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Editorial on the Research Topic

Risk and protective factors in the natural history of autoimmunity
Autoimmune diseases, the third-most common category after cancer and heart disease,

affect at least 5% of the U.S. population (1) and are severe, chronic, and costly to individuals

and society. Preclinical or asymptomatic autoimmunity may arise years before diagnosis,

occurs in the general population, and appears to be increasing; an example is the rising

prevalence of antinuclear antibodies in the U.S. in recent decades (2). However, only some

individuals will develop symptoms and pathologies. The articles in this Research Topic

focus on risk and protective factors for asymptomatic or preclinical autoimmunity and

disease. The relationship between autoimmunity and other diseases, especially cancer and

infections, also has important clinical implications. These questions take on greater

urgency, given the apparent rise in rates and costs of many autoimmune diseases (3).
Autoimmunity

Clinical suspicion may lead to autoantibody testing; however, a low predictive

probability can result in repeated, costly, and unnecessary testing. Barnado et al.

addressed this problem using electronic health records of antinuclear antibody (ANA)-

positive individuals, finding a greater likelihood of developing autoimmune diseases

among those who were younger, female, with higher-titer ANAs, higher platelet counts,

disease-specific autoantibodies, and more billing codes for relevant symptoms. In sum, this

model is a useful clinical tool for identifying high-risk ANA-positive patients who should

undergo further evaluation, while reassuring lower-risk individuals and reducing

unnecessary referrals.

While autoantibodies are known to precede numerous autoimmune diseases, the

majority of studies lack longitudinal sampling, and the factors that determine

progression or regression are poorly understood. In children at risk of developing type 1
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diabetes with disease-specific autoantibodies, Carry et al. found

differences in DNA methylation, comparing those who progressed

to disease, those who maintained autoantibodies, and those who

sero-reverted. The candidate genes were related to diet, glucose

levels, and immune and pancreatic beta cells. This suggests that

environmental factors may contribute to disease risk. Further

studies are needed that include exposure data and biomarkers in

the progression of preclinical autoimmunity.

In a cross-sectional analysis of cotinine (a marker of cigarette

smoke exposure) and ANA prevalence among a representative

population sample of the U.S. population, Dinse et al. observed

that, over the study periods (1988-1991, 1999-2004, and 2011-

2012), the percentage of individuals with ANA was highest (13.3-

19.2%) among nonsmokers but non-trending, lower (11.1-15.5%)

for “passive” smokers but steadily increasing, and lowest for active

smokers, increasing from 7.4% in 1999–2004 to 13.3% in 2011-

2012. These findings imply the presence of unmeasured

environmental influences on ANA prevalence.
Autoimmunity and cancer

In their review of the cancer risk associated with connective

tissue disease, Tonutti et al. explored the multiple, complex

interrelationships between these entities. The long-recognized

increased cancer risk in many rheumatic conditions may develop

for various reasons, including loss of immune tolerance due to

oncogenesis, proinflammatory immune activation/autoimmunity

that may promote oncogenesis, or immunosuppressive therapies

that may decrease cancer surveillance. Conversely, autoimmunity

may contribute to the removal of constantly generated neoplasms.

Incomplete data support all these theories, and further research is

needed. In response, Chen highl ighted the need for

multidisciplinary collaborations that synthesize different diseases

and harmonize methods for detecting autoantibodies.
Sex differences in autoimmunity

Female sex is associated with ANA prevalence and an increased

risk of many autoimmune diseases. Investigating a polygenetic risk

score for juvenile idiopathic arthritis (JIA), Haftorn et al. examined

scores in a population-based study of 238 JIA cases vs. over 73,000

controls. Their investigations into how to best model genetic

susceptibilities revealed strong sex differences, suggesting that

generalized additive models (GAM) should employ sex

stratification, although general linear models can also be

applied successfully.

Scofield et al. examined the mechanisms underlying sex

differences in immune cells’ Toll-Like Receptor (TLR7) signaling

using published studies among subjects with SLE (along with other

autoimmune diseases). The authors found that the sex bias among

patients was explained by specific gene expressions, while

inactivations of the X chromosome were also observed. Examined

environmental factors included EBV infections and hormonal,
Frontiers in Immunology 026
mainly estrogen, effects on B cells, suggesting potential

molecular pathways.
Environmental and genetic risk factors
for autoimmune diseases

In their overview, Choi et al. highlighted diverse non-genetic

risk and protective factors for systemic autoimmune rheumatic

disorders and the complex interactions that may occur prior to

disease development. These risk factors include airborne,

waterborne, workplace/occupational, social, and behavioral

factors, many of which have changed dramatically in recent

decades, which may help explain the increase in autoimmunity

and disease. Machine learning methods and multiomics have paved

the way for a better understanding of these risk factors, and

expansions of these and other new technologies could allow for

better preventive approaches in the future.

In a study of JIA, Dåstøl et al. explored the role of seafood and

dietary contaminants in the context of a polygenic risk score. While

they did not find evidence of associations between estimated intakes

of environmental contaminants and risk of JIA based on quantiles

of fish intake or proxies for potential heavy metal exposure, patients

with low genetic predisposition had stronger, significant

associations with environmental toxicants, suggestive of

environmentally induced JIA.

Some environmental factors may be considered triggers.

Concerns have been raised that autoimmunity may develop

following vaccine-specific immune activation and inflammatory

responses. In their study of myositis patients, Alhassan et al., in

the pre-COVID era, found genetic risk and protective factors for

developing myositis within 6 months of vaccination. These factors

included human leukocyte antigen (HLA) alleles and

immunoglobulin (Ig) allotypes. Large-scale studies with greater

genotyping and phenotyping are needed to personalize risk

assessment and enhance vaccine safety.

Infections are also possible triggers. In a global network of 74

healthcare organizations and nearly 4 million patients, Hileman et al.

investigated the incidence of autoimmune diseases up to 1 year after

a diagnosed infection. They found an elevated risk of eight

autoimmune diseases in patients diagnosed with COVID-19,

especially cutaneous vasculitis, polyarteritis nodosa, and

hypersensitivity angiitis. A positive ANA was also more likely and

predictive of risk following infection. The authors concluded that

SARS-CoV-2 may be a potential trigger for some autoimmune

diseases, but the risk may diminish over time, as seen in this study

following infection with Omicron variants.
Summary

Taken together, these studies highlight the importance of

considering environmental factors and genetic susceptibility in

the context of autoimmunity and disease. These contributions

suggest the need for well-designed, multidisciplinary studies of
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1345494
https://doi.org/10.3389/fimmu.2025.1537043
https://doi.org/10.3389/fimmu.2025.1571700
https://doi.org/10.3389/fimmu.2025.1641619
https://doi.org/10.3389/fimmu.2025.1531390
https://doi.org/10.3389/fimmu.2025.1479814
https://doi.org/10.3389/fimmu.2024.1456145
https://doi.org/10.3389/fimmu.2024.1523990
https://doi.org/10.3389/fimmu.2025.1539659
https://doi.org/10.3389/fimmu.2024.1337406
https://doi.org/10.3389/fimmu.2026.1771091
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Parks et al. 10.3389/fimmu.2026.1771091
asymptomatic autoimmunity, exposome-genome interactions, and

relationships with cancer and infections. The external exposome

includes a broader range of features than represented here,

including heavy metals, other xenobiotics, along with the

psychosocial environment and natural disasters (4, 5), all of

which warrant focused future research.
Author contributions

CP: Writing – original draft, Writing – review & editing,

Conceptualization. EE: Conceptualization, Writing – review &

editing, Writing – original draft. FM: Writing – review & editing,

Conceptualization, Writing – original draft.
Funding

The author(s) declared that financial support was received for

this work and/or its publication. This work was supported in part by

the Intramural Research Program of the National Institutes of

Health, the National Institute of Environmental Health Sciences

(Z01-ES049028). The contributions of the NIH author(s) were

made as part of their official duties as NIH federal employees,

comply with agency policy requirements, and are considered Works

of the United States Government. However, the findings and

conclusions presented in this paper are those of the author(s) and

do not necessarily reflect the views of the NIH or the U.S.

Department of Health and Human Services.
Frontiers in Immunology 037
Conflict of interest

The author(s) declared that this work was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The author(s) declared that generative AI was not used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible.

If you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Abend AH, He I, Bahroos N, Christianakis S, Crew AB,Wise LM, et al. Estimation
of prevalence of autoimmune diseases in the United States using electronic health
record data. J Clin Invest. (2024) 135:e178722. doi: 10.1172/JCI178722

2. Dinse GE, Parks CG, Weinberg CR, Co CA, Wilkerson J, Zeldin DC, et al.
Increasing prevalence of antinuclear antibodies in the United States. Arthritis
Rheumatol. (2022) 74:2032–41. doi: 10.1002/art.42330

3. Miller FW. The increasing prevalence of autoimmunity and autoimmune
diseases: an urgent call to action for improved understanding, diagnosis, treatment,
and prevention. Curr Opin Immunol. (2023) 80:102266. doi: 10.1016/j.coi.2022.
102266

4. Kim Y, Koopman JJ, Choi M, Feldman CH, Costenbader KH. Environmental risk
factors for systemic lupus erythematosus through the lens of social determinants of
health. Arthritis Care Res (Hoboken). (2025) 77:689–99. doi: 10.1002/acr.25497

5. Miller FW, Katsumoto TR. Overview of climate change, pollution, and
sustainability in the rheumatic and autoimmune diseases. Rheum Dis Clin North
Am. (2026) 52:1–12. doi: 10.1016/j.rdc.2025.08.003
frontiersin.org

https://doi.org/10.1172/JCI178722
https://doi.org/10.1002/art.42330
https://doi.org/10.1016/j.coi.2022.102266
https://doi.org/10.1016/j.coi.2022.102266
https://doi.org/10.1002/acr.25497
https://doi.org/10.1016/j.rdc.2025.08.003
https://doi.org/10.3389/fimmu.2026.1771091
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Frederick Miller,
South China Agricultural University, China

REVIEWED BY

Daniele Sola,
University of Eastern Piedmont, Italy
Giovanni Filocamo,
Fondazione IRCCS CàGranda Ospedale
Maggiore Policlinico, Italy

*CORRESPONDENCE

Corrilynn O. Hileman

corrilynn.hileman@case.edu

Grace A. McComsey

grace.mccomsey@uhhospitals.org

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 13 November 2023
ACCEPTED 19 January 2024

PUBLISHED 08 February 2024

CITATION

Hileman CO, Malakooti SK, Patil N, Singer NG
and McComsey GA (2024) New-onset
autoimmune disease after COVID-19.
Front. Immunol. 15:1337406.
doi: 10.3389/fimmu.2024.1337406

COPYRIGHT

© 2024 Hileman, Malakooti, Patil, Singer and
McComsey. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 February 2024

DOI 10.3389/fimmu.2024.1337406
New-onset autoimmune disease
after COVID-19
Corrilynn O. Hileman1,2*†, Shahdi K. Malakooti 1,2†, Nirav Patil3,
Nora G. Singer1,2 and Grace A. McComsey1,3*

1Case Western Reserve University School of Medicine, Cleveland, OH, United States, 2Department of
Medicine, MetroHealth Medical Center, Cleveland, OH, United States, 3University Hospitals Cleveland
Medical Center, Cleveland, OH, United States
Introduction: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

may trigger autoimmune disease (AD) through initial innate immune activation

with subsequent aberrations in adaptive immune cells leading to AD. While there

are multiple reports of incident AD diagnosed after COVID-19, the risk in the

context of key circulating strains is unknown.

Methods: TriNetX, a global, federated, health research network providing access

to electronic medical records across 74 healthcare organizations, was utilized to

define an adult cohort between January 1, 2020, and March 3, 2023. Exposure

was defined as COVID-19 diagnosis (ICD-10 code or positive laboratory test).

Age- and sex-propensity score-matched controls never had COVID-19

diagnosed. Outcomes were assessed 1 month to 1 year after the index date.

Patients with AD prior to or within 1 month after the index date were excluded

from the primary analysis. Incidence and risk ratios of each AD were assessed.

Results: A total of 3,908,592 patients were included. Of 24 AD patients assessed,

adjusted risk ratios for eight AD patients who had COVID-19 were higher

compared to those who had no COVID-19. Cutaneous vasculitis (adjusted

hazard ratio (aHR): 1.82; 95% CI 1.55–2.13), polyarteritis nodosa (aHR: 1.76; 95%

CI 1.15–2.70), and hypersensitivity angiitis (aHR: 1.64; 95% CI 1.12–2.38) had the

highest risk ratios. Overall, psoriasis (0.15%), rheumatoid arthritis (0.14%), and type

1 diabetes (0.13%) had the highest incidence during the study period, and of

these, psoriasis and diabetes were more likely after COVID-19. The risk of any AD

was lower if COVID-19 was diagnosed when Omicron variants were the

predominant circulating strains. A positive antinuclear antibody was more likely

and predictive of AD after COVID-19.

Discussion: SARS-CoV-2 may be a potential trigger for some AD, but the risk for

AD may decrease with time given the apparent lower risk after infection with

Omicron variants.
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autoimmune diseases, COVID-19, autoantibodies, risk factors, antinuclear antibodies
frontiersin.org018

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1337406/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1337406/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1337406&domain=pdf&date_stamp=2024-02-08
mailto:corrilynn.hileman@case.edu
mailto:grace.mccomsey@uhhospitals.org
https://doi.org/10.3389/fimmu.2024.1337406
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1337406
https://www.frontiersin.org/journals/immunology


Hileman et al. 10.3389/fimmu.2024.1337406
Introduction

Viral infections are often cited as important environmental

triggers for autoimmune disease. In the setting of the global

COVID-19 pandemic, this is highly relevant, as millions of

individuals have been infected with severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2). Indeed, there have

been multiple reports of newly diagnosed autoimmune diseases

after COVID-19 (1, 2). With the breadth of autoimmune disease

manifestations, the rarity of many autoimmune diseases, and the

lack of accumulated data in the context of COVID-19 variants up

to this point, the overall risk of autoimmune disease after

COVID-19 including recent key COVID-19 variants is not

yet known.

The pathophysiology of autoimmune disease is complex, and

the interplay of multiple factors, including genetic and

environmental, likely contribute. Simplistically, the host

immune response to viral infection has been postulated as a

trigger for autoimmunity and includes the production of both

interferons (especially alpha interferon), presentation of nuclear

contents by “netting” neutrophils, and subsequent maturation of

plasmacytoid dendritic cells that act as potent antigen-presenting

cells. These virus-induced T cell-mediated autoimmune

responses in the right host may lead to autoimmune disease via

activation of the adaptive immune system resulting in B- and T-

cell activations as evidenced first by autoantibodies and later by

dysregulated T cells that contribute to overall loss of tolerance to

self-antigen.

Interestingly, autoantibodies have been detected in patients

with COVID-19 (3, 4). Further, some human proteins have

homologous regions with SARS-CoV-2 peptides that could

function as autoantigens (5). Additionally, it is clear that in some

people with COVID-19, SARS-CoV-2 infection mediates a

hyperinflammatory state. Dysregulated inflammasome activation

has been implicated in autoimmune disease pathogenesis, and

SARS-CoV-2 can activate the inflammasome (nod-like family,

pyrin domain-containing 3, or NLRP3), which regulates the

secretion of proinflammatory cytokines interleukin 1 beta (IL-1b)
and IL-18 (6). More research is needed in this area; however, there is

biological plausibility linking SARS-CoV-2 with autoimmunity.

The purpose of this study was to assess the risk of new-onset

autoimmune disease within the first year after COVID-19 diagnosis

in the context of the predominate circulating variants at the time of

infection. We hypothesized that autoimmune disease diagnoses

would be higher after COVID-19 infection than in age- and sex-

matched controls and that risk would be attenuated when COVID-

19 diagnosis occurred when the predominate circulating strains

were the Omicron variants. While positive antinuclear antibodies

(ANAs) are associated with a variety of autoimmune diseases, a

positive ANA test alone is neither sufficient for rheumatologic

diagnosis nor predictive of disease development. Therefore, our

secondary aim was to evaluate the risk of ANA positivity after

COVID-19 and how well ANA positivity predicted the

development of new autoimmune diseases within the first year

after COVID-19 diagnosis.
Frontiers in Immunology 029
Materials and methods

This was a retrospective and population-based cohort study

utilizing TriNetX. TriNetX is a global, federated, health research

network providing access to electronic medical records including

diagnoses, procedures, medications, laboratory values, and genomic

information across large healthcare organizations. TriNetX

provides de-identified data, transformed into a proprietary data

schema, including an extensive data quality and accuracy

assessment. This analysis was performed on data drawn from 74

healthcare organizations and completed on March 3, 2023. The

study population was defined as adults 18 years of age or older, seen

on or after January 1, 2020, with at least one follow-up visit after the

index date. Patients with any of the autoimmune diseases evaluated

as outcomes in this study diagnosed prior to the index date or

within 1 month after the index date were excluded from the primary

analysis. The exposure of interest was COVID-19 diagnosis defined

by ICD-10 code or positive laboratory test (see Supplementary

Table 1 for ICD-10 codes and laboratory tests included). Controls

did not have COVID-19 diagnosis (defined by the same criteria)

and were propensity score-matched to patients with COVID-19 by

age and sex. The index date was defined as the date of COVID-19

diagnosis for the exposed group or first provider visit for any reason

during the study period for controls. ANA positivity was defined as

nuclear antibody presence in serum by immunofluorescence. This

study was approved by the Institution Board Review Committee at

Case Western Reserve University/University Hospitals Cleveland

Medical Center (STUDY20231104). Written informed consent was

waived, as the TriNetX system safeguards patients’ privacy in

reporting de-identified data.

Outcomes, i.e., incident autoimmune diseases, selected for

inclusion were those previously reported in case reports and case

series as well as additional autoimmune diseases to attempt to

develop as complete a list as possible. Outcomes were defined by

ICD-10 codes (see Supplementary Table 1 for ICD-10 codes utilized

for each autoimmune disease included). Outcomes were assessed

starting 1 month after the index date until 1 year after.
Statistical analysis

The two groups, the exposed or COVID-19 group and the

controls or no COVID-19 group, were propensity score-matched by

age and sex. Demographics were described by frequency and

percent for categorical variables and by mean ± standard

deviation for continuous variables for each group. Incidence of

each autoimmune disease and risk ratios were assessed for each

outcome, i.e., patients with outcome/total patients per group with

95% confidence intervals. Incidence and risk ratios were adjusted

for age and sex through propensity score matching as described

above. In the primary analyses, patients with any of the

autoimmune diseases evaluated as outcomes in this study

diagnosed prior to the index date or within 1 month after the

index date were excluded. As part of the secondary analyses,

patients with the specific outcome being analyzed were excluded
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from the analysis for that outcome only. For the secondary analyses,

the cohort was propensity score-matched by age and sex prior to

excluding the patients with known disease.
Results

Data were available from 1,954,296 adults from January 1, 2020,

to March 3, 2023, who lacked prior autoimmune disease and who

were diagnosed with COVID-19. Adults without prior autoimmune

disease and a diagnosis of COVID-19 during the same time period

were propensity score-matched by age and sex at birth to these

adults to generate a cohort of 3,908,592 people. Overall, the mean

age ± standard deviation (SD) was 48.7 ± 17.9, and 57.7% were

women. There were more people from racial and ethnic minorities

among those who had COVID-19; however, there were also more

people with unknown race and/or ethnicity among those who did

not have COVID-19 (see Table 1).
Risk of incident autoimmune disease after
COVID-19

The risk of being diagnosed with any autoimmune disease was

higher within 1 year following COVID-19 compared to a similar time

period in age- and sex-matched controls who did not have COVID-

19 diagnosis (adjusted risk ratio (aRR) for any autoimmune disease

1.09 (95% confidence interval or CI 1.07–1.12)). In evaluating each
Frontiers in Immunology 0310
type of autoimmune disease individually, one-third (8 out of 24) of

the autoimmune diseases assessed were more likely to be diagnosed

after COVID-19. Figure 1 shows adjusted risk ratios for each

autoimmune disease assessed. Cutaneous vasculitis (aRR 1.82 (95%

CI 1.55–2.13)), polyarteritis nodosa (aRR 1.76 (1.15–2.70)), and

hypersensitivity angiitis (aRR 1.64 (1.12–2.38)) were associated with

the highest risk. The three autoimmune diseases with the highest

incidence during the study period were psoriasis (diagnosed in 5,690

or 0.15%), rheumatoid arthritis (5,618 or 0.14%), and type 1 diabetes

mellitus (5,015 or 0.13%). Of these, both psoriasis (aRR 1.23 (95% CI

1.17–1.30)) and type 1 diabetes mellitus (aRR 1.38 (1.31–1.46)) were

more common after COVID-19. Graves’ disease (0.88 (0.80–0.97)),

systemic lupus erythematosus (0.88 (0.80–0.97)), and Crohn’s disease

(0.84 (0.76–0.92)) were the only diseases less likely to be diagnosed

after COVID-19. See Table 2 for the incidence of each autoimmune

disease assessed overall as well as by group and adjusted risk ratios.

Of those with COVID-19, the risk of having been hospitalized

within 10 days of COVID-19 diagnosis was higher for people who

developed autoimmune disease after COVID-19 than people who

did not (aRR for hospitalization 1.54 (95% CI 1.44–1.63)) (see

Supplementary Figure 1).

In the secondary analysis, people with a specific autoimmune

disease prior to or within 1 month after the index date were

excluded from the analysis for that outcome. Overall, 4,407,892

individuals were included in this cohort. Supplementary Table 2

shows demographics overall and by COVID-19 exposure group,

which were similar to the primary analysis. In this analysis, the risk

of being diagnosed with 18 out of the 24 autoimmune diseases
TABLE 1 Demographics overall and by COVID-19 exposure group.

Overall
N = 3,908,592

COVID-19
n = 1,954,296

No COVID-19
n = 1,954,296

p-Value

Age (years) at index 48.7 ± 17.9 48.7 ± 17.9 48.7 ± 17.9 >0.99

Sex, n (%)

Female 2,253,498 (57.7%) 1,126,749 (57.7%) 1,126,749 (57.7%) >0.99

Male 1,654,160 (42.3%) 827,080 (42.3%) 827,080 (42.3%) >0.99

Unknown 934 (<1%) 467 (<1%) 467 (<1%) >0.99

Race, n (%)

White 2,171,935 (55.6%) 1,139,355 (58.3%) 1,032,581 (52.8%) <0.001

Black/African American 516,815 (13.2%) 280,842 (14.4%) 235,973 (12.1%) <0.001

Asian 94,298 (2.4%) 42,225 (2.2%) 52,073 (2.7%) <0.001

American Indian, Alaskan Native 13,447 (0.3%) 7,038 (0.4%) 6,409 (0.3%) <0.001

Pacific Islander 4,947 (0.1%) 2,654 (0.1%) 2,293 (0.1%) <0.001

Unknown 1,107,149 (28.3%) 482,182 (24.7%) 624,967 (32%) <0.001

Ethnicity, n (%)

Not Hispanic/Latino 2,133,897 (54.6%) 1,143,516 (58.5%) 990,381 (50.7%) <0.001

Hispanic/Latino 296,358 (7.6%) 171,282 (8.8%) 125,076 (6.4%) <0.001

Unknown 1,478,337 (37.8%) 639,498 (32.7%) 838,839 (42.9%) <0.001
fro
Groups are matched by propensity score. Propensity scoring included age, male sex, and female sex. People with any prevalent autoimmune diseases prior to or within 1 month after the index
date were excluded prior to propensity score matching. Values shown are mean ± standard deviation for continuous variables and frequency (column percent) for categorical variables.
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FIGURE 1

Adjusted risk ratio for autoimmune disease within 1 year after COVID-19 diagnosis vs. no COVID-19 diagnosis.
TABLE 2 Incident autoimmune diseases overall and by COVID-19 exposure group.

Overall
N = 3,908,592

COVID-19
n = 1,954,296

No COVID-19
n = 1,954,296

Adjusted risk ratio
(95% CI)

Any autoimmune disease 31,052 (0.794%) 16,199 (0.829%) 14,853 (0.760%) 1.09 (1.07–1.12)

Autoimmune diseases more likely after COVID-19

Cutaneous vasculitis 674 (0.017%) 435 (0.022%) 239 (0.012%) 1.82 (1.55–2.13)

Polyarteritis nodosa 91 (0.002%) 58 (0.003%) 33 (0.002%) 1.76 (1.15–2.70)

Hypersensitivity angiitis 116 (0.003%) 72 (0.004%) 44 (0.002%) 1.64 (1.12–2.38)

Type 1 diabetes mellitus 5,014 (0.128%) 2,908 (0.149%) 2,106 (0.108%) 1.38 (1.31–1.46)

Mixed connective tissue disease 1,407 (0.036%) 811 (0.041%) 596 (0.030%) 1.36 (1.22–1.51)

Ulcerative colitis 2,447 (0.063%) 1,359 (0.070%) 1,088 (0.056%) 1.25 (1.15–1.35)

Psoriasis 5,690 (0.146%) 3,137 (0.161%) 2,553 (0.131%) 1.23 (1.17–1.30)

Autoimmune thyroiditis 3,625 (0.093%) 1,902 (0.097%) 1,723 (0.088%) 1.10 (1.03–1.18)

Autoimmune diseases less likely after COVID-19

Graves’ disease 1,524 (0.039%) 713 (0.036%) 811 (0.041%) 0.88 (0.80–0.97)

Systemic lupus erythematosus 1,596 (0.041%) 746 (0.038%) 850 (0.043%) 0.88 (0.80–0.97)

Crohn’s disease 1,737 (0.044%) 792 (0.041%) 945 (0.048%) 0.84 (0.76–0.92)

Autoimmune diseases with no associated increased or decreased risk after COVID-19

CNS arteritis 30 (0.001%) 20 (0.001%) ≤10 (0.001%) 2.00 (0.94–4.27)

Reactive arthritis 28 (0.001%) 18 (0.001%) ≤10 (0.001%) 1.80 (0.83–3.90)

ANCA associated vasculitis 177 (0.005%) 101 (0.005%) 76 (0.004%) 1.33 (0.99–1.79)

Celiac disease 1,313 (0.034%) 689 (0.035%) 624 (0.032%) 1.10 (0.99–1.23)

Polymyalgia rheumatica 834 (0.021%) 433 (0.022%) 401 (0.021%) 1.08 (0.94–1.24)

Sarcoidosis 1,129 (0.029%) 568 (0.029%) 561 (0.029%) 1.01 (0.90–1.14)

(Continued)
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evaluated was higher during the 1 year after COVID-19 diagnosis

than during a similar time period in controls. The other

autoimmune diseases had similar incidences over 1 year in both

groups. See Supplementary Table 3 for the incidence of each

autoimmune disease assessed overall and by group with adjusted

risk ratios.
Effect of different timeframes on incident
autoimmune disease risk after COVID-19

People diagnosed with COVID-19 from July 1, 2021, to

November 30, 2021 (during which time the predominant

circulating strain of SARS-CoV-2 was the Delta variant), as well as

people diagnosed from January 1, 2020, to June 30, 2021 (pre-Delta

variant timeframe), had a higher risk of any autoimmune disease

when compared to people diagnosed with COVID-19 on or after

December 1, 2021. Following December 1, 2021, Omicron SARS-

CoV-2 variants were the predominant circulating strains in the USA.

The adjusted risk ratio was 0.62 (95% CI 0.59–0.66) for incident

autoimmune disease during Omicron vs. Delta variant timeframes

and 0.66 (95% CI 0.64–0.69) during Omicron vs. pre-Delta variant

timeframes. See Figure 2 for autoimmune diseases more commonly

diagnosed during Delta and pre-Delta than Omicron variant

timeframes. None of the autoimmune diseases were more likely to

be diagnosed in the first year following COVID-19 infection when the

predominant circulating strains were the Omicron variants.
The association of positive ANA test and
incident autoimmune disease after
COVID-19

In those without a history of autoimmune disease or a positive

ANA test, the risk of having a positive ANA test was higher after

COVID-19 (980 out of 1,949,921) than for those who did not have

COVID-19 (578 out of 1,949,921), adjusting for age and sex

(adjusted risk ratio 1.70 (95% CI 1.53–1.88)). Among those with
Frontiers in Immunology 0512
COVID-19, the risk of developing an autoimmune disease was

higher for those with a positive ANA test after COVID-19 diagnosis

than those without a positive ANA test after adjusting for age and

sex (adjusted risk ratio 11.90 (95% CI 6.28–22.55)) (see

Supplementary Figure 2 for flowchart with absolute numbers).

Specifically, a positive ANA test after COVID-19 was predictive

of a new diagnosis for each of the following autoimmune diseases:

systemic lupus erythematosus, rheumatoid arthritis, mixed

connective tissue disease, Sjögren’s syndrome, cutaneous

vasculitis, hypersensitivity angiitis, autoimmune thyroiditis,

Graves’ disease, Crohn’s disease, celiac disease, polymyalgia

rheumatica, idiopathic inflammatory myopathies, autoimmune

hepatitis, and systemic sclerosis (see Table 3).
Effect of any COVID-19 vaccination on
incident autoimmune disease risk after
COVID-19

Of 1,953,971 patients with COVID-19 and without a history of

autoimmune disease, 159,306 (8.2%) had documentation of any

COVID-19 vaccination in the TriNetX database. The adjusted risk

ratio of any new autoimmune disease diagnosis within 1 year of the

index date was 1.18 (95% CI 1.10–1.27) for those who received

vaccination vs. those with no documentation of vaccination (see

Supplementary Figure 3 for flowchart with absolute numbers). In

assessing this for each separate autoimmune disease, increased risk

post-COVID-19 in those vaccinated compared to those with no

documentation of vaccination was only apparent for celiac disease

(adjusted risk ratio 1.80 (95% CI 1.22–2.65)), autoimmune

thyroiditis (1.70 (1.37–2.11)), Sjögren’s syndrome (1.54 (1.16–

2.04)), psoriasis (1.42 (1.21–1.66)), and ulcerative colitis (1.40

(1.09–1.80)). The risk of polymyalgia rheumatica was similar

regardless of vaccination status. No autoimmune disease was less

common post-COVID-19 in those who received vaccination when

compared with those with no documentation of vaccination. See

Supplementary Table 4 for the incidence of each autoimmune

disease assessed overall and by group and adjusted risk ratios.
TABLE 2 Continued

Overall
N = 3,908,592

COVID-19
n = 1,954,296

No COVID-19
n = 1,954,296

Adjusted risk ratio
(95% CI)

Sjögren’s syndrome 1,811 (0.046%) 910 (0.047%) 901 (0.046%) 1.01 (0.92–1.11)

Idiopathic inflammatory myopathies 261 (0.007%) 130 (0.007%) 131 (0.007%) 0.99 (0.78–1.27)

Rheumatoid arthritis 5,618 (0.144%) 2,740 (0.140%) 2,878 (0.147%) 0.95 (0.90–1.00)

Axial or peripheral spondylitis 616 (0.016%) 298 (0.015%) 318 (0.016%) 0.94 (0.80–1.10)

Autoimmune hepatitis 370 (0.009%) 179 (0.009%) 191 (0.010%) 0.94 (0.76–1.15)

Systemic sclerosis 358 (0.009%) 172 (0.009%) 186 (0.010%) 0.93 (0.75–1.14)

Adult-onset Still’s disease 31 (0.001%) 14 (0.001%) 17 (0.001%) 0.82 (0.41–1.67)
Groups are matched by propensity score. Propensity scoring included age, male sex, and female sex. People with any prevalent autoimmune diseases prior to or within 1 month after the index
date were excluded from this analysis prior to propensity score matching.
CNS, central nervous system; ANCA, anti-neutrophil cytoplasmic antibodies.
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A

B

FIGURE 2

(A) Adjusted risk ratio for autoimmune disease post-COVID-19 during Omicron vs. pre-Delta variant timeframes. (B) Adjusted risk ratio for
autoimmune disease post-COVID-19 during Omicron vs. Delta variant timeframes.
TABLE 3 Risk of autoimmune disease by ANA status.

Positive
ANA

n = 991

Negative or
no ANA
n = 991

Adjusted
risk ratio
(95% CI)

Any
autoimmune disease

119
(12.000%)

≤10 (1.009%) 11.90
(6.28–22.55)

Systemic
lupus erythematosus

28 (2.825%) 0 (0%) –

Rheumatoid arthritis 32 (3.229%) ≤10 (1.009%) 3.20 (1.58–6.47)

Mixed connective
tissue disease

19 (1.917%) 0 (0%) –

Sjögren’s syndrome 17 (1.715%) 0 (0%) –

(Continued)
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TABLE 3 Continued

Positive
ANA

n = 991

Negative or
no ANA
n = 991

Adjusted
risk ratio
(95% CI)

Cutaneous vasculitis ≤10
(1.009%)

0 (0%) –

Hypersensitivity
angiitis

≤10
(1.009%)

0 (0%) –

Autoimmune
thyroiditis

≤10
(1.009%)

0 (0%) –

Graves’ disease ≤10
(1.009%)

0 (0%) –

Crohn’s disease ≤10
(1.009%)

0 (0%) –

(Continued)
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Discussion

This is the first study of this magnitude of incident autoimmune

disease including timeframes where circulating SARS-CoV-2 strains

including more recent Omicron variants predominated. We

demonstrate that COVID-19 diagnosis was associated with an

increased risk of autoimmune disease in the year after infection,

and notably, a positive ANA test was more likely after COVID-19

and predicted risk of new-onset autoimmune diseases.

Our finding of an increase in cutaneous vasculitis and

polyarteritis after COVID-19 infection is not unexpected given

that cutaneous small-vessel vasculitis or capillaritis such as

leukocytoclastic vasculitis is frequently associated with perinuclear

anti-neutrophil cytoplasmic antibodies (p-ANCA) and antibodies

against myeloperoxidase (anti-MPO) and is seen after a variety of
Frontiers in Immunology 0714
infections (streptococcal and hepatitis infection in Henoch–

Schonlein purpura) and environmental insults (levamisole in

therapeutic and illicit drugs) (7, 8). These diseases also may be

accompanied by autoantibodies to cytoplasmic ANCA (c-ANCA)

as well as anti-phospholipid antibodies (a major cause of clots

following COVID-19 infection). Cutaneous and systemic

polyarteritis have both been reported in association with genetic

deficiency of adenosine deaminase-2 (DADA2). Adenosine

deaminase-2 (ADA2) function(s) are not entirely known, but the

protein does appear to contribute to vascular integrity. High levels

of ADA2 have been reported in association with infectious and

inflammatory illnesses (9) including macrophage activation

syndrome in systemic-onset juvenile idiopathic arthritis (10).

DADA2 also has been associated with the activation of alpha

interferon-associated genes, but any interrelationship between

these two states has not been described yet in COVID-19.

Of those with COVID-19, the risk of having been hospitalized

within 10 days of COVID-19 diagnosis was higher for people who

developed autoimmune disease after COVID-19 than people who

did not develop autoimmune disease. This suggests that those who

developed autoimmune disease may have had more severe

manifestations of COVID-19 than people who did not develop

autoimmune disease. Further, prior to vaccination and treatment

availability, individuals with genetic risk factors for systemic lupus

erythematosus (similar to those with pre-formed anti-cytokine

antibodies) may have been at increased risk of life-threatening

COVID-19 infection and mortality, potentially resulting in the

underrepresentation of systemic lupus erythematosus in COVID-

19 survivors when analyzing later timeframes in context of

predominant SARS-CoV-2 circulating strains.

The effect of differing circulating strains on the advent of post-

acute sequelae of SARS-CoV-2 (PASC) has been previously

investigated. Whether PASC is defined by the persistence of

symptoms months after a COVID-19 infection or by new-onset

health conditions linked to COVID-19, such as new-onset diabetes

and cardiovascular disease, Omicron variants appear to be

associated with lesser risk than earlier strains (11–15). Our study

extends these observations of the potentially less pathogenic nature

of Omicron variants to new-onset autoimmune diseases following

COVID-19.

Another interesting observation in our study is the apparent

increased risk of certain autoimmune diseases after vaccination. In

contrast to our observation of autoimmune disease, studies have

shown that vaccination is protective against PASC symptoms and

incident diabetes after COVID-19 infection (11, 16, 17). New-onset

autoimmune phenomena have been described post-COVID-19

vaccination (including immune-mediated hepatitis after COVID-

19 vaccination), not all of which have a clear causal relationship

established (18–20). Using real-world electronic health record data

is more prone to underreporting of vaccination status, which may

explain the low vaccination numbers in our study. That said, more

studies are needed to better define the risk of autoimmune disease

after vaccination.

The finding that ANA positivity is more common after COVID-

19 infection and is predictive of new-onset autoimmune disease is
TABLE 3 Continued

Positive
ANA

n = 991

Negative or
no ANA
n = 991

Adjusted
risk ratio
(95% CI)

Celiac disease ≤10
(1.009%)

0 (0%) –

Polymyalgia
rheumatica

≤10
(1.009%)

0 (0%) –

Idiopathic
inflammatory
myopathies

≤10
(1.009%)

0 (0%) –

Autoimmune hepatitis ≤10
(1.009%)

0 (0%) –

Systemic sclerosis ≤10
(1.009%)

0 (0%) –

Type 1
diabetes mellitus

≤10
(1.009%)

≤10 (1.009%) 1 (0.42–2.39)

Ulcerative colitis ≤10
(1.009%)

≤10 (1.009%) 1 (0.42–2.39)

Psoriasis ≤10
(1.009%)

≤10 (1.009%) 1 (0.42–2.39)

Sarcoidosis ≤10
(1.009%)

≤10 (1.009%) 1 (0.42–2.39)

Axial or
peripheral spondylitis

≤10
(1.009%)

≤10 (1.009%) 1 (0.42–2.39)

Polyarteritis nodosa 0 (0%) 0 (0%) –

CNS arteritis 0 (0%) 0 (0%) –

Reactive arthritis 0 (0%) 0 (0%) –

ANCA
associated vasculitis

0 (0%) 0 (0%) –

Adult-onset
Still’s disease

0 (0%) 0 (0%) –
Groups are matched by propensity score. Propensity scoring included age, male sex, and
female sex. People with any prevalent autoimmune diseases or positive ANA test prior to or
within 1 month after the index date were excluded from this analysis prior to propensity
score matching.
ANA, antinuclear antibody; CNS, central nervous system; ANCA, anti-neutrophil
cytoplasmic antibodies.
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noteworthy. In contrast to the often transient positivity of

antiphospholipid antibodies, p-ANCA, anti-MPO, and

autoantibodies to rheumatoid arthritis and systemic lupus

erythematosus may be present for 8 years or more prior to the

onset of incident autoimmune disease (21, 22). This implies that if

autoantibodies are present at increased frequency, the incidence of

autoantibody disease may rise over longer periods of time, and our

estimates of the frequency of autoimmunity may vastly

underestimate the effect of COVID-19 on incident autoimmunity

in long-term studies. Further, if Omicron variants overly induce

lower levels of innate immune activation and subsequently less

stimulation of B and T cells, it may take longer to induce similar

levels of autoantibodies and T-cell derangements. It is therefore

impossible to exclude the possibility that there will be a longer lag in

the onset of new autoimmune disease following infection with the

Omicron variants compared to Alpha/Delta SARS-CoV-2 and that

ultimately, the rates of autoimmune disease may be similar to those

seen with all the SARS-CoV-2 variants. Our report undoubtedly

includes some patients in the control group who were

asymptomatic for COVID-19 and who were neither tested for

COVID-19 nor recognized as having COVID-19. This could lead

to type II error, as some patients who developed COVID-19-related

autoimmune disease may have been misclassified as having been

COVID-19 uninfected, leading to smaller effect sizes regarding the

risk of autoimmune disease after COVID-19. Importantly, our

study also differs from prior reports from TriNetX that required

either a positive or negative polymerase chain reaction test to be

available for the analyses and focused only on the pre-Omicron era

of COVID-19 (January 2020–December 2021) (23). In that way, our

results are more generalizable, as they reflect the aggregation of the

effects of pre-Delta, Delta, and Omicron variants of COVID-19 with

comparisons for incident autoimmune disease and can be re-run at

intervals for many years to come.

In addition, ANAs have been classified historically using

indirect immunofluorescence assays (IFAs) mostly on the human

epidermoid carcinoma (Hep2) cell line to detect nuclear

localization, and ANA by IFA was used to define ANA positivity

in our study. However, many laboratories have switched to a

multiplex assay to measure autoantibodies directly by the target

antigen. Clinicians may conclude that an ANA is positive when

autoantibodies measure an antigen in the cocktail and may or may

not obtain concomitant or subsequent ANA by IFA on the Hep2

cell line to detect nuclear autoantibodies. This is important, as

multiplex assays may result in overdiagnosis of autoimmune disease

based on a single autoantibody specificity, as positive autoantibody

status is sometimes equated to a clinical diagnosis of autoimmunity

by non-rheumatologists. This is particularly relevant to anti-U1-

ribonucleoprotein (anti-RNP), which accompanies a high-titer

ANA by IFA for classification as mixed connective tissue disease

but is seen frequently at low levels in the current multiplex

technology used across multiple centers. The specificity of low-

titer reactivity by multiplex as predictive of future autoimmune

disease has never been established, but such low-titer antibodies are
Frontiers in Immunology 0815
observed frequently after COVID-19. Whether any of the anti-

SARS-CoV-2 protein antibodies cross-react with antigens in the

multiplex assays and therefore wane over time also is a topic ripe

for exploration.

A strength of this analysis included the use of TriNetX to

analyze data from a large population encompassing 74 healthcare

organizations throughout the globe. However, we should recognize

that we were unable to adjust for all potential confounders.

Limitations of our study are similar to other large studies using

electronic health record-derived data and include reliance on ICD-

10 diagnoses for disease classification, which may have led to some

misclassification. Similarly, we relied on electronic health record

data for diagnosis of COVID-19 infection, which may have

misclassified some asymptomatic COVID-19 infections as

uninfected controls. However, if the latter is true, the effect of

COVID-19 infection on incident autoimmune disease may have

been underestimated. Further, as with all studies assessing new

health conditions after COVID-19, we cannot rule out the

possibility that some apparent incident autoimmune diseases were

actually flares of previously undiagnosed disease, nor can we rule

out potential relation with disproportionate stress. Finally, while

Omicron may relate to reduced pathogenesis regardless of

vaccination and prior infection status when compared to Delta

(23), the role of innate and adaptive immunity in new-onset

autoimmune disease after COVID-19 in the context of key

variants is yet to be determined. Despite these limitations,

however, the major strengths of our study lie in the fact that we

have carefully captured the emergence of new-onset autoimmune

disease following COVID-19 in a large-scale study. Importantly,

our study differs from a prior report from TriNetX that required

either a positive or negative polymerase chain reaction test to be

included in the analyses and focused only on the pre-Omicron era

of COVID-19 (January 2020–December 2021) (24), whereas our

report reflects comparison and aggregation of the effects of pre-

Delta, Delta, and Omicron variants of COVID-19 on incident

autoimmune disease.

In summary, several autoimmune diseases were more likely to

be diagnosed within the first year after COVID-19 than in age- and

sex-matched controls. The risk of new-onset autoimmune diseases

after COVID-19 appears to be attenuated with the more recent

Omicron strains. Positive ANA test is more common after COVID-

19 and is predictive of incident autoimmune diseases. This suggests

that SARS-CoV-2 may be a trigger for certain autoimmune diseases.

Future work must focus on longer-term observational cohorts and

should assess the persistence and predictive value of different

measured autoantibodies.
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Identifying antinuclear antibody
positive individuals at risk for
developing systemic
autoimmune disease:
development and validation of a
real-time risk model
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Katherine Walker1, Audrey Anderson1, Lannawill Caruth1,
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Center, Nashville, TN, United States, 2Department of Biomedical Informatics, Vanderbilt University
Medical Center, Nashville, TN, United States, 3Department of Biostatistics, Vanderbilt University
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Objective: Positive antinuclear antibodies (ANAs) cause diagnostic dilemmas

for clinicians. Currently, no tools exist to help clinicians interpret the significance

of a positive ANA in individuals without diagnosed autoimmune diseases.

We developed and validated a risk model to predict risk of developing

autoimmune disease in positive ANA individuals.

Methods: Using a de-identified electronic health record (EHR), we randomly

chart reviewed 2,000 positive ANA individuals to determine if a systemic

autoimmune disease was diagnosed by a rheumatologist. A priori, we

considered demographics, billing codes for autoimmune disease-related

symptoms, and laboratory values as variables for the risk model. We performed

logistic regression and machine learning models using training and

validation samples.

Results: We assembled training (n = 1030) and validation (n = 449) sets. Positive

ANA individuals who were younger, female, had a higher titer ANA, higher platelet

count, disease-specific autoantibodies, and more billing codes related to

symptoms of autoimmune diseases were all more likely to develop

autoimmune diseases. The most important variables included having a disease-

specific autoantibody, number of billing codes for autoimmune disease-related

symptoms, and platelet count. In the logistic regression model, AUC was 0.83

(95% CI 0.79-0.86) in the training set and 0.75 (95% CI 0.68-0.81) in the

validation set.
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Conclusion: We developed and validated a risk model that predicts risk for

developing systemic autoimmune diseases and can be deployed easily within the

EHR. The model can risk stratify positive ANA individuals to ensure high-risk

individuals receive urgent rheumatology referrals while reassuring low-risk

individuals and reducing unnecessary referrals.
KEYWORDS

antinuclear antibodies, electronic health record, riskmodel, autoimmune disease, rheumatology
1 Introduction

Positive antinuclear antibodies (ANAs) cause diagnostic

dilemmas for clinicians across multiple specialties (1–3).

Currently, no clinically available or validated tools exist to help

clinicians determine the significance of a positive ANA. While a

positive ANA serves as a diagnostic criterion for multiple

autoimmune diseases, the test alone only has a 11% positive

predictive value for systemic autoimmune disease (4). In US

studies, rates of positive ANAs in the general population without

autoimmune disease range from 14% to 27% (5, 6).

Frequent, inappropriate ordering of ANA testing has been

recognized as a clinical problem by the American Board of Internal

Medicine and the American College of Rheumatology in their

“Choosing Wisely” campaign. Specifically, it is recommended to

not order an ANA test unless specific symptoms for an

autoimmune disease are present (7, 8). Up to 22% of all

rheumatology referrals are for a positive ANA (1, 9). Only 11-20%

of individuals with a positive ANA have an autoimmune disease

diagnosed at referral (4, 10–13). Frequent ANA referrals in the setting

of an international shortage of pediatric and adult rheumatologists

(14–16) contribute to inefficient use of limited resources and lengthen

wait times for rheumatology consultation (1, 9, 12).

Triage systems and electronic consultations have attempted to

tackle the problem of frequent ANA referrals with limited success (12,

17–20). Risk models have been developed for systemic lupus

erythematosus (SLE) (21, 22) but not for multiple systemic

autoimmune diseases associated with a positive ANA. We aimed to

develop and validate a robust risk model for use in the rheumatology

clinic that uses readily available data in the electronic health record

(EHR) to identify which individuals with a positive ANA are at high

and low risk for developing systemic autoimmune disease.
2 Methods

2.1 Data source and patient selection

After receiving approval from the Vanderbilt University Medical

Center (VUMC) IRB (#210189), we used the Synthetic Derivative, a

de-identified version of the EHR that contains billing code and
0219
clinical data on over 3.6 million individuals spanning across three

decades (23). Records from outside VUMC are not available.

We assembled all individuals within the Synthetic Derivative who

had a positive ANA, defined as a titer ≥ 1:80 (Supplementary

Figure 1). For ANA testing, the Hep-2 immunofluorescence assay

was used for the entire study period (Appendix). We selected a

random sample of 2,000 individuals with a positive ANA to perform

chart review to assess for the model outcome and collect covariates.

Model outcome was defined as developing a systemic autoimmune

disease diagnosed by a rheumatologist, as EHR notes often lack

systematic documentation of disease criteria (24). We performed

chart review for development of systemic autoimmune disease from

time of first positive ANA up to ten years later or individual’s last

EHR interaction. We allowed up to ten years, as individuals with

autoimmune diseases can face significant diagnostic delays (25).

Systemic autoimmune diseases are listed in Supplementary Table 1.

In addition to diseases classically associated with a positive ANA (i.e.,

SLE, Sjogren’s, systemic sclerosis, mixed connective tissue disease,

and idiopathic inflammatory myopathies), we included other

systemic autoimmune diseases such as rheumatoid arthritis (RA)

and seronegative conditions (i.e., psoriatic arthritis, ankylosing

spondylitis). Since the risk model will be used for triage to the

rheumatology clinic, we aimed to include individuals with systemic

autoimmune diseases who would be followed in that setting. While

the ANA is not part of clinical criteria for these conditions, the ANA

test is still frequently ordered in the evaluation of symptoms for these

conditions (26). We excluded individuals with organ-specific

autoimmune diseases such as autoimmune thyroiditis and

autoimmune hepatitis, who would not be primarily managed by a

rheumatologist. Individuals diagnosed outside of VUMC were

included only if notes documented the individual was seen by an

outside rheumatologist. For our primary analysis, we only analyzed

individuals who were incident cases, defined as newly diagnosed with

systemic autoimmune diseases at VUMC.
2.2 Model development

Based on clinical relevance and published SLE risk models (21,

22), prespecified predictors included demographics, laboratory

values, and billing codes up to the time of first positive ANA
frontiersin.org
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(Supplementary Table 2). Specifically, billing codes captured signs

and symptoms for autoimmune diseases. A collection timeline for

model covariates and outcome is detailed in Figure 1. Model

outcome was developing a systemic autoimmune disease

diagnosed by a rheumatologist within 10 years of first positive

ANA (25).

Age was defined as age at first positive ANA documented at

VUMC. The Synthetic Derivative defines race and ethnicity using a

mixture of self-report and administrative entry with a fixed set of

categories in accordance with NIH terminology. Studies have

validated that these race and ethnicity assignments reflect self-

report and genetic ancestry (27). For our primary analysis, race was

initially excluded from the model as it was not significant in

univariate analyses. Studies have shown that risk models that

include race could potentially disadvantage high-risk groups from

receiving appropriate care (28, 29). We performed a sensitivity

analysis where race was included in the model, as studies

demonstrate an increased risk of developing autoimmune disease

in racial and ethnic underserved populations (1, 5).

