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Background

Dyslipidemia is strongly associated with the development of prediabetes and type 2 diabetes mellitus (T2DM). The atherogenic index of plasma (AIP), as a comprehensive index for assessing lipid metabolism, has received extensive attention from researchers in recent years. However, there are relatively few studies exploring the relationships between AIP and the risk of prediabetes and T2DM in the Chinese population. This study focuses on exploring the relationships of AIP with the risk of prediabetes and T2DM in the Chinese population.





Methods

We conducted an analysis of the public data from the China Health and Retirement Longitudinal Study (CHARLS), involving a total of 12,060 participants aged 45 years and above in China. The study explored the relationships of AIP with prediabetes and T2DM risk through multivariate logistic regression, subgroup analysis, smooth curve fitting, and threshold effect analysis.





Results

After adjusting for potential confounding factors, we observed positive associations between AIP and the risk of prediabetes [odds ratio (OR) = 1.75, 95% confidence interval (CI): 1.49–2.06] and T2DM (OR = 2.91, 95% CI: 2.38–3.57). Participants with higher AIP levels demonstrated a significantly elevated risk of prediabetes (OR = 1.52, 95% CI: 1.33–1.74) and T2DM (OR = 2.28, 95% CI: 1.92–2.71) compared to those with lower AIP levels. AIP showed consistent correlations with prediabetes and T2DM risk in different subgroups. The results showed the non-linear relationships between AIP and risk of prediabetes and T2DM, with inflection points at 0.29 and −0.04, respectively. When AIP > 0.29, there was a positive association between AIP and the risk of prediabetes (OR = 2.24, 95% CI: 1.67–3.00, p < 0.0001). Similarly, when AIP > −0.04, AIP was positively associated with the risk of T2DM (OR = 3.33, 95% CI: 2.67–4.16, p < 0.0001).





Conclusions

This study demonstrated non-linear positive associations of AIP with the risk of prediabetes and T2DM among participants ≥ 45 years of age in China.





Keywords: atherogenic index of plasma, prediabetes, type 2 diabetes mellitus, CHARLS, cross-sectional study





Introduction

Type 2 diabetes mellitus (T2DM) is characterized by impaired pancreatic β-cell function and relative insulin deficiency caused by insulin resistance (1). As one of the most prevalent chronic diseases globally, T2DM has emerged as a significant public health challenge affecting human health. In recent years, the prevalence of T2DM has shown a consistent upward trend in both developed and developing countries (2–4), posing substantial burdens on public health and healthcare systems (5, 6). According to data from the International Diabetes Federation (IDF), the global prevalence of diabetes in the 20–79 age group was estimated to be 10.5% (536.6 million people) in, 2021, with an estimated increase to 12.2% (783.2 million people) by, 2045. In addition, the statistics states that China has the largest number of people with diabetes, with approximately more than 140 million in, 2021 and an estimated more than 174 million by, 2045 (7).

However, there are still a considerable number of individuals with prediabetes. Globally, an estimated 7.5% (374 million people) of adults have prediabetes. Without effective preventive measures, this percentage is expected to reach 8.0% (454 million people) by, 2030 and 8.6% (548 million people) by, 2045 (8). During the prediabetes stage, abnormalities in glucose metabolism begin to emerge, usually accompanied by insulin resistance and dyslipidemia (9). If timely intervention is not made, the risk of progressing to diabetes is significantly elevated (10, 11). However, the majority of individuals with prediabetes remain undiagnosed (12). Accurately estimating prediabetes to identify high-risk individuals is a challenging task. Emphasizing the diagnosis of prediabetes and early intervention are crucial for preventing or delaying the incidence of T2DM and its complications.

Research indicates that insulin resistance (IR) plays a crucial role in the development of prediabetes and T2DM (13). Dyslipidemia may impact pancreatic function and insulin sensitivity through various pathways, thereby promoting the progression of prediabetes and T2DM (14–16). The study suggests that elevated triglycerides (TG) and low high-density lipoprotein cholesterol (HDL-C) levels are significant contributors to the development of IR (17). Although the hyperinsulinemic–euglycemic clamp technique is the gold standard method for evaluating insulin resistance (18), it is not suitable for the clinical assessment of large samples due to its drawbacks of high cost, invasiveness, and long duration (19). The atherogenic index of plasma (AIP) calculated through the formula log(TG/HDL-C) (20) is regarded as a new and better indicator of dyslipidemia compared to the single lipid indicator of TG or HDL-C and is a strong marker for predicting T2DM risk (21–23). In recent years, studies have shown that AIP is strongly associated with the incidence of prediabetes or T2DM. However, these related studies are relatively limited, and the effect sizes of the results may vary due to racial differences (24–27). Therefore, we conducted a nationally representative cross-sectional study based on the China Health and Retirement Longitudinal Study (CHARLS) database. The aim was to explore the associations between AIP and the risk of prediabetes and T2DM in the Chinese population.





Methods




Study design and population

The CHARLS is an ongoing nationally representative longitudinal survey targeting adults aged 45 years and above. It aims to investigate the socio-demographic, economic, and health status and functioning information of the population. The baseline survey for CHARLS was conducted during, 2011–2012 in 450 communities/villages across 150 districts/counties from 28 provinces throughout the country, with subsequent follow-up surveys conducted every 2 to 3 years. Blood sample data in CHARLS were collected in, 2011 and, 2015. The National Development Institute of Peking University (IRB00001052-11015) approved the research project of CHARLS, and all participants signed an informed consent form before participating in the study.

We utilized the CHARLS data (2011 and, 2015) to select eligible participants based on inclusion and exclusion criteria. We excluded individuals who were under 45 years of age; without key data on fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c), TG, and HDL-C; or with incomplete information on socio-demographic, health-related, anthropometric, and other biomarkers. We further excluded individuals with abnormal values of AIP (mean ± 3 times the standard deviation). Finally, we included 12,060 participants in this study. The exclusion process is shown in Figure 1.

[image: Flowchart showing participant selection from the CHARLS study. Total participants were 24,236. Excluded: 9,216 with missing FPG or HbA1c, 2,881 under 45 or with incomplete data, and 79 with abnormal AIP values. Final analysis included 12,060 participants.]
Figure 1 | Flowchart of participant selection.





Data collection and definitions

Socio-demographic information (gender and age), health-related behaviors (smoking and drinking status), and medical history were collected and recorded through questionnaires by the interviewers. Anthropometric measurements including height, weight, waist circumference (WC), and blood pressure were taken by trained professionals. During the measurement of participants’ blood pressure using an electronic sphygmomanometer, three measurements of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were taken, and the average of the three readings was recorded. Participants had fasting venous blood collected in the morning, including blood glucose, HbA1c, TG, total cholesterol (TC), HDL-C, low-density lipoprotein cholesterol (LDL-C), serum creatinine (Scr), blood urea nitrogen (BUN), and serum uric acid (SUA). The calculation formula for AIP was Log10(TG/HDL-C), with TG and HDL-C expressed in mg/dL. According to the American Diabetes Association guidelines (28), participants were defined as prediabetes with FPG between 100 mg/dL (5.6 mmol/L) and 125 mg/dL (6.9 mmol/L) or HbA1c between 5.7% and 6.4%. T2DM was defined as one of the following criteria: 1) FPG ≥ 126 mg/dL (7.0 mmol/L), 2) HbA1c ≥ 6.5%, 3) random plasma glucose ≥200 mg/dL (11.1 mmol/L), 4) currently receiving hypoglycemic therapy (medication or insulin injection), and 5) self-reported history of T2DM diagnosed by a physician.





Potential covariates

We included the following covariates based on the survey questionnaire: gender, age, smoking status, alcohol consumption, SBP, DBP, body mass index (BMI), WC, TC, LDL-C, Scr, BUN, SUA, antihypertensive medications, and lipoprotein-lowering medications. BMI was categorized as follows: BMI < 18.5 kg/m2, 18.5 kg/m2 ≤ BMI < 24 kg/m2, and BMI ≥ 24 kg/m2. Abdominal obesity was defined as waist circumference ≥90 cm for men or ≥85 cm for women.





Statistical analysis

Continuous variables are expressed as means and standard deviations, and categorical variables are described as numbers and percentages. One-way ANOVA, Kruskal–Wallis H test, or chi-square test was employed to compare the differences of variables among different quartiles of AIP. Three models were utilized in this study: Model 1, unadjusted; Model 2, adjusted for gender, age, SBP, DBP, smoking status, alcohol consumption, and BMI; Model 3, adjusted for gender, age, SBP, DBP, smoking status, alcohol consumption, BMI, WC, TC, LDL-C, Scr, BUN, SUA, antihypertensive medications, and lipoprotein-lowering medications. In this study, the associations of AIP with prediabetes and T2DM risk among participants were assessed using multivariate logistic regression analysis. In addition, a generalized additive model (GAM) was used based on smooth curve fitting to explore the non-linear relationships of AIP with the risk of prediabetes and T2DM and to observe whether there was a segmented relationship. Threshold effect analysis was performed using segmented regression models. Subsequently, multivariate logistic regression was used to perform subgroup analyses for different subgroups of gender, age, smoking status, alcohol consumption, SBP, DBP, BMI, and abdominal obesity. Interactions were also tested to assess whether these factors influenced the relationships of AIP with prediabetes and T2DM. Statistical analyses for this study were performed using EmpowerStats (http://www.empowerstats.com, X&Y Solutions, Inc., Boston, MA, USA) and the R statistical software packages (http://www.R-project.org, The R Foundation). p < 0.05 indicated statistical significance.






Results




Baseline characteristics of study participants

A total of 12,060 participants were ultimately enrolled in this study according to the inclusion and exclusion criteria. The average age of participants was 58.45 ± 9.70 years, with 5,664 men (46.97%) and 6,396 women (53.03%). The demographic and clinical characteristics of participants based on quartiles of AIP are listed in Table 1. All variables were statistically significant among AIP quartile groups (Q1–Q4). In comparison with the other groups, individuals in the AIP Q4 group had higher levels of SBP, DBP, BMI, WC, TC, TG, Scr, SUA, FPG, and HbA1c and lower LDL-C levels. Conversely, HDL-C was higher in the Q1 group and showed a negative association with AIP. Noteworthy, a higher proportion of individuals using antihypertensive and lipoprotein-lowering medications was observed in the AIP Q4 group compared to the lower AIP groups.

Table 1 | Baseline characteristics of study participants according to quartiles of AIP.


[image: Table showing variables across AIP quartiles with total counts and percentages. Variables include gender, age, blood pressure, BMI, waist circumference, smoking and alcohol status, cholesterol levels, and others. P-values for differences across quartiles are all less than 0.001. Data are given as mean and standard deviation or percentage.]




Multivariate regression analysis

Table 2 presents the odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between AIP and the risk of prediabetes and T2DM in different models. In the unadjusted model (Model 1), our results unveiled a positive association between AIP and prediabetes risk (OR = 2.57, 95% CI: 2.23–2.95). After adjusting for the potential confounders (Model 2: OR = 2.06, 95% CI: 1.77–2.40; Model 3: OR = 1.75, 95% CI: 1.49–2.06), the association between AIP and prediabetes remained significant. Similarly, regardless of whether the potential confounders were adjusted, a significant positive association between AIP and T2DM risk was also observed in different models (Model 1: OR = 5.01, 95% CI: 4.25–5.90; Model 2: OR = 3.78, 95% CI: 3.17–4.52; Model 3: OR = 2.91, 95% CI: 2.38–3.57). When AIP was considered as a categorical variable, in the fully adjusted Model 3, compared to the lowest quartile of AIP (Q1 group), the adjusted ORs for prediabetes in the Q2, Q3, and Q4 groups were 1.07 (95% CI: 0.95–1.20), 1.25 (95% CI: 1.11–1.41), and 1.52 (95% CI: 1.33–1.74), respectively. For T2DM, the adjusted ORs in the Q2, Q3, and Q4 groups were 1.25 (95% CI: 1.05–1.49), 1.60 (95% CI: 1.35–1.90), and 2.28 (95% CI: 1.92–2.71), respectively. The results indicated a progressive increase in the risk of developing prediabetes and T2DM with elevated AIP levels.

Table 2 | Multivariate regression analysis of the association between AIP and prediabetes and T2DM.


[image: Table with analysis results for models 1, 2, and 3 comparing odds ratios and p-values for prediabetes and T2DM across different quartiles of AIP. Model adjustments and abbreviations are provided in a note below the table.]




Subgroup analysis

Subgroup analyses were conducted based on gender, age, smoking status, alcohol consumption, SBP, DBP, BMI, and abdominal obesity to explore the associations of AIP with the risk of prediabetes and T2DM in different subgroups. The results revealed significant positive associations between AIP and the risk of prediabetes (Supplementary Table S1; Figure 2) and T2DM (Supplementary Table S2; Figure 3) across different subgroups. Additionally, women had a higher risk of developing prediabetes (OR = 2.02, 95% CI: 1.61–2.54) or T2DM (OR = 3.80, 95% CI: 2.84–5.10) compared to men. A stronger association between AIP and the risk of T2DM was also observed in non-smokers and non-drinkers. In this study, gender (p for interaction = 0.0154) and smoking (p for interaction = 0.0033) were identified as significant interacting factors influencing the relationship between AIP and T2DM. However, no significant interaction was observed between subgroups and the association of AIP with the risk of prediabetes.

[image: Forest plot showing odds ratios with 95% confidence intervals for different subgroups: sex, age, smoking status, alcohol consumption, systolic and diastolic blood pressure (SBP, DBP), body mass index (BMI), and abdominal obesity. P-values are listed for each subgroup. Points on the graph represent the odds ratios, with horizontal lines showing confidence intervals. Larger effects are observed in females, ever smokers, and those with higher BMI. Interaction P-values are included for each subgroup.]
Figure 2 | Subgroup analysis of the association between AIP and the risk of prediabetes. AIP, atherogenic index of plasma.

[image: Forest plot depicting odds ratios (OR) with 95% confidence intervals (CI) for various subgroups including sex, age, smoking status, alcohol consumption, systolic and diastolic blood pressure, BMI, and abdominal obesity. Each subgroup lists OR values, CI, p-values, and p-values for interaction, with dots and lines to represent data visually. Significant findings include higher ORs for females, non-smokers, and those with BMI over 24, all with strong statistical significance (p < 0.0001 for many). Interaction p-values are shown next to the plot.]
Figure 3 | Subgroup analysis of the association between AIP and the risk of T2DM. AIP, atherogenic index of plasma; T2DM, type 2 diabetes mellitus.





Non-linear relationship

The non-linear relationships of AIP with the risk of prediabetes and T2DM were analyzed through a GAM and smooth curve fitting. After adjusting for gender, age, SBP, DBP, smoking status, alcohol consumption, BMI, WC, TC, LDL-C, Scr, BUN, SUA, antihypertensive medications, and lipoprotein-lowering medications, the results revealed non-linear relationships of AIP with the risk of prediabetes (Figure 4A) and T2DM (Figure 4B). The inflection points for investigating the relationships of AIP with the risk of prediabetes and T2DM were identified by threshold effect analysis. Table 3 shows that the inflection point for AIP in prediabetic patients was 0.29. When AIP > 0.29, there was a positive association between AIP and the risk of prediabetes (OR = 2.24, 95% CI: 1.67–3.00, p < 0.0001). However, when AIP < 0.29, AIP was not associated with the risk of prediabetes (OR = 1.28, 95% CI: 0.91–1.81, p = 0.1597). The AIP inflection point for diabetic patients was −0.04 as shown in Table 4. Similarly, When AIP > −0.04, AIP showed a positive association with the risk of T2DM (OR = 3.33, 95% CI: 2.67–4.16, p < 0.0001). However, when AIP < −0.04, AIP was not associated with the risk of T2DM (OR = 0.30, 95% CI: 0.06–1.39, p = 0.1235).

[image: Two graphs compare Prediabetes and Type 2 Diabetes Mellitus (T2DM) percentages against the Atherogenic Index of Plasma (AIP). Graph A shows a rising trend in Prediabetes from 0.4 to 0.8 percent as AIP increases. Graph B depicts a similar upward trend for T2DM, rising from 0.05 to 0.5 percent. Both graphs include confidence intervals represented by dotted lines around the central red trend line.]
Figure 4 | (A) Smooth curve fitting to evaluate the non-linear relationship between AIP and the risk of prediabetes. The red solid line represents the probability of prediabetes occurrence, and the blue dotted line represents the 95% CI curve. (B) Smooth curve fitting to evaluate the non-linear relationship between AIP and the risk of T2DM. The red solid line represents the probability of T2DM occurrence, and the blue dotted line represents the 95% CI curve. AIP, atherogenic index of plasma; T2DM, type 2 diabetes mellitus.

Table 3 | Threshold effect analysis of AIP on prediabetes.


[image: Table comparing two models for Atherogenic Index of Plasma (AIP). Model 1 shows a standard linear model with an OR of 1.75 (95% CI: 1.49, 2.06), p < 0.0001. Model 2 includes an inflection point at 0.29, with ORs of 1.28 (95% CI: 0.91, 1.81), p = 0.1597 for <0.29, and 2.24 (95% CI: 1.67, 3.00), p < 0.0001 for >0.29. Log likelihood ratio is 0.003. Adjusted for various factors including gender, age, and several health indicators.]
Table 4 | Threshold effect analysis of AIP on T2DM.


[image: Table comparing two models analyzing the atherogenic index of plasma (AIP) with adjusted odds ratios (OR) and p-values. Model 1 suggests fitting by a standard linear model with an OR of 2.91 (95% CI: 2.38, 3.57) and p-value < 0.0001. Model 2 includes an inflection point at -0.04. For values below -0.04, the OR is 0.30 (95% CI: 0.06, 1.39) with p-value 0.1235. For values above -0.04, the OR is 3.33 (95% CI: 2.67, 4.16) with p-value < 0.0001. Log likelihood ratio is 0.005. Adjustments include gender, age, blood pressure, and other health factors.]





Discussion

In this cross-sectional study, our results indicated positive associations between AIP and the risk of prediabetes and T2DM in the Chinese population aged 45 years and above. In addition, higher AIP was significantly associated with prediabetes and T2DM risk in both male and female populations. Notably, the association was stronger in women compared to men. A stronger association between AIP and T2DM risk was also observed in non-smokers and non-drinkers.

A cross-sectional survey involving 9,245 participants in the United States revealed that AIP was associated with increased risk of IR (OR = 1.29, 95% CI: 1.26–1.32) and T2DM (OR = 1.18, 95% CI: 1.15–1.22). This suggested that AIP had the potential to serve as a monitoring indicator for IR and T2DM (26). In a study conducted on a rural population in Bangladesh, the results showed that high levels of TG and low levels of HDL-C were strongly associated with prediabetes and T2DM (29). Another study evaluating the association between AIP and its longitudinal effect on T2DM in middle-aged and older Chinese reported that individuals with higher baseline AIP were more likely to develop T2DM compared with those with lower baseline AIP (24). Our results were consistent with previous studies showing that the risk of prediabetes and T2DM increases with elevated AIP.

Studies have shown that IR is a key pathological driver in the development of prediabetes and T2DM (30). Although the hyperinsulinemic–euglycemic clamp test is the gold standard method for evaluating insulin resistance, its limitations including its high cost, invasiveness, and time-consuming nature, make it unsuitable for large-scale clinical studies (18, 19). Previous studies have confirmed that abnormal lipid metabolism is an independent risk factor for prediabetes and T2DM (31). Dyslipidemia may impact pancreatic function and insulin sensitivity through various pathways, promoting the progression of prediabetes and T2DM (14–16). Studies indicate that high TG and low HDL-C levels play a crucial role in the development of IR (17). Higher concentrations of TG increase free fatty acids, decrease insulin sensitivity, and contribute to insulin resistance (32, 33). Lower levels of HDL-C reduce cholesterol efflux and increase cholesterol accumulation in pancreatic β-cells, affecting pancreatic function (34, 35). The AIP, composed of TG and HDL-C, is a cost-effective and widely used marker in routine blood tests. Compared with single lipid indicators such as TG, TC, HDL-C, and LDL-C, the AIP is considered a new and better indicator of dyslipidemia and has significant value in the prediction of T2DM (21–23). In addition, high levels of AIP are also closely associated with the development of various macrovascular and microvascular complications of T2DM, including coronary artery disease, nephropathy, retinopathy, and metabolic syndrome (25, 36–41).

In Table 1, LDL-C was lower in the AIP Q4 group than in the other groups, and we have observed similar results in previous studies (42, 43). Previous studies have shown that AIP is not associated with LDL-C (37, 44). Elevated AIP is significantly associated with a higher risk of T2DM, and the Q4 group with higher AIP had relatively more patients with T2DM. Although it is widely recognized that LDL-C is a key factor in cardiovascular disease, whether high or low LDL-C levels influence the development of diabetes remains controversial. Previous studies have indicated that LDL-C is mostly normal in T2DM patients with abnormal lipid metabolism (45), that elevated LDL-C does not lead to a significant increase in T2DM, and genetic researches indicate that reduced LDL-C may be a protective factor for T2DM (31, 46). Therefore, it may cause the phenomenon that the Q4 group with higher AIP (more diabetic patients) had lower LDL-C than the other groups. When assessing the association between AIP and the risk of prediabetes in the three different models in Table 2, we found that there was no correlation between lower levels of AIP (AIP Q2) and the risk of prediabetes. Table 3 shows that the inflection point for AIP in prediabetic patients was 0.29, and AIP was not associated with prediabetes risk when AIP < 0.29. The range of AIP Q2 was mostly in the left portion of the inflection point of 0.29, which was consistent with the result that AIP Q2 was not associated with prediabetes risk in Table 2. The possible reason is that when AIP is low, the levels of the risk factors for prediabetes, such as BMI, FPG, and TC are also low, leading to a weak impact on prediabetes. As AIP rises (Q3 and Q4), AIP begins to be positively associated with the risk of prediabetes.

The associations of AIP with prediabetes and T2DM risk may vary based on factors such as gender, age, smoking status, and alcohol consumption. In subgroup analyses, we observed positive associations between AIP and the risk of prediabetes and T2DM in all subgroup variables. In addition, the association of AIP with T2DM risk was more pronounced in women, non-smokers, and non-drinkers. Our study showed that higher AIP was significantly positively associated with the risk of T2DM in both male and female populations, with a stronger association observed in women. This result is consistent with a cross-sectional study of the non-linear relationship of AIP with T2DM in the general US population and a case-control study of the association between TG/HDL-C and the incidence of T2DM in Singapore Chinese men and women (26, 47). In a longitudinal study assessing the association between AIP and T2DM risk in the Taiwanese population, no gender difference was found, and a higher risk of T2DM was observed only in participants aged 40-64 years (25). This differs from our results, which found that participants included in the study had a higher risk of developing T2DM in all different age groups (p < 0.0001). This may be attributed to differences in the characteristics of the study populations. A study involving U.S. adults aged 18 years and older explored gender differences in the impact of AIP on prediabetes and diabetes. The results indicated that with each unit increase in AIP, the prevalence of prediabetes and diabetes in female participants increased by 4.96 times (OR = 4.96, 95% CI: 2.68-9.18). However, there was no significant association between AIP and the prevalence of prediabetes or diabetes in male participants (48). This gender-specific impact may be related to the physiological cycle in women influenced by hormone levels after menopause, leading to lipid metabolism disturbances and the onset of cardiovascular diseases, T2DM, and metabolic syndrome (49). Previous studies have shown that the association between dyslipidemia and T2DM seems to be stronger in smoking and alcohol-drinking populations (50). However, our study revealed that the association between AIP and T2DM was stronger in non-smokers and non-drinkers compared to smokers and drinkers. In a study on Chinese patients with coronary heart disease, the associations between TG/HDL-C and other non-traditional lipid parameters with the risk of prediabetes and T2DM were stronger in non-smokers and non-drinkers (51). This result is consistent with our findings. The reasons for these differences may be influenced by factors such as gender, race, and sample size. Therefore, further research is needed to explore the impact of these variables on the relationships between AIP and the risk of prediabetes and T2DM.

After adjusting for gender, age, SBP, DBP, smoking status, alcohol consumption, BMI, WC, TC, LDL-C, Scr, BUN, SUA, antihypertensive medications, and lipoprotein-lowering medications, our study revealed non-linear relationships of AIP with prediabetes and T2DM risk. Threshold effect analysis showed that the associations of AIP with the risk of prediabetes and T2DM differed on either side of the inflection points. In individuals with prediabetes, the inflection point for AIP was 0.29. When AIP > 0.29, AIP was positively associated with the risk of prediabetes (OR = 2.24, 95% CI: 1.67–3.00, p < 0.0001). However, when AIP < 0.29, AIP was not associated with the risk of prediabetes (OR = 1.28, 95% CI: 0.91–1.81, p = 0.1597). In patients with T2DM, the inflection point for AIP was −0.04. Similarly, when AIP > −0.04, AIP was positively associated with the risk of T2DM (OR = 3.33, 95% CI: 2.67–4.16, p < 0.0001). However, when AIP < −0.04, AIP was not associated with the risk of T2DM (OR = 0.30, 95% CI: 0.06–1.39, p = 0.1235). Regarding the difference in AIP thresholds between prediabetes and T2DM in this study, we speculate that it may be related to the different sensitivities to AIP caused by the different pathological mechanisms and metabolic states of prediabetes and T2DM. Prediabetes represents an early stage of T2DM, characterized by a relatively mild condition that may have strong metabolic regulatory capacity. This could imply that the association between AIP and the risk of prediabetes requires higher AIP levels to achieve significance. In contrast, at the T2DM stage, the condition tends to be more severe and may increase sensitivity to AIP, making the association between AIP and the risk of T2DM significant at lower AIP levels. It is worth noting that these speculations are based on existing data, and further research is needed for exploration in the future. The AIP can serve as a potential early warning indicator, predicting the risk of developing prediabetes and T2DM. This may contribute to alerting individuals to adopt healthy dietary habits, increase physical activity, and have regular medical checkups, thereby reducing the risk of progressing to prediabetes and T2DM.

This study has several major strengths. First, it benefits from a large sample size, with data sourced from the CHARLS database. Trained professionals conducted the collection of comprehensive data, including demographic information, health behaviors, anthropometric measurements, and laboratory tests, enhancing the reliability of the study results. Second, subgroup analyses were conducted based on gender, age, smoking status, alcohol consumption, SBP, DBP, BMI, and abdominal obesity. These analyses aimed to assess whether these factors influence the relationships between AIP and the risk of prediabetes and T2DM, validating the stability of the models.

However, this study also has certain limitations. First, given the adoption of a cross-sectional study design, our findings can only uncover the associations between AIP and the risk of prediabetes and T2DM. To establish the actual causal relationship, further prospective studies are essential. Second, despite controlling and adjusting for some potential confounding factors in our study, the influence of unknown factors cannot be completely excluded. Finally, our study results are specific to the Chinese population, and the feasibility of generalization to other populations requires further exploration. We encourage future research to consider potential confounding factors and conduct more comprehensive investigations on a broader population.





Conclusions

In conclusion, our study showed positive non-linear associations between AIP and the risk of prediabetes and T2DM. The AIP shows good potential in predicting the risk of prediabetes and T2DM among the middle-aged and elderly Chinese population, holding practical significance for the prevention and management of prediabetes and T2DM. In the future, the AIP may be expected to be a valuable monitoring tool for the risk of prediabetes and T2DM, but more studies are needed for in-depth analysis and exploration.
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1,5-Anhydroglucitol (1,5-AG) is sensitive to short-term glucose fluctuations and postprandial hyperglycemia, which has great potential in the clinical application of diabetes as a nontraditional blood glucose monitoring indicator. A large number of studies have found that 1,5-AG can be used to screen for diabetes, manage diabetes, and predict the perils of diabetes complications (diabetic nephropathy, diabetic cardiovascular disease, diabetic retinopathy, diabetic pregnancy complications, diabetic peripheral neuropathy, etc.). Additionally, 1,5-AG and β cells are also associated with each other. As a noninvasive blood glucose monitoring indicator, salivary 1,5-AG has much more benefit for clinical application; however, it cannot be ignored that its detection methods are not perfect. Thus, a considerable stack of research is still needed to establish an accurate and simple enzyme assay for the detection of salivary 1,5-AG. More clinical studies will also be required in the future to confirm the normal reference range of 1,5-AG and its role in diabetes complications to further enhance the blood glucose monitoring system for diabetes.
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1 Introduction

In recent years, diabetes prevalence in China has been soaring up in a remarkable way. Poor glycemic control and huge fluctuations in blood glucose over time can lead to complications and influence the prognosis of the heart, kidney, and brain together with other important target organs. Traditional indicators for diagnosing diabetes and monitoring blood glucose fluctuations include fasting plasma glucose (FPG), oral glucose tolerance test (OGTT), glycosylated hemoglobin (HbA1c), and glycated albumin (GA) (1). Nevertheless, FPG is unable to screen patients with isolated postprandial hyperglycemia; the OGTT2h blood glucose detection is complicated to operate, let alone patient compliance; HbA1c is highly susceptible to red blood cell lifespan (2); and HbA1c and GA cannot reflect short-term blood glucose fluctuations. Above all, traditional blood glucose monitoring indicators still have limitations in screening for diabetes and reflecting blood glucose fluctuations. 1,5-Anhydroglucitol (1,5-AG), a nontraditional blood glucose monitoring indicator, is prominently correlated with HbA1c and GA (3). Guidelines for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) also claimed that 1,5-AG is an auxiliary test indicator for blood glucose monitoring, diabetes screening, and guidance adjustment of therapeutic regimen; it can clearly reflect data from the previous 1 to 2 weeks and postprandial blood glucose fluctuations clearly (1).

Recently, there has been extensive research on the role of 1,5-AG in diabetes and its complications. At the same time, salivary 1,5-AG has also been extensively explored in clinical practice owing to its characteristic of being woundless and its simplicity (Table 1). This article reviews the progress of clinical research on the detection of 1,5-AG in diabetes and its complications.

Table 1 | Advantages and limitations of different screening tests.


[image: A table comparing various glucose screening tests with their advantages and limitations. Fasting plasma glucose is inexpensive and convenient but requires fasting blood. The oral glucose tolerance test has high diagnostic accuracy but is cumbersome. Glycosylated hemoglobin reflects long-term control but can't show short-term fluctuations. Glycated albumin reflects medium-term control but is affected by white blood cell renewal. 1,5-anhydroglucitol reflects short-term fluctuations but is influenced by various factors.]



2 Overview of 1,5-AG



2.1 Characteristics and metabolism of 1,5-AG

1,5-AG, a naturally occurring, chemically inert monosaccharide with a structure similar to glucose that is mainly derived from food, is absorbed in the intestine and widely distributed in various tissues and organs in free form, with little metabolic degradation in the body (Figure 1). Almost all 1,5-AG excreted in urine is reabsorbed in the renal tubules by specific sodium-glucose cotransporter 4 or specific sodium-glucose cotransporter 5 (SGLT4 or SGLT5), and this process (4) is competitively inhibited by glucose since 1,5-AG and glucose share the transporter protein (Figure 2). Previous research had suggested that SGLT4 is the renal transporter for 1,5-AG, but more recently it has been demonstrated that 1,5-AG is transported by SGLT5, while mannose is transformed by SGTL4 (5, 6). Nevertheless, there could be some optional bias because these studies are focused on patients with neutropenia. Although the accuracy of this finding is still uncertain, it also provides a new direction for future research. We look forward to more multicenter, large-sample randomized controlled trials in the future to reveal the metabolic mechanisms of 1,5-AG in vivo. When the blood glucose exceeds the threshold of the renal glucose (8.9–10.0 mmol/L), 1,5-AG will excrete in large quantities in the urine while reabsorption decreases, resulting in a conspicuous decrease in serum 1,5-AG (7). L Ying et al. (8) found that the metabolic rate of 1,5-AG in hepatocytes and skeletal muscle cells was less than 3%, indicating that 1,5-AG was stable in the body. Meanwhile, 1,5-AG can be freely transported both in and out of the cell in accordance with the concentration gradient to achieve dynamic equilibrium, which exactly shows that 1,5-AG can serve as a biomarker of glucose fluctuations.

[image: Chemical structures of 1,5-anhydroglucitol (1,5-AG) and glucose are depicted. Both are hexagonal ring structures with hydroxyl groups. The 1,5-AG has hydroxyl groups at three positions, while glucose shows an additional CH2OH side chain.]
Figure 1 | Structure of 1,5-AG and glucose.

[image: Flowchart illustrating the journey of a substance. Starting with food, it moves through the intestine, transforms into 1,5-AG, and is distributed in tissues and organs. It is then reabsorbed in the renal tubules. Arrows indicate the direction of flow.]
Figure 2 | Circulatory pathway of 1,5-AG in the body.

1,5-AG is sensitive to the reaction, with a half-life of about 1 to 2 weeks, and when blood glucose is controlled, serum 1,5-AG will accordingly increase at a rate of 0.3 mg/L per day, reaching equilibrium after 5 weeks (9). Therefore, 1,5-AG not only reflects blood glucose fluctuations but also records the duration of hyperglycemia. The mass of evidence (10) also indicates that 1,5-AG, a good indicator to monitor short-term blood glucose, is qualified to reflect short-term glucose fluctuations, postprandial hyperglycemia, and even daily glucose excursions (Figure 3). JB McGill et al. (11) found that there was a strong correlation between changes in 1,5-AG within 5 days and changes in HbA1c over the subsequent 3 months. Therefore, 1,5-AG could be used as an intermediate marker between 3-month assessments of HbA1c to determine whether glycemic control is good or not for longitudinal monitoring. Because 1,5-AG is dynamic, monitoring glycemic control with 1,5-AG should not rely on a single-point measurement. We believe that in clinical applications, serum 1,5-AG should be tested once at the patient’s initial treatment to assess the patient’s glycemic control and then adopt an appropriate hypoglycemic program. During the patient’s secondary evaluation (such as 1 week later), serum 1,5-AG should be tested again to observe its fluctuation and to assess whether the hypoglycemic program is effective or not based on the degree of relief of the patient’s clinical symptoms and whether the blood glucose level has improved. After a comprehensive evaluation, the clinician will decide whether to change the hypoglycemic program and the timing of the next serum 1,5-AG test so as to realize the individualized approach. Therefore, the timing of serum 1,5-AG testing depends on the duration of the hypoglycemic program adopted by the clinician and the overall judgment of the patient’s condition. As shown in a clinical trial in the United States (12), 1,5-AG levels can sensitively and rapidly reflect glycemic changes after adjustments to personalized treatment strategies, including changes in drug type or dosage, as well as the initiation of insulin therapy or combinations of different insulin regimens. This confirms our proposal to tailor the treatment to the individual by reflecting glucose fluctuations dynamically for longitudinal monitoring.

[image: Flowchart illustrating the process of 1,5-anhydroglucitol (AG) derived from food. It is absorbed in the intestine, distributed in tissues, and depends on blood glucose levels. If glucose exceeds the renal threshold, 1,5-AG is excreted in urine and decreases. If reabsorbed, it remains stable. If controlled, it increases gradually over five weeks. Adjustments in risk factors are suggested if uncontrolled.]
Figure 3 | Principle of detection of 1,5-AG.




2.2 Detection methods for 1,5-AG

1,5-AG can be detected in a variety of samples such as serum, saliva, and cerebrospinal fluid, in which detection methods have undergone several improvements, now mainly divided into mass spectrometry and enzyme assay two major categories (Table 2). Gas chromatography/mass spectrometry (13) and ultra-performance liquid chromatography tandem mass spectrometry (14) are often used to detect 1,5-AG, and such methods have good sensitivity and high accuracy, yet the process is more cumbersome, making it rarely used in the clinical detection of serum 1,5-AG but often used in the detection of saliva and other samples with a smaller content of 1,5-AG. Halama et al. (15) found a significant positive correlation between the results of serum 1,5-AG using enzyme assay and mass spectrometry, indicating that enzyme assay is also very accurate for serum 1,5-AG. GlycoMark™ (GlycoMark, Inc., USA) and Determiner-L (Kyowa Medex, Japan) are the most commonly used enzymatic assay kits in the clinical detection (16). Both can automate and quantify the detection of serum 1,5-AG with high specificity, simple operation, and wide use. The reference ranges of serum 1,5-AG and associated inter-individual biological variation parameters measured by the GlycoMark™ kit and the Determiner-L kit were essentially the same, with comparable results. However, there were minor differences, possibly due to calibration differences between the two kits. Using the GlycoMark™ kit to measure serum 1,5-AG has a good correlation with the rate of blood glucose excursions within a day. This provides a better reflection of short-term blood glucose fluctuations, helps monitor glycemic control, and is simple for clinical application (11). The GlycoMark™ kit for serum 1,5-AG is only affected by glucose, while other monosaccharides are less affected. The freeze–thaw sample has little effect on the GlycoMark™ kit results, which is better than the Determiner-L kit. W Nowatzke et al. (17) concluded that the GlycoMark™ kit is more stable and less susceptible to interference; so, it was more commonly used in the United States to monitor medium-term glycemic control. However, the Determiner-L kit has been used for a long time (16), its detection is more stable, and people recognize it more; so, it is more widely used. Meanwhile, the Determiner-L kit has the unique advantage of a detection limit of 1.0 μg/mL for 1,5-AG (18). Therefore, the exact enzymatic assay kit to be used depends largely on the intent of the person sending the test.

Table 2 | Different methods to detect 1,5-AG.


[image: Table comparing detection methods for mass spectrometry and enzyme assays. Mass spectrometry methods include gas chromatography/mass spectrometry and ultra performance liquid chromatography tandem mass spectrometry, with advantages of good sensitivity and high accuracy but limitations of cumbersome process and high cost. Enzyme assay uses GlycoMark and Determiner-L, offering convenience and high specificity, with limitations being the lack of mature enzymatic assay kit.]
Whereas the use of saliva samples for diabetes testing could facilitate diabetes screening in public places, there is no well-established enzymatic assay kit for salivary 1,5-AG. Saliva was found to be a stable substrate for biochemical assays by the GlycoMark™ assay kit for the detection of 1,5-AG in serum and saliva samples, respectively. However, the GlycoMark™ kit measured salivary 1,5-AG under the influence of galactose, resulting in a readout that does not correlate with salivary 1,5-AG values as measured by mass spectrometry (15). CH Jian et al. (19) discovered no significant correlation between the enzyme assay for salivary 1,5-AG and serum 1,5-AG. Therefore, the reliability of the enzyme assay for the determination of salivary 1,5-AG and its detection methods still need a lot of experimental research and improvement before they can be applied in clinical practice. In the future, we may try to improve the assay by adding the step of removing galactose before sample testing, which will increase the specificity of the Glycomark™ kit for the determination of salivary 1,5-AG and will be favorable for clinical application. The detection of urine samples is also worth exploring, as a significant correlation between glucose and 1,5-AG concentrations in urine has been reported (20). N Namba et al. (21) compared the serum and urinary 1,5-AG levels in 15 patients with insulin-dependent diabetes mellitus as well as in control subjects. They found that urinary glucose concentrations correlated linearly with the ratio of serum and urinary 1,5-AG concentrations. J Ren et al. (22) developed and validated a rapid ultra-performance liquid chromatography–tandem mass spectrometry method for the detection of urinary 1,5-AG, which is simple, efficient, sensitive, and robust. In summary, the detection of 1,5-AG in saliva and urine specimens expands the diversity of samples, and the diversity of the delivered indicators provides more possibilities for our clinical choices.

Over the years, researchers have continuously explored and updated 1,5-AG detection methods that are more suitable for the clinical diagnosis and management of diabetes. Z Zhou et al. (23) adopted a quantitative study for the colorimetric detection of serum 1,5-AG based on graphene quantum dots and enzyme-catalyzed reactions. Their findings indicated a linear correlation between the absorbance and the concentration of serum 1,5-AG in the range of 20.0–100.0 μg/mL, with a detection limit of approximately 0.144 μg/mL. This method is highly accurate, easy to perform, and inexpensive. The paper-based sensor directly measures serum 1,5-AG in just one step within 10 min, which reduces the effect of excessive glucose in serum samples on the test results with high accuracy and a 1,5-AG detection limit of approximately 3.2 μg/mL (24). The nanozyme-mediated cascade reaction system for the electrochemical detection of serum 1,5-AG has high specificity, sensitivity, stability, and reproducibility. It is also low-cost and easy to construct. Through quantitative studies, G Li et al. (25) found that the peak current of the electrochemical biosensor has a good linear relationship within the serum 1,5-AG concentration range of 0.1–2.0 mg/mL, with a detection limit of approximately 38.2 μg/mL. A novel light-addressable potentiometric sensor can detect serum 1,5-AG with high sensitivity, good recovery, and stability, making it suitable for routine detection. Quantitative studies showed that the potential shift of the light-addressable potentiometric sensor has a linear relationship at a serum 1,5-AG concentration of 10 μg/mL, with a detection limit of approximately 10 μg/mL (26).




2.3 Normal reference range of 1,5-AG and its influencing factors

Influenced by age, gender, race, regional environment, diet, and medication, to name just a few, there exist some differences in the normal reference range of serum 1,5-AG. M Welter et al. (27) studied 2,303 healthy subjects of different genders and ages, finding that there was a difference in their 1,5-AG reference range, which was consistent with the results of E Selvin (28). Chen et al. (29) conducted an OGTT test on 646 healthy subjects in Jiangsu Province, which showed that the reference values of 1,5-AG differed by gender, 15.8–52.6 μg/mL in male patients and 14.3–48.0 μg/mL in female patients. The study concluded that 1,5-AG was influenced by factors such as gender, age, and uric acid, which was also significantly lower in blacks than in whites, and its ability to predict complications was also different (30). Serum 1,5-AG concentrations are also affected by types and quantities of dietary carbohydrates (31), excessive intake of dairy products (32), differences in renal glucose threshold (4), and polygala Chinese herbs (33). For the treatment of diabetes, sodium-glucose cotransporter 2 inhibitors, such as dapagliflozin, inhibits renal glucose reabsorption, which can also indirectly inhibit the reabsorption of 1,5-AG by SGLT4 or SGLT5, leading to a decrease in 1,5-AG (34). S Li et al. (35) found that the manufacturer’s reference range of the 1,5-AG kit (>14 μg/mL) was not applicable, and the study results suggested that the reference values of 1,5-AG for male patients in Guangdong Province were 34.61–37.37 μg/mL, compared with 22.38–25.07 μg/mL for female patients.

Compared with blood, saliva is easier to collect and store, and the detection of salivary 1,5-AG is noninvasive, making this indicator work to clinical application. DO Mook-Kanamori et al. (36) found that salivary 1,5-AG was highly correlated with serum 1,5-AG and with blood glucose, HbA1c was negative, through a case–control study of type 2 diabetes mellitus (T2DM), indicating that salivary 1,5-AG can be used to screen for diabetes. CH Jian et al. (37) suggested collecting saliva samples by chewing cotton swabs 40–50 times in 1 min and storing at normal temperature or 4°C for a short period of time. The normal reference range of salivary 1,5-AG measured by liquid chromatography mass spectrometry was 0.09–1.63 mg/L (38).





3 Progress of clinical research on 1,5-AG for diabetes



3.1 Role of 1,5-AG in screening for diabetes

Most diabetes cases are very insidious at the outset, making the rate of missed diagnoses high, and some of the commonly used blood glucose detection indicators have advantages and disadvantages, while 1,5-AG has a unique advantage in reflecting short-term glucose fluctuations and postprandial hyperglycemia, which results in 1,5-AG detection being gradually applied in clinical practice. As early as the 1980s, some scholars (39) have proposed that the decrease in 1,5-AG level was closely related to diabetes, which could be used as a biomarker of hyperglycemia for screening diabetes. Y Wang et al. (40) conducted an OGTT test on 1,170 subjects, measuring indicators of 1,5-AG, HbA1c, FPG, and 2-h postprandial plasma glucose, respectively. The results showed that serum 1,5-AG level was significantly negatively associated with FPG, 2-h postprandial plasma glucose, and HbA1c and that the optimal cutoff value of 1,5-AG for the diagnosis of diabetes was 11.18 μg/mL, with a sensitivity of 92.6% higher than HbA1c (82.3%) and an area under the curve of 0.920 higher than HbA1c (0.887). T Yamanouchi (41) divided 1,620 subjects into non-diabetic group, impaired glucose tolerance group, diabetes group, and other diseases without impaired glucose tolerance group, with indicators such as 1,5-AG and HbA1c, respectively, and found that the overlap of 1,5-AG values in the four groups was less than those of other indicators, whose reduction was highly specific (93.1%) and sensitive (84.2%) for the diagnosis of diabetes, with an optimal cutoff value of 14 μg/mL.

However, using only 1,5-AG as a biomarker in screening for diabetes has no obvious advantages compared with traditional blood glucose indicators such as HbA1c, GA, and FPG. Combining 1,5-AG with HbA1c, FPG, and GA to screen for diabetes with high sensitivity and specificity is more conducive to clinical application. J Qian et al. (42) conducted a study of 2,184 people in Jiangsu Province which showed that the optimal threshold for 1,5-AG screening for diabetes was ≤23.0 μg/mL, and the sensitivity of HbA1c combined with 1,5-AG was 85% higher than HbA1c (70%). H Su et al. (43) discovered that the sensitivity of 1,5-AG combined with FPG screening for diabetes was 84.92% and the specificity was 91.45% higher than the GA combined with FPG (77.71% and 90.88%) or using the above-mentioned indicators alone. Therefore, 1,5-AG combined with HbA1c, FPG, and GA screening for diabetes can reduce the proportion of people who need OGTT. Moreover, salivary 1,5-AG can also screen for diabetes. C Jian et al. (44) studied 363 people at risk of diabetes and 278 healthy subjects in Shanghai showing that the optimal cutoff value of salivary 1,5-AG was 0.44 μg/mL, and the sensitivity of salivary 1,5-AG combined with HbA1c or FPG was 80.13% and 73.51%, respectively, significantly higher than the above-mentioned indicators alone, which improved the screening rate of diabetes and reduced the proportion of the population requiring OGTT by 51.41%. However, Loomis et al. (45) found that a gene in the human body (SLC5A10) affects the 1,5-AG levels. As a result, 1,5-AG cannot be used as a hyperglycemic biomarker in the case of genetic variations. In the future, more studies are needed to determine whether 1,5-AG can be an effective biomarker for hyperglycemia.

Serum 1,5-AG is applicable to screen for type 1 diabetes mellitus (T1DM), as an auxiliary diagnostic indicator for T1DM (46), and to identify T2DM and fulminant type 1 diabetes mellitus (FT1DM). FT1DM has an acute onset and rapid progression. If it is not diagnosed and treated in time, it will lead to various complications and even death; so, early identification and diagnosis of FT1DM is extremely important. A Pal (47) and M Koga (48) found that the average value of serum 1,5-AG in FT1DM was 3.09 µg/mL, lower than T2DM (5.43 µg/mL), while HbA1c had no significant difference; so, 1,5-AG was more suitable to identify FT1DM and T2DM. L Ying et al. (49) studied 226 subjects with HbA1c <8.7%, showing that the 1,5-AG/GA index contributed to the early identification of FT1DM and the new-onset type 1A diabetes, with an optimal cutoff value of 0.3, which when combined with HbA1c resulted in an improvement of the identification rate of 61.11%. However, the aforementioned studies are not enough. Thus, clinical studies are urgently needed to verify this conclusion.




3.2 Role of 1,5-AG in diabetes management

Blood glucose monitoring is especially important for diabetes management. Dynamic monitoring of blood glucose fluctuations can reflect the patient’s glycemic control, identify the risk of diabetes as early as possible, effectively prevent diabetes recurrence, prevent the occurrence of hypoglycemic events, and also serve as a basis for adjusting clinical medication. The familiar continuous glucose monitoring (CGM), which measures the glucose concentration in interstitial fluid using a skin sensor, can provide detailed information about glucose variability. The range of target glucose levels (3.9–10.0 mmol/L) is close to the renal glucose threshold, which reflects glucose fluctuations in a sustained manner, making it an effective monitoring indicator (50). However, CGM readings may be influenced by periods of hyperglycemic variability as well as paracetamol or ascorbic acid intake, and factors such as skin pigmentation and room temperature may also contribute to differences in readings (51). Studies have demonstrated that CGM can continuously record blood glucose levels, which is beneficial in assessing blood glucose fluctuations in T1DM. Unfortunately, CGM is both expensive and inconvenient. The patients’ daily lives may be disturbed and uncomfortable as a result of having to keep the needle immobilized for several days (52). In summary, CGM is not commonly used in clinical practice. Undoubtedly, 1,5-AG presented in this article can be sensitive to reflect short-term blood glucose fluctuations, not affected by mild or moderate renal insufficiency, which is a reliable indicator of glycemic control in T2DM with normal renal function and mild to moderate renal insufficiency (53), and can also be used as an early predictive indicator for T1DM progress (54). A large number of studies (18, 55) have found that changes in 1,5-AG levels are significantly correlated with changes in many CGM variation indicators, indicating that both 1,5-AG and CGM are sensitive to blood glucose fluctuations. However, there is a fundamental difference between 1,5-AG, which uses venous blood, and CGM, which measures glucose concentration in interstitial fluid. There is no doubt that testing venous blood is more conducive to visualizing blood glucose fluctuations. Since CGM requires the wearing of a skin sensor, this is very noticeable and may cause anxiety in some patients. Meanwhile, for patients with insulin pumps, monitoring glucose fluctuations with CGM requires wearing two machines at the same time, which is very inconvenient, whereas testing serum 1,5-AG does not have this disadvantage. The differences between the CGM reading and the blood glucose concentration are approximately 0.55–1.11 mmol/L, with a 10- to 15-min lag time. Serum 1,5-AG, on the other hand, does not experience a delay and therefore responds more rapidly, allowing for better management of diabetic patients (56). It is because serum 1,5-AG is more responsive that its application is more meaningful for severe patients, and the detection of serum 1,5-AG can avoid the occurrence of diabetic critical illnesses such as severe hypoglycemia (45). Meanwhile, 1,5-AG can be detected using existing enzymatic kits, making clinical application easier. J Peabody et al. (57) found that the use of 1,5-AG in clinical practice could improve the quality of preliminary healthcare, better identify patients with poor glycemic control, and reduce the cost of the healthcare system.

BA Kappel et al. (58) confirmed that serum 1,5-AG is the most reliable predictive indicator of poor glycemic control through a comprehensive metabolomics study. J Lin (59) found that 1,5-AG could accurately detect the nuances in blood glucose, rapidly increasing after glycemic control in diabetic patients, and better assess the risk of diabetes. H Sone et al. (60) studied 22 hospitalized T2DM patients who had been educated on diabetes management and then followed up for 3 months after leaving the hospital to measure their 1,5-AG, HbA1c, BMI, and other indicators. The results found that patients with low 1,5-AG had a higher BMI and a higher risk of disease recurrence, while the reflection of HbA1c was not sensitive; so 1,5-AG is more conducive to identify patients with poor glycemic control, and monitoring 1,5-AG levels can effectively prevent diabetes recurrence. Salivary 1,5-AG also plays an important role in predicting the risk of diabetes. Kedarnath et al. (61) discovered that the sensitivity and specificity of 1,5-AG <0.054 µg/mL for predicting blood glucose >180 mg/dl were 86.4% and 87.2%, respectively.

The monitoring of 1,5-AG is also effective in preventing the occurrence of hypoglycemic events, and the lower the 1,5-AG level the greater the risk of developing severe hypoglycemia. MK Kim et al. (62) recruited 18 patients with T2DM treated with insulin, and the results showed a significant negative correlation between 1,5-AG and hypoglycemia score (r = -0.510, P = 0.031), which remained after adjusting a series of indicators (r = -0.468, P = 0.068). AK Lee et al. (63) examined a series of biomarkers and assessed the association of risk factors with severe hypoglycemia using the Cox proportional risk regression model in 1,206 diabetic patients at risk of atherosclerosis in the community, which showed a linear correlation between 1,5-AG levels and severe hypoglycemia. Thus, 1,5-AG can be used as a reliable indicator for predicting hypoglycemic events in diabetic patients.

It has also been shown that 1,5-AG can be used as a basis for adjusting the clinical medication of diabetic patients. A clinical trial in the United States (12) found that 1,5-AG levels can sensitively and rapidly reflect glycemic changes after adjustments to personalized treatment strategies, including changes in drug type or dosage as well as the initiation of insulin therapy or combinations of different insulin regimens. KM Dungan et al. (64) discovered that the combination of 1,5-AG and HbA1c may be a reliable indicator for initiating insulin therapy in T2DM patients with poor control of oral hypoglycemic agents in controlled experiments, but the optimal threshold is still unclear and needs to be further explored.




3.3 Relationship between 1,5-AG and pancreatic β cells

The main pathogenesis of T2DM involves β cell dysfunction and insulin resistance. In order to better manage diabetes, we should use appropriate methods to detect the β cell function status and the secretion of insulin. In a study of 302 newly diagnosed T2DM patients, X Ma et al. (65) found that 1,5-AG was associated with basal insulin sensitivity and secretion as well as the early insulin secretion of the newly diagnosed T2DM in China. A reduction in the level of 1,5-AG means a decrease in insulin secretion capacity and also reflects a decrease in insulin production index. C Jiménez-Sánchez et al. (66) believed that serum 1,5-AG concentration was closely correlated with the content of β cells, while other glycemic control indicators cannot monitor the loss of β cells; so, for people at a high risk of diabetes, attention should be paid to monitoring serum 1,5-AG to further identify the loss of β cells and monitor the progress of the patient’s condition. In addition to reflecting the content of β cells, 1,5-AG can also reflect its functional status. By comparing lean β-Phb2-/- mouse models and obese db/db mouse models, L Li et al. (67) found that 1,5-AG, a blood glucose biomarker reflecting the degree of β cell function, was closely associated with the decline of functional β cells before the onset of diabetes. Y Shen et al. (68) investigated the relationship between acute C peptide response to arginine and serum 1,5-AG in 623 T2DM patients, showing a linear relationship between the two, while acute C peptide response was an indicator of responsive β cell function, further illustrating that 1,5-AG was closely related to β cell function. H Su et al. (69) measured the levels of 1,5-AG × HbA1c/100 (AHI) in 3,562 people to evaluate islet function and insulin sensitivity in T2DM patients with different AHI levels. The results showed that the normal population had an AHI level of 1.0 (0.7–1.3), which was significantly higher than the T2DM group of 0.8 (0.5–1.2). Hence, AHI can reflect the changes and functions of pancreatic β cells in blood glucose disorders. The lower the AHI, the more severe the blood glucose disorder and the worse the pancreatic β cell function.

Salivary 1,5-AG is a new noninvasive indicator that reflects early insulin secretion function. L Ying et al. (70), through a study of 284 T2DM patients, found that salivary 1,5-AG was closely correlated with the C-peptide production index at 0–30 min and the ratio of the area under the C-peptide curve to the area under the glucose curve. However, A Morita (71) deemed that 1,5-AG had no significant correlation with insulin secretion function. Whether there is a link between the two remains to be verified.





4 Progress of clinical research on 1,5-AG for diabetes complications



4.1 Role of 1,5-AG in diabetic nephropathy

L Bernard et al. (72) studied 3,799 people at risk of atherosclerosis in the community and found 1,5-AG to be an early sign of chronic kidney disease, which was inversely correlated with glucose and fructose. H Peng (73) suggested that 1,5-AG decreased with impaired renal function and that a low 1,5-AG level predicted a higher risk of developing diabetic nephropathy and was also significantly correlated with the progression of diabetic nephropathy, which was in accordance with the follow-up results of B Yu (74). E Selvin et al. (75) followed 10,000 people at risk of atherosclerosis in the community for 20 years and found that the risk of developing chronic kidney disease was increased threefold in diabetic patients with 1,5-AG <6 μg/mL, even after adjustment of HbA1c or FPG. N Taya et al. (13) studied 31 T2DM and 30 healthy subjects, compared with the biomarkers before and after treatment using gas chromatography–mass spectrometry. According to the study, the decrease in 1,5-AG and the increase in monosaccharide levels implied poor glycemic control and a significant increase in amino acid levels, which aggravated the kidney burden and increased the risk of diabetic nephropathy. Lower levels of 1,5-AG are associated with the risk of developing end-stage renal disease. When a reduction in serum 1,5-AG level is detected, attention should be paid to screening for kidney damage and timely intervention to avoid irreversible outcomes (76). A study (77) of time in range with dynamic blood glucose monitoring showed a significant positive correlation of 1,5-AG with time in range (r = 0.591). In conclusion, 1,5-AG not only helps to predict the risk of developing diabetic nephropathy but also serves as an evaluation indicator of glycemic control.




4.2 Role of 1,5-AG in diabetic cardiovascular disease

Postprandial hyperglycemia and blood glucose fluctuations contribute to the development of cardiovascular disease, while 1,5-AG is a reliable indicator of monitoring postprandial hyperglycemia and reflecting short-term blood glucose fluctuations, which can be used to reduce the occurrence of cardiovascular disease in diabetic patients by monitoring the 1,5-AG levels (78, 79). A prospective observational study of 1,5-AG and cardiovascular diseases found that low levels of 1,5-AG (<6.0 µg/mL) were closely related to cardiovascular disease (80), and the lower levels of 1,5-AG indicated the higher mortality of cardiovascular events (81). K Torimoto (82) found that a low 1,5-AG level was associated with vascular endothelial dysfunction, which was a potential marker of vascular endothelial dysfunction. Wada et al. (83) studied 161 patients with cardiovascular disease receiving percutaneous coronary intervention and measured the calcification angle by intravascular ultrasound before intervention to reflect the degree of coronary artery calcification. The results showed that the low-1,5-AG group (<14.0 μg/mL) had a significantly higher calcification angle (144°) than the high-1,5-AG group (≥14.0 μg/mL, 107°). YH Zou et al. (84) divided 160 patients with unstable angina pectoris and HbA1c <7.0% into calcified and non-calcified groups. Then, the serum 1,5-AG and alkaline phosphatase levels were monitored, respectively. The results showed that the 1,5-AG levels were significantly decreased and the alkaline phosphatase levels were significantly increased in the calcified group, which also confirmed the correlation between 1,5-AG and coronary artery calcification, and the lower 1,5-AG predicted a higher risk of coronary artery calcification. Serum 1,5-AG also predicts whether coronary plaque ruptures in diabetic patients with acute coronary syndrome (85). On the contrary, B Warren (86) and MR Rooney (87) concluded that 1,5-AG <10 µg/mL was negatively associated with cardiovascular disease, but there was almost no correlation between the two when the value of 1,5-AG was high; so, 1,5-AG has a poor predictive effect on cardiovascular disease, shows distinct limitations, and cannot provide prognostic information on cardiovascular events in diabetic patients.




4.3 Role of 1,5-AG in diabetic retinopathy

E Selvin et al. (88) has followed-up patients over 5 years and found that 1, 5-AG was inversely related to microvascular events and mortality, which means that a lower 1,5-AG level significantly increased the incidence of microvascular events, increased patient mortality, and was closely associated with retinopathy. WJ Kim et al. (89) followed 267 T2DM patients for 5 years and discovered that the risk of developing diabetic retinopathy in the low-1,5-AG (<5.1 ug/mL) group was significantly higher than that in the high-1,5-AG (≥8.64 ug/mL) group. A study has also shown that low levels of 1,5-AG were positively correlated with the incidence of diabetic retinopathy, and the prevalence of 1,5-AG <6 µg/mL was 11 times higher than that of 1,5-AG ≥10 µg/mL (75). N Mukai et al. (90) studied 2,681 subjects to locate the optimal threshold for detection of diabetic retinopathy through measurements of 1,5-AG and GA and ophthalmic examinations. According to the study’s results, the optimal thresholds for each indicator were as follows: FPG—6.3 mmol/l and 1,5-AG—12.1 μg/mL. The incidence of diabetic retinopathy was significantly increased when 1,5-AG <12.1 μg/mL, which indicated that monitoring 1,5-AG was essential to prevent microangiopathy and could be widely used in clinical applications.




4.4 Role of 1,5-AG in diabetic pregnancy complications

1,5-AG, a hyperglycemia biomarker in pregnant women, serves to be a bad predictor of gestational diabetes. To better confirm this view, scholars have conducted numerous clinical studies (91, 92). TA Pramodkumar et al. (93) measured serum 1,5-AG by recruiting 145 pregnant women without gestational diabetes and 75 pregnant women with gestational diabetes, and the study found that the mean value of 1,5-AG in pregnant women with gestational diabetes was 0.001 ± 16.2 μg/mL, which was significantly lower than that in pregnant women without gestational diabetes (1.5 ± 11.8 μg/mL). 1,5-AG remained significantly correlated with gestational diabetes, even after adjusting the potential confounders. Moreover, 1,5-AG has a unique role in predicting diabetic pregnancy complications. LA Wright et al. (94) compared the relationship between 1,5-AG, HbA1c and diabetic pregnancy complications in 17 gestational diabetes cases, 48 T1DM cases, and 37 T2DM cases. The study found that the level of 1,5-AG was significantly negatively correlated with diabetic pregnancy complications, especially in large-for-gestational-age (LGA) and neonatal hypoglycemia cases. There is a strong positive correlation between 1,5-AG and preeclampsia at 1 week of gestation, which was also supported by E Yefet (95). CL Meek et al. (96) monitored the relationship between the biochemical indicators of T1DM in 157 pregnant women and pregnancy complications and found that 1,5-AG, the most prevalent indicator of LGAs, was negatively correlated with LGA throughout the entire pregnancy, especially in the late trimester of pregnancy, with lower 1,5-AG levels meaning a greater risk of LGA (97). 1,5-AG also predicts growth restriction in full-term fetuses and is closely linked to neonatal mortality (98).




4.5 Role of 1,5-AG in diabetic peripheral neuropathy

M Yamawaki et al. (99) examined brain MRI, serum 1,5-AG, and cognitive function in 688 subjects. According to the study’s results, lower 1,5-AG levels were found to be positively correlated with severe periventricular hyperintensities and deep white matter hyperintensities, as well as a significant risk factor for cognitive decline and depression. For every 1,5-AG reduction of 5 μg/mL, the risk of dementia increases by 16%; so, the decrease of 1,5-AG is a risk factor for cognitive decline and dementia, and the monitoring of serum 1,5-AG can be an important method of preventing cognitive decline (100). Q Lou et al. (101) randomly divided 75 patients with T2DM after cerebral infarction into two groups for a 6-month randomized controlled experiment. The control group received conventional treatment, while the intervention group strengthened the monitoring of blood glucose fluctuations on the basis of conventional treatment and flexibly adjusted medication. The results showed a marked improvement of 1,5-AG in the intervention group, and the National Institutes of Health Stroke Scale score was also reduced significantly; so, monitoring 1,5-AG could reduce the damage to the patient’s neurological function and improve the quality of life. However, in recent years, studies have shown that poor glycemic control and a longer course of diabetes were significantly associated with cognitive impairment, which can be reflected through HbA1c, GA, and fructosamine, while 1,5-AG is not significantly related to the occurrence of dementia (102). CW Hicks et al. (103) also concluded that 1,5-AG was not significantly related to diabetic peripheral neuropathy. Therefore, more studies are needed to confirm whether 1,5-AG is associated with diabetic peripheral neuropathy.





5 Prospect

Although many clinical studies have demonstrated the value and practicality of 1,5-AG in clinical applications, there are still some problems to think about and study. First, while mass spectrometry detects serum 1,5-AG with high sensitivity and accuracy, the process shows difficulty, inconvenience, and high cost. Enzyme detection is simple and easy to perform, but the results will be affected by the manufacturer and the quality of the kit. Salivary 1,5-AG has been verified to be correlated with serum 1,5-AG, which has attracted much attention due to its noninvasiveness and good application potential. However, mass spectrometry for the detection of salivary 1,5-AG is cumbersome and expensive, and due to the lack of mature enzyme assay kits, the present enzyme assay for salivary 1,5-AG has poor accuracy. Therefore, a large number of studies are still needed in the future to identify the best detection method for 1,5-AG in order to promote its clinical application.

Second, the normal reference range for 1,5-AG is not constant, which is influenced by age, gender, race, regional environment, diet, medication, and so on. Establishing a normal reference range is an essential step in the application of 1,5-AG in clinical practice, but the reference ranges given by many manufacturers are not applicable and vary from region to region. With the multiplication of clinical studies, the normal reference range of 1,5-AG has been proposed in most regions, and more large-scale clinical studies will be needed in the future to further determine the normal reference range in each region.

Third, 1,5-AG is sensitive to short-term blood glucose fluctuations and postprandial hyperglycemia, helping to assist the screening for diabetes and avoiding the missed diagnosis of postprandial hyperglycemia patients. However, 1,5-AG cannot reflect the specific time of poor glycemic control. More research can be done in the future to determine if it can reflect specific periods more conducive to accurate medication administration and glycemic control.

Fourth, 1,5-AG is widely used but is less accurate in patients with liver disease. Increased inositol levels in uremia patients can also interfere with the measurement of 1,5-AG. M Koga et al. (104) showed that serum 1,5-AG levels were lower in patients with chronic liver disease irrespective of their blood glucose levels, which was associated with impaired liver function. The liver produces a modest quantity of 1,5-AG, which is lowered when the liver function is impaired. The liver is an important site of glucagon metabolism and an important organ in the regulation of plasma glucose levels; so, patients with chronic hepatitis, cirrhosis, and other chronic liver diseases often have abnormal glucose metabolism and large fluctuations in blood glucose (105). The reabsorption of 1,5-AG in renal tubules is competitively inhibited by glucose, and when glucose metabolism is abnormal, it will also lead to fluctuations in the measured 1,5-AG value; so, the measurement of serum 1,5-AG in diabetic patients with chronic liver disease does not accurately reflect their glycemic control. Some studies (106) have also shown that 1,5-AG decreases significantly and gradually with the progression of liver fibrosis; so, even if a low serum 1,5-AG level is measured, it does not indicate poor glycemic control. At this time, the use of 1,5-AG to reflect the glycemic control of patients with liver disease is less accurate; so, many studies have concluded that 1,5-AG is not suitable as a glycemic monitoring indicator for patients with liver disease. Therefore, the applicability of 1,5-AG is limited and needs further clinical verification.

Fifth, 1,5-AG is a reliable indicator of poor glycemic control and has a predictive effect on the occurrence of adverse events such as hypoglycemia. However, whether 1,5-AG has a better predictive effect on adverse events than HbA1c, GA, and FPG and other traditional blood glucose indicators remains to be explored. In the future, more prospective studies are required to further clarify whether 1,5-AG has an advantage in predicting adverse events.

Sixth, FT1DM has an acute onset and rapid progression, which can easily pose to various complications and even death; so, early recognition and diagnosis of FT1DM are particularly important. Currently, it is suggested that 1,5-AG can distinguish between FT1DM and T2DM, but such clinical studies are few, not convincing, and may be a small-probability event. A large number of clinical trials will still be needed in the future to confirm this conclusion.

Seventh, 1,5-AG is correlated with pancreatic β cells, but the deeper mechanism remains unclear, and more experimental studies are needed to explore the mechanism of both. Eighth, there are few studies on the role of 1,5-AG in diabetic peripheral neuropathy, and existing studies have different conclusions. Therefore, it is impossible to determine whether 1,5-AG can effectively predict the occurrence of diabetic peripheral neuropathy, and more studies are needed to clarify this. Overall, there are many studies on 1,5-AG with complications, but there is still a lack of prospective cohort studies with large samples, which is not forceful enough. More experimental studies and longer follow-up observations are required to further confirm the clinical value of 1,5-AG for predicting diabetes complications. At the same time, it remains to be demonstrated whether 1,5-AG predicts the risk of diabetes complications better than traditional glycemic indicators such as HbA1c, GA, and FPG.

In summary, 1,5-AG is more sensitive to reflecting short-term glucose fluctuations and postprandial hyperglycemia than traditional glucose monitoring indicators such as HbA1c, FPG, GA, and so on. The combination of 1,5-AG and traditional glucose monitoring indicators improves the accuracy of diabetes screening, which is of great help to improve the glucose monitoring system. 1,5-AG shows great potential in the screening and management of diabetes, diabetes complications, and so on, which is conducive to clinical application. As a noninvasive detection indicator, salivary 1,5-AG is more convenient, but it still requires further research and improvement methods to be widely used. More clinical studies are needed to demonstrate the normal reference range of 1,5-AG and its role in diabetes complications, thus making it better to predict the risk of diabetes complications.
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Background

Inflammation is integral to diabetes pathogenesis. The novel hematological inflammatory biomarker, platelet to white blood cell ratio (PWR), is linked with various conditions such as chronic kidney disease and stroke. However, the association of this novel clinical indicator with diabetes still remains unclear, which is investigated in this study.





Materials and Methods

A total of 10,973 Chinese participants were included and grouped according to the tertiles of PWR (T1, T2, and T3 groups). Diagnosis of prediabetes and diabetes adhered to American Diabetes Association criteria. Binary logistic regression was adopted to assess the relationship between PWR and both diabetes and prediabetes. The dose-response relationship of PWR and diabetes was examined using restricted cubic spline regression. Subgroup and interaction analyses were conducted to investigate potential covariate interactions.





Results

Individuals with higher PWR had better lifestyles and lipid profiles (all P < 0.05). After adjusting for all the covariates, the T2 group had a 0.83-fold (95% CI: 0.73–0.93, P < 0.01) risk of diabetes and that for the T3 group was 0.68-fold (95% CI: 0.60–0.78. P < 0.001). Dose-response analysis identified non-linear PWR-diabetes associations in the general population and females (both P < 0.05), but absent in males. Participants with prediabetes in the T2 and T3 groups had lower risks of diabetes (OR = 0.80 for the T2 group, P < 0.001 and 0.68 for the T3 group, P < 0.001) in the full models. All the sensitivity analysis support consistent conclusions.





Conclusions

An increase in PWR significantly correlates with reduced diabetes risks. A non-linear PWR-diabetes relationship exists in the general population and females, but not in males. The correlation between PWR and diabetes indicates that PWR holds potentials in early identification and prevention of diabetes.
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1 Introduction

Diabetes, a chronic condition, is ranked as the ninth leading cause of death (1, 2), making it one of the most important health challenges in 21st century (3). It poses a long-term threat to human health and quality of life, causing millions of deaths globally each year. The economic consequences of diabetes and its associated complications continue to grow, with approximately 12% of the global healthcare expenditure allocated to managing this condition, amounting to a staggering $727 billion (4). Current projections indicate that diabetes affects 9% of the worldwide populace, while an additional 7.3% show signs of impaired glucose tolerance (4). Among those with impaired glucose tolerance (prediabetes), an alarming 5% to 10% are anticipated to progress to diabetes each year (5). Prediabetes represents the second stage in the progression of diabetes, following the stage of being at high risk and preceding the development of full-fledged diabetes (6). It can be defined based on impaired fasting glucose or impaired glucose tolerance levels, recognizing individuals with an elevated risk of developing type 2 diabetes (7). Observational studies have revealed connections between prediabetes and the initial stages of small fiber neuropathy, nephropathy, diabetic retinopathy, as well as a heightened susceptibility to macrovascular disease (7). Diabetic patients face a 2- to 6-fold heightened susceptibility to cardiovascular diseases in contrast to individuals without diabetes, making them more vulnerable to conditions such as cardiac insufficiency, peripheral vascular disease, and coronary artery disease, leading to a significant increase in cardiovascular mortality (8). Diabetes is also linked to higher risks of liver ailments, such as nonalcoholic fatty liver disease, chronic liver disease and hepatocellular carcinoma, contributing to its prominence as the seventh most common cause of mortality in the United States in 2017 (9). Initiating screening protocols for prediabetes and type 2 diabetes among asymptomatic adults can facilitate timely identification, diagnosis, and intervention, thereby enhancing health outcomes.

Insufficient pancreatic β-cell function and insulin resistance are crucial factors contributing to the onset and progression of diabetes (10, 11). One recent research has revealed a close association between chronic low-grade inflammation and the onset of obesity, metabolic syndrome, and diabetes (12). Chronic inflammation can lead to β-cell apoptosis (13), and induce metabolic reprogramming in the liver, adipose tissue, skeletal muscle, and other tissues (14), resulting in insulin resistance and peripheral hyperinsulinemia. The neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) are indicators reflecting systemic inflammation levels, which have been demonstrated to be closely associated with the progression and prognosis of various cancers (15, 16), cardiovascular diseases (17, 18), and autoimmune diseases (19, 20). Additionally, studies have found correlations between the NLR, PLR, and MLR and the onset of diabetes and its complications (21–23). The platelet to white blood cell ratio (PWR) is a novel hematological marker of inflammation that has recently gained increased attention (24). The PWR has emerged as a significant predictor of clinical outcomes across a spectrum of diseases, including chronic kidney disease (25), cirrhosis (24), acute promyelocytic leukemia (26), ischemic stroke (27), intracerebral hemorrhage (28), and pancreatic cancer (29). However, the correlation between PWR and diabetes has not been established.

Therefore, in this study, utilizing the public data from the China Health and Retirement Longitudinal Study (CHARLS), we aimed to investigate the association between PWR and diabetes, with the goal of providing novel observational indicators for early screening and prevention of diabetes.




2 Materials and methods



2.1 Study population and designs

CHARLS, a nation-wide and dynamic project, aimed to survey the social, economic, and health status, as well as long-term changes in healthcare utilization and insurance coverage among Chinese residents aged 45 and older. This project was established in 2011 and participants were enrolled and followed up in 2013, 2015, 2018 and 2020. As a large-scale national survey, CHARLS employed a multistage stratified probabilities proportional sampling design to obtain a representative sample covering 150 counties and 450 villages. A detailed description of the study design and data processing methods can be found in prior publications (30). CHARLS received approval from Peking University’s ethical review board (IRB number:00001052–11014). Prior to each interview, written or oral consent was secured from respondents.

In our study, CHARLS 2015 was the latest datasets used to explore the relationship between PWR and diabetes, as blood and urine biomarkers were available in 2011 and 2015 cycles. Therefore, the cross-sectional design using CHARLS 2015 can provide sufficient information on the epidemiological status of chronic diseases and underlying biological mechanisms. We used CHARLS 2015 for examining our hypothesis. Briefly, there were 21,095 participants included in the CHARLS 2015. Participants were excluded due to unknown sex, unknown age or age < 40 years, none-fasting status, and missing data on fasting glucose, HbA1C, platelet, and white blood cell. Ultimately, the analysis incorporated 10,973 participants, comprising 2,094 diabetics cases and 8,879 healthy individuals (Figure 1A). Since the proportion of missing data for other covariates ranged 0% to 8.98% (Figure 1B), which was deemed acceptable, we imputed the missing variables using multivariate imputation based on random forest (31). We utilized the imputed datasets as the main research datasets, while the original dataset was regarded as the validated datasets.

[image: Flowchart and bar graph titled "China Health and Retirement Longitudinal Study." The flowchart (A) shows participant filtering steps, starting from 21,095, with exclusions for unknown gender, age, non-fasting status, missing glucose data, and others, leading to 10,973 participants. The decision branches for diabetes identify 2,094 with diabetes and 8,879 without. The bar graph (B) indicates proportions of missing values, highlighting depression and sleep duration as having higher missing data percentages.]
Figure 1 | Flowchart of data cleansing and proportions of missing values. (A) depicts the process of data cleansing. After data cleansing, 10,973 individuals were remained. The proportions of missing values in the cleaned dataset were displayed in (B).




2.2 Assessment of PWR, prediabetes, and diabetes

PWR was derived from platelets (109/L)/white blood cells (109/L) (25). The diagnosis of diabetes was established upon the elevation of one or more diagnostic markers, including fasting glucose (≥ 126 mg/dL), HbA1C (≥ 6.5%), self-reported medical history, or the administration of anti-diabetic drugs (32). In non-diabetic subjects, prediabetes was delineated by fasting glucose levels of 100–126 mg/dL or HbA1C values of 5.7%-6.5%, while normoglycemia was defined by fasting glucose below 100 mg/dL and HbA1C less than 5.7%.




2.3 Collection of blood biomarkers

Venous blood samples were procured from each participant in the morning following an overnight fast. This procedure, adhering to standard protocols, was executed by professional nurses and involved the collection of three blood tubes per participant (33). The complete blood count analysis was conducted using the first 2 mL tube on an automated analyzer. The second tube, containing 6 mL of whole blood, was utilized for the quantification of blood lipids, glucose, and et al. The third tube was employed for determining HbA1C. A detailed protocol for processing and assessing blood biomarkers can be found in an established study (33).




2.4 Definition of covariates

Certain covariates were included in our analysis, comprising demographics, lifestyles, health examinations, and the histories of chronic diseases. Demographic variables encompassed age, educational status (categorized as literate or illiterate), marital status (classified as married/cohabitating or other) and gender (male or female). Illiterate respondents were defined as those lacking elementary school education. Lifestyle determinants encompassed sleep duration (categorized as < 6h, 6–8h, and >8h), nap (yes or no), smoking habits (current, never, or former), and frequency of alcohol consumption (classified as more than once per month, less than once per month, or never). Chronic diseases included hypertension, depression and hyperuricemia. BMI, hypertension and depression were assessed and grouped as one previous study did (31). Hyperuricemia and blood lipid panel, including low-density lipoprotein (LDL, mg/dL), total cholesterol (TC, mg/dL), triglyceride (TG, mg/dL), and high-density lipoprotein (HDL, mg/dL), were included based on the previous study (32).




2.5 Statistical analysis

To quantify the difference in PWR levels, PWR was divided into tertiles (T1, T2, and T3). Comparative analysis across tertiles was conducted utilizing ANOVA, Kruskal-Wallis test, or Chi-square test, contingent on the variable classifications. The correlation of PWR with diabetes was assessed using logistic regression. Four nested models were completed in order. Model 1 served as the unadjusted model. Model 2 incorporated adjustments for age, gender, marital status, educational attainment, and BMI. Model 3 extended these adjustments to include lifestyle factors such as smoking and drinking habits, sleep, and nap. Model 4 was further adjusted for chronic diseases, such as depression, hypertension, and hyperuricemia, as well as lipids panel, such as LDL, HDL, TC, and TG. A trend test was executed to evaluate the linear relationship between PWR and diabetes.

To corroborate the stability of the observed association, several sensitivity analyses were conducted. First, the continuous form of PWR was included in the full adjusted model instead of the tertiles to verify the linear association between PWR and diabetes. We also modeled the regression model based on the median and quantiles of PWR. Second, a restricted cubic spline (RCS) with three knots was employed to delineate the nonlinear relationship of PWR with diabetes risk, and the test of nonlinearity was performed using the Wald ratio test. Third, we conducted subgroup analysis to identify potential vulnerable populations and examine joint effects. The interactive effects were explored by constructing a multiplication interaction term. Fourth, the data without interpolation was used to compare the findings from interpolated data.

Data analysis was conducted utilizing R software (version 4.0.2). A two-sided P value of < 0.05 was considered statistically significant.





3 Results



3.1 Characteristics of sample

The final analysis incorporated a total of 10,973 participants (Figure 1A). The characteristics of participants across PWR tertiles were shown in Table 1 (missing values not interpolated). The  PWR  ranges for Tertile 1, Tertile 2, and Tertile 3 were 1.50 to 29.50, 29.51 to 40.20, and 40.21 to 280.68, respectively. Our results revealed significant differences across tertiles in various demographic and health-related variables. Participants in higher PWR tertiles were generally younger, with the average age decreasing from Tertile 1 (61.08 years) to Tertile 3 (58.81 years) (P < 0.001). Gender distribution also varied significantly, with a higher proportion of females in Tertile 3 (68.23%) compared to Tertile 1 (42.03%) (P < 0.001).

Table 1 | Characteristics of included participants.


[image: A detailed table comparing demographic and health-related characteristics across tertiles of Platelet to White cell Ratio (PWR) for 10,973 participants. Categories include age, gender, marital status, BMI, smoking habits, alcohol consumption, sleep patterns, and medical conditions such as depression, hypertension, hyperuricemia, diabetes, and cholesterol levels. Statistical significance is indicated with p-values.]
Health behavior differences were notable, with higher PWR tertiles showing lower proportions of current smoking and alcohol consumption. For instance, the proportion of current smokers decreased from Tertile 1 (34.06%) to Tertile 3 (19.00%) (P < 0.001), and those who drank alcohol more than once a month decreased from Tertile 1 (29.56%) to Tertile 3 (22.53%) (P < 0.001).

Metabolic health indicators such as fasting glucose and glycated hemoglobin levels were also more favorable in higher PWR tertiles. Fasting glucose decreased from Tertile 1 (102.68 mg/dL) to Tertile 3 (97.75 mg/dL) (P < 0.001), and glycated hemoglobin followed a similar trend (P < 0.001).

Interestingly, an increase in LDL levels was found across tertiles, from 22.22% in Tertile 1 to 26.56% in Tertile 3 (P < 0.001). Similar trends were observed in TC and HDL levels, which increased from 26.82% in Tertile 1 to 29.55% in Tertile 3, and from 35.21% in Tertile 1 to 37.91% in Tertile 3, respectively (P < 0.001). A reversed association was observed in TG levels, decreasing from 36.06% in Tertile 1 to 34.33% in Tertile 3 (P < 0.001). Moreover, the prevalence of diabetes decreased significantly across tertiles, from 22.38% in Tertile 1 to 15.59% in Tertile 3 (P < 0.001).

These findings suggest that a higher PWR is associated with younger age, healthier behaviors, and better metabolic health, despite some increases in LDL and TC levels.




3.2 The correlation between PWR and diabetes

In the logistic regression models, elevated PWR levels were inversely associated with diabetes risk (Table 2). As a continuous variable, increased PWR values decreased the risk of diabetes, with the ORs ranging from 0.988–0.991 (all P < 0.001). Compared with the lowest PWR tertiles (T1), ORs of the T2 group and T3 group consistently decreased (P for trend < 0.001). For example, a 0.68-fold (95% CI: 0.60–0.78, P < 0.001) risk of diabetes was detected for the T3 group in the final model. Therefore, we found a robust inverse correlation between escalating PWR and decreasing diabetes risk among elderly Chinese individuals.

Table 2 | The association of PWR with diabetes.


[image: Table showing odds ratios (OR) and confidence intervals (CI) for four models analyzing platelet to white blood cell ratio (PWR). Models 1-4 adjust for different factors. Continuous PWR shows ORs: Model 1 (0.988), Model 2 (0.990), Model 3 (0.990), Model 4 (0.991). Tertile groups T2 and T3 ORs decrease across models with T1 as reference: Model 1 T2 (0.83), T3 (0.64); Model 2 T2 (0.82), T3 (0.67); Model 3 T2 (0.83), T3 (0.67); Model 4 T2 (0.83), T3 (0.68). P for trend is less than 0.001 for all models.]



3.3 Subgroup analysis

The difference in effects between the distinct subgroup was tested using subgroup analysis (Table 3). The analysis revealed that participants in Tertile 3 exhibited lower odds of diabetes across various subgroups compared to those in Tertile 1. Specifically, individuals aged 60–70 years in Tertile 3 had significantly lower odds of diabetes (OR = 0.55, 95% CI: 0.44–0.68, P < 0.001). Similar findings were found in males (OR = 0.65, 95% CI: 0.53–0.80, P < 0.001) and females (OR = 0.70, 95% CI: 0.59–0.83, P < 0.001).

Table 3 | Subgroup and interactive analysis.
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Participants in Tertile 3 also had significantly lower risks of diabetes among those with a BMI ≥ 28.0 kg/m² (OR = 0.54, 95% CI: 0.40–0.73, P < 0.001), non-smokers (OR = 0.67, 95% CI: 0.57–0.79, P < 0.001) and ex-smokers (OR = 0.61, 95% CI: 0.42–0.87, P = 0.007), and participants who drank alcohol more than once a month (OR = 0.59, 95% CI: 0.45–0.77, P < 0.001). Additionally, participants who slept 6–8 hours per night (OR = 0.70, 95% CI: 0.57–0.85, P = 0.001) or took afternoon naps (OR = 0.64, 95% CI: 0.54–0.75, P < 0.001) in Tertile 3 showed a decreased risk of diabetes. Furthermore, participants without depression (OR = 0.71, 95% CI: 0.60–0.83, P < 0.001), hypertension (OR = 0.59, 95% CI: 0.49–0.70, P < 0.001), or hyperuricemia (OR = 0.69, 95% CI: 0.60–0.80, P < 0.001) in Tertile 3 reported negative associations.

Moreover, participants with LDL levels > 120 mg/dL (OR=0.62, 95% CI: 0.49–0.80, P < 0.001), total cholesterol > 200 mg/dL (OR = 0.62, 95% CI: 0.50–0.77, P < 0.001), reduced HDL (OR = 0.62, 95% CI: 0.51–0.74, P < 0.001), and elevated triglycerides (OR = 0.59, 95% CI: 0.49–0.71, P < 0.001) in Tertile 3 had substantially lower risks of diabetes.

The interaction analysis revealed significant moderation effects for HDL levels (P for interaction = 0.014), indicating that the relationship between PWR tertiles and diabetes risk varies significantly between participants with normal and reduced HDL levels.




3.4 The nonlinear relationship between PWR and diabetes

The smooth curve was fitted to present the nonlinear association between PWR and diabetes (Figure 2). We identified a decreasing trend in the total participants (Figure 2A), males only (Figure 2B), and females only (Figure 2C), respectively (P for overall < 0.01). Specifically, we found a nonlinear association in the total participants and females (P for nonlinear: 0.014 and 0.020, respectively). However, we cannot discern a nonlinear association in males (P for nonlinear: 0.305).

[image: Three line graphs labeled A, B, and C show the relationship between PWR and odds ratio with 95% confidence intervals. Each graph features a red curve and shaded gray area. Graph A shows a significant linear and nonlinear relationship, with p-values less than 0.001 and 0.014, respectively. Graph B indicates a significant linear relationship with a p-value of 0.004, but not nonlinear. Graph C shows significant linear and nonlinear relationships, with p-values less than 0.001 and 0.020. All graphs depict a downward trend.]
Figure 2 | Dose response association of PWR with diabetes. Dose response association of PWR with diabetes was explored by the RCS regression. The linear and non-linear associations in the overall population, males, and females were displayed in (A–C), respectively.




3.5 The correlation between PWR and diabetes in individuals with prediabetes

To elucidate the correlation between PWR and diabetes in participants with prediabetes, we further excluded individuals with normoglycemia. Individuals with prediabetes were set as reference. A negative association was observed regardless of whether PWR was treated as continuous or tertiles (Table 4). Additionally, each incremental unit of PWR corresponded to an OR of 0.987 in model 1, 0.988 in model 2, 0.989 in model 3, and 0.990 in model 4, respectively (all P < 0.001). In relation to the lowest PWR tertiles (T1), ORs of the T2 group and T3 group consistently decreased (P for trend < 0.001). After adjusting for all the covariates, 0.80-fold (95% CI = 0.71–0.91, P < 0.001) and 0.68-fold (95% CI = 0.59–0.77, P < 0.001) risks were detected for the T2 and T3 groups.

Table 4 | The association of PWR with diabetes in individuals with prediabetes.


[image: Table displaying odds ratios (OR) and confidence intervals (95% CI) for four models. For PWR (continuous): Model 1 OR is 0.987, Model 2 OR is 0.988, Model 3 OR is 0.989, Model 4 OR is 0.990. In T2 group, all models share OR 0.79 (CI slightly varies). In T3 group: Model 1 OR is 0.62, Model 2 OR is 0.64, Model 3 OR is 0.65, Model 4 OR is 0.68. P for trend is less than 0.001 for all. Notes detail model adjustments and exclusions for prediabetes and normoglycemia.]



3.6 Sensitivity analysis

First, we examined the association between binary PWR defined by threshold values of dose-relationship links, and the risk of diabetes. We observed a 0.80-fold (95% CI: 0.68–0.94, P < 0.001) decrease in risk of diabetes for those with PWR ≥ 20.421 in the full model (Table 5). Second, we modeled the adjusted logistic regression using PWR as binary or quartiles (Table 6). Analogue findings were observed for both binary PWR and quartiles. For example, individuals with PWR above the median had a 0.78-fold (95% CI: 0.71–0.87, P < 0.001) decrease in risk of diabetes in relative to those with lower PWR values in the model 4. In quartile analysis, the T4 group exhibited a 0.67-fold (P < 0.05) reduction in diabetes risk relative to the T1 group, as per Model 4.

Table 5 | The association between PWR and diabetes (as binary according to RCS regression).
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Table 6 | The association between PWR and diabetes (as binary or quartiles).


[image: A table displaying odds ratios (OR) and 95% confidence intervals (CI) for four models across Q1 to Q4 groups. Each model shows decreasing OR values from the Q1 reference group to Q4, all significant at p < 0.001. Adjustments include factors like age, gender, and health conditions.]
Same analytic methods were applied in the data without interpolation. First, we observed a persistent decrease in the association between PWR and diabetes, although no evidence of a nonlinear relationship (all P for overall < 0.05) (Supplementary Figure S1). We founded an evident association of PWR, whether treated as continuous or tertiles, with diabetes. For example, an increase of 1 unit in PWR was associated with a 0.991-fold (95% CI: 0.987–0.997, P < 0.001) decrease in risk of diabetes (Supplementary Table S1). Similarly, decreased risks of diabetes were detected in nearly all the subgroups (Supplementary Table S2). Lastly, increased PWR was also negatively associated with the risk of diabetes, with the ORs of 0.991 (95% CI: 0.987–0.995, P < 0.001) as continuous (Supplementary Table S3).





4 Discussion

As far as we know, this study represents the inaugural endeavor to examine the cross-sectional relationships between PWR and diabetes and the progression from prediabetes to diabetes based on a national survey in China. Our findings suggest that individuals with higher PWR exhibit a reduced risk of developing diabetes among the senior demographic in China.

In the baseline survey, individuals with elevated PWR were generally younger, predominantly female, with normal body weight, non-smokers, abstainers from alcohol, longer sleep duration, fewer naps, and demonstrated better lipid profiles, blood pressure, blood glucose, and uric acid. It has been found that type 2 diabetes patients commonly experience complications, which are more prevalent in males and older individuals (33). The most common complications include hypertension (82.1%), followed by overweight/obesity (78.2%) and hyperlipidemia (77.2%) (33). This suggests that individuals with higher PWR may have healthier lifestyles and lower risks of diabetes or prediabetes.

Consistent with our research findings, multiple studies have reported associations between PWR and prognosis in various malignancies and inflammatory conditions (25). Elevated PWR is significantly negatively correlated with overall survival rates among patients experiencing acute-on-chronic liver failure (34). Similarly, decreased PWR is autonomously linked with adverse outcomes among patients with pancreatic cancer (29) and HBV-associated decompensated cirrhosis (24). Moreover, patients with aneurysmal subarachnoid hemorrhage who have preoperative low PWR are at increased risk of developing postoperative pneumonia (28).

The mechanism explaining the relationship between PWR and diabetes still needs to be elucidated. Insufficient insulin secretion and insulin resistance are two crucial factors in the pathogenesis of Type 2 diabetes (35). WBC count serves as a marker of inflammation, mediating the body’s immune response (36). Insulin resistance is associated with peripheral WBC count, indicating that elevated WBC count is a predictor of insulin resistance (37). The precise mechanism behind the association between WBC count and insulin resistance remains unclear. Several studies have indicated that interleukin-6, primarily produced in adipose tissue, acts as a significant factor in WBC differentiation and is linked to insulin resistance (38). Additionally, hormones serve as a potential connection between WBCs and insulin sensitivity. Many hormones have receptors on WBC surfaces and influence their development and maturity. Among these hormones, insulin, cortisol, and sex hormones are associated with insulin resistance (37).

Platelet dysfunction is pivotal in the occurrence and progression of vascular complications in diabetes. Platelet activation may represent an early occurrence in the natural progression of diabetes (39). Research has shown that mean platelet volume is notably elevated in both diabetic and impaired fasting glucose groups compared to controls. Furthermore, there was a positive correlation between mean platelet volume and platelet mass concerning fasting glucose and HbA1c levels in both diabetic and impaired fasting glucose groups (40, 41). Increased platelet aggregation has been observed in diabetes since as early as 1965 (42), and subsequent studies have consistently shown increased platelet degranulation and production of thromboxane derivatives, leading to additional activation of platelets (43, 44). Additionally, platelet-mediated vasodilation is impaired in diabetes (45), and platelets from diabetic patients exhibit reduced responsiveness to endogenous anti-aggregating agents like prostaglandin I2 and nitric oxide (46, 47). Notably, numerous studies have already suggested a link between poor glycemic control and increased platelet activity (48–50). The altered platelet function observed in individuals with diabetes may involve various mechanisms, with metabolic changes, oxidative stress, and endothelial dysfunction playing significant roles (51). However, our study revealed a positive correlation between decreased PWR and increased risk of diabetes. This association may be attributed to the propensity of platelets to adhere to vessel walls at high blood glucose concentrations in diabetic individuals, resulting in a decrease in peripheral blood platelets (39). Additionally, poor glycemic control may lead to liver damage (52), as the liver is a crucial organ for producing thrombopoietin, a platelet-stimulating factor, which could further contribute to decreased platelet count (53). Indeed, for individuals with normal blood glucose levels, an elevated PWR might correlate with improved platelet function, which is vital for preserving vascular health, hemostatic function, and immune system functionality (25).

The effect of platelet and WBC counts can be simultaneously assessed by the PWR (54). The interaction between platelets and WBCs has been implicated in the pathogenesis of numerous diseases (25). Inflammatory pathways are considered potential mediators in the pathogenesis of diabetes (55). Platelets affect other blood cells by releasing chemokines and membrane ligands and facilitating leukocyte-platelet aggregates in the peripheral blood (56). Consequently, PWR can reflect the degree of inflammation, and a significant association of PWR with diabetes may indicate a more prominent effect of PLTs than WBCs (54). During inflammation, the proportion of larger platelets tends to rise, likely due to the production of factors that encourage coagulation and inflammation, as well as the release of platelets stored in the spleen (57). Concurrently, these platelets are swiftly recruited to the site of inflammation, where they may become activated and depleted, potentially explaining the reduced mean platelet volume observed in patients experiencing inflammation (58). Additionally, the spleen is a major immune organ that stores and filters blood cells (59). Diabetes patients often have a chronic inflammatory state, which may lead to an increase in WBCs (60). If spleen function is abnormal or impaired, it could affect the storage and release of WBCs, thus influencing PWR (61). Furthermore, the bone marrow is the primary site for the production of platelets and WBCs (62). The chronic inflammatory state induced by diabetes can stimulate the bone marrow to produce more WBCs (63). Overactive bone marrow could lead to an elevated WBC count, thereby decreasing PWR. In diabetes, especially with poor glycemic control, bone marrow might increase platelet production (64). This increase could temporarily raise PWR, but long-term high blood glucose levels might lead to bone marrow exhaustion, reducing platelet production and thus affecting PWR (65). Therefore, we propose that a low PWR may reflect the severity of inflammation and potentially impact the risk of diabetes. Further research is needed to elucidate the underlying mechanisms of this association. This research utilized information from the CHARLS database, which offers the advantage of a substantial sample size across multiple regions. However, there are several limitations to consider. Firstly, as the data is sourced from a public database, there is a lack of control over the original data quality and detailed background information on the study participants, necessitating further validation of the research findings through clinical practice. Secondly, the diagnostic criteria for diabetes were not comprehensive, and there was a deficiency in related clinical manifestation data. Grouping was solely based on fasting blood glucose and HbA1c levels, potentially leading to some false positive and false negative results. Furthermore, the study did not distinguish between type 1 and type 2 diabetes, warranting further investigation into the correlation between different types of diabetes and PWR. Finally, the cross-sectional association should be further verified in future longitudinal surveys.




5 Conclusions

This cross-sectional survey discloses that elevated PWR is significantly associated with decreased risks of diabetes. There are non-linear associations of PWR and diabetes in the overall population and females, but not in males. The dose-response association between PWR and diabetes indicates that PWR holds potentials in early identification and prevention of diabetes. The role and mechanism of hematological indicators in predicting diabetes should be further investigated in future studies.
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Background and aims

The American Heart Association (AHA) recently introduced the Life’s Essential 8 (LE8) to improve cardiovascular health (CVH). However, the association between LE8 and the risk of prediabetes or diabetes is not yet fully understood. Consequently, this study aims to assess the association between CVH, as evaluated by LE8, and the risk of prediabetes and diabetes.





Methods and Results

This cross-sectional study encompassed 7,739 participants aged ≥20 years from the 2007-2018 National Health and Nutrition Examination Surveys (NHANES). The CVH of participants was evaluated using the LE8, combining four health behaviors and three health factors. Glucose metabolic status categories included normal glucose metabolism, prediabetes including isolated impaired fasting glucose, isolated impaired glucose tolerance, both IFG and IGT, and diabetes. The associations between CVH and prediabetes and diabetes were analyzed using logistic regression, linear regression, restricted cubic splines, and subgroup analyses. Among 7,739 participants, 1,949 had iIFG, 1,165 were diagnosed with iIGT, 799 were IFG+IGT, and 537 were diagnosed with diabetes. After multivariable adjustments, CVH scores were inversely associated with prediabetes and diabetes, with the most robust inverse association observed between IFG+IGT and CVH across all prediabetes subgroups. Of all CVH components not directly in the causal pathway, body mass index (BMI) had the most robust associations with prediabetes and diabetes. Subgroup analyses indicated that the negative correlation between CVH and prediabetes was stronger among those with university or higher education.





Conclusion

CVH, as defined by LE8, showed a significant negative association with prediabetes and diabetes.





Keywords: Life’s Essential 8, prediabetes, diabetes, NHANES, cardiovascular health





Highlights

	• Cardiovascular health and prediabetes/diabetes association using Life’s Essential 8.

	• Cross-sectional study of 7,739 NHANES participants.

	• Inverse association between cardiovascular health scores and prediabetes/diabetes.

	• Body mass index and education level as key modifiers.






1 Introduction

The prevalence of diabetes mellitus has increased rapidly and dramatically worldwide in recent decades. In the United States, diabetes, characterized by elevated blood glucose levels, ranks among the top 10 leading causes of mortality (1). According to a current survey by the International Diabetes Federation (IDF), approximately 537 million adults worldwide have diabetes, and an additional 374 million adults have prediabetes (2), imposing a significant economic burden. In the United States, diabetes has reached epidemic proportions and affects over 10% of adults (3). It is well-established that a strong association exists between diabetes and cardiovascular disease (CVD). CVD stands as the primary cause of mortality in patients with diabetes, while diabetes serves as an independent risk factor for CVD (4). Clinical management of patients with diabetes centers on two overarching goals: enhancing glycemic control to mitigate diabetic complications (5), and modifying risk factors for complications, particularly those linked to CVD (6). Therefore, it is imperative to establish standardized metrics for assessing and continuously monitoring cardiovascular health (CVH) in patients with diabetes.

Diabetes is a progressive process, often preceded by a prediabetic stage, frequently under-diagnosed. There is no consensus on the potential link between prediabetes and the increased risk of CVD. While some studies have proposed a connection between prediabetes and an elevated risk of CVD (7–9), others have failed to establish a similar association (10, 11). In addition, prediabetes is primarily classified as impaired fasting glucose (IFG) and impaired glucose tolerance (IGT), and the relationship between these two types and CVD individually requires further exploration.

In 2010, the American Heart Association (AHA) introduced Life’s Simple 7 (LS7) to advocate for initiatives to reduce the risk of CVD. The LS7 evaluates seven modifiable and actionable metrics of CVH, including dietary intake, physical activity, smoking, body mass index (BMI), blood glucose, blood pressure (BP), and blood lipids (12). Over the past decade, the LS7 has been widely utilized and has made significant contributions to the advancement of CVH in the United States and globally. However, during this period, certain limitations of LS7 have come to light (13). In 2022, in response to these limitations, the AHA proposed Life’s Essential 8 (LE8), featuring key enhancements, including the addition of sleep quality indicators and refined scoring algorithms (13). A limited number of studies have found a negative correlation between LE8 and diabetes (14, 15); however, the association of LE8 with prediabetes remains uncertain.

Considering the well-established associations between diabetes and CVD, promoting CVH as a strategic approach for the prevention and management of diabetes could potentially alleviate the burden of diabetes. Previous studies have explored the relationship between LS7, LE8, and diabetes (14–18), yet no study has examined the associations between the newly launched LE8 and prediabetes. To address these research gaps, we conducted an in-depth analysis using data from the National Health and Nutrition Examination Surveys (NHANES) to comprehensively assess the connection between LE8 and various prediabetes subtypes, as well as diabetes, among US adults.




2 Methods



2.1 Study design and participants

The data were from NHANES, which offers a comprehensive health and nutrition evaluation of noninstitutionalized civilians in the United States through a stratified, multi-stage, probabilistic cluster design that ensures national representation. The National Center for Health Statistics (NCHS) in the U.S. manages NHANES, involving in-person interviews, physical examinations, and laboratory tests. The NCHS Disclosure Review Board approved the survey methodologies. The NCHS Ethics Review Board granted ethical clearance, and participants submitted written informed consent to the NCHS Ethics Review Board. Protocol details are available at https://www.cdc.gov/nchs/ahcd/ahcd_confidentiality.htm. The Ethics Committee of Shanghai Tongji Hospital provided ethical approval for this study. Data from seven NHANES cycles (1999–2018) included a total of 101,316 individuals initially. Due to missing clinical data, unknown medical history, and incomplete LE8 data, the number of participants aged 20 years and older eligible for statistical analysis in the NHANES cycles (2007-2018) was 7,739 (Supplementary Figure 1).




2.2 Assessment of CVH by LE8

The LE8 system assesses CVH by considering four health behavior scores: diet (as measured by the 2015 Healthy Diet Index from 24-hour recalls), physical activity, nicotine exposure, and sleep. It also incorporates four health factor scores: BMI, blood lipids, blood glucose, and blood pressure (13). Blood glucose was not included in the analysis as a LE8 metric, as prediabetes and diabetes were the outcomes of interest (19). Each indicator in the LE8 system is scored on a scale from 0 to 100, and the overall score is calculated as the mean of the scores. Detailed information is available in Supplementary Table 1. In accordance with the guidelines of the American Heart Association (AHA), LE8, including health behavior and health factors, was analyzed continuously and categorically by tertiles: high (80–100), moderate (50–79), and low (0–49) (13).




2.3 Assessment of prediabetes and diabetes

Prediabetes and diabetes were defined according to the 2003 American Diabetes Association (ADA) criteria (20). Diabetes was defined by one of the following criteria: (1) fasting plasma glucose (FPG) ≥126 mg/dL (7mmol/L); (2) self-reported use of hypoglycemic medications; (3) 2 h plasma glucose (2hPG) ≥200 mg/dL (11.1mmol/L); (4) self-reported diabetes. After exclusion of diabetic subjects based on the above criteria, isolated impaired glucose tolerance (iIGT) was defined as FPG <100 mg/dL (5.6mmol/L) and 2hPG 140–199 mg/dL (7.8–11mmol/L); isolated impaired fasting glucose (iIFG) was defined as FPG 100–125 mg/dL (5.6–6.9mmol/L) and 2hPG <140 mg/dL(7.8mmol/L); both IFG and IGT (IFG+IGT) were FPG 100–125 mg/dL (5.6–11mmol/L)and 2hPG 140–199 mg/dL (7.8–11mmol/L); normal glucose metabolism (NGM) referred to FBG <100 mg/dL (5.6mmol/L) and 2hPG <140 mg/dL (7.8mmol/L).




2.4 Covariates

Covariates included age, sex (male and female), race and ethnicity (non-Hispanic black, non-Hispanic white, Mexican American, or other races), poverty-to-income ratio (PIR) [low (<1.3), middle (1.3–3.5), and high (≥3.5)], marital status (divorced/separated/widowed, married/living with partner and never married), and education level (college graduate or above, high school or below, and college level). Insulin resistance (IR) was assessed using the homeostasis model of IR (HOMA-IR)=(fasting plasma insulin [μU/mL])×(fasting plasma glucose [mmol/L])÷22.5 (21).




2.5 Statistical analysis

NHANES employed design weighting to ensure the representativeness of the data. We performed weighted data analyses using relevant survey weights (MEC2yr) to generate nationally representative estimates. After applying the NHANES survey weights, our analyses provided estimates that represented approximately 59,055,054 individuals in the U.S. population. Categorical variables in the baseline information were expressed as weighted percentages, while continuous variables were presented as weighted means along with their respective confidence intervals (CIs). Group disparities were assessed by weighted variance tests and weighted chi-square tests. Additionally, we computed age-standardized prevalence estimates and 95% CIs for various score levels.

We utilized weighted multivariate logistic regression to examine the relationship between CVH with both diabetes and prediabetes. This analysis was stepwise adjusted for age, sex, marital status, education level, and race/ethnicity. We also employed restricted cubic spline regression to explore potential non-linear associations between the LE8 score and its sub-scale scores with diabetes and prediabetes. Furthermore, we conducted stratified analyses by age, sex, marital status, education level, and race/ethnicity to assess whether the association between LE8 and diabetes and prediabetes was influenced by these factors. The significance of the interaction was assessed by the interaction P-value between the LE8 score and the stratified factors.

All statistical analyses were performed using R software (Version 4.2.1, The R Foundation; http://www.R-project.org) and EmpowerStats software (Version 5.0, X&Y Solutions, Inc., Boston, MA; http://www.empowerstats.com). A significance level of p < 0.05 was considered statistically significant.





3 Result



3.1 General characteristics of the study population

Tables 1 and 2 present the demographic characteristics and metabolic risk factors of the study population, categorized according to ADA criteria. The weighted average age of participants was 47.23 years, with 48.76% male, and a majority being non-Hispanic white (73.45%). Among the 7,739 participants, 1,949 had iIFG, 1,165 had iIGT, 799 had IFG+IGT, and 537 were diagnosed with diabetes. The mean CVH score for the entire study population was 66.94 ± 0.33. Stratified by glycemic metabolism status, the mean CVH scores for NGM, iIFG, iIGT, IFG+IGT, and diabetic subjects were 70.21 ± 0.39, 64.44 ± 0.53, 63.94 ± 0.85, 60.69 ± 0.67 and 59.28 ± 0.66, respectively.

Table 1 | Weighted baseline characteristics of participants with NGM, prediabetes, and diabetes.


[image: Table showing baseline characteristics for participants categorized by normal glucose metabolism (NGM), prediabetes, and diabetes. It includes demographics, glucose and lipid metabolism, and cardiovascular health scores. Significant differences (P < 0.0001) are observed between groups in variables like age, sex, race, education, glucose metabolism, and lipid metrics. Data are presented as percentages or means with standard errors.]
Table 2 | Weighted baseline characteristics of participants with NGM, iIFG, iIGT, IFG+IGT and diabetes.


[image: A table comparing baseline characteristics among participants with different glucose metabolism categories: normal glucose metabolism (NGM), isolated impaired fasting glucose (iIFG), isolated impaired glucose tolerance (iIGT), combined IFG and IGT (IFG+IGT), and diabetes. Categories include numbers of participants, demographics, education, marital status, poverty-income ratio, glucose metabolism, lipid metabolism, and cardiovascular health scores, with p-values indicating differences. Data shows age distribution, sex, race, cholesterol, body mass index, and other health metrics across groups. The p-value indicates statistical significance in comparisons.]
In multiple comparisons, significant differences were observed in CVH scores among NGM, prediabetes, and diabetes groups. The diabetes group exhibited significantly lower CVH scores compared to the NGM and prediabetes groups. Upon further comparison of the prediabetes subgroups, no significant difference was found in CVH scores between iIFG and iIGT, whereas the IFG+IGT group’s CVH score was significantly lower than those of the iIFG and iIGT groups (see Supplementary Figure 2). On average, patients with prediabetes or diabetes were older, less educated, and had poorer lipid profiles compared to those with NGM. Patients with IFG+IGT exhibited more pronounced metabolic deficits and more unfavorable CVD risk profiles, such as higher HOMA-IR, larger waist circumference, and altered lipid metabolism indices, compared to those with iIFG and iIGT (see Table 2).

When CVH was further subdivided into health behaviors (diet, physical activity, nicotine exposure, and sleep) and health factors (body mass index, blood lipids, and blood pressure), significant differences in scores were observed between the NGM, iIFG, iIGT, IFG+IGT, and diabetic groups (Table 2). The mean health behavior scores for the NGM, iIFG, iIGT, IFG+IGT, and diabetic subjects were 67.89 ± 0.56, 65.88 ± 0.72, 65.46 ± 1.26, 65.33 ± 0.90, and 63.69 ± 0.87, respectively; mean health factor scores were 73.31 ± 0.45, 62.53 ± 0.64, 61.90 ± 1.29, 54.49 ± 0.91, and 53.41 ± 1.15, respectively. Compared to patients with prediabetes (including iIFG, iIGT, IFG+IGT) or diabetes, those with NGM had higher health behaviors and health factors scores, except for nicotine exposure and sleep health scores, which were not statistically different.




3.2 Associations of CVH scores with prediabetes and diabetes

The results of the logistic regression analysis of glucose metabolism status are summarized in Tables 3 and 4. This comprehensive evaluation revealed a robust inverse correlation between CVH scores and both prediabetes and diabetes. After adjusting for the variables of age, sex, ethnicity, marital status, PIR, and education, for every 10-point increase in CVH scores, the odds ratios (ORs) for each category were reduced as follows: iIFG (OR 0.77, 95% CI 0.72–0.82), iIGT (OR 0.76, 95% CI 0.69–0.84), IFG+IGT (OR 0.65, 95% CI 0.60–0.70), prediabetes (OR 0.74, 95% CI 0.70–0.78), and diabetes (OR 0.63, 95% CI 0.57–0.69). Notably, the inverse correlation between IFG+IGT and CVH was more pronounced than the negative association observed with iIFG or iIGT.

Table 3 | Association of the cardiovascular health scores with prediabetes and diabetes.


[image: Table comparing univariable and multivariable models for prediabetes and diabetes based on CVH, health behaviors, and health factors scores. It includes odds ratios, ninety-five percent confidence intervals, and p-values for various score levels: low, moderate, and high, along with trends. Univariable uses unadjusted data, while multivariable adjusts for factors like age and education. Key findings indicate significant p-values and lower odds ratios for higher score categories in both conditions.]
Table 4 | Association of the cardiovascular health scores with iIFG, iIGT, and IFG+IGT.


[image: A table showing odds ratios (OR) and p-values for cardiovascular health (CVH), health behaviors, and health factors scores analyzed under various conditions: iIFG, iIGT, and IFG+IGT. Each section includes univariable and multivariable models with data segmented by score categories: Per 10-point increase, Low, Moderate, and High, alongside statistical significance indicators. Trend p-values are listed for each category. Explanations of variables are noted below the table.]
To further explore the relationship between CVH scores and prediabetes as well as diabetes, participants were stratified into low, medium, and high CVH groups based on CVH scores (refer to Table 3). Following multivariable adjustments, participants with moderate and high CVH had significantly lower odds of developing diabetes compared to those with low CVH, with ORs of 0.29 (95% CI 0.19–0.45) and 0.04 (95% CI 0.02–0.08), respectively. Participants in the moderate and high CVH groups also exhibited a significantly lower risk of iIFG, iIGT, IFG+IGT, and prediabetes compared to those in the low CVH group. Notably, the inverse association between IFG+IGT and CVH was more pronounced in the high CVH group compared to other prediabetes subgroups, with an OR of 0.13 (95% CI 0.09–0.21) per 10-point increase in CVH, second only to diabetes (OR 0.06, 95% CI 0.03, 0.12) (see Table 4). Logistics regression analysis of the association between CVH scores and prediabetes/diabetes showed that as the CVH scores went from low to high, the ORs for all types of glucose metabolism disorders, including iIFG, iIGT, IFG+IGT, and diabetes, then progressively decreased (p for trend <0.0001) (see Tables 3 and 4).

Furthermore, the age-adjusted prevalence of iIFG, iIGT, IFG+IGT, prediabetes, and diabetes showed varying decreases with increasing CVH levels, health behavior scores, and health factor scores, as illustrated in Figure 1. When FPG and 2hPG were used as continuous glycemic measures, both FPG and 2hPG exhibited an inverse association with CVH scores as presented in Figure 2 (β=-0.21, p < 0.0001 for both).

[image: Five bar charts labeled A to E show the age-adjusted prevalence of different glucose metabolism states by cardiovascular health (CVH) groups: low, moderate, and high. Chart A depicts the prevalence of impaired fasting glucose (IFG). Chart B shows impaired glucose tolerance (IGT). Chart C combines IFG and IGT. Chart D portrays prediabetes prevalence, and chart E illustrates diabetes prevalence. Overall, the low CVH group consistently exhibits higher prevalence rates across all states compared to moderate and high groups.]
Figure 1 | Age-adjusted prevalence of prediabetes and diabetes in different levels of CVH scores. (A) iIFG; (B) iIGT; (C) IFG+IGT; (D) prediabetes; (E) diabetes. Numbers at the top of the bars represent the weighted percentage. Bar whiskers represent the 95% confidence intervals. iIFG, isolated impaired fasting glucose; iIGT, isolated impaired glucose tolerance; IFG+IGT, combined IFG and IGT; CVH, cardiovascular health.

[image: Scatterplots labeled A and B show relationships between CVH scores and glucose levels. Plot A depicts FPG with a negative correlation (r=-0.21, p<0.001). Plot B depicts 2hPG, also showing a negative correlation (r=-0.21, p<0.001). Red dots indicate data points, black lines represent trend lines, and histograms above show CVH score distributions.]
Figure 2 | Linear regression analysis of CVH scores and (A) FPG and (B) 2hPG. FPG, fasting plasma glucose; 2hPG, 2 h plasma glucose; CVH, cardiovascular health.

We also focused on subgroups with abnormal glucose metabolism, including iIFG, iIGT, IFG+IGT, prediabetic, and diabetic subgroups (Figure 3). CVH scores showed a negative correlation with all of these subgroups. The negative associations between CVH scores and IFG+IGT, prediabetes, and diabetes did not significantly differ across age, gender, race, and PIR subgroups. Of note, our analysis revealed that, except for the iIGT subgroup, education level influenced the negative association between CVH scores and the risk of iIFG, IFG+IGT, prediabetes, or diabetes (p < 0.05 for the interaction). The inverse association between CVH scores and the risk of these four subgroups was more pronounced among participants with education levels of college graduation or above, with ORs of 0.69 (95% CI 0.62–0.77), 0.54 (95% CI 0.47–0.62), 0.64 (95% CI 0.58–0.71), and 0.52 (95% CI 0.44–0.61) for each 10-point increase in CVH scores, respectively.

[image: Five panels labeled A to E show forest plots of odds ratios (ORs) with 95% confidence intervals (CIs) for various subgroups. Each panel includes categories such as age, sex, race, poverty-to-income ratio, marital status, and education level. Red dots represent ORs, with horizontal lines indicating CIs. P-values for interaction are noted on the right. Differences in ORs and CIs are apparent across subgroups and panels.]
Figure 3 | Subgroup analysis of the association of CVH scores and the presence of (A) iIFG; (B) iIGT; (C) IFG+IGT; (D) prediabetes; and (E) diabetes. ORs were calculated as per 10 scores increase in CVH scores. Each stratification was adjusted for age, sex, race/ethnicity, poverty-to-income ratio, education level, and marital status. iIFG, isolated impaired fasting glucose; iIGT, isolated impaired glucose tolerance; IFG+IGT, combined IFG and IGT; CVH, cardiovascular health; ORs, Odds ratios; CI: confidence interval.




3.3 Associations of health behaviors/health factors with prediabetes and diabetes

Logistic regression analysis revealed significant negative associations between both health factor scores and health behavior scores and the risk of prediabetes and diabetes (refer to Tables 3 and 4). The risk of iIFG, iIGT, IFG+IGT, prediabetes, and diabetes was significantly lower in the subgroups with moderate and high health factor scores compared with the subgroups with low health factor scores. However, the risk of iIFG, iIGT, IFG+IGT, prediabetes, and diabetes was not statistically different between the two subgroups with low health behavior scores versus moderate health behavior scores (see Tables 3 and 4). After adjusting for multiple confounding variables, individuals with high health behaviors scores had significantly lower odds of iIFG, iIGT, IFG+IGT, prediabetes, and diabetes, with ORs of 0.69 (95% CI 0.53–0.90), 0.62 (95% CI 0.42–0.92), 0.60 (95% CI 0.44–0.82), 0.66 (95% CI 0.53–0.82), and 0.49 (95% CI 0.33–0.72), respectively.

Additionally, the associations of each CVH component with prediabetes and diabetes were shown in Figure 4. Notably, among the health factors, BMI score exhibited the strongest association with prediabetes and diabetes, with ORs of 0.86 (95% CI 0.84–0.88) and 0.80 (95% CI 0.77–0.84) per 10-point increase, respectively. Following BMI score, BP score, and blood lipids score were secondary factors influencing the association of CVH with prediabetes and diabetes. In contrast, health behaviors demonstrated weaker associations with prediabetes and diabetes compared to health factors. Unexpectedly, nicotine exposure score displayed no significant association with either prediabetes (p=0.24) or diabetes (p=0.95). When categorizing prediabetes into the three subtypes, the associations between CVH components and iIFG, iIGT, and IFG+IGT followed a similar pattern of correlation as in prediabetes. In conclusion, both health behaviors and health factors were negatively associated with prediabetes and diabetes, with the negative associations being more pronounced for health factors, especially body mass index.

[image: Forest plots labeled A to E display odds ratios with 95% confidence intervals for various health behavior and factor scores. Subgroups include diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, and blood pressure. Each plot shows red dots representing odds ratios and horizontal lines indicating confidence intervals. P-values are noted, highlighting statistical significance in specific scores, such as the physical activity score in plot B and body mass index score across plots. The overall trend suggests differences in health impacts among the subgroups.]
Figure 4 | The association of CVH components with the presence of (A) iIFG; (B) iIGT; (C) IFG+IGT; (D) prediabetes; and (E) diabetes. ORs were adjusted for age, sex, race/ethnicity, poverty-to-income ratio, education levels, and marital status. iIFG, isolated impaired fasting glucose; iIGT, isolated impaired glucose tolerance; IFG+IGT, combined IFG and IGT; CVH, cardiovascular health; ORs, Odds ratios; CI: confidence interval.




3.4 Restricted cubic spline analysis

As shown in Figure 5, restricted cubic spline (RCS) analysis with multivariate adjustment revealed that iIFG, iIGT, IFG+IGT, prediabetes, and diabetes were correlated with CVH scores (all p < 0.05). Among them, IFG+IGT, prediabetes, and diabetes had a significant non-linear dose-response relationship with CVH scores (p for nonlinear <0.05). In contrast, iIFG and iIGT had a linear dose-response association with CVH scores, with p-values of 0.09 and 0.84, respectively, for the non-linear test.

[image: Five line graphs labeled A to E depict the relationship between CVH scores and adjusted odds ratios (OR) of IFG. The red curves indicate a decreasing trend, and shaded areas show confidence intervals. P-values for nonlinearity are included, with B having a high value and others being significant.]
Figure 5 | Restricted cubic curve of ORs for (A) iIFG; (B) iIGT; (C) IFG+IGT; (D) prediabetes; and (E) diabetes. ORs (red solid lines) and 95% confidence intervals (pink shaded areas) were adjusted for age, sex, race/ethnicity, poverty-to-income ratio, education levels, and marital status. iIFG, isolated impaired fasting glucose; iIGT, isolated impaired glucose tolerance; IFG+IGT, combined IFG and IGT; CVH, cardiovascular health; OR, Odds ratio.





4 Discussion

This study is the first comprehensive, large-scale population-based analysis of the relationship between CVH, as defined by LE8, and prediabetes/diabetes. The findings indicate an inverse relationship between CVH scores, health behaviors, health factors, and risk of prediabetes and diabetes among U.S. adults. Among the non-causal CVH components, BMI exhibited the strongest association with prediabetes and diabetes. Notably, IFG+IGT demonstrated the strongest negative association with CVH among all prediabetes subtypes. Subgroup analyses showed that the negative association between CVH and prediabetes was stronger among individuals with a college or higher education level. These results remained robust after adjustments for various confounders, including age, sex, race/ethnicity, PIR, education level, and marital status.

Growing evidence suggests that LE8 is highly effective in assessing CVH for predicting cardiovascular disease events and cardiovascular-specific mortality in the general population and reducing premature deaths among diabetic patients (14, 22). We observed a notable decrease in CVH scores with the worsening of glucose metabolic status (from NGM to prediabetes and diabetes). This trend remained consistent when employing FBG and 2h-PG as continuous glucose measures. This negative correlation corroborates and validates previous findings in the literature. A prospective study by LU et al., including 193,846 participants aged over 40 years, demonstrated a J-shaped association between FBG, 2hPG, and cardiovascular disease events and mortality (23). In an international prospective cohort study of 18,990 participants from 21 countries, a 1 mmol/L increase in FPG or a 2.52 mmol/L increase in 2hPG was linked to an increased hazard ratio for cardiovascular events or death (1.17, 95% CI 1.13–1.22) (24). A meta-analysis pooling data from a large cohort revealed that among participants aged 55–64 years, each 1 mmol/L increase in FPG was linked to relative risks (RRs) of 1.18 (95% CI 1.08–1.29) for ischemic heart disease and 1.14 (95% CI 1.01–1.29) for stroke (25).

The LE8, as a novel assessment of CVH, remedies the shortcomings of the previous LS7 (13). The LS7, defining the original CVH component, may not adequately reflect current health behaviors and practices, particularly regarding dietary underassessment. Furthermore, the initial categorization of ideal, moderate, and poor CVH was not sufficiently sensitive to individual variations. Recent evidence has highlighted the significance of sleep in both assessing and promoting CVH. Considering the link between sleep, cardiovascular disease, and diabetes, the LS7 might not adequately capture health behaviors and physical characteristics due to the omission of sleep assessment (26, 27). Our findings underscore the inverse relationship between CVH and diabetes, consistent with prior studies based on LS7-defined CVH (16, 19, 28–30). For example, the Strong Heart Family Study (n = 1639) found that achieving a 2–3 or 4+ LS7 goal was associated with a reduced risk of diabetes, with ORs of 0.40 (95% CI 0.29–0.56) and 0.11 (95% CI 0.05–0.21), respectively (29). In the Coronary Artery Risk Development in Young Adults Study, Choi et al. observed that higher CVH scores in young adults were associated with a lower risk of diabetes and diabetic complications (30). This study was limited to black and white adults aged 20–30 years, restricting its applicability to other racial groups and to middle-aged or older populations.

Our study also revealed a significant negative correlation between CVH and prediabetes. To our knowledge, no studies have specifically addressed the correlation between CVH as assessed by LE8 and prediabetes. Prior research examining the association between LS7-based CVH and prediabetes has been limited. For instance, a study involving Japanese adults (n = 403,857) showed that an increase in non-ideal CVH metrics was associated with a higher risk of prediabetes or diabetes (31). The study utilized LS7 as an indicator for CVH assessment but omitted the impact of dietary components. Additionally, the findings of this study, based solely on Japanese participants, limit their broader applicability.

Despite the substantial evidence of the relationship between diabetes and CVH, prediabetes has garnered limited attention. Previous research has often omitted comparisons between the three distinct subtypes of prediabetes: iIFG, iIGT, and IFG+IGT. In our results, CVH scores were lower in the IFG+IGT group compared to the iIFG and iIGT groups, whereas the difference in CVH scores between the iIFG and iIGT groups was not statistically significant. With each 10-point increase in CVH scores, the odds ratios were lower in the IFG+IGT group (OR 0.65, 95% CI 0.60–0.70) compared to the iIFG group (OR 0.77, 95% CI 0.72–0.82) and iIGT group (OR 0.76, 95% CI 0.69–0.84). This association is likely related to IR. Our results revealed significantly higher HOMA-IR in the iIFG group(3.55 ± 0.10), iIGT group (2.77 ± 0.12), and IFG+IGT group (4.38 ± 0.16) than in the NGM group (2.12 ± 0.04), aligning with previous findings (32, 33). Prediabetes is heterogeneous regarding metabolic defects, hyperglycemia patterns, and cardiovascular risk. IGT is characterized by increased peripheral IR and compensated hyperinsulinemia, whereas IFG is associated with hepatic IR and excessive endogenous glucose production (34). Patients with IFG+IGT are thought to have more severe IR due to multiorgan (i.e., muscle + liver) defects (35). A cross-sectional study indicated that patients with IFG+IGT exhibited more pronounced metabolic defects, an increased likelihood of developing diabetes, and a higher CVD risk (36), which corroborates our findings. In Figure 1 of our study, we presented a prevalence plot illustrating the correlation between CVH and prediabetes/diabetes, offering a crucial foundation for motivating patients to enhance their CVH scores. The management of prediabetes has long played a crucial role in preventing diabetes and combating diabetes-related complications. Lifestyle modification is one of the important measures. Consequently, emphasizing patients with IFG+IGT and comprehensive CVH management in this cohort can contribute to reducing the global burden of diabetes. Attaining this objective will require concerted efforts by individuals, the healthcare sector, and society to actively improve the health of the population.

