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Surrogate modelling of heartbeat
events for improved J-peak
detection in BCG using deep
learning

Christoph Schranz1*, Christina Halmich1,2, Sebastian Mayr1 and
Dominik P. J. Heib3

1Human Motion Analytics, Salzburg Research Forschungsgesellschaft mbH, Salzburg, Austria,
2Department of Artificial Intelligence and Human Interfaces, University of Salzburg, Salzburg, Austria,
3Institut Proschlaf, Salzburg, Austria

Sleep, or the lack thereof, has far-reaching consequences on many aspects of
human physiology, cognitive performance, and emotional wellbeing. To
ensure undisturbed sleep monitoring, unobtrusive measurements such as
ballistocardiogram (BCG) are essential for sustained, real-world data
acquisition. Current analysis of BCG data during sleep remains challenging,
mainly due to low signal-to-noise ratio, physical movements, as well as high
inter- and intra-individual variability. To overcome these challenges, this work
proposes a novel approach to improve J-peak extraction from BCG
measurements using a supervised deep learning setup. The proposed
method consists of the modeling of the discrete reference heartbeat
events with a symmetric and continuous kernel-function, referred to as
surrogate signal. Deep learning models approximate this surrogate signal
from which the target heartbeats are detected. The proposed method with
various surrogate signals is compared and evaluated with state-of-the-art
methods from both signal processing and machine learning approaches. The
BCG dataset was collected over 17 nights using inertial measurement units
(IMUs) embedded in a mattress, together with an ECG for reference
heartbeats, for a total of 134 h. Moreover, we apply for the first time an
evaluation metric specialized for the comparison of event-based time series
to assess the quality of heartbeat detection. The results show that the
proposed approach demonstrates superior accuracy in heartbeat
estimation compared to existing approaches, with an MAE (mean absolute
error) of 1.1 s in 64-s windows and 1.38 s in 8-s windows. Furthermore, it is
shown that our novel approach outperforms current methods in detecting the
location of heartbeats across various evaluation metrics. To the best of our
knowledge, this is the first approach to encode temporal events using kernels
and the first systematic comparison of various event encodings for event
detection using a regression-based sequence-to-sequence model.
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1 Introduction

Sleep has a profound influence on the physical and mental
functioning of the following day, especially when it is lacking. Restful
sleep promotes physical regeneration (Jakowski et al., 2023) and the
performance of the immune system (Garbarino et al., 2021), as well
as cognitive performance (Brownlow et al., 2020), motor dexterity
(Craven et al., 2022) and emotional stability (Tomaso et al., 2021).
Disturbed sleep can lead to serious chronic health problems such as
cardiovascular disease, endocrinological dysregulation, and a range
of psychological impairments (Itani et al., 2017). To elucidate the
dynamics and interactions of sleep, a comprehensive understanding
of sleep patterns and stages is essential. The gold standard for
objectively measuring sleep is polysomnography (PSG), which
integrates electroencephalography, electromyography, and
electrooculography. However, PSG recordings are time-
consuming, the equipment is costly, and trained personnel are
required to ensure sufficient signal quality. These drawbacks limit
the sample sizes of PSG studies and render them unsuitable for
longitudinal studies. Recent trends in sleep research indicate that
high-accuracy estimations of sleep stage fluctuations can be derived
from variations in signals such as inter-beat interval (IBI) time-series
(kranzinger et al., 2023) or alterations in respiratory effort over time
when analyzed with machine learning models.

Today, IBI time-series can be accurately recorded using
inexpensive consumer devices, making inter-beat intervals a
promising signal for large-scale sleep studies aimed at gaining
new insights into sleep. State-of-the-art sensors for measuring
heartbeats can be categorized into on-body (wearables) and off-
body (contactless) solutions. On-body systems include devices
directly attached to the body, such as electrocardiography and
photoplethysmography to acquire electrocardiograms (ECG) and
photoplethysmograms (PPG). PPG wearables, typically mounted on
the wrist, arm, or earlobe, measure heartbeats by detecting periodic
changes in the optical reflection of emitted light caused by blood
pulses under the skin.

Contactless sensor systems mainly involve camera-based
systems as well as ballistocardiography. Camera-based systems
sense minor periodic changes in the skin color caused by blood
pulses. Ballistocardiography is a sensor system that measures subtle
accelerations of the human body, including cardiovascular and
respiratory activity, that are plotted in ballistocardiograms (BCG).
The heartbeat events in BCG are referred to as J-peaks and are
caused by the contraction of the heart which results in the ejection of
blood into the aortic arch where the direction of flow is changed,
creating a momentum (Giovangrandi et al., 2011). Therefore, the
systolic J-peak occurs after the electrical trigger, i.e. the R-peak, as
accessed from an ECG. These events also occur closer to the heart
and are sharper in their waveform than camera-based solutions or
PPG, where the monitored pulses are measured at the skin or wrist.

The delay between the electrical activation of the heartmuscle to the
greatest vertical force as measured by a BCG-system is referred to as RJ-
interval. A schematic ECG and BCG with their corresponding QRS-
and IJK-complexes are illustrated in Figure 1. According to the
literature, the RJ-intervals vary typically between 180 ms and
240 ms and change slowly over time (Casanella et al., 2012). J-peaks
in BCG occur closer to the heart and are sharper in its waveform than
PPG, which measures pulses at the skin or wrist.

The inter-subject variability is caused by different causes such as
body mass, heart size, body placement relative to the fixed sensor
position, body alignment, and also the physiological state of the
subject. Additionally, the BCG also depends on the used sensor type
and setup Sadek and Abdulrazak (2021). Some activities, such as
paced respiration, can induce hemodynamic changes that affect the
RJ-interval by 150 ms–300 ms (Casanella et al., 2012; Gomez-
Clapers et al., 2014).

Ballistocardiogram can be implemented using different sensor
technologies. The most commonly used are inertial measurement
units (IMU) (Cathelain et al., 2020), electromechanical films (Sadek
and Abdulrazak, 2021), or piezoelectric (Zhou et al., 2021; Liu et al.,
2022), hydraulic- (Heise and Skubic, 2010) or pneumatic- (Pröll
et al., 2019) pressure sensors. In each case, the sensor is integrated
into the mattress, pillow, mat or chair underneath the person,
allowing for an unobtrusive measurement. This type of
unobtrusive measurement in particular offers a seamless
recording of sleep data over several weeks at home without the
need for a sleep laboratory, as no sensors or wearables need to be
actively applied or activated. Data acquisition is activated simply by
lying in bed.

Off-body measurement systems therefore offer a more elegant
and unobtrusive means of recording physiological information over
extended periods, as they typically require minimal interaction with
the recording device, thereby reducing distress and potential user
resistance associated with long-term use of wearables. However, as
the indirect measurement leads to a decreased signal-to-noise ratio,
detecting individual heartbeats from contactless sensors is
significantly more challenging compared to wearables. This
limitation of contactless devices is critical, as the accuracy of
automatic sleep stage classification based on IBI time-series
depends on the temporal precision of the captured IBIs.
Therefore, advancements in heartbeat extraction from BCG
are crucial.

FIGURE 1
Single beat of an ECG (top) and BCG (bottom) with their
annotated main waves and RJ-interval (Gomez-Clapers et al., 2014).
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Given the suitability of ballistocardiography for unobtrusive
long-term sleep measurement, and the availability of improved
machine learning algorithms and computational resources, there
is an increasing amount of research focused on heartbeat extraction
from BCG. Research has shown that J-peaks can be used to predict
the subject’s sleep stages and therefore sleep quality (Kranzinger
et al., 2023). This work proposes a novel approach to model
heartbeat events as a continuous signal, thereby improving the
accuracy of heartbeat extraction within a supervised deep
learning framework. The primary objective is to evaluate various
heartbeat event representations in combination with different deep
learning network architectures for J-peak detection in BCG signals
and to compare them with existing methods.

Section 2 introduces the state-of-the-art methods and reasons
why machine learning approaches might offer advantages in
overcoming existing limitations of current contact-less methods.
Section 3 provides a formal introduction to the problem from a
theoretical perspective, and Section 4 presents the proposed method
and evaluation of the methods. In Section 5 the results of the method
comparison are presented. Finally, the findings are discussed in
Section 6 and concluded in Section 7.

2 Related work

The classical approach for the detection of heartbeats in
ballistocardiogram (BCG) is the Pan-Tompkins algorithm (Pan
and Tompkins, 1985). This algorithm was initially developed for
ECG and is based on classical signal processing techniques, such as
low and high-pass filtering, derivates, functional mappings, and
averaging. Using the thereby processed signal, a peak detection
algorithm is applied to detect the characteristic R-peak of the ECG.
However, the low signal-to-noise ratio of BCG data limits the
detection of heartbeats using the same approach. Hence, the Pan-
Tompkins algorithm was adapted for the application on BCG data.
Most solutions employ a bandpass filter as the initial processing step,
with a recommended system bandwidth ranging from 1.5 Hz to
22.5 Hz. This frequency band encompasses all relevant
cardiovascular signals while filtering out respiratory activity and
movements (Gomez-Clapers et al., 2014). For instance, Pröll et al.
(2019), applied the following sequential processing steps: bandpass
filter, cubic function, low-pass filter, second order derivate, absolute
value function, and low-pass filter (Pröll et al., 2019). This
processing pipeline transforms the raw BCG signal into a signal
that exhibits the characteristic J-peak of the BCG more significantly.
A subsequent peak detection identifies the IJK-complex that is
analogous to the QRS-complex in ECG.

Other classical signal processing approaches apply wavelet
transformations, template matching, or signal envelopes (Pino
et al., 2017; Sadek and Abdulrazak, 2021). Additionally, some
approaches apply methods in the frequency domain (Brüser
et al., 2011). Analogously, classical signal processing approaches
for R-peak extraction in noisy ECG and PPG measurements are
based on a similar combination of algorithms (Nguyen et al., 2019;
Yun et al., (2022)).

As pointed out in Section 1, the substantial inter- and
intrasubject variability of BCG as well as the low signal-to-noise
ratio remain major challenges of the J-peak extraction in BCG

measurements. In order to address these challenges, neural
networks can be used that are effective in capturing the
variability of BCG within a data-driven supervised machine
learning setting. Pröll et al. (2021); Sadek and Abdulrazak (2021)
demonstrated that their deep learning approach, using a
combination of convolutional neural networks (CNN) and
recurrent network layers (LSTM and GRU) of different sizes, has
improved the accuracy of estimating the mean heart rate within 8 s
epochs by more than 50% in terms of MAE compared to five state-
of-the-art digital signal processing approaches (from 4.24 to 2.07).
This approach estimates the heart rate from a BCG signal and
compares it with a reference heart rate as accessed from an ECG.
Other approaches apply deep learning models to approximate a
signal with characteristic J-peaks. For example, Cathelain et al.
(2020); Zhou et al. (2021) have applied the U-net architecture
and (Liu et al., 2022) a combination of Residual Networks
(ResNet) and long-short term memory (LSTM). Most of these
methods, both based on traditional digital signal processing and
neural networks, have in common that they process the input BCG
data to emphasize the J-peaks. Moreover, for all deep learning
models found in literature review, the discrete J-peak-events are
represented as a time-series encoded with a binary masking. This
binary masking, however, may lead to inaccurate peak detection, as
further discussed in Section 3.

In this work, a method based on deep learning is proposed,
which transforms a BCG measurement into a one-dimensional
time-series, from which the discrete heartbeat events can be
detected more precisely. The objective of the work is to compare
the effect of different heartbeat encodings on J-peak detection
accuracy using a fixed neural network architecture, and to
compare the proposed method against state-of-the-art
approaches. Thereby, we investigate improved encodings of
heartbeat events in order to facilitate an optimized J-peak detection.

3 Problem formulation

The objective of J-peak detection in BCG is to estimate the
timestamps of heartbeat events P in time-series data X.
Consequently, a J-peak detector implements an algorithm that
maps X to P. The input BCG are single- or multichannel
measurements, which are represented as X ∈ Rn×k with k being
the number of channels and n the number of equidistantly
sampled measurement points. In order to detect heartbeats
present in X, each deep learning approach for J-peak
detection mentioned in Section 2 models the J-peaks, a set of
event timestamps P � {p ∈ R}, with a binary event-hot encoding
in the corresponding target time-series y ∈ Rn. Additionally, a
small area of interest around the peak with a width of τ may also
be encoded with one. In the context of this work, y is referred to
as surrogate signal. The majority of machine learning models M
employed for this task are implemented as sequence-to-sequence
models, which learn the following mapping Eq. 1:

M: X ↦ y (1)
Given that an ideal model M is unlikely to exist, the

approximation of the target surrogate signal y is defined as
ŷ ≔ M(X). Subsequent to model inference, the estimated time-
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series ŷ is frequently subjected to post-processing in order to
enhance the clarity and centering of the characteristic peak. This
can be achieved by utilizing a low-pass filter or a moving average.

Finally, a classical peak detection algorithm is applied, with
temporal and magnitude thresholds that have been optimized
for the purpose of extracting heartbeats. Furthermore, the
algorithm may also employ adaptive thresholds. Formally, the
set of J-peaks P̂ � {p ∈ R} is extracted from the approximated
surrogate signal ŷ using a peak detection algorithm. The
individual timestamps of the heartbeats, denoted by p,
constitute the elements of the set.

We hypothesize that the state-of-the-art method of binary
event-hot encoding of heartbeats may not be optimal for J-peak
detection, resulting in imprecise event detection. The surrogate
approximation ŷ may be skewed after the low-pass post-
processing, which could lead to inaccurate peak detection.
Consequently, it is postulated that the encoding of heartbeats,
designated as “kernels” in this paper, exerts a significant
influence on the efficacy of subsequent J-peak detection.

To the best of our knowledge, no existing literature addresses the
optimal kernel for the encoding of J-peaks with the aim of improving
the precision of J-peak detection. A more general literature review,
not limited to BCG data, revealed a single similar approach to event
extraction from time-series data using deep learning (Azib et al.,
2023). This work provides a theoretical framework for event
detection in time-series for interval-based events, which was

validated on fraud events. In this paper, we propose multiple
encodings of heartbeats for generating the surrogate signal and
empirically evaluate them with the aim of optimizing the J-peak
detection P̂ by aiding the model to learn M: X ↦ ŷ. The method
will be introduced in detail in Section 4.2.

4 Materials and methods

4.1 Data acquisition

The dataset comprises both the BCG and ECG, which were
collected from 11 participants over a period of approximately 8 h
during 17 nights of sleep. The data were collected as part of the
Virtual Sleep Lab project, as detailed in Kranzinger et al. (2023). The
electrocardiogram (ECG) was recorded using the BrainAmp
Standard Amplifier (Brain Products GmbH, Germany), a
laboratory-standard device known for high-quality recordings.
The BCG was measured using an inertial measurement unit
(IMU) with a 16-bit resolution (0.06 mg/LSB), and was mounted
within the mattress centrally underneath the expected position of
the subjects’ chests. The accelerations in three dimensions were
sampled at a rate of 1,000 Hz. Subsequently, the signal was
interpolated with a cubic spline and resampled at 64 Hz. In total,
more than 140 h were measured, with an average interbeat interval
(IBI) of 0.92 s.

FIGURE 2
Complete processing pipeline of the proposed method, including synchronization with ground truth heartbeats accessed from the ECG,
preprocessing, neural networks as well as post-processing to extract the J-peaks from the approximated surrogate signal.
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4.2 Proposed method

For BCG, no ground truth J-peaks annotations exist. Therefore,
the reference heartbeats from the simultaneous ECG measurement
are accessed. The evaluated event detectors are quantified by
comparing the estimated J-peaks with the related reference
R-peaks using multiple evaluation metrics. Figure 2 depicts the
complete processing pipeline of the proposed method. Within this
section, each part of the pipeline, from high-precision data
synchronization to the final extraction of the estimated J-peaks,
is explained in detail.

4.2.1 High-precision data synchronization
A supervised machine learning setting requires ground truth

heartbeat events that can be detected from ECG or the less accurate
photoplethysmogram (PPG). According to the literature, the RJ-
intervals, i.e., the time delay between R-peak and J-peak, vary
typically between 180 ms and 240 ms. They may depend on
certain factors, such as respiration, however, their changes are
slow (Casanella et al., 2012).

In supervised machine learning setups for the J-peak detection
utilizing R-peaks extracted from a synchronized ECG as target
events, this would lead to varying RJ-intervals along the
measurement. A practical approach would be to assume a
constant RJ-interval per measurement as correct time-delay.
However, the variation of 60 ms of the RJ-interval might lead to
a suboptimal heart peak detection precision.

In this work, this issue is addressed by applying a non-linear
time-delay synchronization for event-based time-series data
(Schranz et al., 2024) between J-peaks and their corresponding
R-peaks such that the slowly varying RJ-intervals can be
approximated to zero for all J-peaks across the measurement.

As a first preprocessing step, a highly accurate time delay
estimation between ECG and BCG is performed using the
nearest-advocate package (Schranz et al., 2024). As this algorithm
requires event-based time series data, the R-peaks were extracted
from the ECG and the J-peaks from the BCG using a digital signal
processing approach (Pröll et al., 2019). This algorithm was used
because signal processing methods tend to be more robust on a new
dataset, although there are likely to be more precise methods. The
nearest-advocate package was also used to reduce non-linearities
caused by non-linear clock drifts in the measurement systems and
physiological variations that cause changes in RJ intervals.

The resulting dataset therefore has a three-dimensional BCG
and corresponding R-peak events that are temporally aligned with
the target J-peaks. This initial preprocessing step will make
subsequent machine learning models more invariant to changing
RJ intervals.

4.2.2 Preprocessing
Windows with a duration of 64-s are sampled from the subjects.

Each BCG consists of three channels representing the x, y, and z-axis
of the IMU. A bandpass filter with cutoff frequencies of 4.0 Hz and
25 Hz was applied to each of the three dimensions of the raw BCG
signal. According to the standardization approach of (Gomez-
Clapers et al., 2014), the high-pass cutoff-frequency should be
lower, such as 1.5 Hz, but our hyperparameter optimization has
shown that the pipeline yield improved results if signals below

4.0 Hz are omitted. The bandpass-filtered signal is then normalized
using the interquartile range, which is less sensitive to outliers than
standard z-score normalization.

The nearest-advocate time-delay estimation was then applied
again within the range of −2 to +2 s to ensure a proper signal quality
and synchronicity for BCG and ECG. Windows with a time-delay of
0.1 s or more between R-peaks and preliminary J-peaks were
omitted from the training dataset. Although this discarded
approximately 32% of the windows, no systematic bias was
introduced because the synchronization between ECG and BCG
is independent of signal quality and only the latter affects the quality
of subsequent model training. All windows were used for the
validation dataset.

4.2.3 Heartbeat encoding of the target R-peak
The core of the proposed approach is the special encoding of

heartbeats by a surrogate signal, which is depicted in Figure 3. The
reference heartbeats as extracted from an ECG are illustrated in red
vertical lines, with four surrogate signals with different encodings.
The surrogate signal is the target function that is learned by the
neural network. The purpose of the surrogate signal is that the
subsequent peak detection is more accurate on the surrogate
approximation of the deep learning model.

Therefore, within the scope of the paper, three different kernel
shapes, i.e., quadratic, triangular and rectangular, will be empirically
evaluated with the aim of finding the most suited kernel for aiding
the model to learn ŷ. All of these kernels share the properties of
being symmetric around the reference heartbeat in the center at a
maximum. Note that the rectangular encoding reflects the binary
masking of the heartbeat with additional area of interest.
Additionally, the distance-time encoding as proposed by
(Vijayarangan et al., 2020) for the similar field of R-peak
detection in ECG was evaluated. A surrogate signal generated by
distance-time encoding has the property, that for any timestamp in
y the value represents the distance to the closest heartbeat.

4.2.4 Deep learning models
Two network architectures are evaluated, both implementing a

sequence-to-sequence approach, that estimates an equidistant time-
series y referred to as surrogate signal.

4.2.4.1 Convolutional neural network
To approximate the surrogate signal, a convolutional neural

network (CNN) with three layers of 64, 128, and one channel each is
used. The kernels of 5, 65, and 129 are set to become increasingly
wider. The model uses the ReLU activation function as a nonlinear
mapping between layers and a batch size of 32. The training uses the
Adam optimizer with a learning rate of 0.0001 for 40 epochs.

4.2.4.2 Residual Network
Additionally, a Residual Network (ResNet) is applied, as several

works in the literature have used a variant of the related ResNet or
U-Net architectures (Cathelain et al., 2020; Zhou et al., 2021; Liu
et al., 2022). To do this, the initial convolutional layer has 8 channels
with a kernel width of 5. Then a ResNet with two convolutional and
two deconvolutional residual blocks, each with a step size of 2 was
applied. Batch normalization and a 40% dropout were applied
between each residual block. Finally, a single-channel
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convolutional layer with a kernel width of 5 was applied. All other
properties are the same as for the CNN.

4.2.5 Post-processing
Since the output of the network is an approximation of the

surrogate signal ŷ, post-processing is necessary. For this purpose,
the model output was smoothed with a second-order low-pass filter
with a cut-off frequency of 7.5 Hz. Finally, a peak detection was
performed using the scipy-package, with the following parameters:
distance = 20, height = 0.01, and prominence = 0.1.

4.3 Evaluation

The comprehensive method evaluations in (Pröll et al., 2021)
only target the accuracy of estimated mean heart rates within 8-s
windows. However, the implicit aggregation of heartbeats to mean
heart rate limits the applicability for further analyses. For example,
the calculation of heart rate variability metrics relies on interbeat
intervals (IBI) and reflects a person’s physiological state and health
(Shaffer and Ginsberg, 2017). In addition, most sleep stage
classification algorithms rely on IBIs as input, i.e., interpolation
of the temporal differences between successive heartbeats
(Kranzinger et al., 2023).

Since the temporal detection of heartbeats is also important for
the subsequent analysis of heartbeats, the detected J-peaks are
evaluated using complementary criteria. The following metrics
are used for comparison:

1. HR MAE: The estimation of heart rates within the full 64-s
windows, with deviations reported as mean absolute
error (MAE).

2. HR MAE 8 s: Estimation of heart rates within a reduced
window of 8 s to establish comparability to the proposed
methods in of Pröll et al. (2021).

3. NAd_sym (ms): The Nearest-Advocate criterion (Schranz
et al., 2024). This quantity is designed to measure the
synchronicity between a pair of event-based time series. The
resulting value after time-delay correction reflects the average
distance between each detected J-peak, and its nearest
reference R-peak. The algorithm is applied symmetrically
and results are provided in milliseconds (ms). This measure
considers only the temporal deviation of detected heart peaks.

4. IBI MAE (ms): MAE between the interbeat interval (IBI) of
the detected J-peaks and the reference IBI. Since the precision
of the detection is high, the results are given in
milliseconds (ms).

In the cross-validation procedure, the individual windows were
grouped by subject in order to obtain an unbiased estimator for new
subjects. The hyperparameters of the pre-processing, the model, the
kernel width, and the post-processing were optimized using a grid
search approach.

5 Results

Figure 4 shows the intermediate and final results of the proposed
J-peak detection pipeline for an exemplary 10-s window. The 3-
channel BCG measured by an acceleration sensor from which the
heartbeats are to be detected is shown in the lower plot. In both plots,
the surrogate signal is illustrated in gray. The heart beats are encoded
with triangular kernels, with a center at the exact temporal position
of the peak. Heartbeats that are closer together than the kernel width
cause interference with super-position, as shown around second
11 in the plot.

The approximation of the surrogate signal (orange) is very
similar to the target for clean BCG signals. For noisy episodes in
BCG, the approximation remains higher for areas between heart
beats, indicating a higher uncertainty of the deep learning

FIGURE 3
Encoding of the reference heartbeat events in (vertical red lines) with multiple surrogate signals with different encodings.
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estimation. However, even in the noisy area between the 10th and
13th second, the proposed method is able to accurately detect the
heart beats.

Table 1 summarizes the results of the experiments. The four
measures provided per method are described in Section 4.3. We
evaluated our proposed methods against several existing methods,

FIGURE 4
(A) The triangular signal (gray) with its approximation by the neural network (orange) and detected heartbeats using peak detection. (B) 3-axis BCG
with indicated triangular surrogate signal (gray) and the J-peaks as detected by (Pröll et al., 2019) (blue) and with the proposed method and CNN-
architecture (red).

TABLE 1 Results for each method, with reported mean and standard deviation across subjects. For each evaluation metric, the best result is indicated in
bold.

Method/Model HR MAE HR MAE 8 s NAd_sym (ms) IBI MAE (ms)

Pino et al. (2017) 3.01± 2.3 3.83± 2.5 65.6± 18 57.6± 29

Choe and Cho (2017) 4.81± 3.9 5.74± 4.2 69.6± 21 101± 66

Brüser et al. (2011) 20.6± 4.7 22.5± 4.7 95.3± 15 215± 73

Pröll et al. (2019) 2.32± 1.5 3.18± 1.6 79± 15 78.9± 22

Pröll et al. (2021) — 3.18± 0.54 — —

CNN rectangular kernel 1.46± 0.83 2.00± 0.89 57.6± 7.7 44.2± 7.5

CNN triangular kernel 1.1± 0.71 1.52± 0.77 52.4± 10 40± 8.2

CNN quadratic kernel 1.31± 0.74 1.74± 0.81 53.8± 10 39.8± 8.9

CNN Distance Time 1.31± 0.88 1.73± 0.89 53± 9.7 41.4± 8.5

ResNet triangular kernel 1.22± 0.63 1.38± 0.64 48.8± 8 27.9± 7
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including a state-of-the-art deep learning method of (Pröll et al.,
2021). The classical digital signal processing methods were used as
implemented in (Pröll et al., 2019) and with default parameters, to
facilitate comparability. For Pröll et al. (2021), the best-performing
model architecture on their dataset, the Modified CNN-GRUx2, was
used and trained on our dataset for 75 epochs. Since this model
estimates the mean heartbeat within 8-second windows, only this
measure was reported. As this model estimates the mean heartbeat
within 8-s windows, only this measure was reported.

The proposed method with a CNN has been evaluated with
various kernels (rectangular, triangular, quadratic) as well as the
distance-time encoding as proposed by (Vijayarangan et al.,
2020) for generating a surrogate signal for ECG. In addition,
the most suitable kernel was also evaluated with a ResNet
architecture.

The results in Table 1 show the high performance of the proposed
method for both for the heart rate estimation [HR MAE and HR MAE
8s) as well as the precision of the heart peak detection (NAd_sym (ms)
and IBI MAE (ms)]. In particular, the triangular kernel yielded excellent
results, with the quadratic kernel and the distance timemodelling of the
heart peak events being on par.

Figure 5 shows a Bland-Altman analysis for four selected
algorithms in subplots a) to d), with their 95%-limit of
agreement (LoA) in red (Pino et al., 2017). (a), accurately
estimates heart rates for a high percentage of windows, as
indicated by scatters close to zero (Pröll et al., 2021). (b) is the
only method where the quantification of errors resulting from an
integer number of heartbeats being incorrectly detected is not
visible. This is because this method estimates heart rates directly
as a regression task. The proposed methods on the right side (c and
d) show very similar distributions, with more outliers for the ResNet
(d). This results in a wider LoA, although the MAE of heart rates is

lower. For both proposed methods, it can be seen, that multiple
outliers are caused by false positives (not detected) events for heart
rates around 50 bpm and false negatives (missed events) for higher
heart rates.

6 Discussion

6.1 Method comparison

For each method, the accuracy of heartbeat estimation is better
for the full 64-s window than for the reduced 8-s window. The
difference of the respective estimations is small, given a reduced
interval, by a factor of 8. This can be explained by the implications of
falsely detected peaks: Any false positive or false negative peak
detection will result in an incorrect number of events within the time
range. As the estimated heart rate is calculated as the mean interval
between beats, a wider interval is more robust against a missing or
incorrectly detected beats. However, the wider interval increases the
likelihood of one or more false peaks. Therefore, the difference
between HR MAE and HR MAE 8s is quite small.

For the existing approaches (Pröll et al., 2019; Pröll et al., 2021),
the accuracy in terms of heart rates is equivalent. Since Pröll et al.
(2021) estimate heart rates for an 8-second window, only this
measure can be reported. This method is characterized by a very
small standard deviation across subjects, which may indicate an
advantage of direct estimation of the target measure. The significant
advantage of Pröll’s deep learning method (Pröll et al. 2021) over his
classical digital signal processing method, as reported in Pröll et al.
(2019), could not be replicated on this dataset within these
experiments. This could be explained by an insufficient number
of training samples or a more challenging raw BCG signal. There

FIGURE 5
Bland-Altman analysis comparing ground truth heart rates (accessed from ECG) and the methods of (Pino et al., 2017) (A) (Pröll et al., 2021), (B) and
the proposed CNN (C) and ResNet (D)with triangular kernel each within 8-s windows. The y-axis shows the residual of the estimate hrECG − hrB̂CG in beats
per minute (bpm), with limits of agreement (LoA) measuring their deviation.
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could be explained by a too small number of training samples or a
more challenging raw BCG signal.

In contrast, Pino et al. (2017) provides themost accurate detection of
J-peaks in terms of NAd_sym (ms) and IBI MAE (ms), but has a higher
standard deviation andhigher error in heart rate estimation. This suggests
that the preprocessing method of Pino et al. (2017) may allow for more
accurate event detection, but carries a higher risk of false positives or
negatives. Furthermore, the transferability to other subjects may be
more limited.

The method of Brüser et al. (2011) did not produce the expected
results with an MAE of heart rates greater than 20 bpm. We believe
that the default parameters were not successful for the given data set.
The Bland-Altman analysis (not reported in this work) suggests a
plausible range of deviations for heart rates of 50pm, increasing for
higher heart rates.

The proposed methods excel for each metric. Regarding the
evaluation of heartbeat encodings, the triangular kernel was the
most successful for each metric. This indicates a more accurate
heartbeat estimation as well as a higher precision of heart peak
detection. The hyperparameter optimization suggests a kernel-width
of 0.8 s for the triangular kernel and 1.2 s for the quadratic kernel.
Furthermore, the inter-subject standard deviation is significantly lower,
except for Pröll et al. (2021) concerning the HR MAE 8s measure. As
expected, the rectangular (binary) encoding of heartbeats yielded solid,
but inferior results in comparison to continuous surrogate signals with
a single optimum at the heartbeat timestamp.

The evaluation of the more complex ResNet resulted in a higher
precision for the J-peak detection, with a mean precision of less than
50 ms. It has been reported in the literature that the subsequent use
of a recurrent network such as a GRU or LSTM (long short-term
memory) improves the results. Developing the network architecture
with a recurrent network or multi-head attention layer is a point for
further development.

6.2 Kernel evaluation

The results demonstrate that the quality of heartbeat estimation
depends significantly on the kernel type utilized to generate the
surrogate signal. Therefore, the surrogate signal should be easily
learnable by the sequence-to-sequence model and facilitate a precise
subsequent peak detection during post-processing. It is
hypothesized that the surrogate signal should be continuous and
exhibit distinct, well-defined peaks in order to accommodate both
properties. Empirical validation has demonstrated that the binary
(rectangular) kernel, which yields non-continuous surrogate signal
encodings without distinct maxima, is inferior for peak detection
compared to other approaches. A visual comparison of the kernels is
shown in Figure 3.

Furthermore, the authors hypothesize that the width of the
kernel is of importance: On one hand, the width of the kernels
should be broad enough to support the target heartbeats also under
imprecise measurement or an imperfect dataset. In particular, if the
R-peaks are utilized as ground truth heartbeat events, the kernel
width must cover also varying RJ-intervals. On the other hand, the
width of the kernels, i.e., the support within the surrogate signal,
should be constrained, such that points in time not close to peaks
have a default value such as zero. This is not the case for Distance

Time encoding, where each value represents the time difference to
the nearest peak. Moreover, another hypothesis is that the kernel
shape should be symmetric in order to improve the learning of the
corresponding peak within the signal. However, this was not directly
evaluated, rather than indirectly by inference provided by larger
kernel width.

Additionally, interferences of two adjacent kernels occur, if
the respective peaks are closer together than the kernel width.
This issue was particularly evident with the quadratic kernel,
which showed optimal performance with a kernel width of 1.2 s,
which is greater than the average interbeat interval. Note that the
peak of the quadratic kernel is twice as sharp as that of the
triangular kernel of the same width in terms of the first
derivation. It is still not completely clear why the triangular
kernel is superior to the quadratic kernel. The authors
hypothesize that there is a trade-off in the kernel width
between precision of the peak and inference with adjacent
kernel shapes. This does not only involve the already
optimized kernel width, but also its shape. It is acknowledged
that further research is required to evaluate this trade-off
systematically in order to identify the optimal kernel shape for
heartbeat encoding.

6.3 Intra-subject variability

In the literature, both inter- and intra-subject variability are
cited as a major challenge in the analysis of BCG signals (Choe and
Cho, 2017; Sadek and Abdulrazak, 2021). In all the results above, the
cross-validation was grouped by participants to access the inter-
subject variability.

To analyze the within-subject variability only, the effects of
classical cross-validation without grouping by subject were analyzed.
It was found that the validation error is only about 10% (instead of
80%) higher than the training error. This indicates that the
extraction of R-peaks is subject to high interpersonal variability
and could be generalized very well across time intervals from the
same subject. It is therefore expected that an increase in the number
of subjects from the current 11 (with a total of 17 nights) will
significantly improve the quality of the model. Alternatively, this
work can support the development of data augmentationmethods to
improve model performance in an original measurement without
additional subjects.

6.4 Limitations and further work

A limitation of this work is that the limitation of the dataset that
was acquired from only eleven participants and over 17 nights.
Section 6.3 suggests a much very high intra-subject generalization,
however, the inter-subject generalization is significantly lower. In
future work, a more comprehensive as well as open dataset will be
utilized to get more robust results and to establish a more rigorous
method comparison. Furthermore, data augmentation will be
employed with the aim to improve the inter-subject
generalization. Regarding the dataset, the anthropometries of the
subjects should be critically reviewed, especially considering
diversity and fit to potential target user groups.
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Another limitation of the used dataset was the need for non-
linear time synchronization due to temporal issues in the
ballistocardiogram data acquisition. To solve this issue, a non-
linear time synchronization as suggested in Schranz et al. (2024)
was conducted between R-peaks from ECG and preliminarily
extracted J-peaks from BCG using the method of Pröll et al.
(2019). As the RJ-interval is non-zero and changing slowly
(Casanella et al., 2012), the non-linear time synchronization may
have compensated the varying time-delay between R-peak and
subsequent J-peak. Therefore, this preprocessing step that was
employed with the intention to compensate a measurement issue
might have improved the suitability of using R-peaks as ground
truth events for training a supervised neural network for J-peak
extraction. The varying RJ-intervals are typically considered as
constant in current literature, or this property is noted as open
issue. In order to answer this research question, a very precisely
synchronized dataset is required, which further increases the interest
in continuing the current work on a larger and open dataset with a
dedicated research focus on the preprocessing of BCG data.

Another discussion point for future research is the superiority of
the triangular kernel over the quadratic kernel. Here, more
experiments should be conducted to systematically evaluate the
trade-off mentioned in section 6.2, in order to identify the
optimal kernel shape for heartbeat encoding.

7 Conclusion

In this work, a method for improved heartbeat detection in BCG
is proposed. This method uses various kernel shapes to generate
surrogate signals that encode the discrete heartbeat events. Using
deep learning models in a sequence-to-sequence setting, this
surrogate signal is approximated, allowing a more precise J-peaks
extraction in the subsequent peak detection. To the best of our
knowledge, this is the first time temporal events are encoded with
kernels to enable an improved event detection using a regression-
based sequence-to-sequence model. Moreover, this work conducted
the first comparison of various event encodings for event detection
using deep learning.

The evaluation of different kernel shapes showed, that the
simple triangular kernel provided the best surrogate signal to
extract J-Peaks with a high precision. Using the proposed
method, the MAE of the estimated heart rate was 1.1 s within
64-s and 1.52 s for an 8-s window, halving the precision of the best
evaluated existing approach. Compared to a CNN architecture,
ResNet architecture improved the accuracy of heartbeat
detection, with a mean accuracy of less than 50 ms.

The findings may provide a foundation for enhanced health
monitoring during sleep, including comprehensive heart rate
variability analysis and sleep stage classification. This research
further substantiates the potential of ballistocardiogram sensor
technology for unobtrusive and cost-effective health
monitoring.

There are several options for future development of the proposed
method. Bland-Altman analysis provides quantified estimates.
Optimizing the mean HR as an additional target measure with a
hybrid loss in the deep learning model training could further
improve the heart rate estimation. The overall estimation accuracy

could be further improved by adding a recurrent layer after the CNN
respectively ResNet architecture layers. A larger or openly available
dataset could be used to perform a rigorous comparison of methods,
including additional deep learning approaches. This could reduce the
high inter-subject variability of the current evaluation. Furthermore, the
use of data augmentation methods is well suited to address both intra-
and inter-subject variability.

In conclusion, the proposed triangular and quadratic kernels
for generating a surrogate signal to be approximated is a novelty
and showed significant improvements for J-peak detection in
BCG compared to existing solutions. This undermines our initial
hypothesis that the design of the surrogate signals for target
measures has a significant impact on the quality of the output.
This approach can also provide a general solution for applying
deep learning models, especially in the sequence-to-sequence
setting, for event detection in univariate or multivariate time
series data.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

Author contributions

CS: Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Methodology, Project administration, Software, Validation,
Visualization, Writing–original draft, Writing–review and editing. CH:
Conceptualization, Methodology, Software, Validation,Writing–review
and editing. SM: Data curation, Writing–review and editing. DH: Data
curation, Funding acquisition, Investigation, Project administration,
Resources, Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was thankfully supported by the Austrian Federal Ministry for
Climate Action, Environment, Energy, Mobility, Innovation and
Technology under Contract No. 2021-0.641.557.

Conflict of interest

Author DH was employed by Das Gesundheitshaus GmbH.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Frontiers in Network Physiology frontiersin.org10

Schranz et al. 10.3389/fnetp.2024.1425871

13

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1425871


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Azib, M., Renard, B., Garnier, P., Génot, V., and André, N. (2023). Event detection in
time series: universal deep learning approach.

Brownlow, J. A., Miller, K. E., and Gehrman, P. R. (2020). Insomnia and cognitive
performance. Sleep. Med. Clin. 15, 71–76. doi:10.1016/j.jsmc.2019.10.002

Brüser, C., Stadlthanner, K., Waele, S. D., and Leonhardt, S. (2011). Adaptive beat-to-
beat heart rate estimation in ballistocardiograms. IEEE Trans. Inf. Technol. Biomed. 15,
778–786. doi:10.1109/TITB.2011.2128337

Casanella, R., Gomez-Clapers, J., and Pallas-Areny, R. (2012) “On time interval
measurements using BCG,” in 2012 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, New York. 5034–5037. doi:10.1109/
EMBC.2012.6347124

Cathelain, G., Rivet, B., Achard, S., Bergounioux, J., and Jouen, F. (2020) “U-net
neural network for heartbeat detection in ballistocardiography,” in International
Conference of the IEEE Engineering in Medicine and Biology. New York. doi:10.
1109/EMBC44109.2020.9176687

Choe, S.-T., and Cho, W. (2017). Simplified real-time heartbeat detection in
ballistocardiography using a dispersion-maximum method. Biomedical Research-tokyo.

Craven, J., McCartney, D., Desbrow, B., Sabapathy, S., Bellinger, P., Roberts, L., et al.
(2022). Effects of acute sleep loss on physical performance: a systematic and meta-
analytical review. Sports Med. Auckl. N.Z. 52, 2669–2690. doi:10.1007/s40279-022-
01706-y

Garbarino, S., Lanteri, P., Bragazzi, N. L., Magnavita, N., and Scoditti, E. (2021). Role
of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 4,
1304–1317. doi:10.1038/s42003-021-02825-4

Giovangrandi, L., Inan, O. T., Wiard, R. M., Etemadi, M., and Kovacs, G. T. (2011)
“Ballistocardiography–A method worth revisiting,” in Conference proceedings:
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
Conference 2011, December 23, 2014. New york. 4279–4282. doi:10.1109/IEMBS.
2011.6091062

Gomez-Clapers, J., Serra-Rocamora, A., Casanella, R., and Pallas-Areny, R.
(2014). Towards the standardization of ballistocardiography systems for J-peak
timing measurement. Measurement 58, 310–316. doi:10.1016/j.measurement.
2014.09.003

Heise, D., and Skubic, M. (2010) “Monitoring pulse and respiration with a non-
invasive hydraulic bed sensor,” in Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and
Biology Society. Annual International Conference 2010, New York. 2119–2123. doi:10.
1109/IEMBS.2010.5627219

Itani, O., Jike, M., Watanabe, N., and Kaneita, Y. (2017). Short sleep duration and
health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep. Med.
32, 246–256. doi:10.1016/j.sleep.2016.08.006

Jakowski, S., Kiel, A., Kullik, L., and Erlacher, D. (2023). “Sleep to heal and restore: the
role of sleep in the recovery and regeneration process,” in The importance of recovery for
physical and mental health (Routledge).