We examined laboratory values one year prior to the date of the

first positive ANA to allow for adequate data capture for individuals

in the EHR and up to one month after to ensure capture of send-out

studies such as the myositis antibody panel. We included

autoantibodies associated with multiple autoimmune diseases

(Supplementary Table 3). Autoantibodies were measured via

enzyme-linked immunosorbent assays with manufacturer values

to determine positivity (Appendix). We selected white blood cell

count, platelet count, and serum creatinine as leukopenia,

thrombocytopenia, and elevated serum creatinine have all been

associated with autoimmune diseases (22, 30, 31). In SLE risk

models (21, 22) and studies assessing presence of autoimmune

diseases in positive ANA individuals (30, 31), leukopenia and

thrombocytopenia were important predictors. Therefore, when

examining multiple laboratory values for an individual, we

selected the lowest white blood cell and platelet counts within the

study period. For serum creatinine, we used the highest value within

the study period to simulate how a rheumatologist might review lab

trends. These values were treated as continuous variables. For

missing laboratory values, we used median value imputation, as

this method has been shown to be comparable to multiple

imputation and is more feasible in real-time predictive models

(32). We included ANA titer, as higher ANA titers are associated

with risk of developing autoimmune disease (9, 30). Reporting of
Frontiers in Immunology 0320
ANA titers are detailed in the Appendix. Briefly, ANA titer was

dichotomized to 1:80 and ≥ 1:160 categories due to limited

reporting of titers in some of the historical data. While different

ANA patterns may have associations with different systemic

autoimmune diseases (33), we did not include ANA pattern.

ANA patterns are not reported in a standardized fashion at our

institution according to the International Consensus on ANA

patterns (33). Multiple or inconsistent patterns are often reported,

particularly in the setting of changing technology over the study

period. Further, as pattern is reported as a text variable, extraction

from the EHR in real-time to input into the risk model would

be challenging.

We used both ICD-9 and ICD-10-CM billing codes to capture

signs and symptoms for systemic autoimmune diseases

(Supplementary Table 4). These codes were significant in a UK

SLE risk model (21) and were expanded upon to ensure capture of

signs and symptoms for multiple autoimmune diseases in addition

to SLE. Similar to the UK model, we searched for billing codes up to

five years prior to the date of first positive ANA (21). In model

development, we had an insufficient sample size to fit a model with a

unique predictor for each billing code, so we created a single

aggregated variable (Supplementary Table 5).
2.3 Statistical analysis

We derived separate training and validation sets using 2,000

positive ANA individuals. We estimated that 10-15% of our 2,000

positive ANA individuals would have an incident autoimmune

disease (4, 10–13), leading to 200-300 cases for the training and

validation sets combined. To prevent overfitting and applying the

rule of 10-15 outcomes per one degree of freedom (34), we fit a

logistic regression model with 13 degrees of freedom. Prespecified

variables are shown in Supplementary Table 2. Total number of

visits, white blood cell count, and serum creatinine were collinear

with included model variables and were removed from the final

model. We performed logistic regression using the following

predictors: age at time of first positive ANA, sex, ANA titer,

platelet count, and billing codes. Final model formula is in

Supplementary Figure 2. We also performed machine learning

methods including extreme gradient boosting (XGB) (35–37) and

neural networks. Hyperparameters are in the Appendix. We

assessed model performance in the training and validation sets

using c-statistic, Brier score, and calibration curves.
2.4 Model validation

We conducted an internal validation of the logistic regression

model using a bootstrap with 200 replications (38, 39). The

bootstrap validation can test the stability of a model across

different samples. In addition, a random selection of individuals,

separate from the training set, was set aside as a “hold-out” for

model validation (Supplementary Figure 1). Specifically, we

estimated needing 100-200 incident autoimmune disease cases to

avoid overfitting our model. To achieve this sample, we used 1384
FIGURE 1

Timeline of model covariates. We assessed billing codes up to 5
years prior to the first positive antinuclear antibody (ANA) test.
Laboratory values were assessed up to 1 year and 1 month after the
ANA test. We conducted chart review for the model outcome of
developing a systemic autoimmune disease diagnosed by a
rheumatologist up to 10 years after the first positive ANA test.
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individuals of which 1030 incident individuals were used for

analysis, resulting in 152 incident cases. We then used the

remainder of the original 2,000 set for a validation set with 616

individuals, of which 449 incident individuals were used for

analysis, resulting in 74 incident cases.
2.5 Sensitivity analyses and deployment
feasibility assessment

For our primary analysis, we excluded subjects with “unclear”

autoimmune diagnoses. In a sensitivity analysis, we treated

“unclear” subjects as not cases. We also included a sensitivity

analysis where race was included with categories of White, Black,

and Other. To account for longitudinal and censored data, we

conducted a Cox proportional-hazard model using the same

variables as the logistic regression model. Outcome was time from

first positive ANA to either autoimmune disease diagnosis or last

EHR follow-up (Appendix). We initially dichotomized ANA titer to

1:80 and ≥ 1:160 categories due to historical reporting in some of

our data (Appendix). We then conducted a sensitivity analysis using

more recent data (2017-2021) that incorporated multiple categories
Frontiers in Immunology 0421
for the ANA titer (1:80, 1:160, 1:320, 1:640, 1:1280, and ≥ 1:2560).

We also conducted sensitivity analyses where seronegative

conditions were not counted as a case (Appendix).

We applied our logistic regression model to data extracted from

our EHR-provided data warehouse (Epic Clarity) to assess

feasibility of deploying the model in real-time. We calculated risk

probabilities for systemic autoimmune disease for individuals with a

positive ANA from 2017-2021. This time period captured the

updated ANA titer reporting to the most current data available at

time of analysis.
3 Results

3.1 Individual characteristics

Training (n = 1030) and validation (n = 449) sets are compared

in Table 1 with individuals having similar characteristics. In the

training set, 15% (n = 152) of individuals with a positive ANA

developed a systemic autoimmune disease. Individuals with

systemic autoimmune diseases were younger (41.8 ± 21.5 vs. 47.9

± 19.3 years, p = 0.003), more likely to be female (84% vs. 70%, p <
TABLE 1 Characteristics of incident positive ANA individuals in training and validation sets.

Characteristics Training set
n = 1030

Validation set
n = 449

p value*

Autoimmune disease % (n) 15% (152) 16% (74) 0.40

Age at positive ANA, years
mean ± SD

47.0 ± 19.8 48.0 ± 20.3 0.44

Race % (n)†

White 85% (807) 85% (355)
0.88

African American 12% (113) 12% (50)

Asian 2% (16) 1% (5)

Other 1% (11) 1% (5)

Ethnicity†

Hispanic 3% (32) 3% (11)
0.46

Not Hispanic or Latino/a 97% (889) 97% (397)

Sex

Female 72% (739) 74% (333) 0.34

ANA titer‡

1:80 20% (202) 19% (87) 0.92

≥ 1:160 80% (828) 81% (362)

White blood cell count†

K/uL, Mean ± SD
6.9 ± 3.4 6.9 ± 2.9 0.88

Platelet count†

K/uL, Mean ± SD
235 ± 100 233 ± 92 0.58

Serum creatinine†

mg/dL, Mean ± SD
1.1 ± 0.9 1.2 ± 1.4 0.25

Ever present autoantibody§ % (n) 15% (155) 15% (68) 0.96

(Continued)
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0.001), have a higher ANA titer (≥1:160 vs. 1:80) (90% vs. 79%, p =

0.002), lower serum creatinine (0.9 ± 0.6 vs. 1.2 ± 1.0 mg/dL, p

< 0.001), higher platelet count (274 ± 113 vs. 229 ± 96 K/uL, p <

0.001), and a disease-specific autoantibody (51% vs. 9%, p < 0.001)

(Table 2). No significant differences were found in race, ethnicity, or
Frontiers in Immunology 0522
white blood cell count in individuals with vs. without systemic

autoimmune diseases. Individuals with systemic autoimmune

disease had a higher count of the nine billing code categories

(scale 0 to 9) compared to individuals without disease (0.9 ± 0.9

vs. 0.6 ± 0.8, p < 0.001). Individuals with systemic autoimmune
TABLE 1 Continued

Characteristics Training set
n = 1030

Validation set
n = 449

p value*

Total any billing codes mean ± SD 30 ± 60 37 ± 71 0.27

Count of specific billing codes|| mean ± SD 0.7 ± 0.8 0.8 ± 0.9 0.01

Alopecia % (n) 2% (21) 1% (6) 0.35

Arthritis 26% (264) 31% (140) 0.03

Fatigue 20% (207) 23% (104) 0.18

Interstitial Lung Disease 1% (14) 2% (11) 0.14

Pulmonary Hypertension 1% (11) 1% (6) 0.66

Rash 9% (97) 9% (42) 0.97

Raynaud’s 2% (19) 3% (12) 0.31

Serositis 4% (40) 5% (23) 0.28

Sicca 0.3% (3) 1% (5) 0.05
fr
*Mann-Whitney U test for continuous variables and chi-square test for categorical variables. P values calculated with excluding missing observations.
†Race, ethnicity, and lab values have missing data with 81 (8%) for race, 109 (11%) for ethnicity, 201 (20%) for white blood cell count, 211 (20%) for platelet count, and 210 (20%) for serum
creatine in the training set. In the validation set, 32 (7%) for race, 41 (9%) for ethnicity, 91 (20%) for white blood cell count, 95 (21%) for platelet count, and 100 (22%) for serum creatine.
‡For ANA titer, up until July 1, 2016, titers were reported as 1:40 (negative), 1:80, and ≥ 1:160. After this date, titers were then reported as 1:40 (negative), 1:80, 1:160, 1:320, 1:640, 1:1280,
and 1:2560.
§Presence of other autoantibodies included rheumatoid factor, cyclic citrullinated peptide, SSA (Ro), SSB (La), scl-70, centromere, RNP, Smith, dsDNA, ANCA, Jo-1, or any antibody from the
myositis antibody panel.
||See Supplementary Table 4 for full list of ICD-9 and ICD-10-CM billing codes and Supplementary Table 5 for details on scoring. For each individual, we counted if any billing code was ever
present (1 for present, 0 for absent) for each of the nine categories (i.e., arthritis, fatigue) and then summed this up across the nine prespecified billing code categories for a maximum score of nine.
TABLE 2 Characteristics of positive ANA individuals with vs. without systemic autoimmune disease in the training set.

Characteristics No systemic autoimmune
disease
n = 878

Systemic autoimmune
disease
n = 152

Proportion with systemic
autoimmune

disease*

p
value†

Age at positive ANA, years, mean
± SD

47.9 ± 19.3 41.8 ± 21.5 ·· 0.003

Race % (n)‡

White 85% (680) 85% (127) 16%
0.26

African American 12% (94) 13% (19) 17%

Asian 2% (16) 0% (0) 0%

Native American 0.1% (1) 1% (1) 50%

Other 1% (10) 1% (1) 9%

Ethnicity‡

Hispanic 4% (30) 1% (2) 6%
0.13

Not Hispanic or Latino/a 96% (744) 99% (145) 16%

Sex
Female 70% (612) 84% (127) 17%

< 0.001

Male 30% (266) 16% (25) 9%

(Continued)
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disease were more likely to have billing codes for arthritis (40% vs.

23%, p < 0.001) and Raynaud’s phenomenon (5% vs. 1%, p = 0.006)

but not the other seven code categories.

Of the 152 individuals with systemic autoimmune diseases, the

most frequent diagnoses were SLE at 18% (n = 28) followed by other

at 16% (n = 24), undifferentiated connective tissue disease at 16%

(n = 24), and RA at 15% (n = 22) (Supplementary Table 6). Other

consisted of psoriatic arthritis, unspecified inflammatory arthritis,

and inflammatory bowel disease (Supplementary Table 6).

Individuals with unclear diagnoses of systemic autoimmune

disease (n = 66) were excluded from the primary analysis but are

described in Supplementary Table 7. For individuals without
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systemic autoimmune diseases, when available alternative

diagnoses were documented by rheumatologists, the most

frequent diagnoses were fibromyalgia (n = 18), osteoarthritis

(n = 11), and gout (n = 6) (Supplementary Table 8).
3.2 Model description and validation

The final model included age at first positive ANA, sex, ANA

titer, presence of another autoantibody, platelet count, and billing

code category count. Age was fit with a three-knot restricted cubic

spline and interacted with sex and was prespecified based on prior
frontiersin.or
TABLE 2 Continued

Characteristics No systemic autoimmune
disease
n = 878

Systemic autoimmune
disease
n = 152

Proportion with systemic
autoimmune

disease*

p
value†

ANA titer§

1:80 21% (186) 11% (16) 8%
0.002

≥ 1:160 79% (692) 90% (136) 16%

White blood cell count‡

K/uL, mean ± SD 6.9 ± 3.4 7.1 ± 3.2 ·· 0.49

Platelet count‡

K/uL, mean ± SD
229 ± 96 274 ± 113 ·· <0.001

Serum creatinine‡

mg/dL, mean ± SD
1.2 ± 1.0 0.9 ± 0.6 ·· <0.001

Ever present autoantibody||

No 91% (800) 49% (75) 9% <0.001

Yes 9% (78) 51% (77) 50%

Total any billing codes, mean ± SD 32 ± 62 23 ± 43 ·· 0.02

Count of specific billing codes,¶

mean ± SD
0.6 ± 0.8 0.9 ± 0.9 ·· < 0.001

Alopecia 2% (16) 3% (5) 24% 0.24

Arthritis 23% (203) 40% (61) 23% < 0.001

Fatigue 19% (169) 25% (38) 18% 0.10

Interstitial Lung Disease 2% (13) 1% (1) 7% 0.42

Pulmonary Hypertension 1% (9) 1% (2) 18% 0.26

Rash 9% (81) 11% (16) 17% 0.61

Raynaud’s 1% (12) 5% (7) 37% 0.006

Serositis 4% (34) 4% (6) 15% 0.97

Sicca 0.3% (3) 0% (0) 0% 0.47
*Overall percentage of individuals with systemic autoimmune disease is 14.8%. P values calculated with excluding missing observations.
†Mann-Whitney U test for continuous variables and chi-square test for categorical variables.
‡Race, ethnicity, and lab values have missing data with 81 (8%) for race, 109 (11%) for ethnicity, 201 (20%) for white blood cell count, 211 (20%) for platelet count, and 210 (20%) for
serum creatine.
§For ANA titer, up until July 1, 2016, titers were reported as 1:40 (negative), 1:80, and ≥ 1:160. After this date, titers were then reported as 1:40 (negative), 1:80, 1:160, 1:320, 1:640, 1:1280,
and 1:2560.
||Presence of other autoantibodies included rheumatoid factor, cyclic citrullinated peptide, SSA (Ro), SSB (La), scl-70, centromere, RNP, Smith, dsDNA, ANCA, Jo-1, or any antibody from the
myositis antibody panel.
¶See Supplementary Table 4 for full list of ICD-9 and ICD-10-CM billing codes and Supplementary Table 5 for details on scoring. For each individual, we counted if any billing code was ever
present (1 for present, 0 for absent) for each of the nine categories (i.e., arthritis, fatigue) and then summed this up across the nine prespecified billing code categories for a maximum score of nine.
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literature (21). Our data demonstrated a higher probability of

systemic autoimmune disease in female vs. male individuals at

younger ages but a similar probability at older ages (Supplementary

Figure 3). The most important variables in the model were presence

of another autoantibody (i.e., dsDNA), billing code category count,

and platelet count (Figure 2). Model AUC was 0.83 (95% CI 0.79-

0.86) (Figure 3A) with a Brier score of 0.10 and calibration shown in

Figure 3B. XGBoost resulted in an AUC of 0.94 (95% CI 0.91-0.95)

and neural networks with an AUC of 0.83 (95% CI 0.79-0.87).

Based on the internal bootstrap validation, the logistic

regression model was stable and robust (Appendix). For the

validation set (n = 449), 16% of individuals had systemic

autoimmune disease (Supplementary Table 9). For the logistic

regression model, AUC was 0.75 (95% CI 0.68-0.81) (Figure 3C)

with a Brier score of 0.12 with calibration shown in Figure 3D.

XGBoost resulted in an AUC of 0.72 (95% CI 0.65-0.78) and neural

networks with an AUC of 0.74 (95% CI 0.68-0.81).
3.3 Sensitivity analyses

Race was included in the model with categories of White, Black,

and Other resulting in an AUC of 0.83 (95% CI 0.79-0.87). When

individuals of unclear case status for systemic autoimmune disease

were counted as non-cases, model AUC was 0.80 (95% CI 0.76-

0.83). When these unclear individuals were counted as cases, model

AUC was 0.74 (95% CI 0.71-0.77). The distribution of model risk

scores for these unclear individuals most closely matched

individuals who were not cases (Supplementary Figure 4). For the

Cox model with the outcome time to autoimmune diagnosis, model

predictors behaved similarly to the logistic regression model

(Supplementary Figure 5).

To reflect more updated ANA titer reporting, we used a cohort

of individuals with a positive ANA from 2017 to 2021 (n = 584)

(Appendix) to perform additional sensitivity analyses. For the 2017-

2021 cohort, there was a significant difference in the distribution of
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ANA titers between cases and non-cases (p < 0.001). Of the cases,

40% had an ANA titer greater than 1:640, while 18% of non-cases

had a titer greater than 1:640 (Supplementary Table 10). In this

cohort, using a dichotomized ANA titer (1:80 vs. ≥1:160), model

AUC was 0.85 (95% CI 0.81 – 0.90). For the model with full ANA

titer reporting (i.e., 1:80, 1:160, 1:320, 1:640, 1:1280, ≥ 1:2560),

model AUC was 0.89 (95% CI 0.84 – 0.92). Lastly, we assessed if a

higher ANA titer cutoff would impact model performance using the

above 2017-2021 cohort. We fit a model using an ANA cutoff at

1:160, which had an AUC of 0.83 (95% CI 0.78-0.87), identical to

the performance of the model using the original ANA cutoff at 1:80

(AUC of 0.83 (95% CI 0.78-0.87)).

For using an alternative case definition for systemic

autoimmune disease that did not count seronegative conditions

(i.e., psoriatic arthritis, ankylosing spondylitis) as cases, model AUC

was 0.86 (95% CI 0.83-0.89).
3.4 Distribution of risk scores by type of
autoimmune disease

We examined the distribution of model risk scores by type of

autoimmune disease (Supplementary Figure 6). Individuals with

SLE had the highest risk scores with a median of 0.481 and IQR of

0.312-0.685 followed by RA with 0.423 (0.144-0.582). Individuals

labeled as other, with predominantly seronegative conditions, had

the lowest median risk score of 0.107 (0.061-0.269). Seronegative

conditions included psoriatic arthritis, and inflammatory bowel

disease. Individuals with seropositive diseases had a higher median

risk score compared to individuals with seronegative diseases

(0.385 vs. 0.107, difference in medians = 0.278, 95% CI 0.195 –

0.332, p < 0.001).
3.5 Deployment feasibility

We assessed the feasibility of implementing the logistic

regression risk model in our Epic EHR using data for all

individuals with a positive ANA from 2017-2021 (n = 22,234).

We observed a similar distribution of risk scores in Epic compared

to our training set that used a de-identified EHR database (Synthetic

Derivative) (Supplementary Figure 7). A demonstration of how the

risk model works can be accessed at https://cqs.app.vumc.org/

shiny/AutoimmuneDiseasePrediction/ (Figure 4). A disclaimer is

included that the application is not intended for clinical practice.
4 Discussion

We developed and validated a risk model that predicts risk for

developing systemic autoimmune disease in individuals with a

positive ANA. The model is important because it utilizes readily

available clinical data in the EHR, can be deployed easily within

clinical practice, and helps risk stratify individuals with a positive

ANA, a source of frequent rheumatology referrals. Our risk model
FIGURE 2

Importance of Variables in ANA Risk Model. The list of variables in
the final ANA risk model are shown to the left with p values to the
right. The x axis shows variable importance using a Wald statistic.
Ever-present antibody refers to having a disease-specific
autoantibody such as a rheumatoid factor or dsDNA. ICD count
refers to billing code category count that ranges from 0 to 9.
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identifies high-risk individuals, who are most likely to develop a

systemic autoimmune disease, to ensure they are seen urgently for

prompt diagnosis and treatment. Our risk model also identifies low-

risk individuals who could be reassured, reducing unnecessary

rheumatology referrals.
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To our best knowledge, a risk model that focuses on individuals

with a positive ANA and predicts risk for multiple systemic

autoimmune diseases does not currently exist. One SLE risk

model used UK EHR data (21) but did not focus on positive

ANA individuals or examine risk for other autoimmune diseases.
B
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FIGURE 3

Model performance for training and validation sets. (A) shows ROC for the training set with an AUC 0.83 (95% CI 0.79-0.86). (B) shows calibration
curve with a slope of 1 and intercept of 0 for the training set. Slopes that approach 1, as shown by the shaded grey line, demonstrate ideal
calibration, agreement between predicted risk for systemic autoimmune disease and observed rate. (C) shows ROC for the validation set with an
AUC 0.75 (95% CI 0.68-0.81). (D) shows calibration curve for the validation set. Calibration slope was equal to 0.71 and intercept was equal to 0.08.
FIGURE 4

Screenshot of Shiny app for risk model for systemic autoimmune disease. The screenshot shows the risk model covariates used to estimate risk for
systemic autoimmune disease. This app demonstrates how the risk score is calculated and is not intended for clinical practice. The Shiny app can be
accessed at the following link: https://cqs.app.vumc.org/shiny/AutoimmuneDiseasePrediction/.
frontiersin.org

https://cqs.app.vumc.org/shiny/AutoimmuneDiseasePrediction/
https://doi.org/10.3389/fimmu.2024.1384229
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Barnado et al. 10.3389/fimmu.2024.1384229
In this model, billing codes such as arthritis, rash, sicca, and fatigue

were most significantly associated with risk of developing SLE along

with female sex, younger age, and a higher number of clinic visits.

We found similar results in our model and used similar billing

codes but expanded our codes to identify not just SLE but also other

systemic autoimmune diseases. Similar to the UK SLE model, we

used a non-linear age and an age-sex interaction term. Despite its

strengths, the UK SLE model had limited performance with a

positive predictive value of 7-9%, a sensitivity of 24-34%, and an

AUC of 0.75. Further, this model was not deployed in the EHR. Our

model attained a higher AUC of 0.83 and can be easily deployed in

real-time in the EHR.

Another SLE risk model from a Greek center (22) used random

forests and Lasso-LR models. Not surprisingly, clinical items from

the ACR SLE classification criteria accurately identified SLE cases

with a high model AUC. While this study had a relatively large

sample and a validation set, the model was developed using

rheumatology clinic individuals and not in a general practice

setting where there is often diagnostic dilemma. This model

would be challenging to deploy in the EHR as it relies on SLE

diagnostic criteria that may not be documented systematically, even

in rheumatology notes (24).

The most important variable in our model was having another

autoantibody in addition to the positive ANA, which is more

specific for autoimmune diseases (1–3). Individuals with disease-

specific autoantibodies may have a higher pretest probability for

autoimmune disease by simply having these tests ordered. We tried

to mitigate this bias by only including incident positive

ANA individuals without established diagnoses of systemic

autoimmune disease. Further, our institution conducts reflex

testing where disease-specific autoantibodies are sent if an ANA

is positive. Disease-specific autoantibodies may not be available

fully in real-time at centers that do not perform reflex testing with a

positive ANA, which may impact the performance of the model.

The next most important variable was count of the nine prespecified

billing code categories. A priori, we selected billing codes that

captured signs and symptoms for autoimmune diseases and were

significant in the UK SLE risk model (21). As expected, a higher

count of these billing codes was predictive for systemic autoimmune

disease. While billing codes may not always adequately capture an

individual’s symptoms, ICD billing codes allow for automation of

the risk model in real-time and allow for portability of the model to

other EHRs and databases that use common data models. Platelet

count was also an important variable in our model. We originally

hypothesized that a lower platelet count would be associated with

systemic autoimmune disease. Prior SLE risk models identified

thrombocytopenia as an important model predictor (21, 22), and

other studies demonstrated an association of thrombocytopenia

with autoimmune disease in positive ANA individuals (30, 31).

Instead, we found a higher value of an individual’s lowest platelet

count was associated with systemic autoimmune disease. Higher

platelet counts have been observed in individuals with RA and

correlate with increased disease activity (40) and may also signal

inflammation (41). A priori, we elected to not include inflammatory
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markers such as sedimentation rate (ESR) and C-reactive protein

(CRP), as we had significant missingness of these values in the EHR.

Further, these markers are nonspecific and can fluctuate widely in

an individual (42–44). Elevations in these markers can be unrelated

to an underlying systemic autoimmune disease, for example, in the

setting of infection and malignancy (42–45).

A priori, we included race and ethnicity in our risk model.

African American and Hispanic individuals have higher

frequencies of positive ANAs compared to White individuals

and are at higher risk of developing autoimmune disease,

particularly SLE (1, 5). In univariate analysis, neither race nor

ethnicity were significantly associated with systemic autoimmune

disease, so race and ethnicity were not initially included. Studies

have shown that risk models that include race could potentially

disadvantage high-risk groups from receiving appropriate care

(28, 29). For our model, this could include Black individuals. In a

sensitivity analysis, we included race and found a similar model

AUC of 0.83.

Our logistic regression model demonstrated robustness in both

an internal bootstrap validation and a separate validation set. A

successful bootstrap validation demonstrates the model can hold up

when it encounters different samples. With predicting a clinically

complex outcome where no current tools or risk models exist, our

model validation demonstrated an improvement over usual care. To

assess alternative approaches, we developed models using XGBoost

and neural networks. XGBoost had a higher apparent AUC

compared to the training set logistic regression model, likely due

to overfitting, but did not hold up in validation. Neural networks

performed similarly to the logistic regression model but with added

complexity that would limit interpretability and deployment in

the EHR.

While we developed, validated, and deployed a robust risk model

to predict risk of systemic autoimmune disease in positive ANA

individuals, our study has limitations. Our model was developed at a

single academic medical center with more complex patients being

evaluated, so may not generalize to other practice settings. Further,

our study population was predominantly White, so it may not

generalize to individuals with different race and ethnicity

backgrounds and in other geographic areas. Our data encompasses

an almost 30-year study period that included changes in ANA titer

reporting. As a result, our primary analysis for the risk model

included dichotomized reporting of the ANA titer to capture

historical data. Sensitivity analyses using a more recent cohort of

positive ANA individuals using both the dichotomized and full

reporting of the ANA titer had similar model AUCs with

overlapping confidence intervals. For future versions of the risk

model, full reporting of the ANA titer can be used. We purposely

defined systemic autoimmune disease based on a rheumatologist’s

diagnosis instead of classification criteria, as classification criteria are

not systematically documented in clinical notes (24). Case definition

by a rheumatologist could contribute to heterogeneity of cases (i.e.

calling an individual with mild SLE and SLE nephritis both SLE).

Interestingly, our model did not perform as well in individuals

with seronegative conditions not typified by autoantibodies, as
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presence of these autoantibodies was the strongest predictor in our

model. This limitation should be considered when interpreting risk

scores. Seronegative conditions encompass overlapping diseases

including plaque psoriasis, psoriatic arthritis, and inflammatory

bowel diseases. These conditions have different HLA-based risk

alleles, disease mechanisms, and disease presentations compared to

seropositive conditions (46). While these seronegative conditions

are not classically associated with a positive ANA, individuals with

these conditions can have higher rates of ANA positivity compared

to the general population (47–49) and often have an ANA test

ordered as part of their clinical evaluation (26). In a sensitivity

analysis, not counting the individuals with seronegative conditions

as cases did not greatly impact the performance of the model.

Our model achieved a robust AUC of 0.83, but it does not

discriminate perfectly between individuals with and without

systemic autoimmune diseases. We found this AUC to be an

improvement over usual care, where no current risk models exist

to help risk stratify positive ANA individuals. The risk model was

not designed to diagnose systemic autoimmune disease but to serve

as a tool to identify positive ANA individuals who are at risk of

developing systemic autoimmune disease within the next 10 years.

The risk model can complement the clinician’s judgment as well as

the patient history and physical exam. The risk model could also

assist the ordering physician in identifying individuals at lower risk

that may not need rheumatology referral. This reassurance may

reduce unnecessary referrals and expenses to the healthcare system.

We purposefully created a continuous risk score, which is more

rigorous than commonly used dichotomous or “cut-off” scores.

Without a “cut-off score,” we cannot currently estimate a positive

predictive value. We are currently conducting a prospective

validation of the risk model in real-time in the EHR to inform

which individuals are low vs. high risk. While we created an

application to demonstrate how the model incorporates variables

and calculates a risk score, this application is not intended to be

used in clinical practice yet or identify individuals as low vs.

high risk.

In summary, we developed, validated, and deployed a risk

model to identify which positive ANA individuals will develop

systemic autoimmune disease. This risk model can be automated

and deployed in real-time with no input needed from a clinician. In

the setting of an international shortage of rheumatologists (14–16),

a risk-stratifying tool for positive ANA individuals is critical. For

future directions, we are assessing our risk model in real-time in the

EHR prospectively and its impact on time to diagnosis and

treatment for autoimmune diseases. Pending prospective

validation, we envision our risk model would predict risk of

autoimmune diseases within 10 years of a positive ANA similar

to the FRAX that predicts 10-year fracture risk (50) or the ASCVD

risk algorithm that predicts 10-year cardiovascular event risk (51).

Risk scores from our model could then directly informmanagement

of individuals with positive ANAs. High-risk individuals could be

seen urgently by rheumatologists to ensure prompt diagnosis and

treatment, and low-risk individuals could be reassured, reducing

unnecessary rheumatology referrals.
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Longitudinal changes in DNA
methylation during the onset of
islet autoimmunity differentiate
between reversion versus
progression of
islet autoimmunity
Patrick M. Carry1,2,3*, Lauren A. Vanderlinden2,
Randi K. Johnson2,3, Teresa Buckner2,4, Andrea K. Steck5,
Katerina Kechris2,3,6, Ivana V. Yang3,7, Tasha E. Fingerlin2,6,8,
Oliver Fiehn9, Marian Rewers5 and Jill M. Norris2

1Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of
Colorado, Aurora, CO, United States, 2Department of Epidemiology, Colorado School of Public
Health, Aurora, CO, United States, 3Department of Biomedical Informatics, School of Medicine,
University of Colorado, Aurora, CO, United States, 4Department of Kinesiology, Nutrition, and
Dietetics, University of Northern Colorado, Greeley, CO, United States, 5Barbara Davis Center,
Department of Pediatrics, University of Colorado, Aurora, CO, United States, 6Department of
Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States,
7Department of Medicine, University of Colorado, Aurora, CO, United States, 8Department of
Immunology and Genomic Medicine, National Jewish Health, Aurora, CO, United States, 9University
of California Davis West Coast Metabolomics Center, Davis, CA, United States
Background: Type 1 diabetes (T1D) is preceded by a heterogenous pre-clinical

phase, islet autoimmunity (IA). We aimed to identify pre vs. post-IA

seroconversion (SV) changes in DNAm that differed across three IA progression

phenotypes, those who lose autoantibodies (reverters), progress to clinical T1D

(progressors), or maintain autoantibody levels (maintainers).

Methods: This epigenome-wide association study (EWAS) included longitudinal

DNAm measurements in blood (Illumina 450K and EPIC) from participants in

Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, one or

more islet autoantibodies on at least two consecutive visits. We compared

reverters - individuals who sero-reverted, negative for all autoantibodies on at

least two consecutive visits and did not develop T1D (n=41); maintainers -

continued to test positive for autoantibodies but did not develop T1D (n=60);

progressors - developed clinical T1D (n=42). DNAm data were measured before

(pre-SV visit) and after IA (post-SV visit). Linear mixed models were used to test

for differences in pre- vs post-SV changes in DNAm across the three groups.

Linear mixed models were also used to test for group differences in average

DNAm. Cell proportions, age, and sex were adjusted for in all models. Median

follow-up across all participants was 15.5 yrs. (interquartile range (IQR):

10.8-18.7).

Results: The median age at the pre-SV visit was 2.2 yrs. (IQR: 0.8-5.3) in

progressors, compared to 6.0 yrs. (IQR: 1.3-8.4) in reverters, and 5.7 yrs. (IQR:

1.4-9.7) in maintainers. Median time between the visits was similar in reverters 1.4
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yrs. (IQR: 1-1.9), maintainers 1.3 yrs. (IQR: 1.0-2.0), and progressors 1.8 yrs. (IQR:

1.0-2.0). Changes in DNAm, pre- vs post-SV, differed across the groups at one

site (cg16066195) and 11 regions. Average DNAm (mean of pre- and post-SV)

differed across 22 regions.

Conclusion: Differentially changing DNAm regions were located in genomic

areas related to beta cell function, immune cell differentiation, and immune

cell function.
KEYWORDS

DNA methylation, type 1 diabetes (T1D), DAISY, islet autoimmunity, reversion
1 Introduction

T1D is an autoimmune disorder with significant long-term

morbidity. The pre-clinical phase is defined by the appearance of

autoantibodies against pancreas cell antigens, termed islet

autoimmunity (IA). There is strong evidence to support

autoantibodies as a biomarker of T1D risk (1). However, IA is

dynamic. While progression to T1D or multiple autoantibodies has

been well characterized, a subset of individuals lose autoantibody

positivity (2) and revert back to an autoantibody negative state.

Autoantibody reversion was first described by Spencer et al (3) in a

cohort of 685 individuals with a first degree relative affected by T1D.

After 5 years, 7/20 developed T1D, 1 remained AB positive and 12/

20 reverted. Transient autoantibody positivity has been described in

several additional studies (4–6). However, these historical studies

describing the transient nature of autoantibodies are difficult to

interpret due to the development of more accurate autoantibody

tests as well as differences in the definition of reversion. Vehik et al

(2) conducted the most comprehensive and rigorous study of

reversion in current literature. Among 596 individuals enrolled in

The Environmental Determinants of Diabetes in the Young

(TEDDY) study who developed one or more persistent

autoantibodies, 21% reverted to an antibody negative state.

Seroreversion was associated with significantly decreased risk of

T1D (hazard ratio: 0.14, 95% CI: 0.04-0.59). Understanding the

unique protective mechanisms occurring prior to or following IA

that lead to IA reversion may have important implications for

development of interventions that delay or prevent progression

to T1D.

Genetic variation is a well-established risk factor for T1D (7).

However, heterogeneity in disease concordance among

monozygotic twins (8) as well as temporal changes in both T1D

incidence (9) and age at T1D onset (10) in population studies have

created a strong interest in the role of the environment in the

etiology of T1D. Epigenetic modifications such as DNA

methylation (DNAm) may represent a mechanistic pathway

between genetic susceptibility, environmental exposures, and

progression or reversion of IA. Epigenetics broadly describes a
0231
class of modifiable mechanisms that can regulate gene expression

and are sensitive to external stimuli (11). DNAm is a frequently

studied epigenetic biomarker that is postulated to play a role in

autoimmune diseases as epigenetic mechanisms are important

regulators of immune cell differentiation, plasticity and function

(12, 13). DNAm changes prior to and during the IA phase may

provide key information about underlying epigenetic profiles that

explain progression or reversion from IA.

Previous epigenome wide studies have identified significant

associations between DNAm and T1D (14–17). However,

associations have been inconsistent and many of the studies have

focused on static and/or post-T1D differences in DNAm between

cases and controls (14–16). Although important in understanding

the etiology of T1D, DNAm differences obtained from a single time

point are difficult to interpret as it is not possible to determine when

the changes occurred and moreover, whether they are the cause or

consequence of the disease process. Understanding the timing of the

changes is key to identifying external factors that cause these

changes and therefore, may be amenable to preventative

interventions. The purpose of this study was to test DNAm

obtained before and after IA seroconversion (SV) in the Diabetes

Autoimmunity Study in the Young (DAISY). We aimed to identify

pre vs. post-SV changes in DNAm that differed across three distinct

IA progression phenotypes, those who lose autoantibodies

(reverters), progress to clinical T1D (progressors), or maintain

autoantibody levels (maintainers).
2 Materials and methods

2.1 Study population

We reviewed individuals from the Diabetes Autoimmunity Study

in the Young (DAISY) who developed islet autoimmunity (IA)

between February 1994 and February 2019. DAISY is a

longitudinal birth cohort study that includes n=2544 children at

high risk for T1D. Subjects are recruited from two high risk

populations, those with a first degree relative (FDR) with T1D or
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those with a high-risk genotype, [defined as DRB1*04, DQB1*0302/

DRB1*0301, DQB1*0201 (DR3/4 DQ8)]. Subjects complete study

visits at 9, 15, and 24 months. Following the 24-month visit, study

visits occur annually. As described previously (18), radio-

immunoassays were used to test serum samples for autoantibodies

to insulin (IAA), GAD65 (GAA), and IA-2 (IA-2A). Prior to 2010,

GADA and IA-2A were tested using a combined radioassay (19). The

National Institute of Diabetes and Digestive and Kidney Diseases

harmonized assay was used to test for GADA and IA-2A after 2010

(20). Serum samples from individuals positive for GAD65, IAA, or

IA-2 were tested for ZnT8A following development and

implementation of the ZnT8 assay (21). If autoantibodies are

detected, participants return for study visits every 3-6 months.

Islet autoimmunity (IA) was defined as the presence of one or

more autoantibodies (see above) on at least two consecutive visits 3-

6 months apart. The first visit among these consecutive

autoantibody positive visits designated the start of IA, referred to

as seroconversion (SV) throughout the remainder of the

manuscript. We defined the three autoimmune progression

phenotypes based on the autoantibody testing. The reverter group

was defined as individuals who reverted for all autoantibodies

during two or more consecutive visits, did not develop T1D, and

were autoantibody negative for all autoantibodies at their last

DAISY visit. The maintainer group was defined as individuals

who continued to test positive for islet autoantibodies and did not

develop T1D at the time of their last visit. The progressor group was

defined as individuals who developed clinical T1D.

Among individuals who developed IA during DAISY and

underwent autoantibody testing for a minimum of two or more

study visits (n=213), we excluded individuals for the following:

missing a pre- or post-SV blood sample (n=54), onset of IA unclear

due to gaps (>365 days) in study visits (n=2), missing study visit

prior to initial pre-SV positive visit (n=14). The Colorado Multiple

Institutional Review Board approved all DAISY protocols

(COMIRB 92-080). Informed consent and assent, if appropriate,

was obtained from the parents/legal guardians of all children prior

to participation in any research related activities.
2.2 Methylation measurements

Methylation measurements were obtained from peripheral

whole blood samples collected at multiple time-points in

individuals from DAISY. The Infinium HumanMethylation 450K

Beadchip platform (Illumina, San Diego, CA, USA) was used to

obtain methylation measurements on a subset of samples. The 850K

Infininium MethylationEPIC BeadChip (Illumina, San Diego, CA,

USA) was used to obtain measurements on the remaining samples.

Two platforms were used due to changes in technology during the

course of the study. Samples were randomly assigned to the two

platforms making sure all timepoints from the same individual were

included on the same platform.

DNA was bisulfite converted using the Zymo EZ DNA

Methylation kit (Zymo Research, CA, USA). The bisulfite-

converted DNA was labeled with fluorescent dyes and hybridized

to 450K and 850K DNAm arrays. Samples were arranged on the
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plates in a specific sequence to minimize within and between batch

effects (plate effects are represented by first 11 digits of the array

variable on GEO). The minfi (v1.12.0) package (22) in R (v3.5.2)

was used to perform quality control (QC) checks at the sample level.

The processing pipeline is described in greater detail in

Vanderlinden et al (23).

The DNAm probes were annotated to the genome based on the

hg19 genome build using the Illumina annotation manifest files.

Non-autosomal CpGs or CpGs located within or near (<2 base

pairs) known single nucleotide polymorphisms (SNPs) were

excluded. CpG sites with a beta range <3% on both platforms

were removed from analysis. A total of n=198,008 overlapping

DNAm probes met our filtering criteria and were used in

subsequent analyses. Normalized M-values (SeSAMe (v1.0.0)

pipeline with Noob normalization) were used in all statistical

analyses. We use the term DNAm probe and the probe identifier

when referring to the data in the Methods and Results. However,

each probe is designed to measure DNAm at a single CpG site

which is used as a more general term in the Discussion. See Figure 1

for an overview of the study methods.
2.3 Overlapping gene
expression measurements

Gene expression data were available in a subset of individuals

(n=36) at the post-SV visit. RNA processing and quantification is

described in greater detail in Carry et al (24). In brief, paired end

sequencing was performed using the Illumina NovaSEQ 6000™

system and samples were quantified against the Ensembl reference

transcriptome (hg19, version 87) using the RSEM algorithm (25).

Data were quantile normalized using DESeq2 (26), re-normalized

using RUV (27), and then transformed using the regularized log

function (26). The transformed data were used in all subsequent

statistical analyses.
2.4 Overlapping
metabolomics measurements

Untargeted metabolomics data were available in a subset

(n=110) of individuals at both the pre-SV and post-SV visits.

Metabolomics processing and quantification is described in

greater detail in Carry et al (28). In brief, non-fasting plasma

samples were used to quantify metabolite levels using three

untargeted panels, HILIC panel: HILIC-QTOF MS/MS (29),

GCTOF panel: GC-TOF-MS (30), and Lipid panel: CSH-QTOF

MS/MS (31). BinBase (32) was used to process and annotate the

GC-TOF-MS data. MS-Dial (33) was used to process and annotate

the liquid chromatography (LC), CSH-QTOF-MS and HILIC-

QTOF-MS, data. LipidBlast (34) and Massbank of North America

were also used to annotate the complex lipids (http://mona.

fiehnlab.ucdavis.edu/). Metabolomic data were normalized using

the systematic error removal using random forest (SERRF)

algorithm (35). All metabolites were Box-Cox transformed prior

to statistical analysis.
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2.5 Genetic ancestry

Ancestry principal components (PC) were estimated for all

study participants from genetic data collected in DAISY. Sample

processing and genotyping were performed at the University of

Virginia School of Medicine Center for Public Health Genomics

based on exome genotyping (Illumina HumanCoreExome-24

BeadChip, N=283) or whole genome sequencing (N=162) from

the larger DAISY population, see Buckner et al (36) for a more

complete description of the genetic processing and calculation of

the genetic ancestry PCs.
2.6 Statistical analyses

The overall methods workflow is summarized in Figure 1. Linear

mixed models were used to test for differences in DNAm between the

pre- and post-SV visit across reverters, maintainers, and progressors

(autoimmune phenotype*visit interaction). Separate linear mixed

models were also used to test for differences in average DNAm

(mean of the DNAm levels at the pre- and post- SV visits) between

the autoimmune phenotypes (group effect). Platform (EPIC vs 450K),

age, sex, and cell proportions (estimated using the minfi (v1.12.0)

package (22) implementation of the Houseman method) were

adjusted for in all models. The group effect models were also

adjusted for population ancestry (see Supplementary Material for

complete description of ancestry data). Ancestry data (1st 2 PCs) were

unavailable for 2 individuals in the group effect model and thus, these

individuals were not included in this analysis. See Appendix 1 (Data

Sheet 1) for the linear mixed model code. We did not adjust for

ancestry in the interaction (autoimmune phenotype*visit) models

because the interaction models test for within individual differences,

and thus are less likely to be impacted by time invariant confounders
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such as population ancestry. The Benjamini Hochberg false discovery

rate (FDR), was used to correct for multiple comparisons (37).

Significance was assessed based on the FDR adjusted p-value <0.10.

Model diagnostics are described in the Supplementary Files (Data

Sheet 2), see Appendix 2, Figures A–C and Table A.

The comb-p python software package (38) was used to identify

differentially methylated regions (DMRs). Within the comb-p

pipeline, we used a seed p-value of 0.1 and then searched for

adjacent probes within a window of 500 bases, using a step size of

50 bases. Comb-p combines probes within this window and then

calculates an overall, spatially corrected p value for the entire region

based on the Stouffer-Liptak method. The Sidak method is used to

adjust the overall regional p values for multiple testing. Regional

analyses were performed based on the individual DNAm probes from

the interaction (post- vs pre-SV changes by autoimmune phenotype),

referred to as differentially changing DMRs (DDMR) throughout the

remainder of the manuscript. Regional analyses were also performed

based on DNAm probes from the main effect model (differences in

average of pre- and post-SV DNAm between groups), referred to as

average DMRs (mDMR) throughout the remainder of the

manuscript. For both regional analyses, we reviewed all regions

with ≥4 DNAm probes that were significant at the combined Sidak

adjusted region p value of 0.10. Because the interaction and group

effect p values are based on a two degree of freedom test (numerator

degrees of freedom for the overall F-test), it is possible for the DMR to

capture a set of DNAm probes with similar p values but substantial

heterogeneity in the directions of effect within the three groups.

Therefore, for the DDMRs, we retained regions with a consistent

direction of effect, defined as a region where the direction of change in

DNAm between the two visits (hyper methylation or hypo

methylation) was consistent across 100% of the DNAm probes

within the region in one or more of the study groups. For the

mDMRs, we retained regions where the direction of effect (hypo or
FIGURE 1

Summary of methods used to identify and prioritize DNAm candidates. Description: We used an epigenome wide association study design to identify
differentially methylated positions (DMP) associated with the three islet autoimmunity progression phenotypes, reverters, maintainer, or progressors.
We used two DMP models (1) an interaction model that tested whether changes in DNA methylation (DNAm) levels at single CpGs pre-IA versus
post-IA differed across groups and (2) a group effect model that tested whether average methylation levels (pre- and post-IA) differed across groups.
We also performed regional analyses (differentially methylated regions or DMRs) based on single CpG sites from the two models to identify regions
with consistent methylation effects. We identified regions where average regional methylation levels differed between groups (mDMRs) as well as
regions where changes in regional methylation levels pre- vs post-IA differed across groups (DDMRs). In order to prioritize regions, we tested
whether the DNAm candidates identified in our analysis were associated with gene expression levels post-SV, an expression quantitative trait
methylation analysis (eQTM). To account for the multiple CpGs within each DMR, we used a principal component analysis to capture common
patterns across all CpGs included in the DMR. We identified cis-eQTMs (midpoint of region +/- 500 KB of the TSS of the gene) by testing the
correlation between gene expression and the 1st principal component. We also tested the correlation between DNAm candidates and metabolite
levels obtained from overlapping samples, a metabolite quantitative trait methylation analysis (metQTM). We used a principal component analysis to
capture common patterns across all CpGs included in the candidate DMRs. We tested the correlation between metabolite levels and the 1st principal
component. CpGs are represented by lollipop plots in the figure.
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hypermethylation) for one or more of the pairwise group

comparisons was consistent across 100% of the DNAm probes

included in the region.
2.7 Expression quantitative trait
methylation analysis: correlation between
gene expression and DNAm candidates

In order to better understand our primary DNAm results, we

tested the correlation between gene expression levels and our

DNAm candidates, one DMP, 11 DDMRs, and 22 mDMRs in a

subset of individuals (n=36, see Appendix 3, Table B) with

methylation data pre- and post-SV as well as gene expression

data post-SV. First, linear mixed models were used to regress out

age, sex, platform, and cell proportions from the DNAm values at

each of the candidate CpG sites. Ancestry PC1 and ancestry PC2

were also regressed out from all CpG sites included in the mDMRs

candidate regions. Next, using the residuals from the linear mixed

models, the within individual differences in DNAm (post-SV minus

pre-SV) were used to represent changes in DNAm between the

study visits for each of the CpG sites included in the DDMRs. The

average residual values from the post-SV and pre-SV study visits

were used to represent average methylation for each of the CpG

sites within the mDMRs. Next, we performed a principal component

analysis of DNAm levels across the region-specific CpG sets.

For each DMR, the first PC was extracted for subsequent testing,

allowing us to consider all CpG sites together rather than testing

many individual sites separately. Linear regression models were

then used to regress out the effects of age and sex from the gene

expression levels. Finally, Spearman correlation coefficients were

used to test the correlation between DNAm and gene expression

residuals. We looked for cis-eQTMs, defined as genes significant at

the FDR adjusted p value of 0.10 where transcription start site

was +/- 500 KB of the midpoint of the DMR. FDR adjustment was

based on the total number of DNAm cis-gene pairs (256 transcript

DNAm pairs for the DDMR candidates and 544 transcript DNAm

pairs for the mDMR candidates).
2.8 Metabolite quantitative trait
methylation analysis: correlation between
metabolite levels and DNAm candidates

We tested the correlation between DNAm and untargeted

metabolite levels in a subset of our study population (n=110, see

Appendix 3, Table B) with DNAm and metabolomics data available

both pre- and post-SV. Only data from overlapping samples was

included in this supplementary analysis. Linear models were used to

regress age and sex from the Box-Cox transformed metabolite levels

at each visit. Consistent with the DNAmmethods, using the residuals

from the linear mixed models, the difference between metabolite

residuals at each visit (post-SV minus pre-SV residuals) was used to

represent change in metabolites and the average residual values

(average of post-SV and pre-SV residuals) were used to represent

average metabolite values. For the DDMR candidates and the single
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DMP candidate, linear regression models were then used to test the

correlation between the change in metabolites versus the DDMR PCs

(described above) as well as the single DMP candidate. For the

mDMR candidates, linear regressionmodels were then used to test the

correlation between average metabolite levels versus the mDMR PCs

(described above). False discovery (FDR) rate adjusted p values were

calculated for all individual metabolite DNAm candidate pairs

according to methods described by Benjamini and Hochberg (37).

FDR adjusted p values were calculated separately for each platform.

Only annotated metabolites from the HILIC (81 metabolites), Lipid

(373 metabolites), and GC-TOF (98 metabolites) panels were

evaluated in subsequent analyses. Metabolites were evaluated at an

FDR adjusted p value of 0.10.
3 Results

3.1 Study population

The final study population included 60 individuals in the

maintainer group, 42 individuals in the progressor group, and 41

individuals in the reverter group. At both the pre-SV and post-SV

visits, age differed by group, and the estimated cell proportions

differed by group at the post-SV visit (Table 1). At the time of data

analysis, duration of follow-up, defined as median time from the

initial visit to the development of T1D or last study visit, was 9.3

years (IQR: 6.1 to 12.3 years) for the progressors, 16.5 years for the

maintainers (IQR: 14.3 to 20.9 years) and 16.6 years for the reverters

(IQR: 15.2 to 20.2 years).

