in arid and semiarid regions susceptible to global environmental changes,
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characterized by fragile ecosystems and a high risk of soil erosion. Soil
dispersion and water permeability properties significantly contribute
to soil erosion vulnerability. Good soil structure is critical for
enhancing soil stability and effectively combating erosion (Abu-
Hamdeh et al., 2006; Kinnell, 2018; Gao et al., 2024). The dual
nature of soil structure can be delineated as the unity of aggregates
and pores. In the long run, soil aggregates have a more comprehensive
range of functions than pore space alone (Yudina and Kuzyakov,
2023). Soil aggregate formation increases soil cohesion and reduces
soil erosion (Yudina and Kuzyakov, 2019; Phefadu and Munjonji,
2024). Also, soil aggregates have comparable water-holding and
aerated pore space, and the soil is highly permeable, which also
favors erosion resistance (Ferreira et al., 2023). As early as 1983, it was
pointed out that soil aggregate stability indicates the indices of soil
erodibility (Egashlra et al., 1983). In the Water Erosion Prediction
Project (WEPP)model, Agglomerate stability is also recognized as one
of the most critical soil indicators for soil erosion (Karlen and Stott,
2015; Xiao et al., 2017; Zhu et al., 2018).

The utilization of steppe ecosystems for grazing represents a
pivotal aspect of their management, exerting a considerable
influence on the configuration and functionality of these
ecosystems (Reinhart et al., 2021). Soil erosion and degradation
of grassland ecosystem services and functions caused by
inappropriate grazing have become a global problem (Zhang
et al., 2018; Bardgett et al., 2021). It is estimated that the
degraded grassland area in China has reached 90% (Zhu et al.,
2021). It is imperative to identify suitable grazing practices that can
alleviate grassland degradation and ensure the long-term stability of
grassland ecosystems (Rojas-Briales, 2015).

Since the 1960s, grassland privatization has led to the loss of self-
recovery of desert steppe in northern China and reduced soil
productivity (Conte and Tilt, 2014; Ye et al., 2023). This severe
consequence has prompted the government to prioritize this issue.
In 2003, a ‘Returning Grazing Land to Grassland’ policy was
introduced to restore degraded steppe, including grazing bans and
seasonal grazing (Li et al., 2013). The objective of these measures is
twofold: firstly, to enhance plant diversity and, secondly, to restore the
functioning of steppe ecosystems by improving soil structure through
a series of reciprocal mechanisms (Franzluebbers et al., 2012; Enriquez
et al., 2021; Nael et al., 2024; Blanco-Sepúlveda et al., 2024). Different
grazing patterns affect the degree of soil disturbance, which in turn
causes dynamic changes in soil structure indicators (Blanco and Lal,
2023). Therefore, research on grassland restoration should focus on
the response of soil structure indicators to changes in grazing patterns
(De Boer et al., 2018; Lai and Kumar, 2020). Conversely, the evidence
suggests that moderate grazing can help offset these impacts, although
this approach does result in a corresponding decrease in soil organic
carbon (Lai and Kumar, 2020). A reduction in grazing levels results in
a notable decrease in soil compaction, primarily caused by livestock
trampling (Romero-Ruiz et al., 2023). A systematic framework has
been developed to predict changes in soil structural properties
associated with livestock-induced soil compaction (Romero-Ruiz
et al., 2023). Seasonal grazing promotes sustained restoration of
grassland soils by reducing the duration of grazing, but scientists
have paid little attention to it (Chen and Baoyin, 2024). One of the few
examples is a study in a typical steppe in China, which demonstrated
that seasonal grazing can reduce the adverse effects of grazing on pore
characteristics (Yang et al., 2024).

Many studies have been conducted on the effects of grazing on
grassland soil aggregates. These studies have shown that grazing
exclusion significantly increases the number and stability of soil
aggregates, as well as the erosion resistance of soils. These studies
have attributed the improved stability of soil aggregates to increased
organic carbon (Deng et al., 2018; Dong et al., 2022). Other studies
point out that soil texture controls the formation of specific
aggregates, where larger-diameter aggregates are positively
correlated with increased clay content (Schweizer et al., 2019).
Some other studies have shown a significant positive correlation
between porosity and soil aggregate stability. During the
decomposition of plant residues by microorganisms, phenolic
acids are released. At the same time, the decomposition of amino
acids in the residues triggers an instantaneous stabilization of the
aggregates. The interaction of phenolic acids with the instantly
formed aggregates further enhances the soil aggregates stability
(Martens, 2000). The contradictory results of these studies
prompted us to explore the main factors affecting the soil
aggregate stability.

This study utilizes a 20-year-long field experiment to fill this gap
in the mechanisms by which soil structure indicators respond to
restricted grazing and to explore differences in scores of factors
influencing soil aggregate stability in a desert steppe. Three field
observation sites were established using fences to desert steppe in
Inner Mongolia, these were designated as grazing exclusion (GE),
seasonal grazing (SG), and free grazing (CK), each defined by fenced
boundaries. Therefore, the research objectives of this study were
defined as follows: (1) To assess the effects of different grazing
practices on soil structure indicators, quantitatively evaluate soil
particle size composition, soil bulk density, soil aggregate
composition, soil aggregate stability, and soil organic carbon
under varying grazing practices; and (2) To explore the primary
factors influencing changes in soil aggregate stability. The results of
this experiment aim to provide a theoretical foundation for the
adaptive management of steppe ecosystems and contribute to efforts
to slow down or reverse steppe degradation.

2 Materials and methods

2.1 Overview of the Study area

The study area is in Baotou, Inner Mongolia, within the
southeastern portion of Darhan Muminggan United Banner
(coordinates: 41° 21′3.96″N, 111° 12′35.79″E) (Figure 1). It is at
approximately 1600 m and has a semiarid continental climate. The
annual mean temperature is 3.4°C, the annual mean rainfall is
282 mm, and the annual mean evapotranspiration is 2,225 mm.
The soil in this area is calcareous, with a thin humus layer and low
organic matter content, and the soil layer is about 40 cm deep. The
dominant plant taxa are Stipa grandis, Leymus chinensis, Agropyron
cristarum, and Cleistogenes squarrosa.

2.2 Experimental design and soil sampling

The experiment was conducted at the Yinshanbeilu Grassland
Eco-hydrology National Observation and Research Station
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(Yinshanbeilu Station). Three grazing plots were established:
restricted grazing (GE and SG) plots were set up on flat terrain
under similar natural conditions, and CK in the periphery was set as
a control. According to the Yinshanbeilu Station records, the area
has been grazed since 1960. The three plots were adjacent and at the
same altitude to prevent climate and other factors from influencing
the experimental results.

To ensure the greatest possible consistency in grazing intensity,
the specifications of plots were varied. Among them: (1) The GE plot
has been closed to grazing since 2002, using a 2.0 m wire mesh fence
to exclude livestock. The sample plot size was 400 m × 300 m, with
no grazing activities, and the vegetation coverage is approximately
92.10%. (2) The SG plot, seasonal grazing (November to April), was
introduced in 2002 and enclosed with a 2.0 m barbed wire fence. The
sample plot size was 300 m × 250 m, with a grazing intensity of 0.5-
1 sheep ha-1, and the vegetation coverage is approximately 60.10%.
(3) The CK plot has been fenced off with barbed wire since 2002 and
has been under continuous grazing by local herders. The size of the
sample plot was 400 m × 200 m. The grazing intensity ranges from
0.5 - 1 sheep ha-1 between November and April and 1–1.5 sheep ha-1

from May to October, and the vegetation coverage is approximately
48.80%. Each plot adopts the same grazing system as the local
herders, feeding from 7:00 to 19:00 and driving back to the
sheepfolds to rest in the evening. Three 20 m × 20 m test plots
were randomly established as replicates within each grazing method
sample plot.

Three 1 m × 1 m sample plots were randomly picked from each
grazing area, swith a slope of 2.2°–3.0°. Subsequently, the soil
samples were collected in layers from different depths, including
0–10 cm, 10–20 cm, 20–30 cm, and 30–40 cm, by utilizing a 100 cm3

sampling ring. It is worth noting that no rainfall occurred during the
initial 10 days at the sampling locations, nullifying any potential
influence that rain could have exerted on the soil characteristics.

2.3 Analysis of soil samples

The mechanical composition of the soil was determined as
follows: First, the air-dried soil was crushed, and any foreign
matter was removed. Then, the resulting material was passed

FIGURE 1
Study area. NOTE:GE: grazing exclusion; SG: seasonal grazing; CK: free grazing.
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through a 2 mm sieve. After that, a Malvern Mastersizer-3000
(Malvern Instruments Ltd., Malvern, UK) model laser particle
sizer was used to determine the soil particle size composition for
further analysis. Finally, the results were classified by the
International Standard Classification of Soils (ISCS). SOC was
measured with K2Cr2O7-H2SO4 (Noulèkoun et al., 2021). The
samples collected by the ring knife (V = 100 cm3) were divided
into two groups. A group of soil samples was placed in an oven at a
temperature of 105°C ± 2°C, dried to a constant weight, and then
weighed (Gs, g). The other set of soil samples was divided into two,
weighed and soaked in static water for 1–2 h and 6 h and taken out
for weighing respectively. Based on the above measurement, soil
bulk density (BD), total porosity (TP), capillary porosity (CP), and
non-capillary porosity (NCP) were calculated by Equations 1–4.

BD � Gs/V (1)
TP � W6H −W1 −WD( )/V (2)
CP � W2H −W1 −WD( )/V (3)

NCP � TP − CP (4)
Where: W1:weight of ring cutter(g);W6H is weight of ring cutter with
soil after 6 h of water absorption (g);W2H is weight of ring cutter
with soil after 2 h of water absorption (g).

The soil clumps within the soil samples were manually
fragmented into pieces with a diameter of approximately
10 mm. After air-drying, extraneous substances were
meticulously removed with the assistance of tweezers.
Subsequently, a 50 g sample was procured and placed into the
sieve set of the DIK-2012 Aggregate Analyzer. The sieve set is
configured with apertures of 2 mm, 1 mm, 0.5 mm, and 0.25 mm.
Distilled water was gradually added along the bucket’s rim until it
covered the soil samples completely. Following a stationary period
of 2 min, the shaking process was initiated at 30 oscillations per
minute with a shaking amplitude of 38 mm. The shaking operation
was concluded after 5 min. The remaining soil particles in the
various sieves were then dried to a constant weight on an electric
hot plate maintained at 60°C. They were subsequently weighed,
and the proportions of water-stable aggregates of different particle
sizes were accurately calculated. The soil aggregates were weighed
and used to calculate soil aggregate fractions. To assess the
aggregate stability, three metrics, WSA>0.25(water-stable
aggregate >0.25 mm), MWD (mean weight diameter), and
GMD (geometric mean diameter), were calculated. Calculations
were made by means of Equations 5–7.

WSA> 0.25 � Ms

Mt
(5)

Where: Ms is the amount of >0.25 mm water stable aggregates (g),
and Mt is the total amount of aggregate before wet sieving (g).

MWD � ∑
n

i�1
xiWi( )/∑

n

i

Wi (6)

Where: xi is the average diameter of aggregate of particle size i and ωi

is the percentage content of aggregate of particle size i.

GMD � exp ∑
n

i�1
ωi ln xi/∑

n

i

ωi
⎛⎝ ⎞⎠ (7)

Where: xi is the average diameter (mm) of aggregate of particle size i,
and ωi is the percentage content (%) of particle size i.

2.4 Statistics and analysis of data

Before conducting an Analysis of Variance (ANOVA), the data’s
normal distribution and homogeneity of variance were tested. Least
Significance Difference (LSD) and Duncan tests are employed for
multiple comparisons to analyze the differences among different
grazing practices. The significance of all differences is tested using
SPSS version 25.0 at a significance level of p < 0.05.

The relative effects of the factors on overall stability were
quantitatively assessed using a Boosted Regression Tree (BRT)
model by selecting parameter combinations that ensured an R2

greater than 0.8 and a Mean Squared Error (MSE) less than 0.1.
The specific parameters are “distribution = gaussian,trees =
5000,interaction.depth = 1,shrinkage = 0.06, bag.fraction = 0.8”
(Sidhu et al., 2023). The BRT model was implemented using the
Dismo package in R version 4.2.3.

3 Results

3.1 Soil particle size composition and soil
texture characteristics

The soil particle size composition for different grazing regimes is
shown below (Table 1). The composition of the soil particle size of
the soil (excluding 20–30 cm) differed significantly (p < 0.05) among
the three grazing methods. The percentages of the total volume of
different grain sizes in the sample graphs for the grazing methods
showed the same pattern: sand > silt > clay. Under GE and SG, the
volume distribution of soil grain sizes decreased in the sand and
increased in silt and clay compared with the CK (p < 0.05). At
0–10 cm, the sand in GE and SG was significantly lower than in CK
(p < 0.05). The reduction in sand in SG (72.85% ± 2.36%) was more
significant than that in GE (75.66% ± 4.64%). Similarly, the clay and
silt were significantly increased, and the increase in SG was higher
than that in GE (p < 0.05). Nevertheless, at depths of 10–20 cm and
30–40 cm, the impact of the reduction in sand and the increase in silt
and clay was more pronounced in GE than in SG. Conversely, at a
depth of 20–30 cm, no statistically significant difference was
observed in the sand, silt, and clay among GE, SG, and CK (p >
0.05). Nevertheless, it is worth noting that the soil texture within the
GE and SG plots has improved when juxtaposed with that of the CK
plot (Figure 2).

3.2 Soil bulk density and porosity
characteristics

Table 2 summarizes the BD, TP, CP, and NCP for the three
different grazing management practices at various soil depths. At
0–10 cm, BD and TP showed no statistically significant differences
among GE, SG, and CK (p > 0.05). At 10–20 cm, 20–30 cm, and
30–40 cm, BD in GE was significantly lower than in CK, with an
average of 11.92%, while TP in GE was significantly higher than in
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CK, with an average of 16.09% (p < 0.05). In all four soil horizons,
CP in GE was significantly higher than in CK, with an average of
27.42% (p < 0.05), and SG and CK had no statistically significant
difference (p > 0.05). A significant difference in NCP at 0–10 cm was
only found between GE and CK(p < 0.05). NCP showed no
statistically significant differences among GE, SG, and CK in the
remaining three soil horizons (p > 0.05).

3.3 Soil aggregate composition distribution
and stability characteristics

As shown in Figure 3, grazing practices significantly influenced soil
aggregate composition. In the GE and SG, the >2 mm fraction was
predominant (accounting for 43.36% and 36.57%, respectively), while in
the CK, the <0.25 mm fraction was predominant (35.59%). The >2 mm

TABLE 1 Characteristics of the soil mechanical composition under different grazing regimes.

Soil depth cm Grazing practices Sand (0.02–2 mm) % Silt (0.002–0.02 mm) % Clay (<0.002 mm) %

0–10 GE 75.66 ± 4.54B 18.92 ± 3.64A 5.39 ± 0.91A

SG 72.85 ± 2.36B 21.42 ± 1.82A 5.71 ± 0.55A

CK 84.65 ± 1.40A 11.84 ± 1.14B 3.49 ± 0.30B

10–20 GE 70.45 ± 6.42B 23.21 ± 5.04A 6.32 ± 1.38A

SG 83.34 ± 2.22A 13.13 ± 1.91B 3.49 ± 0.31B

CK 83.82 ± 1.85A 12.79 ± 1.27B 3.36 ± 0.59B

20–30 GE 78.17 ± 1.79A 17.42 ± 1.48A 4.37 ± 0.30A

SG 77.33 ± 7.22A 18.14 ± 6.13A 4.49 ± 1.08A

CK 81.56 ± 4.55A 14.22 ± 3.33A 4.18 ± 1.25A

30–40 GE 73.86 ± 2.65B 20.94 ± 1.94A 5.17 ± 0.82A

SG 76.9 ± 4.31B 18.48 ± 3.37A 4.58 ± 0.93A

CK 85.58 ± 1.40A 11.18 ± 1.48B 3.22 ± 0.13B

Note: Different letters represent significant differences at p < 0.05. GE, grazing exclusion; SG, seasonal grazing; CK, free grazing.

FIGURE 2
Triangular map of soil texture classification. NOTE: SG: seasonal grazing; CK: free grazing.
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fraction content at 0–10 cm in the GE showed a statistically significant
increase of 62.77% compared to the CK (p < 0.05). For GE, the content of
the >2 mm fraction at a depth of 10–20 cm was significantly higher than
that in SG and CK (p < 0.05), with the increases being by a factor of
1.32 and 1.61, respectively. Regarding the <0.25 mm fraction at 0–10 cm,
10–20 cm, and 20–30 cm, the values in GE were significantly lower than
those in SG and CK (p < 0.05), while no statistical difference was detected

at 30–40 cm (p > 0.05). In particular, for the >2 mm fraction of GE, SG,
and CK, there was no statistical difference at 20–30 cm (p > 0.05).
However, at 30–40 cm, the value for SGwas significantly higher than that
for CK(p < 0.05), reaching 1.96 times that of CK.

ANOVA of the water stability of soil aggregates in Figure 4
indicated that soil aggregate stability indicators varied significantly
among different grazing methods, yet the stability indicators

TABLE 2 Characteristics of soil bulk density and porosity under different grazing practices.

Soil depth cm Grazing practices BD g/cm3 TP % CP % NCP %

0–10 GE 1.46 ± 0.05A 45.69 ± 1.57A 29.75 ± 2.20A 15.94 ± 0.73B

SG 1.51 ± 0.05A 44.06 ± 1.67A 27.42 ± 1.57AB 16.64 ± 0.37AB

CK 1.55 ± 0.04A 42.67 ± 1.46A 25.14 ± 2.19B 17.53 ± 0.56A

10–20 GE 1.44 ± 0.08B 46.42 ± 2.53A 31.18 ± 4.12A 15.24 ± 1.62A

SG 1.54 ± 0.02AB 42.89 ± 0.68AB 26.35 ± 0.65AB 16.55 ± 0.52A

CK 1.67 ± 0.09A 38.71 ± 2.94B 22.20 ± 3.18B 16.51 ± 0.29A

20–30 GE 1.40 ± 0.08B 47.86 ± 2.71A 32.29 ± 4.21A 15.57 ± 1.54A

SG 1.48 ± 0.04AB 45.01 ± 1.27AB 29.29 ± 1.65AB 15.72 ± 0.50A

CK 1.60 ± 0.08A 41.10 ± 2.85B 24.69 ± 2.53B 16.41 ± 0.21A

30–40 GE 1.43 ± 0.09B 46.79 ± 2.83A 30.35 ± 4.16A 16.44 ± 1.39A

SG 1.45 ± 0.06B 45.12 ± 2.66AB 29.13 ± 3.08A 15.82 ± 0.72A

CK 1.58 ± 0.02A 41.81 ± 0.78B 25.27 ± 0.83A 16.54 ± 1.33A

Note: Different letters represent significant differences at p < 0.05. BD, soil bulk density; TP, soil total porosity; CP, soil capillary porosity; NCP, soil non-capillary porosity; GE, grazing exclusion;

SG, seasonal grazing; CK, free grazing.

FIGURE 3
Distribution of soil aggregate size under different grazing practices. NOTE: Different letters represent significant differences at p < 0.05. GE: grazing
exclusion; SG: seasonal grazing; CK: free grazing.
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exhibited a consistent trend. For the 0–30 cm layer, the following
results were obtained for WSA>0.25, MWD, and GMD: GE > SG >
CK. However, at a soil depth of 30–40 cm, the results changed to
SG > GE > CK. For GE, the values of WSA>0.25, MWD, and GMD
were significantly higher than those of CK at soil depths of 0–10 cm
and 20–30 cm (p < 0.05). For SG, WSA>0.25 and MWD values were
significantly higher in 0–10 cm than in CK (p < 0.05). At a 0–30 cm
depth, the WSA>0.25 of GE was significantly higher than that of CK
(p < 0.05). The highest MWD values of GE, SG, and CK were
3.38 mm, 2.70 mm, and 2.30 mm, respectively, and occurred at

10–20 cm. However, they did not reach the significance level
between them (p > 0.05). At a depth of 30–40 cm, only the
MWD of SG was significantly higher than that of CK (p < 0.05).

3.4 Characteristics of soil organic
carbon changes

The study demonstrated that SOC decreased as soil depth
increased (Figure 5). The maximum SOC in the 0–20 cm layer

FIGURE 4
Effects of different grazing practices on WSA>0.25 (A), MWD (B), GMD (C), water-stability. NOTE: Different letters represent significant differences at
P < 0.05. WSA>0.25: content of soil aggregate >0.25 mm particle size; MWD: mean weight diameter; GMD: geometric mean diameter; GE: grazing
exclusion; SG: seasonal grazing; CK: free grazing.

FIGURE 5
Effects of different grazing practices on SOC. NOTE: Different letters represent significant differences at p < 0.05. GE: grazing exclusion; SG:
seasonal grazing; CK: free grazing; SOC: soil organic carbon.
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was observed in GE, and the maximum SOC in the 20–40 cm layer
was observed in SG. SOC for each grazing method decreased with
soil depth. In the GE, the SOC in the 0–10 cm was found to be
1.55 times and 1.81 times that of the 20–30 cm and 30–40 cm. In the
SG, the increases in SOC for the 0–10 cm and 10–20 cm in
comparison to the 30–40 cm were 19.76% and 13.20%. The
mean increase in the 0–10 cm under the CK compared with the
10–20 cm, 20–30 cm, and 30–40 cm was 4.22 g/kg.

At the 0–10 cm and 10–20 cm depths, GE significantly increased
SOC by 7.02 mg/kg and 7.45 mg/kg, respectively, compared to the
CK (p < 0.05). However, there was no statistically significant
difference between SG and CK (p > 0.05). At the 20–30 cm and
30–40 cm depths, there was no statistical difference among GE, SG,
and CK (p > 0.05).

3.5 Relationship factors influencing soil
aggregate stability

Correlation analyses were performed on eleven factors, including
BD, soil porosity (TP, CP and NCP), soil particle size composition
(Clay, Silt, and Sand), soil aggregate stability (WSA>0.25, MWD and
GMD), and SOC (Figure 6). The results showed that most of the
selected vital factors significantly impacted soil aggregate stability (p <
0.05). Soil porosity and particle size composition showed a significant
and positive correlation with all three indicators of soil aggregates (P <
0.05). BD exhibited a significant negative correlation with WSA>0.25
and MWD (P < 0.05). A significant positive correlation was also
detected between Clay and SOC.

We used BRT modeling to quantitatively assess other indicators’
effects on soil aggregate stability (Figure 7). In the process, we
categorized all the relevant indicators into distinct groups. The first
group is BD. The second group pertains to soil porosity and is
divided into TP, CP, and NCP. The third group involves soil particle
size composition consisting of clay, silt, and sand. Then, there is the
SOC group. Finally, the soil aggregate stability group is characterized
by WSA>0.25, MWD, and GMD. The results indicated that porosity
was the primary factor affecting soil aggregate stability, with effects
of 60.05%, 40.86%, and 38.05% on WSA>0.25, MWD, and GMD,
respectively. Subsequently, SOC exerted an influence exceeding 20%
on MWD and GMD, while its impact on WSA>0.25 was limited to
13.87%. Individually, SOC had the most significant impact on
MWD and GMD.

4 Discussion

4.1 Effects of grazing practices on soil
structure indicators

In studies of the effects of grazing on soil structure, the time span
resolves the central variable in the response mechanisms of soil
ecosystems. For example, short-term (<5 years) grazing samples
showed only minor variations in properties such as soil porosity
(Batista et al., 2019), whereas studies of 10-year grazing samples
found significant decreases in BD and clay particle fraction, but such
changes are still at a more surface stage (Liu J. et al., 2017). In
contrast, our observations from sample plots grazed for up to

FIGURE 6
Correlation analysis.NOTE:SOC: soil organic carbon; BD: soil bulk density; TP: soil total porosity; CP: soil capillary porosity; NCP: soil non-capillary
porosity; WSA>0.25: content of soil aggregate >0.25 mm particle size; MWD: mean weight diameter; GMD: geometric mean diameter.
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20 years are more representative of the evolution of soil structure
under long-term grazing. The effects of animal trampling on
rangelands are complex and intertwined with other factors that
need to be analyzed independently for changes in soil parameters
(Bayat et al., 2022).

The influence of grazing on soil structure is mainly due to
livestock trampling, which can be divided into three main damage
mechanisms: foraging, trampling, and excretion (Mayel et al., 2021).
Our study indicated that following 20 years of restricted grazing, the
clay of GE and SG increased (mainly from 0 to 10 cm), leading to
favorable changes in soil texture (Zhang H. et al., 2019). For BD and
soil porosity, we indicated that the average BD from 0 to 40 cm
increased from 1.43 g/cm³ (GE) and 1.50 g/cm³ (SG) to 1.60 g/cm³
(CK), while soil porosity decreased from 46.69% to 44.27%–41.07%.
The compaction of soil pore space due to trampling is a remarkable
phenomenon, leading to CK pastures having the lowest soil porosity
(Carrero-González et al., 2012). As hypothesized by Zhang et al., the
reduction in porosity resulting from grazing may be mainly due to
the disappearance of macropores and larger pores (Zhang B. et al.,
2019). Since pores and soil particles are mutually exclusive, the
decrease in porosity and the notably corresponding increase in
particle volume consequently decrease BD (Mayel et al., 2021).
We inferred that this may be due to the cumulative effect of

livestock trampling on BD in desert steppe (Negrón et al., 2019).
In the 20-year grazing sample plots, each trampling by livestock
caused a small compression of the pore space between soil particles.
Over time, this compression accumulated, resulting in a significant
reduction in soil pore space and a consequent increase in BD.

Additionally, livestock trampling also influences alterations in
soil aggregate composition distribution. The level of pressure that
livestock apply to soil particles varies depending on the particular
grazing practices used. Soil structural function will inevitably
deteriorate when the pressure exerted surpasses the soil’s pre-
compressive stress (Pc) (Dec et al., 2012; Negrón et al., 2019).
The main component is large aggregates (>0.25 mm), which
suggests that soil aggregation is effective and enhances resistance
to livestock trampling pressure (Wang et al., 2020a).

Soil aggregate stability is an essential indicator of soil
degradation and soil quality. It is mainly characterized by the
following parameters: WSA>0.25, MWD, and GMD (Boix-Fayos
et al., 2001; Obalum et al., 2019). WSA>0.25 reflects soil structure,
with higher values indicating better structure; MWD and GMD
indicate the proportion and size of soil aggregates, with higher values
indicating better stability. The data showed a significant increase in
the density of macroaggregates (>0.25mm) within the 0–20 cm layer
following the implementation of GE. MWD and GMD increased by

FIGURE 7
Independent effects of factors on WSA>0.25 (A), MWD (B), GMD (C). NOTE: BD: soil bulk density; TP: soil total porosity; CP: soil capillary porosity;
NCP: soil non-capillary porosity; SOC: soil organic carbon; WSA>0.25: content of soil aggregate >0.25 mm particle size; MWD: mean weight diameter;
GMD: geometric mean diameter.

Frontiers in Environmental Science frontiersin.org09

Yang et al. 10.3389/fenvs.2024.1535193

161

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1535193


an average of 1.05 mm in GE and 0.69 mm in SG compared to CK. It
is worth noting that SG had the highest values of aggregate stability
in 30–40 cm layer, followed by GE and CK, which had the lowest
stability values. The GE site has >90% vegetation cover, which
reduces the impact of raindrops or livestock on the soil, which in
turn contributes to the stabilization of soil aggregates. Vegetation
also intercepts soil particles (mainly clay) carried by wind-sand flow,
which are bound at the base of the plants by the water lost by the
plants and gradually form soil aggregates (Jiang et al., 2022). This
may be due to the distribution of desert steppe vegetation roots
related to the entanglement of roots and secretion of material that
may have facilitated the formation of macroaggregates (>0.25 mm)
in the region (Six and Paustian, 2014; Baumert et al., 2018). The
formation of soil aggregates is intimately associated with SOC (Xue
et al., 2019). The increase in SOC enhanced the generation of
macroaggregates (>0.25 mm) and improved their stability, as
evidenced by the increase in SOC from the 0–20 cm layer, as
demonstrated in our study (Gu et al., 2024). In CK, soil
aggregates with a >0.25 mm dominated. This may be associated
with increased BD and decreased SOC from livestock trampling on
the pastureland (Yao et al., 2019). Disintegration of macroaggregates
(>0.25 mm) may also be possible due to dry-wet cycles and freeze-
thaw processes (Oztas and Fayetorbay, 2003; Jesús Melej
et al., 2024).