Kranzinger, C., Bernhart, S., Kremser, W., Venek, V., Rieser, H., Mayr, S., et al. (2023).
Classification of human motion data based on inertial measurement units in sports: a
scoping review. Appl. Sci. 2023 13 (15), 8684. doi:10.3390/APP13158684

Liu, Y., Lyu, Y., He, Z., Yang, Y., Li, J., Pang, Z., et al. (2022). ResNet-BiLSTM: a
multiscale deep learning model for heartbeat detection using ballistocardiogram signals.
J. Healthc. Eng. 2022, 6388445. doi:10.1155/2022/6388445

Nguyen, T., Qin, X., Dinh, A., and Bui, F. (2019). Low resource complexity R-peak
detection based on triangle template matching and moving average filter. Sensors 19,
3997. doi:10.3390/s19183997

Pan, J., and Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE
Trans. Biomed. Eng. BME- 32, 230–236. doi:10.1109/TBME.1985.325532

Pino, E. J., Chávez, J. A. P., and Aqueveque, P. (2017). “BCG algorithm for
unobtrusive heart rate monitoring,” in 2017 IEEE healthcare innovations and point
of care technologies (HI-poct), 180–183. doi:10.1109/HIC.2017.8227614

Pröll, S. M., Hofbauer, S., Kolbitsch, C., Schubert, R., and Fritscher, K. D. (2019)
“Ejection wave segmentation for contact-free heart rate estimation from
ballistocardiographic signals,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. New York,
3571–3576. doi:10.1109/EMBC.2019.8857731

Pröll, S. M., Tappeiner, E., Hofbauer, S., Kolbitsch, C., Schubert, R., and Fritscher, K.
D. (2021). Heart rate estimation from ballistocardiographic signals using deep learning.
Physiol. Meas. 42, 075005. doi:10.1088/1361-6579/ac10aa

Sadek, I., and Abdulrazak, B. (2021). A comparison of three heart rate detection
algorithms over ballistocardiogram signals. Biomed. Signal Process. Control 70, 103017.
doi:10.1016/j.bspc.2021.103017

Schranz, C.,Mayr, S., Bernhart, S., andHalmich, C. (2024). Nearest advocate: a novel event-
based time delay estimation algorithm for multi-sensor time-series data synchronization.
EURASIP J. Adv. Signal Process. 46, 46. doi:10.1186/s13634-024-01143-1

Shaffer, F., and Ginsberg, J. P. (2017). An overview of heart rate variability metrics and
norms. Front. Public Health 5, 258. doi:10.3389/fpubh.2017.00258

Tomaso, C. C., Johnson, A. B., and Nelson, T. D. (2021). The effect of sleep
deprivation and restriction on mood, emotion, and emotion regulation: three meta-
analyses in one. Sleep 44, zsaa289. doi:10.1093/sleep/zsaa289

Vijayarangan, S. R. V., Murugesan, B. S. P. P., Joseph, J., and Sivaprakasam, M. (2020)
“RPnet: a Deep Learning approach for robust R Peak detection in noisy ECG,” in 2020
42nd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). New York. 345–348. doi:10.1109/EMBC44109.2020.9176084

Yun, D., Lee, H. C., Jung, C. W., Kwon, S., Lee, S. R., Kim, K., et al. (2022). Robust
R-peak detection in an electrocardiogram with stationary wavelet transformation and
separable convolution. Sci. Rep. 2022 12 (1)), 19638–19710. doi:10.1038/s41598-022-
19495-9

Zhou, T., Men, S., Liang, J., Yu, B., Zhang, H., and Luo, X. (2021). 1D U-Net++: an
effective method for ballistocardiogram J-peak detection. J. Mech. Med. Biol. 21. doi:10.
1142/S0219519421400583

Frontiers in Network Physiology frontiersin.org11

Schranz et al. 10.3389/fnetp.2024.1425871

14

https://doi.org/10.1016/j.jsmc.2019.10.002
https://doi.org/10.1109/TITB.2011.2128337
https://doi.org/10.1109/EMBC.2012.6347124
https://doi.org/10.1109/EMBC.2012.6347124
https://doi.org/10.1109/EMBC44109.2020.9176687
https://doi.org/10.1109/EMBC44109.2020.9176687
https://doi.org/10.1007/s40279-022-01706-y
https://doi.org/10.1007/s40279-022-01706-y
https://doi.org/10.1038/s42003-021-02825-4
https://doi.org/10.1109/IEMBS.2011.6091062
https://doi.org/10.1109/IEMBS.2011.6091062
https://doi.org/10.1016/j.measurement.2014.09.003
https://doi.org/10.1016/j.measurement.2014.09.003
https://doi.org/10.1109/IEMBS.2010.5627219
https://doi.org/10.1109/IEMBS.2010.5627219
https://doi.org/10.1016/j.sleep.2016.08.006
https://doi.org/10.3390/APP13158684
https://doi.org/10.1155/2022/6388445
https://doi.org/10.3390/s19183997
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/HIC.2017.8227614
https://doi.org/10.1109/EMBC.2019.8857731
https://doi.org/10.1088/1361-6579/ac10aa
https://doi.org/10.1016/j.bspc.2021.103017
https://doi.org/10.1186/s13634-024-01143-1
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1093/sleep/zsaa289
https://doi.org/10.1109/EMBC44109.2020.9176084
https://doi.org/10.1038/s41598-022-19495-9
https://doi.org/10.1038/s41598-022-19495-9
https://doi.org/10.1142/S0219519421400583
https://doi.org/10.1142/S0219519421400583
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1425871


On preserving anatomical detail in
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Introduction: Statistical shape analysis (SSA) with clustering is often used to
objectively define and categorise anatomical shape variations. However, studies
until now have often focused on simplified anatomical reconstructions, despite
the complexity of studied anatomies. This work aims to provide insights on the
anatomical detail preservation required for SSA of highly diverse and complex
anatomies, with particular focus on the left atrial appendage (LAA). This
anatomical region is clinically relevant as the location of almost all left atrial
thrombi forming during atrial fibrillation (AF). Moreover, its highly patient-specific
complex architecture makes its clinical classification especially subjective.

Methods: Preliminary LAA meshes were automatically detected after robust
image selection and wider left atrial segmentation. Following registration, four
additional LAA mesh datasets were created as reductions of the preliminary
dataset, with surface reconstruction based on reduced sample point densities.
Utilising SSA model parameters determined to optimally represent the
preliminary dataset, SSA model performance for the four simplified datasets
was calculated. A representative simplified dataset was selected, and
clustering analysis and performance were evaluated (compared to clinical
labels) between the original trabeculated LAA anatomy and the representative
simplification.

Results: As expected, simplified anatomies have better SSA evaluation scores
(compactness, specificity and generalisation), corresponding to simpler LAA
shape representation. However, oversimplification of shapes may noticeably
affect 3D model output due to differences in geometric correspondence.
Furthermore, even minor simplification may affect LAA shape clustering,
where the adjusted mutual information (AMI) score of the clustered
trabeculated dataset was 0.67, in comparison to 0.12 for the simplified dataset.
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Discussion: This study suggests that greater anatomical preservation for complex
and diverse LAA morphologies, currently neglected, may be more useful for shape
categorisation via clustering analyses.

KEYWORDS

statistical shape analysis, hierarchical clustering, left atrial appendage (LAA), atrial
fibrillation, principal component analysis -PCA, clustering performance evaluation,
segmentation (image processing)

1 Introduction

Shape is mathematically defined as “all the geometrical
information that remains when location, scale and rotational
effects are filtered out from an object” (Kendall, 1977). Shape
analysis refers to a wide variety of mathematical/computational
methods that may be used to identify the geometrical similarities
and differences within a cohort of shapes. In recent years, there has
been an adoption of statistical shape analysis (SSA) applications to
human organs and vessels; this type of analysis is considered to be a
step up from clinical morphometry due to greater objectivity and/or
the identification and quantification of subtle geometrical
information (Goparaju et al., 2022; Cerrolaza et al., 2019). Of the
many such studied anatomies, the left atrial appendage (LAA), a
natural closed-ended outgrowth of the left atrium (Figure 1A),
stands out for its morphological complexity (in terms of both
macro-shape and anatomical intricacy) and high diversity among
different subjects.

The LAA is considered the origin of up to 91% of all left atrial
thrombi during atrial fibrillation (AF) (Blackshear and Odell, 1996),
the most common cardiac arrhythmia, affecting 59 million people
worldwide and with increasing prevalence in older patients (about

20%–33% of risk above 45 years of age) (Linz et al., 2024). LAA
shape category for thrombosis risk assessment is typically
determined through clinical classification systems. The most used
classification system defines 4 LAA types–chicken wing, windsock,
cauliflower and cactus (Wang et al., 2010; Korhonen et al., 2015) (in
debatable order of lower to greater thrombosis risk (Musotto et al.,
2022; Bosi et al., 2018)) – that may be determined through
morphometric measurements of LAA length, bending angle and
number of lobes. However, this categorisation is commonly subject
to clinical disagreement, with a study revealing consensus among
three expert clinicians to be only reached in 28.9% of cases (Wu
et al., 2019). Instead, as labelled in Figure 1B, more recent clinical
(Yaghi et al., 2020) and SSA (Juhl et al., 2024; Ahmad et al., 2024)
studies suggest that LAA categorisation may be primarily
approached as chicken wing-like (characterized by high length
and bending angle), and non-chicken wing-like.

Conventional LAA anatomical nomenclature (Barbero and Ho,
2017) is also displayed in Figure 1B for these two shapes: divided into
ostium, neck, primary and secondary lobes, and trabeculae. The
ostium refers to the entry-point for blood flow, dividing the left
atrium from the LAA. The neck refers to the main body volume
above the ostium, which connects to both the primary lobe and tip,

FIGURE 1
(A) Location of the LAA on the left atria, with blood clot representation. (B) Visual display of two selected LAA cases, with anatomical nomenclature of
ostium, neck, primary and secondary lobes and trabeculae. Note how these example LAA anatomies differ considerably in both shape and detail, which
does not include the full breadth of LAA morphological variation.
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as well as secondary lobes along the LAA length. Trabeculae,
appearing as holes that pass fully through the LAA blood pool,
are devoid of blood flow due to pectinate muscle fibres connecting
opposing walls of the appendage chamber. As seen in Figure 1B,
LAA anatomies may differ considerably in both their macro-shape
and intricate anatomical detail, i.e., trabeculae.

The inclusion of intricate anatomical details, such as LAA
trabeculae, may further improve thrombosis risk assessment of
LAA shape. In a normally functioning human heart, blood passes
through the complex anatomy of the LAA in atrial diastole and
washes out thoroughly during atrial systole. In AF conditions, the
presence of these fine LAA morphological features has a much
greater impact on the fluid mechanics–with greater thrombosis
risk around trabeculae and towards the tips of lobes (Musotto
et al., 2022). Furthermore, a recent computational study of LAA
morphological parameters (Martorana et al.) suggests that the
quantification of trabeculae may also be useful for shape analysis.

To better evaluate LAA shape than current clinical classification
systems, studies have suggested various approaches towards in-
depth LAA morphological understandings. Multivariate
morphometric LAA shape analyses, to which haemodynamic
measurements may also be combined (Pons et al., 2022), are
useful to represent thrombosis risk with respect to simple shape
measurements. More in-depth approaches, i.e., LAA SSA, have the
additional advantage of preserving LAA anatomical variation in 3D
mesh formats and outputting novel LAA categorical shapes
(Goparaju et al., 2022; Juhl et al., 2024; Ahmad et al., 2024). SSA
is based on the geometric correspondence of entire shapes (Kendall,
1977), where similarly shaped objects have greater correspondence
(and vice versa), that is defined by the particular SSA
implementation. LAA SSA representation for categorisation has
been defined both explicitly with point correspondence (Goparaju
et al., 2022; Juhl et al., 2024) and with implicit techniques (Goparaju
et al., 2022; Ahmad et al., 2024). Building upon these SSA
frameworks, such studies may then propose a computational
categorisation of their LAA shape representations. This
categorisation may be defined by hard (Ahmad et al., 2024;
Goparaju et al., 2018) and soft (Juhl et al., 2024; Slipsager et al.,
2019) clustering approaches, as well as non-clustering
dimensionality reduction (Goparaju et al., 2022).

Despite multiple advances in LAA SSA (Goparaju et al., 2022;
Juhl et al., 2024; Ahmad et al., 2024; Goparaju et al., 2018; Slipsager
et al., 2019; Bhalodia et al., 2010; Bieging et al., 2021; Adams et al.,
2023; Adams et al., 2022; Cates et al., 2015), no study has yet
investigated the impact of intricate LAA morphological features
such as trabeculae, surface roughness and tertiary lobe structure on
LAA shape category definition. As key morphological components
for the assessment of thrombosis risk, this study proposes that these
features may also provide morphological information suitable for
LAA shape categorisation (focussing on LAA SSA for clustering
analysis). Therefore, this study compares LAA shape categorisation
determined via hard clustering of LAA SSA models from fully
trabeculated versus simplified datasets, suggesting that intricate
anatomical detail (that includes trabeculations) provides
additional analytical value for clustering LAA shape. This study
does not aim to develop a new LAA classification scheme, but rather
focus on the importance of preserving these anatomical details for
clustering purposes.

2 Materials and methods

2.1 Image and mesh processing

85 clinical computerised tomography (CT) scans were used
with informed consent by University College London Hospital
(UCLH), consisting of non-AF patients examined for moderate
coronary disease. The average participant age was 61.5 years, with
48 of the 85 of male sex. As this dataset is composed of control
cases, not associated with thromboembolic risk, this study focuses
on anatomical detail. Images are 512 × 512 pixels, with a pixel
spacing of 0.488 mm × 0.488 mm, and a slice thickness of
0.625 mm acquired with the GE Discovery STE scanner. The
manual segmentation protocol of full left atria was adapted
from previous studies (Bosi et al., 2018; Capelli et al., 2012) to
include measurements of contrast-to-noise ratio (CNR) and
signal-to-noise ratio (SNR), following clinically recommended
protocols (Marques et al., 2018), to ensure image (and hence
later LAA shape) viability (Figure 2A). To summarise this
process briefly, following calculation of CNR and SNR,
85 segmentation masks were generated in Mimics 24.0
(Materialise, Belgium) from the dye contrast threshold. These
masks were manually processed by a segmentation expert to select
only left atrial structures, including the LAA, pulmonary vein trunks
and a mitral plane. After segmentation, each of the 85 left atria was
evaluated by an expert cardiac anatomist to focus on chickenwing and
non-chicken wing labels only. 21 LAAs were categorised as chicken
wing and the remaining 64 as non-chicken wing.

Then, the full left atria, as surface models, were meshed using
triangular elements of 0.5 mm edge length for subsequent LAA
definition. To keep the process as objective as possible and preserve
all anatomical details, the following approaches were taken. To
ensure an objective definition of LAA ostial planes
(conventionally defined through subjective manual assessment
(Hołda et al., 2017)), a fully automatic LAA detection algorithm
(Martorana et al.) was applied to all 85 segmented anatomies
(Figure 2B). Briefly, this LAA detection method is based of
distance analysis of computationally skeletonised left atria to
automatically identify the LAA ostial plane, thus allowing LAA
detection (Martorana et al.). To ensure normalisation across all
detected LAAs, each mesh was then scaled to the same arbitrary
volume (6,000 mm3, close to the average mesh volume). Global
registration of the detected LAAs was performed via the Super4PCS
algorithm (Mellado et al., 2014) to a single case, followed by local
iterative closest point (ICP) (Rusinkiewicz and Levoy, 2001) and
multiview registration (Pulli, 1999) across the full dataset
(Figure 2C). Local ICP and multiview registration were repeated
until all possible pairs fell within alignment distance. For
2000 sample points describing each anatomy chosen at each ICP
iteration, the chosen minimal starting distance was 10 mm, reduced
iteratively so that 80% of the samples would lie at a distance lower
than 0.5 mm. Up to this point, no LAA structural definition was lost
(i.e., shapes are fully inclusive of objectively defined LAA ostia, full
surface structure, bending and anatomical lobes and trabeculae),
ensuring that LAA shapes match ‘all the geometrical information
that remains when location, scale and rotational effects are filtered
out from an object, as per Kendall’s definition of shape
(Kendall, 1977).
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FIGURE 2
(A) LAA mesh acquisition and processing prior to SSA and clustering. The upper far left shows an example slice of the CT image stack to achieve the
lower left atrial segmentation. (B) The LAA position determined through a fully automatic detection algorithm (Martorana et al.). (C) Two examples of LAA
point clouds before and after alignment through Super4PCS registration, followed by ICP & multiview registration of all possible pairs.

FIGURE 3
The simplified meshes (left to right) for two examples of LAA chicken wing and non-chicken wing morphologies from original trabeculated
reconstruction, until full sample reduction. Note the visual loss in LAA trabeculae by 4-times sample reduction, and visual lobar definition loss by 8-times
sample reduction. The data flow for the subsequent SSA and clustering methodology is also displayed in the bottom half of the figure–with SSA of all five
datasets to determine SSA performance with greater sample reduction, followed by clustering comparison between the trabeculated dataset and
one simplified dataset (4-times sample reduction).
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2.2 Simplified dataset generation

Based on the surface mesh generated for the 85 LAAs,
simplified datasets of the registered LAA meshes were
generated in MeshLab (Cignoni et al., 2008). Poisson surface
reconstruction creates watertight surfaces from point sets with
oriented surface normals, with set reconstruction depths
corresponding to effective voxel resolutions (Kazhdan and
Hoppe, 2013). To simplify the intricate meshes, a reduction
factor of 2-times, 4-times, 8-times and 16-times was first
applied to the point sets of LAA meshes in the original
trabeculated dataset, with preservation of the original surface
normals. To sequentially reduce intricate features such as
trabeculae for surface reconstruction, the minimum sampling
density was set as the reduction factor for each simplified
dataset. To ensure less reconstruction bias due to the reduced
number of points, the surface reconstruction depth d (which
corresponds to solving on a voxel grid whose resolution is no
larger than (2d)3 (Kazhdan and Hoppe, 2013)) was specified for
each simplification as equal to 8, 7, 6 and 5. The simplified
variations of the intricate dataset are shown in Figure 3: LAA
surface reconstruction with 4-times reduction results in fully
removed trabeculae; further reductions may lead to greater loss
in lobar definition.

2.3 Statistical shape analysis

LAA SSA was applied with the explicit method in
ShapeWorks software, the most commonly studied “off-the-
shelf” software for LAA shape analysis (Goparaju et al., 2022;
Goparaju et al., 2018; Bhalodia et al., 2010; Bieging et al., 2021;
Adams et al., 2023; Adams et al., 2022). All analyses were run on

an AMD Ryzen 9 7950X3D 16-Core Processor, 4201 Mhz,
16 Core(s), 32 Logical Processor(s). The workflow for the SSA
is laid out in Figure 4 and described below. The SSA model was
run with 1,024 particles in multiscale from 128 (so that the
initialisation and optimisation of particle position is rerun for
each particle split), and principal component analysis (PCA) of
the final particle correspondences was computed. Parameter
selection (featuring a low initial weighting of particle position
with a very high iteration number per particle split, and a high
final optimised weighting (Cates et al., 2017)) was iteratively
adjusted to balance SSA model evaluation metrics of
compactness, generalisation and specificity (Davies, 2002) as
implemented by ShapeWorks (Shape Model Evaluation).
Briefly, compactness score C(nm), the degree to which a
model has captured the morphological variation within a
dataset, is defined as the sum of the eigenvalues λi up to the
selected number of PC modes nm, summarised as:
C(nm) � ∑nm

i�1λi. Generalisation score Ĝ(nm), a measure of a
SSA model’s ability to represent unseen shapes from a given
dataset, may be quantified with the approximation error
(Euclidean distance, in mm) between any held-out shape
instance xj and its corresponding SSA model reconstruction

~xj, summarised as Ĝ(nm) � 1
ns
∑ns

j�1‖xj − ~xj‖, where ns is the

number of samples. Specificity score Ŝ(nm), a measure of the
plausibility of SSA model-generated shapes, may be computed as
the approximation error (Euclidean distance, in mm) between
any randomly sampled shape yA and its nearest training sample

xi, summarised as Ŝ(nm)^ 1
M∑M

A�1 min
i

‖yA − xi‖ where M is the

number of random samples taken. Final parameters were chosen
to increase compactness i.e., the morphological variation
captured by SSA, as desirable for clustering, despite lowered
specificity and generalisation.

FIGURE 4
SSA workflow in ShapeWorks. (A) Refers to the input dataset and applied SSA parameters. (B) Refers to the SSA process, which is multiscale in the
initialisation and optimisation of particle placements, with increasing particles’ number (C) Refers to the outputs of the SSA (i.e., the PCA component
scores after particle optimisation, the average shape and its variations) and the model performance evaluation metrics.
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2.4 Hierarchical clustering

For clarity, clustering analyses are only presented between
the original trabeculated LAA surface versus the 4-times
reduced dataset. 4-times reduction was chosen as it presents
a clear reduction of fine anatomical detail loss, i.e., loss of
trabeculae, but largely preserves secondary lobe structure.
These two datasets are referred to as the “trabeculated
dataset” versus the “simplified dataset” in the results section.
Agglomerative hierarchical clustering was applied with
MATLAB functions. Complete linkage and correlation
distance were chosen; the former to ensure more compact
clustering (Ezugwu et al., 2022) and the latter so that anti-
correlated objects (i.e., chicken wing-like and non-chicken
wing-like shapes) are as far apart as possible (van Dongen
and Enright, 2012). The number of PCs accounting for 85%
of the total variance (Cangelosi and Goriely, 2007) in the
trabeculated dataset was retained for subsequent hierarchical
clustering analysis, and the optimal number of clusters was
calculated with the silhouette metric (Rousseeuw, 1987), to
determine the cut-off value on the dendrograms. Clustering

performance evaluation was performed with respect to the
previously defined clinical labels, using the adjusted mutual
information (AMI) score (Vinh et al., 2010) as the
assessment metric. AMI is a measure of similarity (mutual
information (MI)) between two labels of the same data,
adjusted for chance. For two clusterings U and V:

AMI U,V( ) � MI U,V( ) − E MI U,V( )( )
average H U( ), H V( )( ) − E MI U,V( )( )

3 Results

3.1 Statistical shape analysis

SSA took between 27.8 and 31.3 min to run for each dataset,
regardless of anatomical intricacy. The results are presented
in terms of visual geometric correspondence (Figure 5) and
model evaluation score differences between the trabeculated
and simplified datasets with increasing number of
PCs (Figure 6).

FIGURE 5
Shape variation captured by the first and second PC. In (A) the average shape with increasing reduction factor is presented. In (B) moving between
2 standard deviations on PC1 away from the average (±2σ) corresponds to chicken wing-like and non-chicken wing-like shape; with greater cumulative
variance captured with increasing reduction with simpler shapes. In (C) moving between 2 standard deviations on PC2 away from the average (±2σ)
corresponds more to secondary lobe size. Highlighted in blue are the two datasets (fully trabeculated and 4-times reduction) used for clustering
comparisons.
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3.1.1 Geometric correspondence & PCA
For both trabeculated and simplified datasets, most

morphological variation (captured by PC1) is between chicken
wing-like and non-chicken wing-like shape changes, which
matches the observations of previous studies. As presented in
Figure 5, moving along the PC1 axis corresponds with shapes
more/less similar to the chicken-wing morphology. Moving down
PC2 corresponds with smaller/larger secondary lobes. As may be
expected, the anatomical detail present in SSA output shapes follows
the degree of input shape simplification, with the increase of
reduction factor corresponding to a loss in trabecular, surface
and lobar definition matching the input datasets. For example,
secondary lobes and trabeculae are no longer present by 8-times
and 16-times reduction; and even primary lobe morphology
is affected.

3.1.2 Shape model evaluation
As may be expected, utilising simpler input shapes translates to

easier shape model evaluation. Increasing the reduction factor
improves the associated compactness, specificity and
generalisation in SSA, as seen in Figure 6. Greater compactness is
preserved at lower PCs with increasing reduction factor, which also
means that compactness score plateaus earlier. This implies that
with simplified datasets, more morphological variation is captured

for less PCs. The difference between compactness scores with
reduction factor is non-linear; and increasing reduction factor
has less effect following 4-times reduction. Specificity error
decreases with increasing shape reduction and increases with the
number of PCs, implying that more plausible shapes corresponding
to each dataset may be generated with more simplified shapes. There
is a roughly linear decrease in specificity with increasing reduction
factor. Generalisation error (decreasing with the number of PCs)
similarly decreases with increasing shape reduction and plateaus
earlier, implying that the unseen shapes are better predicted with
more simplified datasets. There is a slight non-linear decrease with
increasing reduction factor, where greater reduction corresponds
with less generalisation decrease.

3.2 Hierarchical clusters

Hierarchical clustering results are presented between the
original “trabeculated” dataset, and the representative
“simplified” dataset of 4-times reduction, with dendrogram
results in Figure 7 and visualisation of the data distribution in
Figure 8. 10 PCs were found to account for 86.1% of the
cumulative variance for the trabeculated dataset, with the
optimal number of clusters determined as 2 from a silhouette

FIGURE 6
Difference in SSA model evaluation scores compared to the trabeculated dataset with increasing number of PCs. As shown, increasing shape
simplification (with increasing reduction factor) increases the amount of morphological variance captured at lower PCs (compactness), decreases the
Euclidean distance between a sample shape and its closest training sample (specificity) and improves unseen shape representation (generalisation).
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score of 0.7948. Following the increase in shape model
compactness with reduction factor, 10 PCs instead accounted
for 92.6% of the cumulative variance for the simplified dataset,
with the optimal number of clusters again determined as 2 from a
silhouette score of 0.7458. For both datasets, dendrograms with
the 2 optimal clusters are presented in Figure 7 and are
highlighted on the trabeculated PCA distribution (showing
PC1 against PC2) in Figure 8. Figure 8 also records the AMI
score of each dataset to the clinical labels.

3.2.1 Dendrogram analysis
Comparing hierarchical clustering of fully trabeculated versus

simplified morphologies, the dendrogram for the trabeculated
dataset is closer to the current gold standard, i.e., human expert
assessment, with 23 LAA morphologies being categorised into a
chicken wing-like cluster (with four differences to clinical labels).
While computed for 85% cumulative variance, the same clustering is
achieved with 90% and 95% cumulative variance. In contrast,
48 LAA morphologies were categorised into the chicken wing-

FIGURE 7
Dendrograms after hierarchical clustering of the trabeculated and simplified datasets. The dendrogram of trabeculated LAAmorphologies indicated
23 as chicken wing-like, while the dendrogram of simplified morphology indicated 48. If categorised by a human expert, 21 LAAs are defined as chicken
wing, suggesting that the trabeculated dendrogram is closer to human assessment.

FIGURE 8
The hierarchical cluster assignments are displayed on the trabeculated PCA distribution (PC1 on the horizontal axis against PC2 on the vertical axis),
with AMI according to earlier clinical labels. The graph of the trabeculated dataset shows clear cluster separation between chicken wing (PC1 in the
negative direction) and non-chicken wing cases, while the simplified dataset displays high overlap.
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like cluster for the simplified dataset dendrogram (with
29 differences from clinical labels).

3.2.2 Cluster performance evaluation and data
distribution

To quantitatively evaluate clustering performance, the AMI
score was calculated for both the trabeculated and simplified
clusters. With an AMI of 0.6715, the clustering of the
trabeculated SSA model PCs is much closer to human assessment
than the clustering of simplified SSA model PCs with a score of
0.1214. To visually present the clustering performance, the obtained
hierarchical clusters are highlighted on their original PCA
distributions for two axes (PC1 against PC2) in Figure 8. As
shown, there is clearer cluster separation for the trabeculated
dataset, where the chicken wing-like cluster is more dispersed
than the non-chicken wing-like cluster. In contrast, the simplified
dataset presents a strong overlap relative to human assessment. This
overlap is mainly in the positive PC1 and PC2 directions,
corresponding to non-chicken wing-like shapes and to smaller
secondary lobes respectively, as presented in Figure 5C.

4 Discussion

4.1 Principal findings

With selected parameters for SSA and clustering, results suggest
that LAA shape categorisation via hierarchical clustering performs
better with preservation of full anatomical details (the “trabeculated
dataset”) than with trabecular detail loss (called the “simplified
dataset”). While greater LAA anatomical simplification directly
corresponds with better SSA model evaluation scores for
compactness, specificity and generalisation (Figure 6), it was
hypothesised that the loss of trabecular detail affects the
preservation of morphological variation pertinent for LAA shape
categorisation (Figures 3 and 5).

Between the trabeculated and simplified datasets, the
improvement to SSA evaluation with reduction at the 10 PCs
used for subsequent clustering is as follows:
+0.065 compactness, −0.47 mm specificity and −0.86 mm
generalisation (Figure 6). This is expected as the shape
simplification process has led to a decrease in anatomical
trabeculae and lobar definition that would have accounted for
greater morphological difference between shapes. This implies
that increasing anatomical simplification increases both the SSA
model’s ability to plausibly generate LAA shapes within simplified
datasets and how well the model may generally represent unseen
LAA shapes. However, as greater reduction by 8-times and 16-times
visually affects even LAA lobar structure (Figure 3), it is thought that
the greater anatomical simplification affects the geometric
correspondence between shapes (Figure 5). Therefore, reduction
by 4-times was selected as the simplified dataset for subsequent
clustering comparisons. For visual comparison between PC1 and
PC2 for these two datasets (Figure 5), PC1 captures chicken wing-
like and non-chicken wing-like bending angle. PC2 instead describes
LAA shapes with smaller or larger secondary lobes.

In contrast, increasing LAA reduction in SSA lowered clustering
performance. The simplified model clusters, with a low AMI score of

0.1214, are mainly overlapping in the +PC1 and +PC2 quadrant
(Figure 8), with 29 shapes being assigned differently to human
assessment. This suggests that while + PC2 is associated with
smaller secondary lobes, the inclusion of secondary lobe detail, e.g.,
trabeculae, better separates chicken wing-like shapes. On the
trabeculated model clusters of Figure 8, the higher AMI score
of 0.6715 corresponds with good cluster separation on the
trabeculated PCA distribution, with only four shapes assigned
differently to human assessment. This clustering is also more
stable, with the same clusters being achieved for 90% and 95%
cumulative variance. Therefore, these results may justify the
preservation of intricate anatomical details, particularly LAA
trabeculae, for shape categorisation with hierarchical clustering,
despite improvements to pure SSA evaluation scores. In terms of
computation time, SSA was less affected by the anatomical
differences between datasets rather than the parameters chosen,
taking between 27.8 and 31.3 min to run on the same AMD Ryzen
9 7950X3D 16-Core Processor, 4201 Mhz, 16 Core(s), 32 Logical
Processor(s).

4.2 Broader research context

4.2.1 Clinical LAA shape categorisation schemes
Despite its popularity, conventional LAA classification (into

four shape classes, chicken wing, cactus, cauliflower and
windsock) is highly subjective, with a clinical study suggesting
full shape category agreement between three observers was only
reached in 28.9% of 2,264 cases (Wu et al., 2019). Other studies
suggest the presence of 2–8 LAA classes depending on additional
study aims. Some studies with only 2 shape classes separate LAAs
into lower versus greater risk, based on the number of lobes (He
et al., 2020) or with/without chicken wing-like bending (Yaghi et al.,
2020). A clinical study suggests that LAA morphologies are instead
combinations of up to 8 qualitative lobe shapes, preferring visual
lobe classification instead of general shape categorisation (Beutler
et al., 2014). With special focus on quantitative anatomical
measurements not just of the LAA but of adjacent structures and
the body, LAA clinical classification may even extend to 7 shape
categories with 6 subtypes (Li et al., 2015). These studies highlight
the sheer diversity of LAA shape complexity even without
consideration of finer anatomical details, and the need for an
objective shape categorisation from clustering analysis of SSA
models, as employed here. As our study currently focusses on
chicken wing-like and non-chicken wing-like shape
categorisation, this is more similar to the simplified clinical
categorisation with/without chicken wing-like bending (Yaghi
et al., 2020), but without needing human intervention.

4.2.2 Applications of anatomical detail in
LAA meshes

While clinical categorisation schemes are useful for simplified
understandings of the connection between LAA morphology and
thrombosis risk, the subjectivity of such classifications (Wu et al.,
2019) may subsequently lead to inaccurate risk stratification.
Furthermore, clinical categorisation typically does not consider
the impact of intricate anatomical details, which may be difficult
to measure manually.
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A more in-depth comprehension of the LAA shape-
haemodynamic relationship requires 3D LAA meshes, which
provide 3D anatomical variation that is useful for computational
modelling. While many studies do not consider intricate anatomical
details, studies that do consider such impact (Musotto et al., 2022)
suggest that trabeculae play an important role in LAA
haemodynamics, by reducing LAA blood washout.

4.2.3 Other LAA SSA studies
Previous LAA SSA studies aim to objectively define LAA shape

categories beyond current clinical capabilities, although no study to
date is built from LAA morphology with full anatomical detail
preservation. Explicit LAA SSA is typically based on the point
distribution model (PDM) (Cootes et al., 1995), where
correspondence between shapes is defined by the automatic
placement of points across surfaces. The most studied
optimisation scheme for LAA explicit correspondence is the
entropy scheme used in ShapeWorks (Cates et al., 2017) (applied
on both the LAA only (Goparaju et al., 2022; Goparaju et al., 2018)
and for the conjoint left atria with LAA (Bieging et al., 2021; Adams
et al., 2023; Adams et al., 2022; Cates et al., 2015)), where increasing
particle correspondence may be iteratively initialised and optimised
with regularisation parameters. Alternatively, explicit LAA SSA
studies may determine initial point correspondence through
Markov Random Field regularisation (Juhl et al., 2024; Slipsager
et al., 2019) of the correspondence vector fields between source and
target shapes (Paulsen et al., 2003). LAA SSA may also be applied
implicitly on both the LAA only (Goparaju et al., 2022; Ahmad et al.,
2024; Goparaju et al., 2018) and for the conjoint left atria with LAA
(Corrado et al., 2020). Implicit approaches typically rely on the
optimisation of deformations in a Riemannian space to warp shapes
into others (Bône et al., 2018; Hartman et al., 2023). Established
frameworks, such as Deformetrica (Bône et al., 2018), have been
used (Goparaju et al., 2022; Goparaju et al., 2018), and recent works
have also experimented with dedicated frameworks (Hartman et al.,
2023) applied specifically to the LAA (Ahmad et al., 2024). However,
to our knowledge, such methods do not allow the high complexity of
the LAA surfaces to be considered. Of all the studies mentioned, the
most recent advances in LAA SSA (Juhl et al., 2024; Ahmad et al.,
2024) have focused mainly on chicken wing and non-chicken wing
shape classification, proposing that more in-depth shape
categorisation may fit within this overarching division.

Lower LAA morphological complexity may be a consequence of
lower image input resolution (Cates et al., 2015), or that images have
been intentionally “downsampled” to reduce noise (Juhl et al., 2024)
e.g., for deep learning segmentation (Juhl et al., 2024; Ahmad et al.,
2024). As discussed earlier, inclusion of fine LAA morphological
detail not only improves thrombosis risk assessment of AF patients
(Musotto et al., 2022) (the primary reason for LAA shape analysis)
but may also be discriminatory for shape categorisation (Martorana
et al.). Therefore, previous SSA studies may be limited in clinical
applicability.

4.2.4 Computational categorisation methods in
LAA SSA

Current shape categorisation methods in LAA SSA may utilise
hard and soft clustering approaches, as well as non-clustering
dimensionality reduction. Hard clustering on LAA SSA has been

approached with k-means (Goparaju et al., 2018) and hierarchical
clustering with additional multidimensional scaling (Ahmad et al.,
2024), in comparison to our study focussing on hierarchical
clustering only. A hard clustering approach may be more useful
for the analysis discussed in this study, where categorisation between
chicken wings and non-chicken wings should present less
overlap. Soft clustering of LAA SSA, where overlap may be
considered, has been approached with Gaussian Mixture
Modelling (Juhl et al., 2024; Slipsager et al., 2019). Alternatively,
another study suggests the use of t-stochastic Nearest Neighbour
Embedding for their LAA SSA (Goparaju et al., 2022), which may be
useful to display trends not visible with clustering methodologies.

To our knowledge, no other LAA SSA studies have presented the
numerical efficacy of their shape categorisation with respect to
human evaluation, so this is difficult to compare to other studies.
In this work, AMI was chosen to evaluate cluster performance over
rand-index scoring as unequal cluster sizes were expected (van der
Hoef and Warrens, 2019), with only 21 of the 85 segmented LAAs
having been expertly classified as chicken wing morphology earlier.
Furthermore, as an adjustment of the regular mutual information
metric, chance clustering assignments are accounted for.

4.3 Strengths and limitations of study

The applicability of the proposed LAA SSAmodel and clustering
is limited by the analysed number of anatomies in the original
dataset. This is particularly important for highly diverse anatomies
such as the LAA, where it is highly likely for morphologies to
demonstrate categorical variance beyond subjective clinical
classification, even without considering fine anatomical details. In
comparison with other LAA works, the number of LAAs utilised in
our study (85 in total) lies between other studies, which can vary
from 20 (Ahmad et al., 2024) to 130 (Goparaju et al., 2022).
However, no other SSA study to our knowledge has preserved
our level of LAA anatomical detail, which is the basis for this study.

Some limitations are related to operator-dependent steps in our
workflow. Firstly, the manual left atrial segmentation (prior to fully
automatic LAA detection) requires user definition of contrast
threshold (aided by the additional mathematical CNR
measurement protocol) and human effort and time to ensure
segmentation is not affected by unwanted imaging artefacts. The
second operator-dependent step is the clinical classification used to
obtain the clinical labels to which clustering is compared in AMI
scoring; clinical subjectivity was minimised in this study by focusing
clinical labels to chicken wing versus non-chicken which is known to
present the greatest morphological difference of bending angle
(Yaghi et al., 2020). Two of the aforementioned LAA SSA studies
have aimed to tackle the segmentation problem via deep learning
(Juhl et al., 2024; Ahmad et al., 2024); however, as already stated,
these works do not fully capture the same level of anatomical detail,
presenting very smooth meshes, i.e., without trabeculae.
Furthermore, the fully automatic LAA detection of the ostial
plane utilised in our study may be further advantageous over
both these studies that either cut the shape where it is narrowest
(Juhl et al., 2024) (which describes an anatomical region generally
different from the ostium definition) or perform manual clipping of
left atrial meshes (Ahmad et al., 2024).
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Finally, it should be noted that while a pixel spacing of 0.488 mm
from CT is high for conventional clinical scans, even higher
resolutions exist for alternative ex-vivo imaging-based studies e.g.,
microCT, synchrotron-based or photon-counting CT imaging. This
study indicates that clustering of anatomies acquired with smaller
pixel spacing performs significantly better than lower resolutions,
which suggests that even higher resolution scan data could improve
the results further. To increase the reliability and statistical
significance of this work, it would be beneficial to incorporate
more LAA morphologies in the SSA performed; however, it was
not possible to include datasets acquired from publicly accessible
databases (Atria Segmentation Challenge 2018; Karim et al., 2018) as
they either did not match the imaging modality and/or the required
resolution.

5 Conclusion and future works

SSA studies for clustering analysis of highly diverse anatomies,
particularly the human LAA, may suffer from analytical disparities
and therefore clinical relevance due tomajor differences in anatomical
detail preservation. Following robust image and mesh processing, this
study applies SSA and clustering analysis to 5 LAA datasets (each
composed of 85 shapes), sequentially reduced in anatomical detail.
While evaluation scores of SSA metrics of compactness, specificity
and generalisation suggest lower resolutions may improve LAA shape
representation of such simplified anatomies, it should also be
recognised this better representation may not correlate with
improved LAA shape categorisation. The cluster performance
scores suggests that clustering for LAA shape categorisation
benefits from greater preservation of anatomical detail (beyond the
level conventionally preserved in LAA SSA). Future work could
improve upon binary categorisation (i.e., chicken wing-like vs.
non-chicken wing-like) by adjusting the dendrogram cut-off thus
leading to smaller morphological sub-groups. In preserving
trabeculae, this study advances towards connecting SSA anatomical
detail to thrombosis risk categorisation.
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Arterial spin labelling (ASL) magnetic resonance imaging (MRI) enables cerebral
perfusion measurement, which is crucial in detecting and managing neurological
issues in infants born prematurely or after perinatal complications. However,
cerebral blood flow (CBF) estimation in infants using ASL remains challenging due
to the complex interplay of network physiology, involving dynamic interactions
between cardiac output and cerebral perfusion, as well as issues with parameter
uncertainty and data noise. We propose a new spatial uncertainty-based physics-
informed neural network (PINN), SUPINN, to estimate CBF and other parameters
from infant ASL data. SUPINN employs a multi-branch architecture to
concurrently estimate regional and global model parameters across multiple
voxels. It computes regional spatial uncertainties to weigh the signal. SUPINN can
reliably estimate CBF (relative error −0.3 ± 71.7), bolus arrival time (AT)
(30.5 ± 257.8), and blood longitudinal relaxation time (T1b) (−4.4 ± 28.9),
surpassing parameter estimates performed using least squares or standard
PINNs. Furthermore, SUPINN produces physiologically plausible spatially
smooth CBF and AT maps. Our study demonstrates the successful
modification of PINNs for accurate multi-parameter perfusion estimation from
noisy and limited ASL data in infants. Frameworks like SUPINN have the potential
to advance our understanding of the complex cardio-brain network physiology,
aiding in the detection and management of diseases. Source code is provided at:
https://github.com/cgalaz01/supinn.

KEYWORDS

physics-informed neural networks, cardiac-brain network physiology, neuroimaging,
arterial spin labelling, cerebral blood perfusion

1 Introduction

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI)
technique that measures cerebral blood flow (CBF) without exogenous contrast agents
(Lindner et al., 2023). CBF maps can be computed on a voxel-by-voxel basis by fitting
mathematical models of haemodynamics based on ordinary differential equations (ODEs)
(Alsop et al., 2015). These models help capture the complex temporal dynamics of blood
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flow, which are essential for understanding the intricate cardiac-
brain network physiology. This understanding may aid in
diagnosing and managing various conditions, such as some forms
of dementia and stroke (Rossi et al., 2022; Tahsili-Fahadan and
Geocadin, 2017).

The bidirectional cardiac-brain network physiology operates as
an intricate system where the heart and brain continuously influence
each other (Candia-Rivera et al., 2024), a topic that has garnered
research interest for some time (Bashan et al., 2012). The heart
supplies oxygenated blood to the brain, affecting cerebral perfusion
and pulsatile flow (Silverman and Petersen, 2020; Jammal Salameh
et al., 2024), while the brain regulates cardiac function through the
two autonomic nervous systems, the sympathetic and
parasympathetic (Gordan et al., 2015). This network incorporates
feedback loops such as cerebral autoregulation and neurovascular
coupling to maintain optimal function (Claassen et al., 2021).

In infants, particularly those with conditions like congenital
heart disease (CHD) or preterm birth, this network is especially
vulnerable due to immature autoregulation and developmental
sensitivity (De Silvestro et al., 2024; Claassen et al., 2021). These
factors can result in altered cerebral haemodynamics, leading to
issues such as delayed brain maturation, an increased risk of cerebral
white matter injury, and potentially adverse long-term
neurodevelopmental outcomes (McQuillen et al., 2010). Preterm
neonates are often admitted to hospital to receive external
physiological support whilst their bodies mature, of which brain
perfusion must be sufficient during this period.

The infant demographic thus benefits from non-invasive CBF
monitoring techniques like ASL (Counsell et al., 2019). ASL can
provide insights into the complex physiological interplay between
the heart and brain, guiding interventions to support optimal brain
development and overall cardiovascular health (McQuillen et al.,
2010; Castle-Kirszbaum et al., 2022).

A thorough understanding of this cardiac-brain network is
crucial for managing infant health. Specifically, it is essential for
optimising neuroprotection strategies, improving surgical and
medical management, and enhancing the long-term
neurodevelopmental prospects of these infants (De Silvestro
et al., 2023). However, further research is needed to fully
understand the independent effects and mechanisms of cardio-
cerebral coupling (Castle-Kirszbaum et al., 2022; Meng et al.,
2015), particularly in the developing infant brain (Baik-Schneditz
et al., 2021). Achieving this understanding in infants will require the
development of even more accurate CBF monitoring techniques
than those currently available.

Computing voxel-by-voxel CBF maps is achieved by fitting
mathematical models of haemodynamics based on ODEs (Alsop
et al., 2015). Many of these perfusion model ODEs assume very
simplified physiology (e.g., plug blood flow to the brain, single
magnetisation compartments in the brain) and can therefore be
solved analytically (Buxton et al., 1998; Alsop et al., 2015). It is often
further assumed that the perfusion model parameters are perfectly
known. In these conditions, CBF is estimated from a single
perfusion-weighted image (PWI). These assumptions do not
apply to CBF estimates in pathological conditions or groups with
heterogeneous physiological properties, such as infants.

Imaging infants, particularly those born preterm, presents
further challenges due to lower signal-to-noise ratio (SNR). This

is attributed to lower baseline CBF and longer arrival times (AT) of
the magnetically labelled bolus (Dubois et al., 2021; Varela et al.,
2015). Additionally, the need for higher spatial resolution in smaller
infant brains further reduces SNR (Dubois et al., 2021). Motion
during scanning is also common in infants, further degrading image
quality and leading to artifacts (Dubois et al., 2021; Varela
et al., 2015).

Unfortunately, voxel-by-voxel ASL analysis is susceptible to
spatial inconsistencies, amplified by the lower SNR noise in
infant perfusion weighted image (PWI) signals (Krishnapriyan
et al., 2021; Wang et al., 2022). Haemodynamic models are
challenging to parameterise in the infant population due to
dramatic physiological changes in the first weeks of life, during
which most physiological parameters differ substantially from adult
values. This is true of haemodynamic variables such as CBF, and also
tissue composition, reflected in MR relaxation time constants such
as T1 and T2. This is further complicated by the limited availability
of data in this demographic (De Silvestro et al., 2023).

In adult ASL, CBF estimation is commonly performed at a single
time point following labelling (Detre et al., 2012). This relies on
several assumptions about haemodynamics andMR parameters that
do not usually hold for infants. Given the complexity of the cerebral
blood flow network in infants, past ASL studies in infants have
therefore acquired PWIs at multiple time points following labelling
to enable the simultaneous estimation of haemodynamic parameters
beyond CBF, such as AT (Varela et al., 2015). Past studies estimated
CBF and other parameters using methods such as least squares
fitting (LSF) using the analytical solution to the perfusion ODE
(Varela et al., 2015). However, due to the complexity of
haemodynamic models, most model parameters need to be
estimated separately. The lack of methods capable of
simultaneously estimating both local and global parameters
presents a significant challenge.