The specific autoantibody subgroups present at the onset of

seroconversion in the three groups are described in greater detail in

Appendix 4 (Data Sheet 4), Table C. As expected, the prevalence of

multiple autoantibodies at serconversion was higher in progressors

(31%) relative to maintainers (18%) and reverters (0%). Across the

entire islet autoimmunity follow-up period, the occurrence of

multiple autoantibodies at one or more study visit(s) following IA

seroconversion was also higher in progressors (86%) compared to

maintainers (58%). Among reverters, 10% developed multiple

autoantibodies at one of more study visit(s) during the time

period between seroconversion (IA onset) and seroreversion.
3.2 Differentially methylated
position analysis

Change in methylation at the DNAm site cg16066195 on chr 7

was significantly (FDR adjusted p value=0.0174) different across

groups. The reverter group was characterized by an increase in

DNAm between pre- and post-SV visits (ie, a positive slope)

whereas the progressor and maintainer groups were characterized

by no change or a decrease in DNAm (Figure 2). This site is an

island CpG site (CpG island chr7:73703458-73704127) that maps to

an area near the CLIP2 gene.

We also tested whether average DNAm (mean of DNAm levels

pre- and post-SV) differed across groups. No DNAm probe was

significant at the FDR adjusted alpha level of 0.10.
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3.3 Differentially methylated region analysis

We also tested for genomic regions (Figure 1). In contrast to

the single CpG site (DMP) analysis, the regional analysis allowed

us to identify multiple CpG sites that demonstrated similar

DNAm changes between the pre- and post-SV visits across the

three study groups (DDMRs). We focused on FDR significant

regions of ≥4 DNAm probes where the direction of the change in

DNAm (between the pre-SV and post-SV visits) was consistent

(100% of probes changed in a similar direction) within one or

more of the groups. We identified 11 candidate DMRs

(Table 2; Figure 3).

We also tested for regions where the average DNAm levels at

the pre- and post-SV visits differed across the groups (mDMRs). We

identified 22 FDR significant mDMRs of ≥4 DNAm probes where

the direction of the pairwise group differences in DNAm was

consistent across all CpG sites included in the region

(Table 3; Figure 4).
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3.4 eQTM candidate prioritization

We tested the correlation between DNAm and cis- gene expression

levels in a subset of overlapping samples. The availability of individual

level DNAm data allowed us to look at the entire DMR together. Based

on the DDMR candidates, we identified two FDR significant cis eQTMs

representing one DMR and two gene transcripts, GNAS and ATP5E

(DDMR1, region on chromosome 20, see Table 4). Within this region,

increased DNAm post- vs pre-SV was positively associated with

expression of GNAS and ATP5E (see Table 4).
3.5 Metabolite quantitative trait
methylation analysis candidate
prioritization in overlapping samples

We tested whether the single DMP candidate, cg16066195, as

well as the candidate DNAm regions identified in our primary
TABLE 1 Demographics and clinical characteristics.

Maintainer n=60 Progressor n=42 Reverter n=41

P ValueMedian
| Freq

IQR | %
Median
| Freq

IQR | %
Median
| Freq

IQR | %

Pre-Islet Autoimmunity Visit

Age at Visit, median (IQR) 5.7 1.4-9.7 2.2 0.8-5.3 6.0 1.3-8.4 0.0079

CD8T, median (IQR) 13.3% 9.4-16.6% 14.6% 11.8-15.9% 12.2% 9.7-16.1% 0.3864

CD4T, median (IQR) 22.0% 15.6-26.1% 23.4% 17.3-31.8% 19.3% 16.1-25.5% 0.1959

NK, median (IQR) 1.4% 0.0-4.7% 0.0% 0.0-1.5% 1.3% 0.0-3.1% 0.0653

Bcell, median (IQR) 15.3% 10.6-18.5% 17.9% 13.4-22.6% 14.9% 10.2-19.7% 0.1599

Mono, median (IQR) 8.3% 6.9-10.3% 7.5% 5.2-9.4% 7.6% 6.2-9.5% 0.3390

Gran, median (IQR) 38.5% 30.6-50.9% 35.5% 24.7-44.6% 42.8% 32.0-52.0% 0.2205

Post-Islet Autoimmunity Visit

Age at Visit, median (IQR) 8.0 5.2-11.3 4.9 2.4-9.4 7.1 3.1-10.0 0.0087

CD8T, median (IQR) 11.8% 9.5-15.6% 14.6% 11.3-16.7% 12.3% 8.9-16.4% 0.1183

CD4T, median (IQR) 17.6% 13.1-22.1% 21.7% 17.3-26.9% 17.6% 13.0-21.7% 0.0061

NK, median (IQR) 2.7% 0.0-6.0% 0.0% 0.0-3.5% 1.3% 0.0-4.1% 0.0018

Bcell, median (IQR) 11.2% 8.6-15.0% 16.5% 12.7-19.7% 13.1% 8.3-16.7% 0.0011

Mono, median (IQR) 9.1% 7.8-10.8% 7.8% 4.8-9.3% 8.5% 7.0-10.1% 0.0293

Gran, median (IQR) 46.0% 39.6-52.7% 37.9% 28.6-44.4% 47.8% 38.4-53.6% 0.0025

Non-Hispanic White Ethnicity,
freq (%)

43 71.7% 38 90.5% 29 70.7% 0.0458

Female Sex, freq (%) 34 56.7% 19 45.2% 21 51.2% 0.5224

HLDR3/4 High Risk Genotype,
freq (%)

16 26.7% 19 45.2% 10 24.4% 0.0711

First Degree Relative with T1D,
freq (%)

38 63.3% 25 59.5% 19 46.3% 0.2242
fr
IQR, interquartile range; CD8T, cytotoxic T cells; CD4T, T helper cells; NK, natural killer T cells; Mono, monocytes; Gran, granulocytes.
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analysis were associated with metabolite levels. Consistent with the

eQTM analysis, we regressed out age and sex from annotated

metabolites and then tested the correlation between annotated

metabolites versus DNAm regional PCs. Based on the DDMR

candidates, we identified 26 annotated metabolites from the Lipid

panel that were correlated with 4 DMRs (see Table 5; Figure 5).

DDMR 8 was correlated with multiple lipids, primarily PCs, DDMR

5 was also correlated with multiple lipids, primarily correlated with

TGs (fats). DDMR 9 and DDMR 2 were correlated with a single

lipid, an ether lipid, and a TG, respectively. Metabolite candidates

primarily consisted of odd-chain fatty acid containing lipid species

(OCFA). Furthermore, the majority of the metabolites (29/30) were

positively correlated with increasing DNAm levels. The mDMR

candidate regions as well as the single DMP candidate were not

significantly associated with metabolite levels at our FDR adjusted

cutoff of 0.10.
4 Discussion

Epigenetic biomarkers are appealing in the study of complex

diseases such as T1D based on their heritability, role in gene

expression, and responsiveness to external stimuli. Epigenetic

effects in observational studies are challenging to interpret

because it is often not possible to determine whether DNA

methylation (DNAm) is causative or secondary to the disease

process. A strength of our study is the longitudinal analysis of

DNAm levels both before and after the onset of IA. We identified a

single CpG site as well as genomic regions where changes in DNAm

between the post-SV and pre-SV visits were significantly different

across the IA progression phenotypes. We also identified regions

where average DNAm levels pre- and post-SV differed across the

progression phenotypes. Together, the DNAm regions have

potential biological relevance to T1D etiology based on their

potential role in immune and beta cell function.
Frontiers in Immunology 0736
We identified a DNAm site, cg16066195, on chromosome 7

where DNAm levels increased between the pre- and post-SV visits

among individuals who reverted to an IA negative state (reverters)

compared to progressors (who showed no change in DNAm) and

maintainers (who showed decreasing DNAm, Figure 2). This island

CpG is located near the transcription start site for the protein

coding gene CLIP2. In a mouse model of diet induced changes in

beta cell expression, CLIP2 gene expression was significantly

downregulated among mice fed a carbohydrate containing

diabetogenic high-fat diet relative to mice fed a diabetes-

protective carbohydrate free high-fat diet (39). Furthermore,

SNPs within CLIP2 (rs2528994 and rs512023) have demonstrated

modest associations with T2D in both the Diabetes Genetics

Initiative (40) and the Wellcome Trust Case Control

Consortium (41).

Our methylation analysis also identified numerous regions

where average methylation post- and pre-SV differed across the

autoimmune phenotypes in areas of the genome potentially relevant

to T1D etiology. We identified a DMR on chromosome 12, mDMR4,

characterized by hypermethylation in the reverter group relative to

the progressor and maintainer groups (Figure 4). This includes 4

probes that, based on the ENCODE Project Consortium (42), are

located in a known enhancer region. Three of the four probes within

this region are located within the transcription start site for NRIP2,

predicted to act upstream or within the notch signaling pathway

(43). This pathway is relevant to T1D (44) based on its role in

immune cell differentiation and function (45) as well as pancreas

development (46), islet cell function (47), and islet cell survival (48).

All four probes within mDMR4 are also located within the 5’UTR

region for ITFG2, a gene expressed in numerous tissues including

immune cells. Mouse and in vitro models have demonstrated that

ITFG2 deficiency alters B cell maturation and migration (49). In a

lupus mouse model, MRL/lpr, autoimmunity development

occurred earlier and was more severe in ITFG2 deficient mice

(49). Together, these findings suggest a potential role for ITFG2
BA

FIGURE 2

Changes in DNAm between the pre- and post-SV visits at cg16066195 across the three IA progression phenotypes. Description: (A) provides the
average methylation M-values and corresponding 95% confidence intervals within the three IA progression phenotypes pre- and post-SV.
(B) describes the individual level changes in methylation m-values (y-axis) between the post-SV visit relative to the pre-SV visit in the three IA
progression phenotypes (x-axis). Positive values represent increasing DNAm whereas negative values represent decreasing methylation between
visits. All DNAm values in (A, B) have been adjusted for age, sex, and cell proportions.
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TABLE 2 Regions where DNAm changes between the post- and pre-SV visits were consistently different across groups (group*visit interaction).

. Leading
CpG Site

Slope
% R*

Slope
% P*

Slope
% M*

Median
Slope R†

Median
Slope P†

Median
Slope M†

cg26496204 69% 100% 100% 0.01 -0.03 -0.05

cg24675557 100% 80% 80% 0.05 -0.02 -0.02

cg00121533 100% 88% 100% 0.06 0.04 -0.08

cg14034270 96% 85% 100% 0.02 -0.02 -0.02

cg11095027 86% 57% 100% 0.03 0.03 -0.07

cg03291024 75% 100% 100% 0.01 0.09 -0.09

cg09075844 100% 100% 100% -0.03 0.03 -0.06

cg05228964 50% 100% 100% <0.01 0.10 -0.04

cg10919664 100% 100% 100% 0.07 0.06 -0.16

cg25106913 75% 75% 100% <0.01 0.06 -0.05

cg14773178 83% 100% 100% 0.04 0.08 -0.08

r more groups.

and/or genes mapped to CpG sites within known regulatory regions, if gene was not annotated within the Illumina manifest file, noted with ‡, gene

sed on genomic coverage in the DMR analysis.
(hypo (–) or hyper (+) methylation) across all the probes included in the DMR.
DNAm (–), indicate decreasing DNAm.
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DMR
ID

Chr. Start Stop Gene
N

CpG
Sites

Sidak Adj
Region P

DDMR 1 chr20 57426538 57427974
GNAS; GNASAS;

GNAS-AS1
29 8.33E-05

DDMR 2 chr20 36148604 36149751 BLCAP; NNAT 30 1.37E-04

DDMR 3 chr1 75198582 75199118
TYW3; CRYZ;
RP11-17E13.3

8 3.40E-03

DDMR 4 chr14 101291068 101293727 MEG3 25 6.74E-03

DDMR 5 chr11 1296469 1297386 TOLLIP 7 1.81E-02

DDMR 6 chr15 91473059 91473570 UNC45A 8 2.00E-02

DDMR 7 chr5 1245669 1246292 SLC6A18 4 3.38E-02

DDMR 8 chr6 170597377 170597899 DLL1 4 3.66E-02

DDMR 9 chr6 28945322 28945493 RN7SL471P‡ 4 6.09E-02

DDMR 10 chr6 27647713 27648355 RP1-15D7.1‡ 4 7.14E-02

DDMR 11 chr5 1867978 1868694 IRX4‡ 6 8.71E-02

DMRs limited to regions with a minimum of 4 probes and 100% of within group slopes in the same direction for one o
Chr., chromosome.
Start/Stop, DMR start and stop position.
Gene, Gene annotation from the Illumina manifest file, based on UCSC reference genes mapped to CpG sites within DMR
name based on closest transcription start site.
Leading CpG site, most significant DMP within the region.
Sidak Adj. Region P, regional p value corrected for multiple testing based on number similarly sized regions possible ba
*R, reverters; P, progressors; M, maintainers, Percent of within group slopes (Pre-SV vs Post-SV) in the same direction
†Median slope (Pre-SV vs Post-SV) across all probes included in the DMR for each group, (+) values indicate increasin
g
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TABLE 3 Regions where average of post- and pre-SV DNAm levels were consistently different across groups (group main effect).

DMR
ID

Chr. Start Stop Gene
N

Probes
Sidak Adj.
Region P

Leading
CpG Site

Median
PvR‡

Median
RvM‡

Median
PvM‡

mDMR 1 chr1 180922636 180923341
RP11-46A10.4;
RP11-46A10.5

4 1.38E-05 cg00579423 0.09 0.37 0.46

mDMR 2 chr10 99338056 99338241 ANKRD2 4 1.75E-04 cg27469738 -0.11 0.26 0.17

mDMR 3 chr10 52008360 52008906 ASAH2 4 6.45E-03 cg24123634 -0.07 -0.02 -0.11

mDMR 4 chr12 2943902 2944481 NRIP2; ITFG2 4 7.06E-03 cg02852959 -0.15 0.19 0.04

mDMR 5 chr12 75784855 75785098 GLIPR1L2; CAPS2 6 7.59E-03 cg12351126 0.10 0.24 0.34

mDMR 6 chr12 51566379 51567113 TFCP2 7 1.24E-02 cg19016289 0.05 0.15 0.2

mDMR 7 chr1 1289835 1290713 MXRA8 6 1.61E-02 cg07284273 -0.16 0.33 0.15

mDMR 8 chr15 72766637 72767333
ARIH1;
RP11-1007O24.3

4 1.93E-02 cg26880891 0.09 0.02 0.14

mDMR 9 chr19 45206843 45207560 CEACAM16 4 2.78E-02 cg24091949 -0.09 -0.04 -0.13

mDMR 10 chr19 2250901 2251068 AMH 4 2.83E-02 cg23218559 -0.18 0.38 0.21

(Continued)
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FIGURE 3

Differentially changing methylation region on chromosome 20 where changes in DNAm (pre- vs post-SV) differed across the three IA progression
phenotypes. Description. Region on chromosome 20 loc 57426538 to 57427974 (DDMR1) where the change in DNA methylation (DNAm) post- vs
pre-SV differed across groups. In the top panel, each dot represents the within group slopes (y-axis) or changes in DNAm m-values between the
post-SV and pre-SV visit at each of the CpG sites included DDMR 1. The x-axis represents the position (mb) of the CpGs within the region. All slope
values were adjusted for age, sex, and cell proportions. Positive values indicate methylation values increased following IA seroconversion whereas
negative values indicate methylation decreased following IA seroconversion. The dashed lines represent the average slope value within each group
across the entire region. The middle panel represents the location of the region (black solid square) relative to the closest genes, GNAS and ATP5E
(red solid boxes). There are multiple known isoforms for GNAS and ATP5E, the bottom panel displays the most biologically relevant or consensus
transcript based on the Ensembl database. The red line on the ideogram, bottom of the figure, represents the location of GNAS and ATP5E on
chromosome 20.
ontiersin.org

https://doi.org/10.3389/fimmu.2024.1345494
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Carry et al. 10.3389/fimmu.2024.1345494
in B cell differentiation and as a potential regulator of

autoimmunity. Although, average methylation within DMR4 was

not correlated with expression of ITFG2 or NRIP2 in our secondary

eQTM analysis, three probes within mDMR4 (cg05194726;

cg06997549; cg02852959) were correlated with expression of both

ITFG2 and NRIP2 in whole blood based on the BIOS QTL browser

(50), an online resource that provides a searchable database of FDR

significant associations between DNAm and gene expression

(eQTM). Additional work is needed to understand the

connections between methylation within this region on chr 12,

ITFG2 expression, NRIP2 expression, and T1D etiology.

We also identified several regions of differentially changing

DNAm that are potentially relevant to T1D etiology based on

known associations between DNAm in these regions and relevant

environmental risk factors. We identified a region on chr 20 near

the GNAS/GNASAS loci, DDMR 1, that was characterized by

decreasing DNAm pre- vs post-SV in maintainers and

progressors relative to reverters (Table 2; Figure 3). Based on the

ENCODE Project Consortium (42), 25 of the 29 probes in DDMR 1

are located within a DNAase hypersensitivity region and 4 probes

are known to interact with transcription factor binding. DNAm in

this region is responsive to environmental stressors. Umbilical cord

blood DNAm near GNAS was altered among infants born to a

mother affected by gestational diabetes (GDM), a disorder

characterized by glucose intolerance during pregnancy (51). Based

on the Dutch Hunger Winter Families Study (52), siblings exposed

to the war-time Dutch Hunger Winter famine were associated with

persistent changes in DNAm in a region near the GNASAS locus

relative to their unexposed siblings (53). The direction and
Frontiers in Immunology 1039
magnitude of effect depended on timing of exposure and sex of

the exposed individual (53). DNAm among exposed siblings was

also altered near another gene implicated in metabolic disease

MEG3 (53), a gene that mapped to DDMR4 which was also

characterized by decreasing methylation among progressors and

maintainers relative to reverters (Table 2). Interestingly, both the

GNAS (54) and MEG3 (55) genes are maternally imprinted. Loss of

maternal imprinting should be investigated as a potential

mechanism in the etiology of T1D using whole-genome bisulfite

sequencing in order to provide a higher density representation of

DNAm changes within imprinted areas of the genome.

The secondary eQTM analysis in a subset of overlapping

samples confirmed that changes in methylation within DDMR1

were associated with expression of GNAS. Increased methylation

post- versus pre-SV was associated with higher levels of GNAS

expression at the post-SV visit in a subset of overlapping samples.

GNAS is an important regulator of insulin secretion in beta cells

(56). GNAS silencing results in decreased insulin secretion and

insulin content (56). GNAS encodes the G protein subunit alpha

which also plays a role in the interaction between antigen presenting

cells and T helper cell differentiation (57). Mice with dendritic cells

deficient for GNAS result in a phenotype characterized by

preferential Th2 differentiation, Th2 type inflammation, and

subsequent development of allergic asthma (57). Overlap between

autoimmunity and atopic conditions have long been hypothesized

based on disruptions in similar immune pathways (58). Positive

associations between childhood asthma and subsequent T1D

development have been observed in several countries (59–61).

Overall, our results suggest that maintenance of DNAm levels
TABLE 3 Continued

DMR
ID

Chr. Start Stop Gene
N

Probes
Sidak Adj.
Region P

Leading
CpG Site

Median
PvR‡

Median
RvM‡

Median
PvM‡

mDMR 11 chr18 7567426 7568266 PTPRM 5 3.44E-02 cg05870479 0.09 0.04 0.11

mDMR 12 chr15 85524778 85525674 PDE8A 4 4.02E-02 cg02839273 0.05 0.05 0.13

mDMR 13 chr2 85765644 85766105 MAT2A 4 4.39E-02 cg06978067 0.08 0.05 0.13

mDMR 14 chr19 48048129 48049234 ZNF541 4 4.90E-02 cg22341310 -0.12 0.17 0.06

mDMR 15 chr4 4861683 4862241 MSX1 4 5.94E-02 cg11930592 0.12 -0.04 0.08

mDMR 16 chr11 598325 599091 PHRF1 5 7.14E-02 cg12921473 -0.06 -0.05 -0.10

mDMR 17 chr5 101119084 101119767 OR7H2P* 4 7.67E-02 cg12197752 0.09 0.18 0.29

mDMR 18 chr13 42031761 42032737 C13orf15; RGCC 4 8.16E-02 cg18495682 0.06 0.02 0.09

mDMR 19 chr3 38206610 38207525 OXSR1 4 8.20E-02 cg19728055 0.07 0.05 0.11

mDMR 20 chr10 14372431 14372914 FRMD4A 5 8.45E-02 cg05755354 -0.16 -0.02 -0.18

mDMR 21 chr8 145550361 145551157 DGAT1 5 8.72E-02 cg11127482 0.06 0.04 0.11

mDMR 22 chr11 128693473 128694916 FLI1*; KCNJ1* 9 9.44E-02 cg15509024 -0.12 -0.09 -0.18
fr
DMRs limited to regions with a minimum of 4 probes and direction of pairwise comparison was consistent across all probes in the region.
Chr., chromosome.
Start/Stop, DMR start and stop position.
Sidak Adj. Region P, regional p value corrected for multiple testing based on number similarly sized regions possible based on genomic coverage in the DMR analysis
Leading CpG site = most significant DMP within the region
Gene, Gene annotation from the Illumina manifest file, based on UCSC reference genes mapped to CpG sites within DMR and/or genes mapped to CpG sites within known regulatory regions, if
gene was not annotated within the Illumina manifest file, noted with *gene name based on closest transcription start site.
‡R, reverters; P, progressors; M, maintainers, Median effect size across the region representing difference in methylation M values between groups.
ontiersin.org

https://doi.org/10.3389/fimmu.2024.1345494
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Carry et al. 10.3389/fimmu.2024.1345494
near GNAS during IA may represent a unique protective

mechanism in reverters.

In order to further characterize the DNAm regions identified in

the primary analysis, we tested the correlation between changes in

DNAm and changes in annotated metabolites (metQTM). Four

differentially changing DMRs were correlated with changes in 26

unique lipid metabolites (Table 5). DDMR 8, characterized by
Frontiers in Immunology 1140
increasing methylation in progressors (Figure 5), was correlated

with 18 of the 26 lipid metabolites. This region of differentially

changing methylation is notable based on its location in an open

chromatin region within the body of the DLL1 gene on chr. 6. As a

notch signaling ligand, DLL1 controls the differentiation of pancreatic

progenitor cells into exocrine versus endocrine cells (46). The loss of

DLL1 results in early progenitor cell differentiation and an
TABLE 4 Summary of FDR significant cis-eQTMs representing correlation between differentially changing methylation regions and gene expression
post- SV.

Methylation DMR Information Cis-Gene Expression Information

DMR
ID

Chr.
DMR
Start

DMR
Stop

N
Probes

Gene
Symbol

Ensembl ID Strand
Gene
Start

Gene
End

Corr* FDR

DDMR 1 20 57426538 57427974 29 GNAS ENSG00000087460 1 57414773 57486247 0.559 0.0667

DDMR 1 20 57426538 57427974 29 ATP5E ENSG00000124172 -1 57600522 57607437 0.557 0.0667
frontie
DNAm levels for all probes identified in the DMR analysis (Tables 1, 2) were included in a PCA.We then tested the association between the 1st PC and RNA seq data from overlapping visit at the
post-SV visit. Only significant cis (TSS +/- 500KB of midpoint of DMR) expression quantitative trait methylation (cis-eQTM) associations are presented.
*Spearman correlation coefficient.
Chr., chromosome.
DMR Start/End, DMR start and end position.
Gene Start/End, Gene start and end positions (based on annotation file for GEO, GSE50244).
Beta, beta coefficient from linear regression model (adjusted for age and sex) representing association between 1st PC from DNAm probes in each DMR and islet cell pancreas expression.
FDR, Benjamini-Hochberg FDR adjusted p value.
FIGURE 4

Differentially methylated region on chromosome 12 where average (pre- and post-SV) methylation levels differed across the three IA progression
phenotypes. Description. Region on chromosome 12 loc 2943902 to 2944481 (mDMR4) where average DNA methylation (DNAm) levels, post- and
pre-SV, differed across groups. In the top panel, each dot represents the average DNAm value (y-axis) at each of the CpG sites included mDMR4. The
x-axis represents the position (mb) of the CpGs within the region. All DNAm values were adjusted for age, sex, cell proportions, and genetic
ancestry. The dashed lines represent the average methylation value within each group across the entire region. The middle panel represents the
location of the region (black solid square) relative to the closest genes, ITFG2 and NRIP2 (red solid squares). There are multiple known isoforms for
ITFG2 and NRIP2, the figure displays the most biologically relevant or consensus transcript based on the Ensembl database. The red line on the
ideogram, bottom of the figure, represents the location of ITFG2 and NRIP2 on chromosome 12.
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TABLE 5 Secondary metQTM analysis of the association between pre- versus post-SV change in methylation across the DMRs and pre- versus post-
SV change in metabolite levels.

DMR ID Chr.
DMR
Start

DMR
Stop

Metabolite Name†
Standardized

Beta
FDR Adj.
P Value

DDMR 2 chr20 36148604 36149751 TG (49:2) 0.320 0.0992

DDMR 5 chr11 1296469 1297386

TG (53:2) 0.411 0.0121

Phosphatidylcholine (33:1) 0.361 0.0469

TG (53:3) 0.353 0.0627

PE (38:4) 0.339 0.0826

TG (49:2) 0.330 0.0948

TG (47:0) 0.329 0.0952

TG (51:3) 0.327 0.0954

PC (33:1) 0.327 0.0954

Phosphatidylcholines (35:1) 0.325 0.0954

TG (53:1) 0.320 0.0992

DDMR 8 chr6 170597377 170597899

Phosphatidylcholine (35:4) 0.438 0.0078

Phosphatidylcholines (33:1) 0.404 0.0121

Phosphatidylcholines (33:0) 0.403 0.0121

Phosphatidylcholines (33:1) 0.402 0.0121

Phosphatidylcholines (35:3) 0.396 0.0138

LPC (15:0) 0.393 0.0139

Phosphatidylcholines (38:5) 0.375 0.0527

Phosphatidylcholines (33:2) 0.366 0.0445

Phosphatidylcholines (35:4) 0.365 0.0445

Phosphatidylcholines (31:0) 0.350 0.0647

Phosphatidylcholines (35:1) 0.347 0.0647

Phosphatidylcholines (36:3) 0.347 0.0647

Phosphatidylcholines (p-34:0) or
Phosphatidylcholines (o-34:1)

-0.334 0.0940

TG (49:3) 0.332 0.0940

Phosphatidylcholines (33:2) 0.332 0.0940

Phosphatidylcholines (36:3) B 0.325 0.0954

Phosphatidylcholines (37:6) 0.324 0.0954

Phosphatidylcholines (35:1) 0.323 0.0975

DDMR 9 chr6 28945322 28945493
Phosphatidylcholine (p-38:2) or
Phosphatidylcholine(o-38:3)

0.345 0.0662
F
rontiers in Immunology
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DNAm levels for all probes identified in the DMR analysis (Tables 1, 2) were included in a PCA. We then tested the association between the 1st PC changes in metabolites between the pre- and
post-SV visits.
Chr., chromosome.
DMR Start/End, DMR start and end position.
Gene Start/End, Gene start and end positions (based on annotation file for GEO, GSE50244).
Standardized Beta, beta coefficient from linear regression model testing the association between change in DNAm and change in metabolites pre-SV vs post-SV. The slopes have been
standardized to represent a 1 stdev change in metabolite per 1 standard deviation change in DNAm regional PC levels.
FDR Adj. P value, Benjamini-Hochberg FDR adjusted p value.
†See Appendix 5 (Data Sheet 5) (Tables D, E) for complete annotation for all metabolites included in Table 5.
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overabundance of endocrine cells (46). A recent mouse model

confirmed DLL1 is also relevant to islet cell function in the mature

pancreas based on its high level of expression in beta cells and

corresponding role in insulin secretion (47). Furthermore, DLL1

plays an important role in differentiation of B cells and the

development of antigen secreting cells; the presence of DLL1

influences AB titer levels and isotype switching (45). Additional

work is needed to understand the connection between a

concordant increase in lipid levels and DNAm within the DLL1

gene following seroconversion.

Our secondary metQTM was unique in that DNAm and

metabolite levels were available pre- and post-SV in a subset of

overlapping samples. This analysis revealed a consistent positive

association between increasing lipid metabolite levels, post- vs pre-

SV, and increasing DNAm levels across several regions (25 of the 26

unique lipid metabolites were positively correlated with DNAm

changes, see Table 5). Numerous studies (62–68) have reported

associations between dysregulation in lipid levels and T1D. Although

lipid levels have been shown to be influenced by age at sample

collection/timing of sample collection relative to onset of IA and type

of first appearing autoantibody, prior research suggests lower lipid
Frontiers in Immunology 1342
levels, including sphingomyelins and phosphatidylcholines, are

generally associated with increased risk of T1D and/or IA (62–68).

In our study, increasing lipid levels, in particular phosphocholines,

following the onset of IA were strongly correlated with increasing

methylation within DDMR8. This region was characterized by

increasing methylation within the progressor group. However, as

demonstrated in Figure 5, the lipid metabolite most strongly

correlated with DNAm changes in this region, Phosphatidylcholine

(35:4), was lower in the progressor group prior to SV and then

subsequently increased following the onset of IA, suggesting higher

levels of lipids within the progressor group may be unique to changes

that occur following seroconversion.

There was a high prevalence of odd-chain fatty acid (OCFA)

containing lipid species among the metabolites correlated with DNAm

changes. Recently, there has been increased recognition of OCFA in

plasma and their potential biological relevance (69). OCFA levels have

been associated with glucose homeostasis, insulin resistance, T2D, and

BMI (69, 70). Pfleuger et al (71) observed higher levels of odd-chain

triglycerides among autoantibody positive versus negative children in

BABYDIAB. This parallels the concordant post-seroconversion

increase in OCFA levels and DNAm near the DLL1 gene (DDMR 8)
B

C D

A

FIGURE 5

Differentially changing region on chromosome 6 (post- vs pre-SV) that was positively correlated with changes in lipid metabolites (post- vs pre-SV).
Description: Region on chromosome 6 loc 170597377 to 170597899 (DDMR8) where the change in DNA methylation (DNAm) post- vs pre-SV
differed across groups. In the top left (A), each dot represents the within group slopes (y-axis) or changes in methylation m-values between the
post-SV and pre-SV visit at each of the CpG sites included DDMR 8. The x-axis represents the position (mb) of the CpGs within the region. Positive
values indicate DNAm values increased following IA seroconversion whereas negative values indicate DNAm decreased following IA seroconversion.
The dashed lines represent the average slope value within each group across the entire region. The top right (B) represents the association between
DMR wide DNAm captured by the 1st PC (x-axis) and changes in metabolite values (y-axis) between the post- and pre-SV visits. DNAm and
metabolite expression values have been standardized to facilitate the interpretation of the slope as a 1 standard deviation increase in the change in
metabolite levels between the post- and pre-SV visits per 1 standard deviation increase in the change in methylation between post- and pre-SV
visits. The bottom panels (C, D) represent the average metabolite levels and corresponding 95% confidence intervals within the three groups pre-
and post-SV. All DNAm and metabolite values were adjusted for age, sex, and cell proportions.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1345494
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Carry et al. 10.3389/fimmu.2024.1345494
among progressors (Figure 5) in the current study. OCFA have been

proposed a marker of dairy intake which has been positively correlated

with progression to T1D in prior work in DAISY (72). However, dairy

intake contributes modestly to OCFA levels. These lipids primarily

originate endogenously from adipocytes as well as from dietary intake

of numerous foods including dairy, poultry, and fiber (70, 73, 74).

Additional work is needed to understand connections between

increasing methylation and increasing OCFA as well as the source of

these lipid species.

A major strength of our study was the inclusion of DNAm

measurements prior to T1D as well as the multi-omics work used to

identify correlations between DNAm and gene expression as well

metabolite levels. We measured DNAm before and after SV (ie, the

appearance of IA) which builds on prior studies that have included

DNAm measures after T1D and/or after IA onset only (14–16). A

novel feature of our longitudinal methodology was our group*visit

interaction modelling strategy that allowed us to identify changes in

DNAm before and after the onset of IA, a critical window in T1D

pathogenesis. These within individual effects are essential to

understanding the etiology of T1D as they are robust to individual

level confounders such as sex, genetic predisposition, and/or family

history. Johnson et al (17) also used a longitudinal case-control

analysis of T1D cases vs. unaffected controls in DAISY. In contrast,

the current study design focused on individuals who developed IA

and furthermore, tested for differences in DNAm post- vs pre-SV

(group*visit interaction) rather than testing for differences in

methylation by age (group*age interaction). Comparing the DMRs

identified by this study versus Johnson et al (17), only two regions

were located within 1 MB of each other–one on chr 6 DDMR 9

(28945322–28945493) in the current study vs chr 6 28973328-

28973521 in Johnson et al (17), and one on chr 20 DDMR 2

(36148604–36149751) in the current study vs chr 20 36148954-

36149232 in Johnson et al (17). Consistent with prior work, DDMR

9 and DDMR 2 were both associated with differential changes in

DNAm in progressors relative to maintainers and/or reverters.
4.1 Limitations

We obtained DNAm from whole blood, which means we were

unable to identify cell subtype specific effects. Similarly, our study

focused on blood tissue only. DNAm changes within the blood may

not reflect DNAm changes within other tissues that contribute to T1D,

such as the pancreas. Due to advancements in technology during the

study, DNAm was measured on two platforms. Individuals were

randomly assigned to the platforms to minimize bias. We looked for

cis-eQTMs. Given that it is possible that regions act over larger areas of

the genome, we may have missed larger effects that occurred outside of

our 500 KB window. Due to the small sample size, the eQTM was

underpowered to identify FDR significant DMR vs gene transcript

pairs. This limitation may explain lack of concordance between eQTM

results and BIOS QTL results (mDMR4). Furthermore, among the two

gene transcripts that were correlated with changes in methylation

within DDMR1, gene expression data were only available at the post-

SV visit. Therefore, it was not possible to determine whether gene

expression also changed pre- versus post-SV. Finally, metabolite levels
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are influenced by age and dietary patterns. Although we adjusted for

age, the large differences in age between the progressor group and the

reverter and maintainer groups creates challenges in interpreting the

metabolite vs methylation correlations. Additional work is need to

replicate the metabolite vs DNAm regional effects.
5 Conclusion

T1D is an autoimmune disease characterized by immunemediated

destruction of beta cells. Beta cell stress has been proposed as a

mechanism connecting environmental perturbations such as

infection, inflammation, diet, and increased insulin secretion to

disease progression (75). Our EWAS identified DNAm candidates

known to be modified by diabetes relevant environmental factors

including diet and glucose levels (CLIP2, GNAS/GNAS-AS, MEG3).

Our results also implicated genes (DLL1 and GNAS) with functional

roles in both beta and immune cells. Our results build upon prior work

by identifying specific areas of the genome where DNAm changes pre-

and post-SV visits differentiated between reversion versus progression

of IA. The correlation between changes in DNAm and changes in lipid

levels reveal common connections between DMRs in different areas of

the genome that may be related to disruptions in lipid metabolic

pathways. Additional work is needed to replicate these findings, test for

cell-specific changes in DNAm pre- vs post-seroconversion, and to

identify modifiable factors that lead to these DNAm changes; ideally,

the first step in the development of preventative strategies that delay or

prevent progression of IA.
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Introduction: Despite progress in our understanding of disease pathogenesis for

systemic autoimmune rheumatic diseases (SARD), these diseases are still

associated with high morbidity, disability, and mortality. Much of the strongest

evidence to date implicating environmental factors in the development of

autoimmunity has been based on well-established, large, longitudinal

prospective cohort studies.

Methods: Herein, we review the current state of knowledge on known

environmental factors associated with the development of SARD and potential

areas for future research.

Results: The risk attributable to any particular environmental factor ranges from

10-200%, but exposures are likely synergistic in altering the immune system in a

complex interplay of epigenetics, hormonal factors, and the microbiome leading

to systemic inflammation and eventual organ damage. To reduce or forestall the

progression of autoimmunity, a better understanding of disease pathogenesis is

still needed.
Abbreviations: aHR, adjusted hazards ratio; AI, artificial intelligence; ANA, antinuclear antibody; BWHS,

Black Women’s Health Study; CI, confidence interval; COVID-19; coronavirus disease 2019; BlyS, B-cell

lymphocyte stimulator; CCP, cyclic citrullinated peptide; CRP, C-reactive protein; dsDNA, anti-double-

stranded DNA; DNAm, DNA methylation; EBV, Epstein-Barr virus; GRS, genetic risk score; HCQ,

hydroxychloroquine; HLA, human lymphocyte antigen; HR, hazard ratio; ML, machine learning; IFN,

interferon; IL, interleukin; IIM, idiopathic inflammatory myopathies; IU, international units; NHS, Nurses’

Health Study; OR, odds ratio; NHSII, PTSD, post-traumatic stress disorder; RA, rheumatoid arthritis; rRNA,

ribosomal RNA; SARD, systemic autoimmune rheumatic diseases; SARS-CoV2, severe acute respiratory

syndrome coronavirus 2; SjD, Sjögren disease; SLE, systemic lupus erythematosus; SSc, systemic sclerosis;

TNF, tumor necrosis factor; UV, ultraviolet; VH3 BCR, VH3 B Cell Repertoire.
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Conclusion: Owing to the complexity and multifactorial nature of autoimmune

disease, machine learning, a type of artificial intelligence, is increasingly utilized as an

approach to analyzing large datasets. Future studies that identify patients who are at

high risk of developing autoimmune diseases for prevention trials are needed.
KEYWORDS

autoimmunity, autoimmune diseases, environment, autoantibodies, epigenetics,
microbiome, machine learning, artificial intelligence
Introduction

Environmental factors operating on the background of

hormonal factors and genetic vulnerability may be accelerating

factors included in a long-held paradigm that helps explain the

etiology of systemic autoimmune rheumatic disease (SARD),

including systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), systemic sclerosis (SSc), Sjögren’s disease (SjD),

idiopathic inflammatory myopathies (IIM) and others (1). On the

backdrop of an increasing prevalence of SARD and other

autoimmune diseases (2–6), potential accelerating factors include

several environmental and socioeconomic factors that include

alterations of foods, increasing exposure to xenobiotics due to

water and air pollution, heat and other extreme weather events

(i.e., climate change), biodiversity loss, ultraviolet (UV) light

exposure, pandemics and infections, and socioeconomic factors

such as changes in personal lifestyles and psychological stress.

Extensive research over the past three to four decades has

elucidated the environmental factors associated with SLE (7) and

other SARD. In general, the environmental factors can be classified

as airborne, waterborne, workplace/occupational, social, and

behavioral (8). While it has not been possible to identify a

universal environmental “pathogen” for all SARD, there is

compelling evidence that some environmental exposures clearly

serve as risk factors for disease onset. The central importance of

identifying these factors is that many of these factors are actionable

and modifiable through intervention and remediation. Expanding

the use of machine learning (ML), a form of artificial intelligence

(AI), to analyze large datasets including environmental exposures

may lead to the identification of other modifiable environmental

risk factors, and allow the development of new disease-specific

remediation programs (2).
Environmental factors
and autoimmunity

The development of SARD has been associated with several

lifestyle behaviors. For instance, cigarette smoke (9–11), obesity

(12), alcohol use (moderate consumption being protective) (10, 13–
0247
15), poor nutrition and intake of ultra-processed foods (16),

psychosocial factors (e.g., major depression (17), sleep deprivation

(18), child abuse, personal trauma, post-traumatic stress disorder

[PTSD]) (19, 20), and reproductive factors (21–23) have been

associated with SLE development. Environmental exposures such

as air pollution (24), occupational hazards (25), residential

proximity to hazardous waste sites or pesticide exposure (26, 27),

UV light (28–33), vitamin D deficiency (34), and exposure to

viruses (35, 36) have also been linked to increased SLE risk.

Similar lifestyle factors have been reported for increased risk of

developing RA (moderate alcohol consumption decreases RA risk),

SSc, IIM, other SARD, and autoinflammatory conditions

(Tables 1, 2).

Precisely how and the extent to which these lifestyle factors

contribute to individual risk of autoimmune disease likely varies

(57, 58). This has been particularly well-studied using large cohort

studies including cohorts enrolled in the Nurses’ Health Study

(NHS) and Black Women’s Health Study (BWHS). In SLE, each

factor independently increases the risk of disease development by

10-200%, but they likely interact with each other and with genetic

risk, potentially synergistically, to accelerate brewing autoimmunity

in SLE [reviewed in (57–60)]. Using SLE as an example below, we

discuss several potential biologic pathways involving epigenomics,

the microbiome, and immune dysregulation that lead to

inflammation and organ damage, mechanisms that may also

apply to the development of other SARD (Figure 1).
Common pathways of pathogenesis:
immune dysregulation, epigenomics,
the microbiome

Immune dysregulation

Inflammation is an adaptive response to stressors that involves

multiple physiological processes that include the innate and

adaptive immune systems. In turn, inflammation regulates – and

is regulated by – several highly interconnected systems including

the epigenome and microbiome (64). Unhealthy lifestyle behaviors

(i.e., smoking, sedentary lifestyle, and consumption of ultra-
frontiersin.org
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TABLE 1 Environmental factors that increase risk for systemic autoimmune rheumatic diseases.

Lifestyle Exposure Disease Association Reported Risk from Select Key References (Citation)

Air Pollution RA • HR 1.31 (95%CI: 0.98–1.74) living near traffic pollution (road) vs. not (24)

SLE • Increases in air pollutants nitrogen dioxide (NO2), carbon monoxide (CO), and fine particles (PM2.5)
(HR 1.21 [95% CI: 1.08–1.36], HR 1.44 [95% CI: 1.31–1.59], and HR 1.12 [95% CI: 1.02–1.23],
respectively) (37)

SARD1 • OR 1.13 (95%CI: 1.02-1.25) for lowest vs. highest satellite fine particulate air pollution level (38)

Cigarette Smoke RA • RR 3.8 (95%CI: 2.0-6.9) in current smokers vs. never smokers (39)
• OR 1.65 (95%CI: 1.03–2.64) for >20 versus 0 pack-years) for anti-CCP-positive RA (40)

SLE • OR 1.50 (95%CI: 1.09–2.08) for current smokers compared with non-smokers (11)
• HR 1.86 (95%CI: 1.14–3.04) for current vs. never smokers for dsDNA+ SLE risk (9)

Diet SLE • Women in the highest tertile of cumulatively updated dietary ultra-processed food (UPF) intake/day
were at almost 50% greater risk of developing SLE vs. women in the lowest tertile of UPF daily
intake (16)

Hazardous Waste Sites SLE • Exposure to volatile organic compounds (P < 0.05) (26)

Obesity RA • History of obesity (OR 1.24 [95%CI: 1.01–1.53]) (41)

SLE • An 85% (HR 1.85 [95%CI: 1.17-2.91]) significantly increased risk of SLE among obese compared to
normal BMI women in the more recent NHSII cohort (12), but not NHS

Organic Solvents, Pesticides
and Heavy Metal

RA • Application of chemical fertilizers (adjusted OR 1.7 [95%CI: 1.1-2.7]) and cleaning with solvents (OR
1.6 [95%CI: 1.1-2.4]) (42)

SLE • Pesticide exposure (adjusted OR 2.24 [95%CI: 1.28–3.93]) (27)
• Association with SLE risk seen with mercury (OR 3.6 [95%CI: 1.3-10.0]) and mixing pesticides for
agricultural work (OR 7.4 [95%CI: 1.4-40.0]) (43)

SSc • OR 2.9 (95%CI: 1.1-7.6) for solvent organic solvent exposure (male SSc vs controls) (44)

Periodontitis RA • OR 1.16 (95%CI: 1.13-1.21) history of periodontitis (45)

Psychosocial SLE • Probable PTSD (HR 2.94 [95%CI: 1.19–7.26]) and trauma exposure (HR 2.83 [95%CI: 1.29–6.21]) (19)
• Women with a history of depression vs. no depression (HR 2.67 [95%CI: 1.91-3.75]) (17)
• Adverse childhood experiences (abuse, neglect, and household challenges) associated with increased risk
of SLE. Exposure to the highest vs. lowest physical and emotional abuse was associated with 2.57 times
greater risk of SLE (95%CI: 1.30–5.12) (46). HR for ≥2 episodes of severe sexual abuse compared to no abuse
was 2.51 (95%CI: 1.29–4.85) and ≥5 episodes of severe physical abuse was 2.37 (95%CI: 1.13–4.99) among
Black women) (20).

Reproductive/
Hormonal Factors

SLE • Pooled RR 1.5 (95%CI: 1.1-2.1) oral contraceptive use and use of postmenopausal hormones RR 1.9
(95%CI: 1.2-3.1) (21)

Silica RA • Silica exposed men OR 2.2 (95%CI: 1.2-3.9) among men aged 18 to 70 years and 2.7 (95%CI: 1.2-5.8)
among those aged 50 to 70 years (47)

SLE • Medium silica exposure was OR 2.1 (95%CI: 1.1–4.0), high exposure OR 4.6 (95%CI: 1.4–15.4) (25)

Vasculitis • Overall significant summary effect estimate of silica “ever exposure” with development of AAV (OR
2.56 (95%CI: 1.51–4.36) (48)

SSc • The combined estimator of relative risk for studies in females was 1.03 (95%CI: 0.74–1.44) and was
3.02 (95%CI: 1.24–7.35) for males (49).

Sleep Deprivation SLE • HR 2.47 (95%CI: 1.29-4.75) for chronic low sleep duration (≤5 hours/night versus >7–8 hours) (18)

UV Radiation SLE • History of more than one serious sunburn before the age of 20 years (OR 2.2, 95%CI: 1.2–4.1) and
sunburn-susceptible skin type (OR 2.9, 95%CI: 1.6–5.1) (32)

Viruses SLE • Epstein-Barr virus serologic reactivation among unaffected SLE relatives (viral capsid antigen IgG OR
1.28 [95%CI: 1.07-1.53], p=0.007 and early antigen IgG OR 1.43 [95%CI: 1.06-1.93], p=0.02) (36)

SARD • Higher risk of RA (adjusted HR (aHR) 2.98 [95%CI: 2.78–3.20]), SLE (aHR 2.99 [95%CI: 2.68–3.34]),
dermatopolymyositis (aHR 1.96 [95%CI: 1.47–2.61]), SSc (aHR 2.58 [95%CI: 2.02–3.28]), SjD (aHR 2.62
[95%CI: 2.29–3.00]), mixed connective tissue disease (aHR 3.14 [95%CI: 2.26–4.36]), Behçet's disease
(aHR 2.32 [95%CI: 1.38–3.89]), polymyalgia rheumatica (aHR 2.90 [95%CI: 2.36–3.57]), and vasculitis
(aHR 1.96 [95%CI: 1.74–2.20]) among COVID-19 vs. non-COVID-19 exposed unvaccinated
individuals (50).
F
rontiers in Immunology
AAV, anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis; CI, confidence interval; CCP, cyclic citrullinated peptide; HR, hazard ratio; NHSII, Nurses’ Health Study Cohort 2; OR,
odds ratio; RA, rheumatoid arthritis; RR, relative risk; SARD, systemic autoimmune rheumatic diseases; SjD, Sjögren disease; SLE, systemic lupus erythematosus; SSc, systemic sclerosis; UV, ultraviolet.
1. SARD included systemic lupus erythematosus, Sjögren's disease, scleroderma, polymyositis, dermatomyositis, or undifferentiated connective tissue disease.
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processed foods) promote systemic inflammation leading to chronic

inflammatory diseases, including SARD. Before developing overt

clinical manifestations, individuals developing SARD have a period

of asymptomatic autoimmunity and inflammation of variable

intensity and duration, characterized by increasing oxidative

stress, loss of immune tolerance, autoantibody formation,

immune complex deposition and complement activation,

epigenetic modifications, and upregulation and/or downregulation

of cytokine expression [reviewed in (65)].

In SLE, both obesity and exposure to the toxic components of

cigarette smoke induce oxidative stress (66). This, in turn, raises

intracellular levels of reactive oxygen species that damage DNA

producing immunogenic DNA adducts that can lead to the

production of ‘pathogenic’ anti-double-stranded DNA antibodies

(dsDNA) (67–69). In the NHS and NHSII cohorts, smokers were at

higher risk of developing anti-dsDNA positive SLE compared to

never-smokers (hazard ratio [HR] 1.86 [95% confidence interval

(CI): 1.14-13.04]), while there were no significant associations

between smoking status or pack-years and overall SLE or anti-

dsDNA negative SLE (9). In addition to elevated oxidative stress,

the byproducts of smoking could also augment native autoreactive

B cells (11) and induce pulmonary antinuclear antibody (ANA) as

demonstrated in the lungs of exposed mice (70). Smoking may also

influence specific genes in the pathogenesis of SLE (57). An

individual with a high SLE genetic risk score or GRS (score based

on 86 single-nucleotide polymorphisms and 10 classic HLA alleles

previously associated with SLE) and a status of current/recent

smoking was strongly associated with SLE risk (odds ratio [OR]

1.5, p=0.0003 versus more distant past/never smoking) and even

stronger in the presence of anti-dsDNA antibodies. Not

surprisingly, smoking also affects circulating cytokines. Elevated

SARD-related cytokines including the B-cell lymphocyte stimulator

(BlyS) (70), tumor necrosis factor-alpha (TNF-a), and interleukin
Frontiers in Immunology 0449
(IL)-6 (71, 72), but lower IL-10 (an anti-inflammatory cytokine)

have been detected in smokers (73). These cytokines affect the

function of T cells and CD4+ regulatory T cells, which are important

in maintaining self-tolerance. Similarly, adipose tissue, in particular

visceral fat, secretes pro-inflammatory adipocyte-derived cytokines

and exhibits higher levels of C-reactive protein (CRP), TNF-a
receptor 2, and IL-6 than non-obese individuals (74).