This study showed that grazing practices significantly affected
surface soil organic carbon, especially at depths of 0–10 cm and
10–20 cm. The GE method significantly enhanced SOC, consistent
with the observations reported by Shen (Shen et al., 2023).
Macroaggregates (>2 mm) have a strong influence on SOC
fixation and are the primary site of SOC storage (Wang et al.,
2020b; Xi et al., 2022). Macroaggregates (>2 mm) dominated,
effectively storing large amounts of SOC. Grazing had a
significant effect on these large aggregates (>2 mm) at depths of
0–10 cm and 10–20 cm, with the SOC gradually dissipating as the
macroaggregates (>2 mm) decomposed. The primary reason was
that the soil in the desert steppe of this study was more influenced by
vegetation. During the grazing period, livestock consumed mainly
rhizomatous grasses, resulting in a reduction in above-ground
biomass and an increase in the density and complexity of the
surface root system (Li et al., 2014; Wang et al., 2014). The
growth of roots enhances the conservation of carbon (Yang et al.,
2023). However, the effects of grazing on SOC remain controversial,
with studies indicating that grazing can increase (Hewins et al., 2018;
Shen et al., 2023), decrease (Zhao et al., 2009; Dlamini et al., 2016;
Ren et al., 2024) or leave SOC unchanged (Derner et al., 2019). This
controversy may arise from differences in the climatic zones studied
and the negative impact of climate change on livestock production
(Ghahramani et al., 2019; Li et al., 2022). The study area is in an arid
and semi-arid zone and is severely constrained by water resources.
Grazing increases greenhouse gas emissions and turns grasslands
into carbon sources, and prolonged drought alters biogeochemical
cycles and organic carbon storage (Pinay et al., 2007). Under warm
and humid climatic conditions, grazing favors SOC production due
to the accelerated decomposition of plant residues and elevated soil
microbial carbon (Abdalla et al., 2018). Another possibility is the
effect of the stocking rate, where low stocking rate grazing promotes
vegetation diversity and increases SOC due to increased above-
ground biomass of communities (Gebregergs et al., 2019).

Conversely, large aggregations of livestock foraging cause
significant vegetation reductions, leading to a reduction in readily
decomposable herb litter mediates, ultimately reducing SOC (Liu S.
et al., 2017).

4.2 Relationship factors influencing the soil
aggregate stability

The correlation analysis and the results of the BRT analysis
indicate that soil aggregate stability is mainly dependent on soil
porosity (Rabot et al., 2018; Menon et al., 2020; Ajayi et al., 2021).
The data indicated that soil porosity contributed 60.05%, 40.86%,
and 38.05% to the WSA>0.25, MWD, and GMD changes. Pore space
accommodates air entering the soil aggregate. The increase in pore
volume and connectivity reduces the expansion pressure of the
pores, thus increasing the stability of the soil aggregates (Bisdom
et al., 1993). Furthermore, the pore space is an active area for soil
microorganisms and microfauna communities. Microorganisms
metabolize, reproduce, and secrete organic substances in the pore
space. Exopolysaccharides secreted by soil microorganisms gel with
clay particles to form soil aggregates (Pokharel et al., 2013; Walshire
et al., 2024). In addition, the microorganisms carry an electrical
charge that promotes soil particle adhesion and facilitates soil
aggregates’ formation through electrostatic attraction (Coban
et al., 2022). Pores are conduits for physicochemical and
biological processes ultimately work together to form soil
aggregate stability (Yudina and Kuzyakov, 2023).

SOC plays an essential and irreplaceable role in the formation
mechanism of soil aggregates and in maintaining soil aggregate
stability (Dong et al., 2020; Fei et al., 2021). The outcomes of our
research substantiated this claim, with an average impact of SOC on
the soil aggregate stability amounting to 21.17%. This result is
consistent with the findings in subtropical China that SOC is the
driver factor of soil aggregate stability and plays the role of a
cementing agent during soil aggregate formation (Xue et al.,
2019). A higher content of SOC can increase the negative charge
density on the surface of soil particles and promote the repulsive
force and attractive force between soil particles to reach a more
stable equilibrium state (Yu et al., 2017). This is conducive to
maintaining the structural integrity of soil aggregates in the face
of disturbances caused by external environmental factors and
reduces the risk of disintegration and dispersion (Kan et al., 2022).

5 Conclusion

Following 2 decades of management, Both grazing practices
enhanced soil structure, which exhibited variations at different soil
depths. SG significantly improved the clay (<0.002 mm), silt
(0.002–0.02 mm), macroaggregates (>0.25 mm), aggregate
stability, and SOC within the 0–10 cm soil layer. However, for
GE, the significant improvement of these indicators extends down to
a depth of 20 cm. In particular, after 20 years of restricted grazing,
BD decreased, soil porosity increased, and soil texture improved.
Thus, soil structure can be enhanced by limiting grazing with
optimal improvement in GE, which can be used to restore
degraded desert steppe. Soil porosity exerts the most significant
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influence on the soil aggregate stability, with an average expanation
of more than 45%, with SOC ranking second in terms of influence.
Further insights into the interconnection between soil aggregate
stability and soil porosity in desert steppe are offered.
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Temporal lags and carbon-water
coupling in the dry-hot valleys of
southwest China over the past
two decades
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Yanbin Ma1, Yu Guo1, Jinshan Li4 and Lili Li1,5*
1College of Earth Science and Engineering, West Yunnan University of Applied Sciences, Dali, China,
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China, 3College of Geography and Environmental Science, Northwest Normal University, Research
Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province,
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Water use efficiency (WUE), as an important parameter of ecosystem carbon-
water cycle, is an important index to assess vulnerability to extreme drought
events. However, little was known about the corresponding cumulative and
lagged responses of WUE to drought in the dry and hot valleys of Southwest
China. This region is covered by alpine-valley landscapes, fragmented
topographic features, Foehn Effect, where drought response mechanisms
are not yet fully understood. This study analyzed the spatial-temporal
variation of WUE from 2000 to 2020 in Binchuan (BC) and Yuanmou (YM)
regions and the time-lag and -accumulation effects of 12 monthly self-
calibrating Palmer Drought Index (scPDSI) on the WUE. Given the
variability of vegetation types, land use/cover change data was used to
investigate the variability of WUE between the two areas. Subsequently,
the Pearson Correlation coefficient (Pearson, R) analysis, considering the
influence of drought on time-lag and -accumulation effects, was used to
analyze the response mechanism of water use efficiency to scPDSI in BC and
YM comparatively. The results show that (1) From 2001 to 2020, BC’s average
annual WUE was 2.59 gC m−2 mm−1, and YM’s was 2.84 gC·m−2·mm−1, with
similar spatial distributions. (2) Over the past 2 decades, BC’s WUE increased
steadily at a rate of 0.012 gC m-2 mm−1 a−1, while Yuanmou’s WUE grew at
0.0082 gC m-2 mm−1 a−1. (3) The lag response of WUE to drought is minimal in
both regions, with BC’s cultivated land showing greater sensitivity to drought
than YM. (4) The cumulative effect of drought on WUE across different land
uses in both BC and YM is generally small, with the lowest sensitivity in forest
land to drought.
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dry-hot valley, water use efficiency (wue), self-calibrating palmer drought index
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1 Introduction

Drought, a complex and pervasive natural disaster (Ukkola et al.,
2020; Xu et al., 2024), profoundly impacts vegetation and
ecosystems, with severe events potentially altering niche
thresholds and carbon-water balances (Zhang et al., 2022; Lili
et al., 2023). It is defined as a condition of water scarcity where
demand exceeds supply (Bradford et al., 2020; Zhao et al., 2020; Jiao
et al., 2021). The scPDSI judged the water surplus and deficit by
comparing local water demand with actual precipitation, and
analyzing regional water supply variations (Zhao et al., 2023; Sun
et al., 2020). China is one of the countries most severely affected by
drought, with an average of 21.57 × 104 km2 affected between
1950 and 2008 (Hao et al., 2015; Wei et al., 2020). Southwest
China, influenced by South Asian monsoons and the Tibetan
Plateau climate, experiences frequent severe droughts (Dong
et al., 2014; Xu et al., 2024). Notable drought years include 2005,
2006, 2013, and 2023, along with prolonged spring droughts
observed in 2010 and 2023 (Jiang et al., 2022). Global warming is
expected to increase the frequency and intensity of droughts,
heightening ecosystem vulnerability (Wang et al., 2013).
Therefore, an in-depth understanding of the effects of drought
on the carbon and water budgets of terrestrial ecosystems in
southern China is essential for establishing a comprehensive
natural hazard and ecological risk monitoring system.

WUE is an essential indicator for revealing the spatial and
temporal variability of carbon and water cycles in terrestrial
ecosystems, which is defined as the ratio of carbon sequestration
to water consumption (Cristiano et al., 2020; Du et al., 2023; Guo
et al., 2023).

Climatic, physiological, and vegetation factors significantly
shape the water cycle and carbon assimilation, the spatial and
temporal patterns of WUE likely aligning with these influences
and climate responses (Jiang et al., 2022; Law et al., 2001; Yang
et al., 2019). Water, essential for ecosystem function, drives
plant growth and development, and its spatial variability
causing distinct patterns in vegetation distribution and
productivity (Li LL. et al., 2024). Global warming and drying,
alongside increased CO2 concentrations, affect temperature,
photosynthesis, and transpiration, impacting carbon and
water cycles and altering WUE (Anderegg et al., 2015; Wang
et al., 2023). Mild water stress enhances plant WUE by inducing
stomatal closure and lowering transpiration (Liu et al., 2017).
However, extreme droughts pose significant threats to
ecosystem health and stability, leading to a decrease in WUE
(Law et al., 2001; Reichstein et al., 2002). In dry and hot valleys,
evaporation rates are typically over three times that of
precipitation, as a result, vegetation faces drought and heat
stress even during the rainy season especially in southwest
China (Wang et al., 2022). The analysis of the carbon-water
coupling of the scPDSI and vegetation reveals plant adaptation
strategies to drought, guides sustainable water resource
management, and highlights the ecological impacts of
drought in these regions.

In the context of climate and vegetation-driven constraints,
time effects become an inescapable phenomenon, including time
lags and accumulation (Ma et al., 2022). Climate change can exceed
the adaptive capacity of vegetation, leading to delayed vegetation

responses to such variations. For instance, drought can have a
lingering effect on tree growth, reducing it and causing impacts
that can persist for 1–4 years post-drought (Anderegg et al., 2015;
Wen et al., 2018). Peng et al. (2019) identified strong cumulative
and delayed effects of drought in the Northern Hemisphere on
autumn leaf senescence, with more pronounced impacts observed
at higher drought intensities. Li et al. (2021) highlighted distinct
time-lag effects between NDVI and climate factors among plateau
land types, illustrating a complex relationship with environmental
conditions. Accurately assessing the consequence of climate
change on vegetation is vital for formulating effective,
sustainable restoration plans. Yet, the role of extreme climate
events, along with the important dynamics of time lags and
cumulative impacts on plant life, is often underestimated
(Müller and Bahn, 2022; Yuan et al., 2024). Such oversights
may skew our understanding of how climate change shapes
vegetation patterns (Li L. et al., 2024; Ji et al., 2023). To fully
understand how vegetation behaves and responds to climate, it is
essential to consider the temporal effects of drought, including
time lags and cumulative impacts ((Anderegg et al., 2015; Piao
et al., 2020; Li et al., 2021), particularly in the dry-hot valley region
of southwest China.

The dry-hot valleys along China’s Jinsha River in the southwest,
spanning over 2,000 km2, are significantly impacted by soil erosion
and environmental degradation, mainly in Yunnan, Sichuan, and
Guizhou provinces (Qiao et al., 2022; Huang et al., 2017). BC and
YM are located within the ecologically sensitive dry-hot valley of the
Jinsha River, where they are faced with analogous natural and
anthropogenic stressors.The water infrastructures of BC and YM
are markedly different, while BC completed the “Yin-Bin” irrigation
project in 1994, the system in YM remains under development
(Zhao et al., 2023). However, the complex mechanisms underlying
the carbon-water coupling dynamics of the valley’s vegetation under
different irrigation regimes and their responses to drought have not
been thoroughly investigated. This is especially significant due to the
theoretical insights for agricultural practices in the dry-hot valleys of
the southwestern region, where it is essential to understand how
vegetation reacts to drought as a result of climate change.

This study addresses this gap by utilizing MODIS products (at a
spatial resolution of 500m)and scPDSI (a spatial resolution of 0.5) to
analyze nearly 2 decades of springtime carbon-water coupling
fluctuations and their reactions to the spatiotemporal patterns of
drought in BC and YM, Yunnan Province. The research aimed to
investigate the following questions: (1) What are the temporal and
spatial variations in WUE between BC and YM in the Southwest
Dry-Hot Valley? (2) What is the lag effect of WUE on drought
sensitivity in BC and YM, as indicated by the standardized
precipitation index for the scPDSI? (3) How does the cumulative
effect of WUE on drought sensitivity vary across different land uses
in BC and YM? The results clarify how vegetation WUEreacts to
drought in the context of climate change and the water utilization
strategies employed in these dry-hot valleys. This study contributes
to a better understanding of vulnerability to extreme drought events
in the dry and hot valleys of southwest China and provides insights
into the differential response mechanisms of WUE to drought
between BC and YM, which are critical for global change biology
and the development of strategies to mitigate the effects of drought
on ecosystems in these regions.
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2 Materials and methods

2.1 Study area

The study area for this research includes Binchuan County and
Yuanmou County. Binchuan County is located in the Dali Bai
Autonomous Prefecture, Yunnan Province (100°16′~100°59′E,
25°23′~26°12′N), on the edge of the Yunling mountain range,
part of the southwestern Yunnan-Guizhou Plateau along the
southern bank of the Jinsha River. The highest altitude point is
at the summit of Mu Xiang Ping in the northwest (3,320 m), and the
lowest point is where the Yupao River meets the Jinsha River
(1,104 m). The mean annual temperature is 17.9°C, with an
annual precipitation of 559.4 mm and the annual sunshine
duration is 2,719.4 h.Yuanmou County is located in the northern
part of the Chuxiong Yi Autonomous Prefecture, Yunnan Province
(101°35′~102°06′E, 25°23’~26°06′N), in the northern part of the
central Yunnan Plateau. The highest altitude point is at the
mountain of Da Ying Pan in Jiangbian Township (2,835.9 m),
and the lowest point is in the northeast of Heize Village, Jiangyi
Township, where the Jinsha River exits (898 m) (Figure 1). The
mean annual temperature is 22.6°C, with an annual precipitation of
637.5 mm and the annual sunshine duration is 2,183.8 h. Both
regions share a valley terrain, characterized by low precipitation,
abundant solar radiation, and external airflows obstructed by

mountain ranges. Additionally, due to the relatively enclosed
nature of the valleys, heat at the bottom is not easily dissipated,
resulting in a “Foehn effect,” ultimately forming a dry and hot valley
climate (Yu et al., 2019). In recent years, thanks to the successful
completion of the Erhai-to-Binchuan water diversion project,
Binchuan County has seen significant improvements over
Yuanmou County in areas such as vegetation growth and water
quality deterioration.

2.2 Data acquisition and processing

2.2.1 Remote sensing data
The GPP and ET data utilized were procured from the MODIS

series (MOD17A2, MOD16A2) (https://www.earthdata.nasa.gov/),
products released by the (National Aeronautics and Space
Administration (NASA), with a spatial resolution of 500 m and a
temporal resolution of 8 days, spanning the period from 2001 to
2020.The GPP data were calculated based on the radiation use
efficiency algorithm, with the specific calculation details outlined by
Running et al. (2004). The ET data were calculated based on the
Penman-Monteith equation, which considers three processes
comprehensively: soil surface evaporation, evaporation of
intercepted precipitation by the canopy, and plant transpiration.
Further details may be found in (Mu et al. (2011). All of the

FIGURE 1
Elevation distribution of BC and YM.
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aforementioned products were processed using the MRT (Modis
Reprojection Tool) software for batch splicing, clipping, and
projection transformation of MODIS data. The reprojected data
were then synthesized every month basis and clipped to the
BC and YM. The MODIS GPP and ET product data have been
validated in multiple studies using flux tower site data from various
regions around the world, and their accuracy has been confirmed
(Zhao et al., 2005; Jia et al., 2012; Chen et al., 2017; Wang et al.,
2019).

2.2.2 scPDSI
The scPDSI is derived from the Global Gridded Drought

Index dataset, which is provided by the Climatic Research
Unit of the University of East Anglia in the Uited Kingdom
(https://crudata.uea.ac.uk/). The data has a spatial resolution of
0.5 ° × 0.5 ° and a temporal resolution of monthly, spanning the
years 2001–2020. For further details on the scPDSI algorithm
(Table 1), please refer to the paper by Liu et al. (2017). To ensure
consistency in spatial resolution, elevation information was
employed as a covariate, and a variable difference method was
used with the Aunsplin4.2 software to obtain monthly scPDSI
data for BC and YM that aligned with the pixel size and
projection of the MODIS data. It has been demonstrated in
previous studies that data interpolated by the Aunsplin
software is of high accuracy and reliability.

Aunsplin model algorithm (Formula 1): Aunsplin adopts the
local thin disk smooth spline method, and its theoretical statistical
model is expressed as follows (1): where zi is the dependent variable
located at point i in space; xi is the independent variable of
d-dimensional spline; f is the unknown smooth function to be
estimated about xi; yi is the independent covariate of

p-dimensional; b is the p-dimensional coefficient of yi; ei is the
independent random error with expectation 0 and variance wi; wi is
the known local relative variation coefficient as weight, is the error
covariance, and is constant at all data points.

zi � f xi( ) + bTyi + ei (1)

2.2.3 Vegetation type data
The vegetation types and the classification scheme were derived

from the 2020 Global 30 m Land Cover Product with Fine
Classification (CLCFCS30-2020) (Zhang et al., 2021). In ArcGIS,
the product was spatially resampled to a 1 km resolution equal
latitude-longitude projection data that matched the NDVI using the
nearest neighbor method, and adjacent vegetation types were
merged (Figure 2). Based on the vegetation classification scheme,
the l in the study areas are categorized into six types: forest, cropland,
grassland, water body, and artificial surface.

2.3 Calculation of WUE

WUE is assessed by calculating the ratio of GPP to ET within an
ecosystem (Hu et al., 2009). The calculation formula remains
unchanged as follows (Formula 2):

WUE � GPP

ET
(2)

where WUE is the WUE per unit time (g C m−2 mm−1); GPP is the
total primary productivity of vegetation ecosystem per unit time
(gC m−2); ET is the evapotranspiration of vegetation ecosystem per
unit time (mm).

FIGURE 2
The land use types in BC differ from those in YM. (A) The land use types in BC; (B) The land use types in YM.
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2.4 Methods

2.4.1 Trend analysis
In the entire study region, based on each pixel, used a univariate

linear regression analysis to simulate the WUE from 2001 to 2020,
obtaining the trend of change for the three, with the calculation
formula as follows (Formula 3) (Wang et al., 2023):

θslope �
n × ∑n

i�1
i × Ci( ) − ∑n

i�1
i( ) ∑n

i�1
Ci( )

n × ∑n
i�1
i2 − ∑n

i�1
i( )

2 (3)

where n represents the number of years in the time period (n = 20),
θslope is the slope of the trend, and Ci is the WUE for the i-th year.
The significance of the annual WUE change is determined by θslope.
A negative θslope indicates a decreasing trend in WUE, while a
positive θslope indicates an increasing trend.

2.4.2 Lag effect of scPDSI on WUE
The Pearson correlation was selected due to its simplicity and

effectiveness in measuring linear relationships, which is appropriate
for the research context where we expect linear relationships to exist.
The Pearson correlation coefficient (R) is employed to investigate
the lagged effects of drought on grassland GPP (Lu et al., 2023). The
coefficient ranges from -1-1, representing the transition from
negative to positive correlations. To ensure comparability, the
study utilizes monthly WUE and 1-month scPDSI data for BC
and YM from 2001 to 2020. MonthlyWUE is combined with scPDSI
data from up to 12 previous months (0 ≤ i ≤ 12) to create a series.
The R value is then calculated for each pixel at each lag, resulting in
12 correlation coefficients (Formula 4). For instance, a 3-month lag
involves correlating monthly WUE data from January to July
(2001–2020) with scPDSI data from April to October
(2001–2020), and this process is repeated for up to a 12-month lag.

Finally, the maximum correlation coefficient Rmax_lag is selected,
and the corresponding lagging month is regarded as the lagging
effect size and time scale of the pixel (Formula 5). When the Rmax_lag

lagging effect occurs between the monthly WUE and the 1-month
scPDSI in April, the WUE lagging response time scale to scPDSI is
recorded as 4 months, indicating that the drought conditions
4 months prior have a key impact on the changes in WUE.

Ri � corr WUE, scPDSI( ) 0≤ i≤ 12 (4)
Rmax lag � max Ri( )0≤ i≤ 12 (5)

where WUE represents the monthly time series from 2001 to
2020 with an i-month lag, scPDSI is the 1-month scPDSI time
series with an i-month lag, and R is the Pearson correlation
coefficient with an i-month lag.

2.4.3 Accumulation effect of scPDSI on WUE
To quantify the accumulation impact of early drying on

grassland WUE, the Pearson correlation coefficient between
monthly WUE and accumulation scPDSI was used to obtain the
scPDSI time scale corresponding to the maximum correlation (Lu
et al., 2023). Unlike the lag effect using only scPDSI, it takes
0–12 months of scPDSI to calculate the accumulation effect.

Therefore, the correlation was determined using the scPDSI
dataset and WUE pixel values from 1–12 months between
2001 and 2020.

Firstly, correlate the WUE time series with the m-month scale
scPDSI time series (0 ≤ m ≤ 12) and calculate R (Formula 6). Then,
the accumulation months of scPDSI with the highest correlation
with WUE, Rmax_comc, are considered as the time scale of
accumulation effects (Formula 7), and Rmax_comc is determined
as the accumulation effect quantity. For example, if the correlation
between monthlyWUE and 3-month scPDSI is the highest, then the
time scale of accumulation effects is recorded as 3 months,
indicating that the accumulated 3-month drought conditions
before the current month have the greatest impact on WUE.

Rm � corr WUE,mscPDSI( ) 0≤ i≤ 12 (6)
Rmax acc � max Ri( ) 0≤ i≤ 12 (7)

where m is the accumulation time scale of scPDSI, mscPDSI is the
scPDSI time series with m accumulation months, and Rm is the
Pearson correlation coefficient between WUE and mscPDSI.

3 Results

3.1 Temporal-spatial patterns of WUE

3.1.1 Spatial characteristics of WUE
The spatial distribution and trend of WUE in BC and YM

from 2001 to 2020 are shown in Figure 3.Revealed that the
average annual WUE values in BC ranged from 1.25 to
3.33 gC m−2 mm−1, while in YM, they ranged from 1.75 to
3.71 gC m−2 mm−1. The spatial distributions in both regions
were similar, with WUE exhibiting significant spatial
heterogeneity within each region. In BC, high WUE values
were predominantly found at altitudes above 2,000 m, where
WUE exceeded 2.5 gC m−2 mm−1, accounting for approximately
28.59% of the county’s total vegetated area. Because the
vegetation type in the high altitude area of BC is mainly forest
land, and the WUE of forest land is high, WUE in high altitude
areas is higher than that in low altitude areas (Wang et al., 2023).
In contrast, YM exhibited high WUE values primarily in areas
below 2,000 m, with WUE exceeding 2.25 gC m−2 mm−1 and
accounting for approximately 88.51% of the county’s total
vegetated area. This is due to the influence of human activities
on the high altitude area of YM (Di et al., 2006), which results in
lower WUE compared to flat terrain areas. From 2001 to 2020 the
WUE in BC and YM showed an increasing trend, the increasing
rate of WUE was 0.012 gC m−2 mm-1 a−1 and
0.008 gC m−2 mm−1 a−1, respectively. YM showed no
significant increase trend, accounting for 76.02% of the total
vegetation area in YM, but a large area increased significantly in
the southeast of YM.

Among the four land use types in BC and YM (Tables 2, 3), the
average WUE value of forestland in BC is the highest, which is
2.68 gC m−2 mm−1, and the average WUE value of grassland is the
lowest, which is 2.57 gC m−2 mm−1; YM is different from BC, and the
average WUE value of cropland is the highest, which is
2.89 gC m−2 mm−1, and the average WUE value of shrubland is the
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lowest, which is 2.75 gC m−2 mm−1. In different land use types, the
change rate of vegetationWUE in the two areas has obvious differences,
but all show an increasing trend. As shown in Table 3, the highest
averageWUE growth rate in BC is grassland (0.0148 gCm−2 mm−1 a−1),
followed by shrubland (0.0144−gC m-2 mm−1 a−1), and cropland
(0.0116 gC m−2 mm−1 a−1), the lowest growth rate of WUE was
forestland, the average growth rate was 0.0099 gC m−2·mm−1 a−1. In
YM, the land use type with the highest WUE average growth rate was
forestland (0.0087−gC m-2 mm−1 a−1), followed by grassland
(0.0081 gC m−2 mm−1 a−1), shrubland (0.0070−gC m−2 mm−1 a−1),
and cropland (0.0060−ggC m-2 mm−1 a−1). Generally speaking, the
growth rate of different land use types in BC is higher than
that in YM.

3.1.2 Temporal variation characteristics of WUE
During 2001–2020, the interannual variation of WUE in BC and

YM fluctuates obviously, but the overall trend is downward
(Figure 4). The annual average WUE value of BC and YM is the
largest in 2012, 2.81 gC m−2 mm−1 and 3.08 gC m−2 mm−1

respectively; the annual average WUE value of BC and YM is the

smallest in 2016, 2.32 gC m−2 mm−1 and 2.58 gC·m−2 mm−1

respectively; The average WUE values of YM and BC during the
past 20 years were 2.84 gC m−2 mm−1 and 2.59 gC m−2 mm−1,
respectively. This indicated that the two regions at the same latitude
lost 1 mm of water through evapotranspiration at the same time, and
the amount of CO2 fixed by vegetation in YM was 0.25 g more than
that in BC. In BC, the water stress of vegetation decreased at a rate of
0.012 gC m−2 mm−1, and YM also decreased at a rate of
0.008 gC m−2 mm−1, which was slightly lower than that of BC.
This indicated that the water stress of vegetation in BC was
obviously improved due to the existence of “introducing
Erhu into BC,” which changed the water use strategy of
vegetation in BC.

The WUE of the two places fluctuates and decreases in general
within a year, with the averageWUE of YM being 2.83 gCm−2 mm−1

and BC being 2.58 gC m−2 mm−1 (Figure 5); during 2001–2020, the
WUE of the two places increases from August to April of the next
year, and the WUE values of the two places are generally higher due
to the influence of water stress from January to April, among which
the WUE of BC reaches the annual peak value of 3.15 gC·m−2 mm−1

in April; From August to December, affected by the decrease of
precipitation, the vegetation water use strategy changed, among
which WUE in YM reached the annual peak value of
4.02 gC m−2 mm−1 in October; From May to July, the
precipitation in YM decreased, and July was the peak of
precipitation in both places. Under the condition of sufficient
water, vegetation growth was no longer restricted by soil water
content, and soil ineffective evapotranspiration increased.
Therefore, WUE in July was the lowest value of the whole year,
among which, YM was 2.23 gC m−2 mm−1, BC was
2.08 gC m−2 mm−1. From the overall mean value of the two
places, WUE in YM was generally higher than that in BC.

FIGURE 3
Mean WUE in BC and YM in the past 20 years. (A) Mean WUE in BC; (B) Mean WUE in YM.

TABLE 1 scPDSI Drought severity.