CBF has been estimated from infant ASL data using optimisers
like LSF (Varela et al., 2015) and Bayesian estimation (Pinto et al.,
2023), where adult models are fitted to the PWI signal. These voxel-
by-voxel approaches often struggle with the very noisy PWIs typical
of infant data, especially when estimating several parameters at once.
Recently, neural network (NN)-based techniques for parameter
estimation have become increasingly popular. NNs have
demonstrated a remarkable ability to make accurate predictions
even from noisy and corrupt data (Tian et al., 2020; Hernandez-
Garcia et al., 2022). However, such performance typically requires
vast amounts of training data (Tian et al., 2020), which are currently
not available for infants (Korom et al., 2022; Hernandez-Garcia
et al., 2022; De Silvestro et al., 2023).

Physics-informed neural networks (PINNs) (Karniadakis et al.,
2021), an emerging branch of machine learning, integrate physical
laws (expressed as differential equations, DEs) into machine
learning models. This approach improves a network’s predictive
capabilities even with limited and noisy data, as the DE agreement
terms effectively act as a strong regulariser (Karniadakis et al., 2021).
PINNs can simultaneously solve DEs (forward problem) and
estimate system parameters (inverse problem) from sparse
experimental data. This makes them well-suited for biomedical
applications (Ghalambaz et al., 2024), evident by their increased
usage in fields such as cardiovascular (Moradi et al., 2023; Herrero
Martin et al., 2022; Sahli Costabal et al., 2020; van Herten et al., 2022;
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Kissas et al., 2020) and brain (Sarabian et al., 2022; Kamali et al.,
2023; de Vries et al., 2023; Min et al., 2023) research.

In cardiovascular studies, PINNs have been successfully applied
to predict electrophysiological tissue properties from action
potential recordings (Herrero Martin et al., 2022) and to
diagnose atrial fibrillation by estimating electrical activation maps
(Sahli Costabal et al., 2020). Additionally, PINNs have been used to
quantify myocardial perfusion using MR imaging (van Herten et al.,
2022) and to predict arterial pressure by analysingMRI data of blood
velocity and wall displacement (Kissas et al., 2020). However, while
PINNs are typically robust to noise, they suffer from the spatial
inconsistencies associated with voxel-by-voxel fitting. PINNs’
performance is notoriously variable, especially in inverse mode
(Bajaj et al., 2023).

A significant challenge in PINN development is that they are
often tested using synthetic data, which may not be a robust
benchmark for performance on experimentally-acquired data.
This is because few biomedical problems described by differential
equations have known analytical solutions. Consequently,
applications like CBF estimation using ASL data present rare
opportunities to test PINNs’ performance directly on
experimental data and compare it to established parameter
estimation methods such as LSF. Such real-world applications are
crucial for validating and improving PINN methodologies in
biomedical research.

This study introduces and evaluates PINNs as a tool for reliably
estimating haemodynamic parameters from noisy infant ASL
images. We propose a novel PINN framework, named Spatial
Uncertainty PINN (SUPINN), which incorporates two key noise-
mitigating improvements: 1) Regional: We assume neighbouring
voxels share similar local parameters (e.g., CBF and AT) and
therefore similar time courses. We thus propose weighting the
confidence in each measurement by its spatial variability. 2)
Global: For global parameters (e.g., T1b), which are identical
across all voxels within a subject, our multi-branch SUPINN
learns from multiple voxels simultaneously to estimate a shared
global parameter. Our method is particularly suited for imaging data
acquired with limited and noisy samples over a given time period.

2 Methods

Our source code is publicly available at: https://github.com/
cgalaz01/supinn.

2.1 Dataset

ASL brain MRI studies were conducted on seven infants aged
32–78 weeks postmenstrual age. An additional five infants were
scanned but excluded due to significant motion artifacts or because
they awoke during the scan, rendering the data unusable. The final
cohort included three infants with no pathology, one with
periventricular leukomalacia, one with basal ganglia and white
matter atrophy along with mild ventriculomegaly, one with
agenesis of the corpus callosum, brain atrophy, and mild
ventriculomegaly, and one with mild ventriculomegaly. Although
this study does not include infants with known cardiac impairment,

it is sufficient as our focus at this stage is on evaluating PINNs within
the available diverse cohort.

All images were acquired in a Philips 3T Achieva scanner using an
8-element head coil under ethical approval following informed parental
consent (REC: 09/H0707/83). PWIs were acquired on a single mid-
brain transverse plane at 12 time points (every 300 ms) following a
single pulsed labelling event (Petersen et al., 2006), at a spatial resolution
of 3.04 × 3.04 × 5.5 mm3. The 300 ms time interval between PWI
acquisitions was deemed suitable for this demographic (Varela et al.,
2015), as it provides a practical balance between SNR and temporal
perfusion signal sampling. For a representative PWI time series and
accompanying signal plot, refer to Figure 1.

To improve the SNR, the acquisition was repeated multiple
times, with the number of repeats ranging from 30 to 90 depending
on the remaining scanning session duration and the subject’s ability
to remain still. Images identified as having motion artefacts were
excluded from the averaging process based on manual inspection.
Notably, no signal filtering was applied in this study to further
reduce noise.

In all subjects, our analysis focused on a manually segmented
region of interest that includes the thalami and basal ganglia
(Figure 2). This deep grey matter region shows better SNR and
fewer partial volume effects than cortical grey matter.

2.2 Mathematical model for ASL

The relationship between the PWI signal, S(t), and CBF can be
expressed as the temporal convolution between an arterial input
function, AIF(t), and a tissue response function, R(t): S � AIF pR
(Buxton et al., 1998). AIF is a top-hat function, here with a known
duration τ � 900ms, that arrives at each voxel at a variable t � AT,
and R(t) is dominated by magnetisation relaxation over venous
outflow. As in Alsop et al. (2015), we assume that the longitudinal
magnetisation relaxation of the blood is well described by T1b

throughout.
We neglect the effect of the repeated excitation pulses on

apparent T1b and assume that all PWI scaling constants are
known, as in Varela et al. (2015). Then:

S t( ) �
0 if t<AT

CBF × t − AT( ) × e
−t
T1b if AT≤ t<AT + τ

CBF × τ × e
−t
T1b if AT + τ ≤ t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

This model can be differentiated to yield an ODE defined
in 3 branches:

dS

dt
�

0 if t<AT

CBF × e
−t
T1b × 1 − t − AT

T1b
( ) if AT≤ t<AT + τ

−CBF × e
−t
T1b ×

τ

T1b
if AT + τ ≤ t

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2)

The three branches in Equations 1, 2 depict three distinct signal
evolution phases: the periods before, during, and after the arrival of
labelled blood at each voxel. We found that approximating the
discontinuous three-branched ODE in Equation 2 using a NN leads
to poor convergence properties. To circumvent this issue, we
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FIGURE 1
A representative 32-week postmenstrual case showing: (A) T2-weighted image highlighting the ASL imaging slice (orange); (B) Subsampled
perfusion-weighted image time series; and (C) The measured perfusion signal of a single voxel over the entire duration, along with the corresponding
ground-truth analytical model (see Equation 2).

FIGURE 2
Overview of our proposed SUPINN model, depicted here in a two-branch variant for illustration purposes, but adaptable to larger configurations.
This study employs a three-branch model based on empirical findings.
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combine the three phases using smoothing hyperbolic tangent
functions (see Supplementary Table S1).

2.3 Ground truth estimation

An auxiliary MRI scan was used to estimate ground-truth T1b in
each subject (Varela et al., 2011). Then, a robust LSF was performed
using the analytical haemodynamic model in Equation 2 to estimate
ground-truth CBF and AT on a voxel-by-voxel basis.

Most biomedical problems described by DEs do not have an
analytical solution and can only be solved numerically. For these, the
accuracy of parameter identification methods is typically estimated
using in silico data, which do not capture the complexities of
experimental measurements. The existence of an analytical ASL
haemodynamic model (Equation 2) presents a unique opportunity
to test on experimental data the accuracy of model parameter
estimation methods such as PINNs.

2.4 Loss function and training scheme

PINNs are optimised to learn a solution that both matches the
data and satisfies known cardiac-brain network physiology
principles. They minimise the combined loss function defined as:
L � LODE + γLdata. Due to the high noise in the data, Ldata is
weighted using an empirically set coefficient γ � 0.005. Initial
conditions, S(t � 0) � 0, are enforced by rescaling S(t) using a
hyperbolic tangent function (Lu et al., 2021).

LODE measures the agreement with Equation 2. This loss is
calculated by evaluating the residual of the differential equation at a
set of collocation points (NO) using the network’s predictions and
taking the mean squared error:

LODE � 1
NO

∑
NO

i

dŝ

dt
ti( ) − f ti, ŝ ti( )(( )

2

(3)

Ldata is the data loss, which measures the mean squared error
between the network’s PWI estimation and the values measured
across the 12 time points (ND) acquired in each voxel:

Ldata � 1
ND

∑
ND

i

wti ×‖Ŝ ti( ) − S ti( )‖2( ), (4)

where w � 1 is the weight of each PWI time point. w is used in
SUPINN with details available in Section 2.6.

When optimising the PINNs’ weights, we propose a three-tier
hierarchical optimisation scheme (see Supplementary Table S2). We
initially optimise the PINNs in forward mode, focusing on aligning
the network approximately with the underlying ODE without
estimating specific parameters. We then solve the ODE in inverse
mode to estimate the local parameters CBF and AT, and the global
parameter T1b. We finalise by fine-tuning the parameter estimation.

2.5 PINN architecture

PINNs are implemented using DeepXDE v1.11 (Lu et al., 2021)
and TensorFlow v2.15 (Abadi et al., 2016). As a baseline PINN

architecture (Raissi et al., 2019; Karniadakis et al., 2021), we use a
fully connected neural network with hyperbolic tangent activation
functions and two hidden layers, each consisting of 32 units. It
includes one input unit for time t and one output unit for the PWI
signal S(t).

2.6 SUPINN architecture

The baseline PINNmodels the signal from each voxel separately,
ignoring the spatial relationships between the different sets of
measurements. We expect, however, that neighbouring voxels
have similar CBF and AT values, with deviations primarily due
to noise. To incorporate this information in the model, we propose a
spatial uncertainty PINN, SUPINN (Figure 2). SUPINN inversely
weighs the contribution of each PWI time point, w (see Equation 4),
by their uncertainty levels. The uncertainty is estimated by
calculating the standard deviation of the PWI signal in
immediate neighbouring voxels within the region of interest at a

given time point: wt � 1/

���������
∑(S(ti)−μti)

2

8

√

, where w is the weight at time

point t. The weights for each voxel across time are then scaled such
that the highest uncertainty corresponds to a weight of w � 0.1 and
the smallest uncertainty to w � 1. The weights in data loss Ldata

(Equation 4) are updated accordingly.
SUPINN uses a multi-branch architecture to reliably estimate

global (subject-specific) parameters, such as T1b by pooling
information from more than one voxel. It simultaneously
estimates voxel-specific parameters CBF and AT. The
subnetworks’ graphs are merged, allowing information sharing
through backpropagation.

Each SUPINN branch employs the baseline PINN architecture
described in Section 2.5. We have experimentally found that using a
three-branch SUPINN for this task results in an optimal balance
between estimation accuracy and computational efficiency.
Increasing the number of branches leads to minimal decreases in
estimation error with exponentially larger computation times (see
Supplementary Figure S1). In addition to the voxel of interest, two
additional voxels are randomly selected within the whole region of
interest that was manually delineated for the remaining branches.
This delineated sampling region has an average width of
52.55 ± 7.74 mm and height of 39.09 ± 6.59 mm. While voxel-
specific CBF and AT parameters are estimated independently in
each branch, T1b is shared across the selected voxels. The loss
function, L, for this architecture is the sum of the data
agreement and ODE agreement losses (Equations 3, 4) for each
branch: L � ∑N�3

i Li,ODE + Li,data.

2.7 Experimental setup

We compared SUPINN against several benchmarks: a
standard PINN (Section 2.5), a robust LSF method (Varela
et al., 2015), and a modified LSF (LSF-multi) that averages
parameter estimations from three selected voxels. As we have
limited data, evaluation against deep NN is not currently
possible. All computations were performed on a 3XS Intel
Core i7 CPU. The average execution times per voxel were

Frontiers in Network Physiology frontiersin.org05

Galazis et al. 10.3389/fnetp.2025.1488349

31

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1488349


approximately 0.05 s for LSF/LSF-multi, 31 s for PINN, and 40 s
for SUPINN. Given an average voxel size in the region of interest
of 110 ± 46 voxels, this corresponds to average total execution
times per case of 5.5 s for LSF/LSF-multi, 56.8 min for PINN, and
73.3 min for SUPINN. We note that substantial improvement in
training time can be obtained on PINN/SUPINN if trained
on a GPU.

Evaluation metrics include the mean and standard deviation of
the relative error (RE), computed as (predicted −
target)/target × 100 for each parameter. When a method led to
CBF estimates that increasingly diverged from ground truth CBF by
more than one order of magnitude after 50K iterations, it was
deemed not to have converged. These failed estimates were not taken
into account when assessing the quantitative performance of each
method. We compute a method’s convergence rate as
|total − failed|/total × 100. The spatial smoothness of CBF and
AT was assessed using the mean and standard deviation of the
Laplacian variance across subjects (Pertuz et al., 2013), where lower
variance signifies greater spatial parameter homogeneity. We also
estimate the mean squared error (MSE) between the prediction and
ground truth PWI signal (forward mode).

3 Results

Our proposed SUPINN architecture, designed to address
variable data noise levels and simultaneously estimate local and
global parameters, showed excellent performance on infant ASL
data (see Table 1). SUPINN showed improvements in both PWI
signal (forward) and parameter (inverse) estimations compared to
the standard PINN and LSF/LSF-multi methods at the cost of
increased computational time.

SUPINN led to more accurate parameter estimates, especially
for CBF. Specifically, SUPINN achieved a RE of −0.3 ± 71.7 for
CBF, 30.5 ± 257.8 for AT, and −4.4 ± 28.9 for T1b. Additionally,
the predicted PWI signal closely matched the ground truth, as
evidenced by the smallest MSE of 0.4 ± 0.8, as shown in Table 1.
Finally, both the base PINN and SUPINN achieved high
parameter convergence rates, with rates of 99.9% and 100%,
respectively.

We typically observe higher noise levels in the PWI signal of
younger infants. Despite this challenge, Supplementary Figure S2
shows that SUPINN consistently achieved lower RE in CBF across
all subjects compared to other methods despite low SNR.

Additionally, SUPINN achieved the most accurate estimates of
AT and T1b in the majority of cases. Notably, SUPINN also
demonstrated resilience in estimating parameters for infants with
neurological disorders (indicated with an asterisk in the figure).

The robustness of our model is further demonstrated in
Supplementary Figure S3, where we evaluated its performance on
synthetic signals. White Gaussian noise was added to each
synthetically generated PWI signal to simulate stationary noise,
as motion artefacts are expected to be manually removed during
the averaging process. The standard deviation progressively
increased in increments of 0.1, up to a maximum of 0.5. Despite
increasing the standard deviation of the noise, SUPINN maintained
stable parameter estimations, especially for CBF and AT. This
highlights the model’s ability to handle noisy data effectively. In
comparison, the baseline PINN also exhibited resilience in
estimating AT and T1b, but its CBF estimations deteriorated
progressively as the noise level increased. On the other hand, the
LSF method showed the greatest sensitivity to noise, with parameter
estimations degrading noticeably even with a small amount of
added noise.

Figure 3 illustrates the spatial maps of the CBF and AT
predictions for a representative infant. The SUPINN estimates,
shown in the first column, exhibit higher spatial consistency for
both CBF and AT compared to other methods. This consistency is
quantified by the lowest Laplacian variance achieved, as detailed in
Table 1. Specifically, SUPINN attained a Laplacian variance of
0.4 ± 0.4 for CBF and 0.1 ± 0.1 for AT across all cases, indicating
smoother and more reliable spatial predictions.

The average normalised CBF in the region of interest, as
estimated by SUPINN, showed a general increase with age, which
aligns with expectations. The youngest infant, with a postmenstrual
age of 38 weeks, had a CBF of 0.12 ± 0.11, while the oldest, at
78 weeks, had a CBF of 0.56 ± 0.29. The CBF values for all subjects
are presented in Supplementary Figure S4. However, due to the
limited number of cases and the high variability in modelling this
demographic, drawing definitive conclusions about the effects of
pathology compared to healthy subjects remains challenging. For
instance, within the same age group, a subject aged 49 weeks
exhibited a CBF drop of approximately 0.12 compared to other
infants in the same age range. On the other hand, an infant aged
32 weeks with pathology had a CBF value similar to that of a healthy
infant aged 34 weeks. On the other hand, normalised AT values were
similar across subjects and ranged from 0.32 to 0.49 s, with the oldest
subject exhibiting the lowest value.

TABLE 1 Summary of the convergence rate, relative error and Laplacian variance for CBF, AT and T1b, and mean squared error of the predicted solution. A
model’s quality is indicated by a low standard deviation and a mean error close to 0.

Model Convergence rate (%) Relative error (%) Laplacian variance Mean squared error

CBF AT T1b CBF AT PWI signal (×10−3)
LSF 62.6 390.7 ± 1306.7 53.8 ± 510.7 −43.1 ± 32.2 29.1 ± 11.8 3.1 ± 2.7 26.9 ± 22.7

LSF-multi 96.4 549.7 ± 1272.0 121.9 ± 467.0 −31.4 ± 29.9 12.4 ± 5.7 1.2 ± 1.0 38.3 ± 31.4

PINN 99.9 96.0 ± 475.8 68.6 ± 283.9 8.6 ± 35.9 0.5 ± 0.4 0.5 ± 0.8 1.1 ± 1.3

SUPINN 100.0 −0.3 ± 71.7 30.5 ± 257 .8 −4.4 ± 28.9 0.4 ± 0.4 0.1 ± 0.1 0.7 ± 0.8
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4 Discussion

We introduce SUPINN, a novel multi-branch PINN technique
for estimating parameters from noisy data. By solving ODEs over
neighbouring regions with similar properties and estimating
uncertainty through voxel comparisons, SUPINN simultaneously
estimates local and global parameters with high accuracy. We test it
on the challenging task of estimating haemodynamic parameters
from extremely noisy infant multi-delay ASL data, where it
outperforms both standard PINNs and LSF.

SUPINN’s strong performance is also underpinned by our three-
tier optimisation regime, use of hard initial conditions and the
replacement of non-differentiable transitions in the baseline model
(Equation 2) by a smoothly interpolated version. These
enhancements are crucial for accurately capturing the complex
cerebral haemodynamics in infants, in whom subtle alterations in
perfusion can have implications for brain development.

LSF is widely used for parameter identification from various
medical images, including ASL. It performs reliably when estimating
a small number of parameters, particularly multiplicative factors or
temporal intervals (such as CBF or AT in Equation 2). Following the

literature (Varela et al., 2015; Hernandez-Garcia et al., 2022), we
used robust LSF to estimate ground-truth CBF and AT when
separate ground-truth measurements of T1b were available. LSF is
nevertheless extremely unreliable when estimating exponents such
as T1b in conjunction with CBF and AT.

PINNs have several advantages over LSF other than improved
overall performance. Evidently from SUPINN, they offer a
framework for more flexibly combining data from different brain
and, in the future, cardiac regions. Contrary to standard PINNs,
SUPINN is able to handle data with high noise to further improve
performance. SUPINN leads to spatially smoother CBF and AT
maps within the same brain region, aligning more closely with
physiological expectations. Moreover, PINNs can be applied to
ODEs with no known analytical solutions, opening up the
possibility of using more sophisticated and personalised
perfusion ODEs.

Recent advancements in PINN architectures, such as those
described by Zou et al. (2025), Pilar and Wahlström (2024), Zou
et al. (2024), further improve their utility by facilitating uncertainty
quantification, particularly under conditions of heavy noise.
Additionally, efforts are made towards adapting PINNs for model

FIGURE 3
(A) Shows spatial maps of parameter estimation in deep grey matter for a subject aged 32 weeks. Each row corresponds to the normalised CBF (top)
and AT (bottom) parameters. The columns display the estimation results from four methods (left to right): SUPINN, PINN, LSF, and LSF-multi. (B) Depicts
the parameter relative error of the models for a single voxel.
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personalisation (Chen et al., 2021), which is useful especially when
there could also be uncertainty in the assumptions used to derive the
model itself. These capabilities are especially valuable when
modelling the infant demographic, where data can be highly
variable and noisy. Changes affecting the perfusion signal curve
must be incorporated into the ODE parameters, and we expect these
operator-controlled changes to result in less uncertainty than
physiological unknowns. However, motion artefacts remain a
challenge, requiring manual inspection and removal before
averaging the PWI signal. Recent efforts have used deep learning
techniques to reduce artefacts and improve overall SNR (Hales et al.,
2020; Hernandez-Garcia et al., 2022).

Although SUPINN achieves spatially smoother CBF and AT
maps, we employed a relatively simple sampling strategy - random
sampling. This was due to the use of a single PWI plane and its lower
resolution, which limited the practicality of alternative sampling
approaches. In the future, we plan to acquire multiple PWI planes
across the infant brain, enabling the implementation of spatially
dependent sampling methods.

Since SUPINN, and to an extent LSF-multi, relies on sampling
within the designated grey matter region, segmentation inaccuracies
are expected to degrade overall performance due to the inclusion of
lower SNR points in the branches. Such degradation for PINNs and
LSF will only be observed for points outside the true region, while
the true points remain unchanged. This issue could be mitigated for
SUPINN by increasing the number of branches, under the
assumption that the proportion of mislabelled voxels would be
small, at the cost of computational time.

The multi-delay ASL data are well-suited for testing
parameter identification methods, as the existence of an
analytical solution allows for easy application of LSF.
SUPINN’s performance can therefore be directly evaluated on
real, noisy clinical data. This is in contrast to most PINN studies,
which are typically evaluated on synthetic data with known noise
distributions. Although our current dataset does not include
cases of CHD in infants, the techniques developed here are
likely to be applicable to such cases, given the similar
challenges in analysing cerebral haemodynamics. Furthermore,
it is encouraging to see that other research efforts have
successfully utilised PINNs to estimate CBF (Ishida et al.,
2024; Rotkopf et al., 2024; de Vries et al., 2023), reinforcing
the potential of these methods in addressing similar challenges.

Future work will expand the evaluation to include a larger infant
cohort of both healthy and CHD cases to validate the robustness and
generalizability of SUPINN. This will enable us to assess the efficacy
of the improved CBF estimation specifically in the context of CHD
and explore its relation to the disease. Optimising voxel selection
strategies and exploring alternative PINN architectures, such as
graph-based approaches, can further improve performance by better
representing spatial relationships critical in various clinical
scenarios, including CHD.

SUPINN’s applicability extends to other problems where ODEs
are solved over neighbouring regions with similar parameters.
SUPINN can, for example, contribute to estimating quantitative
MRI properties (such as T1 or T2) by simultaneously solving the
Bloch equations in neighbouring voxels within the same tissue
(Zimmermann et al., 2024).

This paper proposes SUPINN, a PINN method able to handle
noisy data by leveraging spatial information. We demonstrate its
potential to improve the characterisation of haemodynamics using
infant ASL. With further refinement and validation, SUPINN can
become a valuable clinical tool, providing precise and accurate
physiological data for diagnosis, monitoring, and treatment
planning in various clinical contexts, including potential
applications in infants with CHD.
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Background: 12-lead electrocardiograms (ECGs) are a cornerstone for
diagnosing and monitoring cardiovascular diseases (CVDs). They play a key
role in detecting abnormalities such as arrhythmias and myocardial infarction,
enabling early intervention and risk stratification. However, traditional analysis
relies heavily on manual interpretation, which is time-consuming and
expertise-dependent. Moreover, existing machine learning models often lack
personalization, as they fail to integrate subject-specific anatomical and
demographic information. Advances in deep generative models offer an
opportunity to overcome these challenges by synthesizing personalized ECGs
and extracting clinically relevant features for improved risk assessment.
Methods: We propose a conditional Variational Autoencoder (cVAE) framework to
generate realistic, subject-specific 12-lead ECGs by incorporating demographic
metadata, anatomical heart features, and ECG electrodes’ positions as
conditioning factors. This allows for physiologically consistent and personalized
ECG synthesis. Furthermore, we introduce a revised Cox proportional-hazards
regression model that utilizes the latent embeddings learned by the cVAE to
predict future CVD risk. This approach not only enhances the interpretability of
ECG-derived risk factors but also demonstrates the potential of deep generative
models in personalized cardiac assessment.
Results: Our model is trained and validated on the UK Biobank dataset and
in silico simulation data. By incorporating heart position and electrodes’
positions, the generated ECGs demonstrate strong consistency with in silico
simulations, providing insights into the relationship between cardiac anatomy
and ECG morphology. Furthermore, our CVD risk prediction model achieves a
C-index of 0.65, indicating that ECG signals, together with demographic and
anatomical information, contain valuable prognostic information for stratifying
subjects based on future cardiovascular risk.
Conclusion: This work marks a significant advancement in ECG analysis by
providing a conditional VAE framework that not only improves ECG generation
but also enriches our understanding of the relationship between ECG patterns
and subject-specific information. Importantly, our approach enables clinically
significant information to be extracted from 12-lead ECGs, providing valuable
insights for predicting future CVD risks.

KEYWORDS

cardiac MRI, cardiovascular disease, cardiovascular risk prediction, ECG electrodes,
ECG generation, variational autoencoder
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1 Introduction

The electrocardiogram (ECG) is a well established, non-

invasive diagnostic tool that records the electrical activity of

the heart over time (1). However, the manual analysis of ECG

data can be a time-consuming and labor-intensive process,

requiring significant expertise in interpreting complex patterns

and abnormalities in the heart’s electrical activity. With the

increasing use of wearable devices and other monitoring

technologies, large volumes of ECG data can be generated on

a daily basis (2), further exacerbating the challenge of manual

analysis. As a result, there is a need for automatic techniques

to facilitate the efficient diagnosis of heart diseases using

the ECG.

Machine learning has emerged as a powerful tool for enabling

automated analysis in a wide range of ECG-based tasks (3–9).

While machine learning techniques have shown great promise,

many of these methods require large amounts of labeled data to

effectively train the model. This poses a significant challenge as

obtaining and annotating large datasets can be time-consuming,

expensive, and resource-intensive. Also, class imbalance is

another common issue in ECG datasets, as certain cardiac

abnormalities may be relatively rare compared to normal ECG

patterns, which can lead to biased model performance (10).

Furthermore, preserving patient privacy is another critical aspect

of medical data sharing and usage, especially in the context of

ECG data, which may contain personally identifiable and

sensitive health information (11).

Researchers have tried to solve these problems through data

augmentation. Classic data augmentation methods such as

performing translation and adding noise can only obtain limited

new additional information, which may lead to overfitting during

the training process. In order to truly augment the dataset, deep

generative models have attracted attention in recent years for the

generation of high-quality synthetic medical data, and been

applied successfully in ECG research. Previous deep generative

models (12–14) have mainly focused on only single-lead ECG

generation and lack the introduction of subject characteristics.

12-lead ECGs are the clinical gold standard, providing

comprehensive spatial information about cardiac conduction, and

incorporation of demographic and physiological features is

crucial for understanding the relationship between ECG

morphology and subject information. The inability to generate

physiologically consistent multi-lead signals significantly restricts

the applicability of these models in personalized cardiac

assessments, as key inter-lead relationships and subject-specific

variations are not considered.

Traditional simulation methods, such as the Extracellular-

Membrane-Intracellular (EMI) model or the work of Mincholé

et al. (15), which utilized computer simulation with torso-

ventricular anatomical models to investigate the impacts of

ventricular and torso anatomy on 12-lead ECGs, hypothesize that

geometrical factors, including ventricular anatomy, heart

orientation, location, and torso anatomy, differentially influence

QRS complexes in 12-lead ECGs. Although these traditional

biophysically-based models can be very precise, they are
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computationally intensive, with simulations requiring up to

several hours (16), whereas generative models can synthesize

ECG signals in milliseconds per sample.

Our study aims to bridge these gaps by introducing a

conditional Variational Autoencoder (cVAE) framework that

generates 12-lead ECGs conditioned on anatomical features. In

our previous work (17), we included subject metadata and

anatomical characteristics, such as heart positions and

orientations, from cardiac Magnetic Resonance Imaging (MRI) to

develop a cVAE model that can generate realistic 12-lead ECGs

with ability to capture useful features from different conditions.

However, the generated conditional ECGs only partially align

with the in silico data, likely due to the absence of torso

structural information in the model.

To address this limitation, in this study, we incorporate ECG

electrode locations as additional input features. A widely used

configuration for ECG measurement involves 10 electrodes: 4

electrodes placed on the limbs [left arm (LA), right arm (RA),

left leg (LL), and right leg (RL)] and 6 electrodes positioned on

the chest (V1 to V6). These chest electrodes provide detailed

spatial information about the heart’s electrical activity, enabling

the formation of 12 leads and establishing a strong connection

between the torso structure and ECG signals. With the recent

development of automated 3D torso reconstruction (18, 19), we

are able to obtain the precise electrodes’ positions from each

subject’s clinical MRI. This additional information provides

valuable constraints to the model, allowing it to generate ECGs

that are not only realistic but also anatomically and

physiologically consistent.

In order to demonstrate the efficacy of the latent representation

achieved from the VAE architecture, we extend the model to

perform future cardiovascular disease (CVD) risk prediction. The

majority of contemporary algorithms focusing on CVD risk

prediction are based on a limited set of subject attributes, e.g.,

age, smoking history, and blood pressure. Recently, efforts have

been made to investigate a broader range of risk predictors,

encompassing interaction terms and employing more

sophisticated machine learning techniques to model CVD risk

(20). However, these studies have only considered tabular data,

neglecting other potential information sources such as ECG or

MRI. Recent studies (21–23) have increasingly shown that ECG

abnormalities are a promising predictor of CVD risk, making the

direct use of ECG signals an attractive direction for risk

stratification. However, most previous approaches have relied

solely on ECG data without incorporating the underlying

anatomical context. Specifically, variations in heart position and

orientation can substantially alter ECG morphology by shifting

the electrical axis and modifying the amplitude and duration of

key waveforms (15, 19). If these anatomical effects are not

accounted for, normal variations in heart position may be

misinterpreted as pathological changes or, conversely, true

abnormalities might be obscured. By incorporating heart position

and orientation, our model can disentangle these anatomical

influences from disease-related signals. Therefore, our work

explores the novel integration of heart data with ECG signals,

aiming not only to generate more realistic ECGs but also to
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enhance the accuracy of CVD risk prediction by incorporating

critical anatomical context.

Our study makes the following key contributions:

1. We develop a novel cVAE framework capable of generating

12-lead ECGs and incorporate patient-specific conditions.

2. We demonstrate that incorporating heart position and

electrodes placement significantly improves the fidelity of

synthetic ECG signals, capturing inter-lead dependencies and

individual variability.

3. We introduce a revised Cox proportional-hazards model,

leveraging ECG-derived latent embeddings to enhance CVD

risk prediction.

4. ECG signals, combined with anatomical context, can stratify

subjects based on their future cardiovascular risk (C-index ¼
0.65), providing valuable insights for personalized

cardiac assessments.

2 Materials and methods

2.1 ECG dataset

Our research has been conducted using the UK Biobank

Resource under Application Number “40161” (24). In total, we

have ECG files from 37,508 volunteers, together with their

personal information including age, sex, BMI, and their clinical

imaging information.

Each ECG file in the UK Biobank dataset contains a 10-s

sample recorded at 500 Hz with 5,000 data points per lead.

Additionally, UK Biobank provides a median beat waveform,

which is computed by extracting individual heartbeats from the

10-s segment, aligning them, and calculating the median

waveform across all beats. This median beat contains

approximately 600 data points and serves as a representative

single heartbeat, The majority of our experiments are performed

on the shorter median data, since the averaging process can help

to reduce noise and artifacts in the signal, providing a cleaner

and accurate representation of the cardiac activity. It not only

allows us to focus on specific features of the ECG, such as the

QRS complex, without the confounding effects of beats

variability in the longer recording, but requires less

computational power and time as well. The ECG data require

some additional pre-processing to remove artifacts like baseline

drift, which was removed using a finite impulse response band-

pass filter between 3–45 Hz, inspired by an entry to the

Computing in Cardiology (CinC) 2017 challenge (25).

The age and sex information of the subjects are included in the

UK Biobank ECG files. The BMI can be located within the “Body

Size Measures” category in the UK Biobank, accessible through

each subject’s unique identification number.

The UK Biobank dataset we use includes 21,083 cardiac MRI

cases in total, and they were acquired at the same date as the

ECG acquisitions (26). These cardiac MRI are used to calculate

subject-specific information, including heart positions,

orientations and electrode positions.
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2.2 CVD risk prediction dataset

In this project, we define CVD as a composite of any of the

following ICD-10 diagnosis codes: I20 (angina pectoris), I21

(acute myocardial infarction), I22 (subsequent myocardial

infarction), I23 (certain current complications following acute

myocardial infarction), I24 (other acute ischaemic heart diseases),

I25 (chronic ischaemic heart disease), and I50 (heart failure).

This is similar to the research of Alaa et al. (20), but we exclude

I60–I69 (cerebrovascular diseases), as we assume that the link

between ECG and cerebrovascular disease is relatively weak. We

also exclude vascular dementia, since at the time of our study we

do not have access to its ICD-10 code. We apply our model only

on the cases whose CVD event date is posterior to the ECG

acquisition date, which we refer as incident cases. We identify all

subjects for which a CVD event was recorded before ECG

acquisition as prevalent CVD cases (27). The diagram of our

dataset preparation is shown in Figure 1.

In total, we have 37,508 subjects with successful ECG recordings.

As detailed in Section 2.1, a finite impulse response band-pass filter

is applied to correct baseline drift in the signals. However, this

method does not address short peak artifacts, which can

significantly affect our model training. To mitigate this issue, we

remove all signals with absolute amplitudes exceeding 800 mV/100

in any lead, resulting in the exclusion of 853 subjects. A further

25 subjects are excluded due to missing CVD diagnoses. Next, we

exclude 2,917 subjects with prevalent CVD diagnosis from our

dataset leaving 33,713 subjects. Among them, we separately have

925 cases with incident CVD diagnosis and 32,788 healthy

subjects with no CVD records at the time of this study.

We allocate 80% of each healthy and CVD group into the

training set and the remaining 20% into the test set for CVD

risk prediction. This stratification was applied separately to each

of the 7 CVD subtypes, ensuring that their proportions remained

consistent across both sets. By maintaining balanced

representation, we reduce the potential for certain diseases to be

over- or under-represented, thereby improving model accuracy

and generalizability.
2.3 Heart position and orientation

The heart position and orientation data are calculated using

information from the cardiac MRI. In general, a standard cardiac

MRI acquisition includes a stack of 2D short-axis (SAX) slices,

which cover the left and right ventricles from apex to base, as

well as a 2-chamber long axis (LAX) slice and a 4-chamber LAX

slice (28). As shown in Figure 2A, we define the heart position

as the intersection between three planes: 2-chamber LAX plane,

4-chamber LAX plane, and the middle plane of the SAX view

stack. The definition of a plane is 3D space is given by Equation 1:

n � (X � P) ¼ 0 (1)

where:
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FIGURE 1

CVD risk prediction dataset preparation diagram.
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• n [ R3 is the normal vector of the plane;

• X ¼ (x, y, z) [ R3 is an arbitrary point on the plane; and

• P ¼ (Px , Py , Pz) is a known point on the plane, extracted from

the DICOM metadata.

The specific plane equations for the three anatomical planes are

shown in Equations 2–4:

nSAX � (X � PSAX) ¼ 0 (2)

n2CH � (X � P2CH) ¼ 0 (3)

n4CH � (X � P4CH) ¼ 0 (4)

where nSAX, n2CH, n4CH are the normal vectors of the SAX,

2-chamber LAX, and 4-chamber LAX planes, respectively.

PSAX, P2CH, P4CH are the image position points for each

plane. By solving this system of three linear equations, we obtain

the heart’s center position, as shown in Equation 5:

Pheart ¼ (xh, yh, zh) ¼ Intersection(SAX, 2CH, 4CH) (5)

The heart orientation is defined relative to the standard anatomical

coordinate system using a new heart-specific coordinate system

based on the SAX and 4-chamber LAX planes. This coordinate

system is denoted as (eX , eZ , eY ). The new X-axis is computed as

the normalized intersection vector between the SAX and
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4-chamber LAX planes:

eX ¼ LSAX-4CH
kLSAX-4CHk (6)

where LSAX-4CH ¼ nSAX � n4CH is the direction vector of the

line formed by the intersection of the SAX and 4-chamber LAX

planes. kLSAX-4CHk is the vector norm, ensuring eX is a

unit vector.

The new Z-axis is chosen to be perpendicular to the 4-chamber

LAX plane, while ensuring it remains orthogonal to eX :

eZ ¼ n4CH � (n4CH � eX)eX (7)

where n4CH is the normal vector of the 4-chamber LAX plane.

The term (n4CH � eX)eX removes the component of n4CH that

is parallel to eX , ensuring orthogonality.

The new Y-axis is computed as the cross-product of eX and eZ :

eY ¼ eX � eZ (8)

Equations 6–8 ensure that (eX , eY , eZ) forms a right-handed

orthonormal coordinate system. The Euler angles describe the

rotation between the heart coordinate system (eX , eY , eZ) and the

standard anatomical coordinate system (x, y, z), as described in
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FIGURE 2

Overall pipeline for utilizing heart and torso information in conditional ECG generation and CVD risk prediction. (A) Heart position is calculated by the
intersection of 2-chamber view, 4-chamber view, and middle short-axis view. (B) Heart orientation is represented by Euler angles between heart
coordinate system and anatomical coordinate system. (C) Electrodes’ positions are achieved from cardiac MRI (18) and transformed to heart
coordinate system. (D) The conditional VAE architecture with the heart and torso information as additional condition inputs added to the first
fully-connected layer of encoder and latent space. (E) The CVD risk prediction model. An additional predictor is concatenated to the latent
embedding, which provides the risk score to realize the revised Cox proportional hazard regression model. (F) The conditional ECG generation is
performed by trained decoder, which takes random sampling from normal distribution and condition inputs.
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Equations 9–11:

a ¼ cos�1 eX � x
keXk � kxk

� �
(9)

b ¼ � cos�1 eZ � z
keZk � kzk

� �
(10)

g ¼ � cos�1 eX �N
keXk � kNk

� �
(11)

where N is the normal vector of the anatomical XOY plane.
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2.4 Electrode positions

We use the work of Smith et al. (19) for estimating

the electrodes’ positions for each subject. The method

applies a U-net deep learning network for automated

torso segmentation and contour extraction from the

localizer and scout cardiac MRI from the UK Biobank dataset

(18). The undesired section including head, neck, and arms

and potential artifacts such as shadow regions are removed

using a preprocessing algorithm. Finally, a statistical shape

model is used over sparse 3D contours to generate 3D torso
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meshes, with the electrodes’ positions estimated on the 3D

torso meshes.

Due to the relative slow speed of this algorithm, which usually

takes 30–60 min for one case, we reconstruct a total of 1,834 3D

torso meshes, and measure the ten electrodes’ positions for

standard 12-lead ECGs, which include four limb electrodes

including left arm, right arm, left leg, and right leg, and six

precordial electrodes corresponding to six precordial leads.

Figure 2C presents electrodes’ locations of ten sample cases from

our training set.

The electrodes generated from torso meshes are 3D variables

located in the anatomical coordinate system presented in

Figure 2B. In order for each subject’s location information to be

more accurately comparable and representative of the anatomical

characteristics of the heart, we utilize the heart position and

orientation calculated before, to transfer the locations from

anatomical coordinate system to heart coordinate system. In this

way we capture the corresponding relationship between the

electrode coordinates and the heart coordinates while treating the

heart coordinates as the origin. Therefore, the electrodes’

positions information is able to contain both torso and

heart features.
2.5 Conditional VAE architecture

Assuming that the original data set is x, the encoder produces a

hidden variable z and the decoder produces the reconstructed

dataset x̂. The VAE aims to learn the marginal likelihood of the

input through this generative process, as defined in Equation 12:

max
f,u

Eqf(zjx)[ log pu(xjz)] (12)

where f, u parameterize the distributions of the VAE encoder and

decoder respectively. Here, qf(zjx) is the approximate posterior

distribution of the latent variable z given the input x, and pu(xjz)
represents the likelihood of the input given the latent variable,

modeled by the decoder. Based on the evidence lower bound

(ELBO), the training process of VAE uses the loss function as

Equation 13:

L ¼ �E[ log pu(xjz)]þ DKL(qf(zjx)kp(z)) (13)

where �E[ log pu(xjz)] in our experiment is chosen as the mean-

squared error between the original x and the reconstructed x̂,

denoted as Lrecons. DKL(qf(zjx)kp(z)) represents the Kullback-

Leibler (KL) divergence between predefined posterior

p(z) � N (m, s) and the latent space distribution

qf(zjx) � N (mz , sz) produced by our network, denoted as LKL.

The posterior p(z) is set as a standard normal distribution for

easy computation.

The structure of the cVAE is similar to VAE, except that

category information y is added as part of the input data, which

is used to control sample generation for specified categories. The
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modified objective function of cVAE is presented in Equation 14:

L ¼ �E[ log pu(xjz, y)]þ DKL(qf(zjx, y)kp(z)) (14)

Figure 2D shows the revised cVAE network architecture. In the

encoder part, the ECG data, with the dimension of 1� 12� 400,

is treated as the input, followed by two convolutional blocks,

each of which includes a 2-dimensional convolution layer, a

batch normalization layer, and an Exponential Linear Unit (ELU)

activation function. Next, we have an Average Pooling layer and

the output is flattened. We use two fully-connected layers to

produce two 64-dimensional vectors: one is interpreted as the

mean, while the other one is considered as the logarithms of the

variance of 64 normal distributions. In the final stage, a sampling

layer is used to get a 64-dimensional latent space sampled from

the distributions mentioned above. The decoder part is

symmetrical to the encoder part, which uses upsampling layers

and 2-dimensional deconvolution layers, to reconstruct the 12

lead ECGs.

Physiologically, heart position, orientation, and electrode

locations define the spatial relationship between the heart’s

electrical activity and the recording leads, thereby affecting ECG

waveform morphology. To ensure that the generative model

learns these dependencies, in the encoder, the conditional

information is concatenated to the first fully connected layer,

ensuring that the learned latent representation z captures the

variability introduced by anatomical differences. In the decoder,

the same conditional inputs are incorporated alongside z to

modulate ECG generation, enforcing physiological consistency by

reconstructing ECG waveforms that align with the given heart

position, orientation, and electrode locations. Its dimension c

depends on the information category: for heart position and

orientation, these are three-dimensional coordinates and angles

respectively, and for electrodes’ positions are 10� 3

dimensional coordinates.

The model is implemeted in Python3 using PyTorch. Adam

optimizer (29) is used with a learning rate of 0.001. For each

VAE, we assigned 80% of the dataset as the training set and the

rest as test set. The batch size is set as 64, and the training

process is performed for 80 epochs. We run all experiments on

NVIDIA A100 Tensor Core GPU.
2.6 Risk prediction model architecture

The revised network presented in Figure 2E is the addition of

an extra predictor connected to the latent space so that we are

able to analyze the representations and features contained in

latent space and achieve a risk score output. For the predictor,

we perform all experiments on a single fully connected layer,

with 64 latent space dimension as input, and one dimensional

risk score as output, obtained using a sigmoid function.