The association between SLE risk and diet is less clear in

humans (75–77) compared to other autoimmune diseases such as

RA [reviewed in (78)]. There is evidence from SLE-prone mice

models that low dietary fiber intake and a Western-type diet (i.e.,

high in sugar, fat, refined grains, and red meat) are associated with

increased autoantibody production (79, 80). In the BWHS, a diet

high in carbohydrates and low in fats was associated with an

increased risk of developing SLE in African American women

(HR 1.88 [95%CI: 1.06-3.35]) (75). Consumption of ultra-

processed foods, in particular sugar and artificially sweetened

beverages, has been associated with an increased risk of

developing SLE among women (16). Low to moderate alcohol

consumption (approximately 1/2 drink a day), on the other hand,

has been shown to reduce the risk of SLE development among

women (10, 13–15). Alcohol (e.g., ethanol) and antioxidants may

counteract the changes induced by smoking and obesity, i.e.,

inhibiting key enzymes in DNA synthesis and suppressing TNF-

a, IL-6, IL-8, and interferon (IFN)-g that lower systemic

inflammation (81, 82).

Several studies have reported an association between lack of

sleep and SLE risk in humans (18, 83, 84). In the NHS and NHSII

cohorts, chronic low sleep duration (</=5 hours/night versus the

recommended >7-8 hours) was associated with increased SLE risk

(adjusted HR 2.47 [95% CI: 1.29, 4.75]), with stronger effects among

those with body pain and depression. In sleep-deprived individuals,

increased levels of IL-6 and TNF-a have been reported (85–89).
TABLE 2 Environmental factors that decrease risk for systemic autoimmune rheumatic diseases.

Lifestyle Exposure Disease Association Reported Risk from Select Key References (Citation)

Alcohol RA • HR 0.78 (95%CI: 0.61–1.00) for alcohol use of 5.0–9.9 gm/day (51)

SLE • HR 0.65 [95%CI: 0.45–0.96] among women who drank 2 or more servings of wine had significantly
decreased SLE risk compared to women who did not drink wine (13)

Diet RA • HR 0.67 (95%CI: 0.51-0.88) among women aged ≤55 years, better quality diet was associated with
lower RA risk, particularly seropositive RA (52)

Exercise SLE • Regular exercise (performing at least 19 metabolic equivalent hours of exercise per week) assessed with
other healthy behaviors (never or past smoker, healthy diet, moderate alcohol consumption, healthy body
weight) was associated with a 19% reduction in SLE risk per additional healthy behavior, such that
women with four or more healthy lifestyle factors had the lowest risk (HR 0.42 [95%CI: 0.25-0.70]) (53).

RA • Similar to the SLE study above, a lower risk of RA was also observed with a healthier lifestyle
including regular exercise, i.e., women with five healthy lifestyle factors had the lowest risk (HR 0.42 [95%
CI: 0.22-0.80]) (54).

Reproductive/
Hormonal Factors

RA • RR 0.8 (95%CI: 0.6–1.0) for breastfeeding for 2–23 total months (55)

Vitamin D SARD1 • Vitamin D 2000IU daily supplementation was associated with a 22% reduction in the development of
autoimmune disease (HR 0.78 [95% CI: 0.61, 0.99], P=0.05) (56).
CI, confidence interval; HR, hazard ratio; RA, rheumatoid arthritis; RR, relative risk; SARD, systemic autoimmune rheumatic diseases; SLE, systemic lupus erythematosus; 1. This included RA,
polymyalgia rheumatic, autoimmune thyroid disease, psoriasis, inflammatory bowel disease, and many others (e.g., SLE, systemic sclerosis).
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In SLE-prone mice, sleep deprivation was associated with

accelerated production of autoantibodies and earlier disease onset

(90). Sleep disturbances arising in individuals who have had

childhood or adult trauma, PTSD, or occupational stress from

working night or rotating shifts, may also explain why these

factors have also been linked to SLE onset (17, 19, 20, 43, 91, 92).

In the NHSII, PTSD, a condition arising after exposure to trauma

and marked by severe psychological stress, was associated with

increased SLE risk (HR 2.94 [95% CI: 1.19-7.26], p<0.05) compared

to women with no trauma, even after adjusting for other SLE risk

factors smoking, body mass index (BMI), and oral contraceptive use

(19). In the NHS and NHSII, women with a history of depression

had a higher risk of SLE (HR 2.67 [95:CI: 1.91-3.75] p<0.001)

compared to women with no depression (17). Systemic

inflammation, denoted by elevated TNF, IL-6, and CRP levels,

has been repeatedly reported in individuals with emotional stress

and distress (91, 93–102).

There is also evidence that sex hormones are important in SLE

development (21, 22), a disease, like some other SARD, that

predominantly affects females. In SLE, a population-based nested

case-control study using the UK’s General Practice Research

Database demonstrated that there was a dose-response in oral

contraceptive pill (ethinyl estradiol) and SLE risk (adjusted rate

ratio [aRR] 1.42, 1.63, and 2.92 for < or =30 microgram, 31-49

microgram, and 50 microgram, respectively) (22). They also

reported that the rate was particularly increased among females

who recently started taking oral contraceptive pills (aRR 2.52 [95%

CI: 1.14-5.57]) compared with longer-term current users. Estrogen
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prevents B cell receptor-mediated apoptosis and upregulates several

genes that contribute to B cell activation and survival (cd22, shp-1,

bcl-2, and vcam-1) (103).

Chemical and physical exposures have also been historically

linked to SLE onset, including crystalline silica dust (25, 33, 104,

105), heavy metals such as mercury (43), air pollution and other

respiratory particulates (38, 106), residential proximity to

hazardous waste sites (26), agricultural pesticides (27, 43, 107),

and organic solvents (42, 44). Proposed mechanisms of

pathogenesis include stimulation of cellular necrosis and release

of intracellular antigens resulting in systemic inflammation and IFN

upregulation. These environmental exposures have also been

described as important risk factors in the development of RA

(42), SSc (44), and vasculitis (48). A comprehensive review of the

literature (~1980-2010) on environmental factors and SARD

development concluded that among these chemical factors,

crystalline silica exposure, solvent exposure, and smoking had the

strongest level of evidence (108). Since then, however, multiple

studies have been published. The evidence for metal exposure and

SARD development including mercury at that time was felt to be

insufficient, although there is renewed interest in mercury-induced

autoimmunity in more recent studies (109, 110). Mercury exposure

has been associated with autoimmune features that are more

consistent with pre- or sub-clinical autoimmunity in humans, and

in animal studies, acts independently of type I IFN to induce milder

disease (111).

UVB radiation can exacerbate pre-existing SLE, however,

whether it contributes to SLE disease onset or pathogenesis is less
FIGURE 1

Environmental factor-associated pathogenesis and personalized preventative vs. treatment interventions for systemic autoimmune rheumatic diseases
(SARD). Among individuals genetically predisposed to SARD development, unhealthy lifestyle behaviors and other environmental factors can trigger
dysregulation in the microbiome, epigenetic changes, and immune dysregulation which, together, drive inflammation. In turn, inflammation can drive
further derangements in the microbiome, cause distinct epigenetic changes, and lead to additional immune dysregulation. During the periods of
asymptomatic autoimmunity and pre-clinical SARD, this positive feedback leads to a process wherein inflammation becomes chronic and self-sustaining,
ultimately driving autoimmunity and eventually leading to organ damage and clinical disease. Effective lifestyle interventions, supplementation, and early
introduction of immunomodulatory therapies may help prevent disease progression. There may be a potential role for treatments such as
hydroxychloroquine for pre-SLE [SMILE trial underway (61)] and Abatacept, a T-cell co-stimulation inhibitor, for pre-RA (62, 63).
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clear. While UVB radiation can up-regulate Th2 cells and down-

regulate Th1 cells, induce IL-10 production, increase type I IFN

expression, and prolong T cell activation to increase SLE risk (29–

31), another subset of UV radiation, UVA, is used as a phototherapy

modality to treat cutaneous forms of lupus (112). UVB also has an

important role in vitamin D3 synthesis in the skin, which has been

hypothesized to lower SLE risk (28, 113). Vitamin D deficiency is

reportedly common among SLE patients (34) and is important in

the regulatory pathways of numerous genes involved in

inflammation and immunity including IL-2 inhibition, antibody

production, and lymphocyte proliferation (114, 115). We will later

discuss a large, randomized, double-blind, placebo-controlled

clinical trial called the vitamin D and omega 3 trial (VITAL) trial,

where vitamin D 2000 IU daily supplementation was associated

with a 22% reduction in the development of autoimmune disease

(HR 0.78 [95% CI: 0.61, 0.99], p=0.05) (56).

Viral triggers, particularly Epstein-Barr Virus (EBV), have also

been associated with SLE development (35). In a recent study of 436

unaffected SLE patient relatives who were followed for 6.3 ± 3.9 years

and evaluated for interim transitioning to SLE, increased serological

reactivation of EBVwas associated with higher risk of transitioning to

SLE (viral capsid antigen IgG OR 1.28 [95%CI: 1.07-1.53], p=0.007

and expression of EBV early antigen IgG (OR 1.43 [95%CI: 1.06-

1.93], p=0.02) (36). Proposed mechanisms include molecular

mimicry and the release of EBV-encoded small RNAs from

infected cells resulting in the induction of type-1 IFN and

proinflammatory cytokines via activating toll-like receptor (TLR)-3

signaling (116). The interest in triggering of autoimmune conditions

by viral infections was renewed during the coronavirus disease 2019

(COVID-19) pandemic when there were outbreaks of pediatric

inflammatory multisystemic syndrome [PIMS also referred to as

multisystem inflammatory syndrome in children (MIS-C)] that

reportedly followed severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) infection in children. These reports included cases

of Kawasaki-like disease, Kawasaki disease shock syndrome, toxic

shock syndrome, myocarditis and macrophage activation syndrome

(117–119). In adults, SARS-CoV-2 infection has also been linked to a

higher risk of developing a diverse spectrum of new-onset

autoimmune diseases as highlighted by two large retrospective

studies (50, 120). Chang et al. used data from the TriNetX network

and propensity score matching (two cohorts [COVID-19 and non-

COVID-19] of 887,455 SARS-CoV-2 unvaccinated individuals) to

identify the incidence of autoimmune conditions during the study

period (1 January 2020 to 31 December 2021) (50). Unlike EBV, there

was a wider spectrum of SARD seen including higher risk of RA

(adjusted hazard ratio (aHR) 2.98 [95%CI: 2.78–3.20]), SLE (aHR

2.99 [95%CI: 2.68–3.34]), dermato/polymyositis (aHR 1.96 [95%CI:

1.47–2.61]), SSc (aHR 2.58 [95%CI: 2.02–3.28]), SjD (aHR 2.62 [95%

CI: 2.29–3.00]), and other autoimmune diseases. Future studies that

elucidate how viruses, such as SARS-CoV-2, increase the risk of

SARD development may help implement preventive measures and

early treatment in individuals who have had these infections to

prevent morbidity and mortality.

A key pathway involved in both anti-viral response and the

pathogenesis of SLE and other SARD including IIM and SSc is the
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type I IFN pathway (121). Approximately 50-70% of adult and

pediatric SLE patients have an upregulated IFN signature, a cluster

of IFN-stimulated genes, that correlates with disease activity and

severity (122). A recent study demonstrated that type-1 IFN inhibits

the aryl hydrocarbon receptor (AHR) pathway. Suppressed AHR

signaling promotes T cell production of CXC ligand 13 (CXCL13), a

chemokine that regulates B cell recruitment and lymphoid

aggregation in inflamed tissues (123). AHR is important for

sensing changes in the cellular milieu provided by the

environment, diet, commensal flora, and host metabolism (124).

In response to these environmental ligands, AHR has a protective

role against inflammation by downregulating pro-inflammatory

pathways (124). In the gut, AHR is expressed in epithelial cells

and immune cells in the lamina propria to also stabilize the gut

epithelial barrier (124). In the central nervous system, AHR is

upregulated in astrocytes and microglia in response to ligands that

cross the blood-brain barrier (124). Lower AHR expression has

been described as a potential mechanism of pathogenesis for several

autoimmune conditions including inflammatory bowel disease

(125), multiple sclerosis (126), and psoriasis (127). In SLE, deficits

in the AHR-driven immunoregulation exacerbated by the type-1

IFN may explain how alterations in the environment lead to the

development of autoimmunity and uncontrolled inflammation.

Moreover, polycyclic aromatic hydrocarbons, smoking, air

pollution, and other environmental exposures cause DNA

methylation changes in the AHR repressor genes, potentially

linking these exposures to the development of autoimmunity

(128–130). Future studies are warranted to elucidate the pathways

by which regulation of the AHR pathway is related to lymphocyte

activation status in the pathogenesis of autoimmunity.
Epigenetic changes

The currently accepted etiologic model for SARD implicates an

interaction of inherited genetic factors and environmental

exposures over time. DNA methylation (DNAm), an epigenetic

change controlling gene expression, is influenced by both genetics

and environmental exposures and therefore, may provide a critical

link between them [reviewed in (131–133)]. For instance, UV light

exposure, infections, silica, heavy metals and pesticide exposures,

cigarette smoking, and air pollution are all thought to inhibit

DNAm by oxidative stress, which could promote SARD onset

specifically or non-specifically (134). In addition to DNAm,

cigarette smoking is linked to the activation of enzymes that

regulate other types of epigenetic modifications (i.e., post-

translational modifications of histones via methylation,

acetylation, phosphorylation, ubiquitination, and regulation of

non-coding RNA sequences) to mediate the expression of

multiple inflammatory genes, thereby participating in the onset

development of autoinflammatory diseases (135).

DNAm occurs when a methyl group is added to a cytosine base

in a cytosine-phosphate-guanine dinucleotide (CpG) which, in

general, silences nearby gene expression. By comparison,

demethylation activates gene expression. These changes, mainly
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demethylation and in particular IFN gene hypomethylation, have

been observed in various cell subsets, including CD4 T cells in

patients affected by SLE (136–145). Upregulation of type I IFN in

SLE is thought to induce an “IFN epigenomic signature”, activating

latent enhancers and “bookmarking” chromatin, reprogramming

genes to be hyper-responsive, amplifying the inflammatory cascade

(146–148). Emerging data reveal that some of these epigenetic

changes are correlated with SLE disease manifestations (malar

and discoid rash, dsDNA autoantibodies, lupus nephritis) and

disease severity (137, 139, 144, 149), and are highly specific to

SLE such that they distinguish individuals with existing SLE from

controls and other SARD (141, 150). Well-designed epidemiologic

studies are still needed to determine whether other epigenetic

changes precede the development of SARD and whether such

changes could be modified to abrogate disease.
Microbiome influences

There is mounting evidence that imbalances in the microbiota

contribute to metabolic and immune regulatory dysfunction, which

may contribute to the pathogenesis of chronic inflammatory

diseases such as SARD [reviewed in (151)]. Several independent

reported studies of 16S rRNA libraries have identified characteristic

patterns of gut dysbiosis in SLE, in which there is an inverse

relationship between disease activity and overall biodiversity of

the intestinal microbiota (152–154). In studies of 61 female SLE

patients, there was an eight-fold increase in Ruminococcus gnavus

abundance compared to the healthy subjects, and most patients

with high R. gnavus abundance had active nephritis (152). Increases

in R. gnavus abundance have also been observed in other diseases

including allergies and spondyloarthropathies with inflammatory

bowel disease (155–157). Importantly, many strains of R. gnavus

express a VH3 B cell repertoire (BCR) targeted B cell superantigen,

particularly relevant to SLE given the importance of B cell activation

in disease pathogenesis (158).

Evidence suggests that SLE patients may suffer chronic

microbial translocation through impaired gut barrier integrity

contributing to immunologic dysregulation (159). Oral

microbiome studies confirm that SLE patients have a distinct

microbiome signature compared to healthy controls, with

evidence of translocation of bacteria, e.g., Veillonella species, from

the oral cavity to the intestine (160, 161).

In healthy adults, the microbiome, even at the level of strains, is

relatively stable over many years (162). However, the microbiome

can be altered by diet, sleep, exercise, stress, medications (antibiotics

and non-antibiotics), and the environment (163). Perturbations in

the gut microbiome composition have been suggested to trigger SLE

onset or disease flares and vice versa (164). In-depth studies

examining the impact of lifestyle and environmental factors on

changes to the microbiome and subsequent risk of autoimmune

diseases are needed.

Other host barriers should also be considered as potential

targets for prevention including the oral cavity and lung mucosa
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immune responses that contribute to autoimmune disease. The

initiation of RA by inflammation characterized by an aberrant

Th-17-dominated immune response, neutrophil activation,

antigen citrullination, and anti-cyclic citrullinated peptide

(CCP) production is exacerbated by microbial dysbiosis, the

presence of oral pathobionts (e.g., Porphyromonas gingivalis

and Aggregatibacter actinomycetemcomitans), and periodontitis

has been described (45, 165–167).

The lung mucosa is another site of protein citrullination leading

to RA development, promoted by microbial infection or dysbiosis

and the inhalation of pollutants such as tobacco smoke or other

pollutants (168, 169). This anti-CCP production and translocation

into the systemic circulation has been proposed to accelerate the

development of RA with interstitial lung disease for individuals who

are genetically predisposed (e.g., gain-of-function MUC5B

promoter variant reducing mucociliary function in small airways

responsible for clearing inhaled particles in the lungs (170)). It is

difficult to be certain that microbiome alterations observed in recent

studies of SARD patients are not due to established and treated

disease. Additional studies of the microbiome before disease onset

are warranted.
Mitigation of environmental factors

Traditional cohort studies

Our current understanding of lifestyle factors and autoimmune

diseases has largely depended on large observational

epidemiological studies (53, 54, 171). Many of these studies used

self-reported data including the use of validated and standardized

questionnaires. These studies also relied on the retention of subjects

in the long term to enable repeated measurement of lifestyle

behaviors. Nevertheless, these studies have filled important

knowledge gaps in our understanding of the link between

environmental exposures and autoimmunity.

In the NHS and NHSII cohorts, our group demonstrated that

adherence to multiple healthy behaviors (healthy diet (highest 40th

percentile of the Alternative Healthy Eating Index), regular exercise

(performing at least 19 metabolic equivalent hours of exercise per

week), never or past smoker, moderate alcohol consumption

(drinking ≥5 gm/day alcohol), and maintaining a healthy body

weight (body mass index <25 kg/m2) was associated with a 19%

reduction in SLE risk per additional healthy behavior, such that

women with four or more healthy lifestyle factors had the lowest

risk (HR 0.42 [95%CI: 0.25-0.70]) (53). An even greater reduction

per healthy behavior (22%) was observed for the risk of anti-

dsDNA-positive SLE. Overall, the population-attributable risk, or

the proportion of the risk in this population that could be attributed

to these five modifiable lifestyle risk factors was 47.7% [95%CI:

23.1-66.6%]. Using the same cohorts and similar modeling, a lower

risk of RA was also observed with a healthier lifestyle, i.e., women

with five healthy lifestyle factors had the lowest risk (HR 0.42 [95%
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CI: 0.22-0.80]) (54). Therefore, a significant proportion of the risks

of both SLE and RA may be preventable by adhering to

healthy lifestyles.
Intervention and prevention trials

There is a scarcity of clinical trials examining lifestyle and

environmental interventions and prevention strategies to reduce the

risk of autoimmune disease development. One of the challenges in

designing a strong and well-powered prevention study is identifying

which at-risk individuals to study. Our group has previously

developed SLE risk prediction models having 76% accuracy by

combining family history, genetic factors, and lifestyle, medical and

behavioral exposures that classify a woman’s risk of SLE in the next

two years (172). There is also a rapidly growing panel of potential

biomarkers of SLE risk or early disease including anti-dense fine

speckled 70 (DFS70) as a rule-out SARD test (173), anti-C1q

antibodies as a rule-in test (174), cytokines and chemokines (175,

176), IFN signature (177), as well as markers of complement

activation (178). Therefore, identifying individuals for screening,

risk-stratifying, assessing biomarkers, and testing intervention and

prevention strategies before clinical disease onset has recently

become possible (65, 179).

In a pivotal randomized, double-blind, placebo-controlled

vitamin D and omega 3 trial (VITAL) trial with a two-by-two

factorial design (n=25 871 participants followed for a median of 5.3

years), vitamin D (2000IU/day) supplementation for five years

[with or without omega 3 fatty acid (1000 mg/day)] had a

significant reduction in the risk of confirmed autoimmune disease

of 22% (HR 0.78 [95% CI: 0.61, 0.99], p=0.05) (56). This included

RA, polymyalgia rheumatica, autoimmune thyroid disease,

psoriasis, inflammatory bowel disease, and others (e.g., SLE, SSc).

Individuals who received an omega-3 fatty acid supplementation

(with or without vitamin D supplementation) had a reduced rate of

incident autoimmune disease by 15% but this was not statistically

significant. However, the two-year post-intervention observation

study where participants were no longer provided with any

supplements but were invited to continue being observed while

off assigned supplements, demonstrated that the protective effects of

the 5.3 years of randomized exposure to 2000 IU/day of vitamin D

dissipated, but the randomized supplementation with 1,000 mg/day

of omega-3 fatty acids for the 5.3 years was seen to have a sustained

effect in reducing autoimmune disease incidence (180). The results

suggest that vitamin D supplementation of 2000 IU/day should be

given continuously for long-term prevention of autoimmune

disease, while the beneficial effects of omega-3 fatty acids may be

more sustained.

The only SLE-specific prevention trial to date is the “Study of

Anti-Malarials in Incomplete Lupus Erythematosus (SMILE)” (61),

which was set to determine whether SLE progression can be

abrogated by using hydroxychloroquine (HCQ) among patients

with a positive ANA test and at least one (but not three or more)

additional clinical or laboratory criterion from the 2012 Systemic

Lupus Inception Collaborating Clinics (SLICC) classification

criteria (181). This highly anticipated, multicenter, randomized,
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double-blind, placebo-controlled, 24-month trial is expected to be

completed soon.

A similar HCQ prevention trial in RA (“Strategy to Prevent the

Onset of Clinically-Apparent Rheumatoid Arthritis” or STOP-RA)

was halted early due to the futility of the treatment (182). In the

interim analysis it was observed that in individuals who were anti-

CCP positive but without inflammatory arthritis at baseline, one

year of HCQ was not superior to placebo in preventing or delaying

the development of inflammatory arthritis, and the classification of

individuals as having RA at 3 years (probabilities of RA

development were 34% in the HCQ arm and 36% in the placebo;

p=0.844). Therefore, in RA, HCQ did not help prevent or delay the

onset of clinical disease compared to placebo. The study did suggest

however that anti-CCP at levels of ≥40 units will be an important

enrolment criterion in future RA prevention studies. Therefore, as

we strive towards a future of prevention over cure in any SARD, a

better and more standardized approach to identifying the timing of

intervention and which patients are at the highest risk is urgently

needed to ensure the success of prevention trials.

Other RA prevention trials such as the “TREAT Early

Arthralgia to Reverse or Limit Impending Exacerbation to

Rheumatoid arthritis” (TREAT EARLIER) trial examining one

year of methotrexate also did not meet its endpoint of

development of clinical arthritis among individuals with

arthralgia clinically suspected of progressing to RA and magnetic

resonance imaging (MRI)-detected subclinical joint inflammation

(183). The T-cell co-stimulation inhibitor abatacept has shown

greater promise in delaying RA development in two different at-

risk populations. In the “Abatacept inhibits inflammation and onset

of rheumatoid arthritis in individuals at high risk” or ARIAA trial,

abatacept treatment for six months among RA-at-risk individuals

(anti-CCP positive and showing MRI signs of inflammation)

reduced subclinical joint inflammation and delays the

development of RA (62). In the “Arthritis Prevention In the Pre-

clinical Phase of RA with Abatacept” (APIPPRA) trial, at-risk

individuals were defined as individuals with arthralgia, anti-CCP

plus rheumatoid factor (RF) positive or high anti-CCP titers ≥3 x

upper limit of normal plus RF negative, without synovitis at baseline

(63). In this randomized, double-blind, multicenter, parallel,

placebo-controlled, phase 2b clinical trial, 52 weeks of abatacept

treatment reduced RA development over two years compared to

placebo. However, by 24 months, the effect of abatacept treatment

on symptom burden and subclinical inflammation as determined by

ultrasound was not sustained. Therefore, longer treatment with

abatacept beyond 12 months might be required. These studies again

highlight the need for criteria that identify at-risk individuals from

patients with early RA and the most appropriate time to target

preventative interventions (184).
Future technologies for research on
environmental exposures and SARD

In the last decade, there has been an exponential uptake of AI

technologies to study diseases including SARD [reviewed in (185–
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187)]. Much of this is due to greater access to a variety of data

sources, e.g., images, efficient data collection tools, and

supercomputer and analytic methods to rapidly compute. ML is a

type of AI that refers to utilizing computers to perform specific tasks

by learning from the data rather than being explicitly programmed

with instructions such as traditional statistical tests. Within ML,

different algorithms are generally categorized into supervised,

unsupervised, reinforcement, and deep learning.

In the study of SARD, ML has proven useful in developing

prediction models for diagnosis and disease outcomes and in

elucidating pathogenesis [reviewed in (185)]. As SARD are highly

complex, multifactorial, and heterogeneous diseases, ML is an ideal

approach because it can reveal patterns and interactions between

variables in large and complex datasets more accurately and

efficiently than traditional statistical methods. As we enter an era

of ‘multi-omics’, information on our patients is becoming

increasingly ‘layered’ and challenging to interpret and ML holds

promise for new insights and interpretations.

Utilizing ML, we recently demonstrated that there are four

unique SLE clusters defined by longitudinal autoantibody profiles

alone (188). While these clusters are predictive of disease activity,

treatment requirements, complications, and mortality, it also

points to autoantibodies as being a fundamental underlying

mechanism of immune dysregulation and disease pathogenesis of

SLE. This approach can be adopted to study pathogenesis for other

SARD and inform more personalized monitoring and treatment

plans. The focus of current SLE ML models is on the identification

of patients with established disease or the prediction of specific SLE

manifestations, e.g., nephritis, neuropsychiatric disease. This

includes a validated diagnostic algorithm called the SLE Risk

Probability Index (SLERPI) where a SLERPI score of greater than

7 was highly accurate (94.2%) and sensitive for detecting early

disease (93.8%) and severe manifestations including kidney

(97.9%) and neuropsychiatric involvement (91.8%) (189). Future

studies to develop MLmodels that predict the development of new-

onset SLE utilizing datasets that include environmental exposures

are needed.
Conclusions

Our examination of risk and protective factors for SARD

development, including adherence to multiple healthy lifestyle

behaviors, has helped our understanding of the pathogenesis of

autoimmunity that involves immune dysregulation, epigenetics,

and an altered microbiome. Multiple environmental exposures,

including social and behavioral factors throughout our lifespan

are likely synergistic and interactive with each other and with

genetic factors, influencing the immune system in a complex

interplay of epigenetic, hormonal, and microbiome influences,

leading to systemic inflammation and eventual organ damage in
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some. While a major focus has been placed on identifying new

targets for disease treatment, shifting the care paradigm to disease

prevention is an attractive proposition, especially as our ability to

identify high-risk individuals improves. In the few prevention trials

that have been conducted, the importance of identifying patients at

the highest risk and the likelihood of benefiting from preventative

treatment has been highlighted, and thus far, biomarkers have

played a critical role in risk stratification. Given the complexity

and vast clinical heterogeneity of SARD, ML approaches will

become increasingly relied upon to study SARD pathogenesis

and prevention.
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contaminant exposure, and
risk of juvenile idiopathic
arthritis: exploring gene-
environment interactions
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Objectives: Juvenile idiopathic arthritis (JIA) originates from a complex interplay

between genetic and environmental factors. We investigated the association

between seafood intake and dietary contaminant exposure during pregnancy

and JIA risk, to identify sex differences and gene-environment interactions.

Methods: We used the Norwegian Mother, Father, and Child Cohort Study

(MoBa), a population-based prospective pregnancy cohort (1999–2008). JIA

patients were identified through the Norwegian Patient Registry, with remaining

mother-child pairs serving as controls. We assessed maternal seafood intake and

dietary contaminants typically found in seafood using a food frequency

questionnaire completed during pregnancy, mainly comparing high (≥90th

percentile, P90) vs low (<P90) intake. Multivariable logistic regression

calculated adjusted odds ratios (aOR), including sex-stratification analyses. A

polygenic risk score (PRS) for JIA was used in a subsample to assess gene-

environment interactions.

Results:We identified 217 JIA patients and 71,884 controls. High vs low maternal

intake of lean/semi-oily fish was associated with JIA (aOR 1.51, 95% CI 1.02-2.22),

especially among boys (aOR 2.13, 95% CI 1.21-3.75). A significant gene-

environment interaction was observed between total fish intake and PRS, with

high fish intake associated with JIA primarily in those with low PRS (p<0.03). We
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found no associations between high vs low exposure to other types of seafood or

environmental contaminants and JIA.

Conclusions: We found a modestly increased risk of JIA associated with high

intake of lean/semi-oily fish during pregnancy, not explained by estimated

exposure to dietary contaminants. Our data suggest a more pronounced

association in children with a lower genetic predisposition for JIA.
KEYWORDS

juvenile idiopathic arthritis (JIA), MoBa, fish, contaminants, heavy metals, polygenic risk
score, gene-environment interaction, sex differences
1 Introduction

Juvenile idiopathic arthritis (JIA), the most common

inflammatory rheumatic disease of childhood, manifests as

arthritis before the age of 16 years which persists more than six

weeks, and without an apparent cause. It consists of seven

heterogeneous subgroups, reflecting the complex interplay

between genetic predisposition and environmental influences that

contribute to the diverse clinical manifestations (1). Known genetic

variants are estimated to account for 13-25% of the risk for JIA,

while the remaining risk is attributed to environmental factors and

their interaction with genetic predisposition (1, 2). Limited high-

quality data and modest sample sizes have constrained prior

attempts to pinpoint environmental risk and protective factors

(3). Furthermore, despite JIA being more prevalent in girls than

in boys (4), few studies have investigated this sex disparity, which is

important for understanding the underlying pathomechanisms of

disease development.

Diet is an example of an environmental factor that remains

underexplored in relation to JIA risk (3). Results from a Swedish

prospective cohort study showed that fish intake more than once

per week during pregnancy and the first year of life was associated

with increased risk of JIA, which was mainly attributed to high

heavy metal exposure (5).

Among the environmental contributors, heavy metals like

mercury and cadmium, and persistent organic pollutants (POPs),

have emerged as potential triggers of autoimmunity (6–9). Mercury

is associated with subclinical autoimmunity in humans through the

production of autoantibodies and cytokines (10–13), while in

individuals with a genetic predisposition, cadmium may

exacerbate autoimmunity (14) and increase the risk of

rheumatoid arthritis (RA) (15, 16). Furthermore, exposure to

POPs has also been linked to autoimmune diseases, with research

suggesting increased risk of celiac disease, especially in girls (8), and

of RA (17).

Diet serves as a major source of these contaminants (18), with

seafood being a significant contributor to mercury (19) and shellfish

contributing to cadmium exposure (20). Individuals consuming
0261
high amounts of seafood are also at greater risk of POPs exposure

(21, 22). It has been suggested that diseases with a sex disparity

should be investigated for environmental risk factors like

contaminant exposure, as differences in vulnerability and

susceptibility between the sexes may account for the prevalence

disparities (23).

Our primary aim was to explore the association between

seafood intake and dietary environmental contaminant exposure

during pregnancy and JIA risk. Secondary aims included exploring

sex disparities and possible interactions between seafood intake and

genetic predisposition to JIA.
2 Material and methods

2.1 Study population and design

We used data from the Norwegian Mother, Father, and Child

Cohort Study (MoBa), which was linked by national identification

(ID) numbers to the individual records in the following population-

based health registers: the Norwegian Patient Registry (NPR) and

the Medical Birth Registry of Norway (MBRN).

MoBa is a population-based pregnancy cohort study conducted

by the Norwegian Institute of Public Health. Participants were

recruited from all over Norway from 1999-2008. Of those invited to

participate, 41% of women consented. The cohort includes

approximately 114,500 children, 95,200 mothers, and 75,200

fathers. The current study is based on version 12 of the quality-

assured data files released for research in 2019 (24). Genotype data

was available for a subsample of 51,804 children, which is further

described under “Genotyping Data, Polygenic Risk Score (PRS)

for JIA”.

Three questionnaires were sent to the mothers during

pregnancy, the second being a semi-quantitative food frequency

questionnaire (FFQ). The FFQ was distributed in gestational week

22 and covered the average intake of 255 food items and beverages

during the first half of pregnancy (25). The MoBa FFQ has been

validated and found to be a reliable tool to estimate intake of
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nutrients and foods during pregnancy, including various types of

fish and seafood (26, 27). The FFQ was introduced in March 2002

and all pregnancies recruited between 2002 and 2008 are included

in our study. Figure 1 outlines the flow of subject for inclusion in

our study from the MoBa cohort.
2.2 Outcome

The Norwegian Patient Registry (NPR) contains data with

personal ID numbers from all Norwegian public hospitals and

specialists with public funding from 2008. We defined a JIA case

as having at least two International Classification of Diseases (ICD)-

10 codes (≥2 M08, ≥2 M09, or 1 M08 and 1 M09). We recently

validated this case definition and have found a positive predictive

value of 93.4% (28). For cases where the child received their first

ICD-10 code in 2021, we accepted a single relevant ICD-10 code

(M08 or M09), recognizing that there might have been only one

doctor visit before we received our latest updates from NPR in
Frontiers in Immunology 0362
December 2021. Controls were defined as live births that were non-

JIA cases. We excluded children with only one registration of ICD-

10 code M08 or M09 between 2008-2020 because they might

have JIA.
2.3 Exposure variables: intake of seafood
and environmental contaminants

We estimated maternal seafood intake and the exposure to

dietary contaminants by the FFQ that was developed and validated

for pregnant women in MoBa (25).

Food frequencies reported in the FFQ were converted to food

amounts (grams/day) using FoodCalc and the Norwegian food table

(26). Seafood intake was allocated into five variables, of which three

were strictly related to fish intake: 1) oily fish (more than 8% fat,

such as herring, mackerel, salmon), 2) lean/semi-oily fish (up to 8%

fat, such as cod, haddock, saithe), and 3) total fish (total amount of

oily fish and lean/semi-oily fish). In addition, we included 4)
FIGURE 1

Flowchart of study population with exclusion criteria. a This number includes siblings. b The MoBa FFQ was introduced in 2002. c We excluded all
controls with a single ICD-10 code (M08 or M09) to rule out potential JIA cases, except for those who received their first code in 2021. For these
cases, we accepted a single relevant ICD-10 code, acknowledging that they might have had only one doctor visit before our latest NPR update
in 2022.
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shellfish intake (capturing crab, shrimp, and mussels), and 5) total

seafood (total fish and shellfish, including fish liver, roe, and fish

liver/roe spread). We converted these continuous variables (grams/

day) into categorical variables in the following way:

We categorized the seafood variables into high intake, defined

as equal to or exceeding the 90th percentile (≥P90) of the

population, and low intake, defined as less than 90th percentile

(<P90). In secondary analyses, the five seafood variables were also

divided into quintiles with the lowest group serving as reference.

Lastly, because the Norwegian Directorate of Health recommends

between 300-450 grams of fish each week (29), an exposure variable

was also set at ≥300 grams of fish per week, which was compared to

intake <300 grams/week.

The exposure to dietary environmental contaminants was

estimated by combining consumption data from the FFQ with

concentrations of contaminants in Norwegian food, based on data

across various Nordic studies and databases, with the mean or

median values from these studies used for the estimation of dietary

contaminant exposure. The food contamination data spans several

years, corresponding with the period when the FFQ was completed,

and is described elsewhere (30, 31). Dietary contaminant exposure

was categorized into two main groups: 1) heavy metals and 2)

persistent organic pollutants (POPs). Heavy metals included a)

mercury, and b) cadmium, while POPs included c) dioxins and

dioxin-like (dl) compounds, and d) non-dioxin-like (non-dl)

polychlorinated biphenyls (using PCB-153 as a proxy). The

exposure to dioxins and dl-compounds is expressed as toxic

equivalents (TEQ) when assessing their combined effect (32). The

dietary contaminant variables were calculated per kilogram of pre-

pregnancy body weight (kg bw), which was self-reported. We

analyzed high vs. low intake and across quintiles as defined above.
2.4 Covariates and confounders

Potential confounding factors included maternal education, and

parity (categorical variables); maternal age, pre-pregnancy BMI,

daily energy intake (continuous variables); and maternal history of

inflammatory rheumatic disease (see definition below), parental

smoking status, and maternal supplement use during pregnancy

(e.g., fish oil, vitamin D, folate) as dichotomous variables (yes/no).

Associations with lean/semi-oily and oily fish were mutually

adjusted due to their correlated intake.

When analyzing dietary environmental contaminants, we

included the child’s birth year from the Medical Birth Registry as

a possible confounder because contaminant levels in fish may have

varied over the years, and because the cumulative risk of JIA

increases with the child’s age. Information about region of birth

was also obtained from the Medical Birth Registry.

Mother’s history of inflammatory rheumatic diseases was

obtained via linkage to NPR and included following ICD-10

codes: M05, M06, M07, M08, M09, M30, M31, M32, M33, M34,

M35, M45, M46, and L94.
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2.5 Genotyping data, polygenic risk score
for JIA

In MoBa, umbilical cord blood samples were collected at birth

and DNA was stored at the Norwegian Institute of Public Health

(33). Genotyping was carried out over several years through various

research projects (34). MoBaPsychGen genotype quality control

(QC) pipeline was developed to manage the complex relationships

within the cohort. This pipeline includes steps for pre-imputation

QC, phasing, imputation, and post-imputation QC, and it accounts

for array and batch effects (35).

We focused on individuals of European ancestry, identified by

visually comparing the first seven genetic principal components

(PCs) to those from unrelated samples in the 1000 Genomes phase 1

project (35). Related individuals with a kinship coefficient >0.05 had

one member excluded, prioritizing the retention of JIA cases, with

other exclusions made randomly.

To estimate the genetic risk for JIA, we calculated PRSs using

data from a genome-wide association study (GWAS) of JIA (36).

The calculation was done using PRSice version 2.3.3 (37), applying

different P-value thresholds as 5E-8, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2,

5E-2, 1E-1, 5E-1, and 1. We then extracted the first PC of PRSs

across all P-value thresholds, following a widely used method (38).

The standardized PRS was then converted into a binary variable

with cut-off at 0, of which the PRS <0 was regarded as “low”,

whereas the PRS ≥0 was regarded as “high”.
2.6 Statistical analysis

Stata V.17.0 statistical software (StataCorp) and R version 4.2.3

(39) were used to conduct all statistical analyses. Characteristics of

high vs low consumers of fish were reported as mean (SD) or

median (IQR), as appropriate for continuous variables and by

distribution differences (counts and percentages) for categorical

variables. We used multiple logistic regression to examine the

associations between seafood intake, dietary environmental

contaminant exposure and risk of JIA. All associations are

reported as odds ratios (OR) with 95% confidence intervals (CI),

and as adjusted ORs (aOR) when adjusted for possible confounding

factors listed above. The number of subjects with missing values on

covariates was low for both cases (n=40, 18%) and controls

(n=14,366, 20%), and all estimates are therefore based on

complete case analyses. All analyses were further stratified by sex.

In a sensitivity analysis, we included the region of birth (South-East,

West, Middle and North), and thus presumably the region where

the pregnancy took place, as a possible confounder because research

shows a two-fold increased incidence of JIA in northern compared

to southern Norway (28) and reports of geographical variations in

fish intake (40).

To assess potential interactions between fish intake and genetic

predisposition to JIA, we conducted multiple logistic regression

analyses with an interaction term between fish intake and PRS. We
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included the same variables as in the main model except maternal

history of inflammatory rheumatic disease to avoid over-

adjustment. The Wald test was used to assess statistical

significance of an interaction, and a p-value <0.05 was regarded

as significant. We further investigated the interaction between fish

intake and PRS by calculating the products of fish intake and

dummy variables of each PRS group and replacing the interaction

term in the multiple logistic regression with those products. This

allowed us to estimate the association between fish intake and JIA in

the low and high PRS groups separately. We used this model to

visualize the relationship between fish intake and JIA in both groups

predicting JIA risk in a simulated dataset of n = 200. As an

additional test for interactions, we applied a case-only analysis by

testing for associations between seafood intake and PRS in the cases

only (41).
3 Results

3.1 Study sample characteristics

Our final analytical sample included 72,110 mother-child pairs;

217 children with JIA were identified (Figure 1). Of JIA cases, there

were 139 (64.1%) girls and 78 (35.9%) boys. The median weekly

maternal fish intake was 218 grams. Baseline characteristics

categorized by high (≥P90) vs. low (<P90) total fish intake are

shown in Table 1.
3.2 Seafood intake and JIA

High vs low intake of lean/semi-oily fish during pregnancy was

associated with JIA (aOR 1.51, 95% CI 1.02-2.22) (Table 2). After

adjusting for region of birth, the confidence interval included 1

(aOR 1.45, 95% CI 0.99-2.18) (Supplementary Table 1). Additional

results with region of birth as a covariate are presented in

Supplementary Table 1-Supplementary Table 2. We found no

other evidence of associations between high vs low intake of other

seafood variables and JIA risk (Table 2).

After sex-stratification, we found an association with lean/semi-

oily fish intake among boys (aOR 2.07, 95% CI 1.17-3.66), but not in

girls (Table 2 and Supplementary Table 1). Similarly, high shellfish

intake was associated with increased risk among boys (aOR 1.86,

95% CI 1.02-3.38), but not girls (Table 2). Additionally, consuming

fish ≥300 vs. <300 grams/week during pregnancy, regardless of fat

content, was linked to higher odds of JIA in boys (aOR 1.92, 95% CI:

1.22-3.04), but not in girls (Supplementary Table 3). When

analyzing by quintiles, no other convincing evidence of

associations were observed (Supplementary Table 4).
3.3 Interactions between fish intake and
polygenic risk score

The following results are based on a smaller sample than our

main analyses (controls n= 51,642, JIA case n= 162) due to lack of
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genetic data on all observations. To account for this, we ran the

main analyses on the smaller dataset as a sensitivity analysis, with

the results provided in Supplementary Table 5.

We found evidence of an interaction between total fish intake

and PRS (aOR 0.33, 95% CI 0.12-0.90, p-value 0.03), but not with

the other seafood variables (Supplementary Table 6). The

association between total fish intake and JIA was only apparent in
TABLE 1 Baseline characteristics categorized by high and low total fish
intake in 72,101 MoBa participants 2002-2008.

Characteristics
High total fish
intake (P≥90)*

Low total fish
intake (<P90) *

Population 7,209 (10.0) 64,892 (90.0)

Maternal age at delivery,
years, mean (SD)

31.0 (4.8) 30.3 (4.5)

Maternal education

High school or less 2,722 (37.8) 21,839 (33.7)

College, up to 4 years 2,675 (37.1) 27,202 (42.0)

College, more than 4 years 1,812 (25.1) 15,851 (24.4)

Maternal pre-pregnancy
BMI, mean (SD)

24.0 (4.4) 24.1 (4.3)

Maternal parity

0 3,097 (43.0) 29,714 (46.0)

1 2,487 (34.5) 23,185 (36)

2 or more 1,624 (22.5) 11,993 (18.5)

Inflammatory rheumatic disease in mother

Yes 209 (2.9) 1,853 (2.9)

No 7,000 (97.1) 63,039 (97.1)

Maternal daily caloric
intake, kcal, median (IQR)

2462 (2053, 2939) 2207 (1866, 2620)

Maternal smoking status during pregnancy

Yes 642 (8.9) 5,048 (7.8)

No 6,567 (91.1) 59,844 (92.2)

Paternal smoking status

Yes 1448 (20.1) 12,624 (19.5)

No 5761 (79.9) 52,268 (80.6)

Dietary supplement use during pregnancy

Yes 6,167 (85.6) 56,032 (86.4)

No 1,042 (14.5) 8,860 (13.7)

Region of birth

South-East 3,365 (46.7) 35,794 (55.2)

West 1,955 (27.1) 16,132 (24.9)

Middle 1,207 (16.7) 9,296 (14.3)

North 682 (9.5) 3,670 (5.7)
*High is defined as equal to or above 90th percentile, while low is defined as below
90th percentile.
Numbers are n (%), mean (SD) or median (IQR).
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the low PRS group (aOR 2.26, 95% CI 1.08-4.71) (Table 3 and

Figure 2). Furthermore, we also found an association between lean/

semi-oily fish and JIA in the low PRS group (aOR 2.23, 95% CI 1.06-

4.66), but not with the other seafood variables (Table 3 and

Supplementary Figure 1-Supplementary Figure 2). A case-only

design was used to test the interaction between fish intake and

PRS, which further confirmed the findings from the case-control

analyses: the high total fish intake was negatively associated with

PRS in the cases, whereas none of the other seafood variables

reached statistical significance (Supplementary Table 7).
3.4 Estimated environmental contaminants
and JIA

We found no evidence of associations between estimated

dietary intake of environmental contaminants and risk of JIA,

whether analyzed by high vs. low intake (Table 4) or by quintiles

(Supplementary Table 8).

After sex-stratification, we found a positive association between

non-dl PCBs and JIA in boys (aOR 2.24, 95% CI 1.03-4.86), when

comparing a dietary exposure corresponding to the 4th quintile to

the 1st quintile (Supplementary Table 8). Among girls, being in the
TABLE 2 Overall and sex-stratified associations between high vs. low seafood intake and JIA.

All (controls n= 71,884, JIA
cases n= 217)

Boys (controls n= 36,784 and
JIA cases n= 78)

Girls (controls n= 35,100, JIA
cases n= 139)

Unadjusted OR
(95% CI)

aORa

(95% CI)
Unadjusted OR
(95% CI)

aORa

(95% CI)
Unadjusted OR
(95% CI)

aORa

(95% CI)

High total fish intake

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥423.5
grams/week)

1.02
(0.65-1.58)

1.02
(0.65-1.59)

1.78
(0.98-3.23)

1.80
(0.98-3.31)

0.63
(0.32-1.24)

0.63
(0.32-1.24)

High lean/semioily fish intake

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥249.5
grams/week)

1.50
(1.03-2.20)

1.51
(1.02-2.22)

2.13
(1.21-3.75)

2.07
(1.17-3.66)

1.18
(0.70-1.99)

1.21
(0.72-2.06)

High oily fish intake

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥156
grams/week)

0.81
(0.50-1.32)

0.80
(0.49-1.31)

1.45
(0.76-2.74)

1.36
(0.71-2.62)

0.49
(0.23-1.04)

0.49
(0.23-1.06)

High shellfish intake

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥65
grams/week)

1.12
(0.73-1.71)

1.14
(0.74-1.74)

1.83
(1.01-3.33)

1.86
(1.02-3.38)

0.76
(0.41-1.41)

0.78
(0.42-1.44)

High seafood intake

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥492
grams/week)

0.91
(0.58-1.49)

0.92
(0.57-1.46)

1.62
(0.87-3.00)

1.64
(0.88-3.07)

0.56
(0.27-1.13)

0.55
(0.27-1.14)
aAdjusted for maternal age, education, pre-pregnancy BMI, parity, daily caloric intake, history of inflammatory rheumatic disease in mother, parental smoking status during pregnancy and
supplement use during pregnancy. When lean/semioily fish is the main exposure, it is also adjusted for oily fish intake, and vice-versa. Bold text indicates statistically significant results.
TABLE 3 Associations between high seafood intake and JIA risk in
groups of high or low genetic risk (PRS of JIA).

Exposure PRS groupa aORb (95% CI)

High total fish Low 2.26 (1.08-4.71)

High 0.75 (0.38-1.49)

High lean/semioily fish Low 2.23 (1.06-4.66)

High 1.14 (0.63-2.05)

High oily fish Low 0.65 (0.20-2.11)

High 0.84 (0.43-1.61)

High shellfish Low 1.65 (0.74-3.71)

High 1.38 (0.81-2.36)

High seafood Low 1.67 (0.74-3.77)

High 0.82 (0.43-1.58)
aThe standardized PRS was converted into a binary variable with cut-off at 0, of which the PRS
<0 was regarded as “low”, whereas the PRS ≥0 was regarded as “high”.
bAdjusted for: maternal age, education, pre-pregnancy BMI, parity, daily caloric intake,
parental smoking status during pregnancy, supplement use during pregnancy, high PRS and
PCs 1-10. When lean/semioily fish is the main exposure, it is also adjusted for oily fish intake,
and vice-versa. (controls n= 51,642, JIA cases n= 162).
Bold text indicates statistically significant results.
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FIGURE 2

Association between total fish intake and JIA risk grouped by high (=>0) and low (<0) polygenic risk score (PRS) for JIA. P-values indicate the
significance of the associations between fish intake and JIA risk within each PRS group.
TABLE 4 Overall and sex-stratified associations between high vs. low dietary contaminant exposurea and JIA.