Among non-direct causal risk factors, BMI exhibited the strongest association with both prediabetes (OR 0.86, 95% CI 0.84–0.88) and diabetes (OR 0.80, 95% CI 0.77–0.84), aligning with previous findings regarding BMI’s significant impact on the risk of prediabetes and diabetes (16, 29, 31). Over the past three decades, an increase in BMI has been identified as a key contributor to the escalating prevalence of diabetes in the United States (28). Programs like the Diabetes Prevention Program (DPP) have illustrated that sustained weight loss plays a significant role in diminishing diabetes risk and enhancing cardiometabolic health (37). Adipose tissue, functioning as an active endocrine organ, secretes substantial quantities of cytokines and bioactive mediators, influencing insulin sensitivity, inflammation, coagulation, and ultimately, atherosclerosis. This phenomenon likely contributes to the strong association between BMI and the development of diabetes (38).

Notably, subgroup analyses revealed a more pronounced association between CVH scores and prediabetes/diabetes among participants with a university degree or higher education (interaction p < 0.01). McWilliams et al. reported that diabetic adults with lower education levels exhibited significantly poorer glycemic control (39). This disparity may stem from individuals with higher education levels having improved access to comprehensive diabetes medical care and an increased capacity to assimilate and comprehend new information related to diabetes management (40). Although the underlying mechanisms remain unclear, interventions should be tailored to the specific needs of the target community to improve CVH. Unexpectedly, the association between health behavior scores and prediabetes/diabetes was less pronounced than the association between health factor scores and prediabetes/diabetes. For example, smoking did not show a significant association with either prediabetes or diabetes. This could be attributed to individuals with prediabetes or diabetes refraining from making positive lifestyle changes, such as smoking cessation and increased physical activity, until after the diagnosis is confirmed.



4.1 Strengths and limitations

The main strength of our study was that we explored, for the first time, the association between CVH, as defined by LE8, and prediabetes, including its three distinct subtypes. Additionally, we conducted extensive stratified analyses based on sociodemographic characteristics and risk factors for diabetes/prediabetes. However, this study had certain limitations. Firstly, it was challenging to establish a causal relationship between LE8 and prediabetes/diabetes owing to the cross-sectional design of the study. Secondly, individuals diagnosed with prediabetes or diabetes may have implemented necessary lifestyle changes, however, due to the cross-sectional design, we were unable to explore the causal relationship between lifestyle changes and risk of prediabetes/diabetes, which can be better explored in future large follow-up cohort studies. Thirdly, the diagnosis of diabetes partially relied on self-reporting, potentially leading to misclassification and estimation bias. Fourthly, the exclusion of participants with an unknown medical history or incomplete LE8 data might have led to a reduced study population and potential selection bias.





5 Conclusion

In conclusion, our study demonstrated a significant negative association between CVH, as defined by the LE8 score, and prediabetes/diabetes among US adults. Elevated CVH levels were associated not only with reduced risks of diabetes but also with lower risks of prediabetes. These findings offer robust evidence supporting the potential of the LE8 score in mitigating the burden of diabetes.
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Background

Chronic inflammation is implicated in the development of diabetic retinopathy (DR). The neutrophil-to-lymphocyte ratio (NLR) is a marker of systemic inflammation that has been linked to cardiovascular and diabetic kidney diseases. However, the link between NLR and DR remains unclear. As such, this study investigated the association between NLR and DR in Chinese patients.





Method

A total of 857 adults diagnosed with type 2 diabetes mellitus (T2DM) without DR at baseline between 2018 and 2021, from a single center in Ningbo, China, were included. Baseline clinical data, including age, sex, T2DM duration, hypertension, smoking, drinking, glycated hemoglobin level, lipid profile, renal function, and NLR, were recorded and analyzed. Cox proportional hazard regression analysis was used to assess the association between NLR and the risk for incident DR.





Results

During a median follow-up of 3.0 years, 140 patients developed DR. The multivariable-adjusted hazard ratio (HR) for incident DR across ascending NLR quartiles (≤1.46 [reference], 1.47–1.90, 1.91–2.45 and > 2.45) were 1.000, 1.327 (95% confidence interval [CI] 0.754–2.334), 1.555 (95% CI 0.913–2.648) and 2.217 (95% CI 1.348–3.649), respectively. For each 1-standard deviation increase in NLR, the risk for DR increased by 29.2% (HR 1.292 [95% CI 1.112–1.501) after adjusting for confounding factors.





Conclusion

Results revealed that a higher NLR at baseline was associated with an increased risk for incident DR. NLR has the potential to be an inexpensive, reliable, and valuable clinical measure that merits further exploration in future studies.





Keywords: neutrophil-to-lymphocyte ratio, diabetic retinopathy, type 2 diabetes, inflammation, cohort study




1 Introduction

Diabetes mellitus (DM) is a slowly progressive metabolic illness characterized by long-standing hyperglycemia that can cause various complications (1). Diabetic retinopathy (DR) is one of the most prevalent complications and a leading cause of blindness among working-age adults, seriously affecting patient quality of life and increased financial burden (2, 3). The early detection and prevention of DR are crucial to avoid blindness.

There is accumulating evidence that chronic low-grade inflammation has a particular influence on the development of DM and metabolic syndrome (4). Chronic inflammation is a hallmark of type 2 DM (T2DM), possibly due to insulin resistance and impaired glucose metabolism (5).

DR is a progressive microvascular and neurodegenerative disease that occurs gradually with years of poor glycemic control (6). Although clinical signs, such as acellular capillaries, retinal nonperfusion, and ischemia appear later, early changes involve persistent low-grade leukocyte activation triggered by metabolic dysregulation (7). This activation disrupts the retinal neurovascular unit and its cellular components (7).

The neutrophil-to-lymphocyte ratio (NLR), which is the synthesis of two distinct but complementary immune pathways of the innate and adaptive cellular immune responses, has been studied extensively as an inflammatory marker in many malignant and benign diseases (8). Western studies have reported that an elevated NLR is independently linked to increased cardiovascular death and all-cause mortality in patients with diabetes, as well as a higher risk for diabetic kidney disease (9, 10). However, the relationship between the NLR and DR remains unclear, with only a limited number of cross-sectional studies exploring this relationship (11, 12). As such, the present cohort study aimed to evaluate whether the presence of DR is correlated with NLR in Chinese patients.




2 Methods



2.1 Study population

In this retrospective cohort study, patients diagnosed with T2DM, who attended the Department of Endocrinology and Metabolism, First Affiliated Hospital of Ningbo University, and participated in the multihospital-based program of the National Metabolic Management Center (MMC) were recruited from March 2018 to December 2021. The MMC program, led by Ruijin Hospital in Shanghai (China), followed a standard protocol for the professional management and follow-up of patients with DM (13).

The inclusion criteria were as follows: age 18–75 years; confirmed T2DM diagnosis (1999 World Health Organization criteria (14)); absence of DR at baseline; and available annual fundus photography data. Exclusion criteria were as follows: history of other fundus diseases; history of hematological diseases; acute diabetic complications, such as diabetic ketoacidosis; other concomitant conditions influencing glucose metabolism (acute infection, chemotherapy, use of corticosteroids); history of cancer, heart failure, end-stage renal disease, chronic liver disease; or loss to follow-up or short follow-up (<2 years). In total, data from 857 patients were included in the final analysis. This study adhered to the Declaration of Helsinki and was approved by the Ethics Committees of both hospitals (Ruijin Hospital: 2017 No. 42; Ningbo University: 2019-R057). Informed consent was obtained from all participants.




2.2 Baseline clinical and biological characteristics

Demographic information (age, sex, and T2DM duration), lifestyle habits (history of smoking and alcohol consumption), and medical histories were obtained using standardized MMC questionnaires. Trained nurses measured the height, weight, and waist circumference of the participants. Body mass index was calculated as the ratio of weight (kg) to height squared (m2). Visceral fat area was assessed using dual bioelectrical impedance analysis (DUALSCAN HDS-2000, Omron, Japan).

Hypertension was defined as systolic blood pressure (SBP) ≥140 mmHg and/or diastolic blood pressure (DBP) ≥90 mmHg or antihypertensive medication use (15). Dyslipidemia was defined as fasting triglycerides (TG) ≥1.7 mmol/L, high-density lipoprotein cholesterol (HDL-c) ≤1.04 mmol/L (males) or ≤1.30 mmol/L (females), and low-density lipoprotein cholesterol (LDL-c) ≥ 2.60 mmol/L determined by enzymatic assays (AU5800, Beckman Coulter, USA) or on lipid-lowering agents (16).

After an overnight fast, venous blood and urine samples were collected in the morning. Complete blood count with differential analysis was performed using an automated analyzer (Sysmex XN-9000, Kobe, Japan). The NLR was calculated. Glycated hemoglobin (HbA1c), fasting plasma glucose, and fasting insulin levels were measured using established methods (D-10 Hemoglobin Analyzer, Bio-Rad, Hercules, CA, USA; glucose oxidase method; chemiluminescence immunoassay). The Homeostatic Model Assessment for Insulin Resistance (i.e., “HOMA-IR”) index, reflecting insulin resistance, was calculated using a standard equation: fasting blood glucose (FBG, mmol/L) × fasting insulin (mU/L) ÷ 22.5 (17). Serum creatinine and uric acid levels were measured using standard enzymatic methods (AU5800, Beckman Coulter, Brea, CA, USA). The estimated glomerular filtration rate (eGFR) was determined using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) algorithm (18). The urinary albumin-to-creatinine ratio (UACR) was calculated from the ratio of urinary albumin to creatinine measured in spot urine samples using immunonephelometry (albumin) and enzymatic methods (creatinine).




2.3 Outcome

The primary outcome was incident DR. All patients underwent non-mydriatic fundus photography at the first visit and were re-evaluated for DR during each annual visit (Topcon, Tokyo, Japan) (19). Two images were captured per eye, centered on the macula and optic nerve at 45°, following established protocols for effective DR screening (20). DR was diagnosed based on the International Classification of DR (21).




2.4 Statistical analysis

Normally distributed continuous variables are expressed as mean ± standard deviation (SD) and were compared using independent-samples t-tests. Continuous variables with non-normal distribution are expressed as median and interquartile range (i.e., 25th percentile, 75th percentile) and compared using the Mann–Whitney U test. Categorical variables are expressed as frequency (percentage) and compared using the chi-squared test to assess differences in baseline characteristics between patients with incident DR and those without DR (NDR) in the T2DM group.

Cox proportional hazards regression was applied to evaluate the association between NLR, as either categorical (quartile 1, reference group: ≤1.46; quartile 2, 1.47–1.90; quartile 3, 1.91–2.45; and quartile 4, > 2.45) or continuous variable (per 1-standard deviation [SD] change), and the occurrence of DR (yes versus [vs.] no). The analyses were first performed without adjustment (model 1) and were then adjusted for age, sex (model 2), T2DM course, smoking history, drinking history, BMI, SBP, TG, HbA1c, FBG, fasting insulin, uric acid, eGFR, and UACR (model 3). Covariates for the multivariate model were chosen based on the literature and univariate analysis. Differences with a two-tailed P<0.05 were considered to be statistically significant. Data analysis was performed using SPSS version 27.0 (IBM Corp., Armonk, NY, USA) for Windows (Microsoft Corp., Redmond, WA, USA).





3 Results

A total of 857 (560 male, 297 female) subjects were included in the final analysis. Over a median 3-year follow-up period, 140 patients developed DR. Baseline characteristics stratified according to incident DR are summarized in Table 1. The median NLR was 2.21 in patients who developed the retinopathy outcome (i.e., DR), compared with 1.86 in the patients not developing retinopathy (i.e., NDR) (P<0.001). The 25th, 50th, and 75th NLR percentiles were 1.46, 1.90, and 2.45, respectively. Briefly, subjects with incident DR had a notably higher mean age (52.4 vs. 47.3 years; P<0.001), a longer diabetes course (median 89.5 vs. 42 months; P<0.001), higher levels of HbA1c (median 7.75% vs. 7.3%; P=0.001), FBG (median 8.60 vs. 7.63 mmol/L; P=0.046), NLR and lower levels of fasting insulin (median 8.26 vs. 9.85 mU/L; P=0.015), TGs (median 1.27 vs. 1.49 mmol/L; P=0.048), uric acid (mean 316.10 vs. 336.51μmol/L; P=0.010), and eGFR (mean 104.79 vs. 107.72 mL/min/1. 73m2; P=0.043) than those without incident DR.

Table 1 | Clinical characteristics of patients grouped by the incident diabetic retinopathy.


[image: A table comparing characteristics between non-diabetic retinopathy (Non-DR) and diabetic retinopathy (DR) groups. Metrics include age, gender distribution, diabetes duration, lifestyle factors, blood pressure, lipid levels, glucose, insulin, and other health indicators. Statistically significant differences at P < 0.05 are noted in age, diabetes duration, HbA1c, fasting blood glucose, fasting insulin, triglycerides, uric acid, eGFR, and neutrophil-to-lymphocyte ratio.  ]
The multivariable-adjusted (age, sex, diabetes course, smoking history, drinking history, BMI, SBP, TG, HbA1c, FBG, fasting insulin, uric acid, eGFR, and UACR) hazard ratios (HRs) for incident DR across ascending NLR quartiles (≤1.46 [reference], 1.47–1.90, 1.91–2.45 and > 2.45) were 1.000, 1.327 (95% confidence interval [CI] 0.754–2.334), 1.555 (95% CI 0.913–2.648) and 2.217 (95% CI 1.348–3.649), respectively (P=0.011) (Table 2). For each 1-SD increase in NLR, the risk for DR increased by 29.2% (HR 1.292 [95% CI 1.112–1.501]; P=0.001) after adjusting for confounders (Table 3). Age, diabetes course, and HbA1c level were also independently associated with incident DR (Table 3).

Table 2 | Hazard ratios for diabetic retinopathy according to neutrophil-to-lymphocyte ratio as categorical variable.


[image: Table showing neutrophil-to-lymphocyte ratio (NLR) quartiles Q1 to Q4 with participant numbers and cases. Hazard ratios (HRs) for incident diabetic retinopathy (DR) with 95% confidence intervals are given for three models. Model 1 is unadjusted, Model 2 is adjusted for age and sex, while Model 3 is adjusted for multiple factors. P-values show statistical significance in higher quartiles.]
Table 3 | The adjusted multivariable cox regression for diabetic retinopathy according to neutrophil-to-lymphocyte ratio as continuous variable.


[image: Table showing hazard ratios (HR), 95% confidence intervals (CI), and p-values for four variables. Age has an HR of 1.034, CI 1.015-1.052, p < 0.001. Diabetes course has an HR of 1.005, CI 1.002-1.007, p < 0.001. HbA1c has an HR of 1.198, CI 1.107-1.298, p < 0.001. Neutrophil-to-lymphocyte ratio (NLR) has an HR of 1.292, CI 1.112-1.501, p = 0.001.]



4 Discussion

The present cohort study identified a positive correlation between NLR, a composite metric for chronic inflammation, and the incidence of DR in patients with T2DM. Each 1-SD increase in the NLR corresponded to a 29% increased risk for developing DR.

Chronic low-grade inflammation and endothelial dysfunction are well-established contributors to insulin resistance, T2DM, and other microvascular and macrovascular complications (12). Inflammatory responses triggered by hyperglycemia play a key role in vascular dysfunction. Hyperglycemia induces the production of reactive oxygen species and upregulates the expression of pro-inflammatory and pro-coagulant factors, which promote adhesion between white blood cells and endothelial cells (22). The accumulation of leukocytes in capillaries disrupts the normal structure between the retinal endothelial cells and pericytes, leading to a damaged blood-retinal barrier. Excessive accumulation of leukocytes can cause vascular blockage and leakage, which in turn exacerbate damage to the blood-retinal barrier (23). Overall, the emergence of inflammatory mediators and disturbances in the balance between angiogenesis-related factors promote the development of DR (24). This results in increased retinal vascular permeability, neurodegeneration, damage to the blood-reticulum barrier, and neovascularization, ultimately leading to diabetic macular edema and proliferative DR (24). NLR reflects both cellular immune activation and systemic inflammatory response, acting as an indicator of the balance between two key immune system components: neutrophils, active non-specific inflammatory cells, lymphocytes, and protective or regulatory cells (8). The NLR has emerged as a promising marker in this context.

Our results are consistent with those of most previous studies that have explored the relationship between the inflammatory index and diabetic complications. This aligns with a case-control study from Turkey (25), where NLR levels were higher in patients with diabetes and DR than in those without DR. While some studies, such as those from northern China (26), reported higher NLR in patients with DR, and the investigators did not find NLR to be an independent risk factor. Moreover, another cross-sectional study from Turkey that analyzed 114 patients with T2DM reported that NLR was not independently associated with DR (27). Potential explanations for these variations include the larger sample size, differences in subject characteristics, and variations in lifestyle factors.

Several studies have supported the link between NLR and diabetic microvascular complications. A cross-sectional study observed a positive association between a higher NLR and the occurrence of both nephropathy and retinopathy in an Indian population (12). Additionally, an elevated NLR was correlated with diabetic nephropathy in other studies (10, 28) and even served as an independent predictor of kidney function decline in individuals with DM (29). DR and nephropathy share common underlying mechanisms and often co-occur (30). Given this shared etiology and the association between NLR and both complications, NLR may emerge as a valuable predictor and prognostic marker for both DR and nephropathy.

The present study had several limitations, the first of which was its retrospective cohort design, which precluded the determination of a causal relationship between the biomarkers and outcomes. Second, we did not analyze correlations stratified according to DR severity (i.e., non-proliferative and proliferative DR), because only 1 participant developed proliferative DR. Third, lifestyle, socioeconomic, and pharmacological interventions were not considered in this study. Additionally, the relatively short follow-up period limited our ability to fully assess the long-term impact of NLR on DR progression. Future studies with larger cohorts and extended follow-up periods are essential to validate our findings and explore these associations more thoroughly.

In summary, results of the present study indicate that the incidence of DR is associated with a higher NLR. These findings may provide instructive options for clinical practice. According to statistics, there are an estimated 141 million patients with diabetes in China, and the number of patients with DR has exceeded 19 million (31, 32). With an aging population and a high incidence of DM, dealing with visual impairment and blindness is a huge challenge. Screening for DR offers a preferable solution to decrease preventable blindness and the medical economic burden. According to these guidelines, routine screening every to 1–2 years is recommended. Based on the results of our study, we recommend that patients with diabetes and higher NLR should undergo a shorter period of regular screening for DR (e.g., 6 months). Eye examination by fundus photography using a non-mydriatic fundus camera costs < $2 in our hospital, and early detection of DR could save thousands from medical expenditures for the treatment of DR.




5 Conclusion

In conclusion, results of the present study indicated that, among patients with T2DM, a higher NLR was associated with an increased risk for incident DR. Given the advantages of NLR in terms of stability and accessibility, this result further supports that NLR could be a valuable clinical measure. Future studies with various populations and designs are necessary to further explore the potential value of the NLR in predicting diabetes-related outcomes.
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Background

Erythrocyte dysfunction is a characteristic of diabetes mellitus (DM). However, erythrocyte-associated biomarkers do not adequately explain the high prevalence of DM. Here, we describe red blood cell distribution width to albumin ratio (RAR) as a novel inflammatory biomarker for evaluating an association with DM prevalence and prognosis of all-cause mortality.





Methods

Data analyzed in this study were extracted from the National Health and Nutrition Examination Survey (NHANES) 1999−2020. A total of 40,558 participants (non-DM and DM) were enrolled in the study; RAR quartiles were calibrated at Q1 [2.02,2.82] mL/g, Q2 (2.82,3.05] mL/g, Q3 (3.05,3.38] mL/g, and Q4 (3.38,12.08] mL/g. A total of 8,482 DM patients were followed (for a median of 84 months), of whom 2,411 died and 6,071 survived. The prevalence and prognosis associated with RAR and DM were analyzed; age and sex were stratified to analyze the prevalence of RAR in DM and the sensitivity of long-term prognosis.





Results

Among non-DM (n=30,404) and DM (n=10,154) volunteers, DM prevalence in RAR quartiles was 8.23%, 15.20%, 23.92%, and 36.39%. The multivariable odds ratio (OR) was significant for RAR regarding DM, at 1.68 (95% CI 1.42, 1.98). Considering Q1 as a foundation, the Q4 OR was 2.57 (95% CI 2.11, 3.13). The percentages of DM morbidity varied across RAR quartiles for dead (n=2,411) and surviving (n=6,071) DM patients. Specifically, RAR quartile mortality ratios were 20.31%, 24.24%, 22.65%, and 29.99% (P<0.0001). The multivariable hazard ratio (HR) for RAR was 1.80 (95% CI 1.57, 2.05). Considering Q1 as a foundation, the Q4 HR was 2.59 (95% CI 2.18, 3.09) after adjusting for confounding factors. Sensitivity analysis revealed the HR of male DM patients to be 2.27 (95% CI 1.95, 2.64), higher than females 1.56 (95% CI 1.31, 1.85). DM patients who were 60 years of age or younger had a higher HR of 2.08 (95% CI1.61, 2.70) as compared to those older than 60 years, who had an HR of 1.69 (95% CI 1.47, 1.94). The HR of RAR in DM patients was optimized by a restricted cubic spline (RCS) model; 3.22 was determined to be the inflection point of an inverse L-curve. DM patients with a RAR >3.22 mL/g suffered shorter survival and higher mortality as compared to those with RAR ≤3.22 mL/g. OR and HR RAR values were much higher than those of regular red blood cell distribution width.





Conclusions

The predictive value of RAR is more accurate than that of RDW for projecting DM prevalence, while RAR, a DM risk factor, has long-term prognostic power for the condition. Survival time was found to be reduced as RAR increased for those aged ≤60 years among female DM patients.
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1 Introduction

Diabetes mellitus (DM) is now considered to be a global epidemic (1). Importantly, DM-related erythrocyte dysfunction is frequently seen in these patients and is pathologically characterized by three stages of severity; initially cholesterol clusters within the erythrocyte membrane (2), erythrocyte osmotic instability (3), and finally, decreased erythrocyte deformability (3). Erythrocyte dysfunction progresses along with the pathogenesis of DM. Increased erythrocyte nitric oxide and endothelial damage were reported in pre-diabetic subjects (4). In late DM, brittle erythrocytes become prone to rupture (5, 6). Although certain erythrocyte-related markers such as red blood cell distribution width (RDW) (5) and hemoglobin (6) are known to associate with DM, they fail to epidemiologically define the generally poor prognosis and highly prevalent nature of DM. For example, relevant odds (OR) and hazard (HR) ratios of RDW are only 1.16 (7) and 1.198 (8), respectively. Here, we evaluated for other indicators useful in detailing the epidemiology of DM.

Prior research has suggested other relevant indicators to be potentially capable of epidemiologically bridging erythrocyte-related markers and DM. RDW to albumin ratio (RAR), a novel inflammatory biomarker, is already widely applied in the setting of various illnesses. For example, RAR independently describes the all-cause mortality of heart failure (9), sepsis (10), and surgical burn wound management (11). Importantly, RAR is known to associate with various complications of DM such as diabetic retinopathy prevalence (12) and a poor prognosis of DM-related foot ulcers (13). However, the role of RAR in the epidemiology of DM itself remains unclear. Here, we integrate cross-sectional and prospective data obtained from over 40,000 subjects to explore the favorable predictive value of RAR for DM-related complications in the context of disease prevalence, prognosis, and all-cause mortality.




2 Methods



2.1 Participants and DM diagnosis

This study analyzed data originally compiled in the National Health and Nutrition Examination Survey (NHANES) public database between the years 1999 and 2020 (https://www.cdc.gov/nchs/nhanes/index.htm).

The diagnosis of DM was determined by the presence of five criteria (14), which included: i) physician confirmation of diabetes diagnosis, ii) glycohemoglobin levels equal to or greater than 6.5%, iii) fasting glucose ≥ 7.0 mmol/L, iv) random blood glucose≥ 11.1 mmol/L, and v) documented use of DM medication.




2.2 The mortality and follow-time definition

Data from the National Death Index supplemented NHANES data. As previously reported (15), DM mortality-related details (16) were matched to a unique NHANES identity number. Follow-up time was calculated from blood drawing to death or December 31, 2019.




2.3 Covariates

Other DM-related conditions were diagnosed using the medical conditions questionnaire (MCQ). Three criteria were considered for covariate filtering: i) demographics variables; ii) previously reported characteristics affecting DM; and iii) treatment-dependent clinical variables.

Medical history details including chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), hypertension, arteriosclerotic cardiovascular disease (ASCVD), anemia and congestive heart failure (CHF) were considered to be covariates. Medical diagnoses were established based on accepted guidelines, such as those for hypertension (17). Four criteria were considered for COPD diagnosis, including a post-bronchodilator FEV1/FVC<0.7, a patient self-reported COPD diagnosis (MCQ160g and MCQ160p), a history of smoking and chronic respiratory disease in patients over 40 years of age, or a history of COPD medication use. Patients with a prior history of CHF, angina or stroke were diagnosed with atherosclerotic cardiovascular disease (ASCVD).

Clinical tests were classified as covariates. Biochemical indices considered in this study included blood levels of albumin (ALB), alanine transaminase (ALT), aspartate transaminase (AST), total calcium (Ca), bicarbonate (HCO3), gamma-glutamyl transferase (GGT), glucose (Glu), total protein (TP), triglycerides (TG), uric acid (UA), sodium (Na) and chloride (Cl).

Routine blood parameters considered in this study included percentages of basophils, lymphocytes, monocytes, segmented neutrophils and eosinophils (BaP, LymP, MonP, SegneP, and EoP, respectively), as well as counts of lymphocytes, monocytes, eosinophils, basophils and red blood cells (Lym, Mon, RBC, Eo, Ba, and RBC, respectively). Other hematologic parameters considered for analyses included hemoglobin (Hg), hematocrit (Hem), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), RDW, platelet count (Plt), mean platelet volume (MPV) and mean cell volume (MCV).




2.4 Statistical analyses

Statistical analyses were performed using R software (version 4.3.0). The nhanesR package (version 0.9.4.8) was used to glean clinical data from the NHANES database.

Student t-tests were adopted when continuous variables followed a Gaussian distribution on analysis of variance. Otherwise, the Mann-Whitney U test was applied. The chi-squared test was used to evaluate variable factors.

To better explore the relationship between DM prevalence and RAR stratification, we divided them into four groups (Q1, Q2, Q3, and Q4) according to the quartile data of RAR. The ranges of RAR (mL/g) in Q1-Q4 are [2.02,2.82], (2.82,3.05], (3.05,3.38], and (3.38,12.08], respectively.

Logistic regression was used to determine DM and healthy group OR, while Cox regression was used to determine HR. Both OR and HR were calculated with corresponding 95% confidence intervals (CIs). To better explore the relationship between RAR and DM, four models were employed in the adjustment. Model 1: adjusted with none; Model 2: adjusted with Sex and Age; Model 3: adjusted with Sex, Age, CKD, COPD, Hypertension, ASCVD, Anemia, CHF, Ethnicity; Model 4: adjusted with Age, Sex, CKD, COPD, Hypertension, ASCVD, Anemia, CHF, Ethnicity, LymP, SegneP, EoP, BaP, Lym, Mon, Eo, Ba, MCV, MCH, MCHC, Plt, MPV, ALT, AST, HCO3, GGT, Glu, TP, TG, UA, Na, and Cl.

Kaplan–Meier curves were utilized for survival analysis. Restricted cubic spline (RCS) analysis (18) was employed to filter for an optimal RAR threshold in predicting DM patient all-cause mortality.





3 Result



3.1 Basic information

Subjects who were over 18 years of age and had complete RAR, demographic, clinical, and laboratory data available were included in analyses. Exclusion criteria were as follows: i) incomplete or unavailable RAR (n=43,539) or DM questionnaire (n=4) data; ii) individuals less than 18 years of age (n=14,570); or iii) diagnoses were unclear (n=18,205). A total of 40,558 individuals were ultimately included in this study. Of the 10,154 DM patients, 1,672 did not attend follow-up. As such, a total of 40,558 patients were included in DM prevalence analysis of DM, while 8,482 were included in all-cause mortality analysis (Figure 1).

[image: Flowchart illustrating a study from NHANES with 116,876 participants involving RDW and ALB to calculate RAR. The study excludes those with no RAR (43,539), no diabetes or healthy individuals (18,209), and those under 18 (14,570), leaving 40,558 participants. It identifies 10,154 with diabetes and 30,404 without. Among 8,482 diabetes patients, 6,071 are alive and 2,411 dead. Graphs show survival probability and hazard risks based on RAR levels. 39 covariates are analyzed for prevalence.]
Figure 1 | Study flow chart.

As shown in Table 1, a total of 40,558 subjects were analyzed in this study as representative of 148,827,373 Americans, of whom 21,630 (53.33%) were females and 18,928 (46.67%) were males. The average age of subjects was 46.57 years, and 11,253 (27.75%) were older than 60 years of age. The 40,558 subjects were divided into non-DM (n=30,404) or DM (n=10,154) groups. The DM group had a higher RAR (3.31 ± 0.01) as compared to the non-DM group (3.02 ± 0.00). Only three of the 40 individuals had insignificant results, specifically concerning MonP, RBC, and Ca data. Among DM patients, there was a higher percentage of individuals with conditions such as CKD, COPD, hypertension, ASCVD, and CHF as compared to non-DM patients. Greater percentages of mild and moderate anemia were noted among DM patients.

Table 1 | Basic demographic data of DM and non-DM subjects.


[image: A table compares various health variables between non-diabetic (n equals thirty thousand four hundred four) and diabetic (n equals ten thousand one hundred fifty-four) groups with P-values. Variables include RAR, CKD, COPD, hypertension, ASCVD, anemia severity, ethnicity, sex, age, and various blood metrics. There are significant differences in most variables, with P-values less than 0.0001, indicating statistical significance. Only RBC and calcium concentrations have P-values not statistically significant. Percentages and means with standard deviations are provided for both groups.]
The RAR quartiles (RARQ) were described. General RAR quartile data are summarized in Table 2. The incidence of DM among RARQ was 8.23%, 15.20%, 23.92%, and 36.39%, respectively; DM prevalence increased as RAR increased. Elevated RAR was associated with a significantly greater proportion of male and older patients. Furthermore, males had a higher incidence of DM and generally lower RAR as compared to females (Supplementary Table S1). A greater percentage of older individuals had DM and a higher RAR (Supplementary Table S2). As shown in Table 1, the incidence of CKD, COPD, hypertension, ASCVD, and CHF increased with rising RARQ. The percentage of patients who were Mexican Americans, non-Hispanic blacks, and other Hispanics increased as RAR increased, as the percentage of non-Hispanic whites decreased.

Table 2 | RAR quartile data.


[image: A table displays various health variables across four quartile groups (Q1 to Q4) with sample sizes and ranges for each quartile. It includes detailed measurements such as DM, CKD, COPD, hypertension, anemia severity, CHF, ethnicity distribution, sex, age, lymphocyte count, and other blood parameters. Each variable shows mean values with standard deviations, and a P-value is provided to indicate statistical significance.]



3.2 DM prevalence in RAR

Logistic regression data are presented in Supplementary Table S3 detailing RAR, RARQ, RDW, and ALB. Three different combinations of variables were used to adjust the model. Model 1 was an unadjusted univariate logistic regression model. Model 2 was just adjusted for age and sex. Model 3 encompassed Model 2, ethnicity, and medical history data (e.g. CKD, COPD). Model 4 corrected for more variables than other models, encompassing Model 3 and laboratory data (e.g. UA, Cl). Interestingly, OR values of RAR remained significant on univariate analysis and the three adjusted models. The ORs for the three adjusted models were 2.61 (95% CI 2.42, 2.82), 2.20 (95% CI 1.98, 2.45) and 1.68 (95% CI 1.42, 1.98). To determine the prevalence of DM in different RAR stratifications, Q1 served as a reference for the aforementioned multivariate analyses (Table 3). In Model 4, the RAR quartile ORs were 1.32 for Q2, 1.74 for Q3, and 2.57 for Q4. In conclusion, as RAR quartile progressed, relevant OR increased, indicating that RAR is a risk for DM prevalence.

Table 3 | Logistic regression for RAR, RARQ, RDW, and ALB.


[image: A table displays odds ratios (OR) with 95% confidence intervals (CI) and p-values for various variables. The sections are divided into "RAR" and "RARQ" with subsections Q1 to Q4, RDW, and ALB. Each variable has unadjusted data, and data adjusted in three models. P-values are consistently less than 0.0001, indicating statistical significance. The notes below explain the models, indicating adjustments for factors like sex, age, and various medical conditions.]
Importantly, RAR OR was consistently greater than RDW OR. For instance, in the adjusted Model 4, RAR OR, and RDW OR were 1.68 and 1.14, respectively. Meanwhile, ALB was found to be a protective factor for DM with an OR of 0.50 (95% CI 0.41, 0.61). Although RAR and RDW are independent risk factors for DM, the greater RAR OR highlights its better predictive value for DM. As such, the clinical value of RAR data is superior to that of RDW for determining DM prevalence.




3.3 Sensitivity analysis for age and sex

The clinical value of RAR for DM in various sex and age stratifications was assessed; details are summarized in Supplementary Tables S4-5. The incidence of DM was found to have been significantly associated with age and gender stratifications in Models 1–3, although in Model 4 the association was not significant. Adjusted Models 2 and 3 revealed that RAR was significantly associated with DM in females (OR: 2.23; 95% CI 1.85, 2.68) and males (OR: 2.13; (95% CI 1.85, 2.46). The OR values of female patients were greater than those of male patients, suggesting a higher sensitivity for females. The RAR OR of patients aged ≤60 years (2.65; 95% CI 2.28, 3.07) was significantly higher than among those older than 60 years (1.76; 95% CI 1.51, 2.05), which indicated a higher sensitivity for participants aged ≤60 years. However, the OR values for sex and age levels were insignificant on adjustment of Model 4 (Supplementary Tables S4-5).




3.4 Survival analysis

Due to the absence of follow-up data, 1,672 DM patients were excluded from survival analysis while a total of 8,482 DM patients were finally included. Throughout the follow-up period, 2,411 DM patients died; 6,071 survived (Table 4). The duration of follow-up ranged from one to 249 months. The RAR found in deceased DM patients (3.37 ± 0.02) was much greater than that found in surviving DM patients (3.25 ± 0.01). The deceased DM patients were of significantly greater age, although patient sex was not found to be significant. Furthermore, a greater percentage of deceased DM patients also suffered CKD, COPD, hypertension, ASCVD, CHF, and/or anemia, according to medical records.

Table 4 | Primary characteristics of deceased and surviving DM patients.


[image: Table comparing variables between two groups of DM (diabetes mellitus) patients alive: one group with 6,071 patients and another with 2,411 patients. Variables include RAR, CKD, COPD, hypertension, ASCVD, anemia, CHF, ethnicity proportions, sex, age, lymphocytes, monocytes, basophils, red blood cells, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution, platelets, mean platelet volume, albumin, ALT, AST, calcium, bicarbonate, GGT, glucose, total protein, triglycerides, uric acid, sodium, and chloride levels. P-values indicate statistical significance for differences between groups.]
Relevant details of RARQ are summarized in Table 5. As RAR values increased, so did the prevalence of CKD, COPD, hypertension, ASCVD, and CHF. The fatality rates of DM patients among RARQ were 20.31%, 24.24%, 22.65% and 29.99%, respectively (P<0.001). Among the RARQ, Q4 had the highest HR value.

Table 5 | Basic RAR quartile data of DM patients who were followed-up.


[image: Table showing various clinical variables across four quartiles (Q1 to Q4) with respective n values. Variables include mortality, hypertension, ethnicity, age, and various blood measurements, with P-values indicating statistical significance.]
Cox regression analysis data relevant to RAR, RARQ, RDW, and ALB are shown in Table 6. As with logistic regression models, three models with multiple covariates were utilized to adjust for RAR HR, which remained significant in Model 4, at 1.80 (95% CI 1.57, 2.05). The Q2, Q3 and Q4 HR values remained significant even on an adjusted Model 4 (Table 6). The optimal HR was found in Q4, at 2.59 (95% CI 2.18, 3.09). As the RARQ advanced, RAR OR values increased, and DM prognosis became poorer. As such, RAR was found to be an independent risk factor for DM prognosis.

Table 6 | Single and multiple variable regulation of the Cox regression model for RAR, RARQ, RDW, and ALB.


[image: Table showing data on DM mortality with hazard ratios (HR) and P-values for different variables: RAR, RARQ (Q1-Q4), RDW, and ALB. HR values are adjusted across four models, with all P-values less than 0.0001. Model notes provide specific adjustment details.]
Moreover, RAR HR was greater than RDW HR both in single or adjusted Cox regression. Although RAR HR values in the unadjusted and three adjusted models were 2.03, 2.05, 1.79 and 1.80, RDW HR values were 1.23, 1.22, 1.16 and 1.16, respectively. The RAR and RDW HR values in the adjusted Model 4 were 1.80 and 1.16, respectively. Thus, the RAR HR was found to possess superior predictive value for long-term DM prognosis as compared to RDW.




3.5 Sensitivity analysis for prognosis

To evaluate the HR sensitivity of sex and age in relation to RAR among DM patients, stratified Cox regression analysis was performed for DM patients of different ages and genders (Table 7). In adjusted Model 4, DM male patients had a higher HR (2.27; 95% CI 1.95, 2.64) as compared to females (1.56; 95% CI 1.31, 1.85). For RARQ and considering Q1 as a reference, adjusted Q4 for males (3.08; 95% CI 2.46, 3.85) was significantly higher as compared to females (2.19; 95% CI 1.64, 2.92). As such, male DM patients suffered a greater risk of poor prognosis when RAR values increased.

Table 7 | Cox regression of DM patient data for RAR with stratification of sex.


[image: A table comparing hazard ratios (HR) with 95% confidence intervals (CI) and P-values for different models and variables separated by sex. Models are labeled from a to d with increasing adjustments. Variables include RAR and quartiles Q1 to Q4. Values for males and females show differences in HR and significance levels. The footnote describes model adjustments, including factors like age, CKD, COPD, and ethnicity.]
As shown in Table 8, DM patients aged ≤60 years had a higher HR (2.08; 95% CI 1.61, 2.70) as compared to those older than 60 years (1.69; 95% CI 1.47, 1.94). The RAR HR for Q4 in DM patients aged ≤60 years (4.06; 95% CI 2.54, 6.49) was significantly greater than for those older than 60 years (2.06; 95% CI 1.70, 2.50). Poor prognosis was more prevalent among DM patients ≤60 years old as compared to >60 when RAR was increased.

Table 8 | Cox regression of DM patient data for RAR with stratification of age.


[image: Table displaying hazard ratios (HR) with 95% confidence intervals (CI) and P-values for different variables across two age groups: over 60 and 60 or under. The data includes comparisons of models adjusted for various factors, such as sex, chronic conditions, and ethnicity. Key variables are RAR, Q1, Q2, Q3, and Q4, with HR and P-values provided for multiple columns labeled a, b, c, and d.]



3.6 Survival analysis

RCS was used to filter for optimal RAR and RDW values (Figure 2A). In DM patients, RDW and RAR were associated with a poor prognosis; HR values increased as RAR and RDW increased (Figure 2A). The inflection points of RAR and RDW were 3.22 and 13.3, respectively.

[image: Two sets of graphs are displayed. The top graphs show the relationship between the RAR level and hazard ratio, with an inflection at 3.22, and a survival curve comparing high and low RAR groups with significant differences. The bottom graphs depict RDW levels with an inflection at 13.3 and a survival curve showing significant disparity between high and low RDW groups. Both survival curves indicate that higher values correspond to lower survival probabilities over time.]
Figure 2 | RCS analysis and Kaplan–Meier curve construction.

High- and low-expression groups were established based on the optimal inflection point. DM patients with RAR >3.22 were categorized into a high RAR group; those with RDW >13.3 were categorized into a high RDW group. DM patients had poor survival rates when RAR or RDW values were greater than 3.22 or 13.3, respectively (Figure 2B).





4 Discussion

Here, we explored RAR in the context of DM epidemiology and long-term prognosis. Previous research reported that the combination of RDW and ALB serves as an indicator of RAR-related inflammation (19). Also a risk factor for DM, RAR is a novel inflammatory indicator. Importantly, DM is recognized to possess inflammatory pathologic characteristics. Pro-inflammatory cytokines (e.g. TNF-α) cause insufficient insulin secretion and resistance in DM patients (20). High blood sugar, in turn, affects hemodynamic parameters such as blood viscosity and promotes inflammation that damages red blood cells. As such, RAR reflects red blood cell status as well as systemic inflammation.

Inflammation and erythrocyte pathologies frequently interact. Inflammatory mediators promote damage to the endothelium as well as red blood cells and lead to atherosclerosis (21). Erythrocyte dysfunction also triggers inflammation (21, 22) and dysregulation in oxidation. Interestingly, RDW is known to be a biomarker for erythrocyte damage and assessing critical illness outcomes (23). Similarly, serum ALB is considered to be an inflammatory marker (24). A higher level of inflammation is suggested by a lower serum ALB level, especially in the setting of severe sepsis or septic shock (25). Because RAR is calculated from RDW and ALB, RAR can suggest the presence of erythrocyte dysfunction as well as inflammation.

For analysis of prognosis, RAR is considered in acute biliary pancreatitis (26), foot ulcers due to DM, and stroke. Importantly, RAR is determined using RDW and ALB values; RDW is utilized as a diagnostic indicator and prognosis biomarker for conditions such as atrial fibrillation (27), heart failure (28, 29) and viral infections (30), while RDW plays a significant role in cardiovascular and thrombotic pathology. Higher levels of RDW are associated with an increased risk of thrombotic disorders (31). The significant roles that RDW plays in cardiovascular and thrombotic pathologies highlight the importance of investigating RAR in detail. Meanwhile, higher levels of glycated albumin indicate either higher Glu levels (32) or lower serum ALB; serum ALB was previously reported to be a protective factor in DM prognosis (33). One study of a large Chinese cohort of 30,442 adults reported that the risk of type 2 DM significantly correlated with lower levels of ALB (34). In the context of prior literature having emphasized the crucial independent associations of RDW and ALB with DM, this study considered both to explore their combined use as a better predictive marker for DM.

In the adjusted Model 4, the RAR OR and RDW OR were 1.68 and 1.14, respectively, for DM prevalence. When adjusted for Q1, the Q4 RAR was greater than that of RDW for DM. As RAR levels increased, the prevalence of DM was also noted to rise. For the prognosis of all-cause mortality, RAR duplicated the result as the prevalence; values were significantly higher as compared to those of RDW. Furthermore, RCS was applied to explore the optimal threshold; the inverse L-curve for RAR revealed 3.22 to be the inflection point between the HR and DM (for RDW, it was 13.3). Importantly, DM patients with RAR values greater than 3.22 were likely to suffer a poor prognosis and shorter survival time as compared to those with RAR values ≤3.22. For RDW, DM patients with RDW values greater than 13.3 had a poorer prognosis as compared to those with RDW values ≤13.3. As such, an RAR of 3.22 was found to be optimal for determining whether the prognosis of DM patients was poor.

Further research is certainly warranted to further evaluate the association of RAR with DM. The association of RDW with short-term DM prognosis has been extensively studied, including outcomes at periods of 30 (35) and 90 (9–11) days. Here, the prognostic value of RAR was evaluated at over 84 months. The utilization of RAR in multiple clinical tests has demonstrated clear clinical value. As stated previously, RDW and ALB have already been validated as useful diagnostic indicators. Our findings warrant more detailed research concerning the clinical value of RAR. For instance, the prevalence of CKD, COPD, hypertension, ASCVD, and CHF were found to increase along with RAR (Table 2). As prevalence of the aforementioned conditions is rising, the diagnostic and prognostic values of RAR in respiratory, cardiovascular, metabolic, and urinary pathologies warrants further exploration. By considering RAR alongside other clinical factors, healthcare professionals will be better able to assess DM risk and prognosis, thereby leading to improved patient care and outcomes.

Here, we found significant disparities in sensitivity analysis for the risk of poor prognosis based on sex and age. The male DM patients had a higher risk of suffering poor prognosis as compared to female DM patients when RAR increased. Contrary to our conclusions, one study found that female patients with acute myocardial infarction were more sensitive to RAR (36). However, in a study of coronary artery disease (37) similar to ours result, the unadjusted RAR of male and <60 years coronary artery disease patients had a higher risk of carotid plaque than females. This sex difference may be triggered by the severity of the disease, females’ estrogen level, and menstruation. Acute myocardial infarction (38) is more urgent and fatal than DM which may trigger the sex difference of RAR. Due to menstruation and estrogen, females are more prone to anemia (39) and increased RDW which results in the RAR level being higher than males. Since male RAR is more stable, males are more sensitive to slight fluctuations in RAR.

The advantages of this study included a combination of cross-sectional and prospective analyses, a large sample size and a long follow-up duration, as well as numerous covariates applied in model calibration. First, a cross-sectional approach was employed to for prevalence analysis, while prospective evaluation was performed in the context of a survival analysis. Second, this study analyzed data from over 40,000 individuals compiled over the course of over two decades (i.e. 1999–2020). Finally, more than 30 covariates were adjusted for to ensure result validity. This study ultimately aimed to shed light on the association between RAR and DM in terms of incidence and prognosis.

This study was not without limitations. First, our results should be treated cautiously, as definite causality cannot be established. Further in-depth research to validate the clinical relevance of RAR to DM is certainly required. Although many covariates were modulated, potential confounders likely affected our findings. Second, data misclassification may have led to underestimates of RAR values (40), thereby affecting finding accuracy. Nevertheless, our research highlighted the valuable association between RAR and DM.

In conclusion, future research to investigate the relationship between inflammation and RAR is warranted. The significant role of RDW in cardiovascular and thrombotic disorders as well as the association of RDW with such pathologies underscores the potential clinical importance of RAR.




5 Conclusion

Here, we found that DM prevalence is significantly associated with greater RAR values. Furthermore, greater RAR values were found to associate with worse prognosis in DM patients. Importantly, the risk of poor prognosis was found to be highest among female DM patients ≤60 years of age. As such, further research concerning RAR as an independent risk factor predictive for DM prevalence and poor prognosis is warranted.
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Introduction

Waist circumference (WC) and fasting plasma glucose (FPG) have been demonstrated as risk factors for type 2 diabetes mellitus (T2DM). Evidence is limited regarding the association of the combination of WC and FPG (WyG) with the risk of T2DM. The primary aim of the study was to investigate the relationship between WyG and T2DM.





Research design and methods

The current study was a population-based cohort study using data from the NAGALA database. Participants were divided into tertiles based on WyG. Cox proportional hazard regression model was applied to identify the association of WyG with T2DM.





Results

During a median follow-up of 6.19 years in the normoglycemia group and 5.58 years in the prediabetes group, respectively, 88 and 285 individuals in the two groups received a diagnosis of T2DM. After full adjustment, risk of T2DM increased in step-wise fashion with increasing tertiles of WyG. For a per-SD increase in WyG, the hazard ratios for T2DM were 3.05 (95% CI 2.64 - 3.51) in all populations, 1.94 (95% CI 1.46 - 2.58) in the normoglycemia group and 1.63 (95% CI 1.40 - 1.90) in the prediabetes group. The interaction between WyG and fatty liver on T2DM was statistically significant in the prediabetes group (P for interaction = 0.034).





Conclusions

Elevated WyG was independently associated with incident T2DM in Japan. Baseline WyG help identify individuals at high risk of T2DM and implement effective preventive measures.





Keywords: type 2 diabetes mellitus, waist circumference, fasting plasma glucose, insulin resistance, Japan





Introduction

The prevalence of type 2 diabetes mellitus (T2DM) has increased considerably in recent decades. According to the International Diabetes Federation, diabetes will claim up to 700 million people worldwide by 2045, making it become one of the main threats to human health (1). Early identification and treatment of subjects at high risk for T2DM is critical, although its etiology and pathologic processes have not been fully elucidated (2). Given the large population of T2DM, it is more important to identify susceptible individuals early through simple and effective tools.

Insulin resistance (IR) is a central underpinning to the pathogenesis of T2DM (3–5). Hence, early diagnosis of IR is of paramount importance. Recent studies have shown that triglyceride glucose (TyG) is a widely used surrogate marker of IR and T2DM (6–8). In fact, TyG in T2DM and chronic complications is of interest for its simplicity, economy and high reproducibility. Notably, additional research has confirmed that triglyceride glucose-waist circumference (TyG-WC) offers a greater diagnostic value than TyG (2), which suggests that waist circumference (WC) is also of considerable importance. WC and fasting plasma glucose (FPG) are two well known risk factors for T2DM (9–11). However, the relationship of the combination of WC and FPG with T2DM is still unknown. On this basis, we propose a new index WyG (defined as ln [WC (cm) × FPG (mg/dL)/2]) based on the formula of TyG (defined as ln [1/2 TG (mg/dL) × FPG (mg/dL)]). The aims of the current study were to explore the relationship of WyG and T2DM.





Materials and methods




Data source and study cohort

This retrospective cohort study was based on data derived from the NAGALA (NAfld in the Gifu Area, Population-based Longitudinal Analysis) database, which has been described in detail elsewhere (12). All of the raw data are freely available from the DRYAD database (https://datadryad.org/). The full inclusion and exclusion criteria are detailed in the literature of the data source (12). Individual who participated in the medical examination program at Murakami Memorial Hospital from 2004 to 2015 were included in the study. Exclusion criteria for this cohort included T2DM at baseline or fasting plasma glucose ≥ 6.1 mmol/L, missing data, known liver disease, ethanol consumption (> 60 g/day for men and 40 g/day for women) and medication usage. The NAGALA database has received ethical approval from the Ethics Committee of Murakami Memorial Hospital. All participants in this project have signed informed consent to use their data for research (12).





Exposure and covariates

The study exposure was WyG. WyG was calculated as ln [WC (cm) × FPG (mg/dL)/2].

Baseline demographic, clinical and laboratory characteristics were collected. The study variables were as follows: age, sex, body mass index (BMI), WC, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), FPG, glycosylated hemoglobin (HbA1c), systolic blood pressure (SBP), diastolic blood pressure (DBP), fatty liver, and follow up duration. All participants completed a questionnaire on their use of tobacco and alcohol, and exercise habits.





Outcome

The main outcome of the study was the new-onset T2DM, which was diagnosed according to one of the criteria (FPG ≥ 7 mmol/L, HbA1c ≥ 6.5%, or self-reported) (13).





Statistical analyses

The total cohort was divided into two groups according to the following criteria: prediabetes is defined by FPG ≥ 100mg/dL or 5.7% ≤ HbA1c < 6.5%; normoglycemia is defined by FPG < 100mg/dL or HbA1c < 5.7% (14).

First of all, participant baseline characteristics by the WyG tertiles were compared using analysis of variance or the Kruskal-Wallis test for continuous variables and the chi-squared test for categorical variables. We then applied a univariate analysis model to estimate the relation between the baseline characteristics and T2DM. In addition, Cox proportional hazards models and restricted cubic spline (RCS) analysis were applied to explore the potential relationship between WyG and T2DM. Subsequently, we further analyzed the potential diagnostic value of WyG in T2DM by using receiver operating characteristic (ROC) curve analysis and informativeness analysis (15). Finally, the interaction between baseline WyG and the risk of T2DM were performed among subgroups stratified as gender, fatty liver, smoking status (never, past, current), alcohol consumption (non, light, moderate, heavy), and habit of exercise.

All calculations were performed using EmpowerStats (www.empowerstats.com, X&Y solutions, Inc., Boston MA) and R statistical software (http://www.R-project.org). P < 0.05 (two-tailed) was considered to be statistically significant.






Results




Characteristics of study subjects

Table 1 showed the baseline characteristics of the study in all populations according to WyG tertiles. The values of BMI, WC, ALT, AST, GGT, TC, TG, HbA1c, FPG, SBP, and DBP levels were highest and the HDL was lowest in the group with the highest tertile of WyG. The proportions of male, older people, subjects with fatty liver, smokers (past or current), drinkers (light or moderate or heavy) and without habit of exercise were highest in the group with the highest tertile of WyG. Additionally, the group with the WyG highest tertile had the highest incidence of T2DM (9.94, 2.28 and 23.13 cases per 1000 person-years among all populations, the normoglycemia group and the prediabetes group, respectively) (Figure 1).

Table 1 | Baseline characteristics of participants according to WyG tertiles.


[image: A table showing statistical data across three tertiles for various health-related variables. Each tertile is defined based on WyG values between 7.13 and 8.81. Variables include sample size, age, BMI, waist circumference, liver enzyme levels, cholesterol, glucose, blood pressure, and lifestyle factors such as smoking, alcohol consumption, and exercise habits. Significant differences (p-value < 0.001) exist across tertiles for all variables. Data presented as means, standard deviations, and median ranges. Alcohol and exercise habits noted, with percentages provided for different levels of consumption and activity.]
[image: Bar chart showing T2DM incidence per 1000 person-years across three groups: All populations, Normoglycemia, and Prediabetes. Each group has bars for WyG Tertiles T1, T2, and T3. Incidence rates are highest in the Prediabetes group, with T3 reaching 23.13. The trend is significant with a p-value less than 0.001.]
Figure 1 | Incidence of T2DM in different populations. WyG, waist circumference glucose; T2DM, type 2 diabetes mellitus.





Baseline variables and T2DM

Figure 2 showed the relation between baseline characteristics in all populations and the risk of T2DM. The results demonstrated that male, age, BMI, WC, ALT, AST, GGT, TC, TG, HbA1c, FPG, SBP, DBP, fatty liver, smoking status (past or current) (P < 0.05) and alcohol consumption (heavy) were positively correlated with the risk of T2DM and that the HDL (P < 0.0001) was negatively correlated with the risk of T2DM.

[image: Forest plot showing odds ratios for various factors with p-values. Factors include age, BMI, smoking status, and alcohol consumption. Significant p-values are less than 0.0001 for most variables, indicating strong associations. Factors with larger squares have higher odds ratios. Error bars represent confidence intervals.]
Figure 2 | The unadjusted association between baseline variables and incident T2DM. Data are Hazard ratios and 95% CI. T2DM, type 2 diabetes mellitus; BMI, body mass index; WC, waist circumference; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; HbA1c, glycosylated hemoglobin; FPG, fasting plasma glucose; SBP, systolic blood pressure; DBP, diastolic blood pressure.





Independent relation between WyG and T2DM

Table 2 showed the results of the multivariate Cox proportional hazards regression analysis. Compared with the referent first tertile of WyG, the hazard ratios (HRs) of incident T2DM for the second and third tertiles increased in the unadjusted, minimally adjusted (adjusted for age and sex) and fully adjusted (adjusted for age, sex, ALT, GGT, TC, fatty liver, smoking status, alcohol consumption and habit of exercise) models. In all populations, the HRs of incident T2DM were 2.23 (95%CI, 1.31 - 3.79) in the second tertile of WyG, and 8.79 (95%CI, 5.31 - 14.55) in the third tertile of WyG in the fully adjusted model. In the normoglycemia group, the HRs of incident T2DM were 2.16 (95%CI, 0.99 - 4.72) in the second tertile of WyG, and 3.08 (95%CI, 1.35 - 7.03) in the third tertile of WyG in the fully adjusted model. In the prediabetes group, the HRs of incident T2DM were 1.41 (95%CI, 0.95 - 2.10) in the second tertile of WyG, and 2.03 (95%CI, 1.36 - 3.05) in the third tertile of WyG in the fully adjusted model. Furthermore, we also found that WyG per-SD change was positively correlated with the risk of T2DM in all groups (HR: 3.05 in all populations; HR: 1.94 in the normoglycemia group; HR: 1.63 in the prediabetes group; all P < 0.0001).

Table 2 | Associations of baseline WyG with incident T2DM.


[image: Table comparing hazard ratios and p-values across different models and population groups. It includes data for all populations, normoglycemia, and prediabetes, with crude, minimally, and fully adjusted models. Hazard ratios for WyG per standard deviation increase and WyG tertiles provide references and trend p-values. Statistical analysis is based on Cox regression, with various adjustments detailed at the bottom.]
We then went on to explore the potential nonlinear relationship between WyG and T2DM by the RCS analysis. The results (Figure 3) revealed a linear relationship between WyG and new-onset T2DM in all populations, normoglycemia and prediabetes (all P for nonlinearity > 0.05).

[image: Three graphs labeled A, B, and C illustrate the relationship between WyG and the hazard ratio of T2DM. Each graph shows a red curve for estimation, with a shaded area for the 95% confidence interval, against a histogram. P-overall is less than 0.001 in all graphs, with P-nonlinear values of 0.880, 0.175, and 0.750 respectively. Reference points are marked on each curve.]
Figure 3 | Five knots restricted cubic spline (RCS) plots of adjusted dose–response relationships for WyG and the risk of T2DM in different populations, with density plots indicating the distribution of WyG. (A) all populations, (B) normoglycemia, (C) prediabetes. WyG, waist circumference glucose; T2DM, type 2 diabetes mellitus. All models were adjusted for sex, age, alanine aminotransferase, gamma-glutamyl transferase, total cholesterol, fatty liver, alcohol consumption, smoking status, habit of exercise.





Predictive efficacy of WyG for new-onset T2DM

The areas under the ROC curves (AUCs) were used to evaluate the effectiveness of WyG in predicting the risk of T2DM in all populations (Figure 4). The result showed that WyG (AUC 0.818) was the best marker for identifyingT2DM when compared with WC (0.742), TyG (AUC 0.750) and TyG-WC (AUC 0.780). Similar to this result, WyG was the most informative measure for the risk of T2DM (its relative informativeness compared with TyG and TyG-WC was 128%; Table 3).

[image: ROC curve for T2DM shows four lines representing different models: WyG (blue) with an AUC of 0.818, TyG-WC (green) with 0.780, TyG (red) with 0.750, and WC, cm (black) with 0.742. Axes are sensitivity and 1-specificity.]
Figure 4 | ROC curve analysis of the relationship between different indices and T2DM. T2DM, type 2 diabetes mellitus; WC, waist circumference; TyG, triglyceride glucose; TyG-WC, triglyceride glucose-waist circumference; WyG, waist circumference glucose.

Table 3 | Relative informativeness of different indices for T2DM.


[image: Table displaying confounder-adjusted chi-squared statistics and informativeness percentages for three measures. TyG has a statistic of 512.4 and 100% informativeness. TyG-WC also has 512.4 and 100%. WyG shows 653.8 with 128%. Footnote details adjustments for sex, age, and various health factors.]




Association between WyG and T2DM in subgroups

We stratified the analysis by sex, fatty liver, smoking status (never, past, current), alcohol consumption (non, light, moderate, heavy) and habit of exercise, which further supported that WyG was highly positively correlated with T2DM (Table 4). There was no interaction between above subgroups in all populations and the normoglycemia group (all P interaction > 0.05). Interestingly, there was a significant interactive effect of WyG and fatty liver on T2DM in the prediabetes group (P interaction = 0.034).

Table 4 | Association of WyG with incident T2DM in subgroups.


[image: A table presents hazard ratios and related statistics for various factors in populations categorized as "All populations," "Normoglycemia," and "Prediabetes." Factors include sex, fatty liver, smoking status, alcohol consumption, and exercise habits. Each factor lists the number of events, hazard ratio (with ninety-five percent confidence interval), P-value, and P for interaction. Some cells show missing values marked as "a," indicating model failure due to small sample size. Data are adjusted for several variables, including age and cholesterol levels.]





Discussion




Principal findings

In this study, we found that exposures to elevated WyG was associated with an increased risk of incident T2DM. We also noted a dramatic difference across fatty liver subgroup in the prediabetes group. In the fatty liver group, an increase in WyG led to a significant increase in the risk of T2DM (HR: 1.80; 95% CI: 1.49 - 2.17; P < 0.0001), but no such result was found in the non-fatty liver group (P = 0.0623). Our results may suggest that WyG was a good predictor of T2DM when compared to WC, TyG and TyG-WC.





Comparison with other studies

Several indicators have been reported to improve T2DM screening efficiency. Oral glucose tolerance test is still too expensive and time-consuming to be used routinely. A previous study showed that a combination of HbA1c, FPG and WC was effective in screening for individuals at risk for future T2DM (16). The role for the combined measurement of FPG and HbA1c for the prediction of T2DM has been confirmed in multiple studies (17, 18). One study on gestational diabetes mellitus revealed that the combination of HbA1c and WC had relatively high sensitivity to detect T2DM (19). Our study differed from previous studies in several important aspects. On the one hand, our results established for the first time that there was a positive correlation between the combination of WC and FPG and T2DM. On the other hand, in our analyses, we simultaneously attend to the data from all populations, the normoglycemia cohort and the prediabetes cohort.

Previous studies have shown that IR was considered the main pathophysiological component of diabetes (3–5). Increasingly, research has considered the role of TyG in IR and diabetes. TyG not only was used to assess IR and diabetes, but also can better predict diabetes than the homeostatic model assessment of IR (6–8). Accordingly, TyG has become a widely accepted marker of diabetes. Besides, a recent study has confirmed that TyG-WC, as a TyG-related index, was a better risk marker for diabetes than TyG (2). This implied WC played a key role in predicting diabetes risk. WC was a representative of central obesity. In the National Cholesterol Education Program-Adult Treatment Panel-III, central obesity was recognized as an independent risk factor for diabetes (20). WC by itself or with other indicators are critical factors of predicting diabetes risk (21, 22). On this basis, we invented a new indicator – WyG, which combined WC and FPG together. Moreover, WyG is much easier to perform than TyG-WC. Importantly, WyG had higher predictive performance for the risk of T2DM than WC, TyG and TyG-WC. Therefore, it is necessary to further understand and explore WyG.





Meaning of the study

The strong link between obesity and diabetes has long been established (5, 23, 24). Obesity was also tightly linked to FPG (25). In addition, reactive oxygen species produced by adipose tissue may cause a variety of metabolic disorders such as obesity-related IR and T2DM (26). Besides obesity, the independent risk factors for T2DM also included FPG (27). Our results suggested that WyG, as a combination of WC and FPG, can predict diabetes. This was predominantly due to the well-documented role of obesity and FPG in the development of IR and diabetes. Besides, elevated glucose has a toxic effect upon beta cells by increasing reactive oxygen species (28). Taken together, these results suggested that the role of glucotoxicity and lipotoxicity in the pathogenesis of diabetes cannot be neglected.

Furthermore, compared with TG, WC was inexpensive, simple and non-invasive. Conveniently, an accurate ruler can measure WC in real time at home. WyG further simplified the calculation of TyG-WC. Owing to its convenience and simplicity, WyG was applicable not only to large-scale health assessment, but also to individuals’ evaluation of themselves.

Notably, there was a significant interactive effect of WyG and fatty liver on T2DM in the prediabetes group. Our results, if confirmed, suggest that individuals with high WyG benefit from the treatment of fatty liver to prevent T2DM. Obesity and IR are well known to be key pathogenic factors for both fatty liver and T2DM (29). The treatment of obesity and IR in fatty liver might decrease the risk of developing T2DM by reducing FPG and WC.





Strength and limitations of this study

This study has some notable strengths. The large size and long follow-up period of the cohort study enhanced the reliability of the results. More importantly, compared with previous studies, we adjusted for more confounding factors to further increase the credibility of the results. Besides, given that the data come from Japan, the results were more instructive to the Japanese. More meaningfully, WyG was first proposed as a new predictor of T2DM. Simultaneously, WyG can be added to the reference biomarkers during follow-up of T2DM.

This analysis also has limitations. Firstly, the study remained limited to mainly single-center analyses in Japan, rendering the results not applicable to other regions and ethnicities. Evidence based on different regions and ethnic groups was needed to support the generality of the findings. Then, the prevalence of diabetes may be inaccurate on account of the lack of oral glucose tolerance tests. Finally, unmeasured confounding factors may not be fully addressed given that the study data were from an existing database. We were unable to obtain plasma Sirtuin 1 and insulin levels, which were important to identify individuals with T2DM (30–32).






Conclusions

Our study first found a positive association of baseline WyG with incident T2DM in Japan. It highlighted the importance of the treatment of fatty liver to prevent T2DM, especially in people with prediabetes. Monitoring WyG may have utility in identifying individuals at increased risk of T2DM. Given this, it is critical that the underlying mechanisms of these associations receive further study.
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Objective

Previous observational studies have suggested an association between gut microbiota and diabetic neuropathy (DN). However, confounding factors and reverse causality make the causal relationship between gut microbiota and DN uncertain. We aimed to investigate the interactive causal relationships between the abundance of gut microbiota and DN.





Methods

We conducted a Mendelian randomization (MR) analysis to examine the causal relationship between gut microbiota and DN. Genomic data on gut microbiota at the genus level were obtained from the MiBioGen Consortium, including 18,340 individuals of European descent. Data on diabetic polyneuropathy (DPN) were obtained from the FinnGen Consortium, which included 1,048 cases and 374,434 controls, while data on diabetic autonomic neuropathy (DAN) were also obtained from the FinnGen Consortium, including 111 cases and 374,434 controls. Causal effects were primarily estimated using inverse variance weighted (IVW) analysis, supplemented with four validation methods, and additional sensitivity analyses to assess the pleiotropy, heterogeneity, and robustness of instrumental variables.





Results

The IVW analysis indicated that Prevotella 9 had a protective effect on DPN (OR = 0.715, 95% CI: 0.521-0.982, P = 0.038), and Bacteroides also showed a protective effect (OR = 0.602, 95% CI: 0.364-0.996, P = 0.048). On the other hand, Ruminococcus 2 had a promoting effect on DPN (OR = 1.449, 95% CI: 1.008-2.083, P = 0.045). Blautia (OR = 0.161, 95% CI: 0.035-0.733, P = 0.018), Clostridium innocuum group (OR = 3.033, 95% CI: 1.379-6.672, P = 0.006), and Howardella (OR = 2.595, 95% CI: 1.074-6.269, P = 0.034) were causally associated with DAN in the IVW analysis, with no evidence of heterogeneity or pleiotropy. Sensitivity analyses showed no significant pleiotropy or heterogeneity.





Conclusion

Our study identified a causal relationship between gut microbiota and the increased or decreased risk of diabetic neuropathy. These findings underscore the importance of adopting a comprehensive approach that combines gut microbiota modulation with other therapeutic interventions in the management of diabetic neuropathy.





Keywords: diabetic neuropathy, Mendelian randomization, GWAS - genome-wide association study, diabetic autonomic nervous system neuropathy, diabetic polyneuropathy




1 Introduction

Peripheral diabetic neuropathy (PDN) is a common complication of diabetes that results in functional damage to the peripheral nervous system, primarily caused by hyperglycemia. The majority of PDN cases are classified as diabetic polyneuropathy (DPN), which can cause pain, stinging, prickling sensations, and numbness that may progress to complete loss of sensation and motor dysfunction (1). Meanwhile, a portion of DN cases are categorized as diabetic autonomic neuropathy (DAN), which is associated with poor prognosis among patients who exhibit its symptoms.

While there are multiple factors that contribute to the development of DPN, including oxidative stress, accumulation of late glycation end products, blood flow disorders, and altered growth factor expression, chronic hyperglycemia-induced oxidative stress is considered a key mediator leading to the occurrence and progression of DPN (2, 3). Currently, effective therapies for PDN are rare, and thus, it is urgent to explore new treatment methods (4). Interestingly, not all diabetic patients develop neuropathy, and the underlying mechanism remains unexplained.

Many studies suggest that changes in gut microbiota composition and metabolites may lead to the occurrence of obesity and related metabolic disorders, which can be potential therapeutic targets for such diseases (5, 6). Additionally, correlations have been reported between gut microbiota regulation and improvements in oxidative stress, inflammatory response, and insulin resistance, which could affect diabetes complications (7). Experiments have shown that colonization with normal and healthy gut microbiota can restore the homeostasis and neuronal activity of the gut nervous system in germ-free mice, whereas gut microbiota from diabetic mice have the opposite effect (8, 9). However, mechanistic studies of the microbiome are often difficult to conduct on humans due to the heterogeneity of genetic and lifestyle factors and ethical issues related to human subjects that may lead to disease-causing microbial colonization (10). In our study, we employed a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between microbiota and diabetic peripheral neuropathy (DPN) and diabetic autonomic neuropathy (DAN).




2 Materials and methods



2.1 Hypothesis and study design of MR

We obtained summary data from genome-wide association studies (GWASs) on gut microbiota and DPN/DAN. To ensure reliable results, our MR analysis adhered to three assumptions: (1) the instrumental variables (IVs) used must be closely related to the taxonomic groups of microbiota; (2) the IVs included and confounding factors (which affect the taxonomic groups of microbiota and diabetic neurodegeneration) must be independent of each other; (3) no horizontal pleiotropy: IVs only affect diabetic neurodegeneration through the taxonomic groups of microbiota (Figure 1) (11). Our study results were reported in accordance with the MR-STROBE guidelines.

[image: Flowchart depicting relationships between instrumental variables (IVs), exposure (gut microbiota), confounders, and outcome (DPN/DAN). It shows IVs affecting exposure directly, with a relationship denoted as alpha not equal to zero. IVs and confounders are indicated as independent. Confounders influence both exposure and outcome. Arrows illustrate these causal pathways. An arrow from exposure leads to the outcome, while a feedback loop with a red cross marks no direct effect from outcome back to IVs.]
Figure 1 | Three key assumptions for a valid Mendelian randomization study.




2.2 Ethical statement

The summary-level data used in this study are publicly available and de-identified. The GWASs included have been approved by their respective institutions.




2.3 Exposure sources of gut microbiota data

Kurilshikov et al. conducted a large-scale, multi-ethnic, whole-genome meta-analysis to investigate the association between common human genetic variations and gut microbiota composition. This analysis was based on data from the MiBioGen consortium (12). The MiBioGen consortium comprised 18,340 individuals of European ethnicity from 11 cohorts across 25 countries. The GWAS study analyzed trans-ethnic taxonomic group variation and generated 110,211 variant sites from 122 taxa (from phylum to genus level). IVs for gut microbiota at the genus level were extracted from this large-scale GWAS. Additional details about the gut microbiota data are available in the original publication.

To ensure the robustness of the data and the accuracy of the results, SNPs underwent quality control to obtain eligible IVs: (1) Due to the small number of IVs meeting this criterion, a relatively comprehensive threshold (P<1×10-5) was used to obtain more comprehensive results (13). (2) To meet the MR assumption, linkage disequilibrium (LD) analysis was performed (R2<0.001, clustering distance=10,000kb) based on the 1000 Genomes Project of Europeans, and SNPs that did not meet the requirements were removed. (3) Palindromic SNPs were eliminated to mitigate the potential influence of allele confounding on the causal relationship between gut microbiota and diabetic neuropathy. The strength of the selected SNPs was assessed using the following formula to calculate the F-statistic for each bacterial taxonomic unit: F = R²(N-K-1)/K(1-R²), with R² representing the proportion of exposure variance explained by IVs, n denoting the sample size, and k indicating the number of IVs. An F-statistic >10 indicates that there is no presence of noticeable weak instrument bias (11).




2.4 Data sources for DPN and DAN

The GWAS summary statistics for DPN and DAN were obtained from the FinnGen research project (https://r9finngen.fi/). The DPN dataset consisted of 1,048 cases and 374,434 controls, while the DAN dataset included 111 cases and 374,434 controls, both sourced from the FinnGen consortium. DPN and DAN were defined based on electronic medical records and International Classification of Diseases (ICD) codes.




2.5 Statistical analysis

All statistical analyses were conducted using R software (version 4.1.1). We employed the “TwoSampleMR” R package for Mendelian randomization (MR) analysis to evaluate the causal relationships between gut microbiota and diabetic neuropathy. P-value< 0.05 was considered indicative of statistically significant evidence for potential causal effects (14). The study flowchart is presented in Figure 2.

[image: Flowchart outlining a research methodology starting with exposure: Gut Microbiota GWAS (genus level) leading to outcome: Diabetic Polyneuropathy/Diabetic Autonomic Neuropathy GWAS. It involves selecting instrumental variables (SNPs) based on specific criteria, calculating F statistics, conducting MR analysis using various methods, and performing sensitivity analysis, including pleiotropy and heterogeneity assessments.]
Figure 2 | The flowchart of the Mendelian randomization study revealing the causal relationship between gut microbiota and DPN/DAN.



2.5.1 MR analysis

The Wald ratio method was used to test the influence of individual instrumental variables (IVs) on causal estimates. In the absence of horizontal pleiotropy, the inverse variance-weighted (IVW) test was adopted as the primary approach to compute unbiased estimates of causal effects. Effect sizes were reported as odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Additional methods employed in the MR analysis included weighted median, weighted mode, MR-Egger test, and simple mode.




2.5.2 Sensitivity analysis

The presence of heterogeneity was tested using Cochrane’s Q test. An IV with a P-value less than 0.05 was considered to exhibit significant heterogeneity. The MR-Egger intercept assessed the potential presence of pleiotropy in the IV. If P>0.05, then the absence of horizontal pleiotropy was determined. To further analyze pleiotropy and remove potential outliers, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) testing (R package “MR-PRESSO”) was utilized (15). Additionally, leave-one-out methods were employed to further validate the robustness of the data (16). Because there was an insufficient number of SNPs that met the MR research hypothesis, a reverse MR analysis was not conducted. To emphasize our contributions, we clearly identified the innovative aspects of our model and method in the abstract.






3 Results



3.1 Selection of IVs

The F-statistic was computed for each single nucleotide polymorphism (SNP), all of which exceeded the threshold value of 10, indicating the strong instrumental validity. Based on the criteria for screening IVs, a total of 1532 SNPs were selected as IVs for 119 bacterial genera. Tables 1, 2 present the causal effects of gut microbiota on diabetic peripheral neuropathy (DPN) and diabetic autonomic neuropathy (DAN), respectively. We identified 119 bacterial genera, especially Clostridium sensu stricto1, Prevotella 9, Ruminococcus 2, Ruminococcaceae UCG005, Bacteroides, Enterorhabdus, and Lachnoclostridium, that were associated with DPN in at least one Mendelian randomization (MR) method. The inverse variance-weighted (IVW) estimate revealed a protective effect of Prevotella 9 against DPN (OR=0.715, 95%CI: 0.521-0.982, P=0.038), whereas Bacteroides also showed a protective effect on DPN (OR=0.602, 95%CI: 0.364-0.996, P=0.048) and Ruminococcus 2 had a protective effect on DPN (OR=1.449, 95%CI: 1.008-2.083, P=0.045). Additionally, no apparent directional horizontal pleiotropy was observed based on the MR-Egger regression intercept analysis shown in Table 2. Furthermore, IVW analysis revealed causal associations between Blautia (OR=0.161, 95%CI=0.035-0.733, P=0.018), Clostridium innocuum group (OR=3.033, 95%CI=1.379-6.672, P=0.006), and Howardella (OR=2.595, 95%CI=1.074-6.269, P=0.034) and DAN, without any evidence of heterogeneity or pleiotropy (Figure 3).

Table 1 | Significant Mendelian randomization estimates of the association between bacterial genera and DPN(P<0.05).


[image: Table comparing microbiota genera Prevotella 9, Ruminococcus 2, and Bacteroides with microbiota research methods including MR Egger, Weighted median, IVW, Simple mode, and Weighted mode. It displays data on NSNPs, odds ratio (OR), 95% confidence interval (CI), P values, pleiotropy (Egger intercept, SE, P value), and heterogeneity (Q, P value) for each method applied to the genera.]
Table 2 | Significant Mendelian randomization estimates of the association between bacterial genera and DAN(P<0.05).


[image: A table displays data on three microbiota genera: Blautia, Clostridium innocuum group, and Howardella, with corresponding NSNPs, MR methods, odds ratios (OR), 95% confidence intervals (CI), pleiotropy metrics (Egger intercept, SE, P value), and heterogeneity (Q, P value). Each genus shows results for different MR methods, including MR Egger, Weighted median, IVW, Simple mode, and Weighted mode, with specific values for each metric.]
[image: Graphs showing causal estimations of gut microbiota on diabetic polyneuropathy and autoneuropathy using Mendelian randomization analysis. Panel A displays odds ratios for Prevotella9, Ruminococcus2, and Bacteroides. Panel B shows odds ratios for Blautia, Clostridiuminnocuumgroup, and Howardella. Each panel includes p-values and odds ratios with confidence intervals, represented by colored squares and error bars, with a dashed line at OR=1 for reference.]
Figure 3 | Significant results of MR analysis. The the green and red squares indicates decreased risk (OR<1) and increased risk (OR>1), respectively. (A) The main IVW method indicated that Prevotella 9 had a protective effect on DPN (OR=0.715, 95%CI: 0.521-0.982, P=0.038), and Bacteroides also showed a protective effect (OR=0.602, 95%CI: 0.364-0.996, P=0.048). However, Ruminococcus 2 had a promotive effect on DPN (OR=1.449, 95%CI: 1.008-2.083, P=0.045). (B) Blautia (OR=0.161, 95%CI=0.035-0.733, P=0.018), Clostridium innocuum group (OR=3.033, 95%CI=1.379-6.672, P=0.006), and Howardella (OR=2.595, 95%CI=1.074-6.269, P=0.034) were causally associated with DAN in the IVW analysis.




3.2 sensitivity analysis

Our sensitivity analysis revealed no heterogeneity in the IV for any of the six bacterial genera (Tables 1, 2), indicating that the genetic traits associated with these genera may be caused by changes in multiple genetic materials. The MR-Egger regression intercept indicated no evidence of horizontal pleiotropy for any of the six bacterial genera (Tables 1, 2) with a P-value greater than 0.05. The scatter plots (Figure 4) revealed that Prevotella 9 and Bacteroides may have a protective effect on DPN, while Ruminococcus 2 may have a promotive effect. Additionally, Blautia may have a protective effect on DAN, while Clostridium innocuum group and Howardella may have a promotive effect. The scatter plot illustrates the following MR analysis methods in order: the inverse-variance weighted (IVW) method, MR-Egger, weighted median, weighted mode, and simple mode. In Figure 4, the lines moving up from left to right represent the promotive indicator of the relationship between the genus and the disease, while the lines moving down from left to right represent the protective indicator. Our “leave-one-out” analysis revealed no potential outliers in the IV for any of the six bacterial genera, suggesting that all identified causal relationships were robust and not affected by individual IVs (Figure 5).

[image: Six scatter plots illustrate the Single Nucleotide Polymorphism (SNP) effects on diabetic complications. Plots (A) to (C) show SNP effects on diabetic polyneuropathy for Prevotella 9, Ruminococcus 2, and Bacteroides, respectively. Plots (D) to (F) depict SNP effects on diabetic autonomic neuropathy for Blautia, Clostridium innocuum group, and Howardella. Each plot includes data points with varying trends and colors representing different Mendelian Randomization tests: IVW, MR Egger, Simple mode, Weighted median, and Weighted mode.]
Figure 4 | Scatter plots of each genus associated with the risk of DPN and DAN, respectively. (A) Prevotella 9. (B) Ruminococcus 2. (C) Bacteroides. (D) Blautia. (E) Clostridium innocuum group. (F) Howardella.

[image: Six panels labeled A through F display MR leave-one-out sensitivity analyses. Each panel examines different bacterial taxa's impact on diabetic polyneuropathy or diabetic autonomic neuropathy. Specific genetic variants (e.g., rs numbers) are plotted against the effect sizes, with solid black dots indicating individual analyses and a red line showing the overall effect. The taxa analyzed include Prevotella, Ruminococcus, Bacteroides, Blautia, Clostridium innocuum group, and Howardella, each associated with a respective neuropathy condition. Horizontal axes depict varying effect size scales for each panel.]
Figure 5 | The “leave-one-out” analysis results of significant microbial taxa on the causal effects of DPN and DAN, revealing minimal changes in the overall error bars when each SNP is removed. Specifically, all error bars either remain to the right of 0 or to the left of 0, indicating the absence of outliers. (A) The causal effect of Prevotella 9 on DPN. (B) The causal effect of Ruminococcus 2 on DPN. (C) The causal effect of Bacteroides on DPN. (D) The causal effect of Blautia on DAN. (E) The causal relationship of the Clostridium innocuum group on DAN. (F) The causal effect of Howardella on DAN.





4 Discussion

We conducted a two-sample Mendelian randomization (MR) analysis using summary statistics data from the largest-scale GWAS meta-analysis of gut microbiota conducted by the MiBioGen consortium. We also used summary statistics data from the FinnGen consortium R8 release data on diabetic polyneuropathy (DPN) and diabetic autonomic neuropathy (DAN). Our aim was to establish the genetic causal relationship between gut microbiota and diabetic neuropathy. Our findings indicate that higher genetic abundance of two gut microbial taxa (genus Prevotella 9 and genus Bacteroides) is associated with a decreased risk of DPN, whereas higher genetic abundance of genus Ruminococcus 2 is linked to an increased risk of DPN. Furthermore, we identified genus Blautia and genus Clostridium innocuum group, as potential risk factors for DAN development. Importantly, our study is the first to employ the MR concept in examining the causal relationship between gut microbiota and diabetic neuropathy. This enables the implementation of secondary prevention strategies for individuals at risk of DPN or DAN. Targeted screening of gut microbiota can be conducted for populations at risk of DPN or DAN, such as patients with type 2 diabetes and metabolic syndrome. This screening enables early disease detection and facilitates the establishment of treatment mechanisms. We also encourage individuals to maintain a healthy diet, regularly use suitable probiotic supplements to preserve gut microbiota balance, and ensure normal short-chain fatty acid metabolism, effectively preventing diabetic neuropathy and its complications.

Many studies have demonstrated that changes in gut microbiota composition and its metabolites are associated with obesity and metabolic disorders and represent potential therapeutic targets for these diseases (17, 18). Genus Prevotella, consists of anaerobic bacteria that produce acetate, succinate, isovalerate, and lactate as their primary fermentation products. Previous research has indicated that Prevotella bacteria are also involved in human glucose metabolism. For instance, rat glucose tolerance improved after gut perfusion with Prevotella bacteria (19). An increase in Prevotella abundance modulates the gut-pancreas axis and blood sugar levels via its metabolites, short-chain fatty acids, and by promoting glucagon-like peptide-1 (GLP-1) release in intestinal L cells, which is consistent with our findings (20).

Additionally, oligofructose has been shown to alleviate symptoms of type 2 diabetes by modulating the abundance of genus Bacteroides, which impacts the pathways of “linoleic acid metabolism,” “serotonin synapse,” and “tryptophan metabolism” (21). Genus Bacteroides, is known for producing bile salt hydrolase, which aids in bile acid metabolism in the gut and can transform bile acids to increase secondary bile acid content, including taurochenodeoxycholic acid. Research has also demonstrated that taurochenodeoxycholic acid enhances the cell viability and migration ability of high glucose-induced Schwann cells, potentially exerting a protective effect against diabetic neuropathy through this pathway (22–26).

Previous research has demonstrated that an increase in the abundance of genus Blautia is linked to improved glucose and lipid homeostasis (27). Furthermore, Blautia is a common acetate producer in the gut, activating G-protein coupled receptors (GPR41 and GPR43) to inhibit insulin signaling and fat accumulation in adipocytes, promoting the metabolism of unbound lipids and glucose in other tissues, and thereby alleviating obesity-related diseases (28). Blautia wexlerae’s beneficial effects are due to its unique amino acid metabolism, which produces S-adenosylmethionine, acetylcholine, L-ornithine, and accumulates branched starch, as well as succinate, lactate, and acetate salts, thereby altering gut bacteria composition. These findings reveal novel regulatory pathways in host-microbe metabolism, which could offer new approaches to metabolic disorder prevention and treatment (29).

The study demonstrates that Huanglian treatment can modify microbial bile acid metabolism, which improves impaired glucose tolerance and lipid accumulation in T2DM mice. These improvements may be attributed, in part, to modulation of the gut microbiota and bile acid pool structure, suggesting that Huanglian has beneficial effects on T2DM mediated by the gut microbiota (30). Additionally, this study found a positive correlation between neurogenic intestinal dysfunction and genus Clostridium innocuum, supporting previous research (31).

Previous research has overlooked Howardella, but reports suggest that an increased abundance of Howardella is linked to prediabetes and diabetes (32). Moreover, oligomannose reduces or reverses the increased abundance of Howardella observed in healthy or prediabetic subjects, potentially preventing changes in gut microbiota during diabetes development (33).

There is also a growing amount of researches indicating a close connection between the gut microbiota and the nervous system. The gut microbiota may play a pivotal role as predisposing factors for neurological diseases, including Alzheimer’s disease, autism spectrum disorders, multiple sclerosis, Parkinson’s disease, and stroke (34). Additionally, bacteria in the gastrointestinal tract can activate neural pathways and central nervous system signaling systems, affecting stress-related behaviors such as anxiety and depression (35). Furthermore, evidence also associates dysbiosis of the gut microbiota with hypertension through the autonomic nervous system (36). Studies indicate that gut bacteria play a significant role in chemotherapy-induced peripheral neuropathy (37). Researches have demonstrated that Paeoniflorin and Danggui Sini decoction can alleviate oxaliplatin-induced peripheral neuropathy by modulating the gut microbiota (38, 39). And administration of a young gut microbiota to elderly mice has been found to improve nerve repair and enhance functional recovery following peripheral nerve damage (40). There is also research that has shown partial restoration of the gut microbiota can alleviate neuropathic pain caused by nerve damage, chemotherapy, and diabetic neuropathy (41).

This study has several advantages. Firstly, previous observational studies have faced challenges in controlling confounding factors such as age, gender, and lifestyle, which has led to lower reliability and accuracy of experimental results. Secondly, the utilization of the latest large-scale GWAS enables the acquisition of genetic data and analysis from a substantial sample population, thereby enhancing the reliability of research results in comparison to small-scale case-control studies. Moreover, MR analysis mitigates confounding and offers a novel approach to investigating the “gut-neuro axis” mechanism.

It is essential to acknowledge the limitations of this study. Firstly,the inclusion of only participants of European ancestry in the GWAS raises concerns about the generalizability of the study’s results to other racial/ethnic groups. Secondly, the sample size of DAN is relatively small, potentially leading to imprecise estimates and limited statistical power to detect causal effects. Thirdly, there may be unmeasured confounders not accounted for in the analysis, leading to the existence of residual confounding and potentially causing flaws in the validity of our findings. Henceforth, the results should be interpreted carefully. While Mendelian randomization can provide evidence for causal relationships, it is important to seek additional sources of evidence to support the causal claims. Furthermore, investigating the intermediate role of blood proteins and metabolites in the pathway from environmental exposure to diabetes is crucial to provide evidence for treatment and intervention.




5 Conclusion

Our study indicated that genus Prevotella 9 and genus Bacteroides had a protective effect on DPN, while genus Ruminococcus 2 had a promoting effect. And genus Blautia, genus Clostridium innocuum group, and genus Howardella were causally associated with DAN. These findings identified a causal relationship between gut microbiota and the increased or decreased risk of diabetic neuropathy, which may underscore the importance of adopting a comprehensive approach that combines gut microbiota modulation with other therapeutic interventions in the management of diabetic neuropathy.
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Objective

Previous studies have confirmed a positive correlation between the Triglyceride-Glucose (TyG) index and future risk of diabetes. However, evidence of this association in non-obese young populations remains limited. This study aims to investigate the relationship between the TyG index and the future risk of diabetes among non-obese young adults.





Methods

This retrospective cohort study included 113,509 non-obese young adults from China and 9,549 from Japan. The mean age was 35.73 ± 6.38 years, and 56,469 participants (45.89%) were male. The median follow-up duration was 3.38 years. The association between baseline TyG index and risk of diabetes was examined using Cox proportional hazards regression models. Non-linear relationships between the TyG index and risk of diabetes were identified using cubic splines and smoothed curve fitting in the Cox models. Sensitivity and subgroup analyses were also conducted.





Results

After adjusting for covariates, the results indicated a positive correlation between the TyG index and risk of diabetes in non-obese young adults (HR=3.57, 95% CI: 2.92-4.36, P<0.0001). A non-linear relationship was observed with an inflection point at 7.3. The HR to the right of this inflection point was 3.70 (95% CI: 3.02-4.52, P<0.0001), while to the left, it was 0.34 (95% CI: 0.06-1.88, P=0.2161). The robustness of our findings was confirmed through a series of sensitivity analyses and subgroup analyses.





Conclusion

This study reveals a positive and non-linear association between the TyG index and risk of diabetes among non-obese young adults. Interventions aimed at reducing the TyG index by lowering triglycerides or fasting glucose levels could substantially decrease the future likelihood of developing diabetes in this population.





Keywords: TyG index, association, diabetes, non-obese young adults, non-linear





Introduction

The Triglyceride-Glucose (TyG) index, a marker used to evaluate insulin resistance, combines levels of plasma triglycerides with fasting glucose (1). Compared to other insulin resistance markers, the TyG index is simple, cost-effective, and has been shown through numerous studies to be an important predictor of Type 2 Diabetes Mellitus (T2DM) in various populations due to its high sensitivity and specificity (2–6). Additionally, the TyG index has been linked to increased risks of metabolic syndrome, atherosclerosis, and coronary heart disease (7–9).

Diabetes is a chronic disease characterized by persistently elevated levels of blood glucose. It is classified into Type 2 and Type 1 diabetes, with the latter being the predominant form. As of 2021, the International Diabetes Federation reported that around 537 million adults globally had diabetes, with estimates forecasting a jump to 783 million by 2045 (10). In Asia, especially in China, the prevalence of diabetes is notably high; data from 2020 show an adult prevalence of approximately 12.8%, translating to about 116 million people (11). Diabetes not only causes severe individual health problems such as retinopathy, nephropathy, and cardiovascular diseases (12–14), but also imposes a significant socio-economic burden (15).

Despite having a normal weight, non-obese young adults are not entirely immune to the risk of diabetes. Recently, with lifestyle changes, the incidence of diabetes among this group has increased. Studies suggest that unlike the prevalence of obesity-related diabetes in Western countries, the incidence of diabetes in non-obese young Asians is on the rise (6, 16). This phenomenon may be related to genetic factors, dietary habits, and decreased physical activity. Particularly in urban areas, fast-paced lifestyles, and diets high in carbohydrates and sugars have exacerbated this trend.

Numerous studies have indicated an association between the TyG index and risk of diabetes (17–22). However, these studies have primarily focused on the general or obese populations, with fewer studies concentrating on non-obese young adults. Although there is evidence of the TyG index’s correlation with risk of diabetes, its specific role in non-obese young adults remains unclear. Thus, further research into the association between the TyG index and risk of diabetes in this population is necessary.

Therefore, given the large populations in Asian countries, particularly China and Japan, this study aims to explore the association between the TyG index and risk of diabetes among non-obese young adults. By conducting this retrospective cohort study, we can better understand the risk factors for diabetes in this population and develop appropriate preventive strategies.





Methods




Study design

This study employed a retrospective cohort design, utilizing data from a Chinese computer database by researchers Chen et al. (23), and the NAGALA (Non-Alcoholic Fatty Liver Disease in Gifu Area, Longitudinal Analysis) database established at the Murakami Memorial Hospital in Japan (24). The primary independent variable was the baseline TyG index. The outcome variable was diabetes, recorded as a binary variable (0 = normal, 1 = diabetes).





Data source

The original data for this study were sourced from the DATADRYAD database (www.datadryad.org). The data concerning Chinese individuals came from a

published article entitled “Association of body mass index and age with incident diabetes in Chinese adults: a population-based cohort study” referred to as the Dryad dataset (https://doi.org/10.5061/dryad.ft8750v) (23). Data on Japanese individuals were derived from a study on adults in Japan, article entitled “Ectopic fat obesity presents the greatest risk for incident type 2 diabetes: a population-based longitudinal study” (24), Dryad dataset (https://doi.org/10.5061/dryad.8q0p192). Dryad’s terms of service permit the secondary analysis of data by other researchers without infringing upon the authors’ rights.





Study population

Figure 1 illustrates the initial inclusion of 685,277 participants in the Chinese cohort, with 473,744 excluded from the primary study, leaving 211,833 for analysis. The Japanese cohort began with 20,944 participants; 5,480 were excluded, resulting in 15,464 individuals analyzed. Ultimately, 227,297 participants were included in the study. The exclusion criteria for the current analysis were as follows: (i) participants lacking triglyceride data were excluded (n=5,748); (ii) individuals aged 50 years or older were omitted (n=58,110); (iii) those with a body mass index (BMI) of 25 kg/m2 or higher were excluded to focus on a non-obese population (n=40,382). The final participant count was 123,058, comprising 113,509 from China and 9,549 from Japan. This research respected the principles outlined in the Declaration of Helsinki, with all procedures aligning with the relevant protocols and rules as specified in the declaration segment. As a result of its retrospective design, ethical consent or informed approval was not necessary from the institutional review board for the analysis of this secondary dataset.

[image: Flowchart detailing participant selection for a study. Two groups: 635,777 Chinese participants (2010-2016) and 20,944 Japanese participants (1994-2016). Exclusions due to missing data, conditions, and measurements result in final study groups of 211,933 Chinese and 15,464 Japanese. Further exclusions refine this to 123,905 participants total, including 113,959 Chinese and 9,946 Japanese.]
Figure 1 | Flowchart of study participants.





Data collection

In this study, we collected data from both Chinese and Japanese populations, focusing on shared variables such as demographic characteristics (age and gender), fasting plasma glucose (FBG), BMI, alanine aminotransferase (ALT), systolic blood pressures (SBP), triglycerides (TG), total cholesterol (TC), diastolic blood pressures (DBP), high-density lipoprotein cholesterol (HDL-c), and aspartate aminotransferase (AST), as well as follow-up duration. Fasting venous blood samples were collected after a minimum 10-hour fast at each visit. Blood pressure was measured using a standard mercury sphygmomanometer. BMI was calculated as weight in kilograms divided by the square of height in meters. Covariates were selected based on clinical experience and published literature, leading us to include the following variables: continuous variables such as DBP, FBG, BMI, AST, HDL-c, SBP, TG, TC, and ALT; and categorical variables such as gender.





Definitions

BMI (kg/m 2) = body weight (kg)/height 2 (m 2). Non-obesity is defined as BMI <25 kg/m2 (24, 25). Young adults are defined as individuals aged 20-49 years (26). The TyG index was treated as a continuous variable and calculated using the formula: TyG index = ln [(fasting serum triglycerides in mg/dL) × (fasting plasma glucose in mg/dL)/2] (27, 28).





Outcome measures

The primary outcome was determined during the follow-up period and was whether participants were diagnosed with diabetes, which was recorded as a binary variable (0 = no diabetes, 1 = diabetes).





Statistical analysis

The study included participants who were classified into four groups based on their TyG index values. The averages ± deviations (for normally distributed data) or medians (with interquartile ranges) (for skewed data) were reported for continuous variables. Categorical data was presented as frequencies and percentages. The analysis involved using the χ2 test for categorical variables, and either one-way ANOVA (for normal data) or the Kruskal-Wallis H test (for skewed data) to compare differences between the TyG index groups. Survival rates and time-to-event variables were determined through the Kaplan-Meier method, and the log-rank test was employed to compare diabetes-free survival among the TyG index groups.

To investigate the association between the TyG index and the risk of diabetes, we executed both univariate and multivariate Cox proportional hazards models, adjusting for confounders as identified through clinical insights, literature review, analyses of individual variables, and checks for multicollinearity. We undertook a variety of sensitivity analyses to assure the stability of our findings. Initially, we removed participants with an SBP over 140 mmHg. Further sensitivity analyses were done after excluding individuals with a BBP of 140 mmHg or higher. We also investigated the TyG index’s relationship with risk of diabetes without including women in the adjusted covariates. Additionally, to secure the robustness of our findings, we utilized Generalized Additive Models (GAM) to integrate continuous variables into the models as curves.

Furthermore, we applied Cox regression models equipped with cubic splines to better understand the non-linear connections between the TyG index and diabetes. A piecewise Cox regression approach was also employed to elaborate on these non-linear associations. The optimal model to describe the relation between the TyG index and risk of diabetes was pinpointed using the log-likelihood ratio test. For detailed examination, stratified Cox models were used in subgroup analysis, and the existence of interaction terms was confirmed via the likelihood ratio test.

The R software package (http://www.r-project.org, R Foundation) and Empower Stats (X&Y Solutions, Inc., Boston, MA, http://www.empowerstats.com) were utilized for the conducted analyses. Statistical significance was determined with a P-value below 0.05.






Result




Characteristics of participants

Table 1 displays the demographic and clinical characteristics of the individuals involved in the study, along with Supplementary Tables 1, 2. The average age recorded was 35.73 ± 6.38 years, with 56,469 participants (45.89%) identified as male. The median follow-up period amounted to 3.38 years, during which 515 individuals (0.42%) were diagnosed with diabetes. The TyG index values were distributed between 4.67 to 11.60, with an average level of 8.13 (Figure 2A). As the TyG index quartile increased, significant increments were observed in DBP, age, FBG, ALT, BMI, TG, SBP, TC, and AST, correlating with a decline in HDL-c levels (all p-values < 0.001). The prevalence of diabetes mellitus also rose considerably from Q1 to Q4 (0.24% to 0.91%, p < 0.001). Notably, there was a notable gender variation, with higher proportions of males in the upper TyG index quartiles (Table 1). In the case of Japanese participants, comparable patterns emerged, showcasing substantial rises in metabolic risk factors and diabetes incidence as the TyG index quartile progressed from Q1 to Q4. The TyG index spanned from 5.63 to 10.73, with a median value of 7.86 (Figure 2C). The duration of follow-up was extended among Japanese participants, indicating a prolonged period for potential diabetes development (Supplementary Table 1). Likewise, Chinese participants exhibited trends mirroring those of the total population, experiencing significant elevations in metabolic risk factors and diabetes incidence rates across TyG index quartiles (Supplementary Table 2). The TyG index was dispersed from 4.67 to 11.6, with an average level of 8.15 (Figure 2B).

Table 1 | The baseline characteristics of participants.


[image: Table showing various health metrics for participants categorized by TyG index quartiles (Q1 to Q4). Metrics include age, BMI, blood pressure, triglycerides, liver enzymes, cholesterol, and follow-up years. The table indicates significant differences across quartiles, with a p-value of less than 0.001 for multiple variables, including incident diabetes and gender distribution.]
[image: Three histograms labeled A, B, and C compare the TyG index distribution across different groups. A shows merge individuals, peaking at 8. B represents Chinese individuals with a similar peak. C illustrates Japanese individuals, also peaking near 8. The x-axis is the TyG index ranging from 6 to 12, and the y-axis shows the proportion in percentage.]
Figure 2 | Distribution of TyG index. (A) showed that TyG index for merge individuals presented a normal distribution ranging from 4.67 to 11.60, with a mean level of 8.13. (B) indicated that TyG index for Chinese presented a normal distribution ranging from 4.67 to 11.6, with a mean level of 8.15. (C) indicated that TyG index for Japanese presented a normal distribution ranging from 5.63 to 10.73, with a median level of 7.86.





The relationship between TyG index quartiles and diabetes incidence

Based on the analysis in Figure 3, there was a notable rise in diabetes rates as TyG index quartiles increased (P < 0.001). In Figure 4, the Kaplan-Meier curves demonstrate the probability of developing diabetes based on the TyG index. Transitioning probabilities varied significantly according to TyG index (p<0.001), with a consistent increase in likelihood as the TyG index rose. This suggests that non-obese young individuals with the highest ratio had a higher chance of developing diabetes.

[image: Bar chart showing the incidence rate of diabetes per 10,000 person-years across different TyG index quartiles. The rate significantly increases from the first to the fourth quartile, with a p-value for trend less than 0.001.]
Figure 3 | The incidence rate for diabetes (Per 10,000 person-year) according to the quartiles of TyG index. Participants with the highest TyG index (Q4) had higher diabetes incidence rates than those with the lowest TyG index (Q1) (P < 0.001 for trend).

[image: Three Kaplan-Meier plots illustrate the probability of diabetes over follow-up time for triglyceride index quartiles (Q1 to Q4). In each plot, Q4 shows the highest probability increase. The p-values are less than 0.001. Plots display timelines of approximately 8, 5, and 12 years, respectively.]
Figure 4 | Kaplan–Meier curves for the probability of diabetes. The A for Chinese and Japanese individuals; The B for Chinese individuals; The C for Japanese individuals. The probability of diabetes increased progressively with rising TyG index, meaning that Patients with the highest TyG index had the higher probability of diabetes in non-obese young individual.





Factors influencing risk of diabetes analyzed by univariate cox proportional hazards regression

The univariate analysis showed that the risk of diabetes was positively associated with DBP, age, BMI, AST, SBP, TG, FPG at baseline, ALT, TyG index, and TC, all with a significance level of P<0.05. Conversely, it was negatively associated with HDL-c (all P<0.05; in Table 2).

Table 2 | Risk of diabetes analyzed by univariate Cox proportional hazards regression.


[image: Table displaying variables including age, gender, BMI, blood pressure, glucose, lipids, enzyme levels, and cholesterol. Each entry shows characteristics, hazard ratios with confidence intervals, and p-values, significant at less than 0.0001 for most entries. Gender shows reference values, with females having a hazard ratio of 0.51.]




The results of multivariable analyses using cox proportional-hazards regression models

Three models were developed using Cox proportional hazards regression to analyze the correlation between the TyG index and the risk of developing diabetes. The initial model, without adjustments, revealed that for every 1-unit rise in the TyG index, there was a 358% increase in the likelihood of progressing to a diabetic state, with a HR of 4.58 (95% CI 4.07-5.15, P<0.0001). In the partially adjusted model, which only considered age and gender, each 1-unit increase in the TyG index showed a 263% rise in the likelihood of developing diabetes, with a HR of 3.63 (95% CI 3.16-4.17, P<0.0001). The fully adjusted model demonstrated that a 1-unit increase in the TyG index was linked to a 257% increase in the likelihood of diabetes, with a HR of 3.57 (95% CI 2.92-4.36, P<0.0001). The confidence intervals’ distribution indicates the robustness of the connection between the TyG index and diabetes risk (Table 3). Moreover, we transformed the TyG index from continuous to categorical and incorporated the grouped TyG index back into the analysis. The outcomes from the adjusted multivariate model displayed that in comparison to those in Q1, the HR for individuals in Q2-Q4 were 1.15, 1.63, and 5.5 respectively. This indicates that relative to those in Q1, the risk of progressing to diabetes increased by 15% for Q2, 63% for Q3, and 450% for Q4 participants (Table 3, Model II). Upon segregating the total population into Chinese and Japanese subgroups (Supplementary Tables 3, 4), the findings were consistent for both Chinese and Japanese cohorts compared to the overall sample.

Table 3 | Relationship between TyG index and risk of diabetes in different models.


[image: Table showing the hazard ratios and confidence intervals for TyG index across four quartiles in different models: Crude, Model I, Model II, and Model III. Q1 is used as a reference. Q2, Q3, and Q4 show increasing hazard ratios with corresponding p-values indicating statistical significance. Trend p-values are below 0.0001 across all models.]




Sensitivity analysis

To ensure the reliability of our conclusions, a series of sensitivity analyses were carried out. Initially, Model III of the generalized additive models (GAM) was used, which included additional smoothing terms for different variables and showed a HR of 3.63 (2.73-4.83, P < 0.0001) (Table 3, Model III). Following this, individuals with SBP>140 mmHg (3,631 participants) were excluded. After adjusting for confounding variables, the results consistently indicated a positive correlation between the TyG index and the risk of diabetes (HR = 3.62, 95% CI: 2.93-4.47, p < 0.0001). In a subsequent sensitivity analysis, participants with DBP>90 mmHg (N= 3,779) were removed. Even after accounting for confounding factors, the outcomes continued to show a sustained positive relationship between the TyG index and the risk of diabetes (HR=3.63 95% CI: 2.94-4.48, p < 0.0001). An additional analysis focusing solely on male participants revealed a HR of 2.96 (95% CI: 2.33-3.77, p < 0.0001). Our comprehensive sensitivity analyses support the credibility of our findings (Table 4).

Table 4 | Relationship between TyG index and the risk of diabetes in different sensitivity analyses.


[image: Table showing results of three models analyzing the TyG index. Crude model I shows a hazard ratio (HR) of 3.62, with a 95% confidence interval (CI) of 2.93 to 4.47 and a P-value less than 0.0001. Model II shows an HR of 3.63 (2.94 to 4.48 CI) with P-value less than 0.0001. Model III shows an HR of 2.96 (2.33 to 3.77 CI) with P-value less than 0.0001. Quartile data is also provided with adjusting variables and details of the models included.]




Cox proportional hazards regression model with cubic spline functions to account for nonlinearity

A relationship between the TyG index and the risk of diabetes was observed in our study, as shown in Figure 5, Table 5. Initially, a Cox proportional hazards regression model was applied using cubic splines to analyze how the TyG index is associated with diabetes risk. The findings pointed towards a nonlinear link between the TyG index and the risk of developing diabetes. To delve deeper into this association, we investigated using a two-piecewise Cox proportional hazards regression model. The standard Cox regression model exhibited a significant HR of 3.57 (95% CI: 2.92-4.36) with a P value of <0.0001, signaling a strong correlation between the TyG index and diabetes risk. Interestingly, a pivotal point at 7.3 for the TyG index was identified. Below this threshold (<6.3), the HR sharply increased to 0.34 (95% CI: 0.06-1.88) with a P value of <0.0001. Conversely, for values equal to or greater than the turning point (≥7.3), the HR was 3.70 (95% CI: 3.02-4.52) with a P value of 0.037.

[image: Graph showing the log hazard ratio (HR) for diabetes risk against the TyG index. The main line, in red, shows non-linearity with a significant p-value less than 0.001. The inflection point is indicated at a TyG index of 7.3. Blue lines represent confidence intervals.]
Figure 5 | The non-linear relationship between TyG index and the risk of diabetes in non-obese young participants. We used a Cox proportional hazards regression model with cubic spline functions to evaluate the relationship between TyG index and risk of diabetes. The result showed that the relationship between the TyG index and risk of diabetes in non-obese young participants was non-linear, with the inflection point of TyG index being 7.3.

Table 5 | The result of the two-piecewise Cox proportional hazards regression model.


[image: Table comparing Cox regression models for diabetes outcome. Standard Cox regression shows a hazard ratio (HR) of 3.57 with a 95% confidence interval (CI) of 2.92 to 4.36 and a p-value less than 0.0001. The two-piecewise Cox regression model reveals an inflection point of the TyG index at 7.3. For TyG index below 7.3, HR is 0.34 (0.06, 1.88) with a p-value of 0.2161. For TyG index 7.3 and above, HR is 3.70 (3.02, 4.52) with a p-value less than 0.0001. P for trend is 0.037.]




Subgroup analysis

Figure 6 illustrates a comprehensive subgroup analysis that was performed. Variables such as age, BMI, gender, systolic and diastolic blood pressures, as well as nationality, did not modify the correlation between the TyG index and the likelihood of developing diabetes. Consequently, no substantial correlations were observed between these factors and the TyG index (all interaction P values > 0.05). Furthermore, a subgroup analysis was carried out based on nationality, revealing consistent outcomes for both Chinese and Japanese cohorts.

[image: Forest plot showing hazard ratios (HR) with 95% confidence intervals for various variables, including age, BMI, gender, blood pressure, and nation. Significant results with p-values less than 0.05 are marked, indicating higher risk associations for categories like age below thirty, BMI greater than or equal to eighteen, and being male. Each category includes a HR value with its confidence interval.]
Figure 6 | Effect size of TyG index on diabetes in prespecified and exploratory subgroups.






Discussion

This retrospective cohort study investigated the association between the TyG index and the risk of diabetes among non-obese young adults. By conducting a long-term follow-up study of 123,058 non-obese young participants, including 113,509 Chinese and 9,459 Japanese, we found a significant increase in risk of diabetes associated with higher TyG index values. Moreover, a L-shaped curve was observed. When the TyG index reached or exceeded 7.3, each additional unit increase in the TyG index was associated with a 270% increased risk of diabetes among non-obese young adults (HR 3.7, 95% CI 3.02-4.52, P < 0.001); whereas for TyG indices below 7.3, an increase in TyG index did not increase the prevalence of diabetes (HR 0.34, 95% CI 0.06-1.88, P < 0.001). This suggests that maintaining a TyG index below 7.3 could potentially reduce the risk of diabetes in non-obese young people.

According to the International Diabetes Federation (IDF), the global prevalence of diabetes is on the rise (29). It is estimated that approximately 8.8% of the global adult population had diabetes in 2013, with the prevalence expected to rise to 10.1% by 2030 (30). In some countries, especially in developed regions, the prevalence of diabetes is particularly high (31). Over the past 20 years, the prevalence of diabetes in China has shown a significant upward trend, from 2.5% in 1994 to 11.6% in 2010, more than doubling (32). Predictions suggest that by 2030, the prevalence of diabetes in China will further increase, potentially affecting up to 42.3 million individuals (33).

Recent years have seen a trend towards younger ages at diabetes onset (34). A study reported that 26.9% of participants under the age of 45 were diagnosed with diabetes or likely diabetes (35). Although obesity is a significant risk factor for diabetes, the incidence of diabetes among the non-obese population is also rising. Research indicates that even individuals who are normal weight or underweight can develop type 2 diabetes (34). It has been observed that while most cases of type 2 diabetes (T2D) occur in obese individuals, a small percentage of T2D patients are underweight or of normal weight (36). Thus, it is crucial for non-obese young adults to identify early signs of diabetes.

Previous studies have commonly utilized the TyG index for the evaluation of insulin resistance (IR) (37). Research results indicate a positive association between the TyG index and diabetes risk within the overall population (38). A cohort study with 201,298 Chinese participants and an average follow-up of 3.12 years revealed that adjusting for relevant factors, Cox proportional hazards regression analysis indicated a 234% higher risk of diabetes for each increment in the TyG index (HR = 3.34, 95% CI 3.11–3.60). Additionally, a notable non-linear association was observed between the TyG index and the likelihood of developing diabetes in the future (20). Another retrospective cohort study involving 25,159 American participants observed that each unit increase in the TyG index increased the risk of diabetes by 181% (HR = 2.81, 95% CI 2.62–3.01), with the association between TyG and the prevalence of prediabetes and diabetes being nonlinear, and the threshold identified at 8.0 (21). Additionally, one study suggested a U-shaped relationship between the TyG index and risk of diabetes in a normoglycemic population, recommending a TyG index of 7.27 for men and 7.97 for women for the lowest risk of diabetes (19). Besides these studies, some have focused on specific populations, including a retrospective cohort study involving 15,464 Japanese participants with different obesity profiles, which, after adjusting for potential confounders, observed that each unit increase in the TyG index was associated with a 70% increased risk of diabetes (HR = 1.70, 95% CI 1.34–2.16) (22). However, to date, no cohort studies have explored the relationship between the TyG index and risk of diabetes among non-obese young adults. Given the large population base in Asian countries, particularly China and Japan, this study aims to explore the association between the TyG index and risk of diabetes among non-obese young adults in these regions.

Our findings align with those of Zhang, et al. and Li, et al. (21, 38). Our study also found a positive correlation between the TyG index and risk of diabetes. In our research, after adjusting for relevant variables, each unit increase in the TyG index was associated with a 257% increase in the risk of diabetes (HR = 3.57, 95% CI 2.92-4.36). However, our study targeted a very large sample of non-obese young individuals in Asia (China and Japan). Furthermore, our study also recorded a nonlinear association and threshold effect between the TyG index and risk of diabetes, but our results showed an L-shaped relationship, with our threshold identified at 7.3. When the TyG index was ≥7.3, the risk of diabetes increased with an increase in the TyG index; whereas when the TyG index was <7.3, an increase in the TyG index did not increase the prevalence of diabetes. This suggests that maintaining a TyG index below 7.3 might reduce the risk of diabetes. When the TyG index is above 7.3, the speed of increase in risk of diabetes accelerates with an increase in the TyG index. Additionally, unlike other studies, our threshold is lower, indicating that early intervention to reduce the TyG index is particularly necessary for the non-obese young adult population to lower the incidence of diabetes.

Our study has significant clinical implications. We have discovered a non-linear association between the TyG index and diabetes risk in non-obese young adults. Monitoring the TyG index can help prevent diabetes. Specifically, when the TyG index reaches or exceeds 7.3, a significant reduction in diabetes risk can be achieved by lowering fasting blood glucose and triglycerides. Conversely, when the TyG index is below 7.3, the incidence of diabetes remains relatively low. Therefore, we recommend early lifestyle modifications for non-obese young adults, including reducing the intake of high-fat foods, increasing physical activity, and managing blood glucose levels to maintain a low TyG index, particularly below 7.3. These measures effectively reduce the risk of developing diabetes.

The substantial difference in HR on either side of this threshold is attributed to physiological and metabolic variations linked to the TyG index. TyG levels above 7.3 may suggest insulin resistance and dyslipidemia, both recognized as precursors to diabetes. Below this threshold, individuals may show enhanced insulin sensitivity and lipid profiles, thereby reducing the risk of diabetes development. This discovery emphasizes the critical need to account for TyG index thresholds when evaluating diabetes risk in non-obese groups. Further research could clarify the mechanisms behind these connections and guide interventions aimed at reducing the TyG index to mitigate diabetes risk.

This study has several significant strengths that merit recognition. First, our research is the first to explore the association between the TyG index and risk of diabetes among non-obese young adults, especially across multiple Asian countries (China and Japan), with a large sample size that enhances the statistical power of the study, thereby increasing the reliability and stability of the findings. Long-term follow-up helps better observe the causal relationships, as continuous observation of the relationship between exposure and outcomes can more accurately assess the impact of exposure factors on outcomes. Second, the study delves into the nonlinear relationship between the TyG index and risk of diabetes and identifies the turning point. Third, a range of extensive sensitivity analyses were carried out to further confirm the results of the research. These analyses included integrating continuous covariates into curves using generalized additive models (GAM). Furthermore, analyses were performed on subgroups and interactions to enhance the validity and consistency of our findings.

However, some potential limitations of the study need to be considered. First, as this is a retrospective study, researchers could not control the data collection and recording process, which may lead to incomplete and inaccurate information retrieval; therefore, conducting randomized controlled trials or prospective studies is imperative. Additionally, retrospective studies are susceptible to selection bias and information bias. Second, the study population included only Asian participants, primarily from China and Japan, which may limit the applicability of the study findings in other regions. Therefore, further research is needed to explore the association between the TyG index and risk of diabetes in different regions, such as the Middle East and India. Third, as this study relied on secondary analysis of published data, it may be affected by issues with the quality of the original data, such as missing, erroneous, or inconsistent data, which could affect the accuracy and reliability of the analyses. And the original data did not include factors such as genetics, lifestyle, and environment, which precluded an assessment of how these variables might influence the association between the TyG index and diabetes risk. Additionally, the researchers could not control for variables in data collection, which may include potential confounders or unconsidered factors that could affect the accuracy of the analysis results. Therefore, these shortcomings need to be cautiously considered and supplemented with other research methods for a comprehensive analysis. Finally, as an observational study, this research established a conjectural association between the TyG index and the risk of diabetes, rather than establishing causality. Care should be taken in interpreting the results, as causality cannot be concluded based solely on this study.





Conclusion

In the non-obese young adult populations of Asia (China and Japan), this study found a positive correlation and a nonlinear relationship between the TyG index and the risk of diabetes. Specifically, when the TyG index exceeded 7.3, there was a clear positive correlation between the TyG index and risk of diabetes. However, when the TyG index was below 7.3, no trend was observed indicating an increase in risk of diabetes with an increase in the TyG index. Therefore, for non-obese young adults, it is advisable to implement interventions to lower triglycerides or fasting blood glucose levels, effectively reducing the likelihood of a TyG index below 7.3. These intervention measures are expected to significantly reduce the risk of diabetes.
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Background

Metabolic syndrome (MetS), characterized by central obesity, insulin resistance, dyslipidemia, and hypertension, affects 20-25% of the global population. The creatinine-to-cystatin C ratio (CCR) is an indicator of skeletal muscle mass. While CCR may play a role in MetS development, sex differences in these associations are not fully understood. Therefore, this study aimed to investigate how CCR levels are associated with MetS in a Chinese adult population, focusing on possible sex disparities.





Method

We conducted a retrospective cross-sectional analysis of 9,376 adults from Xiamen Chang Gung Hospital between 2014 to 2016. We examined the relationship between CCR and MetS, adjusting for cardiometabolic risk factors.





Results

The prevalence of MetS was 24.7% in males and 18.0% in females. Interestingly, we observed significant sex differences in the association between CCR quartiles and MetS. Females in the lowest CCR quartile had a significantly higher risk of MetS (odds ratio=1.84). Receiver operating characteristic curve analysis revealed acceptable diagnostic power of CCR for MetS in females (area under the curve=0.65) but not in males.





Conclusion

Our findings suggest that CCR is an independent risk factor for MetS in females, highlighting the importance of sex-specific assessments when evaluating MetS risk.
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1 Introduction

Metabolic syndrome (MetS) is a cluster of integrated metabolic abnormalities, including central obesity, insulin resistance, dyslipidemia, and hypertension (1). These factors not only increase the risk of developing cardiovascular disease and type 2 diabetes (T2DM) (2), but also directly influence their incidence (3). In addition, MetS is associated with an increased risk for various other diseases, such as hyperuricemia, non-alcoholic fatty liver disease, sleep apnea, polycystic ovarian syndrome, colorectal cancer, liver cancer, pancreatic cancer, and breast cancer (3, 4).

Global statistics show a consistent rise in MetS prevalence over the past three decades, mirroring the increasing rates of T2DM and obesity worldwide. Estimates suggest that by 2018, approximately 20-25% of the global population will be affected by MetS (3, 5). In the Asia-Pacific region alone, the estimated prevalence in 2017 ranged from 11.9% to 37.1% (6). Mainland China reported an average prevalence rate of 24.2% (24.6% in men and 23.8% in women) between 2010 and 2012 (7). These figures highlight the significant public health burden of MetS, affecting both developed and developing nations.

Cystatin C (CysC) a 13 kDa protein, is considered a more ideal endogenous marker of estimated glomerular filtration rate compared to creatinine or creatinine clearance. This is because CysC is freely filtered by the glomeruli and entirely reabsorbed and catabolized in the proximal tubules, whereas creatinine undergoes partial tubular secretion (8).

Beyond its role in kidney function, CysC belongs to the cysteine protease inhibitor family and plays a part in regulating cardiovascular plaque stability (9). Research suggests a connection between CysC and the extracellular matrix of arterial walls and adipocytes (10, 11). Elevated CysC levels have been detected in various organs throughout the human body, including the lungs, brain, and adipose tissue (12).

CysC has been linked to several chronic diseases, including cardiovascular disease (13–15), early-stage renal dysfunction (8, 14), and metabolic diseases such as obesity, aging, hypertension, hyperlipidemia, diabetes (16), and MetS (17, 18). The mechanism by which CysC affects MetS is thought to be associated with renal insufficiency, insulin resistance, inflammatory and agglutination mediators, metabolic hyperactivity, and oxidative stress (11, 18). While most studies have found serum CysC concentrations to be independent of sex (19–21), some research suggests potential sex differences (22).

The Scr-to-CysC ratio (Scr/CysC ×100, CCR), also known as the sarcopenia index (23), has emerged as a biomarker for skeletal muscle mass assessment since 2013 (24). Unlike traditional methods like computed tomography or dual-energy X-ray absorptiometry, CCR offers advantages in terms of accessibility and affordability (24). Studies consistently show a correlation between CCR and muscle mass, making it a potential predictor of sarcopenia, especially in individuals with T2DM (25).

Furthermore, CCR’s denominator, CyC, is a marker of serious disease that activates cathepsin production. Therefore, a low CCR not only indicates low muscle mass but also suggests potential underlying health issues (26, 27). The clinical utility of CCR appears promising and warrants further investigation across various pathological conditions (23). However, guidelines or consensus regarding its use have not been definitively established.

Previous research suggests that estrogen and testosterone influence muscle synthesis and fat distribution (28). However, the impact of sex on the association between CCR and MetS remains inconclusive. Therefore, this study aims to examine the correlation between CCR and MetS, with a specific focus on potential sex differences in this relationship.




2 Materials and methods



2.1 Study designs and participants

This retrospective cross-sectional study was conducted at Xiamen Chang Gung Hospital from January 2014 to December 2016. We retrospectively collected data from all participants aged >18 years old who underwent standard clinical evaluation and blood biochemistry testing at the hospital’s Physical Examination Center. Self-reported health questionnaires were completed at the center. Physical examination and venous blood sampling were then conducted if participants had fasted for more than 12 hours or self-reported not being pregnant. Trained research nurses assisted participants throughout the process.

Exclusion criteria were applied to eliminate factors that could affect metabolic test results or body composition. These included: (1) current use of steroids, which can affect metabolism (n=45); and (2) chronic diseases that could significantly impact CCR levels or metabolism, such as cardiovascular disease (including heart failure, myocardial infarction, and stroke [n=18]), chronic hepatitis and cirrhosis (n=86), and thyroid disease (n=49). The study protocol was approved by the Xiamen Chang Gung Medical Foundation Institutional Review Board (IRB numbers: XMCGIRB2022103). All methods adhered to relevant guidelines and regulations. Ultimately, 9,376 participants, comprising 5,222 men and 4,154 women, were deemed eligible for analysis.




2.2 Data collection

We systematically gathered data on various covariates, including demographics (age and sex), anthropometry (height, weight, and waist circumference), blood pressure (BP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), fasting blood glucose, serum creatine (Scr), and serum CysC. Participants self-reported their medical history, including current diseases and medications, which were documented in a standardized format.




2.3 MetS definition

We diagnosed MetS according to the Third Adult Treatment Panel criteria of the National Cholesterol Education Program. A participant was classified as having MetS if they met at least three of the following five criteria: 1) high BP (systolic BP [SBP] ≥130 mmHg and/or diastolic BP [DBP] ≥85 mmHg, under treatment, or previously diagnosed with hypertension); 2) high serum TGs (≥1.7mmol/L or under treatment); 3) decreased HDL-C (<1.03mmol/L for males and <1.29mmol/L for females, or under treatment); 4) hyperglycemia (fasting blood glucose ≥5.6mmol/L, under treatment, or previously diagnosed with T2DM); and 5) abdominal obesity (waist circumference cutoffs were modified for Asian populations, ≥90 cm for men and ≥80 cm for women). A participant was diagnosed with MetS if they had a waist circumference exceeding the threshold along with two other risk factors, or a waist circumstance within the threshold but with three or more other risk factors.




2.4 Assessment of potential covariates

Information on covariates like age, sex, pregnancy status, and comorbidities (hypertension, ischemic heart disease, acute infection, liver disease, T2DM, tumor, etc.) was collected through hospital information systems and face-to-face interviews. Body weight and height were measured following standard protocols. Waist circumference was measured at the midpoint between the iliac crest and the lowest rib. Body mass index (BMI) was calculated as weight divided by height squared (kg/m²). BP was measured three times using an automated sphygmomanometer after participants rested in a seated position for 15 minutes. The average of the readings was used for SBP and DBP. Mean arterial pressure (MAP) was calculated using the formula: (2/3) × DBP + (1/3) × SBP. We adjusted for potential confounders by performing three models of MetS analysis: Model 1, unadjusted analysis; Model 2, adjusted for age and fasting glucose level; and Model 3, adjusted for variables in Model 2, plus TG, HDL-C, and LDL-C levels.