Drought severity scPDSI

No drought −0.99∽0.99

Slight drought −1.99∽-1.00

Medium drough −2.99∽-2.00

Serious drought −3.99∽-3.00

Extreme drought ≤ −4.00
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3.2 Lag effects of scPDSI on WUE

In BC and YM, the lag effect of scPDSI on WUE accounts
for 13.41% and 13.29% of the positive correlation area,
respectively, while the negative correlation area accounts for
86.59% and 86.71% respectively (Figure 6). The lag effect of
scPDSI on WUE in BC is negative correlation, but there is a large
positive correlation area in the northeast; YM is similar to BC,
and also negative correlation, but there is a large positive

correlation area in the south of Yangjie Town. By comparing
the spatial distribution characteristics of the month with
the maximum lag effect in the two regions (Figure 7), it
can be found that about 81.58% of the vegetation in BC
responds to drought with a time lag of 0–2 months, while
about 64.74% of the vegetation in YM shows a time lag
response in the same period. These results indicate
that vegetation in BC is more sensitive to drought than
that in YM.

Further analysis of the vegetation area showing lag effects in the
two regions shows that there are significant differences in the lag
time scale and lag effect intensity of different vegetation types on
drought (Table 4). In BC, the main lag time of WUE affected by
drought was 0 months, but in YM, the lag time of WUE affected by
drought was 2–4 months. For forestland, the main lag time in BC is
0–2 months, while in YM it is 0 months, but there are also lag times
of 6–7months and 11–12months. The lag effect intensity of drought
on the four land use types in the two regions was mainly negative,
but in the forestland of BC and YM, there was a large area of
positive effect, of which the positive effect area accounted for
28.59% in BC and 24.09% in YM. Because both areas belong to
dry-hot valley climates, vegetation is subjected to long-term
water stress and has a strong memory effect on drought, so
short-term drought has relatively little effect on vegetation WUE
(Keersmaecker et al., 2015).

FIGURE 4
Interannual variations in WUE from 2001 to 2020 in BC and YM.

FIGURE 5
Intra-annual variations in WUE from 2001 to 2020 in BC and YM.

TABLE 2 WUE of different land use types in BC and YM in the past 20 years.

Region Cropland Forestland Grassland Shrubland

BC Annual WUE/(gCm−2mm−1) 2.47 2.68 2.57 2.59

YM 2.89 2.87 2.78 2.75

TABLE 3 Annual WUE growth rate of different land use types in Binchuan County and Yuanmou County in recent 20 years.

Region Cropland Forestland Grassland Shrubland

BC Annual WUE/(gCm−2mm−1a−1) 0.0116 0.0099 0.0148 0.0144

YM 0.0060 0.0087 0.0081 0.0070
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FIGURE 6
Maximum correlation coefficient of hysteresis effect between BC and YM. (A) Maximum correlation coefficient of hysteresis effect in BC; (B)
Maximum correlation coefficient of hysteresis effect in YM.

FIGURE 7
The maximum correlation coefficient of the lag effect in BC and YM corresponds to the number of lag months. (A) The maximum correlation
coefficient of the lag effect in BC corresponds to the number of lag months; (B) Themaximum correlation coefficient of the lag effect in YM corresponds
to the number of lag months.
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FIGURE 8
Maximum correlation coefficient of accumulation effects between BC and YM. (A)Maximum correlation coefficient of accumulation effects in BC;
(B) Maximum correlation coefficient of accumulation effects in YM.

TABLE 4 Proportion of the area of lagging months for different land use types.

Region Type 0 1 2 3 4 5 6

YM Cropland 54.38% 1.74% 9.04% 9.39% 4.31% 1.18% 3.62%

Forestland 54.72% 2.74% 2.40% 5.20% 3.97% 1.62% 6.04%

Grassland 65.55% 0.50% 1.09% 4.03% 4.29% 1.30% 4.62%

Shrubland 83.13% 0.00% 1.20% 1.20% 3.61% — 1.20%

7 8 9 10 11 12

Cropland 2.09% 0.49% 1.60% 3.69% 3.41% 5.08%

Forestland 4.64% 1.84% 3.07% 2.74% 4.02% 6.99%

Grassland 1.13% 0.84% 1.01% 2.35% 3.49% 9.79%

Shrubland 0.00% — 1.20% 4.82% 0.00% 3.61%

0 1 2 3 4 5 6

BC Cropland 91.39% 0.40% 0.89% 0.56% 0.40% 0.68% 2.66%

Forestland 52.39% 4.75% 8.78% 3.55% 3.87% 4.81% 2.79%

Grassland 88.82% 0.41% 1.23% 0.92% 1.13% 0.51% 2.26%

Shrubland 87.37% 0.64% 2.14% 1.07% 0.64% 0.43% 1.93%

7 8 9 10 11 12

Cropland 0.68% 0.12% 0.48% 0.24% 0.48% 1.01%

Forestland 3.52% 1.79% 2.52% 2.20% 3.49% 5.52%

Grassland 0.31% 0.51% 0.21% 0.21% 0.82% 2.67%

Shrubland 1.07% 0.64% 0.21% 0.86% 0.64% 2.36%
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FIGURE 9
The maximum correlation coefficient of the accumulative effect between BC and YM corresponds to the number of lag months. (A) The maximum
correlation coefficient of the accumulative effect in BC corresponds to the number of lag months; (B) The maximum correlation coefficient of the
accumulative effect in YM corresponds to the number of lag months.

TABLE 5 The portion of the cumulative monthly area of different land use types.

Region Type 0 1 2 3 4 5 6

YM Cropland 73.16% 1.46% 1.18% 1.39% 2.16% 1.18% 1.04%

Forestland 71.21% 3.07% 1.62% 0.73% 1.23% 1.06% 1.40%

Grassland 83.28% 0.80% 0.50% 0.29% 0.92% 0.38% 0.55%

Shrubland 91.57% — 1.20% — — — —

7 8 9 10 11 12

Cropland 1.60% 1.81% 0.83% 4.38% 1.04% 8.76%

Forestland 1.96% 0.89% 1.51% 3.19% 1.96% 10.17%

Grassland 1.05% 0.46% 0.63% 3.15% 1.64% 6.34%

Shrubland — — — 2.41% — 4.82%

0 1 2 3 4 5 6

BC Cropland 96.66% 0.56% 0.40% 0.16% 0.28% 0.20% 0.24%

Forestland 60.99% 5.66% 6.08% 2.17% 2.79% 2.73% 1.56%

Grassland 94.15% 0.82% 0.41% 0.31% 0.62% 0.41% 0.21%

Shrubland 92.29% 0.43% 1.71% 1.07% 0.21% 0.00% 0.43%

7 8 9 10 11 12

Cropland 0.24% 0.08% 0.16% 0.08% 0.04% 0.89%

Forestland 3.05% 1.67% 1.79% 1.56% 0.97% 8.98%

Grassland 0.72% 0.41% 0.21% 0.21% 0.10% 1.44%

Shrubland 0.00% 0.00% 0.43% 0.43% 0.21% 2.78%
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3.3 Accumulation effects of drought onWUE

In BC and YM, the accumulative effect of scPDSI on WUE
accounted for 12.38% and 8.03% of the positive correlation area,
respectively, while the negative correlation area accounted for
87.62% and 91.97% respectively. On the whole, the high-value
areas of Rmax_acc in the BC are mainly concentrated in the
northeast of the region, and the high-value areas of Rmax_acc in
YM are mainly concentrated in the southeast of the region; the areas
with negative correlation distribution are the same in both places,
and they are both concentrated in relatively gentle areas (Figure 8).
The accumulative effect of scPDSI on WUE was negatively
correlated in both regions because of the abundant water
resources and the relatively small impact of drought on
vegetation. Further analysis of the cumulative effect areas in the
two regions (Figure 9) shows that the cumulative effect of 0-month
scale is the most significant in both places, accounting for 81.93% in
BC and 77.75% in YM; meanwhile, the cumulative effect of
12 months scale in both places also accounts for a large
proportion. This indicates that vegetation in the two regions is
sensitive to short-term drought, but due to the existence of water
replenishment projects, the impact of drought on local vegetation
growth needs a long time to accumulate.

In BC and YM, there were significant similarities in cumulative
time scale and cumulative effect and lag effect of drought among
different land use types in the cumulative effect area. The land use
types of the two regions generally show cumulative effects of
0 months on different cumulative time scales, and among the
four land use types, the cumulative area proportion of 0 months
is generally slightly higher than the lag effect of 0 months (Table 5).
In BC, the main cumulative time scale of the other three land use
types was 0 months except for forestland, which was 0–2 months. In
YM, the main cumulative time scale of cropland is 0 months, but
there is also a certain distribution in 10–12 months; the main
cumulative time scale of forestland is also 0 months, but there is
a large area of cumulative effect in 12 months; the cumulative time
scale distribution of the remaining two land use types is similar to
cropland, mainly 0 months, and a small amount of distribution in
10–12 months. The cumulative effects of drought on the four land
use types in the two areas were negative on the whole. However,
there were large areas of positive effects in the forestland of BC and
YM, among which the positive effect area accounted for 29.12% in
BC and 20.57% in YM.

4 Discussion

4.1 Temporal-spatial characteristics of WUE
in BC and YM

BC and YM, located in the dry-hot valley zone of the Jinsha
River Basin, exhibit similarities in geomorphology, vegetation, and
climate. While WUE (WUE) is increasing in both BC and YM, the
rise is not significant. BC water projects have improved soil
moisture, increasing ET and reducing stomatal conductance,
along with warmer temperatures, which has enhanced
vegetation’s carbon sequestration and WUE (Li, 2018). In YM,
stable soil moisture from natural watersheds and positive

environmental feedback enhance vegetation WUE. Among the
four land use types in BC, the highest WUE value is in high-
altitude forests and the lowest WUE is in low-altitude grasslands.
Forests possess high canopies, low resistance, strong vapor
transport, and better interception than grasslands and farmlands
(Yu et al., 2024), resulting in higher ET and WUE due to their
complex structure, larger leaf area, and robust CO2 fixation. In the
YM region, cropland demonstrates the highest WUE, while
shrubland shows the lowest. The central area, characterized by
flat terrain and stable drainage basins, has good vegetation
coverage and ample water sources, predominantly consisting of
farmland and grassland. Human activities have expanded the
cultivated area in the river valleys, leading to a complex crop
structure and enhanced plant carbon fixation capacity. As a
result, WUE in this area is higher than in other regions (Yu
et al., 2019). The changes emphasize the importance of
evaluating the impact of different land use types on WUE during
drought mitigation and adaptive management. It is also crucial to
apply effective vegetation management and strategies for
distributing water resources.

Over the past 20 years,WUE of BC and YM have experienced a
general decline, which can be attributed to warming and drying
trends in the dry and hot valleys, coupled with inadequate water use
regulation by vegetation due to climatic factors. In 2012, with rising
temperatures and declining precipitation, WUE reached its
maximum levels in BC and YM. However, the feedback
mechanisms to drought differed. The “Yin-Bin” irrigation project
at BC has significantly improved the water resource conditions,
especially for agricultural irrigation, which plays a positive role in
regulating the local climate and water cycle. In BC, suitable
temperature promoted carbon fixation capacity, low precipitation
made vegetation stomata small, and vegetation transpiration
weakened, while water conservancy facilities reduced drought
impact on the ecological environment, so WUE was still
increasing and the value was the largest, including the period
after 2012 (Zhang and Shan, 2002). The implementation of the
irrigation project may have affected the transpiration and stomatal
conductance of vegetation by increasing soil moisture, thereby
affecting the WUE. In YM, drought stress aggravated vegetation
water stress, water use formed memory and adaptation to drought,
vegetation drought tolerance increased, resulting in increased CO2

content fixed by unit water, and WUE was the largest. After 2012,
under the combined effect of overall temperature decrease and
precipitation increase, drought stress weakened, but due to the
memory effect of vegetation on drought, WUE continued to
decrease, so the WUE of both regions showed the lowest
value in 2016.

The inter-annual variation of WUE highlights the adaptation of
vegetation water consumption and productivity to the natural
environment and human intervention process, while the pattern
of intra-annual variation can more intuitively reflect the adaptation
of different vegetation types to seasonal changes (Wang et al., 2023;
Li et al., 2003). Yunnan is located at the low latitude plateau, affected
by monsoon climate and topography, the unique characteristics of
dry valley climate, resulting in droughts high frequency and long
duration in BC and YM, mainly concentrated in winter and spring
(December to May of the next year). From November to April of the
following year, the low ET caused by low precipitation, and relatively
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stable temperatures in BC and YM led to stable GPP. From May to
July, influenced by the summer rainy season, precipitation increased
significantly, stomatal conductance increased and transpiration
enhanced, while the WUE decreased because of the weak carbon
fixation capacity of vegetation at the development stage. From
August to November, the influence of summer drought
diminished as the warm and humid southwest airflow brought
abundant moisture, alleviating drought conditions. Consequently,
vegetation WUE in both regions exhibited an increasing trend from
August through April of the following year.

4.2 Lagged effect of drought on WUE

After the drought event, the carbon-water coupling mechanism
of the ecosystem remains affected by drought, leading to a “memory
effect” in vegetation. The effect causes chaotic responses, resulting in
multiple response states over an extended period, including lagged
and cumulative effects on WUE that persist long after the drought.
This memory effect may cause vegetation to exhibit varying
adaptability and resilience to subsequent environmental changes,
influencing its long-term water-carbon cycle and productivity (Ma
et al., 2024; Sun et al., 2020). Pearson correlation analysis was
employed to examine the relationship between scPDSI and WUE
in BC and YM.

The lag effect of scPDSI onWUE in BC was 0 lag, and the largest
cropland (91.39%), which is caused by the single planting structure
of cash crops.The main cash crop in Binchuan is grapes, meaning
that even small changes in water availability can lead to significant
changes in productivity. This sensitivity is partly due to the fixed
water consumption patterns and the high water demand during
critical growth stages (Liu, et al., 2025). While, the longest lag
(12 months) was forestland (5.52%), based on the strong water
capacity, it is weaker to drought stress than cropland, grassland and
shrubland, and forestland (Müller and Bahn, 2022; Yu et al., 2019).

YM, the land type with 0 hysteresis between scPDSI and WUE,
wasmainly shrubland (83.13%). The vegetation structure in this area
is single, the vertical difference is significant, and the soil loss at high
altitudes is serious. Thus, shrublands’ WUE is highly sensitive to
drought feedback (Cristiano et al., 2020; Jiang et al., 2022). While,
longest lag (12 months) was (9.79%) farmland, which is due to the
complex agricultural structure of Yuanmou County, in the process
of environmental changes, the vegetation water utilization efficiency
is remain stable (Du et al., 2023).

4.3 Accumulation effect of drought on WUE

The response mechanism of WUE to drought was
significantly different among different land use types, and the
effects of water stress on vegetation growth were persistent and
cumulative. Cumulative effect can reflect the continuous
influence of drought on vegetation growth from beginning to
end, and comprehensively consider the interaction between
WUE and drought of different land use types (Liu et al., 2017;
Lu et al., 2023; Wen et al., 2019). In BC the most significant
cumulative effects of scPDSI on WUE was cropland with 0-
accumulation (91.39%),and the forestland with the longest

feedback time for cumulative effects is forestland, which is
consistent with the lag- effects of scPDSI and WUE in this
area (Müller and Bahn, 2022; Yuan et al., 2024). The weakest
accumulation effect of scPDSI on WUE in BC is in forest land
(5.52%), which was least affected by human activities, regulates
its own ecosystems, and is less sensitive to drought than other
land use types (Xu et al., 2019). The cumulative effect of scPDSI
on WUE in YM was 0 accumulation and the largest area is
shrubland (91.57%); the cumulative effect of scPDSI on WUE
with 12 accumulation was forestland (10.17%).The cumulative
effect of forestland on drought was weaker than that of cropland,
which indicated that the cumulative feedback mechanism of
cropland ecosystem to drought was less stable than that of
forestland ecosystem under the influence of long-term
drought. All the above shows that forestland shows low
cumulative effects under drought, while the construction of
artificial forests has a positive impact on improving soil water
conservation and soil erosion, thereby enhancing the WUE
stability and drought resistance of regional vegetation (Zhao
et al., 2023). These findings have important implications for
understanding and coping with drought effects in the biology
of global change (Yang, 2007).

5 Conclusion

In this study, the GPP and ET products were based on MODIS,
to estimate spatiotemporal variation of WUE in BC and YM from
2001 to 2020. Combined with scPDSI, the lag and accumulation
effects of WUE on drought in BC and YM were analyzed. The main
conclusions are as follows:

(1) From 2001 to 2020, the average WUE in BC was
2.59 gC m−2 mm−1, and the average WUE in YM was
2.84 gC m−2 mm−1. The spatial distribution of the two
regions is similar, and the WUE in the area shows
significant spatial heterogeneity.

(2) In the past 20 years, the trend ofWUE changes in BC and YM
has shown a slow increase, with a growth rate of
0.012 gC m−2 mm−1 a−1 in BC and 0.008 gC m−2 mm−1 a−1

in YM. However, the overall WUE in YM is higher than
that in BC.

(3) The lag effect of WUE on drought in different land use types
in BC and YM is mainly manifested as 0 lag. Due to the
influence of agricultural structure, the sensitivity of cropland
WUE to drought in BC is stronger than that in YM.

(4) The accumulation effect of WUE on drought in different land
use types in BC and YM is mainly manifested as zero
accumulation. The vegetation structure of forest land is
stable, and the sensitivity of forest land to drought in both
areas is the weakest.
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The typical sand-fixing plants in
the Ulan Buh desert-oasis area
significantly changed the
distribution pattern of surface
sediments
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Ecosystem Conservation and Restoration, State Forestry and Grassland Administration of China, Inner
Mongolia Agricultural University, Hohhot, China, 4College of Tourism, Inner Mongolia University of
Finance and Economics, Hohhot, China, 5Water Conservancy Development Center of Inner Mongolia
Ancient Autonomous Region, Hohhot, China, 6Ordos Forestry and Grassland Development Center,
Ordos, China

Vegetation increases surface roughness, reduces wind speeds and decreases
sand carrying capacity, thereby effectively intercepting wind-sand flows and
promoting sand deposition. Exploring the distribution of sand-fixing plant
sediment particles and the characteristics of plant morphology parameters in
the desert-oasis transition zone can provide a certain theoretical foundation for
regional ecological vegetation construction and desertification control. In this
paper, the particle size of surface sediments (0–2 cm) under cover of five typical
sandy vegetation in the desert-oasis transition zone at the northeastern edge of
the Ulan Buh Desert was investigated, and the effects of plant morphometric
parameters on the grain size distribution of sediments were analyzed. The results
show: (1) Plant spatial configuration significantly influenced surface sediment
characteristics, with Nitraria tangutorum having the largest crown width and
number of branches with 283 cm and 385 branches compared to the other four
species. In unit area, the degree of porosity from large to small is: Psammochloa
villosa > Agriophyllum squarrosum > Phragmites australis > Artemisia ordosica >
Nitraria tangutorum. On the whole, the interception effect of N.tangutorum
shrub on transit airflow is more prominent. (2) The grain size distribution of
the sandymaterial in the study area is unimodal with good particle sorting. Due to
the interception of N. tangutorum and A. ordosica shrubs, the contents of
medium sand and fine sand in the mechanical composition of sediments in
the surface layer of vegetation-covered dunes decreased significantly, while the
contents of clay, silt, and very fine sand increased significantly (P < 0.05);
Compared to the bare dunes, the particle sorting becomes worse, and the
particle size frequency curve shifts to a bimodal state with a positively skewed
trend and a lower kurtosis value. Overall, the sediment grain composition in order
of coarseness to fineness was: CK > P. villosa > A. squarrosum > P. australis > A.
ordosica >N. tangutorum. (3) The mean grain size of sediments under vegetation
coverage was positively correlated with sortability, kurtosis and skewness (P <
0.01). Mean particle size and sortability significantly correlated negatively with
kurtosis and skewness (P < 0.01). (4) Mean grain size and sortability were
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significantly positively correlated with plant crown width and branch number and
significantly negatively correlated with porosity (P < 0.05). Skewness and kurtosis
were significantly negatively correlated with plant crown width and branch number
and significantly positively correlated with porosity (P < 0.05). (5)In this paper, the
mean grain size of the sediment is used as an indicator of the above-mentioned
plant windbreak and sand fixation. It is concluded that the lower leaves of N.
tangutorum and A. ordosica are dense, the porosity is minor, and the particle
composition of the sand material is fine, forming dense vegetation shrubs on the
dunes, which is more powerful in windbreak and sand fixation. Screening plants
with strong vitality and outstanding sand-fixing capacity is important for controlling
quicksand, improving soil quality and preventing wind erosion.

KEYWORDS

sediment, grain size parameters, phytomorphological parameters, Ulan Buh desert,
distribution pattern

1 Introduction

The desert-oasis transition zone is an ecologically sensitive and
fragile area that serves as a bridge between the desert and oasis
ecosystems and assumes the important functions of promoting the
circulation of materials, energy flow, and the transmission and sharing
of information (Li et al., 2016). The desert-oasis interface at the
northeastern edge of the Ulan Buh Desert suffers from severe land
degradation due to the natural environment and long-term human
activities (Luo et al., 2022). Many natural or artificial sand-fixing
plants grow within the desert-oasis transition zone. Most of these
sand-fixing plants have simple community structure, less species
composition, relatively low vegetation cover, drought resistance,
wind erosion and sand burial resistance, etc., and have good wind
and sand blocking functions (Gao et al., 2025). Vegetation in the
transition zone can resist wind and sand erosion and has an important
ecological function in protecting the stability of the oasis ecosystem by
reducing the flow rate of wind and sand, preventing wind erosion,
fixing sand dunes, and improving the physicochemical properties of
the soil (Mayaud and Webb, 2017).

In arid wind-sand areas, the grain size distribution of wind-sand
sediments is both an important factor affecting the process of surface
wind erosion, transport, and accumulation and a result of the sorting
of near-surface winds through surface erosion and deposition (Van
Hateren et al., 2020). The loss of fine particles from the surface due
to wind-sand activities causes coarsening of surface particles,
resulting in loss of land nutrients and reduced productivity, while
the ratio of particles of different sizes influences the stability of the
particles, which also has an important impact on the intensity of
wind erosion on the surface (Guan et al., 2024). The study of grain
size distribution and sorting characteristics of wind-sand sediment
deposits is of great significance for understanding the dynamics of
near-surface sand transport, analyzing wind-sand depositional
environments, and inverting changes in wind-sand environments
(Wang et al., 2022). Soil particle size characteristics, as an important
indicator of soil physical properties, characterize the proportion and
distribution of mineral particles of different size classes in the soil.
The change of its parameters is controlled by factors such as
transport medium, transport mode, depositional environment
and climate, which can explain the transportation of particles
and then judge the evolution of the depositional environment,

and is more and more widely used in the study of land
desertification (Wu et al., 2021).

In recent years, the Ulan Buh Desert-Oasis transition zone has
been subjected to anthropogenic interference, and internal sand-
fixing plants have declined to varying degrees, affecting the stability
of the fixed dunes and thus seriously threatening the oasis ecosystem
(Hussein et al., 2021). With the degradation of sand-fixing plants,
vegetation cover decreases, soil particles gradually become coarser,
and ecological vegetation stability deteriorates (Moradi et al., 2024).
Methods of combating desertification mainly include mechanical,
chemical, and biological measures (plant measures)are the most
direct (Amiraslani and Dragovich, 2011; Khalilimoghadam and
Bodaghabadi, 2020), fundamental and practical measures in the
prevention and control of wind and sand disasters (Wang et al.,
2023). Soil particle composition, as the material basis for the growth
and development of sand-fixing plants, is important in building a
stable ecosystem. The distribution of surface vegetation strongly
influences the variability in the grain size distribution of wind-sand
sediments (Gonzales et al., 2018). The ability of plants to slow wind
speeds and reduce sediment transport is closely related to the
aerodynamic response to airflow triggered by their morphology
(Miri et al., 2017). In addition to vegetation cover, the protective
effect of shrub vegetation against surface wind erosion is impacted
by factors such as vegetation shape and plant distribution pattern
(Zheng et al., 2022). Numerous studies have shown that by
increasing the surface roughness (Jiang et al., 2024), the above-
ground part of the vegetation can, on the one hand, reduce the
surface wind speed and weaken the sand-carrying force of the wind
(Mayaud et al., 2016); on the other hand, it can intercept the wind-
sand flow and promote the sedimentation of sand particles, thus
playing a role in preventing the wind and blocking the sand (Kang
et al., 2024). In arid sandy areas, due to climate and moisture
conditions, it is difficult to achieve the ideal state of vegetation
cover, height, and shape needed to resist wind and sand hazards in a
short period. Consequently, it is of practical significance to analyze
the influence of plant morphological parameters on sediment grain
size distribution and select well-adapted sand plants for specific
areas to maintain ecological stability of the transition zone and
recovery of desert sandy soil.

Under field conditions, most of the research is carried out on the
impacts of vegetation cover and structural characteristics on wind
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erosion, and some scholars have found through field research that
adjusting the shrub structure of the same configuration of windbreak
forests can improve their effectiveness in windbreaks and sand
fixation (Zhao et al., 2024). With the deepening of research in
desertification control, the prevention of wind and sand fixation
through plants and the protection of soil quality in sandy areas have
become the focus of research (Guo et al., 2024). However, there are
fewer studies on the effect of individual morphology of shrub plants
on near-surface windbreaks and sand fixation, especially on the
effect of morphological characteristics of sand-fixing vegetation on
sediment grain-size distribution in the transition zone of Ulan Buh
Desert-Oasis. In arid and sandy areas, the distribution of particle size
has a significant effect on the intensity of wind erosion, material
transport, and accumulation patterns on the surface and is the result
of the natural screening of particles by near-surface winds through
the complex process of erosion and deposition (Zhang et al., 2024).
Taller plants and wider canopies promote the deposition of more
sand particles, especially fine particulate matter, which is more
readily immobilized by vegetation, thereby altering the sediment
grain size distribution. The shading effect of vegetation branches and
leaves reduces the scouring and transport of surface sand particles by
wind-sand currents and promotes the deposition of sand particles
near the vegetation, forming wind-shadowed dunes, which further
enhances the sand-fixing capacity (Dupont et al., 2014). Therefore,
the study of the effect of plant morphological indicators on sediment
grain size distribution can quickly infer the dynamic changes of
wind-sand transport near the ground, which is important for
evaluating the wind and sand-fixing ability of different plant
species (Cao et al., 2022).

In this study, we analyzed the grain size distribution of
sediments and the characteristics of plant morphological
parameters under cover of five desert plants in the Ulan Buh
Desert-Oasis transition zone in the Inner Mongolia Autonomous
Region, China, with the aim of: 1) Characterize the grain size
distribution of surface sediments after types of plants have
covered the surface; 2) To explore the relationship between
sediment grain size parameters and plant morphological
parameters; 3) To investigate the effect of plant morphological
parameters on sediment grain size distribution. To analyze the
role of different sand-fixing plants in the desert-oasis transition
zone on the surface wind and sand activities, to provide a specific
scientific basis for the screening of wind and sand-fixing plant
species in the study area.

2 Materials and methods

2.1 Study area

The study area is 20 km southwest of Dengkou County, Inner
Mongolia Autonomous Region, China (40.191°N, 106.839°E). The region
is part of a temperate continental climate zone with strong northwesterly
winds and frequent dust storms in the spring. The average annual
temperature is stable at 7.5~8.1°C, the average annual precipitation is
142.7mm, and the potential evaporation is 2258.8mm.Themean annual
wind speed is about 3.7 m/s, and the number of days with high winds is
10~32 days per year, especially during March ~ May in spring, and
northwesterly and southwesterly winds dominate the wind direction.

Mobile dunes of 6 ~ 15 m are widely distributed in the study area, with
dune densities exceeding 0.8. The hard red clayey texture is widely
distributed in the lowlands between the mounds and is covered by a
sandy layer of varying thickness, ranging from10 to 50 cm. Pioneer plants
such as Psammochloa villosa, Agriophyllum squarrosum, Artemisia
ordosica, Phragmites australis, Nitraria tangutorum, etc., are scattered
on the dune slopes. In the distribution area of N.tangutorum shrub, the
stability of sand dunes was significantly improved, and the height of these
sandbags was primarily concentrated in the range of 0.5~5 m, and their
surface was covered with finer-grained sandy material with a softer
texture. The vegetation distribution in the study area is characterized as
shown in (Table 1).