All (controls n= 71,884, JIA
cases n= 217)

Boys (controls n= 36,784 and
JIA cases n= 78)

Girls (controls n= 35,100, JIA
cases n= 139)

Unadjusted OR
(95% CI)

aORb

(95% CI)
Unadjusted OR
(95% CI)

aORb

(95% CI)
Unadjusted OR
(95% CI)

aORb

(95% CI)

Mercury

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥0.3 ug/kg
bw/week)

0.91
(0.58-1.45)

0.92
(0.57-1.46)

1.17
(0.58-2.35)

1.22
(0.60-2.48)

0.77
(0.42-1.44)

0.76
(0.41-1.42)

Cadmium

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥2.1 ug/kg
bw/week)

1.39
(0.94-2.06)

1.42
(0.94-2.14)

1.47
(0.78-2.79)

1.51
(0.77-2.99)

1.35
(0.82-2.21)

1.36
(0.80-2.29)

Dioxins and dioxin-like (dl) compounds

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥7.5 pg
TEQ/kg bw/week)

0.86
(0.54-1.38)

0.83
(0.51-1.34)

1.46
(0.77-2.77)

1.45
(0.74-2.82)

0.56
(0.27-1.14)

0.52
(0.25-1.08)

Non-dioxin-like PCBs (PCB-153)

<90th percentile Ref Ref Ref Ref Ref Ref

≥90th percentile (≥13.2 pg/kg
bw/week)

0.91
(0.58-1.45)

0.90
(0.56-1.43)

1.03
(0.49-2.14)

1.02
(0.48-2.14)

0.85
(0.47-1.54)

0.83
(0.46-1.51)
F
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aContaminants were estimated by combining consumption data from the FFQ with concentrations of contaminants in Norwegian food.
bAdjusted for maternal age, education, pre-pregnancy BMI, parity, daily caloric intake, history of inflammatory rheumatic disease in mother, parental smoking status during pregnancy,
supplement use during pregnancy and the child’s birth year.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1523990
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dåstøl et al. 10.3389/fimmu.2024.1523990
5th quintile of either dl-compound or non-dl PCB intake, was

negatively associated with risk of JIA (aOR 0.40, 95% CI 0.20-0.79

and aOR 0.44, 95% CI 0.23-0.83; Supplementary Table 8).
1Haftorn KL, Rudsari HK, Jaholkowski PP, Dåstøl VØ, Hestetun SV, Andreassen

OA, et al. Nonlinearity and sex differences in the performance of a polygenic

risk score for juvenile idiopathic arthritis. (2024).
4 Discussion

In this large population-based study, we found a modestly

increased risk of JIA associated with high maternal intake of lean/

semi-oily fish (approximately 250 grams or more per week) during

pregnancy. No clear associations were found between JIA and

overall maternal intake of fish, oily fish, shellfish, or seafood

intake. Sex-stratified analyses suggested a stronger positive

association between high maternal seafood intake and JIA risk in

boys. For instance, an intake of >300 grams of fish per week as

recommended by the Norwegian Directorate of Health (29), was

linked to increased risk of JIA in boys but not in girls. We observed

no clear associations with estimated maternal dietary contaminant

exposures. The risk associated with total fish intake depended on

genetic predisposition: high fish intake significantly affected JIA risk

only in individuals with a low genetic predisposition to JIA.

Our results are partly in line with a Swedish study (5), which

found positive associations between fish intake of more than once

per week during pregnancy and JIA risk, although our effect sizes

were of substantially lower magnitude. The Swedish study did not

specify portion sizes, complicating direct comparisons.

Furthermore, our study specifically associates lean/semi-oily fish

with increased JIA risk, while the Swedish study identified the

strongest association with total fish intake without distinguishing

between fish varieties (5).

We found no evidence of robust associations between exposure

to dietary environmental contaminants and risk of JIA. This differs

from the Swedish study which attributed the heightened risk of JIA

to increased heavy metal exposure, including mercury, through fish

intake (5), and another study showing that prenatal exposure to

environmental contaminants can alter the cord serum metabolome,

potentially increasing the risk of immune-mediated diseases such as

JIA (42). Despite seafood accounting for 88% of total dietary

mercury exposure – with lean fish contributing to more than half

of this - as well as being a considerable source of other contaminants

(20, 43, 44), we found no evidence that it contributed to JIA risk in

MoBa. In fact, our sex-stratified analyses show an inverse

relationship between exposure to POPs and JIA in girls. Unlike

the Swedish study, which measured blood concentrations, our study

relies on self-reported dietary data, but includes a much larger

sample size (217 vs. 41 JIA cases) (5).

JIA is more prevalent in girls than boys (4), yet our study

suggests that high seafood intake is more strongly associated with

JIA risk in boys. Sex-stratified analyses showed no indication of

increased risk of JIA when comparing high vs low intake of seafood

and contaminant exposure (except lean/semi-oily fish and

cadmium) in girls, on the contrary, estimates indicated a lower

risk of JIA with high intake. In contrast, for boys, all associations

indicated an increased risk of JIA.

Most studies on sex disparities in pediatric illnesses do not

explore underlying causes (45), making our sex-stratified analyses
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valuable for addressing this knowledge gap. Although estrogen

levels are often suggested as a cause for the higher prevalence of

autoimmunity in women, the low and stable levels during

childhood suggest other mechanisms (4). The varying patterns of

JIA risk between boys and girls with seafood intake may be due to

lack of statistical power given the sample size (girls, n = 139, boys, n

= 78), and the results should be interpreted cautiously. The inverse

relationship between POP exposure and JIA risk in girls observed in

our study may not be directly linked to POPs, but could reflect a

spurious association with oily fish, which was estimated to have a

protective association in girls. This protective association may be

related to nutrients in oily fish rather than POPs. A study on

diabetes type 1 observed similar findings (46). A separate MoBa

study on prenatal exposure to POPs showed immunosuppressive

effects (32), which could potentially explain a protective association

in girls. Inherent biological differences may also influence these sex-

specific trends.

Gene-environment interaction analyses suggest that genetic

predisposition modifies the effect of fish intake on JIA risk, and

vice versa. Specifically, fish intake had a stronger estimated

association with JIA risk in individuals with low genetic

predisposition, while its impact was estimated as less pronounced

in those with a high genetic risk. Our previous findings show that

the PRS is more strongly associated with JIA in girls than in boys,

with a higher proportion of female JIA cases having a standardized

PRS >0 (submitted for publication)1. This might explain why we

observe a stronger association between fish intake and JIA risk in

boys, as male JIA cases, on average, have a lower genetic risk of JIA.

Our study’s strengths include its prospective design,

comprehensive data collection with genetic liability, a large study

population, and linkage to national registries, ensuring minimal loss

to follow-up. A significant and novel strength is the incorporation

of a PRS within a subset of our cohort, enabling us to study gene-

environment interactions in JIA. By sex-stratification, we discerned

variations in risk estimates between boys and girls. To our

knowledge, this is the largest population-based prospective cohort

study exploring environmental risk factors for JIA, identifying

217 cases.

While including more JIA cases than in previous studies, the

sample size remains the main limitation of the study, as it reduces

the power to detect small effects, especially in stratified analyses and

for the subset with genotype data. We also lack data on JIA

subtypes, which is important given the disease’s heterogeneity;

different subtypes may have distinct pathomechanisms or

vulnerabilities. We did not exclude controls with other systemic

autoimmune diseases, potentially diluting the observed effects.

Additionally, while the recruitment into MoBa was population-

based, the cohort is not fully representative of the general

population (47). For instance, the homogenous ethnic

background of MoBa participants (48) may limit the

generalizability of our findings to more diverse populations. The
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self-reported dietary data may result in exposure misclassification as

the FFQ provide rough estimates, even though it has been validated

(26). We cannot study exact dietary intake for the second half of the

pregnancy as the FFQ was completed in week 22, however, we

assume consistent dietary patterns throughout the pregnancy.

Additionally, we lack measured blood concentration of

contaminants. Our contamination estimates rely on broader

Nordic averages rather than location-specific data, so this

approach may not adequately capture exposure differences across

Norway, especially in areas of higher contamination, highlighting

the need for future research to measure blood concentrations.

Although we adjusted for potential confounders, residual

confounding cannot be ruled out due to the observational nature

of the study. Lastly, since NPR data begins in 2008, JIA cases

diagnosed and in remission between 2002-2008 may be missing.

Some of the older-diagnosed JIA cases are also missing, because

follow up ended in 2021.

In conclusion, we observed an increased risk of JIA in children

whose mothers consumed high amounts of lean/semi-oily fish

during pregnancy, particularly in boys. Despite lean fish being an

important source of dietary mercury exposure, the heightened JIA

risk was not explained by contaminant exposure in our study. Our

findings also suggest a stronger association between fish intake and

JIA in those with a low genetic predisposition to JIA. Further studies

are warranted to explore the underlying mechanisms of seafood and

JIA, as definitive causation cannot be inferred. This includes more

precise assessments of contaminant exposure via blood samples,

and the need to clarify the observed sex differences and

genetic interactions.
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US Department of Veterans Health Care System, Oklahoma City, OK, United States, 4Genes and
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Systemic lupus erythematosus (SLE) predominately affects women with a ratio of

females-to-males of about 9:1. The complement of sex chromosomesmay play and

important role in the mechanism of the sex bias. Previous work has shown that men

with Klinefleter’s syndrome (47,XXY) as well as women with 47,XXX are found in

excess among SLE patients well as among Sjogren’s disease, systemic sclerosis and

idiopathic inflammatory myositis. in cells with more than one X chromosome, all but

one is inactivated. However, X chromosome inactivation, as mediated by the long

noncoding RNA X-inactive specific transcript, or XIST, is not complete with

approximately 10% of genes in the non-recombining region of the X

chromosome escaping X inactivation. In the TLR7 signaling pathway, both the

TLR7 and TLR adaptor interacting with endolysosomal SLC15A4 (TASL) escape X

inactivation. Comparing male and female immune cells, there is increased TLR7

signaling related to increased expression of these genes in cells with more than one

X chromosome. Cells with more than one X chromosome also express XIST, while

cells with one X chromosome do not. XIST, as a source of ligand for TLR7, has also

been shown to increase TLR7 signaling. Thus, we propose that both these

mechanisms operating in immune cells with more than one X chromosome may

act in a mutual way to mediate an X chromosome dose effect for the sex bias of

autoimmune disease.
KEYWORDS

systemic lupus erythematosus, sex bias, TLR7, TASL, XIST
Sex bias in lupus

Systemic illness among patients with the rash of lupus erythematosus was first noted by

Moriz Kaposi in Vienna during the late 19th century (1). During the remainder of the 19th

century and through the middle of the 20th century, the entity of systemic lupus erythematosus

was established (2). The bias of this disease to affect women was also noted during this period,

with assembled cohorts comprised by ~90% of women (3). This ratio of ~9:1 women to men in
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cohorts of SLE has continued to be true into the 21st century with

modern epidemiological methods (4). This relationship holds true in all

racial and ethnic groups studied.
Sex hormones in lupus

While there are sex hormone differences between SLE patients

and matched controls, be they men or women (reviewed in (5)), a

fundamental biological explanation for these findings and their

relationship to the gender-bias of SLE has not been forthcoming (6).

Clearly, some men with SLE have primary hypogonadism. For

instance, Mok, et al, found that 5 of 35 men with SLE had low serum

testosterone and high luteinizing hormone (LH) while none of 33

control men did (7). The etiology of the hypogonadism in these

men was not determined. Higher serum prolactin is also found in

both men and women with SLE compared to controls (8, 9).

However, men with SLE have the same degree of hypogonadism

and low testosterone as do men with other non-female biased

chronic illnesses (10), suggesting chronic illness causes

hypogonadism in SLE rather than vice versa. Furthermore, at the

onset of disease, prior to treatment, there are no sex hormone

differences between SLE patients and a matched control

population (11).
X chromosome in lupus

Seeking another explanation to the sex bias of SLE, we examined

the complement of sex chromosomes, initially among men with

SLE. We found that these SLE-affected men were much more likely

than matched control men to have Klinefelter’s syndrome, that is,

47,XXY (12). Subsequent work found that 47,XXX was found in

excess among women with SLE (13). We have also found the rare

mosaic, 45XO/46XX/47XXX, is associated with SLE (14), while

Turner’s syndrome (female 45,XO) was not found in excess among

SLE patients (15). We have now extended these findings to other

female-biased autoimmune diseases (16, 17), and others have

replicated the findings in SLE (18, 19). Thus, this work

established that the number of X chromosomes was a risk factor

for SLE, and that the number of X chromosomes might underly the

female predominance of the disease.

Discussing the potential mechanisms by which an X

chromosome dose effect might operate requires a brief review of

the biology of the sex chromosomes, which are in mammals, of

course, are the X and Y. The X and Y chromosomes pair in meiosis

and mitosis by virtue of short regions at the distal ends of both

chromosomes known as the pseudoautosomal regions (PAR);

namely PAR1 and PAR2. Each PAR contains a handful of genes,

which behave identically to autosomal genes. That is, there is

expression of one copy on X and one copy on Y with genetic

crossover occurring within PAR1 and PAR2 of the X and Y

chromosomes. Meanwhile, on the X chromosome, centromeric to

the two PARs are about 2000 genes that are X-linked. Similarly, on

the Y chromosome centromeric to the two PARs are about 40 genes

in the non-recombining region of Y. Almost all these Y genes are
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expressed in male gonadal tissue and function in spermatogenesis.

In contrast, X-linked genes, like other chromosomes, are not

functionally organized; and, generally do not have a Y homologue

(although there are exceptions).

In cells with 2 or more X chromosomes, all but one is

inactivated by methylation through the action of the X inactive-

specific transcript (Xist) gene (Figure 1), which encodes a long non-

coding RNA (20). That is, since women have two X-chromosomes

and men have one, the imbalance in X chromosome gene

expression is equalized by each cell with 2 or more X

chromosomes randomly undergoing inactivation (which is

mediated by methylation of CpG) of all but one X chromosome.

However, despite the fact that the inactive X chromosome makes up

the cytoplasmic Barr body, X inactivation is not an all-or-none

phenomenon. On the inactivated X chromosome (Xi), about 15% of

the genes escape methylation partially or completely giving women

(and Klinefelter men) more phenotypic variability compared to

normal (i.e., 46XY) men (21).

Continued presence of Xist transcripts were not thought to be

needed for maintenance of X inactivation (22). However, recent

data demonstrate that this may not be the case in immune cells. Yu

and colleague showed that deletion of Xist in CD11c-positive

atypical memory B lymphocytes along with TLR7 activation

induced isotype switching. In addition, Xist down regulation was

found among B cells from women with SLE (23). Also, Anguera has

found different localization patterns of the Xist non-coding RNA in

B cells with upregulation of 20 X chromosome genes in female cells

(24, 25). In a published preprint, conditional knock of Xist in female

mice (BALB/c and C57BL/6) produced a spontaneous lupus

phenotype (26). Thus, there may be differences in the physiology

of this long non-coding RNA in B cells that change X chromosome

inactivation in such a way that predisposes to a SLE.
X chromosome and immune genes

The idea that immune genes are enriched on the X chromosome

is frequently evoked. However, we find this is not the case. All

human genes and Gene Ontology (GO) categories were

downloaded from NCBI’s FTP server (ftp.ncbi.nlm.nih.gov/Gene/

DATA/) on August 6th, 2024. Only protein-coding and RNA-

producing (eg, ncRNA) transcripts with at least one GO category

annotation were selected for analysis. GO categories associated with

all transcripts on each human chromosome were then identified,

summed, and hypergeometric tests performed to determine relative

chromosomal enrichments or depletions in each GO category. False

Discovery Rate (FDR) corrections for the most significant p-value

(enriched or depleted) were performed to correct for multiple

testing. As a positive control, we find the Y chromosome highly

enriched (p-value = 0) in the GO categories “spermatogenesis” and

“gonadal mesoderm development”. We find that, although there are

many immune-related genes on the X chromosome, it is not

particularly enriched for immune-related genes more than any

other chromosome. This was true for all genes related to immune

function with 50 of 1,482 (3.4%) on the X chromosome.

Furthermore, no individual category of immune function had
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enrichment on the X chromosome (Table 1). In fact, we found

significant immune-related transcript enrichment on other

chromosomes, particularly chromosome 9 (Table 2), and we

found other GO categories enriched on the X chromosome
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(Supplementary Table S1). Some of the categories in

Supplementary Table S1 might impact immune processes (eg,

miRNA-mediated gene s i lenc ing) , but none are not

immune-specific.
FIGURE 1

X chromosome inactivation and escaping X inactivation. The process of XCI occurs in mammalian cells that have two or more X chromosomes. In early
stages of embryonic development, the maternal or paternal X chromosome is randomly silenced. This X-inactivation is initiated by long non-coding RNA,
XIST, and subsequent DNA methylation and histone modifications. The incomplete inactivation of the X chromosome (pseudoautosomal region and variable
genes throughout the X chromosome) results in approximately 15% of X-linked genes remaining transcriptionally active. These "escapee" genes contribute to
differential expression of X-linked genes between men and women. Xi-inactive; Xa-active.This image was created in Biorender.com.
TABLE 1 Immune related gene categories for the X chromosome.

GO group name/ID on X/total OR FDR p value

innate immune response/0045087 14/485 0.81 0.6494

immune response/0006955 8/310 0.72 0.6494

adaptive immune response/0002250 4/193 0.58 0.6494

AHIRMAP/0061844 2/99 0.56 0.6494

activation of innate immune response/0002218 2/32 1.82 0.6494

positive regulation of innate immune response/0045089 2/30 1.95 0.6494

positive regulation of Ig production/0002639 2/28 2.10 0.6494

immunoglobulin mediated immune response/0016064 2/24 2.48 0.6494

immunological synapse formation/0001771 1/13 2.28 0.6494

negative regulation of immune response/0050777 1/12 2.48 0.6494

negative regulation of Ig production/0002638 1/8 3.90 0.6494

positive regulation of adaptive immune response/0002821 1/8 3.90 0.6494

regulation of immunoglobulin production/0002637 1/7 4.56 0.6494

T cell mediated immunity/0002456 1/16 1.82 0.6497

regulation of innate immune response/0045088 1/21 1.37 0.6521

regulation of immune system process/0002682 1/39 0.72 0.6585

innate immune response in mucosa/0002227 1/27 1.05 0.6617

regulation of immune response/0050776 1/27 1.05 0.6617

immune response-regulating signaling pathway/0002764 1/37 0.76 0.6625

humoral immune response/0006959 2/60 0.94 0.6642

positive regulation of immune response/0050778 1/36 0.78 0.6656
AHIRMAP, antimicrobial humoral immune response mediated by antimicrobial peptide.
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Candidate X genes in lupus

X chromosome genes that escape X inactivation; and, thus have

expression of the gene from each of X chromosome, are candidates

to mediate the X chromosome dose effect. Our attention was drawn

to two genes in the toll like receptor 7 (TLR7) pathway that

routinely escape X inactivation; namely, TLR7 itself and TASL

(TLR Adaptor Interacting With Endolysosomal SLC15A4). The

TLR7 pathway is critical for the pathogenesis of SLE, both in murine

models and humans. For instance, rare gain-of-function TLR7

mutations can cause monogenic pediatric SLE (27–29) and mice

with TLR7 over-expression due to a translocation between the X

and Y chromosome develop a lupus-like illness (30, 31). The TLR7

protein is localized to the endosome and is critical for recognition of

viruses and subsequent activation of the innate immune system.

TLR7 binds single-stranded RNA or metabolites thereof, which

activates the pathway, leading to production of interferon as well as

other cytokines (32). Furthermore, common population variants of

genes encoding protein that function in the TLR7 pathway show

genetic association to the SLE phenotype. These include TLR7,

TASL, SLC15a4 (a binding partner of TASL (33)), and UNC93B1, a

regulator of TLR7 movement into the endosome (34–37). Many

functional studies also implicate the TLR7 pathway in SLE

pathogenesis in both human and murine lupus models (30, 31,

38–43).

Given the critical nature of the TLR7 pathway in SLE and the

association of X chromosome number with the sex bias of the

disease, we elected to study the role of TASL in the TLR7 pathway.

As described above, the TASL gene routinely escapes X inactivation

and TASL is expressed in several immune cells, including B

lymphocytes and monocytes, contains an SLE risk allele (19, 35)
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and binds SLC15A4 on the lysosomal surface (44). SLC15a4

regulates lysosomal pH, to which TLR7 signaling is highly

sensitive (45, 46). In addition, knockout of the gene is known to

abrogate TLR7 signaling (47).

Given these data, we undertook studies to examine the role of

TASL in the TLR7 pathway (48). In particular, since TASL and

SLC15a4 are binding partners and SLC15a4, at least in part,

determines lysosomal pH, we studied lysosomal pH. First, we

examined expression of the TASL protein in human primary

monocytes, B cells and lymphoblastoid cells lines. In each case,

TASL was expressed more highly in female cells compared to male

cells (49). Additional studies from Odham et al, also found TASL

was more highly expressed in female cells and this sexual

dimorphism was magnified when stimulated with type I

interferons (50). Using a ratiometric measurement of lysosomal

pH via fluorescence in unstimulated female monocytes, we found

lysosomal pH averaged 4.9 versus 5.6 in male cells (p=0.0001) (48).

A similar difference in lysosomal pH was also found between male

and female B cells and dendritic cells, while we did not find a female:

male dichotomy for lysosomal pH in NK or T cells, neither of which

express TASL (48). Thus, the sex difference in lysosomal pH is likely

to be associated with increased TLR7 signaling, and may be

dependent upon increased expression of TASL in female cells.

In order to determine if, in fact, TASL participates in lysosomal

pH regulation and TLR7 signaling, we undertook a series of

knockdown experiments using CRISPR-Cas9 and primary human

monocytes (CD14+/CD16−). In female cells treated with a TLR7

agonist, TASL knockdown abrogated interferon-alpha, IL-6 and

TNF production (49). Thus, TASL is critical for TLR7 pathway

signaling. Furthermore, knockdown of TASL expression resulted in

a rise in lysosomal pH in female monocytes to the pH we found in
TABLE 2 Gene ontology categories that are significantly found increased on a given chromosome.

chromosome GO category/ID #/total OR FDR p value

9 0002286 TCA 17/24 57.99 0

9 0002323 NKCA 17/19 202.96 0

19 0002764 IRRSP 35/37 258.04 0

9 0006959 HIR 18/60 10.23 1.40E-08

6 0050778 PRIR 16/36 13.54 2.15E-08

19 0002682 RISP 15/39 9.21 4.00E-06

20 0045087 IIR 36/485 2.83 6.69E-05

9 0002250 AIR 25/193 3.56 0.0001

6 0002250 AIR 30/193 3.12 0.0001

4 0061844 AHIRMAP 14/99 4.15 0.006

8 0002227 IIRM 7/27 9.37 0.009

17 0045087 IIR 12/485 0.37 0.010

17 0061844 AHIRMAP 17/99 2.99 0.036

12 0061760 AIIR 6/18 8.62 0.045
TCA, T cell activation involved in immune response; NKCA, natural killer cell activation involved in immune response; IRRSP, immune response-regulating signaling pathway; HIR, humoral
immune response; PRIR, positive regulation of immune response; RISP, regulation of immune system process; IIR, innate immune response; AIR, adaptive immune response; AHIRMAP,
antimicrobial humoral immune response mediated by antimicrobial peptide; IIRM, innate immune response in mucosa; AIIR, antifungal innate immune response.
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male monocytes. And, intracellular transport of NOD1 antigens, a

function of SLC15a4, was also abrogated by TASL knockdown (49).

However, it should be noted that these results have not been

independently replicated; and, thus, are not confirmed.

Several other lines of evidence support a sex-biased function of

the TRL7 pathway (51–53). Our studies in primary monocytes and

LCLs suggest TASL is involved in the TLR7 in a sexually dimorphic

manner such that lysosomal pH is lower and TLR7 signaling greater

in female versus male cells. As of late, studies on TASL have shown

that the once uncharacterized protein functions as enzyme that

regulates interferon regulatory factor 5 (IRF5), colocalizes with

TLR7 and is interferon inducible. TASL ability to increase

interferon production (our work and others) and its own protein

level to be subsequently amplified by interferon stimulations

suggest a positive feedforward response that would result in

increased production that is often found in SLE affected subjects.

Thus, increased expression of both TLR7 (54) and TASL (48, 49)

may underlie not only improved outcome of women compared to
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men in some infections (55) but also female disposition to

autoimmunity mediated via TLR7 (56).
XIST in lupus

Other investigators have taken a different tack in studying the

role of the X chromosome in the sex bias of SLE (57, 58); however,

the data generated also concern the TLR7 pathway. As mentioned

above, XIST long non-coding RNA mediates X chromosome

inactivation (Figure 1); and, thus, is expressed only in cells with

more than one X chromosome. Dou and colleagues preformed a

series of experiments that indicate XIST is a source of ligand for

TLR7; and, of course, this is a sex specific source of ligand (57, 58).

First, these investigators noted that XIST is rich in potential TLR7

ligands. A putative TLR7 stimulatory motif, the UU dinucleotide, was

found 2,140 times in XIST RNA. XIST was the sex-biased transcript

with the highest degree of UU dinucleotide gene expression; and,
FIGURE 2

Schematic depicting the proposed interaction of XIST, TLR7, and TASL in response to self-antigen. XIST provides ligand for TLR7. Once TLR7
signaling is activated, there is a feed forward stimulation of the pathway. The genes for both TLR7 and TASL are on the X chromosome and escape X
inactivation. Thus, some data suggest that TRL7 signaling is more robust in female cells, compared to male cells, on this basis. Created with
Biorender.com.
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further, was the only sex-biased expression source of the extended

TLR7 motif 5′-GUCCUUCAA-3′ (57, 58). Overall, XIST was the

strongest sex biased source of self TLR7 ligand.

Next, these investigators turned to stimulation of TLR7 by XIST

nucleotides using HEK-hTLR7 cells as a reporter. The extended

TLR7 motif found in XIST as well as a longer sequence of XIST

(containing the A-repeat, UU dinucleotide rich region) were also

found to stimulate TLR7 signaling as indicated by production of

interferon-alpha. Further, not only was the response due to specific

binding of XIST nucleotide and dose-dependent, the TLR7 response

was inhibited by depletion of XIST as well by hydroxychloroquine

(57). Additional studies found that XIST levels were higher in

peripheral leukocytes among women with SLE compared to non-

SLE affected matched controls, and that levels of XIST correlated

with disease activity. The investigators concluded, and we certainly

agree, that the XIST long non-coding RNA is the most potent

source of sex biased TLR7 ligands in female cells.
XIST, TLR7, TASL in lupus and other
autoimmune diseases – an hypothesis

We further conclude that these two sets of data suggest synergism

for a female biased expansion of the TLR7 signaling pathway that could

underlie the X chromosome dose effect found in various autoimmune

diseases, including SLE (12–15), Sjögren’s disease (13, 16),

polymyositis/dermatomyositis (17), and systemic sclerosis (17). The

idea, we think, is straight forward. XIST RNA supplies TLR7 ligand in

female cells. In addition, female B lymphocytes, dendritic cells, and

monocytes have enhanced TLR7 pathway signaling by virtue of the

over-expression (compared to male cells) of not only TLR7 but also

TASL. Enhanced TLR7 signaling activity deploys a feed forward loop in

the TLR7 pathway that leads to increased expression and activity of the

pathway (59). Thus, both increased ligand and enhanced activity

support further enhancement of TLR7 signaling in female cells. Of

course, these phenomena are universal in cells with more than one X

chromosome; that is, from women or Klinefelter men. So, other factors

must be in play such as other genetics or environmental exposure.
TLR7 signaling and environmental
triggers in lupus

What environmental exposure might interact with this sex-biased

enhancement of TLR7 signaling induced by Xist and genes in the TLR7

pathway that escape X inactivation? One candidate is Epstein Barr virus

(EBV). Epidemiological evidence supports the idea that this near

ubiquitous infection is necessary but not sufficient for the expression

of SLE as well as multiple sclerosis, and there some evidence in Sjögren’s

disease (60–65). Recent studies have found that single nucleotide

polymorphisms demonstrating genetic association with SLE or

Sjögren’s disease are more likely to be found in promoter regions

bound by the EBV transcription factor EBV nuclear antigen 2 (EBNA2)

(66, 67). Overall, the preponderance of evidence indicates that EBV

infection is likely one of the environmental triggers for disease.
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Furthermore, EBV infects B lymphocytes, a cell type with expression

of TASL, engaging and increasing expression of TLR7 (68). B cell

hyperplasia is one of the hallmarks of systemic autoimmune disease

(69). Thus, these data concerning enhanced expressed XIST, TLR7 and

TASL in female cells impacting TLR7 signaling may interact with data

concerning a role of EBV in promoting SLE and other autoimmune

diseases (62, 63, 70). Of course, estrogen and differential expression of

estrogen-regulated genes remain a potential biological trigger of the

disease. The sex bias of SLE is present in prepubescent children at about

5 to 1, but of course is less pronounced than after puberty (71). These

data suggest an effect of estrogen. Further, there are clear effects of

estrogen on B lymphocytes and humeral immunity (72, 73) with effects

on development, immune tolerance, immunoglobulin somatic

hypermutation, and class switching. In addition, some estrogen effects

in B cells may be mediated through cell surface (as opposed to nuclear)

estrogen receptors (74).
Summary

The evidence is strong that the number of X chromosomes is

important for the female bias of some, but not all, autoimmune diseases.

The mechanism by which a dose effect for the X chromosome is not

understood. Available evidence suggests that multiple factors may play

roles that are complementary. These include expression of XIST, which

provides TRL7 ligand, and escape of X inactivation by genes whose

protein products are critical for TLR7 signaling (see Figure 2).
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Cancer in connective
tissue disease
Antonio Tonutti1,2, Angela Ceribelli 1,2, Elisa Gremese1,2,
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The association between cancer and autoimmunity is well-recognized, as

represented by the increased incidence of cancer among patients with

systemic autoimmune diseases; however, the underlying mechanisms remain

only partially understood. On the one hand, malignancy may trigger a breakdown

of immune tolerance in predisposed individuals, as autoimmune syndromes

often emerge shortly after cancer diagnosis, suggesting that tumor antigens

might initiate an autoimmune response. However, by involving persistent

responses and the creation of a pro-inflammatory environment, the chronic

immune activation characteristic of autoimmunity may promote oncogenesis.

This scenario is further complicated by the use of immunosuppressive therapies

for autoimmune conditions, which, as seen in transplant immunology, are

associated with a higher risk of cancer, although data in rheumatology have

not yielded definitive conclusions. Connective tissue diseases include systemic

lupus erythematosus, primary Sjögren syndrome, idiopathic inflammatory

myopathies, systemic sclerosis, mixed connective tissue disease, and

undifferentiated forms. These conditions have been variably associated with an

increased risk of cancer, both at the time of disease onset and in patients with

long-standing autoimmune conditions, providing a paradigm for investigating

this complex interplay. Despite recent progress, many unmet needs remain that

warrant further research.
KEYWORDS

malignancy, immunology, autoimmunity, autoantibodies, connective tissue
disease (CTD)
Why cancer and connective tissue disease

The relationship between malignancy and autoimmunity is well established, as

supported by the increased incidence of cancer in patients with autoimmune diseases

(1); however, several questions remain unanswered regarding the fundamental mechanisms

of this association and their translation into clinical practice. In line with the established

pathogenic model of autoimmune diseases, malignancy may trigger the breakdown of

tolerance in predisposed individuals (2). This is illustrated by the occurrence of

autoimmune syndromes, often with distinctive features, in close temporal proximity to

cancer diagnosis (3). On the other hand, autoimmunity may serve as a fertile ground for the
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development of malignancy, possibly due to persistent immune

activation against autoantigens and the setting of a pro-

inflammatory milieu, thus acting as a precancerous condition (4).

Furthermore, autoimmune diseases are often treated using

immunosuppressive therapies. While evidence from transplant

immunology indicates that immunosuppression increases the risk

of cancer (5), data are inconclusive when it comes to rheumatology

and clinical immunology (6).

Connective tissue diseases (CTDs) are classic forms of systemic

autoimmune disorders, including systemic lupus erythematosus

(SLE), primary Sjögren syndrome (pSS), idiopathic inflammatory

myopathies (IIM), systemic sclerosis (SSc), mixed connective tissue

disease (MCTD), and undifferentiated forms (UCTD) (7–12). These

diseases are characterized by unique clinical features and

pathogenic mechanisms but also share a female predominance,

overlapping clinical manifestations (e.g., arthralgia and arthritis,

fatigue, interstitial lung disease, myositis, and Raynaud’s

phenomenon) (7–12), and similar immunological pathways (e.g.,

type I interferon activation, B-cell infiltration, activation, and

proliferation) (13, 14). Within this shared framework, an

increased risk of malignancy has frequently been reported across

CTDs, reflecting the intricate interplay between cancer and

autoimmunity (Figure 1). We speculate that some entities reflect

the causal relationship of autoimmunity as a paraneoplastic

phenomenon, as seen in cancer-associated myositis (CAM) or

-scleroderma, where the temporal closeness between the two

diagnoses i s l inked to pecu l i a r env i ronmenta l and

pathophysiological changes (15). In other scenarios, subclinical

chronic inflammation may constitute a precancerous condition

contributing to the development of cancer-associated mutations

and malignancy late in disease history (16, 17).

By evaluating the spectrum of CTDs, we present a critical

analysis of the relationship between cancer and autoimmunity,

with a focus on clinical associations, relevance of serum

autoantibodies, impact of disease-specific risk factors, and role of

immunosuppressive therapies. Different scenarios will be presented
Frontiers in Immunology 0280
to support the proposed concept that certain CTDs can represent a

paraneoplastic phenomenon, whereas the onset of malignancy is

observed more frequently in specific longstanding CTD-related

contexts. To ensure a consistent approach, similar sections will be

summarized for different diseases. However, there are major

differences in the available evidence, and considering that our

work aims to provide a critical review of the state of the art while

identifying clinical and research needs, the content of certain

sections will need to be heterogeneous and vary from one

condition to another. This is particularly evident in the section on

immunological features, which lacks a uniform distribution in

myositis and SSc compared to pSS and SLE. Table 1 summarizes

the unmet needs in the management of malignancy in patients with

CTDs and outlines a contextual research agenda based on the

discussions presented throughout the text.
Methods and search strategy

We conducted a comprehensive critical review by searching

PubMed for “idiopathic inflammatory myopathies,” “systemic

sclerosis,” “Sjogren Disease,” “systemic lupus erythematosus,” and

“cancer.” The search focused on articles published in English from

January 2010 to October 2024 and yielded 3,652 results. Papers of

key relevance published outside of this period were included if they

focused on relevant findings and approaches that could have

influenced subsequent publications. Thus, 196 papers were

included in the final review. A balanced discussion was provided

by including studies that supported or challenged our perspective,

ensuring a comprehensive and evidence-based analysis. Multiple

reviewers (AT, AC, EG, and SC) independently evaluated the

included studies; their interpretation was discussed by the full

author panel to minimize bias and reach consensus, and different

viewpoints were considered during the synthesis of the results.

Owing to the heterogeneity of study designs, patient populations,

and outcome measures, which made direct comparisons
FIGURE 1

Cancer as both an environmental trigger and pathological consequence of autoimmunity in the paradigm of CTDs. The pathogenesis of
autoimmune diseases involves a hypothetical environmental trigger that induces immune system response. In genetically predisposed individuals,
this leads to an aberrant immune activation, which becomes dysregulated and persists over time, resulting in chronic inflammation. The chronic
inflammatory milieu causes tissue damage due to ongoing inflammation but synchronously provides a precancerous condition (i.e., an environment
that predisposes to the development of cancerous lesions). From this perspective, CTD are at a crossroads between cancer and autoimmunity. On
the one hand, strong evidence supports the role of cancer as a trigger of autoimmune responses (as seen in cancer-associated myositis and
scleroderma). However, the disease itself increases the risk of malignancies, particularly in tissues undergoing chronic inflammatory remodeling
(such as the lung in SSc and lymphopoiesis in pSS).
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challenging, a narrative approach was adopted instead of a

systematic review. To ensure a broad and speculative perspective

on the topic, rigid predefined inclusion and exclusion criteria were

not applied. However, studies included were original peer-reviewed

research articles, systematic reviews, and meta-analyses. Case

reports and small case series were considered only when they

provided unique insights into novel clinical associations. Non-

peer-reviewed sources and studies were excluded to maintain the

robustness of the analysis.
Cancer and idiopathic inflammatory
myopathies: the key role of
synchronous malignancy

The heterogenous family of IIM encompasses dermatomyositis

(DM), polymyositis (PM), antisynthetase syndrome (ASyS),

immune-mediated necrotizing myopathy (IMNM), inclusion

body myositis (IBM), juvenile inflammatory myositis, and

paraneoplastic myositis or CAM (10, 18, 19). CAM is defined as a

malignancy occurs within three years from the onset of myositis in

adult patients (20, 21), and the risk of developing CAM varies

according to the disease phenotype and the presence of selected

myositis-specific autoantibodies (MSA) (22–24). Since the earliest

reports dating back to 1916 (25), several studies have confirmed a

strong link between cancer and IIM, particularly with DM and in

the presence of autoantibodies targeting transcription intermediary

factor 1g (TIF1-g) and the nuclear matrix protein 2 (NXP2) (26, 27).
Clinical features of paraneoplastic myositis

DM is the most common IIM clinical phenotype associated

with the risk of CAM, presenting as heliotrope rash, Gottron’s sign,

or papules (28, 29). Patients with inclusion body myositis and ASyS

do not seem to have an increased risk of malignancy (26, 30), even

when presenting with signs of DM (30), whereas the risk remains

unclear in subjects diagnosed with IMNM (31). In addition to the

diagnosis of DM, risk factors for CAM include older age at IIM

onset, male sex, smoking history, signs of cutaneous necrosis (32),

dysphagia (33), rapidly progressive disease, and elevated

inflammatory markers (34–37). Histological features on muscle

biopsy, such as minimal lymphocytic infiltration, should also raise

suspicion for CAM (38) while interstitial lung disease, arthritis, and

Raynaud’s phenomenon correlate with a lower risk of malignancy

(34, 36, 37). Different types of malignancies have been reported with

CAM, most commonly solid neoplasms, which seem to reflect the

incidence observed in the general population. For instance, a large

cohort from Northern Europe reported a high risk of ovarian,

gastric, colorectal, and pancreatic cancers, and non-Hodgkin’s

lymphoma (NHL) (39). In contrast, nasopharyngeal carcinoma

was confirmed as the most common neoplasm diagnosed in

patients with IIM in the Taiwanese population, followed by lung,

breast, and hepatic malignancies (40, 41). Moreover, slight

differences in the type of incident neoplasms have been
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hypothesized by comparing patients with CAM according to the

clinical phenotype, i.e., DM vs. PM (39). These differences warrant

further investigation across different clinical subsets and

ethnicities (Table 1).
Immunological features of paraneoplastic
myositis

The immune pathogenesis of CAM involves several complex

mechanisms, including the presence of shared antigens between

tumor cells and normal tissues, molecular mimicry, and exposure to

neo-self-antigens (42). These can be presented to tumor-infiltrating

lymphocytes through class I (CD8+ cells) and class II (CD4+ cells)

HLA complexes. This process leading to lymphocyte activation may

result able to provide cancer elimination; on the other hand,

activated lymphocyte may cross react with self-antigens and

pathologically infiltrate normal tissues (e.g., skeletal muscle, skin),

leading to inflammation and damage (42–44).

Serum autoantibodies, including both myositis-specific (MSA)

and myositis-associated (MAA) autoantibodies, are of major use in

the diagnosis of IIM and correlate with the development of

particular manifestations among different clinical subsets (22).

Most importantly, the presence of autoantibodies can further

stratify patients with IIM according to cancer risk, as summarized

in Table 2.

While malignancies often occur in association with DM, a 2012

meta-analysis including 312 adult patients with DM found that 80%

of DM patients with cancer were anti-TIF1-g-positive, whereas only
10% without cancer had this autoantibody (45). Overall, among

patients with DM, the presence of anti-TIF1-g autoantibodies had a

positive predictive value for CAM of 58% and a negative predictive

value of 93% (45). These findings were confirmed in another large

cohort study, particularly raising concern for breast and ovarian

neoplasms (26), and in an up-to-date meta-analysis (34). Moreover,

it seems that the risk of cancer significantly increases in patients

displaying high anti-TIF1-g autoantibody titers, specifically in

patients with the IgG2 isotype, compared with their respective

counterparts (46, 47). TIF1-g, also known as TRIM33, is an

enzyme involved in post-translational peptide modifications, an

E3-ubiquitin ligase and being involved in small ubiquitin-like

modifications (SUMO). In particular, TIF1-g has been

demonstrated to participate in cell cycle regulation, DNA repair,

and the regulation of TGF-b signaling (44). Alterations in the TIF1-

g gene have been described in cancer cells from patients with CAM,

possibly representing the neo-self and thus triggering the anti-

cancer immune response, which can culminate in autoimmunity to

native TIF1-g antigens (48). As a proof of concept, high expression

of TIF1-g has been observed in the skin and skeletal muscle, which

represent the main targets of anti-TIF1-g DM compared to other

tissues (49, 50). Recently, the role of anti-TIF1-g as a risk factor for

synchronous cancer in DM patients has been redefined. Indeed, the

coexisting immune response against autoantigens, such as Sp4 and

CCAR1, would reduce the risk of cancer, perhaps accounting for a

more robust antitumor immunological response (51–53). Further
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TABLE 2 Myositis-specific and -associated autoantibodies, associated phenotypes and current risk of cancer in IIM patients.

Autoantibody Target molecule
and function

Clinical
phenotype

Clinical associations Cancer risk

anti-TIF1g/a Transcription intermediary factor 1g/
a—transcriptional elongation,
DNA repair

DM, JDM DM, no ILD High

anti-MJ/NXP2 Nuclear matrix protein-2—
transcriptional regulation and activation
of the tumor suppressor p53

DM, JDM DM, calcinosis, subcutaneous edema,
severe myopathy, dysphagia

High

anti-SAE Small ubiquitin-like modifier 1
activating enzyme—post-
translational modifications

DM Severe cutaneous disease, dysphagia,
systemic symptoms, mild myopathy, mild
ILD (50%)

Intermediate

Anti-PUF60 (FIRs) poly-U-binding factor protein DM, pSS Less ILD; in pSS frequently with Ro60,
Ro52, La

Intermediate-High (200)

Anti-HMGCR HMG-CoA reductase—rate-limiting
enzyme for cholesterol synthesis

IMNM (statin-
induced myopathy)

Necrotizing myopathy Intermediate

anti-Jo-1 Histidyl-tRNA synthetase ASyS Classic ASyS with frequent
muscle involvement

Standard

anti-PL-7 Threonyl-tRNA synthetase ASyS Severe ILD Standard

anti-PL-12 Alanyl-tRNA synthetase ASyS May present with ILD only Standard

anti-EJ Glycyl-tRNA synthetase ASyS ASyS, ILD (with anti-Ro52) Standard

anti-OJ Isoleucyl-tRNA synthetase ASyS ASyS (severe myositis), ILD Standard

anti-KS Asparaginyl-tRNA synthetase ASyS CADM, ILD, overlap subset with sicca Standard

anti-ZO Phenylalanyl-tRNA synthetase ASyS Classic ASyS, rare (<1% ASyS) Unknown

anti-YRS (Ha) Tyrosyl-tRNA synthetase ASyS ASyS, rash, arthritis, rare Unknown

anti-KJ Translocation factor ASyS-like Rare Unknown

anti-MDA5/IFIH1 Melanoma differentiation-associated
gene 5—innate immune responses
against viruses

DM, JDM CADM, severe ILD, peculiar skin
involvement (reverse Gottron, vasculitis,
ear lesions), mechanic’s hands, MIP-C

Intermediate

anti-TIF1-b Transcription intermediary factor 1b—
regulation of gene expression and
chromatin structure

DM CADM, no ILD Unknown

anti-Ku Heterodimer complex of 2 subunits that
binds to free DNA termini—DNA
repair, transcription regulation

SLE, SSc, MCTD, PM Raynaud, arthralgia, myopathy, overlap
with other connective tissue diseases

Standard

Anti-SRP Signal recognition particle—co-
translational translocation of proteins
across the endoplasmic reticulum

IMNM Necrotizing myositis, myocarditis,
low ILD

Standard

anti-PM/Scl complex of 100 KDa and 75 KDa—
processing and degradation of RNAs

PM, DM, SSc, PM/SSc
overlap, SLE

ASyS-like (myositis, Raynaud, arthritis,
ILD, mechanic’s hands)

Standard

anti-Mi-2 helicase of the nucleosome remodeling
deacetylase—transcriptional regulation

DM Classic DM (no ILD) Standard

Anti-cN-1A Cytosolic 5’-Nucleotidase 1A protein –

nucleotide hydrolysis
IBM Bulbar muscle weakness, wrist

flexor involvement
Unknown

Anti-FHL1 Four-and-a-Half LIM domain 1—
intracellular protein–protein interactions
mainly with cytoskeletal proteins

DM, PM Severe myositis, dysphagia, vasculitis Unknown

Anti-RuvBL1/2 Ruv BL1/2 double hexame—DNA
repair, chromatin remodeling,
gene transcription

SSc, PM Higher age at onset, men, diffuse SSc and
myositis overlap, GI
dysmotility, myocarditis

Unknown

(Continued)
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implementation of these observations in clinical practice is

required (Table 1).

NXP2, also known as MORC3, is a nuclear protein involved in

the activation of the tumor suppressor protein p53 (54), a key

regulator of cell cycle and senescence. Downregulation of NXP2 has

been described in different malignancies, correlating with an

enhanced type I IFN signature and, most importantly, with

increased expression of the immune checkpoint antigen PD-L1,

which is known to suppress T-cell response by binding to the

cognate receptor PD-1 (55). Autoantibodies against MJ/NXP2 have

been extensively associated with the risk of cancer in IIM patients

(27, 56–58), even though some large studies (59) and meta-analyses

(60) failed to demonstrate an association with malignancy

compared to other patient subsets. The heterogeneity of the

results obtained when detecting myositis autoantibodies using

different methods (59, 61) suggests that one possible explanation

for this discrepancy may be the varying techniques used to identify

anti-NXP2 autoantibodies across different studies (58). For

instance, in one of the largest studies conducted on anti-NXP2-

positive DM, the presence of these autoantibodies was confirmed by

immunoprecipitation in only 62% of the patients who tested

positive using commercial line blots (59).

Recent studies have reported the risk of malignancy in patients

with other rare serum autoantibodies. A higher incidence of cancers

was observed with anti-SAE, a hallmark of erythrodermic DM (62–

64), with malignancies diagnosed also many years after the onset of

myositis in an American cohort (65). SAE1 is a subunit of the E1

complex constituting a SUMO activator protein that plays crucial

roles in the activation of type I IFN synthesis but is also involved in

tumorigenesis (66). For instance, overexpression of SAE1 has been

observed in different types of cancers, correlating with a higher

disease burden, metastatic disease, and worse prognosis (67–69).

Concerning IMNM, it has been suggested that the risk of

developing malignancies increases only in seronegative forms (70,

71), despite some reports suggesting a slightly higher rate in subjects

with anti-HMGCR (71–73). Nevertheless, other autoantibodies,

namely anti-Ku and anti-Mi-2, have been confirmed not to

harbor any increased risk of malignancy in patients with IIM (22,

34, 74). Rare and novel MSA have been identified in short reports of

small IIM cohorts, but their association with cancer is still unknown

and needs to be studied more extensively in larger cohorts
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worldwide (Table 1). For instance, this is the case with anti-FHL1

(75), anti-RuvBL1/2 (76–78), anti-Nup (79), and anti-SMN (80, 81)

autoantibodies, which have been identified in small subsets of IIM

patients, as well as in SSc and MCTD.
Cancer screening in IIM: the IMACS
initiative

In 2023, the International Guideline for Idiopathic

Inflammatory Myopathy-Associated Cancer Screening was

released by the International Myositis Assessment and Clinical

Studies Group (IMACS) (36) to provide guidance on the

management of patients with suspected CAM. These guidelines

enable the stratification of each patient with new-onset IIM into a

‘standard,’ ‘moderate,’ or ‘high’ risk of malignancy, by combining

the clinical features, autoantibody status, and demographic factors

such as age and sex. For instance, patients should be considered at

high risk if they meet at least two of the following criteria: DM

phenotype, positivity for anti-TIF1-g or anti-NXP2, age >40 years at
the onset of IIM, persistent high disease activity despite therapy,

dysphagia, and cutaneous necrosis. Second, the guidelines outline a

‘basic’ and an ‘enhanced’ screening panel to be performed in a

tailored manner in patients with IIM, according to their previously

established cancer risk.

Therefore, all patients with IIM should participate in country-

or region-specific age- and sex-appropriate cancer screening

programs regardless of their individual cancer risk. Additionally,

basic or enhanced screening panels should be conducted at the time

of diagnosis. The ‘basic screening panel’ should include

comprehensive history taking and physical examination, routine

laboratory investigations (i.e., complete blood count, liver function

tests, acute phase reactants, serum protein electrophoresis, and

urinalysis), and chest X-ray. Instead, the ‘enhanced screening

panel’ includes total body CT scan, cervical screening,

mammography, dosage of the prostate-specific antigen or CA-125

(while other neoplastic markers are not recommended for general

screening), pelvic or transvaginal ultrasonography, and search for

fecal occult blood. Additional screening with 18FDG-PET/CT and

upper and lower gastrointestinal endoscopy should be considered in

selected patients, based on clinical evaluation.
TABLE 2 Continued

Autoantibody Target molecule
and function

Clinical
phenotype

Clinical associations Cancer risk

anti-SMN Survival of motoneuron complex—
transcriptional regulation and small
nuclear RNP formation

MCTD, PM MCTD with clinical features of all
components of SLE, SSc and IIM; high
prevalence of PAH and ILD

Unknown

anti-Nup Nucleoporins Not known Myositis, ILD, Raynaud Unknown
Cancer risk is reported as ‘high’ (i.e., increased compared to same-age general population), ‘intermediate’, or ‘standard’ (i.e., not different to same-age general population), according to the recent
International Myositis Assessment and Clinical Studies Group (IMACS) guidelines (36). Otherwise, for rarer or novel autoantibodies, an estimate of the risk of cancer is given according to the
references in the Table, linked to observational cohort studies, whereas ‘Unknown’ risk is reported if little (e.g., case reports, small case series) or no evidence showing cancer association
is available.
ASyS, antisynthetase syndrome (myositis, ILD, polyarthritis, Raynaud’s phenomenon, mechanic’s hands and the presence of an antisynthetase antibody); CADM, clinically amyopathic/
hypomyopathic DM; DM, dermatomyositis; GI, gastrointestinal; IBM, inclusion body myositis; ILD, interstitial lung disease; IMNM, immune-necrotizing myopathy; JDM, juvenile
dermatomyositis; MCTD, mixed connective tissue disease; MIP-C, MDA5-associated autoimmunity and interstitial pneumonitis contemporaneous to the COVID-19 pandemics; PAH,
pulmonary arterial hypertension; PM, polymyositis; pSS, Sjogren syndrome; SLE, systemic lupus erythematosus; SSc, systemic sclerosis.
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When eva lua t ed in re t ro spec t i ve cohor t s , the se

recommendations displayed excellent sensitivity in identifying

patients with malignancy but with lower specificity. Indeed, most

patients with IIM were classified as high or intermediate risk of

cancer, with only a minority of subjects being represented in the

standard-risk group. The ability of these guidelines to detect

patients developing long-term cancers seems comparable to their

effectiveness in identifying malignancies occurring close to the onset

of IIM (82, 83). Further multicentric, long-term cohort studies are

needed to evaluate the application of the IMACS guidelines for

cancer screening and their impact on follow-up strategies (Table 1).