Fasting plasma glucose was measured using a modified hexokinase enzymatic assay (Cobas Mira Chemistry System; Roche Diagnostic Systems, Montclair, New Jersey, USA). The biochemical autoanalyzer (DxC 800, Beckman Coulter UniCel DxCSYNCHRON, Ireland) was used to measure TC, HDL-C, and TG. Blood samples were collected by experienced nurses after a minimum 12-hour fast.




2.5 Measurement of CysC, Scr, and CCR

Scr concentration (mg/dL) and CysC concentration (mg/L) were measured using a turbidimetric immunoassay on the Abbott ARCHITECT c8000/c16000 analyzer (Abbott Laboratories, Abbott Park, Illinois, USA). Renal function was assessed by calculating CCR using the formula: Scr (mg/dL)/CysC (mg/L) × 100. Participants were then divided into four groups based on their CCR quartiles: Q1 (lowest), Q2, Q3, and Q4 (highest).




2.6 Statistical analysis

Parametric continuous variables were expressed as mean ± standard deviation (SD). Categorical data were presented as frequencies (percentages). Differences between groups for categorical variables were assessed using the chi-square test. Student’s t-test was used for normally distributed continuous variables, while the Mann-Whitney U test was used for non-normally distributed variables. Additionally, a one-way analysis of variance was used to assess differences between groups for continuous factors, followed by a Bonferroni post-hoc test for pairwise comparisons if the overall relationship was significant.

The relationship between MetS risk factors and CCR quartiles was examined using both univariate and multivariate logistic regression analyses. Results are presented as odds ratios (OR) with their corresponding 95% confidence intervals (CI). Receiver operating characteristic curves were generated to evaluate the cut-off point value and predictive power of CCR for MetS diagnosis. All statistical analyses were performed using SPSS version 25.0 (SPSS, Chicago, IL, USA). A two-tailed p value <0.05 was considered statistically significant.





3 Results

Our analysis included 5,222 men and 4,154 women with an average age of 47 years in both groups. The prevalence of MetS was 24.65% in men and 17.98% in women. Table 1 summarizes the baseline characteristics, including cardiometabolic risk factors. Men had significantly higher mean values (p-value <0.001) compared to women in BMI, waist circumference, waist-to-height ratio, MAP, fasting glucose, TC, TG, LDL-C, HDL-C, and TG/HDL-C ratio. Additionally, serum creatinine, CysC, and the CCR, were all significantly higher in men (96.03 ± 17.52 µmol/mg vs. 85.76 ± 17.00 µmol/mg).

Table 1 | Basic characteristics of the study subjects.


[image: Table comparing various health variables between men and women, including BMI, waist circumference, glucose levels, cholesterol types, and metabolic syndrome prevalence. Significant differences exist in most variables, indicated by p-values less than 0.001.]
Table 2 presents the correlation and trend analyses between different CCR quartiles and various parameters in both male and female groups. In females, there was a significant difference (p <0.05) and an incremental increase (p for trend <0.05) across CCR quartiles for age, BMI, waist-to-hip ratio, MAP, fasting glucose, TC, LDL-C, HDL-C, Scr, CysC, CCR, and MetS prevalence. For males, age, BMI, waist-to-hip ratio, waist circumference, MAP, fasting glucose, TC, TG, LDL-C, HDL-C, TG/HDL-C, Scr, CysC, CCR, and MetS all showed significant associations with CCR levels (p <0.05). Notably, MAP and TGs did not exhibit an incremental increase across CCR quartiles in males.

Table 2 | Correlation of sex-specific creatinine-to-cystatin C ratio level with different cardiometabolic risk factors.
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We used three models to examine the relationship between CCR quartiles and MetS, stratified by sex. Model 1 included no adjustments, Model 2 adjusted for age and fasting glucose, and Model 3 adjusted for all variables in Model 2, plus TG, HDL-C, and LDL-C levels. Multivariate logistic regression was used to analyze the relationship between sex-specific CCR quartiles and MetS based on these models.

Table 3 shows that in females, the lowest CCR quartile (quartile 1) was significantly related to MetS in all models (p <0.001). This association remained significant even after full adjustment in Model 3 (OR 1.84, p=0.002, 95% CI 0.82-1.32). Conversely, in males, the initial significant correlation between CCR and MetS was no longer present after adjustments were made.

Table 3 | Logistic regression analysis of creatinine-to-cystatin C ratio level and metabolic syndrome models.
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We performed receiving operator characteristic curve analysis to determine CCR cut-off values for detecting MetS in males and females. The results are presented in Table 4, Figure 1. For males, Youden’s index identified a cut-off point of 96.72. However, the area under the curve was 0.53 (95% CI 0.52-0.54), indicating only moderate discriminatory power. Additionally, the sensitivity was 57.3% and the specificity was 47.9%. In contrast, the female group showed a CCR cut-off value of 80.95 with an area under the curve of 0.65 (95% CI 0.64-0.67), indicating acceptable discriminatory power. Furthermore, the sensitivity was 58.9% and the specificity was 64.8%. These findings suggest that CCR may be a better diagnostic tool for MetS in females compared to males.

Table 4 | Cut-off value and prediction power for sex-specific creatinine-to-cystatin C ratio level.


[image: Table showing evaluation metrics for CCR level by gender. For males (n=5,954), AUC is 0.53, confidence interval 0.52 to 0.54, p value 0.001, cut-off 96.72, sensitivity 57.3%, specificity 47.9%. For females (n=4,185), AUC is 0.65, confidence interval 0.64 to 0.67, p value <0.001, cut-off 80.95, sensitivity 58.9%, specificity 64.8%.]
[image: Two ROC curves labeled A and B compare diagnostic test performances. Both plots show sensitivity versus one minus specificity, with blue curves above diagonal red lines, indicating effectiveness. Axes range from 0 to 1.]
Figure 1 | Receiver Operating Curve (ROC) analyses for creatinine-to-cystatin C ratio (CCR) levels as a predictor of metabolic syndrome stratified by sex. (A) Men (B) Women. The ROC curve indicates that CCR levels could potentially act as a marker for metabolic syndrome, especially in females.




4 Discussion

Our large-scale study is the first to investigate how the relationship between MetS and CCR levels varies across sexes. In females, we found a notable correlation between CCR levels and MetS, with a potential threshold of 80.95. This suggests that CCR may be a valuable biomarker for detecting and potentially mitigating MetS risk in women. These insights are crucial for healthcare providers and policymakers, informing the development of sex-specific interventions and management approaches for MetS.

The CCR ratio reflects the balance between fat and muscle mass. Patients with MetS, particularly women, may benefit from incorporating resistance training alongside aerobic exercise to build muscle mass and improve their CCR ratio. Additionally, a protein-rich diet can further contribute to muscle mass gain, potentially lowering MetS risk in females. Given the strong association between MetS and cardiovascular risk, the Pooled Cohort Risk Assessment Equation can be used alongside CCR in females for comprehensive risk assessment and cardiovascular event prediction (29).

Since CCR can serve as a sarcopenia index, women with sarcopenia may be more susceptible to MetS development compared to men. Studies suggest a stronger link between muscle mass loss and insulin resistance in women (30, 31). However, some research indicates that age and sex might not be independent risk factors for both CCR and T2DM (32–34).

For example, a study by Komorita et al. found that males had higher average CCR values compared to postmenopausal females (0.94 ± 0.14 vs. 0.73 ± 0.12). Interestingly, males with higher CCR quartiles, exhibited significant reductions in calcium intake, glycated hemoglobin levels, and insulin therapy rates. In contrast, postmenopausal females with higher CCR quartiles had a lower average BMI and a lower incidence of fragility fractures. Notably, CCR remained strongly correlated with fractures even after adjusting for BMI and blood glucose levels (35).

The higher CCR in males might be linked to hormonal differences, such as higher insulin-like growth factor-1 and testosterone levels (36). Moreover, sex disparities in fat accumulation and distribution could also play a role. Women naturally tend to store more fat, potentially as an energy reserve for future pregnancy and lactation (37). Estrogen further influences white adipose tissue distribution, promoting subcutaneous fat accumulation and inhibiting the expansion of visceral fat (38). More research is required to definitively understand the impact of sex on CCR.

Qiu et al. conducted a four-year longitudinal study in elderly Chinese individuals, finding that higher CCR was associated with a reduced risk of T2DM in a non-linear fashion. The study also observed correlations between CCR and BP, glycated hemoglobin, blood lipids, and C-reactive protein (CRP) (32). Another study by Qiu et al. involving over 5,000 healthy Chinese elderly participants, showed an inverse relationship between CCR and both BMI and waist-to-hip ratio in men. Additionally, higher CCR was linked to a significant decrease in T2DM risk. The study also highlighted a non-linear association between normalized CCR measures and T2DM (33). The potential mechanism for the association between CCR and blood glucose is thought to be related to sarcopenia, as skeletal muscle plays a crucial role in regulating blood sugar levels after meals (25, 39, 40). Reduced muscle glucose uptake can lead to abnormal carbohydrate metabolism and high blood glucose levels (25, 40).

CysC levels may also be linked to metabolic health. Its gene is highly expressed in adipose tissues, and obesity can increase CysC production by two to threefold (12). Subcutaneous and omental fat tissues significantly overexpress CysC, impacting adipose tissue and vascular health by inhibiting cathepsins, enzymes that influence fat tissue function and contribute to obesity-related issues.

Uygur et al.’s study highlighted the significance of epicardial adipose tissue (EAT) volume as a predictor of cardiovascular events in T2DM patients. They found that patients with higher EAT volumes had a significantly higher incidence of major adverse cardiac events (41).

A longitudinal study by Magnusson et al. involving 28,449 subjects over 16 years demonstrated that CysC levels can predict the onset of MetS. This correlation was significantly associated with visceral fat, suggesting that increased baseline CysC levels are linked to the development and long-term progression of abdominal obesity (34).

An et al.’s research supports the use of CCR as a tool for body composition assessment. Currently, the understanding of the relationship between CCR and adiposity is mainly based on CysC levels (42). However, further research is needed to definitively establish the role of CCR in reflecting visceral fat and muscle mass.

Increased fat tissue contributes to oxidative stress and inflammation, which can promote insulin resistance and dyslipidemia. Studies have shown a positive correlation between CysC and TG, TC, and LDL-C, along with a negative association with HDL-C. Salman et al. reported this association in children and adolescents (43), while Harada et al. found a link between high CysC levels and high TG/HDL-C ratios in Japanese boys aged 12-15 (44).

The proposed mechanism involves several steps. Fat accumulation leads to hyperinflation, increased glomerular permeability, and glomerular hypertension. These factors promote oxidative stress, inflammation, apoptosis, and renal scarring. Additionally, the reabsorption of cholesterol and fatty acids by tubular epithelial cells induces tubulointerstitial inflammation. This inflammation stimulates the formation of foam cells and damages glomerular cells. Furthermore, lipoprotein deposition in mesangial cells may promote extracellular matrix components, ultimately leading to glomerulosclerosis (45).

Chronic kidney disease creates a vicious cycle. Systemic mineral imbalance, or hyperphosphatemia, promotes atherosclerosis progression (46). A 2022 Japanese study by Y. Hashimoto found a positive correlation between CCR and subclinical atherosclerosis prevalence in individuals with T2DM (47). Vascular calcification increases arterial stiffness, contributing to systolic hypertension development (48). Furthermore, CysC levels positively correlated with SBP and DBP. Elevated BP damages the intrarenal vasculature, leading to renal ischemia and glomerulosclerosis (49). MetS components, including obesity, insulin resistance, dyslipidemia, and hypertension, individually increase the risk of renal dysfunction. In obesity, inflammatory cytokine increase and compression of the renal hilum by visceral adipose tissue activate the renin-angiotensin-aldosterone system (50). The combination of low muscle mass and high visceral fat tissue may lead to higher SBP in elderly females. This is because they have lower muscle mass and higher adipose tissue content compared to males (51).

Our study has several limitations. The cross-sectional design restricts our ability to establish a causal relationship between CCR and MetS. Prospective longitudinal cohort studies are necessary to definitively confirm this association. Additionally, our study population consisted of healthy participants undergoing routine checkups, limiting the generalizability of our findings to patient populations or other clinical settings.

Furthermore, we did not account for potential confounding factors like smoking or CRP levels, which can influence CysC concentration (52). A small study showed an inverse association between CysC and angiotensin II receptor blocker use (53). However, we could not exclude participants using ACE inhibitors due to MetS definitions. The impact of inflammation on CysC levels was also not assessed, and muscle mass was estimated using BMI instead of a more precise method like bioelectrical impedance analysis.

Further research can address these limitations. Longitudinal studies can establish causality and provide a clearer picture of the temporal relationship between sex and MetS development. Increased sample size and diversity would enhance the generalizability and statistical power of the research. Analyses based on confounders like age, BMI, comorbidities, and lifestyle factors could identify specific subgroups where sex might be a more reliable biomarker for MetS risk. This approach would prevent overlooking important subgroups due to generalized findings and could lead to more tailored treatment strategies for specific populations.




5 Conclusions

Our study in Chinese adults identified a correlation between serum CCR levels and MetS in females. CCR may also serve as a potential predictor of sarcopenia. Including CCR analysis in routine medical examinations, particularly for women, could be advantageous for early detection of MetS.
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Introduction

The dysbiosis of the oral microbiome is associated with the progression of various systemic diseases, including diabetes. However, the precise causal relationships remain elusive. This study aims to investigate the potential causal associations between oral microbiome and type 2 diabetes (T2D) using Mendelian randomization (MR) analyses.





Methods

We conducted bidirectional two-sample MR analyses to investigate the impact of oral microbiome from saliva and the tongue T2D. This analysis was based on metagenome-genome-wide association studies (mgGWAS) summary statistics of the oral microbiome and a large meta-analysis of GWAS of T2D in East Asian populations. Additionally, we utilized the T2D GWAS summary statistics from the Biobank Japan (BBJ) project for replication. The MR methods employed included Wald ratio, inverse variance weighting (IVW), weighted median, MR-Egger, contamination mixture (ConMix), and robust adjusted profile score (RAPS).





Results

Our MR analyses revealed genetic associations between specific bacterial species in the oral microbiome of saliva and tongue with T2D in East Asian populations. The MR results indicated that nine genera were shared by both saliva and tongue. Among these, the genera Aggregatibacter, Pauljensenia, and Prevotella were identified as risk factors for T2D. Conversely, the genera Granulicatella and Haemophilus D were found to be protective elements against T2D. However, different species within the genera Catonella, Lachnoanaerobaculum, Streptococcus, and Saccharimonadaceae TM7x exhibited multifaceted influences; some species were positively correlated with the risk of developing T2D, while others were negatively correlated.





Discussion

This study utilized genetic variation tools to confirm the causal effect of specific oral microbiomes on T2D in East Asian populations. These findings provide valuable insights for the treatment and early screening of T2D, potentially informing more targeted and effective therapeutic strategies.





Keywords: oral microbiome, type 2 diabetes, Mendelian randomization, genetic variation, causal inference




1 Introductions

Diabetes mellitus encompasses a range of metabolic disorders related to carbohydrate metabolism, marked by inadequate glucose utilization as an energy source and excessive glucose production due to abnormal gluconeogenesis and/or glycogenolysis, resulting in hyperglycemia (1). Approximately 537 million adults worldwide suffer from diabetes, with over 90% of these cases being type 2 diabetes (T2D), and this number is projected to increase to 783 million by 2045 (2). Recently, large population-based studies have shown that periodontal disease adversely affects glycemic control, diabetes complications, and the progression of T2D (3, 4). Treatment of oral diseases has been demonstrated to improve glycemic control and reduce HbA1c levels (5).

The oral microbiome is the second largest microbial community in the human body, following the gut microbiome. It comprises over 700 species of bacteria, fungi, viruses, and protozoa (6). These microorganisms colonize the teeth, prosthodontic surfaces, mucosal surfaces, and are abundant in saliva (7). The oral microbiome is integral not only to oral diseases such as caries and periodontitis but also to systemic health (8, 9). This influence is mediated through complex interactions with the host immune system, the gut microbiome, and various small molecule metabolites (10), and these interactions can impact systemic health by inhibiting pathogens, modulating the immune response, and affecting nutrient absorption and metabolism (11). Previous studies have indicated that dysbiosis of the oral microbiome is associated with the progression of various systemic diseases, including diabetes (12). For instance, certain periodontal pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans have been directly linked to glycemic control and the risk of developing diabetes (13, 14).

However, compared to the extensive research on the gut microbiome, studies on the oral microbiome were relatively limited and often involved small sample sizes. Traditional observational studies may also suffer from inadequate control of confounding variables and the possibility of reverse causation. Therefore, we employed Mendelian randomization (MR) as an epidemiological tool (15). MR leverages naturally randomized genetic variants at conception as a form of natural experiment to uncover causal relationships between exposures and outcomes, thereby minimizing the potential for reverse causation and confounding biases (16, 17). In this study, we conducted bidirectional two-sample MR analyses to investigate the impact of oral microbiome from saliva and the tongue T2D using single nucleotide polymorphisms (SNPs) as instrumental variables.




2 Materials and methods



2.1 Study design and population

The research workflow is presented in Figure 1. The summary statistics for the metagenome-genome-wide association studies (mgGWAS) of the oral microbiome in East Asian populations were obtained from the research by Liu et al. (18), This study comprised 2017 tongue samples and 1915 salivary samples, derived from a cohort of 2984 healthy Chinese individuals with provided high-depth whole genome sequencing data. In this study, the lowest taxonomic level is species. The composition of the microbiome used in the study was determined by aligning it against 56,213 metagenome-assembled genomes (MAGs), which were organized into 3,589 species-level clusters (SGBs). The criteria for sample inclusion were as follows: a) a variant calling rate exceeding 98%; b) an average sequencing depth greater than 20×; c) no population stratification as evidenced by principal component analysis (PCA); d) the exclusion of related individuals based on pairwise identity by descent calculations. Additionally, a stringent inclusion threshold was applied for variants, requiring a mean depth greater than 8×, Hardy-Weinberg equilibrium (HWE) P-value greater than 10−5, and a genotype calling rate exceeding 98%.
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Figure 1 | Flowchart of the study design.

Summary statistics of T2D were obtained from meta-analyses of GWAS conducted by Spracklen et al (19), which encompassed 77418 T2D cases and 356122 controls (effective sample size, Neff=211793) of East Asian individuals from 23 GWAS, For each study involved in this meta-analysis, variants were excluded according to the following criteria: a) mismatched chromosomal positions or alleles compared to the reference panel; b) ambiguous alleles (AT/CG) with a minor allele frequency (MAF) greater than 40% in the reference panel; or c) discrepancies in allele frequencies exceeding 20% when compared to East Asian-specific allele frequencies. This study was designated as the discovery cohort. Furthermore, we utilized the T2D GWAS summary statistics from the Biobank Japan (BBJ) project as a replication cohort (20), comprising 45383 T2D cases and 132032 controls of East Asian individuals. There is no sample overlap between the exposure and the outcome. The details of these datasets are shown in Supplementary Table 1.




2.2 Instrumental variables selection

In MR analysis, we employed the PLINK clumping (21) function to identify a sufficient number of independent instrumental variables (IV), which reduces linkage disequilibrium (LD) among associated genetic variants, avoids multicollinearity due to LD, and mitigates biases caused by weak instruments. Initially, we selected instrumental variables based on a genome-wide significance threshold of P <5×10-8 to test our hypothesis. However, due to the limited number of instruments available at this threshold, we adopted a more lenient threshold to ensure the robustness of our analysis: p1 = 5×10-6, p2 = 1×10-5, kb=10000Kb, and r2 = 0.001, to identify top loci. SNPs with a minor allele frequency (MAF) < 0.01 are generally considered rare SNPs, which have a limited impact on traits. Hence, only SNPs with MAF ≥ 0.01 were retained. Additionally, we applied Steiger filtering (22) to the instrumental variables and excluded instruments with F-statistics (F= (beta/se) 2) < 10 to mitigate the impact of weak instrumental variables (23).




2.3 Bidirectional MR analysis

We utilized six MR analysis methods to investigate the impact of oral microbiome from saliva and tongue dorsum on T2D, including Wald ratio, inverse variance weighting (IVW) (17), weighted median (WM) (24), MR-Egger (25), Contamination mixture (ConMix) (26), robust adjusted profile score (RAPS) (27). For MR analyses with only one instrumental variable, we employed the Wald ratio as the primary analysis method. Additionally, as the RAPS method could produce consistent results in the presence of weak and pleiotropic SNPs, it was utilized for supplementary validation in MR analyses with only one instrumental variable. IVW was chosen as the primary analysis method for MR analyses with multiple instrumental variables, given its robustness. The ConMix method explicitly models multiple potential causal estimates and infers various causal mechanisms linked to the same risk factor, each impacting the outcome to different extents. MR-Egger regression offers estimates corrected for pleiotropy. The WM estimator, which calculates the median of the weighted estimates, provides a consistent effect even when up to half of the instrumental variables are pleiotropic. We applied FDR for multiple testing correction, with FDR<0.05 indicating significance and P < 0.05 suggestive significance.

We conducted various heterogeneity and pleiotropy analyses to evaluate the robustness of our results against potential violations of multiple MR assumptions. a) Heterogeneity was assessed through the Cochran Q test of IVW and MR-Egger methods; b) Horizontal pleiotropy was evaluated using MR-Egger’s intercept. The same approach was applied to reverse MR analyses to mitigate spurious results arising from reverse causation. Additionally, a stricter threshold was applied for instrumental variables with T2D as the exposure (p1 = 5×10-8, p2 = 1×10-5, kb=10000Kb, r2 = 0.001) to enhance result reliability.

All the analyses were conducted using R software 4.2.0. The IVW, MR–Egger, WM, MR-RAPS, and ConMix methods were performed using the “TwoSampleMR” package.





3 Results



3.1 Causal effects of oral microbiome in the saliva on the development of T2D

All genetic instruments used in the MR analyses passed the Steiger test. Additionally, the F-statistics for these instruments were greater than 10, indicating strong instrument validity. (Supplementary Tables 2, 3). In the discovery cohort of T2D, a total of 89 bacterial species in saliva (46 genera, 28 families, 20 orders, 11 classes, and 8 phyla) had statistically significant relationships (P < 0.05) with T2D under either the IVW or Wald ratio MR methods. Among these, 48 bacterial species were confirmed to be significant under the RAP method, with consistent effect directions (Figure 2A; Supplementary Table 4). In the replication cohort of T2D, a total of 50 bacterial species in saliva (29 genera, 19 families, 17 orders, 11 classes, and 8 phyla) had statistically significant relationships (P < 0.05) with T2D under either the IVW or Wald ratio MR analysis methods. Among these, 26 bacterial species were confirmed to be significant under the RAP MR analysis method, with consistent effect directions (Figure 2B; Supplementary Table 5).
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Figure 2 | Significant mendelian randomization (MR) results of microbiome in saliva and tongue coating for type 2 diabetes (T2D) in discovery and replication Cohorts. (A) Oral microbiome in saliva showing significant MR results in the discovery cohort. (B) Oral microbiome in saliva showing significant MR results in the replication cohort. (C) Oral microbiome on the tongue showing significant MR results in the discovery cohort. (D) Oral microbiome on the tongue showing significant MR results in the replication cohort. * indicates MR P-value < 0.05.

In both the discovery and replication cohorts, 23 bacterial species were consistently significant under either the IVW or Wald ratio MR methods. Of these, 12 species were positively correlated with the risk of developing T2D (OR > 1), while 11 species were negatively correlated (OR < 1) (Supplementary Table 6). We further examined whether the instrumental variables corresponding to these 23 bacteria were associated with other confounding factors. We found that rs10421891, the instrumental variable for Prevotella unclassified metagenome species (uMGS) 2017, has been reported to exhibit genome-wide significance about heart failure and left ventricular systolic function phenotypes. No associations with other confounding factors were identified for the remaining instrumental variables (Supplementary Table 7).

Notably, in the discovery and replication cohorts, several genera showed significant relationships with T2D risk in at least one MR analysis method other than IVW and Wald ratio. Except for the MR Egger analysis of Haemophilus D, which indicated some heterogeneity (QEgger=4.239, Pheterogeneity=3.95×10-2), the remaining sensitivity analyses of the MR showed no significant heterogeneity or pleiotropy (Figure 3; Supplementary Table 6). These included Pauljensenia, Streptococcus, Lachnoanaerobaculum, Saccharimonadaceae TM7x, Saccharimonadaceae UBA2866, and Saccharimonadaceae uMGS 1898, which were positively correlated with T2D risk, as well as Alloprevotella, Granulicatella, Streptococcus, Saccharimonadaceae uMGS 1251, and Haemophilus D, which were negatively correlated with T2D risk. Reverse MR analysis did not reveal any causal relationships (all P > 0.05, Supplementary Table 8).
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Figure 3 | Significant MR results of oral microbiome in saliva for T2D in both discovery and replication Cohorts. † indicates a P-value < 0.05 in at least one MR method other than IVW or Wald ratio.




3.2 Causal effects of oral microbiome in the tongue on the development of T2D

All genetic instruments employed for MR analyses successfully passed the Steiger test. Furthermore, the F-statistics of these genetic instruments exceeded 10, demonstrating robust instrument strength (Supplementary Tables 9, 10). In the discovery cohort of T2D, we identified 114 bacterial species in saliva (55 genera, 30 families, 21 orders, 11 classes, and 8 phyla) that exhibited statistically significant associations (P < 0.05) with T2D when analyzed using either the IVW or Wald ratio MR methods. Of these, 66 bacterial species were further validated as significant under the RAP method, maintaining consistent effect directions (Figure 2C; Supplementary Table 11). Similarly, in the replication cohort of T2D, 73 bacterial species in saliva (spanning 40 genera, 21 families, 18 orders, 11 classes, and 8 phyla) showed statistically significant associations (P < 0.05) with T2D using IVW or Wald Ratio. Out of these, 44 bacterial species were confirmed as significant via the RAP method, with effect directions remaining consistent (Figure 2D; Supplementary Table 12).

In both the discovery and replication cohorts, 33 bacterial species were consistently significant under either the IVW or Wald ratio MR methods. Within this group, 13 species were positively associated with the risk of developing T2D (OR > 1), whereas 20 species were negatively associated (OR < 1) (Supplementary Table 13). To assess potential associations with other confounding factors, we analyzed the instrumental variables for these 33 bacteria. Our findings indicated that rs4566929, the instrumental variable representing Streptococcus uMGS 2424, has shown genome-wide significance for the body weight phenotype (Supplementary Table 7). For the other instrumental variables, no significant associations with additional confounding factors were detected. Notably, six species remained significant in the MR analysis after FDR multiple corrections (Figure 4; Supplementary Table 13). These include Actinomycetaceae F0332 (genera), Streptococcus uMGS 988, Streptococcus uMGS 2424, and Prevotella uMGS 1437, all of which are positively associated with T2D risk (OR >1), and Catonella uMGS 2059 and Lachnoanaerobaculum sp000287675 MGS 1966, both of which are negatively associated with T2D risk (OR < 1).
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Figure 4 | Significant MR results of oral microbiome on the tongue for T2D in both discovery and replication cohorts. † indicates a P-value < 0.05 in at least one MR method other than IVW or Wald ratio. * indicates that the FDR of the MR is less than 0.05.

Importantly, several genera demonstrated significant associations with T2D risk in at least one MR method other than IVW and Wald ratio in both cohorts. These included Actinomycetaceae F0332, Bacteroidaceae F0040, Prevotella, CAG-917 uMGS 1705, Aggregatibacter, Saccharimonadaceae TM7x, and Streptococcus, which were positively correlated with T2D risk. Conversely, Catonella, Lachnoanaerobaculum, Neisseria, Haemophilus D, Saccharimonadaceae TM7x, and Veillonellaceae F0422 were negatively correlated with T2D risk (Figure 4; Supplementary Table 13). Reverse MR analysis did not reveal any causal relationships (all P > 0.05). The sensitivity analysis of the MR indicated no significant heterogeneity or pleiotropy (Supplementary Table 14).

Notably, nine genera were shared by both the saliva and tongue, including Aggregatibacter, Catonella, Granulicatella, Haemophilus D, Lachnoanaerobaculum, Pauljensenia, Prevotella, Streptococcus and Saccharimonadaceae TM7x (Supplementary Table 15).





4 Discussion

Oral microorganisms are integral to the development and progression of oral diseases such as dental caries and periodontitis through mechanisms of pathogen inhibition and immune modulation (1, 2). Additionally, the oral microbiome contributes to overall systemic health by regulating immune responses, aiding nutrient absorption, and metabolism, and has been closely linked to systemic diseases such as T2D (28, 29). Despite this, the precise mechanisms and genetic causal relationships remain poorly understood. This study employs MR analysis to elucidate the genetic connections between the oral microbiome and T2D.

Aemaimanan et al. indicated that poor glycemic control is associated with increasing cell numbers of the red complex bacteria (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) within the subgingival biofilm (30). Li et al. also identified that periodontal pathogens, including Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum, are significantly more abundant in T2D patients compared to normal controls. Furthermore, the Firmicutes/Bacteroidetes (F/B) ratio was higher in T2D patients than in healthy individuals (11), which aligns with the observed trend in newly diagnosed diabetes patients, where there is a decrease in the abundance of Bacteroidetes and an increase in the abundance of Firmicutes in the gut microbiome (31). Previous studies have found that an increase in Firmicutes or a higher F/B ratio is associated with obesity, a risk factor for T2D, as Firmicutes are more efficient than Bacteroidetes at extracting energy from food (32). Chen et al. found that the F/B ratio increased in patients with T2D, suggesting that this ratio may serve as a specific microbial biomarker in Chinese patients with T2D (33). Our findings also revealed that oral microbiomes genetically linked to T2D were predominantly Firmicutes.

Lu et al. observed that Treponema, Prevotella oralis, and Catonella were more abundant in the group with periodontitis and diabetes compared to the systemically healthy group (34). Additionally, Prevotella is more commonly found in the gut microbiome of T2D patients (35). We also confirmed that Prevotella in the oral microbiome is positively correlated with T2D. Previous studies have shown that Prevotella is associated with increased production of branched-chain amino acids (BCAAs). Elevated levels of BCAAs in the blood over the long term are linked to a higher risk of obesity and T2D (36). While Treponema in saliva showed a significant negative correlation. Regarding Catonella, certain species have shown a positive correlation with T2D, while more species have been found to have a negative correlation with the risk of developing T2D. Aggregatibacter actinomycetemcomitans (A.a) has been found to disrupt host mucosal defenses and was identified as one of the pathogenic bacteria involved in periodontitis (37). Castrillon et al. demonstrated that A. a detection was higher in patients with diabetes and periodontitis than in systemically healthy patients without periodontitis, with A.a being associated with periodontitis in diabetic patients (14). Our research confirmed a positive correlation between Aggregatibacter and T2D risk. A.a possesses some putative virulence factors, including leukotoxin that targets and destroys host immune cells. Previous reports have associated A.a with adverse events such as cerebral infarction in diabetic nephropathy patients undergoing hemodialysis (38). Furthermore, compared to control mice, mice infected with A.a exhibit impaired glucose tolerance and insulin resistance, along with alterations in the composition of their gut microbiota (39). Pauljensenia, a Gram-positive, strictly anaerobic, non-spore-forming bacterium from the family Actinomycetaceae. Previous studies have identified Actinomycetaceae as an oral biomarker for T2D (10). We further substantiated the positive correlation between Actinomycetaceae presence in both saliva and tongue and the risk of developing T2D. Its pathogenic role may be associated with glucose metabolism, participating in glycolysis for energy production, and accumulation of intracellular polysaccharides (40, 41), potentially increasing diabetes risk.

A study indicated a reduction in the presence of Haemophilus in the gut of patients diagnosed with T2D (31). The genus Haemophilus in the gut was identified as a defensive element against T2D (42). This finding is consistent with our study, which demonstrated a negative correlation between oral Haemophilus D and the incidence of T2D. Neri Rosario et al. employed machine learning techniques to identify Granulicatella and Prevotella as relevant genera in patients with prediabetes when compared to normoglycemic subjects (43). Previous studies have identified a negative correlation between the Plaque Index (PLI) and TM7x in patients with T2D and periodontitis (44). This suggests that TM7x may inhibit plaque formation or promote plaque clearance, potentially due to the defensive properties of certain TM7x species against T2D. Streptococcus has been identified as a marker bacterium in the oral and gut microbiome of patients with T2D (10). A study conducted on T2D patients in southern Thailand reported significantly higher total counts of salivary and plaque streptococci in diabetics compared to non-diabetics (45). Streptococcus is one of the earliest colonizers of the human body, particularly abundant in the oral cavity (46). It has been reported that pregnant individuals with pregestational diabetes with worse glycemic control were at an increased risk of group B streptococcus (GBS) colonization (46). In our study, various Streptococcus species exhibited mixed genetic causal effects on T2D, highlighting the complexity of the relationship between these bacteria and diabetes.

This study has several limitations. First, our MR analysis is concentrated on populations of East Asian ancestry, and additional validation is necessary to extend these findings to other ethnic groups. Second, factors beyond genetics, such as lifestyle, diet, and environmental influences, can also affect the oral microbiome (47, 48). The instrumental variables may explain only a small fraction of the observed variability, highlighting the need for further multidimensional research to fully comprehend the complex dynamics of the oral microbiome. Third, to ensure a sufficient number of SNPs as instrumental variables for the oral microbiome, we adopted a relatively lenient clumping threshold. Although various MR methods were used for sensitivity analysis and multiple corrections were applied to the results, the potential for some false positives cannot be entirely excluded.
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Background

The prevalence of diabetes mellitus (DM) is a significant public health concern, especially among individuals with short sleep duration. Understanding the relationship between physical exercise and DM in this population is crucial for developing effective prevention strategies. However, the presence of a potential threshold effect of exercise on DM risk remains unclear.





Methods

Using data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2018, this population-based study investigated the association between physical exercise and DM in individuals with short sleep duration (no more than 7 hours per night). Weighted logistic regression analyses were conducted, adjusting for demographic and lifestyle factors. Additionally, a two-piecewise linear regression model was employed to identify any threshold effect of exercise on DM risk.





Results

This study included 15,092 participants identified with short sleep duration. Demographic characteristics stratified by DM status indicate higher prevalence among certain groups, such as middle-aged and older adults, males, and non-Hispanic Whites. The analysis revealed an inverse association between exercise levels and DM prevalence among the short sleep population. In the fully adjusted model, individuals engaging in sufficient exercise (> 600 MET-minutes/week) exhibited significantly reduced odds of developing DM [OR (95% CI): 0.624(0.527,0.738), p < 0.001]. Furthermore, the segmented regression model identified an inflection point at 2000 MET-minutes/week, below which a significant correlation between exercise and DM was observed.





Conclusions

This study provides evidence of a threshold effect of physical exercise on its association with DM in individuals with short sleep duration. Tailored exercise interventions targeting this population may help mitigate DM risk and improve overall health outcomes. Further research is warranted to validate these findings and explore optimal exercise thresholds for DM prevention strategies.
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1 Introduction

Diabetes mellitus (DM) has become a significant public health challenge globally, with rising prevalence rates, affecting 537 million adults worldwide and impacting diverse populations across various socio-economic backgrounds (1). As an increasing concern in public health, DM not only leads to severe individual complications but also places a substantial economic burden on healthcare systems worldwide (2–5). Research has consistently highlighted the critical role of lifestyle factors in the management and prevention of this chronic condition (6–8).

Short sleep, recognized as sleep less than 7 hours per day, has been linked to several negative health outcomes (9–13), including an increased risk of developing diabetes (14–16). Lack of sleep, often resulting from lifestyle choices or occupational demands, has been associated with adverse metabolic effects that may increase the risk of diabetes. This association suggests a complex interplay between sleep, exercise, and metabolic health, which is still not fully captured in diabetes prevention strategies.

Physical exercise, as a lifestyle with several health benefits, has been identified as a crucial factor in preventing and managing numerous chronic diseases (17, 18) and has become one of the important parts of therapy strategy for diabetes (19). Numerous studies have demonstrated that regular physical activity can significantly reduce the risk of developing type 2 diabetes through various biological mechanisms such as improved insulin sensitivity, enhanced weight management, and better lipid profiles (19–23). Additionally, there is also evidence that there may be a threshold effect of exercise on cognition (24–27), inflammation (28), and aging process (29) in the short sleep participants. However, the specific impacts of exercise in populations with unique health challenges, such as those experiencing short sleep durations, are less well understood and need further exploration.

The motivation behind this study stems from the observed gap in the literature regarding the interaction between physical activity and diabetes risk among individuals with short sleep durations. While the protective effects of exercise are well-documented, the existence and nature of a potential threshold effect—where the benefits of exercise might plateau or diminish—are not well understood in this specific population (30, 31). Addressing this gap is crucial for developing tailored interventions that effectively mitigate diabetes risk among those most vulnerable due to sleep restrictions.

This study aims to explore the threshold effect of physical exercise on diabetes mellitus risk among individuals with short sleep duration, providing evidence-based guidance for this under-researched but increasingly relevant demographic. Understanding these interactions has profound implications for public health policies and diabetes prevention programs, enabling the design of personalized lifestyle recommendations for those who may not fit the typical risk profile for diabetes.




2 Materials and methods



2.1 Study population

This analysis utilized data from the NHANES, a nationally representative cross-sectional survey conducted by the Centers for Disease Control and Prevention. The survey employs a stratified multistage random sampling approach. Questionnaire data were gathered by trained interviewers at participants’ homes. Data from six NHANES cycles spanning from 2007 to 2018 were included in the analysis: 2007–2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016, and 2017–2018. All participants provided written informed consent prior to participation, and the research procedures of NHANES were approved by the Institutional Review Board (IRB) of the National Center for Health Statistics (NCHS).

Initially, 59,389 participants were enrolled, with 36,580 individuals aged over 20 years. However, 15,710 respondents either did not complete the sleep questionnaire or reported sleep durations exceeding 7 hours. Thus, 20,770 participants were eligible for further analysis. Subsequently, those lacking diagnosis information for diabetes mellitus (n = 280) were excluded. Following this, 5,398 participants without covariate data were removed, resulting in a final study cohort of 15,092 participants.




2.2 Measurement of exposure and outcome variables

Participants self-reported their sleep duration, responding to the question “How much sleep do you get (hours)?” during NHANES cycles from 2007 to 2018 (32). The National Sleep Foundation recommends that healthy adults aim for 7 to 9 hours of sleep per night. Short sleep duration, defined as no more than 7 hours per night, was consistent with prior studies (33, 34).

The Physical Activity Questionnaire (PAQ) collected data on PE during home interviews, enabling the calculation of weekly MET-minutes. Moderate and vigorous PE were assessed separately, with two minutes of moderate PE considered equivalent to one minute of vigorous PE (35–37). MET values were multiplied by weekly PE minutes to obtain MET-minutes. PE intensity was categorized as moderate (4 MET) or vigorous (8 MET). To account for cumulative PE effects, volume was measured in 100 MET-min/week units. Following WHO guidelines and previous research (38, 39), PE volume was classified into three levels: none (< 1 MET-min/week), insufficient (1 to 600 MET-min/week), and sufficient (≥ 600 MET-min/week) for analysis.

The diagnostic criteria (40–42) for diabetes mellitus (DM) include: 1) receiving a diagnosis from a doctor; 2) having a glycohemoglobin HbA1c level greater than 6.5%; 3) fasting glucose level of 7.0 mmol/l or higher; 4) random blood glucose level of 11.1 mmol/l or higher; 5) two-hour OGTT blood glucose level of 11.1 mmol/l or higher; and 6) being on diabetes medication or insulin treatment.




2.3 Covariate assessment

Demographic characteristics, including age, gender, race/ethnicity (Non-Hispanic white, non-Hispanic black, Mexican American, and other races), marital status (never married, married or living with partner, and widowed, divorced, or separated), family poverty income ratio [low income (<1), middle income [1,3), and high income (≥3)], and education level (below high school, high school, and college or above), were extracted from the demographic questionnaire, as per previous literature (43–45). Additionally, smoking status and alcohol intake status were assessed through separate questionnaires. Smoking status was categorized as never, former, and current smoking, while alcohol intake status was classified as nondrinker, moderate alcohol use, and high alcohol use, based on questionnaire responses. Detailed covariate information is available at http://www.cdc.gov/nchs/nhanes/.

Furthermore, participants’ disease histories were evaluated. Hypertension was diagnosed in participants with systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥ 90 mmHg, or those who reported taking medication for hypertension or had been informed of their hypertension status by a healthcare professional. Cardiovascular disease was defined as self-reported congestive heart failure, coronary heart disease, angina, heart attack, or stroke.




2.4 Statistical analysis

The analyses were conducted while considering the complex survey design, adhering to NHANES data usage guidelines, which included sample weights, clustering, and stratification. Survey weights from Mobile Examination Center interviews spanning twelve years of NHANES data (2007-2018) were applied to address non-response, non-coverage, and varying probabilities of selection. Initially, a crude model was employed with no covariate adjustments. Model 1 was then adjusted for age, gender, and race/ethnicity. Subsequently, Model 2 further adjusted for BMI, marital status, education, poverty income ratio, smoking status, and alcohol use status.

A weighted logistic regression model was utilized to explore the relationship between exercise and DM among individuals with short sleep duration. Stratified analyses were performed based on each covariate. To examine potential threshold effects and control for confounding variables, a two-piecewise linear regression model was constructed. The threshold level of exercise (represented by 100 * MET-minutes/week) was determined using a recurrence strategy, identifying the inflection point within a predefined interval (46–48). Comparison between the two-piecewise linear regression model and the one-line linear regression model was conducted using the log-likelihood ratio test. Furthermore, we assessed the nonlinear relationship using restricted cubic spline (RCS) analysis, employing three optimal knots. Statistical analyses were performed using software from the R Foundation (http://www.R-project.org), with significance established at a p-value of 0.05 or lower.





3 Results

Table 1 presents the demographic characteristics of participants stratified by DM status. From the 2007-2018 NHANES dataset, a total of 15,092 participants with identified short sleep duration were included for analysis, representing a weighted population of 104,375,450 individuals. Diabetes was found to be more prevalent among middle-aged (40-60 years) and older (≥ 60 years) adults, males, and non-Hispanic Whites. Moreover, individuals with higher education levels, moderate alcohol consumption, and metabolic conditions such as overweight or hypertension showed a higher prevalence of diabetes.

Table 1 | Weighted characteristics of participants by DM.


[image: A table presents characteristics of participants categorized into all participants, non-diabetes, and diabetes groups with associated P-values. Variables include age, sex, BMI, race/ethnicity, marital status, poverty income ratio (PIR), education, smoking, alcohol consumption, cardiovascular disease, hypertension, physical exercise (PE), and sleep duration. Notable differences are observed in diabetes status with respect to age, BMI, race, marital status, PIR, and health behaviors, all having significant P-values less than 0.001 except for sex, which is 0.531.]
Table 2 displays the correlation between exercise and diabetes through weighted logistic regression analyses. The odds ratios (ORs) with 95% confidence intervals (CIs) represent the prevalence of DM development across exercise measured in 100 * MET-minutes per week. In the crude model, the OR was 0.960 (95% CI: 0.952, 0.969), p < 0.001, while in Model 1 and Model 2, the ORs were 0.971 (95% CI: 0.963, 0.979) and 0.983 (95% CI: 0.976, 0.991), respectively, all indicating a significant association with p < 0.001. Quantile measures consistently showed a decreasing trend in DM prevalence with increasing exercise levels, regardless of adjustment (Table 2). Specifically, individuals engaging in sufficient exercise (more than 600 MET-minutes/week) exhibited significantly decreased odds of developing DM in the Crude Model (OR = 0.361, 95% CI: 0.310, 0.422), and this association persisted after adjusting for age, sex, and race/ethnicity in Model 1 (OR = 0.465, 95% CI: 0.396, 0.544). Even after further adjustment for all confounding factors in Model 2, the association remained significant, with an OR of 0.624 (95% CI: 0.527, 0.738), p < 0.001. These results, stratified by different demographic factors, consistently demonstrated a significant association (Table 3).

Table 2 | Weighted logistic regression results for the association between exercise and DM in short sleep population.


[image: Table displaying odds ratios (OR) and p-values for three models (Crude model, Model 1, and Model 2) with different adjustments. Each model includes OR and p-values for "PE (100 * MET-minutes/week)" and "PE as category variable" divided into none, less than 600, and more than 600 MET-minutes/week. Crude model shows an OR of 0.960 for PE with a p-value <0.001. Model 1 and Model 2 show adjusted ORs with varying significance levels. Descriptions of covariate adjustments for each model are provided at the bottom.]
Table 3 | Stratified results for the association between exercise and DM in short sleep population.


[image: A detailed table comparing various demographic and lifestyle factors related to different levels of exercise with corresponding P-values. Columns include categories like gender, age, race/ethnicity, marital status, PIR, education, BMI, smoking, alcohol use, CVD, and hypertension, with values for non-exercise, less than 600 MET-minutes/week, and more than 600 MET-minutes/week. P-values for trend and interaction are also listed. The table notes that non-exercise is used as the reference.]
Our analysis further delved into the comparison between the single-line (non-segmented) model and the segmented regression model using a log-likelihood ratio test, which unveiled the existence of a threshold. Table 4 displays the outcomes of the two-piecewise linear regression model, pinpointing the inflection point at 2000 MET-minutes/week. Beneath this threshold, a notable correlation between exercise and DM was evident, with an odds ratio (OR) of 0.973 (95% CI: 0.964, 0.981) and a p-value below 0.001. Conversely, above this inflection point, the association lost significance, yielding an OR of 0.998 (95% CI: 0.991, 1.005) and a p-value of 0.586. Figure 1 visually represents the relationship between exercise and DM among individuals with short sleep using restricted cubic splines. Noteworthy is the observation of a threshold effect at 2000 MET-minutes/week, suggesting a saturation point beyond which the influence of exercise on DM diminishes.

Table 4 | Threshold effect analysis of relationship between exercise and DM in short sleep population.


[image: Linear regression model table shows associations between exercise and outcomes. One-line model: β = 0.985, CI (0.981, 0.990), p < 0.001. Piecewise model: Exercise < 20 MET-minutes/week, β = 0.973, CI (0.964, 0.981), p < 0.001; Exercise ≥ 20 MET-minutes/week, β = 0.998, CI (0.991, 1.005), p = 0.586. Log-likelihood ratio test, p < 0.001. Adjusted for age, gender, race, body mass index, marital status, education, poverty income ratio, smoking status, alcohol use, and chronic diseases.]
[image: Graph illustrating the relationship between exercise volume and odds ratio of diabetes mellitus. The x-axis represents exercise volume in MET-minutes per week, and the y-axis shows the odds ratio. The curve decreases significantly with increased exercise volume, leveling off at higher values, with a shaded area indicating confidence intervals.]
Figure 1 | The dose-response relationship between exercise and DM in short sleep population.




4 Discussions

This study has identified a significant threshold effect of physical exercise on risk of diabetes among individuals with short sleep duration, suggesting that engaging in a certain level of physical activity regularly can substantially mitigate this risk. Our findings demonstrate that physical exercise exceeding 600 MET-minutes/week is associated with a decreased likelihood of developing DM, with diminishing returns observed beyond 2000 MET-minutes/week.

These results align with previous studies that have reported the beneficial effects of physical activity on glucose metabolism and insulin sensitivity (20). However, our study extends the understanding by pinpointing a specific exercise threshold, which is particularly relevant for individuals with short sleep duration. This nuanced insight contrasts with the broader generalizations often found in diabetes prevention research, where one-size-fits-all recommendations prevail (7, 49).

The biological mechanisms underpinning our findings may involve the enhanced regulation of glucose and increased insulin efficiency, which are promoted by regular physical activity (6, 50, 51). Furthermore, exercise has been shown to improve sleep quality and duration, indirectly contributing to better metabolic outcomes in populations at risk of short sleep-related metabolic disorders (52, 53).

Despite the clear benefits associated with physical exercise, our findings suggest a saturation effect at 2000 MET-minutes/week, where additional physical activity may not confer further benefits in reducing DM risk. This phenomenon may be explained by the physiological limits of exercise-induced improvements in metabolic health. Beyond a certain point, the body’s ability to further enhance glucose utilization and insulin sensitivity may plateau (54). This could be attributed to a maximal activation of biological pathways involved in metabolic regulation, after which additional exercise yields diminishing returns (54).

Moreover, excessive physical activity might lead to increased stress and fatigue (55–57), particularly in individuals with restricted sleep, potentially counteracting some of the positive effects of exercise on metabolic health. It suggests that there might be an optimal balance of exercise that maximizes health benefits without leading to overtraining or undue physical stress, especially important in populations vulnerable to sleep deprivation, as sleep quality is an essential indicator for overtraining (58).

The public health implications of these findings are substantial. By incorporating exercise thresholds into diabetes prevention programs, health policymakers can design more effective interventions that are tailored to the needs of individuals with different sleep patterns. This approach not only helps in targeting high-risk groups more effectively but also in optimizing resource allocation within public health initiatives.

Despite the strengths of this study, including a large sample size and the use of robust statistical methods, there are limitations that should be acknowledged. The cross-sectional nature of the data limits our ability to infer causality between exercise and DM risk reduction. Additionally, self-reported measures of physical activity and sleep may introduce bias. Future research should consider longitudinal designs to better establish causal relationships and utilize objective measures of physical activity and sleep to enhance the accuracy of the findings.

This study sheds light on the importance of personalized exercise prescriptions in diabetes prevention, especially among those compromised by short sleep durations. It underscores the need for further research into tailored preventive strategies that consider individual variations in lifestyle and health status.




5 Conclusion

In conclusion, our population-based study sheds light on the association between physical exercise and diabetes mellitus (DM) within the short sleep population. Our analysis, involving 15,092 participants with short sleep duration, revealed a significant inverse correlation between exercise and DM development. Specifically, engaging in sufficient exercise (> 600 MET-minutes/week) recommended by WHO was associated with decreased odds of developing DM, even after adjusting for confounding factors such as age, sex, and race/ethnicity. Notably, our comparison between single-line and segmented regression models identified a threshold effect at 2000 MET-minutes/week of exercise, beyond which the association between exercise and DM lost significance. This observation suggests a saturation point, indicating that higher exercise volumes may not confer additional benefits in reducing the risk of DM among individuals with short sleep.
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Purpose

The aim of this study was to explore the relationship between hemoglobin levels, anemia and diabetic lower extremity ulcers in adult outpatient clinics in the United States.





Methods

A retrospective cross-sectional study was conducted on 1673 participants in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004. Three logistic regression models were developed to evaluate the relationship between anemia and diabetic lower extremity ulcers. Model 1 adjusted for demographic and socioeconomic variables (age, sex, race and ethnicity, educational level, family income, and marital status). Model 2 included additional health-related factors (BMI, cardiovascular disease, stroke, family history of diabetes, hyperlipidemia, alcohol and smoking status). Model 3 further included clinical and laboratory variables (HbA1c, CRP, total cholesterol, and serum ferritin levels). Stratified analyses were also conducted based on age, sex, HbA1c level, body mass index (BMI), and serum ferritin level.





Results

The study included 1673 adults aged 40 years and older, with a mean age of 64.7 ± 11.8 years, of whom 52.6% were male. The prevalence of diabetic lower extremity ulcers (DLEU) was 8.0% (136 participants). Anemia was found in 239 participants, accounting for 14% of the study group. Model 1 showed an OR of 2.02 (95% CI=1.28~3.19) for anemia, while Model 2 showed an OR of 1.8 (95% CI=1.13~2.87). In Model 3, the OR for DFU in patients with anemia was 1.79 (95% CI=1.11~2.87). Furthermore, when serum ferritin was converted to a categorical variable, there was evidence of an interaction between DLEU status and serum ferritin in increasing the prevalence of DLEU.





Conclusion

After adjusting for confounding variables, higher levels of anemia were proportionally associated with an increased risk of incident DLEU. These results suggest that monitoring T2DM patients during follow-up to prevent the development of DLEU may be important. However, further prospective studies are needed to provide additional evidence.





Keywords: hemoglobin, anemia, diabetic lower extremity ulcers, NHANES, cross-sectional study





Background

The International Diabetes Federation (IDF) has recently published data indicating that there has been a 16% increase (74 million) in the number of adults living with diabetes since 2019. Currently, approximately 537 million adults are affected by this condition. In 2021, T2DM was estimated to cause over 6.7 million deaths in the population aged 20-79 (1). Diabetic foot ulcers are one of the common and serious complications of diabetes mellitus, which can cause severe multi-organ complications leading to high mortality rates and significant health costs (2). Approximately 15% of people with diabetes will eventually develop a diabetic foot ulcers, and 14%-24% of these patients will require amputation due to ulcer-related complications (3).

Previous studies have reported that the prevalence of anemia in patients with DFU is over 50% (4). Common risk factor for foot ulceration include peripheral vascular disease, severity of neuropathy, structural foot deformity, concomitant infection, high plantar pressure, poor glycemic control, duration of diabetes, male gender, and presence of other micro and macrovascular complications. Anemia is also considered a major predictor of the outcome of DFU (5). Research has shown that patients with T2DM are twice as likely to experience anemia compared to those without T2DM (6, 7). The presence of altered microcirculation may exacerbate the negative effects of anemia, hindering ulcer healing and leading to higher rates of amputation and mortality (4, 8–11).

However, there have been no studies conducted on the association between DLEU and anemia in adult outpatients in the United States. The aim of this study was to examine the association between anemia in outpatients with and without DLEU in the NHANES database.





Materials and methods




Study population

The National Health and Nutrition Examination Survey (NHANES) was designed to evaluate the health and nutritional status of non-hospitalized Americans using a stratified, multistage approach. The NHANES received approval from the Ethics Review Committee of the National Center for Health Statistics (NCHS), and all participants provided written informed consent prior to participation. This is a retrospective study based on the NHANES database, which contains data on over 31,126 patients from 1999 to 2004. In the study, 9,970 were adults aged 40 years or older who completed the interview and underwent MEC screening. After excluding 8,297 participants who did not have diabetes (n=8160) and those with missing data on diabetes foot ulcers (n=3) and hemoglobin (n=188), the remaining 1,673 participants were included in the analysis (Figure 1).

[image: Flowchart illustrating the selection process of study participants. Out of 31,126 participants who completed the interview, 21,156 were under forty and excluded. Remaining 9,970 participants aged forty or older were further narrowed down to 1,673 after excluding 8,297 for reasons like no diabetes or missing data. Finally, 136 had diabetic foot ulcers, and 1,537 did not.]
Figure 1 | Flowchart of the participant selection. NHANES, National Health and Nutrition Examination Survey.





Ascertainment of diabetic lower extremity t ulcers

The primary outcome variable was the status of diabetic lower extremity ulcers (DLEU), defined by the patient’s self-reported answer to the question in Question Data, ‘Have you had an ulcer or sore on your leg or foot that took more than four weeks to heal?’ Type 2 diabetes mellitus (T2DM) was identified based on the American Diabetes Association criteria and a self-report questionnaire. Participants were considered to have T2DM if they met any of the following criteria (12) (1): Glycated hemoglobin (HbA1c) levels of ≥6.5% (2), Fasting plasma glucose (FPG) levels of ≥126 mg/dL (3), 75 g oral glucose tolerance test (OGTT) levels of ≥11.1mmol/L (4), self-reported physician diagnosis of diabetes, or (5) receipt of oral glucose-lowering medicines or insulin.





Ascertainment of hemoglobin level, anemia

The NHANES Laboratory/Medical Technologists Procedures Manual (LPM) provides detailed instructions for sample collection and processing. The study employed the Beckman Coulter method for counting and sizing, combined with an automated diluter and mixer for sample processing and a single-beam photometer for hemoglobinometry to derive complete blood count (CBC) parameters. (https://www.cdc.gov/nchs/nhanes/). Anemia was defined by World Health Organization (WHO) as hemoglobin (Hb) levels <13g/dL for males and <12 g/dL for females (7).





Covariates

Based on the literature, several potential covariates were included in the analysis, such as age, sex, race/ethnicity, education level, marital status, PIR, smoking status, alcohol status, body mass index (BMI), laboratory parameters (total cholesterol and C-reactive protein [CRP], glycosylated hemoglobin [HbA1c], and serum ferritin, and comorbidities (13–16). The comorbidities included family history of diabetes, stroke, coronary heart disease, hyperlipidemia. Marital status was classified as living with a partner, or living alone (15). Family income was divided into three groups according to the poverty income ratio (PIR) as defined by a U.S. government report: low (PIR ≤ 1.3), medium (PIR > 1.3 to 3.5), and high (PIR > 3.5). Alcohol consumption was classified as never (< 12 drinks in lifetime), former (≥12 drinks in 1 year and no drinks in the last year, or no drinks in the previous year but≥12 drinks in lifetime), and current (≥12 drinks and currently drinking). Smoking status was categorized as never (<100 cigarettes in a lifetime), former (≥100 cigarettes but not currently smoking), and current (≥100 cigarettes and currently smoking) (16). Serum ferritin levels were classified as either <100 ng/mL or ≥100 ng/mL, according to previously reported classifications (17). The determination of previous disease (family history of diabetes, stroke, hyperlipidemia, and coronary heart disease) was based on the inquiry in the questionnaire of whether the doctor had been informed of the condition in the past.





Statistical analysis

The statistical analyses were conducted using R Statistical Software (Version 4.2.2, http://www.R-project.org, The R Foundation) and Free Statistics analysis platform (Version 1.9, Beijing, China, http://www.clinicalscientists.cn/freestatistics). The software is intended for reproducible analysis and interactive computing. A two-sided P value < 0.05 was considered statistically significant.

Normally distributed continuous variables were presented as mean ± SD, and skewed continuous variables were presented as median (interquartile range [IQR]). Categorical variables were expressed as frequencies (%). The Student’s t-test or Mann-Whitney U-test was used to compare continuous variables between groups, depending on the normality of the distribution, and categorical data were compared using the chi-squared or Fisher’s exact test, as appropriate.

Crude model was an unadjusted model. Model 1 was adjusted for age, sex, race and ethnicity, educational level, family income and marital status. Model 2 was developed using model 1 and additional factor such as BMI, coronary heart disease, stroke, family history of diabetes, hyperlipidemia, alcohol and smoking status. Model 3 was then developed using model 2 and additional factor such as HbA1c, CRP, total cholesterol, and serum ferritin. Subgroup analysis was conducted to investigate the correlation between anemia and diabetic lower extremity ulcers based on age, sex, BMI, and HbA1C category (<6.5, ≥6.5) as well as serum ferritin category (<100ng/mL, ≥100ng/mL). The percentage of missing values exceeded 20%. To address this issue, missing data for the covariates were imputed using multiple imputation.






Results




Baseline characteristics

Table 1 displays demographic, socioeconomic, comorbidity, and baseline characteristics by anemia status. The study included 1673 adults aged 40 years and older, with a mean age of 64.7 ± 11.8 years, of whom 52.6% were male. Anemia was found in 239 participants, accounting for 14% of the study group, with a prevalence of 57.3% in women. The prevalence of diabetic lower extremity ulcers was 8.1% (136 participants). The prevalence of diabetic foot ulcers was 12.7% among patients with anemia.

Table 1 | Characteristics of participants grouped with or without anemia.


[image: Table comparing characteristics of non-anemia and anemia groups with sample sizes of 1434 and 239, respectively. Includes categories like sex, age, race, education, marital status, and several health indicators such as BMI, coronary heart disease, diabetes, hyperlipidemia, and lifestyle factors. The table also shows mean or percentages with their statistical significance, indicated by p-values for each characteristic.]




Factor associated with diabetic lower extremity ulcers (DLEU)

The univariate ordinal regression analysis results indicated that marital status, BMI, coronary heart disease, family history of diabetes, and hyperlipidemia. (P < 0.1; Table 2).

Table 2 | Univariate Analysis for the Presence of diabetic lower extremity ulcers (DLEU).


[image: A table presents the odds ratio (OR) with 95% confidence intervals and p-values for various characteristics. Categories include sex, age, race/ethnicity, education level, marital status, poverty-income ratio (PIR), body mass index (BMI), coronary heart disease, stroke, family history of diabetes, hyperlipidemia, alcohol status, smoking status, HbA1c, C-reactive protein (CRP), total cholesterol, serum ferritin, hemoglobin, and anemia. Notable findings include significant p-values for BMI, family history of diabetes, hemoglobin, and anemia, suggesting associations with the outcomes studied.]




Relationship between hemoglobin levels, anemia status and diabetic lower extremity ulcers

Table 3 presents the odds ratios (OR) and 95% confidence intervals (CI) for the presence of diabetic lower extremity ulcers (DLEU) determined by hemoglobin levels and anemia. When hemoglobin was analyzed as a continuous variable, a significant independent negative association was found between hemoglobin and the risk of DLEU. In the unadjusted model, each 1 unit increase in hemoglobin was associated with a 16% decrease in the presence of DLEU [OR=0.84, 95% CI: (0.75-0.993); p=0.001]. In model 1, 2 and 3, the association between hemoglobin (Hb) and diabetic lower extremity ulcers (DLEU) was marginally significant [OR: 0.74, 95% CI: (0.65-0.84); p<0.001] [OR: 0.76, 95% CI: (0.67-0.86); p<0.001] [OR: 0.76, 95% CI: (0.66-0.86); p<0.001], respectively.

Table 3 | Relationship between hemoglobin levels, anemia status and diabetic lower extremity ulcers.


[image: A table presents odds ratios (OR) with 95% confidence intervals (CI) and p-values for hemoglobin (HGB in g/L) and anemia under different models. The crude model shows an HGB OR of 0.84 and anemia OR of 1.8. Model 1 adjusts for sociodemographic variables, showing an HGB OR of 0.74 and anemia OR of 2.02. Model 2 includes additional health variables, with an HGB OR of 0.76 and anemia OR of 1.8. Model 3 further adjusts, yielding an HGB OR of 0.76 and anemia OR of 1.79. All p-values are significant.]
The anemia group had a significantly higher risk of DLEU compared to the non-anemic group [OR: 1.79, 95% CI:(1.11-22.87)]. In Table 3, when hemoglobin levels were categorized as anemic versus non-anemia, anemia was found to be positively associated with the risk of diabetic lower extremity ulcers. The odds ratios (OR) for anemia were calculated for Model 1, Model 2, and Model 3, with the crude model as the reference, using multivariable-adjusted regression and 95% confidence intervals (CIs). The odds ratio (OR) for anemia in Model 1 was [OR=2.02,95% CI:(1.28-185 3.19), P=0.002]. In Model 2, the OR for anemia was [OR=1.8,95% CI:(1.13-2.87), P=0.014] and in Model 3, it was [OR=1.79, 95% CI:(1.11-2.87),p=0.016] (Table 2). Model 3 exhibited the lowest odds ratio (OR) compared to Model 1, which had the highest OR. This suggests a decreasing trend in the risk of diabetic lower extremity ulcers (DLEU). After conducting multivariate logistic regression analysis and smooth curve fitting, it was found that there is a negative association between hemoglobin levels and DLEU incidence when all potential confounders were taken into account (non-linearity: p=0.572).





Subgroup analyses of factor influencing the association between anemia and the presence of diabetic lower extremity ulcers

Stratified analysis was performed in several subgroups to determine the potential effect modifications on the relationship between anemia and DLEU. No significant interactions were found in any subgroup after stratification by sex, age, HbA1c level, and BMI (all P for interaction >0.05). However, results differed between serum ferritin groups for diabetic lower extremity ulcers (P = 0.015 for interaction) (Figure 2).

[image: Forest plot depicting odds ratios and confidence intervals for anemia across various subgroups. Subgroups include overall data, sex, age, HbA1c levels, BMI, and ferritin levels, with interaction P-values displayed. Different plot symbols represent crude and adjusted odds ratios. The diamonds on horizontal lines mark the confidence intervals, with a reference line at one.]
Figure 2 | Effect size of anemia on the presence of DLEU in the age, sex, BMI, HbA1c subgroup and serum ferritin level. OR, odds ratio; CI, confidence interval; HGB, hemoglobin.






Discussion

In this cross-sectional study, anemia was found to be positively associated with the incidence of DLEU, and hemoglobin levels were a negative linear association between hemoglobin levels and DLEU Subgroup analysis revealed an interaction between serum ferritin and diabetic lower extremity ulcers, with high serum ferritin identified as a risk factor for diabetic lower extremity ulcers.

In contrast to previous studies that have shown consistency, the incidence of anemia was higher in patients with diabetic foot ulcers than in the non-anemic group (8, 18). Additionally, the prevalence of anemia was higher in women than in men. In this study, the prevalence rate of anemia in the DLEU group was 12.6%, which is higher than the rate in the non-DLEU group (7.4%). DFU can lead to high amputation and mortality rates, particularly in older patients with low hemoglobin levels (10). The more severe the anemia, the greater the impact on ulcer healing, and the higher the amputation rate and mortality (19, 20). Severe anemia can significantly impact ulcer healing and increase the rates of amputation and mortality (8, 21). Anemia is also a predictor of adverse outcomes (21, 22). In our study, the results of the fitted curves suggested a negative linear relationship between hemoglobin levels and the incidence of diabetic foot ulcers.

The results of our subgroup analysis indicate an interaction between serum ferritin and DLEU. It is suggested that high levels of serum ferritin increased the incidence of DLEU risk. Previous studies have shown that ferritin significantly increased with increasing DFU severity (21, 23). Proinflammatory cytokines inhibit the absorption and mobilization of iron from storage into the circulation by down-regulating iron expression in intestinal epithelial cells, macrophages, and hepatocytes. This interference with iron metabolism leads to elevated ferritin expression, which shortens erythrocyte lifespan and impairs EPO production and function, ultimately inhibiting the proliferation and differentiation of normal erythroid progenitor cells (24).

There was significant difference between patients with and without anemia in terms of diabetic microvascular complications (neuropathy, retinopathy, nephropathy) and the related conditions (25–27). However, the mechanism linking anemia and DFU remains unclear. Possible mechanisms include the following: 1) Anemia reduces limb perfusion and exacerbates limb ischemia, which impairs tissue oxygenation and blood flow, ultimately delaying ulcer wound healing (28). 2) Additionally, the presence of anemia induces oxidative stress and hypoxemia with resultant delays in wound healing (29). 3) In DFU patients, the deformability of red blood cells is significantly reduced, and the proportion of non-deformable red blood cells is significantly increased, which can impede capillary flow and lead to thrombosis, which may result in delayed ulcer healing (30). 4) In patients with anemia, blood viscosity decreases, which impairs peripheral circulation, vascular smooth muscle response and EPO levels are destroyed, resulting in damage to the compensatory response of neovascularization and hindering wound healing (31). 5) Pro-inflammatory cytokines released in anemic patients affect iron metabolism, impair the production and function of EPO, and inhibit the proliferation and differentiation of normal red blood cell precursor (24). 6) Reduced tissue oxygenation can lead to increased production of free radicals, endothelial dysfunction and nerve damage (32). 7) Additionally, anemia can accelerate the progression of microvascular and macrovascular complications (28).

This clinical study examines the relationship between anemia and diabetic lower extremity ulcers (DLEU) in adult outpatients in the United States. The study found that Hb levels were a protective factor for DLEU. Anemia is a risk factor for DLEU.

However, the study has several limitations. Firstly, missing data were unavoidable due to the retrospective nature of the study and the data being extracted from the patients’ medical records. Secondly, it does not provide information on the potential causal effect of hemoglobin. Thirdly, larger and prospective studies are needed to overcome this limitation. The study has several limitations. Fourthly, the study was unable to determine other variables such as the severity of DFU and the cause of anemia. Finally, caution should be exercised when extrapolating these findings to other populations as the study focused on a specific population. Interventional studies are necessary to investigate whether clinical correction of anemia reduces the incidence of DLEU and improves its prognosis and prediction.

These findings may have clinical implications, such as better control of hemoglobin concentrations in diabetic patients, especially those diabetic lower extremity ulcers with anemia. It is also important to determine whether correcting anemia reduces the incidence of DLEU and to establish the optimal Hb level required to reduce the risk of diabetic lower extremity ulcers. Well-designed prospective studies are necessary to test the associations and confirm the relationship between anemia and the causation of diabetic lower extremity ulcers.





Conclusion

The study found that hemoglobin level was a protective factor for DLEU, while anemia was an independent risk factor for DLEU in patients with diabetic lower extremity ulcers. Early identification of diabetic lower extremity ulcers risk provides an opportunity to delay or prevent disease onset. Prospective and multicenter studies are needed to explore whether anemia plays a direct role in the development, progression, or adverse outcomes of diabetic lower extremity ulcers.

Therefore, maintaining a higher concentration of hemoglobin is a protective factor that can prevent and ameliorate the development of DLEU.
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Objective

Insulin resistance (IR) is a well-established major risk factor for type 2 diabetes mellitus, nonalcoholic fatty liver disease, and atherosclerotic cardiovascular disease. Previous studies have shown an association between increased serum albumin (ALB) levels and the risk of IR. However, there is a lack of studies simultaneously evaluating the association of total protein (TP), ALB, and globulin (GLB) with IR.





Methods

A total of 14,828 individuals (average age 49 ± 18 years) with complete data from the National Health and Nutrition Examination Survey (NHANES) were enrolled and divided into two groups (non-IR group, n = 8,653 and IR group, n = 6,175). Spearman’s correlation analysis, multivariable logistic regression models, restricted cubic spline curves, and subgroup analysis were performed to explore those associations.





Results

After adjustment for potential confounders, multivariable logistic regression analysis revealed that scaled per 10g/L increment, the fully adjusted odds ratios (ORs) (95% confidence interval (CI)) for IR prevalence were 1.54 (95% CI 1.41-1.69, P < 0.0001), 1.09 (95% CI 0.95-1.25), P = 0.1995), and 1.62 (95% CI 1.47-1.79, P < 0.0001) for TP, ALB, and GLB respectively. Compared to those in the lowest quantiles, the prevalence of IR in subjects in the highest TP and GLB quantiles was 2.06 and 1.91 times, respectively. Furthermore, restrictive cubic curves confirmed that the relationship of TP, ALB, and GLB with IR prevalence was a linear relationship.





Conclusions

The present cross-sectional study, for the first time, provided supportive evidence of positive associations of TP and GLB with IR, but not ALB, and demonstrated that TP and GLB might be useful markers for IR prevalence.
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Introduction

Insulin resistance (IR) is a medical condition that refers to a reduction in the responsiveness to insulin, promoting glucose uptake and utilization (1, 2). IR is a hallmark clinical feature of metabolic syndrome and a well-established major risk factor for type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease, and atherosclerotic cardiovascular disease (ASCVD) (2–4). Furthermore, IR is a significant independent cardiovascular risk factor in non-diabetic subjects (5). Total protein (TP), comprising albumin (ALB) and globulin (GLB), is closely associated with various functions in the body, including not only malnutrition and immune function but also maintaining normal colloid osmotic pressure and pH balance, transporting various metabolites, and regulating the physiological effects of transported substances. The normal TP level typically ranges from 60 to 80 g/L, with ALB accounting for 35 to 50 g/L, while the remaining portion comprises GLB. Previous studies have demonstrated that increased serum ALB levels are related to several atherogenic risk factors including lipid profile, blood pressure, body mass index, and insulin resistance (6, 7). Furthermore, lower concentrations of serum ALB contribute to a higher risk of coronary heart disease (CHD), cardiovascular mortality, and carotid atherosclerosis (7–9). However, there is a paucity of studies simultaneously evaluating the relationship of TP, ALB, and GLB with IR. Therefore, the aim of the present study is to utilize data from large population-representative surveys to assess the concentrations of TP, ALB, and GLB associated with the prevalence of IR.





Methods




Study population

The National Health and Nutrition Examination Survey (NHANES) is a series of national surveys to evaluate the health status of the population with a complex stratified multistage probability sampling method. The United States National Center for Health Statistics (Centers for Disease Control and Prevention, Atlanta, GA, USA) ratified the study protocols, and all the participants provided written informed consent. Details about the NHANES have been published elsewhere (10, 11). The present population-based study enrolled participants with publicly available data from NHANES 1999 to 2014. As shown in Figure 1, the total number of participants in the primary survey was 82,091. After excluding participants who were aged < 18 years (n = 34,735), who were missing baseline IR test data (n = 29,676), and for which covariates were unavailable (n = 2,852), 14,828 individuals with complete data were enrolled in the final analysis and divided into two groups: the non-IR group (n = 8,653) and the IR group (n = 6,175).

[image: Flowchart showing the selection process for participants in the 1999-2014 National Health and Nutrition Examination Surveys. Starting with 82,091 participants, exclusions were made for age under 18 (34,735) and missing insulin resistance test data (29,676), resulting in 17,680 participants. Further exclusions for unavailable covariates (2,852) led to 14,828 participants with complete data. These are divided into non-insulin resistance group (8,653) and insulin resistance group (6,175).]
Figure 1 | Study flowchart.





Covariate information

Fasting samples obtained from peripheral venous blood were stored at a maximum of −20°C and shipped weekly for laboratory analyses. Fasting-blood-glucose (FBG) was analyzed using a Hexokinase-mediated reaction (Roche/Hitachi Modular P Chemistry Analyzer). Fasting glucose-insulin (FIN) was measured by the Merocodia Insulin ELISA, which is a two-site enzyme immunoassay utilizing the direct sandwich technique. In the present study, IR was defined as homeostasis model assessment (HOMA)-IR ≥ 2.73 according to previous studies in American adults (12–14). HOMA-IR was calculated as the FIN (μU/mL) × FBG (mmol/L)/22.5 (15).

The concentration of TP was measured on the DxC800 Synchro (Beckman Coulter UniCel) by the timed rate biuret method, and the bichromatic digital endpoint method was used to measure the ALB concentration. GLB levels were calculated from TP minus ALB levels. Levels of serum creatinine (Scr), hemoglobin (Hb), glycated hemoglobin A1c (HbA1c), and lipid profiles were tested and recorded in authoritative laboratories using standard procedures.

Demographic variables were acquired according to the household interview, such as age, gender, race, and education. Information on smoking status and history of disease had been assessed at baseline by standard examinations and questionnaires by trained health technicians, interviewers, and physicians. The mean blood pressure was calculated as an average of three valid measurements. Detailed analysis methods can be accessed on the NHANES website (https://www.cdc.gov/nchs/nhanes/index.htm).





Statistical analysis

Baseline characteristics of the included participants were divided by IR or not (non-IR group and IR group). The data were presented as mean values with standard deviation (SD), the median with interquartile ranges, or frequencies with percentages, as appropriate. Comparisons of the differences between groups were made with one-way ANOVA, chi-square tests, or Kruskal-Wallis H-tests by IR or not. The heatmap of the correlation between covariates used Spearman’s correlation analysis. In analyses examining associations with IR incidence, TP, ALB, and GLB were treated as continuous independent variables, scaled per 10g/L increment, or divided into six groups, using multivariable logistic regression models with different adjustments to calculate the odds ratios (ORs) and corresponding 95% confidence intervals (CIs). In model 1, there was no adjustment. In model 2, we adjusted for age, gender, and race. In model 3, we adjusted for age, gender, race, education, systolic blood pressure, diastolic blood pressure, body mass index, smoking, diabetes, hypertension, coronary heart disease, acute myocardial infarction, chronic heart failure, stroke, cancer, alanine aminotransferase (ALT), aspartate aminotransferase (AST), Scr, Hb, HbA1c, triglycerides (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C). Restricted cubic spline models were used for nonlinear relationships with knots at the 5th, 35th, 65th, and 95th percentiles of TP, ALB, or GLB. If the relationships were non-linear, the difference in relationships at the threshold was detected by two piecewise linear regression models. The point with the highest likelihood among all the possible values was chosen to define the threshold value. Furthermore, several subgroup analyses were performed, including age (<65 or ≥65 years), gender (man or woman), race (white or Black), BMI (<25 or ≥25 kg/m2), smoking (non-smoker or smoker), diabetes (yes or no), coronary heart disease (yes or no), acute myocardial infarction (yes or no), chronic heart failure (yes or no), stroke (yes or no), and cancer (yes or no). All statistical analyses were performed using R version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria), and P < 0.05 was considered statistically significant.






Results




Baseline characteristics

Table 1 demonstrates the baseline characteristics of the 14,828 participants (average age 49 ± 18 years), including 8,653 without IR and 6,175 IR cases. Overall, there were significant differences in the baseline characteristics between the non-IR and IR groups. Compared to the non-IR group, participants with IR were older and had more comorbidities, such as diabetes, hypertension, coronary heart disease, acute myocardial infarction, chronic heart failure, stroke, and cancer, with higher levels of systolic/diastolic blood pressure, BMI, ALT, AST, Scr, Hb, HbA1c, TG, TC, and HDL-C.

Table 1 | Baseline clinical and procedural characteristics.


[image: Table comparing variables between overall, non-insulin resistant (Non-IR), and insulin resistant (IR) groups with respective p-values. Variables include age, gender, race, education level, smoking status, blood pressure, BMI, diabetes, hypertension, heart disease, cholesterol levels, and more. Statistical significance is indicated with p-values, showing marked differences across groups. Values are presented as means with standard deviations or percentages.]




Relationship of TP, ALB, and GLB with incident IR

The multivariate logistic regression results are summarized in Table 2. In model 3, when TP, ALB, or GLB was treated as a continuous variable, and scaled per 10g/L increment, the fully adjusted ORs (95% CI) for Incident IR were 1.54 (95% CI 1.41-1.69, P < 0.0001), 1.09 (95% CI 0.95-1.25), P = 0.1995), and 1.62 (95% CI 1.47-1.79, P < 0.0001) for TP, ALB, and GLB respectively. When TP, ALB, or GLB were treated as a categorical variable, the effects of TP and GLB in increasing the risks of IR were positive (all P for trend < 0.0001), but the effect of ALB was not (P for trend = 0.062). Compared to those in the lowest quantiles, the prevalence of IR for subjects in the highest TP and GLB quantiles was 2.06 and 1.91 times, respectively. The ORs of TP, ALB, and GLB for incident IR are shown in Figure 2, indicating the linear relationships in TP and GLB.

Table 2 | Relationships of TP, ALB, and GLB with insulin resistance.


[image: A table presents odds ratios and p-values for different protein categories across three models. The categories include total protein (TP), albumin (ALB), and globulin (GLB), with separate entries for each quintile. Odds ratios and confidence intervals are provided for each category and model alongside the p-values. Model adjustments vary by age, gender, race, education, blood pressure, BMI, and other health factors. The table includes trends for each protein type, indicating statistical significance for most categories.]
[image: Line plot displaying odds ratios across three categories: TP, ALB, and GLB. TP and GLB show increasing trends with significant p-values less than 0.0001, while ALB remains relatively stable with a p-value of 0.062. Error bars are included.]
Figure 2 | Multivariate-adjusted odds ratio (95% CI) of TP, ALB, and GLB with insulin resistance in categories analyses. TP, total protein; ALB, albumin; GLB, globulin. Multivariate model adjusted for age, gender, race, education, systolic blood pressure, diastolic blood pressure, body mass index, smoking, diabetes, hypertension, coronary heart disease, acute myocardial infarction, chronic heart failure, stroke, cancer, alanine aminotransferase, aspartate aminotransferase, serum creatinine, glycated hemoglobin A1c, hemoglobin, total cholesterol, high-density lipoprotein cholesterol, and triglycerides.

The relations between baseline variables and HOMA-IR were assessed using Spearman’s correlation analysis (Figure 3, Supplementary Tables S1). HOMA-IR was mostly positively associated with TP, GLB, FBG, FIN, SBP, DBP, BMI, ALT, AST, Scr, HbA1c, Hb, TC, and TG. However, an inverse correlation was found between ALB and HDL-C.

[image: A triangular heatmap displays correlation coefficients between various health-related biomarkers, including TP, ALB, GLB, among others. Colors range from dark green for the strongest correlations to light green for the weakest, indicating the level and direction of correlation. A color scale on the right illustrates values from zero to one.]
Figure 3 | The heatmap of the correlation between covariates using Spearman’s correlation analysis. TP, total protein; ALB, albumin; GLB, globulin; FBG, fasting blood-glucose; FIN, fasting insulin; HOMA-IR, homeostasis model assessment of insulin resistance; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Scr, serum creatinine; HbA1c, glycated hemoglobin A1c; Hb, hemoglobin; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides.

Furthermore, as demonstrated in Figure 4, the multivariate-adjusted restrictive cubic curves further confirmed that the relationships of TP and GLB with IR prevalence were linear.

[image: Three histograms with line graphs showing odds ratios of insulin resistance (IR) based on total protein, albumin, and globulin levels in grams per liter. Each plot includes a linearity and non-linearity p-value. Total protein shows a decreasing trend, albumin is relatively stable, and globulin shows an increasing trend. Shaded regions indicate confidence intervals.]
Figure 4 | Restricted cubic spine models of TP, ALB, and GLB with insulin resistance. TP, total protein; ALB, albumin; GLB, globulin; IR, insulin resistance. Restricted cubic spine models were adjusted for age, gender, race, education, systolic blood pressure, diastolic blood pressure, body mass index, smoking, diabetes, hypertension, coronary heart disease, acute myocardial infarction, chronic heart failure, stroke, cancer, alanine aminotransferase, aspartate aminotransferase, serum creatinine, glycated hemoglobin A1c, hemoglobin, total cholesterol, high-density lipoprotein cholesterol, and triglycerides.





Subgroup analysis of the risk of incident IR

The stratified analyses performed using multivariate logistic regression analysis and interactions analysis are shown in Figure 5 and Supplementary Tables S2. The association between TP and IR risks was generally significant across all subgroups. For ALB, the significant associations were only found among participants who were aged ≥ 65 years, Black persons, those with a BMI ≥ 25 kg/m2, non-smokers, and those with hypertension. Furthermore, the positive association between GLB and IR risks was found in general subgroups, but not in patients with CHD.

[image: Forest plot showing fully adjusted odds ratios with 95 percent confidence intervals for different subgroups. Comparisons include protein markers: Total protein (circle), Albumin (square), and Globulin (triangle) across demographic and health-related factors such as age, gender, race, BMI, smoking status, diabetes, hypertension, CHD, AMI, CHF, stroke, and cancer. P-values for interaction are provided on the right.]
Figure 5 | Subgroup analyses of TP, ALB, and GLB with insulin resistance stratified by participant characteristics. TP, total protein; ALB, albumin; GLB, globulin; BMI, body mass index; CHD, coronary heart disease; AMI, acute myocardial infarction; CHF, chronic heart failure. Results are expressed as multivariable-adjusted odds ratio in continuous analyses (per 10g/L increment) after controlling covariates including age, gender, race, education, systolic blood pressure, diastolic blood pressure, body mass index, smoking, diabetes, hypertension, coronary heart disease, acute myocardial infarction, chronic heart failure, stroke, cancer, alanine aminotransferase, aspartate aminotransferase, serum creatinine, glycated hemoglobin A1c, hemoglobin, total cholesterol, high-density lipoprotein cholesterol, and triglycerides, where possible interactions between above factors are also adjusted for if necessary.






Discussion

This study contributes novel evidence indicating that both TP and GLB exhibit strong linear relationships with increased incident risk of IR, whereas no significant association was observed with ALB. The positive correlation between ALB and IR prevalence could be observed in older persons, Black persons, and those with hypertension, and a negative correlation was only found in those with a BMI ≥ 25 kg/m2. These findings suggest potential clinical implications for a deeper understanding of the impact of TP, ALB, and GLB on IR.

Insulin resistance, a key driver of various metabolic-related diseases, describes the reduced responsiveness of insulin-targeted tissues to elevated insulin levels (16). Prior research has indicated an association between serum ALB and IR, possibly attributable to the theory that compensatory hyperinsulinemia in cases of IR promotes ALB synthesis. Experts have demonstrated that serum insulin positively regulates ALB gene transcription and mRNA synthesis in rats in vivo and in vitro (17–19). A similar trend was also observed in patients with type 1 diabetes (20). However, in the atherogenic process, serum ALB is negatively correlated with inflammation and oxidative stress, which is considered to play crucial roles in the prevention and treatment of IR (6, 21). However, in our study, this protective effect was not observed. Furthermore, as is well known, TP and GLB levels in patients provide valuable insights into their overall health status. TP reflects the body’s nutritional status, liver function, kidney function, and the presence of chronic inflammatory or infectious diseases (22, 23). GLB, a component of TP, plays a critical role in immune response and protein transport. Elevated GLB levels may indicate chronic inflammatory conditions, liver disease, or immune disorders, while low levels can suggest malnutrition or protein synthesis issues (24–26). However, there is currently no existing evidence supporting an association of TP or GLB with IR. Thus, further basic and clinical research is necessary to clarify the underlying mechanism and validate these findings.

To our knowledge, this is the first report with a large sample size aimed at comprehensively understanding the associations between serum proteins, including TP, ALB, and GLB, and IR within the same population. The conclusion is supported by available robust clinical data from NHANES, including FGB, FIN, and multiple traditional IR risks. Previously, Ji et al. revealed a positive association between ALB and IR among 9,029 subjects without diabetes in Korea. However, they did not report a correlation between the other two serum proteins and IR (7). Compared to the study by Ji et al., we further determined a detailed relationship of TP, ALB, and GLB with Incident IR with a larger sample, broader population, and more comprehensive adjustments. It was confirmed that the values of TP and GLB were positively correlated with IR. However, in our study, the significant associations between ALB and IR were only found among participants who were aged ≥ 65 years, Black persons, those with a BMI ≥ 25 kg/m2, non-smokers, and those with hypertension. The discrepancy between the results of Ji et al. and ours is probably attributable to differences in the study population, age distribution, and dietary patterns. Regarding clinical importance, our novel findings are conducive to understanding the relationship between serum proteins and IR and remind us that when evaluating the risk of patients with possible IR, attention should also be paid to the serum protein concentrations, rather than solely on changes in blood-glucose indexes.

However, the present study still has several limitations. First, given the nature of observational cross-sectional studies, each serum protein concentration can only be measured once, leading to potential bias, and no causal relationship between any serum protein concentration and IR prevalence can be drawn. Second, the present study is based on data from the NHANES study, conducted by the United States National Center, making the conclusion difficult to extrapolate to other regions of the world. Therefore, this conclusion still needs to be interpreted with caution.





Conclusions

The present cross-sectional study with a large sample size provided supportive evidence of positive associations of TP and GLB with IR. Additionally, a linear association between ALB and the prevalence of IR could be observed in older persons, Black persons, and participants with hypertension, and a negative correlation was only found in those with a BMI ≥ 25 kg/m2. The association between serum proteins and IR suggests the necessity of introducing serum protein monitoring into the management of patients with possible IR and further well-designed multicenter prospective studies are necessary to determine the specific effects of these serum proteins on IR in humans.
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Objective

To explore the diagnostic value of glycated CD59 (gCD59) in gestational diabetes mellitus (GDM).





Methods

A total of 707 pregnant women who underwent the first visit in the obstetric outpatient clinic of the Affliated Suqian Hospital of Xuzhou Medical University from January 2022 to July 2023 were included, and were grouped according to the International Association of the Diabetes and Pregnancy Study Groups(IADPSG) diagnostic criteria, and finally 113 cases in the GDM group and 559 cases in the normal glucose tolerance (NGT) group were included, and the concentration of gCD59 was determined by enzyme-linked immunosorbent assay (ELISA). The baseline data characteristics of the two groups were compared, the risk factors for GDM were explored by multivariate binary logistic analysis, and the diagnostic value of gCD59 in predicting GDM was explored by receiver operating characteristic (ROC) curve analysis.





Results

The level of gCD59 in the GDM group was significantly higher than that in the NGT group (1.49 SPU vs 0.87 SPU). Multivariate regression analysis showed that gCD59, diastolic blood pressure (DBP) and thyroid stimulating hormone (TSH) were independent risk factors for GDM.The area under the curve (AUC) of gCD59 for the diagnosis of GDM was 0.681 (95% CI: 0.583-0.717), with a sensitivity of 71.7% and a specificity of 58.3%. In combination with fasting glucose, gCD59 effectively diagnosed GDM with higher AUC of 0.871 (95% CI: 0.708-1.000).





Conclusion

gCD59 is an independent risk factor for GDM and a good biomarker for the diagnosis of GDM.





Keywords: gestational diabetes mellitus, glycosylated CD59, biomarker, oral glucose tolerance test, diagnostic value




1 Introduction

Gestational Diabetes Mellitus (GDM), representing one of the most prevalent complications encountered during pregnancy, is characterized by glucose metabolism abnormalities that emerge or are first recognized during pregnancy in women who have no prior history of diabetes or glucose intolerance (1). The concerning rise in the prevalence of GDM in recent years,GDM endangers maternal and fetal health by increasing the risk of type 2 diabetes in mothers after delivery and predisposing offspring to various metabolic disorders in later life (2). Accordingly, the effective management of GDM, especially through stringent blood glucose control during pregnancy, is vital to reduce adverse outcomes for both mothers and children (3, 4).

Current clinical standards, primarily the oral glucose tolerance test (OGTT), are routinely recommended for GDM diagnosis during the mid-second trimester (5, 6). Despite its extensive application, OGTT requires fasting and has a low repeatability (7, 8). Lack of a uniform protocol further limits its utility in the clinical setting. Diagnostic methods for GDM include the one-step screening method recommended by the International Association of the Diabetes and Pregnancy Study Groups (IADPSG), with fasting ≥ 5.1 mmol/l, 1 h ≥ 10.0 mmol/l, 2 h ≥ 8.5 mmol/l, and a diagnosis of GDM if one of these criteria is met. The American College of Obstetricians and Gynecologists (ACOG) recommends a two-step screening test, with fasting ≥5.3 mmol/L,1 h ≥ 10.1 mmol/L, 2 h ≥8.7 mmol/L, 3 h ≥7.8 mmol/L, two or more values met or exceeded a required to make the diagnosis (9). Therefore, straightforward and reliable diagnostic alternatives are in urgent need (10). In recent years, novel biological markers have shown great potential in precision diagnosis and treatment of GDM, including various molecular types such as adipokines (lipocalin, leptin, endolipin, resistin); inflammatory factors (CRP, interleukin 6, TNF-a), epigenetic markers, small molecule proteins, small molecule metabolites and so on. Many scholars have studied this, but their sensitivity and specificity are limited, and there are no guidelines recommending specific biological markers (Table 1).

Table 1 | Biological markers associated with gestational diabetes.


[image: A table comparing biomarkers for gestational diabetes mellitus, including HbA1c, SHBG, Hs-CRP, miR-195-5p, serum iron, zinc, small HDL particles, and acylcarnitines. It details study types, diagnostic guidelines, sample collection times, participant numbers, AUC, sensibility, and specificity. For instance, HbA1c is studied retrospectively according to WHO guidelines, with 262 participants and an AUC of 0.714, sensibility of 68.1%, and specificity of 63.2%.]
CD59 is glycosylphosphatidylinositol (GPI)-anchored protein, with a molecular weight of 18-20 kDa, ubiquitously expressed in mammalian cells (17, 18). gCD59, a stable soluble form of the broadly expressed complement regulatory protein CD59, emerges under hyperglycemic conditions. It detaches from the cell membrane through the action of phospholipase and persists in blood and urine. Notably, its expression level exhibits a significant correlation with blood glucose levels (19, 20), positioning gCD59 as a potential biomarker for diagnosing GDM. Bogdanet found that mid-trimester gCD59 diagnosed GDM with an area under curve (AUC) of 0.65 and the value was more pronounced in subjects with a high body mass index (BMI) (21). In the first trimester, the Glosh study found significantly higher levels of gCD59 in the GDM group than in the control group using the two-step approach as a diagnostic criterion (22). Despite the promising utility of gCD59 indicated in various studies, its application in the Chinese population has not been extensively explored. This study aimed to elucidate the diagnostic value of gCD59 for GDM and associated risk factors in a Chinese cohort.




2 Materials and methods



2.1 Study subjects

This research was a prospective cohort study, as depicted in the accompanying flowchart (Figure 1). Enrolled were pregnant women visiting the obstetrics outpatient clinic at The Affiliated Suqian Hospital of Xuzhou Medical University between January 2022 and July 2023. Eligible participants met the following criteria: aged 20-40 years, gestational period within 24-28 weeks, ultrasound-confirmed singleton intrauterine pregnancy, and provision of informed consent. Exclusion criteria encompassed a history of type 2 diabetes, severe organic or primary diseases such as liver or kidney dysfunction, heart failure, stroke, or malignant tumors, Exclusion of persons with cognitive, affective, motor and communication disorders according to the CCAS/Schmahmann scale (23).

[image: Flowchart depicting a study involving pregnancy and glucose testing. Initially, 707 women were recruited. Thirty-five withdrew for reasons such as study exit, age, abortion, diabetes complications, or refusal of the OGTT. Six hundred seventy-two women underwent a 75g OGTT at 24-28 weeks of pregnancy. Following sample collection and gCD59 detection, 113 were diagnosed with gestational diabetes mellitus (GDM) and 559 with normal glucose tolerance (NGT).]
Figure 1 | Flowchart. OGTT, Oral glucose tolerance test; GDM, gestational diabetes mellitus; NGT, normal glucose tolerance.




2.2 Research methods

Upon their initial consultation, all participants were registered with electronic health records into the Maternal and Child follow-up System (ZhenDing System). This system captured key metrics, including age, sampling date, gravidity, parity, systolic blood pressure(SBP),diastolic blood pressure(DBP), as well as height and weight. Body Mass Index (BMI) was calculated in accordance with the classification standards of the World Health Organization (24). BMI classifications: a BMI less than 18.5 kg/m2 as underweight; a BMI ranging from 18.5 to 23.9 kg/m2 as normal weight; a BMI between 24 and 27.9 kg/m2 as overweight; and a BMI of 28 kg/m2 or higher as obesity. Participants were fasted for 8-14 hours to prepare for clinical laboratory assessments. At the first visit and during the 24-28 week, Peripheral venous blood was drawn from the forearm to measure an array of clinical parameters, including Hemoglobin (Hb), Ferritin, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Blood urea nitrogen (BUN), Creatinine (Cr), Uric acid (UA), Triglycerides (TG), Total Cholesterol (TC), Thyroid Peroxidase Antibody (TPOAb), Free Thyroxine (FT4), and Thyroid Stimulating Hormone (TSH).Use of colour Doppler ultrasound scan to assess the subject’s gestational week according to the International Society of Ultrasound in Obstetrics and Gynaecology(ISUOG) guidelines (25).

For the OGTT administered during 24-28 weeks of gestation, a 75g glucose solution, prepared from anhydrous glucose powder provided by Shandong Qidu Pharmaceutical Co., Ltd., was consumed following a fasting of 8-14 hours. Then, 75 grams of anhydrous glucose powder was mixed into 300 milliliters of water and promptly consumed within a 5-minute timeframe. Blood samples were subsequently collected from the elbow vein at fasting, and then 1 and 2 hours post-glucose intake. Blood glucose levels were analyzed using the plasma glucose oxidase method. Adhering to IADPSG diagnostic criteria, GDM was diagnosed when any one or more of the following indexes were met: fasting blood glucose levels greater than 5.1 mmol/L, blood glucose levels exceeding 10.0 mmol/L one hour post-glucose consumption, or blood glucose levels surpassing 8.5 mmol/L two hours after glucose intake (26).

Sample Collection: Blood samples were collected from all subjects during the 24-28 week gestation period after fasting for 8-14 hours. Each sampling involved the collection of 5 ml of venous blood using Ethylenediaminetetraacetic acid (EDTA) tubes, followed by centrifugation at 3000/min for 10 minutes at room temperature to separate the plasma. For gCD59 quantification, plasma samples (1 ml each) were reserved for gCD59 analysis. Each of these gCD59 plasma samples was subdivided into two aliquots of 500 µL and securely stored in a -80° freezer. To maintain confidentiality, all laboratory specimens were anonymized and tested in the central laboratory of our hospital. Throughout the testing process, laboratory personnel remained blinded to participants’ glycemic status to ensure objectivity.

Assessment of plasma gCD59: plasma concentrations of gCD59 were measured by a highly sensitive and specific human enzyme-linked immunosorbent assay (ELISA) kit (TSZ, USA) and refer to the approach developed by Ghosh et al. (27). Sample concentrations were obtained by a fourparameter logistic curve-fit, with a minimum detectable gCD59 concentration of 0.025 SPU((1SPU = 1 ng/ml). Intra- and inter-assay coefficients of variability were 4.9% and 5.4%, respectively.




2.3 Statistical methods

Data analyses were performed utilizing SPSS version 26.0 and R software version 4.3.1. All variables were subjected to the Kolmogorov-Smirnov normality test, data conforming to normal distribution were expressed as mean) [image: A mathematical expression featuring the letter "X" with a bar over it, often used to denote the mean or average of a sample in statistics.]  ± standard deviation(S) with the two independent samples t-test applied for comparisons between groups. Continuous variables that deviated from a normal distribution were described using median(M) and interquartile ranges(P25, P75), with the Mann-Whitney U test applied for comparisons between groups. Categorical data were expressed as frequencies(n) and percentages(%), with the Chi-square (χ2) test employed for intergroup analysis. To delineate the risk factors for GDM, univariate and multivariable binary logistic regression analysis was conducted. The diagnostic performance of plasma gCD59 for GDM was quantitatively assessed through the area under the curve (AUC) and 95% confidence intervals (CI) determined in the receiver operating characteristic (ROC) curve analysis. All tests were two-sided and P < 0.05 was considered statistically significant.





3 Results



3.1 Comparative analysis of general and biochemical indicators

In this investigation, 707 subjects were initially engaged. Subsequently, adjustments to the participant pool were made: five individuals dropped out, three were disqualified in age, two encountered miscarriages, one presented with complications of Type 2 Diabetes, and 24 abstained from the OGTT. These modifications resulted in a final cohort of 672 subjects. Within this group, 113 were classified under the GDM category, establishing a GDM incidence rate of 16.8% (Figure 1). The initial comparative analysis of baseline characteristics revealed that the GDM group exhibited significantly higher values of weight, BMI, SBP, DBP, and TG, compared to the Non-Gestational Diabetes Mellitus (NGT) group (P < 0.05). Glycemic indicators including fasting glucose, and 1-hour and 2-hour post-glucose intake levels were notably elevated in the GDM group versus the NGT group (P < 0.001) (Table 2).

Table 2 | Comparison of general and biochemical data between GDM and NGT groups [M (P25, P75)] or n(%).


[image: Table comparing baseline characteristics between GDM (gestational diabetes mellitus) group with 113 participants and NGT (normal glucose tolerance) group with 559 participants. Significant differences (p < 0.001) are observed in fasting plasma glucose, one-hour and two-hour glucose, weight, body mass index, systolic and diastolic blood pressure, and gCD59 levels. Other characteristics like age, gravidity, parity, height, ferritin, hemoglobin, blood urea nitrogen, creatinine, uric acid, triglycerides, total cholesterol, albumin, alanine aminotransferase, aspartate aminotransferase, thyroid-related hormones, and TPOAB levels show no significant differences.]



3.2 Distribution of gCD59 in two groups

The analysis demonstrated a significant elevation of median gCD59 levels in the GDM group, compared with the NGT group (1.49 SPU vs 0.87SPU) (P<0.001)(Figure 2).

[image: Violin plot comparing gCD59 levels (SPU) between GDM (red) and NGT (blue) groups. GDM shows higher data spread and median than NGT. Significant difference indicated by a p-value less than 0.001.]
Figure 2 | Ditribution of gCD59 in the GDM group and NGT group.




3.3 Identification of Risk Factors for GDM

With the occurrence of GDM as the dependent variable, gCD59, age, pregnancy, weight, BMI, SBP, DBP, TSH, Ferritin as the independent variables, the initial univariate regression analysis highlighted significances of gCD59, weight, BMI, DBP, and TSH (P < 0.05) (Model 1). Upon further adjustment for gravidity, weight, BMI, SBP, and DBP, the results of the multivariate regression analyses found that gCD59 (OR=1.417) and DBP (OR=1.050) persisted as significant independent risk factors for GDM (Model 2). Subsequent analysis with adjustments for age, TSH, and Ferritin multivariate identified gCD59 (OR=1.572), DBP (OR=1.047), and TSH (OR=1.314) as independent risk factors for GDM. Notably, every increment of 1SPU in gCD59 was associated with a 1.57-fold increase in GDM risk. These findings underscored the nuanced interplay of physiological factors with GDM (Model 3), offering insights for future preventative and diagnostic strategies (Table 3).

Table 3 | Univariate and Multivariate Logistic Regression Analysis of Risk Factors for GDM.


[image: A table presents odds ratios and P-values for different variables across three models. Model 1 shows significant results for gCD59, weight, BMI, systolic and diastolic blood pressure (SBP and DBP), and TSH. Model 2 adjusts for certain factors, retaining significance for gCD59 and DBP. Model 3 shows significance for gCD59, DBP, and TSH. The table notes that Model 1 is unadjusted, Model 2 adjusts for gravidity, weight, BMI, SBP, and DBP, and Model 3 further adjusts based on Model 2 for additional factors.]



3.4 Diagnostic potential of gCD59 for GDM

ROC curve analysis revealed an AUC of 0.681 (95%CI: 0.583-0.717), indicating a sensitivity of 71.7% and a specificity of 58.3% for gCD59 in predicting GDM occurrence (Figure 3A). We conducted a detailed analysis in combination with a single diagnostic threshold during the OGTT. Our results showed that gCD59, in combination with fasting blood glucose, effectively diagnosed the occurrence of GDM, the area under the ROC curve (AUC) was 0.871 (95% CI: 0.708-1.000) (Figure 3B). Similarly. when combination with 1-hour and 2-hour post-glucose levels as diagnostic thresholds, gCD59 maintained its strong diagnostic ability, with AUCs of 0.751 (95%CI: 0.513-0.930) and 0.776 (95%CI: 0.531-0.953), respectively (Figures 3C, D).

[image: Four ROC curve graphs labeled A, B, C, and D display the performance of different models with sensitivity versus specificity. Graph A shows an AUC of 0.681, B shows an AUC of 0.871, C displays an AUC of 0.751, and D has an AUC of 0.776. The blue shaded area under each curve represents the AUC value, indicating the model's predictive accuracy.]
Figure 3 | (A) ROC curve for gCD59 in diagnosis of GDM; (B) ROC curve of gCD59 in combination with fasting blood glucose (5.1 mmol/L) for the diagnosis of GDM; (C) ROC curve of gCD59 in combination with 1-hour blood glucose (10.0mml/L) for the diagnosis of GDM; (D) ROC curve of gCD59 in combination with 2-hour blood glucose (8.5mmol/L) for the diagnosis of GDM.

We further investigated diagnostic abilities of gCD59 across different BMI categories. In the underweight cohort, gCD59 diagnosed GDM with an AUC of 0.629 (95%CI: 0.409-1.000) (Figures 4A). This diagnostic capability was more pronounced in the normal and overweight groups, with AUCs of 0.708 (95%CI: 0.610-0.735 and 0.675-0.685, respectively) (Figures 4B, C). However, in the obese category, a slight reduction in diagnostic accuracy was noted, with an AUC of 0.662 (95%CI: 0.333-1.000) (Figure 4D).

[image: Four receiver operating characteristic (ROC) curves labeled A, B, C, and D. Graph A has an area under the curve (AUC) of 0.629. Graph B shows an AUC of 0.708. Graph C also has an AUC of 0.708. Graph D displays an AUC of 0.662. Each graph plots sensitivity versus specificity, with shaded areas indicating AUC.]
Figure 4 | (A) ROC Curve for gCD59 in diagnosis of GDM among Underweight Participants (BMI < 18.5 kg/m2,n(GDM n=6,NGT n=44); (B) ROC Curve for gCD59 in diagnosis of GDM among Normal Weight Participants (18.5 kg/m2 ⩽ BMI ⩽ 23.9 kg/m2,GDM n=49,NGT n=365); (C) ROC Curve for gCD59 in diagnosis of GDM among Overweight Participants (24 kg/m2 ⩽ BMI 27.9 kg/m2,GDM n=41,NGT n=111); (D) ROC Curve for gCD59 in diagnosis of GDM among Obese Participants (BMI ≥28 kg/m2, GDM n=17,NGT n=39).





4 Discussion

The quest for accessible and efficient biomarkers is ongoing, given the limitations of the OGTT in diagnosing GDM. Notably, gCD59 has emerged as a promising candidate in this regard. Our study underscores a significant elevation of gCD59 in the GDM cohort among the Chinese population, indicating its potential as an independent biomarker for GDM diagnosis as well as an independent risk factor for the development of GDM. The observed efficacy of gCD59, with an AUC of 0.681 and balanced sensitivity and specificity rates. In combination with fasting glucose, gCD59 effectively diagnosed GDM with higher AUC of 0.871, reinforces its utility in clinical settings.

Involving 672 participants and adhering to the IADPSG criteria, this study discerned a GDM prevalence of 16.8% (113 patients), reflecting the escalating trend of GDM in China. Contemporary epidemiological findings reveal that the incidence has already exceeded 15% (28). The study indicates that the incidence of GDM among the participants is reflective of the general condition of pregnant women across China. This research aligns with the increasing body of evidence pointing to maternal age, obesity, hypothyroidism, and elevated ferritin levels as risk factors in GDM pathogenesis (20, 29–31). Our findings particularly noteworthy that age did not significantly differ between groups, potentially due to the lower proportion of older mothers (approximately 9% of the total population.), hinting at the need for broader demographic studies. The multivariate regression analysis identified gCD59, DBP and TSH as independent predictors for GDM. Notably, gCD59 had the highest OR value. An increment of 1SPU in gCD59 was associated with a 1.57-fold increase in GDM risk. As a complement regulatory protein, CD59 inactivation leads to a loss of inhibition against the membrane attack complex (MAC), potentially escalating MAC deposition. This mechanism may exacerbate diabetes and its sequelae (18, 32). The study underscored a marked elevation in gCD59 within the GDM group, indicating its potential role in the etiology and progression of GDM among pregnant women. Further investigation is warranted to elucidate the underlying mechanisms.

Bogdanet et al. (21) have reported an AUC of 0.65 for gCD59 in GDM prediction, closely aligning with the 0.68 in our study. However, in this study, the median gCD59 level was notably lower compared to those reported by Bogdanet et al. (1.49 SPU versus 2.6 SPU). A critical analysis revealed that the population in the study of Bogdanet et al. was characterized by a higher median age of 34.8 and a median BMI of 28.7, markedly surpassing those in our cohort. These differences in age and BMI might have contributed to the variance in gCD59 level between the two groups. Ghosh et al. (22) utilized a two-step method for diagnosing GDM. Their findings demonstrated that gCD59 had a significant predictive accuracy for GDM, with an AUC of 0.92 (95% CI: 0.77-0.91). Remarkably, the diagnostic efficacy of gCD59 was enhanced when sampling time was performed at the same time point. This enhancement can be ascribed to several factors. Primarily, the two-step method plays a crucial role. Literature suggests that the prevalence of GDM identified using the one-step method is threefold compared to the two-step method (33). Additionally, the elevated diagnostic threshold in the two-step method tends to include participants presenting higher blood glucose levels. In this study, we expanded the racial diversity of participants, and included cases of multiple pregnancies as a high-risk group for GDM. By employing more stringent inclusion criteria, the diagnostic utility of gCD59 in GDM was significantly enhanced. Our results showed that gCD59 in combination with fasting glucose effectively diagnosed GDM with a higher AUC of 0.871 (95% CI: 0.708-1.000). Given its nature as a glycosylated protein, gCD59 more accurately mirrors initial glucose levels. Notably, prior research indicates that relying solely on elevated fasting blood glucose levels for GDM diagnosis could potentially obviate the need for OGTT in upwards of 50% of the population (34). This underscores the potential of elevated fasting glucose level as a preliminary screening marker for GDM. Nevertheless, how to determine an optimal fasting glucose threshold that balances sensitivity and specificity remains a subject of ongoing debate (35, 36).

Given the established association between BMI and GDM, our study stratified participants into underweight, normal, overweight, and obese based on BM to assess the predictive abilities of gCD59 in these subgroups. It revealed a general increasing trend of gCD59 diagnostic values with BMI, with AUC values of 0.629, 0.708, 0.708, and 0.662 respectively. However, an unexpected decrease in AUC was observed in the BMI > 28 kg/m²subgroup, which differs from the findings of Bogdanet et al. that AUC values increased progressively with BMI. they found that the predictive value of gCD59 for GDM increased progressively with increasing BMI, and the AUC reached the highest (AUC=0.96) in the BMI 40 kg/m2 group, this difference may be due to the different BMI distribution of the enrolled population. The median BMI of the enrolled population in this study was 24.06, significantly lower than that of Bogdanet et al. Given the limited sample size of this subgroup which included only seven pregnant women with a BMI above 35 kg/m2, comprehensive analysis of higher BMI subgroups was not feasible. Therefore, future studies, incorporating a more extensive sample size, are imperative to elucidate the diagnostic accuracy of gCD59 across varied BMI categories.

The small sample size of the enrolment in this study and the lack of matching of the enrolled population may have biased the results. In addition, there was no specific information on maternal weight gain during pregnancy, which may have biased the results of the BMI subgroup analyses. The third is that a validation study in another prospective cohort with a different participant population is needed to confirm the sensitivity and specificity of the results of this study.

This study supports the potential of gCD59 as a diagnostic biomarker for GDM in a Chinese population. and further confirmation of the value of gCD59 in diagnosing GDM at different stages of pregnancy based on multicentre and larger sample size is needed in the future. The combination of other biological markers may also be considered for further analysis.
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Background

The triglyceride-glucose (TyG) index, recognized for its cost-efficiency and simplicity, serves as an accessible indicator of insulin resistance. Yet, its correlation with the risk of prediabetes and diabetes (Pre-DM/DM) in the Chinese demographic remains uncertain. Consequently, our study explored the association between the TyG index and the development of Pre-DM/DM within the Chinese population.





Methods

The retrospective cohort study was carried out utilizing data from a health screening initiative. The study included 179541 adults over 20 who underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. The correlation between the TyG index and Pre-DM/DM risk was investigated using Cox regression analysis. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore their non-linear connection.





Results

The mean age of study participants was 41.18 ± 12.20 years old, and 95255 (53.05%) were male. During a median follow-up of 3.01 years, 21281 (11.85%) participants were diagnosed with Pre-DM/DM. After adjusting the potential confounding factors, the results showed that the TyG index was positively correlated with incident Pre-DM/DM (HR: 1.67, 95%CI: 1.62-1.71, P< 0.001). Additionally, a non-linear association was observed between the TyG index and the onset of Pre-DM/DM, with an inflection point identified at 8.73. Hazard ratios (HR) to the left and right of this inflection point were 1.95 (95%CI: 1.86-2.04) and 1.34 (95%CI: 1.27-1.42), respectively. Furthermore, sensitivity analyses confirmed the stability of these findings.





Conclusion

The TyG index exhibited a non-linear positive relationship with the risk of Pre-DM/DM. These findings imply that maintaining the TyG index at a lower, specified threshold may be beneficial in mitigating the onset of Pre-DM/DM.





Keywords: triglyceride-glucose index, triglyceride, fasting plasma glucose, prediabetes, diabetes, non-linearity





Introduction

Diabetes mellitus (DM) has emerged as a prevalent chronic condition on a global scale, witnessing a notable increase in its incidence among chronic diseases worldwide in recent years (1). As the predominant chronic illness, DM exerts a significant economic burden on individuals and healthcare infrastructures. The International Diabetes Federation reported approximately 425 million individuals aged 20 to 79 years were living with DM globally in 2019 (2). Projections suggest an escalation to 642 million by 2045, with Asia accounting for 140.2 million of these cases (2). In addition, the number of individuals with prediabetes, a state defined by glucose levels that are higher than normal but not yet high enough to warrant a diabetes diagnosis, is set to rise significantly (3). It is projected that by 2030, over 470 million people will be living with prediabetes (4). A notable concern is the lack of awareness among individuals with prediabetes regarding their altered glucose metabolism, leading to missed opportunities for preventive interventions. Consequently, an estimated 5% to 10% of individuals with prediabetes progress to DM annually (5). A concerning trend is the decreasing age of onset for both prediabetes and diabetes, with younger populations increasingly affected (1, 6). Individuals of younger age presenting with prediabetes and diabetes frequently experience adverse prognostic outcomes and demonstrate a heightened predisposition towards both cardiovascular and microvascular disorders (7). This change underscores the imperative need for early screening and intervention for prediabetes and diabetes (Pre-DM/DM) to halt the progression of these conditions and mitigate adverse health outcomes.

The triglyceride-glucose (TyG) index, recognized for its cost-efficiency and simplicity, serves as an accessible indicator of insulin resistance (IR) (8), a critical determinant in the pathophysiology of both diabetes and prediabetes. Numerous investigations have highlighted the TyG index’s correlation with an increased cardiovascular disease risk within the general populace (9). Furthermore, it has been posited as a predictive measure for conditions such as arteriosclerosis and coronary artery calcification (10, 11). Currently, several studies have reported the connection between the TyG index and the development of DM. For example, studies in the United States, Korea, and Japan have indicated that the TyG index is an independent risk factor for the development of DM (12–14). Yet, these studies ignored subjects with Pre-DM. The progression from insulin resistance to outright diabetes is not immediate but rather evolves into diminished glucose tolerance, with a significant portion of affected individuals eventually contracting diabetes (15). To bridge this gap in research, our retrospective cohort study endeavored to delineate the precise relationship between the TyG index and the emergence of Pre-DM/DM within a substantial cohort of the Chinese populace.





Methods




Data source

The data employed in our research was obtained from the DATADRYAD platform, an online archive offering free access and download capabilities for extensive raw data collection to the scientific community. This platform provided us access to a dataset initially contributed by Chen et al. (16), encompassing information on 211,833 individuals from China. Following Dryad’s guidelines and terms of service, we conducted a secondary analysis of this dataset, which is openly accessible to the public.





Study population

Authorization for the primary study was granted by the Review Board of the Rich Healthcare Group (16), obviating the need for ethical clearance for our subsequent analysis. The original study and our subsequent research aligned with the Declaration of Helsinki’s principles, adhering to all relevant guidelines and regulatory standards.

The initial research enlisted a cohort comprising 685,277 Chinese adults over 20 years, who had participated in at least two consultations, spanning 11 cities and 32 sites within China. The exclusion criteria were meticulously delineated as follows: (1) a pre-existing diagnosis of diabetes mellitus at the inception of the study; (2) an undefined status of diabetes mellitus during the follow-up phase; (3) an aberrant Body Mass Index (BMI), delineated as a BMI exceeding 55 or falling below 15 kg/m^2; (4) the absence of baseline data pertaining to weight, height, gender, triglycerides (TG), or fasting plasma glucose (FPG); (5) a baseline FPG level surpassing 5.6mmol/L; (6) a follow-up duration less than two years; (7) an abnormal TyG index, identified as three standard deviations above or below the mean. Following the application of these exclusion criteria, a total of 179,541 participants were deemed eligible for inclusion in the study. The architecture and procedural flow of the study were systematically illustrated in Figure 1.

[image: Flowchart detailing participant selection for a study. Initially, 685,277 Chinese participants aged 20 and above with at least two visits between 2010-2016 were considered. Of these, 473,444 were excluded for reasons such as no weight/height data, extreme BMI values, no FPG value at baseline, short visit intervals, diabetes at baseline, or undefined diabetes status at follow-up. This left 211,833 participants. From these, 32,292 were further excluded for TG and FPG issues or TyG outliers, resulting in 179,541 included in the study.]
Figure 1 | Study population.





Data collection

Data collection and organization were carried out by personnel who received specific training for these tasks. The original study employed a uniform environment for acquiring lab data, and standardized procedures were adopted for data handling. These trained individuals collected demographic details, covering various metrics such as age, systolic blood pressure (SBP) and diastolic blood pressure (DBP), as well as height and weight. Measurements of height and weight were taken by trained individuals, ensuring participants were in light attire without footwear, and BMI was determined using the formula weight in kilograms divided by the square of height in meters (kg/m2). The trained team obtained Blood pressure readings using a traditional mercury sphygmomanometer. Furthermore, this proficient group utilized a Beckman 5800 autoanalyzer for the assessment of clinical parameters, which included FPG, high-density lipoprotein cholesterol (HDL-C), blood urea nitrogen (BUN), TG, serum creatinine (Scr), total cholesterol (TC), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (AST). The TyG index was specifically computed using the Ln[FPG (mg/dL))×(TG (mg/dL)/2) formula. The focal independent variable delineated for this study was the baseline TyG index, whereas the dependent variables were defined as incident Pre-DM/DM mellitus during the follow-up period.





Outcome measures

The criteria for diagnosing Pre-DM/DM were delineated based on either a fasting blood glucose concentration of 5.6 mmol/L or higher during the follow-up period (17) or through the acquisition of a self-reported diagnosis of diabetes at the time of follow-up assessment.





Statistical analysis

Statistical analyses were executed employing R software, along with Empower Stats. The TyG index was stratified into quartiles for analytical purposes. The mean and standard deviation represented variables adhering to a normal distribution, whereas the median and interquartile range described variables with a skewed distribution. Categorical variables were represented through the utilization of percentages. The comparison of continuous variables was facilitated through either one-way ANOVA or the Kruskal-Wallis test, and the chi-square test was employed to compare categorical variables. Incidence was articulated in terms of person-years and cumulative incidence rates. The Kaplan-Meier method was applied to compare survival and cumulative event rates.

In our study, the analysis of missing data revealed that there were individuals with missing data for several variables, as follows: 16 individuals (0.01%) for SBP, 1 individual (<0.01%) for TC, 17 individuals (0.01%) for DBP, 79,115 individuals (44.07%) for LDL-C, 105284 (58.64%) individuals for AST,16,142 individuals (8.99%) for BUN, 79622 (44.35%) individuals for HDL-C, 8,278 individuals (4.61%) for Scr, and 1,413 individuals (0.79%) for ALT, 131307 individuals (73.13%) for smoking status, 131307 individuals (73.13%) for drinking status, respectively. To address this, an interpolation model for multiple variables, inclusive of family history of diabetes, ALT, BUN, SBP, smoking status, TC, age, DBP, drinking status, HDL-C, age, LDL-C, AST, Scr, gender, and BMI, was employed utilizing linear regression with ten iterations. The analysis of missing data was predicated on the assumption of randomness in missingness (18, 19).

The influence of each variable on the risk of Pre-DM/DM was evaluated using the univariate Cox regression method. At the same time, the specific association between them was further elucidated through multivariate Cox regression analysis. Additional analyses included a non-adjusted model (Model 1), a minimally-adjusted model (Model 2), and a fully-adjusted model (Model 3) to elucidate the relationship between the TyG index and the risk for Pre-DM/DM. These models were adjusted if the hazard ratios (HR) were altered by at least 10% upon including covariates. We meticulously documented HR and 95% confidence intervals (CI) throughout the study. Due to collinearity with other evaluated factors, TC was excluded from the final multivariate Cox proportional hazards regression equation, as elaborated in Supplementary Table S1.

A series of sensitivity analyses were conducted to affirm the robustness of the conclusions. The TyG index was transformed into categorical data based on quartiles for these analyses, and the P for trend was calculated to validate the continuous variable findings of the TyG index and to assess for nonlinearity. The associations of smoking and drinking with an increased incidence of Pre-DM/DM were also scrutinized. For further sensitivity analyses, individuals who were never-drinkers or never-smokers were included to explore the relationship between the TyG index and the risk of Pre-DM/DM. The validity of the results was tested using a generalized additive model (GAM), which incorporated continuous variables as curves within the equation. Moreover, we calculated E-values to rigorously assess the potential presence of unmeasured confounding variables that could affect the observed association between the TyG index and the risk of developing Pre-DM/DM (20).

To explore the nonlinear connection between the TyG index and Pre-DM/DM risk, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was utilized. Upon detecting non-linearity, the inflection point was identified through recursive algorithms, and a two-piecewise Cox proportional hazards regression model was subsequently employed to determine the threshold effect of the TyG index on the incident rates of Pre-DM/DM, informed by the smoothed curve analysis.

Subgroup analyses, considering factors such as family history of diabetes, sex, smoking status, age, BMI, and drinking status, were conducted using the Cox proportional hazard model. Age and BMI were categorized based on clinical cut points (< 60, ≥ 60 years for age; < 24, ≥ 24 kg/m2 for BMI). Each stratification underwent a fully adjusted analysis beyond the stratification variables. Interactions between subgroups were verified using a likelihood ratio test. Values of P less than or equal to 0.05 were statistically significant.






Results




Baseline characteristics of participants

In this study, we included 179,541 participants who were initially free from Pre-DM/DM. The cohort’s mean age was 41.18 ± 12.20 years, and males constituted 53.05% of the sample. After an average follow-up duration of 3.15 years, 21,281 participants developed Pre-DM/DM. Table 1 outlines key demographic characteristics, results of laboratory tests, and other relevant variables. Participants were categorized into four quartiles based on their TyG index values. The analysis revealed that individuals in the highest quartile (Q4) exhibited elevated levels of FPG, AST, LDL-C, blood pressure, TG, BMI, ALT, Scr, TC, age, and BUN. This group (Q4 group) also had a higher proportion of males, along with increased rates of family history of diabetes, smoking, and alcohol consumption. Conversely, the lowest quartile group (Q1) showed higher levels of HDL-C in comparison to the remaining groups.

Table 1 | The baseline characteristics of participants.


[image: A table displays participant data categorized by HbA1c quartiles (Q1 to Q4). It includes gender, age, smoking and drinking status, family history of diabetes, and various health measurements like blood pressure, BMI, ALT, AST, cholesterol levels, and fasting plasma glucose. P-values indicate statistical significance for differences across quartiles.]




The incidence rate of pre-DM/DM

Table 2 presents the Pre-DM/DM incidence rates among 179,541 participants throughout the follow-up period. The overall population exhibited a Pre-DM/DM incidence rate of 11.85% (1.70%-12.00%). The incidence rates for the four TyG index quartiles were as follows: 6.16% (5.94%-6.39%), 8.91% (8.65%-9.18%), 12.71% (12.40%-13.02%), and 19.62% (19.25%-19.99%), respectively. Furthermore, the overall population and the four TyG index quartiles reported cumulative incidence rates of 3762.86, 1896.81, 2829.87, 4100.54, and 6329.17 per 100,000 person-years, in that order. Individuals in higher TyG index quartiles demonstrated increased rates of both incidence and cumulative incidence of Pre-DM/DM compared to those in lower quartiles (P for trend < 0.001).

Table 2 | Incidence rate of prediabetes and diabetes.


[image: Table showing the relationship between the TyG index and diabetes outcomes. It includes participants, prediabetes and diabetes events, cumulative incidence with confidence intervals, and incidence per 100,000 person-years for total and quartiles Q1 to Q4. Significant trend values are indicated.]
Figure 2 illustrates Kaplan-Meier curves, showcasing the probability of surviving without Pre-DM/DM. There was a significant variance in the risk of developing these conditions across the four TyG index quartiles (P < 0.001), with an ascending TyG index correlating with a reduced probability of avoiding Pre-DM/DM. This signifies that participants within the highest TyG index quartile faced the highest risk of developing Pre-DM/DM.

[image: Kaplan-Meier survival curves depicting survival probability over six years of follow-up, categorized by TyG index quartiles (Q1 to Q4). Curves are color-coded: Q1 is red, Q2 is green, Q3 is blue, and Q4 is purple. The chart includes statistical significance with P<0.001. Below the graph, a table shows the number at risk for each quartile at specific time points.]
Figure 2 | Kaplan–Meier event-free survival curve. Kaplan–Meier analysis of incident prediabetes based on TyG index quartiles (log-rank, P < 0.0001).





Univariate analysis

The findings from the univariate analysis are delineated in Table 3. This analysis revealed a statistically significant positive correlation between the risk of developing Pre-DM/DM and several variables, including age, DBP, AST, BUN, BMI, ALT, SBP, TG, FPG, LDL-C, Scr, TC, and TyG index. Conversely, a statistically significant inverse connection was observed between HDL-C and Pre-DM/DM risk. Additionally, never drinkers, smokers, and females demonstrated a significantly lower risk of Pre-DM/DM development.