The loss function of this predictor network consists of three

parts. The first two parts are the same as previous sections, i.e.,

LKL and Lrecons, as shown in Equations 13 and 14. We use the
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Cox proportional hazard regression model to realize the last

survival loss part. Typically in a linear Cox model, the hazard

function has the form defined in Equation 15:

h(t, x1, . . . , xm, b1, . . . , bm) ¼ h0(t) exp {b1x1 þ � � �
þ bmxm} (15)

where h0(t) is the baseline hazard function, which would

correspond to a hypothetical subject whose covariate values are

all zeros. The exp {b1x1 þ � � � þ bmxm} is called the relative risk

of a subject. Predictor covariate variables, xi , are weighted by bi,

to adjust this baseline hazard function for each subject. These

weights, b0, are estimated by maximising the Cox proportional

hazards partial likelihood function:

logL(b) ¼
Xn
i¼0

di b0xi � log
X
j[R(ti)

eb
0xj

0
@

1
A (16)

where xi is the vector of predictor covariate variables, di is a

boolean variable indicating event status, and R(ti) is the set of

subjects yet to have an event or be censored at time t for

subject i. Equation 16 can be adapted for a neural network by

replacing b0xi with the output of a network.

Therefore, in order to optimize our VAE network training for

survival analysis, we replace b0xi with the output of our predictor,

as shown in Equation 17, to form our survival loss function:

Lsurv ¼ 1
N

XN
i¼0

di ri � log
X
j[R(ti)

er j

0
@

1
A (17)

where N is our batch size and ri is the sigmoid of the output of the

model, i.e., the log-hazard ratio of subject i. Preliminary work with

the survival model showed that the exponent term in Lsurv can

cause the untrained predictor head to exponentiate large

numbers leading to numerical instability. To prevent this, we

apply a sigmoid function to the output of the model, both

ensuring that large exponents are not possible and keeping the

relative order of risk for subjects unchanged, since the sigmoid is

monotonically increasing.

Therefore, the loss for our overall model is written as:

Ltotal ¼ Lrecons þ LKL þ Lsurv: (18)

As this study represents an initial investigation, the three loss terms

in Equation 18 are assigned equal weights. In the future, techniques

such as grid search or other hyperparameter optimization methods

can be utilized to systematically determine the optimal

weight configuration.
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3 Results

3.1 ECG conditioned on heart position and
orientation

We used all 21,083 UK Biobank cases that include both ECG

and MRI data to train our model. After training, by modifying

the conditioning inputs (i.e., heart position and orientation), we

generated synthetic ECGs reflecting various cardiac poses, which

we then compared with the simulation trends reported by

Mincholé et al. The conditional ECG generation is performed by

the pre-trained decoder which takes random samples from a

normal distribution and conditional inputs, shown in Figure 2F.

Figures 3 and 4 show the results that reflect the learned effect of

heart rotation and translation, respectively. For rotation, we first

rotate the heart along the long axis, which is the Z axis of the

heart coordinate system, and then left-to-right ventricle axis,

which is the Y axis of the heart coordinate system. For

translation, we move the heart along the lateral and cranio-

caudal directions, which would be represented as the heart

position coordinate (x, y, z) changes, so that moving along the

lateral direction and cranio-caudal direction means changing the

value of x and z respectively.

We compare our generated ECGs with the work of Mincholé

et al. (15). As shown in Figure 3A(b), rotation along the long

axis influences R, S, and T waves in almost all the ECG leads.

The heart rotated more counterclockwise results in an increase in

the amplitude of these waves. After comparison, we find only

lead V4 completely agrees with the result of Mincholé et al. (15)

[Figure 3A(a)], while leads V1 to V3 have the same change on

R wave but the opposite on S wave. The rest of the leads show

different features, for in results of Mincholé et al. (15) long axis

rotation exerts a limited influence on leads I, V5, and V6.

Figure 3B(b) shows the amplitude of R and S waves increase in

lead II and V1–V3 when we rotate more counterclockwise along

the left-to-right ventricular axis. More clockwise rotation affects

the morphology of S wave in leads V2 and V3. Five leads I, II,

V2, V3, and V5 in our work share the same amplitude features

with results of Mincholé et al. (15). Our results also reflect the

influence on the morphology, but the degree of change is not as

prominent as Figure 3B(a).

In Figure 4A(b), when the heart moves more to the left-hand

direction, the R wave and T wave amplitudes increase in leads I,

II and V4-V6, while the S wave amplitude increases in all

precordial leads. After comparison, we find only leads V5 and

V6 agree with the findings of Mincholé et al. (15) [Figure 4A(a)],

while other leads reflect the opposite influence.

Finally, we analyze the translation along the cranio-caudal

direction. Figure 4B(b) shows that translation along this direction

mainly affects the amplitude of T wave of leads V2-V4. We also

notice an increase after translating the heart more to the inferior

direction in leads V4-V6. Compared to the work of Mincholé

et al. (15) [Figure 4B(a)], only lead II completely agrees. While

our V4 and V5 have similar response to this translation, the

degree of change in work of Mincholé et al. (15) are much greater.
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FIGURE 3

The comparison of ECG changes between previous work (15) and proposed cVAE model in leads I, II, and V1 to V6 when heart rotates around long axis
(A) and around left-to-right axis (B) in 40, 20, 0, �20, 40° separately.
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3.2 ECG conditioned by electrode positions

While the previous results demonstrate that our network

successfully extracts valuable and relevant features from the

ECGs, incorporating only heart position and orientation may

present certain limitations. For instance, only considering

absolute heart coordinates without accounting for their relative
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positions in the torso structure may reduce comparability across

subjects, as the anatomical coordinate origin is determined by

the scanner. This highlights the potential benefits of

incorporating additional factors, such as torso structure, to

enhance the accuracy and generalizability of our approach. We

include the ten electrode positions to fix our torso structure

when we perform the heart position translation. Each electrode
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FIGURE 4

The comparison of ECG changes between previous work (15) and proposed cVAE model in leads I, II, and V1 to V6 when heart moves along the lateral
direction (A) and along the cranio-caudal direction (B) in 4, 2, 0, �2, �4 cm separately.
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position is transformed from anatomical coordinate system to heart

coordinate system using heart position and orientation Euler

angles. Therefore, when evaluating the influence of heart
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information, the electrodes’ positions are the only condition

inputs to the model, which contain both heart position,

orientation, and torso information.
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For the analysis Figures 4A(c),B(c), we use a subset of 1,834

real cases that include electrode position information. By fixing

the electrode positions to control for torso influence and

modifying heart position inputs, we generate ECGs that are

compared with the morphological trends observed in Mincholé’s

work. From Figure 4A, in general, the generated ECGs using ten

electrodes have the same quality as the results using only heart

positions, except with more noise in the generated leads V1 and

V2 signals. This increased noise may result from the mismatch

between the 3D nature of electrode positions and the 1D latent

space used in our model, which introduces additional complexity

in the decoding process.

The overall impact of heart information on the generated

signals are more obvious than the one using electrodes, with

more clear difference when we move the heart. However, if we

treat the simulated signals in Figure 4A(a) as the standard, we

can discover more accurate features or trends presented in the

electrodes based model. When we look at leads I and II,

Figure 4A(b,c) reacts to the position change in a completely

opposite way. While R peak amplitude increases with the right to

left movement of the heart in Figure 4A(b), it decreases in

Figure 4A(c). When it comes to precordial leads, in leads V1 and

V4 our electrodes’ results of Figure 4A(c) also have more

consistency with the simulated results than ones with heart-

position only [Figure 4A(b)]. When the heart moves more to the

left, the S wave peak of lead V1 increases, while in lead V4, the

R wave peak increases and the S wave peak decreases. Those

characteristics are exhibited in the opposite direction in

Figure 4A(b).

In Figure 4B, more noise can be found in leads V1 and V2 in

the model with electrodes’ positions. Compared to Figure 4B(b),

the influence of Z direction change is revealed more clearly using

electrodes. Especially in leads I and II of the model with

electrodes’ positions [Figure 4B(c)], when the heart moves
FIGURE 5

(A) Kaplan–Meier plot of the full dataset before stratification, showing surviva
into low-risk (blue line) and high-risk (orange line) groups based on risk
confidence intervals (CIs).
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towards the head direction, the R wave amplitude will get

increased, which is also reflected by the simulated results in

Figure 4B(a). As comparison, the heart movement in Z direction

has little influence on the final generated signals in our model

with heart information only [Figure 4B(b)]. Regarding the

precordial leads V1–V6, our two networks in Figures 4B(b),B(c)

do not reveal large differences about the reaction to the heart

position change. In leads V2–V6, the R and S wave amplitudes

get larger if we move the heart more towards the feet. In general,

the features in both Figures 4B(b),B(c) demonstrate more

consistent results with simulated results in Figure 4B(a), except

lead V6 which shows the opposite.
3.3 CVD risk prediction

We plot the Kaplan–Meier estimate curve of the full dataset

before any stratification, as shown in Figure 5A. During seven

years of follow-up observation, 5.5% of our total subjects have

been diagnosed with CVD.

We train our network and achieve the score for each subject’s

future CVD risk in our test set, and accordingly divide them into

two groups: low CVD risk and high CVD risk, using the median

risk as threshold. Figure 5B reveals the Kaplan–Meier estimate of

both groups of our test set. In Figure 5B, we can notice a clear

difference between low CVD risk and high CVD risk groups.

The CVD event occurs in 2% of subjects in the low risk group,

and 6% of subjects in the high risk group over a nearly 7-years

observation period.

Instead of considering the absolute survival times for each

occurrence, survival analysis frequently uses the relative risk of

an event (30, 31). To evaluate this, we use the concordance index

(C-index), a widely used metric in survival analysis. Unlike

classification metrics such as AUC-ROC, sensitivity, and
l probabilities for all subjects. (B) Kaplan–Meier plot of the test set, divided
scores predicted by our model. The shaded areas represent the 95%
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specificity, which require binary labels, the C-index assesses how

well the predicted risk scores preserve the correct ranking of

event times. This makes it particularly suitable for our task,

where the goal is quantifying relative CVD risk rather than

classifying individuals into discrete risk categories.

Our model achieves a C-index of 0.63, indicating that

ECG-derived risk scores successfully rank individuals based on

their future CVD risk with performance significantly above

random chance (C-index ¼ 0.5). While existing CVD risk

models often achieve higher C-index values by incorporating

comprehensive clinical and lifestyle factors (e.g., blood

pressure, cholesterol, and smoking history), our study focuses

specifically on evaluating the prognostic value of ECG

morphology alone.

We also explore whether the additional information can

improve the performance of the network. Therefore, we first

introduce the sex and age to the encoder and next the electrodes’

positions. The idea was that sex and age are directly predictive of

incident CVD, while the electrodes’ positions could be used by

the network to contextualize the shape of the ECG and refine the

prediction. For the prediction model including sex and age, we

use the same training set and test set as in the previous sections.

The first row of Table 1 shows the result of our baseline model

with C-index of 0.63. The inclusion of heart position information

resulted in an increase of 3% in the concordance index,

indicating an improvement in the model’s ability to correctly

rank individuals by CVD risk.

For the model including electrodes’ positions, due to the

limited size of our processed dataset as discussed in Section 2.4,

we include 1,600 healthy cases and 100 cases with CVD

diagnosed and maintain the same group proportion as in the

previous experiment. From the results presented in Table 2, we

find that the baseline model only achieves the C-index of 0.58.

The addition of sex and age information increases the baseline

model result to 0.61, with a 5% improvement. By incorporating

electrodes’ positions relative to heart coordinate system, the

revised model provides a 1.7% increase in C-index, from 0.58 to

0.59. However, including the electrodes’ position along with sex

and age information do not further improve the

predictive performance.
TABLE 1 C-index result for ECG baseline prediction model and model with
additional demographic information.

Model C-index
Baseline 0.63

Baseline þ sex þ age 0.65

TABLE 2 C-index result for ECG baseline model, model with demographic
information, and electrodes’ positions.

Model C-index
Baseline 0.58

Baseline þ electrode positions 0.59

Baseline þ sex þ age 0.61

Baseline þ sex þ age þ electrode positions 0.61
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4 Discussions

In this work, we have developed a conditional VAE model to

generate 12-lead ECGs, which takes heart position, orientation,

and electrodes’ positions as conditions. The results of our cVAE

model show that the heart position and orientation have a

significant impact on the generated ECGs, which is consistent

with previous research (15). However, the influence of heart

position and orientation on the generated ECGs is not as

prominent as the simulated results. One possible explanation is

that our position definition is not accurate enough because we

only calculate the intersection of three cardiac MRI planes. An

alternative explanation is in the work of Mincholé et al. (15) the

torso structure was fixed for simulation, while in our research the

torso of each subject can vary. Additionally, after comparison we

find that some rotation degree and translation distance in the

work of Mincholé et al. (15) are too large to the extent that they

do not occur in real subjects.

When we include electrodes’ positions as input, they should

also contain heart position and orientation information. During

training, electrode positions help capture the influence of torso

anatomy on ECG morphology. During generation, fixing

electrodes’ positions allows us to control for torso-related

variability, ensuring that observed ECG changes are primarily

driven by modifications in heart position and orientation.

Therefore, in this experiment we are able to reduce the influence

of torso on our final generated results. From Figure 4, we can

notice with the addition of electrodes’ positions, the consistency

between our generated signals and simulated in silico signals of

Mincholé et al. (15) gets improved. This illustrates that our

model including the electrodes’ positions is capable of capturing

useful features that represent the individual characteristics well,

though there is more noise in the final generated signals.

A potential explanation for this issue lies in the difference

between the 3D nature of the electrodes’ positions (3� 10

coordinates) and the 1D latent space (64 dimensions) used in

our experiments. This mismatch introduces additional

complexity, which may challenge the decoder’s ability to

effectively interpret and reconstruct the information. To address

this, further parameter tuning or introduction of a separate

encoder for electrodes’ positions could help achieve better results.

While comparing our generated outcomes with the work of

Mincholé et al. (15), it is important to acknowledge that the

comparison is largely qualitative in nature, given that their work

does not provide actual values to enable a more comprehensive,

quantitative comparison. Thus, although this comparison provides

some initial insights into the relative performance of our model,

further quantitative analysis would be required to provide a more

definitive evaluation of the model’s performance. Additionally, the

work of Mincholé et al. (15) mainly focused on the QRS complex

of the ECG, while the other crucial components of the ECG

waveform, such as the P and T waves, have not been examined.

To address this limitation, our future work will focus on

integrating detailed biophysical parameters into our generative

model, enabling a more precise quantitative comparison between

our synthesized ECGs and simulation-based results.
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About the CVD risk prediction model, the results from

Figure 5 suggest that our cVAE with predictor successfully

learned to stratify subjects by CVD risk using features extracted

from 12-lead ECG signals. This indicates that there is useful

information related to their future CVD risk contained in ECG

recordings, and our model has the ability to capture it. The

baseline model in the current study attained a C-index of 0.63,

suggesting a moderate predictive performance that necessitates

further refinement. Although the C-index provides a useful

quantification of model performance, its standalone value might

not fully encapsulate the model’s clinical applicability. The future

works could further explore the ECG of the subjects defined as

high risk group by our network, and analyze their ECG

measurements in detail in order to find common characteristics

for certain diseases.

When we include additional demographic information to our

prediction network, as shown in Tables 1 and 2, it improves the

C-index by 3% and 5%. This is consistent with previous findings

of Alaa et al. (20), which highlighted the importance of age and

sex in CVD risk evaluation. While this suggests that sex and age

contribute to risk prediction, the relatively modest increase

reflects the fact that ECG waveforms already encode

physiological characteristics associated with these demographic

factors. Our future work will explore the inclusion of additional

subject information commonly used in traditional risk evaluation

methods, such as the Framingham Risk Score factors (e.g.,

smoking history, blood pressure), to assess whether incorporating

a broader range of clinical variables could further enhance

model performance.

In Table 2, we notice that the addition of electrodes’ positions

does not improve the C-index. One possible explanation is that the

relationship between electrodes’ positions and CVD risk is already

partially captured within the ECG waveforms themselves. Since

ECG morphology inherently encodes subject-specific anatomical

and physiological characteristics, some of the variability

introduced by differences in electrode positioning may have

already been learned by the model. Due to the high

dimensionality of the electrode position data (3� 10

coordinates), the single fully connected layer in our current

model may not be expressive enough to fully map these features

into the latent space for risk prediction. A more complex

network architecture could be explored in future to better

leverage electrode position information for improved

prediction performance.

While our study investigates general CVD risk prediction,

further work is needed to explore how changes in ECG

amplitude and duration, resulting from variations in heart

position and electrode placement, impact the prediction of

specific cardiovascular diseases. Certain ECG-derived biomarkers,

such as ST-segment deviations or QRS complex amplitudes, are

directly influenced by these factors and play a crucial role in

diagnosing conditions such as myocardial infarction or

hypertrophy. A future extension of our work could involve

evaluating how disease-specific classification models respond to

these anatomical influences, improving the interpretability and

robustness of ECG-based prediction methods.
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5 Conclusion

In this work, we have developed a cVAE-based ECG generation

model, incorporating the electrodes’ positions to include torso

information. This approach has markedly improved the

consistency between our generated signals and previous in silico

studies, surpassing the performance of models that relied solely

on heart position and orientation. Through the meaningful latent

space representation learned by our cVAE model, we highlight

the ability of ECG signals alone to predict future CVD risk.

Furthermore, by incorporating additional conditioning factors

such as age, sex, and electrodes’ positions, we demonstrate that

these structured inputs provide additional guidance, further

refining risk estimation. Our findings underscore the potential of

generative approaches to extract clinically relevant features from

12-lead ECG signals, supporting the development of more

personalized and data-driven CVD risk assessment models.
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Introduction: Heart Failure (HF) complicated by thyroid dysfunction presents a

complex clinical challenge, demanding more advanced risk stratification tools.

In this study, we propose an AI-driven machine learning (ML) approach

to predict mortality and hospitalization risk in HF patients with coexisting

thyroid disorders.

Methods: Using a retrospective cohort of 762 HF patients (including euthyroid,

hypothyroid, hyperthyroid, and low T3 syndrome cases), we developed and

optimized several ML models—including Random Forest, Gradient Boosting,

Support Vector Machines, and others—to identify high-risk individuals.

Results: The best-performing model, a Random Forest classifier, achieved robust

predictive accuracy for both 1-year mortality and HF-related hospitalization (area

under the ROC curve ∼0.80 for each). We further employed model

interpretability techniques (Local Interpretable Model-agnostic Explanations,

LIME) to elucidate key predictors of risk at the individual level. This

interpretability revealed that factors such as atrial fibrillation, absence of

cardiac resynchronization therapy, amiodarone use, and abnormal thyroid-

stimulating hormone (TSH) levels strongly influenced model predictions,

providing clinicians with transparent insights into each prediction. Additionally,

a multi-objective risk stratification analysis across thyroid status subgroups

highlighted that patients with hypothyroidism and low T3 syndrome are

particularly vulnerable under high-risk conditions, indicating a need for closer

monitoring and tailored interventions in these groups.

Discussion: In summary, our study demonstrates an innovative AI methodology

for medical risk prediction: interpretable ML models can accurately stratify

mortality and hospitalization risk in HF patients with thyroid dysfunction,

offering a novel tool for personalized medicine. These findings suggest that

integrating explainable AI into clinical workflows can improve prognostic

precision and inform targeted management, though prospective validation is

warranted to confirm realworld applicability.
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artificial intelligence, machine learning, heart failure, thyroid dysfunction, risk

stratification, explainable AI
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1 Introduction

Heart Failure (HF) is one of the leading causes of morbidity

and mortality globally, imposing a significant burden on

healthcare systems and the quality of life of patients.

Concurrently, thyroid dysfunctions, particularly hypothyroidism,

have been associated with worsening clinical outcomes in

patients with HF, adversely affecting prognosis. Recent studies

underscore that subclinical hypothyroidism (SH) significantly

raises the risk of cardiovascular mortality in HF patients,

emphasizing the need for precise monitoring and intervention

strategies (1). Optimal ranges of thyroid-stimulating hormone

(TSH) and free thyroxine (FT4) levels are linked to reduced

mortality risks, suggesting that both high and low extremes can

worsen HF outcomes (2). Previous studies have demonstrated

that hypothyroidism can negatively impact cardiac function and

increase the risk of developing HF. Recent meta-analyses have

confirmed that subclinical hypothyroidism is associated with an

increased risk of all-cause mortality and hospitalization in

patients with HF, highlighting the importance of thyroid

evaluation in this population (3). However, the relationship

between hypothyroidism, HF, and mortality remains complex

and multifactorial, requiring further exploration for optimal

patient management.

The complexity of clinical management of this patient cohort

underscores the need for advanced tools for accurate and

personalized risk assessment. Machine learning (ML) has shown

revolutionary capabilities in the medical field, particularly in

predictive medicine, where complex models such as XGBoost,

Random Forest, and LightGBM have managed large volumes of

clinical data and identified complex patterns not immediately

apparent to human analysis (4). Recent advancements, such as

the use of SF-IIAdaboost algorithms integrating IoT and AI, have

achieved high predictive accuracy in cardiovascular contexts,

underscoring the potential for enhanced prognostic precision (5).

The use of advanced ML algorithms has enabled the

identification of clinical and biochemical features that predict

mortality risk, examining how these interact with each other and

with the patient’s baseline condition. Such models have been

shown to improve risk stratification and treatment

personalization in patients with HF, including those in a

hypothyroid state (6). In patients with HF, ML analysis has

identified prognostic phenotypes, facilitating the application of

precision medicine. This approach is particularly relevant for

hypothyroid patients, who present a unique disease dynamic

compared to patients with overt thyroid dysfunction (7).

This work aims to explore the application of ML in estimating

the mortality risk in hypothyroid patients suffering from HF, with a

particular emphasis on the analysis of age and TSH levels as

prognostic factors. Through the analysis of a large cohort of

cardiac patients stratified by thyroid conditions, this study aims

to develop ML models that provide accurate estimates for two

main targets: mortality and hospitalization in this specific

population. Our goal is twofold: on one hand, to contribute to

the scientific literature by offering insights into the underlying

mechanisms of the association between thyroid conditions and

HF; on the other hand, to provide healthcare providers with an

innovative tool for improving risk stratification and personalizing

therapeutic strategies.

The core of this work involves the presentation of the research

methods used to develop the ML models, including feature

selection, model training, and validation. Finally, the results are

analyzed in detail, highlighting how various factors contribute to

predicting the risk of mortality and hospitalization in patients

with HF and how these models can be employed in clinical

practice to support more informed therapeutic decisions.

The use of ML in predicting mortality risk in patients with HF

could mark a significant advancement in managing this complex

intersection of conditions. This study aims to explore such

potential, opening new frontiers in cardiovascular and

endocrinological research. By highlighting these computational

underpinnings, the manuscript extends the theoretical

understanding of explainable AI in clinical contexts and bridges

the gap between algorithmic transparency and medical

applicability. The article begins in Section 2 with a

comprehensive background, offering an overview of related

studies and showcasing the unique benefits and objectives of this

research. In Section 3, the methodology is detailed, guiding

readers through the study’s innovative approach. Section 4 dives

into a discussion of the primary findings, spotlighting key results

and their implications. Finally, the conclusion ties everything

together, underscoring the study’s contributions and

future directions.

2 Background

The growing awareness of the negative impact of

hypothyroidism on patients with HF underscores the need for

comprehensive risk assessment and personalized management

strategies. Studies have shown that hypothyroidism, including its

subclinical form, is prevalent among HF patients and

significantly contributes to an increased risk of mortality,

hospitalization, and deterioration of cardiac function.

Amiodarone, a commonly used antiarrhythmic drug, has been

identified as a determining factor in the onset of hypothyroidism

in this population (8). Research highlights the importance of

monitoring TSH levels as a key indicator of thyroid function in

these patients. It has been demonstrated that correcting thyroid

hormone deficiency, indicated by elevated TSH levels, leads to

improvements in cardiac function while simultaneously reducing

the risk of hospitalization and mortality. Conversely, worsening

thyroid function, characterized by rising TSH levels, is associated

with a decline in cardiac function and adverse outcomes (9, 10).

Beyond traditional risk markers, the role of N-terminal pro-B-

type natriuretic peptide (NT-proBNP) has emerged as a

significant prognostic factor in patients with suspected HF. Even

in the absence of echocardiographic evidence of HF, elevated

NT-proBNP levels, combined with factors such as advanced age,

male sex, chronic kidney disease (CKD), chronic obstructive

pulmonary disease (COPD), and dementia, have been associated

with higher mortality (11). These findings highlight the complex
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interaction between HF and thyroid dysfunction, suggesting a need

for more sophisticated approaches for accurate risk stratification

and timely interventions.

The emergence of Machine Learning (ML) algorithms such as

XGBoost, Random Forest, and LightGBM offers a promising

avenue forward. These ML algorithms have demonstrated their

ability to discern complex prognostic patterns and improve

treatment personalization in various healthcare contexts,

including predicting acute kidney injury (AKI) following

percutaneous coronary intervention (PCI) in patients with acute

coronary syndrome (ACS) (12). In HF, recent studies indicate

that ML models enhance predictive accuracy for mortality and

readmission by integrating comprehensive clinical data and

managing issues like data imbalance and incompleteness (13).

Advanced deep learning techniques, such as multi-head self-

attention, further improve model performance, particularly in

handling complex and diverse datasets common in HF

populations (14). Applying ML algorithms in this context may

improve the precision of risk assessment and support more

personalized management of patients with HF and

hypothyroidism, although prospective validation is still required.

By harnessing the power of these algorithms, we could develop

predictive models capable of accurately identifying high-risk

individuals for adverse outcomes, allowing for targeted

interventions and improved patient outcomes. Additionally, the

integration of variables such as age and TSH levels into ML

models could provide further insights into the delicate balance

between cardiac and thyroid function. By incorporating these

factors, the resulting models may achieve higher predictive

accuracy, guiding clinical decisions and leading to personalized

treatment strategies.

2.1 Related studies and benefits

Recent scientific literature highlights the effectiveness of ML in

predicting complex clinical outcomes, such as mortality and

hospitalization, especially in patients with endocrine and

cardiovascular comorbidities. Some studies have explored the use

of ML to analyze autoimmune and endocrine diseases, revealing

the significant role that conditions like diabetes and thyroid

disorders play in elevating mortality rates (15). Similarly, other

studies have applied ML to diagnose forms of secondary

hypertension, showing how abnormal TSH levels can influence

cardiovascular risk (16). Additionally, models have emerged

linking diabetes and hypothyroidism with increased mortality in

COVID-19 patients requiring hospitalization (17), while other

research has developed algorithms to predict atrial fibrillation

associated with thyrotoxicosis, emphasizing the importance of

thyroid profiles in heart disease (18). Further investigations into

the connection between subclinical hypothyroidism and

cardiovascular diseases have also examined the potential for

accurately predicting mortality and hospitalization in patients

with HF (19, 20). ML models that incorporate social

determinants of health have also shown promise in predicting

in-hospital mortality for HF patients, illustrating the benefits of

integrating clinical and social factors to improve outcomes in

complex cardiovascular cases (21). Efforts to enhance

cardiovascular risk predictions by integrating factors such as

diabetes and thyroid health have further refined risk stratification

models (22). Additionally, there is promising research on ML

frameworks that predict postprocedural outcomes in

interventional radiology using random forest models, offering

insight into complications, mortality, and length of stay (23).

However, these studies often treat thyroid dysfunctions as one of

many risk variables, without fully exploring their specific impact

on patients with cardiovascular conditions.

This study stands out by providing a detailed, targeted analysis

of the influence of thyroid conditions on clinical outcomes through

an innovative ML approach. Unlike previous studies, this work

focuses specifically on the impact of thyroid dysfunctions,

making each prediction more precise and tailored to clinical

management. Additionally, by using Local Interpretable Model-

agnostic Explanations (LIME), predictions are both transparent

and individualized, allowing clinicians to clearly see how each

clinical variable contributes to the risk of mortality or

hospitalization for each patient, thereby supporting more

informed and personalized decision-making.

The ML analysis also extends to specific patient subgroups,

such as euthyroid and hypothyroid patients, making this study

uniquely comprehensive compared to existing literature. Through

advanced predictive modeling, the study has identified the

absence of Cardiac Resynchronization Therapy (CRT) as a

critical risk factor for mortality in patients with thyroid

dysfunctions, suggesting that targeted interventions could

improve patient prognosis. Another key finding is the association

between low TSH levels and reduced hospitalization risk in

euthyroid patients, introducing new parameters to monitor even

in the absence of overt hypothyroidism or hyperthyroidism.

Finally, ML has enabled the identification of an increased

mortality risk associated with Amiodarone use in patients with

LT3, offering practical insights for optimizing therapeutic

decisions in cardiology.

In summary, this study not only enriches scientific knowledge

but also serves as an innovative pillar for precision medicine in

managing patients with thyroid and cardiovascular comorbidities.

The advanced use of ML enables more accurate and personalized

predictions, thus transforming the quality of clinical care.

2.2 Patient selection

In this study, we examined a cohort of 762 patients to assess

significant clinical outcomes such as HF hospitalization and

mortality over the follow-up period. The patients were monitored

for durations ranging from less than a month to almost 12.7

years, with an average follow-up period of approximately 4.5

years (9).

The selection of participants was meticulously conducted to

include only those subjects for whom complete data were

available regarding arrival date, follow-up date, age, sex, and key

clinical events such as mortality and HF hospitalization. No

Iacoviello et al. 10.3389/fdgth.2025.1583399

Frontiers in Digital Health 03 frontiersin.org52

https://doi.org/10.3389/fdgth.2025.1583399
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


patient was excluded due to a lack of essential data, thus

maintaining the integrity of the cohort.

From a demographic perspective, the average age of

participants at the time of arrival was 63.5 years, ranging from

14 to 89 years. Males constituted 78% of the cohort,

demonstrating a prevalence of this gender. This sex imbalance

reflects the characteristics of the referred population but may also

introduce gender-related bias, particularly relevant given the

higher prevalence of thyroid dysfunction in females. Regarding

clinical outcomes, about 30% of the patients died, and 22%

experienced at least one episode of HF hospitalization during the

follow-up period. All consecutive outpatients with CHF referred

to the HF Unit of the University Policlinic Hospital of Bari from

January 2006 to December 2016 were retrospectively evaluated.

All the evaluations with patients in stable clinical conditions

from at least 30 days and in conventional medical and electrical

therapy from at least 3 months were considered. The adoption of

well-defined inclusion criteria minimized potential biases arising

from incomplete data and enhanced the representativeness

and generalizability of the results. For patients who developed

thyroid dysfunction after their initial evaluation, the clinical

timepoint corresponding to the diagnosis of hypothyroidism,

hyperthyroidism, or low-T3 syndrome was considered as the

analytical baseline (9). This allowed for consistent classification

of thyroid status and ensured that risk predictions were anchored

to the relevant endocrine condition.

3 Materials and methods

The study is based on a dataset of 762 patients and employs

ML techniques implemented in Python to build predictive

models that estimate the risks of mortality and hospitalization.

The main objective is to analyze the influence of various clinical

characteristics, including thyroid variables, on these outcomes.

The analyses were conducted using Orange Data Mining

software version 3.36.2 on an Apple M1 Pro system equipped

with 16 GB of RAM and 1 TB of storage, operating on

macOS Sonoma 14.2.1. This setup, combined with the use of

advanced ML techniques, ensured the efficiency and

reproducibility of our analyses. The importance of such ML

methodologies in extracting meaningful insights and predictive

models from complex datasets has been previously highlighted

and validated in similar studies in the field of health

performance assessment, such as efficiency and mobility (24–27)

and for predicting neurodevelopmental disorders in children

(28). The methodological phases of the study, illustrated in

Figure 1, were developed in a Python environment, highlighting

the key steps of the analysis.

The methodological workflow, illustrated in Figure 1, follows a

multi-step approach organized into key phases:

1. Data preprocessing and handling of missing data: Missing data

is managed through model-based methods that leverage

relationships among variables to estimate missing values,

preserving the original distribution and minimizing

potential bias.

2. Dataset sampling: To assess model robustness, the dataset is

split into a training set and a test set, allowing for rigorous

validation of predictive performance.

3. Selection of ML models: Various ML algorithms are tested,

including Random Forest, Gradient Boosting, Naive Bayes,

Support Vector Machine, K-Nearest Neighbors, Neural

Networks, Decision Trees, AdaBoost, Stochastic Gradient

Descent, and Logistic Regression.

4. Internal Validation and Hyperparameter Optimization:

Techniques such as grid search and cross-validation are

employed to optimize hyperparameters, ensuring that model

performance generalizes and is not limited to the training

set alone.

5. Performance Model Evaluation: An evaluation function is

created to automate model assessment on the test data,

calculating metrics such as area under the ROC curve (AUC),

accuracy, F1-score, precision, recall, and MCC to facilitate

model comparison.

6. Model interpretation with LIME: To interpret predictions,

LIME is used, highlighting the contribution of each variable

to the final prediction and providing visual representations

accessible to a non-technical audience.

7. Evaluation of models on different thyroid conditions: Models

are evaluated on both the entire dataset and subgroups based

on thyroid conditions (Euthyroidism, Hypothyroidism,

Hyperthyroidism, and Low T3 Syndrome). This approach

allows exploration of how model performance varies

according to different thyroid conditions.

In summary, the study adopts a ML approach to develop and

validate predictive models for mortality and hospitalization risks

in cardiology and endocrinology patients. The workflow

FIGURE 1

Workflow diagram for data collection and ML model training.
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incorporates multiple phases, from data preprocessing to model

interpretation, with particular attention to the influence of

thyroid variables.

3.1 Dataset

Initially, we collected a broad set of clinical data, including both

numerical and categorical variables ranging from demographic to

biochemical parameters (29). In accordance with the study

conducted by Iacoviello et al. in 2020, for each patient, the

baseline evaluation was conducted during the first recorded

medical visit. At this stage, a comprehensive medical history,

physical examination, 12-lead ECG, mono- and two-dimensional

echocardiographic evaluation, and blood samples were collected.

For patients who subsequently developed thyroid disorders, the

evaluation corresponding to the diagnosis of hypothyroidism,

hyperthyroidism, or low T3 syndrome (LT3) was considered as

the baseline. During the medical visit, the presence of ischemic

cardiomyopathy, arterial hypertension, atrial fibrillation, and

diabetes mellitus was carefully documented, along with any

previous thyroid disease diagnosis. Data on HF therapy and any

prior or ongoing treatment with amiodarone were also gathered.

Additionally, information regarding the thyroid disease diagnosis

was recorded. The 12-lead ECG was used to assess heart rhythm

and rate. Echocardiographic recordings were obtained using a

phased-array echo-Doppler system (Sonos 5500, Philips,

Netherlands; from September 2008 onward, Vivid 7, GE,

Wisconsin, USA) to estimate the left ventricular ejection fraction

(LVEF) using the Simpson method. At baseline, levels of sodium

(mEq/L), serum creatinine concentrations (mg/dl), and

hemoglobin (g/dl) were measured. The glomerular filtration rate

(GFR, ml/min) was calculated using the EPI formula (30).

Additionally, amino-terminal brain natriuretic peptide (NT-

proBNP, Dade Behring, Eschborn, Germany), free T3 (fT3), free

thyroxine (fT4), and TSH levels were measured through

immunoassays, using the reference ranges provided by the kit

manufacturers (Advia Centaur, Bayer HealthCare, Diagnostics

Division, Tarrytown, NY, US until 2011, and subsequently

Dimension Vista, Siemens Healthcare Diagnostics, Erlangen,

Germany). The resulting dataset with the selected variables is

shown in Table 1.

The table provides a comprehensive description of the variables

used to feed our ML model for predicting two key clinical

outcomes: mortality and hospitalization. The variables are

organized into two main categories, namely Target, which

includes the clinical outcomes of interest, and Feature, which

comprises the relevant clinical and demographic factors selected

to optimize the predictive accuracy of the model.

In the Target category, there are two variables, “Mortality” and

“Hospitalization,” which respectively indicate the occurrence of

patient mortality and hospitalization. Each is coded as a

categorical variable, with the value 1 representing the occurrence

of the event and the value 0 indicating its absence. These targets

serve as the dependent variables of the model, which is trained

to identify and classify the risks associated with each outcome.

The Features include a range of demographic and clinical

variables, carefully selected to identify significant correlations and

enhance the model’s predictive capabilities. Among the

demographic characteristics, MALE GENDER indicates the

TABLE 1 Overview of variables in the dataset.

Model variable Variable name Description Type variable

Target Mortality Patient mortality event (1: Yes, 0: No) Categorical

HF hospitalization Patient hospitalization (1: Yes, 0: No)

FEATURE Male gender Patient’s gender (1: male, 0: female)

Ischemic cardiomiopaty Presence of ischemic cardiomyopathy (1: present, 0: absent)

Diabetes Diabetes diagnosis (1: Diabetic, 0: non-diabetic)

ACEi/ARBs Use of ACE inhibitors or ARBs (1: Use, 0: no use)

Beta-blockers Use of beta-blockers (1: Use, 0: no use)

Diuretics Use of diuretics (1: Use, 0: no use)

Aldosterone antagonists Use of aldosterone antagonists (1: Use, 0: no use)

Amiodarone Use of amiodarone (1: Use, 0: no use)

ICD Implantable defibrillator (1: Present, 0: absent)

CRT Cardiac resynchronization therapy (1: present, 0: absent)

NYHA class NYHA functional class (1, 2, 3)

Atrial fibrillation Presence of atrial fibrillation (1: present, 0: absent)

Age Patient’s age (years) Numerical

BMI Body mass index (kg/m²)

Systolic arterial pressure Systolic blood pressure (mmHg)

LVEF Calculated ejection fraction (percentage)

GFR-EPI Estimated glomerular filtration rate (ml/min/1.73 m²)

Natremia Blood sodium concentration (mmol/L)

NT-proBNP NT-proBNP levels in blood (pg/ml)

FT3 Free triiodothyronine levels (pmol/L)

FT4 Free thyroxine levels (pmol/L)

TSH TSH levels (mU/L)
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patient’s gender, with 1 for male and 0 for female, an important

attribute as gender can influence HF prognosis. The patient’s age

is represented by the continuous numeric variable AGE, allowing

the model to capture risk variations associated with advanced

age. The body mass index BMI, expressed in kg/m², is also

included as a general health indicator, potentially associated with

overall cardiovascular risk.

The clinical variable set consists of critical diagnostic information,

such as the presence of ischemic cardiomyopathy, described by the

variable ISCHEMIC CARDIOMYOPATHY, and diabetes diagnosis,

represented by the DIABETES variable. Both are binary variables

distinguishing between patients with and without these conditions,

each known to negatively impact the progression of HF. Other

clinical variables include pharmacological treatments followed by the

patients, such as the use of ACE inhibitors or angiotensin

receptor blockers ACEinhibitor/ANGIOTENSIN II RECEPTOR

BLOCKERS (ACEi/ARBs), BETA-BLOCKERS, DIURETICS, and

MINERALCORTICOID RECEPTOR ANTAGONISTS. These

medications, coded as 1 for use and 0 for non-use, play a crucial

role in managing symptoms and preventing cardiovascular

complications. The use of AMIODARONE, an antiarrhythmic drug,

is similarly included as a binary variable, as it is relevant for

patients with severe arrhythmias. ATRIAL FIBRILLATION is a key

clinical feature indicating the presence of atrial fibrillation, coded as

1 for present and 0 for absent. This variable is essential for HF

patients, as atrial fibrillation can exacerbate symptoms and increase

the risk of adverse events.

The model also incorporates instrumental characteristics, such

as the presence of an implantable cardioverter-defibrillator ICD

and cardiac resynchronization therapy CRT, both coded to

indicate the presence or absence of the device, respectively with 1

and 0. The patient’s NYHA functional class, categorized with

values from 1 to 3, is another critical clinical parameter, as it

reflects the severity of HF symptoms and helps predict the risk

of adverse events.

The dataset further includes a series of relevant physiological

and biochemical parameters, such as systolic blood pressure,

measured in mmHg, and the calculated ejection fraction (LVEF),

expressed as a percentage, which represent the level of blood

pressure and the heart’s contractile capacity, respectively. Renal

function is evaluated through the estimated glomerular filtration

rate by EPI formula (GFR-EPI), measured in ml/min/1.73 m²,

while blood sodium concentration (NATREMIA) provides

insights into electrolyte balance and fluid regulation, both

relevant to cardiovascular function. Amino-terminal Brain

Natriuretic Peptide (NT-proBNP), a biomarker of HF severity, is

also included and measured in pg/ml to quantify the

condition’s severity.

The dataset is completed by the levels of the thyroid hormones

FT3 and FT4, along with TSH, which offer valuable information

about the patient’s thyroid function. These variables are

particularly significant for patients with thyroid dysfunction,

given their potential impact on outcomes in HF.

This set of variables forms a robust and multidimensional data

foundation essential for training ML models. Through this wide

array of clinical and demographic features, the ML model can

process complex details and identify significant patterns, thereby

providing valuable support in predicting clinical risks and

personalizing therapies for patients with HF and

associated comorbidities.

3.2 Preprocessing and data sampling

These data were meticulously cleaned to eliminate anomalies

and missing values, thereby ensuring the integrity of the dataset

used for model training. The handling of 0.2% missing data was

performed using the model-based imputer with a simple tree

model, through Orange (version 3.36.2), a data mining software

built on open-source Python libraries for scientific computing,

such as NumPy and SciPy. The Impute widget was used for this

purpose, allowing the construction of models to predict missing

values based on the available data in other variables. With the

integration of advanced Python libraries, Orange provides a

powerful interface for imputation and scientific calculations,

enabling accurate estimation of missing values with a simple

decision tree while preserving dataset integrity, even with a low

percentage of missing data.

Mathematically, the imputation process can be represented as

follows: each missing value Xi is estimated using other observed

variables X�i through a function f derived from a simple decision

tree, as shown in (Equation 1):

bXi ¼ f (X�i) (1)

Where bXi denotes the imputed value for the variable Xi, X�i

represents the set of all other observed variables used as

predictors, and f is the function constructed by the decision tree

to predict the missing values.

For continuous variables, this function imputes missing values

as the mean of known values within the relevant leaf node, as

described in (Equation 2):

bXi ¼
1

n

X

j[leaf

Xj (2)

where n is the number of samples in the same leaf node and

Xj represents each known value of Xi within that node. The

summation
P
j[leaf

Xj calculates the total of known values for Xi in

the node, with the division by n yielding the mean.

Equations 1, 2 together provide the general method for

accurately filling in missing values, preserving dataset integrity

for effective model training.

The dataset was divided into a training set (70%) and a

validation set (30%), using this split to minimize the risk of

overfitting and to verify the model’s ability to generalize to

unseen data. This split was done in Python using the

train_test_split command of the sklearn library.

Formally, if we consider X as the set of independent variables

(features) and y as the target, we can represent the data separation
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as shown in (Equations 3, 4):

(Xtrain, ytrain) ¼ {(Xi, yi)j i [ Training set} (3)

(Xtest , ytest) ¼ {(Xi, yi)j i [ Validation set} (4)

where Xtrain and ytrain represent the features and targets of the

training set, respectively, while Xtest and ytest represent the

features and targets of the validation set.

For each model, after training on the training set, we calculate

evaluation metrics on the validation set to assess model

performance. The evaluation function, denoted as Metric,

measures the performance of the optimized model using the

validation set observations, as shown in (Equation 5):

Metric ¼ 1

N

XN

i¼1

L(f (Xtest,i , uopt), ytest,i) (5)

Where f (Xtest,i , uopt) is the model’s prediction for test data point

Xtest,i , using the optimized parameters uopt . ytest,i represents the

actual target value for Xtest,i . L is a loss function that quantifies

the difference between the prediction and the actual value (e.g.,

mean squared error for regression or cross-entropy for

classification). N is the number of observations in the validation set.