Additionally, there is a recognized need to incorporate emerging

evidence on novel risk factors to improve patient stratification

(Table 1), particularly concerning serum autoantibodies, as

outlined in Table 2.
Cancer and Sjogren syndrome: a
model of autoimmunity-induced
malignancy

PSS is a chronic autoimmune disease characterized by

lymphocytic infiltration of exocrine glands, leading to glandular

dysfunction and development of systemic manifestations (9). In

patients with pSS the overall risk of cancer is higher compared to

the general population, with an estimated standardized incidence

ratio (SIR) of 2.17 (95% confidence interval—CI 1.57–3.00) (84).
Clinical features of cancer in pSS

Hematological malignancies are the most frequent life-

threatening complication of pSS, with one-third of cancers being

B-cell lymphomas (85). Among these, NHL is the most frequently

reported, with an SIR of 13.71 (95%CI 8.83–21.29) (84), reflecting a

seven to 15 times higher incidence compared with the general

population (86). Although autoimmunity-promoting lymphoma is

frequently observed in autoimmune diseases, this association is

highly expressed in patients with pSS. Mucosal-associated lymphoid

tissue (MALT) lymphoma constitutes the majority of pSS-

associated NHL cases (up to 65%) and mainly originates from the

salivary glands. However, additional mucosal sites can be affected,

including the stomach, thyroid gland, and lungs (85). In MALT-

NHL, lymphomagenesis represents the last stage of the persistent

polyclonal activation of marginal zone B cells. In pSS, this activation

can evolve into monoclonality, typically resulting in low- or

intermediate-grade lymphomas.

In recent years, efforts have been made to identify clinical

features and serological biomarkers that predict the development

of MALT lymphoma in patients with pSS. Data from the

HarmonicSS cohort identified positive serum rheumatoid factors

as the earliest and most persistent independent predictor of

lymphoma. Simultaneously, B-cell manifestations (including

cryoglobulinemia and glandular, cutaneous, and hematological

manifestations) appear to signal a more advanced stage in the
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lymphomagenesis process (87). Additional biomarkers predictive of

a higher risk of NHL development have also been identified,

including leukopenia, low complement C4 levels, and presence of

anti-La/SSB autoantibodies (88). Major salivary gland enlargement

and salivary gland focus score evaluated at the time of diagnosis

have also been established as independent risk factors for

lymphoma in patients with pSS. In particular, a shorter time

interval from pSS to lymphoma has been described with an

increasing focus score (89), highlighting the importance of

histological evaluation in these patients.

A higher risk of hematologic malignancies, other than

lymphoma, has been reported in patients with pSS. In these

patients, the detection of monoclonal gammopathy of

undetermined significance (MGUS) is common, and as a result,

the documented higher prevalence of multiple myeloma is not

surprising. The risk of MGUS seems restricted to patients with anti-

Ro/SSA and anti-La/SSB autoantibodies (90); however, studies on

its evolution to multiple myeloma are limited. Thus, further

epidemiological investigations are required to precisely determine

the incidence and prevalence of this complication in patients

with pSS.

Solid cancers were also more frequently observed in patients

with pSS (SIR 1.39). In particular, an association between thyroid

and other ENT cancers, nonmelanoma skin cancer, hepatocellular

carcinoma, lung cancer, prostate carcinoma, kidney, and urothelial

cancers has been reported (84). Among these, thyroid cancer is the

most frequently recognized, with a 2.6 SIR reported in a pSS cohort

of over 7,000 patients (91). These data were confirmed by Britton

Zeron et al., who described thyroid cancer as the most common

solid tumor in pSS after hematological neoplasms (SIR 5.05) (92).

The explanation for this association remains unclear. However,

considering that the risk of developing thyroid cancer is higher in

patients with autoimmune thyroiditis (93), and that autoimmune

thyroiditis is one of the most frequent comorbidities in pSS (94), it is

reasonable to hypothesize that the co-occurring autoimmune

disease affecting the thyroid might contribute to the development

of this neoplastic manifestation.

Current evidence on the established and putative risk factors for

malignancy in patients with pSS is summarized in Supplementary

Table 1.
Immunological features of cancer in pSS

MALT lymphoma is thought to result from local antigen-driven

B-cell selection within tertiary lymphoid structures (TLS), which are

typically referred to as ectopic germinal centers (GCs). It is now

recognized that during pSS, ectopic GCs form in the minor salivary

and/or parotid glands of approximately 30%–40% of patients (95).

Since these structures host crucial phenomena, such as oligoclonal B

cell expansion and somatic hypermutation of Ig variable genes (96),

ectopic GCs are currently considered the ‘beating heart’ of the

autoimmune reaction (97). However, despite these functions, the

association between ectopic GC formation and lymphoma

development remains unclear. While some studies have indicated
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that the presence of ectopic GCs in minor salivary gland biopsies is

a risk factor for NHL lymphoma development (98, 99), more recent

studies have not confirmed their predictive value (100).

Nevertheless, the view that ectopic GCs are markers of more

active and severe diseases is widely accepted (101). Peripheral

biomarkers associated with ectopic GCs formation, such as

CXCL13, have been identified (102) and are currently being used

in clinical trials to monitor disease progression. Notably, elevated

peripheral levels of CXCL13 appear to be associated with an

increased risk of NHL, further strengthening the relationship

between ectopic GC formation and hematologic malignancy

development (103, 104).
Cancer screening in pSS

Lymphoproliferative disease surveillance remains a challenge in

patients with pSS even after stratification according to patient risk.

Recent studies have shown that patients without clinical suspicion

of lymphoma or increased systemic disease activity are unlikely to

benefit from major salivary gland imaging screening for detecting

this complication (105). This issue is compounded by evidence of

the poor reliability of salivary gland ultrasound protocols and scores

in identifying lymphoma in patients with pSS and high clinical

suspicion (106). It has been proposed that combining salivary gland

ultrasound with histology could improve the detection of patients at

the highest risk of lymphoma (106). However, evidence is still

lacking regarding optimal screening strategies, imaging modalities,

and t iming . Effor t s should a l so focus on detec t ing

lymphoproliferative diseases at sites other than the major salivary

glands, including both the nodal and extranodal sites. Furthermore,

identifying the risk factors and screening protocols for non-

lymphoproliferative neoplasms should also constitute a priority in

the research agenda (Table 1).
Cancer and systemic sclerosis: a
unique scenario for both malignancy-
induced autoimmunity and
autoimmunity-induced malignancy

Systemic sclerosis (SSc) is associated with an increased risk of

malignancy, with cancers being diagnosed at a significantly younger

age compared to the general population (17, 107–112), and is a

leading cause of death among patients (113–115). Cancer strongly

affects the disease course of SSc (110, 116), particularly when

diagnosed close to the onset of rheumatological manifestations

(117). Breast, lung, and hematologic cancers, including lymphoid

and myeloid neoplasms, are most frequently diagnosed in patients

with SSc (17, 118–120), but increased rates of melanoma and non-

melanoma skin cancers, hepatocellular carcinoma, urothelial (119),

and thyroid cancers, particularly in cases of coexistent autoimmune

thyroiditis (121), have also been reported.
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Risk factors for cancer in patients with SSc include demographic

and clinical features, disease duration, selected complications, and

the presence (or absence) of particular autoantibodies (120, 122–

124). However, a clear profile of the patient with SSc ‘at risk of

malignancy’ remains elusive due to the complex interplay between

such characteristics and additional risk factors (e.g., family history,

exposure to smoking, air pollutants, ionizing radiation, etc.).

Compelling evidence suggests that in patients with SSc, some

cancers are diagnosed close to the onset of autoimmune

manifestations, akin to paraneoplastic phenomena, whereas others

exhibit a characteristic delay, often correlating with an increased

burden of organ damage (125). These aspects will be discussed in

the following sections and summarized in Figure 2.
Clinical features of cancer in SSc

Given the short interval that is seldom observed between the

onset of SSc and the diagnosis of cancer, a subset of SSc cases is

thought to represent a paraneoplastic syndrome (120, 125, 126),

referred to as ‘cancer-associated scleroderma.’ This subset may

include patients in whom the antitumor immune response

culminates in the onset of autoimmunity (127). From a clinical

perspective, early diffuse and rapidly progressive SSc is associated

with a high risk of synchronous malignancy (128, 129), particularly

in the presence of certain serum autoantibodies.

A second peak of incident malignancies occurs in patients with

a long history of SSc and related complications (125), such as

pulmonary arterial hypertension and interstitial lung disease (ILD)

(119, 124), particularly in cases of progressive fibrosis (120).

Chronic inflammation has long been associated with an increased

risk of malignancy (4), and what is observed in the SSc scenario

could fit within this frame. For instance, this is the case for lung

cancer, which arises more frequently in patients with ILD and

established disease (123). However, while esophageal involvement is

common in SSc, no increased risk of esophageal malignancy has

been reported to date. Further research is warranted to test whether

the presence of factors considered as ‘protective’ from cancer (i.e.,

limited cutaneous disease, anticentromere autoantibodies—ACA)

(130, 131) is linked to smoldered cancer incidence in this

patient subset.
Immunological features of cancer in SSc

Positivity for anti-RNA polymerase III (POLR3) autoantibodies

has traditionally been linked to an increased risk of overall (120,

130, 132, 133) and synchronous cancers (111, 130, 133–135), mostly

in patients with diffuse disease (131). Support for the association

between the two conditions was elegantly provided by the evidence

of alterations in the POLR3A locus in samples of synchronous

cancers derived from patients with anti-POLR3+ SSc, but not in

negative cases (15). However, conflicting data on the risk of

malignancy with anti-POLR3 autoantibodies have been reported
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in some cohorts (111, 136, 137). Apart from possibly reflecting

genetic or epigenetic differences, such heterogeneity could also

indicate the role of multiple autoantibody specificities in

modulating the rate of cancers (127, 138). Indeed, similar to what

was recently described in DM (51, 52), multiple serum autoantibody

specificities likely confer a protective role against malignancy in

patients with another autoantibody traditionally linked to an

increased risk of cancer. A significant difference in the rate of

neoplasms has been observed in anti-POLR3 positive patients with

or without concurrent autoantibodies (130, 137). An increased risk

of cancer-associated scleroderma has been also reported in patients

without anticentromere (ACA), anti-Topoisomerase-I (TOPO1),

and anti-POLR3 autoantibodies, the so-called CTP-negative cases

(131), as well as in ANA-negative SSc cases (139). Mecoli et al.

demonstrated a protective role of anti-Th/To in cancer-associated

scleroderma (140). Since the Th/To complex is composed of four

molecular subunits (140), it would be useful to investigate

correlations between the rate of malignancies based on the

presence of single vs. multiple autoantibodies directed towards

the different subunits. Similar considerations could be made in

patients with anti-POLR3, notably directed to RP155 and/or RP11

subunits of RNA polymerase III (141), and autoantibodies to the

PM/Scl complex, which includes a 75 KDa and a 100 KDa subunit

and have been associated with malignancy in Spanish patients

(120, 142).

Among the rarer autoantibodies, anti-U3-RNP/fibrillarin (138)

and anti-RNPC-3, usually associated with limited cutaneous disease

but severe organ involvement, have been correlated with cancer-

associated scleroderma, along with a worse prognosis, comparable

to that observed with anti-POLR3 (143). In particular, a short SSc-

cancer interval has been described for anti-RNPC-3 in an American

cohort (143), although no association with malignancy was found in
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another European cohort (144). However, while the first study

primarily focused on the characteristics of anti-RNPC-3+ patients

and their association with cancer, the European study aimed to

characterize the features of patients who tested positive vs. negative

for that autoantibody. Moreover, different autoantibody detection

methods have been used (143, 144), which could have influenced

the results.

Breast cancer is the most frequent malignancy diagnosed as

cancer-associated scleroderma, particularly in the presence of anti-

POLR3 (136) and diffuse disease (131). Interestingly, breast cancer

and SSc share select molecular pathways, including hyperactivation of

the mammalian target of rapamycin (mTOR), phosphatidylinositol

3-kinase (PI3K), and transforming growth factor beta (TGF-b) (145).
In addition, tumor-infiltrating lymphocytes are more abundant in

breast cancers of patients compared than in those without

autoimmune disease (145). These observations support the

hypothesis of a possible interplay between the anticancer response

and the onset of autoimmunity in cancer-associated scleroderma.

Further research is required to understand the prognostic role and

therapeutic impact of these observations from both the oncological

and rheumatological perspectives.

Serum autoantibodies also played a significant role in stratifying

patients according to the risk of late-onset malignancy (Table 1).

Anti-topoisomerase I (TOPO1) positivity is a potential risk factor,

particularly for lung cancer. However, it is unclear whether

autoantibodies themselves, their association with ILD, or both are

putative risk factors for malignancy (110, 146). Late-onset cancer

occurs more frequently with the recently described anti-SSSCA1

antibody, an emerging predictor of SSc-related primary heart

involvement, which may support the hypothesis of a correlation

between long-standing SSc, organ damage, and incident malignancies

(147). Anti-SSA/Ro autoantibodies, often detected in patients with
FIGURE 2

The interplay between cancer and SSc. Some forms of SSc can be regarded as cancer-associated (or paraneoplastic) scleroderma, in which the
putative etiological role of malignancy is supposed to trigger the onset of autoimmunity in predisposed individuals (a). Cancer can also occur in
longstanding SSc, particularly at specific sites and is associated with the selection of risk factors, phenotypes, and disease complications (b).
Immunosuppressive and cytotoxic treatments are commonly adopted to treat SSc-related complications; however, the putative role of such
therapies remains elusive (c). CTP-neg, ‘CTP-negative’ patients; dcSSc, diffuse cutaneous SSc; ILD, interstitial lung disease; PAH, pulmonary arterial
hypertension; pHI, primary heart involvement.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1571700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tonutti et al. 10.3389/fimmu.2025.1571700
SSc and high burden of visceral involvement (148, 149), have been

associated to late-onset cancers in a French SSc cohort. A large case–

control study attributed this correlation specifically to positivity for

the anti-Ro52 subset (130). This result was retrospectively validated

by our group in an independent cohort of patients with SSc (137),

suggesting a more intricate role of anti-Ro52 positivity. Indeed,

cancer-associated scleroderma was more frequently reported when

anti-Ro52 was found to be the sole autoantibody, whereas its

positivity in combination with other specificities correlated with

higher rates of overall cancer throughout the disease history of

patients with SSc (137).

Table 3 summarizes the current evidence on the association

between serum autoantibodies and cancer risk in patients with SSc.
Cancer screening in SSc

Patients with SSc represent an ideal population for

implementing tailored cancer screening strategies because of the

potential existence of different risk categories, as recently proposed

for IIM (36). Recommendations for cancer screening were proposed

by a panel of experts and are specifically meant for patients with

new-onset SSc and anti-POLR3 autoantibodies (133). The panel

pointed to the need to exclude synchronous malignancy,

particularly of the breast, with regular screening suggested

thereafter according to age- and sex-related risk factors (133).

Despite preliminary evidence demonstrating the predictive role of

seriate monitoring of tumor-associated antigen serum levels (150), a

panel of experts discouraged their dosage a priori in patients with
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SSc, similar to that in the general population (133). However, the

proposed recommendations are only applicable to anti-POLR3

positive patients. Thus, a tailored cancer-screening strategy for

SSc remains largely speculative.

Cancer screening should be a priority, and tools to allow patient

stratification into different risk clusters are needed. Such clusters may

ideally benefit from different screening strategies at different time

points during the disease course. As mentioned in the previous

sections, the interplay of a wide range of features should be

considered to assess the risk of malignancy in patients with SSc,

including the disease phenotype, presence and severity of

complications, serum autoantibodies, and traditional risk factors,

such as tobacco exposure and family history. Finally, it would be

interesting to verify whether repeated testing for serum autoantibodies

could intercept changes in the autoimmune repertoire, which might

help stratify the risk of incident cancer in patients with SSc during the

follow-up period (Table 1).
Immunosuppressive treatments and cancer
in SSc

Patients with SSc-related organ involvement are treated with

immunosuppressive and/or cytotoxic therapies, raising concern for

secondary cancers (151, 152) as supported by the observation of

urothelial cancers occurring after exposure to cyclophosphamide

(119, 120, 153). Mycophenolate mofetil (MMF) is commonly used

for the treatment of SSc and is particularly effective in ILD (154, 155).

Evidence mostly derived from transplant immunology has not raised
TABLE 3 Systemic sclerosis-specific and -associated autoantibodies, clinical associations and current evidence regarding cancer risk.

Autoantibody Target antigen Clinical associations Cancer risk

anti-TOPO1/Scl-70 Topoisomerase I dcSSc, ILD Likely increased** (110, 146)

anti-CENP-A/B Centromere proteins lcSSc, PAH, DU, calcinosis,
gastrointestinal disease

Not increased (130)

anti-POLR3 RNA polymerase III Rapidly progressive dcSSc, SRC, GAVE Increased*** (133, 137, 138)

anti-Th/To RNase P Nucleolar Protein Complex lcSSc, ILD, PAH Not increased (140)

anti-NOR90 Nucleolar Organizer Region 90 KDa lcSSc, mild disease Not increased (130)

anti-PM/Scl Nucleolar macro-molecular complex of 75 KDa and
100 KDa

arthritis, myositis, ILD Likely increased (120)

anti-Ro52 Tripartite motif-containing protein 21 lcSSc, ILD, PAH, overlap pSS Likely increased# (124, 130, 137)

anti-U3-RNP Fibrillarin higher mRSS, myositis Likely increased## (138)

anti-RNPC-3 RNA Binding Region Containing 3 (U11/U12-RNP) ILD, gastrointestinal dysmotility Increased## (143)

anti-SSSCA1 autoantigen p27 (centromere-associated protein) cardiac involvement*, pSS overlap Increased## (147)
Due to relatively poor evidence concerning cancer risk, compared to IIM, cancer risk is reported as ‘increased,’ ‘possibly increased,’ or ‘not increased,’ according to relevant literature discussed in
the main text. Results are mainly derived from observational cohort or case-control studies. In particular, multicentric cohort studies were available for anti-TOPO1, anti-POLR3, anti-CENP-A/
B, anti-Th/To, and anti-PM/Scl autoantibodies.
dcSSc, diffuse cutaneous systemic sclerosis; DU, digital ulcers; GAVE, gastric antral vascular ectasia; ILD, interstitial lung disease; lcSSc, limited cutaneous systemic sclerosis; mRSS, modified
Rodnan skin score; PAH, pulmonary arterial hypertension; pSS, Sjogren syndrome; SRC, scleroderma renal crisis.
* Defined as evidence of impaired left ventricle function and/or signs of right failure and/or clinically significant arrhythmia.
** Evidence suggests particularly for long-term incidence of lung cancer.
*** Conflicting evidence pointing towards increased risk only in the absence of multiple autoantibody positivity.
# Evidence suggesting increased risk particularly in patients without multiple autoantibody positivity.
## Evidence from single studies or small case series.
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major concerns regarding the oncological risk of MMF (155–157),

except for the possibly increased rate of non-melanoma skin cancers

(158). While no study has specifically evaluated the risk of cancer in

patients with SSc treated with MMF, drug safety was suggested in a

large cohort of patients treated for fibrotic lung diseases (159), as well

as in patients with SSc (138). We hypothesized that the

antiproliferative effects of MMF (155) modulate the humoral

immune response without affecting cell-mediated immunity (160),

thus minimally impairing immune surveillance towards malignancy.

Finally, current data are insufficient to establish any association

between cancer incidence and more innovative treatments (e.g.,

rituximab and tocilizumab) in patients with SSc (161) (Table 1).
Cancer and systemic lupus
erythematosus: still an unclear
scenario

The dual role of immune activation in SLE—driving

autoimmunity while potentially influencing tumor suppression or

promotion—creates a paradox that is central to understanding the

relationship between SLE and cancer. A recent meta-analysis

revealed a pronounced increase (2.87-fold; 95%CI 2.49–3.24) in

the standardized mortality ratio (SMR) for all-cause mortality

among SLE patients compared to the general population (162).

Despite the heterogeneity among the included studies, an elevated

cancer-related mortality risk (SMR 1.7-fold) was reported in SLE

patients (163). The overall cancer risk profile in SLE is shaped by a

heterogeneous set of factors, including disease activity and damage,

immunosuppressive treatments, genetic predisposition, and

environmental exposure (164).

From an epidemiological perspective, SLE displays a unique

cancer risk profile. Hematologic malignancies (NHL, Hodgkin

lymphoma, leukemia, and myeloma), and lung, cervical, thyroid,

gastrointestinal, hepatobiliary, and liver cancers occur more

frequently in SLE, which is partly attributed to chronic immune

activation and persistent inflammation. Conversely, breast,

endometrial, and prostate cancers and melanoma are less

common, possibly due to alterations in hormonal pathways and

immune surveillance mechanisms (163, 165).
Clinical features of cancer in SLE

Specific features of SLE, such as hematological and pulmonary

manifestations, may contribute to cancer risk, namely NHL and

lung cancer. However, despite the well-established association

between idiopathic pulmonary fibrosis and lung neoplasms,

pulmonary fibrosis is rarely reported in SLE and has not shown

statistically significant associations, despite evidence of increasing

trends (166). A higher SLICC/ACR Damage Index has emerged as a

risk factor for cancer (167, 168); however, the relationship with

disease activity risk remains unclear (168) (Table 1).

Secondary and overlapping autoimmune diseases, such as

Sjogren’s syndrome, autoimmune liver disease, scleroderma, and
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autoimmune thyroiditis, may contribute to cancer risk in SLE (169)

(Table 1). For instance, secondary Sjogren’s syndrome increases the

risk of NHL (168), although the predominance of the DLBCL subtype

raises questions about Sjogren’s status as the primary driver (170).

Autoimmune thyroiditis is strongly linked to thyroid cancer in SLE

patients, as supported by evidence of thyroid autoimmunity in most

cases of thyroid cancer in this population (171).

Childhood-onset SLE (cSLE) is a disease subset that warrants

particular attention regarding cancer risk. Lymphomas and solid

tumors have been reported at a significant rate, with a median time

of 10 years after cSLE diagnosis. Distinct clinical presentations, risk

factors, and treatment challenges have been outlined in this

population, underscoring the need for heightened vigilance and

tailored management strategies for young patients (172).

Finally, patients with SLE may be more susceptible to oncogenic

viruses such as Epstein–Barr virus (EBV) (169), human

papillomavirus (HPV), and hepatitis B virus (HBV). Impaired

immune surveillance could lead to higher rates of viral

persistence and reactivation, contributing to the development of

lymphomas (173), cervical dysplasia and cancer (174), and

hepatocellular carcinoma. By weakening the antiviral defenses,

immunosuppressive therapies may further increase this risk.

Current evidence on the established and putative risk

factors for malignancy in patients with SLE is summarized in

Supplementary Table 2.
Immunological features of cancer in SLE

Chronic inflammation plays a key role in fostering a pro-

oncogenic microenvironment via DNA damage, oxidative stress,

and cytokine-mediated pathways (175, 176). For instance, the

increased risk of lymphoma may be driven by cytokines

upregulated in SLE, such as BAFF, APRIL, IL-6, and IL-10, which

promote B-cell survival, proliferation, and inflammation (177).

These factors are linked to non-germinal center B-cell-like

DLBCL, the predominant lymphoma subtype in SLE (169, 178).

SLE-associated autoantibodies, a hallmark of the disease, are

hypothesized to promote tumor development by entering cells and

causing DNA damage (179). Notably, an anti-DNA autoantibody

named 3E10 has been shown to enter cell nuclei, bind to DNA, and

impair key DNA repair pathways, thereby contributing to genomic

instability. By increasing susceptibility to DNA damage, 3E10

provides a compelling link between SLE autoimmunity and

malignancy (180).

Moreover, specific genetic variants (e.g., SNPs in CD40 and HLA

alleles) have been associated with both SLE and malignancy,

particularly DLBCL and lung cancer (181), although some findings

suggest pleiotropy or linkage disequilibrium rather than direct

biological causation (182). Emerging research has also identified

epigenetic mechanisms, particularly microRNA dysregulation,

implicated in both SLE pathogenesis and hematologic cancers,

highlighting the potential role of shared post-transcriptional

regulatory pathways in the concurrent development of autoimmunity

and malignancy (183).
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SLE might also confer protection against hormone-sensitive

cancers, possibly because of lower exposure to estrogens and

androgens. Indeed, women with SLE often experience earlier

menopause (184) and are less frequently prescribed estrogen-

containing medications (185), whereas men with SLE have lower

androgen levels (186). Moreover, certain autoimmune mechanisms

may yield protective effects, as in the case of 5C6 anti-DNA

autoantibodies that selectively target tumor cells with defects in

DNA repair processes (e.g., BRCA2-deficient cancer cells) (187).

While the rates of hormone-susceptible breast cancers are similar

among SLE patients and the general population, patients with SLE

experience a significantly lower incidence of triple-negative cancers,

which are mostly characterized by genetic mutations in DNA repair

pathways (188).
Cancer screening in SLE

Established recommendations for cancer screening in patients with

SLE are unavailable. Thus, these procedures largely rely on expert

opinions, substantially overlapping with what is recommended in the

general population (189). In particular, cervical screening and/or HPV

vaccinations, periodic mammograms, and fecal occult blood testing are

advised for all patients according to age- and sex-specific local

guidelines (189). Moreover, clinical screening through regular lymph

node examination and routine chemistry is recommended for

hematological malignancies, while thyroid enzymes, autoantibodies,

and ultrasound should be performed because of the risk of thyroid

neoplasms (189). Apart from pursuing smoking cessation, lung cancer

screening with annual chest CT scans is recommended only in patients

with a high-risk profile (i.e., aged 50 years–75 years and with a history

of smoking) (189), while hepatobiliary screening is not recommended

unless in cases of positive HBV or HCV serologies (189), and urinary

cytology is recommended periodically in patients who have

undergone cyclophosphamide.

However, a large cohort study demonstrated that adherence to

cancer screening is an issue in patients with SLE, with at least 25% of

patients not being regularly screened, particularly in cases of

established and longstanding disease (190). This seems particularly

crucial regarding cervical cancer screening, since patients with SLE are

at higher risk of abnormal test results compared with controls (191).
Immunosuppressive treatments and cancer
in SLE

Immunosuppressive treatments can influence the risk of cancer

in SLE (192) because their long-term use may impair immune

surveillance (193). Prolonged and cumulative high-dose

cyclophosphamide has been strongly linked to an elevated risk of

bladder cancer (with oral cyclophosphamide) and hematological

malignancies (189). Similarly, azathioprine has been associated with

a risk of hematologic malignancies (164), highlighting the need for

careful monitoring and optimal dosing. Moreover, the use of

immunosuppressive therapies is associated with a higher risk of
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cervical neoplasia than antimalarials (194), underscoring the

importance of regular screening in these patients.

Calcineurin inhibitors have been associated with an increased

incidence of cancers in solid organ transplant recipients (195), with

previous studies suggesting their role in impairing DNA repair,

promoting angiogenesis, and facilitating tumor invasion (196).

However, a recent large cohort study of SLE patients with

consistent follow-up found no significant difference in cancer risk

between those using calcineurin inhibitors and those who did not,

even after adjusting for potential confounders (197). Biologics that

target B-cell pathways, such as rituximab and belimumab, are

generally considered safe; however, their effects on cancer remain

the subject of ongoing investigation. Finally, owing to the close

association between drug exposure and disease activity, many

studies face challenges in distinguishing the individual

contributions of these factors to cancer risk (Table 1).

Compared to immunosuppressants, hydroxychloroquine,

which is universally prescribed for SLE, has been associated with

a decreased cancer risk (198), particularly for breast and non-

melanoma skin cancer (193), possibly because of its anti-

proliferative and anti-angiogenic activity.
Limitations and concluding remarks

While this study aimed to provide insight into the dual-faceted

clinical relationship between cancer and CTDs (i.e., cancer-associated

CTDs vs. cancer occurring subsequently or within the context of CTDs),

we acknowledge certain limitations. Although our literature review was

comprehensive and sought to analyze evidence that supports and

challenges our hypotheses, we did not follow a systematic review

approach, which would be necessary to address more specific research

questions based on the current evidence. A consistent approach was

attempted across diseases, but the major differences in evidence

availability led to some degree of heterogeneity, particularly in the

immunological feature sections related to myositis and SSc versus pSS

and SLE. Publication bias should also be considered, particularly

regarding data on rare and emerging autoantibody specificities, along

with the relatively greater abundance of studies on certain diseases,

primarily IIM and SSc, compared to pSS and SLE. There are also biases

in the races and ethnicities that have been studied in different diseases,

which should be addressed in future investigations. The heterogeneity

of analytical methods for autoantibody detection (e.g.,

immunoprecipitation, line blot, and ELISA) should also be considered

when comparing different studies, as the sensitivity and specificity vary

depending on the techniques used and the target autoantigen (199).

Moreover, our objective was to highlight unmet needs and identify

avenues for future research in autoimmunity and rheumatology, with

potentially significant implications from the clinical, pathophysiological,

and therapeutic perspectives.

Patients with CTDs exhibit distinct cancer risk profiles, which

are influenced by the etiological role of malignancy in certain

contexts and the precancerous environment created by chronic

inflammation and autoimmune activation. Similarities in immune

pathogenesis are thought to occur among patients with
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paraneoplastic forms of CTDs, as seen when comparing findings

from anti-TIF1-g+ DM and anti-POLR3+ SSc, in which the

complex interplay between cancer-related mutations and aberrant

tumor immune editing is thought to culminate in the activation of

self-reactive lymphocytes, ultimately leading to tissue damage and

CTD onset. On the other hand, chronic immune activation

reflecting specific pathogenic clues can be considered a potentially

premalignant condition, as suggested by the evidence of an

increased risk of lung cancer in patients with longstanding SSc-

ILD. From this point of view, the example provided by pSS is

paradigmatic, since the disease itself is responsible for the

generation of autoreactive lymphocyte clones with lymphoma-

prone behavior, ultimately culminating in MALT-NHL onset.

Most importantly, a correlation between disease activity and

lymphoma risk has been clearly demonstrated in pSS. The role of

immunosuppressive therapies in cancer risk in these patients

remains unclear. Therefore, further research is needed to unravel

the complex interplay between CTDs and malignancy, which

requires a multidisciplinary approach that integrates clinical and

pathophysiological aspects (Table 1). Addressing this challenge is

essential to improve cancer screening, prevention, and treatment

strategies in this patient population.
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A Commentary on

Cancer in connective tissue disease

By Tonutti A, Ceribelli A, Gremese E, Colafrancesco S, De Santis M and Selmi C (2025). Front.
Immunol. 16:1571700. doi: 10.3389/fimmu.2025.1571700
I read with great interest the comprehensive review by Tonutti et al. titled “Cancer in

Connective Tissue Disease” (1), which provides a timely analysis of the bidirectional

relationship between malignancy and autoimmunity in connective tissue diseases (CTDs).

The authors adeptly synthesize current evidence on cancer risk stratification, autoantibody

profiles, and screening challenges across systemic lupus erythematosus, systemic sclerosis,

idiopathic inflammatory myopathies (IIM), and Sjögren’s syndrome (SS). Their work

underscores the critical need for multidisciplinary collaboration to address unmet needs in

early detection and management.

I commend the authors for highlighting the paradoxical role of autoimmunity—where

chronic inflammation may promote oncogenesis, yet autoimmune responses can also exert

antitumor effects. This duality is exemplified by the contrasting implications of

autoantibodies like anti-TIF1-g (high cancer risk in IIM) and anti-Sp4/CCAR1

(potentially protective). However, I emphasize the urgent need for standardized

autoantibody detection methods. As noted, discrepancies in anti-NXP2 results across

assays (e.g., line blot vs. immunoprecipitation) complicate clinical interpretation (2).

Harmonizing laboratory techniques is essential to refine risk stratification and validate

guidelines like the IMACS cancer-screening algorithm (3).

I also support the call for disease-specific screening frameworks. While IMACS offers a

model for IIM, similar protocols are lacking for systemic sclerosis and Sjögren’s syndrome,

where lymphoma risk escalates with biomarkers like ectopic germinal centers or CXCL13.

Tailored strategies must integrate serological, clinical, and imaging data (e.g., salivary gland

ultrasound in SS) while balancing cost-effectiveness and accessibility.

Finally, the impact of immunosuppressants on cancer risk warrants deeper exploration.

Although the review notes inconclusive data on therapies like mycophenolate in systemic

sclerosis, real-world studies are needed to clarify risks associated with newer biologics (e.g.,
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rituximab) and the potential protective role of hydroxychloroquine.

Pharmacovigilance registries could illuminate these associations.

In conclusion, Tonutti et al. have delivered an invaluable review

that crystallizes the complex cancer-CTD interplay. Future efforts

should prioritize validating autoantibody panels, expanding

screening guidelines, and elucidating treatment-related oncogenic

risks through international cohorts.
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Background: Juvenile idiopathic arthritis (JIA) is an immune-mediated pediatric

disease believed to result from a complex interplay of genetic and environmental

factors. Genome-wide association studies have enabled calculation of polygenic

risk scores (PRS) for JIA. Understanding how the PRS associates with JIA and

whether it performs similarly across sexes is essential for its utility in future studies.

Methods: We studied the relationship between a PRS developed from a

previously published genome-wide association study of JIA and JIA in children

from the Norwegian Mother, Father and Child Cohort Study (MoBa; total n =

57,630; JIA cases = 238). Generalized linear models (GLM) and generalized

additive models (GAM) were used in logistic regression to assess the

association. Furthermore, we investigated whether the relationship between

PRS and JIA differed by sex by applying GAM models with interaction terms.

Results: PRSwas significantly associatedwith JIA using bothGLM (p< 2e-16) andGAM

(p< 2e-16) models, and our results indicated a nonlinear relationship between PRS and

JIA (effective degrees of freedom, EDF = 1.96). We found a significant interaction

between sex and JIA PRS in relation to JIA (p = 0.017), and indications of a stronger and

more logit-nonlinear relationship in females (EDF = 1.82) versus males (EDF = 1.06).

Conclusion: The relationship between PRS and JIA was slightly logit-nonlinear

for females and logit-linear for males. The PRS for JIA can likely be used either as

a continuous or discrete variable in analyses, but sex-stratification is

recommended for future studies.
KEYWORDS

juvenile idiopathic arthritis, polygenic risk score, nonlinearity, sex differences, gene-
sex interaction
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1 Introduction

Juvenile idiopathic arthritis (JIA) is an immune-mediated

disease characterized by joint inflammation lasting for at least six

weeks and presenting before the age of 16 (1). It is a heterogenous

disease with seven subtypes, and it is more prevalent in girls (2, 3).

JIA imposes a significant burden on patients, their families, and

society. It is believed to result from a complex interplay of genetic

and environmental factors, although causal factors and underlying

mechanisms remain largely unknown (4).

Familial, twin, and genome-wide association studies (GWAS)

have helped to approach and dissect the genetic contribution to

complex diseases, including JIA (5, 6). The monozygotic twin

concordance rate of JIA has been estimated as 25-40%, and the

sibling recurrence risk ratio as 11.6 (1). In the so far largest GWAS

of JIA, including 3305 cases and 9196 controls, López-Isac et al.

identified numerous susceptibility loci for JIA with a total SNP-

based heritability of 0.61 (7).

The results from GWAS studies can be exploited by

constructing polygenic risk scores (PRS), comprising aggregated

effects of variants across the genome, which can be used to estimate

the individual’s genetic risk for the outcome of interest (8). PRS

have been widely applied in studies of a range of different diseases

and phenotypes and can be particularly useful in studies assessing

the relationship between genetic and environmental risk factors for

disease (9). Although PRSs have been suggested as potential clinical

tools in the future, there are several obstacles that need to be

addressed before they can be implemented into a clinical setting (9).

PRSs are therefore so far mainly useful as research tools for studying

genetic risk.

Recently, we developed a PRS for the children in the Norwegian

Mother, Father and Child cohort study (MoBa) based on results

from the aforementioned GWAS by López-Isac et al. (7, 10). When

including a PRS in statistical models, either as a main effect or

interaction variable, it is important to know how it relates to the

outcome, in our case JIA. Understanding how the risk of JIA

changes depending on the PRS can inform whether the PRS can

be used as a continuous variable in the model or if it should be

grouped into a discrete variable, and if so, how the discrete variable

should be defined (11). Traditional logistic regression assumes a

linear relationship between predictors and the log-odds of the

outcome. However, some biological associations, including those

between genetic risk scores and disease, may not follow a strictly

linear pattern. Using nonlinear methods for modelling can

therefore be useful because they are flexible enough to capture

more complex relationships between the PRS and JIA. Furthermore,

the PRS may be performing differently in specific subgroups, such

as males and females, which can also be important to uncover when

including the PRS in studies of risk and disease development (12).

Sex-specific genetic associations appear to play a role in a

number of autoimmune and immune-mediated diseases, but the

degree to which these differences contribute to JIA susceptibility has

not been fully studied (13). A recent study on JIA patients found

that the presence of antinuclear antibodies (ANA) was associated

with specific genes, and this was observed more frequently in
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females, suggesting an interaction between certain genes and sex

(14). Furthermore, a female-specific association between the

PTPN22 SNP rs2476601 and JIA has been confirmed across

several different populations (15, 16), and evidence of a sex-

specific association of PSMA6/PSMC6/PSMA3 genetic variants

with subtypes of JIA has also been reported (17). However,

genome-wide studies of JIA, including the GWAS on which our

PRS is based, were not stratified by sex (7). To address potential sex

differences, it is thus important to assess whether the PRS performs

similarly in males and females.

To fill these knowledge gaps, our aims of this study were 1) to

investigate the relationship between the PRS for JIA and the

probability of a JIA diagnosis, and 2) to explore whether the

relationship between the PRS and JIA risk is different between

males and females.
2 Methods

2.1 Study population and design

MoBa is a large-scale pregnancy cohort study led by the

Norwegian Institute of Public Health (NIPH), which recruited

participants across Norway between 1999 and 2008. 41% of the

eligible women participated. The cohort comprises around 114,500

children, 95,200 mothers, and 75,200 fathers (18, 19). The present

study uses version 12 of the MoBa data files, which underwent

quality assurance and were made available for research in January

2019. We included MoBa children who had previously been

genotyped (20).
2.2 Outcome

Information about JIA status was collected by linkage to the

Norwegian Patient Registry (NPR), which includes data with

personal ID numbers from all Norwegian public hospitals and

specialists with public funding from 2008 (21). In Norway, the

university hospitals with specialists within pediatric rheumatology

have the main responsibility of diagnosing and following JIA

patients. Cases were born between 1999 and 2009 and diagnosed

with JIA before December 2021. We defined a JIA case as having at

least two International Classification of Diseases (ICD)-10 codes

(≥2 M08, ≥2 M09, or ≥1 M08 and ≥1 M09). In a recent validation of

this case definition, we found a positive predictive value of 93.4%

(10), ensuring a low number of false positive diagnoses. It is

therefore reasonable to assume that our case definition largely

reflects accurate diagnoses. For cases who received their first ICD-

10 code in 2021, we accepted a single relevant ICD-10 code (M08 or

M09), as we received our latest updates from NPR in December

2021. Controls were defined as non-JIA cases, and we removed all

controls who had one ICD-10 code (M08 or M09) because they

might have JIA.
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2.3 Polygenic risk score for JIA

Umbilical cord blood samples were collected at birth, and the

extracted DNA was frozen and stored at NIPH. The genotyping,

quality control and imputation of the genetics data of the samples in

MoBa have been extensively described previously (20). We

calculated PRSs from the results of a previously published GWAS

of JIA (7) by applying PRSice, version 2.3.3 (22). We chose p-value

thresholds of 5E-8, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 5E-2, 1E-1, and 1

to calculate PRSs and then extracted the first principal component

(PC) for PRSs across all the thresholds, using this first PRS-PC as

our final PRS for JIA (23). We then, using the whole dataset,

standardized the PRS to a mean of zero and a standard deviation

(SD) of 1 (24) and we used the standardized PRS for all analyses. In

sensitivity analyses, the PRS was categorized into (1) quartiles,

forming four equal-sized categories, (2) three categories

containing the top 10%, middle 80% and bottom 10% of

observations, and (3) a binary variable based on the median

(Supplementary Table 1).
2.4 Statistical analysis

R version 4.2.3 was used to conduct all statistical analyses (25),

and all scripts are available in our GitHub repository (https://

github.com/KristineLH/PRS-JIA-sex). We used multiple logistic

regression and generalized additive models (GAM) to examine

the relationship between PRS and JIA. The top 10 PCs from the

whole genotype dataset, together with sex, and year of birth were

included as covariates in the models.

Nonlinear modeling approach
To account for potential logit-nonlinearity, we applied GAM

using the gam function from the mgcv package (26). GAM extends

traditional regression by allowing flexibility in how predictors

influence the outcome, fitting smooth, data-driven curves rather

than assuming a fixed logit-linear form. In our model, PRS was

modeled as a smooth function using a regression spline, which

adapts to the shape of the data. The effective degrees of freedom

(EDF) from the GAM output served as an indicator of nonlinearity,

with an EDF of 1 representing a linear relationship and values

greater than 1 suggesting a nonlinear relationship (27).

Modeling sex differences
To investigate whether the relationship between the PRS and

JIA differed by sex, we first included an interaction term between

the PRS and sex in the multiple logistic regression model. The Wald

test was used to assess statistical significance of the interaction, and

a p-value < 0.05 was regarded as significant. However, interaction

terms in standard regression models assume a constant, linear

modification of the association by sex, which may not fully

capture potential differences in the way the PRS is associated with

JIA in males and females. To address this, we further investigated

sex-specific patterns by fitting separate smooth splines for the PRS

in males and females. Specifically, we created new variables by
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multiplying PRS with dummy variables for each sex and then

modeled these products as smooth terms in the GAM framework.

This allowed us to estimate the association between the PRS and JIA

in each sex separately.

Visualization
To aid interpretation, we visualized the relationship between

PRS and JIA for each model. Using the predict function, we

calculated the probability of JIA across a range of PRS values

(-4.5 to 4.5 with an increment of 0.1), while keeping other

covariates (10 PCs, year of birth) at their mean values. This

enabled direct comparison of PRS effects across methods

(Figure 1) and sexes (Figure 2).
3 Results

3.1 Study sample characteristics

Our final analytical sample included 57,630 children of whom

238 were identified as JIA-cases (Table 1). Male participants

comprised 51.0% (n = 29,139) of the controls, compared to only

39.9% (n = 91) of the JIA cases. The JIA cases had a mean PRS of

0.58 (+/- 1.10 SD), whereas the mean PRS in controls was -0.002

(+/- 1.00 SD).
3.2 Association between PRS and JIA

We assessed the association between PRS and JIA using a

standard logistic regression model (GLM) and a generalized

additive model (GAM), results shown in Figure 1. In both
FIGURE 1

Relationship between PRS for JIA and probability of JIA modelled by
a generalized linear model (GLM) compared to a generalized
additive model (GAM). The lines show the fitted prediction model of
JIA probability ~ PRS + sex + year of birth + top 10 principal
components for each of the models. The colored areas represent
the 95% confidence intervals for the corresponding models.
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models, PRS was significantly associated with JIA (p < 2e-16 for

both models), and the results were similar for the categorized PRS

variables (Supplementary Figure 1). The EDF in our GAM model

was 1.939, indicating a logit-nonlinear relationship between PRS

and risk of JIA.
3.3 The association between PRS and JIA
differs by sex

In Figure 2, we show the distributions of PRS in controls, as well

as cases stratified by sex. The PRS distributions for controls show a

mean of 0.01 in males and -0.01 in females. In contrast, JIA cases

demonstrate higher PRS means. Specifically, the PRS mean for male

cases is 0.40, while for female cases, it is 0.70, indicating a stronger

association between PRS and JIA diagnosis in females compared

to males.

We further investigated the interaction between sex and PRS in

association with JIA. In a simple logit-linear model, the interaction

term between sex and PRS was significantly associated with JIA (p =

0.017). We then investigated this interaction further by conducting

a semi-stratified analysis allowing for nonlinear relationships

(Figure 3). This model showed that PRS was significantly

associated with JIA in both females (p < 2e-16) and males
Frontiers in Immunology 04102
(p < 0.001). Interestingly, the relationship between PRS and JIA

was approximately logit-linear in males (EDF = 1.06) but showed a

larger tendency of logit-nonlinearity in females (EDF = 1.82). We

detected a similar pattern when defining the PRS as high- and low-

risk variable divided into top 10%, bottom 10% and middle 80% of

observations (Supplementary Figure 2).
4 Discussion

Our results show that the relationship between PRS and JIA is

weakly logit-nonlinear. The notable difference in PRS distribution

between male and female JIA cases underscores a sex-specific

variation in PRS among JIA cases in the MoBa cohort.

Furthermore, we show a significant interaction between sex and

PRS in relation to JIA, with sex acting as a PRS effect measure

modifier. Interestingly, the logit-nonlinearity of the relationship

seems to be driven by the females, whereas in males the relationship

seems to be logit-linear.

Understanding the relationship between a PRS and the outcome

of interest is important when the PRS is to be used in further

analyses, such as when investigating interactions between

environmental exposures and genetic predisposition to develop

JIA. Particularly, for the PRS to be used as a continuous variable
FIGURE 2

Distribution of JIA PRS in (A) controls, and (B) JIA cases grouped by sex.
TABLE 1 Study sample characteristics.

Characteristics JIA cases Controls

All Male Female All Male Female

Sample size (n,%) 238 (100) 95 (39.9) 143 (60.1) 57,392 29,319 (51.0) 28,073 (48.9)

Year of birth (mean, SD) 2005 (2.18) 2004 (2.19) 2005 (2.15) 2005 (2.17) 2005 (2.17) 2005 (2.16)

PRS (mean, SD) 0.579 (1.10) 0.399 (1.08) 0.699 (1.11) -0.002 (1.00) 0.005 (1.00) -0.010 (0.99)
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in analyses of JIA, the relationship between PRS and JIA should be

well modelled (11). A non-linear relationship between the PRS and

JIA could suggest that, for risk prediction, the PRS should be

grouped into a discrete variable. Our results indicate a somewhat

logit-nonlinear relationship between the PRS for JIA and risk of JIA,

with a stronger effect with higher PRS compared to lower PRS.

However, as shown in Figure 1, the GAM model taking logit-

nonlinear associations into account is not vastly different from the

simple logit-linear model. It should be noted, however, that the

relatively small number of JIA cases in our dataset may have limited

our power to detect subtle nonlinear interactions, particularly for

males. Although grouping the PRS into a categorical variable as

shown in Supplementary Figure 1 gave a similar fit, the predicted

probabilities of JIA were lower than with the continuous PRS,

especially for the high-risk groups. This indicates some loss of

information and shrinkage towards the mean due to grouping the

PRS. Thus, we suggest using PRS as a continuous variable in future

studies when possible. Grouping the PRS into high- and low-risk

groups of top 10%, bottom 10% and middle 80% gave the most

similar fit compared to using the PRS as a continuous variable and

may therefore be an alternative way of modelling the PRS. However,

males and females appear to require distinct models for use of this

PRS for JIA.

Sex-specific and sex-dependent effects of PRSs for other

diseases, like schizophrenia and coronary artery disease have also

been reported (28–30). The difference we observe in PRS

performance between the sexes could reflect differences in the sex

ratio among cases and controls in the GWAS our PRS is based on

(12), with the girl cases outnumbering the boys and consequently

having more influence on the formation of the score. However, the

sex ratios were not stated in the GWAS paper, which may limit our

results (7). Furthermore, different subtypes of JIA are associated

with different genetic loci, and sex distribution also differs

depending on the subtype (3). Some subtypes, such as
Frontiers in Immunology 05103
oligoarticular and polyarticular JIA, which constitute around 70%

of all cases, occur 2–3 times more frequently in girls, but not all JIA

subtypes are more common in females (3). Thus, the PRS may be

mainly reflecting genetic predisposition for the more common

subtypes which are also more common in females and therefore

show a stronger association with JIA in females compared to males.

We did not have access to information on subtypes in our dataset

and were thus not able to account for this in our analyses. Given

that certain JIA subtypes differ in their genetic patterns, this

represents a limitation of our study. Furthermore, gene-

environment interactions involving exposures that differ by sex,

such as hormones, have not been accounted for and may have

influenced our results. Finally, our results may indicate that the

effect of genetic predisposition on JIA development is dependent on

biological processes that differ between the sexes.

When using the PRS for JIA in association and interaction

analyses, researchers should be aware of the sex-specific

associations and consider sex-stratification when possible. Our

findings suggest that future studies on the genetic predisposition

to JIA, including GWAS and the development of PRS, should

incorporate sex-specific analyses to identify genetic loci that may

contribute to disease development in males and females separately,

as well as those shared between sexes (31, 32). Developing a set of

distinct PRS scores specifically for sex-by-subtype categories could

prove to be even more usefully predictive, but this would require a

very large genetic dataset with detailed information on sex and JIA

subtypes. We also suggest exploring potential susceptibility loci for

JIA on the X-chromosome (33) as this was not included in our study

nor, to our knowledge, in any GWAS of JIA thus far. As sex

differences are common in autoimmune diseases in general,

investigating sex-specific associations of PRS may be relevant also

for other autoimmune and immune-mediated diseases (34).

In conclusion, our results show that the relationship between

our PRS and JIA is slightly logit-nonlinear, but only for females.
FIGURE 3

Relationship between PRS of JIA and probability of JIA in females and males. The lines show the fitted prediction model of JIA probability ~ PRS +
sex + year of birth + top 10 principal components for each of the sexes. The colored areas represent the 95% confidence intervals for the
corresponding models.
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The PRS for JIA can likely be used either as a continuous or

discrete variable in analyses, but sex-stratification should be

considered. Future studies should further investigate sex-

differences in genetic predisposition of JIA and other

autoimmune diseases.
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Immunology, Medical University of South Carolina, Charleston, SC, United States, 7Environmental
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Introduction: Vaccinations have had a transformative impact on public health,

reducing the incidence of many infectious diseases and increasing survival.