Table 3 | The results of the univariate analysis.


[image: A table with statistics on gender, smoking and drinking status, family history of diabetes, and various health measures like blood pressure, BMI, and cholesterol. Each category includes hazard ratios (HR) with confidence intervals (CI) and p-values. Most p-values are less than 0.001, indicating statistical significance. The notes explain abbreviations used in the table.]




The relationship between the TyG index and pre-DM/DM

Utilizing Cox proportional hazard regression analyses, Table 4 delineates the relationship between the TyG index and the incidence of Pre-DM/DM. The HR with a 95%CI associating the TyG index with the risk of developing Pre-DM/DM was calculated as 2.26 (2.21-2.32) in the model without any adjustments (Model 1). When the model was minimally adjusted to account for BMI, family history of diabetes, DBP, sex, smoking status, SBP, age, and drinking status, the HR (95% CI) shifted to 1.61 (1.57, 1.65). In the fully adjusted model (Model 3), which was further adjusted for Scr, HDL-C, ALT, BUN, LDL-C, and AST, the HR (95% CI) was 1.67 (1.62, 1.71). This indicated a 67% escalation in the risk of developing Pre-DM/DM with each incremental increase in the TyG index.

Table 4 | Relationship between the TyG index and incident prediabetes and diabetes in different models.


[image: Table comparing hazard ratios (HR), confidence intervals (CI), and P-values for the TyG index across four models. Model 1 shows an HR of 2.26, Model 2 is 1.61, Model 3 is 1.67, and Model 4 is 1.67. The TyG index is divided into quartiles with Q1 as a reference (ref) and increasing values for Q2 to Q4. All models report P for trend values as less than 0.001. Adjustments for variables such as gender and other factors are noted for each model.]




The results of sensitivity analysis

To ascertain the reliability of our findings, we conducted a sensitivity analysis. This involved reclassifying the TyG index from a continuous to a categorical variable, which was subsequently reintegrated into the analysis as such. The transition of the TyG index into a categorical framework revealed a non-uniform trend, hinting at a potential nonlinear relationship between the TyG index and the risk of Pre-DM/DM. As depicted in Table 4, the outcomes derived from the GAM aligned with those obtained from the comprehensively adjusted model (Model 4, HR=1.67, 95%CI: 1.62-1.72). Furthermore, we calculated an E-value to evaluate the robustness of our findings against the influence of unobserved confounding variables. The derived E-value of 2.73, which surpasses the relative risk of 2.00 linked with unmeasured confounders and the TyG index, underscores the minimal impact that unaccounted or unknown confounding factors might have on the established association between the TyG index and the incidence of Pre-DM/DM.

In addition, our study conducted a sensitivity analysis focusing on individuals who have never consumed alcohol. This analysis uncovered a significant link between the TyG index and an increased likelihood of developing Pre-DM/DM, even after adjusting for other influencing factors (HR=1.70, 95%CI: 1.65-1.75), as shown in Table 5. Furthermore, we extended our sensitivity analysis to include individuals who have never smoked. These results consistently demonstrated a positive correlation between the TyG index and the risk of Pre-DM/DM after accounting for potential confounders (HR=1.70, 95%CI: 1.65-1.76), also detailed in Table 5. The outcomes of these sensitivity analyses support the robustness of our findings.

Table 5 | Relationship between the TyG index and prediabetes and diabetes in different sensitivity analyses.


[image: Table comparing the TyG index across two models. Model 5 shows a hazard ratio of 1.70 (95% CI: 1.65, 1.75, p < 0.001) for the TyG index. Quartile hazard ratios are Q1: ref, Q2: 1.36 (1.29, 1.44), Q3: 1.73 (1.64, 1.82), Q4: 2.29 (2.17, 2.42); p for trend < 0.001. Model 6 is similar, with the TyG index hazard ratio of 1.70 (95% CI: 1.65, 1.76, p < 0.001). Quartile hazard ratios are Q1: ref, Q2: 1.39 (1.31, 1.46), Q3: 1.75 (1.66, 1.85), Q4: 2.28 (2.15, 2.41); p for trend < 0.001. Model 5 includes adjustments for non-drinkers, Model 6 for non-smokers.]




The nonlinear relationship between the TyG index and pre-DM/DM

Figure 3 demonstrates a non-linear connection between the TyG index and the risk of onset for Pre-DM/DM. Upon controlling for potential confounding variables, the relationship between the TyG index and the likelihood of progression to Pre-DM/DM was non-linear (Table 6). Initially, the inflection point for the TyG index was identified as 8.73 using a recursive method. Subsequently, a segmented Cox proportional hazards regression approach was employed to evaluate the HR and CI on either side of this pivotal value. To the right of this inflection point, the HR stood at 1.95 (95% Confidence Interval: 1.86-2.04), and to the left, it decreased to 1.34 (95% Confidence Interval: 1.27-1.42).

[image: Line graph showing the relationship between the TyG index and log HR for diabetes and prediabetes. The red line indicates a positive correlation, with values increasing from 6.5 to 10 on the x-axis and from -1.5 to 1 on the y-axis. Dotted blue lines represent confidence intervals.]
Figure 3 | The nonlinear relationship between the TyG index and incident prediabetes. A nonlinear relationship between them was detected after adjusting for gender, age, SBP, DBP, family history of diabetes, drinking status, smoking status, BMI, HDL-C, LDL-C, AST, ALT, Scr, and BUN.

Table 6 | The result of the two-piecewise Cox proportional hazards regression model.


[image: Table showing hazard ratios for incident prediabetes and diabetes using Cox regression models. Standard model HR: 1.67 (95% CI: 1.62-1.71), p<0.001. Two-piecewise model inflection at TyG index 8.73 yields HRs ≤8.73: 1.95 (95% CI: 1.86-2.04), >8.73: 1.34 (95% CI: 1.27-1.42), p<0.001. Adjusted for several factors including age and BMI.]




Subgroup analysis

We assessed the interplay among diverse variables and their impact on the relationship between the TyG index and the risk of Pre-DM/DM across various exploratory subgroups (Table 7). The findings indicated that a familial history of diabetes did not alter the association between the TyG index and the risk of developing Pre-DM/DM. Furthermore, our analysis revealed a more pronounced association within subgroups, namely never drinkers, females, never smokers, people with BMI< 24 kg/m2, and age <60 years.

Table 7 | Effect size of the TyG index on prediabetes and diabetes in prespecified and exploratory subgroups.


[image: A table displaying several characteristics associated with the number of patients, hazard ratios (HR) with 95% confidence intervals, P values, and P for interaction. Categories include age, gender, smoking status, drinking status, family history of diabetes, and BMI. Significant P values are noted for most categories, indicating statistical significance, except for family history of diabetes with a P for interaction of 0.881. Notes mention adjustments for various health factors.]





Discussion

Our retrospective analysis indicated a positive correlation between elevated TyG index levels and an increased likelihood of developing Pre-DM/DM. Moreover, upon identifying an inflection point, we noted different correlations on either side of this point regarding the TyG index and Pre-DM/DM risk. Notably, the link between the TyG index and the risk of Pre-DM/DM was more pronounced among never-drinkers, females, never-smokers, individuals with BMI< 24 kg/m2, and ages <60 years.

The TyG index, which combines FPG and TG, has been recognized as a potential substitute for measuring insulin resistance (8). Compared to traditional insulin resistance markers, such as the homeostasis model assessment of insulin resistance (HOMA-IR), the TyG index is a practical, cost-effective, and reliable tool for assessing insulin resistance, particularly advantageous in low-resource settings. Research conducted in the past has investigated the connection between the TyG index and diabetes, consistently revealing a positive correlation between the index and the occurrence of diabetes. A comprehensive review of 15 cohort studies underscored a notable direct link between the TyG index and the incidence of diabetes, positing the TyG index as a viable marker for pinpointing those at heightened risk for diabetes (21). A particular investigation in South Korea established a significant connection between the TyG index and insulin resistance in diabetes, proving it superior to the homeostatic model assessment of insulin resistance for forecasting diabetes in the youth demographic (14). In a separate analysis conducted by Chen et al. (22) among Chinese adults, it was observed that for every standard deviation increment in the TyG index, the likelihood of diabetes surged by 22% (HR=1.22, 95%CI: 1.14-1.31). Nevertheless, individuals with prediabetes, who face a significant risk of evolving into diabetic patients, have traditionally been overlooked. It is only in recent times that the scientific community has initiated investigations into the link between the TyG index and prediabetes. Characterized by a chronic state of moderate hyperglycemia without symptoms, prediabetes has the potential to advance to diabetes if it remains unidentified (23). Consequently, our research treated both Pre-DM/DM as outcome variables in order to scrutinize their association with the TyG index. By doing so, our research augments the body of existing evidence, corroborating the theory that an increased TyG index is intricately linked with the heightened risk of emerging Pre-DM/DM. This insight is valuable for the early identification of Pre-DM/DM and the implementation of prompt interventions.

Moreover, our research identified a non-linear association between the TyG index and the likelihood of developing Pre-DM/DM. Adjusting for potential confounders revealed an inflection point in the TyG index at 8.73. Below this threshold, an increment of one unit in the TyG index corresponded to a 95% heightened risk of Pre-DM/DM (HR=1.95, 95%CI: 1.86-2.04). Conversely, above this inflection point, each additional unit in the TyG index was linked to a 34% increased risk (HR=1.34, 95%CI: 1.27-1.42). Therefore, a reduction in the TyG index is associated with a diminished risk of Pre-DM/DM. It is important to highlight that the decrease in risk becomes more pronounced when the TyG index falls below 8.73. On the other hand, the reduction in risk decelerates when the index surpasses 8.73.

Numerous studies robustly support the TyG index as a reliable marker of hyperinsulinemia and insulin resistance (24, 25). Hyperinsulinemia, characterized by elevated levels of insulin in the bloodstream, is frequently associated with insulin resistance and plays a crucial role in the pathophysiology of diabetes mellitus (26). This insulin-resistant state necessitates higher insulin levels for glucose homeostasis, resulting in the overproduction and persistence of insulin in the circulation (26). Hyperinsulinemia initiates and perpetuates a cycle of metabolic disturbances that significantly contribute to disease progression (26, 27). The compensatory hypersecretion of insulin in response to insulin resistance exacerbates pancreatic β-cell dysfunction over time, ultimately leading to β-cell exhaustion and the onset of hyperglycemia (28). In addition, the implications of hyperinsulinemia extend beyond glycemic control, influencing both cardiovascular and non-cardiovascular health outcomes. Cardiovascularly, hyperinsulinemia is an established risk factor for atherosclerosis, hypertension, and coronary artery disease (29–31). Insulin exerts atherogenic effects by promoting vascular smooth muscle cell proliferation, enhancing lipoprotein retention within arterial walls, and inducing endothelial dysfunction (30). Moreover, insulin resistance and hyperinsulinemia are associated with an adverse lipid profile, characterized by elevated levels of LDL-C and decreased HDL-C, further exacerbating cardiovascular risk (32). Regarding non-cardiovascular adverse events, the elevated insulin levels observed in hyperinsulinemic states have been implicated in depression, and non-alcoholic fatty liver disease (33–35). Hyperinsulinemia exacerbates inflammation and oxidative stress, alters norepinephrine levels in the brain’s sympathetic system, and disrupts neurotransmitter metabolism and synaptic plasticity, thereby contributing to the development of depression by inhibiting serotonin, dopamine, melatonin, and glutamate signaling (33). Additionally, hyperinsulinemia can contribute to hepatic steatosis and fibrosis by promoting lipogenesis and inflammation within the liver (35). Hyperinsulinemia associated with insulin resistance is a fundamental component in the pathophysiology of diabetes mellitus and plays a decisive role in a broad spectrum of related adverse events. It is imperative to implement interventions at the stage of insulin resistance and hyperinsulinemia, which frequently precede the onset of prediabetes and diabetes by several years (27, 36). Screening for insulin resistance and hyperinsulinemia in at-risk populations using the TyG index can significantly improve patient prognosis by enabling highly preventive interventions.

Our study highlights the significant association between the TyG index and the risk of developing Pre-DM and T2DM in a cohort of 179541 adults. The findings underscore the potential of the TyG index as a valuable, non-invasive marker for early identification of individuals at higher risk of progressing to PreDM and DM. Considering its simplicity and cost-effectiveness in comparison to other measures of insulin resistance, such as the homeostasis model assessment of insulin resistance, the TyG index can be readily incorporated into routine clinical practice. This can facilitate timely interventions aimed at lifestyle modification, dietary changes, and possibly pharmacological treatment to mitigate risk and delay or prevent the onset of diabetes. Early identification and management of high-risk individuals using the TyG index can substantially improve patient outcomes and reduce the burden of diabetes-related complications.

In addition, the TyG index, as a surrogate marker for insulin resistance, has been evaluated in numerous meta-analysis studies across a variety of diseases, demonstrating its wide range of applications. A systematic review and meta-analysis of thirty studies with 772,809 participants revealed that higher TyG index levels were associated with an increased risk of heart failure (37). Another meta-analysis encompassing twelve cohort studies with 6,354,990 participants found that higher TyG index levels were significantly associated with an increased incidence of cardiovascular disease (38). In addition, higher TyG index levels were also related to an increased risk of atrial fibrillation, arterial stiffness, coronary artery disease, and ischemic stroke (39–42). The meta-analyses above reinforce our findings and highlight the TyG index’s robustness in predicting not only diabetes and prediabetes but also its broader application in various diseases. This adds to the growing body of evidence supporting the TyG index as an indispensable tool in clinical and public health settings, offering significant advantages in terms of accessibility and predictive power.

The precise biological pathways connecting the TyG index to the susceptibility of developing diabetes and prediabetes are not fully understood, yet they likely involve insulin resistance (15, 43). Evidence has underscored the pivotal function of insulin resistance in the emergence and advancement of both diabetes and prediabetes. Constituted by FPG and TG, the TyG index serves as an indicator. The levels of FPG mirror the liver’s insulin sensitivity and the pancreatic secretion of insulin, with elevated FPG levels correlating with a heightened diabetes risk even in individuals with normoglycemia (44, 45). Furthermore, the efficacy of TG as an insulin resistance marker has received substantial validation in prior research (46–48). Consequently, the connection between the TyG index and an increased likelihood of diabetes and prediabetes development could be attributed to the interplay among FPG, TG, and insulin resistance.

Our investigation possesses several notable strengths. Firstly, it delves into the non-linear relationship between the TyG index and the incidence of Pre-DM/DM. Secondly, to address the issue of incomplete data, we employed multiple imputation techniques, enhancing the reliability of our statistical analyses and reducing potential bias arising from omitted variables. Furthermore, we undertook a comprehensive set of sensitivity analyses to affirm the validity of our findings. These included transforming the TyG index into discrete categories, applying a GAM to incorporate continuous covariates as non-linear variables, and reassessing the link between the TyG index and the risk of Pre-DM/DM while excluding individuals who consume alcohol or tobacco.

Our research comes with certain constraints. Initially, the fact that our cohort consisted solely of Chinese individuals suggests a need for further exploration into the link between the TyG index and the risk of Pre-DM/DM in diverse populations. Additionally, glucose metabolism disorders were operationalized within our study parameters as an FPG level equal to or exceeding 5.6 mmol/L or the self-reporting of diabetes by participants during the follow-up period. This definition did not incorporate the assessment of glycosylated hemoglobin levels or the administration of a 2-hour oral glucose tolerance test. As a result, such methodological delineations may have led to a conservative estimation of Pre-DM/DM incidence, potentially underrepresenting the true prevalence within the studied cohort. Furthermore, as with any observational study, the potential for unaddressed or unobserved confounding variables, such as dietary habits and physical activity levels, to influence the findings cannot be completely eliminated. However, through the application of the E-value, we determined it unlikely that these unmeasured confounders significantly impacted our results. Moving forward, we aim to collaborate with international scholars to gather more detailed information on diet and exercise habits and to examine the validity of our findings across populations with varying genetic predispositions. Finally, our study lacked data related to cardiovascular and non-cardiovascular events. In the future, we will design our own study to collect cardiovascular and non-cardiovascular events and further analyze the relationship between TyG and the risk of cardiovascular and non-cardiovascular events.





Conclusion

This research establishes a positive, non-linear link between the TyG index and the onset of Pre-DM/DM among prediabetic Chinese adults. Notably, a TyG index at or below 8.73 was strongly correlated with an increased risk of Pre-DM/DM. The results underscore the significance of the TyG index as an effective tool for forecasting the likelihood of Pre-DM/DM, indicating its prospective utility in healthcare settings for evaluating risk and steering preventative measures.
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Objective

The aim of this study was to develop and validate a machine learning-based model to predict the development of impaired fasting glucose (IFG) in middle-aged and older elderly people over a 5-year period using data from a cohort study.





Methods

This study was a retrospective cohort study. The study population was 1855 participants who underwent consecutive physical examinations at the First Affiliated Hospital of Soochow University between 2018 and 2022.The dataset included medical history, physical examination, and biochemical index test results. The cohort was randomly divided into a training dataset and a validation dataset in a ratio of 8:2. The machine learning algorithms used in this study include Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), Naive Bayes, Decision Trees (DT), and traditional Logistic Regression (LR). Feature selection, parameter optimization, and model construction were performed in the training set, while the validation set was used to evaluate the predictive performance of the models. The performance of these models is evaluated by an area under the receiver operating characteristic (ROC) curves (AUC), calibration curves and decision curve analysis (DCA). To interpret the best-performing model, the Shapley Additive exPlanation (SHAP) Plots was used in this study.





Results

The training/validation dataset consists of 1,855 individuals from the First Affiliated Hospital of Soochow University, yielded significant variables following selection by the Boruta algorithm and logistic multivariate regression analysis. These significant variables included systolic blood pressure (SBP), fatty liver, waist circumference (WC) and serum creatinine (Scr). The XGBoost model outperformed the other models, demonstrating an AUC of 0.7391 in the validation set.





Conclusions

The XGBoost model was composed of SBP, fatty liver, WC and Scr may assist doctors with the early identification of IFG in middle-aged and elderly people.





Keywords: impaired fasting glucose, prediction model, artificial intelligence, cohort study, middle-aged and elderly people




1 Introduction

Type 2 diabetes mellitus (T2DM) represents a group of metabolic disorders marked by persistent elevations in blood glucose levels, posing a substantial global public health challenge. In 2017, it was estimated that 451 million individuals aged 18 to 99 years worldwide had diabetes, with projections indicating a staggering increase to 693 million by 2045, as reported by the International Diabetes Federation (IDF) (1). Prediabetes mellitus (PDM) signifies an intermediate phase preceding the onset of full-blown diabetes—a state of glucose metabolism lying between diabetes and normal glucose tolerance (NGT). It encompasses conditions like impaired fasting glucose (IFG), impaired glucose tolerance (IGT), or a combination of both. Recent data published in the British Medical Journal (BMJ) in 2020 by Chinese researchers revealed that the prevalence of diabetes among Chinese adults stood at 12.8%, with an alarming 35.2% prevalence in the prediabetic state (2). With the ongoing aging of society, the number of elderly individuals grappling with diabetes has surged dramatically. Notably, individuals with IFG face a significantly heightened risk of developing diabetes and its associated complications (3). The early identification of IFG in individuals and the timely implementation of lifestyle interventions can effectively mitigate the progression from IFG to T2DM (4).

Currently, relatively few studies have delved into risk prediction models specifically tailored to IFG, and many of these studies rely on cross-sectional data. For instance, a South Korean study (5) fashioned a predictive model for IFG using the categorical boosting (Cat Boost) algorithm, which encompassed eight predictors: age, high cholesterol levels, waist-to-hip ratio (WHtR), Body Mass Index (BMI), frequent alcohol consumption over the past year, marital status, hypertension, and smoking. Few investigations have concentrated on risk modeling for the development of prediabetes or IFG, as much of the existing literature primarily examines risk factors for IFG through cross-sectional analyses. For example, in a study by Khadija et al. that assessed prediabetes risk in nurses using straightforward statistical techniques, noteworthy variables associated with prediabetes included age, BMI, waist circumference (WC), antihypertensive medication history, high blood glucose history, family history of diabetes, daily consumption of fruits, berries, or vegetables, and daily physical activity (6). In summary, previous studies on risk factors for IFG are based on cross-sectional databases, which cannot provide causal associations for the development of IFG. In summary, it is proposed in this study to develop a predictive model for the development of IFG in middle-aged and elderly people using data from a longitudinal cohort study, which will provide valuable assistance to community healthcare providers and clinicians in the management of IFG.

In recent years, artificial intelligence technology has experienced rapid advancement, encompassing machine learning(ML), deep learning, and neural network algorithms (7). As such, they have found extensive utility in disease diagnosis and risk prediction within the medical and healthcare domains (8). ML algorithms encompass a range of techniques, including Extreme Gradient Boosting (XGBoost), Random Forest (RF), Support Vector Machines (SVM), Naïve Bayes, and more. These algorithms are distinguished by their capacity to learn from data, enabling them to make precise predictions regarding future events (9). In a study published in 2022, it was noted that an automated image analysis framework was constructed by using a simple convolutional neural network (CNN) model to recognize COVID-19 afflicted chest X-ray data. In order to improve classification accuracy, the fully connected layer of a simple CNN was further replaced with an efficient XGBoost classifier in the above study (10). The role played by ML algorithms can also be seen in non-medical fields, such as in India where academics have devised a Hierarchical Feature Selection (HFS) model based on Genetic Algorithms to optimize the local and global features extracted from each handwritten word images under consideration (11). In addition, there have been many advances in research related to Deep Learning (DL) algorithms, such as an enhanced version of the Firefly algorithm proposed in a study in 2021 that corrects the recognized shortcomings of the original method by explicitly exploring the mechanism and a chaotic local search strategy (12). In a proposed study published in 2022, an automated framework based on the hybridized sine cosine algorithm was proposed to tackle the overfitting shortcomings of neural network algorithms in DL algorithms (13). Consequently, the development of ML provides a novel avenue for constructing a predictive model for IFG. In the present study, risk factors for IFG were determined through a five-year longitudinal cohort analysis of clinical data. Considering DPN as an outcome variable, an accurate IFG risk prediction model was finally built based on multiple ML algorithms and traditional logistic regression (LR) analysis methods. Such an endeavor promises valuable insights into the prediction and prevention of IFG. In addition, this study is innovative in that it also uses a variety of visualization methods to demonstrate the role of weighting variables in the model output prediction results. This type of analytical approach to visualizing the implementation of ML algorithms has been less reported in risk prediction models for IFG. To improve the interpretability of the black-box model, the SHapley Additive exPlanation (SHAP) was used in this study to explain the predictive model. As a result, the prediction model not only predicts prognostic outcomes, but also provides reasonable explanations for the predicted outcomes, which greatly improves the user’s trust in the model. In summary, this study aims to establish a highly feasible model that provides a valuable reference for clinicians engaged in the early screening, diagnosis and treatment of IFG.




2 Methods and materials



2.1 Study population

The study population was selected from individuals who underwent health checkups at the Health Management Center of the First Affiliated Hospital of Soochow University. Data on health check-ups from January 2018 to December 2022 were collected for this study. To ensure the accuracy and reasonableness of the data, the research paid special attention to the last five years of data from the Health Management Center. According to the design of a retrospective cohort study, this study considered the 2018 health check-up data as the baseline of the cohort and the study ended in 2022. The presence of impaired fasting glucose (IFG) in this study population was the primary outcome of interest.

The inclusion criteria were as follows: (1) aged 45 years or older;(2) not previously diagnosed with IFG or T2DM at baseline;(3) possessed complete physical examination data from 2018 to 2022 without significant gaps in critical information. Exclusion criteria included: (1) age less than 45 years; (2) prior or recent diagnosis of IFG or T2DM at baseline; (3) use of medications that could influence plasma glucose levels;(4)missing or incomplete data on key clinical parameters such as fasting plasma glucose (FPG).




2.2 Data collection

Demographic and sociological information, including age, gender, and medical history, was collected from all participants in this study. In addition, the results of each participant’s physical examination were recorded and laboratory measurements were taken. This involved measuring height, weight, systolic and diastolic blood pressure (SBP and DBP) and calculating the body mass index (BMI) based on the participant’s height and weight. All participants underwent fasting for a minimum of 8 hours before morning examinations, during which 3-5ml of venous blood was drawn from the elbow. Fasting plasma glucose (FPG), blood urea nitrogen (BUN), serum uric acid (SUA), serum creatinine (Scr), alanine aminotransferase (ALT), aspartic acid aminotransferase (AST), glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB) were assessed using the Hitachi 7600 Automatic Biochemistry Analyzer. Furthermore, abdominal ultrasound examinations were performed by trained sonographers, and all participants underwent abdominal ultrasound scans. To accommodate machine learning algorithms that require numeric feature attributes, non-numeric attributes like gender were converted into numeric values. The percentage of missing variables included in this study was less than 30%. The MICE package was used for missing value analysis and multiple interpolation. Supplementary Figure 1 illustrates the results of data interpolation. The flowchart of this study is shown in Figure 1.

[image: Flowchart depicting a data processing and analysis pipeline. It starts with hospital participants and involves screening based on criteria, data preprocessing, and collecting baseline data from 2018 to 2022. A dataset of 1,438 is used for training after variable selection via the Boruta algorithm and multivariate logistic regression analysis. XGBoost, SVM, Naive Bayes, DT, and LR models are trained with parameter tuning. A validation dataset of 417 is used for testing models. Performance metrics such as accuracy, sensitivity, specificity, PPV, NPV, F1 score, and AUC are evaluated, culminating in results.]
Figure 1 | The flowchart of this study.




2.3 Diagnostic criteria

In accordance with the World Health Organization (WHO) diagnostic criteria for diabetes mellitus established in 1999 (14), the FPG levels of the participants were classified in this study. A normal blood glucose state was characterized by a fasting glucose level below 6.10 mmol/L and a 2-hour glucose level from the oral glucose tolerance test (OGTT) under 7.80 mmol/L. IFG was defined as a fasting glucose level ranging from 6.10 to 7.00 mmol/L or a 2-hour OGTT glucose level below 7.80 mmol/L, not meeting the diagnostic criteria for diabetes. For the diagnosis of fatty liver, we adhered to the ultrasound criteria outlined in the National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association (15). In this study, the diagnosis of fatty liver was confirmed using ultrasound diagnostic criteria proposed at the National Symposium on Fatty Liver and Alcoholic Liver Disease of the Chinese Medical Association Hepatology Branch (15). Specifically, fatty liver diagnosis relied on one of the following criteria: (1) noticeable enhancement of near-field liver echoes surpassing that of the kidney; (2) indistinct intrahepatic duct structure; (3) gradual attenuation of liver echoes in the far field. Gallstones were identified through ultrasound imaging, typically presenting as one or more intense echoes within the gallbladder, extrahepatic bile duct, or intrahepatic bile duct, accompanied by movable acoustic shadows (16). A history of cholecystectomy denoted prior gallbladder removal, where the gallbladder was no longer visible on ultrasound (17). The term “gallstones” encompassed both the presence of gallstones and prior cholecystectomy (18).




2.4 Development of models

The data collected from the medical checkup center of the First Affiliated Hospital of Soochow University were randomly divided into a training set and a validation set at a ratio of 8:2. Feature selection, parameter tuning, and model building were performed in the training set, while the validation set was used to evaluate the predictive performance of the models. Variable selection was the main step before the modelling. Boruta algorithm belongs to one of the random forest algorithms, its main purpose is to screen and sort important characteristic variables related to dependent variables. In each iteration, a comparison of the importance of the original and shadow variables is performed. If the importance of the original variable is significantly higher than the importance of the shadow variable, the original variable is considered important; if the importance of the original variable is significantly lower than the importance of the shadow variable, the original variable is considered unimportant (19). Boruta algorithm reaches a specified limit of random forest operation after 99 iterations. All variables were selected by Boruta algorithm and then multivariate logistic regression analysis was performed. The filtered variables were incorporated into the ML model. ML prediction models were developed, comprising XGBoost, SVM, Naive Bayes, DT and LR models. To determine the optimal parameters, a 5-fold cross-validation grid search was executed on the training set, while the LR model was implemented with default parameters.




2.5 The evaluation and interpretation of models

Based on the prediction results of the model, the area under the receiver operating characteristic curve (AUC) of the training and validation sets can be calculated to assess the discriminative ability of the model. The confusion matrix, consisting of true positives (TP), true negatives (TF), false positives (FP), and false negatives (FN), was established to calculate Sensitivity, Specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and F1 scores for evaluating discrimination performance of models. Formulas were as follows: Sensitivity=Recall= TP/(TP+FN); Specificity= TN/(TN+FP); ACC = (TP + TN)/(TP + FP + FN + TN); PPV = Precision = TP/(TP + NP); NPV = TN/(TN + FN); F1 score= 2*Recall*Precision/(Recall +Precision). Calibration curves plotted after sampling with repetition 500 times using the Bootstrap method reflect the fitting of the models. The decision curves (DCA) were used to assess the clinical utility of the predictive model. To gain insight into the factors that contribute to the development of IFG in middle-aged and elderly people, SHapley Additive Explanations (SHAP) plots were further developed in this study. These plots visually demonstrated the variable contributions to the outcome, with local SHAP plots providing a detailed look at variable contributions for specific instances. Feature importance was ranked according to the Shapley value. In addition, force plots within the SHAP model were used to individualize predictions for two randomly selected samples from the validation set.




2.6 Statistical analysis

Statistical analysis was performed using SPSS (version 27.0) to describe the general data of all individuals. The Shapiro–Wilk test was employed to ascertain the normal distribution of variables. Continuous variables displaying a normal distribution were presented as mean ± standard deviation (SD), while those with skewed distribution were described as median (interquartile ranges). Categorical variables were represented as frequencies. To compare variables between groups, the Pearson Chi-square test was used for categorical variables, while the Student’s t-test or the nonparametric Mann-Whitney U test was applied for continuous variables. All variables, determined as significant and tentative through Boruta algorithm screening, were incorporated into the multivariate logistic regression analysis. The logistic regression analysis was conducted using Enter approach, with α in = 0.05, α out = 0.1, and an inspection level of α = 0.05. SPSS (version 27.0) was also used to draw box plots to depict the independent risk factors associated with the onset of IFG in the middle-aged and elderly people identified in this study. The data interpolation, feature selection, model construction, evaluation, and visualization were executed using R software (version 4.2.3). The main packages involved are “mice, Boruta, caret, xgboost, shap for xgboost, shapviz, Resource Selection, rms”. A two-sided p < 0.05 was considered statistically significant.





3 Results



3.1 Demographic and clinical characteristics

A total of 1,855 individuals were included in the cohort, with 734 cases (39.0%) of impaired fasting glucose (IFG) observed within the entire cohort. They were randomly split into training (n = 1,438) and validation (n = 417) sets in an 8:2 ratio. In the training dataset, 73.0% (1,050/1,438) were male, and 27.0% (388/1,438) were female. The median age was 56 years (IQR = 50–67 years) for the IFG group and 55 years (IQR = 49–65 years) for the non-IFG group. In the test dataset, IFG onset was more common among male patients, with median ages ranging from 60 to 71 years. Detailed demographic and clinical characteristics are presented in Table 1.

Table 1 | Demographic and clinical characteristics of participants.


[image: A table comparing variables between training (n=1,438) and validation datasets (n=417), divided into impaired fasting glucose (IFG) and non-IFG groups. Variables include age, gender, fatty liver, gallstone, cholecystectomy, blood pressure, and various biochemical markers. The table presents median values with interquartile ranges (IQR) and p-values for each variable within the training and validation datasets.]



3.2 Feature selection

Following 99 iterations, the Boruta algorithm’s feature variable screening results are illustrated in Figure 2. The following variables were considered important for their association with IFG: SBP, Fatty liver, BMI, WC, TG, Scr, Age, DBP, ApoB, TC, SUA and GGT. To further clarify the risk or protective factors related to IFG, multivariate regression analysis was conducted between the IFG and non-IFG groups in the training cohort, revealing significant differences in the following variables: SBP, Fatty liver, WC and Scr. This study confirmed that Scr was a protective factor associated with IFG, while SBP, Fatty liver and WC were all risk factors for IFG. The results showed that for every 1 mmHg increase in SBP, the risk of IFG in middle-aged and elderly people increased by 3.0% (OR =1.030, 95% CI: 1.020-1.040). The risk of IFG in middle-aged and elderly people increased by 3.3% for every 1 cm increase in waist circumference (OR = 1.034, 95% CI: 1.009-1.059). The risk of IFG was 50.5% higher in middle-aged and elderly people with fatty liver compared to those without fatty liver disease (OR = 1.657, 95% CI: 1.274-2.156). The risk of IFG in middle-aged and elderly people was elevated by 1.6% for every 1μmol/L decrease in Scr levels (OR = 0.984, 95% CI: 0.975-0.993). Further details are provided in Table 2. In the study, box plots describing the distribution of these three continuous variables including SBP, WC and Scr in the IFG and non-IFG groups were further plotted based on the training set. As shown in Figure 3, middle-aged and elderly people who developed IFG over a 5-year period had higher SBP, larger WC and lower Scr than middle-aged and elderly people without IFG.

[image: Boxplot visualizing the importance of various variables, categorized into important (green), tentative (yellow), and unimportant (red). Each box represents a variable, with SBP having the highest importance.]
Figure 2 | Results of variable selection by the Boruta method. SBP, systolic blood pressure; WC, waist circumstance; BMI, Body Mass Index; TG, triglycerides; Scr, serum creatinine; ALT, alanine aminotransferase; DBP, diastolic blood pressure; ApoB,  apolipoprotein B; GGT,  glutamyl transpeptidase; SUA,  serum uric acid; AST,  aspartic acid aminotransferase; TC,  total cholesterol; LDL,  low-density lipoprotein cholesterol; HDL,  high-density lipoprotein cholesterol; BUN,  blood urea nitrogen; ALP,  alkaline phosphatase; ApoA1,  apolipoprotein A1; Boruta method applied only to the training dataset.

Table 2 | Multivariate logistic regression analysis of impaired fasting glucose.


[image: Table displaying logistic regression analysis results. Variables include Fatty Liver, SBP, WC, Scr, and Constant. Corresponding coefficients (β), standard errors, Wald χ² values, odds ratios (OR), 95% confidence intervals (CI), and p-values are provided, indicating statistical significance, particularly with p-values less than 0.001 for Fatty Liver, SBP, Scr, and Constant, and 0.008 for WC.]
[image: Three box plots labeled a, b, and c compare IFG (Impaired Fasting Glucose) status with different variables. Plot a shows SBP (Systolic Blood Pressure), with higher medians for IFG "Yes." Plot b displays WC (Waist Circumference), also higher for IFG "Yes." Plot c represents Scr (Serum Creatinine), showing similar trends but with an outlier at IFG "No."]
Figure 3 | On the basis of the trainingset, box plots of the distribution of the three continuous variables in the IFG and non-IFG groups were further plotted. (A) This figure shows the box plot of the distribution of SBP in the IFG and non-IFG groups. (B) This figure shows the box plot of the distribution of WC in the IFG and non-IFG groups. (C) This figure shows the box plot of the distribution of Scr in the IFG and non-IFG groups.




3.3 The evaluation and interpretation of the models

Four features selected by the Boruta algorithm and multivariate regression analysis were considered as input variables, with the development of IFG as the outcome. Six different algorithms, including XGBoost, SVM, Naïve Bayes, DT and LR, were applied to construct prediction models in this study. The AUC, Sensitivity, Specificity, ACC, PPV, NPV, and F1 scores of the model in the validation set were calculated from the confusion matrix results. The details are showed in Table 3. Among these models, the XGBoost model yielded the highest AUC, indicating superior performance. With the aid of grid search, the optimal structure of the XGBoost model was determined as follows: booster=‘gbtree’, objective=‘binary:logistic’,gamma=0.5, eta=0.06,max_depth=7, min_child_weight=5, subsample=0.65, colsample_bytree=0.72. Table 3 displays the superior AUC value achieved by the XGBoost algorithm compared to SVM, Naive Bayes, DT and LR algorithms (0.7391, 0.7328, 0.7288, 0.6480 and 0.6795) respectively. Typically, a model with an AUC greater than 0.7 is considered to have good predictive performance. The calibration curves for the training and validation sets are plotted in this study and are shown in Figure 4. The results demonstrate the internal validation of the XGBoost model using the bootstrap method with 500 repetitions of sampling. The mean absolute errors for the training and validation sets were 0.010 and 0.025, respectively, indicating that the predicted probabilities of the XGBoost model closely aligned with the actual observations. The results of the Hosmer-Lemeshow goodness of fit test(H-L) showed that the model was well fitted (p>0.05). The clinical effect of the XGBoost prediction model was evaluated in this study using DCA curves, as shown in Figure 5, showing that individuals with a higher risk of developing IFG in middle-aged and elderly people as assessed using this XGBoost model may have a higher net benefit value if they were intervened. In addition, the SHAP framework has provided an intuitive interpretation of the XGBoost model, as shown in Figure 6.

Table 3 | Predictive performance indicators of prediction models.


[image: Prediction performance tables for training and validation sets are shown. For the training set: XGBoost has the highest AUC at 0.8264, with good sensitivity and F1 score. SVM has the lowest values. For the validation set: XGBoost shows an AUC of 0.7391, with moderate sensitivity and F1 score. SVM also performs least effectively in this set. Key metrics include AUC, sensitivity, specificity, and accuracy.]
[image: Two line graphs show net benefit versus threshold probability. Graph A has three lines: "prob" in blue decreases steadily, "Treat All" in red declines sharply, and "Treat None" in green remains constant at zero. Graph B presents a similar pattern, with "prob" in blue showing a variable decline, "Treat All" in red decreasing sharply, and "Treat None" green line constant at zero. Both graphs highlight decision-making comparisons.]
Figure 4 | Calibration plot. The x‐axis represents the XGBoost model‐predicted probability, and the y-axis represents the actual probability of IFG. (A) The plot shows the calibration curve of the training set. A perfect prediction would fall along the 45‐degree line (“ideal” line). The “apparent” line represents the training cohort, and the solid black line represents bias corrected by bootstrapping (500 repetitions), indicating observed the performance of XGBoost model. (B) The plot shows the calibration curve of the validation set. A perfect prediction would fall along the 45degree line (“ideal” line). The “apparent” line represents the validation cohort, and the solid black line represents bias corrected by bootstrapping (500 repetitions), indicating observed the performance of XGBoost model.

[image: Two SHAP value plots labeled a and b compare the impact of features on a model's prediction. Plot a has attributes like WC=96cm, Scr=56.6μmol/L, and SBP=183mmHg, resulting in a positive contribution to the prediction. Plot b includes attributes such as Scr=52.8μmol/L, WC=73cm, and SBP=106mmHg, showing a negative contribution. Each plot displays the expected value and the model's prediction, with different colored bars illustrating individual feature impacts.]
Figure 5 | DCA plot. (A)The plot shows the calibration curve of the training set. (B)The plot shows the calibration curve of the validation set.

[image: Violin plot of SHAP values showing the impact of features on model output. SBP has a SHAP value of 0.420, Fattyliver 0.290, Scr 0.280, and WC 0.268. The feature value ranges are shown in colors from yellow (low) to purple (high). The horizontal axis shows SHAP values ranging from -1 to 1.]
Figure 6 | The SHAP plot of the XGBoost model. The ordinate represents the name of the variable. The variables from top to bottom are of decreasing importance to the predicted results and the number beside the variables is the mean of the SHAP values for all samples. Each point in the graph represents the SHAP value for each sample, with colors closer to purple indicating a larger value and closer to yellow indicating a smaller value. The more dispersed the points in the graph, the greater the influence of the variable on the model. Figure 5 shows that SBP has the greatest impact on the model.




3.4 Individualized prediction of IFG

Figure 7 illustrates the SHAP analysis, showcasing the role of important variables on individual predictions in 2 randomly selected samples from the validation set. The local SHAP plots illustrated the contributions of variables to the outcomes for each sample. In Figure 7, the purple portion of the local SHAP force plot represents support for a positive prediction, while the yellow portion indicates support for a negative prediction. The length of the feature lines corresponds to the size of their contribution. For example, case 1 exhibited a high predicted probability of 0.82 for progressing to IFG, as predicted by the XGBoost model. SBP was the most significant feature contributing to the prediction, followed by Scr, Fatty liver and WC. This was enough to confirm the usefulness of the XGBoost model and contribute to increasing doctors’ trust in the predictive model to help them make the right auxiliary decisions.

[image: Two calibration plots comparing observed versus predicted probabilities. Plot A shows a Hosmer-Lemeshow P-value of 0.233, with mean absolute error 0.01 for 1,438 samples. Plot B shows a P-value of 0.339, with mean absolute error 0.025 for 417 samples. Both plots include apparent, bias-corrected, and ideal lines. Each uses 500 bootstrapped repetitions.]
Figure 7 | Predicted outcome of individual occurrence of IFG. (A) The local SHAP plot of the case#1. Case #1 Male, 72 years old, with a positive outcome at the end of follow-up and the model predicts an 81.9% probability of IFG in this study individual. (B) The local SHAP plot of the case#2. Case #2 Female, 54 years old, with a negative outcome at the finish of follow-up and the model predicts an 16.3% probability of IFG in this study individual.





4 Discussion

The strength of this study lies in the establishment of a retrospective cohort using clinical data from longitudinal physical examinations of middle-aged and elderly people from 2018 to 2022. The analysis of the original data can accurately reflect the real-world problems, and the results of the study have important reference value for further in-depth discussions. Furthermore, a prediction model for development of IFG was constructed by integrating the XGBoost algorithm. SHAP plots were used to visualize the model, which solved the limitations imposed by the “black box” nature of traditional machine learning. Boruta’s algorithm screened a total of twelve features deemed important in relation to IFG. To further clarify the risk or protective factors related to IFG, multivariate regression analysis was conducted between the IFG and non-IFG groups in the training cohort. Four features were ultimately selected for inclusion in the model and it was concluded that all of these variables are readily available in routine medical practice and therefore have clinical value. In clinical practice, the accurate identification or screening of IFG presents a crucial opportunity to control diabetes progression and reduce its associated harm.

Research has indicated that insulin sensitivity gradually decreases over time, a phenomenon that manifests a decade before the diagnosis of T2DM (20). This finding provides evidence that insulin resistance(IR) and the function of pancreatic β-cells are diminished when the body is in the stage of IFG (21). Hypertension is a common diabetes complication, with a study by Emdin et al. revealing that for every 20 mmHg increase in SBP, the risk of new-onset T2DM rises by approximately 58% (22). Nonlinear associations between blood pressure and diabetes risk have been observed, with SBP demonstrating a J-shaped curve, while DBP shows a U-shaped curve (23). Additionally, this study underscores the interaction effect of high SBP (>200 mmHg), low DBP (<69 mmHg), and age (>50 years) in increasing diabetes risk. SBP emerges as a more significant contributor to dysglycemia compared to DBP, particularly in individuals over 50 years old (24). These findings align with the present study, which suggest that elevated SBP has a greater influence on IFG occurrence than elevated DBP. WC reflects abdominal obesity, which, when present, leads to IR, characterized by impaired insulin response in peripheral tissues, and altered glucose uptake and utilization (25). Several studies, including this one, have found strong correlations between IFG and obesity-related indicators such as WC and BMI, underscoring their ability to shift glucose metabolism from normal to impaired in middle-aged and elderly people.

The SHAP algorithm, rooted in game theory, allows for the analysis of feature contributions to model predictions, offering both local and global interpretations. Each feature is considered a contributor, and its marginal contribution is calculated when added to the model (26). The SHAP model’s key advantage is its capacity to reflect the influence of features in each sample, including both positive and negative effects on predictions. SHAP analysis in this study demonstrates that lower Scr levels are associated with a higher likelihood of IFG. This aligns with previous research suggesting that low creatinine levels may correlate with IFG onset, even after adjusting for variables such as age, BMI, and SBP (27). Creatinine levels serve as a proxy for skeletal muscle mass, with lower levels indicating reduced muscle volume and fewer insulin targets (28). Thus, lower Scr levels may contribute to IFG (29). The results obtained by the model helped better understand the importance of each feature to the model’s prediction. Among the indicators detected by the model, the four most closely related to IFG were SBP, Fatty liver, WC and Scr. The high correlation between the above variables and IFG further emphasized the importance of early intervention in preventing development of IFG and T2DM.

There are some theoretical and practical limitations in this study. At present, deep learning algorithms can be used for both structured and unstructured data. In the future, unstructured data needs to be collected and combined with deep learning algorithms applied to the research field of risk prediction models for predicting the development of IFG. Secondly, in the practice of data collection, the number of participants in this study is small, so it is necessary to further expand the sample population and joint multi-center studies in the future. Potential factors contributing to IFG, such as dietary habits and lifestyle, were not considered in this study, and future studies should incorporate these variables with genetic information and nutritional intake for a more comprehensive understanding of IFG.




5 Conclusions

In conclusion, this cohort study developed a predictive model for IFG development using the XGBoost algorithm, demonstrating promising performance. This effective computer-assisted approach can aid frontline clinicians in recognizing and intervening in IFG development. Consequently, it advances the frontiers of T2DM prevention through more effective early identification and mitigation of the disease’s negative impact on middle-aged and elderly people.
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Background

Uteroglobin is a multifunctional protein with anti-inflammatory properties. Studies have revealed the importance of inflammation in type 2 diabetes mellitus (T2D) pathogenesis. Here, we investigated the relationship between uteroglobin and T2D.





Methods

We performed diagnostic tests for diabetes in subjects who had not been diagnosed with or treated for T2D. We established three groups, containing those with normal glucose tolerance (NGT), prediabetes and T2D, consisting of 80 people each, and compared their uteroglobin levels. In addition, 28 patients newly diagnosed with T2D were treated with metformin for 12 weeks, and 63 patients newly diagnosed with dyslipidaemia during the treatment for T2D were treated with statin for 12 weeks.





Results

This study showed that uteroglobin levels were significantly lower in prediabetes and T2D groups than in the NGT group. Uteroglobin levels were not significantly correlated with other metabolic parameters, except BMI, HOMA-β and eGFR. In the group treated with metformin or statin, uteroglobin levels increased after treatment compared to before treatment.





Conclusions

Uteroglobin is a sensitive factor that was decreased even in prediabetes and increased upon treatment with drugs with anti-inflammatory effects. Uteroglobin is a potential early biomarker that reflects a chronic inflammatory condition in T2D.





Keywords: uteroglobin, SCGB1A1, prediabetes, type 2 diabetes mellitus, dyslipidaemia, metformin, statin




1 Introduction

Uteroglobin (Secretoglobin family 1a member 1, SCGB1A1) is a small protein (10 kDa) discovered in the uterus of rabbits in 1967 (1), and is known to be present only in mammals (2). It is included within the secretoglobin protein family, which consists of small, secreted proteins exhibiting diverse physiological roles (2). Uteroglobin exerts important anti-inflammatory functions through various mechanisms including the inhibition of phospholipase A2, which produces multiple lipid mediators, such as leukotrienes that promote inflammation and modulate immune responses (3, 4). It has been reported that uteroglobin deficiency in animals causes excessive inflammation and, in humans, uteroglobin is reduced in chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (5).

The importance of inflammation in type 2 diabetes mellitus (T2D) pathogenesis has been identified. Various biological pathways related to inflammation contribute to diabetes, and exacerbated hyperglycaemia also promotes inflammation (6). For example, a high glucose level itself causes oxidative stress through activation of the polyol pathway, formation of advanced glycation products (AGEs) and other mechanisms, which not only directly causes beta-cell dysfunction but also induces inflammatory cytokine production (7). Obesity is also a major contributor to inflammation, with the accumulation of adipose tissue macrophages in excess adipose tissue, leading to the activation of inflammatory pathways (8). Cytokines and other inflammatory mediators produced as a consequence of inflammation interfere with insulin signalling and lead to insulin resistance and pancreatic beta-cell dysfunction (9). Therefore, to prevent and treat T2D, it is important to manage inflammation, and several anti-inflammatory agents have been shown to reduce insulin resistance and improve glucose control (10).

The drug metformin, which is most commonly used in T2D, is reported to have anti-inflammatory functions as well as a blood glucose-lowering effect (11). Statins, which are used for dyslipidaemia, a common condition in T2D, are also known to have anti-inflammatory effects (12). Although these mechanisms behind these anti-inflammatory activities remain incompletely understood and are still being studied, it has been reported that both metformin and statins can reduce the levels of inflammatory markers such as tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) (11, 13). In addition to laboratory test results, the impact of metformin and statins on inflammatory diseases can also be observed in epidemiological and clinical studies. Among diabetes patients, those treated with metformin have been found to have a lower risk of developing COPD (14), and be a slowed the decline of lung function in those with COPD (15). It has been observed that the incidence of inflammatory bowel disease (16) and the risks associated with colonic diverticula, including acute diverticulitis, are reduced among metformin users (17). Additionally, statins have been found to slow the rate of decline in lung function and improve exercise capacity in patients with COPD (18, 19). In asthma, a double-blind randomised controlled trial showed that short-term administration of atorvastatin improved subjective symptoms  (20). It has been observed that patients exposed to statins have a reduced incidence of inflammatory bowel disease (21).

As far as we are aware, how the anti-inflammatory uteroglobin is associated with T2D, a condition in which inflammation is important, has not been investigated. As such, this study was implemented with the goals of identifying the relationship between serum uteroglobin level and T2D, and also determining how uteroglobin level changes after metformin or statin treatment.




2 Materials and methods



2.1 Study design

This work was planned in the form of a retrospective study using blood serum samples kept at the Human Resource Bank of Chungnam National University Hospital (CNUH; tertiary referral hospital in Daejeon, South Korea). The banked sets analysed were all samples stored for the purpose of discovering new biomarkers related to the diagnosis, treatment, prognosis, and complications of T2D. To draw comparative results among groups, criteria for each group were established, and patients who voluntarily visited the Department of Endocrinology and Metabolism (DEM) of CNUH, without any prior knowledge of the research and met the criteria were informed about the cohort construction and donated their blood and urine samples to the hospital. The entirety of the experimental protocol followed the tenets of the Declaration of Helsinki and its later amendments, while approval from the institutional review board (IRB), the Ethics Committee of CNUH, was also obtained. All participants were informed of the study’s purpose and gave their consent in written form. The detailed inclusion and exclusion criteria for each banked set are described in Supplementary Inclusion and Exclusion Criteria in Supplementary Material. Among the various potential candidates related to T2D we thought, uteroglobin in serum was measured in 2019 in three sets of banked samples, as described below. To minimise confounding variables, there were no changes to other medications during the study period. To minimise selection bias, all stored samples were measured and analysed for uteroglobin without exception.

The first banked set (IRB No. 2014-12-013, approval date: 6 Feb, 2015) consisted of samples of 240 individuals subjected in an outpatient setting at the DEM of CNUH to a glucose tolerance test (75 g, glucose administered orally: OGTT) from January 2014 to December 2016. These subjects were divided into three groups according to the test results: normal glucose tolerance (NGT), prediabetes and T2D (n=80 in each group). The diagnoses of prediabetes and T2D were based on the American Diabetes Association diagnostic criteria: fasting plasma glucose (FPG), 2-h plasma glucose after the 75 g OGTT (post-load 2-h PG) and HbA1C.

The second banked set (IRB No. 2014-12-013, approval date: 6 Feb, 2015) consisted of samples of 28 people diagnosed with diabetes who commenced treatment for it for the first time from January 2014 to December 2016. These individuals were treated with 500 mg of an extended-release formulation of metformin once daily on an outpatient basis at the DEM of CNUH. In the second banked set, serum uteroglobin was measured in samples at the start of metformin treatment and after 12 weeks of treatment to compare uteroglobin levels between before and after metformin treatment.

The third banked set (IRB No. PMS2017-005, approval date: 19 Apr, 2017) consisted of samples of 63 patients treated for diabetes and commencing statin treatment for dyslipidaemia from October 2017 to March 2019. All subjects had been allocated in a randomised and double-blinded manner at a 1:1 ratio to a group given a 5 mg dose of rosuvastatin or a group given doses of 5 mg of rosuvastatin along with 10 mg of ezetimibe on an outpatient basis at the DEM of CNUH. The third banked set was used to compare uteroglobin levels between before and 12 weeks after statin treatment.




2.2 Clinical parameters

Based on the American Diabetes Association’s Standards of Care in Diabetes guidelines, specifically the Comprehensive Medical Evaluation and Assessment of Comorbidities (22), we conducted medical history taking, physical examinations and laboratory examination in the same manner as we routinely do when managing diabetes patients in our hospital. For all study participants, baseline data of age, sex, smoking history, and current use of medications for hypertension and dyslipidaemia, as well as results of physical examinations including of body weight, height, and systolic and diastolic blood pressure (BP) on the day of the blood test, had been recorded. To measure BP, an automatic blood pressure monitor was used on the right arm of each participant, who had been placed in a seated position and allowed to rest for 20 min. BMI was recorded in the unit of kg/m2.




2.3 Biochemical parameters

Venous blood collection and the OGTT with 75 g of glucose were performed in the morning after an overnight fast for at least 8 h. Serum was separated after coagulation by centrifugation for 15 min at 1,000 g. Some blood was immediately transferred to the Human Resource Bank of CNUH for storage, where serum was separated and subsequently stored in aliquots at –80°C. Fasting blood samples were used to measure the levels of blood urea nitrogen (BUN), triglycerides (TG), creatinine (Cr), glucose, insulin, C-peptide, hsCRP, low-density-lipoprotein (LDL) cholesterol, high-density-lipoprotein (HDL) cholesterol and total cholesterol. We also measured the levels of glucose, insulin and C-peptide 2 h after the OGTT. An automated blood chemistry analyser (TBA-FX8, Canon) was employed to measure all of these variables. High-performance liquid chromatography was applied in line with the National Glycohemoglobin Standardization Program to determine the level of HbA1C, with standardisation of the results to the assay reference of the Diabetes Control and Complications Trial (23). Moreover, a commercially available human enzyme-linked immunosorbent assay (ELISA) kit was used to determine the levels of uteroglobin in serum (R&D Systems, Inc., Minneapolis, MN, USA), following the manual of the manufacturer. In our laboratory, the ELISA kit results were determined to have an intra- and interassay coefficients of variation (CV) of 6.4% and 10.5%, respectively.




2.4 Calculation of biochemical parameters

For calculation of the homeostasis model assessment of insulin resistance (HOMA-IR), the following formula was used: [fasting glucose level (mg/dL) × fasting insulin level (µIU/mL)]/405. Meanwhile, the following was applied for the homeostasis model assessment of beta-cell index (HOMA-β): 360 × fasting insulin level (µIU/mL)/]fasting glucose level (mg/dL) – 63] (24). The estimated glomerular filtration rate (eGFR) was obtained using a modified version of the diet in renal disease (MDRD) equation of the National Kidney Foundation (NKF) (25).




2.5 Statistical analysis

In this paper, data are presented as mean ± standard deviation (SD) for continuous variables, but as count (percentage) for categorical ones. Here, one-way analysis of variance (ANOVA) was employed for continuous variable-based comparisons between groups, while chi-squared test was used for categorical variables, with Bonferroni’s significant difference post hoc test. Meanwhile, adjustment for covariates was performed using analysis of covariance (ANCOVA). Additionally, Pearson’s correlation analysis along with multiple linear regression was employed here to evaluate the relationships between the parameters. Meanwhile, the changes in parameters between before and after treatment were compared among the groups using a paired sample t-test. For nonparametric variables, the Wilcoxon test was used. As a threshold for significance, statistical significance was defined at < 0.05 as a two-tailed p-value. Statistical analysis was performed using SPSS version 26.0 software (IBM, Chicago, IL, USA).





3 Results



3.1 Relationship between serum uteroglobin levels and glycaemic status



3.1.1 Clinical and laboratory characteristics

Clinical and laboratory characteristics of the members of the NGT, prediabetes and T2D groups in the first banked set are summarised in Table 1. In this study comparing the NGT, prediabetes and T2D groups, the mean age of the 240 participants was 52.7 years (range 18–82 years old). The prediabetes group had higher levels of post-load 2-h PG and insulin, and a lower level of HDL cholesterol than the NGT group. Compared with the NGT group, the T2D group had higher rates of smoking, dyslipidaemia and hypertension. The T2D group also showed higher levels of weight, BMI, HbA1C, fasting plasma glucose (FPG), post-load 2-h PG, fasting insulin, post-load 2-h insulin, fasting C-peptide, HOMA-IR and TG, along with lower HDL cholesterol levels. Moreover, compared with the prediabetes group, the T2D group tended to show elevated levels of HbA1C, FPG, post-load 2-h PG, fasting C-peptide and HOMA-IR. A significant difference (p = 0.013) in uteroglobin levels (ng/mL) was also identified among the three groups (Figure 1 and Supplementary Table 1). In the post hoc analysis, uteroglobin levels were also shown to differ significantly between the NGT and prediabetes groups (16.7 ± 6.5 vs. 14.1 ± 6.0, p = 0.022) and between the NGT and T2D groups (16.7 ± 6.5 vs. 14.3 ± 5.9, p = 0.037), while the prediabetes and T2D groups did not differ significantly (14.1 ± 6.0 vs. 14.3 ± 5.9, p = 0.989) in this regard. Even after adjusting for smoking status, presence of dyslipidaemia and hypertension, a statistically significant difference in uteroglobin levels among the three groups remained (p = 0.012) (Supplementary Table 1).

Table 1 | Comparison of clinical and laboratory characteristics between participants with NGT, prediabetes and T2D.


[image: A detailed table compares characteristics among groups with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes (T2D), each with 80 individuals. It includes measurements like age, sex, smoking status, and medication use, alongside key metrics such as BMI, blood pressure, HbA1c, fasting glucose, insulin levels, and cholesterol. Statistical significance is indicated with p-values for each characteristic, along with differences noted by asterisks for specific comparisons (NGT vs. prediabetes, NGT vs. T2D, prediabetes vs. T2D). The data is presented as means with standard deviations or counts with percentages.]
[image: Dot plot comparing uteroglobin levels across three groups: NGT, Prediabetes, and T2D. The y-axis shows uteroglobin in ng/mL, with significant differences between NGT and the other groups marked by asterisks, and no significant difference between Prediabetes and T2D marked by "ns". Each group displays individual data points, mean values, and error bars.]
Figure 1 | Serum uteroglobin levels among the NGT, prediabetes and T2D groups in the first banked set. Lines indicate mean and SD. NGT, normal glucose tolerance; T2D, type 2 diabetes mellitus; ns, not significant. p-values were calculated by one-way ANOVA. Differences at p < 0.05 determined by Bonferroni’s significant difference post hoc test are expressed as an asterisk (*).




3.1.2 Relationship between serum uteroglobin levels and various parameters

The associations between serum uteroglobin levels and various metabolic parameters were also examined in this work. Pearson’s correlation analysis was used to determine the correlations with various metabolic parameters, as shown in Table 2. BMI, HOMA-β and eGFR were negatively correlated with uteroglobin levels (BMI: r = −0.180, p = 0.017, HOMA-β: r = −0.134, p = 0.039, eGFR: r = −0.247, p < 0.001). Meanwhile, no strong correlations with uteroglobin levels were found for any of the metabolic parameters that we investigated.

Table 2 | Correlations between serum uteroglobin level and various parameters.


[image: Table displaying Pearson’s correlation coefficients (\( r \)) and \( p \)-values for various health metrics, including age, BMI, blood pressure, HbA1c, fasting glucose, insulin levels, HOMA indices, cholesterol levels, and more. Significant correlations are noted for BMI and HOMA-β with \( p \)-values of 0.017 and 0.039, respectively. eGFR shows a negative correlation with significant \( p \)-value of 0.001.]




3.2 Changes in serum uteroglobin levels with drug treatment



3.2.1 Changes in serum uteroglobin levels with metformin treatment

The participants in the second banked set were found to have a mean age of 51.5 years (range 20–77) (Supplementary Table 2). Table 3 and Figure 2 show the changes in uteroglobin and other parameters after 12 weeks of metformin treatment. Uteroglobin level was significantly increased (from 14.2 ± 6.0 to 17.8 ± 9.4, p = 0.012) while HbA1C, total and LDL cholesterol, and eGFR were significantly decreased by metformin. Meanwhile, weight, BMI, TG and HDL cholesterol showed no significant changes.

Table 3 | Changes in serum uteroglobin level and various parameters after 12 weeks of metformin treatment.


[image: Table comparing baseline and after treatment values with p-values. Parameters include uteroglobin, weight, BMI, HbA1c, total cholesterol, triglycerides (TG), HDL, LDL, and eGFR. Significant changes are noted for uteroglobin (p=0.012), HbA1c (<0.001), total cholesterol (p=0.003), LDL cholesterol (p=0.002), and eGFR (p=0.009). Values are presented as mean ± standard deviation.]
[image: Bar graph showing uteroglobin levels in nanograms per milliliter at baseline and after twelve weeks of treatment with Metformin and Statin. Both show significant increases, marked by asterisks. Baseline values are in dark grey, while twelve-week values are in light grey.]
Figure 2 | Changes in serum uteroglobin level after 12 weeks of metformin or statin in type 2 diabetes mellitus patients. Boxes and lines indicate mean and SD. Differences at p < 0.05 determined by paired t test are expressed as an asterisk (*).




3.2.2 Changes in serum uteroglobin levels with statin treatment

The participants in the third banked set were found to have a mean age of 57.6 years (range 28–83) (Supplementary Table 3). Table 4 and Figure 2 show the changes in uteroglobin and other parameters after 12 weeks of statin treatment. Uteroglobin level was significantly increased (from 17.1 ± 8.4 to 20.0 ± 10.5, p < 0.001) and HDL cholesterol was also increased, while fasting insulin, HOMA-β, total and LDL cholesterol, and TG were significantly decreased after statin treatment.

Table 4 | Changes in uteroglobin level and various parameters after 12 weeks of statin treatment.


[image: Table comparing baseline and after-treatment measurements for various health parameters, along with p-values. Notable changes: uteroglobin increased (p < 0.001), fasting insulin decreased (p = 0.010), HOMA-β decreased (p = 0.003), total cholesterol decreased (p < 0.001), TG decreased (p < 0.001), HDL increased (p = 0.012), and LDL decreased (p < 0.001). Other parameters showed no significant change.]





4 Discussion

This is the first study to show a meaningful correlation between serum uteroglobin levels and T2D in humans. To identify the association between diabetes and uteroglobin, we used three banked sets from the Human Resource Bank. The first banked set was based on subjects with a status of NGT or diagnosed with prediabetes or T2D for the first time. The second and third banked sets were based on first-time users of metformin or statin, among patients with diabetes. We compared the three groups, namely, NGT, prediabetes and T2D, and found that uteroglobin differed significantly among them. Uteroglobin decreased in the prediabetes and T2D groups compared with that in the NGT group. In patients with T2D, the administration of metformin or statin recovered the uteroglobin level. Higher BMI was associated with lower uteroglobin. As confirmed in other studies, higher eGFR was associated with a decrease in serum uteroglobin (26).

Uteroglobin is a protein that itself has anti-inflammatory function, primarily by inhibiting phospholipase A2, which reduce leukotriene synthesis (3). In humans, uteroglobin has also been linked to certain health conditions (27). For example, it has been associated with respiratory diseases such as asthma, allergic rhinitis and idiopathic pulmonary fibrosis, and kidney diseases such as IgA nephropathy (27, 28). These diseases are associated with chronic inflammation, and asthma sufferers have reduced levels of uteroglobin, while polymorphisms of uteroglobin can affect the rate of progression of IgA nephropathy (27, 28). Recombinant uteroglobin has also been shown to improve renal disease in animal studies (29) and lung disease associated with prematurity in clinical studies (30, 31). T2D is also associated with chronic inflammation (6), and this study found a unique relationship between uteroglobin and T2D. When comparing the NGT, prediabetes and T2D groups, they were shown to differ significantly in uteroglobin levels. Instead of a gradual change with the degree of hyperglycaemia, there was no difference between the prediabetes and T2D groups, and interestingly only the differences between NGT and prediabetes groups and between NGT and T2D groups were found to be significant. Meanwhile, uteroglobin was shown to be weakly negatively correlated with HOMA-β. Moreover, it was not found to be strongly correlated with other metabolic parameters or even with hsCRP, an inflammatory biomarker for which associations with vascular complications in diabetic patients have been reported (32).

Managing diabetes requires a diverse approach that addresses various pathophysiological aspects of the disease, not just glucose control. One of the key axes in the pathophysiology of T2D is inflammation. Due to the various aetiologies, even with well-controlled blood glucose levels, and even in prediabetes, the risk of vascular complications is significantly higher compared to NGT (33). Diabetes is classified as a high-risk group for various vascular diseases, and it is recommended that LDL levels be maintained lower than in non-diabetic cases (34). Intensive glucose control has not been able to drastically reduce macrovascular complications, thus it is crucial to continue efforts to identify new factors related to the progression and complications of T2D and prediabetes (35). This study’s identification of a relationship between uteroglobin, a protein with inherent anti-inflammatory properties, and T2D, where low-grade chronic inflammation is a key pathophysiological aspect, is highly significant. The lack of strong correlations with existing metabolic parameters suggests that uteroglobin might act as an independent, critical new axis, indicating the need for large-scale studies to explore its relationship with diabetes complications. Furthermore, even aside from diabetes, understanding what interventions (in this study, metformin and rosuvastatin) change uteroglobin levels and how these changes subsequently affect the body remains an unexplored field.

One of the most important and common complications related to T2D is atherosclerosis (36). Atherosclerosis is not just an accumulation of cholesterol, inflammation also plays a crucial role (37). Many experimental studies, including on immune-mediated atherosclerosis after allogeneic transplantation, have shown that inflammation-related cells such as macrophages and many cytokines are also important in atherosclerosis (38). Preclinical studies have also shown that controlling inflammation with various anti-inflammatory drugs can reduce the severity of atherosclerosis (39). Metformin and statins have anti-inflammatory benefits beyond lowering blood sugar and lowering LDL cholesterol, respectively (11, 12). Metformin is still widely used as a first-line treatment worldwide, except in cases of heart failure, chronic kidney disease or myocardial infarction (40). The anti-inflammatory effects as well as glucose-lowering effects of metformin have been a focus of numerous preclinical and clinical studies. These studies have found that the effects of metformin on the inflammatory response range from the organ level, such as adipose tissue, heart and blood vessels, to the cellular level, including T cells, macrophages and B cells (11). Findings have implied that such effects are mediated primarily by AMP kinase activation along with downstream effects of the inhibition of mTOR and NF-κB pro-inflammatory signalling cascades (11). These anti-inflammatory effects mean that, in patients with T2D, metformin does more than just lower blood glucose, especially in the context of atherosclerosis (41). Statins are most commonly used to lower LDL cholesterol, which is one of the most important causes of atherosclerosis (42). Statins are known to stabilise atheroma by not only lowering LDL cholesterol, but also by reducing inflammation (37). A major part of the anti-inflammatory function of statins is mediated by the inhibition of isoprenoid, which affects various signalling systems, especially proteins that bind to guanine triphosphate (GTP) (e.g., components of the Rac, Rho and Ras pathways) (43). As a result, statins reduce inflammatory cytokines in inflammatory cells and vascular endothelial cells, reduce oxidative stress by upregulating endothelial nitric oxide synthase (eNOS) gene expression in vascular cells and modulate platelet function to inhibit thrombus formation by regulating the interaction between platelets and endothelial cells (43).

There is an interesting association between uteroglobin and vascular complications in T2D. In animal experiments, uteroglobin was found to reduce neointimal hyperplasia associated with patency after angioplasty, stenting or bypass surgery (44–46). Uteroglobin could thus help to predict the outcomes of vascular interventions. In our study, we found that metformin and statins increased uteroglobin, a protein with anti-inflammatory functions. Therefore, one of the mechanisms by which metformin and statins exert anti-inflammatory effects to prevent vascular complications may be through increasing uteroglobin.

Chronic inflammation, which is an important aetiology of diabetes, is also thought to be an important factor in the development and progression of cancers (47), and major areas of cancer research continue to focus on the relationship between the cancer and inflammatory responses (48). Interestingly, some studies on cancer suggested a potential role of uteroglobin. For example, it has been suggested that the level of uteroglobin expression in human prostate cancer tissues was negatively correlated with Gleason score (49). Preclinical experimental study suggested that treating prostate cancer cells with recombinant human uteroglobin or transfecting them with the uteroglobin gene reduced the extent of cancer cell invasion (50). In lung cancer, the level of uteroglobin expression was positively correlated with prognosis (51). Another study on lung cancer reported that the effectiveness of combination therapy with immune checkpoint inhibitors and radiotherapy was increased by induction of the uteroglobin gene expression and decreased by deletion of this gene (52). Additionally, some studies on the effects of metformin have shown potential benefits through uteroglobin in prostate cancer and prostate-related disease such as benign prostatic hyperplasia and prostatitis (53, 54). It is very well known that the incidence of various cancers increases in diabetes (55). Therefore, the discovery of uteroglobin in diabetes might open new directions in exploring the relationship between diabetes and cancer, the anti-cancer effects of drugs such as metformin and statin, and clinical implications for the prevention of cancers.

This study had some limitations. This study was conducted at a single centre and used banked samples, which were collected from individuals who sought medical care at CNUH. The sample size was also quite small. This introduces the possibility of selection bias, as the samples may not represent the general population. In diseases like T2D, which have diverse aetiologies, biomarker studies often face large inter-individual variability, and studies with small sample size frequently fail to achieve statistical significance. Although we confirmed statistically significant changes of uteroglobin in all groups of our study, larger-scale studies should be needed to suggest normal reference ranges and cutoff value for uteroglobin to predict disease.

Unfortunately, it was also not possible to obtain samples associated with metformin treatment in the prediabetic stage because of the national health insurance policy in South Korea, where it is illegal to prescribe metformin to patients with prediabetes. We also expected that ezetimibe would exert an effect in the statin-treated banked set but were unable to find an effect of ezetimibe on the level of uteroglobin. This study focused on identifying associations rather than elucidating underlying mechanisms. Future research should aim to investigate the biological pathways through which uteroglobin levels are modulated and how they influence the pathogenesis or management of T2D.




5 Conclusions

The present study indicates that uteroglobin is a sensitive inflammatory biomarker, the level of which can be altered even in prediabetes or upon short-term treatment with metformin and rosuvastatin, drugs with anti-inflammatory effects. More studies are required to investigate possible mechanisms by which metformin and statin influence the increase of uteroglobin and the clinical outcomes associated with these differences.
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Background

Emerging evidence suggests a potential role of immune response and inflammation in the pathogenesis of diabetic kidney disease (DKD). The systemic immune-inflammation index (SII) offers a comprehensive measure of inflammation; however, its relationship with the prognosis of DKD patients remains unclear.





Methods

Using data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2018, this cross-sectional study involved adults diagnosed with DKD. Cox proportional hazards models were utilized to assess the associations between SII and all-cause or cardio-cerebrovascular disease mortality. Additionally, restricted cubic spline, piecewise linear regression, and subgroup analyses were performed.





Results

Over a median follow-up duration of 6.16 years, 1338 all-cause deaths were recorded. After adjusting for covariates, elevated SII levels were significantly associated with increased risks of all-cause and cardio-cerebrovascular disease mortality. Specifically, per one-unit increment in natural log-transformed SII (lnSII), there was a 29% increased risk of all-cause mortality (P < 0.001) and a 23% increased risk of cardio-cerebrovascular disease mortality (P = 0.01) in the fully adjusted model. Similar results were observed when SII was analyzed as a categorical variable (quartiles). Moreover, nonlinear association was identified between SII and all-cause mortality (P < 0.001) through restricted cubic spline analysis, with threshold value of 5.82 for lnSII. The robustness of these findings was confirmed in subgroup analyses. Likewise, the statistically significant correlation between SII levels and cardio-cerebrovascular disease mortality persisted in individuals with DKD.





Conclusion

Increased SII levels, whether examined as continuous variables or categorized, demonstrate a significant association with elevated risks of all-cause and cardio-cerebrovascular disease mortality among DKD patients. These findings imply that maintaining SII within an optimal range could be crucial in reducing mortality risk.





Keywords: systemic immune-inflammation index, diabetes mellitus, diabetic kidney disease, population-based study, NHANES, all-cause mortality, cardio-cerebrovascular disease mortality




1 Introduction

In recent decades, the surge in diabetes mellitus (DM) cases has propelled it into a critical global health concern, imposing substantial economic burdens worldwide (1). Among its complications, diabetic kidney disease (DKD) looms large, affecting individuals with both type 1 and type 2 DM. Patients with DKD, especially those receiving dialysis, endure a substantial symptom burden and frequent hospital admissions stemming from prevalent comorbidities such as hypertension, coronary artery disease, congestive heart failure, and cerebrovascular disease (2–6). These comorbidities frequently contribute to psychological issues, disabilities, and substantial healthcare costs, markedly impairing patients’ quality of life. Despite current clinical management strategies, which include renin-angiotensin system blockade and meticulous control of hypertension, hyperglycemia, and dyslipidemia, DKD remains a primary contributor to end-stage renal disease (ESRD) necessitating renal replacement therapy (1). The ongoing therapeutic hurdles highlight the pressing necessity for a more profound understanding of DKD’s pathophysiological intricacies, from its onset to advanced renal failure, to identify potential risk factors for screening and intervention. Bridging this knowledge gap is essential for developing novel and effective strategies to prevent and manage the progression of DKD in clinical practice.

Recent investigations have implicated various factors, including metabolic disruptions and hemodynamic irregularities triggered by hyperglycemia and insulin resistance (IR), in the pathogenesis of DKD (7–9). Moreover, IR is closely associated with chronic low-grade inflammation marked by heightened levels of mediators like interleukin-1, interleukin-6, and tumor necrosis factor-α (10, 11). The evolving understanding of DKD portrays it as a disorder driven by metabolic and immunological interplay. Both systemic and localized renal inflammation are recognized as pivotal in DKD progression (12), wherein numerous novel pro-inflammatory signaling pathways have been implicated, including the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation (13), the nuclear factor kappa B (NF-κB) signaling pathway (14), toll-like receptor 4 (TLR4) signaling pathway (15), adenosine 5′-monophosphate-activated protein kinase signaling pathway (16), and the hypoxia-inducible factor-1 signaling pathway (17).

The diabetic microenvironment, marked by hyperglycemia, fluctuating glucose levels, and IR, triggers both systemic and localized inflammatory responses through the TLR4/NF-κB/NLRP3 pathway. These cascades activate platelets, an atypical first-line inflammatory biomarker that may attach to leukocytes and endothelial cells, modifying their pro-inflammatory activities (18–20). For instance, platelet activating factor (PAF), a pro-inflammatory mediator significantly increased by activated platelets, exaggerates leukocyte chemotaxis, complement activation, reactive oxygen species and eicosanoids production in DKD (21–23). PAF also stimulates lymphocytes to produce immunoglobulins and elevates circulating pro-inflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor-α (24). These cytokines not only amplify platelet activation but also co-stimulate lymphocytes, further exacerbating renal inflammation (25–27). Platelet-derived platelet factor 4 (PF4), a potent chemoattractant produced by platelet that promotes neutrophil adhesion to endothelial cells and lymphocyte chemotaxis (21, 28), has been found to be markedly elevated in DKD patients with macroalbuminuria (23). Neutrophils, which comprise the majority of white blood cells and are critical in initiating and regulating inflammatory processes, release neutrophil elastase-a key player in chronic inflammation and potential contributor to renal damage in DKD (29). Lymphocytes are inflammatory mediators that do have regulatory or protective functions for preventing the progression of chronic kidney disease (30). More importantly, DKD patients exhibit significantly higher neutrophils and platelet counts alongside notably lower lymphocyte counts compared to healthy populations (29–33), indicating heightened inflammation and an imbalance in immune regulation. Taken together, the diabetic milieu orchestrates a broad variety of inflammatory responses, including secretion of pro-inflammatory cytokines, platelet-lymphocyte interaction, and platelet-neutrophil interaction, all of which synergistically contribute to the deterioration of renal function. These findings collectively underscore the critical role of inflammation and immune cells interaction in driving DKD progression.

The systemic immune-inflammation index (SII), an innovative inflammatory marker derived from platelet count × neutrophil count/lymphocyte count, has emerged as a comprehensive measure of inflammation. Initially utilized to assess prognosis in hepatocellular carcinoma patients (34), SII has shown prognostic utility in various cancers and is recognized for its precision in gauging inflammatory status. Recent studies have further linked higher SII with increased incidence of metabolic syndrome (35), cardiovascular disease (36), nonalcoholic fatty liver disease (37), DM (38), urinary albumin excretion (39), diabetic retinopathy (40), and other DM-related complications (41, 42). Moreover, prospective cohort studies have associated SII with elevated risks of cardiovascular, cardio-cerebrovascular, and all-cause mortality in DM individuals (43) and the general population (44). However, the relationship between SII and mortality outcomes in individuals with DKD remains unexplored. Examining the relationship between SII and long-term mortality risk in individuals with DKD is crucial as it provides a deeper understanding of the impact of inflammation and immune status on the health outcomes of DKD patients. Furthermore, such research provides valuable insights for improving clinical management and intervention approaches for DKD patients. To bridge this gap, the present study investigates the association between SII, a novel index reflecting systemic inflammatory state, and all-cause mortality and cardio-cerebrovascular disease mortality in individuals with DKD, using data from the National Health and Nutrition Examination Survey (NHANES) database.




2 Materials and methods



2.1 Study population

The NHANES database serves as a comprehensive, population-based cross-sectional survey meticulously designed to capture insights into the health and nutritional status of the United States household population (45). Data collection occurs through structured interviews conducted in participants’ homes, complemented by physical examinations conducted at mobile centers and laboratory assessments, all structured within a multistage probability sampling framework. The NHANES protocol has received ethical approval from the National Center for Health Statistics ethics review board, with all participants providing written informed consent. The dataset spans NHANES surveys conducted from 1999 to 2018, encompassing a total of 101316 participants. Through rigorous inclusion criteria, we excluded 42112 individuals under the age of 18, 7634 participants with missing data on pertinent variables and survival status, 43727 individuals who were pregnant or without DM, and 4648 ineligible participants. Consequently, our study enrolled 3195 eligible participants for analysis. Figure 1 provides a visual representation of the detailed participant selection process.

[image: Flowchart depicting the selection process for NHANES 1999-2018 study with a starting participant count of 101,316. Participants aged under 18, totaling 42,112, are excluded, followed by 7,634 with missing data. Next, 43,727 participants are excluded due to pregnancy or lack of diabetes, leaving 7,843 for follow-up. After excluding 4,648 ineligible participants, 3,195 are deemed eligible.]
Figure 1 | A flow chart of sample selection of eligible participants from the NHANES 1999-2018.




2.2 Definition of systemic immune-inflammation index

Lymphocyte, neutrophil, and platelet counts were determined using automated hematology analysis devices. The SII was derived by multiplying the platelet count by the neutrophil count and then dividing by the lymphocyte count, following established methodologies outlined in prior studies (43).




2.3 Definition of diabetes mellitus and diabetic kidney disease

DM was defined as meeting any of the following criteria: (1) a documented diagnosis by healthcare professionals; (2) fasting plasma glucose levels ≥ 7.0 mmol/L; (3) glycosylated hemoglobin levels ≥ 6.5%; or (4) currently taking medications for diabetes management (46, 47). The urine albumin-to-creatinine ratio (UACR) was utilized to determine UACR values. Estimated glomerular filtration rate (eGFR) scores were calculated using the Chronic Kidney Disease Epidemiology Collaboration algorithm. The diagnosis of DKD in patients with diabetes was established based on UACR levels ≥ 30 mg/g and/or eGFR < 60 mL/min/1.73m2 (48).




2.4 Determination of mortality outcomes

Mortality outcomes were identified using death certificate records obtained from the National Death Index. All-cause mortality was assessed by examining publicly accessible death data linked to the NHANES datasets until December 31, 2019. Cardio-cerebrovascular disease mortality was determined based on the International Classification of Diseases, 10th Revision (ICD-10) codes I00-I09, I11, I13, I20-I51, or I60-I69.




2.5 Definition of other variables

This investigation encompassed various covariates potentially influencing the relationship between SII and DKD. Demographic parameters comprised age, sex, race, body mass index (BMI), poverty income ratio, education, smoking status, alcohol, physical activity, and frailty. Ethnicity categories were delineated as White, Black, Hispanic, Mexican, and others. BMI (kg/m2) was calculated by dividing weight by height squared and categorized according to World Health Organization standards: < 18.5 (underweight), 18.5-24.9 (healthy weight), 25-29.9 (overweight), and ≥ 30 (obese) (49). Poverty income ratio is a pre-defined continuous variable in NHANES and is based on the ratio of the family household income to the poverty level set by the US Department of Health and Human Services. Educational level was stratified into less than high school, high school or equivalent, and college or above. Smoking habits were classified as never, former, or current. Alcohol consumption patterns were categorized as never, former, mild, moderate, or heavy drinking. Physical activity was categorized as vigorous, moderate or no. Frailty status was constructed based on the previous standard procedure (50). The frailty index consisted of 49 deficits with a value ranging from 0 (no frailty) to 1 (frailty) according to the severity of the deficit, and a cut-off point of 0.21 on the frailty index value divided participants into two groups of frailty or not. Health risk factors included hypertension, hyperlipidemia, cardiovascular disease (CVD), and SII status. DM-related treatments encompassed the usage of anti-inflammatory and anti-diabetic medications. Previous disease history, including hypertension, hyperlipidemia, and CVD, was obtained from health-related questionnaires or test results. Hypertension was defined as meeting at least one of the following criteria: (1) systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg after repeated examination or a prior diagnosis by a physician (51); (2) self-reported history of hypertension; (3) current use of antihypertensive medications. Hyperlipidemia was defined by total cholesterol ≥ 240 mg/dL, triglycerides ≥ 200 mg/dL, LDL-cholesterol ≥ 160 mg/dL, HDL-cholesterol < 40 mg/dL, or a physician’s diagnosis. Due to the variability in participants’ medication regimens, anti-inflammatory or anti-diabetic therapy was dichotomized into “no” (participants not taking anti-inflammatory or anti-diabetic drugs) and “yes” (participants receiving anti-inflammatory or ani-diabetic drugs). Detailed measurement techniques for these variables are accessible at www.cdc.gov/nchs/nhanes/.




2.6 Statistical analyses

Normally distributed continuous variables were reported as weighted means ± standard error, while non-normally distributed continuous variables were reported as median [Interquartile range (IQR)]. Categorical variables were expressed as frequency and percentage. We utilized weighted Student’s t-test for normally distributed continuous variables, Mann-Whitney U test for non-normally distributed continuous variables, and chi-square test for categorical variables to compare baseline characteristics between survivors and deceased DKD subjects.

Associations between SII and the risk of all-cause mortality or cardio-cerebrovascular disease mortality were assessed using multivariate Cox proportional hazard models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). We examined the proportional hazard assumption using Schoenfeld residual methods. Given the right-skewed distribution of SII, the variable was assessed in its continuous form after applying a natural log-transformation (lnSII), and the lnSII variable was grouped into four quartiles, which were included in models as both continuous and categorical variables. The first quartile of lnSII (Q1) served as the reference group, with median values assigned to each category to evaluate linear trends. Baseline variables clinically relevant to prognosis were adjusted in the multivariable Cox proportional hazard model. Model 1 adjusted for sex, age, and race, while model 2 further adjusted for BMI, poverty income ratio, education level, smoking status, alcohol consumption, physical activity, frailty status, hypertension, hyperlipidemia, cardiovascular disease, usage of anti-inflammatory drugs and anti-diabetic drugs. To explore dose-response associations between lnSII and mortality, restricted cubic spline (RCS) with 4 knots (5th, 35th, 65th, 95th) was employed. If nonlinear associations are detected, the “segmented” package was applied to identify inflection points and perform segmented Cox proportional hazard regression.

Stratified analyses were conducted by age (< 60 years and ≥ 60 years), sex (male and female), BMI (≥ 25 and < 25), hypertension (yes and no), hyperlipidemia (yes and no), usage of anti-inflammatory drugs (yes and no), usage of anti-diabetic drugs (yes and no), and frailty status (yes and no). Potential interactions were tested by likelihood ratio tests. Statistical analysis was performed with R software, Version 4.2.1. Two-sided P < 0.05 was considered statistically significant.





3 Results



3.1 Baseline characteristics of study participants

A total of 3195 participants diagnosed with DKD were included in the study, with a median age of 67.00 years and a gender distribution of 1720 (53.8%) male patients and 1475 (46.2%) female patients. Among these participants, 1857 (58.1%) were classified as survivors during a median follow-up period of 6.16 years. Table 1 presents the demographic and clinical characteristics of the participants stratified by all-cause mortality. Significant differences were observed between survivors and deceased subjects in terms of age, sex, race, BMI, poverty income ratio, education level, smoking status, alcohol consumption, physical activity, frailty status, hypertension, hyperlipidemia, cardiovascular disease, and SII (all P < 0.05). However, there were no significant differences in the use of anti-inflammatory drugs and anti-diabetic drugs between survivors and deceased DKD subjects.

Table 1 | Baseline demographic and clinical characteristics of study populations by presence of DKD.


[image: A detailed table comparing characteristics of all participants, survivors, and deceased during follow-up. Variables include age, sex, race, BMI, income, education, smoking, alcohol use, physical activity, frailty, hypertension, hyperlipidemia, cardiovascular disease, drug use, and inflammation index. P values highlight significant differences for variables like age, race, income, and physical activity. The table uses percentages and numbers.]



3.2 Associations between SII and mortality

As depicted in Table 2, the natural logarithm of the SII exhibited a significant association with an elevated risk of all-cause mortality in the crude model (HR = 1.31, 95% CI = 1.19-1.45). Following multivariable adjustment, this association remained robust and statistically significant in both Model 1 (HR = 1.36, 95% CI = 1.23-1.50) and Model 2 (HR = 1.29, 95% CI = 1.17-1.42). Moreover, we transformed lnSII from a continuous variable to a categorical variable and constructed several models to assess the independent effects of SII on mortality. Compared to individuals in the first quartile of lnSII (Q1), those in the fourth quartile (Q4) exhibited notably higher multivariate-adjusted HRs, as evidenced by Model 1 (HR = 1.66, 95% CI = 1.43-1.94, P for trend < 0.001) and Model 2 (HR = 1.58, 95% CI = 1.35-1.84, P for trend < 0.001). Similarly, this statistically significant association with lnSII in DKD individuals persisted for cardio-cerebrovascular disease mortality (Table 2). Each one-standard deviation increase in lnSII was associated with a 17% elevated risk of cardio-cerebrovascular disease mortality in the crude model (HR = 1.24, 95% CI = 1.05-1.46). After adjusting for multiple variables, this correlation remained strong and statistically significant in both Model 1 (HR = 1.29, 95% CI = 1.10-1.53) and Model 2 (HR = 1.23, 95% CI = 1.04-1.45). In contrast to individuals in the first quartile of lnSII (Q1), those in the fourth quartile (Q4) showed significantly higher multivariate-adjusted HRs, as demonstrated by Model 1 (HR = 1.40, 95% CI = 1.09-1.81, P for trend = 0.003) and Model 2 (HR = 1.32, 95% CI = 1.02-1.71, P for trend = 0.021).

Table 2 | Multivariable Cox proportional hazard model analyses for all-cause mortality and cardio-cerebrovascular disease mortality among DKD participants.


[image: A table comparing all-cause and cardio-cerebrovascular mortality based on levels of systemic immune inflammation index (lnSII). It includes unadjusted crude models and two adjusted models with hazard ratios (HR), 95 percent confidence intervals (CI), and p-values for each quartile (Q1 to Q4) and continuous data. Significant trends are marked by p-values below 0.05, indicating higher mortality rates in higher quartiles. Adjustments in models 1 and 2 account for factors like age, sex, race, and other health indicators.]



3.3 Dose-response relationship between SII and mortality

As illustrated in Figure 2A, after adjustment for multiple potential confounders, we observed a statistically significant nonlinear and U-shaped association between the lnSII and all-cause mortality (P for nonlinear < 0.001). By contrast, a linear association emerged between lnSII and cardio-cerebrovascular disease mortality (P for nonlinear = 0.086, Figure 2B). The Segmented Cox proportional hazard model analysis presented in Table 3 unveiled that the risk of all-cause mortality initially declined (HR = 0.58, 95% CI = 0.43-0.78), reaching its inflection at a lnSII value of 5.82, before subsequently escalating with increasing lnSII levels (HR = 1.69, 95% CI = 1.48-1.93).

[image: Panel A shows a graph of the hazard ratio (HR) for all-cause mortality with varying levels of lnSII, indicating a significant non-linear relationship (P < 0.001). Panel B illustrates the HR for cardio-cerebrovascular mortality with lnSII, showing a non-significant non-linear relationship (P = 0.086). Both graphs have red lines and shaded confidence intervals.]
Figure 2 | Restricted cubic spline regression of the relationship between lnSII and all-cause mortality (A) or cardio-cerebrovascular disease mortality (B). SII was assessed in its continuous form after applying a natural log-transformation (lnSII). SII, systemic immune-inflammation index; HR, hazard ratio; 95% CI, 95% confidence interval.

Table 3 | Segmented Cox proportional hazard regression analyses for the effect of SII on all-cause mortality among DKD participants.


[image: Hazard ratios (HR) and P values for lnSII values below and above 5.82 are presented. For lnSII below 5.82, the crude model shows HR 0.51, Model 1 HR 0.59, and Model 2 HR 0.58, all with P < 0.001. For lnSII above 5.82, the crude model shows HR 1.78, Model 1 HR 1.84, and Model 2 HR 1.69, all with P < 0.001. Model adjustments include age, sex, race, and additional factors for Model 2.]



3.4 Subgroup analysis

As depicted in Figure 3, subgroup analyses were conducted to assess whether various demographic and clinical characteristics could influence the relationship between SII and all-cause mortality. Our subgroup analysis revealed significant interaction between SII and BMI (P for interaction < 0.05). For those DKD patients with higher BMI (≥ 25), there was a significant association between SII and all-cause mortality. For DKD patients with lower BMI (< 25), the association between SII and risk of death was not significant. Furthermore, the stratified analyses revealed no significant interactions between SII and the stratified components including age, sex, hypertension, hyperlipidemia, taking anti-inflammation drug, taking anti-diabetic drug, and frailty (all P for interaction > 0.05). This finding aligns with previously published studies in other population types (52, 53), indicating that these stratified variables did not significantly influence the positive association between SII and all-cause mortality.

[image: Forest plot displaying hazard ratios (HR) with 95% confidence intervals (CI) for various subgroups such as age, sex, body mass index, hypertension, hyperlipidemia, drug usage, and frailty. Each category shows HR with CI and corresponding p-values for interaction, with significant results marked.]
Figure 3 | Forest plot for subgroup analysis of associations between lnSII and all-cause mortality. Hazard ratios (HR) were calculated using multivariate Cox proportional hazards models adjusted for variables in model 2 except for the variable used for stratification. SII was assessed in its continuous form after applying a natural log-transformation (lnSII). SII, systemic immune-inflammation index; 95% CI, 95% confidence interval.





4 Discussion

In this study, we for the first time conducted a novel investigation into the relationship between the SII and both all-cause mortality and cardio-cerebrovascular disease mortality in individuals diagnosed with DKD using data from the NHANES database. Our analysis unveiled notable findings: a U-shaped correlation between SII levels and the risk of all-cause mortality in DKD individuals was observed, and the inflection point of lnSII with the lowest HR was 5.82, indicating that both excessively low and high concentrations were associated with an increased risk. This relationship remained consistent across various stratified analyses. Additionally, we found a linear correlation between SII levels and the risk of cardio-cerebrovascular disease mortality. Taken together, these findings suggest that SII could serve as a predictive marker for mortality risk in DKD patients and may represent a potential target for interventions aimed at improving health outcomes.

Emerging evidence suggests that chronic immune cell overactivation and subsequent low-grade inflammation may underlie the pathogenesis of DKD and its dire prognosis (15, 54–56). A comprehensive analysis of multiple genome-wide association studies revealed that a significant portion of single nucleotide polymorphisms associated with DKD are directly or indirectly linked to inflammation and immunity (57, 58). Numerous clinical and epidemiological investigations have consistently shown elevated levels of plasma inflammatory markers (59), such as C-reactive protein (60), high-sensitivity C-reactive protein (61), and interleukin-6 (62) in DKD patients. Although large-scale clinical trials specifically targeting therapies for DKD are lacking, the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) trial has indicated that DKD patients derive greater benefit from anti-inflammatory treatment with Finerenone, a first novel, highly potent, selective mineralocorticoid receptor antagonist (63). This previous evidence suggests a potential synergistic relationship between inflammation levels and progression of DKD.

The SII is derived from the counts of three circulating immune cell types: neutrophils, lymphocytes, and platelets. It provides a comprehensive assessment of immune and inflammatory status, offering more clinical insights than single or dual peripheral blood parameters. Elevated SII levels often coincide with thrombocytosis, neutrophilia, or lymphopenia, reflecting heightened inflammatory responses and serving as a valuable diagnostic biomarker for systemic inflammatory activity (44). Particularly, numerous studies have underscored SII’s predictive capacity, linking higher SII levels to increased risks of various renal disease subtypes, including contrast-induced nephropathy (64), renal cell carcinoma (65), and peritoneal dialysis-treated chronic kidney disease patients (66). Moreover, several previous studies have shown the close relationship between SII and the incidence and severity of DKD, suggesting SII as a widely available, non-invasive, cost-effective, and straightforward approach to detecting and monitoring DKD (54, 55, 67). Accordingly, the therapeutic potential of anti-inflammation-based regimen is promising, emphasizing the importance of addressing systemic inflammation for better mortality risk prevention and prediction of DKD. Nevertheless, the relation between SII and clinical outcomes in DKD individuals remains largely undetermined.

In our current study, we for the first time identified a positive association between SII and increased risk of all-cause mortality, coupled with a linear association between SII and increased risk of cardio-cerebrovascular disease mortality, which underscores the value of SII in identifying high-risk individuals in DKD populations, thereby enabling early intervention. It is noteworthy that we observed a U-shaped relation between SII and all-cause mortality. Specifically, below the threshold value of 5.82 for lnSII, higher SII was significantly associated with lower all-cause mortality, while above the thresholds, SII was positively associated with all-cause mortality. Consistent with our present results, a previous study by Chen et al. revealed a U-shaped correlation between SII and all-cause mortality in populations with DM (43). Besides, Yan et al. observed that higher SII was closely associated with an increased risk of the presence and severity of DKD in Chinese population (67). These pieces of evidence, in conjunction with our findings, support the notion that SII holds promise as a potential biomarker for DKD. Importantly, both low and high SII levels might elevate mortality risk in individuals with DKD or DM, which aligns with the understanding that low platelet levels are typically associated with a heightened risk of bleeding that could contribute to higher all-cause mortality. While our study contributes to understanding the relationship between SII and mortality, the precise mechanisms underlying this association remain enigmatic and warrant further investigation.

Our study revealed an intriguing interaction between the SII and BMI in our subgroup analysis, highlighting the intricate relationship between inflammation and obesity in the development of DKD (35). This finding supports previous research indicating a complex interplay between SII and BMI, with BMI serving as a critical mediator in the association between SII and the risk of DM (68). Additionally, Kong et al.’s study identified SII as an independent risk factor for both all-cause and CVD-specific mortality in obese populations (53). Furthermore, numerous preclinical studies have underscored the pivotal role of dysregulated inflammatory responses in obesity-related pathogenesis (69). Intriguingly, the paradoxical association was observed when we seek to investigate the independent impact of BMI on the prognosis among the DKD cohorts. As illustrated in Supplementary Figure 1A, the association between BMI and all-cause mortality in DKD cohorts exhibits a U-shaped pattern. Specifically, the relationship between BMI levels on a continuous scale and the risk of all-cause mortality in the DKD cohort is U-shaped (P for nonlinearity = 0.003); both low and high BMI levels were linked to an increased risk of all-cause mortality (Supplementary Figure 1A). The BMI level associated with the lowest risk of incident all-cause mortality was 35.04 in the fully adjusted analyses. In contrast, as shown in Supplementary Figure 1B, BMI appears to have no correlation with cardio-cerebrovascular mortality. The obesity paradox observed in our study among DKD subjects aligns with numerous previous studies that demonstrate a significant association between BMI and all-cause mortality risk in diabetes cohorts (70, 71), chronic kidney disease cohorts (72–74), and the general population (75). However, elucidating the precise mechanisms underlying this interplay between inflammation and obesity in exacerbating DKD pathogenesis warrants further investigation.

Our study presents several strengths. Firstly, we analyzed a substantial sample size of 3195 individuals, ensuring robust representation of the population. Secondly, meticulous attention was paid to controlling for confounding variables, enhancing the reliability of our findings. Thirdly, our investigation is pioneering in its exploration of both linear and nonlinear relationships between the SII and mortality in DKD populations, evolving methodologically over time. Lastly, SII serves as an easily accessible, cost-effective measure with potential therapeutic implications or as an early warning indicator.

However, several limitations warrant consideration. Firstly, the observational nature of our study precludes establishing causal relationships. Secondly, despite efforts to adjust for various confounding factors, the influence of unmeasured variables such as diabetes duration, dietary habits, and treatment modalities remains a concern. Thirdly, while SII offers ease of measurement, factors affecting neutrophil, lymphocyte, and platelet counts could introduce selection bias. Lastly, our reliance on data from a single blood test may not fully capture temporal fluctuations in SII levels due to the short lifespan of blood cells. Continuous monitoring could provide more robust evidence than a one-time assessment.




5 Conclusions

In conclusion, our study revealed a U-shaped relationship between the SII and all-cause mortality, with threshold values of 5.82 for lnSII. Additionally, higher concentrations of SII exhibited a linear association with increased risk of cardio-cerebrovascular disease mortality. These findings underscore the independent prognostic significance of SII for patients with DKD. However, further extensive prospective investigations are warranted to validate and consolidate our findings.
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Background

Pregnant women with gestational diabetes mellitus (GDM) are at an increased risk of adverse pregnancy outcomes (APO). Early understanding of risk factors affecting these outcomes may facilitate preventive interventions for women at high risk. Blood samples from GDM and control pregnant women were collected for Free fatty acid (FFA) profiling to determine the relationship with the occurrence of APO in GDM pregnant women.





Methods

The study comprised 144 women diagnosed with GDM and 52 normal control pregnancy (NC). Venous fasting serum samples were collected during the second trimester. The serum FFA levels were detected by liquid chromatography-mass spectrometry (LC-MS). The primary outcome consisted of serious maternal and neonatal adverse events ( hypertensive disorder complicating pregnancy (HDCP), emergency cesarean section, large for gestational age (LGA), small for gestational age (SGA), macrosomia, low birth weight (LBW), preterm birth, and stillbirth). The association of metrics with outcomes was assessed, and receiver operating characteristic (ROC) curve analysis was employed to evaluate clinical utility.





Results

Differences in fatty acid profiles were observed between GDM patients and controls. Stearic acid (C18:0) levels differed between the normal pregnancy outcome (NPO) and APO groups, potentially correlating with fetal sex. Logistic regression models indicated that moderate and high levels of C18:0 were negatively associated with APO relative to the NPO group. ROC analysis demonstrated that C18:0 had a certain predictive ability for APO, and predictive efficiency was enhanced when combined with general clinical data.





Conclusion

The level of C18:0 was associated with the occurrence of APO in pregnant women with GDM and exhibited a certain predictive value. When C18:0 was combined with general clinical data, the predictive power for APO was improved.





Keywords: gestational diabetes mellitus, free fatty acid profile, adverse pregnancy outcomes, liquid chromatography-mass spectrometry, C18:0




1 Introduction

Gestational diabetes mellitus (GDM) refers to abnormal glucose tolerance that occurs or is first detected during pregnancy (1). GDM is one of the most common pregnancy complications. Its prevalence has increased by >35% in recent decades and continues to grow (2). GDM is characterized by insufficient relative insulin secretion (3), which cannot compensate for the gradual increase of insulin resistance (IR) during pregnancy (4), leading to maternal hyperglycemia. During pregnancy, the release of placental hormones promotes IR, increases lipolysis, and elevates maternal plasma-free fatty acid (FFA) levels, thereby inhibiting maternal glucose uptake and stimulating hepatic gluconeogenesis (5, 6). Lipids can lead to the development of GDM by affecting IR. A high-fat, high-sugar diet leads to IR and β-cell dysfunction (7). Lipotoxicity caused by hypertriglyceridemia during pregnancy also leads to pancreatic β-cell damage, further reducing insulin secretion (8, 9). Studies have shown that palmitic acid, stearic acid, arachidonic acid (AA), dihomo-γ-linolenic acid (DGLA), and docosahexaenoic acid (DHA) positively correlated with higher homeostatic model assessment of IR(HOMA-IR) and C-peptide. This indicates that palmitic acid, stearic acid, AA, DGLA, and DHA may affect GDM development (10).

FFAs, also known as non-esterified fatty acids, are hydrocarbon chains composed of a methyl group at one end and a carboxyl group at the other. Depending on the number of carbon-carbon double bonds, FFA can be divided into saturated fatty acids (SFAs) (without double bonds), monounsaturated fatty acids (MUFAs) (one double bond), and polyunsaturated fatty acids (PUFAs) (multiple double bonds). FFA, physiologically important energy substrates, are released from adipose tissue through lipolysis according to the body's energy demand. The levels of most FFAs gradually decrease from the first to third trimester (11). Therefore, FFA levels may differ among pregnant women (12). FFA profiles encompass various types of FFA, and specific FFAs are associated with the risk of GDM (11, 13).

Pregnant women with GDM can experience complications with various adverse pregnancy outcomes (APO), such as preterm birth, cesarean section, macrosomia, preeclampsia, low birth weight (LBW), and intrauterine growth retardation (14–16). Moreover, GDM is associated with long-term childhood obesity and abnormal glucose tolerance (17, 18). Early understanding of the factors influencing adverse outcomes and prevention is crucial. Studies have shown that changes in lipid levels can lead to adverse maternal and infant outcomes. Maternal triglyceride (TG) levels may be associated with fetal birth weight (19). FFAs obtained from the breakdown of TGs in the body are associated with preterm birth, preeclampsia, and fetal birth weight (20–23). In pregnant women with GDM, high maternal FFA levels may lead to high fetal birth weights and macrosomia (24–26). However, high FFA levels in pregnant women with GDM in the third trimester are related to the occurrence of fetal growth restriction (FGR) (27). Additionally, the effect of GDM on FFA levels can be profound, leading to differences in FFA profile levels in postpartum women with a GDM history (28). In addition, during the follow-up of women with GDM within 5 years after delivery, the metabolome, including linoleic acid, was associated with abnormal glucose metabolism after delivery (29).

In summary, the FFA level/spectrum is related to IR and may be involved in the development of GDM. FFA levels alone may be associated with adverse outcomes in women with GDM. Few studies have correlated the changes in FFA spectrum levels in patients with GDM and adverse maternal or neonatal outcomes. GDM is related to various APOs and increases the risk of long-term maternal and infant complications. Most studies focused on analyzing the general clinical data of pregnant women to identify risk factors for adverse outcomes. This study aimed to investigate the correlation between the FFA profile in the second trimester and APO in pregnant women with GDM and identify the ideal cutoff value for predicting adverse maternal and infant outcomes.




2 Materials and methods



2.1 Study population

The study included pregnant women who visited Shengjing Hospital affiliated to China Medical University between December 2022 and December 2023. The inclusion criteria were as follows (1): patients who met the diagnostic criteria for GDM, (2) not < 20 years, (3) and those having single pregnancy. The exclusion criteria were as follows: (1) pregnant women with pre-GDM (PGDM) who underwent an oral glucose tolerance test (OGTT) before or during the first trimester, (2) Incomplete clinical data, (3) History of autoimmune diseases, tumors, severe infections, severe liver and kidney dysfunction, hematological diseases, or GDM, (4) Smoking or alcohol consumption. Finally, 196 pregnant women were admitted to the study as the final analytic population and included 52 controls, 144 GDM cases ( 83 normal pregnancy outcome (NPO) cases, 61 APO cases ). Ethical approval for this study was obtained from the Medical Ethics Committee of Shengjing Hospital of China Medical University (ethics number: 2023PS809k).

Diagnostic criteria:

GDM was defined as either a fasting plasma glucose (FPG) > 5.1 mmol/L, OGTT 1-h plasma glucose(OGTT1 h PG) > 10.0 mmol/L, or OGTT 2-h plasma glucose(OGTT2 h PG) > 8.5 mmol/L (30).

APOs is defined as any combination of the following adverse maternal and infant outcomes: maternal outcomes, including HDCP (hypertension during pregnancy, preeclampsia) and emergency cesarean section. Neonatal outcomes included large for gestational age (LGA), small for gestational age (SGA), macrosomia, LBW, preterm birth, and stillbirth. Preterm birth was defined as live birth with a gestational age > 28 weeks and < 37 weeks, and stillbirth was defined as fetal death in utero at 20 weeks of gestation. LGA was defined as the 90th percentile of fetal birth weight greater than the normal weight for gestational age, SGA was defined as fetal birth weight less than the 10th percentile of normal weight for gestational age, macrosomia was defined as birth weight > 4,000 g, and LBW was defined as birth weight < 2,500 g. Gestational hypertension was defined as blood pressure > 140/90 mmHg after 20 weeks of pregnancy, and preeclampsia was defined as blood pressure > 140/90 mmHg and proteinuria > 300 mg/day after 20 weeks of pregnancy. Emergency cesarean section is defined as an emergency operation that seriously threatens the life of the mother and child, while NPO was defined as the absence of these adverse outcomes.




2.2 Data and sample collection

General clinical data and laboratory examination indicators were collected during pregnancy, and it mainly included general information and indicators of mothers, such as age, gestational age, pre-pregnancy body mass index (pBMI), gestational weight gain (GWG), systolic blood pressure, diastolic blood pressure (DBP), gravidity, parity, pre-pregnancy hypertension, assisted reproduction, blood glucose control method, adverse pregnancy history(preterm birth, miscarriage, stillbirth, etc.), and hypothyroidism (decreased production or action of thyroid hormones, resulting in systemic hypometabolism syndrome). A 2-h 75- g OGTT was performed for all participants at 24–28 weeks gestation, and, at the same time, biochemical laboratory indicators were also tested. Fetal indicators included fetal sex and birth weight.




2.3 Measurements



2.3.1 Material

FPG, OGTT1 h PG, and OGTT2 h PG were measured using a glucose assay kit (hexokinase method), and glycated hemoglobin (HbA1c) was separated using high-pressure liquid ion exchange chromatography. TG was measured using a TG assay kit (GPO-PAP method), total cholesterol(TC) was measured using a total cholesterol assay kit (CHOD-PAP method), High density lipoprotein cholesterol(HDL-cholesterol) was measured using a high-density lipoprotein cholesterol assay kit (direct method-catalase clearance method), and Low density lipoprotein cholesterol(LDL-cholesterol) was measured using a low-density lipoprotein cholesterol assay kit (direct method-catalase clearance method).

Serum FFA profiles detection with liquid chromatography-mass spectrometry (LC-MS). AB SCIEX Triple Quad™ 4500MD LC-MS /MS system (ABsciex, Toronto, Canada) was used for sample analysis. The column used was the ACQUITY UPLC BEH C18 1.7um, WATERS.




2.3.2 Serum fatty acids

Serum pretreatment :fasting venous blood samples were collected from pregnant women at 24–28 weeks of gestation, placed in anticoagulant-free collection vessels, centrifuged at low temperature (4°C, 12,000 r/ min for 10 min), and the supernatant was separated into EP tubes and stored in a refrigerator at –80°C. Serum samples (5 μL) were carefully aspirated and placed in a clean glass tube. We added 50 μL of internal standard solution and 1,000 μL of dissociation solution, shook at 1,850 rpm for 10 s, heated at 80°C for 20 min in a constant temperature mixer, added 80 μL of neutralization solution and 1 mL of extractant, shook at 1,850 rpm for 5 min, and let it rest in the hood for 5 min. We blow-dried 700 μL of supernatant at 50°C under nitrogen for 5 min. Then, 400 μL of the mixture of methanol and acetonitrile was added and shaken at 1,850 rpm for 5 min. We put 100 μL into a 96-well plate and injected it for analysis.

Serum FFA profiles were measured using LC-MS. FFA levels in serum were expressed as the absolute concentration of fatty acids (μmol/L). Twenty-four FFA types were detected, as follows: total FFA, SFA, MUFA, PUFA, n–6 PUFA, and n–3 PUFA. Total SFA (palmitic [C16:0], stearic [C18:0], arachidic [C20:0], behenic acid [C22:0], lignoceric acid [C24:0]), MUFA (palmitoleic acid [C16:1], oleic acid [C18:1], eicosenoic acid [C20:1], nervonic acid [NA,C24:1]), PUFA (Total n–3 PUFA (alpha-linolenic acid, [ALA, C18:3], eicosapentaenoic acid [EPA, C20:5], docosapentaenoic acid [DPA, C22:5], docosahexaenoic acid [DHA, C22:6]), and Total n–6 PUFA (linoleic acid [LA, C18:2], eicosadienoic acid [C20:2], scolic acid [C20:3], arachidonic acid [AA, C20:4], eicosatetraenoic acid [C22:4]) ).





2.4 Statistical analysis

In the general data analysis, continuous variables were tested for normality, and fitted normal distributions were compared using Student’s t test and expressed as mean ± standard deviation (SD). Non-conforming normal distributions were compared using non-parametric tests and represented by medians and quartiles. Categorical variables were compared using the chi-squared test and expressed as numbers and percentiles. Multivariate logistic regression was used to assess the relationship between the FFA profile and APO. Receiver operating characteristic (ROC) curve was used to evaluate the predictive value of the FFA spectrum for APO in women with GDM. IBM® SPSS@Statistics v27.0 software was used for data collating and statistical analysis. Statistical significance was set at p < 0.05.





3 Results



3.1 General characteristics of the participants

A total of 196 pregnant women at 24−28 weeks of gestation who met the inclusion criteria were included in the study. Tables 1, 2 shows the basic clinical characteristics of pregnant women. Adverse pregnancy history, FPG, OGTT1hPG, OGTT2hPG, 25-hydroxyvitamin D3, birth weight, and fetal sex differed between the NPO group and the NC group. Differences were observed in gestational age, pBMI, GWG, FPG, OGTT1hPG, OGTT2hPG, HbA1c, and ferritin levels between the APO group and the NC group. Significant differences were observed in gestational age, pBMI, DBP, FPG, ferritin, and fetal birth weight between the NPO and APO groups (P < 0.05); The number and proportion of APO are shown in Table 3.

Table 1 | Demographic characteristics of participants at 24 – 28 gestational weeks.


[image: A table comparing maternal and fetal variables across three groups: NC (n=52), NPO (n=83), and APO (n=61). The maternal section includes data on age, gestational age, pre-pregnancy BMI, gestational weight gain, blood pressure, gravidity, parity, diet, medicine use, adverse pregnancy history, hypothyroidism, pre-pregnancy hypertension, and assisted reproduction. The fetal section provides birth weight and fetal sex distribution. Significant differences are noted for some variables, indicated by symbols. Data are expressed as means with standard deviation or percentages.]
Table 2 | Biochemical laboratory index of participants at 24 – 28 gestational weeks.


[image: Table comparing various blood test variables among NC (n=52), NPO (n=83), and APO (n=61) groups. Variables include FPG, OGTT1hPG, OGTT2hPG, HbA1c, TG, TC, HDL, LDL, Ferritin, and 25-hydroxyvitamin D3. Significant differences marked with an asterisk, hash, and dagger symbols indicate statistical significance levels between groups. Data are expressed as mean ± standard deviation or median with interquartile range.]
Table 3 | Classification of adverse pregnancy outcomes.


[image: Table showing pregnancy outcomes classified into various categories with corresponding numbers and percentages. Outcomes include LGA: 10 (16.4%), SGA: 15 (24.6%), Macrosomia: 7 (11.5%), LBW: 15 (24.6%), Preterm birth: 21 (34.4%), Stillbirth: 1 (1.6%), Emergency Cesarean section: 13 (21.3%), HDCP: 32 (52.5%), and Oligoamnios: 2 (3.3%). APO total is 61. Definitions provided for abbreviations.]



3.2 Differences in FFA profiles between 24 and 28 weeks in pregnant women

Differences in the FFA spectrum levels measured between the three groups of pregnant women at 24–28 weeks were compared, and the results are shown in Table 4. Differences were observed in total n-3 and DHA between the NPO and APO groups and the NC group. Additionally, C20:0 and the ratio of total n-3 to n-6 differed between the NC and APO groups.

Table 4 | Differences in FFA profiles between participants at 24−28 weeks of gestation.


[image: Chart displaying free fatty acids (FFAs) in micromoles per liter for three groups: NC (n=52), NPO (n=83), and APO (n=61). It includes Total FFA, SFA, MUFA, PUFA, and various fatty acids like C16:0, C18:1, DHA, and EPA. Data is presented in mean with standard deviation or range. Statistical significance denoted by asterisks.]
The C18:0 level in the Total SFA showed a significant difference between the NPO and APO groups (p<0.05), Upon further stratification by fetal sex, differences in C18:0 were observed in female fetuses (Table 5).

Table 5 | Differences in FFA profiles of subjects stratified by fetal sex between 24−28 weeks of gestation.


[image: A table comparing free fatty acids (FFAs) in micromoles per liter for males (NPO and APO) and females (NPO and APO). Measurements include Total FFA, SFA, MUFA, PUFA, n-3/n-6 ratio, Total n-3, C20:0, C22:6, DHA, and C18:0. Values are given with standard deviations, and some entries include ranges. A note indicates statistical significance for certain comparisons between NPO and APO groups.]



3.3 Regression analysis of APO occurrence in pregnant women with GDM

According to the level of C18:0 from low to high, we divided C18:0 levels into three groups according to the tertile (T): T1, T2, and T3. The C18:0 level of the T1 group was the lowest, and that of the T3 group was the highest. Groups T2 and T3 correlated with APO (OR= 0.298, 95%CI: 0.128–0.690) and (OR= 0.359, 95%CI: 0.157–0.822), respectively. After adjusting for pBMI, FPG, DBP, and ferritin, Fetal sex, group T3 showed an independent correlation with APO (OR= 0.186, 95%CI: 0.047–0.736) (Table 6).

Table 6 | Logistic regression analysis of C18:0 and the occurrence of APO in patients with GDM.


[image: A table displays odds ratios and p-values across three time points (T1, T2, T3) for five models. T1 is a reference with an odds ratio of 1.000. T2 and T3 show adjusted odds ratios and p-values. Models 2, 3, 4, and 5 have significant p-values under 0.05, indicating statistical significance. Model adjustments include factors like pBMI, FPG, DBP, ferritin, and fetal sex. Italic values denote significant p-values below 0.05.]



3.4 Ability of univariate and multivariate ROC analysis C18:0 and general clinical data to screen for APO occurrence in pregnant women with GDM



3.4.1 C18:0 ability to predict APO alone and with general clinical data

The area under the curve (AUC) of significant FFA (C18:0) for screening APO was 0.625 (95%CI: 0.531–0.718), indicating a certain predictive ability. According to the maximum value of the Youden index, the screening cutoff value of screening was C18:0 1776.68 μmol/L. In general, for clinical data, the AUC of pBMI was 0.686 (95%CI: 0.571–0.801), AUC of FPG was 0.615 (95%CI: 0.491–0.738), AUC of ferritin was 0.684 (95%CI: 0.563–0.805), and AUC of DBP was 0.590 (95%CI: 0.463–0.717). The AUC of pBMI, FPG, ferritin and DBP combined for screening APO was 0.746 (95%CI: 0.638-0.855). The AUC of C18:0 with general clinical data for screening APO was 0.800 (95%CI: 0.702–0.897), which was improved compared with that of screening alone (Figures 1A–C).

[image: Three receiver operating characteristic (ROC) curve graphs labeled A, B, and C. Graph A shows C18:0 with an area under the curve (AUC) of 0.625. Graph B plots pBMI, FPG, Ferritin, and DBP with an AUC of 0.746. Graph C combines C18:0, pBMI, FPG, Ferritin, and DBP, achieving an AUC of 0.800. Each graph presents sensitivity versus 1-specificity, with a diagonal reference line included.]
Figure 1 | Predictive effect of C18:0 level and its combination with other indicators on the occurrence of APO in pregnant women with GDM. (A) ROC analysis of C18:0. (B) ROC analysis after combination of pBMI, FPG, Ferritin and DBP. (C) ROC analysis after C18:0 combined with pBMI, FPG, Ferritin, and DBP.




3.4.2 Ability of C18:0 alone and with general clinical data to predict each adverse outcome

ROC curve was used to evaluate the identification and prediction ability of C18:0 for infants with LBW, emergency cesarean section, premature delivery, and HDCP, and the results are shown in Table 7, Figures 2A, C, E, G. For the prediction and diagnosis of infants with LBW, the optimal C18:0 cutoff value was 1761.36 μmol/L, with a sensitivity of 71.3% and specificity of 78.6% (AUC=0.724, 95%CI: 0.609–0.839). For the diagnosis of emergency cesarean section, the optimal C18:0 cutoff value was 1761.36 μmol/L, with a sensitivity of 71.3% and specificity of 69.2% (AUC= 0.710, 95%CI: 0.569–0.850). For the prediction and diagnosis of preterm birth, the optimal C18:0 cutoff value was 1776.68 μmol/L, with a sensitivity of 71.3% and specificity of 60.0% (AUC =0.591, 95%CI: 0.453–0.729). For the prediction and diagnosis of HDCP, the optimal C18:0 cutoff value was 569.66 μmol/L, with a sensitivity of 11.3% and specificity of 97.0 % (AUC= 0.446, 95%CI: 0.334–0.557). We further compared the ability of C18:0, pBMI, FPG, DBP, and ferritin binding to identify and predict infants with LBW, emergency cesarean section, premature delivery, and HDCP, and the results are shown in Figures 2B, D, F, H. The ability of C18:0 with general clinical data to identify and predict LBW (AUC =0.897, 95%CI: 0.807–0.988) and emergency cesarean section (AUC =0.889, 95%CI: 0.777–1.000), preterm birth (AUC= 0.834, 95%CI: 0.708–0.960), and HDCP (AUC= 0.823, 95%CI: 0.705–0.940) was better than that of C18:0 alone.

Table 7 | ROC curves to evaluate the predictive power of C18:0 for adverse outcomes.


[image: Table comparing medical outcomes, including low birth weight (LBW), emergency cesarean section, preterm birth, and hypertensive disorder complicating pregnancy (HDCP). It includes area under the curve (AUC), 95 percent confidence interval (CI), sensitivity, and one minus specificity metrics for each outcome. Values for LBW are 0.724 AUC, 0.609 to 0.839 CI, 0.713 sensitivity, and 0.214 specificity. Emergency cesarean has 0.710 AUC, 0.569 to 0.850 CI, 0.713 sensitivity, and 0.308 specificity. Preterm birth has 0.591 AUC, 0.453 to 0.729 CI, 0.713 sensitivity, and 0.400 specificity. HDCP has 0.446 AUC, 0.334 to 0.557 CI, 0.113 sensitivity, and 0.030 specificity.]
[image: A set of eight ROC (Receiver Operating Characteristic) curves labeled from A to H. Each chart plots sensitivity versus 1-specificity. Single-factor analyses (A, C, E, G) show AUC scores of 0.724, 0.710, 0.591, and 0.446. Combined analyses (B, D, F, H) include pBMI, FPG, Ferritin, DBP, and other markers, with AUC scores of 0.897, 0.889, 0.834, and 0.823, indicating enhanced diagnostic performance when multiple factors are combined. Each chart features a diagonal reference line and a legend.]
Figure 2 | Predictive effect of C18:0 level and combined general information on each adverse outcome in women with GDM. (A) ROC analysis of C18:0 for LBW. (B) ROC analysis of C18:0 combined with pBMI, FPG, Ferritin, and DBP for LBW. (C) ROC analysis of C18:0 for Emergency cesarean section. (D) ROC analysis of C18:0 combined with pBMI, FPG, Ferritin, and DBP in Emergency cesarean section. (E) ROC analysis of C18:0 for Preterm birth. (F) ROC analysis of C18:0 combined with pBMI, FPG, Ferritin, and DBP for Preterm birth. (G) ROC analysis of C18:0 for HDCP. (H) ROC analysis of C18:0 combined with pBMI, FPG, Ferritin, and DBP for HDCP.






4 Discussion

In this study, the serum pBMI levels in patients with GDM were observed to be higher compared to those in the control group. Moreover, this disparity was found to be statistically significant within the APO group. This is consistent with the findings of Wang et al., who reported a significantly increased risk of GDM associated with elevated pBMI (31). Pregnant women with GDM can experience complications with various APO and GDM is related to long-term childhood obesity and abnormal glucose tolerance (17, 18). The results of this study revealed that the APO group presented a higher pBMI compared to the healthy control group and the NPO group, and a lower GWG in comparison to the healthy control group. Extant literature has demonstrated that an elevated pBMI is associated with an increased risk of adverse outcomes in GDM, and that inadequate GWG is linked to a higher risk of preterm birth, a pattern that is echoed in the findings of this study (32). Another study suggested that FPG at 24−30 gestational weeks was closely related to APO in women with GDM (33). Higher serum ferritin levels in the second trimester are significantly associated with the risk of GDM and GDM-related APO, especially preeclampsia (34). HbA1c are also associated with the occurrence of APO (35). In this study, fasting blood glucose levels and ferritin levels in the APO group exceeded those in both the control group and the NPO group, HbA1c was greater than the control group. However, recent research has indicated a potential association between lipid levels and the incidence of GDM and APO (36, 37), In the present study, lipid levels exhibited no significant differences across the three cohorts.

The FFA profile contains many specific FFA. In the past five years, studies on FFA profiles have gradually increased. In normal early pregnancy, maternal obesity promotes IR and leads to increased lipolysis in the second trimester (5, 38). Elevated maternal IR leads to elevated maternal postprandial blood glucose levels and growth-promoting FFAs (3, 38, 39). Meanwhile, the FFA level/profile is closely related to IR, and circulating FFA is an important factor that promotes IR and alters insulin secretion (40, 41). GDM FFA levels are significantly elevated in women with GDM (24). FFA profiles may be involved in GDM development, In early pregnancy, Ma et al. and Zhang et al. reported elevated levels of myristic and palmitic acids in pregnant women with GDM. Ma et al. found a positive association between palmitic acid and GDM risk. In our previous review (42), Total plasma SFA, MUFA, PUFA n-6, and PUFA n-3 levels increased in pregnant women with GDM in early pregnancy (43), In a study by Zhang et al., dietary supplementation with ALA and DHA was associated with the risk of GDM (11, 13). It found that supplementation with DHA, sourced from fish oil, did not demonstrate efficacy in preventing the onset of GDM (44), whereas the consumption of n-3 PUFA among pregnant women diagnosed with GDM was associated with a potential alleviation of IR and inflammation, as well as a reduced risk of adverse pregnancy outcomes (45, 46). In our study, the analysis of the FFA profile revealed that DHA and PUFA n-3 levels were elevated in the GDM group relative to the healthy control group, and were the most pronounced in the APO group. However, there was no significant difference between the NPO and APO groups.

Maternal plasma lipids during pregnancy could promote intrauterine fetal growth through the stimulation of placental insulin-like growth factor-1 (IGF-1) secretion. Chen et al. suggest that maternal cord blood IGF-1 concentrations were higher in fetuses delivered LGA, Maternal plasma levels of free C16:0 and C18:0 were significantly associated with cord blood IGF-1 concentrations. Treatment with C16:0, C18:0, and C18:2 could induce the expression and secretion of IGF-1 in human trophoblast 3A-sub E cells (47). It was observed in this study that the concentration of C18:0 varied between the NPO and APO groups, with lower levels observed in the APO group. Furthermore, fetal birth weight was found to be reduced in the APO group, and logistic regression analyses revealed an inverse association between low、moderate levels of C18:0 and the incidence of APO. However, the association of C18:0 with fetal growth and development requires further investigation to elucidate the underlying mechanisms.