Equations 3, 4 describe the division of data into training and

validation sets, while (Equation 5) defines the evaluation metric

to assess model performance after optimization. This approach

ensures that the model is tested on unseen data, providing a

reliable measure of its generalization capabilities.

3.3 Validation and optimization process for
ML models

We explored a broad range of ML algorithms, including

Gradient Boosting, Naive Bayes, Random Forest, AdaBoost,

Logistic Regression, SVM, SGD, Decision Trees, and KNN,

optimizing each to enhance the accuracy of predictions for

mortality and hospitalization risks (31). Previous studies have

demonstrated the effectiveness of ML in cardiovascular risk

stratification, showing that these models outperform traditional

methods in handling complex datasets and modeling non-linear

relationships, thus providing higher sensitivity and specificity (32,

33). The implementation was carried out in a Python

environment, using advanced libraries such as pandas, numpy,

and scikit-learn, with a script that managed data loading,

cleaning, and splitting for model training and validation.

The selected features include 10 numerical and 11 categorical

variables, as outlined in Table 1. After dividing the dataset into a

training set (70%) and a validation set (30%) using the

train_test_split function from scikit-learn, we created pipelines

for each model, applying feature standardization via

StandardScaler. Feature standardization was performed using the

following formula (Equation 6):

Xscaled ¼
X � m

s
(6)

Where X represents the original value of the feature, m is the mean

of the feature values in the training set, s is the standard deviation

of the feature in the training set. This transformation scales the

features to have a mean of zero and a standard deviation of one,

improving the stability and performance of ML algorithms,

especially those sensitive to data scaling.

We developed two distinct predictive models, focusing on

mortality and hospitalization events as target variables for our

patient cohort. Each model was trained separately on target-

specific data and validated to ensure the reliability of the results.

To minimize variance and improve the robustness of

performance estimates, we applied 10-fold cross-validation, in

line with established methods (34). The training process included

a class balancing phase to address the data imbalance for

mortality and hospitalization targets, a common issue in clinical

datasets. Using SMOTE (Synthetic Minority Over-sampling

Technique), we balanced the training set for each target by

creating synthetic samples of the minority class, enhancing the

models’ ability to handle imbalanced data. This approach

improved the sensitivity and specificity of the models, reducing

the risk of misclassifying high-risk patients. The developed

models were rigorously validated using standard metrics such as

the AUC, accuracy, sensitivity, and specificity (35). For each

model, we implemented a hyperparameter tuning phase using

Python’s GridSearckCh, a tool provided by the scikit-learn library

that enables an exhaustive search for the optimal combination of

hyperparameters to maximize model performance. GridSearchCk

evaluates each combination specified in a predefined parameter

grid, applying cross-validation to ensure that the performance

obtained is representative and not overly dependent on the

training data.

We used AUC as the primary metric for hyperparameter

tuning, chosen because it represents the model’s ability to

correctly distinguish between classes, regardless of the

classification threshold. AUC is particularly useful in medical

contexts, where it is crucial to reduce both false positives and

false negatives. A higher AUC indicates a more accurate model

in predicting clinical events such as mortality and hospitalization,

thereby improving the quality of therapeutic decision-making.

Formally, the optimization process aims to maximize AUC by

selecting the optimal set of hyperparameters u, and can be

expressed as follows (Equation 7):

u� ¼ argmax
u[Q

AUC(f (Xtrain; u), ytrain) (7)

Where u [ Q represents the set of hyperparameter

combinations specified in the search grid, f (Xtrain; u) is the

model’s predictive function trained on the training data Xtrain

with parameters u, AUC is the evaluation metric that measures

the area under the ROC curve, representing model performance
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relative to the true values ytrain, u� is the combination of

hyperparameters that maximizes AUC.

In Python, GridSearchCV applies cross-validation to each

combination of hyperparameters u, splitting the training set into

k folds. The cross-validated mean AUC, denoted as AUCcv, for

each fold can be expressed as (Equation 8):

AUCcv ¼
1

k

Xk

i¼1

AUC( f (Xtraini ; u), ytraini ) (8)

Where Xtraini and ytraini represent the training data and targets for

the i-th fold, respectively, k is the number of folds in the cross-

validation. At the end of the procedure, GridSearchCV returns

the combination of hyperparameters u�that maximizes the mean

AUC across folds, providing an optimal configuration that

represents the entire training set and minimizes the risk of

overfitting. This approach ensures that the model is optimized

for class discrimination, enhancing its generalizability to new data.

3.4 Selected ML models post-optimization

After the hyperparameter optimization process and using AUC

as the primary metric to select the most effective model, Random

Forest proved to be the best suited for predicting both the

Mortality target (patient mortality event) and the HF

Hospitalization target (patient hospitalization event). Model

selection was based on comparing the average AUCs obtained

through cross-validation for each model and target.

For predicting both the Mortality and HF Hospitalization

targets, Random Forest showed optimal results. Random Forest is

an ensemble learning method that builds multiple decision trees

during training and combines their predictions to enhance the

model’s accuracy and robustness. The final prediction for each

target using Random Forest, denoted as fRF(X), is obtained by

averaging (for regression) or taking the majority vote (for

classification) across the predictions from all trees, as shown in

(Equation 9):

fRF(X) ¼
1

N

XN

j¼1

fj(X) (9)

Where N is the number of decision trees in the forest, fj(X)

represents the prediction of the j-th tree for input X.

Each tree is trained on a randomly sampled subset of the

training data with replacement, optimizing specifically for the

Mortality and HF Hospitalization targets. The aggregation of

predictions enhances the model’s generalization ability, reducing

the risk of overfitting and stabilizing its capacity to accurately

predict both mortality and hospitalization events.

3.5 Data measurements

In our study, predictive models effectively differentiate between

survival and mortality outcomes among HF patients. These models

categorize observations based on their predictions: an outcome is

identified as either an accurate mortality prediction (TP—true

positive), an accurate survival prediction (TN—true negative), an

incorrectly predicted mortality (FP -false positive), or a missed

mortality (FN—false negative). This classification is vital for

assessing the model’s accuracy and utility in clinical settings.

The model’s performance is evaluated using several metrics,

which are crucial for ensuring accurate and reliable predictions:

• AUC-ROC (Area Under the Curve—Receiver Operating

Characteristics): Measures the model’s discriminative ability

between outcome classes. The ROC curve plots the true positive

rate (TPR) against the false positive rate (FPR) across varying

thresholds u, and the AUC is calculated as (Equation 10):

AUC ¼
ð1

0

TPR [FPR�1(u)] du (10)

This integral covers all possible decision thresholds, providing a

comprehensive measure of predictive accuracy.

• Accuracy: Represents the ratio of correctly predicted instances

(both true positives and true negatives) to the total number of

instances evaluated. It is defined by the following (Equation 11):

Classification Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(11)

• Precision: Indicates the accuracy of positive predictions

(mortality predictions), highlighting the model’s ability to

minimize false alarms, defined as (Equation 12):

Precision ¼ TP

TP þ FP
(12)

• Recall (Sensitivity): Reflects the model’s ability to identify all

actual positive instances (actual mortalitys), which is crucial

for ensuring that no high-risk patients are overlooked, defined

as (Equation 13):

Recall ¼ TP

TP þ FN
(13)

• F1 Score: Combines precision and recall into a single metric,

providing a balanced view of the model’s overall predictive

precision and sensitivity, defined as (Equation 14):

F1 ¼ 2 x
Precision x Recall

Precisionþ Recall
(14)

• Matthews Correlation Coefficient (MCC): A comprehensive

measure that takes into account true and false positives and

negatives, offering a balanced metric even for imbalanced
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datasets. The MCC is especially valuable as it ranges from −1

(total disagreement between predictions and actuals) to +1

(perfect prediction), with 0 indicating no predictive power,

defined as (Equation 15):

MCC ¼ (TP x TN)� (FP x FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP þ FP)(TP þ FN)(TN þ FP)(TN þ FN)

p (15)

Utilizing these metrics ensures a thorough evaluation of the

model’s performance, facilitating improved clinical decision-

making and patient management strategies in HF treatment. The

integration of these diverse metrics, particularly AUC alongside

precision, recall, and F1 score, supports the model’s robustness,

making it a valuable tool in clinical environments.

4 Results and discussion

In this section, we will discuss the selection of ML models used

for risk prediction in patients with HF and thyroid dysfunctions,

provide a detailed interpretation of the results for different

thyroid subgroups, and introduce an experimental section on risk

stratification. The objective is to explore the models’ performance

and evaluate their clinical applicability in the context of

personalized risk management.

4.1 Performance of the selected predictive
models

The results obtained from the optimized ML models for

predicting mortality and hospitalization risks in patients with HF

and thyroid dysfunctions are presented in Tables 2, 3. Each table

includes a column labeled “Algorithm,” which lists the ML

algorithms considered in this study. Various algorithms known

for their effectiveness in classification tasks were selected,

including Random Forest, Stochastic Gradient Descent (SGD),

Logistic Regression, Support Vector Machines (SVM), Gradient

Boosting, AdaBoost, Naive Bayes, Neural Network, K-Nearest

Neighbors (KNN), and Decision Tree. This variety of algorithms

allows for a comprehensive comparison of performance, both in

terms of predictive accuracy and the ability to balance key

metrics such as precision, recall, and F1-score.

The performance of each algorithm was evaluated using

metrics such as the AUC, accuracy, F1-score, precision, recall,

and Matthews Correlation Coefficient (MCC). The AUC metric

was particularly emphasized as the primary indicator of model

performance, guiding the interpretation of results.

For mortality prediction, the Random Forest model achieved

the best performance with an AUC of 0.797, an accuracy of

74.7%, and an F1-score of 0.685. These values indicate a good

ability of the model to discriminate between high-risk and

low-risk patients, balancing precision (0.768) and recall (0.618).

The MCC for Random Forest was 0.485, further supporting its

balanced performance across classes. This combination suggests

that Random Forest is effective in identifying at-risk patients

TABLE 2 Model performance for mortality prediction.

Algorithm AUC Accuracy F1 Precision Recall MCC

RandomForest 0.797 0.747 0.685 0.768 0.618 0.485

SGD 0.794 0.764 0.724 0.755 0.696 0.520

LogisticRegression 0.786 0.738 0.681 0.744 0.627 0.466

GradientBoosting 0.786 0.707 0.621 0.733 0.539 0.404

AdaBoost 0.762 0.721 0.660 0.721 0.608 0.430

SVM 0.759 0.729 0.667 0.738 0.608 0.448

NaiveBayes 0.753 0.690 0.585 0.725 0.490 0.369

NeuralNetwork 0.735 0.699 0.631 0.694 0.578 0.384

KNN 0.698 0.668 0.600 0.648 0.559 0.322

DecisionTree 0.608 0.624 0.522 0.603 0.461 0.227

TABLE 3 Model performance for HF hospitalization prediction.

Algorithm AUC Accuracy F1 Precision Recall MCC

RandomForest 0.786 0.703 0.638 0.652 0.625 0.387

NeuralNetwork 0.785 0.725 0.659 0.685 0.635 0.430

LogisticRegression 0.784 0.729 0.687 0.667 0.708 0.449

SVM 0.779 0.725 0.683 0.660 0.708 0.442

NaiveBayes 0.769 0.690 0.643 0.621 0.667 0.370

SGD 0.763 0.712 0.673 0.642 0.708 0.418

GradientBoosting 0.746 0.681 0.597 0.635 0.563 0.336

KNN 0.727 0.664 0.645 0.579 0.729 0.342

AdaBoost 0.721 0.690 0.632 0.629 0.635 0.364

DecisionTree 0.641 0.659 0.606 0.588 0.625 0.307
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while maintaining a low rate of false positives, making it

particularly suitable for mortality prediction.

For hospitalization risk prediction, the Random Forest model

again demonstrated the best performance, with an AUC of 0.786,

an accuracy of 70.3%, and an F1-score of 0.638. With a precision

of 0.652, recall of 0.625, and an MCC of 0.387, Random Forest

effectively identifies patients at risk of hospitalization,

maintaining a favorable balance between accuracy and sensitivity.

This model’s reliability for predicting hospitalization risk makes

it a valuable tool for clinical applications where capturing at-risk

patients is essential, even if it involves a slightly higher rate of

false positives.

In summary, the results in Tables 2, 3 indicate that the Random

Forest model is particularly promising for predicting both mortality

and hospitalization risks. The AUC metric, used as the primary

indicator, confirms the effectiveness of this model in providing

robust decision support in clinical settings. Its application could

significantly improve risk stratification and personalize treatments

for patients with HF and thyroid dysfunctions, contributing to

more precise and patient-centered medicine.

Figure 2 presents the confusion matrices for the top-performing

ML model in predicting mortality and hospitalization risks, both

achieved using the Random Forest algorithm: mortality prediction

(left) and hospitalization prediction (right). These matrices are

displayed in percentages, offering a comprehensive view of model

performance regarding correct classifications and error rates. In

the mortality prediction matrix (left), the Random Forest model

correctly identified 85.04% of low-risk patients (class 0), while

14.96% of these patients were incorrectly classified as high-risk.

For the high-risk group (class 1), the model correctly classified

61.76% of patients but misclassified 38.24% as low-risk. These

results indicate that, while the Random Forest model has high

precision for predicting low-risk patients, its sensitivity in

identifying high-risk cases is moderate.

For hospitalization prediction (right), the Random Forest

model accurately classified 75.94% of patients not at risk

(class 0), with 24.06% misclassified as at-risk. In the at-risk

group (class 1), 62.50% of patients were correctly identified,

while 37.50% were classified as false negatives. This performance

shows that the Random Forest model is effective in predicting

hospitalization risk, maintaining a reasonable balance between

precision and recall for at-risk patients.

Figure 2 illustrates the strengths and limitations of the Random

Forest model in both predictive tasks. The model shows high

accuracy for the low-risk mortality class but misses a significant

portion of high-risk cases. Similarly, it performs well in

predicting hospitalization risk but also exhibits some false

negatives within the high-risk group. The model demonstrates a

satisfactory balance between accuracy and sensitivity, reinforcing

its clinical applicability for risk stratification.

Figure 3 shows the Receiver Operating Characteristic (ROC)

curves for the Random Forest model in predicting mortality and

hospitalization risks: mortality prediction (left) and

hospitalization prediction (right). The ROC curve illustrates the

model’s ability to distinguish between classes, plotting the

relationship between True Positive Rate (Sensitivity) and False

Positive Rate. The Area Under the Curve reflects model

performance, where values closer to 1 indicate greater

discriminatory power. For mortality prediction, the Random

Forest model achieved an AUC of 0.797, as depicted in the left

ROC curve, demonstrating a strong capability to differentiate

between high and low mortality risk. The ROC curve remains

well above the reference line (indicating random classification)

across thresholds, showcasing the Random Forest model’s ability

to sustain a high True Positive Rate while minimizing False

Positives. For hospitalization prediction, the Random Forest

model achieved an AUC of 0.786, as shown in the right ROC

curve. Although slightly lower than the AUC for mortality

FIGURE 2

Confusion matrices—random forest for mortality and hospitalization.
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prediction, this value still reflects strong performance in identifying

hospitalization risk. The ROC curve for the Random Forest model

stays above the reference line, indicating good model sensitivity

and specificity in distinguishing hospitalized from non-

hospitalized patients.

Figure 3 highlights the effective performance of the Random

Forest model in both prediction tasks. The AUC values for

mortality and hospitalization predictions confirm the model’s

suitability for clinical risk stratification. The ROC curves emphasize

the model’s capacity to balance True Positive and False Positive

rates, reinforcing its utility as a reliable tool for clinical decision-

making in managing patients with HF and thyroid dysfunction.

4.2 Analysis of clinical and statistical
differences among thyroid subgroups

Among the 762 patients analyzed, 187 were affected by

hypothyroidism; of these, 93 had a prior history of

hypothyroidism, while in 94 cases, hypothyroidism was

diagnosed during the initial or subsequent evaluations at our

center. LT3 syndrome was diagnosed in 15 patients, while a total

of 58 patients had hyperthyroidism, with 46 having a prior

history and 12 diagnosed at the time of the first evaluation or

during follow-up.

Figure 4 presents the statistical characteristics of the patients,

divided into subgroups based on the presence or absence of

thyroid disorders, providing a detailed overview of demographic

variables, risk factors, and ongoing therapies for each subgroup.

This arrangement allows for an in-depth comparison of clinical

differences among patients with various thyroid dysfunctions.

Among the patients, 175 were on amiodarone therapy at the

time of the initial evaluation: 63 for secondary prevention of

supraventricular tachycardia or flutter/atrial fibrillation, 73 for

secondary prevention of sustained ventricular tachycardia/

ventricular fibrillation, 24 for both, and 15 for control of frequent

supraventricular or ventricular ectopic beats. To compare

characteristics across the different thyroid groups, the Kruskal–Wallis

test was used, a non-parametric test suitable for variables that do not

follow a normal distribution. This statistical method allows

significant differences to be detected among multiple groups without

assuming normality, which is particularly useful given the nature of

clinical variables, which are both continuous and categorical. In the

heatmap (Figure 4), significant differences (p < 0.005) are visually

highlighted using a blue background with white text, allowing

immediate identification of key variables. Additionally, NT-proBNP

values are color-coded using a gradient that reflects their magnitude

in relation to the scale shown in the accompanying color bar,

facilitating intuitive comparison across subgroups.

The results indicate that the mean age differs significantly between

groups (p < 0.001), with patients with LT3 syndrome being older on

average (71 years) than euthyroid patients (62 years). Systolic blood

pressure and renal function, measured by GFR-EPI, also show

significant differences (p < 0.001); hypothyroid and LT3 patients have

lower average values, suggesting possible involvement of

cardiovascular and renal function. NT-proBNP levels, an indicator of

HF severity, are significantly higher in hypothyroid and hyperthyroid

patients compared to euthyroid patients, reflecting a higher degree of

clinical impairment (p < 0.001).

Thyroid function parameters, such as FT3 and TSH, also differ

significantly among the groups. LT3 patients have the lowest

average FT3 levels compared to the other subgroups, while

hypothyroid patients show elevated TSH levels (p < 0.001). Atrial

fibrillation is more common in patients with thyroid dysfunctions,

particularly among those with LT3 and hypothyroidism, with

percentages of 33% and 28%, respectively, compared to euthyroid

patients (12%), suggesting an increased predisposition to arrhythmic

events in the presence of thyroid disorders (p < 0.001).

FIGURE 3

ROC curves—random forest for mortality and hospitalization.
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The distribution of patients across NYHA classes reveals further

differences, with lower representation of thyroid dysfunction

patients in the more advanced classes (p = 0.002), potentially

reflecting a different severity of symptoms among groups. In terms

of pharmacological therapies, hypothyroid and LT3 patients are

more frequently treated with diuretics and amiodarone compared to

euthyroid patients, with statistically significant differences for the

use of ACEi/ARBs and amiodarone (p < 0.001), which may indicate

specific therapeutic needs for these subgroups.

These differences between thyroid groups provide a deeper

understanding of the distinctive clinical profiles associated with

thyroid dysfunctions, highlighting how clinical risk and

therapeutic needs may vary based on thyroid status. The detailed

statistical breakdown in Figure 4, along with the Kruskal–Wallis

test, provides valuable information for a better understanding of

the clinical specificities of each group, supporting the

implementation of more targeted therapeutic strategies.

4.3 Interpretation of model results with
LIME for thyroid subgroups

This section applies the Local Interpretable LIME technique to

interpret the Random Forest model results, focusing on specific

subgroups within thyroid-related patient populations. LIME

enables the interpretation of complex models by creating locally

interpretable models around individual predictions, allowing us

to examine the contribution of each variable to the model’s final

decisions. The LIME technique was applied uniformly across all

thyroid-related subgroups to support the interpretability of the

model predictions. For each subgroup, the approach enabled the

identification of clinical variables such as atrial fibrillation,

ischemic cardiomyopathy, pharmacological treatment, and

thyroid hormone values, contributing to the estimated risks of

mortality and hospitalization. Illustrative examples of these

explanations are presented in Figures 4, 5–11, including

FIGURE 4

Heatmap of all clinical features by thyroid subgroup.
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euthyroid, hypothyroid, LT3 and Hyperthyroid patient groups,

thus offering a consistent interpretation framework across the

cohort. In the graphical representations (Figures 5–11, 12), the

impact of each clinical feature is visually represented through

color-coded horizontal bars. Specifically, green bars indicate

features that contribute to an increase in the predicted

probability of the outcome (e.g., mortality or hospitalization),

suggesting a higher risk associated with those variables.

Conversely, red bars represent features that reduce the predicted

probability, thus being protective factors associated with a lower

risk. This visual distinction enhances interpretability by allowing

a quick understanding of whether each feature pushes the model

prediction toward or away from a critical outcome.

For each thyroid subgroup, LIME was applied to generate

explanations that illustrate how key clinical factors modulate the

model’s predictions vary based on key clinical features, such as

TSH levels, T3 and T4 hormone concentrations, and patient

demographics. By analyzing these explanations, we can gain a

clearer understanding of which features drive the model’s

predictions for each thyroid subgroup, distinguishing between low

and high-risk classifications for both mortality and hospitalization.

Figures 5, 6 present the LIME interpretation results for the

mortality and hospitalization models, respectively, in euthyroid

patients. These figures list the main clinical features that impact

the model’s predictions. The impact values reflect the influence

of each feature on the predicted probability, with positive values

indicating features that contribute toward the outcome (e.g.,

mortality or hospitalization), while negative values indicate

protective associations.

In Figure 5, titled “LIME Explanations for Mortality Prediction

Model in Euthyroid Patients,” the model shows a 53%predicted

probability for “YES MORTALITY” vs. 47% for “NO

MORTALITY,” suggesting a slight inclination toward mortality

for this subgroup. Among the influential features, the absence of

atrial fibrillation (ATRIAL_FIBRILLATION = 0) shows a

protective effect with an impact of −0.0311, lowering the

mortality probability. Conversely, the absence of ischemic

cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0) slightly

increases the likelihood of mortality, with an impact value of

0.0275. Other features contribute with varying, though smaller,

effects. For instance, the absence of the medication Amiodarone

(AMIODARONE = 0) and of cardiac resynchronization therapy

(CRT = 0) display minor positive impacts of 0.0077 and 0.0067,

respectively, indicating an association with increased mortality

when these treatments are not administered. Lower levels of TSH

(≤0.96) reduce the probability of mortality with an impact of

−0.0055, while the absence of diabetes (DIABETES = 0) has a

similarly protective effect, with an impact of −0.0048. Minimal

impacts are observed for free T4 levels (FT4 ≤1.08), BMI (23),

and the use of diuretics and beta-blockers, with values ranging

between 0.0005 and 0.0007, suggesting a more subtle influence

on mortality risk in this model.

Figure 6, “LIME Explanations for Hospitalization Prediction

Model in Euthyroid Patients,” presents results for hospitalization

prediction with identical predicted probabilities to the mortality

model (53% for “YES HOSPITALIZATION” and 47% for “NO

HOSPITALIZATION”), indicating a similar risk profile in this

patient subgroup.

FIGURE 5

LIME explanations for mortality prediction model in euthyroid patients.
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The absence of atrial fibrillation (ATRIAL_FIBRILLATION = 0)

has a protective impact, reducing the likelihood of hospitalization

with an impact value of −0.0309. Conversely, the absence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0)

slightly increases the risk, showing a positive impact of 0.0277. The

absence of Amiodarone (AMIODARONE = 0) and CRT (CRT = 0)

also contribute to an increased hospitalization probability, with

impact values of 0.0085 and 0.0070, respectively. Lower TSH levels

(≤0.96) provide a protective influence with an impact of −0.0051,

while the absence of diabetes (DIABETES = 0) similarly reduces the

likelihood of hospitalization, reflected by an impact of −0.0047.

BMI of 23 has a minor positive influence of 0.0013, indicating a

slightly increased hospitalization probability for patients with this

BMI value. Additional features with minimal impacts include free

T4 levels (FT4 ≤1.08), presence of an ICD (ICD= 1), and the use of

diuretics (DIURETICS = 1), each with values of 0.0007, −0.0003,

and −0.0003 respectively. These factors suggest a nuanced, though

limited, influence on the overall hospitalization prediction

compared to the primary variables in this model.

Figure 7, “LIME Explanations for Mortality Prediction Model

in Hypothyroid Patients,” presents the model’s interpretation

results for the mortality prediction in hypothyroid patients, with

54% predicted probability for “YES MORTALITY” and 46% for

“NO MORTALITY,” indicating a slight inclination toward

mortality in this group.

In this model, the absence of atrial fibrillation

(ATRIAL_FIBRILLATION = 0) serves as a protective factor,

reducing the mortality probability with an impact of −0.0305.

On the other hand, the absence of ischemic cardiomyopathy

(ISCHEMIC_CARDIOMYOPATHY = 0) slightly increases the

mortality risk, with a positive impact of 0.0213. The lack of

Amiodarone (AMIODARONE = 0) and CRT (CRT = 0) also

contribute to an elevated mortality probability, with impacts of

0.0076 and 0.0032, respectively. Other clinical variables influence

mortality predictions to a lesser degree. The absence of diabetes

(DIABETES = 0) decreases mortality risk, with an impact of

−0.0024, while a BMI of 19 has a slight positive effect of 0.0023,

indicating a marginal association with increased mortality. The

use of diuretics (DIURETICS = 1) and beta-blockers (BETA-

BLOCKERS = 1) exert small impacts, with values of 0.0012 and

−0.0005, respectively, highlighting their limited role in

influencing mortality predictions. Additional factors, such as

NYHA class (NYHA_CLASS = 3) and FT3 levels within the

range 2.70 < FT3 ≤ 3.00, have minimal impacts of 0.0004 each,

suggesting a nuanced but relatively insignificant influence on

the model’s overall prediction for mortality. In hypothyroid

patients, the predicted probability of mortality was 54 percent.

The absence of atrial fibrillation emerged as the most

protective factor, aligning with its recognized clinical relevance

in heart failure prognosis. Conversely, the absence of ischemic

cardiomyopathy contributed to a moderate increase in

predicted mortality, potentially reflecting the influence of

alternative etiologies. Other variables, such as the lack of

amiodarone therapy, absence of CRT, and a low BMI value,

were associated with slightly elevated risk. FT3 values within

borderline ranges and NYHA class exerted minor effects,

confirming the multifactorial nature of mortality risk in

this subgroup.

Figure 8, “LIME Explanations for Hospitalization Prediction

Model in Hypothyroid Patients,” outlines the hospitalization

prediction for hypothyroid patients, with 54% probability

for “YES HOSPITALIZATION” and 46% for “NO

HOSPITALIZATION,” again indicating a slight model tendency

towards predicting hospitalization.

FIGURE 6

LIME explanations for hospitalization prediction model in euthyroid patients.
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Key protective factors include the absence of atrial fibrillation

(ATRIAL_FIBRILLATION= 0), which reduces the hospitalization

risk with an impact of −0.0301. Meanwhile, the absence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0)

slightly increases the hospitalization likelihood, with an impact of

0.0216. The absence of Amiodarone (AMIODARONE = 0) and

CRT (CRT = 0) contribute positively, with impacts of 0.0074 and

0.0035, respectively, indicating that their absence may slightly

increase hospitalization risk. Further influencing factors include

BMI of 19, which has a minor positive impact of 0.0020 on

hospitalization probability, and the absence of diabetes

(DIABETES = 0), which has a small protective effect with an

FIGURE 7

LIME explanations for mortality prediction model in hypothyroid patients.

FIGURE 8

LIME explanations for hospitalization prediction model in hypothyroid patients.
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impact of −0.0018. Free T4 levels within the range 1.05 < FT4≤ 1.21

and FT3 levels within 2.70 < FT3≤ 3.00 add slight positive

contributions, with impacts of 0.0009 and 0.0007, respectively.

Finally, the presence of an ICD (ICD= 0) serves as a minor

protective factor, with an impact of −0.0006, while diuretic usage

(DIURETICS = 1) has a modest positive effect of 0.0008. These

features, though present, exert relatively small effects in

comparison to the more influential clinical factors impacting

hospitalization predictions in this subgroup. In hypothyroid

patients, the LIME interpretation results suggest a moderate

increase in hospitalization risk, with a predicted probability of

54%. The absence of atrial fibrillation emerged as the most

protective factor, consistent with its known adverse prognostic role

in heart failure populations. Conversely, the absence of ischemic

cardiomyopathy contributed positively to the predicted probability,

potentially indicating the clinical impact of non-ischemic HF

phenotypes in this subgroup. The absence of amiodarone and

CRT therapy also showed modest positive contributions, aligning

with the established utility of these interventions in selected HF

patients. A lower BMI (19) was associated with a slight increase in

predicted hospitalization, in line with the “obesity paradox”

described in HF literature. Additionally, borderline FT4 and FT3

values exerted limited but noticeable effects, confirming the

relevance of thyroid hormone levels in influencing short-term

outcomes in this subgroup.

Figure 9, “LIME Explanations for Mortality Prediction Model

in LT3 Patients,” shows the model’s interpretation results for

mortality prediction in LT3 patients, with a predicted probability

of 52% for “YES MORTALITY” and 48% for “NO

MORTALITY,” indicating a slight inclination towards predicting

mortality for this group. Among the significant features, the

absence of atrial fibrillation (ATRIAL_FIBRILLATION= 0)

reduces the likelihood of mortality, acting as a protective factor

with an impact of −0.0288. Conversely, the absence of ischemic

cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0) slightly

increases the probability of mortality, with a positive impact of

0.0226. Additionally, the use of Amiodarone (AMIODARONE= 1)

appears to lower the mortality risk, indicated by an impact of

−0.0094. BMI at 23 also has a slight protective influence, with an

impact of −0.0034, while free T3 (FT3) levels in the range

2.00 < FT3≤ 2.10 contribute positively to mortality risk, showing

an impact of 0.0031. The absence of CRT (CRT = 0) adds a minor

positive influence with an impact of 0.0029, suggesting a potential

association with increased mortality in LT3 patients when CRT is

not in place. Other features play smaller roles: the absence of

diabetes (DIABETES = 0) has a slight protective effect on mortality

with an impact of −0.0015, and high levels of FT4 (>1.52) further

reduce the probability of mortality with an impact of −0.0011.

Additional factors, such as TSH levels between 2.30 and 2.75 and

LVEF (Left Ventricular Ejection Fraction) values within 24.50–

34.75, contribute minimally to the model’s mortality predictions,

with impacts of 0.0006 and −0.0005 respectively. Among LT3

patients, the model indicated a 52% probability of mortality. The

strongest protective effect was associated with the absence of atrial

fibrillation, while the absence of ischemic cardiomyopathy slightly

increased predicted risk. The presence of amiodarone was linked

to a lower mortality probability, possibly reflecting its therapeutic

role in rhythm control. Hormonal indicators such as FT3 in the

range 2.00–2.10 and higher FT4 levels provided subtle but

consistent contributions. Overall, the results illustrate the complex

FIGURE 9

LIME explanations for mortality prediction model in LT3 patients.
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interplay between metabolic, structural, and treatment-related

factors in shaping risk within this distinct population.

Figure 10, “LIME Explanations for Hospitalization Prediction

Model in LT3 Patients,” provides insights into the model’s

predictions for hospitalization within this group. The model shows

a 52% predicted probability for “YES HOSPITALIZATION” and

48% for “NO HOSPITALIZATION,” again reflecting a slight

tendency towards hospitalization risk. The absence of atrial

fibrillation (ATRIAL_FIBRILLATION = 0) has the strongest

protective effect, reducing the probability of hospitalization

with an impact of −0.0294. In contrast, the absence of ischemic

cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0) is

associated with a slight increase in hospitalization likelihood, with

an impact of 0.0228. Use of Amiodarone (AMIODARONE = 1)

similarly lowers the hospitalization risk, shown by an impact of

−0.0087. The absence of CRT (CRT = 0) shows a positive

influence on hospitalization probability with an impact of 0.0045,

while BMI at 23 has a protective impact with a value of −0.0039.

Free T3 levels within 2.00 < FT3≤ 2.10 contribute a minor positive

influence on hospitalization, with an impact of 0.0031, indicating a

small association with increased risk for patients in this range.

Other variables include FT4 levels greater than 1.52, which lower

hospitalization probability with an impact of −0.0015, and the

absence of diabetes (DIABETES = 0), which also acts protectively

with an impact of −0.0014. Age within 73.00–78.00 years and

TSH levels in the range 2.30 < TSH≤ 2.75 exert minimal positive

influences on hospitalization, with impacts of 0.0005 and 0.0004,

respectively, suggesting limited yet present contributions in the

model’s hospitalization prediction. In LT3 syndrome patients, the

predicted probability of hospitalization was 52%, indicating a

subtle shift towards higher risk in this group. The absence of atrial

fibrillation was again the most significant protective variable.

Notably, the presence of amiodarone was associated with a lower

predicted risk, which may reflect its therapeutic role in arrhythmia

management among patients with compromised metabolic status.

The absence of CRT demonstrated a minor positive impact on

hospitalization probability, in line with its potential benefits in

patients with advanced HF and electrical dyssynchrony. BMI at 23

appeared to exert a small protective influence, while FT3 values in

the 2.00–2.10 range were associated with a mild increase in risk,

consistent with reduced metabolic activity typical of LT3. Other

features, including elevated FT4, absence of diabetes, and mid-range

TSH values, showed marginal impacts, reinforcing the multifactorial

nature of hospitalization risk in this complex subgroup.

Figure 11, “LIME Explanations for Mortality Prediction Model

in Hyperthyroid Patients,” shows the model’s interpretation results

for mortality prediction in hyperthyroid patients, with a predicted

probability split evenly at 50% for “YES MORTALITY” and 50%

for “NO MORTALITY,” indicating no strong inclination towards

either outcome in this group.

Key protective factors include the absence of atrial fibrillation

(ATRIAL_FIBRILLATION= 0), which reduces the mortality

probability with an impact of −0.0303, and the presence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY= 1),

which surprisingly acts as a protective factor in this model, with an

impact of −0.0271. Conversely, the absence of Amiodarone

(AMIODARONE= 0) contributes positively to mortality risk, with

an impact of 0.0097. The absence of diabetes (DIABETES = 0)

provides a protective effect with an impact of −0.0070, while TSH

levels between 0.23 and 1.02 slightly increase the risk, with an

impact of 0.0031. The presence of CRT (CRT = 1) also reduces the

mortality probability, with an impact of −0.0027, indicating a

marginal protective role. Other variables, such as a BMI of 18 and

the use of ACE inhibitors or ARBs (ACEi/ARBs = 1), exert minor

FIGURE 10

LIME explanations for hospitalization prediction model in LT3 patients.
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protective effects, with impacts of −0.0010 and −0.0007, respectively.

Finally, the presence of an ICD (ICD= 1) and FT4 levels above 1.45

contribute minimally to reducing mortality, each with an impact of

−0.0005.

Figure 12, “LIME Explanations for Hospitalization Prediction

Model in Hyperthyroid Patients,” provides insights into the

model’s predictions for hospitalization. Here, the predicted

probabilities are also evenly split, with 50% for “YES

HOSPITALIZATION” and 50% for “NO HOSPITALIZATION,”

indicating no dominant prediction tendency within this

patient group.

The absence of atrial fibrillation (ATRIAL_FIBRILLATION = 0)

serves as the strongest protective factor, reducing the hospitalization

probability with an impact of −0.0309. Similarly, the presence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 1)

reduces hospitalization likelihood, with an impact of −0.0270. On

the other hand, the absence of Amiodarone (AMIODARONE= 0)

slightly increases the risk, with an impact of 0.0100. The absence

of diabetes (DIABETES = 0) has a protective impact of −0.0076 on

hospitalization probability. TSH levels in the range

0.23 < TSH≤ 1.02 contribute a slight positive influence on

hospitalization risk, with an impact of 0.0035. The presence of

CRT (CRT = 1) also has a minor protective effect, with an impact

of −0.0021, while a BMI of 18 provides additional protection with

an impact of −0.0017. Other features exerting limited impacts

include LVEF levels within 26.79–30.77, which slightly increase

hospitalization likelihood (impact of 0.0005), while the use of ACE

inhibitors or ARBs (ACEi/ARBs = 1) adds a minimal positive

impact of 0.0004. Age over 70 (AGE >70) serves as a slight

protective factor, with an impact of −0.0004, indicating a very

marginal influence on hospitalization predictions. These features,

though impactful to some extent, play a relatively small role in the

overall predictions for mortality and hospitalization in

hyperthyroid patients, highlighting the model’s balanced treatment

of features in predicting outcomes for this group.

4.4 Experimental risk stratifications

In this section, we present an experimental approach to risk

stratification, where we evaluate and combine the probabilities of

mortality and hospitalizations for patients across different thyroid

classes and in various optimization scenarios. This approach

aims to develop a risk stratification framework that can identify

patients at high risk, facilitating targeted interventions. The

process utilizes a multi-objective optimization strategy with four

scenarios, ultimately visualized in a combined heatmap to

summarize risk levels across groups. Our goal is to analyze and

combine the risk of Mortality and Hospitalization across four

thyroid classes: Euthyroid, Hypothyroid, LT3, and Hyperthyroid.

This analysis is performed under four scenarios:

1. Maximize Mortality and Maximize Hospitalization: This

scenario identifies conditions that maximize both risks.

2. Maximize Mortality and Minimize Hospitalization: This

scenario targets patients with high risk of Mortality but lower

risk of Hospitalization.

3. Minimize Mortality and Maximize Hospitalization: This

scenario focuses on minimizing Mortality risk while

maintaining a higher Hospitalization risk.

4. Minimize Mortality and Minimize Hospitalization: This

scenario seeks to minimize both risks, representing the lowest

overall risk profile.

FIGURE 11

LIME explanations for mortality prediction model in hyperthyroid patients.
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Each scenario provides insight into how the balance of Mortality

and Hospitalization risks varies across patient classes,

highlighting distinct risk profiles for targeted interventions.

To handle these dual objectives—Mortality and Hospitalization

—we use a weighted sum approach. This approach is common in

multi-objective optimization, where conflicting objectives must be

simultaneously optimized. In our context, each objective is

calculated based on the probability of Mortality (pDeath) and the

probability of Hospitalization (pHosp), derived from pre-trained

ML models. The weighted sum method allows us to combine

these objectives into a single metric for easier comparison. The

weighted sum method can be represented mathematically as

(Equation 16):

Combined Risk ¼ w1 � Objective1þ w2 � Objective2 (16)

where w1 and w2 are weights for each objective. In this analysis, we

have set w1 ¼ 0:5 and w2 ¼ 0:5, giving equal importance to both

Mortality and Hospitalization. The equal weighting provides a

balanced assessment of the risks without favoring one over

the other.

The optimization problem is structured around the four

scenarios described above. Each scenario is defined by specific

objective functions for Mortality and Hospitalization:

• Maximize Mortality & Maximize Hospitalization:

Objective1 ¼ pDeath, Objective2 ¼ pHosp

• Maximize Mortality & Minimize Hospitalization:

Objective1 ¼ pDeath, Objective2 ¼ 1� pHosp

• Minimize Mortality & Maximize Hospitalization:

Objective1 ¼ 1� pDeath, Objective2 ¼ pHosp

• Minimize Mortality & Minimize Hospitalization:

Objective1 ¼ 1� pDeath, Objective2 ¼ 1� pHosp

The predicted probabilities (pDeath and pHosp) are derived from pre-

trained ML models, such as Random Forest, which estimate the

likelihood of Mortality and Hospitalization for each patient.

These formulations enable the analysis of specific combinations

of high and low risks, tailoring the optimization to address

varying clinical priorities and patient profiles. By utilizing these

probabilities in the optimization framework, we ensure that the

risk stratification process is directly linked to model outputs,

providing actionable insights that align with predicted

patient outcomes.

The optimization is performed for each thyroid class, and the

results are summarized by calculating representative points—

average values of Follow-up for Mortality (Mortality_FU) and

Follow-up for Hospitalization (Hospi_FU). For each thyroid class

and scenario, we compute the mean Hospi_FU and

Mortality_FU values, which summarize the overall risk level

under the specified conditions. These average values serve as the

basis for comparison in the subsequent heatmap analysis. To

create a single, interpretable measure of risk, we calculate a

Combined Risk Score by averaging the Mortality_FU and

Hospi_FU scores, as (Equation 17):

Combined Risk ¼ w1 � Death FU þ w2 � Hospi FU (17)

where w1 ¼ 0:5 and w2 ¼ 0:5. This balanced weighting helps

identify thyroid classes and scenarios with higher overall risk,

simplifying the complex multi-objective results into a single

metric. We assigned equal weights (w1 ¼ w2 ¼ 0:5) to

combine mortality and hospitalization risks, ensuring a balanced

FIGURE 12

LIME explanations for hospitalization prediction model in hyperthyroid patients.
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approach that reflects the clinical importance of both factors.

Mortality represents the most severe outcome, while

hospitalization significantly impacts quality of life and healthcare

costs. By using identical weights, we ensure an unbiased analysis,

avoiding distortions and providing an easily interpretable

combined risk score. This exploratory approach, aligned with the

experimental nature of the study, provides a robust foundation

for future research that could explore customized weights based

on emerging clinical priorities. Finally, the combined risk is

normalized into a percentage for easier interpretation, as

(Equation 18):

Combined Risk (%) ¼ Combined Risk x 100 (18)

The final output of this analysis is a heatmap representing the

Combined Risk Levels across thyroid classes and scenarios, as

shown in Figure 13. Each cell in the heatmap corresponds to a

thyroid class-scenario combination, with color intensity indicating

the level of combined risk. Darker colors represent higher combined

risk scores, highlighting groups with elevated risks for Mortality

and/or Hospitalization. The heatmap is generated as follows:

• Data Preparation: The representative points (mean Hospi_FU

and Mortality_FU values) are organized into a pivot table

with thyroid classes as rows and scenarios as columns. The

Combined Risk Score is calculated for each combination.

• Heatmap Visualization: Using seaborn, we create a heatmap

where each cell is colored according to the Combined Risk

Score. Annotations show the exact risk level within each cell,

and a color bar to the side provides a legend for interpreting

the colors.

The heatmap provides an intuitive visualization of risk distribution

across thyroid classes and scenarios:

• High-Risk Cells: Dark red cells indicate thyroid classes and

scenarios with higher combined risks. For example, LT3 in the

Max-Mortality & Max-Hospitalization scenario shows high

risk, suggesting a need for close monitoring in this subgroup.

• Moderate-Risk Cells: Cells with medium color intensity

represent scenarios with balanced risks. Hypothyroid and

Hyperthyroid classes in the Max-Mortality & Min-

Hospitalization and Min-Mortality & Max-Hospitalization

scenarios display moderate risk, which may require

tailored interventions.

• Low-Risk Cells: Blue cells, particularly in the Min-Mortality &

Min-Hospitalization scenario, show the lowest combined risk.

These groups may require less intensive follow-up.

FIGURE 13

Risk stratification—combined risk heatmap across thyroid classes and scenarios.
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The Figure 12 heatmap offers an intuitive visualization of risk

distribution, highlighting clear differences between thyroid classes

and optimization scenarios. This stratification serves as a basis

for personalized clinical decision-making, identifying high-

priority groups for intervention.

The analysis of combined risk levels across thyroid classes and

scenarios reveals notable variations in risk profiles based on

different optimization configurations. For the Euthyroid class, the

combined risk is 0.35 when both mortality and hospitalization

risks are maximized, indicating that Euthyroid patients exhibit a

relatively low level of risk even under high-risk conditions for

both factors. When mortality risk is maximized and

hospitalization risk minimized, the combined risk rises to 0.50,

suggesting a moderate risk level. Similarly, the combined risk

remains at 0.50 when mortality risk is minimized and

hospitalization risk maximized, indicating that reducing the

mortality risk while maintaining high hospitalization risk does

not significantly change the overall risk level. Surprisingly, when

both risks are minimized, the combined risk increases to 0.65,

suggesting that reducing both risks may increase the overall risk

profile for Euthyroid patients.