However, there remains uncertainty about the potential of vaccines to trigger

autoimmune diseases such as the idiopathic inflammatory myopathies (IIM).

Myositis after vaccination (MAV) is a rare clinical entity, but given

immunogenetic associations with other adverse events, we explored genetic

risk factors, particularly human leukocyte antigen (HLA) alleles and GM/KM

immunoglobulin allotypes, that may predispose individuals to develop MAV.

Methods: We examined clinical characteristics, vaccination history,

autoantibodies, HLA alleles and GM/KM allotypes from 56 patients who

developed MAV, 133 myositis cases with no documented vaccination within 6

months of onset (non-MAV), and 527 healthy controls from the pre-COVID-19

era. Genotyping for HLA and GM/KM allotypes was performed by standard assays.

Differences in allele frequencies in race-matched groups were evaluated using

chi-square tests, odds ratios (OR) and 95% confidence intervals (CI). Multivariate

logistic regression adjusted for age, sex, and vaccination type. Statistical

significance was defined as a Holms corrected p-value of less than 0.05.

Results: No clinical or serologic differences were found between MAV and non-

MAV patients. However, the HLA-DQA1*03:03 allele was a unique risk factor for

MAV in Caucasians (OR=3.87, 95% CI=1.56-9.54, p=0.002), while the known

myositis risk factor, HLA-DRB1*03:01, was a protective factor for MAV (OR=0.41,

95% CI=0,18-0.94, p= 0.033). GM2, GM13, and KM1 allotypes were more

frequently observed in MAV patients than healthy controls, and other HLA

alleles were risk or protective factors for specific vaccines given in patients

who developed MAV.
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Conclusion: Immunogenetic factors may influence the likelihood of developing

MAV. Further studies of larger, deeply phenotyped populations are needed to

confirm these associations and could inform personalized risk assessments and

targeted interventions, thereby enhancing vaccine safety.
KEYWORDS

polymyositis, dermatomyositis, vaccination, adverse events, HLA, GM/KM,
juvenile dermatomyositis
1 Introduction
The idiopathic inflammatory myopathies (IIM) are a group of

rare systemic autoimmune conditions characterized by muscle

inflammation and weakness that arise from chronic immune

activation in genetically predisposed individuals in response to

certain environmental triggers (1). Major strides have been made

in defining the genetic risks for IIM and other autoimmune

conditions (2), but identifying the even more important

environmental risk factors has been hampered by the lack of

validated measures and the constantly changing mixtures of

exposures that occur over a lifetime (3). Vaccines, while highly

beneficial, can in rare cases, cause chronic immune activation

followed by the development of a number of autoimmune

diseases, including myositis (4, 5).

Certain polymorphic immune response genes have been

associated with IIM. One of the strongest genetic associations for

autoimmune diseases is located on chromosome 6p21.3 that

includes the human leukocyte antigen (HLA) locus in addition to

other immune system-modulating genes (6). Alleles of the 8.1

ancestral haplotype (8.1 AH), HLA-DRB1*03:01 and HLA-

B*08:01, show the strongest association with IIM in Caucasians

(7, 8). Other polymorphic genes associated with autoimmune

diseases, including IIM, are the immune response genes that

encode immunoglobulin gamma heavy chains (GM) and

immunoglobulin kappa light chains (KM) (9). These have also

been identified as genetic susceptibility factors across different ages

and ethnicities for various clinical and serological IIM

phenotypes (10).

There is no doubt that vaccines have significantly improved

global public health by boosting immune responses to many

infectious agents, preventing infections, and minimizing

morbidity and mortality. However, it is plausible that vaccines,

often given intramuscularly, could cause initial immune activation

in muscles to progress to a chronic systemic inflammatory response

in those with certain immunogenetic backgrounds. While many

patients develop myositis without any documented recent

vaccination, the concept that vaccinations may be linked to the

onset of some cases of myositis has been previously suggested in

case reports (11–14). The first identified cases of myositis following
02107
vaccination (MAV) included myositis developing in a temporally

related way to diphtheria-tetanus-pertussis vaccines (11, 15, 16) and

smallpox vaccines (17) in adult and pediatric patients. Additional

reports of vaccine constituents, including aluminum hydroxide, and

not the immunization antigens themselves, have led to macrophagic

myofasciitis (18).

Certain adverse events to drugs, medical implants and vaccines

have previously been associated with clinical, serologic or

immunogenetic features (19–21). Based on our observation that

some myositis cases were temporally associated with vaccinations,

we systematically compared those patients who developed myositis

within 6 months of a documented vaccination to those who had no

documented vaccinations within 6 months of myositis disease onset

and to healthy controls (HC) from the pre-COVID-19 era to assess

possible clinical, serological, and immunogenetic differences.
2 Materials and methods

2.1 Study participants

Myositis patients and HC were enrolled into investigational

review board-approved clinical protocols at the National Institutes

of Health (NIH) Warren Grant Magnuson Clinical Center and the

United States Food and Drug Administration from 1983 to 2002.

These protocols studied the natural history of myositis and twins

and siblings discordant for myositis.

Per our protocol criteria, all patients met Bohan and Peter

criteria for definite or probable myositis (22, 23). They were all

diagnosed with IIM, including dermatomyositis (DM), juvenile

dermatomyositis (JDM), polymyositis (PM), juvenile polymyositis

(JPM), and inclusion body myositis (IBM) based on the accepted

criteria at the time of enrollment. Patients with myositis and

another connective tissue disease (CTM) were also included. IIM

patients who received a documented vaccination within six months

prior to first myositis symptom onset were included in the myositis

after vaccination (MAV) group (n=56), while those who did not

receive vaccination during this time interval (documented by

history and review of medical records) were categorized as non-

MAV (n=133). All patients underwent a comprehensive medical

history and physical examination, which included detailed protocol
frontiersin.org
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ques t ionnaires completed by the pat ients and the ir

enrolling physicians.

The clinical data included age, self-classified race, gender, and

signs and symptoms. Since gene frequencies differ by race, the HLA

and GM/KM data were assessed in Caucasian patients, which was

the largest cohort and the only one adequate for reliable statistical

analysis. The HC groups were race-matched.
2.2 HLA typing

HLA allele typing was performed using purified genomic DNA,

using laboratory-designed and commercial reagents (Genovision,

West Chester, PA; Dynal Biotech, Lafayette Hill, PA) and PCR-

mediated sequence-specific oligonucleotide probe hybridization and

sequence-specific priming technique via standard techniques (24).

Allele frequencies per patient (carriage rates) were determined by

the number of allele-positive subjects divided by the total number of

subjects for which complete HLA data were available at a given locus.

All patients in the HLA allele analysis were self-identified as

Caucasians and divided into MAV (n=48) and non-MAV (n=93)

groups. For comparison, the HC data (n=527), who did not have

myositis, were obtained through the NIH HLA laboratory.
2.3 GM and KM allotyping

Immunog lobu l in gamma heavy cha in (GM) and

immunoglobulin kappa light chain (KM) allotyping was

performed using standard hemagglutination inhibition methods

to type for IgG1m, IgG2m, and IgG3m and for IgKM1 and

IgKM3 (25). Allotype and phenotype frequencies were

determined by the number of allotype-positive subjects divided by

the total number of subjects for which data were available at a given

locus. All patients in the GM and KM allotype analysis were

Caucasian and divided into MAV (n=19) and non-MAV (n=34)

cases. Race-matched HC (n=266) were used for comparison.
2.4 Autoantibody identification

Myositis-specific autoantibodies (anti-synthetases, anti-signal

recognition particle (anti-SRP), anti–Mi-2 and myositis-associated

autoantibodies (anti-Ku, anti-La, anti-Ro, anti–URNP, and anti–

PM-Scl), were identified from frozen serum samples using

prev ious l y va l ida t ed methods o f pro te in and RNA

immunoprecipitation (IPP) and double immunodiffusion (10).

The NXP2 and TIF1 autoantibodies were identified with IPP,

followed by immunoblotting (26).
2.5 Statistical analysis

Analyses were performed using GraphPad Prism (GraphPad,

Inc., La Jolla, CA). For both the HLA allele analysis and the GM/KM
Frontiers in Immunology 03108
allotype analysis, the allele or allotype frequencies were compared

by chi-square test or Fisher’s exact test for counts below 5, for 2x2

contingency tables between MAV and controls, MAV and non-

MAV, or non-MAV and controls. The odds ratios (OR), 95%

confidence intervals (CI) were determined. The MAV group was

also divided and compared to non-MAV and HC by the four most

frequent vaccines: Hepatitis B, Influenza, Tetanus, and Mumps-

Measles-Rubella (MMR).

A p-value was considered significant if below 0.05 using the

Holm procedure to adjust for multiple comparisons (27). The U-

test, or Mann-Whitney test, was used to compare non-parametric

variables, such as the months from vaccine to first symptom,

calculations between children and adults, and between the

different vaccines.

Chi-square tests were performed to examine differences in the

frequency distributions between the MAV and non-MAV groups.

An analysis in which the distribution of clinical subgroups

significantly differed between the MAV and non-MAV groups led

to performing a sensitivity analysis, in which a random sample of

patients were selected in similar clinical subgroups. This was also

performed with the MAV group within 6 months and 3 months

from vaccination. If the genetic results differed from the primary

analysis, the difference in clinical subgroup distribution was

interpreted to have affected the result, however, if the genetic

results remained the same, the difference in clinical subgroup

distribution was interpreted as not affecting the genetic results.
3 Results

3.1 Clinical findings

There were 56 patients, including 28 females, in the MAV

group, 48 of whom were Caucasian, three African American, and

five of mixed race, and 133 patients, including 92 females, in the

non-MAV group, of which 98 were Caucasian, 12 African

American, six Asian or Hispanic, and 17 of mixed race. Of these,

48 MAV patients and 95 non-MAV patients were Caucasian and

HLA-typed, while 19 MAV patients and 34 non-MAV patients were

Caucasian and also underwent GM/KM typing. The clinical and

autoantibody subgroup, race, gender, and signs and symptom

distributions were similar in the MAV and non-MAV groups for

all patients included in the study (Table 1), as well as for the HLA-

analyzed groups. The patients in which GM/KM was examined had

a lower frequency of JDM in the MAV group (21.1%) and a higher

frequency of JDM in the non-MAV group (73.5%) (p = 0.0004). The

median age of disease onset for the MAV group was 5.4 years in

children and 43.8 years in adults, which was similar to the non-

MAV group (6.7 and 45.4 years, respectively).

Of the 56 MAV patients, 17 received a form of the tetanus

vaccine, 15 received a Hepatitis B vaccine, 15 received an influenza

vaccine, and 13 received a MMR vaccine (Table 2). The median

time to myositis symptoms after vaccination was 2.2 months with a

range of 0–6 months and an IQR of 3.5 months, while the median

time to diagnosis of myositis after vaccination was 7.0 months.
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TABLE 1 Distribution of clinical and autoantibody subgroups, and signs and symptoms of myositis patients developing symptoms of myositis within 6
months of vaccination (MAV) and those without documented vaccination within 6 months of symptom onset (non-MAV).

Clinical Groups*
MAV (n=56) Non-MAV (n=133)

N (%) N (%)

JDM 26 (46.4) 84 (63.2)

DM 10 (17.8) 17 (12.8)

PM 13 (23.2) 15 (11.3)

CTM 3 (5.4) 7 (5.3)

IBM 2 (3.6) 6 (4.5)

JPM 2 (3.6) 4 (3.0)

Myositis-Autoantibody Groups*+

MSA and MAA Negative 36 (64.3) 89 (66.9)

p155 (TIF1) 14 (25.0) 40 (30.1)

Mi-2 5 (8.9) 6 (4.5)

MJ (NXP2) 3 (5.4) 23 (17.3)

SRP 3 (5.4) 6 (4.5)

Aminoacyl tRNA-Synthetases 4 (7.2) 11 (8.3)

Ro60 5 (8.9) 12 (9.0)

PM-Scl 2 (3.6) 4 (3.0)

U1RNP 1 (1.8) 6 (4.5)

Clinical Features*

Myalgia 35 (63.6) 88 (67.2)

Distal muscle weakness 29 (51.8) 62 (47.0)

Muscle atrophy 27 (50.0) 51 (38.6)

Falling 25 (46.3) 62 (47.3)

Dysphagia 24 (44.4) 61 (46.2)

Cuticular overgrowth 22 (40.7) 41 (31.3)

Fever 20 (35.7) 42 (31.8)

Arthritis 17 (30.4) 58 (43.9)

V-sign rash 17 (31.5) 38 (29.0)

Asymmetric weakness 12 (22.2) 21 (16.2)

Raynaud’s Phenomenon 12 (22.2) 18 (13.6)

Shawl-sign rash 9 (16.7) 25 (19.1)

Mechanic’s hands 7 (13.0) 13 (9.9)

Palpitations 4 (7.4) 12 (9.2)

Carpal Tunnel Syndrome 4 (7.4) 7 (5.3)

Interstitial lung disease 2 (3.8) 8 (6.1)
F
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#MAV, myositis symptoms developing within 6 months of documented vaccination; non-MAV, no documented immunization within 6 months of onset of myositis; JDM, juvenile
dermatomyositis; DM, dermatomyositis; PM, polymyositis; CTM, connective tissue disease overlap with myositis; IBM, inclusion body myositis; JPM, juvenile polymyositis; MSA, myositis-
specific autoantibody; MAA, myositis-associated autoantibody; p155 (TIF1), anti-transcription intermediary factor 1 autoantibodies; MJ (NXP2), anti-nuclear matrix protein autoantibodies 2;
SRP, anti-signal recognition particle autoantibodies; Ro60, autoantibodies to the 60kD protein of the heterogeneous antigenic complex; PM-Scl, autoantibodies to the 75kD and 100kD proteins
seen in the polymyositis/scleroderma complex; U1RNP, autoantibodies to the U1 ribonucleoprotein complex.
+ Sum is > 100%, as some patients have both MSA and MAA.
*No significant differences were detected between the MAV and Non-MAV groups.
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Tetanus, influenza, and MMR had a similar period from

vaccination to first myositis symptom. However, for those who

received Hepatitis B vaccine, there was a significantly shorter

latency period, with a median of 1 month from vaccination to

first myositis symptom (p = 0.045). In the cases where vaccines were

given in a series, there was a median of 2.2 months from the time of

first vaccination to first myositis symptom, a median of 3.0 months

after the second vaccine, and a median of 3.5 months after the

third vaccine.

In total, 98 vaccines were administered to the 56 patients

(Table 2). Sixteen patients received multiple vaccines on different

days within the 6-month period and nine patients received 2 or 3

doses of Hepatitis B vaccine. Among 16 Hepatitis B patients, five

developed MAV after the 1st dose, five developed MAV after the

2nddose, and six developed MAV after the 3rd dose.
3.2 HLA analysis

The frequency of DQA1*02:01 was significantly higher in the

MAV group compared to non-MAV (OR = 3.80, 95% CI = 1.36-

10.58, p = 0.007), however, it was protective for non-MAV versus

HC (OR = 0.25, 95% CI = 0.11-0.55, p = 0.0004) (Table 3). The

frequency of DRB1*03:01 was significantly lower for MAV

compared to non-MAV (OR = 0.41, 95% CI = 0.18-0.94, p =

0.033) but it was a risk factor for the non-MAV versus HC (OR =

3.42, 95% CI = 2.14-5.48, p < 0.0001), but not for MAV vs. HC.

DRB1*15 was a protective factor for the non-MAV group compared
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to HC (OR = 0.44, 95% CI = 0.22-0.88, p = 0.017). DQA1*05 was a

risk factor for the non-MAV group (OR = 2.25, 95% CI = 1.40-3.45,

p = 0.004). Adult and juvenile data were similar in the overall HLA

analysis and showed no significant differences.

Several risk and protective alleles for the non-MAV group were

also shared by the MAV group, including DRB1*10:01 (OR = 6.29,

95% CI = 1.78-22.20, p = 0.001) and DQA1*03:01 (OR = 3.43, 95%

CI = 1.92-6.13, p < 0.0001) as risk factors. DRB1*02 (OR = 0.06,

95% CI = 0.01-0.25, p < 0.0008) was a protective factor for the non-

MAV and MAV groups (Table 3). Homozygosity of HLA alleles did

not show a significant impact for either risk or protective factors for

the MAV or non-MAV groups.

Several HLA alleles demonstrated significant associations in the

MAV versus HC groups (Table 3). The DRB1*10:01 allele was

significantly associated with MAV (OR = 8.95, 95% CI = 2.05-39.00,

p = 0.012) compared to HC. The DQA1 03:01 allele (OR = 4.23,

95% CI = 1.92-9.32, p = 0.007) and DQA1*03:03 (OR = 3.86, 95%

CI = 1.56-9.54, p = 0.002) were also risk factors for MAV when

compared to HC. HLA DQA1*03:03 was the only unique risk factor

allele for MAV that was not also a risk for the non-MAV group

when compared to HC (Table 3). However, the frequency of

DRB1*02 (OR = 0.03, 95% CI = 0.01-0.46, p < 0.0001) was lower

in MAV, indicating a lower likelihood of MAV in individuals with

this allele. A sensitivity analysis of HLA alleles of MAV cases

developing within three months of vaccination resulted in the

same findings.

The frequencies of the linked alleles DQA1*02:01 and

DRB1*07:01 were significantly higher in the MAV group

receiving the Hepatitis B or influenza vaccines compared to non-
TABLE 2 Distribution of the number of patients receiving vaccines and the number of vaccines administered prior to first symptoms in 56 patients
who developed myositis within 6 months after vaccination#.

Vaccine
Patients receiving a vaccine within 6

months of onset (% of all 56 patients)+

Vaccinations administered within 6
months of onset (% of all

98 vaccinations)

Any Tetanus (DPT, DTaP, or Td) 17 (30.4) 18 (18.4)

Hepatitis B 15 (26.8) 27 (27.6)

Influenza A/B 15 (26.8) 15 (15.3)

MMR or Measles 13 (23.2) 13 (13.3)

OPV or IPV 6 (10.7) 6 (6.1)

Prevnar or Pneumococcal 3 (5.4) 3 (3.1)

Hepatitis A, Hemophilus influenzae type B,
Varicella, Meningococcal, Typhoid, or Yellow
fever *

12 (21.4) 12 (12.2)

Rabies, Japanese Encephalitis, Influenza A virus
subtype H1N1, or Lyme **

4 (7.2) 4 (4.0)
*2 patients each received one of these 6 vaccines, and 2 vaccinations were administered for each vaccine listed.
**1 patient each received one of these 4 vaccines, and 1 vaccination was administered for each vaccine listed.
DPT, diphtheria pertussis tetanus vaccine; DTaP, diphtheria tetanus acellular pertussis vaccine; Td, tetanus booster; MMR, measles mumps rubella vaccine; OPV, oral polio vaccine; IPV,
inactivated polio vaccine.
+Ten patients received more than 1 vaccine at the same time and the combinations of vaccines given within 6 months of developing myositis were: Patient 1 - 1st HepB, influenza; Patient 2 - 1st
HepB, MMR; Patient 3 – OPV, MMR; Patient 4 - DTP, Haemophilus influenzae type B, 3rd HepB, pneumococcal conjugate vaccine; Patient 5 – DTaP, HIB, 3rd HepB; Patient 6 – DTaP, IPV,
MMR; Patient 7 – DTaP, OPV; Patient 8 – Td, MMR; Patient 9 – Varicella, MMR; and Patient 10 – Td, HepA.
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MAV (Table 4). The DQA1*03:03 allele was a risk factor for MAV

patients who received influenza vaccines compared to HC (Table 4).
3.3 GM/KM analysis

The GM phenotype 1, 2, 3, 5, 13, 17, 21, 23 and allotypes GM 2

(OR = 3.17, 95% CI = 1.24-8.13, p = 0.012) and GM13 (OR = 12.5,

95% CI = 1.64-95.05, p = 0.001) were risk factors for MAV

compared to HC, but were not risk factors for the non-MAV

group (Table 5). KM1 (OR = 3.43, 95% CI = 1.30-9.03, p =

0.009), and KM1,3 (OR = 5.19, 95% CI = 1.47-18.29, p = 0.008)

were also risk factors for MAV.

The allotypes GM 2 (OR = 3.61, 95% CI = 1.09-11.99, p =

0.0319), KM 1 (OR 5.57, 95% CI = 1.64-18.94, p = 0.004), and the

phenotype KM1,3 (OR 5.19, 95% CI = 1.47-18.29, p = 0.0078) were

risk factors for MAV compared to Non-MAV. Because the JDM

subgroup was more frequent in the non-MAV than MAV groups,

we performed a sensitivity analysis with the MAV group that

received their last vaccination within three months and selecting

a random sample of JDM patients to create a similar proportion of

myositis clinical subgroups in the non-MAV group as in the MAV

group in the three month window. In this analysis, the MAV

group’s GM/KM risk alleles remained unchanged comparing the

MAV and non-MAV groups.
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4 Discussion

Gene-environment interactions appear to play an important

role in the development of autoimmune diseases (28).

Immunogenetic factors are critical for immune responses to

vaccines and have been proposed to modulate risk for the

development of vaccine adverse reactions (21). This study

suggests possible genetic associations with the development of

myositis after vaccinations. HLA alleles have been associated with

the development of many autoimmune diseases, including multiple

sclerosis, systemic lupus erythematosus, type 1 diabetes mellitus,

Sjogren disease and IIM (29–34), as well as possible risk factors for

some vaccine adverse events (21).

Our study identified HLA-DQA1*03:03 as a unique risk factor

for MAV versus HC, as this allele is not known to be associated with

any other IIM groups. This unique risk factor for MAV suggests a

different immune response pathway leading to myositis after

vaccinations. Interestingly, the known myositis risk factor

DRB1*03:01 was present in lower frequency in the MAV group

compared to non-MAV group.

The frequency of HLA-DQA1*02:01, a known risk factor in

Caucasians for anti-Mi-2 autoantibodies, was significantly higher in

patients with MAV, particularly after the Hepatitis B and influenza

vaccines, compared to non-MAV, but no association of MAV was

seen with anti-Mi-2 autoantibodies. However, HLA-DQA1*02:01
TABLE 3 Differences in HLA types in Caucasian myositis after vaccination (MAV) patients, non-MAV patients, and healthy controls*.

HLA
Alleles

MAV
% (n=48)

Non-MAV
% (n=93)

Control
% (n=527)

MAV vs. Non-MAV
MAV vs.

Healthy Control
Non-MAV vs.

Healthy Control

P-value
OR

(95% CI)
P-value

OR
(95% CI)

P-value
OR

(95% CI)

HLA-DRB1

*02 0.0 2.2 26.8 0.543
1.05

(0.09-11.93)
<0.0001

0.03
(0.01-0.46)

<0.0008
0.06

(0.01-0.25)

*03:01 26.3 45.6 20.3 0.033
0.41

(0.18-0.94)
0.498

0.71
(0.33-1.51)

<0.0001
3.42

(2.14-5.48)

*07:01 26.3 12.5 23.9 0.099
0.40

(0.15-1.04)
0.888

0.88
(0.42-1.86)

0.173
0.45

(0.23-0.88)

*10:01 7.9 5.7 0.9 0.697
0.70

(0.16-3.10)
0.0125

8.95
(2.05-39.0)

0.0012
6.29

(1.78-22.20)

*15 12.5 10.8 21.4 0.976
0.84

(0.28-2.47)
0.202

1.91
(0.79-4.61)

0.0172
0.44

(0.22-0.88)

HLA-DQA1

*02:01 23.4 7.4 24.3 0.007
3.80

(1.36-10.58)
0.920

1.04
(0.51-2.11)

0.0004
0.25

(0.11-0.55)

*03:01 19.1 22.3 7.7 0.823
1.21

(0.51-2.91)
0.007

4.23
(1.92-9.32)

<0.0001
3.43

(1.92-6.13)

*03:03 14.9 7.4 4.3 0.231
0.46

(0.15-1.40)
0.002

3.86
(1.56-9.54)

0.293
0.56

(0.23-1.35)

*05 47.9 62.1 42.6 0.105
1.78

(0.88-3.59)
0.544

0.81
(0.45-1.46)

0.004
2.2

(1.40-3.45)
*Carriage rates were determined by the number of allele-positive subjects divided by the number of subjects for whom complete HLA data were available at a given locus. Abbreviations per
prior tables.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1539659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alhassan et al. 10.3389/fimmu.2025.1539659
appeared to be a protective factor for the non-MAV group

compared to the HC. Although DRB1*07 had previously been

described to be associated with myositis in certain racial

populations (1), we found this allele to be significantly more

frequent in Caucasians with MAV after Hepatitis vaccines

compared to the non-MAV group. These findings highlight the

complex gene-environment interactions involved in MAV and

suggest potential areas for future research and interventions.
Frontiers in Immunology 07112
The results of comparing both MAV and non-MAV to HC

revealed significant associations between specific HLA alleles and

risk of myositis, showing further alleles of interest in the

immunogenetic profiles of these patients. DRB1*10:01 and

DQA1*03:01 were linked to an elevated risk of MAV, indicating a

genetic predisposition to myositis following immunization. The

protective association with DRB1*02 suggests a reduced likelihood

of developing myositis in carriers of this allele, potentially due to its
TABLE 4 Differences in HLA types in Caucasian myositis after vaccination (MAV) patients, non-MAV patients, and healthy controls by vaccine types*.

Vaccine HLA Alleles
MAV vs. Non-MAV MAV vs. Control

P-value OR (95% CI) P-value OR (95% CI)

Hepatitis B (n=7) DRB1*07:01 0.006
14.00

(2.84-76.39)
0.018

7.92
(1.81-41.83)

DQA1*02:01 0.002
16.57

(3.63-71.83)
0.037

5.23
(1.38-20.89)

Influenza (n=14) DQA1*01 0.038
0.28

(0.01-0.93)
0.021

0.27
(0.10-0.79)

DQA1*02:01 0.001
7.77

(2.05-26.21)
0.323

1.96
(0.71-6.26)

DQA1*03:01 0.497
1.54

(0.20-2.06)
0.017

5.30
(1.73-17.83))

DQA1*03:03 0.102
3.72

(0.92-14.26)
0.020

6.61
(1.84-25.68))

Tetanus (n=10) DRB1*16 0.030
7.46

(1.64-36.91)
0.011

8.98
(2.38-35.76)
*Carriage rates were determined by the number of allele-positive subjects divided by the number of subjects for whom complete HLA data were available at a given locus; MAV patients in each
group were compared to 93 non-MAV and 527 controls.
TABLE 5 Differences in GM/KM allotypes and phenotypes in Caucasian myositis after vaccination (MAV), Non-MAV, and control groups*.

GM/
KM Markers

MAV
% (n=19)

Non-MAV
% (n=34)

Control
% (n=266)

MAV vs. Non- MAV MAV vs. Control
Non-MAV
vs. Control

P-values
OR

(95% CI)
P-values

OR
(95% CI)

P-values
OR

(95% CI)

Allotypes

GM 2 52.6 23.5 25.9 0.0319
3.61

(1.09-11.99)
0.012

3.17
(1.24-8.13)

0.7642
1.14

(0.49-2.63)

GM 13 94.7 73.5 59.0 0.0756
0.15

(0.02-1.33)
0.0012

12.5
(1.64-95.05)

0.1483
0.52

(0.23-1.15)

KM 1 62.3 23.5 33.3 0.0043
5.57

(1.64-18.94)
0.0087

3.43
(1.30-9.03)

0.3173
1.53

(0.66-3.51)

Phenotypes

GM 1, 2, 3, 5,
13,

17, 21, 21, 23
26.3 8.8 3.4 0.1181

0.27
(0.06-1.30)

0.001
10.2

(3.01-34.50)
0.1434

0.36
(0.09-1.41)

KM 1, 3 52.6 17.6 25.9 0.0078
5.19

(1.47-18.29)
0.012

3.17
(91.23-8.13)

0.3994
1.63

(0.65-4.11)

KM 3, 3 42.1 76.5 63.9 0.0124
0.22

(0.07-0.75)
0.0984

2.43
(0.95-6.26)

0.2087
0.54

(0.23-1.25)
*Conventions and abbreviations per prior Tables.
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role in modulating immune responses. Previous literature has not

elucidated any association of these alleles with myositis, warranting

further investigations.

Immunoglobulin genes are important risk and protective

factors for many autoimmune diseases, and GM13, KM1 and

KM3 allotypes have been described as risk factors for myositis (9,

10). The GM/KM analysis identified GM2 and GM13 as risk factors

for MAV compared to HC, but not for the non-MAV group.

Similarly, KM1 and the KM1,3 phenotype were also linked to

increased MAV risk. These findings suggest that specific GM/KM

allotypes may serve as additional non-HLA genetic markers for

MAV risk, warranting further research into their potential for

personalized risk assessment.

Among the 56 MAV patients, there was a median interval of 2.2

months from vaccination to the first myositis symptom. Previous

case reports showed the interval between vaccination and the

development of symptoms of myositis ranged from 24 hours to 2

months, which generally aligns with our observations (13, 35–37). It

has been postulated that when patients develop myositis after

repeated vaccine exposure, it is likely due to an amplified

immune response triggered by the repeated doses. While our data

showed a delayed onset of myositis symptoms following the

influenza vaccine, this contrasts with previous case reports that

reported a shorter latency period of less than a month after

receiving the influenza vaccine (36, 38). As there was a

significantly shorter latency period, with a median of one month

from vaccination to first myositis symptom for those developing

MAV after Hepatitis B vaccine (p = 0.045), it is possible that a

different mechanism of immune activation may be at work in

these cases.

Our study has several limitations. First, our cohort was

relatively small and was collected before the onset of the COVID-

19 pandemic, and as a result, it does not include patients who

developed myositis after receiving COVID-19 vaccinations. This a

notable limitation, particularly in light of numerous case reports

that have been published during and after the pandemic

documenting the onset of autoimmune diseases, including

myositis and specifically anti-melanoma differentiation-associated

protein 5 (MDA5) autoantibody-positive DM following COVID-19

vaccination (5, 39–41). Other recently approved vaccines, including

those to rotavirus, human papillomavirus, and herpes zoster were

also not included in our study. It is interesting that so many

different vaccine antigens might be associated with myositis,

which suggests a single mechanistic explanation is not likely, and

also raises the question of the role of the various adjuvants used in

these many vaccines. However, given the small numbers of cases

and variations in adjuvants from vaccine to vaccine, from

manufacturer to manufacturer, and over time, it was not possible

to carefully evaluate this. Furthermore, our investigation did not

include certain recently identified myositis autoantibodies,

including anti-MDA5, and did not include the most recent

genotyping methods. And some non-MAV cases may have

received vaccinations that were not recalled or documented,

potentially biasing the comparisons. Nevertheless, our study lays

the groundwork for future research on MAV. We hope that future
Frontiers in Immunology 08113
research will build on this foundation, incorporating more recent

methods and including all vaccines and phenotypes of myositis to

provide a more comprehensive understanding of MAV.
5 Conclusion

Our study highlights the complex relationship between

vaccinations and the onset of myositis. Our findings are generally

consistent with previous studies and reports of MAV, although our

data showed a somewhat more delayed onset of myositis symptoms

after vaccination, particularly following the influenza vaccine. The

novel identification of the HLA-DQA1*03:03 allele as a unique risk

factor for MAV and the protective factor of HLA-DRB1*03:01

suggests the role of a genetic predisposition in the MAV group that

differs from non-MAV myositis patients. GM/KM associations and

other HLA genes were noted among specific vaccines and MAV.

These genetic associations could provide insights into the

pathogenesis of myositis, suggesting that specific gene-

environment interactions may influence the susceptibility of

developing MAV. Studies in larger populations exploring greater

numbers of deeply clinically, immunologically, and genetically

phenotyped subjects, and including all currently available

vaccines, are needed to understand possible associations among

vaccines and myositis and the genetic risk and protective factors

involved. A larger study population would also be instrumental in

determining the possible epistatic or interactive effects of HLA, GM,

and KM alleles on MAV.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by National

Institutes of Health Institutional Review Board. The studies were

conducted in accordance with the local legislation and institutional

requirements.Written informed consent for participation in this study

was provided by the participants or their legal guardians/next of kin.
Author contributions

EA: Data curation, Writing – original draft, Writing – review &

editing. AP: Data curation, Writing – original draft, Writing –

review & editing. ES: Data curation, Resources, Writing – review &

editing, Conceptualization. JP: Conceptualization, Investigation,

Methodology, Resources, Writing – review & editing, Data

curation. LR: Data curation, Conceptualization, Investigation,

Project administration, Resources, Supervision, Writing – review

& editing, Funding acquisition. FM: Conceptualization, Funding
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1539659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alhassan et al. 10.3389/fimmu.2025.1539659
acquisition, Investigation, Project administration, Resources,

Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was

supported in part by the Intramural Research Program of the

NIH, National Institute of Environmental Health Sciences.
Acknowledgments

The authors are indebted to Drs. Terrance O’Hanlon for

laboratory assistance and Ira Targoff for autoantibody identification,

and the NIH HLA laboratory for genotyping assistance.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest. The authors declared
Frontiers in Immunology 09114
that they were an editorial board member of Frontiers, at the time of

submission. This had no impact on the peer review process and the

final decision.
Generative AI statement

The authors declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Miller FW, Lamb JA, Schmidt J, Nagaraju K. Risk factors and disease mechanisms
in myositis. Nat Rev Rheumatol. (2018) 14:255–68. doi: 10.1038/nrrheum.2018.48

2. Caliskan M, Brown CD, Maranville JC. A catalog of GWAS fine-mapping efforts
in autoimmune disease. Am J Hum Genet. (2021) 108:549–63. doi: 10.1016/
j.ajhg.2021.03.009

3. Miller FW. Environment, lifestyles, and climate change: the many nongenetic
contributors to the long and winding road to autoimmune diseases. Arthritis Care Res
(Hoboken). (2024) 77(1):3–11. doi: 10.1002/acr.25423
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Gainesville, FL, United States, 5Clinical Research Branch, National Institute of Environmental Health
Sciences, National Institutes of Health, Research Triangle Park, NC, United States
Introduction: Despite well-known harmful health effects of smoking, research

supports an inverse association with some autoimmune diseases. High-titer

antinuclear antibodies (ANA) are associated with autoimmune diseases, and

ANA prevalence in the US increased between 1988 and 2012. Tobacco

smoking decreased during those years while vaping of electronic cigarettes (e-

cigarettes) increased after their introduction in 2007. Carbon monoxide (CO)

may ameliorate autoimmunity, and e-cigarettes deliver much less CO than

regular cigarettes. We explored interdependencies among ANA, smoking,

and time.

Methods: We analyzed cross-sectional data on ANA and the primary nicotine

metabolite, cotinine, in 13,288 participants ≥12 years old from three time periods

(1988-1991, 1999-2004, 2011-2012) of the US National Health and Nutrition

Examination Survey. Smoking exposure (none, passive, active) was inferred from

serum cotinine. We used logistic regression to analyze ANA prevalence, adjusted

for sex, age, and race/ethnicity.

Results: Over the study periods, ANA prevalence was highest (13.3-19.2%) for

nonsmokers but non-trending; lower (11.1-15.5%) for “passive” smokers but

steadily increasing; and even lower for active smokers but increasing from

7.4% in 1999–2004 to 13.3% in 2011-2012. The increases in ANA among

passive and active smokers were mainly in adolescents (ages 12–19 years).

Smokers had reduced odds of ANA in 1999-2004, with an odds ratio (OR) of

0.65 and a 95% confidence interval (CI) of 0.45-0.93, but this association was

weaker in 1988-1991 (OR=0.80; 95% CI:0.52-1.22) and 2011-2012 (OR=0.82;

95% CI:0.56-1.21).

Discussion: Although smoking causes harmful health effects, ANA data are

consistent with smoking playing a role in decreasing autoimmunity. Recent

vaping among adolescents may partially explain their large increase in ANA

prevalence. The inverse ANA association with smoking strengthened between

1988-1991 and 1999-2004 but then weakened by 2011-2012. The initial
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strengthening was potentially because nonsmokers were exposed to

progressively less CO (and/or other components of secondhand smoke), due

to tightened smoking restrictions, while the potential nicotine-associated

protection against ANA may have weakened after e-cigarettes became a

source. Smoking should not be recommended given its negative health

impacts. However, further studies could elucidate new mechanisms, perhaps

involving components of tobacco smoke or vaping, possibly enabling

development of novel preventative or treatment measures.
KEYWORDS

antinuclear antibodies (ANA), autoimmune diseases, carbon monoxide (CO), cotinine,
e-cigarettes, National Health and Nutrition Examination Survey (NHANES), tobacco
smoking, vaping
1 Introduction

High-titer antinuclear antibodies (ANA) are biomarkers associated

with many autoimmune diseases (1–6), some of which have increased

in incidence over recent decades for unknown reasons. Previously,

based on data from the USNational Health andNutrition Examination

Survey (NHANES), we reported an increasing ANA time trend (7) and

investigated possible ANA associations with 253 xenobiotics (8). Our

initial goal was to explore whether temporal changes in the levels of any

xenobiotics associated with ANA could help explain the increase in

ANA prevalence over time. However, many xenobiotics were evaluated

at only one point in time or had mostly undetectable levels. We

ultimately focused on serum cotinine, which was measured in nearly

all participants.

Smoking tobacco is a major cause of preventable deaths,

illnesses, and health care costs worldwide (9, 10), but despite

overwhelming evidence of harmful effects of smoking in general,

smoking has appeared to be inversely associated with ANA (7).

Cotinine has often been used as a biomarker for tobacco smoke

exposure (11–13), and as the primary metabolite of nicotine,

cotinine has long been regarded as the most reliable indicator of

active and passive exposure to tobacco smoke (11, 14). However,

cotinine can also signal other nicotine exposures such as nicotine

gum, chewing tobacco, snuff, and snus. Recently, an increasingly

popular nicotine-delivering alternative to regular cigarettes,

electronic cigarettes (e-cigarettes), has expanded the opportunities

for smokeless exposure to nicotine (15).

In this article, we explore whether the decrease in cigarette

smoking over the past few decades (16, 17) could plausibly account

for some of the increase in ANA. We assess associations seen in the

large NHANES database, some of which were observed previously

(7), and postulate a potentially protective (or immunosuppressive)

effect of carbon monoxide (CO) that might help explain the

apparent inverse correlation between cigarette smoking and ANA.

The effects of smoking and CO on autoimmune diseases depend

on individual variability, exposure levels, and the disease in question.
02117
Perricone et al. (18) discuss numerous studies of the relationship

between smoking and autoimmune diseases. While smoking is a risk

factor for many autoimmune diseases, smoking appears to have a

protective effect for others, including ulcerative colitis, celiac disease,

Behcet’s disease, type 1 diabetes, and autoimmune hypothyroidism.

Epidemiologic studies have suggested that smokingmay protect against

ulcerative colitis (19–21), Behcet’s disease (21), autoimmune

hypothyroidism (22–24), and Sjogren’s syndrome (19, 20), and that

CO may protect against discoid lupus erythematosus (25). Rodent

studies have suggested that COmay have therapeutic effects for various

autoimmune diseases, including multiple sclerosis (26, 27), collagen-

induced arthritis (28), systemic lupus erythematosus (29), type 1

diabetes (30), uveitis (31), and autoimmune hepatitis (32).

Starting early this century, many smokers began using e-cigarettes,

either in addition to or instead of regular cigarettes (15, 33–36). Among

116 adult e-cigarette users in one study (37), 68% self-reported as

current smokers, 24% as former smokers, and 8% as never smokers.

The use of e-cigarettes doubled between 2010 and 2013 among US

adults, with over 20 million having tried them (34), and the use among

high school students increased from 1.5% in 2011 to 16% in 2015 (15).

E-cigarettes supply nicotine and thus cotinine (15, 38) but produce

much less CO than regular cigarettes (39, 40). We hypothesize that a

decrease in CO and/or other possibly “protective” smoking byproducts,

either due to quitting all forms of smoking or switching fully or

partially from regular cigarettes to e-cigarettes (or other nicotine

delivery systems, such as chewing tobacco, snuff, or snus), may have

contributed to the recent increase in ANA in the US.
2 Subjects and methods

2.1 Study participants

Data on ANA were available for 13,519 participants from five

NHANES cycles: 1988-1991, 1999-2000, 2001-2002, 2003-2004,

and 2011-2012. The NHANES sampled representative members
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of the noninstitutionalized civilian US population and provided

sampling weights to adjust for selection probabilities and

nonresponse (41), which enables inference that generalizes to

most of the US population. All participants signed informed

consent documents and completed questionnaires, and most were

physically examined and provided blood and urine specimens.

Available data included demographic characteristics, health

covariates, measured factors, and constructed variables. The

NHANES protocol was approved by the Human Subjects

Institutional Review Board of the US Centers for Disease Control

and Prevention (CDC).
2.2 ANA assessment

All serum samples were evaluated for ANA in the laboratory of

Dr. Edward K.L. Chan between 2016 and 2017 by indirect

immunofluorescence at a 1:80 dilution using the NOVA Lite

HEp-2 ANA slide with DAPI kit (Inova Diagnostics, San Diego,

California, USA), with a highly specific fluorescein isothiocyanate-

conjugated secondary antibody (goat anti-human IgG).

Immunofluorescence staining intensities were graded 0–4

compared to standard references (42). Grades 1–4 were

considered positive for ANA and grade 0 was considered

negative. For more assay details see Dinse et al. (7).
2.3 Data on ANA, cotinine, and smoking

For cost and other practical reasons, ANA were only assayed in

a subset of participants ≥12 years old in each of the five cycles. The

ANA subsamples from 1999-2000, 2001-2002, and 2003–2004 were

each roughly one-third the size of those from 1988–1991 and 2011-

2012. Thus, as in our earlier studies (7, 8), we combined the three

middle cycles to create three time periods with similar sample sizes:

1988-1991 (N=4,727), 1999-2004 (N=4,527), and 2011-2012

(N=4,265). As before, we focused on these three periods rather

than the five cycles.

All analyses were restricted to the 13,519 participants with ANA

data. The CDC adjusted the sampling weights to account for

analyzing this ANA subsample. Data were available on cotinine,

and thus smoking exposure as defined by cotinine concentration,

for 13,288 participants; on self-reported smoking history for 12,278

participants; and on both smoking exposure and smoking history

for 12,063 participants. Supplementary Table S1 shows the numbers

of participants in each time period (and overall) with data on ANA,

smoking exposure, and smoking history. Throughout this article,

“cotinine” refers to serum cotinine and not urinary cotinine.
2.4 Model variables

The ANA outcome variable was a binary indicator of ANA

positivity/negativity. Cotinine concentration (ng/mL) was a

quantitative variable and was used to classify smoking exposure
Frontiers in Immunology 03118
as none (≤0.05), passive (>0.05 to 10), or active (>10), as

recommended by the CDC and the US Environmental Protection

Agency (EPA) (13), though a sensitivity analysis applied a more

recent recommendation of >3 ng/mL for defining active smoking

exposure. Combining the first two exposure categories produced an

indicator of smoking status: nonsmoker (none or passive exposure)

versus smoker (active exposure). Smoking history was based on

questionnaire data, with individuals self-reporting as never, former,

or current smokers.

Except where otherwise noted, our primary analyses adjusted

for sex, age, race/ethnicity, and the survey design variables (i.e.,

strata, clusters, and weights proportional to the inverse probability

of sampling), each of which was available for all participants. Age

was measured in years and categorized by decade (12-19, 20-29,…,

70-79, ≥80), though sensitivity analyses explored the use of fewer

age categories, a quantitative age variable, or a restricted cubic

spline in age. Self-reported race/ethnicity was categorized as non-

Hispanic White, non-Hispanic Black, Mexican American, or Other.

Secondary analyses adjusted for body mass index (BMI), alcohol

intake, poverty income ratio (PIR), and education, as defined

previously (42). Secondary analyses also investigated CO content

in cigarettes, pack-years of smoking, lifetime years of smoking, and

years since former smokers quit smoking, though these data were

very limited.
2.5 Statistical analysis

When analyzing ANA prevalence, we used logistic regression

models to allow the probability of ANA positivity to depend on

explanatory variables. All models adjusted for the survey design

variables. The basic model for estimating overall ANA prevalence

and its 95% confidence interval (CI) did not include adjustment

covariates, but we did include a categorical covariate for period

when estimating ANA prevalence in each of the three time periods.

When assessing ANA time trends, we adjusted for sex, age, and

race/ethnicity and calculated an ANA prevalence odds ratio (OR)

and its 95% CI for each period relative to the first period. The

statistical significance of an ANA time trend was evaluated by

replacing the categorical period covariate with a quantitative time

covariate and then inspecting its p-value, where time was defined as

the number of years between the midpoints of the participant’s

period and the first period.

When analyzing the cotinine data, we calculated the geometric

mean cotinine concentration for each time period. We also derived

a trend line by using linear regression to model individual log-

transformed cotinine concentration as a function of the number of

years between the midpoints of the participant’s period and the first

period. Any concentration below the limit of detection (LOD) was

replaced by an imputed value of LOD/
ffiffiffi

2
p

(43, 44). The cotinine

LOD was initially 0.05 ng/mL but was lowered to 0.015 ng/mL

during the second period due to an improvement in the assay; the

corresponding imputed values were 0.035 and 0.011 ng/mL. We

also evaluated mean cotinine concentrations over time (and

estimated trend lines) within subgroups of self-reported never,
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former, and current smokers, and we used kernel density plots to

assess the full cotinine concentration distribution for each smoking-

history subgroup and time period.

When analyzing smoking time trends, we used logistic regression

to estimate the prevalence of smokers in each time period. Overall

prevalence estimates were adjusted for the survey design variables but

not for any covariates. Also, after further adjusting for sex, age, and

race/ethnicity, we estimated a prevalence OR (and a 95% CI) for each

period relative to the first period.

When investigating the relationship between ANA and

smoking, we performed logistic regression analyses similar to

those described above for ANA prevalence. First, we stratified by

smoking and analyzed ANA prevalence and time trends separately

in each stratum. Second, we stratified by both age and smoking to

see whether the ANA association with smoking depended on age.

Third, we added a smoking covariate (instead of stratifying) and

assessed whether that smoking covariate affected the ANA

association with time or whether removing the period covariate

altered the ANA association with smoking. Fourth, we also added a

smoking-by-period interaction to evaluate whether smoking

modified the ANA time trend. Fifth, we stratified by period and

compared ANA prevalence for smokers versus nonsmokers to

gauge how the ANA association with smoking changed over time.

Finally, we conducted sensitivity analyses to assess whether our

results changed when using an alternative age covariate (fewer

categories, quantitative, or restricted cubic spline) or when only

considering adults (ages ≥20 years). We also explored the use of a

more recent recommendation of >3 ng/mL for the cotinine cutpoint

when defining active smoking exposure. In addition, we

investigated several other covariates (BMI, alcohol intake, PIR,

and education) and the limited data on cigarette CO content,

pack-years, years of smoking, and years since quitting.

All analyses were performed with SAS software (version 9.4,

SAS Institute, Cary, NC) and accounted for the survey design

variables by using special survey procedures. Domain statements

were used to properly handle the sampling weights in subgroup

analyses. Variance estimates for the 95% CIs were obtained using
Frontiers in Immunology 04119
the Taylor series method. Reported p-values were 2-sided. All plots

were constructed in SAS except the kernel density plot, which was

created in R (version 4.4.0, R Foundation, Vienna, Austria).
3 Results

3.1 ANA time trend

The prevalence of ANA rose over the 25-year span for which

NHANES data on ANA were available, with most of the increase

occurring between the second and third time periods. Accounting

only for time period and the survey design variables, the weighted

estimates of ANA prevalence were 11.0% (95% CI: 9.7-12.5%) in

Period 1 (1988–1991), 11.4% (95% CI: 10.2-12.8%) in Period 2

(1999-2004), and 16.1% (95% CI: 14.5-17.9%) in Period 3 (2011-

2012). These overall estimates, along with sample sizes and

numbers of ANA-positive participants, are shown in the last row

of Table 1. Relative to Period 1 and after further adjustment for sex,

age, and race/ethnicity, the ANA prevalence OR was 1.02 (95% CI:

0.84-1.24) for Period 2 and 1.49 (95% CI: 1.23-1.82) for Period 3

(Table 2), and there was strong statistical evidence of a positive

trend in ANA prevalence over time (p=0.0001). We reported these

results earlier (7), with slight discrepancies due to minor differences

in analysis, but repeat them here for context.
3.2 Cotinine time trend

Supplementary Figure S1 shows the geometric mean cotinine

concentration and its 95% CI for each period, along with the best-

fitting trend line. There was strong statistical evidence (p<0.0001) of

a steady decrease over time. When stratified by self-reported

smoking history, the mean cotinine levels ranged from 0.04 to

0.27 ng/mL for never smokers, 0.08 to 0.59 ng/mL for former

smokers, and 104.2 to 158.5 ng/mL for current smokers (top half of

Supplementary Table S2). The best-fitting trend line had a negative
TABLE 1 Sample sizes, ANA-positive counts, and ANA prevalence estimates by time period and smoking exposure.