2.2 Sample collection

The selected sample site is a typical flat bare sandy land with
homogeneous topography, where vegetation is the dominant factor
influencing the wind speed and direction in the area. Sample plots
were laid out to minimize the distance between plots while meeting
the ecologicalminimum interval scale. Differences in the subsurface of the
samples are mainly caused by differences in vegetation, the presence of
which leads to changes in airflow and wind speed and direction, making
vegetation the most significant control of the subsurface. Field
measurements and sampling were conducted in late March 2024,
which is usually the strongest wind in the study area in 1 year.
Different sand-fixing plants (N. tangutorum, A. ordosica, P. australis,
A. squarrosum, P. villosa) in the plot were selected as the research target,
and the bare dunes were selected as the control (CK). Five 5 m × 5 m
sample squares were set up for each plant species to be investigated, and
four plants with good growth conditions and uniform morphology were
selected as standard plants within each sample square, totaling
100 standard plants. Crown spread and plant height were measured,
and the number of branches on the whole plant and the sparsity of the
lateral projection of the plant were measured by photographic methods
(Torita and Satou, 2007). A total of 20 plants of each species were
measured, distributed over a 2 km2 area. Figure 1 shows a rose diagram of
sand fixing plants and wind direction in the study area (Figure 1).
Photographic method: Lateral projection images of plants were taken
under standard lighting conditions using a high-resolution digital camera.
After denoising and contrast enhancement preprocessing, the separation
of pore space from plant tissues was achieved by threshold segmentation.
And the image processing software was used to calculate the pore area
and the total projected area, and finally the porosity was calculated by the
ratio of pore area to total projected area. To ensure the quality of the
images and the accuracy of the porosity measurements, the photographs
were taken under conditions where the sky was mostly covered with
clouds but with a small amount of blue sky still visible, the light was soft
and there was no noticeable harsh sunlight or dark shadows, there was no
precipitation, there was no wind, and the cloud cover was stable. The
porosity dataweobtained is not in a particular direction, but is the average
value in each direction calculated by selecting plants with relatively
uniform growth and conformation, photographing them from
multiple angles in eight directions, and combining them with
advanced digital image processing algorithms.

Concentric circles were drawn around the base of a single plant
as a core, with the inner circle radius being half the average crown
width of the plant and the outer circle radius coinciding with the
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average crown width. Sediment samples with a surface depth of 2 cm
were taken at four directional points, east, south, west, and north of
the concentric circles. For the sampling of shrub sand piles, the
center point of the shrub was used as the datum to ensure that the
sampling area did not extend beyond the boundaries of the shrub,
and sediment samples were collected at the appropriate depth in
each direction as described above (Figure 2). All sediment samples
beneath the same single plant were combined and thoroughly mixed
to produce a mixed sediment sample of approximately 50 g. Twenty
mixed samples were ultimately collected from each plant. Twenty
bare dune samples were also collected as controls, for 120 mixed
sediment samples. Winds in the study area are responsible for the
transport of sandy material, surface erosion and accretion in
multiple directions, but we are primarily concerned with wind-
sand deposition processes dominated by the plant canopy itself.

Concentric circle sampling covering multiple wind directions can
eliminate the interference of a single wind direction on the sampling
results, thus reflecting more comprehensively the integrated
influence of plants on wind-sand deposition, revealing
comprehensively the role of plants in regulating airflow and
sediment, and providing a scientific basis for the study of spatial
heterogeneity of wind-sand deposition.

2.3 Sediment sample determination

The collected samples were placed in a laboratory environment
with smooth air circulation to dry naturally. After removing
impurities, coarse particles larger than 2,000 μm were sieved
through a 2-mm sieve. Then, ultrapure water and H2O2 solution

TABLE 1 Characteristics of vegetation distribution in the study area.

Plant species Habitat Status of distribution Density/(Plant.m2)

P. villosa Mobile sand dune Independent distribution 0.12

P. australis Mobile sand dune Community distribution 0.41

A. squarrosum Mobile sand dunes and semi-fixed sand dunes Independent distribution 0.22

A. ordosica Mobile sand dunes and semi-fixed sand dunes Community distribution 0.23

N. tangutorum Semi-fixed sand dunes and fixed sand dunes Community distribution 2.54

Note: Five 5 m × 5 m quadrats were investigated for each plant.

FIGURE 1
Photographs of sand-fixing plants in the study area and wind rose chart.
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were added and left for 24 h to remove organic matter. When no
more bubbles are generated in the beaker, place an appropriate
amount of the sample in the oven, heating it to dryness, which is
used to volatilize all the residual H2O2 solution. The samples to be
tested were placed in a stationary device, water and 10% HCL
solution were added to dissolve the carbonates, and the
supernatant was pipetted out after 24 h of stationary time. Test
the pH of the sample with a pHmeter by adding distilled water to the
pH meter in the proper proportion until the pH is nearly neutral.
The particle size composition of each sediment sample was
determined independently three times using a Mastersizer
3000 high-precision laser particle sizer, and the arithmetic mean
of the measurements was subsequently calculated to ensure the
accuracy and reliability of the particle size data.

2.4 Particle size parameter model

Based on the Udden-Wenworth particle size classification
system, the sediments were classified into six different grain sizes,
namely, clay (<4 μm), silt (4–63 μm), very fine sand (63–125 μm),

fine sand (125–250 μm), medium sand (250–500 μm), and coarse
sand (500–1,000 μm). The Udden-Wentworth system delineates
sand grains in great detail and accurately describes their grain size
distribution, which helps to analyze the source of sand grains, the
transport process and the depositional environment. In addition, the
system is closely related to the wind transport capacity and
depositional environment, which can better reveal the transport
and deposition mechanism of sand grains in the Ulan Buh Desert
under the action of wind. The Folk Grain Size Classification System
focuses more on a combination of sand shape and sortability in the
subdivision of the sand fraction, and is suitable for scenarios where
sedimentary rock formation processes are being studied or where a
comprehensive characterization of the sediment is required. The
Krumbein phi (φ) system uses a logarithmic transformation, which
is suitable for statistical analysis and can make the data more
consistent with a normal distribution, facilitating hypothesis
testing and modeling. Because particle size studies in the Ulan
Buh Desert first require clarification of the size distribution of
sand grains and their relationship to wind and sand activity, the
use of the Udden-Wentworth system meets the need and avoids
unnecessary complexity.

FIGURE 2
Schematic diagram of sample collection around the plant (using A.squarrosum as an example).

TABLE 2 Granularity parameter grading standard.

σ SK Kg

≤0.35 Excellent sortability −1.0~−0.3 Extreme negativity ≤0.67 Very wide

0.35~0.5 Very good sortability −0.3~−0.1 Negative skewness 0.67~0.90 Wide

0.5~0.71 Better sortability −0.1~0.1 Asymmetric 0.90~1.11 Medium

0.71~1.00 Medium sortability 0.1~0.3 Positive 1.11~1.56 Narrow

1.00~2.00 Poor sortability 0.3~1.0 Extremely positive 1.56~3.00 Very narrow

2.00~4.00 Very poor sortability >3.00 Extremely narrow

>4.00 Extremely poor sortability
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According to the Udden-Wenworth particle size classification
system, combined with the Kum-dein conversion method, these
particle diameters (D) are converted into Φ values according to
Equation 1 by performing logarithmic conversion to facilitate more
uniform analysis and comparison (Krumbein, 1934).

Φ � −log2D (1)

The particle size parameters were calculated from Equations 2–5
using the Folk-Ward plotting method: mean particle size (Mz),
sorting coefficient (σ), skewness (SK) and kurtosis (Kg) were
calculated (Folk and Ward, 1957). Figures 4a–d were plotted and
analyzed according to the grading criteria for particle size
parameters (Table 2).

Mz � Φ16 +Φ50 +Φ84

3
(2)

σ � Φ84 −Φ16

4
+ Φ95 − Φ5

6.6
(3)

SK � Φ16 +Φ84 − 2Φ50

2 Φ84 −Φ16( ) + Φ5 + Φ95 − 2Φ50

2 Φ95 −Φ5( ) (4)

Kg � Φ95 − Φ5

2.44 Φ75 −Φ25( ) (5)

where: Φ5, Φ16, Φ25, Φ50, Φ75, Φ84, Φ95 are the corresponding
quartiles of the grain size distribution.

Mean particle size (Mz) characterizes the average distribution
of soil particle size and is commonly used in studies of particle
deposition patterns and in tracking particle movement processes.
The sorting coefficient (σ) indicates the degree of discrete
distribution of soil particles; the smaller its value indicates that
the more concentrated the distribution of soil particles, the better
the particle sorting. Skewness (SK) reflects the symmetry of the
frequency curve of soil particle size, indicating the distribution
characteristics of soil particles. Kurtosis (Kg) is a parameter of the
concentration degree of soil grain size distribution on both sides of
the average particle size, which represents the ratio of the tail
expansion degree to the middle expansion degree of the frequency
curve or the ratio between the two sides of the soil particle
frequency curve and the sorting degree of the middle part. It
can quantitatively measure the width and steepness of the peak
shape of the soil particle frequency distribution curve. In general,
the larger the Kg value, the stronger the peak sharpness,
indicating that the grain size distribution of the sample is more
concentrated.

2.5 Calculation of mean distance between
cumulative frequencies of soil particle size

The average distance (d) between the cumulative frequency
distribution of soil particle size can reflect the difference in soil
quality between plots, which is mutually confirmed with the
cumulative frequency curve of soil particle size and can provide
evidence for the judgment of soil coarsening. Calculated from
Equation 6:

d �
����������������
∑ P + �P( )2 K − 1( )

√
(6)

where: d is the average distance between the distributions of soil
particle size accumulation frequency; P is the soil particle size
accumulation frequency of a certain sample site; is the average of
soil particle size accumulation frequency of six sample sites; K-1 is
the degree of freedom, K = 6.

2.6 Calculation of the fractal dimension

The fractal dimension (D) is widely used in characterizing
the structural properties of soils, and its value is related to the
number of particles of different sizes in the soil, so it can not
only quantitatively indicate the structural characteristics of the
soil (Dong et al., 2022), but also reflect the indicators of soil
water content, soil fertility, etc., which is widely used in the
research of land degradation. In this paper, the volume fractal
dimension is calculated by the volume content of different
diameter particles of soil measured by the Mastersizer
3000 laser particle size analyzer. The calculation method is
as follows (Equation 7):

Ri

Rmax
( )

3−D
� V r<Ri( )

VT
(7)

where D is the fractal dimension; r is the diameter of soil particles
(mm); ri is the diameter of a certain diameter soil particle (mm); V
(r < Ri) is the volume percentage of soil particles smaller than Ri

diameter particles (%); VT is the total volume percentage of particles
in each diameter grade (%); Rmax is the maximum particle
diameter (mm).

2.7 Statistical analysis

Excel 2021 was used to preliminarily sort out and analyze the
data, and the mean value and standard deviation were
calculated. SPSS 22 was used for one-way analysis of variance,
and the significance test of grain size parameters and
morphological parameters of sediments under different
vegetation coverage was carried out (P < 0.05). LSD method
was used for multiple comparisons, and Origin 2021 was used
to draw relevant graphs.

3 Results and analysis

3.1 Plant modality features

From Figure 3, it can be seen that the average plant height of
N. tangutorum, P. villosa, A. squarrosum, P. australis, and
A.ordosica is 116 cm, 143 cm, 52 cm, 72 cm, and 77 cm,
respectively, (Figure 3a). Of these, N. tangutorum had the
largest crown, averaging 283 cm which was significantly
higher than the other four species; P. australis had the
smallest crown, averaging 58 cm; The crowns of P. villosa,
A. squarrosum and A. ordosica ranged from 100–130 cm
(Figure 3b). The average number of branches of N.
tangutorum was 385, while the number of branches of P.
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villosa and P. australis was less, 8.35 and 10.35, respectively
(Figure 3c). Significant differences were found among the five
plants in terms of mean grain size, crown width, number of branches
and porosity (P < 0.05).In the unit area, the order of porosity from large
to small is: P. villosa > A. squarrosum > P. australis > A. ordosica > N.
tangutorum. The porosity of P. villosa is the largest, indicating that
the density of branches and leaves is the smallest, while the porosity of
N. tangutorum is the smallest and the branches are the
densest (Figure 3d).

3.2 Characteristics of sediment interception
by plants

3.2.1 Characteristics of mechanical composition of
sediment intercepted by plants

The mechanical composition of the sediment intercepted by the
five plants is shown in Table 3. The fine sand and medium sand in
the surface sediments of bare dunes are absolutely dominant, and
their volume percentages are 60.61% and 35.43%, respectively. The

FIGURE 3
Morphological characteristics of plants.

TABLE 3 Mechanical composition of sediments covered by different plant species (%).

Sample area Clay Silt Very fine sand Fine sand Medium sand Coarse sand

P. villosa 0.10 ± 0.00c 1.25 ± 0.21d 15.74 ± 4.87c 52.03 ± 13.20ab 30.74 ± 5.15ab 0.14 ± 0.02a

A. squarrosum 0.10 ± 0.01c 1.53 ± 0.27d 18.13 ± 4.33bc 49.06 ± 9.37b 31.10 ± 6.44ab 0.08 ± 0.02b

P. australis 0.10 ± 0.00c 2.38 ± 0.63c 26.75 ± 5.17b 45.63 ± 6.42b 25.14 ± 3.99b —

A. ordosica 0.81 ± 0.14b 11.04 ± 2.34b 37.71 ± 7.39a 37.06 ± 6.84c 13.38 ± 3.17c —

N. tangutorum 2.46 ± 0.39a 36.28 ± 8.38a 23.58 ± 4.28b 27.21 ± 5.31d 10.34 ± 2.01c 0.13 ± 0.03a

CK 0.10 ± 0.01c 0.72 ± 0.14e 3.08 ± 0.55d 60.61 ± 15.85a 35.43 ± 6.08a 0.06 ± 0.01b

Note:The lowercase letters represented significant differences between different plants of the same grain size (LSD, P < 0.05), CK is the control (Bare sand dunes), same below.
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trend of fine particle size of sediments after vegetation coverage is
more obvious; the volume percentage of very fine sand, clay, and silt
increases, and the volume percentage of fine sand and medium sand
decreases. The variation trend of clay, silt, and very fine sand is
basically the same, and the volume percentage is N. tangutorum >A.
ordosica > P. australis >A. squarrosum > P. villosa >CK. The change
trend of volume percentage content of fine sand and medium sand is
basically the same, and its change trend under different plant
coverage is opposite to that of fine particles such as silt and very
fine sand. The change trend of volume percentage content of fine
sand and medium sand is basically the same, and its change trend
under different plant coverage is opposite to that of fine particles
such as silt and very fine sand. The volume percentages of clay and
silt in N. tangutorum sediment particles were the highest, at 2.46%
and 36.28%, respectively. The contents of clay and silt were
significantly higher than those of the other four vegetations (P <
0.05). The contents of fine sand and medium sand were significantly
reduced (P < 0.05), and there was a small amount of coarse sand.
Vegetation coverage significantly increased the content of fine
particles in surface sediments (P < 0.05). The particle
composition is mainly composed of fine sand, from coarse to

fine: CK > P. villosa > A. squarrosum > P. australis > A.
ordosica > N. tangutorum.

3.2.2 Grain size parameters of sediment
intercepted by plants

The mean particle size of these five plantings showed: N.
tangutorum > A. ordosica > P.australis > A. squarrosum > P.
villosa > CK. According to the classification standard of the
Folk-Ward graphic method, except that N.tangutorum is very
fine sand, the rest are fine sand. The increase in the Φ value of
the mean particle size of the sediment indicates a significant increase
in the content of fine particles, indicating that the content of fine
particles in the sediments of N.tangutorum and A.ordosica was
significantly higher than that of the other three vegetations (P <
0.05). The mean particle size of sediments under different plant
coverage was significantly different from that of CK (P < 0.05).
N.tangutorum and A.ordosica have dense branches and leaves and
relatively high plant morphology, which can form better surface
coverage. The strong blocking effect on wind and sand allows the
retention of fine particles in the sediment, so the Φ value of the
average particle size is larger (Figure 4a).

FIGURE 4
Grain size characteristics of sediments under different plant coverage.
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According to Figure 4b, the sorting coefficient of sediments
covered by vegetation is as follows: N. tangutorum >A. ordosica >A.
squarrosum > P. villosa > P. australis > CK. The sorting levels are
poor sorting, medium sorting, better sorting, better sorting, better
sorting and very good sorting. With the emergence of vegetation, the
sorting of particles became worse. Compared with A. ordosica and
N. tangutorum, the sorting characteristics of surface sediment
particles covered by P. villosa, P. australis, and A. squarrosum
were better. The sorting coefficient of sediments under different
plant coverage was significantly different from that of bare sand
dunes (P < 0.05). By effectively reducing the wind speed,
N.tangutorum and A.ordosica deposited larger particles near the
vegetation, and the smaller particles were taken away by the wind,
forming a deposition pattern with significant differences in particle
size, and the sorting coefficient was large. However, P.villosa,
A.squarrosum and P.australis have less influence on wind speed,
uniform particle deposition and smaller sorting
coefficient (Figure 4b).

The particle frequency distribution curves of bare sand dune, P.
villosa, A. squarrosum, and P.australis are nearly symmetrical. A.
ordosica and N. tangutorum have a skewness class of positive and
very positive skewness, with an asymmetric pattern of surface
sediment frequency curves, with the peak of the particle
frequency curve biased toward the finer-grained side, where the
tails are lower, and the main constituents are fine particles. A
significant difference between the skewness of sediments under
different plant covers (P < 0.05). The dense structure of
A.ordosica and N.tangutorum significantly reduced the wind
speed, forming a low-speed zone, resulting in coarse particle
deposition, particle frequency distribution curve and positive or
extremely positive bias. Bare sand dunes, P. villosa, A. squarrosum
and P. australis had little effect on wind speed, and the particle

deposition was uniform and the skewness was close to
zero (Figure 4c).

The peak state of surface sediments covered by P.villosa,
A.squarrosum, P.australis and N.tangutorum is medium, while
the peak state of bare dunes is narrow, and A.ordosica is wide. It
shows that the particle distribution of A.ordosica surface sediments
is more dispersed than that of the other four vegetations. Significant
differences between the kurtosis of each sediment (p < 0.05).
Vegetation camping can change the direction and flow rate of
the wind-sand flow as well as its internal structure, which
promotes the settling of fine particles. The peak state values for
sediments with vegetation cover were reduced compared to bare
dunes, indicating a more dispersed and refined particle composition.
The lack of vegetation cover on bare dunes and the direct action of
wind on the surface of sand grains lead to strong jumping and
creeping of sand grains under the action of wind. Due to the lack of
vegetation, the wind speed is high, the fine particles are blown away,
leaving the coarse particles, forming a sharp and narrow
peak (Figure 4d).

The fractal dimensions of sediments with different vegetation
cover in the study area are shown in Figure 5. Fractal dimension
values for the five plant species and the control sediment were, in
descending order: N. tangutorum > A. ordosica > P. australis > A.
squarrosum > P. villosa > CK. Fractal dimension was negatively
correlated with the content of coarse-grained components (gravel,
coarse sand, etc.), which is consistent with the coarse and fine grain
compositions of sediments with different vegetation covers in
Table 3, where the differences between fractal dimensions of
sediments under different vegetation covers were significant (p <
0.05). The fractal dimension is enhanced compared to the flowing
dune due to the fact that after planting vegetation in the study area,
when the wind speed reaches the sand initiating wind speed, the

FIGURE 5
Fractal dimension of sediments covered by different plants.
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wind will carry the sandy material in the air, part of which will be
intercepted by the plant canopy, thus accumulating underneath the
plant canopy (Figure 5).

In order to visualize the distribution of the grain size parameters
of the sample plots under cover of five different plants as well as the
surface sediments of the bare sand dune (CK), each sampling point

FIGURE 6
Scatter plot of sediment grain size parameters.
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of each plant was used as a data point to produce its scatterplot with
its grain size parameters. As can be seen from Figure 6, A. ordosica
and N. tangutorum have clear boundaries with the grain size

parameters of CK, P. australis, A. squarrosum, and P. villosa. The
scatter plots of each particle size parameter can distinguish them
clearly, and the differences among the four sample sites of CK, P.

FIGURE 7
Correlation analysis of sediment grain size parameters.
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villosa, A. squarrosum, and P. australis are not significant, and the
scatter plots of particle size parameters show that the distribution of
particle size parameters of the five species of plant-trapped sediment
ranges from: N. tangutorum >A. ordosica > P. villosa > P. australis >
A. squarrosum > CK. There was a highly significant correlation (p <
0.01) between the mean particle size, kurtosis, and sorting coefficient
of N. tangutorum, P. villosa, and R2 were all greater than 0.84, which
was a good fit. There was a highly significant correlation (p < 0.01)
between the mean particle size, sorting coefficient, and skewness of
N. tangutorum, P. australis, and R2 were all greater than 0.8, which
was a good fit. There was a highly significant correlation between
skewness and kurtosis for A. squarrosum, P. australis, A. ordosica,
and N. tangutorum, (p < 0.01), and the R2 was greater than 0.81,
which was a good fit (Figure 6).

3.2.3 Correlation analysis of particle size
parameters of plant-trapped sediments

Sorting coefficients of sediments from bare sand dunes showed a
significant negative correlation with mean grain size and skewness
(P < 0.05). The mean grain size of bare sand dune showed a highly
significant positive correlation with skewness (P < 0.01). The bare
sand duned kurtosis does not correlate well with Mean grain size,
sorting factor, and skewness. In contrast, the mean grain size of
sediments under vegetation cover showed a highly significant
positive correlation with the sorting coefficient (P < 0.01), and

the mean grain size and sorting coefficient showed highly significant
negative correlation with kurtosis and skewness (P < 0.01), and
kurtosis showed highly significant positive correlation with
skewness (P < 0.01) (Figure 7).

3.2.4 Frequency distribution curves of sediment
particles trapped by plants

Figure 8 shows the particle distribution curve of the sediments in
the study area. The frequency distribution curve of CK surface
sediments has a single-peak pattern, the peak grain size is located
near 225 μm, the curve is higher and narrower, and the particle
composition is aggregated. The distribution of P. villosa, A.
squarrosum, and P. australis surface sediments was consistent
with that of CK, all of which were unimodal, with a wider peak
shape than that of CK, with smaller peak heights, diversification of
particle composition, and a leftward shift of the overall peaks,
i.e., the corresponding grain sizes of the peaks became finer, and
the peak sizes centered on the 180–200 μm range. The sediment
grain size curves of N. tangutorum and A. ordosica showed an
asymmetric bimodal pattern.N. tangutorum has a distinct tail peak,
A. ordosica has a lower tail peak, and the main peak grain size is
concentrated near 150 μm, which is a fine sand fraction.The peak
heights of the N. tangutorum and A. ordosica curves were reduced
and widened, implying that N. tangutorum corresponded to higher
levels of fine particulate matter. N. tangutorum sediment particles

FIGURE 8
Sediment grain size frequency distribution curve.
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have the widest range of distribution and the shortest main peak,
followed by A. ordosica. The particle distribution ranges from wide
to narrow for N. tangutorum > A. ordosica > P. australis > A.
squarrosum > P. villosa > CK. The main peaks are from high to low:
CK > P. australis > P. villosa > A. squarrosum > A. ordosica >
N.tangutorum. Due to the decrease of wind speed and particle
capture, the particle sorting effect of dunes under vegetation
coverage is weakened, and the peak deformation is wide and the
peak height is reduced. N.tangutorum and A.ordosica further
weakened the particle sorting due to their high vegetation density
and complex stem and leaf structure, resulting in a wider particle
distribution range, wider peak shape and lower peak
height (Figure 8).

As can be seen from Figure 9, the cumulative frequency
distribution curve can reflect the distribution of soil particles,
and generally, the steeper the curve, the more uniform the
distribution of particles. Analyzing the cumulative frequency
distribution curves of the surface sediments of the five planted
and bare dunes showed that the uniformity of distribution of the
surface sediments under the five planted covers showed that N.
tangutorumwas the best and had a finer grain composition, followed
by A. ordosica. The cumulative distribution curves of A. squarrosum,
P. villosa, and P. australis subsurface sediments start off slowly and
begin to steepen at about 76 μm, the bare sand dune steepens at
about 100 μm and rises rapidly, and flattens out near 400 μm,
suggesting that the particles tend to be concentrated in the
76–400 μm range; The sorting coefficients of the sediments

under the cove of N. tangutorum and A. ordosica are larger in
Figure 3, which shows that the particle sorting is poorer and finer
compared to the other three covers.

Although the surface sediment particle frequency distribution
curves (Figure 8) show different types in each sample, the
appearance of wave crests and the shape of the curves show
some consistency, and there is little difference in the sediment
matrices. The mean distance between cumulative frequencies of
sediment grain size reflects the grain differences between sample
sites and qualitatively describes the range of wind-erosion-prone
grains. The average distance between the cumulative frequencies of
sediment grain sizes of the six sample sites in this study (Figure 9)
was larger in the interval of grain sizes from 70 to 160 μm, and it can
be assumed that the range of wind-eroded susceptible particles in the
study area is from 70 to 160 μm. In general, it is believed that the
wind erosion particle movement is dominated by leapfrog,
and 100~150 μm size particles are the most likely to occur in the
leapfrog range of particle sizes, and the range of wind erosion
particles derived from this study is biased toward the finer
particles (Figure 9).

3.3 Relationship between plant-trapped
sediments and plant morphology

The results of Pearson’s correlation analysis (Table 4) showed
that the grain size parameters of sediments under different plant

FIGURE 9
Sediment cumulative frequency distribution curve.
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species: The mean particle size and sorting were positively correlated
with plant height, crown width, and branch number (P < 0.05), and
negatively correlated with porosity (P < 0.05). Skewness and kurtosis
were significantly negatively correlated with plant height, crown
width, and branch number (P < 0.05) and significantly positively
correlated with porosity (P < 0.01). The correlation coefficients are
all above 0.6, which has passed the test level of 0.05.

For different kinds of plants, the morphological parameters of
each plant have different effects on the grain size distribution of
surface sediments. In this paper, the mean particle size of sediments
is used as an index to characterize the grain size distribution of
sediments, and the influence of plant morphological parameters on
the grain size distribution of surface sediments is analyzed. The
mean particle size of P. villosa sediment particles had the best
correlation with the number of branches, showing a very
significant positive correlation (P < 0.01).The mean particle size
of A. squarrosum had the best correlation with plant height, showing
a very significant positive correlation (P < 0.01). The mean particle
size of P. australis sediment particles had the best correlation with
the crown width, showing a very significant positive correlation (P <
0.01), and the correlation coefficient was 0.85. For A. ordosica and N.
tangutorum, the correlation between mean particle size and
porosity was the best, showing a very significant negative

correlation (P < 0.01), and the correlation coefficients
were −0.76 and −0.90, respectively.

4 Discussion

4.1 The effect of plants on the distribution of
underlying sand particles

The grain size distribution of wind-sand deposits is influenced
by vegetation, sand sources, topography, and wind speed, and the
presence of vegetation tends to increase surface roughness, alter the
near-surface wind field, reduce wind speed, and deposit sand grains
(Zhao et al., 2019). As the sand material gradually deposits near the
plant, the wind-shadow dunes begin to form. Under the condition of
a sufficient sand source, with the continuous development and
succession of vegetation, the sand-blocking ability of the
vegetation community will be significantly enhanced, and the
sediment particles will settle in large quantities. The wind-
shadow dunes gradually evolved into shrub dunes, and the dunes
eventually tended to be fixed (Yang et al., 2019). Sediment frequency
curves are critical for assessing sedimentation patterns. The change
in the frequency curve reflects the change in the form of

TABLE 4 The correlation between grain-size parameters of surface sediments and plant morphology parameters.