For the Hyperthyroid class, the pattern of combined risk

closely mirrors that of the Euthyroid class. With the

maximization of both risks, the combined risk is also 0.35,

suggesting that Hyperthyroid patients, like Euthyroid patients,

maintain a relatively low risk level even under high-risk

conditions. When mortality risk is maximized and hospitalization

minimized, the combined risk reaches 0.50, a moderate level

identical to that of the Euthyroid class. The same combined risk

level of 0.50 is observed when mortality risk is minimized and

hospitalization maximized. However, when both risks are

minimized, the combined risk increases to 0.65, the highest value

for this class, indicating a significant rise in overall risk under

these conditions.

The Hypothyroid class demonstrates a distinct risk profile.

When both mortality and hospitalization risks are maximized,

the combined risk reaches 0.58, the highest observed so far,

suggesting that for Hypothyroid patients, maximizing both risks

considerably increases the overall risk level. In the scenario where

mortality risk is maximized and hospitalization minimized, the

combined risk reduces to a moderate level of 0.50, which

remains unchanged even when mortality risk is minimized and

hospitalization risk maximized. However, in a context where

both risks are minimized, the combined risk further drops to

0.42, indicating that minimizing both risks has a more

pronounced risk-reducing effect for the Hypothyroid class

compared to high-risk conditions.

Finally, for the LT3 class, the maximization of both mortality

and hospitalization risks results in the highest combined risk of

all classes, at 0.63. This finding suggests that LT3 patients are

particularly vulnerable in conditions of high mortality and

hospitalization risk. When mortality risk is maximized and

hospitalization minimized, the combined risk drops to 0.50,

representing a moderate risk level consistent with other classes in

this scenario. Similarly, when mortality risk is minimized and

hospitalization maximized, the combined risk remains stable at

0.50. However, when both risks are minimized, the combined

risk falls to the lowest level observed at 0.37, indicating that

reducing both risks is associated with a very low overall risk level

for the LT3 class.

These findings, illustrated in Figure 4, clearly demonstrate how

combined risk levels vary across thyroid classes and scenarios. The

Euthyroid and Hyperthyroid classes maintain relatively low risk

levels across scenarios, while the Hypothyroid and LT3 classes

show greater sensitivity to changes in risk scenarios, with higher

combined risk levels in specific configurations of risk

maximization or minimization. This analysis provides valuable

insights for tailored interventions based on the unique risk

profiles of each thyroid class.

4.5 Implications, limits and future
perspectives

The ML models developed in this study offer significant

potential to improve the clinical management of patients with

HF and thyroid dysfunctions. By accurately identifying

individuals at high risk of mortality and hospitalization, these

models enable targeted interventions and personalized treatment

strategies. For instance, the early identification of hypothyroid

patients with a high likelihood of adverse events could lead to

more frequent monitoring, adjustments in pharmacological

therapy. Additionally, the interpretation of model outcomes using

LIME provides valuable insights to guide clinical decision-

making. By highlighting the specific factors contributing to a

patient’s individual risk, LIME allows clinicians to tailor

treatment plans and focus interventions on areas of

particular concern.

It is important to acknowledge the limitations of this study to

properly interpret the results and guide future research. Although

the ML-based approach has shown promising results, the

generalizability of the models must be further assessed in larger

and more diverse patient populations. The study was

retrospective in nature, which introduces potential biases and

limits the ability to establish causal relationships. Specifically,

there is an inherent risk of selection bias, as patients were not

randomly assigned, and the dataset reflects a single-center

population with specific inclusion criteria. Information bias

and residual confounding may also be present, despite efforts

to include a comprehensive set of clinical variables and

ensure complete case analysis. Moreover, since the data were

not originally collected for predictive modeling purposes,

the retrospective design may have introduced selection and

information bias. Although only 0.2% of missing values

were handled using model-based imputation—which is

methodologically appropriate for such low levels of missingness—

this approach could still introduce subtle distortions and affect

model interpretability, particularly for clinically sensitive variables

such as NT-proBNP or thyroid hormones, which may influence

risk classification thresholds. These potential biases, related both to

the study design and data handling procedures, should be carefully

considered when interpreting the results. While the dataset was
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sizable and well-characterized, these limitations must be considered

when interpreting the results. Furthermore, while the statistical

analysis included comparisons across multiple variables and

subgroups, no formal correction for multiple comparisons was

applied. This may increase the risk of Type I error, particularly in

exploratory analyses. Therefore, the results should be interpreted

with appropriate caution. Future research should incorporate

statistical correction techniques—such as Bonferroni or false

discovery rate (FDR) adjustments—especially in studies involving

formal hypothesis testing across large variable sets. In this study,

missing data (accounting for only 0.2% of the dataset) were

handled using model-based imputation with a simple decision

tree, implemented via the “Impute” widget in Orange. While this

approach ensures consistent and reliable estimation of missing

values and minimizes information loss, we acknowledge that even

low-level imputation may introduce subtle biases or influence

model transparency. Future studies should consider comparing

multiple imputation techniques to evaluate their impact on the

reliability and interpretability of predictive models. Therefore,

prospective and multicenter studies with external validation

cohorts are strongly recommended to confirm the generalizability

and clinical applicability of the proposed models. In this study, the

dataset was split into a training set (70%) and a validation set

(30%) using the train_test_split function from Python’s sklearn

library, with the aim of assessing model performance on unseen

internal data and minimizing the risk of overfitting. Additionally,

all models were subjected to 10-fold cross-validation to ensure

internal consistency and robustness. While these approaches

provide strong internal validation, they do not replace the use of

independent external datasets. The absence of external validation

limits the ability to assess the reproducibility of the model across

different populations and healthcare settings. Future research should

incorporate external, multicenter cohorts to confirm the

generalizability and clinical utility of the proposed framework. Testing

the model on broader and more clinically diverse populations will be

essential to validate its real-world applicability and ensure its

effectiveness in routine clinical practice. Moreover, the lack of

prospective validation in the current study represents a significant

limitation that further restricts the generalizability of the findings.

Although cross-validation and internal testing were rigorously

applied, these do not replace the need for validation in real-world,

forward-looking clinical environments. Future research should

prioritize prospective study designs to verify the model’s robustness

across diverse patient populations and clinical workflows. While the

sample size was substantial, it may not be sufficient to capture the full

range of complex interactions between HF and thyroid dysfunctions.

Moreover, the demographic composition of the dataset reflects a

predominance of male patients (78%), which may introduce gender

bias into the model’s predictions. This imbalance limits the ability to

draw sex-specific conclusions and could impact the model’s

performance in female subpopulations. Future studies should aim to

recruit gender-balanced cohorts to ensure the fairness and

representativeness of AI-based risk stratification tools. Additionally,

some clinically and socially significant variables—such as medication

adherence, health literacy, and socioeconomic status—were not

included in the model due to their absence from the structured

electronic health records used in this retrospective study. The lack of

these variables may limit the completeness and equity of the risk

predictions. Future research should prioritize the integration of

behavioral and contextual factors to develop more comprehensive

and socially aware AI models that better reflect real-world

complexities. Further studies in larger, ideally prospective, cohorts

would strengthen the study’s conclusions and validate its

clinical application.

The insights derived from this study pave the way for promising

directions in future research. Exploring the integration of additional

clinical variables, such as genetic markers and advanced imaging

data, could further enhance the predictive accuracy of the models.

Incorporating these multidimensional factors could lead to a more

comprehensive risk stratification and more precise personalized

medicine. Developing ML models capable of predicting not only

mortality and hospitalization but also other important patient

outcomes, such as quality of life and disease progression, would

improve the clinical value of these tools. Additionally, investigating

the role of different ML algorithms and optimization techniques

could lead to more robust and efficient models. Furthermore, it is

essential to study the impact of targeted interventions guided by

ML models on patient outcomes. Conducting randomized clinical

trials to evaluate the effectiveness of personalized treatment

strategies based on model predictions would provide definitive

evidence of their clinical benefit. Finally, translating these

research findings into practical and accessible clinical tools is

essential to realize their full potential. Developing intuitive

interfaces and integrating ML models into electronic health

record systems would facilitate their widespread adoption and

improve patient care. To promote clinical integration, the

proposed model could be embedded into electronic health

record (EHR) systems as a decision support tool. For example,

automatically generated risk scores could trigger alerts for

clinicians, prompting earlier intervention or closer monitoring

of high-risk patients with thyroid dysfunction and HF.

Moreover, the use of interpretable AI techniques such as LIME

can help clinicians understand and trust the model’s outputs,

enhancing transparency and supporting more personalized

treatment decisions.

To ensure real-world applicability, future studies should

focus on prospective validation using independent and

multicenter patient cohorts. This process should involve:

(1) recruiting representative populations across different

clinical sites; (2) integrating the model into electronic health

record systems for real-time risk assessment; (3) comparing

clinical decision-making and outcomes with and without model

support; and (4) conducting prospective, pragmatic trials

to assess the effectiveness of AI-assisted care in routine

clinical workflows.

In conclusion, this study demonstrates the immense potential

of ML in predicting the risk of mortality and hospitalization in

patients with HF and thyroid dysfunctions. AI and ML are

increasingly emerging as promising tools to support clinical

decision-making and personalize therapeutic pathways, offering

new perspectives in the integrated management of cardiovascular and

endocrine comorbidities (25). By recognizing the limitations and
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pursuing future research directions, this field is poised to advance our

understanding of this complex interaction and to guide personalized

treatment strategies to improve patient outcomes.

5 Conclusions

This study highlights ML as a promising tool to enhance risk

stratification and treatment personalization for patients with HF

and thyroid dysfunctions. Leveraging a comprehensive set of

clinical data, the study demonstrates that ML models, particularly

the Random Forest algorithm, can accurately predict mortality

and hospitalization risk in this patient population.

The good discriminative ability, evidenced by AUC values for

mortality prediction (0.797) and hospitalization risk (0.786),

underscores the effectiveness of the Random Forest model in

distinguishing between high- and low-risk patients. The model’s

robust performance, evaluated through metrics such as accuracy,

precision, recall, and F1 score, further reinforces its reliability for

clinical decision support.

Model interpretation using LIME provides valuable insights

into the factors contributing to an individual patient’s risk. This

information enables targeted interventions and personalized

treatment strategies, tailored to the specific needs of each patient.

For instance, identifying high-risk patients with clinical

characteristics, such as the presence of atrial fibrillation or the

absence of amiodarone therapy, could lead to more frequent

monitoring, adjustments in pharmacological therapy, and careful

consideration of interventions such as CRT.

The study analyzed 762 patients, divided into subgroups based on

the presence or absence of thyroid dysfunctions. The results revealed

significant clinical differences between groups, with LT3 and

hypothyroid patients showing a higher risk of atrial fibrillation and

elevated levels of NT-proBNP, an indicator of HF severity. These

differences underscore the importance of considering thyroid status

in risk assessment and treatment planning for patients with HF.

The risk stratification analysis, using a multi-objective

optimization strategy, provided additional insights into the risk

profiles of different thyroid classes. Hypothyroid and LT3

patients exhibited a higher combined risk in scenarios where

both mortality and hospitalization risk were maximized,

highlighting their vulnerability under high-risk conditions.

However, the study has certain limitations. Its retrospective

nature introduces potential biases, and the generalizability of the

findings should be assessed in larger, more diverse patient

cohorts. Further prospective studies are needed to validate the

study’s findings and clinical applicability.

Despite these limitations, the study represents a significant step

forward in applying ML to improve care for patients with HF and

thyroid dysfunctions. Integrating additional clinical variables, such

as genetic markers and advanced imaging data, could further

enhance the predictive accuracy of these models. Exploring

different ML algorithms and optimization techniques may lead to

more robust and efficient models.

In conclusion, this study demonstrates the potential of ML in

transforming the management of patients with HF and thyroid

dysfunctions. By leveraging ML, clinicians can gain a

deeper understanding of individual risk profiles, enabling

targeted interventions and personalized treatment strategies to

improve patient outcomes and promote more effective

healthcare delivery.
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Background: To explore new therapeutic targets and strategies for atrial 

fibrillation (AF) by analyzing gene expression profiles of AF patients using 

machine learning techniques combined with transcriptomic data, and to 

uncover the potential molecular mechanisms underlying AF.

Methods: Transcriptomic datasets associated with AF were obtained from the GEO 

database. After batch effect removal and normalization, differential gene 

expression analysis was performed to identify differentially expressed genes 

(DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 

(KEGG), and Disease Ontology (DO) enrichment analyses were conducted to 

explore the functions and pathways of these DEGs. Three machine learning 

algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), Support 

Vector Machine—Recursive Feature Elimination (SVM-RFE), and random forest 

(RF), were applied to screen key genes related to AF. A nomogram model was 

developed based on the identified key genes, and its diagnostic performance 

was evaluated. Single-cell transcriptome analysis was performed to investigate 

the cell-type-specific expression patterns of these key genes. Finally, Real-time 

PCR (RT-qPCR) and western blot (WB) analyses was performed on right auricular 

tissue from patients with atrial fibrillation and control samples.

Results: A total of 64 DEGs were identified, including 27 upregulated and 37 

downregulated genes. Enrichment analyses revealed that these genes were 

involved in biological processes such as positive regulation of muscular systemic 

processes, immune responses, and calcium signaling pathways. Three machine 

learning algorithms identified six key genes for AF. The nomogram model based 

on these six genes demonstrated excellent diagnostic performance with an AUC 

of 0.97. Single-cell transcriptome analysis showed specific expression patterns of 

these key genes in different cell types. Additionally, immune infiltration analysis 

indicated changes in the immune microenvironment in AF patients. qPCR and 

WB analyses also indicated that the differences in mRNA and protein expression 

levels of these six molecules between the control group and the atrial fibrillation 

group were consistent with the results of transcriptome analysis.
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Conclusion: This study provides new insights into the molecular mechanisms of AF 

and offers potential non-invasive biomarkers for AF diagnosis. The identified key 

genes and constructed model may facilitate the development of targeted 

therapies for AF.

KEYWORDS

atrial fibrillation, machine learning, single-cell, bulk transcriptomes, therapeutic targets, 

network physiology

Introduction

Atrial fibrillation is one of the most common sustained 

arrhythmias in clinical practice, with its prevalence showing a 

steady upward trend (1, 2). AF not only significantly impairs 

patients’ quality of life but also markedly increases the risk of severe 

complications such as stroke and heart failure, imposing a 

substantial economic burden on patients, families, and society (3).

The pathophysiology of AF involves multiple processes, including 

cardiac electrophysiological remodeling, structural remodeling, 

aberrant neural regulation, and in%ammatory responses (4, 5). 

Interactions among ion channel dysfunction in atrial myocytes, 

alterations in intercellular connexins, progression of myocardial 

fibrosis, and autonomic nervous system imbalance collectively 

contribute to the initiation and maintenance of AF (6). However, 

the understanding of these mechanisms remains incomplete, which 

limits the development of targeted therapeutic strategies (7).

Current treatment options for AF primarily include 

pharmacological therapy, catheter ablation, and surgical 

intervention (8, 9). While pharmacological therapy is effective in 

controlling ventricular rate and preventing thromboembolism, 

long-term use is often associated with adverse effects, and some 

patients exhibit poor responsiveness to medication (10). 

Catheter ablation, as a curative approach, has limited success 

rates and carries a risk of recurrence. Surgical treatment, being 

highly invasive, is applicable only to specific patient populations 

(11). Overall, existing therapies fail to fully meet the clinical 

needs of AF patients, highlighting the urgent need to explore 

novel therapeutic targets and strategies (12).

The rapid advancement of high-throughput omics 

technologies has enabled comprehensive systemic analysis of 

biological samples, thereby uncovering disease-related molecular 

signatures and potential mechanisms (13, 14). Transcriptomics, 

in particular, plays a critical role in elucidating the relationship 

between gene expression changes and disease progression, 

providing a rich resource for cardiovascular research (15, 16).

Continuous progress in machine learning and bioinformatics has 

provided effective tools for processing and interpreting large-scale 

omics datasets (13, 17–19). Machine learning algorithms can 

identify patterns, select key features, and construct predictive 

models from complex datasets, facilitating the discovery of 

potential biomarkers and therapeutic targets (20–22).

Furthermore, our study aligns with the emerging framework of 

Network Physiology, which emphasizes the integration of multi- 

level biological networks to understand complex physiological 

systems and disease states. In the context of atrial fibrillation, we 

explore not only gene-level interactions through protein-protein 

interaction networks but also cell-type-specific expression patterns 

and immune microenvironment crosstalk, thereby uncovering the 

network-based mechanisms underlying AF pathogenesis. The 

application of machine learning further enables the identification of 

key network hubs that drive AF progression, highlighting the 

central role of network analysis in bridging molecular features with 

clinical phenotypes.

This study aims to systematically analyze the gene expression 

profiles of AF patients using transcriptomic data and machine 

learning techniques, with the goal of identifying key genes closely 

associated with AF pathogenesis and therapeutic responses. 

Through in-depth investigation of these genes, we aim to uncover 

the potential molecular mechanisms underlying AF.

Materials and methods

Data acquisition

Transcriptomic datasets associated with atrial fibrillation were 

obtained from the Gene Expression Omnibus (GEO) database. For 

the discovery phase, we selected three datasets (GSE41177, 

GSE115574, and GSE79768) based on the following criteria: (1) 

sample type consisted of human atrial tissue, which is directly 

relevant to AF pathophysiology; (2) each dataset contained a 

sufficient number of both AF and control samples to ensure 

analytical robustness; (3) they were generated using comparable 

high-throughput platforms (Affymetrix or Illumina) to minimize 

technical batch effects. Other AF-related datasets in GEO were 

excluded if they had a small sample size (n < 5 per group), were 

derived from non-cardiac tissues for the discovery analysis, or lacked 

clear phenotyping. The dataset GSE2240, which is an independent 

atrial tissue dataset not used in the discovery process, was utilized for 

external validation of the machine-learning-identified feature genes. 

Furthermore, the dataset GSE255612, which contains right auricular 

tissue samples from 18 AF patients and 16 non-AF individuals, 

was downloaded for subsequent single-cell transcriptomic analysis 

to explore cell-type-specific expression patterns. The specific 

distribution of sample sizes for each dataset is shown in Table 1.

Batch effect removal

Before performing the difference analysis, we merged the 

three AF datasets (GSE41177, GSE115574, GSE79768). We then 
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corrected for batch effects using the “sva” package of the 

R language. To assess the effectiveness of this correction, we 

compared data quality before and after batch removal using 

principal component analysis (PCA).

Differential expression analysis

Differential gene expression analysis of the sequencing data was 

performed using the “limmaa” package in R software to compare 

samples from the control and experimental groups, thereby 

identifying DEGs. The criteria for screening DEGs were set as | 

log2FC| > 0.5 and a P-value < 0.05. The results of the differential 

analysis were visualized using the “ggplot2” package to generate 

volcano plots and heatmaps. The volcano plot clearly illustrates the 

distribution of DEGs, including upregulated genes, downregulated 

genes, and genes with no significant difference in expression.

GO and KEGG enrichment analysis

GO annotation from the org.Hs.eg.db package (version 3.1.0) in 

R software was used as the background. Genes were mapped to this 

background, and GO analysis was subsequently performed using 

the clusterProfiler package (version 3.14.3). The GO analysis 

covered three aspects: biological processes (BP), molecular 

functions (MF), and cellular components (CC), aiming to detect 

enriched pathways and thereby reveal the cellular functions, 

signaling pathways, and disease-related differentially expressed 

gene pathways primarily affected by the candidate target genes. 

KEGG was used to annotate gene pathways. Enrichment was 

considered statistically significant when P < 0.05.

DO enrichment analysis

DO enrichment analysis was performed using the org.Hs.eg.db 

R package (version 3.1.0) to obtain gene annotation information 

for the gene set. These genes were linked to the DO background 

dataset to ensure each gene was associated with disease 

classifications in the DO system. This approach aimed to identify 

disease processes related to atrial fibrillation treatment responses.

Machine learning algorithm applications

LASSO regression was employed to identify key genes 

associated with atrial fibrillation. After preprocessing the 

candidate differentially expressed genes, LASSO regression was 

implemented using the glmnet function, treating the data as a 

binary classification problem. The response variable was 

extracted from sample names using regular expressions. The 

model was evaluated by plotting the model object and 

performing cross-validation via cv.glmnet to determine the 

optimal lambda value. Finally, genes with non-zero coefficients 

corresponding to the optimal lambda value were identified as 

key genes related to the disease status of atrial fibrillation and 

were output. SVM-RFE analysis was conducted using the 

“e1071”, “kernlab” and “caret” packages in R. The number of 

genes corresponding to the minimized cross-validation error in 

the analysis results was used to determine the count of potential 

biomarkers identified by SVM-RFE machine learning. Genes 

with average rankings corresponding to the SVM-RFE analysis 

were selected as potential biomarkers for AF. Random forest 

analysis was performed using the “randomForest” package in 

R. The importance scores of differentially expressed genes were 

obtained at the point of minimized error on the cross-validation 

curve. Genes with importance scores exceeding 1 were selected 

as potential biomarkers for AF. A venn diagram was used to 

identify the intersection of genes obtained from LASSO, SVM- 

RFE, and Random Forest analyses. The final set of potential AF 

biomarkers was derived from the overlapping genes identified by 

these three machine learning methods.

Construction of protein-protein interaction 
(PPI) networks

Protein-protein interaction (PPI) networks were constructed 

using the GeneMANIA database (http://www.string-db.org/) to 

explore the regulatory interactions between genes and predict 

potential regulatory factors. This approach facilitated a deeper 

understanding of gene relationships and their regulatory 

mechanisms in the context of atrial fibrillation.

Development and validation of nomogram

The integrated dataset from GSE41177, GSE115574, and 

GSE79768 (after batch effect correction) was used as the training 

set to construct the diagnostic model. To ensure a rigorous 

evaluation and avoid data leakage, the validation process was 

strictly separated. In this study, the “rms” package in R software 

was employed to develop a nomogram model for identifying 

diagnostic genes in AF. Each candidate gene was assigned a specific 

score, with the total score being the sum of these individual gene 

TABLE 1 Distribution of sample sizes in each dataset.

Dataset Platform Country Tissue origin Anatomical location AF (n) Control (n)

GSE41177 GPL570 Taiwan left atrial appendage LA free wall 32 6

GSE115574 GPL570 Turkey left/right atrial appendage LA/RA free wall 15 15

GSE79768 GPL570 Taiwan right atrial appendage LA/RA free wall 13 13

GSE2240 GPL96 Germany left/right atrial appendage LA/RA free wall 20 10
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scores. The model’s performance was first evaluated internally on the 

training set. To evaluate the model’s accuracy, calibration curves were 

plotted to assess the consistency between predicted probabilities and 

actual outcomes. Furthermore, decision curve analysis (DCA) was 

conducted to evaluate the clinical utility of the model. The 

diagnostic efficacy of six key genes was assessed through receiver 

operating characteristic (ROC) curve analysis. Finally, the 

robustness of the model was validated using the independent 

external validation set (GSE2240), which was not involved in any 

prior steps of differential expression analysis or machine learning 

feature selection.

Single-cell transcriptome analysis

In the single-cell RNA-sequencing (scRNA-seq) analysis pipeline, 

data normalization is first carried out via the LogNormalize method 

to guarantee the comparability of gene expression levels across 

different cells. Then, the FindVariableFeatures method is employed 

to select highly variable genes (top 2,000). To further eliminate 

batch effects, the Harmony algorithm is applied for batch 

correction, enhancing the comparability of data from different 

experimental batches. Subsequently, dimensionality reduction is 

performed using principal component analysis (PCA). For cell 

clustering, the non-linear dimensionality reduction method of 

t-distributed stochastic neighbor embedding (t-SNE) is utilized for 

analysis. Cell grouping is conducted using the FindClusters 

function, and the clustering results are optimized by adjusting 

different resolution parameters. The entire quality control work%ow 

comprises steps such as normalization, batch correction, and 

dimensionality reduction to ensure the accuracy and reliability of 

data analysis. With the thresholds of P < 0.05 and log2FC > 0.25, 

“FindAllMarkers” is used to identify differentially expressed genes 

in each cluster. Based on the unique marker genes in the study, the 

expression of these marker genes in different clusters is analyzed to 

annotate the cells.

Quantitative Rt-PCR analysis

Total RNA was extracted from cardiac tissue using TRIzol 

Reagent (Invitrogen, CA, USA), and reverse-transcribed into 

cDNA via the Novo Protein Reverse Transcription Kit (Suzhou, 

China). Real-time PCR was performed on a Roche LightCycler® 

480 Real-Time PCR Apparatus (Bio-Rad, Basel, Switzerland) to 

detect the expression of C1orf105, DHRS9, CHGB, PDE8B, CSRP3, 

TABLE 2 The sequences of the primers for qPCR.

Gene symbol Species Forward primer Reverse primer

C1orf105 Human ATTCACTACAGACTGCCCATTCT CGTTGTCTTGCCTATTGGTTCC

DHRS9 Human GGCTTTGGAAACTTGGCAGC TCGGTCACATCCAGAAGCAC

CHGB Human GCCAGATCGGAAACACATGC CGTCGTTTGTCCACCTCAGA

PDE8B Human CAAACTCAGAACTTCGATGCAGA CTTCATGGTCATCCGATACTCG

CSRP3 Human GTGCTATGGGCGCAGATATGG CTCGGACTCTCCAAACTTCGC

FCER1G Human CTCCAGCCCAAGATGATTCCA CTTTCGCACTTGGATCTTCAGTC

FIGURE 1 

PCA of three original AF datasets prior to batch effect correction and PCA of integrated AF dataset after batch effect correction.

Wang et al.                                                                                                                                                              10.3389/fcvm.2025.1652467 

Frontiers in Cardiovascular Medicine 04 frontiersin.org77



FCER1G, and β-actin (as a normalization control). The relative 

expression levels of these hub genes were calculated using the 2 

−ΔΔCT method. Statistical analysis was conducted with GraphPad 

Prism, and t-tests were applied for two groups of data following a 

normal distribution. A significance level of P < 0.05 was adopted. 

The primer sequences for C1orf105, DHRS9, CHGB, PDE8B, 

CSRP3, and FCER1G are listed in Table 2.

Western blot analysis

Total protein was extracted from right auricular tissues of AF 

patients and non-AF controls using RIPA lysis buffer containing 

protease and phosphatase inhibitors. Protein concentrations 

were determined using a BCA Protein Assay Kit (Beyotime, 

China). Equal amounts of protein (20 μg per lane) were 

separated by 10% SDS-PAGE and transferred onto PVDF 

membranes (MeilunBio, China). After blocking with 5% non-fat 

milk for 1 h at room temperature, the membranes were 

incubated overnight at 4°C with primary antibodies against 

C1orf105 (1:2,000, Abmart, PH13497), DHRS9 (1:2,000, 

immunoway, YN0639), CHGB (1:2,000, immunoway, YT6192), 

PDE8B (1:2,000, Proteintech, 30708-1-AP), CSRP3 (1:2,000, 

immunoway, YN6528), FCER1G (1:2,000, Abmart, TD13263), 

and β-actin (1:10,000, immunoway, YM8343) as a loading 

control. After washing, the membranes were incubated with 

HRP-conjugated secondary antibodies (1:5,000, Proteintech) for 

1 h at room temperature. Protein bands were visualized using an 

ECL detection system (Tanon, China). The grayscale values of 

protein bands were analyzed using ImageJ software (National 

Institutes of Health, USA), and the relative expression levels 

were normalized to β-actin. Statistical analysis and graph 

generation for WB data were performed using GraphPad Prism 

software (version 9.5, USA).

Statistical analysis

All statistical analyses and gene expression data were processed 

using R (version 4.4.3). When the data were normally distributed, 

we compared the two groups using an independent two-sample 

t-test. If the data were not normally distributed, we used the 

Wilcoxon rank-sum test for intergroup comparisons. A p-value 

of less than 0.05 was set as the threshold for statistical significance.

Results

Identification of differentially expressed 
genes

Raw AF and control transcriptome data were obtained from the 

GEO database, integrated after batch effect removal, and normalized 

to generate 58 AF cases and 65 control treatment cohorts (Figure 1).

Identifying of differentially expressed 
associated with AF

We performed differential analysis of the AF cohort to reveal 

differential genes for AF. A total of 64 deg were identified, of 

which 27 were upregulated and 37 were downregulated (Figure 2).

FIGURE 2 

Volcano and Heatmap plots depicting DECs between AF and healthy controls.
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Functional enrichment analysis of AF 
differential genes

Differential gene PPI networks were constructed through the 

GeneMANIA database (Figure 3) and analyzed for functional 

enrichment using GO, KEGG, and DO to identify potential 

mechanisms of action.

The results of the enrichment analysis are shown in Figure 4. 

In the biological process, AF-related DEGs are enriched in positive 

regulation of muscular systemic processes. This includes positive 

regulation of muscle cell development; negative regulation of 

myocardial fiber assembly; regulation of immune response; positive 

regulation of muscle tissue development; and negative regulation of 

muscle cell differentiation. For cellular components, these genes are 

mainly enriched in cellular structures such as myofibers, sarcoplasmic 

reticulum, nucleus pulposus lumen, autophagosomal membranes, 

I-bands, Z-discs, and myogenic fibers. For molecular function, 

these genes are enriched in a variety of molecular binding 

activities: cytokine binding; immunoglobulin receptor activity; 

glycosaminoglycan binding; immunoglobulin binding; BMP binding; 

heparin binding. These functions are involved in the regulation of the 

heart and the immune system, suggesting that AF may be closely 

related to the interaction and signaling of these molecules.

KEGG pathway analysis further revealed significant 

enrichment of AF-related genes in several biological processes. 

Specifically, pathways such as pancreatic secretion, salivary 

secretion, and myocardial contraction, which are closely related 

to the regulation of cardiac function and the digestive system, 

FIGURE 3 

PPI network analysis for differential genes.
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showed significant enrichment. At the same time, we also 

observed enrichment of pathways related to infectious diseases 

such as Staphylococcus aureus infection and tuberculosis, which 

may be related to the activation of in%ammatory responses in 

patients with atrial fibrillation. In addition, the enrichment of 

pathways such as mineral uptake and natural killer cell-mediated 

cytotoxicity suggests possible immune and metabolic 

mechanisms involved in AF. The significant enrichment of the 

calcium signaling pathway is particularly noteworthy because 

this pathway plays a central role in cardiac electrophysiology 

and contractile function, and its abnormalities may be directly 

associated with the development of AF. Finally, the enrichment 

of cytoskeletal pathways in muscle cells emphasizes the 

importance of cardiac muscle structure and function in AF.

Disease ontology semantic and enrichment analyses revealed 

significant associations of AF with multiple biological processes. 

Specifically, AF was significantly associated with processes such as 

pancreatic secretion, Staphylococcus aureus infection, salivation, 

myocardial contraction, leishmaniasis, tuberculosis, mineral uptake, 

phagolysosomes, osteoclast differentiation, natural killer cell- 

mediated cytotoxicity, calcium signaling pathways, asthma, and 

cytoskeleton in muscle cells.

Analysis of immune cell infiltration in AF

Single-sample gene set enrichment analysis (ssGSEA) results for 

atrial fibrillation revealed functions and pathways associated with 

immune cell subsets. ssGSEA was used to depict the relative 

abundance of immune cell subsets in the AF cohort. Samples from 

the AF cohort showed activated B cells, activated CD4+ T cells, 

activated CD8+ T cells, activated dendritic cells, CD56bright natural 

killer cells, CD56dim natural killer cells, eosinophils, γ δ T cells, 

immature B cells, immature dendritic cells, myeloid-derived 

suppressor cells (MDSC), as compared to controls, macrophages, 

mast cells, monocytes, natural killer T cells, natural killer cells, 

neutrophils, plasmacytoid dendritic cells, regulatory T cells, follicular 

helper T cells, type 1 helper T cells, type 17 helper T cells, and type 2 

helper T cells were enriched. The box line plot further demonstrates 

that the proportions of macrophages, endothelial cells, and activated 

dendritic cells were elevated in the atrial fibrillation cohort, whereas 

the abundance of effector memory CD8+ T cells was reduced 

compared with the control group. These results suggest changes in 

the immune microenvironment in the AF cohort, particularly in the 

composition of specific immune cell subsets (Figures 5A,B).

Identification of hub genes via machine 
learning

We used three machine learning algorithms, LASSO, RF, and 

SVM-RFE, to further screen Hub genes for AF. We identified 24 

potential candidate biomarkers by the LASSO algorithm (Figure 6). 

The RF algorithm ranked the genes based on the importance 

calculation of each gene, and we selected the top 30 as potential 

candidates for AF (Figure 7). To establish the optimal number of 

Hub genes, we selected the top 30 genes for the SVM-RFE 

algorithm results as candidate genes (Figure 8). By intersecting the 

results of all three algorithms, we identified six Hub genes for AF: 

C1orf105, DHRS9, CHGB, PDE8B, CSRP3 and FCER1G. The 

visualization results were shown in Figure 9.

FIGURE 4 

Barplots of GO, KEGG, D0 enrichment analysis results.
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Diagnostic value assessment

We constructed a nomogram model based on the six gene 

signature. This model demonstrated excellent diagnostic 

performance, with an AUC of 0.97. Calibration curves validated its 

accurate predictive capacity for AF. Moreover, DCA results 

confirmed the clinical applicability of the nomogram model. 

Collectively, these findings indicate that the nomogram model 

exhibits robust predictive performance (Figure 10). Additionally, 

we generated a differential expression box plot of the Hub gene. 

Finally, we validated the hub genes in GSE2240 by ROC curve 

analysis. The differential expression results showed that the 

expression of DHRS9, CHGB, PDE8B, and CSRP3 was up- 

regulated, and the expression of FCER1G and C1orf105 was down- 

regulated compared to the control (Figure 11). In the external 

validation set (Figure 12), the expression of DHRS9, CHGB, 

FIGURE 5 

(A) Boxplots comparing immune cell abundances between AF vs. controls. (B) Barplots comparing imumme cell abundances between AF 

vs. controls.
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PDE8B, CSRP3 and FCER1G was up-regulated, whereas that of 

C1orf105 was down-regulated. The ROC curve analysis results 

showed that the AUC of each gene exceeded 0.75, indicating 

significant diagnostic value. The visualization results are shown in 

Figure 13. Similarly, in the external validation set (Figure 14), each 

gene showed great diagnostic value.

FIGURE 6 

Biomarkers screening and optimal parameter (lambda) in the Lasso model.

FIGURE 7 

Biomarkers screening relative importance of overlapping candidate top 20 genes calculate& the RF model.
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Expression levels in single-cell 
transcriptome data

To further explore the relationship between the six key genes 

and atrial fibrillation, we downloaded right auricular tissue 

samples from 18 AF patients and 16 non-AF individuals in the 

GSE255612 dataset of the GEO database. After data pre- 

processing, normalization, scaling, and cell clustering, 12 distinct 

clusters were identified in the dataset. Upon cell annotation, 

these clusters were categorized into 12 cell types, namely 

Fibroblasts, Cardiomyocytes, Macrophages, Endothelial Cells, 

Pericytes, Adipocytes, Smooth Muscle Cells, T Cells, 

Neuroendocrine Cells, Mast Cells, Mesenchymal Stem Cells, and 

Proliferating Cells (Figure 15). Further analysis revealed that 

FIGURE 8 

The curve with the highest and lowest biomarker screening accuracy in the SVM-RFE model.

FIGURE 9 

Venn diagram of six candidate genes screened by three machine learning algorithms.
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DHRS9 and CSRP3 were predominantly expressed in 

cardiomyocytes, PDE8B in Adipocytes and cardiomyocytes, and 

FCER1G in macrophages (Figures 16, 17).

To determine if the hub genes were differentially expressed 

within specific cell types, we performed comparative analysis 

between AF and control samples for each major cell population, 

including fibroblasts, cardiomyocytes and macrophages. Violin 

plots illustrating the expression distribution of the six hub genes in 

fibroblasts are presented in Supplementary Figures S1, S2. Notably, 

none of these genes exhibited significant differential expression at 

the single-cell level within these populations. This indicates that 

their identification as differentially expressed genes in the bulk 

tissue analysis is likely attributable to AF-associated changes in the 

cellular composition of the atrial tissue, such as the expansion of 

fibroblast and macrophage populations, rather than substantial 

changes in their expression level within individual cells.

qRT-PCR experimental validations of the 
hub genes

First, we collected right auricular tissues from 4 AF patients and 4 

non-AF patients. qRT-PCR results showed that mRNA levels of 

DHRS9, CHGB, PDE8B, CSRP3, and FCER1G were downregulated 

in right auricular tissues of patients with AF and upregulated in 

C1orf105 compared with non-lesional control tissues (Figure 18).

Western blot experimental validations of 
the hub genes

To further validate the protein expression levels of the six hub 

genes, we performed Western blot analysis on right auricular 

tissues from 3 AF patients and 3 non-AF controls. Consistent 

with the mRNA results, the protein levels of DHRS9, CHGB, 

PDE8B, CSRP3, and FCER1G were significantly downregulated 

in AF tissues, whereas C1orf105 protein expression was 

upregulated compared to controls (Figure 19).

Discussion

This study has systematically revealed the key molecular 

mechanisms and potential therapeutic targets in the development 

of atrial fibrillation by integrating single-cell and bulk 

transcriptomic data with machine learning algorithms.

FIGURE 10 

The visible nomogram, ROC curve, calibration curve, DCA curve for diagnosing AF.
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FIGURE 11 

Expression of Hub genes in AF patients compared to normal controls in the training set.

FIGURE 12 

Expression of Hub genes in AF patients compared to normal controls in the validation set.
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Our application of machine learning to dissect the molecular 

underpinnings of AF aligns with a growing trend in cardiovascular 

medicine, particularly in electrophysiology, to leverage artificial 

intelligence (AI) for enhanced disease understanding and patient 

management. For instance, recent advances demonstrate the 

powerful role of AI and machine learning in electrophysiology, 

ranging from analyzing electrocardiograms for improved AF 

detection and classification to predicting ablation outcomes and 

optimizing patient-specific treatment strategies (23). Our study 

extends this paradigm by applying similar computational 

intelligence not to clinical signal data, but to high-dimensional 

transcriptomic data. This approach allows us to move beyond 

correlation towards identifying causative molecular features and 

cell-type-specific expressions that underlie the AF substrate. By 

integrating bulk and single-cell RNA sequencing with robust 

machine learning algorithms, we demonstrate how AI-driven 

bioinformatics can uncover novel, interpretable biomarker 

signatures that may inform both mechanistic biology and future 

precision medicine approaches in AF.

Several hub genes closely related to AF have been identified 

(C1orf105, DHRS9, CHGB, PDE8B, CSRP3, FCER1G). 

Functional enrichment analysis indicates that calcium signaling 

pathways, immune microenvironment imbalance, and 

myocardial structural remodeling play a central role in AF. 

Single-cell transcriptomic data further reveals the cell—type— 

specific expression patterns of these hub genes.

DHRS9 is specifically highly expressed in cardiomyocytes, 

suggesting it may play an important role in cardiomyocyte 

electrophysiology or structural remodeling (24). DHRS9 encodes 

a member of the dehydrogenase/reductase family 9 involved in 

retinoic acid metabolism, and retinoic acid signaling has been 

proven to be related to cardiac development and fibrosis 

regulation (25). In this study, the significant differential 

expression of DHRS9 may re%ect myocardial cell metabolic 

reprogramming in AF patients, leading to abnormal calcium 

signaling pathways, thereby inducing arrhythmias. In addition, 

the association of DHRS9 with cardiomyocyte-related pathways, 

such as myocardial contraction and myofibril assembly, implies 

that it may be involved in AF progression by regulating the 

contractility of cardiomyocytes.

CSRP3 is highly expressed in cardiomyocytes, and its encoded 

protein is involved in sarcomere assembly and cytoskeletal 

stabilization (26, 27). This study shows that downregulated CSRP3 

expression may be closely related to myocardial fibrosis and 

structural remodeling in AF patients. Previous studies have 

confirmed that CSRP3 deficiency can lead to the disruption of the 

Z-disc structure in cardiomyocytes, thereby inducing arrhythmias 

(28). The significant enrichment of CSRP3 in “myofibril” and “Z- 

disc” cell components further supports its key role in maintaining 

the structural integrity of cardiomyocytes. Moreover, the 

interaction of CSRP3 with calmodulin may indirectly in%uence the 

occurrence of AF by regulating calcium ion homeostasis.

FIGURE 13 

The ROC curve of each candidate genes in the training set.
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The dual-expression pattern of PDE8B in adipocytes and 

cardiomyocytes reveals the potential role of metabolic regulation in 

AF. PDE8B encodes phosphodiesterase 8B, which is involved in 

energy metabolism and signal transduction by degrading cAMP 

(29). This study finds that abnormal expression of PDE8B may lead 

to an imbalance in cAMP levels within cardiomyocytes, thereby 

FIGURE 14 

The ROC curve of each candidate genes in the validation set.

FIGURE 15 

T-SNE clustering visualization for single-cell transcriptome data.
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affecting calcium ion release. The KEGG-enriched “cardiac muscle 

contraction” pathway supports this finding. Additionally, the high 

expression of PDE8B in adipocytes may suggest that adipose tissue- 

derived factors can regulate myocardial electrical activity through a 

paracrine pathway, offering a new perspective on the metabolic- 

electrophysiological coupling mechanism of AF.

The specific high expression of FCER1G in macrophages 

suggests that it is involved in AF progression through immune- 

FIGURE 16 

Expression levels of six genes in single-cell treatscriptome data.

FIGURE 17 

Distribution of six gene expressions in t-SNE space.
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in%ammatory pathways. FCER1G encodes the high-affinity IgE 

receptor γ-chain, a key molecule in the activation of mast cells 

and macrophages (30). This study shows an increase in 

macrophage infiltration in AF patients. FCER1G may promote 

the release of pro-in%ammatory factors by activating the NF-κB 

pathway, thereby aggravating atrial fibrosis and electrical 

remodeling. Its association with “natural killer cell-mediated 

cytotoxicity” indicates that it may in%uence the AF 

microenvironment by regulating immune cell interactions, 

providing a potential target for targeted immunotherapy.

As newly-discovered AF-associated genes, the specific 

functions of C1orf105 and CHGB remain to be further 

elucidated. C1orf105 is widely expressed in single-cell data and 

may be involved in atrial remodeling by regulating cell 

proliferation or apoptosis. CHGB is commonly found in 

neuroendocrine cells, and its upregulated expression may re%ect 

autonomic nervous system dysregulation in AF patients. This is 

consistent with previous reports that autonomic imbalance can 

trigger AF (31). Although the functions of these two genes are 

not yet clear, their association with “neuroendocrine regulation” 

and “cell proliferation” pathways suggests their potential role in 

AF, which needs to be verified through functional experiments.

The biomarkers identified in this study have distinct 

translational pathways depending on their primary source of 

expression. Tissue-based markers, such as CSRP3 and DHRS9 

which are highly expressed in cardiomyocytes, directly re%ect 

the pathophysiological processes of atrial remodeling, fibrosis, 

and electrophysiological dysfunction. They represent promising 

therapeutic targets for interfering with the core mechanisms of 

AF. However, their clinical application as diagnostic tools is 

limited by the invasiveness of obtaining cardiac tissue. In 

contrast, the detection of key genes like FCER1G and PDE8B in 

peripheral blood mononuclear cells (PBMCs), as revealed by our 

single-cell analysis, offers a promising avenue for non-invasive 

diagnosis. Blood-based biomarkers could be developed into 

liquid biopsies for AF screening, risk stratification, and 

potentially monitoring treatment response. It is important to 

note that while blood-based markers provide high clinical 

applicability, their expression levels may re%ect systemic states 

such as in%ammation or metabolic alterations, which could be 

in%uenced by comorbidities. Therefore, the integration of tissue- 

specific mechanistic insights with blood-based non-invasive 

detection methods could facilitate the development of a 

comprehensive strategy for managing AF.