Presently, few studies have analyzed FFA profiles and pregnancy outcomes in GDM. Higher FFA levels can lead to an increase in fetal birth weight (24), and maternal FFA levels are positively correlated with the prevalence of LGA. In addition, high 2h-FFA levels in the second trimester, but not fasting FFA levels, are associated with an increased risk of delivering LGA neonates (25, 26). The study by Herrera et al. showed that in pregnant women with GDM with good glycemic control, maternal FFA positively correlated with neonatal weight and fat mass, which may be because dyslipidemia in mothers with GDM promoted the transfer of maternal fatty acids to the fetus, increasing fetal fat tissue mass, thereby increasing the risk of macrosomia (48). However, in the study by Fan et al., FFA levels of women with GDM complicated with FGR in the third trimester were higher than that of the control group, and the AUC value of diagnosing GDM complicated with FGR was 0.84 (27). We concluded that the C18:0 level in the FFA spectrum has a certain predictive value and can predict the occurrence of LBW, emergency cesarean section, and premature delivery in women with GDM. Considering the multitude of factors influencing APO in pregnant women with GDM, the integration of C18:0 levels with general clinical data enhances the predictive capacity for APO. The AUC values for predicting LBW and emergency cesarean section in women with GDM were >0.85, and the AUC values for predicting preterm birth and HDCP were >0.80. C18:0 should be included when considering the occurrence of APO. However, the enrolled subjects do not represent a random sample of Chinese pregnant women. Furthermore, an analysis determining the FFA profile throughout various stages of pregnancy is absent, and additional experimental studies, including animal models and prospective cohort analyses, are required to elucidate the mechanisms by which the FFA profile is associated with APO. The findings of this study offer valuable insights for the development of effective disease prevention strategies and the establishment of prompt maternal and neonatal assessment protocols.




5 Conclusion

At present, most studies have analyzed the correlation between FFA levels and APO in pregnant women and have suggested that it has a certain research value. Our study found that the C18:0 level detected at 24–28 weeks of gestation was independently related to APO in pregnant women with GDM and had predictive efficacy. C18:0 combined with general clinical data (pBMI, FPG, DBP, and ferritin) improved the predictive power. Similar results were obtained while studying LBW, emergency cesarean section, premature delivery, and HDCP in pregnant women with GDM. In the future, multicenter studies with large sample sizes are needed to analyze the influence of FFA spectrum levels at different pregnancy periods on APO in pregnant women with GDM.
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Background

Gestational diabetes mellitus (GDM) is one of the most common medical complications of pregnancy, which increases the risk of other pregnant complications and adverse perinatal outcomes. Thyroid dysfunction is closely with the risk of diabetes mellitus. However, the relationship between euthyroid function in early pregnancy and GDM is still controversial.





Aims

This study was to find the relationship between thyroid function within normal range during early pregnancy as well as glucose and lipids metabolisms as well as the risk of subsequent GDM.





Methods

A total of 1486 pregnant women were included in this prospective double-center cohort study. Free thyroxine (FT4), thyroid stimulating hormone (TSH) and antithyroid peroxidase antibodies (TPOAb) were tested during 6-12 weeks of gestation and oral glucose tolerance test (OGTT) was conducted during 24-28 weeks to screen GDM. Relative risks (RR) with 95% confidence intervals (CI) for subsequent risk of GDM by thyroid function quartiles were assessed adjusting for major risk factors.





Results

The incidence of GDM was 23.0% (342/1486). TSH, FT4 and the percentage of positive TPOAb were no significant difference between women with and without GDM, but FT4/TSH ratio was significantly higher in GDM group compared with NGT group [6.97(0.84,10.61) vs. 4.88(0.66,12.44), P=0.025)]. The linear trends of TC, TG, HDL-C, LDL-C, fasting glucose in the first trimester, insulin, C-peptide, HOMA-IR, fasting glucose during OGTT and incidence of GDM according to FT4/TSH ratio were all statistically significant. Further analysis based on fetal sex presented only the third quartile of FT4/TSH ratio in women carrying male fetus was associated with higher incidence of GDM statistically significant [RR (95% CI), 1.917 (1.143,3.216)], rather than in women carrying female fetus.





Conclusions

Thyroid function even in normal range is closely related to glucose and lipids metabolisms during the first trimester. Unappropriated FT4/TSH ratio in the first trimester is an independent risk factor of GDM in women carrying male fetus.
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Introduction

Gestational diabetes mellitus (GDM) is a state restricted to pregnant women whose impaired glucose tolerance is first discovered during pregnancy (1), which is one of the most common medical complications of pregnancy (2). With the development of economics and increasing of elderly pregnant women, the prevalence of GDM has been growing worldwide in the past years and the increase of GDM incidence in China is extremely alarming (3). GDM increases the risk of pregnancy complications and adverse perinatal outcomes, such as pregnancy-induced hypertension (PIH), premature delivery, macrosomia and so on. It also influences the long-term health of the mother and fetus (4, 5), leading to a higher risk of metabolic disorders in future. Thus, more and more studies have paid attention on finding risk factors of GDM, which may help to predict and prevent GDM.

Thyroid function is closely related to metabolism and thyroid dysfunction during pregnancy can increase the incidence of complication of pregnancy and adverse perinatal outcomes as well as affect infant thyroid function and growth (6). Recently some researchers have found different levels of thyroid function, even within normal range, might affect the maternal metabolism and infant growth (7). However, the relationship between different thyroid indicators and GDM is still evidentiary uncertainty and controversial. Thus, in this study, we aimed to assess the association between euthyroid function and glucose as well as lipids metabolisms during the early pregnancy and explore the risk factors of GDM. Since previous studies found the relationship between maternal thyroid function and fetal growth might be modified by fetal sex (7), sex-specific effect was also taken into consideration in this study.





Materials and methods

This study was a part of the prospective bi-center cohort study, which aims to find the biological markers of GDM in early pregnancy based on urinary proteomics and establish an effective model to predict GDM as earlier as possible.

At baseline, participants underwent a clinical investigation at the first prenatal visit in early pregnancy (6-12 weeks’ gestation). This prospective study started on 2019 in Haidian District Maternal and Child Health Care Hospital and Chaoyang District Maternal and Child Health Care Hospital, Beijing, China. For all participants in the present study, all available clinical and laboratory data were recorded and verified by two researchers at the same time.




Study participants

Inclusion and exclusion criteria of participants were as follows. Inclusion criteria (1): gestation age at entry <12 weeks; (2) without diabetes mellitus before pregnancy; (3) acceptance of participation in the study, and signature of the consent form. Exclusion criteria: (1) gemellary or multiple pregnancy; (2) fasting blood glucose≥5.1mmol/L at baseline; (3) any acute or other chronic disease, such as severe liver and renal dysfunction, heart disease, autoimmune disease, and so on. On this basis, a total of 1486 pregnant women with clinical and laboratory data at 6-12 weeks’ gestation and 75g oral glucose tolerance test (OGTT) at 24-28 weeks’ gestation were included in the present study. Perinatal database of 1237 women was collected from electrical medical records (EMR).

The ethics committees of all participating centers approved the study protocol. The study was conducted under the guidance of Major New Drugs Innovation and Development Program (clinical trial number is NCT03246295). Written informed consent was obtained from each participant and the study was performed in accordance with the Declaration of Helsinki as revised in 2013.





Measurements

Participants were measured body weight and height at the first prenatal visit (6-12 weeks’ gestation) and body weight was monitored during the whole course. Body mass index (BMI) was determined by dividing body weight in kilograms by height in meters squared. Measurements of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were taken by trained nurses with an automatic blood pressure monitor. Medical history, personal history and family history were asked by attending doctors and recorded in EMR. Blood samples were collected at the first prenatal visit to examine liver function, renal function and thyroid function. 75g OGTT was conducted for all participants during 24-28 weeks’ gestation and GDM was diagnosed according by the International Association of the Diabetes and Pregnancy Study Groups criterion in 2010 (8). Perinatal and neonatal outcomes were: pregnancy-induced hypertension (PIH) (including preeclampsia or eclampsia), premature delivery (<37 weeks), caesarean section, postpartum hemorrhage (PPH) (blood loss from the genital tract of ≥500 mL after giving birth) (9), LGA (large for gestational age) and SGA (small for gestational age).





Statistical analysis

Analyses were conducted using the statistical program SPSS (version 24, SPSS, Chicago, IL). Continuous variables were tested for normality of distribution. Variables with approximately normal distributions were presented as mean ± SD, and those with skewed distributions were presented as median and interquartile range (25th–75th percentile). Categorical variables were presented as percentage (number). Two-sample Student t test or Mann-Whitney test was used for continuous variables and χ2 test was used for categorical variables. To determine whether there was a significant graded increase in glucose and lipids level as well as the risk of GDM with increasing FT4/TSH ratio quartiles, the P value for the linear trend was calculated. The association of FT4/TSH ratio and GDM were examined by binary logistic regression analysis. To assess confounding factors, covariates including age, preBMI, lipids levels and family history of diabetes were entered into the logistic regression model. Propensity score matching (PSM) analysis was conducted using the R language. Sensitivity analysis was used to evaluated the effect of the follow-up. Statistical significance was inferred from two-sided P values <0.05.






Results

Among 1486 pregnant women, the incidence of GDM was detected as 23.0% (342/1486) in this cohort. 1237(83.2%) pregnant women with perinatal outcomes were recorded in the cohort. The baseline characteristics, perinatal outcomes and neonatal characteristics of the pregnant women with GDM and normal glucose tolerance (NGT) were presented in Table 1. Age, BMI during the whole pregnancy, alanine aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), glucose in 1st trimester, insulin, C-peptide, fasting blood glucose (FBG) level during OGTT, FT4/TSH ratio, percentage of premature delivery and caesarean delivery were all significantly higher in GDM group than in NGT group. The percentage of positive TPOAb were similar in two groups. We also found FT4/TSH ratio in women carrying female fetus was significantly higher than in male group [(5.84(0.73,13.31) vs. 5.12(0.63,11.52), P=0.023)]. TSH was lower in female group, but there was no significant difference [1.60(0.91,2.42) vs. 1.69(1.09,2.48), P=0.051]. The percentage of GDM was similar in women carrying female and male fetus (23.2% vs. 22.9%, P=0.902). The detailed data were shown in Supplementary Table 1.

Table 1 | Baseline characteristics, perinatal outcomes and neonatal characteristics between women with and without GDM.


[image: A table comparing baseline characteristics, perinatal outcomes, and neonatal outcomes between groups: Total, GDM (gestational diabetes mellitus), and NGT (normal glucose tolerance). Variables include age, BMI (Body Mass Index) in different trimesters, family diabetes history, adverse pregnancy outcomes, blood pressure, liver enzymes, glucose levels, insulin, and C-peptide, with corresponding P values indicating statistical significance. Perinatal outcomes cover pregnancy-induced hypertension, premature delivery, and cesarean delivery. Neonatal outcomes include birth age, birth weight, LGA (large for gestational age), and SGA (small for gestational age). Significant differences are marked with P<0.05.]
To examine glucose metabolism, lipids metabolism and the risk of GDM according to FT4/TSH ratio in 1st trimester in further detail, subjects were divided into quartiles of FT4/TSH ratio based on the distribution among the pregnant women (quartile 1, ≤0.69; quartile 2, 0.69-5.54; quartile 3, 5.54-12,68; and quartile 4, ≥12.68). The linear trends of TC, TG, HDL-C, LDL-C, FBG in 1st trimester, insulin, C-peptide, HOMA-IR, fasting glucose during OGTT and incidence of GDM according to FT4/TSH ratio were all statistically significant. The highest level of FBG in 1st trimester, insulin, C-peptide, HOMA-IR, fasting glucose during OGTT and incidence of GDM were in the third quartile of FT4/TSH ratio, while the highest lipids levels were all in the second quartile of FT4/TSH ratio. The detailed results were shown in Table 2.

Table 2 | Glucose and lipids metabolism according to FT4/TSH ratio quartiles.


[image: Table showing variables split into quartiles with ranges and values for FT4/TSH ratio and various parameters (FBG, BG, GDM, TC, TG, HDL-C, LDL-C, Glu, Insulin, C-Peptide, HOMA-IR) with p-values for linear trends. Each quartile has different mean values and ranges, indicating statistical significance below 0.001 for most parameters except 1-hour and 2-hour BG tests.]
The crude and multivariable-adjusted relative risk (RR) of GDM determined by FT4/TSH ratio quartiles were showed in Table 3. There was higher RR of GDM in the third and fourth quartile of FT4/TSH ratio after adjustment for age, preBMI, lipids levels and family history of diabetes mellitus (quartile 1, reference; quartile 2, RR 1.219 [95% CI 0.824,1.803]; quartile 3, 1.873 [1.276,2.748]; and quartile 4, 1.608 [1.073,2.409]). However, further analysis showed only the third quartile of FT4/TSH ratio was associated with higher incidence of GDM in women carrying male fetus [quartile 3, 1.917 (1.143,3.216)] rather than in women carry female fetus. 229 pregnant women in GDM group and 421 corresponding pregnant women in NGT group were obtained by propensity score matching (PSM). The baseline characteristics of age, preBMI, the percentage of family history of diabetes mellitus and lipids level were no significant difference between two groups. There was higher RR of GDM in the third and fourth quartile of FT4/TSH ratio only in women carrying male fetus (quartile 1, reference; quartile 2, RR 1.536 [95% CI 0.784,3.009]; quartile 3, 2.489 [1.336,4.637]; and quartile 4, 2.489 [1.291,4.798)]). The detailed results were showed in Supplementary Table 2.

Table 3 | Association between FT4/TSH ratio quartiles and GDM.


[image: A table displays data for Quartiles 2, 3, and 4, comparing crude and multivariable-adjusted values, with associated P values, for both female and male groups. Multivariable-adjusted columns are labeled with footnotes explaining adjustments for age, pre-pregnant body mass index, lipids, and family history. Data are expressed as relative risks with 95% confidence intervals.]
Since the rate of the-follow-up reached up to 16.8% in the present study, sensitivity analysis was used to evaluated the effect of the follow-up (Supplementary Table 3). We supposed all the rest of pregnant women successfully delivered. No matter all the rest of infants were male or female, the results were consistent with the primary conclusions.





Discussion

In this prospective bi-center cohort study, we observed FT4/TSH ratio was closely associated with glucose and lipids metabolisms as well as insulin resistance during the first trimester, whereas only the third quartile of FT4/TSH ratio in women carrying male fetus was an independent risk factor of GDM. To our knowledge, this is the first study to examine the association between FT4/TSH ratio in the first trimester and the incidence of GDM as well as fetal sex specific difference in women with euthyroid function.

Gestational diabetes mellitus is one of the most common chronic pregnancy diseases affecting the health of millions of women worldwide (10, 11) and the prevalence of GDM is increasing. GDM not only causes adverse pregnancy outcomes such as preeclampsia and macrosomia but also increases the risk of developing type 2 diabetes later in life (12, 13). The international diabetes federation (IDF) reported the pooled global standardized prevalence of GDM was 14.0% and the regional standardized prevalence of GDM varied from 7.1% to 27.6% (14). The incidence of GDM in this cohort was up to 23%, which was relatively higher than average level in China. One possible cause might be the good economic level and living conditions in Beijing. Well-documented risk factors for GDM include advanced maternal age, lipids level, family history of diabetes and being overweight or obese (15, 16). Maternal age, BMI, the percentage of family history of diabetes glucose and lipids levels as well as insulin resistance were higher in GDM group, which was similar to the previous studies.

It is well acknowledged that hypothyroidism and hyperthyroidism can both affect glucose and lipids metabolism (17). Previous studies indicated thyroid dysfunction and diabetes mellitus are closely linked since thyroid hormones modulated by hypothalamic-pituitary-thyroid axis has an impact on glucose homeostasis (18) and insulin sensitivity can influence the feedback of thyroid hormones in turn (19). Prevalence of thyroid disorders in patients with diabetes mellitus is relatively high and it seems the incidence of diabetes mellitus is also higher in patients with thyroid dysfunction (20). However, some studies found euthyroid function might also be associated with risk of diabetes mellitus (21) and the cross-sectional association between thyroid hormones sensitivity and diabetes or prediabetes mellitus has been pointed out (22, 23). Even subtle changes in the levels of serum TSH and THs within the physiological range can induce insulin resistance or diabetes (24, 25), whereas the mechanism of this is still unclear. The relationship between euthyroid function and lipids metabolism has also been reported. Wang et al. found increased TSH levels and FT3/FT4 ratio were significantly associated with higher TC and LDL level (26). The authors performed a 2-sample bidirectional Mendelian randomization using summary statistics from large-scale genome-wide association studies of thyroid function and found higher TSH or lower FT4 within reference range were associated with increased TC and LDL-C (27).

Production of the thyroid hormones increases by nearly 50% during pregnancy and the daily iodine requirement also increases 50% to balance thyroid function. The burden of thyroid dysfunction can occur in many pregnant women and has a profound impact (28). Maternal thyroid function in pregnancy is closely associated with gestational complication and offspring outcomes. Recent birth-cohort studies suggest that even mild degrees of thyroid dysfunction may be linked with a range of late cognitive and behavioral effects in childhood and adolescence (29). Indeed, thyroid function might influence metabolism status even within normal range whereas the relationship between thyroid autoantibodies and GDM was controversial. There was an inverse dose-response association of maternal TSH and FT4 within the normal range with birthweight—higher FT4 concentrations are associated with lower birth weight, even within the normal range; but for TSH concentrations, the associations with birth weight were less evident and not present within the normal range (30). Previous studies reported TPOAb positivity was related to many adverse outcomes, such as miscarriage, premature delivery and low birth weight (31), but the relationship between TPOAb and GDM are not consistent. Yang et al. reported the prevalence of TPOAb positivity among 5,2027 pregnant women was 10%, a little bit lower than the 12.4% reported in an American study (31). In this cohort study, the prevalence of positive TPOAb was 11.3%, which was similar to previous studies. Sitoris et al. found the incidence of GDM was 26.1% in women with positive TPOAb, which was much higher than that in women with negative TPOAb(18.9%) (32). Higher TSH or lower FT4 levels were associated with an increased risk of GDM in assisted pregnancies for patients with positive TPOAb (33). Whereas Montaner et al. reported they have not identified TPOAb positivity in early pregnancy as a predictor of GDM (34). The percentage of positive TPOAb was no significant difference between GDM and NGT group in this cohort study, which was consistent with the latter one. An retrospective study included 40,156 pregnant women demonstrated an L-shaped association between maternal FT4 levels and GDM (35), while another study showed that higher FT3 levels and FT3/FT4 ratios were associated with increased GDM risk (36). We found although TSH and FT4 concentration were no difference between GDM and NGT group, FT4/TSH ratio was significantly higher in GDM group, which has not been noticed in previous studies. We speculated the differences of TSH and FT4 among pregnant women with euthyroid function in GDM group and NGT group were extremely slight, but FT4/TSH ratio can amplify the subtle difference, leading to the positive results.

Further analysis found FT4/TSH ratio was an independent risk factor of GDM but it was sex-specific of fetus. The mechanism was unclear and one of the possible pathology is the personalized thyroid hormones sensitivity among pregnant women and different hCG levels between women carrying male or female fetus (37, 38). Thyroid hormones and thyrotropin are inversely correlated under the negative feedback loop of hypothalamic-pituitary-thyroid axis, while normal thyroid hormones metabolism and action require adequate cellular receptors. The high thyroid hormones combined with high TSH represents an acquired resistance to thyroid hormones in the general population and thyroid hormones sensitivity is supposed to influence the metabolic status even in euthyroid population. Human chorionic gonadotropin (hCG)—a placental glycoprotein hormone—is lower in maternal circulation in the case of a male than a female fetus, which can stimulate the TSH receptor, increasing thyroid hormone production and resulting in a subsequent reduction in serum TSH concentration, especially in the first trimester (39–41). Some researchers observed that lower serum human chorionic gonadotrophin (hCG) levels during the first trimester were associated with a higher prevalence of GDM, with FT4 as a mediator (37). Vrijkotte et al. found sexual dimorphism appears to be present in the relationship between maternal thyroid metabolism and fetal intrauterine growth, with stronger associations in male infants (7). Besides, maternal GDM also influence thyroid hormone receptor of the human placenta in a sex- and cell-type specific manner (42). It is possible that the association of FT4/TSH ratio with the risk of GDM in women carrying male fetus is partly related to the above multiple factors complex interaction. Based on the above research, we can put forward a reasonable hypothesis. Both hCG and thyroid hormone are associated with the risk of GDM——relatively higher hCG might decrease the risk of GDM through multiple mechanisms such as immunomodulatory effect, anti-oxidative stress, anti-inflammatory and so on; thyroid function might have bidirectional regulation on glucose metabolism (37, 43, 44). High hCG during pregnancy can also affect the thyroid function at the same time, thus fluctuating FT4 and TSH might increase or decrease the risk of GDM according to the degree of volatility. During the pregnancy, hCG in women carrying female fetus is higher than those carrying male fetus, which means the weight coefficient of hCG for GDM in women carrying female fetus is higher and the effect of FT4/TSH ratio is weakened, leading to the sex-specific effect. However, further studies are needed since the hCG was not detected in this study and the sex-specific effect of FT4/TSH ratio and GDM has rarely been considered in previous studies.

Pregnancy-related hormone can affect the synthesis and metabolism of lipids, resulting in the physiological elevation of serum lipids, which can increase the risk of GDM, pregnant hypertension, preterm birth, LGA and even congenital cardiac disease of infants (45). Therefore, the management of blood lipids during pregnancy can also not be ignored. But the results about the relationship between thyroid function and lipid levels during early pregnancy is not consistent yet. Mehran et al. pointed out that FT4 was closely related to metabolic indicators, such as TC and TG levels, and lower FT4 levels may increase the risk of developing metabolic syndrome (46). Knight noted that FT4 level was distinctly negatively associated with BMI and TG but not with TC; however, TSH level was not correlated with any of these metabolic parameters (47). In our study, the relationship between FT4/TSH ratio and TC, TG, HDL-C as well as LDL-C was inverted U-shape, which was different from the previous study. On the one hand, lipids levels were unstable, which were closely associated with diet and other confounding factors; on the other hand, FT4/TSH ratio might have bidirectional influence on lipids levels, suggesting the complex lipid profile alterations during pregnancy and further studies are needed.

The innovation of this study was lied in the following aspects. First, this was the first time that fetus sex as an intermediary factor was shown to mediate the relationship between thyroid function and GDM based on a large sample. Second, this study was a prospective bi-center study with little information bias, and the results obtained were more reliable than those of a retrospective study. Third, we excluded patients with pregestational diabetes and thyroid disease to reduce the interference. However, our study also had limitations. First, the lost rate of follow-up in this study was higher than expected, which mainly because of pandemic of covid-19 impeding the regular follow-up of participants in designated hospitals. Although the sensitivity analysis was conducted, the loss of follow-up bias was difficult to be avoid completely. Second, although we adjusted for multiple covariates and PSM were used to control confounding factors, there still might be confounding bias such as environmental exposures and lifestyle factors that contribute to the observed associations (48–50). Third, there was no opportunity to investigate associations with free triiodothyronine since it was not measured in more than half pregnant women in this study. Therefore, we cannot investigate whether there were any T3–T4 conversion effects. Serum hCG level was also not recorded in the present study, thus the biological mechanisms behind this sex-specific effect can only be speculated according to previous studies. In addition, this was a bi-center prospective study, and its results may not be applicable to women in other regions. Therefore, future studies should be conducted on a broader population basis to increase the reliability and universality of the results.





Conclusions

In conclusions, this study found that thyroid function even in normal range is closely related to glucose and lipids metabolisms during the first trimester. FT4/TSH ratio in the first trimester is an independent risk factor of GDM with sexual dimorphism, but it needs further study.
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Introduction

China has the largest population of individuals with diabetes, and the prevalence of various complications among patients with type 2 diabetes remains high. Diabetic nephropathy affects approximately 20% to 40% of diabetic patients, becoming a major cause of chronic kidney disease and end-stage renal disease. Furthermore, around 50% of patients develop diabetic peripheral neuropathy (DPN), which is closely associated with physical disability, increased healthcare costs, and reduced work productivity. There is an urgent need for novel strategies in prevention, diagnosis, and treatment to improve patient outcomes.





Methods

In this study, 163 patients with type 2 diabetes were selected as the observation group and further divided into three subgroups based on homocysteine (HCY) levels. The study measured several clinical parameters, including homocysteine, blood glucose, blood lipids, glycated hemoglobin, urinary microalbumin, urinary albumin-to-creatinine ratio (ACR), electromyography, and highly-sensitive C-reactive protein (CRP), among others. The levels of these indicators were analyzed and compared across the subgroups.





Results

The results revealed significant differences in uric acid, creatinine, urinary microalbumin, urinary ACR, and nerve conduction velocity (right tibial nerve sensory conduction) among different HCY levels in patients with type 2 diabetes (P < 0.05). Linear regression analysis indicated that homocysteine levels were associated with systolic blood pressure, glycated hemoglobin, fasting C-peptide, uric acid, creatinine, urinary microalbumin, and nerve conduction velocity (including motor conduction velocity of the ulnar nerve and sensory conduction velocity of the sural nerve).





Discussion

The clinical assessment of homocysteine in diabetic patients holds significant importance in the prevention of microvascular complications. Lowering HCY levels may offer a promising therapeutic approach for managing microvascular disease in diabetes.





Keywords: homocysteine, nerve conduction velocity, diabetic kidney disease, diabetic peripheral neuropathy, type 2 diabetes




1 Introduction

In recent years, the prevalence of diabetes has been steadily increasing both globally and in China. Epidemiological research conducted by Teng Weiping’s team shows that the prevalence of diabetes in China has risen from 9.7% in 2007 to 10.4% in 2017. According to the World Health Organization (WHO) criteria, 11.2% of Chinese adults aged 18 years and older had diabetes in 2017, with this figure rising to 12.8% when glycated hemoglobin (HbA1c) is included in the diagnostic criteria (1). Diabetes has thus emerged as one of the most serious global public health challenges. Survey results reveal that type 2 diabetes (T2DM) is the most prevalent form of diabetes in China, while the incidence of type 1 diabetes (T1DM) and other forms is comparatively lower. T1DM patients typically develop diabetic nephropathy within five years of disease onset, whereas T2DM patients may already have diabetic nephropathy at the time of diagnosis. Renal dysfunction in diabetic patients is significantly associated with an increased risk of all-cause mortality (2, 3). Diabetic peripheral neuropathy (DPN) is another common complication of T2DM, with its prevalence increasing as the duration of diabetes extends. DPN affects approximately half of all diabetes patients. Its clinical manifestations include numbness, pain, and abnormal sensations in the limbs, which in severe cases can lead to serious complications such as ulcers, infections, Charcot joints, foot or ankle fractures, amputations, and even depression. DPN-related pain can severely impact a patient’s sleep, emotional well-being, and overall physiological function, leading to a diminished quality of life (2, 4, 5). Given these challenges, early screening and intervention for diabetic nephropathy and peripheral neuropathy are crucial for improving patient outcomes and prognosis.

Homocysteine (HCY) is a sulfur-containing, non-protein amino acid in the human body and an important intermediate in the metabolism of methionine and cysteine. The main source of homocysteine in the human body is the absorption of methionine in animal protein (such as beef, mutton, pork, chicken, fish, eggs, etc.), so each human body has different levels and contents of homocysteine. The normal human body is tiny. In general, homocysteine levels are higher in men than women, and homocysteine levels increase with age. The normal level in the blood is generally 0-15 μmol/L when the protein level in the body is too high. or there is a lack of folic acid, vitamins B6 and B12, homocysteine levels can increase. When choosing health examinations, great importance is usually placed on blood sugar levels, blood lipids and uric acid in the blood, and homocysteine levels are often ignored. When homocysteine builds up in the blood, hyperhomocysteinemia (hHCY) occurs, and long-term hHCY damages the body’s cells, tissues, and organs. These are risk factors for the occurrence of many diseases. Elevated homocysteine is a known risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) (6). Recent advances have shown that elevated plasma Hcy is also a fundamental cause of neurodegenerative diseases (including Alzheimer’s disease, Parkinson’s disease and dementia), diabetes, Down syndrome and megaloblastic anemia. In recent years, it has also been shown that elevated plasma homocysteine levels are closely related to cancer (7).

The microvascular diseases of diabetes mainly include diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy and diabetic neuropathy. Some studies have shown that homocysteine is independently associated with the prevalence of diabetic neuropathy in type 2 diabetes patients (8). The meta-analysis suggests that compared with type 2 diabetes patients without DPN, serum folate and vitamin B12 levels are lower in type 2 diabetes patients with DPN (9), and their reduction becomes an increase of homocysteine levels. At the same time, some studies have shown that hyperhomocysteinemia is an independent risk factor for the occurrence of diabetic peripheral neuropathy (10). There was also a study that suggested that HCY could be used for early prediction of dabetic nephropathy (11). However, no study has simultaneously observed an association between HCY and diabetic nephropathy and neuropathy. Currently, there are no effective means for early detection and treatment of microvascular complications in type 2 diabetes. There is an urgent need for new methods for prevention, diagnosis and treatment of DPN to change the prognosis of the disease. In this study, we verified the relationship between HCY and DN, DPN by observing homocysteine level, nerve conduction velocity, urinary ACR, blood creatinine and other indicators in patients with type 2 diabetes, to provide new ideas for early diagnosis of complications finding diabetes to scientifically guide the treatment of DN, DPN and reduce the economic burden. This study is a retrospective cross-sectional study. The main purpose of the study was to determine whether HCY is associated with microvascular complications such as DPN and DKD in type 2 diabetes. The secondary purpose was to determine whether HCY is associated with age, gender, blood pressure, BMI and other factors.




2 Patients and methods



2.1 Selection of patients and the research design

Inclusion criteria: ① Patients with type 2 diabetes mellitus (T2DM); ② Age over 18 years; ③ Body mass index (BMI) between 18.5 and 30 kg/m². Exclusion criteria: ① Patients with type 1 diabetes or other specific types of diabetes; ② Non-diabetic nephropathy patients with chronic kidney disease; ③ Patients with an estimated glomerular filtration rate (eGFR) less than 10 mL/min/1.73 m² requiring dialysis; ④ Patients with acute complications of diabetes, such as diabetic ketoacidosis or diabetic lactic acidosis; ⑤ Patients with recent (within 6 months) cerebrovascular accidents, such as cerebral infarction, or cardiovascular conditions, such as acute myocardial infarction and peripheral vascular obstructive disease; ⑥ Patients with acute infections, malignancies, or liver diseases; ⑦ Pregnant women. The diagnosis of T2DM was based on the 2014 American Diabetes Association guidelines, which define T2DM as a fasting plasma glucose level of ≥7.0 mmol/L, glycated hemoglobin (HbA1c) concentration of ≥6.5%, or a 2-hour postload plasma glucose concentration of ≥11.1 mmol/L (following a 75 g oral glucose tolerance test) (12). A total of 163 patients with T2DM from the Fourth People’s Hospital of Shenyang were included in the study. The patients were divided into three groups based on their homocysteine (HCY) levels: HCY < 10 µmol/L, HCY 10–15 µmol/L, and HCY > 15 µmol/L. This study was approved by the Medical Ethics Committee of the Fourth People’s Hospital of Shenyang (Approval No. 2021(11)-01), and all participants provided written informed consent.




2.2 Data collection

All patients were treated in the Department of Endocrinology and Metabolism of our hospital from July 2022 to December 2022. All study data was tested in hospitals and all tests were validated by reference laboratories. During the physical examination, body weight was measured with thin clothing and height without shoes. The body mass index (BMI) was then calculated using the formula weight/(height)2. Waist circumference was measured midway between the lower costal margin and the upper iliac crest in the central axis. Subjects’ basic information (gender, age, medical history, medication history, BMI, blood pressure, waist circumference, etc.) was recorded; Urine albumin/creatinine ratio (UACR), C-reactive protein (CRP), blood lipids including low-density lipoprotein (LDL), cholesterol (TCHOL), high-density lipoprotein (HDL), triglyceride (TG), serum creatinine (Scr), blood urea nitrogen (BUN), blood uric acid (UA), blood glucose, glycosylated hemoglobin (HbA1C), plasma HCY, electromyogram, ACR, carotid artery ultrasound were measured.




2.3 Definition and grouping of diabetic peripheral neuropathy and nephropathy

Distal symmetrical multiple neuropathy (DSPN) is the most representative neuropathy in diabetes. Their manifestations include bilateral pain in the distal symmetrical limbs, numbness, sensory abnormalities, etc. In this study, we divided patients into three groups based on their cumulative decrease in nerve conduction velocity (Descending Velocity <30%, 30–100%, >100%). Diabetic nephropathy (DN) is often based on a persistent high UACR increase and/or eGFR decrease, while other chronic kidney diseases (CKD) are excluded. Clinical diagnosis. In this study, three groups were divided according to urine ACR (ACR < 2.5 mg/mmol, ACR 2.5–30 mg/mmol, ACR > 30 mg/mmol).




2.4 Statistical analysis

Continuous variables were expressed as mean (SD) and categorical variables as number (percentage). Two group comparisons were performed using the t-test, Wilcoxon rank-sum test, or chi-square test when appropriate. To examine the relevance between homocysteine and other biomarkers, simple linear regression analysis and multiple linear regression analysis were performed. Forward logistic regression analysis was used to select potential contributing factors at a significance level of 5%. All statistical tests were two-tailed and were performed using SPSS V.20.0 software. The threshold for significance was a p-value <0.05.





3 Results



3.1 Clinical Data Characteristics of Patients

This study is a retrospective cross-sectional study. Our method of screening patients was based on the time of admission in combination with our inclusion and exclusion criteria. In addition, the study of our collected indicators was carried out during the patients’ hospitalization. Some patients with incomplete data were excluded. Finally, a total of 163 patient files were included and analyzed (Figure 1).

[image: Flowchart of a data analysis process starting with 1,216 patient records identified in the Department of Endocrinology and Metabolism. Out of these, 579 records did not meet eligibility criteria. From the remaining 637 records, 474 had missing data. Finally, 163 patient records were included and analyzed.]
Figure 1 | STROBE flow diagram for cross-sectional study.

The characteristics of the overall cohort are presented in Table 1. A total of 163 patients were included in the study, with a mean age of 57.46 ± 10.63 years and an almost equal gender distribution (50.31% men, 49.69% women). The average homocysteine (HCY) level, which is the primary focus of this study, was 14.53 ± 5.22 μmol/L. Physical examination results showed that the mean systolic blood pressure (sBP) and diastolic blood pressure (dBP) were 135.17 ± 16.23 mmHg and 82.09 ± 9.07 mmHg, respectively. The average body mass index (BMI) was 24.84 ± 3.47 kg/m², and the mean waist circumference was 90.46 ± 9.40 cm. Laboratory test results indicated that the average fasting glucose at 0 min was 9.23 ± 3.96 mmol/L, while the 120-min postprandial glucose was 17.59 ± 4.96 mmol/L. The average glycated hemoglobin (HbA1c) was 9.74 ± 2.42%, and the C-peptide levels at 0 min and 120 min were 2.05 ± 1.09 µg/L and 4.06 ± 2.38 µg/L, respectively. The mean serum creatinine (CR) was 66.74 ± 40.71 μmol/L, and the average uric acid (UA) level was 311.58 ± 93.29 μmol/L. The mean triglyceride (TG) level was 2.17 ± 1.58 mmol/L, while total cholesterol (TC) was 4.40 ± 1.15 mmol/L. The average high-density lipoprotein cholesterol (HDL-C) was 1.19 ± 0.33 mmol/L, and the low-density lipoprotein cholesterol (LDL-C) was 2.64 ± 0.77 mmol/L. Regarding urinary parameters, the average urinary creatinine (CR) level was 2429.33 ± 4354.32 mg/g, urinary microalbumin was 139.45 ± 562.51 mg/dL, and the urinary albumin-to-creatinine ratio (ACR) was 22.02 ± 97.45 mg/mmol. The mean high-sensitivity C-reactive protein (hs-CRP) level was 3.59 ± 6.95 mg/L. Carotid ultrasound results indicated that the mean right carotid intima-media thickness (IMT-R) was 0.96 ± 0.16 mm, while the left carotid intima-media thickness (IMT-L) was 0.97 ± 0.15 mm.

Table 1 | Baseline characteristics in the overall cohort.


[image: Table displaying the mean and standard deviation (SD) of various health parameters for a cohort of 163 individuals. Age is 57.46 years (10.63 SD). Gender distribution is 50.31% male and 49.69% female. Parameters include homocysteine, blood pressure, BMI, waist circumference, glucose levels, HbA1C, C peptide levels, creatinine, uric acid, triglycerides, cholesterol levels, urinary microalbumin, UACR, hs CRP, and IMT measurements. Specific values are provided, with abbreviations explained at the table's end.]



3.2 Clinical/biochemical characteristics across HCY

To investigate the association between homocysteine level and diabetic microvascular complications, including diabetic peripheral neuropathy and diabetic nephropathy, in type 2 diabetes patients, the data are presented in Table 2. In this study, 163 patients with type 2 diabetes were selected as observation group and were divided into three groups based on homocysteine level (10 umol/L and 15 umol/L as threshold). Analyze and compare the BMI, blood pressure, glucose tolerance, glycated hemoglobin, urinary microalbumin, urinary ACR, renal function, carotid artery intima-media thickness, and nerve conduction velocity of each group. The above results are listed in Table 2. The results showed that there were intergroup differences in gender, UA, CR, hs-CRP, and right tibial nerve motor nerve conduction velocity between different HCY groups (P < 0.05). No differences between groups were observed in other indicators.

Table 2 | Baseline clinical/biochemical characteristics across HCY.


[image: A table presenting clinical data across three groups based on HCY levels: HCY (<10), HCY (10-15), and HCY (15-30). It includes parameters like age, gender, blood pressure, BMI, cholesterol, glucose levels, and nerve measurements, with the p-value indicating statistical significance.]



3.3 Simple Linear Regression analysis between Serum HCY Level and Other Indicators

Simple linear regression analysis shows that HCY is correlated only with systolic blood pressure assessed in physical examination data (Figure 2A). In blood glucose-related detection indicators, HCY is associated with HBA1C (glycosylated hemoglobin) and C-peptide 0min (Figures 2B, C). Among the indicators of microvascular disease associated with diabetes, HCY correlates negatively with nerve conduction velocity of the common peroneal nerve, median nerve, and sural nerve and positively with creatinine, uric acid, and urinary microalbumin (Figure 3).

[image: Scatter plot showing three graphs labeled A, B, and C, illustrating relationships between HCY and other variables. Graph A plots HCY against sBP with R-squared of 0.031 and p-value of 0.025. Graph B shows HCY against HBA1C with R-squared of 0.025 and p-value of 0.043. Graph C presents HCY against C peptide 0 min with R-squared of 0.046 and p-value of 0.009. Each graph has data points and a trend line.]
Figure 2 | HCY and clinical examination indicators.

[image: Scatter plots A to F show relationships between HCY levels and various variables. A: Peroneal R nerve velocity. B: Ulnar L nerve velocity. C: Sural L nerve velocity. D: UA levels. E: Cr levels. F: Urinary microalbumin. Each plot includes R-squared and p-values, indicating varying degrees of correlation.]
Figure 3 | HCY and microvascular disease index of diabetes.




3.4 Stratified by Neuropathy and ACR, no difference in HCY was observed

Since the correlation analysis shows that HCY is related to some indices of diabetic nephropathy and nerve conduction velocities, we would like to analyze whether there are differences between HCY and other indices according to the presence or absence of neuropathy (Table 3) or ACR (Table 4) are layered). Analysis shows that there is a difference in the average rate of nerve conduction decline observed in ACR stratification (P = 0.045). The median comparison of HCY stratified by ACR is shown in Figure 4 (p = 0.773), the median comparison of HCY stratified by cumulative decline in nerve conduction velocity is shown in Figure 5 (p = 0.457). In this study, no influence of neuropathy and ACR on HCY was found, and when stratified by the cumulative rate of decline in neuropathy, there was no difference in HCY. Stratified by urine ACR, there was also no difference in HCY.

Table 3 | Comparison across neuropathy.


[image: Table listing various health metrics with mean and standard deviation (SD) values, along with their corresponding P-values. Metrics include age, gender, blood pressure, BMI, glucose levels, lipid profiles, and nerve conduction velocities. Each metric is presented with its respective mean and P-value, indicating the statistical significance of the results, with additional notes explaining abbreviations like BMI, sBP, dBP, and others.]
Table 4 | Comparison across UACR.


[image: Table showing various health metrics with their respective P-values. Metrics include age, gender, systolic and diastolic blood pressure, BMI, waist circumference, glucose levels, HBA1C, C peptide levels, urine creatinine, UA, TG, TC, HDL, LDL, hsCRP, IMT measurements, and nerve conduction velocities. P-values range from 0.045 to 0.927, indicating statistical significance in different health parameters. Abbreviations are defined below the table.]
[image: Box plot showing HCY levels categorized by ACR values of less than 2.5, between 2.5 to 30, and greater than 30. Each category includes outlier points, with mean and standard deviation values given as 14.67±5.25, 14.33±5.43, and 14.23±4.80 respectively. The P-value is 0.773, indicating no significant difference.]
Figure 4 | HCY values stratified by ACR.

[image: Box plot chart displaying Homocysteine (HCY) levels against accumulated descent rates of neuropathy in three groups: <50, 50-100, and >100. The groups have means and standard deviations of 14.36±5.18, 15.09±4.52, and 14.51±5.65 respectively, with a p-value of 0.773 indicating no significant difference. Outliers are marked in each group.]
Figure 5 | HCY values stratified by neural accumulated descent rate.





4 Discussion

This study further supports the current argument that HCY levels are associated with type 2 diabetic nephropathy and diabetic peripheral neuropathy. A total of 163 type 2 diabetics were included in this study. Comparison of HCY groups across groups indicated that there were differences between genders and the proportion of men was higher in the group with HCY > 15 umol/L (P = 0.001), consistent with the conclusion that the HCY levels were relatively higher in men (13). A comparative analysis between groups also showed that the higher HCY group had higher levels of uric acid (P = 0.033) and creatinine (P = 0.030). Linear regression analysis showed a positive correlation with urinary uric acid (R2 = 0.034, P = 0.02), creatinine (R2 = 0.058, P = 0.002) and urinary microalbumin (R2 = 0.161, P = 0.000). HCY negatively correlates with nerve conduction velocity: right peroneus (R2 = 0.033, P = 0.028), left ulna (R2 = 0.082, P = 0.009), left sural (R2 = 0.090, P = 0.000). Stratified by urine ACR values, it can be seen that there were differences in the average rate of nerve degradation (P = 0.045). The above results demonstrate that HCY is associated with microvascular diseases of type 2 diabetes – diabetic peripheral neuropathy and diabetic nephropathy. Furthermore, although we found differences in tibial nerve conduction velocity between the HCY groups, we did not observe a decrease in tibial nerve conduction velocity in the high HCY level group. This may be because we did not collect enough data on tibial nerve conduction velocity.

China is the country with the highest rate of diabetes (14). The prevalence of various complications in T2DM patients in China is high: the survey of 14,289 T2DM patients hospitalized in endocrine or diabetes hospitals (mean age 60.5 years, mean course 9.0 years) shows that microvascular and Macrovascular complications are common in diabetic patients (15). Microangiopathy in diabetes is a common chronic complication of diabetes, mainly manifested by diabetes retinopathy, diabetes nephropathy and diabetes neuropathy. These microvascular complications significantly affect patients’ quality of life. Microvascular complications are an important cause of mortality and disability in patients (16–18). Among the serious complications of diabetes, diabetic neuropathy has the highest prevalence and serious damage. Diabetic peripheral neuropathy (DPN) is a loss of sensory function that begins at the distal end of the lower limbs and is also characterized by pain and a severe incidence rate. 50–75% of non-traumatic amputations are caused by DPN, and 68.1% of diabetic patients die within 5 years of amputation (19, 20). More than a third of diabetes patients in China suffer from complicated chronic kidney disease (21). Once diabetic patients develop complicated chronic kidney disease, the risk of adverse events and all-cause death doubles (22). Proteinuria is a sensitive indicator for detecting early renal lesions and a predictive factor for the rapid progression of chronic kidney disease (23, 24). In our study, differences in neuropathy were observed by stratification of urinary ACR lesions (Table 4, P=0.045). This suggests that the two types of lesions are microvascular lesions with the same pathogenesis and similar severity. Given the side effects of diabetes complications, an early prevention and intervention method is urgently needed.

Homocysteine (Hcy) is an important metabolite in methionine metabolism. When homocysteine’s metabolic pathway is abnormal, it accumulates in the body, ultimately leading to hyperhomocysteinemia. In recent years, many studies have found that hyperhomocysteinemia is related to the occurrence and development of various diseases such as glaucoma (25), Parkinson’s disease (26), arteriosclerosis (27), cancer (28) and metabolic syndrome (29), chronic obstructive pulmonary disease (30). In order to change the treatment status of diabetes, peripheral neuropathy and diabetes, many scientists also focus on HCY. The research by Ning Ma et al. suggested that plasma tHcy concentrations are relatively elevated in elderly patients with DKD, especially those aged ≥75 years, and that tHcy could serve as a biomarker for the development of DKD in elderly patients, but this was not ideal for prediction of T2DM (31). The research by Ma L et al. suggested that the increase in circulating homocysteine concentration has a causal relationship with the increased risk of DKD in Chinese patients with diabetes (32). The research by Ding S et al. suggested that the levels of HCY and NRG4 are closely related to the severity of DKD in T2DM patients with early DKD. The combined HCY/NRG4 detection can detect the occurrence of DKD in diabetics at an early stage (11). In a retrospective study, patients were divided into two groups based on blood Hcy levels, namely the HHcy group and the NHHcy group. The incidence rates of DPN in both groups were 98.5% and 36.2%, respectively. Correlation analysis was used to examine the correlation between Hcy level and the incidence rate of DPN. The results showed a significant correlation between Hcy and DPN (33). There are also studies suggesting that glycated hemoglobin (HbA1c) and homocysteine (HCY) are closely related to DPN (34).

Our results also support the view that elevated homocysteine concentration is associated with diabetic peripheral neuropathy and diabetic nephropathy. However, glucose control can effectively prevent the progression of diabetic neuropathy in type 1 diabetes patients, but the effect is weak in type 2 diabetes patients (35). This also partially explains that in our study there was no difference in blood glucose (including fasting blood glucose, postprandial hourly blood glucose, glycated hemoglobin) when stratified by neuropathy (Table 3). In addition, our research also has some shortcomings, such as: B. fewer recorded cases and no statistics about the course of the patients. Furthermore, we did not further observe whether reducing homocysteine can improve nerve conduction velocity and outcome of diabetic nephropathy.




5 Conclusions

DPN and DKD are common microvascular complications of diabetes. This study was conducted to discover the functions of HCY in DPN and DKD. Our results confirmed the positive correlations of HCY and DPN and DKD. Further studies with larger cohorts of participants should focus on the possible mechanisms and therapeutic effects of HCY on DPN and DKD.
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Background

Oxidative stress has an important role in type 2 diabetes (T2D). Oxidative balance score (OBS) is an emerging assessment of dietary and lifestyle oxidative balance. We aimed to explore the association of OBS with cardiovascular disease (CVD) and all-cause and CVD mortality in the T2D population through NHANES 1999-2018.





Methods

OBS integrated 16 dietary components and 4 lifestyle components. T2D was diagnosed according to the American Diabetes Association criteria. Multivariate logistic regression and multivariate Cox proportional hazards regression analyses were used to explore the association of OBS with CVD and mortality in T2D, respectively.





Results

3801 adult T2D participants were included. In fully adjusted models, OBS, dietary OBS, and lifestyle OBS were all negatively associated with the prevalence of CVD (odds ratios of 0.98, 0.98, and 0.85, respectively). Higher OBS and lifestyle OBS (p for trend 0.016 and <0.001, respectively) rather than dietary OBS (p for trend = 0.06) were associated with significantly lower odds of CVD. Higher OBS, dietary OBS, and lifestyle OBS were all negatively associated with all-cause mortality (hazard ratios [HR] of 0.98, 0.98, and 0.92, respectively; p for trend of 0.002, 0.009, and 0.035, respectively). Higher OBS and dietary OBS were negatively associated with CVD mortality (HR 0.96 and 0.95, respectively; p for trend both <0.001), whereas lifestyle OBS was not. Restricted cubic spline analysis suggested that most associations were linear. Stratified analyses showed that these associations were influenced by some demographic variables and disease status.





Conclusions

Adherence to higher OBS was associated with reduced CVD prevalence and mortality risk in T2D. Antioxidant diet and lifestyle had more significant associations with mortality and CVD prevalence, respectively. However, as these findings are merely associations and do not allow causal inferences to be drawn, future validation in high-quality randomized controlled trials is needed.
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1 Introduction

Diabetes is one of the most common chronic non-communicable diseases worldwide and is recognized as one of the global public health challenges. The International Diabetes Federation Diabetes Atlas estimated that approximately 536.6 million adult people worldwide had diabetes in 2021 and is projected to increase to 783.2 million people in 2045 (1). Diabetes and its complications and mortality are associated with diminished quality of life and a heavy economic burden, with global diabetes-related healthcare expenditures in 2021 estimated at $966 billion (1, 2). Type 2 diabetes (T2D) accounts for most cases of diabetes and is highly prevalent in middle-aged and older adults (3). T2D is a well-recognized risk factor for incident cardiovascular disease (CVD) and is associated with increased mortality. CVD is the leading cause of death in the T2D population and poses a heavy economic burden (4, 5). About one-third of the T2D population is affected by CVD, and about half of all deaths come from CVD (6). CVD incidence and mortality in the T2D population have generally shown a decreasing trend over the past decades, but there is an increasing trend in low-middle-income countries (7, 8). Given that the burden of disease remains significantly higher in T2D than in non-T2D populations (7), appropriate interventions need to be explored to improve prognosis in T2D populations.

Although the mechanisms underlying the onset and progression of T2D are still not fully understood, cumulative experimental studies suggest that oxidative stress is an important hallmark of T2D pathogenesis. Hyperglycemia-induced oxidative stress is associated with impairment of insulin signaling pathways and may have an important role in diabetes-related complications (9). Oxidative stress may serve as an important molecular mechanism to promote CVD and poor clinical prognosis in T2D (10). Dietary or lifestyle sources of antioxidants and pro-oxidants have been suggested to have the potential to modulate intrinsic oxidative balance. It is well recognized that there is little open question about the association between a healthy diet/lifestyle and a reduced prevalence of CVD in the general population, although inferences of causality are still lacking. However, current evidence on the association of dietary and lifestyle sources of antioxidants and pro-oxidants with CVD and prognosis in T2D populations remains limited. Most previous studies have focused on the association of certain individual dietary or lifestyle anti/pro-oxidants with mortality in T2D populations, and inconsistent conclusions were noted (11–14). A recent study from the National Health and Nutrition Examination Survey (NHANES) suggested that integrated dietary antioxidant intake was associated with a reduced risk of mortality in the T2D population, while another study using NHANES did not yield similar findings (11, 12). Physical activity as a lifestyle antioxidant has been shown to be associated with a reduced risk of mortality in T2D populations, whereas smoking as a pro-oxidant has been associated with an increased risk of mortality in diabetic populations (13, 14). Given the controversial nature of the previous findings, there is an urgent need for research addressing the association of integrated dietary and lifestyle antioxidant and pro-oxidant exposures with CVD and mortality in patients with T2D.

The oxidative balance score (OBS) is an emerging composite oxidative balance assessment metric that integrates dietary and lifestyle sources of antioxidants and pro-oxidants (15). Compared to individual antioxidants/pro-oxidants, OBS comprehensively accounts for the combined effects of dietary and lifestyle pro-oxidants and antioxidants and more accurately reflects an individual’s exposure to oxidative stress. A large body of clinical evidence has demonstrated that OBS is associated with the development and or prognosis of a range of diseases (15). Several previous observational clinical studies from NHANES have suggested that OBS as an emerging integrated assessment of diet and lifestyle may be associated with reduced odds of CVD and lower 10-year atherosclerotic CVD risk in the general population (16–18). However, the association of OBS with CVD risk in specific populations is controversial. One study from NHANES showed that OBS was associated with reduced odds of CVD in patients with nonalcoholic fatty liver disease (NAFLD) (19), while another cohort study did not demonstrate an association between OBS and CVD risk in a population with chronic renal insufficiency (20). In addition, cumulative observational evidence suggests that higher OBS is associated with a reduced risk of mortality in the general population or in specific (e.g., NAFLD, metabolic syndrome) populations (19, 21, 22). Of note, a previous study showed that OBS was associated with the odds of T2D in the general population (23). However, there is a dearth of real-world studies demonstrating the association of OBS with CVD prevalence and mortality in the T2D population.

In this study, we aimed to explore the association of OBS with CVD prevalence and mortality in people with T2D using nationally representative data from NHANES. Our findings reveal that OBS may have an important role in CVD and mortality prevention in T2D populations. Our study suggests that OBS may be of public health importance as a modifiable risk factor in the mitigation of CVD and mortality disease burden in T2D.




2 Methods



2.1 Study design and population

NHANES is the primary program of the National Center for Health Statistics (NCHS) dedicated to assessing the health and nutritional status of noninstitutionalized populations and providing vital epidemiologic statistics. Since 1999, NHANES has been a continuous program with a two-year cycle. NHANES consists of a series of publicly accessible questionnaires and physical examination data. NHANES is a serial, nationally representative, complex, cross-sectional survey with a multistage probability sampling design. All NHANES survey protocols were approved by the NCHS Ethics Review Board, and all participants provided written informed consent.

We first included 9,568 T2D participants from NHANES 1999-2018 and excluded those aged <20 years (n=209), missing OBS (n=5115), unknown survival data (n=13), and missing covariates (n=430). Finally, 3801 T2D participants were included (Figure 1).

[image: Flowchart showing participant selection from NHANES 1999 to 2018 for individuals with Type 2 Diabetes. Starting with 9,568 participants, it excludes 209 individuals under age 20, leading to 9,359 participants. Further exclusions include missing observation data (5,115) and unknown survival data (13), resulting in 4,231 participants. Additional exclusions due to missing covariate data (430), such as marital status and educational level, reduce the total to 3,801 participants.]
Figure 1 | Flowchart of study population selection, NHANES 1999-2018.




2.2 OBS components and assessment

The specific OBS components and assignment modalities were presented in Supplementary Table S1. In this study, we assessed the OBS using component and assignment criteria that have been extensively validated in previous studies (24–26). The use of OBS in NHANES was first proposed by Zhang et al. which expanded the previous OBS components into a dietary OBS containing 16 components and a lifestyle OBS with 4 components (27). These components were added based on the antioxidant properties of the corresponding components demonstrated in the literature (27). According to previous NHANES-related studies, no specific weights were assigned to the components of the OBS, i.e., each component was uniformly assigned a score based on level (26, 27). Most of these components were assigned scores based on the gender-specific tertile of their values (antioxidants: 0 for the lowest tertile T1, 1 for T2, and 2 for the highest tertile; the opposite was true for pro-oxidants). The alcohol intake component was categorized according to widely accepted criteria as non-drinkers (2 points), non-heavy drinkers (1 point), and heavy drinkers (0 points). Thus, the respective cutoff values in the OBS assignments were actually determined by the sex-specific tertiles of the respective components. The OBS consisted of 16 dietary components (14 antioxidants, including dietary fiber, carotenoids, riboflavin, niacin, vitamin B6, total folate, vitamin B12, vitamin C, vitamin E, calcium, magnesium, zinc, copper, and selenium, and 2 pro-oxidants, including total fat and iron) and 4 lifestyle components (1 antioxidant, namely physical activity, and 3 pro-oxidants, including body mass index [BMI], alcohol consumption, and serum cotinine exposure). Dietary intake information was obtained from the average of two 24-hour dietary recall questionnaires, and dietary nutrient intake was obtained from the USDA Food and Nutrient Database for Dietary Studies (25). Physical activity was assessed according to metabolic equivalents [MET], the final amount of physical activity was the number of minutes of activity per week multiplied by the MET score for each activity (28). BMI was derived by dividing weight (in kilograms) by the square of height (in meters), as determined by skilled staff at the Mobile Examination Center. Serum cotinine was considered as a proxy for active and passive smoking exposure. Alcohol intake (g/d) was self-reported from the relevant dietary recall questionnaire (ALQ). Overall, antioxidants and pro-oxidants were assigned a score based on sex-specific tertile taking (0-2 points). Alcohol intake was scored according to the criteria of previous studies (men: 0, 1, and 2 points for >30/0-30/0 g/d, respectively; women: 0, 1, and 2 points for >15/0-1/0 g/d, respectively) (24).




2.3 T2D diagnosis

We assessed T2D according to the American Diabetes Association (ADA) criteria (29). The presence of diabetes was indicated by one of the following: self-reported history of diabetes, fasting blood glucose ≥7.0 mmol/L, 2-h oral glucose tolerance test blood glucose or random blood glucose ≥11.1 mmol/L, glycated hemoglobin A1c (HbA1c) ≥6.5%, or taking antidiabetic medications (29). This criterion has been validated in numerous previous high-quality studies using NHANES (30, 31).




2.4 CVD assessment

CVD (coronary heart disease, congestive heart failure, angina, stroke, or heart attack) was diagnosed based on self-reporting in the questionnaire (32). Participants were asked: “Has a doctor or other health professional ever told you that you had a coronary heart disease/congestive heart failure/angina/stroke/heart attack?”, and affirmative responses indicated the presence of that type of CVD.




2.5 Mortality data collection

We prospectively followed the T2D population at baseline through December 31, 2019, to obtain mortality outcomes. Mortality data were obtained through public-use linked mortality files from the National Death Index database. CVD mortality was accessed through ICD-10 codes related to cardiac and cerebrovascular disease deaths, including I00-I09, I11, I13, I20-I51, and I60-I69.




2.6 Covariates

We included age, gender, race/ethnicity, educational attainment, household income-poverty ratio (PIR), marital status, HbA1c, antidiabetic medication use, hypertension, CVD (adjusted when exploring OBS and mortality in T2D), chronic kidney disease (CKD), serum triglycerides (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) according to prior relevant studies (11, 12, 33, 34). Antidiabetic medication use or not was obtained based on self-report of relevant questionnaires (11). Hypertension was diagnosed based on a self-reported history of hypertension, a blood pressure value of ≥140/90 mmHg, or the use of antihypertensive medications (35). According to the KDIGO 2021 clinical practice guideline, CKD was defined as having a urinary albumin/creatinine ratio ≥ 30 mg/g and/or an estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m2, where eGFR was calculated according to the Chronic Kidney Disease Epidemiology Collaborative group equation (36, 37). Serum lipid profiles were obtained from biochemistry profiles of laboratory tests in NHANES.




2.7 Statistical analysis

We weighted all analyses according to NHANES analysis guidelines where relevant to account for the complex study design of NHANES. Statistical analyses were performed using R (version 4.2.3), and a two-sided p-value of less than 0.05 indicated statistical significance. Baseline analysis was performed by grouping the T2D population according to OBS quartiles. Continuous variables were expressed as mean ± standard error and tested for between-group differences by ANOVA; categorical variables were expressed as number (percentage) and tested by chi-square analysis. The association between OBS and CVD prevalence in the T2D population was analyzed using multivariate logistic regression models. We constructed multiple adjusted models, where the crude model did not adjust for any covariates; model 1 adjusted for age, sex, race/ethnicity, education, PIR, and marital status; and model 2 additionally adjusted for HbA1c, antidiabetic medication use, hypertension, CKD, TG, TC, and HDL-C from model 1. Kaplan-Meier (KM) survival analyses were used to explore differences in all-cause and CVD-related survival probabilities in the T2D population across OBS quartiles. Multivariate Cox proportional hazards regression models were used to explore the association between OBS and mortality in the T2D population. Similarly, the crude model did not adjust for any covariates; model 1 adjusted for age, sex, race/ethnicity, PIR, education, and marital status; and model 2 additionally adjusted for HbA1c, antidiabetic medication use, CVD, hypertension, CKD, TG, TC, and HDL-C based on model 1. Restricted cubic spline (RCS) modeling was used to explore potential nonlinear associations or dose-response associations and select appropriate knots for smooth curve fitting. Stratified analyses were conducted to reveal whether these associations remained constant across subgroups and interaction analyses were conducted to identify effect modifiers. In sensitivity analyses, we additionally adjusted for diabetes duration to verify the stability of the findings.





3 Results



3.1 Baseline characteristics

3801 T2D participants were included with a mean age of 57.40 years and a mean OBS score of 20.30. T2D individuals with higher OBS had higher PIR and HDL-C, lower TG and TC, and were more likely to be of non-Hispanic White race/ethnicity, non-single, and greater than a high school education. In addition, as OBS increased, the prevalence of CVD and CKD was lower in the T2D population (Table 1).

Table 1 | Baseline analysis of the T2D population according to OBS quartiles.


[image: A detailed statistical table presenting data in various categories across five different quartiles (Q1 to Q4) and a total column. Categories include OBS, dietary, lifestyle, age, PIR, HbA1c, triglycerides, total cholesterol, HDL-C, sex, race/ethnicity, marital status, education, hypertension, CVD, CKD, and anti-diabetic drug use. Each category is accompanied by mean values with standard errors, percentages, and p-values, indicating significant differences between groups based on ANOVA or chi-square analysis.]



3.2 Association of OBS with CVD prevalence in the T2D population

OBS, dietary OBS, and lifestyle OBS were all negatively associated with CVD prevalence in T2D in both the crude model and Model 1. After adjusting for all confounders, OBS, dietary OBS, and lifestyle OBS remained inversely associated with the odds of CVD (OBS: odds ratio [OR] and 95% confidence interval [CI] = 0.98 (0.96,0.99), p = 0.006; dietary OBS: OR and 95% CI = 0.98 (0.96,1.00), p = 0.032; lifestyle OBS: OR and 95% CI = 0.85 (0.78,0.91), p < 0.0001). Higher OBS and lifestyle OBS were associated with significantly lower CVD prevalence (p for trend 0.016 and <0.001, respectively), while a similar trend was present with dietary OBS (p for trend = 0.06) (Table 2). RCS modeling indicated that OBS and dietary OBS were nonlinearly associated with the prevalence of CVD (p for nonlinearity = 0.0073 and 0.0215), whereas lifestyle OBS was linearly associated with the odds of CVD (p for nonlinearity = 0.974) (Figure 2).

Table 2 | Association of OBS with CVD prevalence in the T2D population.


[image: Table showing odds ratios (OR) and p-values for three models: Crude Model, Model 1, and Model 2, across different quartiles (OBS, OBS dietary, OBS lifestyle). Each model's odds ratio is provided with a 95% confidence interval. Quartiles Q1 to Q4 show specific ORs and p-values, with trend analyses. The table notes adjustments for age, sex, race/ethnicity, education, and other variables.]
[image: Three graphs labeled A, B, and C depict the relationship between log odds and three different variables: OBS, OBS dietary, and OBS lifestyle. Each graph shows a red curve with a shaded area representing confidence intervals. Graph A shows a nonlinear trend with significant p-values for both overall and nonlinear effects. Graph B indicates a similar pattern but with different p-values. Graph C displays a linear decreasing trend with a highly significant overall p-value and a non-significant p-value for nonlinearity. Dashed lines indicate reference points on both axes.]
Figure 2 | RCS analysis of OBS and the prevalence of CVD in the T2D population. (A) OBS; (B) dietary OBS; (C) lifestyle OBS.




3.3 Association of OBS with all-cause and CVD mortality in the T2D population

After a median of 93 months of follow-up, 833 T2D patients died, of which 277 were CVD-related deaths (Supplementary Table S2). KM survival analyses showed significantly higher all-cause and CVD survival probabilities in the higher OBS quartiles compared to Q1 (both log-rank p < 0.0001) (Supplementary Figures S1, S2). In Model 2, OBS, dietary OBS, and lifestyle OBS were all negatively associated with all-cause mortality in the T2D population (OBS: hazard ratio [HR] and 95% CI = 0.98 (0.97,0.99), p < 0.001; dietary OBS: HR and 95% CI = 0.98 (0.97,0.99), p = 0.003; lifestyle OBS: HR and 95% CI=0.92(0.86,0.99), p=0.021). Higher OBS, dietary OBS, and lifestyle OBS were all associated with significantly lower all-cause mortality (p for trend 0.002, 0.009, and 0.035, respectively) (Table 3). In fully adjusted models, OBS and dietary OBS remained negatively associated with CVD mortality in the T2D population (OBS: HR and 95% CI = 0.96 (0.93,0.98), p < 0.001; dietary OBS: HR and 95% CI = 0.95 (0.93,0.98), p < 0.001), while lifestyle OBS lost the associations. Higher OBS and dietary OBS were associated with significantly lower CVD mortality (both p for trend <0.001) but not lifestyle OBS (p for trend = 0.085) (Table 4). RCS analysis suggested that most associations were linear, except for lifestyle OBS and all-cause mortality (p for nonlinearity = 0.0174) (Figure 3).

Table 3 | Association of OBS with all-cause mortality in the T2D population.


[image: A table presenting hazard ratios (HR) and p-values for three models (Crude, Model 1, Model 2) related to oxidative balance score (OBS) categorized by quartiles. Each section addresses OBS, dietary quartile, and lifestyle quartile, showing HR values with confidence intervals and associated p-values. The trend is significant across models and OBS categories, supported by additional detailed explanatory notes on the variables and adjustments made in the models.]
Table 4 | Association of OBS with CVD mortality in the T2D population.


[image: Table displaying hazard ratios (HR) with confidence intervals (CI) and p-values across three models: Crude, Model 1, and Model 2. The table covers OBS quartile, OBS dietary quartile, and OBS lifestyle quartile, with references for each quartile (Q1-Q4) and respective p-values. Additional notes describe model adjustments, considering factors like age, sex, race, and medical history, including cardiovascular disease and diabetes indicators.]
[image: Six graphs labeled A to F display relationships between log hazard and OBS (overall, dietary, and lifestyle). Each graph features a red line with a shaded confidence interval. Specific p-values for overall and nonlinear relationships are noted on each plot, indicating statistical significance in some cases. Dotted vertical lines denote reference points on the x-axis.]
Figure 3 | RCS analysis of OBS and mortality in the T2D population. (A) OBS and all-cause mortality; (B) dietary OBS and all-cause mortality; (C) lifestyle OBS and all-cause mortality; (D) OBS and CVD mortality; (E) dietary OBS and CVD mortality; (F) lifestyle OBS and CVD mortality.




3.4 Stratified analysis

Interactivity analysis showed that these associations were influenced by several factors. Gender and CKD were identified as effect modifiers of the association of OBS with CVD prevalence in the T2D population (p for interaction 0.011 and 0.017, respectively) (Figure 4). Educational level and hypertension significantly influenced the association between OBS and all-cause mortality (p for interaction 0.01 and 0.041, respectively) (Figure 5). Age and hypertension significantly influenced the association of OBS with CVD mortality (p for interaction 0.027 and 0.049, respectively) (Figure 6).

[image: Forest plot showing odds ratios (OR) and 95% confidence intervals for various factors. Categories include age, sex, race, marital status, education, PIR, HbA1c levels, anti-diabetic drug usage, hypertension, and CKD presence. Significant p-values are noted for sex, education, PIR, hypertension, and CKD. Squares and lines represent ORs and confidence intervals, respectively, relative to the dashed line at 1.00, indicating neutrality.]
Figure 4 | Stratified analysis of the association between OBS and the prevalence of CVD in the T2D population.

[image: Forest plot showing hazard ratios and confidence intervals for various factors affecting a certain outcome. Factors include age, sex, race, marital status, education, PIR, HbA1c, anti-diabetic drugs, hypertension, CVD, and CKD. Each factor is plotted with corresponding HR, p-values, and interaction p-values. The line of no effect is at 1.0.]
Figure 5 | Stratified analysis of the association between OBS and all-cause mortality in the T2D population.

[image: Forest plot displaying hazard ratios (HR) and 95% confidence intervals (CI) for cardiovascular disease (CVD) across different variables such as age, sex, race, marital status, education, and health conditions. Each variable includes HR, p-values, and interaction p-values, with markers indicating statistical significance. The plot compares categories like age (<60, ≥60), sex (male, female), race, marital status, educational level, PIR, HbA1c levels, use of anti-diabetic drugs, hypertension, presence of CVD, and chronic kidney disease (CKD). The vertical dashed line represents an HR of 1.0.]
Figure 6 | Stratified analysis of the association between OBS and CVD mortality in the T2D population.




3.5 Sensitivity analysis

Additional adjustment for diabetes duration based on model 2 did not significantly change the results. OBS and lifestyle OBS remained associated with CVD prevalence in the T2D population (OR 0.98 and 0.83, respectively), although dietary OBS lost association (Supplementary Table S3). Similarly, OBS, dietary OBS, and lifestyle OBS remained significantly associated with all-cause mortality (HRs of 0.97, 0.98, and 0.87, respectively.) OBS and dietary OBS remained associated with CVD mortality, whereas lifestyle OBS remained unrelated (p=0.062) (Supplementary Table S4).





4 Discussions

In a national population-based study, we found that OBS was negatively associated with CVD prevalence, all-cause mortality, and CVD mortality in people with T2D. Specifically, dietary OBS was nonlinearly associated with CVD prevalence, whereas there was a dose-response association for lifestyle OBS. Dietary OBS was negatively and linearly associated with all-cause/CVD mortality, whereas lifestyle OBS had a significantly weaker association with mortality. These associations were influenced by several demographic aspects and disease conditions. Overall, these findings suggest that higher OBS is associated with reduced CVD prevalence and mortality risk in T2D populations. Interestingly, the beneficial effects of dietary and lifestyle OBS were each focused. Adherence to an antioxidant lifestyle was more significantly associated with CVD prevalence, whereas an antioxidant diet was more helpful in preventing all-cause and CVD mortality in the T2D population.

In this study, we used the OBS scheme that has been extensively validated in previous studies similarly using NHANES, including 16 dietary components and 4 lifestyle components, ensuring fit and consistency with the NHANES database (24, 25). Several clinical studies have explored the association between OBS and the occurrence of T2D in the general population. In a cross-sectional analysis, Wu et al. used NHANES 2007-2020 to show that OBS was negatively associated with the odds of T2D in the general U.S. adult population (fully adjusted OR = 0.96), with gender specificity (23). Kwon et al. demonstrated in a prospective cohort study that OBS was negatively associated with the incidence of T2D in the middle-aged and elderly Korean population, and that being in the highest OBS tertile was associated with a 17% and 22% lower risk of T2D in men and women, respectively (38). A cross-sectional analysis from Iran, on the other hand, showed that OBS was associated with better glycemic control in the T2D population (39). However, there are still a lack of research exploring the clinical prognostic relevance of OBS in people with diabetes. Our study demonstrated for the first time that OBS was negatively associated with CVD prevalence and mortality in the T2D population, providing new epidemiologic evidence for the public health significance of OBS in the T2D population.

Sparse observational clinical evidence suggests that OBS may be associated with CVD risk in general or specific populations, and there are inconsistent findings. A cross-sectional analysis using NHANES 2005-2018 suggested that OBS was negatively associated with the odds of CVD in the general US population (quartile Q4 compared to Q1: OR=0.67) and interacted with sleep patterns (16). A recent cross-sectional analysis similarly using NHANES 1999-2018 demonstrated that OBS was negatively associated with the odds of CVD in patients with NAFLD (OR=0.97, p=0.0015) (19). However, after adjusting for confounders, a previous cohort study did not confirm the association of OBS (including 12 dietary and lifestyle components) with CVD incidence (20). We speculated that these inconsistent findings may be due in part to differences in study populations, study designs, and OBS components. An interesting finding was that lifestyle OBS had a more robust association with the prevalence of CVD in T2D, which was in line with findings from several previous studies. A cross-sectional analysis from NHANES 2007-2018 indicated an interaction between systemic inflammatory markers in the association of OBS with specific types of CVD, whereas the association of lifestyle OBS with CVD in the general population was more pronounced (17). Similar findings were found in the association of OBS with the prevalence of CVD in the NAFLD population (19). In addition, we found that gender and CKD were significant effect modifiers, and this association was only observed in the female and CKD-free populations. A previous study similarly showed that gender influenced the association of OBS with the odds of T2D in the general population and was similarly more significant in women (compared to Q1, the OR for OBS at Q4 was 0.614 and 0.120 for men and women, respectively) (23). This may be partly explained by the differential role of sex-specific sex hormones on oxidative stress in the organism (23). Accumulating evidence suggests that the lower incidence of CVD among reproductive-age women is due in part to the cardiovascular beneficial effects of estrogen, and that estrogen and the estrogen receptor may exert CVD protection through mechanisms including oxidative stress (40). Thus, the unique estrogenic CVD-preventive effect in women may jointly with OBS reduce the odds of CVD in the T2D population. Recent studies have shown a negative correlation between OBS and CKD, thus CKD co-morbidities may lead to impaired oxidative homeostasis and diminish the effects of OBS (41). Compared to the CKD-free population, the CKD comorbid population has higher levels of oxidative stress, which results in cellular and organ damage that mediates the disease progression of CKD, including an increased incidence of CVD (42). Thus, the lower OBS levels and higher incidence of CVD in T2D patients with CKD may have contributed to the loss of the protective effect of OBS.

Our study demonstrated that OBS, particularly dietary OBS, was linearly and negatively associated with all-cause and CVD mortality in the T2D population, whereas the association of lifestyle OBS with mortality was less pronounced. Accumulating clinical studies have shown that OBS is negatively associated with mortality in the general population or in specific populations. A prospective cohort study from Spain demonstrated that OBS in the highest quartile (compared to the lowest quartile) was associated with significant reductions in all-cause (HR=0.35), CVD (HR=0.18), and cancer-related mortality (HR=0.35) in the general population (21). Another prospective cohort study from the US similarly showed that OBS was negatively associated with all-cause, cancer, and non-cancer mortality in the general population (43). Evidence from NHANES 2007-2018 similarly suggested that higher OBS was associated with lower all-cause mortality in the general U.S. older population (44). Other studies have suggested that OBS may be negatively associated with mortality in people with other metabolic diseases, such as NAFLD, metabolic syndrome, and dyslipidemia (19, 22, 45). Our study provides the first population-level evidence for OBS in the prevention of mortality in people with T2D. Our findings suggest that dietary OBS and overall OBS have a similar pattern of association with mortality in T2D, whereas the association was significantly weaker for lifestyle OBS. A previous cohort study showed a more significant association between lifestyle OBS and mortality in older women (46). This may indicate that the T2D population has distinctive clinical profiles compared to the general population that influence the relative impact of diet and lifestyle on mortality. In addition, the associations of OBS with all-cause and CVD mortality were more significant in those with > high school education level and in the nonelderly population, respectively. A previous study similarly demonstrated that the association of OBS with all-cause mortality in the NAFLD population was more significant in the highly educated population, suggesting that high educational level as an important socioeconomic status variable enhances the preventive value of OBS (19). Evidence from population-based studies suggests that higher socioeconomic status, including better education, is associated with lower all-cause and CVD mortality, possibly by influencing individuals’ access to knowledge resources, healthy lifestyles, and health care services (47). Older and younger adults with T2D have significantly different clinical characteristics (48), and we speculated that the younger population may have a higher long-term CVD mortality rate and therefore OBS may have more pronounced beneficial value. In addition, awareness of and adherence to healthy diets and lifestyles may be higher in younger age groups than in older age groups, which may partly explain this finding. In addition, the association of OBS with all-cause and CVD mortality in the T2D population was present only in people without hypertension, suggesting that the presence of hypertension may diminish the preventive value of OBS. People with hypertension exhibited significantly lower OBS than control populations and therefore had poorer antioxidant diet/lifestyle adherence (49). In addition, hypertension populations may have higher all-cause and CVD mortality rates (50), indirectly compromising the protective effect of OBS. Together, these findings suggest that adherence to OBS for the prevention of CVD and mortality in T2D populations requires individualized prevention strategies.

Recognizing that diabetes duration and antidiabetic medication use may influence these associations as important confounders, we considered these variables in fully adjusted models. After additional adjustment for diabetes duration, we found that OBS and lifestyle OBS remained negatively associated with the prevalence of CVD in the T2D population, whereas dietary OBS lost its association; furthermore, additional adjustment for diabetes duration did not significantly change the association of all OBS with mortality in the T2D population. Longer duration of diabetes has been shown to be associated with an increased risk of CVD in the diabetic population (51). Our findings suggest that diabetes duration may partially explain the protective effect of dietary OBS on the prevalence of CVD in the T2D population, i.e., dietary OBS may reduce the risk of CVD by reducing diabetes duration. Antidiabetic medication use did not significantly alter these associations, although there was a trend for these associations to be more pronounced in people without antidiabetic medication use. Although there is no relevant literature to support these findings, we speculate that this may be due to the fact that antidiabetic medication use, and antioxidant diet/lifestyle have a synergistic protective effect on CVD and mortality in the T2D population (52).

Although the mechanism of how OBS affects CVD and mortality in T2D populations remains unclear, it is conceivable that OBS may affect intrinsic oxidative homeostasis and thereby prevent disease. Several lines of clinical evidence suggest that higher OBS is associated with lower levels of oxidative stress markers, such as serum γ-glutamyltransferase (53) and urinary and plasma F2-isoprostane (54, 55). Thus, oxidative stress, an important contributor to CVD and clinical prognosis in the T2D population (9, 56), may be improved by better OBS compliance, partially explaining these findings.

Our study has several strengths. We comprehensively explored for the first time the association of OBS with CVD and mortality in the T2D population, which has potential public health implications. The nature of a large-sample national population-based study makes these findings potentially generalizable. We fully accounted for the influence of confounders and reduced potential study bias. However, there are limitations to our study. Most OBS components were assessed based on participant self-report and may be affected by recall bias. Consistent with previous studies (26), we recognize that equal weighting of all OBS components may underestimate or overestimate the antioxidant/pro-oxidant potential of the components. We did not have access to disease severity and other clinical characteristics of the T2D population and therefore could not adjust for the effects of these factors. The nature of observational studies prevents us from drawing causal relationships and is subject to residual confounding. It should be noted that there may be the possibility of reverse causality in these associations, i.e., people with T2D who have poorer health may adopt better lifestyles. However, there is also clinical evidence that people with CVD have lower adherence to healthy lifestyles (57). Means of ruling out reverse causal associations consist primarily of designing prospective cohort studies or randomized controlled trials. We adjusted for potential confounders as much as possible; however, given that the exploration of the association of OBS with CVD prevalence in the T2D population was based on cross-sectional analyses (limitations of the NHANES database), we could not rule out the possibility of reverse causality. However, the association between OBS and mortality in the T2D population was explored through a prospective cohort study (mortality information was derived from prospective matching with the National Death Index database), so reverse causation was less plausible. Future high-quality intervention studies are needed to validate these findings and determine potential causality.




5 Conclusions

Our findings suggested that OBS was negatively associated with CVD prevalence and risk of all-cause and CVD mortality in the T2D population. Adherence with higher dietary and lifestyle OBS was broadly associated with significantly lower CVD prevalence and mortality. Dietary OBS had a more pronounced association with mortality in the T2D population, whereas only lifestyle OBS had a dose-response association with CVD prevalence. Given that these findings are based on observational studies, these results merely represent the existence of an association and need to be interpreted with caution. Future high-quality randomized controlled trials are needed to validate these strategies and explore the possibility of applying them in clinical practice.
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Aim

Previous research has shown a strong association between insulin resistance (IR) and both the onset and advancement of diabetic kidney disease (DKD). This research focuses on examining the relationship between IR and all-cause mortality in individuals with DKD.





Methods

This study utilized data obtained from the National Health and Nutrition Examination Survey (NHANES), spanning the years 2001 to 2018. Insulin resistance was assessed using reliable indicators (HOMA-IR, TyG, TyG-BMI, and METS-IR). The relationship between IR indices and survival outcomes was evaluated through weighted multivariate Cox regression, Kaplan-Meier survival analysis, and restricted cubic spline (RCS) modeling. To examine non-linear associations, the log-likelihood ratio test was employed, with piecewise regression models used to establish confidence intervals and identify threshold values. Diagnostic precision and efficacy were gauged using Receiver Operating Characteristic (ROC) curves, Area Under the Curve (AUC) evaluations, and calibration plots. Moreover, to verify the consistency of our results, stratified analyses and interaction tests were conducted across variables including age, gender, Body Mass Index (BMI), hypertension, and cardiovascular status.





Results

This research involved a group of 1,588 individuals diagnosed with DKD. Over a median observation period of 74 months, 630 participants passed away. Using weighted multivariate Cox regression along with restricted cubic spline modeling, we identified non-linear associations between the four insulin resistance indices and all-cause mortality. An analysis of threshold effects pinpointed essential turning points for each IR index in this research: 1.14 for HOMA-IR, 9.18 for TyG, 207.9 for TyG-BMI, and 35.85 for METS-IR. It was noted that levels below these thresholds inversely correlated with all-cause mortality. In contrast, values above these points showed a significantly positive correlation, suggesting heightened mortality risks. The accuracy of these four IR metrics as indicators of all-cause mortality was confirmed through ROC and calibration curve analyses.





Conclusion

In patients with DKD, an L-shaped association is noted between HOMA-IR and all-cause mortality, while TyG, TyG-BMI, and METS-IR exhibit U-shaped relationships. All four IR indices show good predictive performance.





Keywords: diabetic kidney disease, insulin resistance, diabetes, mortality, NHANES




1 Introduction

Diabetic kidney disease (DKD) represents a significant long-term complication of diabetes, primarily impacting kidney function in individuals with this condition. Approximately 20% to 40% of individuals with diabetes will develop DKD (1, 2), characterized by persistent proteinuria, declining renal function, and elevated blood pressure (3). In 2017, the United States spent an estimated $327 billion annually on managing diabetes and its related complications (4). With the rising number of individuals affected by diabetes, this cost is projected to exceed $2.1 trillion by 2030 (5). Globally, DKD not only significantly contributes to end-stage renal disease (ESRD) but also contributes to a significant number of deaths annually due to renal failure and cardiovascular complications (6–8). With the increasing incidence of diabetes, DKD has emerged as an important global health burden. Hence, implementing more effective preventive measures along with promoting early diagnosis and intervention is crucial for improving patient quality of life and alleviating the strain on public health systems.

Insulin resistance (IR) is a pathological state characterized by the impaired cellular response to insulin, a hormone that regulates glucose and lipid metabolism (9). This condition frequently coexists with other health issues, including obesity, elevated blood pressure, and lipid abnormalities (10). The hyperinsulinemic-euglycemic clamp has long been considered the gold standard for assessing insulin resistance (11). However, its requirement for specialized equipment, lengthy testing duration, and high costs make it impractical for routine clinical use. In contrast, newer alternative measures of IR, such as the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), the Metabolic Score for Insulin Resistance (METS-IR), the Triglyceride Glucose Index (TyG), and the Triglyceride Glucose-Body Mass Index (TyG-BMI), offer a more feasible approach (12–15). These alternatives are favored for their practicality, lower cost, and efficient resource utilization, providing a simpler method for measurement. Recent research has indicated that IR plays a role in kidney damage and disease progression through various mechanisms, including hyperfiltration, increased renal vascular resistance, and systemic hypertension (16–19). Collectively, these factors exacerbate the renal burden and may hasten the transition from mild kidney damage to complete renal failure.

While numerous studies have explored the predictive potential of IR indices in different populations (20, 21), their relationship with diabetes and DKD remains incompletely understood. Studies have indicated that IR, measured by estimated glucose disposal rate (eGDR), acts as an independent predictor of all-cause mortality in people with type 2 diabetes, with this relationship remaining significant even after adjusting for variables such as DKD (22). Another study found a negative association between TyG and TyG-BMI indices and all-cause mortality among stage 1–4 chronic kidney disease patients not undergoing renal replacement therapy (23). Further understanding of the predictive value of different IR indices in DKD patients, particularly in relation to all-cause mortality, is essential for precise risk assessment and individualized treatment.

This research employed data from NHANES to perform a prospective investigation into the association between IR indices and all-cause mortality in U.S. adults with DKD, exploring possible nonlinear associations between these variables.




2 Materials and methods



2.1 Study population

NHANES is a comprehensive survey aimed at producing descriptive statistics that evaluate and oversee the physical health and nutrition of America’s non-institutionalized civilian populace (24). The National Death Index (NDI), maintained by the CDC, serves as a centralized database of death records. It is connected with NHANES mortality files to monitor outcomes and determine causes of death. Due to disruptions in NHANES data collection caused by the COVID-19 pandemic, data from the 2019–2020 cycle is incomplete and lacks national representativeness. Furthermore, the most recent mortality data available in the NDI only extends to 2019. Therefore, to ensure data completeness and reliability, this study includes only participants diagnosed with DKD from NHANES cycles spanning 2001 to 2018. Diabetes was identified through one or more of these criteria: clinical diagnosis, use of glucose-reducing medications, Hemoglobin A1c (HbA1c) levels ≥6.5%, Oral Glucose Tolerance Test (OGTT) results ≥200 mg/dL, or fasting plasma glucose levels ≥126 mg/dL (25). DKD was characterized by a Glomerular Filtration Rate (GFR) of less than 60 mL/min/1.73 m² or a urinary albumin-to-creatinine ratio (UACR) above 30 mg/g (26). Participants younger than 20 years and those with incomplete data on DKD or IR indices were excluded, leaving a total of 1588 participants with complete data sets for the analysis (Figure 1).

[image: Flowchart detailing participant exclusion from NHANES 2001-2018 study. Begins with 91,351 participants. Excludes 41,150 under age 20, 46,894 without diabetic nephropathy, and 1,749 missing insulin resistance data, resulting in 1,558 participants. Of these, 928 were alive, and 630 died during follow-up.]
Figure 1 | Flow chart of participants selection. NHANES, National Health and Nutrition Examination Survey.




2.2 Indices for assessing IR

Our study includes four indices for assessing insulin resistance: HOMA-IR, based on fasting glucose and insulin levels, is a widely validated tool for use in both clinical and epidemiological settings (27). The TyG index provides a reliable alternative for estimating IR without direct insulin measurements (28). TyG-BMI enhances accuracy particularly in populations with obesity (29), while METS-IR is versatile and applicable across diverse populations (15). Together, these metrics offer a comprehensive evaluation of insulin resistance from multiple perspectives, improving the robustness and applicability of the methodology. These indices were derived from laboratory data using the following formulas:

[image: HOMA-IR formula showing: Fasting Insulin (microU per mL) multiplied by Fasting Glucose (mg per dL), divided by 405.]	

[image: Equation showing TyG index calculation: TyG equals the natural logarithm of fasting triglycerides (mg per dL) multiplied by fasting glucose (mg per dL) plus two.]	

[image: Equation showing TyG-BMI calculated as the product of TyG and BMI.]	

[image: Formula for METS-IR: the product of two times fasting glucose (milligrams per deciliter) plus fasting triglycerides (milligrams per deciliter) times BMI, divided by the natural log of HDL cholesterol (milligrams per deciliter).]	




2.3 State of survival

In NHANES, all participants with adequate identifying information (such as date of birth, first and last names, gender, or Social Security Number) are eligible for mortality tracking. The primary method for determining the mortality status of eligible participants involves matching survey data with the NDI, supplemented by confirmation through death certificates from the National Center for Health Statistics (NCHS). The follow-up period begins when participants undergo their NHANES examination, with the mortality tracking data last updated on December 31, 2019.




2.4 Covariables

The study variables were categorized into demographic factors, disease states, and biochemical markers. Demographic variables included age, gender, race, educational level, BMI, and income-to-poverty ratio (PIR). Disease state variables encompassed hypertension and cardiovascular diseases (CVDs), with hypertension defined by systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, self-reported diagnosis, or the ongoing use of antihypertensive drugs (30). The determination of cardiovascular diseases included self-reported myocardial infarctions, angina, coronary artery disease, and stroke (31). Biochemical indicators included aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), triglycerides, serum calcium, serum phosphorus, total cholesterol, and creatinine. These indices collectively reflect the physiological and health status of the participants, providing essential data for comprehensive analysis.




2.5 Statistical analysis

Participants were categorized by survival status. Weighted chi-square tests were applied to categorical variables, while weighted t-tests were used for continuous variables. Missing data were managed using random forest multiple imputation. Statistical analysis was performed in R (version 4.2.0) and EmpowerStats (version 4.2), with significance defined as p<0.05.

In order to control for potential confounding factors that could impact the analysis, we systematically constructed three distinct statistical models, each incorporating varying levels of adjustments for different covariates. Model 1 included no adjustments, allowing us to observe the raw associations between the study variables and outcomes. Model 2 introduced minimal adjustments, accounting specifically for age, gender, and ethnicity, key demographic variables known to influence health outcomes. Model 3 included comprehensive adjustments for age, gender, ethnicity, educational level, PIR, BMI, ALT, AST, ALP, serum creatinine, total cholesterol, triglycerides, serum calcium, serum phosphorus, hypertension, and cardiovascular disease status. Restricted cubic splines and log-likelihood ratio tests were utilized to explore nonlinear relationships between insulin resistance indices and survival status. Upon identifying nonlinearity, segmented regression models were utilized to determine confidence intervals and thresholds. Survival outcomes were analyzed using Kaplan-Meier methods and LogRank tests. Diagnostic performance and accuracy of the IR indices were evaluated through ROC curves, AUC, and calibration curves. In addition, stratification and interaction tests were performed for age, sex, BMI, hypertension, and cardiovascular disease.





3 Results



3.1 Baseline characteristics by survival status dichotomy

Table 1 presents the demographic characteristics of the 1,588 participants with DKD, categorized by survival status. Among these participants, 630 passed away over a median follow-up duration of 74 months. Compared to survivors, deceased participants were more likely to be male (52.04%), older (mean age 70.27 ± 0.54 years), non-Hispanic white (72.65%), and with hypertension (86.83%). Notably, the deceased group exhibited significantly lower levels of METS-IR (P<0.001), TyG (P=0.019), and TyG-BMI (P<0.001) than the control group.

Table 1 | Basic characteristics of participants by survival status dichotomy among U.S. adults.


[image: Table comparing total, surviving, and deceased participants in various categories such as age, body mass index (BMI), and blood markers. It includes demographic details like gender, race, and education level, along with health indicators like hypertension and insulin resistance scores. The table also shows p-values for statistical significance.]



3.2 IR indices and all-cause mortality with DKD

Findings from the multivariate Cox regression analysis revealed that, with the HOMA-IR index incorporated as a continuous variable in the fully adjusted model, each one-unit increase in the HOMA-IR index is associated with a 1% rise in all-cause mortality risk (HR 1.01, 95% CI 1.00-1.02, P=0.016) (Table 2). Similarly, each additional unit of the TyG index correlates with a 17% higher mortality risk (HR 1.17, 95% CI 1.01-1.36, P=0.033), and each unit augmentation in the TyG-BMI index corresponds to a 1% escalation in risk (HR 1.01, 95% CI 1.00-1.01, P=0.005). The restricted cubic spline curves illustrate an L-shaped association between HOMA-IR and mortality. At lower levels, HOMA-IR is negatively associated with mortality risk, but after a certain threshold, mortality risk increases, forming an L-shaped pattern. In contrast, the curves for TyG, TyG-BMI, and METS-IR exhibit U-shaped associations, indicating that both high and low extremes of these indices are associated with an increased mortality risk, while moderate levels are associated with a lower risk (Figure 2). Additionally, Kaplan-Meier survival analysis (log-rank test, P < 0.001) demonstrated significant disparities across the different HOMA-IR, TyG, and METS-IR quartiles. The survival rates were notably decreased in the lower quartiles compared to the higher quartiles (Figure 3).

Table 2 | Relationship between insulin resistance and all-cause mortality in diabetic kidney disease patients.


[image: Statistical table presenting hazard ratios (HR) and confidence intervals (CI) across three models for HOMA-IR, TYG, TYG-BMI, and METS-IR quartiles. Each model includes different covariate adjustments, with P-values indicating significance levels. Model 1 adjusts for no covariates, Model 2 adjusts for age, gender, race, and Model 3 includes additional covariates like BMI and educational level. Bold values signify visual clarity for insulin resistance indices without implying statistical importance.]
[image: Four scatter plots display the relationship between different insulin resistance markers and log hazard ratios for all-cause mortality. Plot (a) shows HOMA-IR ranging from 0 to 120. Plot (b) features TyG from 7 to 13. Plot (c) illustrates TyG-BMI from 200 to 600. Plot (d) presents METS-IR from 20 to 120. Each plot includes a red line indicating the trend and blue lines representing confidence intervals.]
Figure 2 | The nonlinear associations between insulin resistance and mortality. The solid red line represents the smooth curve fit between variables. Blue bands represent the 95% confidence interval from the fit. (A) HOMA-IR; (B) TyG; (C) TyG-BMI; (D) METS-IR. L-shaped association: This describes a non-linear relationship in which an increase in the independent variable leads to a rapid decrease in the dependent variable, followed by a leveling off. This pattern resembles the shape of the letter 'L' on a graph. U-shaped association: This refers to a non-linear relationship where, as the value of the independent variable changes from low to high, the dependent variable is high at both extremes (low and high values) and lower in the middle. This relationship forms a pattern resembling the letter 'U' on a graph.

[image: Four Kaplan-Meier survival curves showing different markers:   (a) HOMA-IR quartiles, (b) TyG quartiles, (c) TyG-BMI quartiles, and (d) METS-IR quartiles. Each plot reveals quartile-based survival differences over time. All but TyG-BMI show statistically significant differences with p-values less than 0.001, indicating strong correlations between quartiles and survival outcomes.]
Figure 3 | Kaplan-Meier survival curves stratified by quartiles of insulin resistance indices. (A) HOMA-IR; (B) TyG; (C) TyG-BMI; (D) METS-IR.

Table 3 displays the outcomes of the piecewise linear regression analysis, which identified 1.14 as the optimal threshold value for HOMA-IR (P for the log-likelihood ratio test < 0.001). Below this threshold, elevated HOMA-IR levels correlate with better survival outcomes (HR 0.11, 95% CI 0.04-0.35, P < 0.001). Conversely, above this threshold, an increase in HOMA-IR levels is correlated with an elevated risk of all-cause mortality (HR 1.01, 95% CI 1.00-1.02, P = 0.007). Similar effects were observed for the other three IR indices, with log-likelihood ratio tests showing statistical significance. The respective thresholds were as follows: TyG threshold at 9.18, TyG-BMI threshold at 207.9, and METS-IR threshold at 35.85.

Table 3 | Analysis of threshold effects on all-cause mortality by insulin resistance indices in diabetic kidney disease.


[image: Table detailing all-cause mortality data using four indices: HOMA-IR, TyG, TyG-BMI, and METS-IR. Each section lists a threshold point, hazard ratios with confidence intervals, and P-values for log likelihood ratio tests. Thresholds are 1.14, 9.18, 207.9, and 35.85, respectively. Hazard ratios vary across thresholds, with all P-values indicating significance below 0.05. Adjustments include factors like age, gender, BMI, and disease status.]



3.3 Predictive performance of IR on all-cause mortality in individuals with DKD

ROC curves demonstrate that all four IR indices exhibit strong predictive performance for all-cause mortality, with their AUC values indicating comparable predictive abilities (Figure 4). When comparing fully adjusted models with non-adjusted ones, each index shows enhanced sensitivity and specificity: HOMA-IR (AUC: adjusted 0.789 vs. non-adjusted 0.568); TyG (AUC: adjusted 0.791 vs. non-adjusted 0.531); TyG-BMI (AUC: adjusted 0.791 vs. non-adjusted 0.600); and METS-IR (AUC: adjusted 0.789 vs. non-adjusted 0.597), all with P-values less than 0.001 (Figure 5). Calibration curve analyses corroborate these findings, suggesting that the adjusted models, which account for potential confounders, offer a more accurate estimation of all-cause mortality in patients with DKD (Figure 6).

[image: ROC curve graph illustrating the performance of four diagnostic tests: HOMA-IR, TyG, TyG-BMI, and METS-IR. Sensitivity is on the y-axis and 1-Specificity on the x-axis. Each test is represented by a colored line with respective AUC values: HOMA-IR 0.789, TyG 0.791, TyG-BMI 0.791, and METS-IR 0.789. A dashed line represents the line of no discrimination.]
Figure 4 | ROC curves for HOMA-IR, TyG, TyG-BMI, and METS-IR for all-cause mortality.

[image: Four ROC curves depict the diagnostic performance of different indices: (a) HOMA-IR with an adjusted AUC of 0.789 and non-adjusted AUC of 0.568, (b) TyG with an adjusted AUC of 0.791 and non-adjusted AUC of 0.531, (c) TyG-BMI with an adjusted AUC of 0.791 and non-adjusted AUC of 0.600, and (d) METS-IR with an adjusted AUC of 0.789 and non-adjusted AUC of 0.597. All P-values are less than 0.001. The curves illustrate the trade-off between sensitivity and 1-specificity.]
Figure 5 | Discrimination and accuracy of four insulin resistance indices in evaluating all-cause mortality in the fully adjusted model. (A) HOMA-IR; (B) TyG; (C) TyG-BMI; (D) METS-IR.

[image: Four line plots compare models for predicting health metrics over different thresholds. Each plot shows standardized net benefit against high risk threshold. Plots are labeled (a) HOMA-IR, (b) TyG, (c) TyG-BMI, and (d) METS-IR, each displaying four lines for Model 3, Model 1, All, and None. The x-axis represents high risk threshold, and the y-axis represents standardized net benefit.]
Figure 6 | Calibration curves for model prediction accuracy. (A) HOMA-IR; (B) TyG; (C) TyG-BMI; (D) METS-IR.




3.4 Subgroup analyses

The impact of factors like age, gender, BMI, hypertension, and cardiovascular disease status on outcomes was examined using subgroup analyses and interaction tests. Results revealed that the relationships of TyG-BMI and METS-IR with all-cause mortality varied significantly among age groups, showing a negative correlation specifically for participants aged 60 and above. When stratified according to BMI, TyG-BMI demonstrated a significant correlation with BMI less than 25 (HR 0.98, 95% CI 0.97-0.99, P < 0.001). With respect to other stratified variables, the analysis did not reveal any significant interaction effects (Figure 7).

[image: Forest plot showing odds ratios (OR) and 95% confidence intervals (CI) for various variables including age, gender, BMI, hypertension, and CVDs across four models: HOMA-IR, TyG, TyG-BMI, and METS-IR. Each model presents OR, P-value, and P for interaction. The plot illustrates comparisons between different biological markers and health outcomes, with data points plotted along horizontal lines indicating the range of CI.]
Figure 7 | Subgroup analysis of the association between four insulin resistance indices and all-cause mortality.





4 Discussion

This study thoroughly assessed IR for its ability to predict all-cause mortality among individuals with DKD. The analysis demonstrated that all four IR indices are effective predictors of mortality outcomes. RCS and threshold effect analyses revealed a nonlinear association between these indices and mortality, indicating that both excessively low and high levels of IR pose potential mortality risks. Furthermore, significant interactions between IR and all-cause mortality across age and BMI categories were observed. In age-stratified analysis, the correlation between METS-IR and TyG-BMI levels with mortality was more pronounced among older adults. In BMI stratification, individuals with a BMI under 25 tended to experience greater survival benefits.

To our knowledge, this is the first study to assess various IR indices in relation to all-cause mortality among patients with DKD. Indeed, Previous research has shown that there is a link between IR and mortality. For example, a cohort study following participants for an average of 105 months found notable correlations between TyG and both all-cause and cardiovascular mortality among a population younger than 65 years (32). Our findings indicate that, among participants aged 60 and above, higher levels of TyG-BMI and METS-IR are unexpectedly associated with lower mortality rates. This association may reflect a phenomenon known as the “metabolic paradox”, whereby insulin resistance serves as an adaptive mechanism in older adults, potentially aiding the body in coping with external stressors (33, 34). In conditions of obesity or excess energy reserves, insulin resistance may help modulate energy management and protect against disruptions to homeostasis, thereby reducing mortality risk (35). Additionally, insulin resistance may play a protective role during aging by alleviating metabolic burden. For example, mice lacking insulin receptor substrate 1, despite exhibiting persistent insulin resistance, demonstrated reduced age-related markers of senescence and increased longevity (36). Similarly, another study found that IRKO+/− mice, which exhibit hyperinsulinemia due to insulin receptor gene knockout, show an extended lifespan (37). Thus, moderate insulin resistance may represent an evolutionarily conserved mechanism for lifespan regulation in mammals, potentially helping to reduce mortality risk.

Indeed, extensive research highlights the complex, nonlinear associations between IR levels and all-cause mortality. For instance, a retrospective study of 2,509 patients with atrial fibrillation revealed an L-shaped correlation between TyG-BMI and mortality rates (38); research on 1,126 patients with hypertension and coronary artery disease demonstrated a U-shaped correlation between HOMA-IR and the risk of mortality, indicating that excessively high and markedly low levels of insulin resistance elevate mortality risk (39); a prospective cohort study of 2,542 diabetic patients confirmed that METS-IR levels below a certain threshold significantly correlate with lower all-cause mortality risks (40). Our study similarly observed that the four IR indices were significantly negatively correlated with all-cause mortality below threshold points, while above these points, they were positively correlated, highlighting the complex nonlinear relationship between IR levels and mortality risks. This association may reflect the physiological behavior of endocrine hormones, which typically exhibit optimal effects within specific concentration ranges; deviations from these ranges can impair bodily functions (41). In patients with DKD, moderate IR may provide necessary energy reserves, aiding the body in effectively responding to acute illness or metabolic stress. Conversely, high insulin sensitivity, especially in elderly individuals, may suggest underlying chronic illness or declining metabolic function, thereby increasing mortality risk (42). Additionally, elevated insulin resistance is often associated with chronic inflammation and oxidative stress, which can exacerbate endothelial damage and kidney function deterioration, further increasing the risk of all-cause mortality (43). This nonlinear association suggests that both excessive and insufficient levels of insulin resistance may adversely impact health.

IR is crucial in the initiation and advancement of DKD. Initially, IR leads to changes in renal hemodynamics. Normally, insulin supports blood vessel dilation and stable blood flow through the activation of the phosphoinositide 3-kinase (PI3K) pathway. This pathway increases the activity of endothelial nitric oxide synthase (eNOS), facilitating the production of nitric oxide (NO) (44). In states of IR, this pathway becomes inhibited, resulting in enhanced activation of the mitogen-activated protein kinase pathway (MAPK/ERK) (16, 45), which increases endothelin-1 production, thereby elevating renal vascular resistance and decreasing renal blood flow, accelerating kidney damage (46, 47). Additionally, prolonged exposure of proximal renal tubular epithelial cells to high glucose levels leads to mitochondrial dysfunction (48). This occurs through the sodium-glucose transport protein 2 (SGLT2)-dependent pathway. This condition increases the production of inflammatory cytokines, apoptotic mediators, and oxidative stress factors, further impairing the kidney’s filtration mechanism and resulting in proteinuria and renal function decline, which are fundamental to the progression of DKD (49–51). Secondly, IR is intricately linked to chronic inflammation (52). It activates multiple inflammatory pathways, facilitating the activation and release of inflammatory cells and cytokines such as interleukin-1 (IL-1), IL-6, and TNF-α (53–55). These cytokines can directly damage renal cells, inducing endothelial dysfunction, extracellular matrix deposition, tubular cell death, and glomerulosclerosis, thereby accelerating renal function decline (56). Finally, fibrosis constitutes a critical pathological alteration in the advancement of DKD. Under conditions of IR, there is an imbalance in the actions of insulin and its related growth factors, including insulin-like growth factor 1 (IGF-1) and transforming growth factor-beta (TGF-β) (57, 58). In particular, TGF-β, a potent promoter of tissue fibrosis, stimulates the synthesis of collagen and other matrix proteins in the renal interstitium while inhibiting their degradation, leading to renal fibrosis (59). This fibrotic process is a key pathological route in the advancement of kidney disease to end-stage renal disease. The aforementioned mechanisms function in a synergistic manner to facilitate the onset and development of DKD.

Our study has several notable strengths. First, it is the only study to date that evaluates the predictive capacity of HOMA-IR, METS-IR, TyG, and TyG-BMI concerning all-cause mortality among patients with DKD. Second, the analysis utilizes data from NHANES, which implements a sophisticated sampling framework and follows rigorous quality control and standardization protocols, ensuring both data precision and national representativeness. Additionally, to enhance the reliability of the results, we adjusted for potential confounding covariates. However, it is important to recognize that this study also has certain limitations. First, the data are derived from a cross-sectional national survey, which may not fully capture the dynamic changes in IR over time. Second, due to database constraints, subtyping of the diabetic cohort was not feasible. Third, although we adjusted for a variety of conventional variables, we cannot completely exclude the impact of all potential confounders. Lastly, since the study population comprises American adults, the results may have limited applicability to populations in other regions. Therefore, future research should utilize broader samples and prospective designs to further validate these results and explore the application of IR management strategies in improving outcomes for patients with DKD.




5 Conclusion

The findings of our study demonstrate that four indices possess strong predictive power for all-cause mortality in patients with DKD. Each IR index shows a nonlinear relationship with all-cause mortality. Specifically, HOMA-IR exhibits an “L”-shaped curve, while TyG, TyG-BMI, and METS-IR display “U”-shaped curves. Consequently, timely identification of excessively high or low levels of IR can prompt patients to more aggressively manage diabetes and its complications, thereby reducing the risk of mortality. Nonetheless, additional research is necessary to better understand how IR indices influence mortality risk in DKD patients, especially regarding the role that distinct levels of insulin resistance might play in informing individualized treatment approaches.
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Objective

Diabetic foot ulcer (DFU) is one of the common complications in patients with diabetes mellitus (DM). In order to find a method to monitor and treat the refractory DFU, the ferroptosis level in DFU and traumatic wounds (TW) was monitored and the difference between them was analyzed. At the same time, this study further analyzed the correlation of ferroptosis levels with DM severity and DFU’s healing.





Methods

A prospective cohort study was from January, 2021 to December, 2023 in the Second People’s Hospital of Gansu province, which included 59 patients with DFU and 42 patients with TW. We then used the kit to detect the indicators related to ferroptosis, including 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA) and reactive oxygen species (ROS), in the wound exudate of the two groups of patients.





Results

The DFU group had higher ferroptosis level than the TW group (4-HNE: P = 0.003, MDA: P<0.001, ROS: P<0.001). The severity of diabetes was significantly associated with ferroptosis level in DFU patients(r = 0.936, P <0.001). The results of multiple regression analysis showed that 4-HNE (β = -0.182, P = 0.008), MDA (β = -0.478, P <0.001) and ROS (β = -0.394, P<0.001) significantly negatively predicted the healing rate of DFU.





Conclusion

As a new monitoring and therapeutic target, ferroptosis level plays an important role in predicting the healing rate of DFU and assisting clinical treatment decision-making.
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1 Introduction

Diabetic foot ulcer (DFU) is one of the serious chronic complications of diabetes. It is the main cause of disability and death in diabetes patients and brings heavy burden to the society (1). According to the definition of the international working group on diabetic feet, DFU is the foot ulcer in person with currently or previously diagnosed diabetes mellitus (DM) and usually accompanied by neuropathy and/or peripheral artery disease in the lower extremity (2). DFU is found in 19% to 30% of the world’s DM patients (3). Unlike other ulcers, DFU carries a high risk of amputation. It is estimated that on average every 20 seconds one diabetic suffers amputation due to DFU (4). The average patient spends more than $8,000 a year on DFU-related care, five times more than patients without foot ulcers (5). At the same time, unmeasured intangible costs have a significant impact on patients’ lives, including the costs of anxiety, depression, discomfort, pain, loss of independence, and other low quality of life (6). The effect of DFU on quality of life was comparable to that of breast cancer and recent myocardial infarction (7).

At present, DFU with infection and necrosis are usually treated by debridement to remove necrotic tissue, combined with glucose reduction, antibacterial and negative pressure drainage. Although some progress has been made in the treatment of DFU, there are still some patients with DFU failure to heal, eventually leading to amputation and even death. Based on the above problems, scholars of various countries are actively looking for the causes and mechanisms of DFU hard to heal. At present, there are several mainstream views on the causes of DFU, including chronic inflammation, infection, hyperoxidative stress, microcirculation disturbance, and accumulation of advanced glycation end products (AGE).

Dixon et al. identified a form of regulatory cell death distinct from apoptosis, necrosis, and other well-characterized cell death that was prevented by iron chelators and lipophilic antioxidants but not by apoptosis inhibitors, in 2012 (8). Therefore, they used the term ferroptosis to describe this iron-dependent, lipid peroxide-accumulating, nonapoptotic form of regulatory cell death. There were two main characteristics of ferroptosis: (1) in terms of cell morphology, ferroptosis resulted in cell mitochondria becoming smaller, membrane density increasing, cristae decreasing, and morphological changes in the nucleus not obvious; (2) In terms of cellular components, ferroptosis was manifested as the accumulation of lipid peroxides and the increase of reactive oxygen species (ROS) levels (9).

Recently, the relationship between ferroptosis and diabetic wound healing has received much attention. Cui et al. proposed that secretory autophagosomes (SAP) carrying cytoplasmic cargo reduce ferroptosis by decreasing generation and increasing discharge of free Fe2+ in skin repair cells, thereby accelerating wound healing in diabetes (10). Yu et al. reported that hesperidin, a naturally occurring flavonoid in citrus fruits, inhibits ferroptosis by activating SIRT3 and promotes diabetic wound healing (11). Although these studies have demonstrated a strong association between ferroptosis and diabetic wound healing, no clinical evidence has emerged in this area.

To this end, we conducted a prospective cohort study that measured the level of ferroptosis in DFU versus traumatic wounds (TW) and analyzed the correlation of ferroptosis with DM severity and ulcer healing.




2 Subjects and methods



2.1 Subject

This study is a prospective study, including 59 patients with DFU and 42 patients with TW who were hospitalized at the Second People’s Hospital of Gansu Province from January 2021 to December 2023. Inclusion criteria of patients with DFU: ≥18 years old; Wagner grade I - III; no surgical treatment before sampling. Inclusion criteria of patients with TW: ≥18 years old; injury caused by physical factors. The exclusion criteria of the two groups were: having other ischemic diseases; having serious diseases such as malignant tumor and tuberculosis; using enteral and parenteral nutrition for a long time; having mental illness or disturbance of consciousness; refusing to participate in this study.




2.2 Reagents

Lipid Peroxidation (4-Hydroxynonenal, 4-HNE) Assay Kit, Abcam, USA (ab238538); Lipid Peroxidation (Malondialdehyde, MDA) Assay Kit, Abcam, USA (ab118970); Tissue reactive oxygen species (ROS) test kit (DHE), baiaobolai, China (HR8821); Protease and Phosphatase Inhibitor; Abcam, USA(ab201119).




2.3 Data collection

After admission, the general information of the patients, including gender, age, body mass index (BMI), smoking status, alcohol consumption, blood pressure, blood glucose and blood lipids, were collected. Blood pressure (BP) includes systolic blood pressure and diastolic blood pressure; blood glucose includes fasting blood glucose (FBG), hemoglobin A1c (HbA1c) and oral glucose tolerance test for 2h’s blood glucose (OGTT(2h)); and blood lipids include triglycerides (TG) and total cholesterol (TC). At the same time, the exudation from the patient’s wound was collected. The specific process is as follows: remove the wound dressing, wash the four sides of the wound with normal saline, absorb the wound surface exudation with a syringe (1 mL), place it in a centrifuge tube (1.5 mL), and save it for 4°C. The sample was centrifuged at 3000 r/min for 10min to remove small tissue debris from the sample and absorb the supernatant for testing. 4-HNE, MDA, and ROS contents were measured in the samples to be tested using the corresponding assay kit.

Finally, the information on the DFU healing of the patients was collected. Image information was collected for the patient’s DFO at admission and 30 days after injury. During filming, a ruler placed around the DFO facilitates the late area calculation. Pictures of DFU enter into Imaging J software to calculate the ulcer area at admission (S0) and at 30 days (S30). The rate of ulcer healing was calculated by the following formula. DFU patients were usually admitted several days after injury. However, there was no healing trend in DFU before hospitalization, and the DFU area collected at hospitalization was considered the initial ulcer area during statistical analysis.

[image: Formula showing the healing rate of DFU (Diabetic Foot Ulcer) as \( S_0 - \frac{S_{30}}{S_h} \).]	




2.4 Statistical analysis

Data analysis was performed using SPSS 26.0 statistical software (IBM, Armonk, NY). Continuous variables with normal distribution were described by mean ± standard deviation, and categorical variables were described by frequency and percentage. Sex characteristics were tested by chi-square test and other subject characteristics by independent t-tests. To test whether there was any statistical difference in ferroptosis between the DFU group and the TW group, we used independent t-tests. To test the correlation between ferroptosis-related indicators and indicators of diabetes severity, a canonical correlation analysis was used. To examine the correlation between ferroptosis-related indicators and wound healing, we used multiple linear regression analysis.




2.5 Sample size estimation

According to the statistical analysis of 4-HNE, MDA and ROS contents in DFU group and TW group in the pre-experiment, K =1, α =0.05, β =0.9, Drop-out rate (DR) =10%, using power analysis and sample size (PASS) software (NCSS, Kaysville, Utah) to calculate the sample size of at least 42, 26 and 38 cases. That is, the sample size of both the final DFU group and the TW group required at least 42 cases.





3 Results



3.1 Subject characteristics

As shown in Table 1, 59 patients in DFU group and 42 patients in the TW group were included in this study. In DFU group, 25 men were included compared with 34 women, with a mean age of 63.542 ± 15.001 years. In TW group, 21 men and 21 women were included, with a mean age of 50.667 ± 18.678 years. Compared with patients with TW, patients with DFU had higher systolic BP (P =0.003), diastolic BP (P<0.001), GBG (P<0.001), HbA1c (P =0.006), OGTT (2 h) (P<0.001), TG (P<0.001), TC (P<0.001).

Table 1 | Analysis of the basic characteristics of the research object.


[image: Table comparing parameters between diabetic foot ulcer and traumatic wound groups. Parameters include age, BMI, smoking, drinking, blood pressure, FBG, HbA1c, OGTT, TG, and TC. Significant differences are noted in age, BMI, systolic and diastolic BP, FBG, HbA1c, OGTT, TG, and TC with P-values less than 0.01 or 0.001.]



3.2 Analysis of ferroptosis in DFU and TW

As shown in Table 2, 4-HNE content in DFU group was 4.470 μg/mL, which was higher than 3.76 μg/mL in the TW group, which was statistically significant (P =0.003). MDA content in DFU group was 5.665 nmol/mgprot, which was higher than 3.621 nmol/mgprot in TW group, which was statistically significant (P<0.001). ROS content in DFU group was 371.912 U/mL, higher than 272.375 U/mL in TW group, which was statistically significant (P<0.001).

Table 2 | Analysis of ferroptosis in diabetic foot ulcers and traumatic wounds.


[image: Table showing ferroptosis-related indicators for DFU and TW groups. 4-HNE levels: DFU 4.470 ± 1.311, TW 3.765 ± 0.869, P=0.003. MDA levels: DFU 5.665 ± 1.197, TW 3.621 ± 0.967, P<0.001. ROS levels: DFU 371.912 ± 107.545, TW 272.375 ± 86.714, P<0.001. Significant differences marked with P-values.]



3.3 Canonical correlation analysis of indicators of diabetes severity and ferroptosis-related indicators

The correlation between indicators of diabetes severity and ferroptosis-related indicators showed that FBG had low correlation with MDA and ROS (r = 0.374, r = 0.499), and moderate correlation with 4-HNE (r = 0.633). HbA1c was highly correlated with 4-HNE (r = 0.856), with moderate correlation with MDA and ROS (r = 0.660, r = 0.794). OGTT(2 h) was highly correlated with 4-HNE (r = 0.823), with moderate correlation with MDA and ROS (r = 0.621, r = 0.611) (Table 3). The canonical correlation analysis of indicators of diabetes severity and ferroptosis-related indicators showed that Model 1 and Model 2 were significant in the three Model groups (P< 0.05) (Table 4). However, Model 1 had a strong correlation (r = 0.936), and Model 2 had a weak correlation (r = 0.380). Based on the correlation and significance, Model 1 was selected for subsequent studies. In Model 1, the severity of diabetes has the largest absolute coefficient of FBG (1.004), representing the largest contribution of FBG to the demonstration of diabetes severity. ferroptosis had the largest absolute coefficient of MDA (0.503), representing the largest contribution of MDA to the display of ferroptosis (As described in the following formula. V and W represent a composite indicator of diabetes severity and ferroptosis, respectively).

Table 3 | The correlation of indicators of diabetes severity and ferroptosis-related indicators.


[image: Table showing correlation coefficients between biomarkers and blood glucose measures. 4-HNE has 0.633, 0.856, 0.823; MDA has 0.374, 0.660, 0.621; ROS has 0.499, 0.794, 0.611 for fasting blood glucose, hemoglobin A1c, and OGTT(2h), respectively. Significance: P<0.01 (**), P<0.001 (***).]
Table 4 | Canonical correlation analysis of diabetes severity and ferroptosis.


[image: Table comparing three models with canonical correlation coefficients, eigenvalues, Wilks statistics, F values, molecular and denominator degrees of freedom, and p-values. Model 1 shows high correlation (0.936) and significant p-value (<0.001). Model 2 has a moderate correlation (0.380) and p-value (0.040). Model 3 shows low correlation (0.167) and p-value (0.213), indicating less significance. Significance thresholds: P < 0.05, P < 0.001.]
Formula:

V = - 1.004×X1 - 0.068×X2 + 0.063×X3

W = - 0.218×Y1 - 0.503×Y2 - 0.444×Y3

(X1: Fasting blood glucose; X2: Hemoglobin A1c; X3: OGTT(2h); Y1: 4-HNE; Y2: MDA; Y3: ROS)




3.4 Multiple linear regression analysis of ferroptosis-related indicators and ulcer healing rate

Multiple linear regression analysis showed that the regression equation was significant, with F =87.992 and P<0.001. Among them, 4-HNE (β =−0.182, P =0.008), MDA (β =−0.478, P<0.001) and ROS (β =−0.394, P<0.001) significantly negatively predicted the healing rate of DFU (Table 5). These variables collectively explained 81.80% of the variation in training match satisfaction.

Table 5 | Multiple linear regression analysis of ferroptosis related indicators and ulcer healing.


[image: A statistical table displaying results for three variables: 4-HNE, MDA, and ROS. Columns include B, β, t, P, F, and after adjustment R². Significant P-values are marked with asterisks. 4-HNE values: B (-0.042), β (-0.182), t (-2.771), P (0.008**), F (87.992***), R² (0.818). MDA values: B (-0.121), β (-0.478), t (-6.005), P (<0.001***). ROS values: B (-0.001), β (-0.394), t (-5.056), P (<0.001***). Significance: P<0.01 is ** and P<0.001 is ***.]




4 Discussion

Diabetic foot ulcer, as one of the serious complications of diabetes, brings great pain and heavy economic burden to patients. The long-term hyperglycemic state of diabetic patients leads to lower extremity neuropathy, vascular lesions and immune dysfunction, greatly increasing the risk of foot ulcers and infections. In severe cases, amputation may occur (12). In-depth exploration of the pathogenesis of DFU and searching for effective treatment methods are of great significance. The phenomenon of ferroptosis has shown an important role in the occurrence and development of refractory diabetic wounds in the field of basic research, but there is currently no clinical data to support it. Therefore, in this study, we compared and analyzed DFU patients and patients with TW, focusing on exploring the relationship between ferroptosis-related indicators in DFU patients and the severity of diabetes and ulcer healing rate. We found that the DFU group had a higher level of ferroptosis. The ferroptosis level of DFU has a high correlation with the severity of diabetes and can significantly negatively predict the healing rate of DFU. These findings provide clinical support for in-depth understanding of the pathogenesis of DFU and also point out potential directions for clinical treatment.

We first conducted a comparative analysis of clinicopathological characteristics of the two groups. Compared with the TW group, patients in the DFU group were older, and metabolic indicators such as blood pressure, blood glucose, and blood lipid levels were significantly increased. The pathophysiological mechanism of diabetes can explain this phenomenon. The body of diabetic patients is in a long-term hyperglycemic state. On the one hand, it leads to protein glycosylation, affecting the synthesis and cross-linking of collagen and reducing the structural stability of the wound tissue (13). On the other hand, when the body is stimulated by high glucose, excessive reactive oxygen species are produced, exceeding the clearance capacity of the antioxidant system in the body, disrupting the balance between oxidation and antioxidant defense and affecting the normal physiological functions of the body, such as mitochondrial dysfunction (14). High blood glucose mediates pathological changes such as increased inflammatory mediators, pericyte degeneration, thickened basement membrane, endothelial hyperplasia, reduced prostacyclin synthesis, impaired vasodilation, and increased procoagulant markers in wounds by increasing the level of reactive oxygen species. These changes have a huge negative effect on the healing of DFU (15).

Ferroptosis is a newly discovered form of regulated cell death. In recent years, it has received increasing attention in the occurrence and development of refractory diabetic wounds. The reduction of iron ion levels and the dysregulation of iron-related gene expression in diabetic wounds have been reported in many studies. Exogenous iron supplementation can promote extracellular matrix deposition of type 1 and type 3 collagen (16). Moreover, inactivation of ferroportin in skin macrophages also leads to delayed wound healing, defective granulation tissue formation, and reduced formation of blood vessels and lymphatics (17). In addition to abnormal iron metabolism, excessive oxidation and lipid peroxidation are also often observed in diabetic wounds. For example, Li et al. found that compared with the control group, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and lipid peroxidation in fibroblasts and vascular endothelial cells exposed to high glucose conditions were significantly increased, and the cells showed reduced survival rate and impaired migration. In addition, in vivo and in vitro experiments have shown that ferroptosis is strongly induced in diabetic wounds (18). Furthermore, a large number of studies have shown that local application of ferroptosis inhibitors can promote angiogenesis and stem cell regeneration by inhibiting ferroptosis, thereby accelerating the healing of diabetic wounds (19–22). Therefore, it is necessary to conduct clinical research on ferroptosis in patients with DFU.

In subsequent analyses, we examined the differential expression of ferroptosis-related indicators in two groups of patients with wounds. Ferroptosis is characterized by the accumulation of iron-dependent lipid peroxidation and reactive oxygen species (ROS) (23). The biomarkers of lipid peroxidation include malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) (24). Consequently, we selected MDA, 4-HNE, and ROS as indices for evaluating ferroptosis. We observed significantly elevated levels of ferroptosis in patients with DFU, which aligns with reports in the foundational research on ferroptosis. Thereafter, we conducted a canonical correlation analysis to assess the severity of diabetes in relation to ferroptosis indicators. Canonical correlation analysis is a multivariate statistical method employed to evaluate the strength and direction of associations between two sets of variables (25). We opted for this methodology due to its capacity to account for the intricate interplay among multiple variables, enabling us to assess the overall correlation between these two sets of variables rather than evaluating the correlation between each variable individually. Our findings revealed that fasting blood glucose exhibited a moderate correlation with 4-HNE, while glycated hemoglobin and glucose tolerance tests both demonstrated a strong correlation with 4-HNE, and moderate correlations with MDA and ROS. This suggests that the severity of diabetes is closely associated with the levels of ferroptosis, with 4-HNE potentially being the most predictive indicator of diabetes severity. 4-HNE is a secondary and persistent product under conditions of oxidative stress in the body, rendering it a more reliable indicator of pathological oxidative stress than ROS (26). Numerous clinical studies have indicated that elevated 4-HNE due to diabetes can induce significant pathophysiological alterations in multiple organ systems, including the cardiovascular (27), nervous (28), gastrointestinal (29, 30), and musculoskeletal systems (31, 32). Therefore, the monitoring and intervention of 4-HNE may hold significant importance for predicting and improving the healing outcomes of DFU.