Particle size parameters Plant species Plant height Crown width Branching number Porosity

MZ P. villosa 0.71** 0.80** 0.84** −0.76**

A. squarrosum 0.75** 0.62* 0.72** −0.67*

P. australis 0.84** 0.85** 0.76** −0.74**

A. ordosica 0.67* 0.71** 0.57* −0.76**

N. tangutorum 0.85** 0.79** 0.77** −0.90**

σ P. villosa 0.80** 0.84** 0.78** −0.81**

A. squarrosum 0.77** 0.83** 0.74** −0.80**

P. australis 0.78** 0.77** 0.75** −0.82**

A. ordosica 0.64* 0.65* 0.72** −0.78**

N. tangutorum 0.82** 0.79** 0.75** −0.86**

SK P. villosa −0.72** −0.77** −0.84** 0.74**

A. squarrosum −0.78** −0.81** −0.80** 0.79**

P. australis −0.84** −0.83** −0.74** 0.80**

A. ordosica −0.70* −0.81** −0.72* 0.75**

N. tangutorum −0.80** −0.81** −0.70** 0.84**

Kg P. villosa −0.83** −0.88** −0.87** 0.87**

A. squarrosum −0.87** −0.81** −0.84** 0.82**

P. australis −0.64* −0.68** −0.65** 0.74**

A. ordosica −0.71** −0.78** −0.60* 0.82**

N. tangutorum −0.83** −0.72** −0.77** 0.84**

Note: * indicates that there is a significant correlation at the significance level of 0.05 (P < 0.05). * * indicates that there is a significant correlation at the significance level of 0.01 (bilateral)

(P < 0.01).
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sedimentation. Due to the addition of foreign or coarse or fine new
components, resulting in poor sediment sorting, the frequency curve
becomes asymmetric so that the skewness shows a negative bias or
positive changes in bias (Pan et al., 2020a). The clay, silt, and very
fine sand in the wind-sand flow are blocked by plants. The analysis
of sediment particle size parameters under different plant species
coverage (Figure 4) shows that the sediment sorting coefficient
becomes larger, the sorting becomes worse after vegetation
coverage, and the curve shape develops from near symmetry to
positive deviation. The peak value of the frequency curve tends to
decrease as a whole, and the composition of the sediment particles
becomes finer. The peak type of the bare sand dune is unimodal, and
the sand pile of N. tangutorum and A. ordosica shrub is bimodal. The
sand grains under P. villosa, A. squarrosum, and P. australis are
mainly fine sand and medium sand. The sand material of the
A.ordosica plot is mainly composed of fine sand and very fine
sand. The contents of clay and silt in the sediment particles of N.
tangutorum were significantly higher than those of the other four
vegetations (P < 0.05). The above differences in the spatial
distribution of particles of different size classes in sediments are
supposed to be caused by the different botanical characteristics of
plants. This may be mainly due to the fact that A. ordosica and N.
tangutorum communities have higher cover, and denser branches
and are clumped together, which increases the surface roughness,
and when the wind and sand flow passes through, the wind speed is
weakened, and the material carried by the wind and sand flow settles
down and increases the content of fine-grained material on the
surface (Xiaohong et al., 2019). P. villosa, A. squarrosum, and P.
australis plants have relatively obvious main trunks, relatively few
and scattered basal branches, and the plants show a sparse structure
with a weak sand fixation capacity.

4.2 Differences in particle size parameters
and their correlation

The sorting coefficient σ indicates the degree of discrete
distribution of soil particles, and an adequate sorting process can
effectively improve the degree of sorting of wind-formed sand (Xi
et al., 2024). The degree of vegetation cover significantly affects the
sorting process of wind-formed sands. The influence of vegetation
canopy on the wind-blown sand flow field will cause the sediment to
be sorted, and the final deposition around the shrub will form a
difference in grain size characteristics (Huang et al., 2024). The effect
of vegetation on sorting action is mainly in the following areas:
Vegetation cover can effectively reduce wind speed, thus weakening
the erosive effect of wind on surface wind-formed sands, weakening
the transport of wind-formed sands, intercepting coarse particles in
motion, and increasing the content of fine-grained components,
reducing the degree of wind-formed sand sorting (Fu et al., 2021).
The results of this paper show that the sorting of particles
deteriorates with the presence of vegetation. The sorting
characteristics of surface sediment particles covered by A.
ordosica and N. tangutorum were poorer compared to the other
three plants. The fractal dimension values of A. ordosica and N.
tangutorum were greater than those of the other three species. The
value of soil fractal dimension is positively correlated with the
content of fine particles such as clay and silt. The increase of fine

particle content (clay and silt) will lead to the increase of fractal
dimension, which is consistent with the higher content of clay and
silt in N. tangutorum and A. ordosica in Table 3. In this paper, the
sediment under vegetation coverage increases with the increase of
the mean particle size of sand, the sorting coefficient becomes larger,
and the sorting becomes worse. The skewness value decreases with
the increase of the mean particle size Φ, indicating that the fine
particles increase. The kurtosis value decreases with the increase of
the mean particle size, indicating that the distribution range of sand
particle size becomes dispersed. The sorting coefficient is negatively
correlated with skewness and kurtosis, indicating that the smaller
the sorting coefficient, the greater the skewness and kurtosis values;
that is, the better the sorting of sand particles, the finer and more
concentrated the grain size distribution.

4.3 Mechanisms by which sand plants
influence the grain size composition of
surface sediments

Vegetation modifies the near-surface flow field mainly by
covering the surface, decomposing wind, and blocking sand
transport, and different vegetation types lead to differences in
sediment composition. Some scholars have studied the
relationship between the windproof effect of shrubs and plant
morphology through wind tunnel tests, and the results show that
the windproof effect increases with the increase of shrub height and
coverage, and the windproof efficiency is an exponential function of
the relationship with the coverage (Pan et al., 2020b). Wind tunnel
experiments have shown that the morphology and structure of the
vegetation are preferred parameters to facilitate wind erosion
control (Miri et al., 2017). Pan et al.conducted field observations
on the wind-proof and sand-fixing effects of simulated shrubs with
different configurations, and the results showed that plant
morphology had a significant effect on sand-fixing ability (Pan
et al., 2021). Studies have shown that the spatial differences in
particle size composition and particle size parameters of sediments
under shrubs are caused by the height, crown width, and coverage of
shrubs themselves. The plant height and crown width were
significantly positively correlated with the sand retention area,
and the volume fraction of fine components in surface sediments
was positively correlated with plant height, crown width, and branch
number. With the increase in vegetation coverage, the sand-fixing
and sand-blocking ability of vegetation increased, and the mean
particle size of the soil decreased (Liu et al., 2020). The mean particle
size of sediments in this study was significantly positively correlated
with plant height, crown width, and branch number (P < 0.05),
which was the same as the existing research results. Some scholars
analyzed the distribution of soil particle size under different
vegetation coverage, and all believed that the mean particle size
of soil became thicker with the gradual decrease of vegetation
coverage. In this paper, through the analysis of the particle size
characteristics of surface sediments, it is concluded that the particle
composition from coarse to fine is: CK > P.villosa > A.squarrosum >
P.australis > A.ordosica > N.tangutorum. The V value of mean
particle size was positively correlated with plant height, crown
width, and branch number and negatively correlated with
porosity. This shows that the plant species with high plant
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community, dense branches and leaves, and high canopy density
have fine sediment particles under their coverage and have strong
sand fixation and sand blocking abilities; On the contrary, the plant
species with sparse distribution and fewer branches and leaves, such
as P.villosa, A.squarrosum, and P.australis, do not have strong sand-
fixing ability. There are significant differences in sediment grain size
parameters of different vegetation types. From the perspective of the
influence of vegetation on the differential deposition of surface
sediments, the height, crown type, and porosity of vegetation
have great differences in the grain size characteristics of
sediments, and the sand-blocking effect of compact vegetation is
obvious. The vegetation with tall plants, wide crowns and dense
branches and leaves can change the speed and direction of wind-
blown sand flow in a larger spatial range, so that sand particles can
be deposited in a wider area, and the screening effect on sand particle
size is more obvious, resulting in more significant spatial
differentiation of sand particles. With the increase of vegetation
coverage, the grain size of sand around the dune is gradually refined,
which weakens the transport capacity of wind-sand flow and
promotes the deposition of fine particles due to the fixation of
vegetation. The effect of short and sparse vegetation on wind-blown
sand flow is relatively small, and the spatial differentiation of sand
particles is relatively weak. The difference in morphological
characteristics leads to the change of flow field around dunes,
which affects the spatial differentiation of sand particle size
characteristics.

4.4 Screening and synergistic effect of
windbreak and sand-fixing plants

Our research is of great significance for guiding the screening
and cultivation of windbreak and sand-fixing plants. In arid wind
and sandy areas, many scholars have thoroughly explored the
preferred strategies for wind and sand blocking forest trees. It was
revealed that compact-structured shrubs such as N. tangutorum
and A. ordosica exhibited more significant wind and sand blocking
efficacy compared to sparsely structured herbs such as P. australis,
P. villosa, and A. squarrosum. As the main sandy shrub in the study
area, N. tangutorum has higher sand fixation and soil conservation
ability than other vegetation. The shrub growth is concentrated
and clustered, and the protection range is large, so it can be used as
an excellent sand-fixing shrub in the study area (Li et al., 2024).
A.ordosica also plays an indispensable role in windbreaks and sand
fixation with its compact plant structure, complementing N.
tangutorum and building a solid windbreak together. As for P.
australis, P. villosa, and A. squarrosum, although their direct effect
in preventing wind and blocking sand may be a little less effective,
they form a sparse structure that contributes to the dispersion and
slowing down of the wind, and at the same time, these plants can
intercept and immobilize fine-grained materials to a certain extent,
contributing to the improvement of soil properties. They each
assume different roles, are interdependent and together constitute
a multi-level protection system. It not only effectively intercepts
the fine-grained material in wind-sand and reduces soil erosion but
also provides the possibility of gradual improvement of soil
properties through the cementing effect of the plant root system
and the shading effect of the above-ground part. This diversified

protection system is expected to have a strong, comprehensive
effect on soil fertility enhancement, structural stabilization, and
ecological restoration, laying a solid foundation for ecological
management and sustainable development of the arid
sandy wind area.

5 Conclusion

In this paper, the grain size distribution of surface sediments
and morphological characteristics of plants under cover of five
species of sand plants in the Ulan Buh Desert were determined.
The effects of plant morphological parameters on sediment grain
size distribution were analyzed to explore the inhibitory effect of
vegetation cover on surface wind and sand activities and to
compare the windproof and sand-fixing ability of sandy plants,
which can provide a management basis for the screening of sand-
fixing plants in desert areas.

(1) In the unit area, the porosity from large to small is: P. villosa >
A. squarrosum > P. australis > A. ordosica > N. tangutorum,
The porosity of P. villosa was the largest, indicating that its
branch and leaf density was the smallest, while the porosity of
N.tangutorum was the smallest and the branches were
the densest.

(2) The distribution of surface sand material in P. villosa, A.
squarrosum, and P. australis plots is the same as that of
bare sand dunes, all of which are unimodal, while N.
tangutorum and A. ordosica are bimodal. The particle
distribution range from wide to narrow is: N.
tangutorum > A. ordosica > P. australis > A.
squarrosum > P. villosa > CK, After vegetation coverage,
the content of fine sand and medium sand in surface
sediments decreased, and the content of very fine sand,
clay, and silt increased. Compared with bare sand dune,
the sorting of sediment particles became worse, the curve
tended to be positive, and the kurtosis value decreased. On
the whole, the particle composition from coarse to fine is
CK > P. villosa > A. squarrosum > P. australis > A.
ordosica > N. tangutorum.

(3) Mean grain size of sediments under vegetation cover showed a
highly significant positive correlation with sorting coefficient
and kurtosis with skewness (P < 0.01). Mean particle size and
sorting coefficient showed a highly significant negative
correlation with peak state and skewness (P < 0.01). Mean
particle size and sortability were significantly and positively
correlated with plant height, crown width, and number of
branches (P < 0.05) and significantly and negatively
correlated with porosity (P < 0.05). Skewness and kurtosis
were significantly and negatively correlated (P < 0.05) with
plant height, crown width, and number of branches and
highly significantly and positively correlated (P < 0.01)
with porosity.

(4) As the main sandy shrub in the study area, N. tangutorum has
strong sand fixation and soil conservation ability, which can
effectively block the fine particles in the wind-sand flow and
play a vital role in soil improvement and ecological
protection.
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Carbon reduction effects of
energy transition strategies: a
discussion on multi-stakeholder
carbon governance

Shuailong Wang*

School of Political Science and Public Administration, Henan Normal University, Xinxiang, China

Investigating the carbon reduction effects of the New Energy cities
Demonstration Policy (NECDP) is crucial for promoting the energy transition
strategy and meeting the “dual carbon” targets. This study, grounded in
stakeholder theory, examines the mechanisms behind the NECDP’s carbon
reduction effects from the perspectives of both constraints and incentives.
Using panel data from 266 cities at the prefecture level and above in China, A
difference-in-differences model and mediation effect model are used to assess
the impact and mechanisms of the NECDP on carbon emissions. The study’s
results indicate that: 1) The NECDP significantly reduced carbon emissions, and
this conclusion holds up after robustness checks that control for other policies
and variable replacements. From a dynamic perspective, the carbon reduction
effect of the NECDP did not become significant until the third year, suggesting a
certain time lag. 2) Mechanism tests show that the NECDP, as a weak constraint
and weak incentive environmental policy. It generates both constraints and
incentives for environmental stakeholders, such as governments, businesses,
and the public. The government enhances environmental oversight and increases
investment in technology, while the public becomes more environmentally
conscious, engages in green and low-carbon consumption, and participates in
environmental regulation. Businesses, in turn, innovate in green technologies and
adopt clean, low-carbon production methods, which help drive industrial
upgrades and reduce carbon emissions. 3) Heterogeneity analysis shows that
the carbon reduction effects of the NECDP are stronger in regions with lower
urbanization, fewer resource-based industries, greater digitization, and stronger
government environmental focus.

KEYWORDS

new energy demonstration cities, stakeholder behavior, carbon emission reduction,
incentives and constraints, energy conservation and carbon reduction

1 Introduction

China is a major energy consumer and carbon emitter. According to the “World Energy
Statistics Yearbook 2021,”China’s energy consumption and carbon emissions accounted for
about 26.5% and 30% of global totals, respectively. Meanwhile, China’s energy consumption
per unit GDP was 3.4 tons of standard coal per million USD, and its carbon emissions per
unit GDP were 6.7 tons of CO2 per million USD—1.5 and 1.8 times the global averages,
respectively. As cities are the primary sources of energy consumption and carbon emissions
(Allan et al., 2023), Advancing the low-carbon transition of urban energy systems is crucial
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for achieving carbon peak and carbon neutrality goals (“dual
carbon” goals). The “China’s Energy Transition” white paper,
released by the State Council Information Office in August 2024,
emphasized the need to strengthen constraints on energy
conservation and carbon reduction, foster green energy
consumption patterns, and achieve energy-saving and carbon-
reduction goals through collaboration among governments,
businesses, and the public. Specifically, the government drives the
low-carbon transition through regulatory constraints and policy
incentives; businesses promote industrial transformation by
adopting green technologies and clean energy; and the public
contributes by increasing environmental awareness and engaging
in green consumption. To support the development of the new
energy industry and energy-saving, low-carbon technologies, and to
improve urban energy efficiency, the National Energy
Administration initiated the construction of NECDP in 2014. the
National Energy Administration launched the NECDP. By
promoting clean energy and developing green technological
innovation, the policy aimed to reduce dependence on traditional
fossil fuels, optimize the energy structure, and accelerate the
transition to a green, low-carbon industry. These measures
collectively support China’s objectives of the “dual carbon” goals.
In this context of urgent energy transition needs and the goal of
achieving “dual carbon” targets, this study uses the NECDP as a case
to explore how it can advance energy transition and carbon
reduction through the collaborative efforts of government,
businesses, and the public.

The structure of this paper is arranged as follows: Section 2
reviews the existing literature and highlights the marginal
contributions of this study. Section 3 outlines the theoretical
mechanisms and presents the research hypotheses. Section 4
summarizes the main models used in this study and organizes
the relevant data. Section 5 presents the empirical results
analysis, robustness tests, mechanism analysis, and heterogeneity
analysis. Section 6 discusses the research findings. Section 7 covers
the study’s limitations and future directions, while Section 8
Summarizes conclusions and proposes policy suggestions.

2 Literature review

Achieving urban energy transformation and green, low-carbon
development has become a major area of academic focus. The literature
related to this research topic can be broadly categorized into two main
groups. The first group centers on the factors influencing carbon
emissions. Factors influencing carbon emissions can be broadly
categorized into two types. The first includes factors that contribute
to reducing carbon emissions, such as current environmental
regulations (Chen et al., 2021; H; Wang et al., 2024) green
technological innovation (Du et al., 2019) government intervention
(Kou and Xu, 2022; Xiang et al., 2023) and industrial structure
upgrading (Dong et al., 2020; Gu et al., 2022). The second includes
factors that contribute to increasing carbon emissions, including
industrial structure upgrading (Dong et al., 2020; Gu et al., 2022),
urbanization (Dong et al., 2018), industrialization (Dong et al., 2019;
Wang et al., 2019) foreign trade openness (Wang & Zhang, 2021; Z. H.
Wang et al., 2021), population size (Hong et al., 2022; Kumar and Sen,
2025; Zhu and Peng, 2012) energy consumption (Shan et al., 2021;

Wang et al., 2020) financial development (Acheampong et al., 2020;
Huang andGuo, 2022) and economic development level (Sarkodie et al.,
2020; Zhao et al., 2022) Among these, green technological innovation
and industrial structure upgrading are widely recognized as two
important mechanisms for reducing carbon emissions. (Wang et al.,
2024). The second group of literature focuses on evaluating the effects of
new energy demonstration city pilot policies. Some scholars have
explored the green innovation effects of the NECDP, noting that it
increases government funding support, promotes the concentration of
human capital and other innovation factors, and enhances energy
efficiency, thereby fostering green innovation (Chen et al., 2023;
Feng et al., 2024; Song et al., 2024) Other studies have examined the
environmental and economic effects of the NECDP. It has been shown
to promote technological innovation and industrial upgrading (Yang
et al., 2023), optimize resource allocation (Yang et al., 2021) strengthen
environmental regulation (Ding et al., 2024) reduce energy
consumption, and improve energy efficiency (Cheng et al., 2023; Liu
et al., 2023), thus advancing high-quality economic development (Guo
et al., 2023) characterized by pollution reduction, carbon reduction (Gao
et al., 2024), and green growth (Yang et al., 2022).

In summary, existing literature primarily focuses on analyzing the
factors influencing carbon emissions, as well as the environmental and
economic effects of the NECDP. However, there is limited research that
explores the mechanisms through which the NECDP affects carbon
emissions from the perspective of multiple stakeholders, including
government, businesses, and the public. Under the background of
China’s “dual carbon” goals and strategic constraints, this study
leverages the exogenous variations in timing and selection of pilot
cities induced by the NECDP. Amulti-period Difference-in-Differences
(DID) model is employed to effectively identify differences in carbon
emissions between pilot and non-pilot cities, thus accurately evaluating
the carbon reduction effects of NECDP. The potential contributions of
this study are as follows: First, it provides a thorough analysis of the
intrinsic mechanisms and pathways through which the NECDP
influences carbon emissions. Given that the NECDP is an
environmental policy with weak constraints and incentives, it
exhibits typical environmental regulation features. By combining
stakeholder theory, the study investigates the behavior choices of
governments, businesses, and the public from both the constraint
and incentive perspectives during the implementation of the
NECDP. This approach helps uncover the mechanisms through
which the NECDP impacts carbon emissions and establishes a
logical framework linking the behavior of government, businesses,
and the public with carbon reduction. Second, this study
incorporates policy variables such as “low-carbon city pilot,”
“innovative city pilot,” and “smart city pilot” into the empirical
model, analyzing the net effects of carbon emissions after excluding
the influence of various pilot policies. Additionally, it explores
heterogeneity by considering factors such as government
environmental awareness, urban clusters versus non-urban clusters,
digitalization levels, and resource endowments.

3 Theoretical analysis

Carbon emissions inherently involve negative externalities,
impacting broader society beyond the emission sources. Their
complex and dynamic nature implies that emission mitigation
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requires coordinated action from multiple stakeholders—including
local governments, enterprises, and the public. The NECDP
represents a comprehensive environmental governance policy
involving these diverse stakeholders (Li et al., 2023), Thus, this
study analyzes the carbon emission reduction mechanisms
embedded within the NECDP, specifically by examining the
behavioral motivations of local governments, enterprises, and the
public. The detailed analyses are as follows.

3.1 The central government’s incentives and
constraints imposed on local governments

The NECDP) as an energy transition policy, is characterized by
weak incentives and weak constraints. From the perspective of
incentives, the central government does not explicitly provide
additional financial support to pilot cities but instead reallocates
existing fiscal resources. From the perspective of constraints, central
government oversight is limited, with performance assessments
conducted only at the conclusion of the 2015 planning period,
lacking continuous monitoring of subsequent activities. Despite
these limitations, local governments remain highly motivated to
actively participate in NECDP implementation for two
main reasons:

Firstly, active engagement in NECDP facilitates local
governments in achieving performance evaluation targets and
gaining promotion opportunities. China’s environmental
governance experience indicates that local governments’
environmental efforts are significantly driven by central
government performance evaluations, financial incentives, and
political promotion opportunities (Chen et al., 2024; Miao and
Gu, 2024). As early as the 11th Five-Year Plan (2006), China set
explicit binding targets—reducing energy intensity by 20% and
major pollutants emissions by 10%—signifying a shift from a
GDP-centered assessment towards incorporating environmental
performance indicators. Given China’s increased emphasis on
ecological civilization, environmental evaluation mechanisms
strongly encourage pilot governments to fulfill environmental
performance goals. NECDP specifically promotes the
development of the new energy sector and green technology
innovations, aligning closely with central performance
assessments by driving local economic growth, environmental
quality improvement, industrial upgrading, and employment (Lu
and Wang, 2019).

Secondly, the central government’s acknowledgment of local
governments’ political legitimacy facilitates resource allocation and
priority policy support, enhancing local governmental authority and
regulatory capabilities over enterprises and the public. To enhance
political legitimacy and resolve central-local incentive
incompatibility issues (Mei and Wang, 2017; Ye et al., 2024),
pilot governments actively utilize policy instruments like
environmental regulation and fiscal subsidies in implementing
NECDP, thereby promoting energy efficiency and reducing
carbon emissions. Accordingly, this leads to Hypothesis 1.

H1: Effective implementation of the NECDP significantly reduces
urban carbon emissions, thus promoting cities’ green and low-
carbon transition.

3.2 Local governments’ incentives and
constraints imposed on enterprises

Enterprise production activities are the primary sources of
energy consumption, greenhouse gas emissions, and pollutant
emissions; therefore, they represent the main targets of
governmental environmental regulation. From the perspective of
constraints, NECDP, as a policy primarily focused on pollution
prevention at the source, sets binding targets related to renewable
energy adoption, energy consumption intensity, and environmental
pollution. In response, pilot local governments distribute renewable
energy utilization objectives to enterprises, mandating adjustments
to meet specific renewable energy consumption ratios. Specifically,
pilot governments employ regulatory tools that increase both the
sunk and marginal costs for energy-intensive, high-carbon, and
heavily polluting firms. These regulations effectively decrease the
number of such enterprises, restrict low-end, energy-intensive
production methods, and encourage these firms to either exit the
market, merge, or transition towards renewable energy production
and consumption. Under these regulatory pressures, enterprises are
incentivized to eliminate outdated capacity, enhance efficiency,
fulfill corporate social responsibility, and shift toward clean
energy sectors. Consequently, they increase investment in
renewable energy technology R&D, install renewable energy
facilities, and enhance renewable energy consumption, ultimately
promoting structural upgrading and significantly reducing fossil
energy use and carbon emissions.

From the perspective of incentives, considering that green
technology R&D requires substantial financial input, has long
return cycles, and involves high uncertainties (Peng and Liu,
2012), enterprises often cannot fully internalize the
environmental benefits generated. Thus, pilot governments and
relevant provincial authorities provide enterprises with various
financial incentives, including subsidies and preferential tax
policies Enterprise production activities are the primary sources
of energy consumption, greenhouse gas emissions, and pollutant
emissions; therefore, they represent the main targets of
governmental environmental regulation. From the perspective of
constraints, NECDP, as a policy primarily focused on pollution
prevention at the source, sets binding targets related to renewable
energy adoption, energy consumption intensity, and environmental
pollution. In response, pilot local governments distribute renewable
energy utilization objectives to enterprises, mandating adjustments
to meet specific renewable energy consumption ratios. Specifically,
pilot governments employ regulatory tools that increase both the
sunk and marginal costs for energy-intensive, high-carbon, and
heavily polluting firms. These regulations effectively decrease the
number of such enterprises, restrict low-end, energy-intensive
production methods, and encourage these firms to either exit the
market, merge, or transition towards renewable energy production
and consumption. Under these regulatory pressures, enterprises are
incentivized to eliminate outdated capacity, enhance efficiency,
fulfill corporate social responsibility, and shift toward clean
energy sectors. Consequently, they increase investment in
renewable energy technology R&D, install renewable energy
facilities, and enhance renewable energy consumption, ultimately
promoting structural upgrading and significantly reducing fossil
energy use and carbon emissions.
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From the perspective of incentives, considering that green
technology R&D requires substantial financial input, has long
return cycles, and involves high uncertainties (Peng and Liu,
2018) enterprises often cannot fully internalize the environmental
benefits generated. Thus, pilot governments and relevant provincial
authorities provide enterprises with various financial incentives,
including subsidies and preferential tax policies (Lu and Wang,
2019), Besides subsidizing renewable energy infrastructure and
consumption, local governments also implement targeted tax
deductions for enterprises’ renewable energy technology R&D,
addressing issues of market failure, technological spillover, and
financial constraints associated with green innovation (Ma et al.,
2021). Under the combined constraints and incentives provided by
NECDP, enterprises proactively pursue green technological
innovation and adopt cleaner, low-carbon production methods to
achieve sustainable development and business continuity (Mai et al.,
2024). Consequently, carbon emissions are substantially reduced.
Thus, we propose the following hypothesis.

H2: Under NECDP constraints and incentives, enterprises actively
engage in green technological innovation and cleaner, low-carbon
production practices, thereby significantly reducing urban
carbon emissions.

3.3 Public participation behaviors

As both supervisors and beneficiaries of the NECDP, public
satisfaction with environmental quality has increasingly gained
attention from the central government. The enhancement of
public environmental awareness indirectly strengthens local
governments’ regulatory intensity, thereby influencing and
constraining enterprise production behaviors (Wu et al., 2022).
Firstly, by actively engaging with environmental news and
leveraging social media platforms, the public effectively
supervises local governments’ environmental practices. This helps
prevent local authorities from easing environmental regulations in
pursuit of economic growth. Public pressure, coupled with central
government inspections, ensures the rigorous enforcement of
environmental policies. Secondly, public participation through
reporting, petitions, and complaints effectively mitigates
information asymmetry between local governments and
enterprises, reducing the regulatory burden on local authorities
(Chu et al., 2022), This increased transparency exposes high-
energy-consuming and high-emission enterprises, prompting
them to adopt low-carbon technologies and cleaner production
processes to avoid penalties and enhance corporate reputation
(Liu et al., 2024) ultimately reducing carbon emissions.

To cultivate green consumption behavior, pilot governments
actively enhance public education initiatives focused on promoting
green, low-carbon lifestyles, encouraging public transportation,
walking, and cycling. On one hand, direct financial incentives
such as subsidies for new energy vehicles and discounts for
energy-efficient appliances are provided to lower the economic
threshold for green consumption. For example, Shenzhen
promotes new energy vehicle adoption by offering subsidies (up
to 20,000 RMB per vehicle) and prioritized road access (e.g., bus lane
privileges), which significantly boosted consumer demand for such

vehicles. On the other hand, local governments adopt green
procurement strategies to share R&D costs associated with low-
carbon products, thereby reducing market prices and enhancing
consumer willingness to purchase green products. This mechanism
not only fosters green consumption but also incentivizes enterprises
to adopt cleaner production methods, improving green production
efficiency (Li and Zhao, 2024).