FIGURE 18 

RT-qPCR analysis of six genes expression.
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Immune infiltration analysis shows that the proportion of 

macrophages and activated dendritic cells is increased in AF 

patients, while the number of effector memory CD8+ T cells is 

reduced. This is consistent with the characteristics of the chronic 

in%ammatory state in AF patients. The nomogram model based on 

the five-gene signature shows excellent diagnostic performance, 

and its robustness has been validated in an independent dataset. 

This finding provides a theoretical basis for the development of 

non-invasive AF biomarker detection. However, the clinical 

application of the current model still needs further validation in 

prospective cohorts, and its value in AF subtype stratification or 

treatment-response prediction needs to be explored.

In addition, the identification of these hub genes and their 

expression patterns in specific cell types provides novel insights 

into the pathophysiology of AF. For instance, the high 

expression of DHRS9 in cardiomyocytes and its association with 

metabolic reprogramming highlight the importance of metabolic 

alterations in AF. This could lead to the development of 

therapeutic strategies targeting metabolic pathways to modulate 

cardiac electrophysiology and structure. Similarly, the role of 

CSRP3 in maintaining cardiomyocyte integrity and its link to 

fibrosis suggest that preserving or restoring its function might 

mitigate AF progression. Moreover, the dual expression of 

PDE8B in adipocytes and cardiomyocytes underscores the 

complex interplay between metabolic tissues and cardiac 

function, indicating that targeting adipocyte-derived factors 

could be a novel approach to manage AF.

The immune-related findings, particularly the overexpression 

of FCER1G in macrophages and the increased infiltration of 

macrophages in AF patients, emphasize the in%ammatory nature 

of AF. This supports the potential of immunotherapeutic 

strategies in AF management. The association of FCER1G with 

immune cell interactions and its role in promoting pro- 

in%ammatory cytokines through the NF-κB pathway offer 

specific targets for intervention. Modulating the immune 

response in AF could not only reduce in%ammation but also 

prevent adverse structural remodeling.

Overall, this study bridges the gap between transcriptomic 

data and functional insights, providing a comprehensive view of 

AF mechanisms. It highlights the importance of integrating 

multi-omics data with advanced analytical techniques to uncover 

disease mechanisms and identifies potential therapeutic targets. 

Future research should focus on validating these findings in 

larger, diverse cohorts and exploring the functional roles of 

these genes through experimental models to translate these 

insights into clinical applications. Despite the limitations of this 

study, including its retrospective design and the need for further 

experimental validation, the identified genes and pathways 

present promising avenues for developing novel diagnostic tools 

and personalized treatment strategies for AF.

FIGURE 19 

Western blotting and quantitative analysis of six genes expression.
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Conclusion

This study reveals key molecular mechanisms and potential 

therapeutic targets for AF. It identifies six genes closely related 

to AF and demonstrates their specific expression patterns in 

different cell types. The constructed nomogram model shows 

excellent diagnostic performance and provides a basis for 

developing non-invasive biomarkers for AF. However, further 

experimental validation is needed for clinical application.
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Towards standardizing mitral
transcatheter edge-to-edge
repair with deep-learning
algorithm: a comprehensive
multi-model strategy

Silvia Corona1*, Théo Godefroy2, Olivier Tastet2, Denis Corbin2,
Thomas Modine3, Stephan von Bardeleben1, Frédéric Lesage1,2

and Walid Ben Ali1*
1Structural Heart Valve Center, Montreal Heart Institute, Montreal, QC, Canada, 2Biomedical Engineering
Department, Polytechnique Montréal, Montreal, QC, Canada, 3UMCV, Hôpital Haut-Lévêque, CHU
Bordeaux, Bordeaux, France

Background: Severe mitral valve regurgitation requires comprehensive
evaluation for optimal treatment. Initial screening uses transthoracic
echocardiography (TTE), followed by transesophageal echocardiography (TEE)
to determine eligibility for adequate intervention. Mitral Transcatheter Edge-to-
Edge Repair (M-TEER) indications are based on detailed and quality valve and sub-
valvular apparatus assessment, including anatomy and regurgitation
pathophysiology.
Aim: To develop AI algorithms for standardizing M-TEER eligibility assessment
using TTE and TEE echocardiograms, supporting all stages of mitral valve
regurgitation evaluation to assist non-expert centers throughout the entire
process, from severe mitral valve regurgitation diagnostic to M-TEER procedure.
Methods: Three deep learning algorithms were developed using
echocardiographic data from M-TEER patients performed at Montreal Heart
Institute (2018–2025). 1. ECHO-PREP was trained to identify key diagnostic
views in TTE (n = 530) and diagnostic and procedural views in TEE (n = 2,222)
examinations to determine the level of quality images needed to do a M-TEER. 2.
4D TEE segmentation with automated mitral valve area (MVA) quantification (n =
221), and 3. 2D TEE scallop-level segmentation of leaflets and sub-valvular
structures (n = 992).
Results: Preliminary results on test sets showed 95.7% accuracy in TTE view
classification and 91% accuracy for TEE view classification. The 4D segmentation
module demonstrated excellent agreement with manual MVA measurements
(R = 0.84, p < 0.001), successfully discriminating patients undergoing M-TEER
from those referred for surgical replacement (p = 0.046 for AI predictions). The
2D scallop-level analysis achieved a mean Dice score of 0.534 across
11 anatomical structures, with better performance in commonly represented
configurations (e.g., A2-P2, P1-A2-P3).
Conclusion: ECHO-PREP demonstrates the feasibility of an integrated AI-
assisted workflow for MR assessment, combining quality control, dynamic 4D
valve quantification, and scallop-level anatomy interpretation. These results
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support the potential of AI to standardize M-TEER eligibility, reduce inter-observer
variability, and provide decision support across centers with different levels of
expertise.

KEYWORDS

mitral regurgitation, AI, M-TEER, deep-learning, segmentation, TEE, 4D

1 Introduction

Mitral regurgitation (MR) is a prevalent valvular heart disease,
affecting approximately 2% of the general population and up to 10%
of individuals over 75 years of age (Nkomo et al., 2006). In patients
with severe MR and high or prohibitive surgical risk, transcatheter
edge-to-edge repair (M-TEER) has emerged as an established
therapeutic option that can reduce symptoms, hospitalizations,
and improve quality of life (Stone et al., 2018; Maisano et al., 2013).

Successful M-TEER depends critically on detailed anatomic and
functional characterization of the mitral valve apparatus. This
complex apparatus is a dynamic interface between the left atrium
and ventricle, composed of two leaflets attached to a saddle-shaped
annulus and supported by a subvalvular network of chordae
tendineae and papillary muscles. Transesophageal
echocardiography (TEE) remains the cornerstone imaging
modality for pre-procedural assessment and intra-procedural
guidance (Zamorano et al., 2011), providing high-quality imaging
of cardiac structures in 2D and 3D, enabling real-time dynamic
assessment. In contrast, transthoracic echocardiography (TTE) is
typically reserved for initial screening and post-procedural follow-
up. Precise quantification of valvular morphology and kinematics
from these images can also feed into computational models, such as
finite element simulations, to replicate patient-specific biomechanics
(Votta et al., 2008). Deriving this level of detail, particularly a pixel-
wise annotation of valve substructures from 4D TEE data, is a
formidable task. The automation of mitral valve segmentation and
tracking is hindered by intrinsic challenges of echocardiography,
such as artifacts from patient motion, variable image quality, and
scarse availability of expertly annotated 4D datasets for training.
However, conventional clinical workflows rely heavily on expert
interpretation and manual measurements, which are time-
consuming and subject to inter- and intra-observer variability
(Hien et al., 2014; Thomas et al., 2008). Artificial intelligence
(AI), particularly deep learning, offers an opportunity to
overcome these limitations by providing rapid, reproducible, and
quantitative analysis of echocardiographic images.

Convolutional neural networks (CNNs), particularly encoder-
decoder architectures like U-Net and its 3D extensions, have
demonstrated remarkable success over the last decade in automating
tasks in cardiac ultrasound, including chamber segmentation,
functional analysis, and valvular assessment (Leclerc et al., 2019;
Ouyang et al., 2020). Clinical and technical precedents illustrate this
trajectory. Vendor-integrated solutions such as Anatomic Intelligence
in Ultrasound (AIUS) (Philips Healthcare) have implemented
automated recognition and measurement of cardiac structures,

showing the feasibility of integrating anatomy-aware algorithms into
daily workflows. Academic initiatives and challenges (e.g., the Mitral
Valve Segmentation challenge -MVSEG- at the International
Conference on Medical Image Computing and Computer Assisted
Intervention congress -MICCAI-) have provided standardized
benchmarks to accelerate innovation and compare algorithmic
performance. The winning model at MVSEG 2023 (Synapse, 2025),
often leveraging advanced architectures like nnU-Net or vision
transformers, achieved state-of-the-art Dice scores, showcasing an
unprecedented ability to accurately delineate the thin, dynamic
mitral leaflets and complex annular geometry.

Several research groups have contributed to this field. Costa et al.
(2019) developed a 2D CNN for leaflet segmentation in 2D TTE, while
Carnahan et al. (2021) and Aly et al. (2022) focused on 3D
segmentation from TEE using a 3D Residual UNet and nnUNet,
respectively. Chen et al. (2023) introduced a two-stage nnUNet
approach, initializing it with a classifier pre-trained to identify the
valve’s open and closed states. Munafò et al. (2024) created a Multi-
Decoder Residual UNet to segment the annulus and both leaflets
separately at end-systole from 3D TEE. A critical limitation of these
studies is their inability to perform frame-by-frame (4D) analysis of the
entire valve apparatus throughout the cardiac cycle. Previous 4D efforts
have been restricted to annulus-specific segmentation (Andreassen
et al., 2019; Andreassen et al., 2022) or tracking (Taskén et al.,
2023), or were confined to 2D imaging for leaflets and annulus, as
seen in the work of Wifstad et al. (2024), who used a UNet with
attention gates for 2D TTE. Recently, Munafò et al. (2025) proposed a
semi-supervised training strategy using pseudo-labeling for MV
segmentation in 4D TEE employing a Teacher-Student framework
to ensure reliable pseudo-label generation. The Student model
demonstrated reliable frame-by-frame MV segmentation on 120 4D
TEE recordings from 60 candidates forMV repair, accurately capturing
leaflet morphology and dynamics throughout the cardiac cycle, with a
significant reduction in inference time compared to the ensemble.
Despite these advances, several challenges persist. Generalizability
across vendors and imaging protocols is limited, and a fully
automated 4D MV segmentation with a scallop-level analysis, which
is also able to provide automated measurements in complex anatomies
to define theM-TEER eligibility, is difficult. The development of such a
method is highly challenged by the labor-intensive manual annotation
process needed to generate the extensive datasets required for the
supervised training of CNNs.

In this context, we developed an integrated deep learning
framework for the comprehensive pre-procedural assessment of
the mitral valve in patients with severe mitral regurgitation. Our
solution features a three-stage algorithmic pipeline designed to: 1.
assess the quality of available TTE and TEE images, 2. perform
segmentation of the mitral annulus, leaflets, and scallops, and 3.
automatically compute the mitral valve area (MVA) from 4D-TEE
volumes. By generating reproducible, clinically relevant
measurements, this approach has the potential to standardize

Abbreviations: AI, Artificial intelligence; MR, Mitral regurgitation; TTE,
Transthoracic Echocardiography; TEE, Transesophageal echocardiography;
M-TEER, Mitral transcatheter edge-to-edge repair; DL, Deep learning.
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feasibility assessment and support heart team decision-making in
transcatheter mitral interventions.

2 Methods

The proposed original multi-step workflow, called ECHO-
PREP, consisting of three sequential algorithms for image quality
assessment, mitral valve segmentation, including scallop-level
analysis, and automated measurements, is illustrated in Figure 1.

TTE and TEE pre-procedural images from M-TEER (Mitraclip)
and surgical mitral valve replacement (MVR) patients, performed at
theMontreal Heart Institute from 1 January 2018, to 1 January 2025,
were retrospectively collected. Both two-dimensional (2D) images,
three-dimensional (3D), and four-dimensional (4D) volume images
were used. 3D refers to single-volume acquisitions, whereas 4D
refers to multi-volume datasets spanning the entire cardiac cycle.
Our algorithm was primarily trained on 3D echo volumes to
establish accurate segmentation performance. Once optimized in
this setting, the model was subsequently extended and retrained to
analyze sequences of 3D volumes across the cardiac cycle, thereby
enabling full 4D assessment.

2.1 Automatic classification of 2D- TTE and
TEE images: quality views assessment

2.1.1 Dataset processing and splitting
TEE and TTE video images were processed through a systematic

pipeline. All frames were extracted from source videos using
OpenCV, with each frame inheriting its parent video’s label.
Multi-label annotations were transformed to single labels using
priority rules, removing technical artifacts such as ‘delivery_
system’ and ‘clip’ tags. Dataset splitting was performed at the
video level using instance_uid identifiers to prevent data leakage,
ensuring no video appeared in multiple splits. Videos were stratified

by label distribution and randomly assigned to training (50%),
validation (25%), and test (25%) sets. This video-level splitting
approach maintained temporal integrity while enabling robust
model evaluation.

2.1.2 Model architecture and training
We employed MobileNetV3-Large (Elaziz et al., 2023) as our

base architecture, initialized with pre-trained weights from
ImageNet (Figure 2). For both quality assessment (binary
classification) and view classification (multi-class single-label),
only the final classification layer was modified to match the
target classes, implementing a transfer learning approach.
Training images underwent augmentation, including random
horizontal and vertical flips, random rotation (+/−10°), resizing
to 256 × 256 pixels, and random cropping to 224 × 224 pixels.
Validation and test images underwent deterministic preprocessing,
which included resizing to 256 × 256 pixels and center cropping to
224 × 224 pixels. To accelerate training, entire datasets were loaded
into memory using a custom Dataset class. Models were trained
using the Adam optimizer with a learning rate of 1 × 10̂ (−4) and
cross-entropy loss for 100 epochs, with a batch size of 128. Training
utilized eight parallel data loading workers and CUDA acceleration.
Model selection was based on validation accuracy, with the best-
performing checkpoint saved for inference. Performance was
monitored using both accuracy and the area under the receiver
operating characteristic curve (AUROC). AUROC was computed
using one-vs-rest methodology for multi-class view classification.

2.2 4D-TEE-based automatic MV
segmentation and MVA measurements

2.2.1 Dataset and data preparation
This study utilized the MVSEG2023 public dataset (Synapse,

2025), a standardized collection of TEE volumes acquired using the
Philips EPIQ cardiac ultrasound system. The dataset contains

FIGURE 1
ECHO-PREP fully automatic clinical workflow for MV Assessment andM-TEER procedural planning. Grey boxes denote potential applications of the
available algorithms that are currently under development or have not yet been validated. 2D = two-dimensional; 3D = three-dimensional; M-TEER =
mitral transcatheter edge-to-edge repair; MV = mitral valve; TTE = transthoracic echocardiography; TEE = transesophageal echocardiography.
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segmentations for the anterior and posterior leaflets (Labels 1 and 2).
To enhance the dataset for comprehensive valve analysis, manual
annulus contour segmentations were added (Label 3).

2.2.1.1 Annulus annotation enhancement
Manual annulus contours were created using 3D Slicer by

placing control points along the mitral annulus in 3D space
using the SlicerHeart analysis module. These control points were
exported as JSON markup files containing world coordinates. To
convert these sparse control points into volumetric segmentations,
an automated spline-based approach was developed: 1. control
points were fitted with a smooth 3D B-spline using scipy’s
splprep function with zero smoothing factor, 2. the spline was
evaluated at 100 equally spaced parameter values to create a
dense point cloud, 3. a cylindrical tube with 1.5 mm radius was
generated around the spline using VTK libraries, and 4. the tube was
voxelized into the original image space using VTK’s
vtkPolyDataToImageStencil method.

To ensure anatomically consistent segmentations, we applied
morphological post-processing, including connected component
analysis, to retain only the most significant component with the
highest mean z-coordinate, effectively removing spurious
disconnected regions.

2.2.2 Deep learning model training
2.2.2.1 Architecture and framework

We employed MONAI’s Auto3DSeg framework, which
automatically generates and optimizes multiple 3D segmentation
architectures for medical imaging applications. The framework was
configured to use SegResNet as the primary architecture, a 3D
residual U-Net variant designed explicitly for volumetric medical
image segmentation.

2.2.2.2 Training configuration
The enhanced MVSEG2023 dataset was divided into 5-fold

cross-validation splits with random stratification (seed = 42).
Training data organization followed MONAI’s standard format.
The Auto3DSeg pipeline automatically handled data preprocessing,
augmentation strategies, and hyperparameter optimization. The
training was set up following the configuration of the
MVSEG2023 challenge winner, with the specified modality being
magnetic resonance imaging.

2.2.2.3 Model ensemble
The Auto3DSeg pipeline trains amodel for each fold and enables

ensemble prediction by averaging the outputs of all models, which
improves performance at the expense of longer inference time. For

FIGURE 2
MobileNetV3-Large architecture. Main diagram shows feature map progression from 224×224×3 input through inverted residual blocks to N-class
output. Blocks marked (*) use Squeeze-and-Excitation modules. Inset shows internal structure of an inverted residual block with skip connections.
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prediction, models from all five folds were used to obtain the best
segmentation.

2.2.3 Cardiac phase detection and
temporal analysis
2.2.3.1 End-systole identification

To identify the optimal cardiac phase for valve area
measurement, an automated mid-diastole detection algorithm
based on temporal analysis of segmented structures was
developed. For each frame in the 4D TEE sequences, we
performed the following analysis pipeline:

a. Annulus Skeletonization: The segmented annulus (Label 3)
was skeletonized using 3D morphological thinning to extract
its centerline representation.

b. 3D Point Ordering: Skeleton points were spatially ordered
using a nearest-neighbor approach with orientation
constraints to prevent backtracking, ensuring anatomically
consistent point sequences along the annulus perimeter.

c. Plane Fitting: Principal Component Analysis (PCA) was
applied to the ordered annulus points to determine the
best-fitting plane, with the plane normal defined as the
eigenvector corresponding to the smallest eigenvalue.

d. Area Calculation: All segmented structures (leaflets and
annulus) were projected onto this optimal plane, and areas
were calculated using pixel-based methods with appropriate
spatial calibration.

2.2.3.2 Temporal peak detection
Mid-diastole was identified as the frame exhibiting maximum

effective valve area, corresponding to the point of maximum valve
opening during the cardiac cycle.

2.2.4 Geometric analysis and area quantification
2.2.4.1 Valve plane projection

The projection process involved: I. determination of the optimal
valve plane using PCA analysis of annulus centerline points, II.
orthogonal projection of all segmented voxels onto this plane, III.
conversion to 2D coordinates using orthonormal basis vectors
derived from the plane normal, and IV. creation of high-
resolution 2D images with pixel sizes calculated from the original
voxel spacing and projection angle.

2.2.4.2 Effective orifice area
Functional valve opening area was determined through

morphological analysis of the projected segmentation, using
flood-fill algorithms to identify the central opening region.

2.2.4.3 Spatial calibration
All measurements were performed in physical units (mm2) using

voxel spacing information extracted from DICOM headers. The
projection method accounted for oblique viewing angles by
adjusting pixel sizes based on the angle between the valve plane
and the image coordinate system.

2.2.5 Data selection process
4D TEE volumes from both M-TEER (Mitraclip) and surgical

MVR patients were included. Only TEE exams with available 3D

acquisition, performed at the Montreal Heart Institute starting from
1 March 2024, were used, as raw data extraction was only enabled at
the end of February 2024. Each TEE examination was assigned an
internal code corresponding to its specific exam type in the
institutional database. Only TEE exams performed within
12 months before the M-TEER or MVR were used, provided that
the physician’s clinical report with mitral valve analysis and MVA
measurement, as performed by a cardiologist, was available.
Intraprocedural TEE exams and exams from patients with prior
MV procedures were excluded.

2.2.6 Data extraction process
4D TEE volumes meeting the selection criteria were identified

through a series of internal SQL scripts executed across
complementary databases, including a report database and an
exam type database. The identified 4D TEE DICOMs were then
transferred to an internal research server using pydicom-batch
(https://github.com/MHI-AI-CoreLab/pydicom-batch).

2.2.7 Data cleaning process
An expert cardiologist performed a manual curation process to

identify TEE exams in which the mitral valve was acquired and
deemed suitable for analysis.

2.3 2D-TEE-based automatic MV
segmentation: scallop-level analysis

For this part, we chose a U-Net architecture (Ronneberger et al.,
2015), which is a fully convolutional network consisting of an
encoder and a decoder. The model accepts 3-channel ultrasound
images x ∈ R3 × 256 × 256 as input and outputs four results: a final
segmentation map ϕ(x) ∈ [0,1]11 × 256 × 256 and three deep
supervision outputs ψ1(x) ∈ [0,1]11 × 128 × 128, ψ2(x) ∈ [0,1]11 ×
64 × 64, and ψ3(x) ∈ [0,1]11 × 32 × 32. Each of the 11 output
channels corresponds to one of the following anatomical structures:
the six scallops of the mitral valve (A1, A2, A3 for the anterior leaflet,
matching P1, P2, P3 respectively for the posterior leaflet), the
anterior and posterior papillary muscles, the chordae, the
annulus, and the background. We modified the original U-Net
architecture to suit our task better, as shown in Figure 3.

2.3.1 Model architecture
2.3.1.1 Encoder

The original encoder has been replaced with a ResNet34-based
backbone (Kaiming et al., 2015). Three types of blocks were used: the
first is a wide convolution (7 × 7) followed by batch normalization
and a ReLU activation function; the second is a residual
downsampling block that reduces spatial resolution by a factor of
2 using a 3 × 3 convolution with stride 2; the third is a standard
residual block with 3 × 3 convolutions. Both residual block types use
skip connections to improve gradient flow during training.

2.3.1.2 Decoder
In the decoder, bilinear up-sampling was used instead of

transposed convolutions to reduce checkerboard artifacts (Odena
et al., 2016). The rest of the decoder followed the original U-Net
structure, with skip connections passed through attention gates,
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concatenated, and followed by two 3 × 3 convolutions, batch
normalization, and ReLU. Each decoder stage also includes a
final 1 × 1 convolution and a SoftMax activation to produce
intermediate outputs for deep supervision.

2.3.1.3 Attention gates
To improve the focus on the mitral valve and reduce the

segmentation of non-relevant muscular structures, we integrated
attention gates. These modules, introduced by Oktay et al.
(Schlemper et al., 2019), highlight specific regions of interest
during training. Each attention gate takes as input a skip
connection x from the encoder and a gating signal g from the
corresponding decoder stage and returns a refined feature map with
the same dimensionality as x (Supplementary Figure 1).

2.3.2 Loss functions
To optimize the segmentation network, we used a combination

of Dice loss and Focal loss, which are well-suited for highly
imbalanced multiclass segmentation tasks.

2.3.2.1 Dice loss
The generalized Dice loss is defined as follows:

LDice � 1 − 1

C′
∣∣∣∣

∣∣∣∣
∑
c∈C′

2∑N
i�1pi,c gi,c + ε

∑
N
i�1pi,c + ∑

N
i�1gi,c + ε

where C′ represents the set of classes present in the image, N is the
number of pixels in the image, pi,c is the predicted probability for

pixel i belonging to class c, gi,c is the corresponding ground truth
(one-hot encoded), and ε is a small constant to avoid
division by zero.

2.3.2.2 Focal loss
To further address class imbalance and focus training on hard-

to-classify pixels, we also employed the Focal loss (Lin et al., 2018),
defined as:

LFocal � − 1
N

∑
N

i�1
∑
c∈C

1 − pi,c( )
γ gi,c log pi,c( )

where C denotes the set of all classes (not just those in the image),
and γ is the focusing parameter (set to 2 in this study) that decreases
the relative loss contribution of well-classified pixels.

2.3.2.3 Combined loss
The final training objective for a single output is a simple

combination of the two losses:

L � LDice + LFocal

2

2.3.3 Loss functions with deep supervision
The final loss is applied not only to the network’s final output

but also to intermediate outputs. This deep supervision strategy,
introduced in (Lee et al., 2014), encourages lower decoder layers to
focus on relevant regions early in the network.

FIGURE 3
U-Net modified architecture model used for the segmentation of mitral valve leaflets scallops.
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Let ϕ(x) ∈ [0,1]C×H×W be the final output, and {ψk(x)}
3
k=1 be the

three intermediate deep supervision outputs. The total loss is then
computed as:

Ltotal � L ϕ x( ), G( ) +∑
3

k�1
L ψk x( ), G k( )( )

Since the intermediate outputs from the decoder have lower
spatial resolution than the input image, the corresponding ground
truth masks need to be downsampled to match each output size
before calculating the loss.

Let G ∈ {0,1}C×H×W be the original one-hot encoded ground truth
mask. For each deep supervision output ψk(x) ∈ [0,1]C×Hk×Wk, the
ground truth is downsampled using nearest-neighbor interpolation:

G k( ) � Downsample G,Hk,Wk( )
where (Hk,Wk) are the height and width of the k-th intermediate
output. Nearest-neighbor interpolation preserves the discrete class
labels, ensuring accurate loss computation for each class. The total
loss is then computed by comparing each output ψk(x) to its
corresponding downsampled ground truth G(k).

2.3.4 Optimization and training
The network was trained with the Adam optimizer, starting with

a learning rate of 1 × 10−4 and a batch size of 24. To prevent
overfitting, a weight decay of 1 × 10−6 and dropout with a rate of
0.2 in the encoder layers were used. Data augmentation was
extensively employed to boost the diversity of the training set,
including random rotations (up to 45°), translations, and scaling
(between 0.75 and 1.25). These augmentations were applied during
training in real-time to improve the model’s ability to generalize.

2.3.5 Dataset and preprocessing
The dataset included 992 TEE images from 77 different patients

who underwent a Mitraclip procedure, focusing on the mitral valve,
with 11 segmentation classes representing various anatomical
structures, with corresponding labels (Table 1). Only 2D images
were analyzed. A total of 2,200 ground truth annotations were made

by a physician on the Labelbox platform. The data were split into
80% for training (N = 821) and 20% for validation (N = 171),
ensuring that all images from the same patient remained in the same
subset to prevent data leakage.

Before training, all images were normalized to have zero mean
and unit variance. Both images and their corresponding masks were
resized to 256 × 256 pixels when needed.

2.3.6 Evaluation
The segmentation performance was assessed using multiple

metrics, including Dice coefficient, precision, recall, and false
positive rate (Supplementary Figure 2).

The Dice score is a widely used metric to assess segmentation
performance by quantifying the spatial overlap between the
predicted segmentation and the ground truth. It is defined as:

Dice � 2 A ∩ B| |
A| | + B| |

where A represents the predicted segmentation and B the reference
segmentation.

A Dice score of 1 indicates perfect agreement, whereas a score of
0 indicates no overlap.

This metric is particularly well-suited for medical image analysis
because it remains robust to class imbalance (e.g., small anatomical
structures occupying only a fraction of the image) and has become a
standard benchmark for evaluating segmentation algorithms.

All experiments were conducted in PyTorch 2.6 and trained on
an NVIDIA RTX A600 GPU.

3 Results

3.1 Automatic classification of 2D- TTE and
TEE images: quality views assessment

ECHO-PREP first algorithm was trained to identify key diagnostic
views in TTE and diagnostic and procedural views in TEE examinations
(algorithm 1, Figure 1) to determine the level of image quality needed
for an M-TEER, based on a dataset of 530 TTE and 800 TEE pre-M-
TEER acquisitions, respectively. The total number of TTE and TEE
analyzed frames was 58.749 and 52.058, respectively. The dataset
distribution of TTE and TEE diagnostic views is shown in
Supplementary Tables 1, 2, respectively. The algorithm successfully
determined whether the TTE was of good quality with a frame-level
accuracy of 95.7% (Figure 4A) and performed well in view classification
(Figure 4B). For TEE, the algorithm produced similar results, accurately
identifying whether TEE views were of sufficient quality for patient
eligibility and procedural guidance of M-TEER in 91% of cases, with a
high overall accuracy for TEE view classifications, as demonstrated by
AUC values (Figure 5).

3.2 4D-TEE-based automatic MV
segmentation and MV area measurements

ECHO-PREP second algorithm was trained on a total of
135 TEE 4D volumes from the MVSEG2023 dataset, with a

TABLE 1 Legend of labels used for mitral valve leaflets scallops and sub-
apparatus structures annotations.

Anatomical structure Label

A1 a_1

A2 a_2

A3 a_3

P1 p_1

P2 p_2

P3 p_3

MV chordae Chordae

MV annulus Annulus

AL papillary muscle Papillary_anterior

PM papillary muscle Papillary_posterior

AL, anterolateral; MV, mitral valve; PM, posteromedial.
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FIGURE 4
Frame-Level ROC curves for TTE Quality Image assessment (A) and Views classification (B). TTE images are direct outputs from the algorithm to
illustrate the classification of “good” versus “bad” views. AUC = area under curve; av = aortic valve; mv = mitral valve; pm = papillary muscle; TTE =
transthoracic echocardiography; plax = parasternal long axis; psax = parasternal short axis; ROC = receiver operating characteristic curve.

FIGURE 5
Frame-Level ROC curves for TEE Quality Image assessment (A) and Views classification (B). TEE images are direct outputs from the algorithm to
illustrate the classification of “good” versus “bad” views. AUC = area under curve; av = aortic valve; me = mid-esophageal; mpr = multiplanar
reconstruction; rv = right ventricle; tg = transgastric; lvot = left ventricular outflow tract; 3_d = three-dimensional; TEE = transesophageal
echocardiography; ROC = receiver operating characteristic curve.
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70%–30% split for training and validation, respectively.
Segmentation of relevant anatomical features, including the
mitral anterior and posterior leaflets and annulus, was performed
using the MONAI Auto3DSeg software after identifying the mid-
diastole frame (Figure 6). A logical stepwise understanding from
anatomy to segmentation can be derived from Figure 7, which

effectively illustrates the use of a PCA-based optimal plane and
segmentation pipeline for valve analysis. The figure clearly contrasts
two cases (256466 vs. 381643) using 3D visualizations (on top) and
2D valve plane projections (below) at the peak frame. In Case
256466 (left panel), the effective area (EA) is much larger
(689 mm2), and the valve appears more symmetric and complete

FIGURE 6
Enhanced Annotation from MVSEG 2023: 10 representative cases. Rows (A) 2D sagittal slice showing original echocardiography with leaflet
segmentation overlay. (B) 3D superior view of MVSEG 2023 baseline dataset (leaflets only). (C) Manual annulus annotation with control points and
B-spline fitting. (D) Final enhanced dataset with complete mitral valve (leaflets + annulus). 2D = two-dimensional; 3D = three-dimensional.

FIGURE 7
PCA-Based Optimal Plane Projection for 3D Mitral Valve Quantification: 2 representative cases. Rows (A) 3D visualization of annulus skeleton points
(red) and their projection onto the PCA-derived optimal plane (green squares) from anterosuperior (A1) and posterosuperior (A2) viewpoints. The semi-
transparent blue plane represents the best-fitting 2D projection surface with a normal vector (purple). (B) Valve plane projection showing effective area
measurement from the peak cardiac frame with color-coded anatomical structures (posterior leaflet = red, anterior leaflet = blue, annulus = green,
functional area = light blue). 2D = two-dimensional; 3D = three-dimensional; PCA = Principal component analysis.
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in both 3D and projection views. Segmentation appears clean, with
well-demarcated leaflets. In case 381643 (right panel), the EA is
significantly smaller (36 mm2), indicating severe restriction. The 3D
views show distorted, irregular geometry, and the projection
and segmentation reveal significant leaflet malcoaptation or
incomplete opening. Combining 3D multi-angle views with 2D
projection and segmentation provides complementary
perspectives: the segmentation masks (original, inverted, final)
offer transparency into the algorithm’s steps and show good
alignment between the quantitative data (EA values) and visual
impression. The contrast with case 256466 (EA 689 mm2) highlights
the method’s robustness in capturing extreme phenotypes. The
added value of a comprehensive temporal analysis of mitral valve
dynamics is demonstrated in Figure 8. Instead of static geometry, it
captures the valve’s physiological motion and functional variability.
The top row shows 3D superior views at four timepoints across the
cardiac cycle (start-peak-mid-end), with valve structures clearly
delineated. It demonstrates valve opening dynamics, from partial
opening at Frame 0 to maximal separation at Frame 7. The middle
row shows 2D valve projections at the same key frames. Effective
orifice area (EA) values are: start: 303 mm2, peak: 689 mm2, mid:
317 mm2, end: 302 mm2. This visualization complements the 3D
view by quantifying leaflet separation. The bottom panel displays the
temporal analysis graph with EA plotted across all 32 frames: peak
EA occurs at Frame 7 (689 mm2). The cycle demonstrates typical
dynamic variation, with large fluctuations between systolic closure

and diastolic opening (mean EA: 198 mm2; range: 3–689 mm2). This
patient (case 256466) shows normal dynamic opening and closure
patterns, with a large peak EA, consistent with preservedmitral valve
function. The data highlights the algorithm’s ability to continuously
track valve dynamics throughout the cardiac cycle, not just at
isolated frames. The temporal profile offers a clear functional
fingerprint that could distinguish healthy from pathological valves.

The validation of the algorithm for quantifying the mitral EA
involved analyzing a total of 221 TEE 4D volumes performed at our
center as part of a pre-procedural assessment of mitral regurgitation.
Images were divided into two groups: those from patients who later
underwent M-TEER with Mitraclip (121 4D volumes from
30 patients) and those from patients who had surgical mitral
valve replacement (100 4D volumes from 18 patients). A
physician reviewed the available images from the center’s
database and preliminarily excluded videos with unsuitable views
for calculating the MVA, such as poor image quality, artifacts, or the
presence of a previous surgical prosthesis or valve ring. The
validation of the AI-predicted MVA quantification was
performed by comparing it to the gold standard of manual
measurements from physician clinical reports. In Figure 9A, the
scatter plot shows a strong positive correlation (Pearson’s R = 0.84)
between the MVA measurements from clinical reports and those
predicted by our algorithm. The correlation is statistically significant
(p < 0.001), demonstrating excellent agreement between the AI and
human expert measurements.

FIGURE 8
Temporal analysis showing valve geometry evolution across the cardiac cycle: representative case. Rows (A) 3D-views and (B) 2D-projections at
four time points (posterior leaflet = red, anterior leaflet = blue, annulus = green, functional area = light blue). (C) Effective area curve with peak detection
(red star) and frame markers (numbered circles). 2D = two-dimensional; 3D = three-dimensional.
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Further validation was conducted through group
discrimination. Since our center handles high volumes and
specializes in mitral repair with a high success rate across
various mitral regurgitation scenarios, it was assumed that
patients who ultimately underwent surgical MVR were more
likely to have a non-repairable valve due to factors like a stenotic
or restrictive valve with a smaller MVA, after excluding patients
with endocarditis or prior valve procedures. In Figure 9B, the
box plots compare the distribution of MVA measurements
between two patient groups: Mitraclip (red) and surgical
MVR (blue). As expected, the MVR group exhibits a
significantly smaller mitral valve area. The difference between

the two groups is statistically significant for both measurement
methods (clinical reports: Wilcoxon p = 0.033; AI predictions:
Wilcoxon p = 0.046). A Bland-Altman analysis was performed
to complement the correlation and illustrate agreement between
AI-derived and physician-reported mitral valve
area (Figure 9C).

Even with some limitations, this remains an important
validation step, showing that the algorithm not only aligns with
clinical reports on individual measurements but also keeps the
clinically relevant physiological differences between different
patient groups. The higher significance (p = 0.033) in the clinical
reports is expected, as they are the reference standard.

FIGURE 9
Validation of AI-Based Mitral Valve Area Quantification Against Clinical Reports. (A) Correlation between clinical reports and AI predictions showing
strong agreement (R = 0.84). (B) Distribution comparison between measurement methods for Mitraclip (red) and surgical MVR (blue) patient groups.
Wilcoxon tests show statistical significance of group differences. (C) Bland–Altman plot assessing agreement between clinical and AI-predicted mitral
valve area, stratified by median value (3.61 cm2). The overall mean difference was 0.806 cm2 (solid red line). Agreement was better in the low-value
group (mean difference 0.27 cm2, solid green line) compared to the high-value group (mean difference 1.34 cm2, solid orange line). Dashed blue lines
indicate the 95% limits of agreement (mean ± 1.96 SD). MVR = mitral valve replacement; SD = standard deviation.
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FIGURE 10
Dataset overview for 2D TEE SegmentationModel (Algorithm 3). Distribution of TEE angle views (A), anatomical MV structures (B), andMV annotation
patterns (C) from the analysed image dataset, divided into training and validation subsets. 2D = two-dimensional; MV = mitral valve; TEE =
transoesophageal echocardiography.

FIGURE 11
Global validation results for the 2D TEE Segmentation Model (Algorithm n.3). Mean Dice (A), Precision (B), and Recall (C) scores are displayed for all
MV labels. Annotation labels correspond to the respective MV structures as previously defined. 2D = two-dimensional; MV = mitral valve; TEE =
transoesophageal echocardiography.
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3.3 2D-TEE-based automatic MV
segmentation: scallop-level analysis

A dataset overview, showing the distribution of TEE angle views
and annotations of the MV structures during segmentation, is
presented in Figure 10. The most common anatomical patterns
were A1-P1, A2-P2, and A2-P1-P3 (Figure 10C). These were mainly
mid- esophageal (ME) five- (5C) and four-chamber (4C) views, ME
long axis, and ME commissural views, primarily used to evaluate the
MV, especially in pre-procedural M-TEER assessment. The overall
validation results are shown in Figure 11, with a mean Dice score of
0.534 across the entire validation dataset. Individual Dice scores for
each MV structure annotation are listed in Table 2. As expected,
performance is slightly lower in commissural regions such as A3 and
A1. When analyzing these results, it is essential to note that if the
segmentation involves a small anatomical structure, such as a short
or retracted posterior mitral leaflet, which is common in functional
mitral regurgitation, the metric results, particularly the Dice score,
may be misleading.

Generally, a Dice score above 0.7 is considered a good (visually)
result. Regarding leaflet scallop segmentation, the ME Long Axis
views and ME Commissural views are typically segmented very well
by the neural network, with the P3-A2-P1 sequences being highly
represented in the dataset. An example is illustrated in Figure 12.
However, the results are less accurate for other views. The poorer
outcomes mainly stem from the ME 4 C and ME 5 C views, which
often confuse the A2- P2 and A1- P1 sequences. The segmentation
of the annulus produces quite good results. It is important to note
that in 2D images, annulus annotation is very small and can be
biased when calcifications are absent, making the Dice score very
sensitive. Even in images without annulus annotations, the neural
network seems capable of detecting the annulus correctly. Since the
papillary muscles and mitral chordae are located within the ventricle
(mostly represented by dark pixels), the network is highly sensitive
to noise and bright areas within the ventricle, which can lead to
confusion with these structures. As a result, the outcomes for the
papillary muscles- and even more so for the chordae- are
not optimal.

4 Discussion

In this study, we present ECHO-PREP, an integrated multi-stage
deep learning framework for pre-procedural mitral valve assessment
in candidates for M-TEER procedure. Our approach encompasses
three complementary modules: automated quality assessment of
echocardiographic views, 4D segmentation with functional valve
area quantification, and 2D scallop-level analysis of valve anatomy.
Together, these components aim to address the current challenges of
variability, subjectivity, and inefficiency in echocardiographic
interpretation for M-TEER planning.

The first significant finding was the high performance of the
quality assessment algorithm for both TTE and TEE images,
achieving frame-level accuracies above 90%. This step, although
often overlooked, is clinically critical: poor-quality imaging is a
common reason for inconclusive evaluations and may delay
intervention. By introducing automation at this stage, our
framework could improve workflow efficiency and ensure that
downstream analyses are only performed on diagnostically valid
inputs. The second major result was the successful implementation
of 4D TEE-based segmentation with automated mitral valve area
(MVA) quantification. The algorithm showed strong correlation
with physicians’ clinical reports (R = 0.84, p < 0.001), confirming its
reliability for valve sizing and functional assessment. Notably, the
system not only reproduced static area measurements but also
captured temporal variations of valve opening and closure,
offering a dynamic fingerprint of valve physiology. This
longitudinal perspective may become a powerful discriminator
between repairable and non-repairable valves, as suggested by the
observed differences between patients undergoing M-TEER and
those treated with surgical valve replacement.

However, the validation of MVA quantification across patient
groups relied on the assumption that all surgically replaced valves
(MVR) were non-repairable. In our high-volume center, which has a
strong track record of surgical valve repair, it is reasonable to infer
that patients selected for MVR likely presented with severely
remodeled or rheumatic valves, resulting in significantly smaller
valve areas in this group. Nevertheless, even after applying strict

TABLE 2 Segmentation performance metrics for mitral valve structures annotations, as identified with their labels.

Label Dice Precision Recall FPR

a_1 0.289 ± 0.352 0.369 ± 0.432 0.253 ± 0.318 0.000 ± 0.001

a_2 0.640 ± 0.236 0.673 ± 0.233 0.671 ± 0.274 0.001 ± 0.001

a_3 0.034 ± 0.098 0.225 ± 0.414 0.021 ± 0.065 0.000 ± 0.000

Annulus 0.557 ± 0.162 0.520 ± 0.168 0.639 ± 0.193 0.002 ± 0.001

Chordae 0.342 ± 0.292 0.393 ± 0.313 0.344 ± 0.319 0.001 ± 0.001

p_1 0.548 ± 0.266 0.599 ± 0.272 0.566 ± 0.310 0.001 ± 0.001

p_2 0.550 ± 0.281 0.605 ± 0.287 0.583 ± 0.324 0.001 ± 0.001

p_3 0.607 ± 0.205 0.682 ± 0.186 0.609 ± 0.272 0.000 ± 0.001

Papillary anterior 0.546 ± 0.247 0.647 ± 0.295 0.526 ± 0.269 0.002 ± 0.002

Papillary posterior 0.492 ± 0.297 0.537 ± 0.329 0.514 ± 0.333 0.002 ± 0.003

Values are Mean ± Standard Deviation.

FPR, false positive risk.
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exclusion criteria, additional factors may have influenced the
decision to replace rather than repair, thereby weakening the
correlation between smaller MVA and surgical replacement. This
limitation reduces the ability of the AI model to correctly classify
MVR patients based solely on pre-procedural imaging. Moreover,
the retrospective design and the single-center context limit the
generalizability of our findings, particularly in centers with lower
surgical expertise in mitral valve repair.

Finally, the scallop-level analysis represents a novel and
ambitious contribution toward standardized, automated scallop
identification, a task that today relies heavily on operator
expertise. While segmentation of large structures (annulus,
anterior and posterior leaflets, central scallops) reached
acceptable accuracy, finer anatomical elements such as
commissural leaflet scallops or chordae tendinae were more
difficult to identify consistently. The mean Dice score of 0.53 on
the overall structures dataset reflects these challenges. Nonetheless,
the network correctly reproduced frequent anatomical
configurations (e.g., A2-P2, P1-A2-P3), especially in mid-
esophageal long-axis and commissural views, which are crucial
for procedural planning. This constitutes a meaningful step. One
important consideration in interpreting scallop-level results is the
potential role of overfitting. Our dataset, while curated and enriched
with physician annotations, remains limited in size compared to the
complexity of the task. Neural networks trained on relatively small,
homogeneous datasets are prone to overfitting, i.e., capturing
dataset-specific patterns rather than generalizable features. This
phenomenon may explain why performance was higher in

anatomical regions and views more frequently represented in the
training set (e.g., A2-P2 in long-axis views), while less common
configurations showed reduced accuracy. Overfitting risk is further
heightened by the high class imbalance inherent in scallop
annotation: commissural scallops, papillary muscles, and chordae
are both smaller in size and underrepresented, leading to
disproportionate errors in Dice score evaluation. Another factor
to consider is that Dice scores, while informative, may not fully
reflect clinical usability. For small structures, a low Dice value may
correspond to visually acceptable segmentation. Conversely, a
higher Dice in a large structure might still fail to capture
clinically relevant details such as leaflet clefts or tethering. This
highlights the need for evaluation metrics that combine geometric
accuracy with clinical relevance, possibly integrating expert
qualitative scoring.