Following the outcomes of the canonical correlation analysis, we proceeded to employ multiple linear regression analysis to assess the predictive value of ferroptosis markers on the healing rate of DFU. Multiple linear regression is a statistical technique utilized to evaluate the impact of multiple independent variables on a single dependent variable (33). In this study, DFU healing rate was considered the dependent variable, while 4-HNE, MDA, and ROS were treated as independent variables. Through the multiple linear regression analysis, it was revealed that the regression equation was significant (F=87.992, P<0.001), indicating that these ferroptosis markers could significantly predict the healing rate of DFU. Collectively, the results from both the canonical correlation analysis and the multiple linear regression analysis suggest that the severity of diabetes is closely associated with the levels of ferroptosis, and ferroptosis levels can serve as predictive factors for DFU healing rates.

Our research is accompanied by a number of inherent limitations that must be recognized. Firstly, the study was conducted within a single institution with a limited sample size, which may hinder the broad applicability and generalizability of our results. Additionally, the age of the control group, consisting of trauma patients, was lower than that of the DFU cohort, and this age discrepancy could potentially skew the expression levels of the biomarkers in question, consequently impacting the predictive accuracy of the healing outcomes for DFU. Lastly, there may be unmeasured confounding variables at play, such as medication side effects and the sensitivity of detection methodologies, which might influence the expression of ferroptosis biomarkers and obscure their association with the healing process of DFU.




5 Conclusion

Our study has revealed that patients with DFU exhibit significantly higher levels of ferroptosis compared to those with traumatic wounds, and this level is negatively correlated with the severity of diabetes and the healing rate of foot ulcers. Ferroptosis-related indicators hold promise as novel monitoring and therapeutic targets for DFU.
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Background

There is limited data on the association between TyG-BMI and NAFLD in patients with Type 2 Diabetes Mellitus (T2DM). The magnitude of risk prediction and predictive efficacy of TyG-BMI for T2DM with NAFLD remains unclear.





Objective

To examine the association of TyG-BMI with NAFLD in T2DM patients and assess the effectiveness of screening using the TyG-BMI index.





Methods

We conducted a retrospective analysis of clinical data from 602 T2DM patients at an enterprise health lodge from September 2021 to November 2022. Patients were categorized into two groups: T2DM alone (n=250) and T2DM with NAFLD (n=352). The Mann-Whitney U test was used for comparing non-normally distributed continuous data between groups, while the Chi-square test was used for categorical data. Logistic regression analysis was performed to evaluate the effect of BMI, TyG index, and TyG-BMI index on NAFLD. The ROC curve was used to assess the predictive efficacy of the TyG-BMI index for NAFLD in T2DM patients.





Results

BMI predicted the development of NAFLD in T2DM patients with an area under the receiver operating characteristic (ROC) curve of 0.792 (95% CI 0.757-0.828), and the optimal cutoff value was 25.22, with 72.2% sensitivity and 71.6% specificity; The area under the receiver operating characteristic (ROC) curve of the TyG index to predict the development of NAFLD in patients with T2DM was 0.755 (95% CI 0.716-0.794), and the optimal cutoff value was 8. 945, with a sensitivity of 80.1% and a specificity of 59.2%; The area under the receiver operating characteristic (ROC) curve of TyG-BMI index to predict the development of NAFLD in T2DM patients was 0.852, (95% CI 0.822-0.882), and the optimal cutoff value was 227.385, with a sensitivity and specificity of 80.1% and 59.2%, respectively.





Conclusions

The TyG-BMI index is a significant predictor of comorbid NAFLD in T2DM patients and provides better screening performance than BMI alone. The TyG-BMI index shows promise as an early screening tool for NAFLD in T2DM patients.
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Introduction

According to the 2021 Diabetes Atlas report by the International Diabetes Federation (IDF) (1), China has the highest number of adults with diabetes. Among patients with Type 2 Diabetes Mellitus (T2DM), the incidence of Nonalcoholic Fatty Liver Disease (NAFLD) exceeds 55%, more than twice the rate in the general population (2, 3). NAFLD prevalence is high among T2DM patients, who also have a significant prevalence of obesity (up to 70%) (4) and more pronounced metabolic disorders, including glycolipid abnormalities and insulin resistance (IR).

In the early stages, T2DM with NAFLD may not present clear clinical symptoms. Common imaging diagnostic methods rely on subjective physician judgment and have limited sensitivity for detecting mild fatty liver (5). Techniques such as computed tomography (CT), magnetic resonance imaging (MRI), proton magnetic resonance spectroscopy (1H-MRS), and controlled attenuation parameters (CAP) are subject to individual variability (6, 7), and their diagnostic accuracy requires further investigation. While liver biopsy is considered the gold standard for diagnosing liver diseases, its availability and cost limit its use in routine clinical screening (8, 9). Noninvasive clinical indices that are operator-independent and not constrained by examiner variability are crucial for early screening of T2DM with NAFLD, offering simplicity and cost-effectiveness.

The triglyceride glucose index (TyG) is a convenient measure of insulin resistance. The triglyceride glucose body mass index (TyG-BMI) is a newly developed index that combines the TyG index with BMI for assessing insulin resistance. An NHANES clinical analysis (10) has shown that both TyG and TyG-BMI indexes are strongly associated with insulin resistance. The TyG index incorporates triglycerides (TG) and fasting blood glucose (FBG), while BMI includes height and weight—basic clinical indicators obtained during routine physical examinations.

However, the effects of the TyG-BMI index in the context of T2DM combined with NAFLD have not been previously reported. The risk prediction magnitude and predictive efficacy of the TyG-BMI index for T2DM combined with NAFLD remain unclear. Therefore, this study aims to provide a theoretical basis for effectively screening high-risk populations by utilizing combined indexes of TG, FBG, and BMI in T2DM patients for early detection of NAFLD.





Methods




Study design

This was a single-center cross-sectional study using a convenience sampling method with data derived from the electronic health physical examination file system of the health cabin of a machinery manufacturing enterprise in Hubei Province, China. Diabetic workers with complete information including baseline data and physical examination data were the subjects of this study. The health cabin is a pilot project of employee health management established in the enterprise by a first-class tertiary-level general hospital and a prevention and treatment center for occupational disease in 2019. The study followed the Declaration of Helsinki. Ethics approval was granted by the ethics committee of Hubei University of Medicine (NO. 2022-RE-033).





Study population

The inclusion criteria for this study were patients with T2DM who had a previous diagnosis of diabetes mellitus by a health care professional or who were being treated with glucose-lowering medications Fasting blood glucose (FBG) ≥ 7.0 mmol/L or 2 h postprandial blood glucose (2hPG) ≥ 11.1 mmol/L (11). All subjects were provided with written informed consent and agreed to participate in the study. Exclusion criteria: (1) patients with diabetic ketosis, gestational diabetes mellitus, and secondary diabetes mellitus. (2) Patients with liver disease due to alcoholic, viral, drug-induced hepatitis, autoimmune, and other genetic diseases. (3) Recent excessive drinkers on exertion (alcohol intake: men > 30 g/d women > 20 g/d). (4) Had been taking medications that affect liver function and lipid levels (e.g., aspirin, sulfonamides, estrogens) for nearly 3 months. (5) Patients who had lost > 10% of their body weight in nearly 3 months as a result of taking weight-loss medication were excluded. A total of 602 T2DM patients with complete data were included in this study through the completeness check of the questionnaire and laboratory data.





Demographic and health information

Uniformly trained investigators collected information on gender, age, marital status, cultural level, and lifestyle through the face-to-face survey. Marital status is divided into three categories: unmarried, married, and other. The educational level was classified into three categories: junior high school and below, senior high school/junior high school, and undergraduate/specialty. Lifestyle information included smoking, alcohol consumption, and physical activity (answered “yes” or “no”).

Chronic disease history was assessed by asking participants if they had a history of diabetic ketosis, gestational diabetes mellitus, and secondary diabetes mellitus.





Anthropometric measurements

Measurements, such as weight, and height, were obtained using standard protocols. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured using an electronic sphygmomanometer, and the average value of the two records was taken.





Laboratory analysis

The laboratory test results mainly include glycated hemoglobin (HbA1c), fasting blood glucose (FBG), uric acid (UA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels. To accurately measure the above indicators, participants were told to fast for 8-12 hours before taking blood samples. All blood samples were stored in the refrigerator at minus 20 degrees. Measurements were performed utilizing a fully automated biochemical analyzer and an integrated biochemical and immunological machine (model: Abbott A3600, CI16200).





Measurement of BMI

BMI = weight/(height)2 (weight in Kg, height in m). According to the Chinese adult weight determination criteria (12): thin and normal BMI<24.0 kg/m2; overweight, 24.0 kg/m2 ≤ BMI<28.0 kg/m2; obese, BMI ≥ 28.0 kg/m2.





Ultrasonography

Fasting ≥ 8 hours was required before performing ultrasound examinations. The ultrasound experts uniformly reported the diagnosis results according to the criteria of the Chinese Guidelines for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease (2018 updated version) (13).





Triglyceride glucose-body mass index

TyG-BMI index = TyG index × BMI; TyG index = Ln (TG × GLU)/2, where the unit of TG is (mg/dl) and the unit of FBG is (mg/dl). TG, 1mmol/LTG = 88.545mg/dl TG, FBG unit conversion formula is: 1mmol/LFBG = 18.02mg/dl FBG (14).





Sample size calculation principles

This study was a cross-sectional study, and based on the results of reviewing previous survey studies, the global prevalence of T2DM combined with NAFLD was approximately 55.5%, set two-sided α= 0.05, a tolerance error of 5%, a sample size of n = 398 was calculated using PASS 15, considering the loss to follow-up rate of 20%, at least 478 T2DM patients need to be investigated.





Statistical analysis

Data were analyzed by Spss23.0 statistical software (IBM, Armonk, NY, USA). Medians and interquartile ranges (25th-75th) were used for non-normally distributed continuous data, and comparisons of probability distributions between the subgroups were performed using the Wilcoxon rank−sum test, and multigroup comparisons were performed using the Kruskal−Wallis test. Categorical data were described as numbers and percentages (%), and the χ2 test was used for comparison between subgroups. The influencing factors of concurrent NAFLD in T2DM patients were analyzed using logistic regression. The ROC curve analysis was used to evaluate the logistic model. All statistical tests were two-sided and the p-value of 0.05 was considered statistically significant.






Results




Clinical characteristic

Table 1 shows the basic characteristics of all participants. A total of 602 patients with T2DM were included, including 568 males and 34 females; The median age was 49 years; The number of T2DM patients with concurrent NAFLD was 352, with a detection rate of approximately 58.5%. The prevalence of NAFLD in diabetic patients with different genders, ages, marital statuses, and exercises was statistically significant (all p < 0.05). There were significant differences in SBP, DBP, HbA1c, FBG, UA, alt, AST, TC, TG, LDL-C, BMI, TyG index, and TyG-BMI index between the T2DM group with NAFLD and the pure T2DM group (all p < 0.05). HDL-C was lower in the group of T2DM comorbid NAFLD than in the T2DM group (p < 0.05). There were no significant differences in culture level, smoking status, or drinking status between the two groups (p > 0.05).

Table 1 | Comparison of BMI, TyG index, TyG-BMI index, and biochemical indexes between T2DM patients and those complicated with NAFLD.


[image: Table presents characteristics of participants across three groups: overall (n=602), T2DM (n=250), and T2DM with NAFLD (n=352). Variables include sex, age, marital status, education, smoking, drinking, exercise, and biochemical measures (e.g., SBP, DBP, HbA1c). Statistical values like chi-square, Z, and p-values are provided. Notable differences include sex distribution, education, drinking habits, and biochemical markers, with significant p-values for some variables.]




Logistic regression analysis of potential factors of NAFLD in T2DM patients

Whether T2DM patients with NAFLD or not were used as the dependent variable, BMI, TyG index, and TyG-BMI index were included as independent variables, Multivariate analysis was performed after adjusting for gender, age, marital status, exercise status, SBP, DBP, HbA1c, FBG, UA, alt, AST, TC, TG, LDL-C which were statistically different in univariate, The results showed(Table 2) that BMI, TyG index, and TyG-BMI index were associated with T2DM and risk factors for NAFLD (p > 0.05).

Table 2 | Logistic regression analysis of influencing factors of T2DM combined with NAFLD.


[image: Table displaying statistical analysis results of variables before and after adjustment. Before adjustment: BMI (β=0.437, Wald χ²=112.057, OR=1.548, CI: 1.428-1.679, p<0.001), TyG index (β=1.388, Wald χ²=88.739, OR=4.008, CI: 3.003-5.350, p<0.001), TyG-BMI index (β=0.048, Wald χ²=138.064, OR=1.049, CI: 1.041-1.058, p<0.001). After adjusting: BMI (β=0.362, Wald χ²=47.29, OR=1.436, CI: 1.295-1.592, p<0.001), TyG index (β=1.741, Wald χ²=15.699, OR=5.704, CI: 2.411-13.496, p<0.001), TyG-BMI index (β=0.042, Wald χ²=52.479, OR=1.042, CI: 1.031-1.054, p<0.001).]




ROC curves to predict BMI, TyG index, and TyG-BMI indices for the risk of comorbid NAFLD in patients with T2DM

Considering T2DM patients with NAFLD as a positive diagnosis, the results of ROC curve analysis and AUC and their corresponding 95% CIs for BMI, TyG index, and TyG-BMI index are shown in Figure 1. TyG-BMI index showed the largest AUC (0.852, 95% CI 0.822-0.882), followed by the BMI (0.792, 95% CI 0.757-0.828) and TyG index (0.755, 95% CI 0.716-0.794) in all subjects (p < 0.001). BMI had a diagnostic cut-off value of 25.22, with a sensitivity of 72.2%, and a specificity of 71.6% for T2DM patients with NAFLD. TyG index had a diagnostic cut-off value of 8. 945, a sensitivity of 80.1%, and a specificity of 59.2% for T2DM patients with NAFLD. TyG-BMI index had a diagnostic cut-off value of 227.385, a sensitivity of 81.8%, and a specificity of 72.4% for T2DM patients with NAFLD. The results indicated that the diagnostic effect of the TyG-BMI index was better than that of other parameters, and the TyG-BMI index was characterized by its potential clinical value for T2DM patients with NAFLD.

[image: ROC curve comparing sensitivity and 1-specificity for BMI, TyG, and TyG-BMI against a reference line. TyG-BMI shows the highest sensitivity across various levels of specificity.]
Figure 1 | ROC curve of BMI, TyG index, and TyG-BMI index for predicting the risk of NAFLD in T2DM patients.






Discussion

The recent changes in the prevalence of NAFLD parallel the epidemic trends of obesity and T2DM, and the prevalence of T2DM patients with NAFLD has increased year by year. Previous studies have shown that approximately 57% - 80% of patients with T2DM had concurrent NAFLD (15, 16). Chinese expert consensus proposed that clinical screening for T2DM patients with NAFLD should be given full attention (13). In this study, we initially investigated the evaluation and predictive value of BMI, TyG index, and TyG-BMI index on the risk of NAFLD in T2DM patients. The prevalence of NAFLD among T2DM patients in the machinery manufacturer was 62.0%, which was similar to the results of Dong et al. (17). This study showed that the glycolipid metabolism disorder was more obvious in the group of T2DM comorbid NAFLD than in the T2DM group, and a higher prevalence level of NAFLD should be paid more attention by enterprise managers. Other studies have shown that if people have T2DM comorbid NAFLD, the risk of metabolic abnormalities, extrahepatic target organ damage, and cardiovascular complications would gradually increase, which may further promote the progression of NAFLD-related hepatitis and cirrhosis and increase the risk of developing end-stage liver disease (18–20). If the health of workers is guaranteed, it will greatly improve production efficiency and reduce the corporate medical burden.

BMI is currently one of the most commonly used measures to judge a healthy weight. Studies have implicated obesity and IR as a shared pathogenesis of T2DM with NAFLD. Zhai MX and other studies found that the prevalence of comorbid NAFLD in patients with T2DM increased with increasing BMI, the elevation was most pronounced when BMI was ≥ 25 kg/m2 (18). The results of relevant studies similarly (17–20) suggested that BMI or obesity was an important risk factor for T2DM combined with NAFLD (21–23). Consider the reason for this as overweight/obesity and IR through body compensation and lipolysis, forcing lipid transfer to hepatocytes and accumulation, abnormal lipid metabolism allows a sustained increase in free fatty acids in the body, impedes normal insulin secretion and IR. Patients with T2DM have increased levels of free unsaturated fatty acids in the circulation and liver caused by disturbed glycolipid metabolism, excess free fatty acids are converted into lipids intrahepatic-ally (24), and multiple factors contribute to hepatic steatosis, further inducing the formation of NAFLD.

The TyG index, a novel index proposed by Simental - mendía in 2008(14), has been recognized as a reliable marker for IR (25). The TyG-BMI index incorporates lipid, glucose, and adiposity measures. While predicting NAFLD, TyG-BMI can also assess components of the metabolic syndrome, which consists of obesity, dyslipidemia, and measures of glycemia. This study showed that TyG-BMI was a contributing factor to NAFLD in T2DM patients. Meanwhile, the results of ROC curve analysis suggested that TyG-BMI had a better value for predicting NAFLD in T2DM patients. Zhang et al. (26) found that the TyG-BMI index was the best predictor of prediabetes in adults, and the risk of T2DM patients with NAFLD increased by 2 times for every 1 SD increase in the TyG-BMI index. Based on the previous findings, it was speculated that IR may be mainly mediating the association. Studies have shown that IR can promote the development of NAFLD by inducing the increased breakdown of adipose tissue TG and de novo synthesis of intrahepatic TG (18, 27). IR was closely related to islet function, which was induced by elevated blood glucose and lipid-impaired - cell secretory function, the body’s compensatory ability to secrete insulin to maintain glucose metabolism was reduced, the inhibition of lipolysis was also reduced, interference with the liver’s normal metabolism of glycolipids, excessive free fatty acids are deposited in hepatocytes. Sustained IR manifests as high glucolipotoxicity, which can further lead to cellular stress responses, such as oxidative stress, endoplasmic reticulum stress, and lipid peroxidation. Under this environment, mitochondrial dysmetabolism of hepatocytes, and IR activates hepatic stellate cells and macrophages to secrete inflammatory factors and mediate the occurrence of adverse outcomes in liver disease (28, 29). NAFLD has a higher incidence in patients with T2DM. Combining BMI with the TyG index as a composite index of the TyG-BMI index may improve diagnostic efficacy. Composite parameters that allow for early screening and management of abnormalities may help minimize morbidity in T2DM patients with NAFLD.




Strengths and limitations

The innovation of this study lies in evaluating the relationship between BMI, TyG index, and TyG-BMI index with NAFLD in T2DM patients, and finding that the combination of TyG-BMI index with BMI has a significant effect on NAFLD in T2DM patients, with diagnostic value superior to BMI alone. However, an important limitation of this study is that the majority of participants are male, which may impact the generalizability of the results. Due to the imbalance in gender distribution, the findings may differ in female populations. Therefore, future research should validate the effectiveness of the TyG-BMI index in more diverse samples, particularly in female patients.

Currently, the combination of BMI and TyG-BMI index shows good results in screening for NAFLD in T2DM patients. To further validate these findings and address the limitations of the current study, we suggest conducting large-scale cohort studies in the future to confirm the diagnostic value of these indicators across different genders and populations.
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Background

Diabetes is one of the leading causes of death with an increasing prevalence worldwide. Diabetes-related premature mortality is largely preventable and reversible if identified and managed early. Accordingly, we intend to investigate the predictive value of uric acid to albumin ratio (UAR) for all-cause and cardiovascular death in diabetic patients.





Methods

Univariate and multivariate Cox regression analyses were performed to identify risk factors for all-cause death of diabetic patients. The receiver operating characteristic (ROC) curves and nomogram model were used to evaluate the predictive ability of variables. Kaplan-Meier survival analysis was used to display the progression risks of diabetic patients.





Results

A total of 804 diabetic patients were enrolled in the study. During the 5-year follow-up, all-cause death was found in 80 participants (9.95%) and cardiovascular death was found in 24 participants (2.99%). Age, UAR, and hsCRP were independent risk factors for all-cause death in diabetic patients after adjusting for potential confounding factors. Age and UAR had good predictive value for 1-, 3-, and 5-year all-cause death in diabetic patients, and the combination of UAR and age had the highest predictive value. An easy and intuitive prognostic nomogram model with good predictive accuracy was constructed based on age and UAR. Patients in higher quantiles of age and UAR had more rapid progression to all-cause death and higher mortality risk than patients in the lower quantiles. UAR also had good predictive value for cardiovascular death in diabetic patients.





Conclusions

UAR may be a simple, cost-effective, and reliable predictive marker for all-cause and cardiovascular death in U.S. diabetic patients. The clinical utility of UAR and nomogram based on age and UAR can help physicians identify individuals at higher risk and therefore promote prevention strategies.





Keywords: diabetes, all-cause death, cardiovascular death, uric acid to albumin ratio, nomogram model




1 Introduction

Diabetes is one of the leading causes of death and disability worldwide (1). Meanwhile, the prevalence of diabetes continues to increase which poses increasing massive challenges to public health and healthcare systems worldwide (2). According to statistics, patients with diabetes have a 1.80-fold risk of all-cause death compared to people without diabetes (3). Of these, cardiovascular disease accounts for the largest proportion of deaths (4). Due to the fact that diabetes-related premature mortality is largely preventable and reversible if identified and managed early in the disease course (1), it is of great interest to search for prognostic markers with high accuracy to reduce the burden of diabetes and increase life expectancy in later life.

Correlations between uric acid and the progression of diabetes have been widely reported (5–7). However, the results of the published articles varied across studies and the exact effects of uric acid on the prognosis of diabetes remain controversial (8). Some studies support the view that higher uric acid is associated with the progression of diabetes (9, 10). A recent study showed that higher serum uric acid levels were associated with increased risks of all-cause and cardiovascular mortality in diabetes (11). In contrast, other studies showed the potentially detrimental effects of low uric acid. It has been proven that low but not high serum uric acid is associated with higher all-cause mortality, especially in those with low protein intake (12). A higher incidence of cardiovascular events and renal disease was also observed among patients with hypouricemia (13). This discrepancy may be attributable to the fact that uric acid is also a nutritional marker (14) and a powerful antioxidant (15). It has been shown that uric acid accounts for 30 to 50% of the body’s normal antioxidant capacity (5). Meanwhile, low concentrations of uric acid are considered a consequence of poor protein intake and the presence of malnutrition (8). Therefore, a single uric acid indicator does not seem to be a good predictor for the prognosis of diabetic patients.

As the most abundant circulating protein in the plasma, albumin has various physiological functions (16, 17). Serum albumin has been regarded as an indicator of nutritional status and it is also an important circulating antioxidant (17–19). Therefore, the uric acid to albumin ratio (UAR) may coordinate nutritional status and oxidative stress to better predict the prognosis of diabetic patients. To date, however, no study has been conducted to investigate the predictive value of UAR for all-cause and cardiovascular mortality among diabetic patients.

The Lancet Commission noted that it is imperative to accurately identify and characterize the populations at highest risk (1). Accordingly, we intend to investigate the predictive value of UAR in this nationally representative population-based prospective cohort study. We discovered for the first time that UAR may be a simple, cost-effective, and reliable predictive marker for physicians to identify individuals at high risk of all-cause and cardiovascular death in diabetic patients and its predictive value outperformed single uric acid. This study may provide a novel insight into improving the outcomes of diabetic patients.




2 Materials and methods



2.1 Study design

The National Health and Nutrition Examination Survey (NHANES) is a nationally representativesurvey designed to monitor the health of the U.S. population using a stratified, multistage probability sampling design (20). This study used data from the 2015–2016 cycle of NHANES. The mortality status of the participants was determined by the public-use National Health Interview Survey Linked Mortality Files (NHIS-LMF) through December 31, 2019. Diagnosed diabetes was defined as self-reported physician-diagnosed diabetes. The primary outcome was all-cause death. Disease-specific death was determined using the International Statistical Classification of Diseases, 10th Revision (ICD-10), and heart diseases classified by the National Center for Health Statistics (NCHS) were defined as cardiovascular death. UAR was calculated as the uric acid (μmol/L) divided by the albumin (g/L). The detailed inclusion and exclusion criteria are shown in the flow diagram (Supplementary Figure 1).

The protocols of NHANES have been approved by the NCHS Ethics Review Board and written informed consent was obtained from all participants.




2.2 Statistical analysis

Normally distributed continuous variables were presented as means and standard deviations [image: Mathematical expression showing x-bar plus-minus s, representing a dataset's mean \((\bar{x})\) and standard deviation \((s)\).] , while non-normally distributed continuous variables were presented as medians with interquartile ranges (M, IQR). Categorical variables were expressed as numbers (n). Univariate Cox regression analyses were performed to evaluate risk factors for all-cause death in diabetic patients, and the hazard ratio (HR) and 95% confidence interval (CI) were calculated. The proportional hazards (PH) assumption for the Cox proportional hazards regression was tested using the Schoenfeld residuals (21). Variables with statistical significance in univariate analysis were examined for multicollinearity. Those factors without multicollinearity were selected for multivariate Cox regression analysis (22, 23). Multicollinearity was assessed by using the variance inflation factor (VIF). VIF values greater than 10 indicated the presence of multicollinearity (24). Variables with a VIF greater than 10 were eliminated from further model construction. The time-dependent receiver operating characteristics (ROC) curve and area under the ROC curve (AUC) were used to evaluate the predictive ability of the variables (25). To calculate the 1-, 3-, and 5-year individual survival probabilities, a nomogram was constructed using prognostic variables based on the results of the multivariate analysis. The concordance index (C‐index) was calculated to estimate the discrimination of the nomogram, while the calibration curves were utilized to assess the association between the predicted and observed risk for the outcomes of the nomogram (26). Participants were classified into 4 groups based on quartiles of the variables to perform survival analysis. The Kaplan-Meier survival curve was used to display the cumulative probability of survival in diabetic patients, and the statistical comparisons were carried out using the log-rank test (27). Progression risks for each group were visualized by cumulative hazard curves (28). All analyses were performed with R (R Studio, R version 4.3.1). A two-tailed P-value less than 0.05 was considered statistically significant.





3 Results



3.1 Baseline characteristics

The mean age for these 804 diabetic patients was 61.18 ± 13.36 years, and females comprised 45.77% of them. The detailed baseline characteristics of enrolled participants with diabetes can be seen in Supplementary Table 1. During the 5-year follow-up period, all-cause death was found in 80 participants (9.95%) and cardiovascular death was found in 24 participants (2.99%).




3.2 Identification of potential risk factors for all-cause death in diabetic patients

Univariate Cox proportional hazards regression was performed to identify potential risk factorsfor all-cause death in diabetic patients, and the PH assumption was tested for each variable. And wefound that gender, age, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), glycohemoglobin, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB), red blood cell (RBC), hemoglobin (Hb), platelet (PLT), high-sensitivity C-reactive protein (hsCRP), blood urea nitrogen (BUN), serum creatinine (Scr), total bilirubin (TB), lactate dehydrogenase (LDH), UAR, serum potassium, testosterone, sex hormone-binding globulin (SHBG), and marital status were associated with all-cause death in diabetic patients (Supplementary Table 2). All variables satisfied PH assumptions (Schoenfeld Test P>0.05).




3.3 Multivariate Cox proportional-hazards regression

Collinearity statistics showed that LDL-C, TC, and ApoB violated the assumption of collinearity (VIF values were 14.61, 11.98, and 11.00 respectively). Therefore, LDL-C, TC, and ApoB were not included in the multivariate model. Other variables that were statistically significant in the univariate analysis were then included in the multivariate Cox model. We found that age, UAR, and hsCRP were independent risk factors for all-cause death in diabetic patients after adjusting for potential confounding factors (Table 1).

Table 1 | Multivariate Cox regression analysis of risk factors for all-cause death.


[image: A table displaying variables with their hazard ratios (HR), confidence intervals (95% CI), p-values, and variance inflation factors (VIF). It includes sections on health metrics such as blood pressure and biochemical markers, alongside marital status comparisons. Significant p-values are highlighted, indicating important statistical relationships.]



3.4 Evaluation of the predictive value of prognostic factors

To further identify the predictive value of age, UAR, hsCRP, and their combinations, we generated time-dependent ROC curves (Figure 1). The results showed that age and UAR had a good predictive value for 1-, 3-, and 5-year all-cause death in diabetic patients at the univariate level compared with hsCRP, uric acid, and albumin (Figures 1A–E). Among the models that combined two variables, the model that combined age and UAR had the highest predictive value (Figures 1F–H). However, adding hsCRP as a predictor did not improve the predictive value of the combination of age and UAR (Figure 1I).

[image: Nine line graphs display Receiver Operating Characteristic (ROC) curves for models over one, three, and five years, with varying AUC values. Panels (a) to (i) each present unique ROC curve data, with true positive rate plotted against false positive rate. Legends indicate different time periods, and diagonal reference lines are included.]
Figure 1 | The ROC curve of (A) Age, (B) hsCRP, (C) Uric acid, (D) Albumin, (E) UAR, (F) UAR+hsCRP, (G) Age+hsCRP, (H) Age+UAR, (I) Age+UAR+hsCRP in predicting 1-, 3-, and 5-year all-cause death in diabetic patients The red lines represent the predictive value of the variables for 1-year all-cause mortality. The green and blue lines represent the predictive value for 3-, and 5-year all-cause mortality respectively. AUC stands for Area under the ROC Curve.




3.5 Construction and evaluation of a prognostic nomogram

Since the model that combined age and UAR had the best predictive value for 1-, 3-, and 5-year all-cause death in diabetic patients, we constructed a prognostic nomogram model based on age and UAR. Total points were obtained based on the predicted score calculated from the nomogram. Then, 1-, 3-, and 5-year survival probability was calculated using the nomogram’s total score axis. The prognostic nomogram based on age and UAR is shown in Figure 2. The C-index value for the nomogram was 0.84. The calibration curves showed that the calibration line and reference line almost entirely coincided, indicating that the nomogram model had a good predictive accuracy (Figure 3).

[image: Nomogram displaying multiple scales: Points, Age (ranging from 15 to 80), UAR (2 to 28), Total Points (0 to 160), and Linear Predictor (negative 6 to 6). Survival probability scales for one-year, three-year, and five-year intervals range from 0.95 to 0.05.]
Figure 2 | The 1-, 3-, and 5-year survival probability nomogram based on age and UAR.

[image: Three graphs labeled a, b, and c show calibration plots comparing actual and nomogram-predicted probabilities of one-year, three-year, and five-year survival, respectively. Each plot includes a red line indicating prediction trends and blue error bars representing actual observed data points.]
Figure 3 | Calibration curves for (A) 1-year, (B) 3-year, and (C) 5-year survival probability nomogram The gray line indicates the reference line, and the red line indicates the calibration line obtained from the nomogram model.




3.6 Survival analysis for all-cause death

To further investigate the prognostic value of the variables, we performed survival analysis using age, UAR, and hsCRP as categorical variables. The quartile range for age was quartile 1 (Q1: 19-53), quartile 2 (Q2: 54-63), quartile 3 (Q3: 64-71), and quartile 4 (Q4: 72-80). The quartile range for UAR was quartile 1 (Q1: 2.21-6.33), quartile 2 (Q2: 6.34-7.83), quartile 3 (Q3: 7.84-9.30), and quartile 4 (Q4: 9.31-27.67). The quartile range for hsCRP was quartile 1 (Q1: 0.08-1.2), quartile 2 (Q2: 1.3-3.1), quartile 3 (Q3: 3.2-6.7), and quartile 4 (Q4: 6.8-158.1). We found that patients in higher quantiles of age had a more rapid progression to death (Figure 4A) and higher mortality risk (Figure 4B) than patients in the lower quantiles (P<0.0001). Similar findings were also observed in UAR group stratification (Figure 5). However, no significant difference was seen in the hsCRP-stratified groups (Figure 6, P=0.340).

[image: Kaplan-Meier survival curves comparing different age classifications are shown in two graphs. Graph (a) displays survival probability over 60 months, highlighting a significant difference (P < 0.0001). Graph (b) illustrates cumulative event rates over the same period, with distinguishable trends for each age group. Tables beneath each graph indicate numbers at risk across time points.]
Figure 4 | (A) Kaplan-Meier survival curve and (B) cumulative risk curve of 5-year all-cause death in diabetic patients stratified by age.

[image: Two graphs labeled "a" and "b" analyze survival data. Graph "a" presents a Kaplan-Meier curve with survival probability over time for four classifications, showing distinct separation and a p-value less than 0.0001. Graph "b" shows a cumulative event rate over time for four groups (Q1 to Q4) with the same p-value. Both graphs include tables indicating the number at risk at specific times.]
Figure 5 | (A) Kaplan-Meier survival curve and (B) cumulative risk curve of 5-year all-cause death in diabetic patients stratified by UAR.

[image: Panel a shows a Kaplan-Meier survival curve comparing four treatment groups over 60 months with a p-value of 0.530. The number at risk is displayed below. Panel b presents a cumulative incidence curve for the same groups, with a p-value of 0.260 and corresponding risk numbers.]
Figure 6 | (A) Kaplan-Meier survival curve and (B) cumulative risk curve of 5-year all-cause death in diabetic patients stratified by hsCRP.




3.7 Survival analysis for cardiovascular death

Since a large proportion of diabetic patients will die of or experience cardiovascular disease, we further analyzed the predictive value of UAR for the risk of cardiovascular death. The results showed that patients with a higher UAR quartile had a higher risk of cardiovascular death (Figure 7). The ROC curve showed that UAR had a good predictive value for 1-, 3-, and 5-year cardiovascular death (Figure 8).

[image: Line graph showing cumulative event rates over 60 months for four UAR classifications: Q1 (blue), Q2 (green), Q3 (red), and Q4 (light blue). Q1 starts highest but stabilizes, while Q3 and Q4 show significant increases over time. A table below lists the number at risk for each classification at various times. P-value is less than 0.0001.]
Figure 7 | Cumulative risk curve of 5-year cardiovascular death in diabetic patients stratified by UAR.

[image: ROC curves with true positive rate against false positive rate for predictions at 1 year, 3 years, and 5 years. The red curve represents 1 year with an AUC of 0.755, green for 3 years with an AUC of 0.746, and blue for 5 years with an AUC of 0.696. A diagonal reference line is shown.]
Figure 8 | The ROC curve of UAR in predicting 1-, 3-, and 5-year cardiovascular death.





4 Discussion

In this prospective study of a representative sample of U.S. adults, as far as we know, we discovered for the first time that UAR is a reliable predictive marker for all-cause and cardiovascular mortality in diabetic patients, and its predictive value outperformed single uric acid. The findings of the present study emphasize the importance of UAR in the risk stratification of diabetic patients, which has been underappreciated in the past. Meanwhile, we also established an easy, intuitive, and accurate nomogram to predict the 1-, 3-, and 5-year survival probability of diabetic patients. The application of this nomogram can help physicians better predict the outcome of an individual patient in clinical practice. This finding also highlights the potential benefit of joint management of hyperuricemia and nutritional status.

In the present study, age was a strong predictor of death. This may be because the mean age of the enrolled subjects was somewhat older. Although the predictive value of age was superior to UAR, age is a non-modifiable risk factor for all diseases. Available evidence suggests that even interventions commonly claimed to slow aging have little effect on most age-dependent phenotypic changes (29). Instead, UAR is a risk factor that can be modified by clinical interventions. The link between uric acid and albumin may be explained by oxidative stress and nutritional status. Traditionally, a higher serum uric acid level has been thought to be a risk factor for individuals. However, uric acid is a natural antioxidant that can scavenge reactive oxygen species, reactive nitrogen species, superoxide, hydroxyl radicals, and singlet oxygen (30). It can also reduce the consumption of other antioxidants, such as glutathione and superoxide dismutase (31). Therefore, the idea of a one-size-fits-all mentality for uric acid is outdated, as it fails to account for all the variability observed by researchers (5). Albumin is an antioxidant and anti-inflammatory protein responsible for maintaining the plasma redox state (30). Because protein-rich diets tend to contain large quantities of purines, insufficient intake of calories and protein in the control of diabetes and hyperuricemia may result in malnutrition. Therefore, integrating uric acid and albumin into a single index can better predict the prognosis of diabetic patients compared with serum uric acid or albumin alone. One possible explanation is that UAR coordinates nutritional status and oxidative stress. Since nutritional status and oxidative stress are key regulators of inflammasome activation (32), UAR may also reflect the systemic inflammation state of the body. Several other studies also demonstrated the important role of UAR. A study in a cohort of hypertensives showed that UAR is an independent predictor of high carotid intima-media thickness (33). Another study proved that UAR can be used to predict major adverse cardiac and cerebral events in aortic stenosis patients after transcatheter aortic valve implantation (34). Additionally, evidence shows that UAR is an independent predictor of new-onset atrial fibrillation in ST-elevation myocardial infarction patients (35). In the current study, we demonstrated that UAR is also a strong predictor of all-cause and cardiovascular death in diabetic patients.

It is worth mentioning that UAR is a simple and cost-effective method because uric acid and albumin were routinely tested in diabetic patients. Our proposed nomogram based on UAR and age is simple and practical with high accuracy. With this method, physicians can identify patients at high risk of all-cause and cardiovascular mortality and thus take early interventions to improve the prognosis of diabetic patients.

The strengths of this study are as follows. First, to the best of our knowledge, this is the first study to investigate the predictive value of UAR in predicting all-cause and cardiovascular death in diabetic patients. Second, this is a prospective cohort study in a nationally representative sample which gives a more reliable result. Third, we adjusted as many confounding factors as possible and adopted various predictive methods to reach a convincing conclusion. Last but not least, we established an easy, intuitive, and accurate nomogram to predict the 1-, 3-, and 5-year survival probability of diabetic patients. The application of this nomogram can help physicians better predict the outcome of an individual patient in clinical practice.

The limitations of this study are also worth mentioning. First, the questionnaire did not classify the types of diabetes. Second, the follow-up period was only five years; we were not able to assess the long-term predictive value of UAR. Third, despite our effort to adjust for risk factors, residual unmeasured confounders may exist. Lastly, while the present findings provide valuable insights into the characteristics and outcomes of diabetic patients in the U.S. population, the generalizability of these results to other populations may be limited. Hence, multinational cohorts with a longer follow-up period are needed to further verify these findings.




5 Conclusions

We discovered for the first time that UAR may be a simple, cost-effective, and reliable predictive marker for all-cause and cardiovascular death in diabetic patients and its predictive value outperformed single uric acid. Our proposed nomogram based on UAR and age is simple, intuitive, and practical with high accuracy. The clinical utility of UAR and nomogram based on age and UAR can help physicians identify individuals at higher risk and therefore promote prevention strategies. This study provides a novel insight into improving the outcomes of diabetic patients. This finding also highlights the potential benefit of joint management of hyperuricemia and nutritional status.
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Background

Mounting research suggests that insulin resistance (IR) is associated with Helicobacter pylori (H. pylori) infection. The triglyceride-glucose (TyG) index has received widespread attention due to its high sensitivity in assessing IR. This study examined the association between H. pylori infection and TyG index.





Methods

This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) 1999 - 2000. Participants were categorized into quartile groups (Q1–Q4) based on their TyG index. Weighted multivariable-adjusted logistic regression and subgroup analysis were used to explore the correlation between TyG index and H. pylori infection. Furthermore, sensitivity analysis was conducted to assess the robustness of our findings.





Results

This study included 2,918 participants, 1,101 of whom were infected with H. pylori. The mean TyG index for all participants was 8.56 ± 0.67. Patients who were H. pylori positive had higher levels of TyG index compared with H. pylori seronegative participants (8.74 ± 0.03 vs. 8.57 ± 0.03, P < 0.05). The fourth quartile of the TyG index showed the highest odds of H. pylori infection compared to Q1 (OR = 2.37, 95%CI: 1.52 to 3.71, P  <  0.001). Sensitivity analysis indicated that the association between TyG index and H. pylori infection remained strong even after excluding participants with cardiovascular diseases or taking lipid-lowering medications, as well as patients with diabetes or taking glucose-lowering medications.





Conclusions

In this study, a stable and strong positive association was found between TyG index and H. pylori infection. IR may be significantly associated with H. pylori infection. Further studies are necessary to elucidate the underlying mechanisms and potential clinical implications of these findings.
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Introduction

Helicobacter pylori (H. pylori), a gram-negative bacterium, which infects more than half of the worldwide population and has been identified as a global public health threat (1). H. pylori was classified as a class I carcinogen by the World Health Organization in 1994. It has been demonstrated that H. pylori infection may increase the risk of gastric diseases such as acute gastritis and peptic ulcer, and possibly promote the development of gastric cancer (2–4). Notably, there is growing evidence indicating a close association between H. pylori infection and diseases outside the gastrointestinal tract (5–7). When colonizing gastric epithelial cells, H. pylori not only induces local tissue inflammation or malignant transformation, but also leads to systemic and local changes in host metabolism. There is an intricate interaction between H. pylori and the regulation of body metabolism (8). In particular, the association between H. pylori infection and diabetes mellitus (DM) has attracted widespread academic attention (9, 10). Insulin resistance (IR) probably plays a key role in their association (11). IR is a precursor to type 2 diabetes mellitus (T2DM) and has been generally recognized as a unique and reliable measure. Therefore, it is crucial to understand the correlation between IR and H. pylori infection.

There is increasing evidence suggesting a significant association between IR and H. pylori infection (12–14). The triglyceride-glucose (TyG) index is a marker used to assess IR (15, 16). The TyG index has been validated as a reliable and convenient marker for IR (16). The advantages of the TyG index have been demonstrated in a number of diseases such as cardiovascular disease (17), diabetes (18), and hearing impairment (19). Zheng et al. (20) reported a significant association between higher TyG index and higher risk of kidney stone and its recurrence. Identifying new risk factors or predictive markers for H. pylori infection could have a profound impact on its early detection, prevention, and management. Given the association between IR and H. pylori infection, uncovering the relationship between the TyG index and H. pylori infection may contribute to a better understanding of the underlying pathophysiological mechanisms connecting metabolic disorders and infectious diseases. This could open new avenues for research and potentially lead to the development of novel treatment strategies.





Methods




Study design and participants

This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES), a publicly available database that employs a stratified, multistage probability sampling design to capture nationally representative samples of the nonhospitalized population (21). The survey component includes demographic data, diet, questionnaires and physical examinations, as well as laboratory tests supervised by trained medical staff. In addition, NHANES utilizes a variety of modern equipment to make data collection more reliable and efficient. All raw data used in this study were extracted from the official NHANES website (https://www.cdc.gov/nchs/nhanes/). The NHANES protocol was approved by the National Center for Health Statistics (NCHS) Research Ethics Review Board and written informed consent was obtained from each participant.

The NHANES 1999-2000 cycle was selected as it is the only survey period that included laboratory measurements for H. pylori, encompassing a total of 9,965 participants. The sample size for this study was determined by the number of eligible participants in the NHANES 1999-2000 dataset who met the inclusion criteria. A total of 2,918 participants were included in the study after excluding 2,472 individuals with missing H. pylori data, 170 with ambiguous H. pylori results, and 4,405 lacking triglyceride or glucose measurements. The inclusion and exclusion criteria are shown in Figure 1.

[image: Flowchart illustrating the selection process of participants from NHANES 1999-2000. Initially, there were 9,965 participants. Exclusions included 2,472 for missing H. pylori serology data and 170 for equivocal serology values, leaving 7,323 participants. Further exclusion of 4,405 for missing TyG index data resulted in a final sample of 2,918 participants.]
Figure 1 | Flow chart for inclusion and exclusion of the study participants.





Exposure and outcome definitions




Assessment of TyG index

The TyG index was calculated by TyG = ln [fasting triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2] (22). The concentrations of triglyceride and fasting blood glucose (FBG) were measured by enzymatic assay using an automated biochemical analyzer. Participants were required to fast for at least 8 hours but no more than 24 hours prior to the measurement of glucose and lipid. Notably, the TyG index was considered as an exposure variable within the framework of the design of this study.





H. pylori status

H. pylori infection was defined as an outcome variable. H. pylori was evaluated by detection of immunoglobulin G (IgG) antibody using Enzyme-Linked Immunosorbent Assay (ELISA) (23). Standard ELISA cut-offs were employed to categorize participants into H. pylori seropositive (optical density (OD) value ≥ 1.1) or seronegative (OD value < 0.9). Equivocal values (0.9 - 1.1) were excluded from the analysis to ensure accurate statistical outcomes in this study (23).






Assessment of covariates

The study incorporated a variety of covariates to explain potential confounders. These covariates included a range of demographic and health-related variables, including age (in years), sex, race, education level, poverty-to-income ratio (PIR), smoking status (never/former/now), alcohol use (yes/no), hypertension, diabetes, cardiovascular diseases (CVD), and body mass index (BMI). Missing covariate data were handled using multiple imputation methods. Subgroup analysis was performed by dividing age into two groups (<60 and ≥60). Race included Mexican American, non-Hispanic white, non-Hispanic black, and other race. Educational levels were categorized as below high school, high school or above high school. Participants were categorized into normal (<25 kg/m2), overweight (25 to <30 kg/m2), and obese (≥30 kg/m2) groups based on BMI. Hypertension was diagnosed by systolic blood pressure 140 mmHg and/or diastolic blood pressure ≥90 mmHg, or self-reported physician diagnosis of hypertension, or self-reported use of hypertension medication. Diabetes was diagnosed by glycated hemoglobin A1c (HbA1c) ≥ 6.5%, or self-reported physician diagnosis of diabetes, or self-reported use of glucose-lowering medications.





Statistical analysis

This study incorporates complex sample design and sample weights in accordance with NHANES analytic standards. Weighted baseline characteristics of participants were compared through H. pylori-negative and H. pylori-positive patients. Continuous variables were expressed as mean ± standard error (SE), while categorical variables were reported as frequency and weighted percentage. The baseline characteristics among the different groups were compared using Chi-square test, Student’s t test, and Fisher’s exact test, as appropriate (24). Based on previous studies, all participants population was divided into four groups (Quartile 1 (Q1), Q2, Q3, Q4) based on the quartiles of TyG index (25, 26). The logistic regression analysis used Q1 as the baseline reference category. The utilization of quartile categorization assists in detecting possible non-linear association and threshold effects between TyG index and H. pylori infection. Weighted multivariate logistic regression models were used to assess the independent association between H. pylori infection and TyG index in four different models. In Model 1, covariates were not adjusted. Model 2 was adjusted for age, sex, and race. Model 3 was adjusted for age, sex, race, education, BMI, and PIR. Model 4 was further adjusted for potential confounders, including age, sex, race, education, BMI, PIR, smoking, alcohol use, hypertension, DM, and CVD. Regression analysis results were reported as odds ratio (OR) values and 95% confidence intervals (CIs). Moreover, subgroup analyses were performed to evaluate possible heterogeneity. Interactions with age, sex, race, and BMI were tested. Subgroup covariates were analyzed using fully adjusted Model 4. To assess the robustness of our findings, sensitivity analyses were conducted by excluding individuals with cardiovascular disease, those using lipid-lowering medications, patients with diabetes, or those receiving glucose-lowering therapies. In addition, the relationship between FBG and H. pylori seropositivity was analyzed using weighted multivariable logistic regression analysis and compared with the TyG index.

All analyses were performed using R software (R version 4.3.2). P < 0.05 was considered statistically significant.






Results




Baseline characteristics of study participants

The study ultimately included a sample size of 2,918 individuals, including 1,101 (37.7%) H. pylori seropositive patients (Table 1). The weighted mean age of all individuals was 41.05 ± 0.66 years, of which 50.8% were females and 49.2% were males. The average fasting glucose and triglycerides for all participants were 98.89 ± 0.88 (mg/dL) and 136.46 ± 3.61 (mg/dL), respectively. The weighted mean TyG index was 8.62 ± 0.02. The average TyG index values were significantly higher in the H. pylori positive group (8.74 ± 0.03) compared to the H. pylori negative group (8.57 ± 0.03) (P < 0.001). The TyG index quartiles were Q1 (6.94 < TyG ≤ 8.08), Q2 (8.08 < TyG ≤ 8.50), Q3 (8.50 < TyG ≤ 8.96), and Q4 (8.96 < TyG ≤ 12.48). In addition, the H. pylori positive group showed a higher age (P < 0.001), lower education level (P < 0.001), and lower PIR (P < 0.001) compared with the H. pylori negative group.

Table 1 | Weighted baseline characteristics of participants with different H. pylori infection status.


[image: A table comparing clinical and demographic variables among three groups: overall, Helicobacter pylori negative, and Helicobacter pylori seropositive. Variables include age, sex, race, BMI, educational level, hypertension, diabetes, cardiovascular disease, smoking status, alcohol drinking, use of antidiabetic and lipid-lowering drugs, and measures of fasting blood glucose, triglycerides, and triglyceride-glucose index. P-values indicate statistical significance, with notable differences in age, race, BMI, educational level, cardiovascular disease, smoking status, and other variables.]




Higher TyG index is associated with higher likelihood of H. pylori infection

The results of weighted logistic regression were presented in Table 2.

Table 2 | ORs and 95% CIs for H. pylori infection according to TyG index.


[image: Table showing odds ratios (OR) and 95% confidence intervals (CI) for triglyceride-glucose (TyG) quantiles Q1 to Q4 across four models. Model 1 uses Q1 as a reference with no adjustments. Models 2 to 4 adjust for various factors, progressively adding adjustments for sex, age, race, education level, PIR, BMI, hypertension, cardiovascular disease, diabetes, smoking, and drinking. Quantiles Q2 to Q4 show increasing ORs across models, indicating higher odds ratios relative to Q1, with adjustments increasing the ORs in Models 2 to 4.]
The positive association between H. pylori infection and the TyG index in the Q4 quartile compared with the lowest quartile (Q1) persisted in Model 2 (OR = 2.29; 95%CI: 1.43 to 3.68) and Model 3 (OR = 2.51; 95%CI: 1.70 to 3.71). After adjusting for all potential confounders in Model 4, we found a progressive and significant increase in the risk of H. pylori seropositivity in increasing quartiles of the TyG index. Specifically, the fourth quartile of the TyG index showed the highest odds of H. pylori infection compared to Q1, with an OR of 2.37 (95%CI: 1.52 to 3.71, P < 0.001).





Subgroup analysis

The results of subgroup analyses are displayed in Figure 2. Interestingly, the positive association between TyG index and H. pylori infection was pronounced in participants under 60 years of age (OR = 1.58; 95% CI: 1.21 to 2.06), Mexican Americans (OR = 1.90; 95% CI: 1.32 to 2.71), non-Hispanic white (OR = 1.74; 95% CI: 1.31 to 2.32), and individuals with a BMI < 30. However, no correlation with the P for interaction meeting the statistical significance was detected in all subgroup analyses, indicating that the association was not dependent on age, sex, race, and BMI (P  >  0.05).

[image: Forest plot depicting odds ratios (OR) with 95% confidence intervals for various subgroups: age, sex, race, and BMI. Significant results with p-values below 0.05 include age groups, sex, Mexican American race, and normal BMI. The OR for these subgroups indicates varying levels of association, with p-values for interaction showing non-significant heterogeneity across subgroups.]
Figure 2 | Subgroup analysis for the association between the TyG index and H. pylori infection.





Sensitivity and additional analyses

Sensitivity analysis indicated that the association between TyG index and H. pylori infection remained strong even after excluding participants with CVD or taking lipid-lowering medications, as well as patients with diabetes or taking glucose-lowering medications (Supplementary Table 1). To assess whether TyG index is more closely related to H. pylori infection than FBG, the relationship between FBG and H. pylori infection was further analyzed. Compared to the reference group in the lowest quartile, participants in the highest quartile of FBG showed an OR of 1.81 (95% CI: 1.30 to 2.51) in Model 4 (Supplementary Table 2), which was lower than that observed in the highest quartile of TyG index (OR = 2.37; 95%CI: 1.52 to 3.71).






Discussion

Previous studies have reported the relevance of H. pylori infection to several other pathologic factors (23, 27–29). Interestingly, Xiong et al. found that higher dietary inflammatory index (DII) was associated with an increased risk of H. pylori infection and was related to a higher risk of all-cause mortality only in H. pylori infected individuals (23). The DII is a scoring system that evaluates the potential inflammatory levels of dietary components. Inflammation has been reported to be positively associated with IR (30). In addition, gastric H. pylori colonization has been reported to be correlated with impaired glucose tolerance (27). A Japanese cross-sectional study showed that H. pylori infection significantly and independently promoted IR in a large asymptomatic population (11). The TyG index, on the other hand, is a new indicator that has been used to assess IR status in recent years. The main finding of this study was that H. pylori infection was positively associated with TyG index. The mean value of TyG index for all participants in this study was 8.62 ± 0.02. The mean TyG index values for H. pylori seropositivity and seronegativity were 8.74 ± 0.03 and 8.57 ± 0.03, respectively. Subgroup analyses and interaction tests showed that the association was not dependent on age, sex, race, and BMI. A clinical study showed that H. pylori seropositivity was associated with higher homeostatic model assessment for IR (HOMA-IR) values in patients with DM (31). Besides, a NHANES-based study reported a significant association between H. pylori seropositivity and metabolic score for IR (METS-IR) (32). These evidences further support the correlation between H. pylori infection and IR. Our findings are consistent with those of previous studies but provide additional insight into the extent of the association between H. pylori infection and TyG index.

The potential mechanisms explaining the relationship between TyG index and H. pylori infection remain to be further explored, and there may be several possible explanations as follows. Firstly, H. pylori seropositive patients suffer from poor IR. The study revealed a correlation between H. pylori infection and IR in pediatric populations (33). In addition, a meta-analysis involving 206,911 individuals also demonstrated that a higher risk of H. pylori infection was associated with IR (13). A randomized, double-blind, placebo-controlled trial demonstrated that the eradication of H. pylori improved glucose homeostasis in patients with T2DM by decreasing pro-inflammatory factors and fasting insulin levels (34). Mechanistically, the higher expression of suppressor of cytokine signaling 3 (SOCS3) is thought to exacerbate IR (35, 36). In vivo and in vitro experiments have shown that H. pylori infection could up-regulate SOCS3 expression by down-regulating miR-203 (12). Knockdown of SOCS3 attenuates H. pylori-induced impairment of insulin signaling (12). It has been shown that H. pylori infection affects the production of metabolic hormones involved in energy homeostasis (37), which may be another potential mechanism for H. pylori-related IR. Interestingly, it was revealed that diet-induced IR exacerbated by H. pylori may be associated with gut dysbacteriosis (14). Another report emphasized that there is a continuous crosstalk between H. pylori and the gut microbiota, which is involved in intestinal inflammation (37). In addition, studies suggest that the role of H. pylori in impaired glucose tolerance may be enhanced by higher BMI levels (14, 27). Notably, H. pylori infection has also been reported to be associated with higher HbA1c level and the development of T2DM (27, 38). Although increasing studies have reported a positive association between H. pylori and IR (11, 13), large-scale prospective studies are still needed to validate their association in the future.

Secondly, reverse causality may also explain the relationship between higher levels of TyG and higher odds of H. pylori infection. Notably, a higher TyG index not only implies IR, but also symbolizes adverse health conditions associated with diabetes, cardiovascular disease, obesity, hypertension, metabolic syndrome, and disorders of lipid metabolism (39–41). A hospital-based case study tested fecal antigen on 148 participants and showed that patients with DM were more likely to be infected with H. pylori in comparison with non-diabetic individuals (42). Diabetes-induced IR and chronic inflammation impair cellular and humoral immunity in patients, thereby enhancing individuals’ susceptibility to infection (43). Indeed, diabetic patients are also associated with impaired gastric secretions, gastrointestinal motility dysfunction, and aggravated gastric mucosal atrophy (44, 45). The impaired mucosal immunity and damage to the gastric epithelium provide an environment for H. pylori to colonize the gastric epithelium, thus enhancing susceptibility to infection (46). Although the association between T2DM and higher rates of H. pylori infection is controversial (47–49), once infected with H. pylori, patients with T2DM may be at higher risk for gastric cancer (50). Therefore, early detection and prompt treatment of H. pylori infection should be a priority to reduce the risk of gastric cancer in patients with T2DM. Furthermore, a recent meta-analysis reported that H. pylori infection increases the risk of coronary heart disease (CHD) (51). Chronic H. pylori infection triggers immune responses and activates inflammatory cytokines (52). Prolonged exposure to these inflammatory cytokines induces a chronic inflammatory cascade and changes in lipid metabolism. Thus, these changes may contribute to the development of atherosclerosis. A large cohort and long-term follow-up study involving more than 1,100 subjects suggested that the eradication of H. pylori prevents the development of CHD (53).





Advantages and limitations

This study presents several advantages. Firstly, this study is based on the NHANES database, which is a reliable source. Secondly, confounders were adjusted to ensure that the results of this study were convincing. Thirdly, the potential effects of hypoglycemic and lipid-lowering drugs on TyG index were fully considered in this study. Sensitivity analysis was used to assess the robustness of our findings. Moreover, we assessed whether the relationship between TyG index and H. pylori seroprevalence was closer than fasting glucose.

However, some limitations of this study should not be overlooked. To begin with, this paper is based on the U.S. NHANES database, which is not fully representative of populations around the world. Then, due to the cross-sectional study design, we could not identify a causal relationship between TyG index and H. pylori infection. Therefore, our findings must be interpreted with caution and viewed as primary evidence worthy of further study. Furthermore, the use of H. pylori IgG serology as a marker of infection does not distinguish between current and past infections. This may have influenced our results, as the persistence of IgG antibodies could lead to an overestimation of active infection rates. Future studies using more specific methods, such as the urea breath test, could provide more accurate assessments of current infection status. Last but not least, This study utilized laboratory data collected during NHANES 1999-2000, which may raise concerns about the accuracy of techniques used at that time. However, NHANES adheres to rigorous quality control and standardization protocols, and the methods employed were state-of-the-art and well-validated. While the age of the data is a limitation, our findings are consistent with more recent studies (54, 55), supporting the robustness of our results.





Conclusions

Our findings demonstrate a significant positive association between TyG index levels and risk of H. pylori infection, suggesting its potential utility as a predictive biomarker. Nevertheless, additional large-scale studies are essential accurately determine the precise causal relationship underlying this association.
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Introduction

The potassium voltage-gated channel subfamily Q member 1 (KCNQ1) gene is recognized as a type 2 diabetes mellitus (T2DM) susceptibility gene. However, there is limited data regarding the association between KCNQ1 gene polymorphisms and gestational diabetes mellitus (GDM) susceptibility in China. To explore the association between KCNQ1 gene polymorphisms and GDM susceptibility in a Chinese population.





Methods

We conducted a case-control study including 500 pregnant women with GDM and 502 pregnant women with normal glucose tolerance (as controls). Blood samples and clinical data were collected. KCNQ1 gene rs2237897, rs163184, rs151290, and rs2237892 were genotyped by SNPscan™ genotyping assay. Using SPSS V.26.0, statistical analysis was performed to explore the association of KCNQ1 gene polymorphisms with GDM and genotypes with blood glucose levels. Meta-analysis was further validated in different populations.





Results

After being adjusted for confounding factors (age, parity, pre-pregnancy BMI (pre-BMI) and blood pressure) and Bonferroni correction, rs2237897 showed an association with decreased GDM risk in codominant heterozygous (CT vs. CC: OR = 0.537; 95% CI: 0.354-0.816; P = 0.004) and overdominant models (CT vs. CC+TT: OR = 0.533; 95% CI: 0.355-0.801; P = 0.002) in pregnant women aged < 30 years. However, rs2237892, rs151290, and rs163184 did not found associations with GDM after Bonferroni correction. Meta-analysis showed that rs2237892 was associated with decreased GDM risk in different races in dominant (TC+TT vs. CC: OR = 0.830; 95% CI: 0.699-0.985; P = 0.033), recessive (TT vs. CT+CC: OR = 0.733; 95% CI: 0.612-0.877; P = 0.001), codominant homozygous (TT vs. CC: OR = 0.679; 95% CI: 0.562-0.820; P < 0.001), codominant heterozygous (TC vs. CC: OR = 0.843; 95% CI: 0.753-0.945; P = 0.003) and allele models (T vs. C: OR = 0.852; 95% CI: 0.740-0.982; P = 0.027).





Conclusion

KCNQ1 rs2237897 is associated with decreased GDM risk in a Chinese population. Although rs2237892 did not found association with GDM risk in our subjects, meta-analysis confirmed that rs2237892 is associated with reduced GDM risk across different populations. Further studies are needed to confirm these findings and elucidate the mechanisms.





Keywords: gestational diabetes mellitus, potassium voltage-gated channel subfamily Q member 1, single nucleotide polymorphism, rs2237897, rs163184, rs151290, rs2237892




1 Introduction

Gestational diabetes mellitus (GDM) is a disorder of glucose tolerance first identified during pregnancy, and its prevalence continues to increase around the world (1, 2). A global observational study reported that the prevalence of GDM varied from 9.3% to 25.5%, with an overall prevalence of 17.8% (3). GDM can cause perinatal complications such as gestational hypertension and preeclampsia, as well as lead to adverse pregnancy outcomes like abortion, preterm birth, macrosomia, neonatal respiratory distress syndrome, and neonatal hypoglycemia (4). Although the exact pathogenesis of GDM remains unclear, evidence suggests that it involves a complex interplay of genetic, environmental, and metabolic factors. Single nucleotide polymorphisms (SNPs), common genetic variations in the human genome, have been implicated in the susceptibility to certain diseases, including type 2 diabetes mellitus (T2DM) and GDM. Genes associated with T2DM susceptibility and involved in pancreatic beta cell function, insulin sensitivity, and glucose regulation are potential candidate genes for GDM (5).

The potassium voltage-gated channel subfamily Q member 1 (KCNQ1) gene, located on chromosome 11 (11p15.5), encodes the α subunit of the voltage gated K+ channel (Kv7.1) and is expressed in the human pancreas. This channel plays a critical role in insulin secretion. Inhibition of the KCNQ1 gene in pancreatic beta cells can increase insulin secretion and insulin granules exocytosis, whereas overexpression decreases insulin exocytosis and secretion, thereby enhancing T2DM susceptibility (6, 7). A genome-wide association study (GWAS) in a Japanese population first identified KCNQ1 as a risk gene for T2DM, and then subsequently confirmed in Chinese, Koreans, Swedes, and Danes (8–14). The studies on KCNQ1 polymorphisms and GDM risk have been conducted in various populations, including Chinese, Korean, Japanese, Saudi, Mexican, Pakistani, and Caucasian (15–23). However, in China, research on KCNQ1 polymorphisms has primarily focused on T2DM, with few studies on GDM. Moreover, research on GDM and genetic polymorphisms in the Chinese population has mainly focused on rs2237892, with no reports on rs2237897, rs151290, and rs163184. Against this backdrop, we aimed to investigate the association of KCNQ1 gene polymorphisms (rs2237897, rs163184, rs151290, and rs2237892) with GDM risk in a Chinese population, providing valuable theoretical insights for the early detection and prevention of GDM.




2 Materials and methods



2.1 Study subjects

From 1 August 2021 to 31 January 2022, the study recruited 1002 participants at Shunde Women and Children’s Hospital, Guangdong Medical University. The subjects included in this study are the same as those studied by Zeng et al. (24).

According to the diagnostic criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG), all pregnant women underwent a 75g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation, measuring plasma glucose at fasting, 1 hour, and 2 hours. The OGTT was conducted in the morning following an 8-hour fasting period. GDM was diagnosed if glucose levels exceeded any of the following thresholds: fasting of 92 mg/dL (5.1 mmol/L), 1-hour of 180 mg/dL (10.0 mmol/L), 2-hour of 153 mg/dL (8.5 mmol/L) (25). Based on the results of OGTT, we divided the pregnant women into a case group with GDM and a control group with normal glucose tolerance.

Exclusion criteria were: aged < 18 years; not Han nationality; patients with a previous history of hyperthyroidism, diabetes, Cushing’s syndrome, or other conditions affecting blood glucose levels; patients with hypertension, hepatic insufficiency, renal insufficiency, severe cardiovascular disease, or pregnancy complications; patients taking hypoglycemic drugs; participants unable to participate in the study or unwilling to provide written informed consent. After exclusion, we included 1002 pregnant women (500 cases with GDM and 502 controls without diabetes) in KCNQ1 rs163184, rs151290, and rs2237892 and 1000 pregnant women (500 cases with GDM and 500 controls without diabetes) in KCNQ1 rs2237897.

The participants provided their informed consent, and the study received Ethics Committee approval of Shunde Women and Children’s Hospital of Guangdong Medical University, adhering to the guidelines of the Helsinki Declaration.





2.2 Data collection

The study involved the collection of clinical and biochemical data from the participants, including age, pre-pregnancy height and weight, blood pressure, blood glucose levels, parity, neonatal weight, and gestational age. The calculation of pre-pregnancy body mass index (pre-BMI) followed the formula: BMI (kg/m2) =weight (kg)/height2 (m2).




2.3 SNP genotyping

Genomic DNA was extracted from two ml peripheral venous blood of pregnant women using the QIAamp DNA Blood Kit (Qiagen, Germany). The SNPscan™ genotyping assay (Genesky Technologies Inc., Shanghai, China) was utilized to genotype the SNPs.




2.4 Statistical analyses

Statistical analyses were conducted using SPSS V.26.0. Categorical variables were presented as frequencies and percentages, while continuous numerical variables were expressed as “mean ± standard deviation”. Differences in baseline characteristics between the case and control groups were compared using the independent samples t-test and chi-square test. The chi-square test was also used to evaluate Hardy-Weinberg equilibrium (HWE) in the control group. Genotype and allele frequencies for each SNP were determined. Logistic regression analysis was employed to investigate the association between KCNQ1 genetic polymorphisms and the risk of GDM, utilizing six genetic models: dominant, recessive, overdominant, allele, codominant homozygous, and codominant heterozygous. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to quantify the relationship between KCNQ1 polymorphisms and GDM risk, adjusting for potential confounders including age, parity, pre-pregnancy body mass index (pre-BMI), diastolic blood pressure, and systolic blood pressure. Stratified analyses by age and pre-BMI were performed to further explore the relationship between genetic polymorphisms and GDM risk. One-way ANOVA was applied to assess the correlation between genotype and continuous outcomes such as blood glucose levels, gestational age, and neonatal weight. Linkage disequilibrium (LD) and haplotype analyses were performed using the SHEsis.plus platform (http://shesisplus.bio-x.cn/SHEsis.html), excluding haplotypes with frequencies below 0.03. The significance level of α = 0.05 was chosen, and P < 0.05 were considered statistically significant. The Bonferroni correction was applied to account for multiple testing, specifically considering the number of independent genetic variants, which adjusted the significance threshold to α < 0.0125 (calculated as 0.05 divided by 4).




2.5 Meta-analyses

A systematic literature search was performed using PubMed and Google Scholar databases for articles containing the terms rs2237897, rs163184, rs151290, rs2237892, and gestational diabetes mellitus (GDM) (Figure 1). The inclusion criteria were: (a) original papers, (b) case-control or cohort studies, and (c) sufficient raw data, including the frequency of genotype distributions, OR values, and 95% CIs. Studies were excluded if they did not adhere to diagnostic criteria, had data deviating from Hardy-Weinberg equilibrium, presented overlapping data, or were purely case or family studies. A total of seven studies on rs2237892 and GDM susceptibility (including our own) (16–21) and three studies on rs151290 and GDM susceptibility (including our own) (21, 26) were selected. Six genetic models were analyzed using either a fixed effects model or a random effects model based on the level of heterogeneity. Funnel plots were used to assess publication bias, and Egger’s test and Begg’s test were employed to evaluate heterogeneity. STATA V.16.0 software was applied for the meta-analysis.

[image: Flowchart depicting the article selection process for a meta-analysis. Initially, 124 articles were identified, with 9 from PubMed and 115 from Google Scholar. Twenty-two duplicates were removed, leaving 102 articles for abstract screening. Sixty-seven irrelevant articles were excluded, resulting in 35 articles for full-text review. Seventeen articles were excluded due to irrelevance, reviews, or case reports. Nineteen articles were included for data extraction, with 12 excluded for lack of data or duplication. Finally, 7 articles were included in the meta-analysis.]
Figure 1 | Flow chart of the literature search and selection.





3 Results



3.1 General characteristics

We conducted a case-control study that included 500 subjects with GDM in the case group and 502 healthy subjects in the control group. For the KCNQ1 rs163184, rs151290, and rs2237892, the mean age, pre-BMI, systolic blood pressure, diastolic blood pressure, fasting blood glucose, 1-hour OGTT blood glucose, and 2-hour OGTT blood glucose levels were significantly higher in the case group compared to the control group (P < 0.05). Additionally, the chi-squared results showed a significant difference in parity between the two groups (P < 0.05), with a higher number of multiparas in the case group. For rs2237897, the mean age, pre-BMI, systolic blood pressure, diastolic blood pressure, fasting blood glucose, 1-hour OGTT blood glucose, and 2-hour OGTT blood glucose of the case group were significantly higher than those of the control group (P < 0.05). There was a significant difference in the parity, with more multiparous women in the case group (Supplementary Table 1). According to Chinese BMI classification, individuals are categorized as underweight if their BMI is less than 18.5 kg/m2, normal weight if their BMI is between 18.5 and 24 kg/m2, overweight if their BMI is between 24 and 28 kg/m2, and obese if their BMI is more than 28 kg/m2 (27, 28). Subjects were classified into three groups: underweight with a pre-BMI less than 18.5 kg/m2, normal weight with a pre-BMI between 18.5 and 24 kg/m2, and overweight with a pre-BMI more than 24 kg/m2. For rs163184, rs151290, and rs2237892, there was a significant difference in pre-BMI between the case and control groups (P < 0.05), with approximately 70% of pregnant women having a pre-BMI ranging from 18.5 to 24 kg/m2. The number of pregnant women with a pre-BMI ≥ 24 kg/m2 was significantly higher in the case group (Table 1). For rs2237897, the pre-BMI of the two groups was significantly different (P < 0.05), with a great number of pregnant women having a pre-BMI ≥ 24 kg/m2 in the case group (Supplementary Table 1). Aged ≥ 30 years is one of the risk factors for GDM (29). Pregnant women were divided into two groups, aged < 30 years and aged ≥ 30 years, and it was found that there were more pregnant women aged ≥ 30 years in the case group.


Table 1 | Basic and stratified characteristic of participants with KCNQ1 rs163184, rs151290, rs2237892.
	Variables
	NGT (n = 502)
	GDM (n = 500)
	t/χ2
	P



	Age (year)
	29 ± 4
	31 ± 4
	-8.562
	< 0.001


	Pre-BMI (kg/m2)
	20.53 ± 2.58
	21.51 ± 3.10
	-5.415
	< 0.001


	SBP (mmHg)
	114 ± 10
	117 ± 11
	-3.528
	< 0.001


	DBP (mmHg)
	68 ± 7
	70 ± 8
	-3.231
	0.001


	FBG (mmol/L)
	4.50 ± 0.31
	4.82 ± 0.64
	-9.745
	< 0.001


	1h-PG (mmol/L)
	7.66 ± 1.26
	10.17 ± 1.60
	-26.222
	< 0.001


	2h-PG (mmol/L)
	6.69 ± 0.99
	8.91 ± 1.59
	-25.850
	< 0.001


	Age (year)
	 
	 
	49.200
	< 0.001


	< 30
	304 (0.606)
	192 (0.384)
	 
	 


	≥ 30
	198 (0.394)
	308 (0.616)
	 
	 


	Pre-BMI (kg/m2)
	 
	 
	27.798
	< 0.001


	< 18.5
	95 (0.189)
	67 (0.134)
	 
	 


	18.5 ≤ pre-BMI < 24
	365 (0.727)
	336 (0.672)
	 
	 


	≥24
	42 (0.084)
	97 (0.194)
	 
	 


	Parity (n)
	 
	 
	8.882
	0.003


	0
	258 (0.514)
	210 (0.42)
	 
	 


	≥ 1
	244 (0.486)
	290 (0.58)
	 
	 





NGT, normal glucose tolerance; GDM, Gestational diabetes mellitus; Pre-BMI, pre-gestational body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose level; 1h-PG, 1 hour blood glucose level; 2h-PG, 2 hour blood glucose level; bold values indicate the P < 0.05.







3.2 Association of rs2237897, rs163184, rs151290 and rs2237892 with GDM



3.2.1 Overall analysis results

The minor allele frequencies of rs2237897, rs163184, rs151290, and rs2237892 were 0.287, 0.434, 0.375, and 0.295. All SNPs were located within the intronic region of the KCNQ1 gene. Additionally, each SNP in the control group was in Hardy-Weinberg equilibrium (P > 0.05) (Supplementary Table 2). After adjusting for confounding factors (age, parity, pre-BMI, diastolic and systolic blood pressure), rs2237897 showed an association with decreased GDM risk in codominant heterozygous (CT vs. CC: OR = 0.725; 95% CI: 0.549-0.957; P = 0.023), dominant (CT+TT vs. CC: OR = 0.744; 95% CI: 0.572-0.968; P = 0.027) and overdominant models (CT vs. TT+CC: OR = 0.749; 95% CI: 0.573-0.980; P = 0.035). Rs151290 showed an association with decreased GDM risk in the overdominant model (CA vs. CC+AA: OR = 0.764; 95% CI: 0.587-0.994; P = 0.045). Rs2237892 was linked to the decreased risk of GDM in codominant heterozygous (TC vs. CC: OR = 0.745; 95% CI: 0.565-0.983; P = 0.038) and overdominant models (TC vs. TT+CC: OR = 0.754; 95% CI: 0.577-0.985; P = 0.038). However, these associations lost statistical significance after Bonferroni correction for multiple testing (adjusted significance threshold P < 0.0125). No significant association was observed for rs163184 across any genetic models (Table 2).


Table 2 | The associations between KCNQ1 gene and GDM risk in overall subjects.
	Model
	Controls (%)
	Cases (%)
	Crude OR (95% CI)
	Crude P
	Adjusted OR (95% CI)
	Adjusted P



	rs2237897


	Codominant model


	CC
	242 (0.484)
	267 (0.534)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	212 (0.424)
	195 (0.390)
	0.834 (0.642-1.082)
	0.172
	0.725 (0.549-0.957)
	0.023


	TT
	46 (0.092)
	38 (0.076)
	0.749 (0.471-1.190)
	0.221
	0.805 (0.497-1.306)
	0.380


	Dominant Model


	CC
	242 (0.484)
	267 (0.534)
	1 (Reference)
	 
	1 (Reference)
	 


	CT+TT
	258 (0.516)
	233 (0.466)
	0.819 (0.639-1.049)
	0.114
	0.744 (0.572-0.968)
	0.027


	Recessive Model


	CT+CC
	454 (0.908)
	462 (0.924)
	1 (Reference)
	 
	1 (Reference)
	 


	TT
	46 (0.092)
	38 (0.076)
	0.812 (0.518-1.272)
	0.362
	0.940 (0.588-1.502)
	0.796


	Overdominant model


	TT+CC
	288 (0.576)
	305 (0.610)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	212 (0.424)
	195 (0.390)
	0.869 (0.675-1.118)
	0.274
	0.749 (0.573-0.980)
	0.035


	Allele model


	C
	696 (0.696)
	729 (0.729)
	1 (Reference)
	 
	1 (Reference)
	 


	T
	304 (0.304)
	271 (0.271)
	0.851 (0.701-1.033)
	0.103
	0.826 (0.674-1.013)
	0.067


	rs163184


	Codominant model


	TT
	153 (0.305)
	150 (0.3)
	1 (Reference)
	 
	1 (Reference)
	 


	GT
	268 (0.534)
	260 (0.52)
	0.990 (0.746-1.313)
	0.942
	0.959 (0.711-1.293)
	0.784


	GG
	81 (0.161)
	90 (0.18)
	1.133 (0.779-1.649)
	0.513
	1.174 (0.789-1.746)
	0.429


	Dominant Model


	TT
	153 (0.305)
	150 (0.3)
	1 (Reference)
	 
	1 (Reference)
	 


	GT+GG
	349 (0.695)
	350 (0.7)
	1.023 (0.781-1.339)
	0.869
	1.007 (0.758-1.338)
	0.963


	Recessive Model


	GT+TT
	421 (0.839)
	410 (0.82)
	1 (Reference)
	 
	1 (Reference)
	 


	GG
	81 (0.161)
	90 (0.18)
	1.141 (0.821-1.586)
	0.433
	1.187 (0.837-1.682)
	0.337


	Overdominant model


	GG+TT
	234 (0.466)
	240 (0.48)
	1 (Reference)
	 
	1 (Reference)
	 


	GT
	268 (0.534)
	260 (0.52)
	0.946 (0.738-1.212)
	0.660
	0.913 (0.703-1.186)
	0.487


	Allele model


	T
	574 (0.572)
	560 (0.56)
	1 (Reference)
	 
	1 (Reference)
	 


	G
	430 (0.428)
	440 (0.44)
	1.049 (0.879-1.252)
	0.597
	1.053 (0.874-1.268)
	0.587


	rs151290


	Codominant model


	CC
	190 (0.379)
	213 (0.426)
	1 (Reference)
	 
	1 (Reference)
	 


	CA
	239 (0.476)
	208 (0.416)
	0.776 (0.593-1.017)
	0.066
	0.756 (0.569-1.005)
	0.054


	AA
	73 (0.145)
	79 (0.158)
	0.965 (0.664-1.402)
	0.853
	0.975 (0.654-1.452)
	0.899


	Dominant Model


	CC
	190 (0.379)
	213 (0.426)
	1 (Reference)
	 
	1 (Reference)
	 


	CA+AA
	312 (0.621)
	287 (0.574)
	0.821 (0.637-1.057)
	0.125
	0.803 (0.615-1.048)
	0.106


	Recessive Model


	CA+CC
	429 (0.855)
	421 (0.842)
	1 (Reference)
	 
	1 (Reference)
	 


	AA
	73 (0.145)
	79 (0.158)
	1.103 (0.781-1.558)
	0.579
	1.110 (0.773-1.596)
	0.572


	Overdominant model


	AA+CC
	263 (0.524)
	292 (0.584)
	1 (Reference)
	 
	1 (Reference)
	 


	CA
	239 (0.476)
	208 (0.416)
	0.784 (0.611-1.006)
	0.056
	0.764 (0.587-0.994)
	0.045


	Allele model


	C
	619 (0.617)
	634 (0.634)
	1 (Reference)
	 
	1 (Reference)
	 


	A
	385 (0.383)
	366 (0.366)
	0.928 (0.775-1.112)
	0.419
	0.920 (0.760-1.113)
	0.389


	rs2237892


	Codominant model


	CC
	240 (0.478)
	263 (0.526)
	1 (Reference)
	 
	1 (Reference)
	 


	TC
	215 (0.428)
	192 (0.384)
	0.815 (0.627-1.059)
	0.125
	0.745 (0.565-0.983)
	0.038


	TT
	47 (0.094)
	45 (0.09)
	0.874 (0.560-1.363)
	0.552
	0.927 (0.580-1.480)
	0.750


	Dominant Model


	CC
	240 (0.478)
	263 (0.526)
	1 (Reference)
	 
	1 (Reference)
	 


	CT+TT
	262 (0.522)
	237 (0.474)
	0.825 (0.644-1.058)
	0.130
	0.782 (0.602-1.015)
	0.065


	Recessive Model


	CT+CC
	455 (0.906)
	455 (0.91)
	1 (Reference)
	 
	1 (Reference)
	 


	TT
	47 (0.094)
	45 (0.09)
	0.957 (0.623-1.470)
	0.842
	1.076 (0.685-1.692)
	0.750


	Overdominant model


	TT+CC
	287 (0.572)
	308 (0.616)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	215 (0.428)
	192 (0.384)
	0.832 (0.646-1.071)
	0.154
	0.754 (0.577-0.985)
	0.038


	Allele model


	C
	695 (0.692)
	718 (0.718)
	1 (Reference)
	 
	1 (Reference)
	 


	T
	309 (0.308)
	282 (0.282)
	0.883 (0.729-1.071)
	0.206
	0.876 (0.715-1.072)
	0.198





Adjusted P-value were calculated using logistic regression, with adjustments made for age, pre-BMI, SBP, DBP and parity. Bolded values denote statistical significance at the P < 0.0125. The control group for the SNP rs2237897 comprised 500 participants, while the control groups for SNP rs163184, rs151290, and rs2237892 each consisted of 502 participants. Correspondingly, the case groups for these SNPs (rs2237897, rs163184, rs151290, and rs2237892) each included 500 participants.






3.2.2 Stratified analysis results

The stratified analysis demonstrated that, among pregnant women aged <30 years, the rs2237897 polymorphism exhibited protective effects against GDM across multiple genetic models. In unadjusted analyses, rs2237897 showed an association with the decreased GDM risk in codominant heterozygous (CT vs. CC: OR = 0. 569; 95% CI: 0.380-0.852; P = 0.006), dominant (CT+TT vs. CC: OR = 0.660; 95% CI: 0.457-0.952; P = 0.026) and overdominant models (CT vs. CC+TT: OR = 0.566; 95% CI: 0.383-0.836; P = 0.004). After adjusting for confounding factors (age, parity, pre-BMI, diastolic and systolic blood pressure), rs2237897 showed a significant association with decreased GDM risk in codominant heterozygous (CT vs. CC: OR = 0.537; 95% CI: 0.354-0.816; P = 0.004), dominant (CT+TT vs. CC: OR = 0.625; 95% CI: 0.427-0.915; P = 0.016) and overdominant models (CT vs. CC+TT: OR = 0.533; 95% CI: 0.355-0.801; P = 0.002). Additionally, rs2237897 was associated with decreased GDM risk in codominant heterozygous and overdominant models after Bonferroni correction (Table 3). Similarly, in unadjusted analyses, rs2237892 was linked to the decreased risk of GDM in codominant heterozygous (CT vs. CC: OR = 0.624; 95% CI: 0.420-0.926; P = 0.019), dominant (CT+TT vs. CC: OR = 0.678; 95% CI: 0.471-0.976; P = 0.036), and overdominant models (CT vs. CC+TT: OR = 0.635; 95% CI: 0.433-0.931; P = 0.020) in the pregnant women aged < 30 years. Following adjustment for confounding factors (age, parity, pre-BMI, diastolic and systolic blood pressure), rs2237892 was linked to the decreased risk of GDM in codominant heterozygous (CT vs. CC: OR = 0.594; 95% CI: 0.394-0.895; P = 0.013), dominant (CT+TT vs. CC: OR = 0.661; 95% CI: 0.453-0.966; P = 0.032), and overdominant models (CT vs. CC+TT: OR = 0.605; 95% CI: 0.407-0.901; P = 0.013), but no association was found after Bonferroni correction (Table 3).


Table 3 | The associations between KCNQ1 gene and GDM risk in age < 30 years subjects.
	Model
	Controls (%)
	Cases (%)
	Crude OR (95% CI)
	Crude P
	Adjusted OR (95% CI)
	Adjusted P



	rs2237897


	Codominant model


	CC
	152 (0.502)
	116 (0.604)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	122 (0.402)
	53 (0.276)
	0.569 (0.380-0.852)
	0.006
	0.537 (0.354-0.816)
	0.004


	TT
	29 (0.096)
	23 (0.120)
	1.039 (0.571-1.890)
	0.9
	1.014 (0.544-1.889)
	0.966


	Dominant Model


	CC
	152 (0.502)
	116 (0.604)
	1 (Reference)
	 
	1 (Reference)
	 


	CT+TT
	151 (0.498)
	76 (0.396)
	0.660 (0.457-0.952)
	0.026
	0.625 (0.427-0.915)
	0.016


	Recessive Model


	CT+CC
	274 (0.904)
	169 (0.880)
	1 (Reference)
	 
	1 (Reference)
	 


	TT
	29 (0.096)
	23 (0.120)
	1.286 (0.720-2.296)
	0.395
	1.283 (0.701-2.347)
	0.419


	Overdominant model


	TT+CC
	181 (0.598)
	139 (0.724)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	122 (0.402)
	53 (0.276)
	0.566 (0.383-0.836)
	0.004
	0.533 (0.355-0.801)
	0.002


	Allele model


	C
	426 (0.703)
	285 (0.742)
	1 (Reference)
	 
	1 (Reference)
	 


	T
	180 (0.297)
	99 (0.258)
	0.822 (0.617-1.096)
	0.182
	0.796 (0.591-1.071)
	0.132


	rs163184


	Codominant model


	TT
	94 (0.309)
	53 (0.276)
	1 (Reference)
	 
	1 (Reference)
	 


	GT
	161 (0.530)
	103 (0.536)
	1.135 (0.747-1.723)
	0.553
	1.054 (0.683-1.627)
	0.811


	GG
	49 (0.161)
	36 (0.188)
	1.303 (0.755-2.250)
	0.342
	1.354 (0.756-2.426)
	0.308


	Dominant Model


	TT
	94 (0.309)
	53 (0.276)
	1 (Reference)
	 
	1 (Reference)
	 


	GT+GG
	210 (0.691)
	139 (0.724)
	1.174 (0.788-1.750)
	0.431
	1.115 (0.737-1.687)
	0.606


	Recessive Model


	GT+TT
	255 (0.839)
	156 (0.812)
	1 (Reference)
	 
	1 (Reference)
	 


	GG
	49 (0.161)
	36 (0.188)
	1.201 (0.748-1.929)
	0.449
	1.300 (0.792-2.134)
	0.299


	Overdominant model


	GG+TT
	143 (0.470)
	89 (0.464)
	1 (Reference)
	 
	1 (Reference)
	 


	GT
	161 (0.530)
	103 (0.536)
	1.028 (0.716-1.477)
	0.882
	0.942 (0.646-1.374)
	0.757


	Allele model


	T
	349 (0.574)
	209 (0.544)
	1 (Reference)
	 
	1 (Reference)
	 


	G
	259 (0.426)
	175 (0.456)
	1.128 (0.872-1.459)
	0.358
	1.128 (0.864-1.472)
	0.376


	rs151290


	Codominant model


	CC
	120 (0.395)
	84 (0.438)
	1 (Reference)
	 
	1 (Reference)
	 


	CA
	141 (0.464)
	78 (0.406)
	0.790 (0.534-1.170)
	0.240
	0.794 (0.528-1.193)
	0.266


	AA
	43 (0.141)
	30 (0.156)
	0.997 (0.579-1.716)
	0.990
	1.068 (0.603-1.891)
	0.821


	Dominant Model


	CC
	120 (0.395)
	84 (0.438)
	1 (Reference)
	 
	1 (Reference)
	 


	CA+AA
	184 (0.605)
	108 (0.562)
	0.839 (0.581-1.209)
	0.346
	0.845 (0.578-1.237)
	0.387


	Recessive Model


	CA+CC
	261 (0.859)
	162 (0.844)
	1 (Reference)
	 
	1 (Reference)
	 


	AA
	43 (0.141)
	30 (0.156)
	1.124 (0.678-1.864)
	0.650
	1.118 (0.662-1.888)
	0.677


	Overdominant model


	AA+CC
	163 (0.536)
	114 (0.594)
	1 (Reference)
	 
	1 (Reference)
	 


	CA
	141 (0.464)
	78 (0.406)
	0.791 (0.549-1.140)
	0.209
	0.800 (0.547-1.169)
	0.248


	Allele model


	C
	381 (0.627)
	246 (0.641)
	1 (Reference)
	 
	1 (Reference)
	 


	A
	227 (0.373)
	138 (0.359)
	0.942 (0.722-1.228)
	0.657
	0.945 (0.717-1.243)
	0.684


	rs2237892


	Codominant model


	CC
	148 (0.487)
	112 (0.583)
	1 (Reference)
	 
	1 (Reference)
	 


	TC
	125 (0.411)
	59 (0.307)
	0.624 (0.420-0.926)
	0.019
	0.594 (0.394-0.895)
	0.013


	TT
	31 (0.102)
	21 (0.110)
	0.895 (0.488-1.641)
	0.720
	0.927 (0.493-1.745)
	0.815


	Dominant Model


	CC
	148 (0.487)
	112 (0.583)
	1 (Reference)
	 
	1 (Reference)
	 


	CT+TT
	156 (0.513)
	80 (0.417)
	0.678 (0.471-0.976)
	0.036
	0.661 (0.453-0.966)
	0.032


	Recessive Model


	CT+CC
	273 (0.898)
	171 (0.890)
	1 (Reference)
	 
	1 (Reference)
	 


	TT
	31 (0.102)
	21 (0.110)
	1.081 (0.602-1.943)
	0.793
	1.139 (0.618-2.098)
	0.676


	Overdominant model


	TT+CC
	179 (0.589)
	133 (0.693)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	125 (0.411)
	59 (0.307)
	0.635 (0.433-0.931)
	0.020
	0.605 (0.407-0.901)
	0.013


	Allele model


	C
	421 (0.692)
	283 (0.737)
	1 (Reference)
	 
	1 (Reference)
	 


	T
	187 (0.308)
	101 (0.263)
	0.803 (0.604-1.069)
	0.133
	0.802 (0.597-1.077)
	0.142





Adjusted P-values were calculated using logistic regression, accounting for age, pre-BMI, SBP, DBP and parity; bold values indicate the P < 0.0125. In the age subgroup of less than 30 years, the control group for SNP rs2237897 consisted of 303 participants, while the control groups for SNPs rs163184, rs151290, and rs2237892 each comprised 304 participants. Similarly, the case groups for these SNPs (rs2237897, rs163184, rs151290, and rs2237892) each contained 192 participants within the same age subgroup.



Among the pregnant women with a pre-BMI ≥ 24 kg/m2, rs2237897 showed an association with decreased GDM risk in codominant heterozygous (CT vs. CC: OR = 0.418; 95% CI: 0.192-0.912; P = 0.028), dominant (CT+TT vs. CC: OR = 0.415; 95% CI: 0.195-0.884; P = 0.023), and allele models (T vs. C: OR = 0.564; 95% CI: 0.327-0.973; P = 0.040) in unadjusted analyses, but no association was found after adjusting for confounding factors and Bonferroni correction (Table 4). In unadjusted analyses, Rs151290 was found to be linked to the decreased risk of GDM in codominant heterozygous (AC vs. CC: OR = 0.431; 95% CI: 0.192-0.966; P = 0.041) and overdominant models (AC vs. CC+AA: OR = 0.423; 95% CI: 0.202-0.886; P = 0.023) among the pregnant women with a pre-BMI ≥ 24 kg/m2. After adjusting for confounding factors (age, parity, pre-BMI, diastolic and systolic blood pressure), only the overdominant model (AC vs. CC+AA: OR = 0.396; 95% CI: 0.177-0.885; P = 0.024) showed an association with the decreased risk of GDM, but no association was found after Bonferroni correction (Table 4). No other subgroups showed an association with GDM. (Supplementary Tables 3-5).


Table 4 | The associations between KCNQ1 gene and GDM risk in pre-BMI ≥ 24 kg/m2 subjects.
	Model
	Controls (%)
	Cases (%)
	Crude OR (95% CI)
	Crude P
	Adjusted OR (95% CI)
	Adjusted P



	rs2237897


	Codominant model


	CC
	14 (0.333)
	53 (0.546)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	24 (0.572)
	38 (0.392)
	0.418 (0.192-0.912)
	0.028
	0.457 (0.200-1.044)
	0.063


	TT
	4 (0.095)
	6 (0.062)
	0.396 (0.098-1.600)
	0.194
	0.785 (0.141-4.369)
	0.783


	Dominant Model


	CC
	14 (0.333)
	53 (0.546)
	1 (Reference)
	 
	1 (Reference)
	 


	CT+TT
	28 (0.667)
	44 (0.454)
	0.415 (0.195-0.884)
	0.023
	0.485 (0.218-1.080)
	0.077


	Recessive Model


	CT+CC
	38 (0.905)
	91 (0.938)
	1 (Reference)
	 
	1 (Reference)
	 


	TT
	4 (0.095)
	6 (0.062)
	0.626 (0.167-2.346)
	0.487
	1.343 (0.292-6.183)
	0.705


	Overdominant model


	TT+CC
	18 (0.428)
	59 (0.608)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	24 (0.572)
	38 (0.392)
	0.483 (0.232-1.007)
	0.052
	0.451 (0.203-1.000)
	0.050


	Allele model


	C
	52 (0.619)
	144 (0.742)
	1 (Reference)
	 
	1 (Reference)
	 


	T
	32 (0.381)
	50 (0.258)
	0.564 (0.327-0.973)
	0.040
	0.700 (0.391-1.254)
	0.230


	rs163184


	Codominant model


	TT
	14 (0.333)
	30 (0.309)
	1 (Reference)
	 
	1 (Reference)
	 


	GT
	21 (0.5)
	54 (0.557)
	1.200 (0.534-2.698)
	0.659
	1.278 (0.528-3.094)
	0.587


	GG
	7 (0.167)
	13 (0.134)
	0.867 (0.284-2.647)
	0.802
	0.710 (0.178-2.834)
	0.628


	Dominant Model


	TT
	14 (0.333)
	30 (0.309)
	1 (Reference)
	 
	1 (Reference)
	 


	GT+GG
	28 (0.667)
	67 (0.691)
	1.117 (0.516-2.418)
	0.780
	1.058 (0.465-2.407)
	0.893


	Recessive Model


	GT+TT
	35 (0.833)
	84 (0.866)
	1 (Reference)
	 
	1 (Reference)
	 


	GG
	7 (0.167)
	13 (0.134)
	0.774 (0.285-2.103)
	0.615
	0.444 (0.141-1.393)
	0.164


	Overdominant model


	GG+TT
	21 (0.5)
	43 (0.443)
	1 (Reference)
	 
	1 (Reference)
	 


	GT
	21 (0.5)
	54 (0.557)
	1.256 (0.608-2.594)
	0.538
	1.533 (0.691-3.399)
	0.293


	Allele model


	T
	49 (0.583)
	114 (0.588)
	1 (Reference)
	 
	1 (Reference)
	 


	G
	35 (0.417)
	80 (0.412)
	0.982 (0.584-1.652)
	0.947
	0.855 (0.493-1.484)
	0.579


	rs151290


	Codominant model


	CC
	13 (0.310)
	44 (0.454)
	1 (Reference)
	 
	1 (Reference)
	 


	CA
	24 (0.571)
	35 (0.361)
	0.431 (0.192-0.966)
	0.041
	0.489 (0.206-1.162)
	0.105


	AA
	5 (0.119)
	18 (0.185)
	1.064 (0.331-3.421)
	0.918
	2.153 (0.527-8.792)
	0.286


	Dominant Model


	CC
	13 (0.310)
	44 (0.454)
	1 (Reference)
	 
	1 (Reference)
	 


	CA+AA
	29 (0.690)
	53 (0.546)
	0.540 (0.251-1.162)
	0.115
	0.637 (0.282-1.441)
	0.279


	Recessive Model


	CA+CC
	37 (0.881)
	79 (0.815)
	1 (Reference)
	 
	1 (Reference)
	 


	AA
	5 (0.119)
	18 (0.185)
	1.686 (0.581-4.891)
	0.336
	2.550 (0.788-8.257)
	0.118


	Overdominant model


	AA+CC
	18 (0.429)
	62 (0.639)
	1 (Reference)
	 
	1 (Reference)
	 


	CA
	24 (0.571)
	35 (0.361)
	0.423 (0.202-0.886)
	0.023
	0.396 (0.177-0.885)
	0.024


	Allele model


	C
	50 (0.595)
	123 (0.634)
	1 (Reference)
	 
	1 (Reference)
	 


	A
	34 (0.405)
	71 (0.366)
	0.849 (0.502-1.434)
	0.540
	1.031 (0.588-1.810)
	0.914


	rs2237892


	Codominant model


	CC
	15 (0.357)
	51 (0.526)
	1 (Reference)
	 
	1 (Reference)
	 


	TC
	23 (0.548)
	38 (0.392)
	0.486 (0.224-1.054)
	0.068
	0.590 (0.261-1.334)
	0.205


	TT
	4 (0.095)
	8 (0.082)
	0.588 (0.155-2.227)
	0.435
	0.911 (0.196-4.227)
	0.905


	Dominant Model


	CC
	15 (0.357)
	51 (0.526)
	1 (Reference)
	 
	1 (Reference)
	 


	CT+TT
	27 (0.643)
	46 (0.474)
	0.501 (0.238-1.057)
	0.070
	0.611 (0.277-1.345)
	0.221


	Recessive Model


	CT+CC
	38 (0.905)
	89 (0.918)
	1 (Reference)
	 
	1 (Reference)
	 


	TT
	4 (0.095)
	8 (0.082)
	0.854 (0.242-3.007)
	0.806
	1.207 (0.289-5.035)
	0.797


	Overdominant model


	TT+CC
	19 (0.452)
	59 (0.608)
	1 (Reference)
	 
	1 (Reference)
	 


	CT
	23 (0.548)
	38 (0.392)
	0.532 (0.256-1.106)
	0.091
	0.583 (0.268-1.270)
	0.174


	Allele model


	C
	53 (0.631)
	140 (0.722)
	1 (Reference)
	 
	1 (Reference)
	 


	T
	31 (0.369)
	54 (0.278)
	0.659 (0.383-1.135)
	0.133
	0.786 (0.440-1.404)
	0.415





Pre-BMI, pre-gestational body mass index; adjusted P value calculated by logistic regression with adjustment for age, pre-BMI, SBP, DBP and parity; bold values indicate the P < 0.0125. In the subgroup defined by a pre-BMI ≥ 24 kg/m2, the control groups for SNPs rs2237897, rs163184, rs151290, and rs2237892 each comprised 42 participants. Correspondingly, the case groups for these SNPs all included 97 participants within the same pre-BMI subgroup.







3.3 Linkage disequilibrium analyses and haplotype analyses

Linkage disequilibrium was observed between rs2237892 and rs163184 (D’ = 0.99, R2 = 0.31), rs2237892 and rs151290 (D’ = 0.9, R2 = 0.56), rs163184 and rs151290 (D’ = 0.73, R2 = 0.24) (Figure 2). Haplotype analysis revealed no association with GDM risk, excluding haplotypes with frequencies below 0.03 (P > 0.05) (Supplementary Table 6).

[image: Two linkage disequilibrium graphs, A and B, display linkage data between three SNPs: rs163184, rs151290, and rs2237892. Graph A shows D' values with shades of red, indicating values of 0.73, 0.9, and 0.99. Graph B presents R² values with lighter reds, indicating values of 0.24, 0.56, and 0.31.]
Figure 2 | Linkage disequilibrium (LD) between multiple loci of the KCNQ1 gene (rs163184, rs151290 and rs2237892). (A) coefficient of linkage disequilibrium D’; (B) correlation coefficient R2.




3.4 Associations of blood glucose level, neonatal weight, and gestational age with genotype

The study examined the associations of blood glucose levels, neonatal weight, and gestational age with genotype using ANOVA. However, no significant differences were found (P > 0.05) (Supplementary Table 7).




3.5 Meta-analysis results

A total of 7 studies of rs2237892 with GDM susceptibility (including ours) and 3 studies of rs151290 with GDM susceptibility (including ours) were chosen for meta-analysis. The basic details of these studies were presented in Supplementary Table 8. Depending on the degree of heterogeneity, we used the random effects model when I2 exceeded 50% and the fixed effects model when I2 was below 50%. Egger’s and Begg’s test demonstrated no significant publication bias (P > 0.05). Funnel plots were utilized to detect the potential occurrence of publication bias. The shape of the funnel plot is symmetrical, indicating the absence of significant publication bias (Supplementary Figures 1, 2). In dominant (TC+TT vs. CC: OR = 0.830; 95% CI: 0.699-0.985; P = 0.033), recessive (TT vs. CT+CC: OR = 0.733; 95% CI: 0.612-0.877; P = 0.001), codominant homozygous (TT vs. CC: OR = 0.679; 95% CI: 0.562-0.820; P < 0.001), codominant heterozygous (TC vs. CC: OR = 0.843; 95% CI: 0.753-0.945; P = 0.003) and allele models (T vs. C: OR = 0.852; 95% CI: 0.740-0.982; P = 0.027), rs2237892 show an association with decreased GDM risk in different races (Figure 3). However, no association with GDM was found in rs151290 (Figure 4) (Table 5).

[image: Six forest plots labeled A to F display odds ratios (OR) and confidence intervals for various studies listed by author and year. Each plot includes a vertical line indicating the null value of one and a diamond representing the overall effect estimate. Individual study weights are on the right. Heterogeneity is assessed with I-squared values. Plots compare statistical results across studies with variations in ORs and confidence intervals.]
Figure 3 | Meta-analysis of the association between KCNQ1 rs2237892 and GDM susceptibility. (A) dominant model, TT+CT vs. CC; (B) recessive model, TT vs. CT+CC; (C) overdominant model, CT vs. TT+CC; (D) codominant homozygous model, TT vs. CC; (E) codominant heterozygous model, CT vs. CC; (F) allele model, T vs. (C) OR, odds ratio; CI, confidence interval; I-squared, measure to quantify the degree of heterogeneity in meta-analyses.

[image: A composite of six forest plots labeled A through F, comparing different studies. Each plot displays study IDs, odds ratios (OR) with 95% confidence intervals (CI), and weights. Wu et al. (2024), Maghfer et al. (2022), and Chon et al. (2012) are consistently featured. A diamond shape represents the overall effect with I-squared values and P-values indicating heterogeneity. Each plot has a vertical line at OR=1, indicating no effect. Differences in OR, CI, and I-squared values are observed across plots.]
Figure 4 | Meta-analysis of the association between KCNQ1 rs151290 and GDM susceptibility. (A) dominant model, AA+CA vs. CC; (B) recessive model, AA vs. CA+CC; (C) overdominant model, CA vs. AA +CC; (D) codominant homozygous model, AA vs. CC; (E) codominant heterozygous model, CA vs. CC; (F) allele model, A vs. (C) OR, odds ratio; CI, confidence interval; I-squared, measure to quantify the degree of heterogeneity in meta-analyses.


Table 5 | Result summary of genetic association studies of SNPs and their genetic model.
	Genetic model
	OR (95% CI), P < 0.05
	Heterogeneity
	meta-analysis model


	Q
	I2



	rs2237897


	Dominant model
	0.830 (0.699-0.985), P = 0.033
	P = 0.051
	52.10%
	random


	Recessive model
	0.733 (0.612-0.877), P = 0.001
	P = 0.277
	20.00%
	fix


	Overdominant model
	0.905 (0.812-1.009), P = 0.071
	P = 0.228
	26.30%
	fix


	Codominant homozygous model
	0.679 (0.562-0.820), P < 0.001
	P = 0.122
	40.30%
	fix


	Codominant heterozygous model
	0.843 (0.753-0.945), P = 0.003
	P = 0.120
	40.70%
	fix


	Allele model
	0.852 (0.740-0.982), P = 0.027
	P = 0.027
	57.80%
	random


	rs151290


	Dominant model
	0.915 (0.746-1.122), P = 0.392
	P = 0.266
	24.40%
	fix


	Recessive model
	1.075 (0.794-1.454), P = 0.641
	P = 0.826
	0.00%
	fix


	Overdominant model
	0.886 (0.723-1.086), P = 0.244
	P = 0.235
	30.90%
	fix


	Codominant homozygous model
	0.991 (0.717-1.370), P = 0.956
	P = 0.725
	0.00%
	fix


	Codominant heterozygous model
	0.891 (0.718-1.106), P = 0.294
	P = 0.200
	37.90%
	fix


	Allele model
	0.970 (0.834-1.127), P = 0.690
	P = 0.526
	0.00%
	fix





I2, I-squared variation in OR attributable to heterogeneity; Q, heterogeneity chi-squared P value; bold values indicate significant association.







4 Discussion

The KCNQ1 rs2237897 variant, located in an intronic region, has been associated with protective effects against GDM (30). This finding is consistent with a study conducted in Mexico, which identified the TTT haplotype of KCNQ1 (rs2237897, rs163184, rs2237892) as protective against GDM (22). However, a study conducted in a Chinese population found no association between KCNQ1 (rs2237892, rs2237897, rs163184) and GDM risk (31). The previous studies revealed that KCNQ1 rs2237897 was a susceptibility gene for T2DM and was associated with GDM susceptibility, particularly in Asian populations, which aligned with our findings. Our results show that rs2237897 was associated with decreased GDM risk in codominant heterozygous and overdominant models among pregnant women under 30 years old. These findings suggest that the TC genotype and T allele at rs2237897 may have protective effects against GDM, potentially modulated by age. However, the limited number of studies on the association between rs2237897 and GDM, along with some inconsistencies in the literature, suggests that the variant’s effects may vary across populations, underscoring the need for a multicenter study to further validate these findings and clarify the role of rs2237897 in GDM susceptibility.

In both Korean and Caucasian populations, no significant association was observed between GDM risk and the KCNQ1 rs151290 variant (21, 26). Our study similarly found no association between rs151290 and GDM. Consistent with these findings, our meta-analysis also did not show any association between rs151290 and GDM. The lack of association may be attributed to several factors. Firstly, the genetic effect of rs151290 on GDM susceptibility might vary across different populations, emphasizing the importance of replicating genetic associations in diverse populations. Secondly, rs151290 may exert a minimal effect on GDM risk, requiring larger sample sizes or more powered studies to detect its potential influence. Thirdly, it is possible that rs151290 is not a potential risk variant.

KCNQ1 rs2237892 showed a significant association with GDM and was linked to 1-hour and 2-hour OGTT glucose levels in Chinese, Korean, and Mexican populations (15, 16, 18, 22). Another study revealed that KCNQ1 rs2237892 was associated with increased gestational weight in American women (32). A meta-analysis of four rs2237892 studies found a positive association between the C allele and an increased risk of GDM (33). In contrast, rs2237892 was unrelated to GDM risk in Chinese, Saudi, and Caucasian populations (17, 20, 21, 34). In our study, rs2237892 did not find any association with GDM. Given the controversial outcomings of research associated with rs2237892 and GDM, a comprehensive meta-analysis is essential to investigate the impact of KCNQ1 on GDM risk. We conducted a meta-analysis and found that rs2237892 decreased GDM risk and that the T allele was a protective gene for GDM risk. In addition, studies of the association between KCNQ1 rs2237892 and GDM susceptibility were mainly in Asian populations and less in European populations, which may be related to the minor allele frequency of this SNP in different races. According to the NCBI SNP database search, the frequency of the minor allele is 34.5% in Asian populations and 6% in European populations.

However, our study did not find an association between rs163184 and GDM genetic susceptibility has been found in our study. The findings were also consistent with studies in Korean, Japanese, and Mexican populations. None of them found an association between rs163184 and GDM (19, 35–37). These findings suggest that rs163184 may not play a significant role in the genetic susceptibility to GDM, at least in the populations examined.

The potassium channel encoded by KCNQ1 plays a crucial role in insulin secretion. Overexpression of the KCNQ1 gene results in reduced glucose-induced insulin secretion (6, 7). The KCNQ1 protein is expressed in insulin-secreting INS-1 cells and the KCNQ1 inhibitor chromanol 293B can stimulate insulin secretion in the presence of tolbutamide (38). Thus, the KCNQ1 regulates the membrane potential of potassium channels in pancreatic beta cells, thereby influencing insulin secretion and pancreatic beta cell function.

Additionally, all the SNPs examined in our study are located in intronic regions, which, despite being non-coding, can impact gene expression. Introns can regulate protein expression through mechanisms such as alternative splicing, positive regulation of gene expression, nonsense-mediated decay (NMD), mRNA transport, and chromatin assembly (39). The impact of SNPs on protein expression and function can affect potassium channel activity and pancreatic islet beta cell secretory function, potentially through mechanisms such as stimulation or inhibition of gene expression, post-translational modifications, or splicing in the coding region.

Although the OGTT is the primary diagnostic method for GDM, some researchers have proposed alternative diagnostic approaches, including the use of biomarkers and genetic tests, to identify GDM risk. SNPs, common in biological genomes and occurring at single nucleotide base pairs in the human DNA sequence, are novel molecular markers. With the completion of the Human Genome Project, the development of high-throughput genotyping technology, and advances in functional genomics research, an increasing number of disease-related susceptibility genes have been discovered. The study of gene polymorphisms and GDM susceptibility can provide clues for diagnosing GDM. By testing the genotypes of susceptibility genes in pregnant women, we can determine the risk of GDM and select the susceptible group for early intervention. These findings will be crucial for advancing early diagnosis and prevention strategies for GDM, in line with the United Nations Sustainable Development Goal 3 (Good Health and Well-Being), which includes maternal health and well-being.

Our study has several limitations. First, our data and analyses are incomplete. We did not analyze serum triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) to evaluate lipid metabolism in pregnant women, nor did we have data on pancreatic islets to investigate insulin resistance and pancreatic beta cell function. We lacked data on weight changes during pregnancy, preventing us from analyzing these changes. More information on lifestyle and environmental factors, such as diet and exercise, is needed. We could not analyze the combined effects of interactions between SNPs, GDM, and other factors. Second, this study is a single-center study. Our subjects were concentrated in the Shunde Women and Children’s Hospital of Guangdong Medical University, which may not represent the entire Chinese population. The conclusions of our study need to be further proven by a multicenter study across the country. Third, GDM candidate genes were selected based on T2DM risk genes. Although GDM and T2DM share similar genetic backgrounds and pathophysiological mechanisms, they are essentially two different types of diabetes. T2DM is a chronic disease, whereas GDM develops during pregnancy and resolves after birth. Our analyses lacked data and subgroups for T2DM, preventing us from comparing differences in risk effects between GDM and T2DM. Finally, we studied single genes and did not consider the combined effects of multiple genes or the interactions between genes and proteins.

In the future, we aim to conduct a multicenter collaboration, collect individuals from different regions, and analyze the combined effects of genes, lifestyle, and environment. With the aid of molecular biology experiments and biochemical analyses, we will investigate the effects of genes on protein expression and function. Through cell biology experiments and animal studies, we will further elucidate the mechanism of the KCNQ1 risk gene and diabetes susceptibility.




5 Conclusion

The case-control study and meta-analysis revealed that the KCNQ1 gene is associated with GDM susceptibility, which may provide clues for predicting GDM susceptibility in Chinese populations. In particular, rs2237897 showed protection against GDM susceptibility in pregnant women aged < 30 years. The meta-analysis revealed significant associations between rs2237892 and GDM across diverse populations. The findings still need to be further confirmed, and the mechanism of its influence on GDM susceptibility needs to be clarified by further functional cell biology experiments and animal experiments.
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Purpose

The aim of this study was to investigate the effect of glycosylated hemoglobin (HbA1c) on the severity of intracranial atherosclerotic stenosis (ICAS).





Patients and methods

We conducted a retrospective analysis of the clinical data of patients who underwent intracranial digital subtraction angiography (DSA) and were admitted to Xinhua Hospital, Shanghai Jiao Tong University, between December 2021 and April 2023. Collected information included age, gender, blood lipid levels, and smoking status. Patients were stratified into two groups based on HbA1c levels: elevated HbA1c (≥6.5%) and normal HbA1c (<6.5%). With DSA, ICAS was classified into anterior and posterior circulation subgroups according to vascular anatomy. Stenosis severity was graded with the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) trial criteria: no/mild stenosis (0%–49%), moderate stenosis (50%–69%), severe stenosis (70%–99%), and complete occlusion (100%). An ordinal multinomial regression analysis was employed to assess the association between HbA1c levels and ICAS severity.





Results

A total of 360 participants were included in this study. The severity of ICAS worsened with higher HbA1c levels. Further subgroup analysis revealed that HbA1c levels ≥6.5% were significantly and positively associated with anterior circulation stenosis (r=0.13, P=0.03) and showed a positive trend with posterior circulation stenosis (r=0.13, P=0.06). After adjusting for gender, age, and smoking status, higher HbA1c levels were linked to an increased severity of stenosis in both the anterior and posterior circulation. Among blood lipid parameters, triglyceride levels demonstrated a significant correlation with ICAS severity (P < 0.05). Furthermore, subgroup analyses revealed that age over 68 years with HbA1c elevation was a risk factor for anterior circulation ICAS (OR 2.04, 95% CI 1.11–3.81, P < 0.05), whereas age 68 years or under was a risk factor for posterior circulation ICAS (OR 2.12, 95% CI 1.16–3.97, P < 0.05).





Conclusion

The severity of ICAS was positively associated with an elevated HbA1c level (≥6.5%). The association was more pronounced in the posterior circulation. Elevated triglyceride levels and age were also associated with ICAS progression.
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Introduction

Hyperglycemic status is linked to atherosclerosis. Diabetes mellitus is a global public health problem, and patients with diabetes have a two- to fourfold increased risk of vascular morbidity and mortality compared with non-diabetic individuals (1, 2). Among the complications of diabetes mellitus, the pathological manifestations of vascular complications are endothelial dysfunction and atherosclerosis due to hyperglycemic status (3). The degree of intracranial vascular stenosis in symptomatic patients with ICAS of 50%–99% is an independent factor for the occurrence and recurrence of ischemic cerebral infarction (4). The most common risk factors for ICAS include dyslipidemia, age, hypertension, and diabetes mellitus (5).

Unlike random blood glucose measurements, HbA1c plays a pivotal role in diagnosing and monitoring diabetes due to its unique advantages (6). Its stability and ability to reflect long-term glycemic control resulted in its adoption as a diagnostic criterion for type 2 diabetes mellitus (HbA1c ≥ 6.5%) in 2010 (7), as it accurately reflects average blood glucose levels over a period of 2 to 3 months. A study of 2,578 patients with acute cerebral infarction demonstrated that an elevated HbA1c level was an independent risk factor for intracranial atherosclerotic stenosis (ICAS) assessed with magnetic resonance angiography (MRA) (8). A higher HbA1c level was independently associated with ICAS development and poorer clinical outcomes. Further ICAS research utilizing MRA assessment revealed positive correlations between stenosis severity and both fasting glucose levels and diabetes duration (9). Although non-invasive techniques such as MRA and CTA are widely used, digital subtraction angiography (DSA) remains the gold standard for cerebrovascular evaluation due to its superior accuracy in assessing intracranial atherosclerosis. Notably, none of the previous studies have investigated the relationship between HbA1c levels and ICAS severity using precise DSA imaging. Therefore, this study examines the association between HbA1c levels and DSA. We hypothesized that elevated HbA1c levels are associated with greater ICAS severity.





Methods




Subjects

The following data were derived from the clinical records of patients who attended Xinhua Hospital, which is affiliated with Shanghai Jiao Tong University School of Medicine, between December 2021 and April 2023.





Ethical approval and informed consent

The above research ethics review was approved by the Medical Ethics Committee of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine.





Inclusion criteria

	The enrolled patients must be ≥18 years of age.

	All patients have completed DSA examinations.

	All patients must have a complete medical record.







Exclusion criteria

	Patients with arterial malformations or aneurysms in major intracranial vessels were excluded.

	Patients with hematological diseases, pregnancy, tumors, trauma, acute infections, anemia, and other causes were also excluded.

	Patients with incomplete clinical data and medical records were omitted. Excluded also were those who lacked relevant biochemical and imaging data, including information on the patients’ gender and age, as well as their HbA1c value and blood lipid levels. Those patients who lacked information on hypertension and smoking status history were also excluded.







Data collection

Upon hospital admission, baseline demographic characteristics (age and gender) were documented. Established vascular risk factors were systematically recorded, including current smoking status and pre-existing comorbidities (hypertension, diabetes mellitus, and hyperlipidemia).





DSA examination

DSA is the gold standard for assessing the degree of intracranial arterial stenosis, and all DSA examinations were performed under local anesthesia using a DynaCT angiography device (ESTX LCAz; GE Medical Systems, Europe, or Siemens AxiomArtis dTA; Siemens Healthcare, Germany). According to intracranial vascular anatomy (10), the arterial supply of the brain is divided into the anterior circulation and the posterior circulation. The anterior circulation consists of arteries from the bilateral internal carotid arteries that supply blood flow to the anterior three-fifths of the cerebral hemispheres, such as the frontal, temporal, parietal, and basal ganglia, including the anterior choroidal artery, anterior cerebral artery, and middle cerebral artery. The posterior circulation consists of arteries from the paired vertebrobasilar arteries that supply the posterior two-fifths of the brain, including the brainstem, cerebellum, posterior cerebral hemispheres, and parts of the diencephalon, including the vertebral, basilar, and posterior cerebral arteries (11). Based on intracranial vascular analysis from the North American Symptomatic Carotid Endarterectomy Trial (NASCET) and the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) trial (12, 13), stenosis severity was categorized as follows: no/mild (0%–49%), moderate (50%–69%), severe (70%–99%), or complete occlusion (100%).





Statistical analysis

All statistical analyses were performed using SPSS version 26.0. The statistical description of normally distributed measures was expressed in terms of quartiles, and mean values were compared using the t-test. Non-normally distributed variables were presented as median (interquartile range) and analyzed using non-parametric tests. Statistical significance was defined as a two-tailed P-value <0.05. For ordinal categorical outcomes, we employed proportional odds logistic regression to assess associations between variables. Intergroup comparisons of significant differences were performed using the Kruskal–Wallis test with post hoc Dunn’s test for multiple comparisons.






Results




Baseline characteristics

Following the exclusion of ineligible patients, the final cohort included 360 consecutive patients who underwent DSA at Xinhua Hospital, Shanghai Jiao Tong University, between December 2021 and April 2023 (Figure 1). The study population included 158 patients with normal glycated hemoglobin levels (HbA1c < 6.5%) and 202 patients with elevated levels (HbA1c ≥ 6.5%). Table 1 shows the participants’ baseline clinical characteristics. Among the 360 participants, the median age was 68.0 (IQR 63.0–74.0) years, with men accounting for 69.2%. Current smokers accounted for 24.7% of the cohort. The median triglyceride level was 1.3 mmol/L (IQR 1.0–1.9). Significant intergroup differences were observed in triglyceride levels (P < 0.05), but not in total cholesterol, HDL-C, or LDL-C levels. A statistically significant difference was found between patient groups with anterior circulation stenosis (P < 0.05), whereas no significant difference was detected among groups with posterior circulation stenosis at different anatomical locations (P > 0.1).

[image: Flowchart showing patient selection process. Initially, 625 patients were admitted between November 2021 and April 2023. Of these, 265 were excluded based on criteria, leaving 360 for enrollment. The enrolled patients proceeded to statistical analysis.]
Figure 1 | Study flowchart.


Table 1 | Basic characteristics of the respondents.
	Characteristics
	
	Overall (n=360)
	HbA1c<6.5 (n=158)
	HbA1c≥6.5% (n=202)
	χ/W
	P



	Gender
	Male
	249 (69.2)
	102 (64.6)
	147 (72.8)
	2.43
	0.12


	Female
	111 (30.8)
	56 (35.4)
	55 (27.2)
	 
	 


	Age 
	Age (M [P25, P75])
	68.0 [63.0, 74.0]
	68.0 [64.0, 74.0]
	68. 0 [63.0, 74.0]
	162
	0.78


	Smoking status
	Smoking status (%)
	89 (24.7)
	37 (23.4)
	52 (25.7)
	0.15
	0.7


	Hypertension
	Hypertension (%)
	281 (78.3)
	120 (75.9)
	161 (80.1)
	0.67
	0.41


	Dyslipidemia(mmol/L)
	TG(M [P25, P75])
	1.3 [1.0, 1.9]
	1.2 [0.9, 1.7]
	1.4 [1.1, 1.9]
	13272
	0.01


	TC(M [P25, P75])
	3.8 [3.2, 4.8]
	3.7 [3.1, 4.6]
	3.9 [3.3, 4.8]
	14212
	0.07


	HDL-C (M [P25, P75])
	1.0 [0.8, 1.2]
	1.0 [0.8, 1.2]
	1.0 [0.8, 1.1]
	17759
	0.07


	LDL-C (M [P25, P75])
	2.3 [1.7, 3.1]
	2.2 [1.6, 2.8]
	2.4 [1.7, 3.2]
	14044
	0.05


	ICAS
	 
	 
	 
	 
	 
	 


	Anterior circulation (%)
	No/Mild
	202 (56.1)
	99 (62.7)
	103 (51.0)
	8.61
	0.03


	Moderate
	26 (7.2)
	14 (8.9)
	12 (5.9)
	 
	 


	Severe
	30 (8.3)
	9 (5.7)
	21 (10.4)
	 
	 


	Occlusion
	102 (28.3)
	36 (22.8)
	66 (32.7)
	 
	 


	Posterior circulation (%)
	No/Mild
	221 (61.4)
	107 (67.7)
	114 (56.4)
	7.23
	0.06


	Moderate
	26 (7.2)
	13 (8.2)
	13 (6.4)
	 
	 


	Severe
	27 (7.5)
	10 (6.3)
	17 (8.4)
	 
	 


	Occlusion
	86 (23.9)
	28 (17.7)
	58 (28.7)
	 
	 





M, median; P25, upper quartile; P75, lower quartile; W, Wilcoxon rank sum test statistic; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.







Data analysis

A multicategorical ordered regression analysis was performed based on ICAS values for HbA1c and anterior and posterior circulation in all included patients. Table 2 shows that a severe stenosis was associated with HbA1c ≥6.5% in the unadjusted model (n = 202, OR=1.66, 95% CI 1.10–2.50). In posterior circulation ICAS, patients with HbA1c ≥6.5% also exhibited a greater degree of stenosis than those with HbA1c <6.5% (n=202, OR=1.66, 95% CI 1.12–2.59). After adjustment for sex, age, and smoking status, the degree of stenosis remained elevated in patients with HbA1c ≥6.5% in both the anterior (n = 202, OR=1.71, 95% CI 1.13–2.59) and posterior (n = 202, OR=1.70, 95% CI 1.11–2.61) circulation.


Table 2 | Association analysis of glycosylated hemoglobin with anterior and posterior circulation.
	ICAS
	
	Crude model
	P value
	OR [95%CI]
	Model 1a
	P value
	OR [95%CI]



	Anterior circulation
	HbA1c<6.5%
	1.0 (Reference)
	 
	 
	1.0 (Reference)
	 
	 


	HbA1≥ 6.5%
	0.51
	0.016
	1.66 (1.10-2.50)
	0.54
	0.011
	1.71 (1.13-2.59)


	Posterior circulation
	HbA1c<6.5%
	1.0 (Reference)
	 
	 
	1.0 (Reference)
	 
	 


	HbA1c≥6.5%
	0.53
	0.014
	1.70 (1.12-2.60)
	0.53
	0.015
	1.70 (1.11-2.61)





Multicategory ordered logistic regression was used.


a Adjusted for gender, age, and unhealthy lifestyle.




Comparing the 1% increase in HbA1c with ICAS in the anterior and posterior circulation, we can conclude that when HbA1c is continuously elevated, the proportion of moderate and severe intracranial arterial stenosis increases, and this phenomenon is more pronounced in posterior circulation stenosis.

In the subgroup analysis, Figure 2 shows the forest plot analyzed by subgroup. The degree of anterior circulation ICAS increased with elevated HbA1c levels in individuals aged over 68 years (OR=2.04, 95% CI 1.11–3.81). In post-circulation ICAS, individuals aged 68 years or under were more likely to have posterior circulation ICAS stenosis (OR=2.12, 95% CI 1.16–3.97). The P-value of the difference between the subgroups was <0.05, and there was no significant difference between the other subgroups. Therefore, there were differences in ICAS at different ages in the anterior and posterior circulation ICAS.

[image: Forest plots comparing anterior and posterior circulation outcomes based on sex, age, and risk factors. Each plot displays odds ratios with confidence intervals. Data points show variations for different sexes (male, female), age groups (less than or equal to sixty-eight, greater than sixty-eight), and risk factors (zero, one, two), with respective p-values.]
Figure 2 | Subgroup analytical forest plot. P-value of the differences between groups.






Discussion

In this study, we analyzed the clinical data of 360 patients, taking into account factors such as age, gender, smoking status, hypertension prevalence, and lipid profile. DSA revealed that patients with elevated HbA1c levels (≥6.5%) exhibited more severe ICAS than those with normal levels (<6.5%). This association remained significant after adjusting for age, gender, and smoking status (Table 2). Multivariable analysis, adjusted for gender, age, and smoking status, confirmed that HbA1c levels ≥6.5% were associated with increased stenosis severity, particularly in the anterior circulation. Further analysis of continuous HbA1c increments revealed the following: 1) there was a positive relationship between HbA1c levels and posterior circulation stenosis (Figure 3); 2) progressive HbA1c elevation correlated with increasing posterior circulation stenosis severity; and 3) HbA1c levels ≥6.5% were associated with a higher likelihood of severe stenosis/occlusion in the posterior circulation. These findings demonstrate that HbA1c ≥6.5% independently predicts ICAS progression, and a positive relationship was found. The posterior circulation is particularly vulnerable to the effects of glycemia.