Smoking Period 1: 1988-1991 Period 2: 1999-2004 Period 3: 2011-2012 All Periods Combined

Exposure a N+/N Prev (95% CI) b N+/N Prev (95% CI) b N+/N Prev (95% CI) b N+/N
Prev

(95% CI) b

None 93/429 19.2 (13.6-26.3) 264/1,884 13.3 (11.3-15.7) 401/2,379 17.4 (14.7-20.4) 758/4,692 16.0 (14.2-18.0)

Passive 343/2,739 11.1 (9.6-12.8) 190/1,581 12.7 (10.5-15.4) 141/1,001 15.5 (13.2-18.1) 674/5,321 12.5 (11.3-13.7)

Active 168/1,357 8.6 (6.4-11.4) 89/1,034 7.4 (5.6- 9.7) 127/884 13.3 (11.0-15.9) 384/3,275 9.5 (8.2-10.9)

Total 643/4,727 11.0 (9.7-12.5) 545/4,527 11.4 (10.2-12.8) 669/4,265 16.1 (14.5-17.9) 1,857/13,519 13.0 (12.1-13.9)
ANA, antinuclear antibodies; CI, confidence interval; LOD, limit of detection; N, total number of participants (sample size); N+, number of ANA-positive participants; Prev, ANA prevalence (as
a percent).
aSmoking exposure categories were based on serum cotinine concentrations (None, ≤0.05 ng/mL; Passive, >0.05 to 10 ng/mL; and Active, >10 ng/mL). Due to a technical improvement in the
cotinine assay, the cotinine LOD decreased from 0.05 to 0.015 ng/mL during Period 2. The number of participants with a missing cotinine value also decreased over time from 202 in Period 1 to
28 in Period 2, and then to 1 in Period 3.
bANA prevalence was estimated under two logistic regression models for ANA positivity (yes/no), adjusted for the survey design variables (sampling weights, strata, and clusters). One model
included only an intercept, which produced an overall estimate for all time periods combined. The other model included a categorical covariate for time period, which produced a separate
estimate for each period. Both models were applied initially to all participants with data on ANA regardless of data on smoking exposure (Total) and then within subgroups with data on both
ANA and smoking exposure (None, Passive, and Active). The subgroup counts sum to less than the total sample size because some participants were missing data on smoking exposure
(i.e., cotinine).
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slope in all three subgroups but was steeper for never and former

smokers than for current smokers (Figure 1). Also, the decrease

over time was statistically significant for both never and former

smokers (p<0.0001), but not for current smokers (p=0.08). Thus, on

average, current smokers had cotinine levels that were high and

fairly constant over time, while former and never smokers had levels

that were low and decreasing, likely due to steady reductions in

secondhand smoke exposure. Similar results were obtained when

excluding participants under age 20 years (bottom half of
Frontiers in Immunology 05120
Supplementary Table S2) to account for smoking history data

being available for different age ranges across time periods (≥17

years in Period 1, ≥12 years in Period 2, and ≥20 years in Period 3).

Rather than focusing on means, Figure 2 displays kernel density

estimates of the entire distribution of cotinine concentrations by

time period and smoking history. These plots clearly show the

differences in cotinine levels for never and former smokers (low)

versus current smokers (high), as well as the consistency over time

for current smokers. The cotinine distributions for never and
TABLE 2 Covariate-adjusted assessments of ANA time trends by smoking exposure.

Smoking ANA Prevalence Odds Ratio for Time Period (95% CI) b Time Trend

Exposure a Period 1: 1988-1991 Period 2: 1999-2004 Period 3: 2011-2012 p-value b

None 1.00 (reference) 0.70 (0.45-1.09) 0.99 (0.62-1.57) 0.2139

Passive 1.00 (reference) 1.28 (0.96-1.69) 1.72 (1.33-2.22) 0.0001

Active 1.00 (reference) 0.81 (0.53-1.23) 1.45 (1.01-2.08) 0.0661

Total 1.00 (reference) 1.02 (0.84-1.24) 1.49 (1.23-1.82) 0.0001
ANA, antinuclear antibodies; CI, confidence interval.
aSmoking exposure categories were based on serum cotinine concentrations (None, ≤0.05 ng/mL; Passive, >0.05 to 10 ng/mL; and Active, >10 ng/mL).
bANA time trend assessments were based on two logistic regression models for ANA positivity (yes/no). Each model adjusted for the survey design variables (sampling weights, strata, and
clusters) and categorical covariates for sex, age, and race/ethnicity. One model added a categorical covariate for time period, which allowed estimates of the ANA prevalence odds ratio for each
period relative to the first period. The other model instead added a continuous covariate for time, as measured by the number of years between period midpoints relative to the first period, and
produced a p-value from a t-test to assess a linear ANA time trend. Both models were applied initially to all participants with data on ANA regardless of data on smoking exposure (Total) and
then within subgroups with data on both ANA and smoking exposure (None, Passive, and Active).
FIGURE 1

Mean serum cotinine concentration by time period and smoking history. Estimates of the geometric mean serum cotinine concentration and its 95%
CI are plotted for each of 3 time periods (1988-1991, 1999-2004, and 2011-2012), along with the best-fitting trend line. Separate estimates are
shown for self-reported never, former, and current smokers, based on the 12,063 NHANES participants aged ≥12 years with data on ANA, serum
cotinine, and smoking history. The means for never, former, and current smokers are depicted by blue circles, yellow triangles, and red squares,
respectively, with the same colors used for the 95% CI error bars and trend lines. Any concentration below the limit of detection (LOD) was replaced

by an imputed value equal to LOD/
ffiffiffi

2
p

. The horizontal axis is linear in time, defined as the number of years between the midpoints of the
participant’s period and the first period, and the vertical axis is logarithmic in serum cotinine concentration (ng/mL).
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former smokers were less consistent, with a notable shift toward

lower values as time progressed. Much of this shift was likely due to

many never and former smokers having cotinine levels below the

LOD, which decreased from 0.05 to 0.015 ng/mL in the second time

period. Nondetectable levels were replaced by imputed values of

0.035 and 0.011 ng/mL, respectively, which match well with the

peaks of the period-specific cotinine distributions for never

smokers. The cotinine distributions were more spread out for

former smokers than for never smokers, perhaps due to a larger

proportion of former smokers interacting with a current smoker.
3.3 Smoking time trend

Cigarette smoking in the US has decreased for a half-century (16,

17). We confirmed this downward trend in the NHANES data by

examining the proportions of active smokers (defined by cotinine

levels) and current smokers (based on self-reports), both of which

clearly decreased over time. Unadjusted period-specific estimates of

smoking prevalence for both classifications demonstrated similar

decreases among all participants and among adults only

(Supplementary Table S3), as did covariate-adjusted estimates of the

smoking prevalence ORs for time period (Supplementary Table S4).
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3.4 ANA time trends by smoking exposure

Estimates of ANA prevalence exhibited different temporal patterns

in the three smoking exposure subgroups. For individuals with no

exposure, these estimates were highest but did not show a clear trend;

for passive exposure, they were intermediate and increased steadily

across all periods from 11.1% (95% CI: 9.6-12.8%) to 12.7% (95% CI:

10.5-15.4%) to 15.5% (95% CI: 13.2-18.1%); and for active exposure,

they were lowest and initially flat but then rose markedly from 7.4%

(95%CI: 5.6-9.7%) in Period 2 to 13.3% (95%CI: 11.0-15.9%) in Period

3 (Table 1). Covariate-adjusted estimates of the ANA prevalence OR

for Period 3 relative to Period 1 were 0.99 (95% CI: 0.62-1.57) for no

exposure, 1.72 (95% CI: 1.33-2.22) for passive exposure, and 1.45 (95%

CI: 1.01-2.08) for active exposure (Table 2). When assessing a linear

trend in ANA prevalence across all three periods, the p-values for the

three exposure subgroups were 0.2139, 0.0001, and 0.0661, respectively

(Table 2). We reported similar estimates previously (7), but with

smoking exposure categories defined by slightly different cutpoints

for cotinine concentration.

To investigate whether age modified the association between

smoking and temporal patterns of ANA, in addition to stratifying by

smoking exposure, we further stratified by three age groups (12-19,

20-49, and ≥50 years) instead of including a categorical covariate for
FIGURE 2

Serum cotinine concentration distribution by time period and smoking history. Kernel density estimates of the entire serum cotinine concentration
distribution are plotted for each of 3 time periods (1988-1991, 1999-2004, and 2011-2012). Separate estimates are shown for self-reported never
(blue), former (yellow), and current (red) smokers, based on the 12,063 NHANES participants aged ≥12 years with data on ANA, serum cotinine, and

smoking history. Any concentration below the limit of detection (LOD) was replaced by an imputed value equal to LOD/
ffiffiffi

2
p

. The horizontal axis is
logarithmic in serum cotinine concentration (ng/mL).
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age. This approach essentially allowed for interactions between age

and the covariates (sex, race/ethnicity, and time period). Despite the

larger number of subgroups leading to smaller counts within each,

there was statistical evidence that the observed increase in ANA

prevalence over time was associated mainly with 12–19 year-olds who

were passive (p=0.005) or active (p=0.003) smokers (Table 3). Among

adolescents and relative to Period 1, the ORs and 95% CIs for passive

smokers were 1.63 (0.83-3.23) in Period 2 and 2.64 (1.37-5.08) in

Period 3, and for active smokers they were 3.01 (0.53-17.3) in Period

2 and 9.92 (2.20-44.7) in Period 3. The wide CIs are indicative of the

small counts, but the ORs are large, especially for adolescents who

were active smokers (which would have included vapers), for whom

the odds of being ANA positive were roughly 10 times greater in

Period 3 compared with Period 1. The differences across age

categories, based on assessing an interaction between age group

and time period, were statistically significant (p=0.009).
3.5 ANA associations with smoking by time
period

In an alternative covariate-adjusted analysis, we focused on

smoking status and assessed the odds of ANA positivity for smokers

relative to nonsmokers (Table 4). Overall, smokers were less likely

to have ANA than nonsmokers (OR=0.73; 95% CI: 0.58-0.92;

p=0.007). When stratified by time period, the ANA prevalence

ORs for smoking status varied in magnitude and statistical

significance but not in direction. The odds of having ANA were
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significantly lower for smokers than nonsmokers in Period 2

(OR=0.65; 95% CI: 0.45-0.93; p=0.020), but that inverse

association was weaker and not statistically significant in Period 1

(OR=0.80; 95% CI: 0.52-1.22; p=0.297) and Period 3 (OR=0.82; 95%

CI: 0.56-1.21; p=0.310). This nonmonotonic temporal pattern is

illustrated in Figure 3, where ANA prevalence estimates are smaller

for smokers than nonsmokers in all three time periods, but the

difference is much greater in Period 2 than in Periods 1 and 3.
3.6 Additional analyses

We performed several sensitivity analyses by adding covariates

to a base model that was adjusted for sex, age, race/ethnicity, and

time period (Supplementary Table S5). Rather than stratifying by

smoking exposure, including it as a categorical covariate led to the

same basic pattern of ANA prevalence not changing much between

Periods 1 and 2, followed by a marked increase in Period 3. When

we also added a smoking-by-period interaction, the main effects of

both smoking and period were statistically significant, but the

interaction was not. On the other hand, excluding time period

significantly worsened the model fit (p<0.0001), suggesting that

calendar time was important and that smoking on its own could not

fully explain the observed ANA differences.

We also performed secondary analyses that accounted for BMI,

which had been shown previously to modify ANA time trends (7).

Adding a 3-level categorical covariate for BMI (underweight/

healthy, <25; overweight, 25 to <30; or obese, ≥30) to the base
TABLE 3 Covariate-adjusted assessments of ANA time trends by smoking exposure and age group.

Smoking ANA Prevalence Odds Ratio for Time Period (95% CI) b Time Trend

Exposure a Period 1: 1988-1991 Period 2: 1999-2004 Period 3: 2011-2012 p-value b

Age Group 1: 12–19 years old

None 1.00 (reference) 3.64 (0.99-13.4) 2.84 (0.75-10.8) 0.5002

Passive 1.00 (reference) 1.63 (0.83-3.23) 2.64 (1.37-5.08) 0.0047

Active 1.00 (reference) 3.01 (0.53-17.3) 9.92 (2.20-44.7) 0.0032

Age Group 2: 20–49 years old

None 1.00 (reference) 0.39 (0.21-0.72) 0.58 (0.32-1.06) 0.9447

Passive 1.00 (reference) 1.09 (0.70-1.70) 1.53 (0.91-2.60) 0.1435

Active 1.00 (reference) 0.73 (0.43-1.24) 1.28 (0.82-2.00) 0.4474

Age Group 3: ≥50 years old

None 1.00 (reference) 0.87 (0.47-1.60) 1.29 (0.70-2.36) 0.1303

Passive 1.00 (reference) 1.37 (0.91-2.06) 1.41 (0.96-2.06) 0.0452

Active 1.00 (reference) 0.85 (0.48-1.47) 1.43 (0.78-2.63) 0.2353
ANA, antinuclear antibodies; CI, confidence interval.
aSmoking exposure categories were based on serum cotinine concentrations (None, ≤0.05 ng/mL; Passive, >0.05 to 10 ng/mL; and Active, >10 ng/mL).
bANA time trend assessments were based on two logistic regression models for ANA positivity (yes/no). Both models stratified by smoking exposure and age group, and both adjusted for the
survey design variables (sampling weights, strata, and clusters) and categorical covariates for sex and race/ethnicity. One model added a categorical covariate for time period, which allowed
estimates of the ANA prevalence odds ratio for each period relative to the first period. The other model instead added a continuous covariate for time, as measured by the number of years between
period midpoints relative to the first period, and produced a p-value from a t-test to assess a linear ANA time trend.
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model did not change the ANA time trends, nor did also adding a

BMI interaction with any factor in the base model or in an

expanded model that also included a covariate for smoking

exposure (Supplementary Table S5). Similarly, the original ANA

time trends within smoking exposure subgroups (as shown in

Table 2) did not change much when augmenting the base model

with covariates for a BMI main effect and a BMI-by-age interaction

(Supplementary Table S6).
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Replacing the 8-category age covariate with a 3-category age

covariate, a quantitative age covariate, or a restricted cubic spline in

age did not alter the basic pattern of ANA prevalence being

relatively flat between Periods 1 and 2, and then increasing

substantially in Period 3 (Supplementary Table S5). Similarly, that

basic ANA pattern also remained consistent when other covariates

were added to the base model, such as an individual main effect for

alcohol intake, PIR, or education; those same main effects plus a
FIGURE 3

ANA prevalence by time period and smoking status. Estimates of ANA prevalence and its 95% CI are plotted for smokers and nonsmokers in Period 1
(1988-1991), Period 2 (1999-2004), and Period 3 (2011-2012), based on the 13,288 NHANES participants aged ≥12 years with data on both ANA and
smoking status (i.e., serum cotinine). The prevalence estimates for nonsmokers and smokers are shown by blue circles and red squares, respectively,
with the same colors used for the 95% CI error bars. Separately for each smoking status, the prevalence estimates and 95% CIs were derived from a
logistic regression model for ANA positivity, adjusted for the survey-design variables and a categorical covariate for time period. The horizontal axis
is linear in time, defined as the number of years between the midpoints of the participant’s period and the first period, and the vertical axis is linear in
ANA prevalence (as a percentage).
TABLE 4 Covariate-adjusted assessments of ANA associations with smoking status by time period.

Time Period
ANA Prevalence Odds Ratio for Smoking Status (95% CI) a

p-value a

Nonsmoker Smoker

Period 1: 1988-1991 1.00 (reference) 0.80 (0.52-1.22) 0.297

Period 2: 1999-2004 1.00 (reference) 0.65 (0.45-0.93) 0.020

Period 3: 2011-2012 1.00 (reference) 0.82 (0.56-1.21) 0.310

All Periods Combined 1.00 (reference) 0.73 (0.58-0.92) 0.007
ANA, antinuclear antibodies; CI, confidence interval.
aAssessments of the association between ANA and smoking status were based on a logistic regression model for ANA positivity (yes/no) that adjusted for the survey design variables (sampling
weights, strata, and clusters) and categorical covariates for sex, age, and race/ethnicity. The model also included a categorical covariate for smoking status, as defined by serum cotinine
concentrations (Nonsmoker, ≤10 ng/mL; Smoker, >10 ng/mL), which allowed estimates of the ANA prevalence odds ratio for smokers relative to nonsmokers. The model was applied separately
for each time period and also for all periods combined. The p-value for assessing statistical significance was based on a t-test.
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main effect for BMI; and those same main effects plus both a main

effect for BMI and an interaction between BMI and each of those

other covariates.

Data were available on the CO content in the brand of cigarettes

used by each of 1,157 current smokers from Periods 2 and 3 aged

≥20 years. After adjusting for sex, age, race/ethnicity, and time

period, there was mild evidence that ANA prevalence decreased as

CO content per cigarette increased (OR=0.92; 95% CI: 0.85-1.00;

p=0.042). We also multiplied CO content by average number of

cigarettes smoked per day to estimate total CO, but the covariate-

adjusted analysis showed no evidence of an association with ANA

(p=0.65). In additional covariate-adjusted analyses of participants

of all ages from all time periods, we found no evidence of an ANA

association with pack-years among 4,795 ever (former or current)

smokers (p=0.91), years of smoking among 5,047 ever smokers

(p=0.18), or years since quitting among 2,738 former smokers

(p=0.56). We also allowed for various pack-year threshold values,

but no ANA associations with pack-years were significant.
4 Discussion

In summary, we assessed representative US data regarding

ANA, time, smoking, CO and their interdependencies. Table 5

lists several relevant concepts and results, including the following

information. High-titer ANA are associated with autoimmune

diseases (1–6). In the US, ANA increased from 1988 to 2012,

primarily in the second half of that interval (7); both active and

passive exposure to smoke from regular cigarettes decreased during

those years (16, 17); and e-cigarette use rapidly increased after being

introduced in 2007 (15, 33–36), especially among adolescents (ages

12–19 years). CO may protect against ANA and certain

autoimmune diseases (18–20, 25–32). E-cigarettes deliver much

less CO than regular cigarettes (39, 40).

Our general observation is that something related to smoking

cigarettes appears to have been inversely associated with ANA and

any potentially protective effect waned in the later time period,

possibly because people were smoking less and vaping more, or

because something else about smoking changed. In most cases, our

use of the word “protective” refers to a statistical association and not

a proven biological protection. We hypothesize that reduced CO

from decreased exposure to cigarette smoke may account for some

of the overall increase in ANA. This reduction in CO could have

come from current smokers cutting back on their cigarette

consumption (including some degree of switching to vaping),

from former smokers who quit (and possibly switched to vaping),

and from never or passive smokers being exposed to less

secondhand smoke (due to regulations and social pressure). We

also hypothesize that the rapid increase in e-cigarette use after 2007,

especially among teenagers, may partially explain why the increase

in ANA prevalence was larger during the latter half of the study

years and why the increasing ANA time trend was the most

pronounced in teenagers (7). Our two-part hypothesis is

consistent with what is already known about ANA, smoking, and

CO, as well as with the results from our analyses of the NHANES
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data. Specifically, we assessed how the ANA time trend depended

on smoking exposure levels, including within age subgroups, and

how the ANA association with smoking depended on calendar time.

Both are described below.

The ANA time trends across the three smoking-exposure

subgroups (as defined by serum cotinine level) are consistent with

our hypothesis. Individuals with no smoking exposure had

negligible cotinine levels and presumably were not affected by

changes in vaping or secondhand smoke. Thus, we infer that their

exposure to CO from cigarette smoke was minimal and, consistent

with our hypothesis, their ANA prevalence showed no clear time

trend. Individuals with passive exposure to smoke had detectable

but relatively low cotinine levels, which means they would have

been affected by changes in secondhand smoke but probably were

not regular vapers. Hence, these individuals might have experienced

a small but steady increase in ANA prevalence across all time

periods, which we speculate could be due to the steady decrease in

their low-level CO “protection” from decreasing secondhand smoke

(and possibly also from reduced exposure via air pollution (https://

www.epa.gov/air-trends/carbon-monoxide-trends)). Active

smokers had high cotinine levels, which could result from either

regular cigarettes or e-cigarettes, and would have been affected by
TABLE 5 Concepts and results related to the hypothesis that decreased
cigarette smoking may partially explain the increased prevalence of
antinuclear antibodies in the United States.

1. High-titer antinuclear antibodies (ANA) are associated with some
autoimmune diseases, and ANA prevalence estimates increased over time: a little
between Period 1 (1988-1991) and Period 2 (1999-2004) and a lot between
Period 2 and Period 3 (2011-2012).

2. Viewing ANA time trends by smoking exposure, there was no clear trend over
time in ANA prevalence estimates for individuals with no exposure (negligible
serum cotinine), a steady increase for individuals with passive exposure (low
serum cotinine), and a flat-then-increasing trend for individuals with active
exposure (high serum cotinine). The ANA time trends among passive and active
smokers were associated mainly with 12–19 year-olds.

3. Viewing ANA associations with smoking by time period, the estimated odds
of having ANA were less among active smokers (high serum cotinine) than
nonsmokers (negligible or low serum cotinine) in all time periods, but only the
difference in Period 2 was statistically significant.

4. Serum cotinine steadily decreased over time, primarily in self-reported never
and former smokers, but not in self-reported current smokers.

5. Smoking of regular cigarettes and secondhand exposure to their smoke
steadily decreased over time.

6. Vaping of electronic cigarettes (e-cigarettes) began after Period 2 (in 2007)
and rapidly increased over time.

7. Both regular cigarettes and e-cigarettes deliver nicotine and hence produce
cotinine, but e-cigarettes produce much less carbon monoxide (CO) than
regular cigarettes.

8. Some studies suggest that low levels of CO may be protective against ANA
and certain autoimmune diseases.

9. In summary, less smoking of regular cigarettes may have led to less low-level
CO exposure and more ANA. The hypothesized explanation involving potential
CO protection against ANA is consistent with the observed patterns of ANA
prevalence estimates, the long-term decreases in secondhand smoke exposure,
and the recent increases in vaping, especially among adolescents (12–19
years old).
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changes in vaping but not secondhand smoke. Thus, these

individuals presumably would not have had any change in

potential CO protection or ANA prevalence between Periods 1

and 2, since vaping did not begin until 2007, but would have had a

decrease in potential CO protection and, consistent with our

hypothesis, a corresponding increase in ANA prevalence between

Periods 2 and 3, as some of them took up vaping. Therefore, our

hypothesis regarding potential smoking-associated CO protection

from ANA is consistent with the possibility that the observed ANA

patterns could be at least partially explained by the continued

decrease in secondhand smoke exposure and the recent increase

in vaping. In fact, when viewed by age group, the largest increase in

ANA prevalence was between Periods 2 and 3 in teenagers who

were active smokers, the timeframe and age group most associated

with vaping.

The ANA associations with smoking seen across the three time

periods are also consistent with our hypothesis and may relate to

events that affected nonsmokers in the early years and smokers in

the later years. Active smokers had significantly lower odds of

having ANA than nonsmokers in Period 2, as would be expected if

CO is protective, but this evident reduction was weaker (and not

significant) in Periods 1 and 3. Between the first two periods,

secondhand smoke exposure decreased (which would only affect

nonsmokers) but vaping had not yet been introduced (which could

only affect smokers who later started switching to e-cigarettes). All

smokers had active smoking exposure, but nonsmokers were a mix

of individuals with no exposure and passive exposure. The

proportion of nonsmokers with passive exposure decreased over

time, as presumably did their potential CO protection from

secondhand smoke, and thus their ANA prevalence would have

increased. However, neither potential CO protection nor ANA

prevalence would have changed among smokers. Hence, the odds

of having ANA for smokers versus nonsmokers would be smaller in

Period 2 than in Period 1 (as we observed). Between Periods 2 and

3, secondhand smoke exposure again decreased (which would only

affect nonsmokers) while vaping increased rapidly (which would

mainly affect cotinine-identified active smokers). As described

above, the level of potential CO protection from secondhand

smoke among nonsmokers would have decreased, increasing their

ANA prevalence. Concurrently, potential CO protection among

active smokers (some of whom were vapers) would also have

decreased due to increased vaping, and thus their ANA

prevalence would have increased. The increase in ANA due to

increased vaping among smokers could have more than offset the

increase in ANA due to decreased secondhand smoke among

nonsmokers, resulting in the ANA prevalences for smokers and

nonsmokers to appear more similar in Period 3 than in Period 2 (as

we observed).

Although we hypothesize that decreased CO and increased

vaping may help explain both the changes in ANA time trends

across smoking exposure levels and the changes in ANA

associations with smoking across time periods, other factors may

also have played a role. For example, cigarette smoke is composed of

many chemicals with a wide array of effects on the body and we

have an incomplete understanding of their immune impacts that
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could include both stimulatory and inhibitory elements that may

vary from product to product (18, 45). Also, certain components of

e-cigarettes, such as flavoring agents (46), may potentially increase

the risk of developing ANA in users, and vaping may introduce

additional chemical contaminants contributing to bystander health

effects from secondhand exposure (47). In addition to vaping, there

are other nicotine-delivering alternatives to regular cigarettes,

including nicotine gum, chewing tobacco, snuff, and snus (48),

that can have immune system effects (49). Another consideration is

that some ANA subtypes may be more relevant than others. In a

previous study (50), we found that time period and smoking

exposure were more strongly associated with anti-dense fine

speckled 70 autoantibodies than with total ANA. Miller (51)

discussed a wide range of other potentially relevant factors such

as elements of the environment, various lifestyles, and even climate

change that could impact recent increases in autoimmunity and

autoimmune diseases.

Our study had several strengths. The NHANES cohort with

data on ANA was very large and spanned 25 years (1988–2012),

with all ANA assays performed in the same laboratory, using the

same evaluators, methods, and equipment. All statistical analyses

were weighted to enable analytic results that generalize to the

civilian noninstitutionalized US population ≥12 years old. Many

of our analyses of ANA, cotinine, and smoking accounted for sex,

age, and race/ethnicity as potential correlates or modifiers, and

some analyses also adjusted for BMI, alcohol intake, PIR,

or education.

On the other hand, our descriptive findings are subject to

certain limitations. There may be concerns about the age of

serum samples used for ANA assessment, some of which were

nearly three decades old when assayed. However, there were no

gross differences in appearance or behavior to suggest degradation,

and antibodies are stable over time in frozen storage (52). Some

NHANES data were obtained from questionnaires, such as smoking

history, but self-reported nicotine product use has been shown to be

valid (53). As vaping has increased, high cotinine levels have

become less reliable for identifying persons who only smoke

regular cigarettes (and thus are exposed to more CO). We

considered using self-reported smoking history instead, but that

information was often missing and it was not clear whether persons

who replaced some or all of their regular cigarettes with e-cigarettes

would classify themselves as former or current smokers. Also, we

used 10 ng/mL of cotinine to distinguish passive and active

smokers, as recommended by the CDC and EPA (13), but some

researchers have suggested using a lower cutpoint, such as 3 ng/mL

(54). However, our sensitivity analysis found that using the lower

cotinine cutpoint had little effect on the results. No participant was

followed longitudinally; thus, both cotinine and ANA were assessed

cross-sectionally at only one point in time per participant, so

measured cotinine levels may poorly reflect the levels when ANA

developed. Reported associations, even if confirmed, may not

correspond to causal effects. In fact, there could be reverse-causal

effects if immune system or other changes associated with ANA

influence smoking behavior or the metabolism of nicotine, cotinine,

or other byproducts of smoking.
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Perhaps the most serious deficiency in our data is the lack of

direct information about e-cigarette use. At the time of our analyses,

there were limited NHANES data on vaping in the 2013-2014,

2015-2016, and 2017–2018 cycles, but none in cycles with data on

ANA. However, despite this absence of direct data, we might

assume that most self-reported current smokers in Period 3 with

a high cotinine level probably smoked regular cigarettes, whereas

most self-reported former smokers with a high cotinine level had

probably switched to e-cigarettes. The first group included 89/639

(13.9%) with ANA, while the second group included 18/85 (21.2%)

with ANA, a difference that is consistent with our hypothesis of a

potentially protective effect of CO derived from smoking regular

cigarettes (and also consistent with an effect of something in e-

cigarettes on ANA). Also, direct information on individual CO

levels would have been helpful, though we found some evidence that

lower ANA prevalence was associated with cigarette brands having

higher CO content, which provides additional indirect support for

our hypothesis.

In conclusion, cigarette smoking decreased over the past several

decades and ANA prevalence increased, which we corroborated

with analyses of NHANES data. However, the degree to which these

two time trends might be causally related is unclear. Cotinine was

used to infer exposure to cigarette smoke, and average levels steadily

declined between 1988 and 2012 in the NHANES cohorts, with a

downward-sloping straight line providing a good fit to log-

transformed cotinine concentrations. The prevalence of ANA rose

between 1988 and 2012, but this upward trend was not linear,

showing a relatively small increase from 1988–1991 to 1999-2004,

followed by a much larger increase from 1999–2004 to 2011-2012.

The latter time interval coincides with the introduction of vaping,

with many smokers replacing at least some of their regular

cigarettes with e-cigarettes. That change might not have affected

cotinine levels but should have reduced CO levels. We suggest that

such a drop in CO levels potentially could be causally associated

with the concurrent increase in ANA, as there is evidence that low

levels of CO are protective against ANA and certain autoimmune

diseases. However, while CO may be one factor in this process, one

should keep in mind that there are many additional byproducts of

smoking that possibly could play a role. Nonetheless, decreased

smoking exposure (active and passive) across all study years could

have contributed to a general increase in ANA, which could have

been greatly supplemented in the later years by the rapid increase in

vaping. Thus, smokers who reduced their use of regular cigarettes in

favor of vaping may have lost some of the hypothesized protective

effect afforded by CO, which could have increased their risk of

developing autoimmunity.

We searched the literature for additional mechanisms and

contributing factors that might help explain why decreased

smoking could lead to increased ANA and found conflicting data

on the complex mixtures that make up tobacco smoke and e-

cigarette vapor. One parallel mechanism to CO is nicotine itself.

Reduced cigarette smoking, if not replaced by other nicotine sources
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(48), would decrease the nicotine anti-inflammatory processes,

which could then increase inflammation and ANA. For example,

despite smoking being an established risk factor for rheumatoid

arthritis (RA), several investigators have discussed a possible

therapeutic effect of nicotine on RA (55–57). In the end, we

concluded that exact mechanisms for why less smoking is

associated with more ANA are unclear and further research is

needed to identify the causes of the recent dramatic increases in

ANA in the US. Hopefully, future studies will collect data on vaping

history and CO biomarkers, which could provide direct evidence to

assess our hypothesis.

In closing, given the many negative effects of smoking on

increasing deaths, illnesses, and health care costs worldwide, we

are certainly not recommending that smoking should be considered

as an approach to prevent autoimmunity or autoimmune diseases.

Rather, we believe that further studies in this area are needed as they

may elucidate new mechanisms, perhaps involving certain

components of tobacco smoke or e-cigarette vapor, that could

allow for the development of novel preventative or treatment

measures in the future.
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Mean Serum Cotinine Concentration by Time Period. Estimates of the

geometric mean serum cotinine concentration and its 95% CI are plotted

for each of 3 time periods (1988-1991, 1999-2004, and 2011-2012), along
with the best-fitting trend line. These estimates are based on the 13,288

NHANES participants aged ≥12 years with data on both ANA and serum
cotinine. Any concentration below the limit of detection (LOD) was replaced

by an imputed value equal to LOD/
ffiffiffi

2
p

. The horizontal axis is linear in time,
defined as the number of years between the midpoints of the participant’s

period and the first period, and the vertical axis is logarithmic in serum

cotinine concentration (ng/mL).
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23. Carlé A, Bülow Pedersen I, Knudsen N, Perrild H, Ovesen L, Banke Rasmussen
L, et al. Smoking cessation is followed by a sharp but transient rise in the incidence of
overt autoimmune hypothyroidism - a population-based, case-control study. Clin
Endocrinol (Oxf). (2012) 77:764–72. doi: 10.1111/j.1365-2265.2012.04455.x

24. Elsherbiny TM.Quitting smoking as a probable trigger for new-onset hypothyroidism
after successfulmedical treatment of graves’Disease: case report. Ther Adv EndocrinolMetab.
(2024) 15:20420188241256470. doi: 10.1177/20420188241256470

25. Fagone P, Piombino E, Mangano K, De Pasquale R, Nicoletti F, Caltabiano R.
Evaluation of the involvement of heme oxygenase-1 expression in discoid lupus
erythematosus lesions. Antioxidants (Basel). (2023) 12:1352. doi: 10.3390/antiox12071352

26. Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, et al. Heme
oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin
Invest. (2007) 117:438–47. doi: 10.1172/jci28844

27. Fagone P, Mangano K, Coco M, Perciavalle V, Garotta G, Romao CC, et al.
Therapeutic potential of carbon monoxide in multiple sclerosis. Clin Exp Immunol.
(2012) 167:179–87. doi: 10.1111/j.1365-2249.2011.04491.x

28. Ferrándiz ML, Maicas N, Garcia-Arnandis I, Terencio MC, Motterlini R, Devesa
I, et al. Treatment with a co-releasing molecule (Corm-3) reduces joint inflammation
and erosion in murine collagen-induced arthritis. Ann Rheum Dis. (2008) 67:1211–7.
doi: 10.1136/ard.2007.082412

29. Mackern-Oberti JP, Llanos C, Carreño LJ, Riquelme SA, Jacobelli SH, Anegon I,
et al. Carbon monoxide exposure improves immune function in lupus-prone mice.
Immunology. (2013) 140:123–32. doi: 10.1111/imm.12124

30. Nikolic I, Saksida T, Mangano K, Vujicic M, Stojanovic I, Nicoletti F, et al.
Pharmacological application of carbon monoxide ameliorates islet-directed
autoimmunity in mice via anti-inflammatory and anti-apoptotic effects. Diabetologia.
(2014) 57:980–90. doi: 10.1007/s00125-014-3170-7

31. Fagone P, Mangano K, Mammana S, Cavalli E, Di Marco R, Barcellona ML, et al.
Carbon monoxide-releasing molecule-A1 (Corm-A1) improves clinical signs of
experimental autoimmune uveoretinitis (Eau) in rats. Clin Immunol. (2015)
157:198–204. doi: 10.1016/j.clim.2015.02.002

32. Mangano K, Cavalli E, Mammana S, Basile MS, Caltabiano R, Pesce A, et al.
Involvement of the nrf2/ho-1/co axis and therapeutic intervention with the co-releasing
molecule corm-A1, in a murine model of autoimmune hepatitis. J Cell Physiol. (2018)
233:4156–65. doi: 10.1002/jcp.26223

33. Regan AK, Promoff G, Dube SR, Arrazola R. Electronic nicotine delivery
systems: adult use and awareness of the ‘E-cigarette’ in the USA. Tob Control. (2013)
22:19–23. doi: 10.1136/tobaccocontrol-2011-050044

34. King BA, Patel R, Nguyen KH, Dube SR. Trends in awareness and use of
electronic cigarettes among us adults, 2010-2013. Nicotine Tob Res. (2015) 17:219–27.
doi: 10.1093/ntr/ntu191

35. Glasser AM, Collins L, Pearson JL, Abudayyeh H, Niaura RS, Abrams DB, et al.
Overview of electronic nicotine delivery systems: A systematic review. Am J Prev Med.
(2017) 52:e33–66. doi: 10.1016/j.amepre.2016.10.036
Frontiers in Immunology 13128
36. Bandi P, Cahn Z, Goding Sauer A, Douglas CE, Drope J, Jemal A, et al. Trends in
E-cigarette use by age group and combustible cigarette smoking histories, U.S. Adults,
2014-2018. Am J Prev Med. (2021) 60:151–8. doi: 10.1016/j.amepre.2020.07.026

37. Jaber RM, Mirbolouk M, DeFilippis AP, Maziak W, Keith R, Payne T, et al.
Electronic cigarette use prevalence, associated factors, and pattern by cigarette
smoking status in the United States from nhanes (National health and nutrition
examination survey) 2013-2014. J Am Heart Assoc. (2018) 7:e008178. doi: 10.1161/
jaha.117.008178

38. Pulvers K, Nollen NL, Rice M, Schmid CH, Qu K, Benowitz NL, et al. Effect of
pod E-cigarettes vs cigarettes on carcinogen exposure among african american and
latinx smokers: A randomized clinical trial. JAMA Netw Open. (2020) 3:e2026324.
doi: 10.1001/jamanetworkopen.2020.26324

39. Wagener TL, Floyd EL, Stepanov I, Driskill LM, Frank SG, Meier E, et al.
Have combustible cigarettes met their match? The nicotine delivery profiles and
harmful constituent exposures of second-generation and third-generation
electronic cigarette users. Tob Control . (2017) 26:e23–e8. doi: 10.1136/
tobaccocontrol-2016-053041

40. Raffael F, Pandia P, Tarigan AP, Mutiara E, Osakue OE. Comparison of exhaled
carbon monoxide levels and its association with nicotine dependence between
electronic and tobacco cigarettes: A cross-sectional study among teenage smokers.
Narra J. (2023) 3:e418. doi: 10.52225/narra.v3i3.418

41. Johnson CL, Paulose-Ram R, Ogden CL, Carroll MD, Kruszon-Moran D,
Dohrmann SM, et al. National health and nutrition examination survey: analytic
guidelines, 1999-2010. Vital Health Stat 2. (2013) 161):1–24.

42. Satoh M, Chan EK, Ho LA, Rose KM, Parks CG, Cohn RD, et al. Prevalence and
sociodemographic correlates of antinuclear antibodies in the United States. Arthritis
Rheum. (2012) 64:2319–27. doi: 10.1002/art.34380

43. Hornung RW, Reed LD. Estimation of average concentration in the presence of
nondetecta ble values. Appl Occup Environ Hygiene. (1990) 5:46–51. doi: 10.1080/
1047322X.1990.10389587

44. CDC. (Centers for Disease Control and Prevention). Limit of detection (2024).
Available online at: https://www.cdc.gov/environmental-exposure-report/php/about-
the-data/limit-of-detection.html (Accessed September 25, 2024).

45. Maiyo AK, Kibet JK, Kengara FO. A review of the characteristic properties of
selected tobacco chemicals and their associated etiological risks. Rev Environ Health.
(2023) 38:479–91. doi: 10.1515/reveh-2022-0013

46. Morris AM, Leonard SS, Fowles JR, Boots TE, Mnatsakanova A, Attfield KR.
Effects of E-cigarette flavoring chemicals on human macrophages and bronchial
epithelial cells. Int J Environ Res Public Health. (2021) 18:11107. doi: 10.3390/
ijerph182111107

47. Islam T, Braymiller J, Eckel SP, Liu F, Tackett AP, Rebuli ME, et al. Secondhand
nicotine vaping at home and respiratory symptoms in young adults. Thorax. (2022)
77:663–8. doi: 10.1136/thoraxjnl-2021-217041

48. ACOG. (American College of Obstetricians and Gynecologists). Tobacco and
nicotine cessation during pregnancy: acog committee opinion, number 807. Obstet
Gynecol. (2020) 135:e221–e9. doi: 10.1097/aog.0000000000003822

49. Malovichko MV, Zeller I, Krivokhizhina TV, Xie Z, Lorkiewicz P, Agarwal A,
et al. Systemic toxicity of smokeless tobacco products in mice. Nicotine Tob Res. (2019)
21:101–10. doi: 10.1093/ntr/ntx230

50. Dinse GE, Zheng B, Co CA, Parks CG, Weinberg CR, Miller FW, et al. Anti-dense
fine speckled 70 (Dfs70) autoantibodies: correlates and increasing prevalence in the United
States. Front Immunol. (2023) 14:1186439. doi: 10.3389/fimmu.2023.1186439

51. Miller FW. The environment, lifestyles and climate change: the many nongenetic
contributors to the long and winding road to autoimmune diseases. Arthritis Care Res
(Hoboken). (2024) 77: 3–11. doi: 10.1002/acr.25423

52. Argentieri MC, Pilla D, Vanzati A, Lonardi S, Facchetti F, Doglioni C, et al.
Antibodies are forever: A study using 12-26-year-old expired antibodies.
Histopathology. (2013) 63:869–76. doi: 10.1111/his.12225

53. Yeager DS, Krosnick JA. The validity of self-reported nicotine product use in the
2001–2008 national health and nutrition examination survey. Med Care. (2010)
48:1128–32. doi: 10.1097/MLR.0b013e3181ef9948

54. Benowitz NL, Bernert JT, Caraballo RS, Holiday DB, Wang J. Optimal serum
cotinine levels for distinguishing cigarette smokers and nonsmokers within different
racial/ethnic groups in the United States between 1999 and 2004. Am J Epidemiol.
(2009) 169:236–48. doi: 10.1093/aje/kwn301

55. Sungwon R. Smoking as a preventa ble risk factor for rheumatoid arthritis:
rationale for smoking cessation treatment in patients with rheumatoid arthritis. J
Rheum Dis. (2019) 26:12–9. doi: 10.4078/jrd.2019.26.1.12

56. Wu S, LuoH, Xiao X, Zhang H, Li T, Zuo X. Attenuation of collagen induced arthritis
via suppression on th17 response by activating cholinergic anti-inflammatory pathway with
nicotine. Eur J Pharmacol. (2014) 735:97–104. doi: 10.1016/j.ejphar.2014.04.019

57. Zhou Y, Zuo X, Li Y, Wang Y, Zhao H, Xiao X. Nicotine inhibits tumor necrosis
factor-a Induced il-6 and il-8 secretion in fibroblast-like synoviocytes from patients
with rheumatoid arthritis. Rheumatol Int. (2012) 32:97–104. doi: 10.1007/s00296-010-
1549-4
frontiersin.org

https://cfpub.epa.gov/roe/indicator.cfm?i=26
http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/biomonitoring/Cotinine_FactSheet.html
http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/biomonitoring/Cotinine_FactSheet.html
https://www.cdc.gov/tobacco/php/data-statistics/adult-data-cigarettes/?CDC_AAref_Val=https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm
https://www.cdc.gov/tobacco/php/data-statistics/adult-data-cigarettes/?CDC_AAref_Val=https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm
https://www.cdc.gov/tobacco/php/data-statistics/adult-data-cigarettes/?CDC_AAref_Val=https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm
https://progressreport.cancer.gov/prevention/tobacco/adult_smoking
https://doi.org/10.1016/j.autrev.2016.01.001
https://doi.org/10.1038/nri803
https://doi.org/10.3899/jrheum.180481
https://doi.org/10.1016/j.jaut.2009.12.003
https://doi.org/10.1016/j.jaut.2009.12.003
https://doi.org/10.1210/jc.2008-1548
https://doi.org/10.1111/j.1365-2265.2012.04455.x
https://doi.org/10.1177/20420188241256470
https://doi.org/10.3390/antiox12071352
https://doi.org/10.1172/jci28844
https://doi.org/10.1111/j.1365-2249.2011.04491.x
https://doi.org/10.1136/ard.2007.082412
https://doi.org/10.1111/imm.12124
https://doi.org/10.1007/s00125-014-3170-7
https://doi.org/10.1016/j.clim.2015.02.002
https://doi.org/10.1002/jcp.26223
https://doi.org/10.1136/tobaccocontrol-2011-050044
https://doi.org/10.1093/ntr/ntu191
https://doi.org/10.1016/j.amepre.2016.10.036
https://doi.org/10.1016/j.amepre.2020.07.026
https://doi.org/10.1161/jaha.117.008178
https://doi.org/10.1161/jaha.117.008178
https://doi.org/10.1001/jamanetworkopen.2020.26324
https://doi.org/10.1136/tobaccocontrol-2016-053041
https://doi.org/10.1136/tobaccocontrol-2016-053041
https://doi.org/10.52225/narra.v3i3.418
https://doi.org/10.1002/art.34380
https://doi.org/10.1080/1047322X.1990.10389587
https://doi.org/10.1080/1047322X.1990.10389587
https://www.cdc.gov/environmental-exposure-report/php/about-the-data/limit-of-detection.html
https://www.cdc.gov/environmental-exposure-report/php/about-the-data/limit-of-detection.html
https://doi.org/10.1515/reveh-2022-0013
https://doi.org/10.3390/ijerph182111107
https://doi.org/10.3390/ijerph182111107
https://doi.org/10.1136/thoraxjnl-2021-217041
https://doi.org/10.1097/aog.0000000000003822
https://doi.org/10.1093/ntr/ntx230
https://doi.org/10.3389/fimmu.2023.1186439
https://doi.org/10.1002/acr.25423
https://doi.org/10.1111/his.12225
https://doi.org/10.1097/MLR.0b013e3181ef9948
https://doi.org/10.1093/aje/kwn301
https://doi.org/10.4078/jrd.2019.26.1.12
https://doi.org/10.1016/j.ejphar.2014.04.019
https://doi.org/10.1007/s00296-010-1549-4
https://doi.org/10.1007/s00296-010-1549-4
https://doi.org/10.3389/fimmu.2025.1537043
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores novel approaches and diagnoses to treat 

immune disorders.

The official journal of the International Union of 

Immunological Societies (IUIS) and the most cited 

in its field, leading the way for research across 

basic, translational and clinical immunology.

Discover the latest 
Research Topics

See more 

Frontiers in
Immunology

https://www.frontiersin.org/journals/immunology/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Risk and protective factors in the natural history of autoimmunity

	Table of contents

	Editorial: Risk and protective factors in the natural history of autoimmunity
	Autoimmunity
	Autoimmunity and cancer
	Sex differences in autoimmunity
	Environmental and genetic risk factors for autoimmune diseases
	Summary
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	New-onset autoimmune disease after COVID-19
	Introduction
	Materials and methods
	Statistical analysis

	Results
	Risk of incident autoimmune disease after COVID-19
	Effect of different timeframes on incident autoimmune disease risk after COVID-19
	The association of positive ANA test and incident autoimmune disease after COVID-19
	Effect of any COVID-19 vaccination on incident autoimmune disease risk after COVID-19

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Identifying antinuclear antibody positive individuals at risk for developing systemic autoimmune disease: development and validation of a real-time risk model
	1 Introduction
	2 Methods
	2.1 Data source and patient selection
	2.2 Model development
	2.3 Statistical analysis
	2.4 Model validation
	2.5 Sensitivity analyses and deployment feasibility assessment

	3 Results
	3.1 Individual characteristics
	3.2 Model description and validation
	3.3 Sensitivity analyses
	3.4 Distribution of risk scores by type of autoimmune disease
	3.5 Deployment feasibility

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Longitudinal changes in DNA methylation during the onset of islet autoimmunity differentiate between reversion versus progression of islet autoimmunity
	1 Introduction
	2 Materials and methods
	2.1 Study population
	2.2 Methylation measurements
	2.3 Overlapping gene expression measurements
	2.4 Overlapping metabolomics measurements
	2.5 Genetic ancestry
	2.6 Statistical analyses
	2.7 Expression quantitative trait methylation analysis: correlation between gene expression and DNAm candidates
	2.8 Metabolite quantitative trait methylation analysis: correlation between metabolite levels and DNAm candidates

	3 Results
	3.1 Study population
	3.2 Differentially methylated position analysis
	3.3 Differentially methylated region analysis
	3.4 eQTM candidate prioritization
	3.5 Metabolite quantitative trait methylation analysis candidate prioritization in overlapping samples

	4 Discussion
	4.1 Limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Environment and systemic autoimmune rheumatic diseases: an overview and future directions
	Introduction
	Environmental factors and autoimmunity
	Common pathways of pathogenesis: immune dysregulation, epigenomics, the microbiome
	Immune dysregulation
	Epigenetic changes
	Microbiome influences

	Mitigation of environmental factors
	Traditional cohort studies
	Intervention and prevention trials
	Future technologies for research on environmental exposures and SARD

	Conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Maternal seafood intake, dietary contaminant exposure, and risk of juvenile idiopathic arthritis: exploring gene-environment interactions
	1 Introduction
	2 Material and methods
	2.1 Study population and design
	2.2 Outcome
	2.3 Exposure variables: intake of seafood and environmental contaminants
	2.4 Covariates and confounders
	2.5 Genotyping data, polygenic risk score for JIA
	2.6 Statistical analysis

	3 Results
	3.1 Study sample characteristics
	3.2 Seafood intake and JIA
	3.3 Interactions between fish intake and polygenic risk score
	3.4 Estimated environmental contaminants and JIA

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

	The toll like receptor 7 pathway and the sex bias of systemic lupus erythematosus
	Sex bias in lupus
	Sex hormones in lupus
	X chromosome in lupus
	X chromosome and immune genes
	Candidate X genes in lupus
	XIST in lupus
	XIST, TLR7, TASL in lupus and other autoimmune diseases – an hypothesis
	TLR7 signaling and environmental triggers in lupus
	Summary
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Cancer in connective tissue disease
	Why cancer and connective tissue disease
	Methods and search strategy
	Cancer and idiopathic inflammatory myopathies: the key role of synchronous malignancy
	Clinical features of paraneoplastic myositis
	Immunological features of paraneoplastic myositis
	Cancer screening in IIM: the IMACS initiative

	Cancer and Sjogren syndrome: a model of autoimmunity-induced malignancy
	Clinical features of cancer in pSS
	Immunological features of cancer in pSS
	Cancer screening in pSS

	Cancer and systemic sclerosis: a unique scenario for both malignancy-induced autoimmunity and autoimmunity-induced malignancy
	Clinical features of cancer in SSc
	Immunological features of cancer in SSc
	Cancer screening in SSc
	Immunosuppressive treatments and cancer in SSc

	Cancer and systemic lupus erythematosus: still an unclear scenario
	Clinical features of cancer in SLE
	Immunological features of cancer in SLE
	Cancer screening in SLE
	Immunosuppressive treatments and cancer in SLE

	Limitations and concluding remarks
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

	Commentary: Cancer in connective tissue disease
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Nonlinearity and sex differences in the performance of a polygenic risk score for juvenile idiopathic arthritis
	1 Introduction
	2 Methods
	2.1 Study population and design
	2.2 Outcome
	2.3 Polygenic risk score for JIA
	2.4 Statistical analysis
	Nonlinear modeling approach
	Modeling sex differences
	Visualization


	3 Results
	3.1 Study sample characteristics
	3.2 Association between PRS and JIA
	3.3 The association between PRS and JIA differs by sex

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

	A possible role for immunogenetic factors in myositis developing after vaccination in the pre-covid-19 era
	1 Introduction
	2 Materials and methods
	2.1 Study participants
	2.2 HLA typing
	2.3 GM and KM allotyping
	2.4 Autoantibody identification
	2.5 Statistical analysis

	3 Results
	3.1 Clinical findings
	3.2 HLA analysis
	3.3 GM/KM analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Decreased cigarette smoking may partially explain the increased prevalence of antinuclear antibodies in the United States
	1 Introduction
	2 Subjects and methods
	2.1 Study participants
	2.2 ANA assessment
	2.3 Data on ANA, cotinine, and smoking
	2.4 Model variables
	2.5 Statistical analysis

	3 Results
	3.1 ANA time trend
	3.2 Cotinine time trend
	3.3 Smoking time trend
	3.4 ANA time trends by smoking exposure
	3.5 ANA associations with smoking by time period
	3.6 Additional analyses

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

	Back cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