Overall, NECDP fosters public environmental awareness and
cultivates green consumption behaviors through educational
initiatives and financial incentives. This facilitates consumers’
preference for eco-friendly products and green commuting,
driving enterprises to innovate and upgrade towards greener
production models. Such consumer-driven shifts promote
industrial transformation towards low-carbon sustainability.
Based on this analysis, the following hypothesis is proposed.

H3:NECDP significantly enhances public environmental awareness
and facilitates the transition to green lifestyles, thereby promoting
enterprise green technology innovation, driving industrial structure
upgrading, and ultimately reducing carbon emissions the specific
mechanism is illustrated in Figure 1.

4 Research design

4.1 Model construction

Given that the NECDP during the sample period is implemented
in multiple batches, and referring to the research approach of Guo
and Zhong, (2022), a multiple-period difference-in-differences
(DID) model is constructed based on the temporal differences in
policy implementation across cities. The baseline two-time-point
fixed effects model is as follows:

lnCO2it � α0 + α1NECPit + δiXit + μi + λt + εit (1)

According to Equation 1, lnCO2it is the dependent variable,
representing the carbon emission level; NECDPit is the key
independent variable, If city i implements NECDP in year t, then
NECDPit will take a value of one for the current and subsequent
years; otherwise, NECDPit will be 0. Xit represents the control
variables, and μi and λt denote individual and time fixed effects,
respectively. εit is the random error term.

The theoretical analysis suggests that local governments
promote enterprise green technological innovation and industrial
upgrading through environmental regulations and technological
investments. Concurrently, the public contributes by enhancing
environmental awareness and transitioning to greener lifestyles,
which collectively support carbon emission reduction. To
empirically validate Hypotheses 2, 3, and drawing upon the
research framework of Wen and Ye, (2014), the following
mechanism model is constructed:

lnYit � γ0 + γ1NECDPit + γ2Medit + γiXit + μi + λt + εit (2)
Medit � β0 + β1NECDPit + βiXit + μi + λt + εit (3)

lnYit � γ0 + γ1NECDPit + γ2Medit + γiXit + μi + λt + εit (4)

In Equations 2-4, lnYit denotes industrial structure upgrading
and green technological innovation, identified as two key pathways
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for promoting carbon emission reduction. The variable Medit
represents the mediating mechanisms, including technological
investment, environmental regulation, public environmental
awareness, and the green transformation of public lifestyles. The
coefficient β1 measures the influence of NECDP on the mediating
variables, while γ1 captures the effect of NECDP on industrial
upgrading or green technological innovation after accounting for
the mediators. If both β1 and γ2 are statistically significant, and the
significance or magnitude of γ1 decreases, it indicates that the
mediating variables exert a partial mediating effect in the
relationship between NECDP and green technological innovation
or industrial structure upgrading.

4.2 Variable definitions

4.2.1 Dependent variable
The dependent variable is urban carbon emissions (lnCO2).

Based on the method of continuous dynamic distribution
proposed by Wu et al. (2016), the calculation results are obtained
and logarithmic transformation is applied.

4.2.2 Independent variable
The NECDP variable (DIDit) is treated as a quasi-natural

experiment in this study. If city i implements the NECDP in
2014, the group indicator variable is set to 1, otherwise it is set to
0. The time indicator variable for the years in which the city
participates in the pilot program and the subsequent years is set
to 1, while it is set to 0 for the years prior to the selection as a new
energy demonstration city. The interaction term between the
group indicator and the time indicator is used as the core
independent variable to represent the impact of NECDP on
carbon emissions.

4.2.3 Mediating mechanism variable
(1) Environmental regulation (Eri). environmental pollution

control investment is selected as a variable representing

government behavior, capturing the government’s
regulatory constraints on enterprises. It is important to
note that due to the lack of data on environmental
pollution control investment at the prefecture-level, we
follow the method of Wang (2023), where the weight is
determined by the ratio of the city’s secondary industry
output to the total secondary industry output of its
province, and this ratio is then multiplied by the
provincial-level environmental pollution control investment
to estimate the city-level data.

(2) Technological investment intensity (Kj). Following the work
of Dong et al. (2022), the ratio of government technological
investment to GDP is used to measure governmental
incentives provided to enterprises.

(3) Green technology innovation (Pgpan). Since patents
effectively and intuitively reflect innovation ability
(Lindman and Söderholm, 2016), the number of green
patents per ten thousand people in each city is used to
measure green technology innovation.

(4) Industrial structure upgrading (Isu). Following C. Wang et al.
(2019), industrial upgrading is defined as the weighted
product of the share of each industry and its
corresponding labor productivity, with the formula as:

Isu � ∑
3

j�1
Yij/Yi( ) × Yij/Lij( ) (5)

According to Equation 5, Yij/Lij represents the labor productivity
of industry j in region i. Since Yij/Yi is dimensionless while Yij/Lij has
dimensions, a normalization method is applied to eliminate the
dimensional differences.

(5) Public environmental concern (Pub). Referring to L. Wu et al.
(2022), the Baidu haze search index is used to measure public
environmental awareness. The reasons for using this index are
twofold: first, Baidu, as the largest Chinese search engine,
providing extensive coverage and high data availability,

FIGURE 1
The carbon reduction mechanism of NECDP.
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providing comprehensive environmental search index data.
Second, compared to keywords like “environmental
pollution,” the public has greater awareness of haze, so the
level of concern about haze more accurately reflects public
attention to environmental issues.

(6) Green transformation of public lifestyles (Lz). Building on the
work of Peng et al. (2024), we construct a composite Lz index
encompassing several key dimensions. Specifically, it
incorporates green and low-carbon awareness (per capita
park green space area), green travel (per capita number of
public buses in operation at year-end), green environmental
behavior (household per capita gas consumption), and digital
life (per capita number of mobile phones, per capita
telecommunications usage, and internet penetration rate).
We then apply the entropy-weighted TOPSIS method to
evaluate this composite index.

4.2.4 Control variables
To address the bias of endogeneity, a series of variables

affecting carbon emissions are controlled for, as discussed in
the literature review. These include: ①Economic development
level (lnY), measured as the logarithm of per capita GDP, with
GDP deflated to real values using 2005 as the base year.
②Population size (lnPop), represented by the logarithm of the
total population.③Financial development (Fin), measured as the
ratio of total deposits and loans to regional GDP.④Urbanization
level (Urb), represented by the ratio of employment in the
secondary and tertiary sectors to total employment.
⑤Openness level (Open), measured as the ratio of total import
and export trade to GDP. ⑥Transport infrastructure (Inf),
represented by per capita road area. To reduce
heteroscedasticity issues, logarithmic transformation is applied
to the control variables. ⑦Economic volatility (Bd),represented
by the coefficient of variation in economic growth rates over a 5-
year period. ⑧Government intervention (Gov),measured as the
ratio of general budget fiscal expenditure to regional GDP.

4.3 Sample selection and data sources

The sample space selected in this study is panel data from
266 prefecture-level cities between 2005 and 2020, with 56 cities
designated as the experimental group for the new energy
demonstration program, and 210 cities not selected as the
control group. Since the sample data includes cities at the
prefecture level and above, certain cities that use industrial
parks (e.g., Tianjin Eco-city, Dalian Sanlibao Industrial Park)
or specific districts (e.g., Beijing’s Changping District,
Qingdao’s Laoshan District) as pilot sites are excluded to
ensure effective policy evaluation. The list of new energy
demonstration cities is obtained from the “National Energy
Administration website,” patent data comes from the National
Intellectual Property Administration, and the green patent
classification codes are from the WIPO Green Patent List.
Other data is sourced from the “China City Statistical
Yearbook,” the EPS database, and the WIND database.

Descriptive statistics for each variable are presented in
Table 1. As shown, the minimum, mean, and maximum

values of carbon emissions are 1.775, 6.082, and 9.432,
respectively, highlighting significant regional differences in
carbon emissions. There are also substantial variations among
prefecture-level cities in terms of green technology innovation
(Pgpan), industrial structure upgrading (Isu), environmental
regulation (Eri), technological investment (Kj), energy
consumption intensity (Egyx), environmental awareness (Pub),
economic development (lnY), population size (lnPop),
urbanization level (Urb), openness (Open), infrastructure
(Inf), financial development (Fin), Green Transition of
Lifestyle (Lz), and Economic volatility (Bd), Government
intervention (Gov).

5 Empirical analysis

5.1 Parallel trend test

Before applying the multi-period DID model to evaluate the impact
of NECDP on carbon emissions, it is necessary to perform a parallel
trends test on the carbon emissions levels of the experimental and control
groups. This study follows the event study approach proposed by Beck
et al. (2010) to analyze the dynamic trends of the policy effects over time,
and establishes a regressionmodel that captures the policy shock effects at
different time periods.

lnCO2it � α0 + ∑
N

j�M
δjPloci,t−j + δiXit + μi + λt + εit (6)

According to Equation 6, Ploc_(i,t-j) is a dummy variable. If city
i was selected as a new energy demonstration city at time t-j, this
variable takes the value of 1; otherwise, it is 0 (M and N represent the
number of periods before and after the policy, respectively). If the
coefficients from δ_(-M) to δ_(-1) are not significant, it suggests that
there were no significant differences in carbon emissions between
the experimental and control groups prior to the policy
implementation, thus supporting the parallel trends assumption.
δ_(0) to δ_(N) represent the current period and lagged effects (m =
1, . . . , M) for city i after being selected as a new energy
demonstration city. These terms are used to capture the dynamic
effects of the policy. If these coefficients are significant, it indicates
that NECDP has a significant impact on carbon emissions.

The parallel trend test results shown in Figure 2 indicate that in
the 5 years before the policy implementation, the regression
coefficients for the impact of NECDP on carbon emissions did
not pass the significance test within the 95% confidence interval.
This suggests that, prior to being selected as a new energy
demonstration city, there was no significant difference in carbon
emissions between selected and non-selected cities, which supports
the parallel trend assumption. After the city was selected as a new
energy demonstration city, the carbon reduction effect was not
immediately observed, but became statistically significant in the
third year. This indicates that the carbon reduction effect of the
NECDP has a time lag. The delayed policy effects observed in this
study can primarily be attributed to the following factors: 1)
Institutional and Implementation Lag: Despite clear guidelines
from central policies, their effectiveness at the local level may be
limited by insufficient resource allocation, misinterpretations of
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policy details, and difficulties in inter-departmental coordination.
These institutional challenges lead to a delay in policy impacts
becoming evident. Moreover, variations among local governments in
comprehending and executing policy goals further extend the time
required for effective policy implementation. 2) Long Construction
Cycles for New Energy Projects: New energy projects typically involve
extended timelines, including initial planning, land approvals, securing
funding, equipment procurement, construction, trial operation, and
formal commissioning phases. Specifically, infrastructure projects such
as power grid enhancements and renewable energy installations
(photovoltaic and wind power projects) have an average
construction period of 2–3 years, influenced by factors like policy
approval processes, funding availability, and technical support. 3)
Enterprise Technological Transformation Period: While policies
encourage enterprises to adopt low-carbon technologies, the actual
technological upgrading process—including research, development,
experimentation, and production-line transformation—can take
several years. Additionally, the diffusion and market acceptance of
new green technologies typically involve a gradual learning curve.
Consequently, the effects of policy implementation on enterprise
behavior are often more apparent in the medium to long term.

5.2 Baseline regression analysis

Table 2 presents the results of the baseline regression. The
robustness of the results is assessed by sequentially adding
control variables. From columns (1) to (7), it is evident that the
NECDP coefficient of the core explanatory variable is significantly
positive at the 1% level, indicating that NECDP can significantly

reduce carbon emissions and foster a green, low-carbon urban
transformation. The reasons for this are: first, the development of
new energy cities compels high-consumption, low-productivity
industries to transition towards greener, low-carbon alternatives,
promoting a resource-efficient and environmentally friendly
industrial structure that helps achieve carbon reduction and
pollution control targets. Second, by setting targets such as “new
energy utilization,” “energy consumption restrictions,” “energy
consumption per unit of GDP,” and “industrial wastewater and
exhaust treatment rates,” new energy cities encourage a shift from an
energy-intensive, high-emission growth model to a more
sustainable, low-carbon economic model, which in turn reduces
carbon emissions. Hypothesis H1 is supported.

5.3 Placebo test

To further verify that the reduction in urban carbon emissions is
caused by NECDP and not by random influences from other
unobservable factors, a placebo test was conducted, following
existing studies (Zhang et al., 2021). First, 56 cities were
randomly selected from the full sample to form the experimental
group. A virtual variable representing the policy implementation
time was then generated for each city. This resulted in the core
explanatory variable NECDPit, which includes both the
experimental group and the policy implementation time. The
random sampling process was repeated 500 times, and the
baseline model was estimated repeatedly. As a result,
500 estimates of the NECDPit variable coefficients and their
corresponding p-values were obtained. This randomization

TABLE 1 Statistical description of variables.

Variable name Min Mean Max S.D Sample size

Carbon Dioxide Emissions (lnCO2) 1.775 6.082 9.432 1.171 4,256

Policy Variable (NECDP) 0 0.092 1 0.289 4,256

Industrial Structure Upgrading (Isu) 0.115 1.391 9.246 0.991 4,256

Green Technology Innovation (Pgpan) 0.002 0.769 19.53 1.542 4,256

Environmental Regulation (Eri) 0.0840 22.82 1,049 37.04 4,256

Technology Investment (Kj) 0.002 0.216 6.310 0.245 4,256

Energy Consumption Intensity (Egyx) 0.004 0.088 4.189 0.138 4,256

Environmental Awareness (Pub) 0.000 24.783 439.344 41.978 4,256

Green Transition of Lifestyle (Lz) 1.010 1.140 1.744 0.083 4,256

Economic Development Level (lnY) 7.782 10.36 13.06 0.752 4,256

Population Size (lnPop) 2.846 5.861 8.140 0.693 4,256

Urbanization Level (Urb) 0.202 0.629 1 0.146 4,256

Openness (Open) 0 0.181 3.488 0.338 4,256

Infrastructure (Inf) 0.139 4.335 73.04 5.878 4,256

Financial Development (Fin) 0.556 2.305 19.57 1.292 4,256

Economic volatility (Bd) −21.604 0.305 30.166 0.972 4,256

Government intervention (Gov) 0.011 0.187 3.760 0.157 4,256
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procedure helped eliminate the interference of other factors on the
NECDPit variable within the NECDP framework. After this
procedure, the regression coefficient for NECDPit was −0.049,
with a p-value of 0.149, which did not pass the significance test.
Figure 3 displays the kernel density distribution and the p-value
scatter plot after randomization. It is evident that the actual
estimated coefficient value is −0.155, significantly different from
the coefficient values in the placebo test, and the p-values are
concentrated around zero. This suggests that the policy effect of
NECDP in reducing urban carbon emissions is real and not driven
by random, unobservable factors.

5.4 Robustness analysis

5.4.1 Excluding other pilot policies
Previous studies have shown that pilot policies for low-carbon

cities (LCT), smart cities (SC), and innovative cities (IC) can
effectively reduce carbon emissions (Chiappinelli et al., 2024;
Wang et al., 2015). Therefore, corresponding policy dummy
variables are constructed and included in the empirical model to
verify the net effect of NECDP on carbon emissions. If the coefficient
of DID in the regression results is no longer significant, it would
indicate that the negative impact of the new energy demonstration
cities on carbon emissions is caused by other pilot policies in cities,
and the baseline regression results would lack credibility. The
regression model is specified as follows:

lnCO2it � η0 + η1NECDPit + ηjpolicjit + ηiXit + μi + λt + εit (7)

According to Equation 7, policy1it represents the impact of SC on
carbon emissions, policy2it reflects the effect of LCT on carbon

emissions, and policy3it represents the influence of IC on carbon
emissions. The dummy variables are constructed as follows: (1) The
first batch of SC was launched in 2012, with the latest batch in 2014.
For the group dummy variable, cities that have both “smart city” and
new energy demonstration city status are assigned a value of 1, while
other cities are assigned a value of 0. For the time dummy variable,
the years 2012–2020 are set to 1, and other years are set to 0. The
interaction term between the group and time dummy variables is
represented as policy1it, which indicates the impact of the SC on
carbon emissions. (2) The National Development and Reform
Commission established the first batch of low-carbon pilot cities
in 2010, with the most recent batch in 2017. Cities that
simultaneously implement LCT and NECDP are coded as 1,
while others are set to 0, forming the group dummy variable.
The years 2010–2020 are set to 1, while other years are set to
0 for the time dummy variable. The interaction term between the
group and time dummy variables, policy2it, captures the impact of
the “low-carbon city” policy on carbon emissions. (3) In 2008, China
launched its first innovative city pilot program in Shenzhen, and by
2018, six batches of cities were included. For the group dummy
variable, cities that have both the “new energy demonstration city”
and “innovative city” titles are assigned a value of 1, while others are
assigned a value of 0. The years 2008–2010 are set to 1, while other
years are set to 0 for the time dummy variable. The interaction term
between the group dummy variable and the time dummy variable,
policy3it, measures the impact of the “innovative city” policy on
carbon emissions.

From the regression results in Table 3 (Columns 1–4), it is
evident that NECDP did increase urban carbon emissions, but it is
not the sole policy factor responsible for carbon emission reductions.
Specifically, as shown in Columns (1) and (2), theNECDP coefficient
is negative and significant at the 5% level, while the coefficients for

FIGURE 2
Parallel trend test results.
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policy1 and policy2 are also negative and significant at the 1% level.
Compared to Column (7) in Table 1, the absolute value of the
NECDP coefficient has decreased, suggesting that both the LCT,
which focuses on reducing carbon emissions and developing new
clean energy, and the smart city policy, aimed at enhancing
innovation capacity and digital transformation, also significantly
reduce carbon emissions. In Column (4), after including the SC,
LCT, and IC, the NECDPit coefficient decreases to −0.083, which
remains significant at the 5% level. This indicates that, after
controlling for other city pilot policies, the carbon reduction
effect of NECDP remains significant.

5.4.2 PSM-DID regression
To mitigate the bias introduced by the non-random selection of

NECDP, and to control for carbon emission differences arising from
other unobservable factors, this study employs the propensity score
matching difference-in-differences (PSM-DID) method for
robustness checks of the regression results. Based on the

approach outlined by Y. Chen et al. (2024), control variables are
treated as covariates, and kernel matching is applied using the logit
model to identify the regions most similar to the selected cities as the
control group. This approach further verifies the effect of NECDP on
urban carbon emissions. As shown in Column (5) of Table 4, the
coefficient for the impact of NECDP on carbon emissions is
significantly positive at the 1% level, confirming that the baseline
regression results are robust and reliable.

5.4.3 Replace the dependent variable
Considering the strong link between economic development and

carbon emissions, and following Lei et al. (2023) and Yang et al. (2022),
this study adopts carbon emissions per unit of output as a measure of
carbon intensity. Based on this approach, an empirical analysis is
conducted. The results, presented in Columns (6) of Table 3, show
that t The coefficient of NECDP is −0.083, which remains statistically
significant at the 1% significance level, suggesting thatNECDP can reduce
carbon intensity, thereby driving low-carbon development in cities.

TABLE 2 Empirical results of baseline regression.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

NECDP −0.130*** −0.149*** −0.156*** −0.157*** −0.154*** −0.156*** −0.155*** −0.155*** −0.155***

(0.029) (0.028) (0.028) (0.028) (0.028) (0.028) (0.028) (0.028) (0.028)

lnY 0.519*** 0.521*** 0.489*** 0.472*** 0.465*** 0.480*** 0.483*** 0.485***

(0.035) (0.035) (0.036) (0.035) (0.035) (0.036) (0.036) (0.036)

lnPops 0.410*** 0.372*** 0.474*** 0.426*** 0.444*** 0.447*** 0.450***

(0.102) (0.102) (0.102) (0.104) (0.104) (0.104) (0.104)

Urb 0.680*** 0.520*** 0.508*** 0.473*** 0.472*** 0.474***

(0.160) (0.160) (0.160) (0.161) (0.161) (0.161)

Open 0.388*** 0.380*** 0.387*** 0.386*** 0.386***

(0.048) (0.048) (0.048) (0.048) (0.048)

Inf −0.007** −0.006** −0.006** −0.006**

(0.003) (0.003) (0.003) (0.003)

Fin 0.021*** 0.021*** 0.021***

(0.007) (0.007) (0.007)

Gov 0.038 0.038

(0.047) (0.047)

Bd 0.005

(0.006)

_Cons 5.396*** 0.528 −1.877*** −1.727** −2.150*** −1.785** −2.057*** −2.108*** −2.138***

(0.023) (0.328) (0.681) (0.680) (0.677) (0.696) (0.702) (0.705) (0.706)

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.651 0.669 0.671 0.672 0.677 0.678 0.678 0.678 0.679

N 4 256 4 256 4 256 4 256 4 256 4 256 4 256 4 256 4 256

Note: t-values in parentheses, *, **, and *** indicate significance at the 10%, 5%, and 1% levels. We controlled the city-fixed effect and year-fixed effect.
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5.4.4 Alternative estimation method
Cities are the primary sources of carbon emissions, which show

significant spatial correlations. The NECDP may affect carbon

emissions in neighboring regions. Therefore, a Spatial Durbin
Model (SDM) is constructed to identify the spatial spillover
effects of NECDP. The model formula is as follows:

FIGURE 3
Placebo test.

TABLE 3 Robustness test of the Impact of NECDP on carbon emissions.

Variables SC (1) LCT (2) IC
(3)

Net
effect (4)

PSM-
DID (5)

Replace the dependent
variable (6)

SDM (7)

NECDP −0.116***
(0.033)

−0.118***
(0.030)

−0.145***
(0.030)

−0.083** (0.035) −0.103***
(0.030)

−0.083*** (0.027) −0.154***
(0.027)

W* NECDP 1.089** (0.447)

p 0.494***
(0.100)

Policy1 −0.103**
(0.047)

−0.107** (0.050)

Policy2 −0.161*** −0.162***

(0.048) (0.049)

Policy3 −0.046
(0.051)

0.025 (0.055)

Controls Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

R2 0.908 0.909 0.908 0.909 0.898 0.711 0.524

LogL −1,608.241

N 4 256 4 256 4 256 4 256 3 365 4 256 4 256

Note: same as Table 2.
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lnCO2it � ρW lnCO2it + α1NECDPit + α2WNECPit + δiXit

+ θiWXit + μi + λt + εit (8)

According to Equation 8, W represents the geographic distance
weight matrix, ρ is the spatial autoregressive coefficient, and α2 and
θi are vectors of spatial lag coefficients for explanatory and control
variables, respectively. After conducting tests for spatial correlation,
spatial effects, Wald, and LR tests (detailed results are omitted but
available upon request), the SDM model with two-way fixed effects
was selected for estimation. The results are shown in Column (7) of
Table 3. Under the geographic distance weight matrix, the coefficient
ρ passed the 1% significance level test, suggesting that urban carbon
emissions are influenced by both local and neighboring regional
factors. The coefficients ofNECDP andW* NECDP are negative and
positive at the 1% and 5% significance levels, respectively, indicating
that NECDP reduced carbon emissions in pilot cities but increased
them in adjacent non-pilot cities.

Three potential explanations are as follows: 1) Resource and
Policy Siphon Effect: During policy implementation, pilot cities
attracted substantial investments, technologies, and talents, causing
a “siphon effect” that deprived neighboring non-pilot cities of
resources. The resource shortage hindered these cities’ green
transformation, forcing them to rely more on traditional high-
carbon industries, thereby increasing carbon emissions. 2) Policy
Imitation Leading to Pollution Effect: Non-pilot cities may imitate
the strategies of pilot cities. However, due to the lack of policy
support, technological capacity, and management experience, such
imitation is often superficial. Gaps in policy implementation and
technology introduction may prevent effective industrial
transformation, resulting in a “policy imitation pollution effect”
where high-carbon industries continue to dominate. 3) Industrial

Transfer Effect: Under demonstration policies, pilot cities are
encouraged to develop green, low-carbon industries while
restricting high-pollution enterprises. As a result, some high-
carbon enterprises may relocate to neighboring non-pilot cities,
contributing to a “pollution transfer effect” and raising emissions in
these areas.

5.5 Mechanism test of the effect of NECDP
on carbon emissions

The theoretical analysis suggests that local governments
facilitate enterprise green technological innovation and industrial
structure upgrading by implementing environmental regulatory
constraints and providing technological investment incentives,
ultimately contributing to carbon emission reduction. To test this
transmission mechanism, technological output and environmental
regulation are used as mediating variables. Table 4 shows the effects
of NECDP on industrial structure upgrading and green technology
innovation. From columns (2) and (5), the coefficients for NECDP’s
impact on technological spending and environmental regulation are
significant at the 5% and 10% levels, respectively. This suggests that
NECDP significantly encourages the government to strengthen
environmental regulation and technological investment. From
columns (3) and (6), the coefficients for the effects of
technological spending and environmental regulation on green
technology innovation and industrial structure upgrading are
significantly positive at the 1% level. Additionally, the promoting
effect of NECDP on green technology innovation and industrial
structure upgrading is weaker compared to columns (1) and (4),
implying that technological spending and environmental regulation

TABLE 4 Testing the emission reduction mechanism through government behavior.

Variables Government actions

Effect of technology expenditure Effect of environmental regulation

Pgpan
(1)

Kj
(2)

Pgpan
(3)

Isu
(4)

Eri
(5)

Isu
(6)

NECDP 0.283***(0.061) 0.025**(0.012) 0.252***
(0.059)

0.090***
(0.026)

3.673*(1.971) 0.083***

Kj 1.216***(0.076)

Eri 0.002***(0.000)

_Cons −24.317***
(1.540)

−4.157***(0.314) −19.248***(1.531) −14.533***(0.646) −351.967***
(49.842)

−13.573***(0.643)

mediating effect value −0.031** (Z = −2.001) 0.007** (Z = 2.250)

95% confidence interval [0.0057, 0.076] [0.0027, 0.2959]

Controls Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

R2 0.529 0.304 0.558 0.701 0.153 0.707

N 4 256 4 256 4 256 4 256 4 256 4 256

Note: same as Table 2.
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are critical channels through which NECDP influences
these outcomes.

Furthermore, The mediation effect test, conducted using the
Bootstrap method with 1,000 random samples, reveals that the
mediation effect values for both technological investment and
environmental regulation channels fall outside the 95%
confidence interval that includes zero. This indicates the
significant presence of mediation effects. The results suggest that
NECDP facilitates green technological innovation and industrial
structure upgrading by enhancing technological investment and
environmental regulation, thereby promoting carbon emission
reduction. The conclusion is robust and reliable, confirming the
validity of Hypothesis H2.

The theoretical analysis suggests that NECDP enhances public
environmental awareness and facilitates the transition to greener
lifestyles. This, in turn, promotes green technological innovation
and industrial structure upgrading, ultimately contributing to
carbon emission reduction. Considering public environmental
awareness and lifestyle green transition as mediating variables,
Table 5 presents the estimated results of NECDP’s influence on
green technological innovation and industrial structure
upgrading through public behavior, thus supporting carbon
reduction efforts. Columns (2) and (4) demonstrate that
NECDP’s influence on public environmental awareness and
lifestyle green transition is significantly positive at the 1%
level, indicating that NECDP effectively enhances public
environmental engagement and promotes greener lifestyles.
Columns (3) and (5) show that both public environmental
awareness and lifestyle green transition have significant
positive effects on green technological innovation and
industrial structure upgrading, also at the 1% significance
level. However, NECDP’s direct promotion effect on green

technological innovation and industrial structure upgrading
slightly decreases compared to the effects observed in columns
(1) and (4).

Furthermore, the mediation effect test, conducted using the
Bootstrap method with 1,000 random samples, reveals that the
mediation effect values for public environmental awareness and
green lifestyle transition fall outside the 95% confidence interval that
includes zero. This confirms the significant presence of mediation
effects. The findings suggest that NECDP reduces carbon emissions
by enhancing public environmental awareness and fostering low-
carbon lifestyles. The conclusion is robust and reliable, confirming
the validity of Hypothesis H3.