[image: Bar graphs showing trends in degree of stenosis across different levels of HbA1c for anterior and posterior circulation. Categories include No/Mild, Moderate, Severe, and Occlusion, with occlusion trends marked by a dotted line.]
Figure 3 | Diagram and trend of circulatory stenosis before and after different HbA1c values. The abscissa is the value of HbA1c, and the ordinate is the degree of stenosis.

Numerous studies have underscored the significance of diabetes mellitus in the pathogenesis of ICAS. Current evidence demonstrates that ICAS correlates with both the duration of hyperglycemia and blood glucose levels, which aligns with our findings. HbA1c serves as a valuable biomarker for diabetes monitoring, owing to its unique physiological characteristics (14). The quantity of HbA1c in circulation is principally determined by the interplay between blood glucose concentration and erythrocyte lifespan (15). Given that the average erythrocyte lifespan is approximately 120 days, HbA1c reflects the body’s glycemic status over an 8–12-week period (16). Consequently, monitoring HbA1c levels enables the assessment of glycemic control for 2–3 months, thereby providing clearer insight into ICAS severity. Previous investigations have employed non-invasive modalities such as MRA or CTA to evaluate ICAS severity. While these techniques are less invasive and facilitate large-scale studies, they lack precision. DSA offers direct visualization of atherosclerotic changes, permits quantitative assessment of stenosis severity, and allows for concurrent therapeutic intervention. Thus, DSA represents the gold standard for determining ICAS severity (17). In our study, we observed that ICAS severity progressed with increasing HbA1c values. Notably, when HbA1c levels reached ≥6.5%, the proportion of moderate-to-severe ICAS cases increased significantly compared to milder stenosis presentations.

Diabetic patients have a significantly higher risk of morbidity and mortality from vascular disease than those with normal blood glucose levels (18). Chronic hyperglycemia damages both the large and small blood vessels (19). This change is caused by an increase in blood sugar levels in the blood vessels, such as atherosclerosis, which usually affects major organs such as the heart, brain, kidneys, and blood vessels. The pathological process is that as blood glucose levels continue to rise, proteins undergo irreversible non-enzymatic glycation, cellular redox reactions accelerate and lead to potential changes, and oxidative stress and inflammation persist, which in turn aggravate endothelial dysfunction and hypercoagulability. As a result (8, 17, 20), as the blood glucose level in the internal environment continues to rise, the degree of blood glucose-related complications increases. ICAS is considered to be one of the major causes of ischemic stroke, accounting for approximately 30%–50% of ischemic stroke and transient ischemic attacks in Asia (21). The most common risk factors for ICAS include age, hypertension, diabetes, dyslipidemia, etc. (4). Most of the current studies on the relationship between internal blood glucose levels and ICAS focus on assessing the effect of hyperglycemia on ICAS by magnetic resonance or vascular CT; the current relevant conclusion is that fasting blood glucose and HbA1c levels in patients with ICAS are significantly higher than those in patients without ICAS, and fasting blood glucose and HbA1c are independent risk factors for ICAS (22). The status of glycemic control was not quantified, nor was the severity of ICAS accurately classified.

Blood lipids are one of the factors that influence atherosclerosis. In this study, only triglycerides had an effect on ICAS, which may be related to the current wide range of statin-type blood lipid-lowering drugs.




Limitations

This study is a single-center study, and the research sample is drawn from patients attending Xinhua Hospital. This limits the sample size and richness, which restricts the scope of this article. It is hoped that a multicenter study will be conducted in the future to refine the HbA1c classification and obtain richer results.






Conclusion

In this article, we demonstrated that hyperglycemia exerts a more pronounced effect on intracranial vasculature by precisely evaluating the severity of intracranial arterial stenosis in patients, combined with 2–3 months of daily blood glucose monitoring. On admission, when a patient’s HbA1c levels were ≥6.5%, the prevalence of moderate-to-severe ICAS increased. Furthermore, as HbA1c levels continued to rise, the proportion of severe stenosis and occlusion in the posterior circulation progressively increased.
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Lachnospiraceae_Catonella_umgs_2059 5

2 Lachnospiraceae_Catonella_umgs_2624 . BaCterOIdOta

v Lachnospiraceae_F0428 . Campylobacterota
Lachnospiraceae_Lachncanaerobaculum_sp000287675_mgs_19(. Firmicutes

i Lachnospiraceae_Lachnoanaerobaculum_sp000296385_mgs_27£. FUSOb acteriota

Lachnospiraceae_Oribacterium_umgs_1113 A .
Lachnospiraceae_Oribacterium_umgs_384 = E?;te:gét)ai(::eerrlaa

Ruminococcaceae_Faecalibacterium_prausnitzii_G_mgs_418 _
Filifactoraceae_Peptoanaerobacter_stomatis_mgs_508 . S p| rOChaetOta
Filifactoraceae_Peptoanaerobacter_umgs_225

— Peptostreptococcaceae OR
TANB77_umgs_2463 1.6
Veillonellaceae_F0422_umgs_1590
Veillonellaceae_Veillonella_parvula_mgs_226 1 4
Veillonellaceae_Veillonella_rogosae_mgs_3494 1 2
Fusobacteriaceae_Fusobacterium_umgs_2858 1
Fusobacteriaceae_Fusobacterium_umgs_997
Saccharimonadaceae_TM7x_umgs_1091 0 . 8
—— Saccharimonadaceae_TM7x_umgs_1246 0.6
Saccharimonadaceae_TM7x_umgs_1327
Saccharimonadaceae_TM7x_umgs_1848
Saccharimonadaceae_TM7x_umgs_2006
Saccharimonadaceae_TM7x_umgs_3359

[ IO R R R

Saccharimonadaceae_umgs_1159_umgs_1159
Saccharimonadaceae_umgs_1185
Saccharimonadaceae_umgs_1276
Saccharimonadaceae_umgs_1283
Saccharimonadaceae_umgs_1805

Saccharimonadaceae_umgs_2366
Saccharimonadaceae_umgs_2664

Saccharimonadaceae_umgs_547
Neisseriaceae_Kingella_umgs_554
Neisseriaceae_Neisseria_sicca_A_mgs_986
Pasteurellaceae_Aggregatibacter_actinomycetemcomitans_mgs_301
Pasteurellaceae_Aggregatibacter_sp000466335_mgs_1217

Pasteurellaceae_Haemophilus_A_umgs_1958
Pasteurellaceae_Haemophilus_D
Pasteurellaceae_Haemophilus_D_parainfluenzae_mgs_2969
Pasteurellaceae_Haemophilus_D_parainfluenzae_mgs_3103
Pasteurellaceae_Haemophilus_D_umgs_2202
Pasteurellaceae_Haemophilus_D_umgs_3120
Pasteurellaceae_Haemophilus_D_umgs_3480
Pasteurellaceae_Haemophilus_sp002998595_mgs_2965
Treponemataceae_Treponema_A_umgs_577

* *

Treponemataceae_Treponema_C_lecithinolyticum_mgs_311

IVW or Wald ratio RAPS
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Phylum

Actinobacteriota
Bacteroidota
Bacteroidota

Campylobacterota
Campylobacterota

Firmicutes
Firmicutes
Firmicutes
Firmicutes
Firmicutes
Firmicutes
Patescibacteria
Patescibacteria
Patescibacteria
Patescibacteria
Patescibacteria
Patescibacteria
Proteobacteria
Proteobacteria
Proteobacteria
Proteobacteria
Proteobacteria
Spirochaetota

Class

Actinobacteria
Bacteroidia
Bacteroidia
Campylobacteria

Campylobacteria
Bacilli

Bacilli

Bacilli

Bacilli

Clostridia
Clostridia

Saccharimonadia
Saccharimonadia
Saccharimonadia
Saccharimonadia
Saccharimonadia
Saccharimonadia
Gammaproteobacteria
Gammaproteobacteria
Gammaproteobacteria
Gammaproteobacteria
Gammaproteobacteria

Spirochaetia

Order

Actinomycetales
Bacteroidales
Bacteroidales
Campylobacterales

Campylobacterales
Lactobacillales
Lactobacillales
Lactobacillales
Staphylococcales
Lachnospirales
Lachnospirales
Saccharimonadales
Saccharimonadales
Saccharimonadales
Saccharimonadales
Saccharimonadales
Saccharimonadales
Burkholderiales
Enterobacterales
Enterobacterales
Enterobacterales
Enterobacterales
Treponematales

Oral.Microbiota Method
Actinomycetaceae_Pauljensenia_umgs_1988 Wald ratio
Bacteroidaceae_Alloprevotella_umgs_73 VW
Bacteroidaceae_Prevotella_umgs_2017 Wald ratio
Campylobacteraceae_Campylobacter_A_umgs_2225 Wald ratio
Campylobacteraceae_Campylobacter_A_umgs_2445 VW
Aerococcaceae_Granulicatella_umgs_1337 Wald ratio
Streptococcaceae_Streptococcus_infantis_H_mgs_2288 Wald ratio
Streptococcaceae_Streptococcus_umgs_2670 Wald ratio
Gemellaceae_Gemella_umgs_2318 Wald ratio
Lachnospiraceae_Catonella_umgs_297 Wald ratio

Lachnospiraceae_Lachnoanaerobaculum_saburreum_mgs_2562Wald ratio

Saccharimonadaceae_TM7x_umgs_1320 VW
Saccharimonadaceae_TM7x_umgs_3245 Wald ratio
Saccharimonadaceae_UBA2866_umgs_2099 VW
Saccharimonadaceae_umgs_1251 VW
Saccharimonadaceae_umgs_1898 Wald ratio
Saccharimonadaceae_umgs_2264 Wald ratio
Neisseriaceae_Kingella_B_umgs_1106 VW
Pasteurellaceae_Aggregatibacter_sp000466335_mgs_2226 Wald ratio
Pasteurellaceae_Aggregatibacter_umgs_1032 Wald ratio
Pasteurellaceae_Haemophilus_D VW

Pasteurellaceae_Haemophilus_D_parainfluenzae_A_mgs_2988 IVW

Treponemataceae_Treponema_B_umgs_3482 Wald ratio

OR(95%CI)

1.20 (1.06,1.36)
0.84 (0.72,0.97)
1.14 (1.00,1.28)
0.86 (0.75,0.99)
0.88 (0.80,0.97)
0.85 (0.75,0.97)
1.21 (1.07,1.38)
0.82 (0.71,0.94)
0.87 (0.77,0.98)
0.88 (0.77,0.99)
1.22 (1.08,1.38)
1.16 (1.07,1.25)
0.85 (0.76,0.97)
1.08 (1.01,1.16)
0.92 (0.85,0.99)
1.24 (1.09,1.41)
1.20 (1.06,1.35)
1.11 (1.04,1.18)
1.16 (1.02,1.30)
1.16 (1.02,1.31)
0.85 (0.76,0.95)
0.90 (0.82,0.98)
1.14 (1.01,1.29)

Discovery

P
—— 1 3.23e-03
=t 1.77e-02
—=— 4.09e-02
= 3.14e-02
| T 1.06e-02
—=—| 1 1.37e-02
—— 2.58e-03
=t 6.25e-03
= 2.54e-02
= 3.56e-02
—— 1 1.61e-03
=t 3.43e-04
= t 1.27e-02
- 2.64e-02
H- t 2.52e-02
—a— } 1.20e-03
—s— t 2.96e-03
et 1.05e-03
—— 1.91e-02
—— 1.91e-02
|t 4.89e-03
| 1 1.77e-02
e 3.68e-02
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Method

Wald ratio
VW
Wald ratio
Wald ratio
VW
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
VW
Wald ratio
VW
VW
Wald ratio
Wald ratio
VW
Wald ratio
Wald ratio
VW

8 IVW

Wald ratio

OR(95%ClI)

1.32 (1.12,1.56)
0.83 (0.73,0.94)
1.19 (1.00,1.41)
0.81 (0.67,0.99)
0.88 (0.78,1.00)
0.77 (0.65,0.91)
1.29 (1.07,1.55)
0.74 (0.61,0.89)
0.79 (0.67,0.93)
0.79 (0.67,0.94)
1.25 (1.05,1.49)
1.16 (1.04,1.29)
0.82 (0.69,0.97)
1.12 (1.02,1.23)
0.85 (0.76,0.96)
1.34 (1.13,1.59)
1.19 (1.02,1.39)
1.15 (1.06,1.26)
1.28 (1.08,1.51)
1.28 (1.08,1.52)
0.84 (0.74,0.95)
0.83 (0.69,0.98)
1.20 (1.01,1.42)

Replication )
F—=—t 1.18e-03
= |t 2.76e-03
—a— 4.33e-02
—a—q 3.92e-02
—=— 4.54e-02
—=— |t 2.88e-03
F—a—t% 6.29e-03
—— |t 1.50e-03
|t 5.24e-03
——| 1 8.04e-03
—a—{{ 1.34e-02
=t 7.15e-03
—e— 1.95e-02
=} 1.61e-02
=t 6.59e-03
F—a— 1 7.68e-04
—s— 3.02e-02
= { 1.06e-03
F—=—% 4.13e-03
it  4.13e-03
=i { 8.08e-03
—— 3.19e-02
—— 3.51e-02

0.|5 O.‘75 1| 1.55 1!5 1.|75
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Phylum
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Proteobacteria
Proteobacteria
Proteobacteria
Firmicutes
Firmicutes
Firmicutes
Firmicutes
Firmicutes
Actinobacteriota
Firmicutes
Bacteroidota
Firmicutes
Firmicutes
Patescibacteria
Firmicutes
Bacteroidota
Proteobacteria

Class

Bacilli

Bacilli

Actinobacteria
Clostridia

Bacteroidia

Clostridia
Saccharimonadia
Fusobacteriia
Bacteroidia
Saccharimonadia
Saccharimonadia
Bacilli
Gammaproteobacteria
Clostridia

Bacilli

Clostridia
Gammaproteobacteria
Gammaproteobacteria

Gammaproteobacteria
Clostridia

Clostridia

Bacilli

Negativicutes

Bacilli

Actinobacteria
Clostridia

Bacteroidia
Negativicutes
Clostridia
Saccharimonadia
Bacilli

Bacteroidia
Gammaproteobacteria

Order

Lactobacillales
Lactobacillales
Actinomycetales
Lachnospirales
Bacteroidales
Lachnospirales
Saccharimonadales
Fusobacteriales
Bacteroidales
Saccharimonadales
Saccharimonadales
Lactobacillales
Burkholderiales
Lachnospirales
Lactobacillales
TANB77
Enterobacterales
Enterobacterales
Enterobacterales
Lachnospirales
Lachnospirales
Erysipelotrichales
Veillonellales
Erysipelotrichales
Actinomycetales

Oscillospirales
Bacteroidales
Veillonellales
4C28d-15
Saccharimonadales
Lactobacillales
Flavobacteriales
Enterobacterales

Oral.Microbiota

Streptococcaceae_Streptococcus_umgs_988
Streptococcaceae_Streptococcus_umgs_2424
Actinomycetaceae_F0332
Lachnospiraceae_Catonella_umgs_2059
Bacteroidaceae_Prevotella_umgs_1437

Method

Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio

Lachnospiraceae_Lachnoanaerobaculum_sp000287675_mgs_1966Wald ratio

Saccharimonadaceae_umgs_1185
Fusobacteriaceae_Fusobacterium_umgs_997
Bacteroidaceae_F0040_umgs_2848
Saccharimonadaceae_TM7x_umgs_3359
Saccharimonadaceae_TM7x_umgs_2006
Streptococcaceae_Streptococcus_umgs_3019
Neisseriaceae_Neisseria_sicca_A_mgs_986
Lachnospiraceae_Catonella_umgs_1295
Streptococcaceae_Streptococcus_sp000187745_mgs_2343
umgs_2463

Pasteurellaceae_Haemophilus_D
Pasteurellaceae_Haemophilus_D_parainfluenzae_mgs_2969
Pasteurellaceae_Haemophilus_D_umgs_3480
Lachnospiraceae_Catonella_umgs_2624
Lachnospiraceae_F0428
Erysipelotrichaceae_Solobacterium_umgs_1206
Veillonellaceae_Veillonella_rogosae_mgs_3494
Erysipelotrichaceae_Solobacterium_umgs_3039
Actinomycetaceae_Pauljensenia_cellulosilytica_mgs_3249
Ruminococcaceae_Faecalibacterium_prausnitzii_G_mgs_418
Barnesiellaceae

Veillonellaceae_F0422_umgs_1590

CAG-917_umgs_1705
Saccharimonadaceae_TM7x_umgs_1246
Aerococcaceae_Granulicatella_umgs_2338
Weeksellaceae_umgs_439
Pasteurellaceae_Aggregatibacter_sp000466335_mgs_1217

Wald ratio
Wald ratio
Wald ratio
VW
VW
Wald ratio
VW
Wald ratio
Wald ratio
Wald ratio
VW
VW
VW
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
VW
VW
VW
Wald ratio
VW
VW

OR(95%CI)
1.30 (1.13,1.48)
1.28 (1.13,1.46)
1.30 (1.14,1.49)
0.78 (0.69,0.90)
1.27 (1.11,1.45)
0.79 (0.70,0.90)
0.82 (0.73,0.92)
0.81 (0.71,0.92)
1.24 (1.08,1.42)
0.85 (0.77,0.93)
0.84 (0.77,0.92)
0.82 (0.72,0.94)
0.86 (0.79,0.95)
0.84 (0.74,0.95)
1.20 (1.05,1.37)
0.84 (0.74,0.95)
0.89 (0.82,0.96)
0.88 (0.81,0.96)
0.91 (0.85,0.97)
1.18 (1.04,1.33)
1.18 (1.04,1.34)
1.17 (1.04,1.33)
0.87 (0.78,0.98)
0.85 (0.75,0.97)
1.14 (1.02,1.28)
0.85 (0.74,0.97)
0.86 (0.76,0.98)
0.89 (0.82,0.97)
1.12 (1.02,1.23)
1.11 (1.02,1.22)
0.87 (0.76,0.99)
0.91 (0.83,1.00)
1.19 (1.00,1.41)

Discovery P

—=— %t 1.41e-04

—s— *7T 1.33¢-04
| % { 1.26e-04
AT 3.36e-04
F—=— *1 3.81e-04
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—s— 1.89e-03
e | T 7.21e-04
e | T 2.33e-04
= |t 3.58e-03
|t 1.73e-03
=] f 7.03e-03
—s— } 6.93e-03
= { 7.55e-03
HH| $ 3.91e-03
| } 3.10e-03
| t 4.83e-03
——t 1.07e-02
—s—f 1.07e-02
—a— 1.15e-02
= 2.07e-02
—=— 1.77e-02
- 1 1.99e-02
= 1.66e-02
—=— 2.49e-02
| T 1.13e-02
=t 1.99e-02
= t 1.76e-02
—=— 3.05e-02
= 4.42e-02
—e{t 4.69e-02
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Method

Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
VW
VW
Wald ratio
VW
Wald ratio
Wald ratio
Wald ratio
VW
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VW
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
VW
VW
VW
Wald ratio
VW
VW

OR(95%Cl)
1.43 (1.18,1.73)
1.24 (1.04,1.48)
1.29 (1.07,1.56)
0.78 (0.65,0.94)
1.34 (1.12,1.59)
0.77 (0.64,0.92)
0.82 (0.70,0.97)
0.80 (0.67,0.96)
1.35 (1.12,1.64)
0.83 (0.74,0.94)
0.83 (0.73,0.94)
0.83 (0.69,0.99)
0.85 (0.75,0.96)
0.81 (0.68,0.96)
1.46 (1.22,1.75)
0.83 (0.70,0.99)
0.85 (0.76,0.96)
0.85 (0.75,0.95)
0.87 (0.79,0.96)
1.22 (1.02,1.44)
1.22 (1.02,1.46)
1.20 (1.01,1.42)
0.73 (0.62,0.85)
0.74 (0.61,0.89)
1.19 (1.01,1.39)
0.79 (0.66,0.95)
0.78 (0.66,0.93)
0.81 (0.71,0.91)
1.23 (1.07,1.41)
1.16 (1.01,1.32)
0.84 (0.70,1.00)
0.84 (0.74,0.96)
1.21 (1.06,1.37)

Replication P
{ * —a——— 2.59e-04
+ | ——A 1.53e-02
+| —— 7.84e-03
—— |} 7.63e-03
+ b= 1.26e-03
—=— |} 4.07e-03
=y 2.06e-02
—s— 1.91e-02
+ F——a—— 2.08e-03
= |} 3.61e-03
= |t 4.32e-03
—— 4.23e-02
=+ 1.02e-02
—s— 1.89e-02
t ——a—> 4 .53e-05
—— 4.33e-02
|} 6.17e-03
= } 5.52e-03
| f 3.77e-03
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—a— 2.59e-02
—— 3.71e-02
= | 1.01e-04
= |1 1.31e-03
—s— 3.19e-02
—— |} 1.03e-02
—— |+ 5.00e-03
= |t 4.86e-04
—s— 3.91e-03
—— 1 3.14e-02
—— 4.54e-02
= t 8.57e-03
—— 3.73e-03
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Variables CE

artilel CCR quartile 2 CCR quartile 3 CCR quartile 4 | pvalue ptren

Men (<84.23) (84.23-95.40) (95.41-106.85) (>106.85)
Number n=1305 n=1305 n=1306 n=1306

Age (year) 52.17 £ 11.43 47.81£9.94° 4533 £9.29 " 44.28 £ 8.70 *>¢ <0.001 <0.001
BMI (kg/m?) 2423 + 341 24.43 £3.32 24.49 £ 3.14 2462 £2.97° 0.02 <0.001
Waist circumference (cm) 86.73 £ 9.61 86.68 + 8.81 86.17 £ 8.56 8594 £ 8.10 0.05 001
Waist-to-height ratio 0.52 +0.06 0.51 +0.05 0.51 +0.05° 051 0.05*° <0.001 <0.001
Mean arterial 91.28 + 13.83 89.75 + 12.08 * 90.24 £ 12.56 90.16 + 12.58 0.02 0.07
pressure (mmHg)

Fasting glucose (mmol/L) 527 102 538 % 140 542 + 156 5.60 + 1.86 < <0.001 <0.001
Total cholesterol (mmol/L) 5.15 +0.98 530 + 097 531+098° 5.40 +0.98 *° <0.001 <0.001
Triglycerides (mmol/L) 1.86 + 1.6 1.84 £ 147 177 £127 1.85 + 1.6 0.40 0.63
LDL cholesterol (mmol/L) 338+ 0.86 348 +085° 353087 ° 353 £0.86° <0.001 <0.001
HDL cholesterol (mmol/L) 117 £0.29 121+027° 122 +027 125 +0.28 *>¢ <0.001 <0.001
TG/HDL-C 1.80 £ 2.21 1.70 £ 1.70 1.62 + 1.64 1.67 £ 1.99 0.09 0.04
Ser (umol/L) 77.85 £ 11.37 79.83 £9.65 " 82.55 1030 ** 86.13 £ 12.02 *P¢ <0.001 <0.001
CysC (mg/L) 119 £0.21 1.00 +0.12* 093 +0.12*° 0.83 +0.12 *b< <0.001 <0.001
CCR 74.82 £ 7.96 89.86 +3.21° 100.89 + 3.30 ** 118.55 + 11.18 **¢ <0.001 <0.001
Metabolic syndrome, n (%) 364 (27.89%) 319 (24.44%) 306 (23.43%) 298 (22.82%) * 0.01 0.002
Women (<74.78) (74.78-84.94) (84.95-95.69) (>95.69)

Number n=1038 n=1038 n=1038 n=1040

Age (year) 53.93 + 10.84 4802 +10.37° 45.81 +9.87 43.33 +8.17 0 <0.001 <0.001
BMI (kg/m?) 24.08 £ 3.70 23.03£313° 22,63 £3.03 *° 22.24 £2.89 *>¢ <0.001 <0.001
Waist circumference (cm) 8212+ 9.88 78.88 £ 852" 77.36 £ 823 ** 75.62 +7.92 < <0.001 <0.001
Waist-to-height ratio 053 +0.07 050 + 0.06 049 006 *° 048 + 0.05 > <0.001 <0.001
Mean arterial 88.28 + 13.93 8410 £ 13.53° 81.89 + 1245 *° 80.38 £ 11.18 *>< <0.001 <0.001

pressure (mmHg)

Fasting glucose (mmol/L) 529 + 1.06 5.3 +0.83° 5.15+1.04° 516 + 1.40 0.01 0.02

Total cholesterol (mmol/L) 525 +0.96 515 + 0.99 516 + 0.98 506 +0.96 * <0.001 <0.001
Triglycerides (mmol/L) 1.37 £ 0.92 126 +0.81 * 114 075 1.05 + 0.74 *b¢ <0.001 <0.001
LDL cholesterol (mmol/L) 3.30 £0.84 3.21 £ 0.86 321 £0.84 3.12+081° <0.001 <0.001
HDL cholesterol (mmol/L) 139 +0.30 143 £029° 1.48 £ 0310 1.52 +0.30 ¢ <0.001 <0.001
TG/HDL-C 110 + 1.01 098 + 0.87 ° 0.86 + 075 *° 076 + 0.73 < <0.001 <0.001
Ser (umol/L) 60.15 £ 9.14 61.95 £ 629 ° 62.58 +8.04 62.90 +6.36 ** <0.001 <0.001
CysC (mg/L) 1.05 £ 0.20 0.87 +0.10 079 +0.10 ** 067 +0.09 < <0.001 <0.001
CER 65.42 + 8.03 80.15 + 2.87 * 107.47 £11.78 *® 107.47 + 11.78 *5¢ <0.001 <0.001
Metabolic syndrome, n (%) 311 (29.96%) 193 (18.59%) * 149 (14.35%) * 94 (9.04%) “>< <0.001 <0.001

p < 0.05 vs. SI quartile 1.
®p < 0.05 vs. SI quartile 2.
p < 0.05 vs. SI quartile 3 in the Bonferroni post-hoc comparisons.
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Model 1 Model 2 Model 3
Variables Mets, n (%)

OR (95% Cl) pvalue OR (95% Cl) p value OR (95% CI) p value

Men (n=5222)

CCR quartile 4 298 (22.82%) Reference Reference Reference

CCR quartile 3 306 (23.43%) 1.04 (0.86-1.24) 071 116 (0.95-1.41) 0.14 1.02 (0.81-1.28) 090

CCR quartile 2 319 (24.44%) 1.09 (0.91-1.31) 033 124 (1.02-1.51) 003 099 (0.78-1.24) 090

CCR quartile 1 364 (27.89%) 131 (1.10-1.56) 0.003 155 (1.27-189) | <0.001 1.04 (0.82-132) 073
p value for trend 0.002 <0.001 0.80

Women (n=4154)

CCR quartile 4 94 (9.04%) Reference Reference Reference

CCR quartile 3 149 (14.35%) 1.69 (1.28-2.22) <0001 158 (1.16-216) | <0.001 131 (0.88-1.93) 018
CCR quartile 2 193 (18.59%) 230 (1.77-2.99) <0001 205 (1.52-2.77) <0.001 140 (0.96-2.04) 0.08
CCR quartile 1 311 (29.96%) 431 (3.35-5.53) <0.001 267 (1.98-3.60) <0.001 1.84 (1.26-1.68) 0002

p value for trend <0.01 <0.001 0.001
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Variables (95% Cl) p value ut-off point Sensitivity Specificity

according to Youden'’s index (VA (VA

Male (n=5954)
CCR level 0.53 (0.52 to 0.54) 0.001 96.72 57.3 47.9
Female (n=4185)

CCR level 0.65 (0.64 to 0.67) <0.001 80.95 58.9 64.8
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Variables

Age (year)
BMI (kg/m?)

Waist
circumference (cm)

Waist-to-
height ratio

Mean arterial
pressure (mmHg)

Fasting glucose
(mmol/L)

Total cholesterol
(mmol/L)

Triglycerides
(mmol/L)

LDL cholesterol
(mmol/L)

HDL cholesterol
(mmol/L)

TG/HDL-C
Scr (pmol/L)
CysC (mg/L)
CCR

Metabolic
syndrome, n (%)

47.56 + 1047
23.80 + 3.32

82.89 +9.71

0.51 + 0.06

87.39 + 13.37

531+ 134

523+ 098

1.55 + 1.30

3.36 + 0.86

1.32+£0.32

72.87 + 13.88
1.36 £ 1.58
0.92 £0.21

91.48 + 18.03

2034 (21.69%)

Men

(n=5222)

4740 + 10.35
2444 £3.22

86.38 + 8.79

0.51 +0.05

90.36 + 12.79

543 £1.52

5.28 + 1.02

1.85 + 1.54

348 £0.91

1.15 +£0.36

1.76 + 1.57
81.59 + 11.31
0.99 +0.20
96.03 + 17.52

1287 (24.65%)

Women
(n=4154)
47.77 + 10.61
23.00 + 3.27

7849 + 8.99

0.50 + 0.06

83.66 + 13.15

520 + 113

515+ 1.02

1.26 + 0.82

3.22 +£0.89

141 +0.50

1.06 + 0.89

61.90 + 7.62
0.85 + 0.19
85.76 + 17.00

747 (17.98%)

0.09

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001
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Variables HOMA-IR OR(95%CI)
Age

<60 1.01(0.99,1.03)
>=60 1.00(1.00,1.01)
Gender

Male 1.00(0.99,1.01)
Female 1.01(1.00,1.02)
BMI

<25 0.99(0.96,1.02)
>=25, <30 1.01(1.00,1.03)
>=30 —e— 1.01(1.00,1.02)
Hypertension

No 1.00(0.98,1.02)
Yes 1.01(1.00,1.01)
CVDs

No 1.00(0.98,1.01)
Yes 1.01(1.00,1.02)

094 096 0.98 1.00 1.02 1.04

P Value P for interaction

0.410
0.289

0.576
0.044

0.385
0.043
0.008

0.917
0.145

0.444
0.075

0.233

0.351

0.291

0.173

0.348

0.0 0.5

TyG

1.0

15 20 25

OR(95%CT)

1.37(0.93,2.00)
1.01(0.82,1.24)

1.00(0.81,1.25)
1.16(0.88,1.52)

0.73(0.48,1.10)
1.19(0.88,1.62)
1.20(0.93,1.57)

1.17(0.71,1.94)
1.09(0.91,1.30)

1.11(0.89,1.37)
0.94(0.71,1.25)

P Value P for interaction

0.112
0.918

0.965
0.288

0.128
0.257
0.163

0.537
0.335

0.362
0.681

0.068

0.996

0.824

0.049

0.980

094 096 098

TyG-BMI

1.00

1.02

OR(95%CT)

1.00(1.00,1.01)
1.00(0.99,1.00)

1.00(0.99,1.00)
1.00(1.00,1.00)

0.98(0.97, 0.99)
1.00(0.99,1.00)
1.00(1.00,1.00)

1.00(0.99,1.00)
1.00(0.99,1.00)

1.00(0.99,1.00)
1.00(0.99,1.00)

P Value

0.129
<0.001

<0.001
0.005

<0.001
0.879
0.622

0.386
<0.001

<0.001
0.005

P for interaction

<<0.001

0.657

0.022

0.653

0.609

094 096 0.98

METS-IR

1.00

1.02

OR(95%CI)

1.01(0.99,1.03)
0.98(0.97,0.99)

0.98(0.97,0.99)
0.99(0.98,1.00)

0.94(0.90,0.98)
1.01(0.97,1.04)
1.00(0.99,1.01)

0.99(0.97,1.01)
0.98(0.98,0.99)

0.98(0.97,0.99)
0.99(0.97,1.00)

P Value

0.208
<0.001

<0.001
0.024

0.005
0.751
0.906

0.410
<0.001

<0.001
0.017

P for interaction

0.003

0.519

0.108

0.841

0.757
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Subgroup
Overall
Crude

Adjusted

Sex

Age(years)

<65

HbA1c(%)

BMi(kg/m?)

<25

Ferritin(ng/mL)

<100

=100

Variable

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Anemia:No

Yes

Total

1434

239

1434

239

778

102

656

137

7

76

77

163

448

81

986

158

219

43

1215

196

556

116

878

123

Event (%) OR (95%Cl)

106 (7.4)
30 (12.6)
106 (7.4)

30 (12.6)

61(7.8)
18 (17.6)
45 (6.9)

12(8.8)

54 (7.5)
11 (14.5)
52 (7.3)

19 (11.7)

26 (5.8)
12 (14.8)
80 (8.1)

18 (11.4)

18 (8.2)
4(9.3)
88 (7.2)

26 (13.3)

44 (7.9)
8(6.9)
62 (7.1)

22 (17.9)

1
1.8 (1.17~2.77)
1

1.79 (1.11~2.87)

1(Ref)
2.93 (1.53~5.61)
1(Ref)

1.18 (0.58~2.43)

1(Ref)
2.08 (0.93~4.65)
1(Ref)

1.68 (0.92~3.05)

1(Ref)
2.63 (1.07~6.43)
1(Ref)

1.66 (0.93~2.98)

1(Ref)
1.03 (0.25~4.16)
1(Ref)

2.14 (1.28~3.57)

1(Ref)
1.02 (0.44~2.36)
1(Ref)

3.06 (1.67~5.6)

*

P C—

0.25 0.50

10 20
Effect(95%Cl)

4.0

P for interaction

0.14

0.649

0.152

0.469

0.012
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Non-

anemia an:;;iga) P
(n=1434)

Sex, % < 0.001
Male 778 (54.3) 102 (427) NA
Female 656 (45.7) 137 (57.3) NA
Age, years 64.0 +11.7 68.8 £ 11.3 < 0.001
Race/ethnicity, % < 0.001
Non-Hispanic White 420 (29.3) 56 (23.4) NA
Non-Hispanic Black 68 (4.7) 6 (2.5) NA
Mexican American 613 (42.7) 68 (28.5) NA
Other 333 (23.2) 109 (45.6) NA
Education level, % 0.11
blow high school 694 (48.4) 126 (52.7) NA
high school 283 (19.7) 53 (22.2) NA
above high school 457 (31.9) 60 (25.1) NA
Marital, % 0.002
xia:;:n‘:::fng 886 (61.8) 122 (51) NA
living alone 548 (38.2) V 117 (49) NA
PIR, % 0.618
Low 500 (34.9) 91 (38.1) NA
Medium 604 (42.1) 97 (40.6) NA
High 330 (23) 51 (21.3) NA
BMI (kg/m2), Mean + SD 309 £ 64 31.9:4 7.5 0.033
coronary heart disease, % 0.003
Yes 157 (10.9) 42 (17.6) NA
No 1277 (89.1) 197 (82.4) NA

V Stroke, % 0.437
Yes 122 (8.5) 24 (10) NA
No 1312 (91.5) 215 (90) NA
Family history of diabetes, % 0.76
Yes 1006 (70.2) 170 (71.1) NA
No 428 (29.8) 69 (28.9) NA
Hyperlipidemia, % 0.003
Yes 531 (37) 113 (47.3) NA
No 903 (63) 126 (52.7) NA
Alcohol status, % 0.279
Never 284 (19.8) 57 (23.8) NA
Former 306 (21.3) 53 (22.2) NA
Now 844 (58.9) 129 (54) NA
Smoking status, % 0.007
Never 657 (45.8) 118 (49.4) NA
Former 529 (36.9) 99 (41.4) NA
Now 248 (17.3) 22 (92) NA
HbA1c% 7.5 1.8 V 7.1+16 0.001

7 CRP (mg/L), Median (IQR) 03(0.2,0.7) 7 0.4(0.2, 1.0) <0.001
dTl‘;’taran:glf;;(’l (mg/ 2068 + 48.7 191.6 + 452 <0.001
Ferritin(ng/mL), 131.5 104.0 0.004
Median (IQR) (66.0, 245.8) (52.5, 230.0)
Diabetic lower extremity
ulcers, % 0.007
Yes 106 (7.4) 30 (12.6) NA
No 1328 (92.6) 209 (87.4) NA

Mean +SD for continuous variables: the P-value was calculated by the linear
regression model.

Median [IQR] for skewed continuous variables.

% for categorical variables: the P-value was calculated by the chi-square test.

BMI, Body mass index; PIR, Poverty income ratio; HbA 1, Glycosylated hemoglobin; CRP, C-
reactive protein.
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Crude model Model 1 Model 2

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

PE (100 * MET-minutes/week) | 0.960 (0.952,0.969) <0.001 0.971 (0.963, 0.979) <0.001 0.983 (0.976,0.991) <0.001

PE as category variable

None Reference Reference Reference

Less than 600 * MET- 0.681 (0.570,0.814; 0.806 (0.674, 0.965 0.969 (0.803,1.170;
Fetian { ) <0001 ( ) 0.019 ( ) 0.741
minutes/week
M than 600 * MET- 0.361 (0.310,0.422; 0.465 (0.396, 0.544; 0.624 (0.527,0.738
ore fhan ( ) <0001 .39 ) <0001 ( ) <0.001
minutes/week

Crude model, no covariates were adjusted. Model 1, age, gender, and race were adjusted. Model 2, age, gender, race, body mass index, marital status, education, poverty income ratio, smoke
status, alcohol use, and chronic diseases were adjusted.
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P P

None Less than 600 * MET- 2 More than 600 * MET- [25 for for
exercise minutes/week value minutes/week value trend interaction
Gender 0.202
Male Ref. 0.657 (0.522,0.827) <0.001 0.389 (0.318,0.476) <0.001 <0.001
Female Ref. 0.706 (0.559,0.892) 0.004 0315 (0.258,0.386) <0.001 <0.001
Age 0.464
<40 Ref. I 0985 (0.647,1.497) 0942 0445 (0.303,0.654) <0.001 <0.001
[40, 60) Ref. 0.734 (0.557,0.966) 0.028 0.412 (0.333,0.511) <0.001 <0.001
260 Ref. 0.759 (0.595,0.968) 0.027 0.513 (0.405,0.649) <0.001 <0.001
Race/ethnicity 0.009
Non- 0.616 (0.475,0.798) <0.001 0323 (0.255,0.410) <0.001 <0.001
hispanic White Ref.
Non- 0946 (0.762,1.175) 0.613 0.424 (0.332,0.541) <0.001 <0.001
hispanic Black Ref.
Mexican 0.506 (0.318,0.805) 0.005 0.594 (0.425,0.831) 0.003 0.002
American Ref.
Other 0943 (0.698,1.272) 0.696 0.398 (0.287,0.553) <0.001 <0.001
Race/ethnicity Ref.
Marital status 0.361
Never married Ref. 0.679 (0.411,1.122) 0.130 0.295 (0.191,0.455) <0.001 <0.001
Married/living 0.637 (0.517,0.785) <0.001 0381 (0.311,0.466) <0.001 <0.001
with partner Ref.
Widowed/ 0.823 (0.595,1.139) 0237 0.458 (0.341,0.617) <0.001 <0.001
divorced Ref.
PIR 0.775
<1 Ref. 0.742 (0.497,1.109) 0.144 0311 (0.230,0.421) <0.001 <0.001
[1,3) Ref. 0.660 (0.524,0.831) <0.001 0371 (0.315,0.436) <0.001 <0.001
23 Ref. 0.718 (0.565,0.913) 0.007 0388 (0.302,0.498) <0.001 <0.001
Education 0.519
Below high school Ref. 0557 (0.321,0.965) 0.037 0513 (0.343,0.769) 0.001 <0.001
High school Ref. 0.789 (0.586,1.063) 0.117 0.416 (0.317,0.545) <0.001 <0.001
College or above Ref. 0.702 (0.562,0.876) 0.002 0369 (0.307,0.444) <0.001 <0.001
BMI (kg/m?) 0.095
<25 Ref. 0.747 (0.503,1.110) 0.147 0302 (0.198,0.459) <0.001 <0.001
[25, 30) Ref. 0.615 (0.445,0.849) 0.004 0.499 (0.382,0.652) <0.001 <0.001
> 30 Ref. 0.770 (0.618,0.960) 0.021 0.413 (0.335,0.509) <0.001 <0.001
Smokers 0.035
Never smoker Ref. 0.828 (0.659,1.041) 0.105 0392 (0.316,0.485) <0.001 <0.001
Former smoker Ref. 0.563 (0.411,0.772) <0.001 0.319 (0.255,0.399) <0.001 <0.001
Current smoker Ref. 0.438 (0.308,0.624) <0.001 0302 (0.207,0.442) <0.001 <0.001
Alcohol drinkers 0474
Nondrinker Ref. 0.612 (0.446,0.839) 0.003 0327 (0.260,0.411) <0.001 <0.001
Moderate 0.777 (0.604,1.001) 0.051 0.427 (0.347,0.525) <0.001 <0.001
alcohol use Ref.
High alcohol use Ref. 0.700 (0.438,1.119) 0.134 0397 (0.285,0.551) <0.001 <0.001
[a%) 0375
No Ref. 0.694 (0.454,1.058) 0.089 0492 (0.338,0.716) <0.001 <0.001
Yes Ref. 0.750 (0.626,0.898) 0.002 0388 (0.329,0.459) <0.001 <0.001
Hypertension 0.465
No Ref. 0758 (0.603,0.953) 0.018 0459 (0.377,0.559) <0.001 <0.001
Yes Ref. 0.738 (0.571,0.955) 0.021 0385 (0.305,0.485) <0.001 <0.001

None exercise group was used as reference. PIR, poverty income ratio; BMI, body mass index; CVD, cardiovascular diseases.
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B (95% Cl) p-value

One - line linear regression model = 0.985 (0.981, 0.990) <0.001

Two - piecewise linear regression model

Exercise < 20 (100 * MET- 0.973 (0.964, 0.981) <0.001
minutes/week)

Exercise > 20 (100 * MET- 0.998 (0.991, 1.005) 0.586
minutes/week)

Log - likelihood ratio test <0.001

age, gender, race, body mass index, marital status, education, poverty income ratio, smoke
status, alcohol use, and chronic diseases were adjusted.
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Variable

Al
participants

Non-
diabetes

Diabetes

< 40 36.12 42.03 10.3
[40, 60) 41.42 40.81 42.65
> 60 22.46 17.16 47.06
Sex 0.531
Male 53.01 52.53 53.5
Female 46.99 47.47 46.5
BMI (kg/m?) <0.001
<25 28.11 32.09 10.5
[25, 30) 33.33 34.68 24.83
> 30 38.56 33.23 64.67
Race/ethnicity <0.001
Non- 67.2 68.07 60.86
hispanic White
Non- 12.06 11.8 15.51
hispanic Black
Mexican 7.74 737 9
American
Other 12.99 12.77 14.63
Race/ethnicity
Marital status <0.001
Never married 18.02 20.08 9.01
Married/living 63.52 62.88 64.25
with partner
Widowed/ 18.46 17.05 26.74
divorced
PIR <0.001
<1 13.67 13.36 15.85
[13) 3521 34.4 39.09
>3 51.11 52.24 45.05
Education <0.001
Below 4.19 3.26 8.07
high school
High school 3343 323 38.09
College or above 62.38 64.44 53.84
Smokers <0.001
Never smoker 54.27 5535 49.15
Former smoker 24.58 22.64 32.96
Current smoker 2115 22.01 17.89
Alcohol drinkers <0.001
Nondrinker 23.19 20.41 37.01
Moderate 54.25 55.26 49.53
alcohol use
High alcohol use 22.56 24.33 13.46
i 1
C.ardlovascu ar <650
disease
No 91.98 94.79 77.02
Yes 8.02 521 22.98
Hypertension <0.001
No 62.13 69.18 31.12
Yes 37.87 30.82 68.88
PE (category) <0.001
None 4524 41.67 61.28
Less than 600 *
MET-
minutes/week 16.38 16.42 16.45
More than 600 *
MET-
minutes/week 38.38 41.91 22.26
PE (100 * MET-
minutes/
891 +0.22 9.96 + 0.26 4.51 + 0.30 <0.001
week,
continuous)
Sleep duration
6.19 £ 0.01 6.22 +0.01 6.07 = 0.03 <0.001
(hours/day)

Mean + SE and survey-weighted linear regression (svyglm) for continuous variables; % and

survey-weighted Chi-square test (svytable) for categorical variables. BMI, body mass index;
PIR, poverty income ratio; PE, Physical Exercise.
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Exposure Outcome

Gut Microbiota GWAS
! (;;nus“:even Diabetic polyneuropathy

(DPN)/
Diabetic automic neuropathy
(DAN) GWAS

selection of IVs (SNPs):
1.locus-wide significance:P<1x10-5;
2.LD analysis: R2<0.001, clustering
distance=10,000kb;

3.remove palindromic SNPs;

calculate the F statistic for
each SNP and remove IVs with
F<10

MR analysis: IVW, weighted
median,weighted mode, MR-
Egger test, simple mode

Sensitivity analysis:
(1) pleiotropy: MR Egger intercept; MR:
PRESSO

(2) heterogeneity: Cochran's Q
(3)leave-one-out
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Parameters

Male sex, n (%)
Age (years)
BMI (kg/m?)
Smoking(/d)
Drinking (ml/d)
Systolic BP (mmHg)
Diastolic BP (mmHg)
FBG (mmol/L)
HbAlc (mmol/L)
OGTT(2h) (mmol/L)
TG (mmol/L)

TC (mmol/L)

**: P<0.01, ***: P<0.001.

Diabetic foot ulcer
group (n=59)

25.000 (42.37)
63.542 + 15.001
28.606 + 3.399
8.237 £ 5.624
235.186 + 135.947
140.034 + 24.450
95.372 £ 9.099
10.723 + 2.416
9.220 + 0.859
12.280 + 0.990
2214 £ 1.056

5.025 £ 1.590

Traumatic wound
group (n=42)

21.000 (50)
50.667 + 18.678
24.045 + 3433

9.381 + 6.789
242.071 £ 126418
128.119 + 15.461
86.881 + 6.114
4.746 + 0.548
4.960 + 0.615
6.216 + 0.9333
1.160 + 0.446

3.726 + 0.602

0.448

<0.001 ***

<0.001 ***

0.358

0.797

0.003 **

<0.001 ***

<0.001 ***

0.006 **

<0.001 ***

<0.001 ***

<0.001 ***
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All-cause Mortality

HOMA-IR

threshold point

1.14

HOMA-IR<1.14

0.11 (0.04, 0.35) 0.0001

HOMA-IR>1.14

1.01 (1.00, 1.02) 0.0068

P for log likelihood ratio test <0.001

TyG

threshold point 9.18
TyG<9.18 0.69 (0.48, 0.99) 0.0414
TyG>9.18 1.69 (1.24, 2.30) 0.0010

P for log likelihood ratio test
TyG-BMI

threshold point

0.003

207.9

TyG-BMI<207.9 0.98 (0.97, 1.00) 0.0310

TyG-BMI>207.9

1.01 (1.00, 1.01) 0.0014

P for log likelihood ratio test
METS-IR

threshold point

<0.001

35.85

METS-IR<35.85

0.92 (0.85, 0.99) 0.0201

METS-IR>35.85

1.02 (1.00, 1.05) 0.0205

P for log likelihood ratio test

<0.001

HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; TyG, Triglyceride Glucose
Index; TyG-BMI, Triglyceride Glucose-Body Mass Index; METS-IR, Metabolic Score for

Insulin Resistance.

Data are presented as hazard ratios, 95% confidence intervals, and P-values. Adjustments were
made for age, gender, race, education level, Poverty Income Ratio (PIR), Body Mass Index

(BMI), alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate
aminotransferase (AST), serum calcium, serum phosphorus, total cholesterol, triglycerides,

serum creatinine, hypertension, and cardiovascular disease status.
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Model 1 Model 2 Model 3

HR (95%Cl) HR (95%Cl) HR (95%CI)

HOMA-IR 1.00 (0.99,1.01) 0.998 1.01 (1.00,1.01) 0.092 1.01 (1.00,1.02) 0.016

HOMA-IR quartile

Quartile 1 1 1 1

Quartile 2 0.67 (0.50,0.88) 0.005 0.70 (0.52,0.94) 0.018 0.76 (0.57,1.01) 0.600
Quartile 3 0.61 (0.46,0.82) 0.001 0.83 (0.62,1.11) 0217 0.88 (0.64,1.20) 0.414
Quartile 4 0.63 (0.48,0.82) 0.001 0.90 (0.67,1.21) 0.502 1.07 (0.81,1.43) 0.597
TYG 0.85 (0.75,0.96) 0.006 1.05 (0.92,1.20) 0.494 1.17 (1.01,1.36) 0.033
TYG quartile

Quartile 1 1 1 1

Quartile 2 0.77 (0.58,1.02) 0.068 0.83 (0.64,1.09) 0178 0.89 (0.68,1.15) 0.367
Quartile 3 0.70 (0.53,0.92) 0.012 0.82 (0.63,1.07) 0.146 0.90 (0.70,1.16) 0.425
Quartile 4 0.79 (0.62,1.00) 0.049 1.22 (0.95,1.59) 0.125 151 (1.17,1.96) 0.002
TYG-BMI 1.00 (0.99,1.00) <0.001 1.00 (1.00,1.00) 0.890 1.01 (1.00,1.01) 0.005

TYG-BMI quartile

Quartile 1 1 1 1

Quartile 2 0.72 (0.54,0.96) 0.027 0.81 (0.61,1.06) 0.116 0.88 (0.62,1.24) 0.468
Quartile 3 0.55 (0.43,0.72) <0.001 0.77 (0.60,0.99) 0.045 0.84 (0.53,1.34) 0.460
Quartile 4 0.57 (0.44,0.73) <0.001 0.94 (0.72,1.21) 0.614 1.17 (0.54,2.53) 0.688
METS-IR 098 (0.98,0.99) <0.001 1.00 (0.99,1.00) 0.841 1.02 (1.00,1.04) 0.061

METS-IR quartile

Quartile 1 1 1 1

Quartile 2 0.74 (0.56,0.96) 0.025 0.81 (0.62,1.08) 0.147 0.88 (0.64,1.22) 0457
Quartile 3 060 (0.47,0.78) <0.001 0.83 (0.64,1.67) 0.143 091 (0.61,1.37) 0.652
Quartile 4 056 (0.43,0.73) <0.001 0.92 (0.69,1.23) 0594 1.09 (0.62,1.92) 0.764

Model 1: No adjustments were made for covariates. Model 2: Adjustments were made for age, gender, and race. Model 3: Adjustments included age, gender, race, educational level, PIR, BMI,
ALT, ALP, AST, serum calcium, serum phosphorus, total cholesterol, triglycerides, serum creatinine, hypertension, and cardiovascular disease status.

PIR, the ratio of income to poverty; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, Alkaline phosphatase; TC, total cholesterol; TG, triglycerides;
CVDs, cardiovascular diseases; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; TyG, Triglyceride Glucose Index; TyG-BMI, Triglyceride Glucose-Body Mass Index; METS-
IR, Metabolic Score for Insulin Resistance.

Bold text is used for visual clarity to differentiate insulin resistance indices and does not indicate statistical significance or special emphasis.
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Total P-value
N 1558 928 630
Age (years) 64.64 + 0.44 61.21 + 0.65 70.27 + 0.54 <0.001
PIR 2.49 +0.06 2.65 £ 0.08 222 +0.07 <0.001
BMLI, (%) 3218 £ 0.25 32.86 +0.32 31.07 + 0.38 <0.001
ALT (U/L) 25.81 + 0.61 26.71 + 0.86 24.32 £ 0.85 0.054
AST (U/L) 26.10 + 0.51 25.53 +0.65 27.04 £0.73 0.115
ALP (IU/L) 76.22 + 1.12 74.09 + 1.16 79.73 + 2.14 0.019
Calcium (mmol/L) 2.35+0.01 235 +0.01 2.36 + 0.01 0.081
Phosphorus (mmol/L) 1.20 + 0.01 1.18 £ 0.01 1.23 + 0.01 <0.001
Serum creatinine (mg/dL) 106.25 2.8 96.44 + 2.47 122.36 + 5.61 <0.001
TC (mg/dL) 187.95 + 1.74 188.90 + 2.16 186.40 + 2.49 0.418
TG (mg/dL) 195.48 + 7.16 204.63 £10.73 180.45 + 6.41 0.051
Gender, (%) 0.618 ‘
Male 818 (50.97%) 468 (50.31%) 350 (52.04%) ‘
Female ‘ 740 (49.03%) 460 (49.69%) 280 (47.96%)
Races, (%) <0.001
Mexican American 279 (8.90%) 191 (10.95%) 88 (5.53%)
Other Hispanic 128 (4.78%) 95 (5.70%) 33 (3.27%)
Non-Hispanic White 666 (64.96%) 319 (60.28%) 347 (72.65%)
Non-Hispanic Black 352 (13.20%) 217 (13.74%) 135 (12.30%)
Other Races 133 (8.16%) 106 (9.32%) 27 (6.25%)
Educational levels, (%) <0.001
< high school 612 (28.99%) 327 (23.73%) 285 (37.63%)
High school or GED 355 (27.12%) 210 (27.28%) 145 (26.87%)
> high school 591 (43.89%) 391 (48.99%) 200 (35.49%)
Hypertension, (%) 0.001
No 272 (18.29%) 174 (21.40%) 98 (13.17%)
Yes 1286 (81.71%) 754 (78.60%) 532 (86.83%)
CVDS <0.001
No 1072 (69.22%) 701 (74.85%) 371 (59.96%)
Yes 486 (30.78%) 227 (25.15%) 259 (40.04%)
HOMA_IR 9.27 £ 045 949 +0.54 8.92 +0.75 0.524
TyG 9.34 £0.02 9.38 £ 0.03 9.27 £ 0.04 0.019
TyG_BMI 301.61 + 2.70 309.08 £ 3.49 289.33 + 3.80 <0.001
METS_IR 52.16 = 0.51 53.68 + 0.66 49.65 £ 0.70 <0.001

Mean + SD for continuous variables: the P value was calculated by the weighted linearregression model; (%) for categorical variables: the P value was calculated by the weighted chi-square test.
PIR, the ratio of income to poverty; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, Alkaline phosphatase; TC, total cholesterol; TG, triglycerides;
CVDs, cardiovascular diseases; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; TyG, Triglyceride Glucose Index; TyG-BMI, Triglyceride Glucose-Body Mass Index; METS-
IR, Metabolic Score for Insulin Resistance.
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blood glucose | Ate T OGTTEZN
4-HNE 0.633 *** 0.856 ** 0.823 ¢
MDA ‘ 0.374 ** 0.660 *** 0.621 ***
ROS ‘ 0.499 *** 0.794 0.6117%%

**: P<0.01, ***: P<0.001.
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4-HNE (pg/mL) 4.470 + 1.311 3.765 + 0.869 0.003 **

MDA (nmol/mgprot) 5.665 + 1.197 3.621 + 0.967 <0.001 ***

ROS (U/mL) 371912 + 107.545 272.375 + 86.714 <0.001 ***

**: P<0.01, ***: P<0.001.
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Overall

Variable
14828)

Age, years 49+ 18 47 £18 51+17 <0.001
Males 7639 (51.52%) 4619 (53.38%) 3020 (48.91%) <0.001
Race <0.001
White 7169 (48.35%) 4547 (52.55%) 2622 (42.46%)

Black 2830 (19.09%) 1515 (17.51%) 1315 (21.30%)

Other | 4829 (32.57%) 2591 (29.94%) 2238 (36.24%)

Education <0.001
Lower than high school 4273 (28.82%) 2224 (25.70%) 2049 (33.18%)

High school 3424 (23.09%) 1955 (22.59%) 1469 (23.79%)

More than high school | 7131 (48.09%) 4474 (51.70%) 2657 (43.03%)

Smoking ‘ <0.001
Never Smoker 7859 (53.00%) 4606 (53.23%) 3253 (52.68%)

Current Smoker 3160 (21.31%) 1985 (22.94%) 1175 (19.03%)

Ex-Smoker 3809 (25.69%) 2062 (23.83%) 1747 (28.29%)

SBP, mmHg 124+ 19 121 £20 126 + 18 <0.001
DBP, mmHg 70+ 12 69 + 12 71 +£13 <0.001
BMI, k.g/mZ 28.59 + 6.34 26.05 +4.78 3215 +6.53 <0.001
Diabetes ‘ 1571 (10.59%) 408 (4.72%) 1163 (18.83%) <0.001
Hypertension 4913 (33.13%) 2170 (25.08%) 2743 (44.42%) <0.001
Coronary heart disease 586 (3.95%) 258 (2.98%) 328 (5.31%) <0.001
AMI 611 (4.12%) 274 (3.17%) 337 (5.46%) <0.001
Chronic heart failure 422 (2.85%) 176 (2.03%) 246 (3.98%) <0.001
Stroke 490 (3.30%) 233 (2.69%) 257 (4.16%) <0.001
Cancer ‘ 1302 (8.78%) 726 (8.39%) 576 (9.33%) 0.047
Total protein, g/L 72.30 + 5.04 71.99 +5.03 72.74 £ 5.03 <0.001
Albumin, g/L 42.21 + 3.60 42,51 +3.63 41.77 + 3.50 <0.001
Globulin, g/L 30.10 + 4.58 29.48 + 4.40 30.97 + 4.68 <0.001
ALT, u/L 21 (16-28) 19 (15-25) 24 (18-33) <0.001
AST, u/L 23 (19-27) 22 (19-26) 23 (20-28) <0.001
Scr, mg/dl 72 (61-88) 71 (62-88) 73 (62-88) <0.001
Hemoglobin, g/L 14.25 + 1.56 14.19 + 1.53 14.34 + 1.59 <0.001
HbAlc, % 5.65 + 1.04 5.39 £ 0.64 6.02 + 1.34 <0.001
TG,mg/dl 107 (74-161) 91 (65-132) 137 (95-198) <0.001
TC,mg/dl 199 + 42 198+ 42 200 =43 0.01

HDL-C,mg/dl 54+ 16 58 £16 48 £13 <0.001
FBG, mmol/L 5.60 = 1.89 5.04 £0.92 6.39 +2.52 <0.001
Fasting insulin, pU/mL 9.77 (6.32-15.91) 6.87 (4.92-8.95) 17.61 (13.83-24.38) <0.001
HOMA-IR 2.30 (1.41-4.01) 1.54 (1.08-2.04) 4.52 (3.41-6.68) <0.001

IR, insulin resistance; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; AML acute myocardial infarction; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; Scr, serum creatinine; HbA!c, glycated hemoglobin Alc; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood-glucose;
HOMA-IR, homeostasis model assessment of insulin resistance.

Values are expressed as the mean + SD, the median with interquartile range or n (%).
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Subgroup OR (95%Cl) P-value P for interaction

Age : 0.71
<60 1.62(1.18,2.23) 're 0.01
> 60 1.74(1.08,2.78) ' e 0.03

Sex l 0.77
Female 1.58(1.03,2.42) | e 0.04
Male 1.78(1.21,2.61) | ® 0.01

Race : 0.75
Mexican American  1.86(1.26,2.76) e 0.005
Non-Hispanic Black 1.20(0.88,1.64) e 0.23
Non-Hispanic White 1.78(1.30,2.43) ,+e 0.16
Other Race 2.11(0.83,5.37) /| 0.11

BMI ! 0.06
Normal weight 2.62(1.59,4.31) : o <0.001
Overweight 1.29(0.92,1.82) e 0.13
Obese 1.37(0.74,2.53) 1|e 0.29
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Final sample (n=2,918)
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Variables HR  95%Cl VIF

Gender (male v, femle) 2058 0773546 0149
Age ) LIoE 10551156 <00001 | 1758
DBP (i) 099 0972102 0415 L6
SBP (i) o3 10001026 | 0055 | 1357
) 0995 0991050 09%  Lass
Giycohemoglobin () o o125 s | 1286
REC (million/al) 099 04312257 032 26%
Ho (ga) low 07 07e 32
PLT (100971) 099 0ssLio0r | oms 12
HSCRP (mgl) 109 10081051 0007 | 139
BUN (1) Lon 092113 | 0375 1670
Ser umolt) 1003 09991007 0097 1608
T8 (umalrl) L0 0964108 | 0t 1277
i W) 1009 09951019 0103 1210
AR 1295 11201369 00001 1413
Serum potassum (o) o8 0sie2isn os2 | 1282
Testosterone (rg/dl) 000 05981002 0856 | Le7h
SHBG () 1006 0S9SL0M 0120 | 1216
Marital status

Widowed v Marricd L ososon | 03
Divorced v, Marricd 06 0352200 osn
Separaed vs. Married L2 02008315 062

Never married 1. Marricd 02 00752143 0286
Living with partncr . Marred 0334 00442562 091
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Crude OR(95%Cl)

p-value

Model 1 OR(95%CI)
p-value

Model 2 OR(95%Cl)
p-value

Model 3 OR(95%CI)
p-value

HGB(g/L)

No

Anemia
Yes

0.84 (0.75~0.93)
0.001

Reference

1.8(1.17~2.77)
0.008

Crude model: Unadjusted model;
Model 1: adjusted for sociodemographic variables (age, sex, race, Marriage, PIR);

Model 2: Model 1 and BMI, Coronary heart discase, stroke, Family history of diabetes, Hyperlipidemia,
Alcohol status, Smoking status;
Model 3: adjusted for Model2, HbAlc, CRP, Total cholesterol, Serum Ferritin, Hemoglobin.

0.74 (0.65~0.84)
<0.001

Reference

2.02 (1.28~3.19)
0.002

0.76 (0.67~0.86)
<0.001

Reference

1.8 (1.13~2.87)
0.014

0.76 (0.66~0.86)
<0.001

Reference

1.79 (1.11~2.87)
0.016
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Characteristic OR(95%ClI) P-value
Sex, %

Male
Female 0.79 (0.55~1.12) 0.182
Age, years 1 (0.99~1.02) 0.725

Race/ethnicity, %

Non-Hispanic White

Non-Hispanic Black 0.91 (0.37~2.23) 0.839
Mexican American 0.94 (0.62~1.43) 0.786

Other 0.78 (0.48~1.26) 0.312

Education level, %

blow high school
high school 0.93 (0.58~1.51) 0.779
above high school 1.13 (0.76~1.68) 0.531

Marital, %

married or living
with partners

living alone 1.38 (0.97~1.97) 0.07
PIR, %

Low

Medium 0.69 (0.47~1.03) 0.067
High 0.69 (0.43~1.11) ‘ 0.122
BMI (kg/m?) 1.04 (1.01~1.06) | 0.002

Coronary heart disease; %

No 1
Yes 1.67 (1.04~2.66) 0.032

Stroke, %

No 1

Yes 1.22 (0.68~2.18) 0.5
Family history of diabetes, %
No 1

Yes 1.62 (1.06~2.47) 0.027

Hyperlipidemia, %

No 1
Yes 1.37(0.97~1.96) 0.077

Alcohol status, %

Never 1
Former 0.84 (0.48~1.47) 0.533
Now 1.04 (0.67~1.63) 0.855

Smoking status, %

Never 1

Former 0.97 (0.65~1.44) 0.874
Now 1.3 (0.81~2.09) 0279
HbAlc,% 1.06 (0.97~1.16) 02
CRP 7 1.05 (0.95~1.15) 0.337
Total cholesterol (mg/dl) | 1 (0.99~1) 0.169
Serum Ferritin(ng/mL) 1(1~1) 0.985
Hemoglobin(g/L) 0.84 (0.75~0.93) 0.001
Anemia

No 1

Yes 1.8 (1.17~2.77) 0.008
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Odds ratio (95% Cl), P-value

Model 2

TP (per 10g/L increment)
[ TP categories

Q1

Q

Q3

Q4

Qs

Q6

P for trend
ALB (per 10g/L increment)
ALB categories

Q1

Q

Q3

Q1

Qs

Q6

P for trend
GLB (per 10g/L increment)
GLB categories

Q1

Q

Q3

Q1

Qs

Q6

P for trend

1.34 (1.26, 1.43) <0.0001

Reference
1.29 (1.13, 1.46) <0.0001
1.32 (1.17, 1.48) <0.0001
1.51 (1.34, 1.70) <0.0001
1.46 (131, 1.64) <0.0001
1.65 (1.47, 1.84) <0.0001
<0.0001

0.56 (0.51, 0.62) <0.0001

Reference
1.03 (0.91, 1.17) 0.6052
0.90 (0.79, 1.03) 0.1345
0.77 (0.69, 0.86) <0.0001
0.72 (0.63, 0.82) <0.0001
0.55 (0.49, 0.61) <0.0001
<0.0001

2.08 (1.93, 2.24) <0.0001

Reference
126 (111, 1.44) 0.0004
1.57 (1.39, 1.78) <0.0001
1.84 (1.63, 2.08) <0.0001
2.22 (195, 2.52) <0.0001
2.77 (245, 3.12) <0.0001

<0.0001

121 (113, 1.29) <0.0001

Reference
1.21 (1.07, 1.38) 0.0032
1.23 (1.09, 1.39) 0.0008
1.38 (1.22, 1.55) <0.0001
132 (1.17, 1.48) <0.0001
1.40 (1.25, 1.58) <0.0001
<0.0001

0.52 (0.47, 0.57) <0.0001

Reference
0.95 (0.84, 1.08) 0.4363
0.81 (0.70, 0.92) 0.0021
0.69 (0.62, 0.78) <0.0001
0.64 (0.56, 0.74) <0.0001
0.50 (0.44, 0.56) <0.0001
<0.0001

1.93 (1.78, 2.10) <0.0001

Reference
1.26 (1.10, 1.43) 0.0006
154 (1.36, 1.74) <0.0001
178 (1.57, 2.02) <0.0001
2.13 (1.86, 2.43) <0.0001
2.54 (2.23, 2.88) <0.0001

<0.0001

1.54 (141, 1.69) <0.0001

Reference
1.28 (1.09, 1.50) 0.0025
136 (1.17, 1.58) <0.0001
153 (1.32, 1.77) <0.0001
1.60 (1.39, 1.85) <0.0001
2.06 (1.77, 2.40) <0.0001
<0.0001

1.09 (0.95, 1.25) 0.1995

Reference
1.07 (091, 1.26) 0.3993
1.09 (0.92, 1.30) 0.3117
1.14 (0.98, 1.32) 0.0927
1.14 (0.95, 1.36) 0.1544
1.16 (0.99, 1.37) 0.0653
0.062

1.62 (1.47, 1.79) <0.0001

Reference
1.19 (1.02, 140) 0.0275
1.36 (1.17, 1.58) <0.0001
1.45 (1.25, 1.69) <0.0001
1.69 (1.4, 1.98) <0.0001
1.91 (163, 2.23) <0.0001

<0.0001

TP, total protein; ALB, albumin; GLB, Globulin.

Model 1: no adjustment; Model 2: adjusted for age, gender, and race; Model 3: adjusted for age, gender, race, education, systolic blood pressure, diastolic blood pressure, body mass index,
smoking, diabetes, hypertension, coronary heart disease, acute myocardial infarction, chronic heart failure, stroke, cancer, alanine aminotransferase, aspartate aminotransferase, serum creatinine,
glycated hemoglobin Alc, hemoglobin, total cholesterol, high-density lipoprotein cholesterol, triglycerides.
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Before adjustment

After adjusting for

Variables B Waldy2 OR 95%ClI p Value
BMI 0.437 112.057 1.548 1.428-1.679 <0.001
TyG index 1.388 88.739 4.008 3.003-5.350 <0.001
TyG-BMI index 0048 138.064 1.049 1.041-1.058 <0.001
BMI 0.362 47.29 1.436 1.295-1.592 <0.001
TyG index 1.741 15.699 5.704 2.411-13.496 <0.001
TyG-BMI index 0.042 52.479 1.042 1.031-1.054 <0.001
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Variables Do T2DM (n=250) feui 2 P
of (n=602) NAFLD (n=352) Z Value Value
Sex 10.124 0.001
Male 568 (94.4) 227 (90.8) 341 (96.4) 1
Female 34 (5.6) 23 (9.2) 11 (3.1)
Age® 49 (46,53) 49 (46,53) 49 (46,52) 2,121 0.034
Marital Status 6527 0.038
Unmarried 188 (31.2) 92 (36.8) 96 (27.3)
Married 359 (59.6) 135 (54.0) 224 (63.6)
Others 55 (9.1) 23(92) 32 (9.1)
Educational Level * 5.676 0.06
Junior High School or below 67 (11.1) 24 (9.6) 43 (12.2)
I“““”S*:cif: ds:r};‘)s"clf;‘]h“m 356 (59.1) 162 (64.8) 194 (55.1)
Undergraduate/Junior College 179 (29.7) 64 (25.6) 115 (32.7)
Smoking 0.135 0.713
No 328 (54.5) 134 (53.6) 194 (55.1)
Yes 274 (45.5) 116 (46.4) 158 (44.9)
Drinking 0.112 0.738
No 354 (58.8) 149 (59.6) 205 (58.2)
Yes 248 (412) 65 (41.9) 147 (41.8)
Lack of exercise 4.290 0.038
No 271 (45.0) 125 (50.0) 146 (41.5)
Yes 331 (55.0) 125 (50.0) 206 (58.5)
SBP (mm Hg) 128 (117,141) 121 (112,134) 133 (122,146.75) 7.445 <0.001
DBP (mm Hg) L 80 (73,90) 76 (69,83) 83.5 (76,93.75) -7.754 <0.001
HbAlc (%) b 6.5 (5.8,7.6) 6.2 (5.5,7.2) 6.8 (6.0,7.7) -4.467 <0.001
FBG (mmol/L) ® 7.1(6,8.9) 6.6 (5.6,82) 74 (6.4,9.3) -5.023 <0.001
UA (umol/L) ® 364 (301,432) 337 (284,395) 381.5 (316,454) -5.092 <0.001
ALT (/L) ® 24 (16,36) 19 (13,28) 28 (19,42) -8.389 <0.001
AST (L) ® 27 (22,34) 23 (2029) 29 (23,37) -6.692 <0.001
TC (mmol/L) ® 4.65 (4.04,5.42) 443 (3.80,5.17) 4.88 (4.25,5.62) -5.557 <0.001
TG (mmol/L) ® 1.60 (1.06,2.6) 112 (0.8,1.64) 2.04 (1.40,3.05) -10.863 <0.001
HDL-C (mmol/L) ® 1.01 (0.88,1.17) 111 (0.94,1.28) 0.97 (0.84,1.10) 6790 <0.001
LDL-C (mmol/L) ® 273 (212,3.35) 260 (2.11,3.17) 2.83 (2.16,3.47) 2737 0.006
BMI (Kg/m?) 25.46 (23.38,27.66) 23.67 (22.17,25.40) 26.90 (24.94,29.07) -12.238 <0.001
TyG index ® 9.16 (8.72,9.75) 8.82 (8.36,9.21) 9.45 (9.00,10.00) -10.661 <0.001
TyG-BMI index L 235.15 (209.31,263.86) 209.93 (189.51,228.17) 255.43 (231.70,280.46) -14.729 <0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA Ic, glycosylated hemoglobin; FBG, fasting blood glucose; UA, uric acid; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol *n (%), °M (P55, Pys).
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B P F stment R?
4-HNE -0.042 -0.182 -2.771 0.008** 87.992* 0.818
MDA -0.121 0478 6005 0,001
ROS -0.001 0394 5056 <0001

**: P<0.01, ***: P<0.001.
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Canonical correlation

e ) Eigenvalue  Wilks statistic F Molecular DF  Denominator DF
Model 1 0.936 7.015 0.104 22.053 9.000 129.139 <0.001%*
Model 2 0.380 0.169 0832 2608 4.000 108.000 0.040*
Model 3 0.167 0029 0972 1.585 1.000 55.000 0213

*: P<0.05, ***: P<0.001.






OPS/images/cover.jpg
& frontiers | Research Topics.

Exploring the new
biomarkers and clinical
indicators for diabetes:
insights from real-world
studies

Published in
Frontirs in Endocrinciogy






OPS/images/fendo.2024.1388731/fendo-15-1388731-g003.jpg
7

L

PP





OPS/images/fendo.2024.1416634/table7.jpg
Characteristic of patients HR (95%Cl) P value P for

Age(years) <0.001
<60 161481 1.83 (1.77, 1.88) <0.001
260 18060 1.39 (1.30, 1.47) <0.001

Gender <0.001
Male 95255 1.54 (1.49, 1.59) <0.001
Female 84286 1.95 (1.86, 2.03) <0.001

Smoking status ‘ 0.001
Current-smoker 29065 1.56 (1.48, 1.64) <0.001
Ex-smoker 6252 1.46 (1.29, 1.64) <0.001
Never-smoker 144224 1.71 (1.66, 1.77) <0.001

Drinking status ‘ 0.005
Current drinker 2932 1.50 (1.28, 1.76) <0.001
Ever drinker 22393 1.52 (1.42, 1.63) <0.001
Never drinker 154216 1.70 (1.65, 1.75) <0.001

Family history of diabetes ‘ 0.881
No 175972 1.66 (162, 1.71) <0.001
Yes 3569 1.68 (1.46, 1.94) <0.001

BMI (kg/m?) ‘ <0.001
<24 114461 1.92 (1.85, 2.00) <0.001
>24 65080 157 (152, 1.63) <0.001

Note 1: The above model was adjusted for gender, age, SBP, DBP, family history of diabetes, drinking status, smoking status, BMI, HDL-C, LDL-C, AST, ALT, Scr, and BUN.
Note 2: The model was not adjusted for the stratification variable in each case.
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Incident prediabetes HR (95%Cl) P

and diabetes

Fitting model by standard Cox 1.67 (1.62, 1.71) <0.001
proportional hazards regression

Fitting model by two-piecewise Cox proportional
hazards regression

Inflection points of the TyG index 8.73
<8.73 1.95 (1.86,2.04) | <0.001
>8.73 1.34 (1.27, 1.42) 7 <0.001
P for log-likelihood ratio test <0.001

We adjusted for gender, age, SBP, DBP, family history of diabetes, drinking status, smoking
status, BMI, HDL-C, LDL-C, AST, ALT, Scr, and BUN.
HR, hazard ratios; CI, confidence interval; Ref, reference; TyG index, triglyceride-

glucose index.
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Exposure Model 5 Model 6

(HR,95%Cl, P) (HR,95%ClI, P)
TyG index 1.70 (1.65, 1.75) <0.001 1.70 (1.65, 1.76) <0.001
TyG index (quartile)
Q1 ref ref
Q2 1.36 (1.29, 1.44) <0.001 1.39 (1.31, 1.46) <0.001
Q3 1.73 (1.64, 1.82) <0.001 1.75 (1.66, 1.85) <0.001
Q4 229 (2.17, 2.42) <0.001 228 (2.15, 2.41) <0.001
V P for trend <0.001 <0.001

Model 5 was sensitivity analysis in participants with never-drinker. We adjusted gender, age,
SBP, DBP, family history of diabetes, smoking status, BMI, HDL-C, LDL-C, AST, ALT, Scr,
and BUN.

Model 6 was sensitivity analysis in participants with never-smoker. We adjusted gender, age,
SBP, DBP, family history of diabetes, drinking status, BMI, HDL-C, LDL-C, AST, ALT, Scr,
and BUN.

HR, hazard ratios; CI, confidence interval; Ref, reference; TyG index, triglyceride-
glucose index.
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Variable

Model 1

(HR,95%ClI, P)

Model 2
(HR, 95%Cl, P)

Model 3
(HR, 95%Cl, P)

Model 4
(HR, 95%Cl, P)

TyG index
TyG index (quartile)
Q1
Q
@

2.26 (221, 2.32) <0.001

ref
1.60 (1.52, 1.68) <0.001

2.41 (2.30, 2.52) <0.001

161 (157, 1.65) <0.001

ref
1.30 (1.24, 1.37) <0.001

1.63 (1.56, 1.71) <0.001

1.67 (162, 1.71) <0.001

ref
1.33 (1.27, 1.40) <0.001

1.70 (1.62, 1.78) <0.001

1.67 (1.62, 1.72) <0.001

ref
1.31 (1.25, 1.38) <0.001

1.67 (1.59, 1.75) <0.001

Q4

P for trend

3.74 (3.59, 3.91) <0.001

<0.001

Model 1: we did not adjust for other covariates.
Model 2: we adjusted for gender, age, SBP, DBP, family history of diabetes, drinking status, smoking status, and BML
Model 3: we adjusted for gender, age, SBP, DBP, family history of diabetes, drinking status, smoking status, BMI, HDL-C, LDL-C, AST, ALT, Scr, and BUN.
Model 4: All covariates listed in Table 1 were adjusted. However, continuous covariates were adjusted as nonlinearity.
HR, hazard ratios; CI, confidence interval; Ref, reference; TyG index, triglyceride-glucose index.

209 (1.99, 2.20) <0.001

<0.001

2.22 (2.11, 2.33) <0.001

<0.001

219 (2,08, 2.31) <0.001

<0.001
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Statistics HR (95%Cl) P value

Gender <0.001 ‘

Male 95255 (53.05%) ref

Female 84286 (46.95%) | 0.64 (0.62, 0.66)
Age(years) 41.18 +12.20 1.03 (1.03, 1.04) <0.001
Smoking status ‘

Current-smoker 29065 (16.19%) ref

Ex-smoker s (3.48%) 0.86 (0.80, 0.93) <0.001

Never-smoker 144224 (80.33%) 0.70 (0.68, 0.72) <0.001
Drinking status 7

Current-drinker ‘ 2932 (1.63%) ref

Ex- drinker 22393 (12.47%) | 0.74 (0.67, 0.81) 7 <0.001

Never- drinker 154216 (85.89%) 0.65 (0.59, 0.71) <0.001
Family history 0.1026
of diabetes

No 175972 (98.01%) ref

Yes 3569 (1.99%) 1.07 (0.99, 1.17)
SBP (mmHg) 117.88 + 15.87 1.03 (1.02, 1.03) <0.001
DBP (mmHg) 7354 + 10.61 1.03 (1.03, 1.03) <0.001
BMI (kg/m2) 2301 £ 3.27 113 (112, 1.13) 7 <0.001
ALT (U/L) 2324 £21.75 1.00 (1.00, 1.00) <0.001
AST (U/L)  eis1214 1.01 (1.00, 1.01) <0.001
HDL-C (mmol/L) 1.37 £ 0.31 0.78 (0.75, 0.82) <0.001
TG (mmol/L) 125 +0.78 1.40 (1.39, 1.42) <0.001
LDL-C (mmol/L) 2.69 £ 0.67 1.28 (1.26, 1.31) <0.001
TC (mmol/L) 467 £ 0.88 1.22 (1.20, 1.24) <0.001
BUN (mmol/L) 461 +1.17 1.14 (113, 1.15) <0.001
Scr (umol/L) ‘ 69.59 + 15.76 1.01 (1.01, 1.01) <0.001
FPG (mmol/L) | 477 +0.48 5.64 (5.45, 5.84) <0.001
TyG index ‘ 8.30 £ 0.57 7 2.26 (2.21, 2.32) <0.001

TyG index, triglyceride-glucose index; SBP, systolic blood pressure; DBP, diastolic blood
pressure; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density.
lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; Scr, serum creatinine; BUN,
blood urea nitrogen; FPG, fasting plasma glucose; HR, hazard ratios; CI, confidence interval;
Ref, reference.
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TyG index Participants (n) Prediabetes and Cumulative incidence = Per 100,000

diabetes events (n) [CLASRVA) person-year
Total 179541 21281 11.85 (11.70-12.00) 3762.86
I Q1 44885 2767 6.16 (5.94-6.39) 1896.81
Q2 44884 4001 8.91 (8.65-9.18) 2829.87
Q3 44880 5705 12.71 (12.40-13.02) 4100.54
Q4 44892 8808 19.62 (19.25-19.99) 6329.17
P for trend <0.001 <0.001

TYG index, triglyceride-glucose index; CI, confidence.
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Participants 44885 44884 44880 44892
Gender <0.001
Male 14223 (31.69%) 20754 (46.24%) 26867 (59.86%) 33411 (74.43%)
Female 30662 (68.31%) 24130 (53.76%) 18013 (40.14%) 11481 (25.57%)
Age(years) 37.07 + 9.69 39.85 + 11.61 42.65 + 12.86 45.17 £ 12.84 <0.001
Smoking status <0.001
Current-smoker 3484 (7.76%) 5782 (12.88%) 8178 (18.22%) 11621 (25.89%)
Ex-smoker 939 (2.09%) 1343 (2.99%) 1829 (4.08%) 2141 (4.77%)
Never-smoker 40462 (90.15%) 37759 (84.13%) 34873 (77.70%) 31130 (69.34%)
Drinking status <0.001
Current-drinker 351 (0.78%) 581 (1.29%) 829 (1.85%) 1171 (2.61%)
Ex- drinker 3868 (8.62%) 4921 (10.96%) 6130 (13.66%) 7474 (16.65%)
Never- drinker 40666 (90.60%) 39382 (87.74%) 37921 (84.49%) 36247 (80.74%)
Family history of diabetes 0.010
No 44078 (98.20%) 43969 (97.96%) 43968 (97.97%) 43957 (97.92%)
Yes 807 (1.80%) 915 (2.04%) 912 (2.03%) 935 (2.08%)
SBP (mmHg) 112.02 + 13.84 115.70 + 14.98 119.60 + 15.76 124.22 + 16.16 <0.001
DBP (mmHg) 69.82 + 9.48 72.02 + 9.96 74.49 1042 77.84 + 10.84 <0.001
BMI (kg/mz) 21.21 £ 257 2224 +291 2347 £3.11 25.12 + 3.09 <0.001
ALT (U/L) 13.7 (10.8-18.5) 15.6 (11.8-22.3) 19 (13.6-27.6) 25.3 (17.6-38.2) <0.001
AST (U/L) 20 (16.35-24.8) 21 (17-26) 22.3 (18-27.93) 25 (20-31.73) <0.001
HDL-C (mmol/L) 145 +0.31 1.41 £ 0.30 1.36 £ 0.29 127 £0.29 <0.001
TG (mmol/L) 0.57 £0.13 0.87 + 0.13 1.25 £0.19 2.30 £ 0.81 <0.001
LDL-C (mmol/L) 241 £0.57 2.60 £ 0.61 2.79 + 0.66 297 £0.70 <0.001
TC (mmol/L) 427 £0.74 4.52+0.79 4.77 £ 0.85 5.10 £ 0.91 <0.001
BUN (mmol/L) 452 +1.17 4.55+ 1.18 4.64 £1.17 474 + 1.14 <0.001
Ser (umol/L) 64.38 + 13.94 67.97 + 16.23 71.21 £ 15.79 74.80 + 15.05 <0.001
FPG (mmol/L) 4.58 = 0.50 4.74 £ 0.46 4.84 £ 044 4.94 £ 0.42 <0.001

Values are n (%) or mean + standard deviation or medians (quartile interval).

‘TyG index, triglyceride-glucose index; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; Scr, serum creatinine; BUN, blood urea nitrogen; FPG, fasting plasma glucose.
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According to the data source article:

685277 Chinese participants >20
years old with at least two visits

in 2010 - 2016

473444 were excluded

1) 103946 had available weight and
height measurements

2) 1 had no available information on
gender

3) 152 had extreme BMI values (<15
kg/m2 or >55 kg/m?)

4) 31370 had no available FPG value
at baseline

5) 324233 had visit intervals less than
2 years

6) 7112 diagnosed with diabetes at
baseline
6630 undefined diabetes status at

follow-up

211833 Were enrolled in the original study.

According to our studying:

32292 were excluded

1) 4887 had no available TG value

2) 26247 had FPG>5.6mmol/L at
baseline

3) 1776 were excluded due to TyG

index outliers

v

179541 Chinese participants were included in our study.
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Model 1 Model 2 Model 3

variables
OR (95%CI) OR (95%Cl) OR (95%Cl)

gCD59 1.418(1.254-1.604) <0.001 1.417(1.244-1.614) <0.001 1.572(1.347-1.834) <0.001
Gravidity 1.031(0.898-1.183) 0.67 0.969(0.834-1.126) 0679 0918(0.765-1.102) 0359
Weight 1.040(1.020-1.06) <0.001 0.992(0.936-1.051) 0.786 1.012(0.952-1.075) 0.699
BMI 1.123(1.066-1.183) <0.001 1.121(0.955-1.316) 0.163 1.079(0.913-1.275) ‘ 0372
SBP 1.031(1.013-1.049) 0.001 0.989(0.964-1.014) 0393 0.981(0.955-1.008) ‘ 0.174
DBP 1.055(1.031-1.079) <0.001 1.050(1.017-1.085) 0.003 1.047(1.012-1.083) 0.009
Age 1.016(0.971-1.063) 0491 1.027(0.967-1.092) 0381
TSH 1.215(1.03-1.433) 0.021 1.314(1.095-1.577) 0.003
Ferritin 0.999(0.990-1.009) 0.894 0.995(0.984-1.007) 0416

Model 1: Unadjusted factors; Model 2: Adjusted for gravidity, weight, BMI, systolic pressure, diastolic pressure; Model 3: Further adjusted for age, TSH, and Ferritin based on Model 2.
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Anterior circulation

Grope OR (95%Cl) P
Sex

Male 1.63 (0.99-2.71) Ref

Female 2.01(0.96-4.26) 0.41
Age

<68 1.44 (0.82-2.55) Ref

>68 2.04 (1.11-3.81)" 0.16

Risk factors

0 1.66 (0.57-5.05) Ref

1 1.55 (0.91-2.64) 0.86

2 2.34 (0.95-5.88) 0.34

1

2 3
OR (95%C1)

4

Grope

Sex
Male  1.78(1.07-3.00)*

OR (95%Cl)

Female 162(0.74-363)
Age
<68 2.12 (1.16-3.97)*
>68 1.26 (0.69-2.30)
Risk factors
0 2.82 (0.88-9.97)
1 1.64 (0.91-2.82)
2 1.56 (0.61-4.12)

Posterior circulation

P

Ref
0.74

Ref
<0.05

Ref
0.08
0.11

2 3
OR (95%Cl)

4
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Baseline

characteristics

FPG(mmol/L) 5.21(4.93,5.46) 4.52(4.26,4.73) <0.001

1h glucose(mmol/L) 9.20(7.21,10.31) 7.22(6.32,8.16) <0.001

2h glucose(mmol/L) 8.07(6.63,8.99) 6.30(5.64,7.07) <0.001

Age(years) 30(27,33) 30(27,33) 0.40
Gravidity 2(1,3) 2(1,3) 0.12
Parity 2(1,2) 1(12) 015
Height(cm) 162(160,165) 163(160,165) 053
Weight(kg) 62.5(57.25,70) 58(52.5,65) <0.001
BMI(kg/m?) 24.06 21.87(20,21.88) | <0.001
(22.04,24.07)
SBP(mmHg) 112(106,124) 110(104,118) <0.001
DBP(mmHg) 73(68.25,80) 69(65,74) <0.001
Ferritin(ng/ml) 15.7(8.7,26.3) 13.5(7.8,23.9) 0.53
Hb (g/L) 119(112,124) 118(112,124) 0.68
BUN(mmol/L) 2.78(2.5,3.46) 2.77(2.31,3.28) 0.19
Cr(mmol/L) 45(40.6,49) 45(40.5,49) 0.68
UA(umol/L) 245.7 240.1 033

(209.63,297.58) | (203.7,282.2)

TG(mmol/L) 1.79(1.34,2.9) 1.56(1,2.75) 0.01

TC(mmol/L) 4.65(4.03,6.4) 5.18(4.18,6.61) 0.13

ALB(g/L) 37.3 38.3(35.7,41.8) 0.18
(35.35,41.35)

ALT (U/L) 12.35 12(9,16.8) 0.76
(8.68,17.03)

AST (U/L) 15.65 16.1(14,18.8) 045

(13.68,18.48)

TPOAB(IU/mL)(+) | 9(9.96%) 26(4.65%) 0.15

FT4(pmol/L) 12.65(114,14.6)  12.6(11.4,13.8) 0.72
TSH(uIU/mL) 1.94(1.28,2.85) 1.83(1.25,2.54) 0.15
gCD59(SPU) 1.49(0.90,2.33)  0.87(0.39,1.62) <0.001

GDM, gestational diabetes mellitus; NGT, normal glucose tolerance; FPG, fasting plasma
glucose; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;
Hb, hemoglobin; BUN, blood urea nitroge; Cr, Creatinine; UA, uric acid; TG, triglyeride; TC,
total cholesterol; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; TPOAB: FT4, free theroxine; TSH, thyroid stimulating hormone.
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Biomarkers Type of study GDM Sample Number of Sensibility =~ Specificity

Diagnostic collection participants
guidelines time
HbAlc (11) Retrospective cross- WHO1999 or ADA/ 27 + 5wk 262 0.714 68.1% 63.2%
sectional study WHO 2013
SHBG (12) Prospective American 15wk 269 0.692 85.2% 37.1%
observational studies Diabetes Association
Hs-CRP (12) Prospective American 15wk 269 0.739 89% 55.3%
observational studies Diabetes Association
miR-195-5p (13) Retrospective case- IADPSG 24-28w 204 0.845 73.69% 96.85%
control study
serum iron and Prospective Carpenter and Coustan | 14-20w 1033 / 80.6% 50.7%
zinc (14) cohort study
Small HDL prospective TADPSG 12.8-15.6w 439 0.710 / /
particles (15) cohort study
Acylcarnitines (16) | prospective nested TADPSG <18w 75 0.934 b /

case-control study
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ID

Wu et al. (Our study) (2024)

Majcher et al. (2022)

Chon et al. (2012)

Overall (I-squared = 24.4%, p = 0.266)

=32

Study

ID

Wu et al. (Our study) (2024)

Majcher et al. (2022)

Chon et al. (2012)

Overall (I-squared = 30.9%, p = 0.235)

373

Study

ID

Wu et al. (Our study) (2024)

Maijcher et al. (2022)

Chon et al. (2012)

Overall (I-squared = 37.9%, p = 0.200)

308

OR (95% Cl)

0.82 (0.64, 1.06)

1.05 (0.71, 1.55)

1.46 (0.69, 3.13)

0.91(0.75, 1.12)

3.13

OR (95% Cl)

0.78 (0.61, 1.01)

1.09 (0.73, 1.62)

1.28 (0.61, 2.68)

0.89 (0.72, 1.09)
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OR (95% Cl)

0.78 (0.59, 1.02)

1.08 (0.72, 1.62)

1.45 (0.65, 3.24)

0.89 (0.72, 1.11)
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%

Weight

68.74

25.65

5.61

%

Weight

70.36

23.35

6.29

%

Weight

68.79

25.62

5.59

Study %

ID OR (95% Cl) Weight

Wu etal. (Our study) (2024) 1.10 (0.78, 1.56)  75.47

Maijcher et al. (2022) 0.86 (0.39, 1.91)  16.09
Chon et al. (2012) 1.23(0.44,3.41) 8.44

Overall (l-squared = 0.0%, p = 0.826) 1.07 (0.79, 1.45)

294 1 3.41
Study %
ID OR (95% ClI) Weight
Wu et al. (Our study) (2024) — 0.97 (0.66, 1.40) 76.12

Majcher et al. (2022) 0.89 (0.39, 2.00) 16.79

Chon et al. (2012) 1.51(0.50, 4.59) 7.09

Overall (I-squared = 0.0%, p = 0.725) 0.99 (0.72, 1.37)

218 1 459

Study %

ID OR (95% Cl) Weight

Wu et al. (Our study) (2024) 0.93 (0.77, 1.11)  70.67

i
1
1
i
1
L 1.01(0.73,1.38) 22.39

Majcher et al. (2022)

Chon et al. (2012) 1.28 (0.75,2.18) 6.94

Overall (I-squared = 0.0%, p = 0.526) 0.97 (0.83, 1.13)

459 1 218
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Study % Study %

ID OR (95% Cl)  Weight ID OR (95% Cl)  Weight
Wu et al. (Our study) (2024) 0.83 (0.64, 1.06) 18.68 Wu et al. (Our study) (2024) 0.96 (0.62, 1.47) 15.31
Alshammary et al. (2023) 0.65 (0.31, 1.38) 4.48 Alshammary et al. (2023) 1.35 (0.29, 6.18) 1.03
Majcher et al. (2022) 1.30 (0.74, 2.26) 7.21 Majcher et al. (2022) 1.01 (0.14,7.27) 0.71
Kasuga et al. (2017) 1.22 (0.76, 1.93) 9.44 Kasuga et al. (2017) 1.27 (0.62, 2.57) 4.97
Ao et al. (2015) 0.60 (0.46, 0.76) 18.59 Ao et al. (2015) 0.50 (0.32, 0.80) 18.69
Kwak et al. (2010) 0.80 (0.65, 0.99) 20.93 Kwak et al. (2010) 0.66 (0.49, 0.90) 36.76
Zhou et al. (2009) 0.89 (0.71, 1.10) 20.65 Zhou et al. (2009) 0.73 (0.49, 1.07) 22.54
Overall (I-squared = 52.1%, p = 0.051) <§> 0.83 (0.70, 0.99) 100.00 Overall (l-squared = 20.0%, p = 0.277) 0.73 (0.61, 0.88) 100.00

7
T : T T T
308 1 324 137 121
C D

Study % Study %

ID OR (95% Cl) Weight ID OR (95% Cl) Weight
Wu et al. (Our study) (2024) 0.83 (0.65, 1.07) 19.17 Wu et al. (Our study) (2024) 0.87 (0.56, 1.36) 15.83
Alshammary et al. (2023) 0.54 (0.24, 1.25) 2.22 Alshammary et al. (2023) 1.24 (0.27,5.71) 1.14
Majcher et al. (2022) 1.31(0.74,2.34) 2.95 Maicher et al. (2022) > 1.05 (0.15, 7.55) 0.73
Kasuga et al. (2017) 1.10(0.69, 1.73) 5.03 Kasuga et al. (2017) 1.38 (0.65, 2.92) 4.48
Ao et al. (2015) 0.73 (0.56, 0.93) 20.45 Ao et al. (2015) —_— 0.41 (0.26, 0.66) 20.25
Kwak et al. (2010) 0.98 (0.79, 1.20) 26.28 Kwak et al. (2010) S 0.61 (0.44, 0.85) 35.05
Zhou et al. (2009) 0.98 (0.79, 1.22) 23.91 Zhou et al. (2009) 0.70 (0.47, 1.05) 22.52

Overall (l-squared = 26.3%, p = 0.228) 0.91 (0.81, 1.01)

235 1 4.25
Study %
ID OR (95% Cl) Weight
Wu et al. (Our study) (2024) 0.81(0.63, 1.06) 19.08
Alshammary et al. (2023) 0.55(0.24, 1.27) 2.33
Maijcher et al. (2022) 1.32(0.74, 2.34) 3.11
Kasuga et al. (2017) 1.18 (0.72, 1.92) 4.54
Ao et al. (2015) 0.64 (0.49, 0.83) 21.39
Kwak et al. (2010) 0.86 (0.69, 1.08) 25.43
Zhou et al. (2009) 0.93 (0.74, 1.16) 24.11
Overall (I-squared = 40.7%, p = 0.120) @ 0.84 (0.75, 0.94) 100.00

!
T * T
237 1 4.23

Overall (I-squared = 40.3%, p = 0.122)

132

Study

ID

Wu et al. (Our study) (2024)
Alshammary et al. (2023)
Majcher et al. (2022)

Kasuga et al. (2017)

Ao et al. (2015)

Kwak et al. (2010)

Zhou et al. (2009)

Overall (I-squared = 57.8%, p = 0.027)

NOTE: Weights are from random effects analysis

397

0.68 (0.56, 0.82)

7.55

OR (95% Cl)

0.88 (0.73, 1.07)
0.76 (0.40, 1.46)
1.25 (0.75, 2.11)
1.17 (0.83, 1.65)
0.64 (0.53, 0.78)
0.80 (0.69, 0.94)
0.88 (0.74, 1.04)

0.85 (0.74, 0.98)

252

%

Weight

18.69
4.07

5.89

10.77
18.55
21.49
20.53

100.00
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Potential relevant articles (n = 124)
PubMed (n =9) 22 Duplicate articles were excluded
Google Scholar (n=115)

102 articles included for the titles and abstracts screening 67 irrelevant to SNP or GDM were excluded

6 irrelevant to rs2237897, rs2237892,
rs151290, or rs163184 were excluded

35 articles included for full text review :
O review were excluded

1 case report were excluded
. . 10 articles excluded as no available data
19 articles included for data extracted 2 duplicate study subjects were excluded

7 articles included for meta-analysis
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Complication of diabetes n=1
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672 women received a 75¢ OGTT at
24-28 weeks of pregnancy

Sample collection and gCD59 detection
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Variables Model 1 Model 2 Model 3

TyG quantile OR (95% CI) OR (95% CI) OR (95% CI)
QL Reference Reference Reference
Q 1.31 (0.96, 1.78) 1.27 (085, 1.90) 1.31 (095, 1.82)
Q3 1.46 (1.00, 2.14) 1.57 (097, 2.54) 1.72 (115, 2.58)
Q4 2.03 (1.40, 2.94) 229 (143, 3.68) 2.51 (1.70, 3.71)

OR, odds ratio; 95% C, 95% confidence interval; TyG, triglyceride-glucose.

Model 1: No covariates were adjusted.

Model 2: Adjusted for sex, age, and race.

Model 3: Adjusted for sex, age, race, education level, PIR, and BML

Model 4: Adjusted for sex, age, race, education level, PIR, BMI, hypertension, cardiovascular disease, diabetes mellitus, smoking, and drinking.

Model 4
OR (95% CI)
Reference
1.32 (0.95, 1.82)
1.63 (1.08, 2.47)

237 (1.52, 3.71)
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Variables HP negative (N=1,817) seropositive (N =1,

Age (years), mean (SE) 41.05 (0.66) 38.85 (0.73) 46.80 (0.88) P <0.001
Age, n (weighted %) P <0.001
<60 2,218 (81.7) 1,485 (84.6) 733 (74.0)
> 60 700 (18.3) 332 (15.4) 368 (26.0)
Sex (%), n (weighted %) 0.35
Female 1,500 (50.8) 963 (51.4) 537 (49.1)
Male 1,418 (49.2) 854 (48.6) 564 (50.9)
Race, n (weighted %) P <0.001
Mexican American 954 (6.5) 453 (3.9) 501 (13.4)
Non-Hispanic White 620 (11.2) 349 (8.1) 271 (19.4)
Non-Hispanic Black 1,083 (69.4) 877 (78.8) 206 (45.0)
Other Race 261 (12.8) 138 (9.2) 123 (222)
PIR 294 (0.12) 3.13 (0.14) 243 (0.12) P <0.001
BMI (kg/m®) 27.08 (0.26) 26.88 (0.33) 27.59 (0.19) <0.05
BMI, n (weighted %) <0.05
Normal weight 1,296 (43.4) 890 (46.0) 406 (36.7)
Overweight 857 (29.5) 478 (27.5) 379 (34.8)
Obese 765 (27.1) 449 (26.5) 316 (28.5)
o welghted ) G
Less than high school 822 (12.5) 445 (10.0) 377 (19.0)
High school or equivalent 1,271 (42.9) 772 (40.6) 499 (48.8)
College or above 825 (44.7) 600 (49.4) 225 (32.2)
Hypertension, n (weighted %) <0.05
No 2097 (71.7) 1,392 (74.0) 705 (65.7)
Yes 821 (28.3) 425 (26.0) 396 (34.3)
Diabetes, n (weighted %) 0.06
No 2,749 (95.2) 1,746 (95.9) 1,003 (93.3)
Yes 169 (4.8) 71 (4.1) 98 (6.7)
Cardlo(\x;cgtll':f;ddgase, n <0.05
No 2,734 (93.6) 1,730 (94.7) 1,004 (90.8)
Yes 184 (6.4) 87 (53) 97 (9.2)
Smoking status, n (weighted %) 0.002
Never 1,588 (50.2) 1,007 (51.4) 581 (46.9)
Former 787 (27.3) 499 (28.6) 288 (23.9)
Now 543 (22.5) 311 (20.0) 232 (29.2)
R
No 421 (10.7) 237 (9.7) 184 (13.2)
Yes 2,497 (89.3) 1,580 (90.3) 917 (86.8)
No 2,787 (96.8) 1765 (97.5) 1022 (95.1)
Yes 131 (3.2) 52 (2.5) 79 (4.9)
Lipid-lov‘{ering drugs, n 0.07
(weighted %)
No 2,765 (93.6) 1,731 (94.4) 1,034 (91.7)
Yes 153 (6.4) 86 (5.6) 67 (8.3)
FBG(mg/dL), mean(SE) 98.89 (0.88) 96.80 (0.94) 104.38 (1.78) 0.001
TG (mg/dL), mean (SE) 136.46 (3.61) 131.62 (4.49) 149.15 (5.17) <0.05
TyG index, mean (SE) 8.62 (0.02) 8.57 (0.03) 8.74 (0.03) P <0.001

HP, Helicobacter pylori; SE, standard error; BMI, body mass index; PIR, poverty income ratio; FBG, fasting blood glucose; TG, fasting triglyceride; TyG, triglyceride-glucose.
N are unweighted, mean (SE) and % are weighted.
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Total

Covariates N = 10973
Age (years) 61.08 + 10.12 60.29 + 9.95 58.81 £ 9.79 60.06 = 10.00 <0.001
Gender <0.001
Male 2121 (57.97%) 1766 (48.29%) 1162 (31.77%) 5049 (46.01%)
Female 1538 (42.03%) 1891 (51.71%) 2495 (68.23%) 5924 (53.99%)
Marital status 0.412
Married/cohabitating 3059 (83.60%) 3041 (83.16%) 3015 (82.44%) 9115 (83.07%)
Others 600 (16.40%) 616 (16.84%) 642 (17.56%) 1858 (16.93%)
BMI (Kg/m?) 0.025
<185 207 (5.75%) 199 (5.52%) 191 (5.27%) 597 (5.51%)
18.5-24.0 1688 (46.88%) 1633 (45.29%) 1774 (48.99%) 5095 (47.05%)
24.0-28.0 1186 (32.94%) 1283 (35.58%) 1191 (32.89%) 3660 (33.80%)
228.0 520 (14.44%) 491 (13.62%) 465 (12.84%) 1476 (13.63%)
Cigarette consumption <0.001
Current smoker 1245 (34.06%) ' 1038 (28.42%) 694 (19.00%) 2977 (27.16%)
Non-smoker 1828 (50.01%) 2126 (58.20%) 2615 (71.60%) 6569 (59.94%)
Ex-smoker 582 (15.92%) 489 (13.39%) 343 (9.39%) 1414 (12.90%)
Alcohol consumption <0.001
Drink more than once a month 1080 (29.56%) 1011 (27.66%) 823 (22.53%) 2914 (26.59%)
Drink less than once a month 314 (8.60%) 353 (9.66%) 304 (8.32%) 971 (8.86%)
None of These 2259 (61.84%) 2291 (62.68%) 2526 (69.15%) 7076 (64.56%)
Sleep duration (hours) 0.904
0-6 1802 (50.60%) 1801 (50.90%) 1766 (49.97%) 5369 (50.49%)
6-8 1426 (40.04%) 1395 (39.43%) 1421 (40.21%) 4242 (39.89%)
>8 333 (9.35%) 342 (9.67%) 347 (9.82%) 1022 (9.61%)
Afternoon nap 0.012
No 1428 (39.97%) 1447 (40.53%) 1541 (43.20%) 4416 (41.23%)
Yes 2145 (60.03%) 2123 (59.47%) 2026 (56.80%) 6294 (58.77%)
Depression <0.001
No 2209 (66.64%) 2308 (69.06%) 2146 (64.43%) 6663 (66.71%)
Yes 1106 (33.36%) 1034 (30.94%) 1185 (35.57%) 3325 (33.29%)
Hypertension <0.001
No 2061 (57.04%) 2097 (58.10%) 2334 (64.56%) 6492 (59.91%)
Yes 1552 (42.96%) 1512 (41.90%) 1281 (35.44%) 4345 (40.09%)
Hyperuricemia <0.001
No 3141 (85.84%) 3255 (89.01%) 3377 (92.34%) 9773 (89.06%)
Yes 518 (14.16%) 402 (10.99%) 280 (7.66%) 1200 (10.94%)
LDL (mg/dL) <0.001
<120 2836 (77.78%) 2720 (74.44%) 2679 (73.44%) 8235 (75.22%)
>120 810 (22.22%) 934 (25.56%) 969 (26.56%) 2713 (24.78%)
Total cholesterol (mg/dL) <0.001
<200 2669 (73.18%) 2554 (69.90%) 2491 (68.28%) 7714 (70.45%)
>200 978 (26.82%) 1100 (30.10%) 1157 (31.72%) 3235 (29.55%)
Reduced HDL <0.001
No 2363 (64.79%) 2280 (62.38%) 2156 (59.10%) 6799 (62.09%)
Yes 1284 (35.21%) 1375 (37.62%) 1492 (40.90%) 4151 (37.91%)
Elevated triglycerides 0.001
No 2332 (63.94%) 2382 (65.17%) [ 2477 (67.90%) 7191 (65.67%) |
Yes 1315 (36.06%) 1273 (34.83%) 1171 (32.10%) 3759 (34.33%)
Platelets (x10°/L) 15274 + 54.71 206.88 + 47.88 256.63 + 82.54 205.41 + 7637 <0.001
White blood cell (x10°/L) 6.84 +2.83 6.00 £ 136 5.04 £ 127 5.96 + 2.09 <0.001
PWR index 2259 + 539 34.58 + 3.01 51.70 + 13.47 36.29 + 14.69 <0.001
PWR index range 1.50-29.50 29.51-40.20 40.21-280.68 1.50-280.68 -
Fasting glucose (mg/dL) 102,68 + 33.28 101.07 + 31.04 97.75 + 25.88 100.50 + 30.30 <0.001
Glycated hemoglobin (%) 6.04 £ 112 5.98 + 098 592+ 0.85 5.98 + 0.99 <0.001
Diabetes <0.001
No 2840 (77.62%) 2952 (80.72%) 3087 (84.41%) 8879 (80.92%)
Yes 819 (22.38%) 705 (19.28%) 570 (15.59%) 2094 (19.08%)

PWR is defined as the amount of platelet (10°/L) divided by white blood cells (10°/L). The participants were grouped according to the tertiles of PWR. The others group in marital status refers to
the divorced/separated/widowed. BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PWR, platelet to white blood cell ratio; T, tertile.





OPS/images/fendo.2024.1383483/fendo-15-1383483-g003.jpg
15-AG is derive d from food.

Is absorbed in the intestine .

Distributed in various tissues
and organs infree form.

\Whe ther the blood glucose exceeds
the renal glucose threshold.

1,5-AG is resbsorbed s oL
u the renal tabules. 13-4 is/in equilbrimn,

Swreeks

1,5-AG mcreases at & rate
of 0.3mg/L per day.

Urine exaetion of
1,5-AG increased.

1,5-AG decreased.

Yes

Whether the blood ghicose
is controlled.

Treat or adjust risk factors.





OPS/images/fendo.2024.1383483/table1.jpg
Screening

test

Advantages

Limitations

Fasting nexpensive Susceptible to lifestyle influences
plasma glucose | Convenient Requires fasting blood
Fast Cannot screen for isolated
postprandial hyperglycemia
Oral glucose High diagnostic accuracy = Requires fasting blood

tolerance test

Cumbersome operation
Poor patient cooperation

Glycosylated
hemoglobin

Glycated
albumin

1,5-
anhydroglucitol

Reflects long-term blood
glucose control

Highly stable and less
affected by lifestyle and
ood

Dose not require

fasting blood

Reflects short- to
medium-term blood
glucose control

Not affected by red
blood cell life span

Reflects short-term
blood glucose
fluctuations

Reflects postprandial
blood glucose
fluctuations
Identification of diabetes
subtypes

Salivary 1,5-
anhydroglucitol is
noninvasive

and convenient

Affected by red blood cell life
span

Does not reflect short-term
blood glucose fluctuations

Affected by white blood cell
renewal rate

Cannot check patients with
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syndrome

Affected by body fat content and
thyroid hormones

Affected by many factors

The detection method and the
normal reference value range are
not uniform
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Detection
methods

Representative methods

Advantages

Limitations

Mass Gas chromatography/mass Good Cumbersome
spectrometry | spectrometry sensitivity process
Ultra performance liquid High High cost
chromatography tandem accuracy
mass spectrometry
Enzyme GlycoMarkTM Convenient Lack of
assay Determiner-L Highly mature
specific enzymatic

assay kit
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NHANES 1999-2018
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(n=51570)

Exclude participants with pregancy
or without diabets mellitus

(n=7843)
Exclude participants ineligible
Participants eligible






OPS/images/fendo.2024.1399832/crossmark.jpg
©

2

i

|





OPS/images/fendo.2024.1416326/table4.jpg
After

Rt e treatment
Uteroglobin (ng/mL) 17.1 + 84 209 £10.5 < 0.001
Weight (kg) 69.8 = 12.7 69.6 £ 12.9 0.514
BMI (kg/m2) | 265+ 4.1 264 + 4.1 0.367
HbALc (%) v 69+ 11 69 %09 | 0.780
Fasting PG (mg/dL) 151.1 %512 1449 + 39.5 0.382
Fasting Insulin (WIU/mL) 17.2 £ 10.6 132 £ 10.8 0.010
HOMA-IR 6.5+ 4.6 52 +6.7 0.148
HOMA-B 87.8 £ 67.7 652 =394 0.003
Total cholesterol (mg/dL) 213.6 + 30.2 151.0 + 34.0 | < 0.001
TG (mg/dL) 195.3 + 106.5 149.62 + 74.5 < 0.001
HDL cholesterol (mg/dL) ' 47.0 £ 12.0 493 £ 12.7 | 0.012
LDL cholesterol (mg/dL) | 137.3 + 236 81.4 +£29.3 < 0.001
eGFR (mL/min/1.73m2) 107.1 £ 23.3 105.8 + 22.6 0.408

The data are expressed as the mean + SD or number (%). BMI, body mass index; PG, plasma
glucose; HOMA-IR, homeostasis model assessment for insulin resistance; HOMA-P,
homeostasis model assessment for beta-cell function; TG, triglycerides; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; eGFR, estimated glomerular filtration rate. p-values
were calculated by paired t test.
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After

Lzl treatment
Uteroglobin (ng/mL) 142 £ 6.0 17.8 £ 9.4 0.012%
Weight (kg) 66.8 = 13.3 66.8 £ 13.4 | 0.725
BMI (kg/m2) 249 £ 3.0 247 £3.1 0.827
HbALc (%) 84+ 16 68108 | <0001
Total cholesterol (mg/dL) 188.4 + 38.9 158.1 + 37.3 | 0.003
TG (mg/dL) 1694 + 113.6 154.6 £ 95.1 | 0.554
HDL cholesterol (mg/dL) 46.8 + 10.5 47.0 £ 109 0.807
LDL cholesterol (mg/dL) 119.7 + 38.5 91.7 £ 299 0.002
eGFR (mL/min/1.73m?) 114.8 + 289 107.1 + 26.8 0.009

The data are expressed as the mean + SD. p-values were calculated by paired t test for
parametric variables and Wilcoxon test for nonparametric variables (*). BMI, body mean
index; TG, triglyceride; HDL, high-density-lipoprotein; LDL, low-density-lipoprotein; eGFR,
estimated glomerular filtration rate.
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Age (years) 0.118 0.068
BMI (kg/m2) -0.180 7 0.017
SBP (mmHg) ‘ -0.042 0.576
DBP (mmHg) - -0.058 0.443
HbAlc (%) ‘ 0.012 0.857
Fasting PG (mg/dL) -0.032 0.627
Post-load 2-h PG (mg/dL) -0.028 0.667
Fasting insulin (U/mL) -0.104 0.110
Post-load 2-h insulin (WU/mL) -0.106 0.115
Fasting c-peptide (ng/dL) ‘ -0.124 0.068
Post-load 2-h c-peptide (ng/dL) -0.033 0.628
HOMA-IR -0.087 0.182
HOMA-B -0.134 0.039
Total cholesterol (mg/dL) 0.013 0.841
TG (mg/dL) ' 0.001 0.993
HDL cholesterol (mg/dL) -0.006 0.931
LDL cholesterol (mg/dL) | 0.037 0.581
eGFR (mL/min/1.73m?) 0247 0.001
hsCRP (mg/L) -0.104 0.198

Data are expressed as Pearson’s correlation coefficients. BMI, body mass index; SBP, systolic
blood pressure; DBP, diastolic blood pressure; PG, plasma glucose; HOMA-IR, homeostasis
model assessment for insulin resistance; HOMA-B, homeostasis model assessment for beta-
cell function; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
eGFR, estimated glomerular filtration rate; hsCRP, high-sensitivity C-reactive protein.
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NGT (n=80) Pre etes (n=80) T2D (n p-value
Age (years) 50.7 £ 13.7 535+ 121 54.0 £123 0.210
Male (%) 25 (31.3) 38 (47.5) 35 (43.8) 0.091
Smoking (%) 8 (10.0) 7 (8.8) 22 (275) * 0.001
On dyslipidaemia medication (%) 9(113) 12 (15.0) 22(275) * 0.019
On hypertension medication (%) [ 16 (20.0) 14 (17.5) 33 (413) * 0.001
Height (cm) 161.6 £ 8.6 1632 + 8.4 1633 £9.4 0.528
‘Weight (kg) 63.9 £ 124 67.1+11.9 70.1 £14.7 % 0.039
BMI (kg/m2) 24.3 £33 248 £32 262 +44* 0.020
SBP (mmHg) 127.8 £ 16.1 1289 + 14.6 134.6 £20.2 0.065
DBP (mmHg) 793 £12.6 77.4 £10.9 81.8+11.8 0.102
HbAl¢ (%) 53402 56+03 744194 <0.001
Fasting PG (mg/dL) 91.9 £ 5.0 101.7 £ 11.1 154.2 + 57.3 % < 0.001
Post-load 2-h PG (mg/dL) 105.3 + 19.0 1433 £335* 293.0 +101.2 *° < 0.001
Fasting insulin (WU/mL) 83+42 10.0 £ 5.0 18.0 + 389 * 0.019
Post-load 2-h insulin (WU/mL) 36.6 £ 43.6 68.9 +68.0 * 70.7 £ 69.5 * 0.001
Fasting c-peptide (ng/dL) 0.73 +0.47 0.87 + 0.50 115+ 071 % < 0.001
Post-load 2-h c-peptide (ng/dL) 34£22 4.1£27 6.7 £24.3 0.347
HOMA-IR 19+1.0 25+13 72+19.1%° 0.005
HOMA-B 103.9 £ 52.0 1045 £ 76.5 84.9 + 1114 0.249
Total cholesterol (mg/dL) 191.4 £ 304 196.6 + 39.8 1923 £ 46.9 0.628
TG (mg/dL) 104.0 + 63.2 145.1 + 106.7 189.6 £173.0 * < 0.001
HDL cholesterol (mg/dL) 61.8 £13.7 537 £14.0 % 49.0 £ 134 % < 0.001
LDL cholesterol (mg/dL) 113.5 £29.7 1215 + 342 116.6 + 45.3 0.389
eGFR (mL/min/1.73m2) 103.4 £ 18.1 104.2 + 244 112.0 £29.4 0.061
hsCRP (mg/L) 10+26 15+ 18 2755 0.078

The data are expressed as the mean + SD or number (%). NGT, normal glucose tolerance; T2D, type 2 diabetes mellitus; BML, body mass index; SBP, systolic blood pressure; DBP, diastolic blood
pressure; PG, plasma glucose; HOMA-IR, homeostasis model assessment for insulin resistance; HOMA-B, homeostasis model assessment for beta-cell function; TG, triglyceride; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; eGFR, estimated glomerular filtration rate; hsCRP, high-sensitivity C-reactive protein. p-values were calculated by one-way ANOVA or chi-
squared test according to Bonferroni’s significant difference post hoc test. Differences at p < 0.05 are expressed as follows: *, NGT vs. prediabetes and NGT vs. T2D; %, prediabetes vs. T2D; *, p <

0.05 for chi-squared test.
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(a) Prediction performance of the training set.

Model AUC 95%Cl Sensitivity ~ Specificity =~ Accuracy PPV NPV F1 score
Lower ‘ Upper
XGBoost 0.8264 0.8079 0.8503 0.8561 0.6636 0.7399 06256 0.8754 07230
SVM 0.7230 0.7501 0.6959 02052 04516 0.3540 0.1973 0.4639 02012
Naive Bayes 0.6827 0.6548 0.7106 0.7673 04614 0.6460 05656 0.6845 07235
DT 0.6796 0.6557 07035 0.8318 04474 0.6794 0.6360 0.7030 07580
LR 0.6912 0.6637 0.7189 0.3947 0.8157 0.6488 0.5844 0.6724 04712

(b) Prediction performance of the validation set.

Model AUC 95%Cl Sensitivity ~ Specificity =~ Accuracy PPV NPV F1 score
‘ Lower Upper
XGBoost 0.7391 0.6911 ‘ 07870 7 0.7561 1 0.6245 0.6763 05662 0.7980 06475
SVM 0.7328 0.6838 0.7819 0.1646 0.4980 03669 0.1753 04791 0.1698
Naive Bayes 0.7288 0.6804 07773 0.7787 05549 0.6906 06190 0.7296 07533
DT 0.6480 0.6027 0.6932 0.8142 04817 0.6835 0.6270 0.7079 07235
LR 0.6795 0.6275 07316 03598 08735 0.6715 0.6484 0.6779 04627

AUC, Area Under the Curve; Extreme Gradient Boosting, XGBoost; DT, Decision Tree; SVM, Support Vector Machine; LR, Logistic Regression; PPV, Positive Predictive Value; NPV, Negative
Predictive Value.
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Current smoker
Alcohol consumption
Never drinker
Ever drinker
Current drinker
SBP

<140

>=140

DBP

<90

>=90

BMI

<18.5

>=18.5, <24
>=24
Abdominal obesity
No

Yes

OR (95% CI)

2.29 (1.73, 3.05)
3.80 (2.84, 5.10)

3.31(2.48, 4.43)
2.61 (1.96, 3.48)

4.13 (3.14, 5.44)
2.57 (1.40, 4.71)
1.79 (1.26, 2.55)

3.58 (2.70, 4.75)
2.45 (1.28, 4.69)
2.43 (1.75, 3.38)

3.00 (2.34, 3.83)
2.66 (1.86, 3.80)

3.00 (2.42, 3.72)
2.28 (1.27, 4.08)

2.38 (0.87, 6.51)
2.57 (1.92, 3.44)
3.37 (2.48, 4.57)

2.61 (1.97, 3.46)
3.65 (2.71, 4.93)

P value

<0.0001
<0.0001

<0.0001
<0.0001

<0.0001
0.0024
0.0012

<0.0001
0.0070
<0.0001

<0.0001
<0.0001

<0.0001
0.0057

0.0907
<0.0001
<0.0001

<0.0001
<0.0001

te o 01, %, o, 0

3@‘ *®

P for interaction

0.0154

0.2888

0.0033

0.2114
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0.3408
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Total participants from CHARLS
(N=24236)
Excluded (n=9216)
Missing data on FPG or HbAlc
(n=9198)
Missing data on AIP (TG or HDL-C)
Included in this study

(NELS020 Fxcluded (n—2881)

Participants under the age of 45
(n=746)
Participants with incomplete
information

=2135
Included in this study -

(N=12139)
Excluded (n=79)
Participants with abnormal values of
AIP (mean * 3 times standard
deviation)

Enrolled for final analysis
(N=12060)
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Subgroup

Sex

Male

Female

Age

<60 years
>=60 years
Smoking status
Never smoker
Ever smoker
Current smoker
Alcohol consumption
Never drinker
Ever drinker
Current drinker
SBP

<140

>=140

DBP

<90

>=90

Abdominal obesity
No
Yes

OR (95% CI)

1.50 (1.20, 1.89)
2.02 (1.61, 2.54)

1.69 (1.38, 2.08)
1.91 (1.48, 2.48)

1.80 (1.45,2.23)
2.60 (1.48, 4.56)
1.59 (1.20, 2.11)

1.88 (1.51,2.35)
2.31(1.23,4.34)
1.54(1.19, 1.99)

1.71 (1.42, 2.06)
1.89 (1.37, 2.62)

1.70 (1.43, 2.02)
1.91 (1.17, 3.10)

1.34(0.68, 2.61)
1.71 (1.38, 2.12)
2.09 (1.59, 2.76)

1.74 (1.42, 2.14)
1.87 (1.42, 2.45)

P value

0.0005
<0.0001

<0.0001
<0.0001

<0.0001
0.0009
0.0011

<0.0001
0.0089
0.0011

<0.0001
0.0001

<0.0001
0.0093

0.3986
<0.0001
<0.0001

<0.0001
<0.0001
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Adjusted OR (95% ClI),

p-value

Model 1

Fitting by the standard 1.75 (1.49, 2.06), <0.0001
linear model

Model 2

Inflection point 0.29

<0.29 1.28 (0.91, 1.81), 0.1597
>0.29 2.24 (1.67, 3.00), < 0.0001
Log likelihood ratio 0.003

Adjusted for gender, age, SBP, DBP, smoking status, alcohol consumption, BMI, WC, TC,
LDL-C, Scr, BUN, SUA, antihypertensive drugs, and lipoprotein-lowering drugs.
AIP, atherogenic index of plasma; OR, odds ratio; CI, confidence interval; SBP, systolic blood

pressure; DBP, diastolic blood pressure; BMI, body mass index; WC, waist circumference; TC,
total cholesterol; LDL-C, low-density lipoprotein cholesterol; Scr, serum creatinine; BUN,
blood urea nitrogen; SUA, serum uric acid.
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Adjusted OR (95% ClI),

p-value
Model 1
Fitting by the standard 2.91 (2.38, 3.57), <0.0001
linear model
Model 2
Inflection point -0.04
<-0.04 0.30 (0.06, 1.39), 0.1235
>-0.04 3.33 (2.67, 4.16), <0.0001
Log likelihood ratio V 0.005

Adjusted for gender, age, SBP, DBP, smoking status, alcohol consumption, BMI, WC, TC,
LDL-C, Scr, BUN, SUA, antihypertensive drugs, and lipoprotein-lowering drugs.