5.6 Heterogeneity analysis

5.6.1 Government environmental awareness
The government plays a central role in environmental

governance. In cities where the government places higher priority
on environmental issues, stricter environmental regulations are
enforced, and investments in pollution control are increased.
Given the differences in economic development, infrastructure,
openness, and policy enforcement across regions in China, the
impact of the NECDP on carbon emissions may vary regionally.
The sample cities were categorized into high and low environmental
concern groups for regression analysis. As shown in Columns (1)
and (2) of Table 6, the regression coefficients for the effect of
NECDP on carbon emissions in cities with high and low
environmental concern are −0.188 and −0.096, respectively, both
statistically significant at the 1% level. This suggests that the carbon
reduction effect of NECDP is stronger in cities with higher levels of
government environmental concern. The likely explanation is that

TABLE 5 Mechanism test of emission reduction under public behavior.

Variables Public behavior

Effect of environmental awareness Green transition of lifestyle (Lz)

Pgpan
(1)

Pub
(2)

Pgpan
(3)

Isu
(4)

Lz
(5)

Isu
(6)

NECDP 0.282***(0.061) 13.212***(1.823) 0.137**
(0.018)

0.090***
(0.026)

0.003***(0.001) 0.084***(0.025)

Pub 0.011***(0.001)

Lz 2.015***(0.270)

_Cons −24.317***
(1.547)

−292.949***(46.095) −21.331***(1.462) −14.248***(0.644) −16.227***
(0.694)

mediating effect value 0.145***(Z = 5.153) 0.006***(Z = 3.29)

95% confidence interval [0.0960, 0.2137] [0.0028, 0.0105]

Controls Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

R2 0.529 0.578 0.580 0.700 0.705

N 4 256 4 256 4 256 4 256 4 256 4 256

Note: same as Table 2.
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when local governments are more focused on environmental issues,
they implement stricter environmental regulations and offer more
subsidies. This drives businesses to adopt cleaner, low-carbon
production practices and encourages green technological
innovation, facilitating the transition of industries toward
greener, low-carbon alternatives and reducing reliance on fossil
fuels, thereby cutting carbon emissions. Additionally, these
governments guide the public towards low-carbon lifestyles by
promoting the use of public transportation and shared bicycles
and offering green consumption subsidies to encourage the purchase
of environmentally friendly products.

5.6.2 Degree of digitalization
With the rise of the digital economy, the role of digital

government development, enterprise digital transformation, and
the upgrading of residents’ digital consumption has become
increasingly important in enabling cities to transition to green,
low-carbon development. To investigate the varying impact of
NECDP on carbon emissions across cities with different levels of
digitalization, this study follows the methodology of Wang (2023),
evaluating urban digitalization based on three dimensions: digital
infrastructure, industrial digitalization, and digital industrialization.
The cities in the sample are categorized into high and low
digitalization groups, and the differences in the impact of
NECDP on carbon emissions in these cities are assessed. As
shown in Columns (3) and (4) of Table 6, the NECDP
coefficients for high and low digitalization cities
are −0.160 and −0.091, respectively, with statistical significance at
the 1% and 5% levels. This suggests that the policy effect of NECDP
is stronger in high-digitalization cities. The likely explanation is that
in cities with higher levels of digitalization, the digital economy
enables participation from the government, enterprises, and the
public in the NECDP. This boosts government digital governance
capabilities, increases public environmental engagement, and
enhances the motivation for businesses to adopt green
transformations, all of which help to establish a green, low-
carbon lifestyle and production model. Therefore, the carbon
reduction effect of NECDP is more pronounced in high-
digitalization cities compared to low-digitalization ones.

5.6.3 Urban agglomerations and non-urban
agglomerations

With the ongoing process of urbanization, city clusters and
metropolitan areas have become the new drivers of economic
growth in China. City clusters offer numerous advantages, such
as industrial agglomeration, resource sharing, talent mobility,
regional integration, and openness. These factors may lead to
stronger carbon reduction effects of energy policies in cities
within such clusters. To test this hypothesis, following the study
of Zhang et al. (2023) the sample cities are divided into two
categories: cities in city clusters, including the Beijing-Tianjin-
Hebei, Central Yangtze River, Harbin-Changchun, Chengdu-
Chongqing, Yangtze River Delta, Central Plains, Beibu Gulf,
Guanzhong Plain, Hohhot-Baotou-Ordos-Yulin, Lanci, and
Guangdong-Hong Kong-Macau Greater Bay Area city clusters,
and cities outside these clusters. A grouped regression is then
performed. As shown in Columns (5) and (6) of Table 6, the
NECDP coefficients for cities within city clusters and non-city-clusterT
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cities are−0.114 and−0.213, respectively, both significant at the 1% level.
This indicates that the carbon reduction effect of NECDP is significantly
smaller in cities within city clusters than in non-city-cluster cities. The
possible explanation is that, although cities in clusters benefit from
industrial agglomeration, resource sharing, talent concentration, and
policy coordination, which help to enhance inter-city collaborative
innovation and industrial upgrading, these city clusters, as major
economic hubs, are also the largest energy consumers and the
regions with the most severe greenhouse gas emissions in China.
Currently, the degree of economic agglomeration has not yet reached
the point where energy-saving and carbon reduction effects occur.
Therefore, the carbon reduction effect of NECDP is stronger in non-
city-cluster cities.

5.6.4 Resource endowment
According to the “National Sustainable Development Plan for

Resource-Based Cities (2013–2020)” issued by the State Council, the
sample cities during the study period are classified into two categories:
resource-based cities and non-resource-based cities. The impact of
NECDP on carbon emissions is then assessed based on the cities’
resource endowments. As shown in Columns (7) and (8) of Table 6, the
NECDP coefficients for resource-based and non-resource-based cities
are −0.123 and −0.157, respectively, both significant at the 1% level. This
suggests that NECDP can reduce carbon emissions in both types of
cities, with a stronger reduction effect in non-resource-based cities. The
likely explanation is that NECDP effectively utilizes both command-
and-control environmental regulations and market-driven competitive
mechanisms, which stimulate green technological innovation in
enterprises, forcing them to phase out outdated production
capacities, enhance energy efficiency, and reduce carbon emissions.
In resource-based cities, however, the long-standing path dependence
and low-end lock-in development model result in a reduced carbon
reduction effect of NECDP.

6 Discussion

This paper examines the carbon reduction effects of the NECDP in
the context of energy transition strategies and urban low-carbon
development. As the world’s largest energy consumer and carbon
emitter, China’s efforts in energy conservation and emission
reduction are crucial for achieving global carbon neutrality targets.
Energy transition policies, as an environmental strategy centered on
source prevention, create both incentives and constraints for local
governments, businesses, and the public. Carbon emissions, with
their negative externalities, broad impacts, dynamics, and complexity,
cannot be addressed by government, market, or social mechanisms
alone. Solving this issue involves the interests of the nation, government,
businesses, and the public. Therefore, studying the energy-saving and
carbon-reduction effects of this policy offers valuable insights for
constructing a diversified environmental governance system.

This paper builds on existing research by explaining the carbon
reduction mechanisms of NECDP from the perspectives of
government, businesses, and the public. Empirical findings show
that NECDP significantly reduces carbon emissions, although with a
time lag effect, emphasizing the need for patience and continuity in
policy formulation and implementation. The mechanism analysis
reveals that NECDP promotes green technological innovation, clean

low-carbon production, and industrial upgrading by influencing the
actions of governments, businesses, and the public, thus supporting
urban carbon reduction. Consequently, the central government
should continue refining local environmental performance
assessment systems and long-term supervision mechanisms. It
should also expand subsidies for businesses’ development of new
energy technologies and related tax incentives, encouraging energy-
saving and clean technologies as well as new energy product research
and development. This will drive more resources into the new
energy sector and help shift industrial structures from high-
energy, low-efficiency models to green, low-carbon, and intensive
forms. Additionally, local governments should guide the public
toward green consumption and sustainable travel, promoting
joint efforts from governments, businesses, and the public to
drive urban energy consumption and low-carbon transformation.

Finally, the heterogeneity analysis highlights that the carbon
reduction effect of NECDP is more significant in cities with high
levels of government environmental attention, high digitalization,
resource-based cities, and non-urban clusters. Thus, during policy
implementation, greater emphasis should be placed on the flexibility
and adaptability of the policy. Leveraging resource endowments and
urbanization models, the coordinated development of digitalization
and new urbanization should be accelerated. Digital economy tools
can address the energy dependence and low-end lock-in effects in
resource-based cities, promote free flow of factors and policy
coordination across urban clusters, and accelerate the point at
which economic agglomeration in urban clusters leads to energy-
saving and emission-reduction effects.

7 Limitations and future research

This study provides an important assessment of the emission
reduction effects of NECDP. However, several limitations remain,
suggesting directions for future research improvement. 1) This study
utilizes panel data from 266 cities in China spanning from 2005 to 2020.
While this dataset is highly representative, both the policy environment
and urban development dynamics may change over time. Future
research could incorporate more recent data to capture the latest
effects of policies on carbon reduction and to track the evolving
trends of urban low-carbon transformations. Furthermore, in
examining the mediating role of green technological innovation,
future studies may benefit from using micro-level enterprise data for
amore precise evaluation of its impactmechanisms. 2) In examining the
carbon reduction mechanism related to public behavior, this study
employs the public environmental awareness index to measure the
public’s level of environmental concern. Increased public environmental
participation encourages more green consumption and sustainable
travel. However, due to limitations in data availability, city-level data
on public green consumption and travel could not be obtained, which
broadens the scope of this mechanism analysis. 3) This study uses
parallel trend tests, PSM-DID, and robustness checks—such as
excluding other policies and substituting dependent variables—to
evaluate the effect of NECDP on urban carbon emissions. While
these methods provide solid evidence, future research could
incorporate more formal statistical approaches, such as pre-trend
testing, to further strengthen the robustness of the methodology. 4)
This study primarily focuses on China’s NECDP and does not fully
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integrate an international perspective. For example, the EU’s Clean
Energy Framework emphasizes regulatory uniformity, cross-border
coordination, and policy coherence, whereas NECDP is distinguished
by stronger local autonomy, a gradual implementation approach, and
region-specific pilot programs. Future research could undertake cross-
national comparative analyses to assess how energy transition policies in
different countries influence urban carbon emissions. Such comparative
insights would be instrumental in informing the development of
effective global low-carbon energy transition strategies.

8 Conclusion and policy implications

8.1 Conclusion

Using panel data from 266 prefecture-level cities between
2005 and 2020, this study examines the policy effects and
mechanisms of NECDP on urban carbon emissions, treating it as
an exogenous policy shock.

(1) The findings indicate that NECDP significantly reduces urban
carbon emissions and promotes the green, low-carbon
transformation of cities. This conclusion holds even after a
series of robustness and placebo tests.

(2) The mechanism analysis shows that NECDP encourages
governments to enhance environmental regulation and
technological investment, raise public environmental
awareness, and push businesses to innovate green
technologies and adopt clean, low-carbon production
practices. These efforts drive industrial restructuring, which
in turn reduces urban carbon emissions.

(3) Heterogeneity analysis reveals that the carbon reduction
effects of NECDP vary significantly based on government
environmental attention, digitalization levels, resource
endowment, and city size. Furthermore, while NECDP
plays a significant role in reducing carbon emissions, it is
not the sole factor; other policies, such as “low-carbon cities”
and “smart cities,” also facilitate the green and low-carbon
transformation of urban areas.

8.2 Policy implications

Firstly, Continuously advance the development of New
Energy Cities Demonstration Policy (NECDP). The NECDP
effectively promotes collaborative participation from local
governments, enterprises, and the public, facilitated by
strengthened environmental regulation and subsidy incentives.
It is crucial to further enhance environmental governance
frameworks, provide clearer financial incentives, and broaden
public engagement channels. By empowering the public with a
stronger voice in environmental matters,
stakeholders—government, enterprises, and the public—can
better coordinate efforts toward sustainable, low-carbon
production and consumption, ultimately facilitating successful
urban low-carbon transition.

Secondly, it is essential to ensure balance in policy
implementation. Flexible subsidy strategies should be designed to

accommodate different enterprise types, reducing compliance costs
for small and medium-sized enterprises to enhance policy fairness
and effectiveness. Additionally, enterprise costs, employment
impacts, and environmental performance should be monitored
regularly. A phased, adjustable environmental regulatory
mechanism should be adopted to maintain flexibility and
minimize sudden disruptions to business operations. Moreover,
the government should concurrently introduce retraining and
employment transition programs for workers in traditional
industries, alleviating employment pressures associated with the
urban energy transition.

Thirdly, Leverage resource endowments and urbanization
models to accelerate the coordinated development of
digitalization and new urbanization. Specifically, accelerate the
development of new infrastructure, enhance the role of the
digital economy in driving industrial transformation, and address
the energy dependence and low-end lock-in effects in resource-
based cities. Facilitate the free movement of factors and policy
coordination between cities in urban clusters, promoting the
point at which economic agglomeration in urban clusters
generates energy-saving and emission-reducing effects. This will
help drive the development of greener, low-carbon cities and the
digital transformation process during the construction of NECDP.
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Net ecosystem productivity (NEP) is a critical indicator for characterizing the
carbon cycle dynamics within terrestrial ecosystems. This study employs six
different combinations of methods for calculating Net Primary Productivity
(NPP) and heterotrophic soil respiration (Rh) to estimate monthly NEP values
in Inner Mongolia from 2001 to 2021. The carbon flux observation data obtained
through the eddy covariance method are used to validate and evaluate these
combinations, and the best NEP estimation model combination is selected, and
the spatiotemporal distribution patterns of NEP along with its primary driving
factors are analyzed. Results show that: 1) TheNEP estimates derived fromMODIS
NPP combined with the Global Soil Respiration Model (GSMSR) and Bond-
Lamberty’s Rs-Rh relationship model exhibit a strong correlation with validated
data; 2) The NEP in Inner Mongolia shows a significant increasing trend, with an
annual average value of 168.73 gC·m−2·a−1, or 177.57 gC·m−2·a−1 when excluding
barren. Forests, croplands, and grasslands are identified as the primary carbon
sinks during the growing season, with average NEP values of 84.81, 46.41, and
32.95 gC·m−2·mth−1, respectively; 3) Precipitation is the dominant meteorological
factor driving the spatiotemporal variations of NEP across the region, contributing
72.29% to NEP during the growing season. Additionally, over 80% of areas
influenced by human activities exhibit a positive impact on NEP; 4) The
interannual and growing season increases in NEP are primarily attributed to
climate change and anthropogenic activities, which account for 57% and
66.3% of NEP variations, respectively. These effects are particularly
pronounced in the eastern forested regions and central grasslands of Inner
Mongolia. The findings of this study provide valuable insights for regional
carbon sink management and ecological environment protection.

KEYWORDS

net ecosystem productivity, CASA model, MODIS NPP, driving factors, Inner Mongolia

1 Introduction

The acceleration of global industrialization has precipitated a substantial increase in
greenhouse gas emissions, particularly CO2 (Raihan et al., 2022). According to the synthesis
report of the Sixth Assessment Report (AR6) by the United Nations Intergovernmental
Panel on Climate Change (IPCC) in 2023, atmospheric CO2 concentrations have surged to
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their highest levels in nearly two million years, accompanied by a
global temperature rise of 1.1°C above pre-industrial levels (IPCC,
2023). These changes have triggered unprecedented climatic shifts
worldwide, with extreme weather events such as intense heatwaves,
heavy precipitation, and prolonged droughts becoming increasingly
frequent, thereby disrupting the carbon balance within ecosystems
(Kelong et al., 2011). To mitigate the adverse effects of carbon cycle
imbalances on ecological systems and human livelihoods, the
international community has emphasized the importance of
enhancing carbon sinks, making their development across various
ecosystems a critical strategy for achieving national “dual carbon”
goals (Yu et al., 2022). Consequently, investigating the
spatiotemporal dynamics of ecosystem carbon cycles and their
driving factors is essential for advancing ecological civilization
and ensuring the sustainability and security of human society.
Inner Mongolia, situated within an arid and semi-arid region,
represents the most extensive and diverse ecological functional
area in northern China. The alterations in its ecosystem carbon
storage have a considerable impact on the global ecosystem carbon
cycle (Cao et al., 2023; Jiang et al., 2019; Meng et al., 2020).
Therefore, investigating the spatiotemporal distribution patterns
of terrestrial Net Ecosystem Productivity (NEP) and its drivers in
Inner Mongolia is of significant scientific importance, enabling a
scientifically informed explanation of the regional ecosystem carbon
cycle and facilitating the rational use of forest and
grassland resources.

Gross Primary Productivity (GPP), Net Primary Productivity
(NPP), and NEP are key indicators of ecosystem carbon cycling,
reflecting the response of different ecosystems to climate change and
the productive capacity of plant communities under natural
environmental conditions (Zhou et al., 2020; Hou et al., 2023;
Zheng et al., 2023; Huang et al., 2023a; Li et al., 2022; Liu et al.,
2022; Ding et al., 2025). NEP, representing NPP minus the products of
photosynthesis consumed by heterotrophic soil respiration (Rh) and
soil total respiration (Rs), more accurately reflects the relationship
between photosynthesis, respiration, and energy balance within
ecosystems compared to GPP and NPP. NPP is highly effective for
quantitatively evaluating an ecosystem’s carbon sequestration potential
in relation to climate change, serving as a crucial indicator for
measuring carbon sinks, sources, and the global carbon balance of
ecosystems (Mendes et al., 2020; Song et al., 2020; Zou et al., 2022; Chen
et al., 2024). NEP can be measured directly using carbon flux or eddy
correlation techniques or estimated based on physiological or ecological
models. Although direct measurements are the most straightforward
method withminimal errors, they are generally infeasible for large-scale
studies due to site layout and accuracy requirements (Lees et al., 2018;
Berg et al., 2022; Zhi et al., 2024). Estimation of NEP based onCarnegie-
Ames-Stanford Approach (CASA) and Carbon Exchange in
Vegetation–Soil–Atmosphere System (CEVSA) models, integrated
with remote sensing and other geographic information systems, has
become the primary method for the quantitative assessment of NEP.
However, these model-based estimates are subject to subsurface
influences at varying spatial and temporal scales, often leading to
significant uncertainty (Liang et al., 2023; Qiu et al., 2022; Zuo et al.,
2023; Ouyang et al., 2021; Xu et al., 2024; Zhang et al., 2025).

The carbon cycle in terrestrial ecosystems is influenced by a
complex array of environmental factors, making the exploration of
its drivers and dominant factors a prominent focus in global carbon

change research. Correlation analysis, random forest modelling,
regression analysis, and other machine learning techniques are
the primary research methods. For instance, Lu et al. (2023)
found that NEP in Xinjiang is more sensitive to rainfall, while
Wang et al. (2022a) observed that climatic factors had the largest
contribution to NEP changes in the mountainous arid regions of
northwestern China, with anthropogenic activities contributing
negatively. Zhang et al. (2024) identified elevation as the
dominant factor influencing NEP changes in Heilongjiang
Province, and Cao et al. (2022) found precipitation to be the
main climatic factor influencing the spatial distribution of NEP
in the Yellow River Basin. Variations in NEP patterns, driving
factors, and spatial distribution within the same region are
markedly influenced by regional subsurface conditions and
vegetation types (Huang et al., 2023b; Wang et al., 2022b;
Bejagam and Sharma, 2022). Current research methodologies are
limited by their dependence on singular carbon sink estimation
models and exhibit insufficient comparative analysis of carbon sink
estimation outcomes from alternative models.

Forest and grassland ecosystems, indispensable components of
terrestrial ecosystems, play a crucial role in the global carbon cycle
(Ahlström et al., 2015; Bai and Cotrufo, 2022). Data from the third
national land survey indicate that the forested area in Inner
Mongolia is 24.37 × 104 km2 (23%), encompassing the temperate
coniferous forest belt, the mid-temperate deciduous broadleaf forest
belt, and the warm-temperate deciduous broadleaf forest belt. The
grassland area extends to 54.37 × 104 km2, representing the most
extensive terrestrial ecosystem in Inner Mongolia, with meadow
steppes, typical steppes, desert steppes, and grassland desertification
areas accounting for 5.57%, 37.10%, 10.75%, and 11.55%,
respectively. The total cropland area is 11.50 × 104 km2. These
ecosystems are essential terrestrial ecological resources for achieving
the dual carbon targets (Balasubramanian et al., 2020; Liu et al.,
2019). As a vital livestock and grassland production base in China
and a northern ecological security barrier, Inner Mongolia is
significantly affected by pronounced spatiotemporal climate
variations and frequent interannual extreme climate events,
resulting in an unclear understanding of the regional NEP and
its driving factors.

This paper estimates monthly NEP in the study area from
2001 to 2021 using six NPP and Rh model combinations. The
best fit model combination is selected from the vorticity-related
data of desert grassland and typical grassland to analyze the spatial
and temporal distribution pattern of NEP. Furthermore, the
principal driving factors and contribution rates of carbon sources
and sinks in Inner Mongolia are assessed based on influencing
factors, including climate change and human activities.

2 Materials and methods

2.1 Research area

The Inner Mongolia Autonomous Region is located in northern
China, spanning from 37°24′-53°23′N to 97°12′-126°04′E.
Encompassing the northeastern, northern, and northwestern
parts of the country, it stretches approximately 2,400 km from
east to west and 1,700 km from north to south. The region’s diverse
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landscape includes forested and grassy areas in the east, expansive
grasslands in the central region, and predominantly barren terrain in
the west, as depicted in Figure 1.

With an average altitude exceeding 1,000 m, the region’s
topography is characterized by higher elevations in the southwest
compared to the northeast. Inner Mongolia experiences a
medium-temperate continental monsoon climate, marked by
distinct seasonal variations. The climate transitions from
humid and semi-humid conditions in the east to semi-arid
and arid conditions in the west. Annual average temperatures
range from 0°C to 8°C, while precipitation varies significantly
across the region, from 50 mm to 450 mm annually. The annual
total solar radiation here ranges from 5,400 to 5,900 MJ·m−2, with
an average of about 5600 MJ·m-2. The spatial distribution of this
resource shows a gradual increase from the northeast to
the southwest.

Due to the diverse underlying surfaces across different zones,
there are notable variations in annual potential evapotranspiration.
For instance, areas near the Greater Khingan Mountains have
potential evapotranspiration values below 1,200 mm, whereas

most other regions exceed this threshold. It is important to note
that Inner Mongolia’s ecological environment is relatively fragile,
with frequent occurrences of extreme droughts.

2.2 Data sourcing and preprocessing

The meteorological and remote sensing datasets utilized in this
study, covering a comprehensive time span from 2001 to 2021, are
systematically presented in Table 1. These datasets encompass a
wide range of variables, including but not limited to precipitation
(PRE), temperature (TEM), solar radiation (SOL), potential
evapotranspiration (PET), and vegetation indices (NDVI), which
are critical for analyzing the climatic and environmental dynamics
over the two-decade period. The integration of these multi-source
data provides a robust foundation for the subsequent analysis and
modeling efforts in this research.

The carbon flux data associated with vortex measurements,
obtained from the desert grassland site (Damao Station) (Song
et al., 2022) and the typical grassland site (Xiwuqi Banner

FIGURE 1
Overview of the study area.

TABLE 1 Data sources and units.

Data Unit Time span Spatial resolution Data sources

GPP gC·m−2 8 days 500 m × 500 m https://earthdata.nasa.gov/

NPP gC·m−2 Year 500 m × 500 m https://earthdata.nasa.gov/

TEM 0.1p Month 1 km × 1 km http://data.tpdc.ac.cn

PRE 0.1 mm Month 1 km × 1 km http://data.tpdc.ac.cn

NDVI — Month 500 m × 500 m https://earthdata.nasa.gov/

SOL W m−2 Month 500 m × 500 m https://cds.climate.copernicus.eu

Land use — Year 30 m × 30 m https://zenodo.org/

PET 0.1 mm Month 1 km × 1 km http://data.tpdc.ac.cn

Soil carbon density kg/ m2 - 1 km × 1 km https://doi.org/10.4060/cc3823en
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Station) (Tan et al., 2023), were meticulously selected for model
validation.

The meteorological and remote sensing raster datasets
underwent standardized preprocessing in terms of spatial extent
and resolution using ArcGIS. This preprocessing included raster
projection transformation, resampling, and clipping procedures to
ensure consistency across the datasets.

2.3 Research methods

2.3.1 NPP estimation model
The estimation of NPP in this study utilized MODIS annual

NPP and 8-day GPP products, in conjunction with the CASA
models. The monthly NPP formula derived from MODIS
products is presented as Equations 1, 2:

NPP8 � GPP8/GPPy( ) × NPPy (1)
NPPm � ∑NPP8i (2)

Where NPP8 is 8-day NPP data in gC·m-2; GPP8 is the 8-day
GPP data in gC·m−2; GPPy is the annual total GPP data in gC·m−2;
NPPy is the annual total NPP in gC·m−2;NPPm is the monthly total
NPP in gC·m−2; NPP8i indicates the NPP8 data in the month i
in gC·m−2.

The present study employs the CASA model to compute
monthly NPP (Piao et al., 2001), reducing the estimation time
scale to 1 month and refining the input parameters of the model
for enhanced accuracy. Finally, NPP data is estimated to have a
temporal resolution of 1 month and a spatial resolution of 1 km. The
NPP estimation in this model is based on the assimilated
photosynthetic active radiation (APAR) by plants and their
effective utilization of light energy (ε). The estimation formula is
shown in Equation 3:

NPP x, t( ) � APAR x, t( ) × ε x, t( ) (3)
Where, ε(x, t) is the actual light energy utilization rate in

gC·MJ−1; APAR(x, t) is the photosynthetically active radiation
absorbed, calculated by the Equation 4 pixel x at t time in
gC·m−2 in ε(x, t) is calculated by the Equation 8:

ε x, t( ) � Tε1 x, t( ) × Tε2 x, t( ) × Wε x, t( ) × εmax (4)
Where, Tε1(x, t) and Tε2(x, t) are the stress coefficients of the

maximum and minimum TEM on the actual light energy utilization
ε(x, t), Wε(x, t) is the, calculated separately using Equations 5, 6
water stress coefficient, and εmax is the maximum light energy
utilization under ideal conditions calculated using Equation 7.

Tε1 x, t( ) � 0.8 + 0.02 × Topt x( ) − 0.0005 × Topt x( )2 (5)

Topt(x) is the optimal TEM for vegetation growth.

Tε2 x, t( ) � 1.184
1 + e0.2×Topt x( )−10−t x,t( ) ×

1

1 + e0.3× T x,t( )−10−Topt x( )( ) (6)

When the average TEM of a month is 10°C higher or 13°C lower
than the optimum TEM Topt(x), the Tε2(x, t) of the month is equal
to half of the average TEM of the month Topt(x).

Wε x, t( ) � 0.5 + 0.5 ×
EET x, t( )
PET x, t( ) (7)

Where EET represents the actual evapotranspiration of
the region.

APAR x, t( ) � SOL x, t( ) × FPAR x, t( ) × 0.5 (8)
Where SOL(x, t) represents the SOL at the pixel x at time t in

MJ·m-2; FPAR(x, t) is the photosynthetic active radiation
absorption ratio of vegetation canopy; and,
FPAR(x, t) � NDVI(x,t)−NDVImin

NDVImax−NDVImin
. The overall process of the CASA

model to estimate NPP is shown in Figure 2.

2.3.2 Rh estimation model
The Rh of Inner Mongolia was estimated in this study using

three well-established and validated models: the Pei. model (Pei
et al., 2009), the GSMSR model (Yu et al., 2010) coupled with Bond-
Lamberty, and the Rs-Rh relationship model developed by
Shi (2015).

The calculation formula of the soil microbial heterotrophic
respiration model established by Pei is as Equation 9:

Rh x, t( ) � 0.22 × exp 0.0912T x, t( )( ) + ln 0.3145R x, t( ) + 1( )( )
× 30 × 46.5% (9)

Where, T(x, t) is the average TEM of the pixel x at time t in °C;
R(x, t) is the average PRE of the pixel x at time t in mm.

The GSMSR model is primarily utilized for the computation of
Rs, followed by the utilization of the Rs-Rh relationship model to
calculate Rh. The calculation formula for the GSMSR model is as
Equation 10:

Rs � RDS�0 +M × Ds( ) × eln αe
βtt/10 × P + P0

P + K
(10)

Where Rs is soil total respiration in gC·m-2; Ds is the soil carbon
density at a depth of 20 cm in kg/ m2; RDS�0 = 0.588; M � 0.118;
α � 1.83; β � −0.0006; P0 � 2.97;K � 5.66; P is the regional average
monthly PRE in cm.

FIGURE 2
Flowchart for estimating NPP with CASA model.
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The Rh was calculated using the Rs-Rh relationship model
constructed by Bond-Lamberty et al. (2004) and Shi (2015),
respectively. The equation developed by Bond-Lamberty et al. is
as Equation 11:

lnRh � 1.22 + 0.73 ln Rs (11)

The Rs-Rh relationship constructed by Shi is as Equation 12:

Rh � −0.0009R2
s + 0.6011Rs + 4.8874 (12)

2.3.3 NEP estimation model
Without considering the influence of other natural and human

factors, NEP is equal to the difference between vegetation NPP and
Rh (Tang et al., 2016), and the calculation formula is as Equation 13.

NEP x, t( ) � NPP x, t( ) − Rh x, t( ) (13)

Where, NEP(x, t) is the net ecosystem productivity of
vegetation of the pixel x at time gC·m−2. When NEP >0,
vegetation acts as a carbon sink, otherwise, as a carbon source.

2.3.4 Correlation and significance analysis
The key climate factors influencing regional NEP changes were

identified as PRE, TEM, SOL, and PET. Their spatial correlation
with NEP at both annual and growing season scales was analyzed at
the pixel level. The correlation coefficient (r) was calculated using
the Equation 14.

r � ∑n
i�1 xi − �x( ) yi − �y( )























∑n
i�1 xi − �x( )2∑n

i�1 yi − �y( )2
√ (14)

Where xi and yi are the time series of NEP and climatic
elements, �x and �y are the annual average values of NEP and
climatic factors. The value range of the correlation coefficient is
between −1~1, r > 0 indicates a positive correlation between the two
groups of variables, and r < 0 indicates a negative correlation. The
greater the magnitude of |r|, the stronger the correlation between the
two sets of variables.

T-test is used to determine whether the correlation between NEP
and climate factors is significant. The calculation formula of the
T-value is as Equation 15:

t � r






n − 2

√






1 − r2

√ (15)

If the absolute value of t is greater than t0.05 it means that the
correlation between the two groups of variables passes the 0.05 level
significance test; otherwise, it means that the correlation is not
significant.

2.3.5 NEP trend analysis
The trend of the NEP long-time series was analyzed using the

Theil-Sen (Sen) median analysis combined with the Mann-Kendall
(M-K) test method. Sen median analysis is a robust nonparametric
trend statistical method (Cai and Yu, 2009), and its calculation
formula is as Equation 16:

SNEP � Median
NEPj −NEPi

j − i
( ) (16)

Where NEPj and NEPi represent the NEP index of the year j
and the year i respectively, and SNEP is the changing trend of NEP. A
SNEP >0 indicates an increasing NEP is while SNEP = 0 and
SNEP <0 indicate a constant and decreasing NEP, respectively.
Larger absolute value of SNEP, indicate a stronger change in
the trend.

Sen median analysis lacks a statistical significance test for trend
analysis, thus the M-K test was employed for evaluation. The M-K
test is a non-parametric statistical test that can be utilized to
determine the presence of a significant trend in a time series.
The formula for the M-K test is as Equations 17–19:

S � ∑
n−1

i�1
∑
n

j�i+1
sgn NEPj −NEPi( ) (17)

sgn NEPj −NEPi( ) �
1 NEPj >NEPi

0 NEPj � NEPi

−1 NEPj <NEPi

⎧⎪⎨
⎪⎩ ∀ i< j (18)

Var S( ) � n n − 1( ) 2n + 5( )
18

(19)

Where n ≥ 10 indicates a normal distribution for the statistic S,
with S representing the test statistic, n denoting the length of the
time series, sgn indicating the symbolic function, and Var(S)
representing variance. For this study’s time series length of 21
(2001–2021), after standardizing the test statistics, the calculation
by Equation 20.

Z �

S






Var S( )√ S> 0

0 S � 0
S + 1






Var S( )√ S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(20)

The threshold of the test statistic Z is set under various
significance levels to determine the statistical significance of the
trend. Specifically, when |Z| exceeds 1.96, it indicates that the trends
pass the significance test at the confidence level of 95%.

2.3.6 NEP driver analysis
The method of partial derivative correlation was employed to

quantitatively assess the respective contributions of climate factors
and human activity factors to NEP (Liu and Sun, 2016). The
calculation formula is provided as Equation 21.

dNEP

dt
≈
δNEP

δPRE
×
dPRE

dt
+ δNEP

δTEM
×
dTEM

dt
+ δNEP

δSOL
×
dSOL

dt

+δNEP

δPET
×
dPET

dt
+Hcon (21)

� PREcon + TEMcon + SOLcon + PETcon +Hcon � Ccon +Hcon

Where PREcon, TEMcon, SOLcon, PETcon are the contributions of
PRE, TEM, SOL, and PET to NEP, respectively. Ccon represents the
contribution of climate factors to NEP variation as Ccon � PREcon +
TEMcon + SOLcon + PETcon;Hcon represents the contribution of other
factors (human activities, natural disasters, etc.) to the change of NEP,
and it is generally believed that human activities play a major role (Qu
et al., 2020); dNEP

dt , dPREdt , dTEMdt , dSOLdt ,
dPET
dt are the variation trends of NEP,

PRE, TEM, SOL, and PET with time t, respectively, calculated by the
multiple linear regression model as Equation 22.
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dx

dt
� ∑n

i�1 i × xi( ) − 1
n ∑n

i�1i( ) ∑n
i�1xi( )

∑n
i�1i2 − 1

n ∑n
i�1i( )2 (22)

Here, δNEP
δPRE ,

δNEP
δTEM,

δNEP
δSOL ,

δNEP
δPET are partial derivatives of each

climate factor to NEP, taking into account that each factor has a
linear effect on NEP. By eliminating the influence of other variables,
each partial derivative is equal to the corresponding correlation
coefficient (Wu et al., 2020). The positive and negative contributions
represent the positive and negative effects of impact factors on NEP
respectively.

The specific discrimination method and contribution rate
calculation are shown in Table 2:

3 Results

3.1 Model validation

In this study, the NPP values were estimated using two
approaches: one based on MODIS NPP data and the other based
on the CASA model. These NPP estimates were then coupled with
the Rs-Rh soil respiration model to calculate the net ecosystem
productivity NEP values for the study area across different time
periods. To validate the accuracy of the models and select the most
suitable one, measured eddy covariance data from both desert steppe
and typical steppe ecosystems were employed, as depicted in
Figure 3. The NEP values derived from coupling the MODIS
NPP product with the GSMSR and the Rs-Rh relationship model
proposed by Bond-Lamberty and Shi demonstrated a strong
correlation with the observed values in both ecosystem types.
These results confirmed the reliability of the selected model,
which was subsequently used to analyze the spatial and temporal
distributions of NEP and to investigate the key driving factors
influencing these patterns.

3.2 NEP spatiotemporal distribution in
Inner Mongolia

3.2.1 Interannual spatiotemporal distribution of
NEP in Inner Mongolia

Figure 4 illustrates the interannual and spatial distribution of
NEP in Inner Mongolia from 2001 to 2021. Over the past 21 years,
the overall NEP has shown an increasing trend. The mean annual
NEP ranged between 114.96 and 201.05 gC·m−2·a−1, with an annual
average of 168.73 gC·m−2·a−1. The minimum value was observed in

TABLE 2 Method for identifying primary factors influencing NEP changes in Inner Mongolia and the calculation principle for contribution rates.

Effecting factor Identification (yr-1) Contribution rate (%)

Ccon Hcon Climate change Human activities

dNEP
dt > 0 Combined contribution >0 >0 Ccon

Ccon+Hcon

Hcon
Ccon+Hcon

Climate change >0 <0 100 0

Human activities <0 >0 0 100

dNEP
dt < 0 Combined contribution <0 <0 Ccon

Ccon+Hcon

Hcon
Ccon+Hcon

Climate change <0 >0 100 0

Human activities >0 <0 0 100

FIGURE 3
Comparison of calculated and measured NEP values across
various grassland types (A). Desert grassland, (B). Typical grassland 1.
Formula (1) + (9); 2. Formula (1) + (10) + (12); 3. Formula (1) + (10) + (11);
4. Formula (3) + (9); 5. Formula (3) + (10) + (12); 6. Formula (3) +
(10) + (11)
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2001, while the maximum occurred in 2018, indicating distinct
interannual variability with an annual trend of 0.91. Spatially, NEP
in Inner Mongolia exhibits a pattern of higher values in the
northeast and lower values in the southwest, reflecting clear
regional differences. Furthermore, different ecosystem types
exhibit varying levels of NEP, with forests > cropland >
grassland having corresponding annual averages of
419.14 gC·m−2·a−1, 228.19 gC·m−2·a−1, and 158.48 gC·m−2·a−1.

3.2.2 Spatial and temporal distribution of NEP
during the growing season in Inner Mongolia

The vegetation growth season in Inner Mongolia was defined as
May to September. The spatial and temporal NEP distribution
during this period was analyzed, as illustrated in Figures 5, 6.

The long-term average NEP values throughout the growing
season range from 125.96 to 207.69 gC·m−2·5 mth−1, peaking in
July at 53.04 gC·m−2·mth−1, marking a significant carbon sink phase.
Spatial analysis indicates that NEP patterns during the growing
season remain consistent across years, with distinct regional
characteristics. Specifically, different ecosystem types show a

hierarchy of NEP as in the following order: forest > cropland >
grassland, with corresponding monthly averages of 84.81, 46.41, and
32.95 gC·m−2·mth−1.

FIGURE 4
Spatial and temporal variation trend of interannual NEP in Inner
Mongolia (A) Temporal scale; (B) Spatial scale.

FIGURE 5
Spatial and temporal variation of NEP in Inner Mongolia during
the growing season (A) Temporal scale; (B) Spatial scale.

FIGURE 6
Monthly average NEP during the growing season.
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3.2.3 Interannual and growing season variation of
NEP in Inner Mongolia

To further quantify the temporal variation trend of NEP in
Inner Mongolia from 2001 to 2021, both the M-K test and the
Sen median estimator were employed. These methods were used
to investigate the interannual and seasonal growth patterns at a
regional level as illustrated in Figure 7. NEP exhibits pronounced
spatial differences, with a general trend of “higher in the
northeast and lower in the southwest.” Moreover, forests
demonstrate the highest upward trend followed by grassland
and cropland. Due to the unfavorable vegetation site conditions
in barren areas, NEP tends to be predominantly negative.
Consequently, the results for the entire region are
significantly influenced by the NEP in western barren areas,
both during the growing season and throughout the year.
Moreover, an overall weak or downward trend was observed.
Significance tests reveal that, except for the western barren area
which did not meet a significance level of 0.05, all other regions
exhibited significant changes in trend. Therefore, our
subsequent analysis will primarily focus on NEP variations
within vegetated areas while omitting a detailed examination
of the western barren.

3.3 Analysis of NEP drivers in Inner Mongolia

3.3.1 Correlation analysis
The spatial and average correlation coefficients between NEP

and meteorological driving factors (PRE, TEM, SOL, and PET) in
Inner Mongolia are illustrated in Figures 8, 9.

NEP exhibits a positive correlation with various meteorological
factors, except for certain areas in barren and desert grasslands.
Particularly, in the eastern part of the forest and grassland areas,
NEP demonstrates the most significant positive response to
meteorological factors. Conversely, cultivated land displays a
weak positive correlation with these factors. Notably, the
disparity between PET and TEM manifests itself as the most
pronounced difference. There was a weak to moderate negative
correlation between NEP and meteorological factors in the barren
grasslands located at the Yinshanbeilu in central and western China.
Specifically, during the growing season, there was a significant
decrease in the correlation between SOL and PET with NEP.
Additionally, the positive interannual effect observed in certain
regions during this period was hindered due to the influences of
regional underlying surface conditions. The impact of PRE on NEP
differs across different land types, with grassland and cultivated land

FIGURE 7
The trend of NEP variations and its significance test in Inner Mongolia (A) interannual, (B). Growing season.
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being more affected compared to forest areas. Conversely, TEM and
PET exhibit an opposite trend. Based on the correlation coefficients,
PRE shows the strongest correlation (0.868), followed by PET and
TEM (0.785 and 0.721, respectively), while SOL demonstrates the
weakest correlation (0.456). During the growing season, TEM
exhibits the highest correlation (0.811), followed by PRE (0.709),
PET (0.588), and SOL (0.371).

3.3.2 Contribution analysis
① Contribution rate of climate factors to NEP change. To

further investigate the contributions of climate factors and
human activities to changes in NEP in Inner Mongolia, we
employed the partial derivative correlation analysis. The
contribution rates of meteorological factors to NEP during
the interannual and growing seasons are illustrated in
Figure 10. It is evident that on the interannual scale,

PRE has the greatest contribution to forest and meadow
areas in the eastern region, while the impact of NEP on
TEM-coupled PRE is more significant in the western
region. The contribution rate of PET to NEP remains
unstable due to its comprehensive dependence on
vegetation conditions, TEM, and SOL. In certain
cultivated land and desert grassland areas, there is a
transition from positive to negative contribution to
NEP. Throughout the growing season, the impact of
PRE on forests and grasslands in eastern China was
paramount, while the influence of PET significantly
diminished in comparison to interannual variations. The
contribution of SOL to the NEP changes in the eastern

FIGURE 8
Spatial correlation between NEP and various meteorological
factors (A). Interannual, (B). Growing season.

FIGURE 9
The correlation coefficient between NEP and various
meteorological factors (A). Interannual, (B). Growing season (The red *
represents the significance level of the correlation between variables.
** indicate a significance level of p < 0.01; and *** indicate a
significance level of p < 0.001.).
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forest and grassland areas was more significant. However,
the contribution of the TEM is low, and the changing trend
of spatial distribution is not significant.

② Contribution of climate factors and human activities to NEP.
Table 3 shows the contribution of climate factors and human
activity to NEP changes in Inner Mongolia (Positive and
negative denote positive and negative contribution effects,
respectively). The primary drivers of interannual NEP
variation in the study area, excluding the western barren,
are predominantly climate-related, with human activities
contributing 24% to this change. There are some
differences between the driving factors of the growing
season and the interannual ones. The influence of climate
factors and human activities on NEP in the study area is
45.36% and 54.64%, respectively. PRE is the main factor
affecting NEP during the growth season in Inner Mongolia,
and the contribution rate of TEM and SOL to the region as a
whole has a certain inhibitory effect.

Considering the potential impact of NEP instability on research
outcomes in the western barren region, this study provides a
supplementary analysis of climate factors and human activities
on NEP in non-vegetated barren areas. As presented in Table 3
it is evident that human activities have significantly contributed to
changes in NEP, while rainfall has shown a significant influence
among climate factors.

Figure 11 illustrates the contribution of various influencing
factors to NEP in Inner Mongolia, with positive and negative
areas distinguished. Human activities and climate factors make
up over 60% of the positive contribution to NEP in Inner
Mongolia, while the negative impact of climate change on NEP
surpasses that of the human activities. The most significant negative
contributions come from SOL and TEM, whereas more than 80% of
PRE can promote regional NEP changes.

③ Analysis of driving factors of NEP change in Inner Mongolia.
The primary driving factors behind the NEP spatial change
trend in Inner Mongolia were examined, as illustrated in
Figure 12, by integrating the classification criteria of
contribution rate of different driving factors presented in
Table 2. It can be seen that climate change and human
activities have impacted over 60% of Inner Mongolia,
primarily concentrated in the eastern and southern regions.
Furthermore, a decrease of approximately 20% in NEP was
attributed to climate factors, mainly occurring in the western

FIGURE 10
Contribution of meteorological factors to NEP (A). Interannual,
(B). Growing season.

TABLE 3 2001–2021 Contribution magnitude and rate of each factor in Inner Mongolia.

PRE TEM SOL PET Climatic factor Human activity

Considered barren Contribution degree Interannual 0.013 −0.007 −0.029 0.046 0.095 0.030

Growing season 0.047 −0.0005 −0.014 0.007 0.069 0.082

Contribution rate Interannual 13.68% −7.36% −30.53% 48.42% 76.00% 24.00%

Growing season 68.11% −0.73% −20.29% 10.14% 45.36% 54.64%

Excluding barren Contribution degree Interannual 0.02 −0.002 −0.018 0.036 0.076 0.034

Growing season 0.06 0.0002 −0.015 0.008 0.083 0.099

Contribution rate Interannual 26.32% −2.63% −23.68% 47.37% 69.09% 30.91%

Growing season 72.29% 0.24% −18.07% 9.64% 45.60% 54.40%
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barren area. The increase of NEP in the Yinshanbeilu and west
of Ordos is predominantly influenced by climate factors, while
human activities dominate the rise of NEP in southwest
Alashan and south Ordos.

4 Discussion

4.1 Uncertainty analysis of NEP estimation

In this paper, based on different estimation models of NPP and
soil heterotrophic respiration, the NEP values of vegetation net
primary productivity in the study area from 2001 to 2021 was
derived under the six combination models, and it was found that the
NEP values obtained from the results of different models had large

deviations. This is because changes in NEP are jointly influenced by
NPP and soil heterotrophic respiration and by a combination of
controlling variables such as vegetation cover, SOL, PRE, TEM, PET,
subsurface characteristics, soil organic carbon density, etc. Existing
studies of NEP are mainly based on soil monitoring, remote sensing
inversion, and model simulation, and these data sources have
limitations in terms of accuracy and generality. The NEP values
obtained from ground monitoring are insufficient to encompass the
entire study area; the NEP derived from remote sensing inversion is
influenced by cloud cover and atmospheric conditions, while the
NPP estimation model is constrained by variations in spatial and
regional scales across different models, the resolution of remote
sensing data, pre-processing techniques, and the impact of
parameter weighting, among other factors. Consequently,
discrepancies persist in the regional boundaries and parameter
rates of various land covers, including forests, grasslands, and
croplands, as well as at the global scale. The estimation of Rh is
crucial for delineating the ratio of soil heterotrophic respiration to
vegetation root autotrophic respiration within soil respiration.
However, significant discrepancies exist in the Rs-Rh relationship
curves derived from various methodologies. The curve modeling
presents one of the most challenging scientific problems to address.
In this study, based on the validated vegetation NEP of desert
grassland and typical grassland, we selected the most accurate
estimation model to reflect the NEP in the study area. But
for future application, it remains essential to enhance the
precision of NEP calculations derived from physiological and
ecological processes.

4.2 Spatiotemporal variation trends of NEP

In terms of time trends, the NEP of Inner Mongolia shows an
overall upward trend from 2001 to 2021, which is consistent with

FIGURE 12
The dominant factors of annual and growing seasonNEP in InnerMongolia from 2001 to 2021 (1. NEP increases due to climate and human factors; 2.
NEP increases due to climate factors; 3. NEP increases due to human activities; 4. NEP decreases due to climate and human factors; 5. NEP decrease due
to climate; 6. NEP decrease due to human factors).

FIGURE 11
The ratio of positive to negative contribution areas of each
influencing factor to NEP.

Frontiers in Environmental Science frontiersin.org11

Cui et al. 10.3389/fenvs.2025.1581983

225

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1581983


the findings of Zhai et al. (2024) and Liang et al. (2023). This is
partly due to a series of ecological restoration and management
projects implemented in Inner Mongolia since 1978, such as the
“Three North” Protective Forest Project, the Beijing-Tianjin
Wind and Sand Source Management Project, the Grassland
Ecological Protection and Restoration Project, the Soil and
Water Conservation and Desertification Management Project,
etc., which have resulted in significant vegetation restoration in
Inner Mongolia (Kang et al., 2021). On the one hand, the increase
in vegetation cover has increased vegetation photosynthesis and
carbon sequestration capacity of regional ecosystems. On the
other hand, It has mitigated soil erosion to some degree,
enhanced soil organic carbon levels, and diminished carbon
emissions from soil disturbances, increasing NEP (Sha et al.,
2022; Qiu et al., 2021; Tian et al., 2022). Conversely, NEP in
western Inner Mongolia exhibited no significant alterations or a
declining trend, as this region predominantly comprises desert
grasslands and barrens, characterized by minimal vegetation
cover and reduced carbon sequestration capacity, while
elevated soil temperatures augmented microbial respiration.
This results in the release of more soil carbon into the
atmosphere in the form of carbon dioxide, coupled with a
fragile regional ecological environment and a more
pronounced response to extreme climatic events such as
drought, all of which can lead to a decline in NEP (Guan
et al., 2021).

Annual carbon sequestration by vegetation occurs in the
growing season. Because soil microorganisms are active in the
growing season due to higher TEM and high PRE, the carbon
sequestration capacity is significantly higher than in the non-
growing season (Yun et al., 2022). The variation in NEP
throughout the growing season is the primary factor affecting
the annual regional change in NEP. The significant decrease in
NEP values in the study area in 2007, 2010, and 2016 was due to
extreme drought events in these years, where low PRE and high
TEM resulted in the closure or partial closure of plant stomata,
limiting carbon dioxide uptake and reducing the rate of
photosynthesis (Kapoor et al., 2020; Hu et al., 2023).
Furthermore, higher TEM can expedite soil organic matter

decomposition and augment soil respiration, leading to a
decreased NEP.

The present study also unveiled substantial spatial heterogeneity in
the vegetation’s carbon sequestration capacity within Inner Mongolia,
exhibiting a distinct east-west distribution pattern that corresponds to
the regional underlying vegetation types. These findings are consistent
with previous investigations conducted by Zhai et al. (2024) and Hao
et al. (2023). Furthermore, the investigated areas displayed notable
disparities in both vegetation types and carbon sequestration capacity,
which were influenced by various meteorological factors such as mean
TEM, PRE, and elevation. The overall ranking of these characteristics
was as follows: forest > grassland > cropland > impervious > barren;
within the grassland ecosystem, meadow steppe surpassed typical
steppe and barren steppe.

4.3 Analysis of driving factors influencing
carbon sink/source

Climate change is one of the key factors affecting the
productivity level of vegetation. Some scholars believe that TEM
and PRE are the most dominant factors affecting the change of
vegetation carbon cycle (Wei et al., 2014). Some scholars conclude
that SOL and PET also have an important effect on vegetation
carbon sequestration capacity, while TEM has a relatively small
effect on vegetation carbon sequestration capacity (Li et al., 2020).
Therefore, in this study, four key factors (PRE, TEM, SOL, and PET)
affecting the changes in NEP were screened for the analysis of
climate-driven factors. Different climate factors have different
effects on the vegetative carbon sequestration capacity. PRE
supplies the requisite water for vegetative growth, and enhances
plant productivity and biomass, thereby augmenting the carbon
sequestration potential of vegetation. In Inner Mongolia, is mostly
arid or semi-arid, and water is the main factor limiting vegetation
growth (WEI et al., 2014; Zhang et al., 2019). TEM can change the
activity of plant enzymes, which in turn affects the vegetative
photosynthesis rate and its carbon sequestration capacity.
Generally, elevated TEM enhance plant photosynthesis; however,
the relationship between photosynthesis rate and TEM is not linear.

TABLE 4 Land transfer matrix table (unit:104km2).

2000

2020

Cropland Forest Grassland Shrub Wetland Water Impervious Barren Sum

Cropland 16.35 0.08 3.67 0.05 0.10 0.06 0.13 0.51 20.95

Forest 0.09 17.31 2.21 0.04 0.01 0.02 0.00 0.00 19.69

Grassland 1.93 2.03 62.44 0.36 0.33 0.10 0.06 4.58 71.84

Shrub 0.02 0.02 0.80 0.24 0.01 0.00 0.00 0.03 1.12

Wetland 0.02 0.00 0.21 0.01 0.45 0.09 0.00 0.02 0.80

Water 0.05 0.01 0.10 0.00 0.06 0.58 0.00 0.03 0.84

Impervious 0.51 0.01 0.56 0.01 0.01 0.01 0.79 0.06 1.95

Barren 0.02 0.00 1.36 0.03 0.07 0.04 0.01 34.34 35.87

Sum 18.98 19.48 71.35 0.74 1.05 0.90 1.00 39.56 ——
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If TEM surpass the optimal range for plant growth, they may inhibit
photosynthesis, leading to a reduction in Net Ecosystem Production
(Moore et al., 2021). SOL can affect the photosynthesis active
radiation received by the plant. PET has an impact on plant
photosynthesis by affecting vegetation transpiration and soil
moisture (Post et al., 1992). According to the analyses in this
study, PRE is the main meteorological factor affecting NEP
changes in Inner Mongolia.

Positive anthropogenic contributions can significantly increase
the carbon sequestration capacity of vegetation, while negative
anthropogenic activities have a decreasing effect. This study
shows that more than 90% of the anthropogenic contributions in
Inner Mongolia are positive, as can be seen from the land transfer
matrix from 2000 to 2020 (Table 4).

The area of cropland, forest, grassland, and shrubland increased by
10.36%, 1.08%, 0.69%, and 52. 2% while the bare land area decreased by
9.33%. This indicates the importance of the Inner Mongolia Sand
Control Project which has improved the regional ecosystem
environment. These measures have played an important role in the
increase of vegetation NEP, reflecting the positive role of human
activities. A major negative role of human activities is manifested in
the degradation of grassland due to overgrazing and intense grazing
which have led to the degradation of the aboveground biomass. Land
degradation has resulted in the reduction of grassland productive
capacity. Some scholars found that the changes in grassland
ecosystems in Inner Mongolia from 1999 to 2015 were mainly due
to human activities by as much as 78.8% (Wang et al., 2021). This
suggests that although China has implemented ecological protection
and construction projects such as “returning pasture to grass” and
“natural grassland protection” in grassland areas, many areas are still in
a state of overgrazing.

5 Conclusion

This study utilized monthly multi-source remote sensing data,
meteorological data, and ground-measured carbon flux data from
2001 to 2021 in Inner Mongolia. The CASA model, MODIS NPP
data, and the Rh soil respiration model were employed and evaluated
to estimate NEP. Furthermore, the spatiotemporal distribution of
NEP and its driving factors in Inner Mongolia were analyzed. The
main findings are as follows:

1) The NEP model, which integrates MODIS NPP products with
the GSMSR model and the Rs-Rh relationship model
developed by Bond-Lamberty, demonstrated the best
performance. The fitting coefficients for typical grassland
and desert grassland were 0.76 and 0.51, respectively.

2) The annual average NEP in Inner Mongolia from 2001 to
2021 was 168.73 gC·m−2·a−1. The multi-year average NEP
during the growing season was 177.57 gC·m−2·5 mth−1. The
seasonal variation in NEP was distinct, with the region acting
as a carbon sink from May to September and as a carbon source
during the remaining months. There was a seasonal transition
between carbon sink and source behavior. The peak NEP value
occurred in July, reaching 53.04 gC·m−2·mth−1. Due to ecological
restoration and management efforts, NEP showed a fluctuating
upward trend, with vegetation conditions improving year by year.

3) The large east-west extent of Inner Mongolia and the diverse
climatic conditions led to significant spatial heterogeneity in
NEP. Vegetation ecosystems showed higher density in the
northeastern regions compared to the sparser southwestern
areas. The arid western region, experiencing warming and
drying trends, exhibited a tendency toward carbon source
behavior, substantially influencing both annual and growing
season NEP patterns.

4) All Climatic conditions collectively influence the magnitude
and variation of NEP. Based on correlation coefficients, PRE
emerged as the primary meteorological driver of interannual
NEP variations in Inner Mongolia. TEM and PRE during the
growing season jointly influenced NEP. In terms of
contribution rates, PRE remained the dominant
meteorological factor affecting NEP changes in the study area.

5) When considering barren and non-barren areas, the
contribution rates of climate change and human activities
to NEP variations were relatively similar. Over 55% of areas
with increasing NEP were influenced by both climate change
and anthropogenic activities, predominantly located in the
eastern and south-central regions of Inner Mongolia. In
contrast, climate factors were the primary drivers of the
approximately 20% decline in NEP, mainly observed in the
arid western regions of Inner Mongolia.
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