AIP, atherogenic index of plasma; OR, odds ratio; CI, confidence interval; T2DM, type 2
diabetes mellitus; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass
index; WC, waist circumference; TC, total cholesterol; LDL-C, low-density lipoprotein
cholesterol; Scr, serum creatinine; BUN, blood urea nitrogen; SUA, serum uric acid.
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AIP quartiles

Q1 (<0.14) Q2 (0.14-0.33) Q3 (0.33-0.56) Q4 (>0.56) s

Number 12,060 3,014 3,016 3,015 3,015
Gender, n (%) <0.001

Male 5,664 (46.97%) 1,534 (50.90%) 1,413 (46.85%) 1,312 (43.52%) 1,405 (46.60%)

Female 6,396 (53.03%) 1,480 (49.10%) 1,603 (53.15%) 1,703 (56.48%) 1,610 (53.40%)
Age (years) 58.45 +£9.70 59.14 + 10.01 58.53 + 9.86 58.46 + 9.68 57.65 +£9.19 <0.001
SBP (mmHg) 129.42 + 2098 126.76 + 20.71 127.98 + 20.76 130.64 +21.19 132.32 +20.84 <0.001
DBP (mmHg) 75.76 + 11.97 73.57 £ 11.78 74.82 + 11.59 76.54 + 12.04 78.10 + 12.00 <0.001
BMI (kg/ml) 23.66 + 3.87 2193 +3.23 23.13+3.73 24.23 + 3.80 2537 £3.83 <0.001
WC (cm) 84.59 + 12.65 79.78 £ 10.82 83.05 +12.22 86.17 + 12.36 89.37 + 13.03 <0.001
Smoking status, n (%) <0.001

Never smoker 7,302 (60.55%) 1,737 (57.63%) 1,835 (60.84%) 1,907 (63.25%) 1,823 (60.46%)

Ever smoker 1,118 (9.27%) 270 (8.96%) 270 (8.95%) 265 (8.79%) 313 (10.38%)

Current smoker 3,640 (30.18%) 1,007 (33.41%) 911 (30.21%) 843 (27.96%) 879 (29.15%)
Alcohol consumption, n (%) <0.001

Never drinker 6,906 (57.26%) 1,593 (52.85%) 1,734 (57.49%) 1,795 (59.54%) 1,784 (59.17%)

Ever drinker 1,021 (8.47%) 209 (6.93%) 269 (8.92%) 292 (9.68%) 251 (8.33%)

Current drinker 4,133 (34.27%) 1,212 (40.21%) 1,013 (33.59%) 928 (30.78%) 980 (32.50%)
TC (mg/dL) 190.85 + 37.76 185.92 + 34.52 187.04 + 36.50 192.05 + 37.32 198.38 + 41.11 <0.001
TG (mg/dL) 131.62 + 8349 [ 63.87 + 15.01 93.14 + 1848 130.02 + 26.97 239.43 + 9431 <0.001
HDL-C (mg/dL) 51.29 + 14.14 65.63 + 13.51 5372+ 9.76 46.97 + 843 38.84 + 8.11 <0.001
LDL-C (mg/dL) 113.54 + 33.63 108.86 + 30.21 115.61 + 32.43 119.94 + 33.87 109.76 + 36.51 <0.001
Scr (mg/dL) 0.79 £ 0.27 0.78 £ 0.30 0.78 £ 0.21 079 £ 029 0.80 +0.25 <0.001
BUN (mg/dL) 15.55 £ 4.61 1636 + 4.97 15.60 + 4.36 15.18 + 4.62 15.04 £ 4.35 <0.001
SUA (mg/dL) 4.57 + 1.31 429+ 1.17 444 + 126 4.60 + 1.30 4.94 + 1.40 <0.001

i FPG (mg/dL) 108.01 + 35.68 ‘ 101.01 +24.32 103.41 + 29.42 107.92 + 35.04 119.69 + 46.91 <0.001

HbAlc (%) 542 £0.89 5.26 £0.70 537 £0.79 544 + 0.87 5.63 £ 1.09 <0.001
Antihypertensive drugs 2,358 (19.55%) 368 (12.21%) 485 (16.08%) 661 (21.92%) 844 (27.99%) <0.001
Lipoprotein-lowering drugs 641 (5.32%) 84 (2.79%) 115 (3.81%) 167 (5.54%) 275 (9.12%) <0.001

Data are presented as mean + standard deviation or number (%).

AIP, atherogenic index of plasma; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WC, waist circumference; TC, total cholesterol; TG, triglyceride; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Scr, serum creatinine; BUN, blood urea nitrogen; SUA, serum uric acid; FPG, fasting plasma glucose; HbA1c,
hemoglobin Alc.
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Model 1 Model 2 Model 3

Variable
OR (95% CI) OR (95% ClI) OR (95% ClI)
Prediabetes
AIP 2.57 (2.23,2.95) <0.0001 ‘ 2.06 (1.77, 2.40) <0.0001 1.75 (1.49, 2.06) <0.0001
QI (<0.14) Reference Reference Reference
Q2 (0.14-0.33) 1.10 (0.99, 1.23) 0.0795 1.04 (0.93, 1.16) 0.5463 1.07 (0.95, 1.20) 0.2484
Q3 (0.33-0.56) 143 (1.28, 1.59) <0.0001 1.24 (1.11, 1.40) 0.0002 1.25 (111, 1.41) 0.0003
Q4 (20.56) 2.06 (1.83, 2.32) <0.0001 1.73 (1.52, 1.96) <0.0001 1.52 (133, 1.74) <0.0001
p for trend <0.0001 <0.0001 <0.0001
T2DM ‘
AIP 5.01 (4.25, 5.90) <0.0001 3.78 (3.17, 4.52) <0.0001 291 (238, 3.57) <0.0001
Q1 (<0.14) Reference Reference Reference
Q2 (0.14-0.33) 1.31 (1.11, 1.55) 0.0018 1.18 (0.99, 1.40) 0.0588 1.25 (1.05, 1.49) 0.0138
Q3 (0.33-0.56) 1.88 (1.60, 2.20) <0.0001 1.53 (1.29, 1.80) <0.0001 1.60 (1.35, 1.90) <0.0001
Q4 (20.56) 346 (2.97, 4.03) <0.0001 2.63 (224, 3.09) <0.0001 2.28 (1.92,2.71) <0.0001
p for trend <0.0001 <0.0001 <0.0001

Model 1 adjusted for none. Model 2 adjusted for gender, age, SBP, DBP, smoking status, alcohol consumption, and BMI Model 3 adjusted for Model 2 + WC, TC, LDL-C, Scr, BUN, SUA,
antihypertensive drugs, and lipoprotein-lowering drugs. AIP as a continuous variable and quartiles variable (Q1, Q2, Q3, and Q4).

AIP, atherogenic index of plasma; OR, odds ratio; CI, confidence interval; T2DM, type 2 diabetes mellitus; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WC,
waist circumference; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; Scr, serum creatinine; BUN, blood urea nitrogen; SUA, serum uric acid.
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Variables Standard Error Wald 2 95%Cl

Lower Upper
Fattyliver 0505 0.134 14.147 1.657 1274 2156 <0.001
SBP 0.030 0.005 33.960 1.030 1.020 1.040 <0.001
weC 0033 0012 7.044 1.034 1.009 1.059 0.008
Scr -0.016 0.005 11.533 0.984 0.975 0.993 0.001

Constant -5.558 0.868 40.994 0.004 <0.001
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Variables The training dataset(n=1,438) The validation dataset(n=417)

Non- IFG(n=164) Non-
IFG(n=868) IFG(n=253)
Age(years) 56.00[50.00,67.00] 55.00(49.00,65.00] 0.003 63.00[60.00,71.00] 62.50[54.00,69.00] 0.003
(median [IQR])
Gender(%) Male 412(72.3) 638(73.5) 0.610 118(72.0) 189(74.57) 0.533
Female 158(27.7) 230(26.5) 46(28.0) 64(25.3)
Fattyliver(%) Yes 267(46.8) 237(27.3) <0.001 68(41.5) 75(29.6) 0.013
No 303(53.2) 631(72.7) 96(58.5) 178(70.4)
Gallstone(%) Yes 102(17.9) 125 (14.4) 0.090 138(84.1) 35(13.8) 0.569
No 468(82.1) 743(85.6) 26(15.9) 218(86.2)
Cholecystectomy Yes 61(10.7) 60(6.9) 0.011 13(7.9) 15(5.9) 0.428
No 509(89.3) 808(93.1) 151(92.1) 238(94.1)
SBP(mmHg) 136.00[123.00,150.00] 128.00[116.00,139.00] <0.001 144.00(128.00,157.50] 132.00[21.00,145.75] <0.001
(median [IQR])
DBP(mmHg) 81.00(73.00,87.00! 78.00(70.00,84.00 <0.001 80.00(71.50,87.00! 77.00[70.25,85.75] 0.001
(median [IQR])
‘WC(cm) (median [IQR]) 90.00(85.00,96.00 87.00(80.00,93.00 <0.001 92.00[84.00,96.00 88.50(81.25,94.75] 0.002
BMI(kg/m?) 25.25(23.51,27.03 24.49[22.52,26.17 <0.001 24.77(22.84,27.18 24.29(22.31,26.22] 0.001

BUN(mmol/L) 5.10[4.50,6.00] 5.00(4.30,5.90] 0.024 5.10[4.15,5.90] 5.10[4.30,6.20] 0.217
(median [IQR])

Scr(umol/L) 70.95(60.30,80.03 72.60(61.83,81.78 0.068 72.00(61.20,81.45 75.05[62.13,83.40] 0.961
(median [IQR])

SUA (umol/L) 367.15(313.28,418.15] 349.15(289.43,414.40] 0.001 388.40,319.50,440.95] 351.00(292.00,392.98] 0.340
(median [IQR])

ALT(U/L) (median [IQR]) 21.40[15.60,29.00 18.60(14.00,25.00 <0.001 19.00(14.35,27.00 17.25(13.03,22.90] 0.060
AST (U/L) 21.00(17.90,25.30: 20.50(17.70,23.78 0038 19.00(17.00,23.10 20.00[17.00,23.18] 0.110

(median [IQR])

GGT (U/L) 26.85(19.10,41.73] 23.05[15.80,35.30 <0.001 29.40(18.00,41.65! 21.35[14.20,31.25] 0.056
(median [IQR])

ALP (U/L) 64.85(54.50,77.80 63.45(53.93,75.68 0.140 68.00(58.00,82.50 64.95[53.20,76.95] 0.280
(median [IQR])

TC (mmol/L) 4.41[5.04,5.69 4.99(4.42,5.18 0.094 4.90[4.31,5.57 5.00[4.42,5.49 0.640
(median [IQR])

TG (mmol/L) 1.59[1.14,2.15, 1.34[0.93,1.91 <0.001 1.54[1.21,2.26 1.30[1.00,1.91 0.080
(median [IQR])

HDL(mmol/L) 1.18[1.00,1.40 1.22[1.05,1.48 0.003 1.19[1.06,1.35, 1.27[1.06,1.50 0.434
(median [IQR])

LDL (mmol/L) 2.87(2.31,3.39 2.85(2.36,3.29 0305 3.08[2.55,3.72. 2.95(2.44,3.57 0.380
(median [IQR])

ApoAl(g/L) 1.38[1.25,1.53 1.37[1.25,1.51 0.892 1.39[1.22,1.52 1.39[1.27,1.50, 0.922
(median [IQR])

ApoB(g/L) 0.98[0.83,1.14 0.95(0.82,1.08 0.001 0.95[0.77,1.08 0.97(0.80,1.09: 0.047
(median [IQR])
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participants from hospital

Screening based on inclusion criteria and exclusion
criteria

Collecting baseline data for 2018-2022

Data preprocessing includes interpolation data and
attribute transformation of data

Training dataset
(1,438)

Variable selection using the Boruta algorithm
and multivariate logistic regression analysis

Accuracy
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(417) Specificity
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F1 score
AUC

Training the
model

XGBoost, SVM, Naive Bayes,
DT,LR

Parameter
tuning

Test the models
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Variables Quartile 2

Total 374 372 371
Crude 1.070(0.746,1.536) 1.629(1.155,2.297) 1.364(0.961,1.937)
P value 0712 0.005 0.083
Multivariable-adjusted’ 1.171(0.806,1.703) 1.718(1.204,2.453) 1.461(1.010,2.113)
P' value 0.407 0.003 0.044
Multivariable-adjusted” 1.219(0.824,1.803) 1.873(1.276,2.748) 1.608(1.073,2.409)
P value 0.322 0.001 0.021

Female 146 146 154
Crude 0.868(0.492,1.530) 1.058(0.609,1.838) 1.138(0.662,1.954)
P value 0.624 0.842 0.640
Multivariable-adjusted" 0.908(0.505,1.632) 1.138(0.643,2.013) 1.167(0.655,2.079)
P' value 0.748 0.657 0.601
Multivariable-adjusted” 0.826(0.447,1.524) 1.143(0.616,2.120) 1.200(0.639,2.525)
P’ value 0.540 0.672 0571

Male 154 166 151
Crude 1.184(0.689,2.036) 1.891(1.143,3.128) 1.413(0.831,2.405)
P value 0541 0.013 0202
Multivariable-adjusted" 1.212(0.694,2.118) 1.917(1.143,3.216) 1.509(0.868,2.622)
P' value 0.499 0.014 0.144
Multivariable-adjusted” 1.304(0.719,2.366) 2.154(1.221,3.797) 1.645(0.888,3.049)

0.008 0.114

P’ value 0.383

Data are RR(95% CI).
!Adjusted for age and prepregnant body mass index.
*Adjusted for age, prepregnant body mass index, lipids and family history.
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Variables Quartile 1 uartile 2 P for linear tren

n 369 374 372 371 -
FT4/TSH ratio range <069 0.69-5.54 5.54-12.68 >12.68 =
OGTT

FBG(mmo/L) 4.63(4.52,4.84) 4.63(4.40,4.84) 4.75(4.52,5.00) 470(4.48,4.95) <0.001

1-h BG(mmo/L) 7.44(6.51,8.55) 7.48(6.50.8.58) 7.57(6.55.8.72) 7.77(6.59.8.81) 0432

2-h BG(mmo/L) 7.05(6.13,7.31) 6.52(5.66,7.38) 6.47(5.79,7.26) 6.45(5.77,7.29) 0541
GDM 19.2%(71) 20.3%(76) 28%(104) 24.5%(91) 0018
TC(mmol/L) 3.45(3.13,3.99) 4.08(3.63,4.56) 3.80(3.36,4.47) 3.76(3.24,4.31) <0.001
TG(mmol/L) 0.51(0.38,0.73) 0.86(0.68,1.23) 0.80(0.61,1.07) 0.79(0.60,1.06) <0.001
HDL-C(mmol/L) 1.32(1.13,153) 1.47(1.29,1.69) 1.38(1.18,1.59) 1.36(1.16,1.60) <0001
LDL-C(mmol/L) 1.85(1.66,2.13) 212(1.77,2.56) 1.98(1.63,2.43) 1.86(1.52,2.26) <0.001
Glu(mmol/L) 455(4.20,5.10) 4.40(4.00,4.80) 4.70(4.30,5.20) 4.70(4.30,5.20) <0.001
Tinsulin(uU/mL) 4.85(3.95,6.00) 6.20(4.30,8.90) 7.25(4.90,10.30) 6.20(4.30,8.30) 0010
C-Peptide(ng/dL) 0.74(0.60,0.91) 0.83(0.65,1.14) 0.89(0.63,1.26) 0.78(0.57,1.02) <0.001

HOMA-IR 1.03(0.74,1.35) 1.23(0.78,1.78) 1.52(1.0222.19) 1.26(0.90,1.78) <0.001
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Variables otal G NGT P value
Baseline characteristics n=1486 n=342 n=1144
Age(year) 3039 +3.97 3149 +3.97 30.06 + 3.91 <0.001
BMI in 1* trimester(kg/m?) 2202 +3.06 23.06 + 341 2170 +2.88 <0.001
BMI in 2™ trimester(kg/m?) 2451 +3.11 25.50 + 3.42 2422 295 <0.001
BMI in 3" trimester(kg/m?) 26.89 +3.12 27.31 +338 26.76 + 3.02 0.011
Family history of diabetes mellitus 14%(208) 17.5%(60) 12.9%(148) 0.031
Previous adverse pregnancy outcomes 18.9%(281) 21.9%(75) 18.0%(206) 0.104
SBP(mmHg) 11687 + 8.73 116.97 + 8.64 116.83 + 8.76 0.830
DBP(mmHg) 7440 + 6.70 74.67 + 6.97 74.32 £ 6.62 0.440
ALT(U/L) 13.0(10.0,18.0) 15.0(11.0,20.86) 12.40(9.9,17.0) <0.001
AST(U/L) 16.0(14.0,19.0) 16.24(14.4,19.2) 16.0(14.0,18.9) 0.198
TBil(umol/L) 10.6(8.6,13.2) 10.4(8.5,13.2) 10.7(8.7,13.2) 0.493
TC(mmol/L) 3.91(3.44,4.47) 4.01(3.49,4.61) 3.89(3.43,4.43) <0.001
TG(mmol/L) 0.84(0.64,1.16) 0.95(0.73,1.29) 0.82(0.62,1.11) 0.004
HDL-C(mmol/L) 1.44(1.24,1.64) 1.40(1.19,1.60) 1.45(1.24,1.66) <0.001
LDL-C(mmol/L) 2.01(1.67,2.43) 2.10(1.73,2.61) 1.97(1.65,2.39) <0.001
Glucose(mmo/L) 4.50(4.10.4.90) 4.80(4.40,5.20) 4.40(4.10,4.80) <0.001
Tinsulin(uU/mL) 6.40(4.40,9.10) 8.00(5.10,11.2) 6.10(4.30,8.40) <0.001
C-Peptide(ng/dL) 0.84(0.63,1.14) 0.98(0.73,1.32) 0.81(0.61,1.07) <0.001
HOMA-IR 1.29(0.87,1.88) 1.70(1.05,2.43) 1.22(0.84,1.72) <0.001
OGTT :

FBG(mmo/L) 4.86(4.43,491) 5.17(4.84,5.34) 4.59(4.39,4.78) <0.001

1-h BG(mmo/L) 7.60(6.52,8.69) 9.75(8.34,10.61) 7.30(6.29,5.61,6.96) <0.001

2-h BG(mmo/L) 6.52(5.77,7.36) 8.03(7.00,8.99) 6.26(5.61,6.96) <0.001
GDM 23.0%(342) - -
FT4(ng/dL) 1.24(1.12,1.39) 1.24(1.12,1.40) 1.24(1.12,1.39) 0.762
TSH(uIU/mL) 1.63(1.00,2.40) 1.69(1.05,2.40) 1.61(0.99,2.40) 0.322
FT4/TSH ratio 5.54(0.69,12.68) 6.97(0.84,10.61) 4.88(0.66,12.44) 0.025
TPOAb(IU/mL) 11.3%(152/1340) 11.1%(33/298) 11.4%(119/1042) 0.868
Perinatal outcomes n=1237 n=285 n=952
PIH 7.8%(97) 9.1%(26) 7.5%(71) 0.359
Premature delivery 3.8%(47) 6.3%(18) 3.0%(29) 0.011
Caesarean delivery 32.6%(403) 43.29%(123) 29.4%(280) <0.001
PPH 13.9%(172) 11.2%(32) 14.7%(140) 0.137
Neonatal outcomes
Birth age(weeks) 39.29(38.57,40.14) 39.00(38.29,39.86) 39.57(38.71,40.14) <0.001
Birth weight (g) 3300(3020,3560) 3330(3020,3570) 3300(3020,3545) 0.566
LGA 12.5%(155) 17.5%(50) 11.0%(105) 0.004
SGA 7.8%(96) 14.4%(41) 5.8%(55) <0.001

P<0.05 represents significant difference between two groups.

Reference range: FT4 0.81-1.69 ng/dL;TSH 0.09-3.99 ulU/ml.

GDM, gestational diabetes mellitus; NGT, normal glucose tolerance; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; TBil, total bilirubin; TC, total cholesterol; TG, triglyceride; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; HOMA-IR,
homeostasis model assessment of insulin resistance; OGTT, oral glucose tolerance rest; FBG, fasting blood glucose; FT4, free thyroxine; TSH, Thyroid Stimulating Hormone; TPOAb, Thyroid
peroxidase antibodies; PIH, pregnancy-induced hypertension; PPH, postpartum hemorrhage; LGA, large for gestational age; SGA, small for gestational age.

Baseline characteristics: Baseline characteristics of pregnant women, “n” means the number of participants in each group.

Perinatal outcomes: Perinatal outcomes of pregnant women, “n” means the number of participants in each group.
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Outcome AUC 95%Cl Sensitivity

LBW 0.724 0.609-0.839 0.713 0.214
Emergency cesarean section 0.710 0.569-0.850 0.713 0.308
Preterm birth 0.591 0.453-0.729 0713 0.400
HDCP 0.446 0.334-0.557 0.113 0.030

LBW, low birth weight; HDCP, Hypertensive disorder complicating pregnancy; AUC, Area under the curve; C, confidence interval.
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Model 1 1.000 (reference) 0.298 (0.128,0.690) 0.005 0.359 (0.157,0.822) 0015

Model 2 1.000 (reference) 0.428 (0.170,1.080) 0.072 0.370 (0.149,0.922) 0.033
Model 3 1.000 (reference) 0.379 (0.146,0.982) 0.046 0.342 (0.134,0.871) 0.025
Model 4 1.000 (reference) 0.314 (0.112,0.883) 0.028 0.362 (0.134,0.979) 0.045
| Model 5 1.000 (reference) 0.345 (0.085,1.407) 0.138 0.186 (0.047,0.736) 0.017

Italic values indicate a significant p-value (p < 0.05). Cl, confidence interval; OR, odds ratio. Model 1: unadjusted odds ratio (OR); Model 2: adjusted for pBMI; Model 3: adjusted for pBMI, FPG;
Model 4: adjusted for pBMI, EPG, DBP; Model 5: adjusted for pBMI, EPG, DBP, ferritin, Fetal sex.
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FFAs (umol/L)

Male (n=63)
NPO (n=34)

Female (n

NPO (n=49)

Total FFA
Total SFA
Total MUFA
Total PUFA
Total n-3/n-6
Total n-3
C20:0
C22:6,DHA

C18:0

29934.49 + 8903.03
9580.05 + 2942.66
4037.70 + 1747.51
16316.73 + 4621.35

0.12 + 0.04

1675.75 + 672.62

6191 + 19.68

1153.73 (1005.00,1762.20)

2001.44 (1781.98,2491.95)

28156.02 + 6757.16
8847.57 + 2620.36
3759.67 + 1446.25
15548.78 + 3223.26

0.13 £ 0.03

1711.73 + 501.57

58.92 + 15.86

1359.66 (1108.78,1703.26)

1740.74 (1495.59,2174.70)

29628.75 + 6546.93
9668.00 + 2462.48
3885.52 + 1208.04
16075.23 + 3541.67

0.13 + 0.03

1584.88 (1394.36,1959.28)
63.95 + 16.13

1257.04 (1036.63,1617.52)

2127.92 + 618.13

28603.44 + 6356.23
8821.94 + 2493.08
3943.34 + 1367.11
15838.17 + 3077.23

0.13 + 0.04

1492.25 (1287.36,2006.73)
57.34 = 21.66

1194.90 (970.35,1648.97)

1806.74 + 581.44"a

"p < 0.05 NPO vs. APO. DHA, docosahexaenoic acid; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids; FFA, free fatty acid.
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FFAs (umol/ NC (n=52) NPO (n=83) APO (n=6.

Total FFA 28468.24 (23296.33,31390.01) 29499.24 (24059.90,33707.17) 27368.79 (22805.10,33117.34)
Total SFA 9419.68 (7645.26,10351.29) 9368.98 (7749.79,11251.52) 7958.49 (6917.58,10426.88)
Cl16:0 6970.82 (5575.47,7733.56) 6991.05 (5862.94,8406.87) 625125 (5205.23,7778.74)
C18:0 1980.10 + 515.06 2129.85 + 628.00 181852 + 560.17"

C20:0 65.84 + 1849 63.14 + 17.52 5807 + 19.047

C22:0 58.19 (44.71,77.47) 58.55 (43.17,74.23) 59.40 (41.98,70.21)

C24:0 63.63 (48.90,76.51) 62.90 (51.92,80.96) 6256 (50.83,76.12)

Total MUFA 3476.93 (2628.91,4515.01) 3762.56 (2864.29,4864.70) 3666.96 (2691.71,4589.48)
Ci6:1 256.27 (179.83,392.52) 300.00 (203.32,377.08) 280.85 (188.80,429.13)
Cis:1 3011.42 (2377.62,3842.76) 3331.28 (2490.97,4208.14) 3283.63 (2371.01,3990.60)
C20:1 25.34 (19.00,28.74) 27.94 (19.33,38.59) 23.81 (1832,33.05)

C24:1 98.52 (81.12,118.51) 100.71 (84.24,118.09) 92.99 (73.90,117.71)

Total PUFA 1510657 + 2955.84 1617117 + 3976.28 1570381 + 3120.35

Total n-3 1409.43 (1144.20,171037) 1558.32 (1335.85,1997.25)* 1579.35 (1267.08,2033.21)"
CI8:3,ALA 218.18 (172.32,270.46) 228.57 (173.80,281.78) 216.74 (185.27,307.73)
C20:5,EPA 94.32 (71.45,132.69) 104.22 (80.78,150.42) 107.70 (89.24,134.08)
C22:5DPA 235.39 (197.12,340.03) 260.32 (207.88,316.76) 245.27 (190.00,332.62)
C22:6,DHA 1094.69 (891.99,1359.85) 1199.82 (1029.16,1629.87)* 1237.57 (981.81,1680.19)°
Total n-6 12801.42 + 2408.54 13643.61 + 3313.76 13142.11 + 2513.34
CI8:2LA 9045.86 + 1765.42 9500.22 + 2303.69 9052.14 + 1728.48

€202 64.10 (55.41,77.46) 69.71 (51.81,89.19) 65.13 (51.79,80.69)

€203 392.81 + 128.85 394.55 + 14249 41365 + 122.19

C20:4,AA 3692.23 (2983.52,4558.55) 3891.31 (3273.74,4912.14) 396127 (3265.10,4833.68)
C22:4 78.91 (62.50,99.42) 80.91 (59.58,99.00) 79.21 (60.04,103.69)

Total n-3/n-6 0.12 + 0.03 0.13 + 0.03 0.13 + 003"

“p < 0.05 NC vs. NPO; p < 0.05 NC vs. APO; 'p < 0.05 NPO vs. APO. AA, arachidonic acid; ALA, alpha-linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA,
eicosapentaenoic acid; LA, linoleic acid; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids; FFA, free fatty acid.
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Pregnancy outcome @ Classify N (%)

LGA 10 (16.4)
SGA 15 (24.6)
Macrosomia 7 (11.5)
LBW 7 15 (24.6)
APO (n=61) V Preterm birth 21 (34.4)
Stillbirth 1 (1.6)
Emergency Cesarean section V 13 (21.3)
HDCP 32 (52.5)
Oligoamnios 2 (3.3)

LGA, Large for gestational age; SGA, Small for gestational age; LBW, low birth weight; HDCP,
Hypertensive disorder complicating pregnancy.
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RAR rang, mL/g

Mortality, %

RAR, mL/g

CKD, %

COPD, %

Hypertension, %

ASCVD, %

Anemia, %

Mild
Moderate
Non-Anaemia
Severe

CHF, %

Ethnicity, %
Mexican American
Non-Hispanic Black
Non-Hispanic White
Other Hispanic
Other Race

Sex, (Male), %

Age, year

LymP, %

MonP, %

SegneP, %

EoP, %

BaP, %

Lym, 1000 cells/uL

Mon, 1000 cells/uL

Eo, 1000 cells/uL

Ba, 1000 cells/uL

RBC, million cells/uL

Hg, g/dl

Hem, %

MCYV, fL

MCH, pg

MCHG, g/cL

RDW, %

PIt, 1000 cells/uL

MPV, fL

ALB, g/dL

ALT, U/L

AST, U/L

Ca, mg/dL

HCO3, mmol/L

GGT, U/L

Glu, mg/dL

TP, g/dL

TG, mg/dL

UA, mg/dL

Na, mmol/L

Cl, mmol/L

[2.02,2.82]
307(20.31)
2.71x0.00
399(27.71)
47( 4.03)
787(57.61)

186(12.08)

46( 2.17)
3(0.11)
1226(97.73)
0(0.00)

39(2.62)

367(10.89)
129( 4.87)
522(66.67)
111(6.44)
146(11.13)
848(68.09)
55.310.52
30.38+0.36
7.9120.08
58.26+0.38
2.83+0.06
0.67+0.01
2.22+0.05
0.5720.01
0.21£0.01
0.0420.00
4.82+0.02
14.98+0.06
43.66+0.17
90.800.20
31.16+0.08
34.310.06
12.30£0.02
243.68+2.66
8.18+0.04
4.5420.01
31.42+0.75
28.02+0.59
9.61+0.02
24.84+0.09
38.42+1.50
145.66+2.72
7.39+0.02
230.28+11.14
5.63+0.05
138.7220.12

101.95+0.14

(2.82,3.05)
510(24.24)
297+0.00
625(29.64)
96( 6.06)
1320(69.05)

366(19.37)

100( 4.05)
13(0.38)
1785(95.57)
0(0.00)

105( 5.37)

449( 9.77)
320( 9.55)
741(65.96)
180(5.98)
208( 8.74)
1104(59.50)
58.76+0.39
29.41+0.23
7.85+0.08
59.15+0.26
293006
0.72+0.02
217+0.02
0.58+0.01
022+0.01
0.05+0.00
4742002
14.55+0.04
42.69+0.12
90.26+0.13
30.75+0.05
34.07+0.04
12.79+0.02
243.18+2.17
8.24+0.03
430001
29.73+0.61
27.23+0.42
9.50+0.01
24.79+0.08
37.38+1.49
14571188
7.22+0.02
20645+ 5.44
5.69+0.05
138.72+0.10

102.22+0.13

(3.05,3.38)
627(22.65)
3232000
937(36.68)
160( 6.93)
1681(69.10)

556(22.99)

215( 6.60)
29(0.75)
2115(92.65)
0(0.00)

182(7.13)

473(9.29)
562(13.58)
881(64.11)
250(6.15)
193( 6.86)
1177(48.53)
59.88+0.42
28.68+0.33
7.77+0.06
59.90+0.33
299:0.07
073001
2212004
0.59+0.01
023001
0.05:0.00
468+0.02
14.18+0.04
41.86+0.13
89.58+0.14
30.34+0.06
33.86+0.03
13.320.02
245.00+2.17
8342003
412001
28.08+0.76
26.42+0.56
9.42+0.01
24.79+0.08
35.86+1.98
14847+1.68
7.09+0.02
199.54+ 5.88
5.66+0.05
138.93+0.11

102.47+0.10

(3.38,12.08]
967(29.99)
3.85:0.01
1497(48.62)
287(10.15)
2275(75.92)

860(28.35)

657(18.98)
280(8.46)
2005(72.43)
9(0.13)

430(14.11)

447(8.08)
1045(22.78)
964(55.99)
249(5.50)
246( 7.66)
1264(38.89)
60.91+0.34
27.05+0.25
7.90+0.07
61.4240.27
2.95£0.05
0.75£0.01
2.14£0.02
0.62+0.01
0.23£0.00
0.06+0.00
4.57£0.01
13.21£0.05
39.67+0.14
87.10+0.17
29.02+0.07
33.20+0.04
14.70+0.04
253.832.38
833:0.03
3.84:0.01
23.96+0.50
25.16+0.44
9.28+0.01
25.08+0.08
39.16+133
148.02£1.51
7.00£0.01
18125+ 3.92
5.90+0.04
139.09+0.15

102.22+0.11

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

041

< 0.0001

0.28

< 0.0001

0.22

< 0.0001

< 0.001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

0.002

0.002

< 0.0001

< 0.0001

< 0.001

< 0.0001

0.01

0.54

0.71

< 0.0001

< 0.0001

< 0.001

0.09

0.02





OPS/images/fendo.2024.1362077/table6.jpg
DM mortality

NAERIes HR (95% CI)®> P_value HR(95%CI)°® P_value HR(95%CI< P_value HR(95%CI)? P_value
RAR 2.03(1.87,2.20) <0.0001 2.05(1.88,2.23) <0.0001 1.79(1.62,1.99) <0.0001 1.80(1.57,2.05) <0.0001
RARQ ' '

Q1 ref ref ref ref ref ref ref ref

Q2 1.57(1.32,1.86) <0.0001 1.36(1.16,1.60) <0.001 1.32(1.12,1.56) 0.001 1.38(1.17,1.62) <0.0001

Q3 1.81(1.52,2.17) <0.0001 1.59(1.36,1.85) <0.0001 1.43(1.23,1.67) <0.0001 1.57(1.35,1.82) <0.0001

Q4 3.37(2.86,3.99) <0.0001 2.99(2.58,3.47) <0.0001 2.29(1.93,2.71) <0.0001 2.59(2.18,3.09) <0.0001
RDW 1.23(1.19,1.27) <0.0001 1.22(1.18,1.26) <0.0001 1.16(1.11,1.21) <0.0001 1.16(1.10,1.22) <0.0001
ALB 0.40(0.35,0.46) <0.0001 0.36(0.31,0.42) <0.0001 0.49(0.41,0.57) <0.0001 0.45(0.37,0.55) <0.0001

aModel 1: unadjusted; b Model 2: adjusted with Sex and Age; ¢ Model 3: adjusted with Sex, Age, CKD, COPD, Hypertension, ASCVD, Anemia, CHF, Ethnicity; d Model 4: adjusted with Age, Sex,
CKD, COPD, Hypertension, ASCVD, Anemia, CHF, Ethnicity, LymP, SegneP, EoP, BaP, Lym, Mon, Eo, Ba, MCV, MCH, MCHC, Plt, MPV, ALT, AST, HCO3, GGT, Glu, TP, TG, UA, Na, and Cl.
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DM

YAERE HR (95% CI)® P-value HR (95%Cl)° P-value HR(95% CI)® P-value HR(95% Cl)* P-value
Male RAR 2.48(2.17,2.84) <0.0001 2.20(1.96,2.48) <0.0001 1.98(1.73,2.27) <0.0001 2.27(1.95, 2.64) <0.0001

Q1 ref ref ref ref ref ref ref ref

Q 1.57(1.26,1.96) <0.0001 1.37(1.11,1.68) 0.003 1.37(1.11,1.70) 0.003 1.46(1.18, 1.81) <0.001

Q3 2.16(1.68,2.77) <0.0001 1.58(1.26,1.96) <0.0001 1.47(1.17,1.85) 0.001 1.64(1.31, 2.06) <0.0001

Q4 4.88(3.93,6.06) <0.0001 3.33(2.73,4.06) <0.0001 2.49(2.01,3.09) <0.0001 3.08(2.46, 3.85) <0.0001
Female =~ RAR 1.79(1.61,1.98) <0.0001 1.93(1.71,2.19) <0.0001 1.64(1.43,1.89) <0.0001 1.56(1.31,1.85) ‘ <0.0001

Q1 ref ref ref ref ref ref ref ref

Q 1.59(1.18,2.15) 0.002 1.35(1.03,1.78) 0.03 1.22(0.92,1.61) 0.16 1.26(0.97,1.65) 0.09

Q3 1.62(1.21,2.16) 0.001 1.63(1.24,2.14) <0.001 1.38(1.06,1.80) 0.02 1.52(1.17,1.97) 0.001

Q4 2.74(2.10,3.57) <0.0001 2.77(2.17,3.55) <0.0001 2.10(1.61,2.75) <0.0001 2.19(1.64,2.92) <0.0001

a Model 1: unadjusted; b Model 2: adjusted with Age; ¢ Model 3: adjusted Age, CKD, COPD, Hypertension, ASCVD, Anemia, CHF, Ethnicity; d Model 4: adjusted with Age, CKD, COPD,
Hypertension, ASCVD, Anemia, CHEF, Ethnicity, LymP, SegneP, EoP, BaP, Lym, Mon, Eo, Ba, MCV, MCH, MCHC, Plt, MPV, ALT, AST, HCO3, GGT, Glu, TP, TG, UA, Na, and CL.
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Age Variables p- p-

HR (95% CI)? HR(95% CI)® value HR (95% CI)° value HR(95% CI)® P-value

>60 RAR 2.04(1.86,2.25) <0.0001 2.06(1.86,2.27) <0.0001 1.68(1.50,1.89) <0.0001 1.69(1.47,1.94) <0.0001

Ql ref ref ref ref ref ref ref ref

Q2 1.24(1.02,1.52) 0.03 1.26(1.04,1.54) 0.02 1.17(0.97,1.41) 0.11 1.12(0.92, 1.37) 0.26

Q3 1.57(1.27,1.93) <0.001 1.61(1.31,1.98) <0.0001 1.36(1.13,1.63) 0.001 1.38(1.15, 1.66) <0.001

Q4 2.83(2.36,3.38) <0.0001 2.94(2.46,3.52) <0.0001 1.94(1.61,2.36) <0.0001 2.06(1.70, 2.50) <0.0001
<=60 RAR 2.02(1.73,2.36) <0.0001 2.28(1.95,2.67) <0.0001 2.07(1.73,2.48) <0.0001 2.08(1.61, 2.70) <0.0001

Q1 ref ref ref ref ref ref ref ref

Q2 2.02(1.34,3.04) <0.001 2.08(1.38,3.13) <0.001 1.85(1.21,2.83) 0.005 2.04(1.33, 3.11) 0.001

Q3 1.80(1.23,2.62) 0.002 2.20(1.49,3.23) <0.0001 1.87(1.23,2.85) 0.004 2.01(1.29, 3.14) 0.002

Q4 3.76(2.58,5.48) <0.0001 5.00(3.45,7.23) <0.0001 3.50(2.36,5.20) <0.0001 4.06(2.54, 6.49) <0.0001

a Model 1: unadjusted; b Model 2: adjusted with Sex; ¢ Model 3: adjusted with Sex, CKD, COPD, Hypertension, ASCVD, Anemia, CHE, Ethnicity; d Model 4: adjusted with Sex, CKD, COPD,
Hypertension, ASCVD, Anemia, CHF, Ethnicity, LymP, SegneP, EoP, BaP, Lym, Mon, Eo, Ba, MCV, MCH, MCHC, Plt, MPV, ALT, AST, HCO3, GGT, Glu, TP, TG, UA, Na, and Cl.
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non-DM DM

Variable (n=30,404) (n=10,154)
RAR, mL/g 3.02+0.00 3.31+0.01 < 0.0001
CKD, % 3239( 8.85) 4131(37.29) < 0.0001
COPD, % 645(2.49) 590(7.24) < 0.0001
Hypertension, % 7928(24.43) 7169(68.87) < 0.0001
ASCVD, % 1570( 4.23) 2355(22.24) <0.0001
Anemia, % < 0.0001

Mild 1614(3.65) 1232(9.16)

Moderate 589(1.34) 401(3.00)

Non-Anaemia 28152(94.91) 8510(87.80)

Severe 49(0.10) 11(0.04)
CHF, % 414(1.00) 910(8.14) < 0.0001
Ethnicity, % < 0.0001

Mexican American 5266(8.02) 1964(9.31)

Non-Hispanic Black 5708( 9.48) 2519(13.87)

Non-Hispanic White 14171(70.32) 7 3620(61.93)

Other Hispanic 2406(5.83) 977(6.15)

Other Race 2853(6.35) 1074(8.74)
Sex, (Male), % 13656(45.69) 5272(51.59) < 0.0001
Age, year 41.32+0.19 59.24+0.22 < 0.0001
LymP, % 30.23+0.07 28.64+0.15 < 0.0001
MonP, % 7.94+0.02 7.89+0.03 0.12
SegneP, % 58.47+0.08 59.88+0.15 < 0.0001
EoP, % 2.70+0.01 2.93+0.03 < 0.0001
BaP, % 0.71+0.00 0.73+0.01 < 0.001
Lym, 1000 cells/uL 2.12+0.01 2.19+0.02 < 0.0001
Mon, 1000 cells/uL 0.56+0.00 0.60+0.00 < 0.0001
Eo, 1000 cells/uL 0.19+0.00 0.22+0.00 < 0.0001
Ba, 1000 cells/uL 0.04+0.00 0.05+0.00 < 0.0001
RBC, million cells/uL 4.68+0.01 4.69+0.01 0.21
Hg, g/dl 14.29+0.02 14.09+0.03 < 0.0001
Hem, % 42.01+0.06 41.69+0.07 < 0.0001
MCV, fL 89.90+0.06 89.11+0.09 < 0.0001
MCH, pg 30.59+0.03 30.12+0.04 < 0.0001
MCHG, g/cL 34.01+0.02 33.78+0.03 < 0.0001
RDW, % 12.89+0.01 13.52+0.02 < 0.0001
Plt, 1000 cells/uL 254.67+0.70 246.70+1.21 < 0.0001
MPV, fL 8.17+0.01 8.30+0.02 < 0.0001
ALB, g/dL 4.31+0.00 4.13+0.01 < 0.0001
ALT, U/L 23.92+0.13 27.38+0.34 < 0.0001
AST, U/L ‘ 24.28+0.11 25.99+0.26 < 0.0001
Ca, mg/dL 9.42+0.01 9.41+0.01 0.21
HCO3, mmol/L ‘ 24.74+0.05 24.97+0.05 < 0.0001
GGT, U/L 25.56+0.26 37.79+0.80 < 0.0001
Glu, mg/dL 87.76+0.10 146.42+0.89 < 0.0001
TP, g/dL 7.17+0.01 7.13£0.01 < 0.0001
TG, mg/dL 134.02+1.02 198.56+2.91 < 0.0001
UA, mg/dL 5.18+0.01 5.7240.02 < 0.0001
Na, mmol/L 139.33+0.06 V 139.05+0.09 < 0.0001
Cl, mmol/L 103.27+0.06 102.03+0.07 < 0.0001
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VEETES
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DM, %

RAR, dL/g

CKD, %

COPD, %

Hypertension, %

ASCVD, %

Anemia, %

Mild
Moderate
Non-Anaemia
Severe

CHF, %

Ethnicity, %
Mexican American
Non-Hispanic Black
Non-Hispanic White
Other Hispanic
Other Race

Sex, (Male), %

Age, year

LymP, %

MonP, %

SegneP, %

EoP, %

BaP, %

Lym, 1000 cells/uL

Mon, 1000 cells/uL

Eo, 1000 cells/uL

Ba, 1000 cells/uL

RBC, million cells/uL

Hg, g/dl

Hem, %

MCYV, fL

MCH, pg

MCHC, g/cL

RDW, %

PIt, 1000 cells/uL

MPV, fL

ALB, g/dL

ALT, U/L

AST, U/L

Ca, mg/dL

HCO3, mmol/L

GGT, U/L

Glu, mg/dL

TP, g/dL

TG, mg/dL

UA, mg/dL

Na, mmol/L

Cl, mmol/L

[2.02,2.82]
1320( 8.23)
2.67+0.00
1063( 7.42)
194(1.82)
2846(23.35)

498( 3.38)

151( 0.83)
10(0.06)
11328(99.10)
0(0.00)

103(0.62)

2409(8.13)
1259( 4.92)
5896(74.90)
849(5.53)
1076(6.52)
7128(60.69)
38.94+0.26
30.510.10
7.93+0.03
58.24+0.10
2.71:0.02
0.67+0.01
2.12+0.01
0.55+0.00
0.1920.00
0.0420.00
4.8020.01
14.88+0.03
43.49+0.07
90.85+0.07
31.100.03
34.230.03
12.22+0.01
251.69+0.87
8.13£0.01
4.59+0.00
26.40:0.21
25.4420.17
9.58+0.01
24.870.06
26.510.35
92.02:0.29
7.37+0.01
142.68+1.74
5.39+0.01
139.300.06

102.87+0.07

(2.82,3.05)
2084(15.20)
297+0.00
1449(11.49)
278(3.37)
3545(31.84)

752( 6.18)

325( 2.30)
37(0.22)
9743(97.48)
0(0.00)

193(1.55)

1864(8.27)
1682( 8.62)
4637(70.36)
850(5.74)
1072(7.01)
4943(47.34)
44.93+0.26
30.44+0.11
7.96+0.03
58.18+0.12
2.77+0.02
0712001
2142001
0.56+0.00
0.20+0.00
0.04+0.00
469+0.01
14.41£0.02
42.27+0.07
90.31+0.07
30.78+0.03
34.08+0.03
12.76+0.01
251.26+1.03
8.18+0.02
430+0.00
25.05+0.25
24.73+0.19
9.43+0.01
24.77+0.05
27.36+0.56
96.60+0.43
7.15:0.01
14657+1.72
5.24+0.02
139.25+0.06

103.22+0.07

(3.05,3.38)
2813(23.92)
3232000
1959(17.53)
328(4.05)
4026(37.47)

1084( 9.55)

653( 4.90)
72(0.58)
8759(94.53)
0(0.00)

318(2.66)

1564(8.28)
2130(12.26)
3969(66.82)
899(6.11)
922(6.53)
3868(38.34)
48.37+0.33
29.81+0.14
7.89+0.03
58.87+0.16
2.77+0.03
0742001
2.18+0.02
057+0.00
0.20+0.00
0.05:0.00
463£001
14.05+0.03
41.44+0.08
89.65+0.09
30.40+0.04
33.90+0.03
13.25+0.01
252.22+1.04
8.24+0.02
4112000
23.38+0.23
23.91+0.20
9.33£0.01
24.78+0.05
27.51£0.57
102.79+0.51
7.03:0.01
149.08+2.19
5.18+0.02
139.33x0.08

103.15+0.06

(3.38,12.08]
3937(36.39)
3.86+0.01
2899(27.16)
435(5.97)
4680(46.12)

1591(15.62)

1717(15.70)
871(8.40)
6832(75.36)
60(0.54)

710(6.48)

1393(8.48)
3156(21.19)
3289(56.48)
785(6.54)
857(7.31)
2989(28.36)
50.79+0.29
2820+0.15
7.96+0.03
60.40£0.17
2.76+0.02
0.76+0.01
2.1120.01
0.60+0.00
0210.00
0.05£0.00
451001
13012003
38.98+0.09
86.84+0.11
29.00+0.05
33.35:0.03
14.66+0.03
260.54+1.49
8.28+0.02
3.82+0.00
2151£0.24
23.52+0.20
9.20+0.01
24.61£0.07
3145+0.76
109.08+0.63
6.92+0.01
146.99+1.84
522002
139.2320.12

103.00+0.07

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001
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< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

< 0.0001

<0.0001

< 0.0001

< 0.0001

< 0.0001
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Variables OR OR OR OR
P_value P_value P_value
(95% CI)? = (95% CI)° = (95% CI) = (95% CI)?
RAR <0.0001 L8
3.05(2.85,3.27) ) 2.61(2.42,2.82) <0.0001 2.20(1.98,2.45) <0.0001 (1.42, 1.98) <0.0001
RARQ
Q1 ref ref ref ref ref ref ref ref
132
Q2 2.00(1.80,2.22) <0.0001 1.50(1.36,1.67) <0.0001 1.41(1.26,1.58) = <0.0001 (1.13,153) <0.001
1.74
Q3 3.51(3.18,3.87) <0.0001 2.38(2.14,2.66) <0.0001 2.08(1.85,2.33) = <0.0001 (148, 2.06) <0.0001
2.57
Q4 6.38(5.76,7.07) <0.0001 4.47(4.01,4.98) <0.0001 3.30(2.90,3.74) = <0.0001 (211,3.13) <0.0001
RDW <0.0001 114
1.42(1.38,1.46) . 1.31(1.27,1.35) | <0.0001 1.22(1.17,1.26) = <0.0001 (1.09, 1.20) <0.0001
ALB 0.25(0.23,0.28) <0.0001 0.28(0.25,0.31) <0.0001 0.37(0.33,0.42) <0.0001 ?6531 0.61) <0.0001

a Model 1: unadjusted; b Model 2: adjusted with Sex and Age; ¢ Model 3: adjusted with Sex, Age, CKD, COPD, Hypertension, ASCVD, Anemia, CHF, Ethnicity; d Model 4: adjusted with Age, Sex,
CKD, COPD, Hypertension, ASCVD, Anemia, CHF, Ethnicity, LymP, SegneP, EoP, BaP, Lym, Mon, Eo, Ba, MCV, MCH, MCHC, PIt, MPV, ALT, AST, HCO3, GGT, Glu, TP, TG, UA, Na, and CL.
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DM

DM patients patients
alive alive
Variable (n=6,071) (n=2,411) P_value
RAR, mL/g 3.25+0.01 3.37+0.02 < 0.0001
CKD, % 1969(29.53) 1489(60.55) < 0.0001
COPD, % 333( 5.86) 257(11.40) < 0.0001
Hypertension, % 4129(65.59) 1934(80.32) < 0.0001
ASCVD, % 1050(16.68) 918(37.85) < 0.0001
Anemia, % < 0.0001
Mild 597( 7.15) 421(15.16)
Moderate 192(2.51) 133(4.42)
Non-Anaemia 5277(90.30) 1854(80.38)
Severe 6(0.04) 3(0.04)
CHF, % 334( 5.03) 422(17.55) < 0.0001
Ethnicity, % < 0.0001
Mexican American 1333(10.63) 403( 5.28)
Non-Hispanic Black 1483(14.24) 573(13.45)
Non-Hispanic White 1892(59.11) 1216(72.38)
Other Hispanic 667(6.68) 123(3.77)
Other Race 697(9.33) 96(5.12)
Sex, (Male), % 7 3023(50.92) 1370(52.85) 0.26
Age, year 56.16+0.26 68.18+0.34 < 0.0001
LymP, % V 29.30+0.18 26.59+0.26 < 0.0001
MonP, % 7.73+0.04 8.22+0.07 < 0.0001
SegneP, % 59.39+0.19 61.53+0.28 < 0.0001
EoP, % 2.91+0.04 3.02+0.05 0.15
BaP, % 0.73+0.01 0.69+0.01 < 0.001
Lym, 1000 cells/uL 2.22+0.02 2.06+0.04 < 0.001
Mon, 1000 cells/uL 0.58+0.00 0.62+0.01 < 0.0001
Eo, 1000 cells/uL 0.22+0.00 0.23+0.00 0.23
Ba, 1000 cells/uL 0.05+0.00 0.05+0.00 0.02
RBC, million cells/uL 4.74+0.01 4.53+0.01 < 0.0001
Hg, g/dl 14.18+0.03 13.85+0.05 < 0.0001
Hem, % 41.90+0.08 40.99+0.14 < 0.0001
MCV, fL 88.63+0.10 90.79+0.15 < 0.0001
MCH, pg 29.99+0.05 30.69+0.06 < 0.0001
MCHG, g/cL 33.81+0.03 33.79+0.04 0.56
RDW, % 13.42+0.03 13.58+0.04 < 0.001
Plt, 1000 cells/uL 249.00+1.62 V 241.53+1.98 0.004
MPV, fL 8.31+0.02 8.22+0.03 0.01
ALB, g/dL 4.17+0.01 4.08+0.01 < 0.0001
ALT, U/L 28.42+0.38 25.68+0.83 0.002
AST, U/L 26.36+0.32 26.85+0.55 0.42
Ca, mg/dL 9.42+0.01 9.46+0.01 0.004
HCO3, mmol/L 24.89+0.07 24.88+0.09 0.93
GGT, U/L 35.37+0.74 44.71+2.66 ‘ < 0.001
Glu, mg/dL 146.09+1.10 150.56+1.95 | 0.05
7 TP, g/dL 7.13%£0.01 7.17+0.02 0.06
TG, mg/dL 201.33+3.99 198.67+4.89 0.68
UA, mg/dL 5.62+0.03 6.11+0.05 < 0.0001
Na, mmol/L 138.92+0.11 138.81+0.09 0.39
Cl, mmol/L 102.32+0.08 102.00+0.11 0.01
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Variable NC (n=52) NPO (n=83) APO (n=61)
FPG, mmol/L 461 +0.25 5.05 + 0.49* 5.22 + 0.40%"
I?fnle/ihPG’ 7.72 £ 1.35 9.75 + 1.35* 10.05 + 1.42°
anle/ihPG’ 6.73 £ 0.88 8.04 + 1.33* 8.36 + 1.22%
HbAlc,% 4.89 +0.27 5.08 + 0.70 5.17 + 0.32°
TG, mmol/L 4.55 +2.62 2,63+ 1.20 2.87 +1.28
TC, mmol/L 3.55 + 1.52 5.19 + 1.40 492+ 1.13
HDL, mmol/L 1.99 + 0.64 1.69 + 0.44 1.57 + 0.37
LDL, mmol/L 3.13 + 1.00 2.80 £ 0.99 2.65 + 0.75
Ferritin, ng/mL 10.05(6.23,19.83) | 10.80(8.30,17.25) 2440 o
(10.55,34.55)
Ry AR, | 50 508 2449 £ 677 24.01 + 878

D3, ng/mL

Data are given as (mean + SD) or median (IQR) for continuous variables. “p < 0.05 NC vs.
NPO; *p < 0.05 NC vs. APO; "p < 0.05 NPO vs. APO. FPG, Fasting plasma glucose;
OGTT1hPG, 1-h plasma glucose; OGTT2hPG, 2-h plasma glucose; HbAIC, Glycosylated
hemoglobin; TG, Triglyceride; TC, Total cholesterol; HDL, High density lipoprotein
cholesterol; LDL, Low density lipoprotein cholesterol.
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Variable NC (n=52) NPO (n=83) APO (n=61)
Mother ‘
Age, year 31.04 £ 3.55 31.85 £ 4.12 3242 £ 449
Sg:ﬁ:ial 38 (38,39) 38 (38,39) 37 (35,39)°"
pBMI, kg/m? 22.66 + 4.53 23.85 + 3.91 26.05 + 4.28""
GWG, kg (lfi(.)(())o,sz) 12.00 (9.20,16.25) (13_'55313.25),,
SBE; mmHg (1 12 ?6?30,130.00) (1 12 ? 5(.)30,125.00) (1 12 ?;(())0,129.50)
DBP, mmHg 78.38 + 10.76 75.79 + 7.85 80.22 + 12,09
Gravidity 1.50 (1.00,2.00) 2(1,3) 2(1,2)

Parity 1.00 (1.00,2.00) 1(1,2) 1(1,1)
Therapy

Diet (%) J 73 (88.0) 55 (90.2)
Medicine (%) / 10 (12.0) 6 (9.8)
Adverse

pregnancy *

history

No (%) 38 (79.2) 49 (59.0) 32 (52.5)

Yes (%) 10 (20.8) 34 (41.0) 29 (47.5)
Hypothyroidism

No (%) 41 (85.4) 73 (88.0) 54 (88.5)

Yes (%) 7 (14.6) 10 (12.0) 7 (11.5)
Pre-pregnancy hypertension

No (%) 46 (95.8) 81 (97.6) 57 (93.4)

Yes (%) 2 (4.2) 2(2.4) 4(6.6)
Assisted reproduction

No (%) 46 (95.8) 76 (91.6) 54 (88.5)

Yes (%) 2 (42) ‘ 7 (8.4) 7 (11.5)

Fetal

Birth weight, kg

3154.60 + 458.54

3299.27 + 301.88*

3013.36 + 683.36"

Fetal sex ¥
Male, n (%) 29 (61.7) 34 (41.0) 29 (47.5)
Female, n (%) 18 (38.3) 49 (59.0) 32 (52.5)

Data are given as a number (percentage) for categorical variables and (mean + SD) or median
(IQR) for continuous variables. ‘p < 0.05 NC vs. NPO; “p < 0.05 NC vs. APO; p < 0.05 NPO
vs. APO. pBM], pre-pregnancy body mass index; GWG, gestational weight gain; SBP, systolic

pressure; DBP, diastolic blood pressure.
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HR (95% ClI)

InSIl below 5.82

Crude model 0.51 (0.39, 0.66) < 0.001
Model 1 0.59 (0.45, 0.77) < 0.001
Model 2 0.58 (0.43, 0.78) < 0.001

InSll above 5.82

Crude model 1.78 (1.56, 2.04) < 0.001
Model 1 1.84 (1.61, 2.10) < 0.001
Model 2 1.69 (1.48, 1.93) < 0.001

SII was assessed in its continuous form after applying a natural log-transformation (InSII).
Crude Model: unadjusted. Model 1: adjust for age, sex, race. Model 2: adjust for age, sex, race,
body mass index, poverty income ratio, education level, smoking status, alcohol consumption,
physical activity, frailty status, hypertension, hyperlipidemia, cardiovascular disease, usage of
anti-inflammatory drugs and anti-diabetic drugs. SII, systemic immune inflammation index;
HR, hazard ratio; 95% CI, 95% confidence interval.
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Crude model Model 1 Model 2

Number of deaths/

Levels of InSII .
Total participants g (95% Cl) Pvalue HR(95%Cl) Pvalue HR(95%Cl) P value

All-cause mortality

Continuous 1338/3195 1.31 (1.19, 1.45) <0.001 1.36 (1.23, 1.50) <0.001 1.29 (1.17, 1.42) <0.001
Q1 293/799 Ref Ref Ref
Q 307/799 0.98 (0.84, 1.15) 0.827 1.09 (0.93, 1.28) 0310 1.11 (0.94, 1.31) 0.213
Q3 335/798 1.12 (0.96, 1.31) 0.145 1.10 (0.94, 1.29) 0.231 1.08 (0.92, 1.27) 0.331
Q4 403/799 149 (1.28, 1.73) <0.001 1.66 (1.43, 1.94) <0.001 1.58 (1.35, 1.84) <0.001
P for trend <0.001 <0.001 <0.001

Cardio-cerebrovascular mortality

Continuous 485/3195 1.24 (105, 1.46) 0.01 1.29 (1.10,1.53) 0.002 1.23 (104, 1.45) 0.014
Q1 117/799 Ref Ref Ref
Q 111/799 0.89 (0.69, 1.16) 0384 0.99 (0.76, 1.29) 0937 1.02 (0.78, 1.33) 0.887
(o5} 122/798 1.03 (080, 1.32) 0839 1.00 (0.78, 1.30) 0971 098 (0.75, 1.27) 0.856
ot 135/799 1.25 (098, 1.60) 0076 1.40 (109, 1.81) 0.009 132 (102, 1.71) 0.032
P for trend 002 0.003 0021

SIT was assessed in its continuous form after applying a natural log-transformation (InSII). Crude Model: unadjusted. Model 1: adjust for age, sex, race. Model 2: adjust for age, sex, race, body
mass index, poverty income ratio, education level, smoking status, alcohol consumption, physical activity, frailty status, hypertension, hyperlipidemia, cardiovascular disease, usage of anti-
inflammatory drugs and anti-diabetic drugs. SII, systemic immune inflammation index; HR, hazard ratio; 95% CI, 95% confidence interval.
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Survivors during  Deceased during

Variables All participants

follow-up follow-up
Number of participants 3195 1857 1338
Age (median [IQR]) 67.00 [59.00, 76.50] 63.00 (53.00, 72.00] 74.00 (65.00, 80.00] <0.001
Sex (%) 0.009
Female 1475 (46.2) 894 (48.1) 581 (43.4)
Male 1720 (53.8) 963 (51.9) 757 (56.6)
Race (%) <0.001
White 1234 (38.6) 570 (30.7) 664 (49.6)
Black 788 (24.7) 475 (25.6) 313 (23.4)
Hispanic 260 (8.1) 191 (10.3) 69 (5.2)
Mexican 642 (20.1) 412 (222) 230 (17.2)
Others 271 (85) 209 (113) 62 (4.6)
Body mass index (%) <0.001
Obese (= 30) 1837 (57.5) 1153 (62.1) 684 (51.1)
Overweight (2 25 to < 30) 881 (27.6) 482 (26.0) 399 (29.8)
Healthy weight (> 185 to < 25) 465 (14.6) 219 (11.8) 246 (18.4)
Underweight (< 18.5) 12 (04) 3(02) 9(0.7)
Poverty income ratio (%) <0.001
230 709 (22.2) 463 (24.9) 246 (18.4)
1.0-3.0 1749 (54.7) 962 (51.8) 787 (58.8)
<10 737 (23.1) 432 (233) 305 (22.8)
Education (%) <0.001
College or above 1157 (36.2) 751 (40.4) 406 (30.3)
High school or equivalent 708 (22.2) 421 (227) 287 (21.4)
Less than high school 1330 (41.6) 685 (36.9) 645 (48.2)
Smoking status (%) <0.001
Current 482 (15.1) 279 (15.0) 203 (15.2)
Former 1199 (37.5) 624 (33.6) 575 (43.0)
Never 1514 (47.4) 954 (51.4) 560 (41.9)
Alcohol (%) <0.001
Heavy 308 (9.6) 223 (12.0) 85 (6.4)
Moderate 215 (6.7) 155 (8.3) 60 (4.5)
Mild 813 (25.4) 512 (27.6) 301 (22.5)
Former 1283 (40.2) 645 (34.7) 638 (47.7)
Never 576 (18.0) 322 (173) 254 (19.0)
Physical activity (%) <0.001
No 2190 (68.5) 1200 (64.6) 990 (74.0)
Moderate 766 (24.0) 478 (25.7) 288 (21.5)
Vigorous 239 (7.5) 179 (9.6) 60 (4.5)
Frailty (%) <0.001
Yes 1974 (61.8) 1008 (54.3) 966 (72.2)
No 1221 (382) 849 (45.7) 372 (27.8)
Hypertension (%) 0.001
Yes 2594 (81.2) 1472 (79.3) 1122 (83.9)
No 600 (18.8) 385 (20.7) 215 (16.1)
Hyperlipidemia (%) 0.62
Yes 2853 (89.3) 1663 (89.6) 1190 (88.9)
No 342 (107) 194 (10.4) 148 (11.1)
Cardiovascular disease (%) <0.001
Yes 1117 (35.0) 484 (26.1) 633 (47.3)
No 2078 (65.0) 1373 (73.9) 705 (52.7)
Taking anti-inflammatory drugs (%) 0.496
Yes 261 (8.2) 146 (7.9) 115 (8.6)
No 2934 (91.8) 1711 (92.1) 1223 (91.4)
Taking anti-diabetic drugs (%) 0.429
yes 2246 (70.3) 1316 (70.9) 930 (69.5)
no 949 (29.7) 541 (29.1) 408 (30.5)
Systemic immune-inflammation index (%) <0.001
Q1 [17.38, 362.62) 799 (25.0) 506 (27.2) 293 (21.9)
Q2 [362.62, 524.36) 799 (25.0) 1492 (26.5) 307 (22.9)
Q3 [524.36, 753.82) 798 (25.0) 463 (24.9) 335 (25.0)
Q4 [753.82, 11700.00) 799 (25.0) 396 (21.3) 403 (30.1)

Data presented as numbers (percentages) unless otherwise indicated. All estimates accounted for complex survey designs, and all percentages were weighted. IQR, interquartile range.
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Confounder adjusted

Informativeness*

x? statistic
TYG 5124 100%
TYG- .
e 5124 100%
WyG 6538 128%

*Informativeness of the given measure (as indicated by the confounder-adjusted x2 statistic
relating it to T2DM), as a percentage of the informativeness of TyG.

T2DM, type 2 diabetes mellitus; TyG, triglyceride glucose; TyG-WGC, triglyceride glucose-
waist circumference; WyG, waist circumference glucose.

Models adjusted for sex; age; alanine aminotransferase; gamma-glutamyl transferase; total
cholesterol; fatty liver; alcohol consumption; smoking status; habit of exercise.
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P
for
interaction

No. Hazard ratio P-

of events (95% ClI)

All populations

Sex 0.6733
Female 7034 3.07 (2.39, 3.95) <0.0001

Male 8430 3.05 (2.55, 3.64) <0.0001

lFi i:ry 02352
No 12723 2.68 (2.15, 3.35) <0.0001

Yes 2741 3.22 (2.66, 3.89) <0.0001

Smoking status 0.6439
Never 9031 3.21 (2.58, 3.99) <0.0001

Past 2952 2.66 (1.83, 3.86) <0.0001

Current 3481 3.06 (2.43, 3.86) <0.0001

Alcohol consumption 0.6068
No 11805 3.08 (2.61, 3.63) <0.0001

Light 1758 2.66 (1.68, 4.23) <0.0001

Moderate 1360 2.64 (1.52, 4.57) 0.0005

Heavy ‘ 541 &

Habit of exercise 0.151
No 12755 2.96 (2.54, 3.45) <0.0001

Yes 2709 4.02 (2.64, 6.12) <0.0001

Normoglycemia

Sex 0.2975
Female 6031 2.33 (1.47, 3.68) 0.0003

Male 5775 1.66 (1.14, 2.43) 0.0084

E i:ry 0.3658
No | 10280 1.69 (1.17, 2.46) 0.0054

Yes 1526 2.35(1.48, 3.74) 0.0003

Smoking status 0.277
Never 7281 2.48 (1.64, 3.73) <0.0001

Past 1985 1.50 (0.67, 3.36) 0.3196

Current 2540 1.62 (1.00, 2.61) 0.0508

Alcohol consumption 0.2265
No 9283 1.98 (1.45, 2.70) <0.0001

Light 1252 0.94 (0.28, 3.17) 0.9242

Moderate 919 1.49 (0.44, 5.10) 0.5242

Heavy 352 &

Habit of exercise 0.6727
No 9739 1.90 (1.40, 2.58) <0.0001

Yes 2067 2.47 (1.10, 5.57) 0.0293
Prediabetes

Sex 0.4674
Female 1003 1.59 (1.22, 2.08) 0.0006 7

Male 2655 1.66 (1.37, 2.02) <0.0001

Fal

No 2443 1.27 (0.99, 1.64) 0.0623

Yes 1215 1.80 (149, 2.17) | <0.0001

Smoking status 0.4493
Never 1750 1.63 (1.30, 2.06) <0.0001

Past 967 1.37 (0.93, 2.03) 0.1129

Current 941 1.84 (1.43, 2.36) <0.0001

Alcohol consumption 0.27
No 2522 1.74 (1.46, 2.08) <0.0001

Light 506 1.25 (0.77, 2.03) 0.3609

Moderate 441 1.03 (0.57, 1.86) 09136

Heavy 189 -2

Habit of exercise ‘ 0.306
No 3016 1.60 (1.36, 1.89) <0.0001

Yes 642 2.02 (1.28, 3.17) 0.0025

Data were adjusted for sex; age; alanine aminotransferase; gamma-glutamyl transferase; total
cholesterol; fatty liver; alcohol consumption; smoking status; habit of exercise.

WYyG, waist circumference glucose; T2DM, type 2 diabetes mellitus.

“The model failed because of the small sample size.
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WyG

] Tertilel  Tertile 2 Tertile 3
Variable
(7.13 (8.09 (8.25
- 8.09) - 8.25) - 8.81)
Sample size 5155 5153 5156
Age, yrs 41.61 £ 8.59 43.89 + 8.78 45.63 + 8.87 <0.001
BMI, kg/m2 19.60 + 1.83 21.86 + 1.97 24.89 +2.83 <0.001
WC, cm 67.60 + 4.90 76.25 + 4.52 85.57 + 6.54 <0.001
ALT, IU/L 14.00 16.00 22.00 20,001
(11.00-17.00) | (13.00-21.00) = (17.00-31.00) .
AST, TU/L 16.00 17.00 19.00 <0.001
(13.00-19.00) | (14.00-21.00) = (15.00-24.00) :
GGT, IU/L 12.00 15.00 21.00 <0.001
(10.00-15.00)  (12.00-21.00) | (15.00-32.00) :
TG, ; : .10 + 33.
C, mg/dl 190.18 197.33 207.10 + 33.39 <0.001
+ 32:29 + 32.36
HDL, mg/dl 64.36 + 14.99 56.46 + 14.74 48.80 + 12.82 <0.001
TG, mg/dl 46.00 66.00 95.00 <0.001
(34.00-64.00)  (46.00-94.00) | (65.00-139.00) :
HbAlc, % 5.09 +£0.30 5.15 £0.31 527+ 0.33 <0.001
FPG, mg/dl 86.67 + 5.57 93.04 + 5.21 99.19 + 5.41 <0.001
SBP, mmHg 106.35 114.41 122.73 £ 1447
<0.001
+ 12.57 +13.09
DBP, mmHg 66.03 + 8.84 71.35 + 9.36 77.37 + 10.06 <0.001
Sex <0.001
‘Women 4145 2026 863 (16.74%)
(80.41%) (39.32%)
Men 1010 3127 4293 (83.26%)
(19.59%) (60.68%)
Fatty liver <0.001
No 5088 4610 3025 (58.67%)
(98.70%) (89.46%)
Yes 67 (1.30%) 543 (10.54%) 2131 (41.33%)
Smoking status <0.001
Never 4000 2878 2153 (41.76%)
(77.59%) (55.85%)
Past 468 (9.08%) 1038 1446 (28.04%)
(20.14%)
Current 687 (13.33%) 1237 1557 (30.20%)
(24.01%)
Alcohol
) <0.001
consumption
No 4528 3860 3417 (66.27%)
(87.84%) (74.91%)
Light 353 (6.85%) | 667 (12.94%) | 738 (14.31%)
Moderate 233 (4.52%) | 444 (8.62%) | 683 (13.25%)
Heavy 41 (0.80%) 182 (3.53%) 318 (6.17%)
Habit
- <0.001

of exercise

No 4259 4175 4321 (83.81%)
(82.62%) (81.02%)
Yes 896 (17.38%) 978 (18.98%) | 835 (16.19%)

Continuous variables are presented as mean (SD) or med
categorical variables are presented as number (percentage).
WYyG, waist circumference glucose; BMI, body mass index;

ian (25th, 75th percentile), and

WC, waist circumference; ALT,

alanine aminotransferase; AST, aspartate aminotrans
transferase; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; TG,

erase; GGT, gamma-glutamyl

triglycerides; HbAlc, glycosylated hemoglobin; FPG, fasting plasma glucose; SBP, systolic
blood pressure; DBP, diastolic blood pressure.
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Crude model

Hazard ratio

Minimally model

Hazard ratio

Fully model

Hazard ratio

(95%Cl) Fvalie (95%Cl) Fvalie (95%Cl) Fvalie
All populations
w),'G PereSD 3.79 (3.38, 4.26) <0.0001 4.05 (3.57, 4.58) <0.0001 3.05 (2.64, 3.51) <0.0001
increase
WyG Tertiles
Tl Reference Reference Reference
T2 2.52 (151, 4.21) 0.0004 2.64 (1.56, 4.45) 0.0003 2.23 (131, 3.79) 0.0031
T3 15.64 (10.05, 24.35) <0.0001 16.41 (10.17, 26.5) <0.0001 8.79 (5.31, 14.55) <0.0001
P for trend <0.0001 <0.0001 <0.0001
Normoglycemia
w}i'r?c:;:rs-eSD 2.45 (1.96, 3.07) <0.0001 2.57 (1.99, 3.31) <0.0001 1.94 (1.46, 2.58) <0.0001
WyG Tertiles
T1 Reference Reference Reference
T2 2.52 (1.20, 5.30) 0.0147 237 (1.10, 5.13) 0.028 2.16 (0.99, 4.72) 0.0537
T3 591 (3.01, 11.60) <0.0001 529 (247, 11.34) <0.0001 3.08 (1.35, 7.03) 0.0074
P for trend <0.0001 <0.0001 0.008
Prediabetes
Wﬁ::;SD 1.98 (1.73, 2.26) <0.0001 2.12 (1.85,2.43) <0.0001 1.63 (1.40, 1.90) <0.0001
‘WyG Tertiles
T1 Reference Reference Reference
T2 1.78 (1.23, 2.57) 0.0023 1.96 (1.33, 2.88) 0.0007 1.41 (0.95, 2.10) 0.0874
T3 3.50 (2.50, 4.90) <0.0001 3.95 (274, 5.71) <0.0001 2.03 (1.36, 3.05) 0.0006
P for trend <0.0001 <0.0001 0.0002

Statistical analysis method used: cox regression analysis.

WyG, waist circumference glucose; T2DM, type 2 diabetes mellitus.

Crude model adjusted for: none.

Minimally model adjusted for: sex; age.

Fully model adjusted for: sex; age; alanine aminotransferase; gamma-glutamyl transferase; total cholesterol; fatty liver; alcohol consumption; smoking status; habit of exercise.
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Crude Model Model 1 Model 2

HR (95%Cl) HR (95%Cl) HR (95%Cl)

OBS 0.95 (0.93,0.97) <0.0001 0.95 (0.93,0.98) <0.0001 0.96 (0.93,0.98) <0.001

OBS quartile

Q1 ref ref ref ref ref ref

Q2 0.61 (0.44,0.85) 0.003 0.62 (0.44,0.87) 0.006 0.60 (0.43,0.85) 0.004
Q3 0.68 (0.46,1.00) 0.053 0.68 (0.46,1.03) 0.065 0.74 (0.50,1.09) 0.123
Q4 0.35 (0.22,0.56) <0.0001 0.36 (0.22,0.59) <0.0001 0.39 (0.25,0.63) <0.0001
P for trend <0.0001 <0.001 <0.001
OBS. dietary 0.95 (0.93,0.97) <0.0001 0.95 (0.92,0.98) <0.001 0.95 (0.93,0.98) <0.001

OBS. dietary quartile

Q1 ref ref ref ref ref ref
Q2 076 (0.51,1.14) 0.19 077 (0.50,1.20) 0248 083 (0.54,1.27) 0.385
Q3 063 (0.42,0.93) 0.021 063 (0.40,098) 0038 069 (0.45,1.06) 0.091
Q4 0.40 (0.24,0.66) <0.001 041 (0.24,0.69) <0.001 045 (0.27,0.73) 0.001
P for trend <0.001 <0.001 <0.001
OBS. lifestyle 0.90 (0.81,1.00) 0.049 091 (0.82,1.02) 0.116 093 (0.83,1.03) 0.172

OBS. lifestyle quartile

Q1 ref ref ref ref ref ref
Q2 061 (0.44,0.84) 0.002 0.62 (0.45,0.86) 0.005 063 (0.45,0.89) 0.008
Q3 062 (0.41,0.94) 0.024 0.65 (0.42,1.00) 0048 065 (0.43,099) 0.044
Q4 073 (0.47,1.14) 0.164 074 (0.48,1.15) 0.184 079 (0.52,1.21) 028
P for trend 0.039 0062 0.085

The crude model did not adjust for any covariates; model 1 adjusted for age, sex, race/ethnicity, PIR, education, and marital status; and model 2 additionally adjusted for HbAlc, antidiabetic
medication use, CVD, hypertension, CKD, TG, TC, and HDL-C based on model 1. T2D, type 2 diabetes; OBS, oxidative balance score; CVD, cardiovascular disease; PIR, income-poverty ratio;
HbAIc, glycated hemoglobin Alc; CKD, chronic kidney disease; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol.
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Crude Model Model 1 Model 2

HR (95%Cl) HR (95%Cl) HR (95%Cl)

OBS 0.97 (0.96,0.98) <0.0001 0.97 (0.96,0.99) <0.0001 0.98 (0.97,0.99) <0.001

OBS quartile

Q1 ref ref ref ref ref ref
Q2 0.82 (0.65,1.04) 0.101 0.84 (0.65,1.07) 0.152 0.85 (0.66,1.09) 0.202
Q3 078 (0.62,0.99) 0.04 081 (0.63,1.03) 0084 088 (0.69,1.12) 0.291
Q4 057 (0.45,0.73) <0.0001 0.60 (0.47,0.78) <0.0001 067 (0.53,0.84) <0.001
P for trend <0.0001 <0.001 0.002
OBS. dietary 097 (0.96,0.98) <0.0001 097 (0.96,0.99) <0.001 098 (0.97,099) 0.003

OBS. dietary quartile

Q1 ref ref ref ref ref ref

Q2 078 (0.60,1.00) 0.048 079 (0.61,1.03) 0082 0.86 (0.66,1.11) 0.238
Q3 0.74 (0.58,0.94) 0013 0.76 (0.59,098) 0037 0.84 (0.66,1.08) 0.179
Q4 0.60 (0.46,0.76) <0.0001 0.62 (0.48,0.81) <0.001 0.70 (0.55,0.90) 0.005
P for trend <0.0001 <0.001 0.009
OBS. lifestyle 0.90 (0.85,0.97) 0.002 092 (0.86,0.98) 001 092 (0.86,099) 0.021

OBS. lifestyle quartile

Q1 ref ref ref ref ref ref
Q2 061 (0.48,0.77) <0.0001 0.62 (0.48,0.79) <0.001 064 (0.50,081) <0.001
Q3 072 (0.56,0.94) 0014 0.75 (0.57,097) 0031 0.75 (0.58,098) 0.036
Q4 0.7 (0.59,1.00) 0.047 078 (0.61,1.02) 0067 082 (0.63,1.06) 0.131
P for trend 0.008 0017 0.035

The crude model did not adjust for any covariates; model 1 adjusted for age, sex, race/ethnicity, PIR, education, and marital status; and model 2 additionally adjusted for HbAlc, antidiabetic
medication use, CVD, hypertension, CKD, TG, TC, and HDL-C based on model 1. T2D, type 2 diabetes; OBS, oxidative balance score; CVD, cardiovascular disease; PIR, income-poverty ratio;
HbAIc, glycated hemoglobin Alc; CKD, chronic kidney disease; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol.
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Crude Model Model 1 Model 2

OR (95%Cl) OR (95%Cl) OR (95%Cl)

OBS 0.97 (0.96,0.99) 0.003 0.98 (0.96,0.99) 0.008 0.98 (0.96,0.99) 0.006

OBS quartile

Q1 ref ref ref ref ref ref
Q2 074 (0.54,1.02) 0.064 0.76 (0.55,1.05) 0.092 0.7 (0.56,1.07) 0.116
Q3 065 (0.49,0.87) 0.004 068 (0.52,091) 0.009 067 (0.50,0.88) 0.005
Q4 065 (0.47,0.91) 0013 0.69 (0.49,0.96) 0027 069 (0.50,0.96) 0.027
P for trend 0.009 0021 0.016
OBS. dietary 0.98 (0.96,1.00) 0022 098 (0.96,1.00) 0046 098 (0.96,1.00) 0.032

OBS. dietary quartile

Q1 ref ref ref ref ref ref

Q 0.73 (0.52,1.02) 0.061 0.74 (0.53,1.04) 0.084 0.76 (0.54,1.06) 0.109
Q3 0.76 (0.56,1.02) 0.07 0.79 (0.59,1.07) 0.131 0.78 (0.58,1.04) 0.09
Q 0.68 (0.49,0.96) 0.029 0.71 (0.51,1.00) 0.047 0.71 (0.52,0.99) 0.043
P for trend 0.048 0.083 0.06
OBS. lifestyle 0.82 (0.76,0.89) <0.0001 0.84 (0.77,0.90) <0.0001 0.85 (0.78,0.91) <0.0001

OBS. lifestyle quartile

Q1 ref ref ref ref ref ref

Q2 062 (0.47,0.81) <0.001 0.63 (0.48,0.84) 0.001 065 (0.49,0.85) 0.002
Q3 066 (0.51,0.86) 0.002 0.69 (0.53,0.90) 0.006 070 (0.54,091) 0.008
Q4 043 (0.30,0.62) <0.0001 045 (0.31,0.66) <0.0001 0.48 (0.33,0.70) <0.001
P for trend <0.0001 <0.0001 <0.001

The crude model did not adjust for any covariates; model 1 adjusted for age, sex, race/ethnicity, education, PIR, and marital status; and model 2 additionally adjusted for HbAlc, antidiabetic
medication use, hypertension, CKD, TG, TC, and HDL-C from model 1. T2D, type 2 diabetes; OBS, oxidative balance score; CVD, cardiovascular disease; PIR, income-poverty ratio; HbAlc,
glycated hemoglobin Alc; CKD, chronic kidney disease; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol.
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OBS 20.3+0.2 11.0 £ 0.1 172+ 0.1 224+0.1 28.7+£0.1 <0.0001
OBS dietary 164+ 02 76+0.1 13301 184 +0.1 242 +0.1 <0.0001
OBS lifestyle 39400 33400 39401 40401 44+01 <0.0001
Age, year 574+ 03 57.5£0.6 572+ 06 57.3+0.5 57.5+0.6 0.97
PIR 3.0+ 0.0 25%0.1 28+0.1 32+0.1 34+0.1 <0.0001
HbAIc, % 7.0 £0.0 1201 7.0+0.1 70+0.1 7.0 +0.1 0.35
TG, mg/dL 197 + 4 203+8 182+7 2119 191 +£8 0.03
TC, mg/dL 189+ 1 193+3 191+2 190 +2 183 +2 0.002
HDL-C, mg/dL 4840 a8+1 48+ 1 461 1951 0.002
Sex 0.82
male 2113 (54.6) 641 (56.3) 476 (55.4) 546 (53.4) 450 (53.9)
female 1688 (45.4) 423 (43.7) 372 (44.6) 481 (46.6) 412 (46.1)
Race/ethnicity <0.0001
Mexican American 746 (8.6) 195 (8.0) 177 (9.1) 192 (8.6) 182 (8.6)
Non-Hispanic Black 868 (12.6) 325 (19.8) 199 (13.6) 196 (10.3) 148 (8.2)
Hl:;::‘c — 1529 (66.2) 393 (60.4) 326 (65.8) 438 (66.6) 372 (71.0)
Other Hispanic 329 (5.5) 85 (6.1) 79 (5.3) 91 (6.0) 74 (4.7)
Other Race 329 (7.1) 66 (5.7) 67 (62) 110 (8.5) 86 (7.5)
Marital Status 0.01
non-single 2426 (67.2) 644 (61.2) 534 (67.8) 668 (67.2) 580 (72.1)
single 1375 (328) 420 (38.8) 314 (322) 359 (32.8) 282 (27.9)
Education <0.0001
<high school 517 (6.7) 195 (10.3) 141 (8.1) 115 (5.9) 66 (3.2)
high school 1491 (37.2) 485 (46.8) 333 (38.8) 363 (32.6) 310 (326)
>high school 1793 (56.1) 384 (42.9) 374 (53.1) 549 (61.5) 486 (64.2)
Hypertension 0.43
no 1183 (332) 289 (30.1) 267 (32.7) 345 (348) 282 (34.4)
yes 2618 (66.8) 775 (69.9) 581 (67.3) 682 (65.2) 580 (65.6)
cvD 0.01
no 2988 (80.7) 773 (75.9) 682 (81.0) 818 (82.6) 715 (82.6)
yes 813 (19.3) 291 (24.1) 166 (19.0) 209 (17.4) 147 (17.4)
CKD <0.001
no 2466 (68.8) 647 (62.5) 535 (65.4) 694 (71.1) 590 (74.6)
yes 1335 (312) 417 (37.5) 313 (346) 333 (28.9) 272 (25.4)
Anti-Diabetic drugs 0.24
no 1506 (39.8) 445 (43.7) 345 (39.4) 365 (37.3) 351 (39.4)
yes 2295 (60.2) 619 (56.3) 503 (60.6) 662 (62.7) 511 (60.6)

Continuous variables were expressed as mean + standard error and tested for between-group differences by ANOVA; categorical variables were expressed as number (percentage) and tested by
chi-square analysis. T2D, type 2 diabetes; OBS, oxidative balance score; PIR, income-poverty ratio; HbAlc, glycated hemoglobin Alc; TG, triglycerides; TC, total cholesterol; HDL-C, high-
density lipoprotein cholesterol; CVD, cardiovascular disease; CKD, chronic kidney disease.
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B1/Q1 Bi Q2 group Q3 group Q4 group
inary
blocelHgoronF) OR (95% CI)
Reference ° OR (95% CI) OR (95% CI) OR (95% CI)

Model 1 1.00 0.75 (0.68-0.83) *** 0.86 (0.75-0.98) * 0.78 (0.68-0.89) *** 0.62 (0.54-0.71) *** <0.001
Model 2 1.00 0.77 (0.69-0.85) *** 0.84 (0.74-0.96) * 0.76 (0.66-0.87) *** 0.65 (0.56-0.75) *** <0.001
Model 3 1.00 0.77 (0.70-0.86) *** 0.85 (0.75-0.97) * 0.77 (0.67-0.88) *** 0.65 (0.57-0.76) *** <0.001
Model 4 1.00 0.78 (0.71-0.87) *** 0.86 (0.75-0.98) * 0.77 (0.67-0.89) *** 0.67 (0.58-0.78) *** <0.001

As a sensitivity analysis, the participants were also grouped according to the median or quartiles of PWR. Individuals with PWR < median or in the Q1 group were set as reference. *P < 0.05;
P < 0.001. Model 1 - crude model; Model 2 - adjusting for age, gender, marital status, and BMI; Model 3 - further adjusting for cigarette and alcohol consumption, sleep duration and
afternoon nap; Model 4 - adjusting for depression, hypertension and hyperuricemia, low-density lipoprotein, high-density lipoprotein, total cholesterol, and triglycerides.
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PWR (as tertiles)

PWR (continuous)

DR, (refe-[elznce) OLZ(gg;ugl) OE(%%U&) Bicnticnd
Model 1 0.988 (0.985-0.992) *** 1.00 0.83 (0.74-0.93) *** 0.64 (0.57-0.72) *** <0.001
Model 2 0.990 (0.986-0.993) *** 1.00 0.82 (0.73-0.92) *** 0.67 (0.59-0.75) *** <0.001
Model 3 0.990 (0.986-0.994) *** 1.00 0.83 (0.74-0.93) *** 0.67 (0.59-0.76) *** <0.001
Model 4 0.991 (0.987-0.995) *** 1.00 0.83 (0.73-0.93) ** 0.68 (0.60-0.78) *** <0.001

The T1 group was set as the reference group. **P < 0.01; ***P < 0.001. Model 1 - crude model; Model 2 - adjusting for age, gender, marital status, and BMI; Model 3 - further adjusting for cigarette
and alcohol consumption, sleep duration and afternoon nap; Model 4 - adjusting for depression, hypertension and hyperuricemia, low-density lipoprotein, high-density lipoprotein, total
cholesterol, and triglycerides. PWR: platelet to white blood cell ratio T, tertile.





OPS/images/fendo.2024.1418583/table3.jpg
Subgroups P value P valu P for interaction

Age groups (years) 0.087
<50 1.00 0.81 (0.57-1.15) 0.233 0.76 (0.54-1.08) 0.127
50-60 1.00 0.79 (0.63-0.98) 0.034 0.80 (0.64-1.01) 0.056
60-70 1.00 0.82 (0.67-0.99) 0.039 0.55 (0.44-0.68) <0.001
>70 1.00 0.96 (0.73-1.26) 0.782 0.76 (0.56-1.03) 0.076

Gender 0.774
Male 1.00 0.84 (0.71-0.99) 0.046 0.65 (0.53-0.80) <0.001
Female 1.00 0.82 (0.69-0.97) 0.022 0.70 (0.59-0.83) <0.001

Marital Status 0.524
Married/cohabitating 1.00 0.81 (0.71-0.92) 0.001 0.67 (0.59-0.78) <0.001
Others 1.00 0.93 (0.70-1.24) 0.645 0.75 (0.55-1.02) 0.066

BMI (Kg/m?) 0.176
<185 1.00 0.98 (0.53-1.81) 0.951 0.65 (0.32-1.32) 0237
18.5-24.0 1.00 0.85 (0.69-1.03) 0.103 0.73 (0.60-0.90) 0.003
24.0-28.0 1.00 0.92 (0.76-1.11) 0.384 0.73 (0.59-0.89) 0.003
2280 1.00 0.60 (0.45-0.79) <0.001 0.54 (0.40-0.73) <0.001

Cigarette consumption 0:559
Current smoker 1.00 0.96 (0.76-1.20) 0.690 0.77 (0.58-1.01) 0.055
Non-smoker 1.00 0.79 (0.67-0.93) 0.004 0.67 (0.57-0.79) <0.001
Ex-smoker 1.00 0.80 (0.59-1.08) 0.140 0.61 (0.42-0.87) 0.007

Alcohol consumption 0.625
Drink more than once a month 1.00 0.79 (0.63-1.00) 0.053 0.59 (0.45-0.77) <0.001
Drink less than once a month 1.00 0.79 (0.51-1.24) 0305 0.84 (0.52-1.35) 0.465
None of These 1.00 0.85 (0.73-0.99) 0.032 0.71 (0.61-0.83) <0.001

Sleep duration (hours) 0.641
0-6 1.00 0.86 (0.73-1.01) 0.067 0.66 (0.55-0.79) <0.001
6-8 1.00 0.81 (0.66-0.98) 0.031 0.70 (0.57-0.85) 0.001
>8 1.00 0.76 (0.51-1.13) 0.175 0.78 (0.52-1.17) 0232

Afternoon nap 0.382
No 1.00 0.82 (0.68-1.00) 0.051 0.76 (0.62-0.93) 0.008
Yes 1.00 0.83 (0.71-0.97) 0.016 0.64 (0.54-0.75) <0.001

Depression 0.919
No 1.00 0.84 (0.73-0.97) 0.021 0.71 (0.60-0.83) <0.001
Yes 1.00 0.81 (0.66-1.00) 0.046 0.66 (0.53-0.81) <0.001

Hypertension 0.090
No 1.00 0.86 (0.72-1.03) 0.101 0.80 (0.67-0.96) 0.017
Yes 1.00 0.80 (0.68-0.94) 0.006 0.59 (0.49-0.70) <0.001

Hyperuricemia 0.219
No 1.00 0.86 (0.76-0.98) 0.026 0.69 (0.60-0.80) <0.001
Yes 1.00 0.65 (0.47-0.89) 0.008 0.67 (0.47-0.96) 0.028

LDL (mg/dL) 0.890
<120 1.00 0.85 (0.74-0.97) 0.018 0.71 (0.61-0.82) <0.001
>120 1.00 0.77 (0.61-0.97) 0.025 0.62 (0.49-0.80) <0.001

Total cholesterol (mg/dL) 0.673
<200 1.00 0.86 (0.74-0.99) 0.038 0.73 (0.62-0.85) <0.001
>200 1.00 0.78 (0.63-0.96) 0.018 0.62 (0.50-0.77) <0.001

Reduced HDL 0.014
No 1.00 0.96 (0.82-1.14) 0.657 0.75 (0.62-0.89) 0.002
Yes 1.00 0.70 (0.59-0.83) <0.001 0.62 (0.51-0.74) <0.001

Elevated triglycerides 0.098
No 1.00 0.88 (0.75-1.04) 0.148 0.79 (0.66-0.94) 0.007
Yes 1.00 0.77 (0.65-0.92) 0.004 0.59 (0.49-0.71) <0.001

During the regression analysis, the subgroup variable was not adjusted in the full model. A multiplicative term was constructed to test the interactive effects. The T1 group was set as the
reference group.
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PWR (continuous) PWR (as tertiles)

T1 T2 gro T3 grou P
CIR(EEZSE) (reference) OR (995%u(pll) OR (35% gl) for trend
Model 1 0.987 (0.984-0.991) *** 1.00 079 (0.70-0.89) *** 0.62 (0.55-0.70) *** <0.001
Model 2 0.988 (0.985-0.992) *** 1.00 079 (0.70-0.89) *** 0.64 (0.57-0.73) *** <0.001
Model 3 0.989 (0.985-0.993) *** 1.00 0.79 (0.70-0.90) *** 0.65 (0.57-0.74) *** <0.001
Model 4 0.990 (0.986-0.994) *** 1.00 080 (0.71-091) *** 0.68 (0.59-0.77) *** <0.001

To investigate the association of PWR with diabetes in individuals with prediabetes, individuals with normoglycemia were excluded. ***P < 0.001. Model 1 - crude model; Model 2 - adjusting for
age, gender, marital status, and BMI; Model 3 - further adjusting for cigarette and alcohol consumption, sleep duration and afternoon nap; Model 4 - adjusting for depression, hypertension and
hyperuricemia, low-density lipoprotein, high-density lipoprotein, total cholesterol, and triglycerides.
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PWR

<20.421 PWR > 20.421
Reference OR (95% CI)

Model 1 1.00 ‘ 0.80 (0.69-0.93) 0.004

Model 2 1.00 ‘ 0.79 (0.68-0.93) 0.004

Model 3 1.00 ‘ 0.81 (0.69-0.95) 0.008

Model 4 1.00 ‘ 0.80 (0.68-0.94) 0.006
In the overall population, a non-linear association between PWR and diabetes was detected,
with an inflection point of 20.421. Thus, we recoded the PWR as a binary variable according to
the dose-response analysis. Model 1 - crude model; Model 2 - adjusting for age, gender,

marital status, and BMI; Model 3 - further adjusting for cigarette and alcohol consumption,
sleep duration and afternoon nap; Model 4 - adjusting for depression, hypertension and
hyperuricemia, low-density lipoprotein, high-density lipoprotein, total cholesterol,
and triglycerides.
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HCY 0.676
Age(mean (SD)), y 0.457
Gender(%) 0.418
sBP(mean (SD)), mmHg 0.667
dBP(mean (SD)), mmHg 0.574
BMI(mean (SD)), kg/m2 0411
Waist circumference(mean (SD)), cm 0.286
glucose Omin(mean (SD)),mmol/l 0.594
glucose 120min(mean (SD)),mmol/l 0.248
HBA1C(mean (SD)),% 0.412
C peptide Omin(mean (SD)),ug/L 0.378
C peptide 120min(mean (SD)),ug/L 0.338
Urine creatinine(mean (SD)),mmol/L 0.262
UA (mean (SD)), pmol/l V 0.186
TG (mean (SD)), mmol/l 0.634
TC(mean (SD)), mmol/l 0.060
HDL(mean (SD)), mmol/l 0.601
LDL (mean (SD)), mmol/l 0.052
hsCRP(mean (SD)),mg/l 0.534
IMT-R (mean (SD)),mm 0.329
IMT-L (mean (SD)),mm 0.867
motor nerve of peroneal R(mean (SD)),m/s 0.684
motor nerve of peroneal L(mean (SD)),m/s 0.790
motor nerve of median R(mean (SD)),m/s 0.062
motor nerve of median L(mean (SD)),m/s 0.502
motor nerve of ulnar R(mean (SD)),m/s 0.144
motor nerve of ulnar L(mean (SD)),m/s 0.525
sensory nerve of ulnar R(mean (SD)),m/s 0.927
sensory nerve of ulnar L(mean (SD)),m/s 0.502
sensory nerve of peroneal R(mean (SD)), m/s 0.144
sensory nerve of peroneal L(mean (SD)),m/s 0.528
Number of neuropathies(mean (SD)) 0.260
Accumulated descent rate of neuropathy (mean (SD)),% 0.173
Average descent rate of neuropathy (mean (SD)),% 0.045

sBP, systolic Blood pressure; dBP, diastolic blood pressure; BMI, body mass index; CR, serum
creatinine; hs CRP, high-sensitivity c-reactive protein; IMT, carotid intima-media thickness.
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HCY 0.894
Age(mean (SD)), y 0.773
Gender(%) 0.787
sBP(mean (SD)), mmHg 0.116
dBP(mean (SD)), mmHg 0.669
BMI(mean (SD)), kg/m2 0.488
Waist circumference(mean (SD)), cm 0.954
glucose Omin(mean (SD)),mmol/l 0.851
glucose 120min(mean (SD)),mmol/l 0.847
HBA1C(mean (SD)),% 0.692
C peptide Omin(mean (SD)),ug/L 0.110
C peptide 120min(mean (SD)),ug/L 0.109
Urine creatinine(mean (SD)),mmol/L 0.692
UA (mean (SD)), pmol/l 0.255
TG (mean (SD)), mmol/l 0.709
TC(mean (SD)), mmol/l 0.983
HDL(mean (SD)), mmol/l 0.722
LDL (mean (SD)), mmol/l 0.469 ’
UACR(mean (SD)), mg/g 0.296 ’
hsCRP(mean (SD)),mg/l 0.820 ’
IMT-R (mean (SD)),mm 0.541
IMT-L (mean (SD)),mm 0.354
motor nerve of peroneal R(mean (SD)),m/s 0.000
motor nerve of peroneal L(mean (SD)),m/s 0.000
motor nerve of median R(mean (SD)),m/s 0.000
motor nerve of median L(mean (SD)),m/s 0.381
motor nerve of ulnar R(mean (SD)),m/s 0.499
motor nerve of ulnar L(mean (SD)),m/s 0.021
motor nerve of tibial R(mean (SD)),m/s 0.120
motor nerve of tibial L(mean (SD)),m/s 0.007
sensory nerve of median R(mean (SD)),m/s 0.110
sensory nerve of median L(mean (SD)),m/s 0.142
sensory nerve of ulnar R(mean (SD)),m/s 0.103
sensory nerve of ulnar L(mean (SD)),m/s 0.176
sensory nerve of sural R(mean (SD)),m/s 0.030
sensory nerve of sural L(mean (SD)),m/s 0.039
sensory nerve of peroneal R(mean (SD)), m/s 0.572
sensory nerve of peroneal L(mean (SD)),m/s 0.461
Number of neuropathies(mean (SD)) 0.000
Average descent rate of neuropathy (mean (SD)),% 0.000

sBP, systolic Blood pressure; dBP, diastolic blood pressure; BMI, body mass index; CR, serum
creatinine; hs CRP, high-sensitivity c-reactive protein; IMT, carotid intima-media thickness.
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Clinical Data

HCY (<10) HCY (10-15)

(n=22) (n=82)

Age(mean (SD)), y 57.74(10.34) 56.95 (10.61) 59.2999.61) 0.481

Male 13.64% 52.44% 61.02%
Gender(%) 0.001

Female 86.36% 47.56% 38.98%
sBP(mean (SD)), mmHg 135.55(16.78) 134.66(15.71) 136.98(18.67) 0.909
dBP(mean (SD)), mmHg 82.59(3.18) 21.67(9.08) 84.11(9.42) 0.161
BMI(mean (SD)), kg/m2 25.03(3.41) 24.90(3.08) 25.31(3.92) 0.203
Waist circumference(mean (SD)), cm 91.293(9.19) 91.00(9.0805) 91.85(9.64) 0.067
UA (mean (SD)), pmol/l 318.74(93.97) 309.70(94.13) 329.04(93.84) 0.033
TG (mean (SD)), mmol/l 2.14(1.56) 2.02(1.51) 2.29(1.65) 0.304
TC(mean (SD)), mmol/l 422 (1.21) 440 (1.15) 4.44 (1.13) 0.664
HbAIC (mean (SD)) 9.61(2.29) 9.84(2.48) 9.31(1.99) 0.082
HDL(mean (SD)), mmol/l 1.19(0.34) 1.22(0.39) 1.14(0.26) 0711
LDL (mean (SD)), mmol/l 2.64(0.77) 2.62(0.79) 2.65(0.75) 0.805
CR (mean (SD)), pmol/L 66.36(32.71) 58.98(13.33) 78.16(49.68) 0.030
UACR(mean (SD)), mg/g 24.29 (101.492) 29.02(110.20) 18.15(89.73) 0.174
hsCRP(mean (SD)),mg/l 12.47 (14.93) 5.56 (7.75) 4.56 (5.68) 0.023
glucose Omin(mean (SD)),mmol/l 10.10 (6.25) 9.27 (3.27) 8.83 (3.84) 0.451
glucose 120min(mean (SD)),mmol/l 18.89 (7.06) 17.74 (4.45) 16.84 (4.73) 0.244
C peptide Omin(mean (SD)),ug/L 2.03 (1.14) 1.89 (1.03) 2.31 (1.11) 0.095
C peptide 120min(mean (SD)),ug/L 3.84 (2.05) 3.79(2.28) 4.78(2.42) 0.052
Urine creatinine(mean (SD)),mmol/L 3050.32(4134.85) 1994.63(3897.82) 2864.09(5016.67) 0.413
Urinary microalbumin(mean (SD)),mg/dL 22.31(27.60) 1.3023(339.94) 231.23(835.32 0.253
IMT-R(mean (SD)),mm 0.93(0.149) 0.97(0.152) 0.96(0.166) 0.564
IMT-L(mean (SD)),mm 0.95(0.150) 0.98(0.147) 0.97(0.166) 0.762
motor nerve of peroneal R(mean (SD)),m/s 44.16(0.69) 40.86(11.93) 43.15(5.00) 0.280
motor nerve of peroneal L(mean (SD)),m/s 43.67(5.74) 43.26(9.34) 41.92 (9.71) 0.667
motor nerve of median R(mean (SD)),m/s 50.00 (3.97) 5090 (4.31) 52.00 (3.97) 0.284
motor nerve of median L(mean (SD)),m/s 50.73 (4.22) 51.13 (8.15) 52.46 (3.52) 0.572
motor nerve of ulnar R(mean (SD)),m/s 52.80 (4.76) 51.85 (11.09) 52.00 (4.68) 0.976
motor nerve of ulnar L(mean (SD)),m/s 53.50 (7.52) 51.46 (9.48) 53.16 (4.76) 0.597
motor nerve of tibial R(mean (SD)),m/s 41.07 (4.81) 45.38 (2.46) 43.78 (4.10) 0.031
motor nerve of tibial L(mean (SD)),m/s 40.71 (5.64) 42,68 (3.12) 42.79 (5.04) 0.321
sensory nerve of median R(mean (SD)),m/s 51.50 (6.07) 46.60 (11.41) 49.86 (6.05) 0.126
sensory nerve of median L(mean (SD)),m/s 51.42 (5.99) 46.18 (11.05) 48.97 (6.52) 0.125
sensory nerve of ulnar R(mean (SD)),m/s 47.67 (5.54) 43.83 (16.45) 49.33 (4.29) 0.183
sensory nerve of ulnar L(mean (SD)),m/s 49.33 (4.54) 46.33 (10.61) 50.35 (5.87) 0.084
sensory nerve of sural R(mean (SD)),m/s 40.45 (14.44) 4248 (11.11) 41.61 (14.18) 0.799
sensory nerve of sural L(mean (SD)),m/s 40.16 (14.86) 41.17 (13.29) 41.46 (14.28) 0.942
sensory nerve of peroneal R(mean (SD)), m/s 47.00 (-) 40.54 (12.87) 45.33 (6.62) 0.486
sensory nerve of peroneal L(mean (SD)),m/s 45.00 (-) 4031 (13.05) 43.75 (4.03) 0.656
Number of neuropathies(mean (SD)) 3.76 (3.95) 4.65 (3.36) 3.72 (3.38) 0.247

Accumulated descent rate of neuropathy

(mean (SD)),% 78.86 (96.36) 92.76 (86.60) 73.76 (78.29) 0.411

Average descent rate of neuropathy

(5 (D)% 15.47 (8.93) 1641 (7.42) 15.92 (7.46) 0.857

sBP, systolic Blood pressure; dBP, diastolic blood pressure; BMI, body mass index; CR, serum creatinine; hs CRP, high-sensitivity c-reactive protein; IMT, carotid intima-media thickness.
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Overall Cohort

Parameter
SIE6 (n = 163)
Age(mean (SD)), y 57.46(10.63)
Male 82(50.31)
Gender(%) T
Female 81(49.69)
HCY(mean (SD)), pmol/l 14.53(5.22)

sBP(mean (SD)), mmHg

135.17(16.23)

dBP(mean (SD)), mmHg 82.09(9.07)
BMI(mean (SD)), kg/m2 24.84(3.47)
Waist circumference(mean (SD)), cm 90.64(9.40)
glucose Omin(mean (SD)),mmol/l 9.23(3.96)
glucose 120min(mean (SD)),mmol/l 17.59(4.96)
HbA1C (mean (SD)),% 9.74(2.42)
C peptide Omin(mean (SD)),ug/L 2.05(1.09)
C peptide 120min(mean (SD)),ug/L 4.06(2.38)
Cr(mean (SD)), umol/L 66.74(40.71)

UA (mean (SD)), pmol/l

311.58(93.29)

TG (mean (SD)), mmol/l 2.17(1.58)
TC (mean (SD)), mmol/l 4.40(1.15)
HDL(mean (SD)), mmol/l 1.19(0.33)
LDL (mean (SD)), mmol/l 2.64(0.77)

Urine CR (mean (SD)), mg/g

Urinary microalbumin(mean (SD)),
mg/dL

2429.33 (4354.32)

139.45(562.51)

UACR(mean (SD)), mg/mmol
hs CRP(mean (SD)),mg/1
IMT-R(mean (SD)),mm

IMT-L(mean (SD)),mm

22.02 (97.451)
3.59(6.95)

0.96(0.16)

0.97(0.15)

sBP, systolic Blood pressure; dBP, diastolic blood pressure; BMI, body mass index; CR, serum
creatinine; hs CRP, high-sensitivity c-reactive protein; IMT, carotid intima-media thickness.
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1.216 patients” record
identified in the Department of
Endocrinology and Metabolism

579 records didn't
meet eligibility criteria

637 records were screened
for data collection

474 records had missing data

163 patients’ records

included and analyzed
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Include Exclude

J

Participant with T2D
From NHANES 1999 to 2018 Age <20, n=209
N=9,568

Participant Missing data of OBS, n=5,115
N=9,359 Unknow of survival data, n=13

Missing data of other covariates, including marital
Participant status(35), PIR(331), educational level(5),HbA1c(8),
N=4,231 TG(8), Hypertension(1), CKD(15), Drug(2),CVD(1)
n=430

Participant
N=3,801
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Age, years 473 + 11.2 524 +10.9 <0.001
Male, n (%) 470 (65.6) 90 (64.3) 0.774
Diabetes course, months 42 (6, 97) 89.5 (24, 146) <0.001
Smoking history, n (%) 317 (44.2) 58 (41.4) 0.544
Drinking history, n (%) 416 (58.0) ‘ 69 (49.3) 0.057
SBP, mmHg 131.75 £ 17.39 134.75 + 18.89 0.066
DBP, mmHg 80.63 + 11.00 7937 £11.23 0.216
Hypertension, n (%) 387 (54.0) 79 (56.4) 0.594
Dyslipidemia, n (%) 639 (89.1) 117 (83.6) 0.062
BMI, kg/m2 25.60 + 3.93 25.09 + 3.01 0.081
‘Waist Circumference, cm 89.59 + 10.86 88.50 + 9.74 0.269
VFA, cm? 95.78 + 41.42 92.01 + 40.53 0.334
HbAlLc, % 73 (6.3, 8.9) 7.75 (68,9.75) | 0.001
Fasting blood glucose, 7.63 (6.52,9.61) 8.60 0.046
mmol/L (6.61, 10.37)
Fasting insulin, mU/L 9.85 8.26 0.015
(6.51, 14.93) (491, 13.37)
HOMA-IR 352 (2.19,5.80) | 331(191,557)  0.161
Triglycerides, mmol/L 1.49 (0.99, 2.21) 1.27 (0.94, 2.10) ~ 0.048
Total cholesterol, mmol/L 470 + 1.18 456 + 1.14 0.197
HDL-C, mmol/L 1.16 £ 0.27 1.20 £ 0.29 0.133
LDL-C, mmol/L 3.07 £ 0.88 2.99 +0.89 0.346
Uric acid, pmol/L 336.51 + 85.53 316.10 + 83.05 0.010
Creatinine, imol/L 63.70 + 15.65 6233 +17.71 0.357
eGFR, mL/min/1. 73m? 107.72 £ 15.19 104.79 £ 17.70 0.043
UACR, mg/g 10.63 12.00 0.093
(5.66, 26.53) (7.03, 26.95)
NLR 1.86 (143,2.39) | 221 (159,2.71) = <0.001

DR, diabetic retinopathy; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI,
Body mass index; VFA, visceral abdominal fat area; HbAlc, glycated hemoglobin; HOMA-IR,
insulin resistance index; HDL-C, high-density lipoprotein cholesterol; LDL- C, low-density
lipoprotein cholesterol; Cr, blood creatinine; eGFR, glomerular filtration rate; UACR, urinary

albumin-to-creatinine ratio; NLR, neutrophil-to-lymphocyte ratio.
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NLR quartile

Q1 (<1.46) Q2 (1.47-1. Q3 (1.91-2.45) Q4 (> 2.45)
No. of participants 215 214 215 213 =
No. of cases 24 26 38 52 -

HRs for incident DR (95% Cl)

Model 1 1.000 1.156 (0.664-2.013) 1.621 (0.972-2.702) 2.507 (1.545-4.068) <0.001

Model 2 1.000 1.163 (0.668-2.026) 1.640 (0.983-2.734) 2.293 (1.411-3.726) 0.002
Model 3 1.000 1.327 (0.754-2.334) 1.555 (0.913-2.648) 2.217 (1.348-3.649) 0.011

Model 1: unadjusted; Model 2: adjusted for age and sex; Model 3: adjusted for age, sex, diabetes course, smoking history, drinking history, body mass index, systolic blood pressure, triglycerides,
glycated hemoglobin, fasting blood glucose, fasting insulin, uric acid, glomerular filtration rate and urinary albumin-to-creatinine ratio. DR, diabetic retinopathy; NLR, neutrophil-to-lymphocyte
ratio; HR, hazard ratio; CI, confidence interval.
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95% CI

Age ‘ 1.034 1.015, 1.052 <0.001
Diabetes course ‘ 1.005 1.002, 1.007 <0.001
HbAlc ‘ 1.198 1.107, 1.298 <0.001
NLR ‘ 1.292 1.112, 1.501 0.001

NLR, neutrophil-to-lymphocyte ratio; HR, hazard ratio; CI, confidence interval.
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tal NGM Prediabetes Diabetes P valuet
No. of participants 7739 4010 3192 537
Age, y, mean (SE) 47.23 (0.33) 42,66 (0.39) 51.58 (0.41) 61.29 (0.79) <0.0001
Age, n (%) <0.0001
20-44 3443 (45.21) 2328 (56.92) 1049 (33.36) 66 (14.25)
45-64 2756 (39.13) 1229 (34.00) 1323 (45.72) 204 (42.22)
>65 1540 (15.66) 453 (9.07) 820 (20.91) 267 (43.54)
Sex, n (%) < 0.0001
Male 3802 (48.76) 1704 (42.50) 1815 (57.03) 283 (50.97)
Female 3937 (51.24) 2306 (57.50) 1377 (42.97) 254 (49.03)
Race, n (%) ) < 0.0001
Non-Hispanic White 3863 (73.45) 1959 (72.35) 1615 (74.36) 289 (77.87)
Non-Hispanic Black 1366 (8.64) 799 (9.90) 477 (6.98) 90 (8.17)
Mexican American 1131 (7.35) 526 (6.85) 522 (8.03) 83 (7.41)
Otder Race 1379 (10.55) 726 (10.89) 578 (10.62) 75 (6.55)
Education level, n (%) < 0.0001
High school or less 3333 (35.80) 1503 (31.48) 1528 (39.96) 302 (48.68)
Some college 2340 (31.46) 1292 (32.43) 911 (30.65) 137 (27.62)
College graduate
or above 2066 (32.75) 1215 (36.09) 753 (29.39) 98 (23.70)
Marital status, n (%) < 0.0001
Divorced/
Separated/Widowed 1533 (16.62) 682 (14.51) 679 (17.75) 172 (29.76)
Married/Living witd
a partner 4790 (66.40) 2362 (64.07) 2113 (70.23) 315 (61.60)
Never married 1416 (16.98) 966 (21.42) 400 (12.02) 50 (8.64)
Poverty-to-income ratio, 0.11
n (%)
<13 2207 (18.59) 1115 (18.53) 918 (18.03) 174 (23.28)
13-35 2906 (35.76) 1480 (35.06) 1208 (36.36) 218 (38.46)
>35 2626 (45.65) 1415 (46.41) 1066 (45.61) 145 (38.26)
Glucose metabolism
Fasting glucose, mg/dl 551 (0.01) 5.11 (0.01) 5.89 (0.01) 6.73 (0.05) <0.0001
2hPG, mg/dl 6.27 (0.04) 5.23 (0.03) 6.95 (0.05) 11.72 (0.16) < 0.0001
HbAIlc (%) 5.39 (0.01) 5.27 (0.01) 5.49 (0.01) 5.93 (0.03) < 0.0001
HOMA-IR 2.91 (0.04) 2.12 (0.04) 3.65 (0.07) 5.43 (0.25) < 0.0001
Lipid metabolism
Waist (cm) 97.98 (0.27) 93.61 (0.37) 102.82 (0.38) 106.79 (0.76)
Total cholesterol, mg/dL | 195.57 (0.68) 192.71 (0.85) 198.73 (1.05) 201.10 (2.26) < 0.0001
HDL cholesterol, mg/dL. = 55.24 (0.25) 57.33 (0.33) 52.72 (0.40) 52.75 (0.91) < 0.0001
LDL cholesterol, mg/dL 116.99 (0.55) 114.49 (0.72) 119.99 (0.87) 120.06 (2.16) < 0.0001
Triglycerides, mg/dL 116.66 (1.09) 104.46 (1.09) 130.02 (1.98) 141.50 (2.98) < 0.0001
CVH scores 66.94 (0.33) 70.21 (0.39) 63.50 (0.45) 59.28 (0.66) < 0.0001
Healtd behaviors score 66.79 (0.45) 67.89 (0.56) | 65.70 (0.60) 63.69 (0.87) <0.001
HEI-2015 diet score 39.24 (0.64) 39.32 (0.80) 39.08 (0.90) 39.68 (1.60) 0.95
Physical activity score 72.84 (0.72) 76.16 (0.85) 70.03 (1.14) 59.99 (2.30) < 0.0001
Nicotine exposure score = 71.05 (0.78) 71.37 (1.04) 70.40 (0.91) 72.71 (1.95) 0.29
Sleep healtd score 84.02 (0.45) 84.71 (0.55) 83.29 (0.62) 82.39 (1.26) 0.05
Healtd factors score 67.15 (0.35) 73.31 (0.45) 60.56 (0.50) 5341 (1.15) < 0.0001
Body mass index score 63.24 (0.53) 70.02 (0.73) 55.76 (0.82) 49.80 (1.58) < 0.0001
Blood lipids score 65.09 (0.50) 69.88 (0.59) 59.79 (0.79) 55.70 (1.75) < 0.0001
Blood pressure score 73.11 (0.50) 80.02 (0.66) 66.14 (0.77) 54.72 (1.66) < 0.0001

NGM, normal glucose metabolism; CVH, cardiovascular health; FPG, fasting plasma glucose; 2hPG, 2 h plasma glucose; HbA 1c, hemoglobin A1C; HOMA-IR, homeostasis model assessment for
insulin resistance; HEIL healthy eating index.

Data were presented as weighted percentages or means (95% confidence intervals).

1P for differences in baseline characteristics among participants with NGM, prediabetes, or diabetes.
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No. of participants 4010 1949 444 799 537
Age, y, mean (SE) 42.66 (0.39) 49.52 (0.52) 51.62 (1.10) 57.19 (0.70) 61.29 (0.79) < 0.0001
Age, n (%)
20-44 2328 (56.92) 754 (37.75) 140 (37.28) 155 (19.29) 66 (14.25) <0.0001
45-64 1229 (34.00) 834 (46.69) 162 (38.26) 327 (46.98) 204 (42.22)
> 65 453 (9.07) 361 (15.55) 142 (24.46) 317 (33.73) 267 (43.54)
Sex, n (%) < 0.0001
Male 1704 (42.50) 1228 (62.67) 180 (38.56) 407 (51.27) 283 (50.97)
Female 2306 (57.50) 721 (37.33) 264 (61.44) 392 (48.73) 254 (49.03)
Race, n (%) 0.36
Non-Hispanic White 1959 (72.35) 970 (74.17) 217 (71.55) 428 (76.36) 289 (77.87)
Non-Hispanic Black 799 (9.90) 310 (7.22) 69 (8.04) 98 (5.77) 90 (8.17)
Mexican American 526 (6.85) 307 (7.95) 73 (8.09) 142 (8221) 83 (7.41)
Other Race 726 (10.89) 362 (10.65) 85 (12.32) 131 (9.65) 75 (6.55)
Education level, n (%) 0.65
High school or less 1503 (31.48) 898 (39.20) 217 (39.56) 413 (42.27) 302 (48.68)
Some college 1292 (32.43) 569 (30.40) 128 (32.77) 214 (30.21) 137 (27.62)
College graduate
or above 1215 (36.09) 482 (30.39) 99 (27.67) 172 (27.52) 98 (23.70)
Marital status, n (%) 0.02
Divorced/
Separated/Widowed 682 (14.51) 363 (16.10) 96 (15.78) 220 (23.32) 172 (29.76)
Married/Living with
a partner 2362 (64.07) 1316 (71.51) 300 (71.15) 497 (66.26) 315 (61.60)
Never married 966 (21.42) 270 (12.40) 48 (13.07) 82 (10.42) 50 (8.64)
Poverty-to-income ratio, 0.11
n (%)
<13 1115 (18.53) 541 (17.20) 134 (19.47) 243 (19.57) 174 (23.28)
13-35 1480 (35.06) 707 (34.99) 180 (40.80) 321 (37.78) 218 (38.46)
>35 1415 (46.41) 701 (47.81) 130 (39.73) 235 (42.65) 145 (38.26)
Glucose metabolism
Fasting glucose, mg/dl 5.11 (0.01) 5.94 (0.01) 523 (0.02) 6.10 (0.02) 6.73 (0.05) <0.0001
2hPG, mg/dl 5.23 (0.03) 5.81 (0.04) 8.87 (0.05) 9.08 (0.04) 11.72 (0.16) <0.0001
HbAlc (%) 5.27 (0.01) 5.46 (0.01) 541 (0.02) 5.61 (0.02) 5.93 (0.03) <0.0001
HOMA-IR 2.12 (0.04) 3.55 (0.10) 277 (0.12) 4.38 (0.16) 5.43 (0.25) <0.0001
Lipid metabolism
Waist (cm) 93.61 (0.37) 102.47 (0.46) 98.99 (0.89) 105.85 (0.74) 106.79 (0.76)
Total cholesterol, mg/dL 192.71 (0.85) 197.88 (1.18) 203.27 (2.37) 198.66 (1.87) 201.10 (2.26) 0.07
HDL cholesterol, mg/dL 57.33 (0.33) 52.79 (0.56) 55.16 (0.89) 51.25 (0.61) 52.75 (0.91) 0.003
LDL cholesterol, mg/dL  114.49 (0.72) 12040 (1.04) 12053 (1.94) 118.61 (1.69) 120.06 (2.16) 0.61
Triglycerides, mg/dL 104.46 (1.09) 123.44 (2.24) 137.85 (4.44) 143.95 (3.61) 141.50 (2.98) <0.0001
CVH scores 70.21 (0.39) 64.44 (0.53) 63.94 (0.85) 60.69 (0.67) 59.28 (0.66) < 0.0001
Health behaviors score 67.89 (0.56) 65.88 (0.72) 65.46 (1.26) 65.33 (0.90) 63.69 (0.87) 0.85
HEI-2015 diet score 39.32 (0.80) 37.48 (1.06) 44.19 (2.32) 40.77 (1.64) 39.68 (1.60) 0.01
Physical activity score 76.16 (0.85) 73.52 (1.34) 61.46 (2.90) 64.95 (1.82) 59.99 (2.30) < 0.0001
Nicotine exposure score  71.37 (1.04) 68.81 (1.23) 74.84 (1.81) 72.42 (1.65) 72.71 (1.95) 0.02
Sleep health score 84.71 (0.55) 83.70 (0.71) 81.35 (1.72) 83.18 (1.06) 82.39 (1.26) 04
Health factors score 73.31 (0.45) 62.53 (0.64) 61.90 (1.29) 5449 (0.91) 53.41 (1.15) < 0.0001
Body mass index score 70.02 (0.73) 57.14 (0.99) 59.90 (2.08) 49.82 (1.59) 49.80 (1.58) < 0.0001
Blood lipids score 69.88 (0.59) 61.25 (0.89) 58.36 (1.79) 56.54 (1.23) 55.70 (1.75) 0.001
Blood pressure score 80.02 (0.66) 69.19 (0.97) 67.45 (1.86) 57.11 (1.51) 54.72 (1.66) < 0.0001

NGM, normal glucose metabolism; ilFG, isolated impaired fasting glucose; ilGT, isolated impaired glucose tolerance, IFG+IGT, combined IFG and IGT; CVH, cardiovascular health; FPG, fasting
plasma glucose; 2hPG, 2 h plasma glucose; HbAlc, hemoglobin A1C; HOMA-IR, homeostasis model assessment for insulin resistance; HEL, healthy eating index.

Data were presented as weighted percentages or means (95% confidence intervals).

+P for differences in baseline characteristics among participants with NGM, ilFG, iIGT, IFG+IGT and diabetes.
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Prediabetes Diabetes

Univariable model Multivariable model Univariable model Multivariable model

R (95% Cl) Pvalue OR(95%Cl) Pvalue OR(95%Cl) Pvalue OR (95% CI) P value

CVH score
Per 10-point increase 0.73 (0.69,0.76) <0.0001 0.74 (0.70,0.78) <0.0001 0.60 (0.56,0.65) <0.0001 0.63 (0.57,0.69)  <0.0001
Low (0-49) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)
Moderate (50-79) 0.58 (0.49,0.70) <0.0001 0.56 (0.46,0.69) <0.0001 055 (0.38,0.80)  <0.0001 032 (020,0.51) 0002
High (80-100) 0.25 (0.20,0.32) <0.0001 0.27 (0.20,0.35) <0.0001 0.14 (0.08,0.25) | <0.0001 0.06 (0.03,0.12) | <0.0001

P for trend <0.0001 <0.0001 <0.0001 <0.0001

Health behaviors score

Per 10-point increase | 0.94 (0.91,0.98) 0.002 0.93 (0.89,0.97) <0.001 0.90 (0.85,0.95) <0.0001 0.88 (0.83, 0.94) <0.001
Low (0-49) ‘ 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)

Moderate (50-79) 0.93 (0.79,1.09) 0.37 0.91 (0.76,1.10) 0.34 0.94 (0.70,1.26) 0.67 097 (0.72, 1.31) 0.86
High (80-100) 0.72 (0.60,0.88) 0.001 0.66 (0.53,0.82) <0.001 0.53 (0.38,0.73) <0.001 0.49 (0.33, 0.72) <0.001
P for trend <0.001 <0.0001 <0.0001 <0.0001

Health factors score

Per 10-point increase 0.72 (0.70,0.75) <0.0001 0.76 (0.73,0.79) <0.0001 0.62 (0.58,0.66) <0.0001 0.67 (0.62, 0.72) <0.0001
Low (0-49) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)

Moderate (50-79) 0.52 (0.43,0.64) <0.0001 0.55 (0.45,0.68) <0.0001 0.35 (0.26,0.46) <0.0001 0.40 (0.30, 0.53) <0.0001
High (80-100) 0.20 (0.16,0.24) <0.0001 0.26 (0.20,0.32) <0.0001 0.06 (0.04,0.09) <0.0001 0.11 (0.07,0.19)  <0.0001
P for trend <0.0001 <0.0001 <0.0001 <0.0001

OR, Odds ratio; CI, confidence interval; CVH, cardiovascular health.
Univariable model: unadjusted model.
Multivariable model: adjusted for age (as a continuous variable), sex, race/ethnicity, poverty-to-income ratio (as a continuous variable), education levels, and marital status.
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iIFG iIGT IFG+IGT

Univariable model Multivariable model  Univariable model Multivariable model  Univariable model Multivariable model

OR (95% CI) Pvalue OR(95%CI) Pvalue OR(95%Cl) Pvalue OR(95%Cl) Pvalue OR(95%Cl) Pvalue OR(95%CI) P value

CVH score
Per 10-point increase 076 (0720.80) | <00001  077(072082)  <00001  075(069082)  <0.0001 076 (069.084) <0000l  064(0.600.69) <0001  0.65(060,070) | <0.0001
Low (0-49) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)
Moderate (50-79) 063 (057,069) | <0001 0.43(031060)  <0.0001 063 (0.44091) 001 066 (0:46,097) | 0.03 052(039069) <0001 049 (036,067) | <0.0001
High (80-100) 030(023039)  <00001  021(0.15031)  <00001  033(022051) | <0.0001  037(023060) <0000l  012(0080.19) <0000l  0.13(0.09,021) | <0.0001
P for trend <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Health behaviors score

Per 10-point increase 095 (091,099) | 0.01 093 (0.89098) 001 094 (088,100) 007 092 (086.099) | 0.04 094 (089098) 001 0.90 (0.86,095) | <0.001
Low (0-49) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)

Moderate (50-79) 092 (077,109 | 0.33 090 (073,L11) 030 081 (057,114) | 022 083 (058,117) | 0.28 104(080137) 075 098(072,1.33) | 088
High (80-100) 074 (059093) | 001 069 (053090) 001 067 (046,097) | 004 062 (042092) | 0.02 071(053095) 002 0.60 (0.44,082) | 0002
P for trend 001 0.003 003 001 0.005 <0001

Health factors score

Per 10-point increase 076 (0730.80) | <0.0001 | 079(0.75083)  <00001 076 (072081)  <0.0001 | 079 (074085)  <00001 063 (0.60066)  <0.0001  0.67(063,071) | <0000
Low (0-49) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)

Moderate (50-79) 061 (049075 | <0000 | 061(0.48077)  <00001 047 (035062)  <0.0001 | 051(038068)  <00001 040 (030053)  <0.0001  045(034,059) <0000
High (80-100) 026 (020034) | <0000 | 032(024043)  <00001 023 (016031)  <0.0001 | 030(019047)  <00001 006 (0.040.09)  <0.0001  0.10(0.07,0.15) | <0.0001
P for trend <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

OR, Odds ratio; Cl, confidence interval; CVH, cardiovascular health; ilFG, isolated impaired fasting glucose; ilGT, isolated impaired glucose tolerance; IFG+IGT, combined IFG and IGT
Univariable model: unadjusted model.
Multivariable model: adjusted for age (as a continuous variable), sex, race/cthnicity, poverty-to-income ratio (as a continuous variable), education levels, and marital status.
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