Compared to earlier approaches, which focused on annulus-
only segmentation or static 3D models (Costa et al., 2019; Carnahan
et al., 2021; Aly et al., 2022; Chen et al., 2023; Munafò et al., 2024;
Andreassen et al., 2019; Andreassen et al., 2022), our
pipeline integrates quality control, 4D functional analysis, and
scallop-level anatomy into a unified framework. Recent semi-
supervised methods (Munafò et al., 2025) demonstrated
reliable 4D segmentation, but they did not extend to scallop
analysis or clinical validation against surgical and
percutaneous cohorts.

By validating our algorithm against both manual measurements
and group-level clinical outcomes, we provide an important
translational step toward clinical applicability.

FIGURE 12
Good performance segmentation example. ME 4C views at 0° (A) and ME commissural views at 63° (B) show good correlation between the ground
truth and the neural network predicted annotation for A2-P2 and P3-A2-P1 combinations, respectively. Tables (below) show the corresponding
performance metrics score for each label annotation. ME = mid-esophageal.
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4.1 Limitations and core challenges

Several limitations should be taken into account. Our datasets
are relatively modest and partially monocentric, raising concerns
about generalizability. Although validation against clinical reports is
encouraging, clinical measurements and annotations themselves are
subject to intra- and inter-operator variability, especially for
complex structures like scallops and pathology zones, which
could influence correlations. This is the concept of the noisy
ground truth: an AI model trained on one expert’s labels may
perform poorly when judged by another expert’s standards,
highlighting the inherent ambiguity in the task. Scallop-level
segmentation performance is limited and susceptible to
overfitting and to the “rare event” challenge: pathologies like
commissural lesions, complex Barlow’s disease with multiple
prolapses, or specific calcification patterns are less frequent than
standard A2/P2 pathologies. A deep learning model trained on an
imbalanced dataset will inherently be biased towards the more
common cases and will struggle with these rare but clinically
crucial edge cases. External validation on larger, more diverse
datasets will be essential to confirm robustness.

Finally, while our system successfully quantifies pre-procedural
imaging, its real-time intra-procedural utility remains untested. A
model can perfectly segment a valve and measure lengths, but
determining the feasibility and the clip strategy requires
synthesizing all that information into a clinical decision. This
involves tacit knowledge that cardiologists and cardiac surgeons
accumulate over years and that is rarely explicitly stated in the
annotations (e.g., “leaflet is too fragile,” “coaptation gap is too wide
for a single clip,” “the jet is too commissural for a safe grasp”).

4.2 Future perspectives

Moving forward, expanding annotated datasets, ideally through
multi-center collaborations and semi-automated labeling strategies,
will be crucial to mitigate overfitting and improve generalizability.
Incorporating advanced architectures (e.g., vision transformers or
hybrid CNN–transformer models) and uncertainty quantification
methods may further enhance reliability in challenging cases. Using
the STAPLE algorithm (Simultaneous Truth and Performance Level
Estimation) or similar statistical methods to generate a probabilistic
“consensus truth” from multiple annotations could also help in
building a more consolidated dataset for training. The use of
generative AI techniques like Generative Adversarial Networks
(GANs) or diffusion models could help to create realistic
synthetic examples of rare and challenging cases to balance
the training set. Furthermore, the segmentation of the valve
informs the pathology classification, which tells the feasibility
prediction. Design a single model that simultaneously learns to
segment, classify views, classify pathology, and detect calcifications
makes the model more robust and generalizable than a set of
separate models.

Dabiri et al. (2022) conducted a simulation study to assess how
the number and location of MitraClips influence residual MR and
valve hemodynamics. This study emphasizes that procedural success
depends not only on patient selection but also on real-time strategic
decisions regarding clip quantity and positioning.

In fact, beyond pre-procedural planning, a promising future
direction involves integrating DL into intra-procedural guidance.
Real-time segmentation and scallop identification could assist
operators during clip placement by continuously updating valve
anatomy and coaptation maps as the device interacts with the
leaflets. Automated tracking of leaflet grasping zones and
prediction of residual regurgitation jets could help reduce
procedure time, cut down on unnecessary clip deployments, and
improve procedural safety. Such integration would need further
optimization of inference speed, user-friendly visualization tools,
and compatibility with procedural echocardiography systems.
Ultimately, combining imaging-derived AI quantification with
biomechanical simulation could create a comprehensive decision-
support system, predicting both procedural feasibility and the
hemodynamic trade-offs of various clip strategies.

The most transformative future direction, however, involves a
core shift from a reconstructive to a predictive and simulative model.
Current models, including our own, analyze the pre-procedural
anatomy in a static way. One future use of our ECHO-PREP
workflow will be to train the model on paired data: pre-
procedural 3D TEE volumes and their corresponding post-
procedural 3D TEE volumes with the clip deployed and a good
result. Instead of just identifying what exists, the AI will learn what a
successful outcome looks like and apply that knowledge to guide the
pre-procedural plan, by understanding the mechanical changes
caused by clip implantation on the valve and the optimal
morphological features of a pre-procedural valve that lead to a
successful post-procedural result. This “backward-forward” AI
approach has the highest potential to truly standardize and
democratize M-TEER planning worldwide, allowing less
experienced centers to leverage the collective expertise embedded
in the AI from high-volume centers, all while using the standard
imaging equipment they already have. These analyses, together with
the integration of fluid-dynamics simulations, are envisioned as
central elements of a comprehensive multi-imaging simulation
platform for transcatheter procedures, which we are currently
advancing through our ongoing multicenter study, ENVISAGE
(NCT07213531).

If validated prospectively, this capability could transform
ECHO-PREP from a pre-procedural planning tool into a real-
time decision-support system integrated into the cath lab
workflow. We envision a future where the interventional
cardiologist is empowered not just with tools, but with foresight.
This is the true promise of AI: not to replace physicians, but to
enhance their capabilities, making their expertise more powerful,
precise, and accessible to every patient in need.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

SC: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Validation, Visualization,

Frontiers in Network Physiology frontiersin.org15

Corona et al. 10.3389/fnetp.2025.1701758

107

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1701758


Writing – original draft, Writing – review and editing. TG: Data
curation, Formal Analysis, Methodology, Software, Visualization,
Writing – original draft, Writing – review and editing. OT: Data
curation, Formal Analysis, Methodology, Software, Visualization,
Writing – original draft, Writing – review and editing. DC: Data
curation, Formal Analysis, Methodology, Software,
Writing – original draft, Writing – review and editing. TM:
Supervision, Writing – review and editing. SvB: Supervision,
Validation, Writing – review and editing. FL: Conceptualization,
Methodology, Software, Supervision, Validation, Writing – review
and editing. WBA: Conceptualization, Investigation, Project
administration, Validation, Writing – original draft,
Writing – review and editing.

Funding

The authors declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that Generative AI was used in the creation
of this manuscript. For correcting the grammar and aiding in
generating descriptions for figure legends.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnetp.2025.1701758/
full#supplementary-material

References

Aly, A., Khandelwal, P., Aly, A., Kawashima, T., Mori, K., Saito, Y., et al. (2022). Fully
automated 3d segmentation and diffeomorphic medial modeling of the left ventricle
mitral valve complex in ischemic mitral regurgitation. Med. Image Anal. 80, 102513.
doi:10.1016/j.media.2022.102513

Andreassen, B., Veronesi, F., Gerard, O., Solberg, A., and Samset, E. (2019). Mitral
annulus segmentation using deep learning in 3-D transesophageal echocardiography.
IEEE J. Biomed. Health Infor 24, 994–1003. doi:10.1109/JBHI.2019.2959430

Andreassen, B., Völgyes, D., Samset, E., and Solberg, A. (2022). Mitral annulus
segmentation and anatomical orientation detection in TEE images using periodic 3D
CNN. IEEE Access 10, 51472–51486. doi:10.1109/access.2022.3174059

Carnahan, P., Moore, J., Bainbridge, D., Eskandari, M., Chen, E., and Peters, T. (2021).
“DeepMitral: fully automatic 3D echocardiography segmentation for patient specific
mitral valve modelling,” in Medical image computing and computer assisted
Intervention-MICCAI 2021: 24th international conference, strasbourg, France,
September 27-October 1, 2021, proceedings, part V 24, 459–468.

Chen, J., Li, H., He, G., Yao, F., Lai, L., Yao, J., et al. (2023). Automatic 3D mitral valve
leaflet segmentation and validation of quantitative measurement. Biomed. Sig Process
Control 79, 104166. doi:10.1016/j.bspc.2022.104166

Costa, E., Martins, N., Sultan, M., Veiga, D., Ferreira, M., Mattos, S., et al. (2019).
Mitral valve leaflets segmentation in echocardiography using convolutional neural
networks. 2019 IEEE 6th Portuguese Meet. Bioeng. (ENBENG), 1–4. doi:10.1109/enbeng.
2019.8692573

Dabiri, Y., Mahadevan, V. S., Guccione, J. M., and Kassab, G. S. (2022). A simulation
study of the effects of number and location of MitraClips on mitral regurgitation. JACC
Adv. 1 (1), 100015. doi:10.1016/j.jacadv.2022.100015

Elaziz, E. A., Al-qaness, M., Dahou, M., Alsamhi, S. H., Abualigah, L., Ibrahim, R. A.,
et al. (2023). Evolution toward intelligent communications: impact of deep learning
applications on the future of 6G technology. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 14, e1521. doi:10.1002/widm.1521

Hien, M., Großgasteiger, M., Weymann, A., Rauch, H., and Rosendal, C. (2014).
Reproducibility in echocardiographic two-and three-dimensional mitral valve
assessment. Echocardiography 31, 311–317. doi:10.1111/echo.12365

Kaiming, H., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image
recognition. arXiv:1512.03385. Available online at: https://arxiv.org/abs/1512.03385.

Leclerc, S., Smistad, E., Pedrosa, J., Ostvik, A., Cervenansky, F., Espinosa, F., et al.
(2019). Deep learning for segmentation using an open large-scale dataset in 2D

echocardiography. IEEE Trans. Med. Imaging 38 (9), 2198–2210. doi:10.1109/TMI.
2019.2900516

Lee, C., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2014). Deeply-supervised nets.
arXiv:1409.5185. doi:10.48550/arXiv.1409.5185

Lin, T., Goyal, P., Girshick, R., He, K., and Dollár, P. (2018). Focal loss for dense object
detection. arXiv: 1708.02002. Available online at: https://arxiv.org/abs/1708.02002.

Maisano, F., Franzen, O., Baldus, S., Schäfer, U., Hausleiter, J., Butter, C., et al. (2013).
Percutaneous mitral valve interventions in the real world: early and 1-year results from
the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the
MitraClip therapy in Europe. J. Am. Coll. Cardiol. 62 (12), 1052–1061. doi:10.1016/j.
jacc.2013.02.094

Munafò, R., Saitta, S., Ingallina, G., Denti, P., Maisano, F., Agricola, E., et al. (2024). A
Deep Learning-Based Fully Automated Pipeline for Regurgitant Mitral Valve Anatomy
Analysis From 3D Echocardiography. IEEE Access, 12, 5295–5308. doi:10.1109/
ACCESS.2024.3349698

Munafò, R., Saitta, S., Tondi, D., Ingallina, G., Denti, P., Maisano, F., et al. (2025).
Automatic 4D mitral valve segmentation from transesophageal echocardiography: a
semi-supervised learning approach. Med. Biol. Eng. Comput. doi:10.1007/s11517-024-
03275-w

Nkomo, V. T., Gardin, J. M., Skelton, T. N., Gottdiener, J. S., Scott, C. G., and
Enriquez-Sarano, M. (2006). Burden of valvular heart diseases: a population-based
study. Lancet 368 (9540), 1005–1011. doi:10.1016/S0140-6736(06)69208-8

Odena, A., Dumoulin, V., and Olah, C. (2016). “Deconvolution and checkerboard
artifacts,” in Distill. doi:10.23915/distill.00003

Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C. P., et al. (2020).
Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256.
doi:10.1038/s41586-020-2145-8

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional networks for
biomedical image segmentation. arXiv 1505.04597, 234–241. doi:10.1007/978-3-319-
24574-4_28

Schlemper, J., Oktay, O., Shaap, M., Heinrich, M., Kainz, B., Glocker, B., et al. (2019).
Attention gated networks: learning to leverage salient regions in medical images. arXiv:
1808.08114 53, 197–207. doi:10.1016/j.media.2019.01.012

Stone, G. W., Lindenfeld, J., Abraham, W. T., Kar, S., Lim, D. S., Mishell, J. M., et al.
(2018). Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med.
379 (24), 2307–2318. doi:10.1056/NEJMoa1806640

Frontiers in Network Physiology frontiersin.org16

Corona et al. 10.3389/fnetp.2025.1701758

108

https://www.frontiersin.org/articles/10.3389/fnetp.2025.1701758/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnetp.2025.1701758/full#supplementary-material
https://doi.org/10.1016/j.media.2022.102513
https://doi.org/10.1109/JBHI.2019.2959430
https://doi.org/10.1109/access.2022.3174059
https://doi.org/10.1016/j.bspc.2022.104166
https://doi.org/10.1109/enbeng.2019.8692573
https://doi.org/10.1109/enbeng.2019.8692573
https://doi.org/10.1016/j.jacadv.2022.100015
https://doi.org/10.1002/widm.1521
https://doi.org/10.1111/echo.12365
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/TMI.2019.2900516
https://doi.org/10.1109/TMI.2019.2900516
https://doi.org/10.48550/arXiv.1409.5185
https://arxiv.org/abs/1708.02002
https://doi.org/10.1016/j.jacc.2013.02.094
https://doi.org/10.1016/j.jacc.2013.02.094
https://doi.org/10.1109/ACCESS.2024.3349698
https://doi.org/10.1109/ACCESS.2024.3349698
https://doi.org/10.1007/s11517-024-03275-w
https://doi.org/10.1007/s11517-024-03275-w
https://doi.org/10.1016/S0140-6736(06)69208-8
https://doi.org/10.23915/distill.00003
https://doi.org/10.1038/s41586-020-2145-8
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.media.2019.01.012
https://doi.org/10.1056/NEJMoa1806640
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1701758


Synapse (2025). Synapse.org. Available online at: https://www.synapse.org/Synapse:
syn51186045/wiki/621356.

Taskén, A., Berg, E., Grenne, B., Holte, E., Dalen, H., Stølen, S., et al. (2023).
Automated estimation of mitral annular plane systolic excursion by artificial
intelligence from 3D ultrasound recordings. Artif. Intell. Med. 144, 102646. doi:10.
1016/j.artmed.2023.102646

Thomas, N., Unsworth, B., Ferenczi, E., Davies, J. E., Mayet, J., and Francis, D. P.
(2008). Intraobserver variability in grading severity of repeated identical cases of mitral
regurgitation. Am. Heart J. 156, 1089–1094. doi:10.1016/j.ahj.2008.07.017

Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F. M., and
Redaelli, A. (2008). Mitral valve finite-element modelling from ultrasound

data: a pilot study for a new approach to understand mitral function and
clinical scenarios. Philo Trans. R. Soc. A Math. Phys. Eng. Sci. 366,
3411–3434. doi:10.1098/rsta.2008.0095

Wifstad, S., Kildahl, H., Grenne, B., Holte, E., Hauge, S. W., Sæbø, S., et al. (2024).
Mitral valve segmentation and tracking from transthoracic echocardiography using
deep learning. Ultrasound Med. Biol. 50, 661–670. doi:10.1016/j.ultrasmedbio.2023.
12.023

Zamorano, J., Badano, L., Bruce, C., Chan, K. L., Gonçalves, A., Hahn, R. T., et al.
(2011). EAE/ASE recommendations for the use of echocardiography in new
transcatheter interventions for valvular heart disease. Eur. Heart J. 32, 2189–2214.
doi:10.1093/eurheartj/ehr259

Frontiers in Network Physiology frontiersin.org17

Corona et al. 10.3389/fnetp.2025.1701758

109

https://www.synapse.org/Synapse:syn51186045/wiki/621356
https://www.synapse.org/Synapse:syn51186045/wiki/621356
https://doi.org/10.1016/j.artmed.2023.102646
https://doi.org/10.1016/j.artmed.2023.102646
https://doi.org/10.1016/j.ahj.2008.07.017
https://doi.org/10.1098/rsta.2008.0095
https://doi.org/10.1016/j.ultrasmedbio.2023.12.023
https://doi.org/10.1016/j.ultrasmedbio.2023.12.023
https://doi.org/10.1093/eurheartj/ehr259
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1701758


EDITED BY  

Ulrich Parlitz,  

Max Planck Institute for Dynamics and 

Self-Organization, Germany

REVIEWED BY  

Naufal Zagidullin,  

Bashkir State Medical University, Russia  

Siming Tao,  

The Affiliated Hospital of Yunnan University, 

China

*CORRESPONDENCE  

Ju Mei  

ju_mei63@126.com

Zhaolei Jiang  

wojiangzhaolei@163.com

†These authors have contributed equally to 

this work and share first authorship

‡These authors have contributed equally to 

this work

RECEIVED 20 April 2025 

REVISED 16 November 2025 

ACCEPTED 17 November 2025 

PUBLISHED 28 November 2025

CITATION 

Wang C, Muradil M, Huang J, Cai J, Ding F, 

Zhang L, Li M, Fu C, Mei J and Jiang Z (2025) 

Identification of key genes associated with 

atrial fibrillation and hypoxia using WGCNA 

and machine learning technology.  

Front. Cardiovasc. Med. 12:1614979. 

doi: 10.3389/fcvm.2025.1614979

COPYRIGHT 

© 2025 Wang, Muradil, Huang, Cai, Ding, 

Zhang, Li, Fu, Mei and Jiang. This is an open- 

access article distributed under the terms of 

the Creative Commons Attribution License 

(CC BY). The use, distribution or reproduction 

in other forums is permitted, provided the 

original author(s) and the copyright owner(s) 

are credited and that the original publication 

in this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

Identification of key genes 
associated with atrial fibrillation 
and hypoxia using WGCNA and 
machine learning technology

Chao Wang
1†
, Mardan Muradil

2†
, Jianbin Huang

1
, Jie Cai

1
,  

Fangbao Ding
1
, Li Zhang

1
, Mengda Li

3
, Chenglai Fu

1,4
, Ju Mei

1*‡ 

and Zhaolei Jiang
1*‡

1Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong 

University, Shanghai, China, 2Spine Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University 

School of Medicine, Shanghai, China, 3Neurological Surgery, Henan Provincial People’s Hospital, 

Henan, Zhengzhou, China, 4Institute for Developmental and Regenerative Cardiovascular Medicine, 

Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: Atrial fibrillation (AF) is among the most prevalent cardiac 

arrhythmias worldwide, and its incidence is steadily rising due to global aging. 

Hypoxia, a well-recognized trigger of AF, plays a pivotal role in the onset and 

progression of AF. However, the molecular mechanisms underlying the 

interplay between AF and hypoxia remain unclear, and specific biomarkers 

for this condition are lacking. This study aimed to identify key hypoxia- 

related genes associated with AF through an integrated bioinformatics 

approach that combines weighted gene co-expression network analysis 

(WGCNA) with machine learning (ML) algorithms, and to assess their potential 

diagnostic significance.

Methods: This study employed an integrative approach combining weighted 

gene co-expression network analysis (WGCNA) and machine learning (ML) to 

identify key genes associated with AF under hypoxic conditions. AF-related 

gene expression data were sourced from the Gene Expression Omnibus 

(GEO) database, and hypoxia-related gene sets from the Molecular Signatures 

Database (MSigDB) database. WGCNA was employed to identify gene 

modules associated with AF, which were then intersected with hypoxia- 

related genes. Candidate hub genes were identified using random forest and 

least absolute shrinkage and selection operator regression. Their diagnostic 

performance was evaluated using receiver operating characteristic (ROC) 

curve analysis. A predictive nomogram was developed, and immune 

infiltration analysis and gene set enrichment analysis (GSEA) were performed 

to explore associated biological pathways and alterations in the 

immune landscape.

Results: WGCNA identified 34 gene modules, with the most AF-relevant 

module comprising 624 genes. Intersection analysis and ML algorithms 

identified SLC6A6, BGN, and PFKP as key genes. ROC analysis demonstrated 

strong diagnostic potential. Immune cell profiling showed increased 

infiltration of M2 macrophages and dendritic cells in AF samples, with 

significant correlations to the expression of these hub genes.
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Conclusion: This study identified SLC6A6, BGN, and PFKP as key genes 

associated with AF under hypoxic conditions and successfully developed a 

diagnostic model with promising clinical applicability. These genes likely play 

important roles in hypoxia-mediated AF pathogenesis and are closely 

associated with immune cell infiltration, providing potential biomarkers for early 

diagnosis and precision treatment of AF. This study provides novel insights into 

the molecular mechanisms underlying the interplay between hypoxia and AF.

KEYWORDS

atrial fibrillation, hypoxia, weighted gene co-expression network analysis (WGCNA), 

machine learning, hub genes

1 Introduction

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia 

worldwide, with an increasing incidence due to the progressive 

aging of the population. An epidemiological study in the United 

States estimated that the number of individuals with AF ranges 

from 3 to 6 million, and this figure is projected to rise to 

approximately 6 to 16 million by 2050 (1). Hypoxia is one of the 

common triggering factors of AF and serves as a critical driver of 

its sustained progression. The most frequently encountered 

conditions leading to hypoxia include coronary artery disease (2, 

3) and obstructive sleep apnea syndrome (4). Multiple 

mechanisms underlie the induction of AF under hypoxic 

conditions, primarily involving atrial electrophysiological and 

structural remodeling, in-ammatory responses, and oxidative 

stress (2, 5). Although extensive clinical and fundamental research 

has demonstrated a close association between AF and hypoxia, a 

thorough investigation into the molecular mechanisms concerning 

AF onset in a hypoxic state remains insufficient, particularly 

regarding the identification of definitive biomarkers. In recent 

years, weighted gene co-expression network analysis (WGCNA) 

has become an effective bioinformatics approach for finding key 

gene modules related to specific diseases based on gene 

expression data (6). Additionally, machine learning (ML) 

techniques like random forest (RF) and least absolute shrinkage 

and selection operator (LASSO) regression, have been widely 

applied in gene selection and disease prediction (7, 8). By 

integrating WGCNA with ML approaches, it is possible to 

identify critical genes related to AF and hypoxia with greater 

precision. Therefore, this study aimed to elucidate the molecular 

mechanisms linking hypoxia signaling with AF, identify key hub 

genes, and construct a diagnostic model based on these genes. 

Our findings will offer new perspectives and lay the theoretical 

groundwork for unveiling the pathogenesis of AF in hypoxic 

states and developing innovative diagnostic tools.

2 Methods

2.1 Data collection and preprocessing

The gene expression profiling data for AF were sourced from 

the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih. 

gov/geo/), with details presented in Table 1. The GSE115574 

dataset comprises 59 samples, including 31 left atrial appendage 

(LAA) tissues from AF patients and 28 control tissues from 

people with sinus rhythm (SR). The GSE14975 dataset 

encompasses 10 samples, including 5 AF LAA tissues and 5 SR 

control samples. The GSE41177 dataset includes 38 samples, 

comprising 32 AF LAA tissues and 6 SR control samples. The 

gene-related information for all AF datasets was derived from 

the GPL570 platform. The GSE115574 and GSE14975 datasets 

were combined to create a training set, while GSE41177 was 

designated as an external validation set. After the raw dataset 

files were downloaded, genes with zero or negative expression 

values were excluded before log2 transformation. Low-expression 

probes (mean log2 intensity < 1 or detected in <50% of samples) 

and low-variance genes [median absolute deviation (MAD) < 0. 

15] were removed. A total of 21,653 genes meeting these criteria 

were retained for subsequent analyses. Expression values for 

each gene were then normalized to ensure their independence, 

facilitating subsequent computational processing. Raw expression 

data were retrieved using R 4.4.1 and the GEOquery package. 

Subsequently, an expression matrix was constructed and probes 

were mapped to their corresponding gene symbols. Duplicate 

genes and missing values were eliminated. If a probe 

corresponded to multiple genes, that particular gene was 

excluded to ensure data integrity. The final gene matrix was 

integrated, and the batch effect was corrected utilizing the 

ComBat function from the SVA package 3.52.0. Information on 

hypoxia-upregulated genes was sourced from the Molecular 

Signatures Database (MSigDB) (http://www.gsea-msigdb.org). 

Specifically, 200 hypoxia-related genes were obtained by 

querying the database using the “HALLMARK_HYPOXIA” 

keyword (Figure 1).

2.2 WGCNA

To ensure the accuracy of WGCNA, the integrated gene 

matrix was further filtered, and genes expressed in over 50% of 

the samples were retained. The WGCNA package 1.73 was 

employed to assess the quality of samples and genes, ensuring 

that the data matrix was suitable for WGCNA. Sample 

hierarchical clustering was performed on the integrated gene- 

sample data to identify potential outliers (Figure 3A). 
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A biologically significant scale-free network was developed 

utilizing the soft-thresholding parameter (β) as per the scale-free 

topology requirement. The “pickSoftThreshold” function was 

adopted for computing and selecting an appropriate β value, 

ensuring that the scale-free topology model fitting index (sftr 

squared) was approximately 0.8, thereby guaranteeing network 

robustness and biological relevance. Based on network topology 

analysis, a CutHeight value (height threshold) greater than 0.8 

was selected for gene module construction, with at least 50 

module genes. The gene module most strongly linked to AF was 

identified. Gene modules were defined via a topological overlap 

matrix (TOM) in combination with the dynamic tree-cut 

method. After module delineation, the eigengene was calculated 

for every module (module eigengene, ME). Finally, Pearson 

correlation coefficients were employed to evaluate the link of 

modules to clinical traits. The module most strongly related to 

clinical characteristics was identified as the key module and 

visualized within the trait-gene network.

2.3 Functional enrichment analysis of 
hypoxia- and AF-associated Hub genes

Our study identified the intersection between hypoxia-related 

genes and the most AF-relevant module genes from WGCNA. 

Their involvement in biological processes (BP), molecular 

functions (MF), and cellular components (CC) was explored 

through Gene Ontology (GO) analysis on the intersecting genes. 

Additionally, the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis was conducted to characterize and 

describe gene functions. To ascertain the statistical enrichment 

of genes within KEGG and GO pathways, the ClusterProfiler 

TABLE 1 Brief description of hypoxia and AF source dataset.

Disease/Pathological 
state

Data 
chip

Sample size Data source Year

Normal 
control

Disease

AF GSE115574 28 31 Gene expression data from human left and right atrial tissues in patients with 

degenerative MR in SR and AF

2021

AF GSE14975 5 5 Transcriptional profiling of left atrial myocardium from AF and SR patients 2019

AF GSE41177 6 32 Region-specific gene expression profiles in left atria of patients with valvular 

atrial fibrillation

2019

Hypoxia M5891 200 Genes up-regulated in response to low oxygen levels (hypoxia). 2015

AF, atrial fibrillation; SR, sinus rhythm.

FIGURE 1 

Flowchart of the study. AF, atrial fibrillation; WGCNA, weighted gene Co-expression network analysis; GO, gene ontology; KEGG, Kyoto encyclopedia 

of genes and genomes; LASSO, least absolute shrinkage and selection operator; RF, random forest; PCA, principal component analysis; GSEA, gene 

set enrichment analysis gene; MANIA, gene multiple association network integration algorithm.
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package 4.12.6 was utilized. Pathways containing three or more 

significantly enriched genes with p < 0.05 suggesting significance.

2.4 ML-based key genes identification

Two commonly used ML algorithms: RF and LASSO, were 

utilized following the identification of hypoxia-AF intersecting 

genes. LASSO regression analysis was enabled by the “glmnet” 

package 4.1–8, while the RF model was generated via the 

“randomForest” package 4.7–1.2. Genes overlapping between the RF 

and LASSO analyses were considered potential hypoxia-associated 

AF biomarkers. Furthermore, to evaluate the diagnostic value, 

receiver operating characteristic (ROC) curves comprehensively 

present the model’s classification performance at different thresholds.

2.5 Construction and evaluation of the 
predictive model

A nomogram model was built on the identified key gene set. 

Every risk factor was assigned a corresponding score, with the 

total score mapped to AF occurrence probability. Calibration 

curves re-ected the concordance between observed and 

predicted results. The net benefit of the model in forecasting AF 

occurrence was examined through decision curve analysis (DCA).

2.6 Relationship between key genes and 
infiltrating immune cells

To investigate immune cell infiltration within the samples, this 

study utilized the CIBERSORT package 0.1.0, which employs the 

LM22 immune cell-specific gene matrix (LM22 signature) for 

correlation analysis. CIBERSORT was used to estimate the 

proportion of immune cells in each sample, and the results were 

integrated with sample classification data. Bar plots presented 

overall immune cell infiltration, and box plots illustrated 

differences across AF and normal samples. To explore the 

potential relationships of key genes with immune cells, the links 

of selected genes to each immune cell type were unraveled via 

Spearman correlation analysis. The obtained correlation 

coefficients and significance values were visualized in a heatmap. 

Data visualization was performed using the R packages 

“reshape” 0.8.9, “tidyverse” 2.0.0, “ggplot2” 3.5.1, and 

“pheatmap” 1.0.12. p < 0.05 denoted statistical significance.

2.7 Gene set enrichment analysis (GSEA) 
and prediction of upstream transcription 
factors

GSEA was employed to interpret the biological significance of 

specific genes in biological processes or diseases via the GSVA 

package 2.0.5 in R, with visualization implemented via the “ggplot2” 

3.5.1 and “enrichplot” 1.24.4 packages. Gene sets meeting the 

adjusted p < 0.05 threshold were significant. A co-expression gene 

network was formed via GeneMANIA (http://www.genemania.org). 

NetworkAnalyst (https://www.networkanalyst.ca) helped to analyze 

the link of key genes to their associated transcription factors, 

facilitating the prediction of upstream transcriptional regulators.

2.8 Consensus clustering analysis and 
principal component analysis (PCA)

Clustering analysis algorithms were leveraged for validating 

and confirming the biological significance and effectiveness of 

identified key genes. Based on hypoxia- and AF-associated key 

genes, unsupervised consensus clustering was performed 

through the “ConsensusClusterPlus” package 1.70.0. AF patient 

subtypes were defined across all AF samples, with 50 iterations 

conducted to assess result stability. Key operational parameters 

were an 80% item resampling rate and a maximum k-value of 

10. PCA was utilized to examine the differentiation among 

clustering groupings and to corroborate the clustering outcomes.

3 Results

3.1 Construction and processing of the AF 
dataset

The batch effect was corrected on the GSE115574 and 

GSE14975 datasets (Figures 2A,B), comprising 69 samples, 

including 33 AF samples and 36 SR samples. 21,653 genes were 

identified, and PCA was undertaken to detect differences before 

and after correction (Figures 2C,D).

3.2 Identification of AF-associated genes 
using WGCNA

The optimal soft-threshold (β) was determined as per the scale- 

free topology criterion. When the soft-threshold was 5, R2 exceeded 

0.8 (Figure 3B). Gene clustering resulted in 34 modules, with the 

module dendrogram illustrated in Figures 3C–E. A heatmap 

illustrates the correlation of gene modules with AF-related clinical 

characteristics (Figure 4). Notably, the green module showed the 

highest relation to AF (r = 0.4, P = 7e-04), encompassing 624 genes. 

Intersecting the genes from the key AF-related module with the 

hypoxia gene set yielded 16 overlapping genes (Figure 5). An 

overlap of 16 genes was observed between the AF-associated 

“green module” (n = 624) and the HALLMARK_HYPOXIA gene 

set (K = 200), which was significantly greater than expected by 

chance (expected 5.76; hypergeometric p = 0.00056; OR = 2.56, 95% 

CI: 2–11), indicating a non-random enrichment of hypoxia- 

responsive genes within the AF-associated module.

3.3 Enrichment analysis

To clarify the shared molecular biological processes of disease- 

linked genes, GO and KEGG enrichment analyses were carried out 
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on the overlapping genes (Figure 6). The GO enrichment analysis 

highlighted the top 10 pathways linked to biological processes 

(BP) and molecular functions (MF), while the KEGG enrichment 

analysis identified the top 9 pathways. In the BP category, GO 

terms were predominantly linked to carbohydrate metabolism, 

ADP catabolic processes, and nucleotide metabolism. In the MF 

category, functional enrichment was observed in pathways related 

to monosaccharide binding and carbohydrate kinase activity. 9 

pathways were identified after KEGG pathway enrichment 

analysis, revealing the clustering of hub genes in many pathways, 

including the HIF-1 signaling pathway, glycolysis/gluconeogenesis, 

glycosaminoglycan biosynthesis, as well as carbon metabolism.

3.4 Key genes selection via ML and 
evaluation of model diagnostic 
performance

To further refine key gene selection, a 10-fold cross-validation 

analysis on the 16 overlapping genes was carried out via the 

LASSO algorithm (Figure 7B), and the optimal Lambda value 

(Lambda.min) was 0.04 (Figure 7A). Eight key genes were 

identified: HK1, PFKP, BGN, CDKN1A, CAV1, SLC6A6, P4HA1, 

and CHST. In the RF algorithm, the optimal tree number was 56, 

corresponding to the lowest error rate of 0.18 (Figure 7C). Genes 

with Mean Decrease Gini (MDG) scores > 2 were retained, 

corresponding to approximately the top 3% of features above the 

in-ection point of the MDG distribution, thereby representing 

variables of high relative importance in the Random Forest 

model. Genes scoring over 2 were selected (Figure 7D), including 

SLC6A6, MYH9, CHST2, B3GALT6, GAPDH, PFKP, and BGN. 

Notably, SLC6A6, BGN, and PFKP were shared between LASSO 

and RF algorithms (Figure 8). To evaluate the predicting accuracy 

of critical genes for AF under hypoxic conditions, ROC curves 

were constructed, and the effectiveness was analyzed using 

metrics such as area under the curve (AUC), sensitivity, and 

specificity. The performance of the AF forecasting models built 

on RF and LASSO algorithms was examined (Figure 9). When 

candidate hub genes were used, the AUC values were as follows: 

SLC6A6, 0.736; BGN, 0.705; PFKP, 0.726. External validation 

using the GSE41177 dataset further corroborated the model’s 

performance, yielding AUC values of SLC6A6, 0.891; BGN, 0.943; 

and PFKP, 0.953. Similarly, in the GSE79768 dataset, AUC values 

were 0.887 for SLC6A6, 0.613 for BGN, and 0.548 for PFKP. 

FIGURE 2 

Batch effect correction results. (A) Boxplot of the AF dataset before batch effect correction. (B) Boxplot of the AF dataset after batch effect 

correction. (C) PCA of the AF dataset before batch effect correction. (D) PCA of the AF dataset after batch effect correction.

Wang et al.                                                                                                                                                              10.3389/fcvm.2025.1614979 

Frontiers in Cardiovascular Medicine 05 frontiersin.org114



FIGURE 3 

WGCNA. (A) Sample clustering dendrogram of AF. (B) Relationship of the fitting index with soft threshold (left) and the relationship of mean 

connectivity with soft threshold (right). (C–E) Module clustering dendrogram of the AF co-expression network with different colors representing 

different modules.

FIGURE 4 

Heatmap of the correlation between gene modules and clinical characteristics of AF. Red indicates a positive correlation, blue indicates a 

negative correlation.
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These findings collectively demonstrate robust predictive 

performance across datasets.

3.5 Differential expression of key genes and 
prognostic model development and 
evaluation

The differential expression of key genes linked to AF and 

hypoxia was analyzed. Box plots (Figure 10A) showed that key 

genes exhibited markedly elevated expression levels in AF 

samples relative to SR samples (P < 0.05). Subsequently, a 

prognostic nomogram was constructed based on the expression 

levels of SLC6A6, BGN, and PFKP (Figure 10B) for risk 

assessment. The calculated score for each gene predicted the 

probability of AF occurrence. Calibration curves demonstrated 

minimal deviation between the observed and bias-corrected 

curves relative to the ideal curve (Figure 10C), indicating 

favorable predictive accuracy. Additionally, DCA demonstrated a 

significant net benefit (Figure 10D), highlighting the substantial 

clinical utility of the model in predicting AF during follow-up.

3.6 Immune cell infiltration analysis

Significant differences existed in immune cell infiltration 

patterns across AF and SR samples (Figure 11A). Further 

comparative analysis of immune cell proportions (Figure 11C) 

FIGURE 5 

Venn diagram of AF-related genes identified by WGCNA and hypoxia-related genes.

FIGURE 6 

Enrichment analysis results. (A) GO enrichment analysis of key genes shared between hypoxia and AF. (B) KEGG enrichment analysis of key genes 

shared between hypoxia and AF.
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demonstrated that the proportions of M2 macrophages (P < 0.05) 

and resting dendritic cells(DCs) (P < 0.01) were notably higher in 

AF samples, whereas the proportion of regulatory T cells (Tregs) 

(P < 0.05) was evidently higher in SR samples. Correlation 

analysis among different immune cell populations (Figure 11B) 

revealed strong negative or positive correlations, such as an 

inverse relation of M2 to M0 macrophages, and positive 

correlations of M2 with M1 macrophages as well as resting mast 

cells. Moreover, immune cell infiltration varied significantly 

among different key genes (Figure 11D). For instance, SLC6A6 

expression was positively correlated with resting DCs and CD4+ 

T cells, PFKP was negatively correlated with activated DCs, and 

BGN was positively correlated with M2 macrophages but 

negatively correlated with activated DCs.

FIGURE 7 

ML. (A) Regularization path of LASSO regression. (B) Cross-validation curve of LASSO regression. (C) RF model: the trend of error variation with the 

number of decision trees. (D) Feature selection results of the RF model.

FIGURE 8 

Venn diagram of ML results from RF and LASSO algorithms.
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FIGURE 9 

GSEA. (A–C) GO enrichment analysis of the key gene set (SLC6A6, PFKP, BGN) using GSEA. (D–F) KEGG enrichment analysis of the key gene set 

(SLC6A6, PFKP, BGN) using GSEA.

FIGURE 10 

Immune infiltration analysis of key genes. (A) Heatmap illustrating differences in immune cell proportions between AF and SR samples. (B) 

Relationship among different immune cell types. (C) Boxplot of differences in immune cell proportions between AF and SR samples, blue 

represents AF patients, and red represents SR patients. (D) Correlation between the key gene set and immune cell populations. Statistical 

significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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3.7 GSEA enrichment analysis and 
consensus clustering

To unveil the biological roles of key gene sets in AF, GSEA on 

three genes was carried out (Figure 12). The results revealed that 

the key genes (SLC6A6, BGN, and PFKP) are involved in distinct 

biological pathways, primarily including fatty acid and amino acid 

metabolism, interactions between cells and the extracellular matrix, 

and extracellular matrix biosynthesis. Furthermore, AF sample 

subtypes were classified through consensus clustering based on 

three genes. According to the cumulative distribution function 

(CDF) plot (Figure 13A) and Delta area plot (Figure 13B), 

heatmap analysis indicated that the optimal clustering of AF 

samples was into two groups (Figure 13C). PCA plot further 

illustrated the distribution of the two clusters (Figure 13D).

3.8 Construction of the gene interaction 
network and prediction of upstream 
transcription factors

The gene interaction network of key genes was formed using 

GeneMANIA (Figure 14A), providing insights into their 

potential roles in cellular functional regulation, transcriptional 

control, metabolic processes, and disease progression. The 

results demonstrated that this gene network is primarily 

involved in biological processes such as glycolysis and glucose 

catabolism. Moreover, upstream transcription factors of the key 

genes were forecast using the JASPAR transcription factor 

database (Figure 14B). Subsequently, Cytoscape 3.9.0 was 

employed to generate a related network diagram, illustrating the 

upstream transcription factors of key genes. The color intensity 

re-ects the density of linked transcription factors.

4 Discussion

Hypoxia induces electrophysiological changes in atrial cells, 

enhancing atrial excitability and susceptibility, thereby 

promoting AF. Oxidative stress and in-ammatory responses 

further contribute to AF development by affecting 

cardiomyocyte function and electrical activity. Moreover, 

sympathetic activation, vagal responses, and atrial structural 

remodeling due to prolonged hypoxia [for instance, fibrosis (9)] 

play critical roles in AF pathogenesis. Hypoxia-inducible factor- 

1α (HIF-1α), a core molecular marker in hypoxia signaling 

pathways, has been implicated in AF onset and progression 

(10, 11), whereas studies on its downstream regulatory 

molecules remain limited. Therefore, identifying biomarkers 

related to hypoxia-induced AF is critical for diagnosing and 

treating this AF subtype. Our study leveraged WGCNA and ML 

approaches to identify three hypoxia-related key genes (SLC6A6, 

BGN, and PFKP). Based on these findings, a nomogram model 

was constructed to assess the diagnostic value of these key genes 

in predicting hypoxia-associated AF. Additionally, GSEA was 

conducted to elucidate their biological functions and specific 

involvement in biological pathways. Based on the current 

transcriptomic results and previous mechanistic evidence, it is 

FIGURE 11 

Construction of gene interaction network and prediction of upstream transcription factors. (A) The gene network analysis of the key gene set based 

on the GeneMANIA database. (B) Prediction of upstream transcription factors for the key gene set.
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proposed that hypoxia may promote AF pathogenesis through 

HIF-1α–mediated metabolic and extracellular remodeling 

pathways. As illustrated in Figure 15, SLC6A6, BGN, and PFKP 

occupy distinct yet convergent nodes within this regulatory 

network, potentially linking hypoxia-responsive signaling to 

atrial structural and electrophysiological alterations. Further 

experimental investigations are warranted to validate this 

hypothetical framework.

Enrichment analysis results indicate that the key genes all 

correlate with the HIF-1α signaling pathway. Studies have 

demonstrated that AF patients secondary to myocardial hypoxia 

exhibit elevated HIF-1α levels (12). Furthermore, HIF-1α may 

contribute to fibrotic remodeling, forming the pathological basis 

for AF induction (10). SLC6A6 primarily encodes a sodium- 

ion-dependent taurine transporter, which regulates cellular 

proliferation, differentiation, and apoptosis (13). Under hypoxic 

conditions, SLC6A6 is predominantly involved in energy 

metabolism-related activities. Existing research has shown that 

SLC6A6 is highly expressed in vascular smooth muscle cells 

(VSMCs), where its overexpression reduces reactive oxygen 

species (ROS) production and inhibits the Wnt/β-catenin 

pathway, thereby suppressing VSMC proliferation, migration, 

and dedifferentiation (14). Moreover, SLC6A6 overexpression 

further prevents vascular stenosis and atherosclerosis formation 

by inhibiting VSMC proliferation, dedifferentiation, and 

migration (15). Through its regulatory effects on cardiac energy 

metabolism and myocardial cell stability, SLC6A6 may 

indirectly participate in AF formation under hypoxic 

conditions. The BGN gene (Biglycan) encodes a 

glycosaminoglycan (GAG)-binding protein that primarily 

interacts with the extracellular matrix (ECM). BGN is expressed 

in multiple tissues, playing a crucial role in ECM structure and 

function. In this study, enrichment analysis revealed that BGN 

is mainly involved in ECM remodeling and energy metabolism- 

related biological processes, thereby promoting atrial fibrosis, 

electrical conduction heterogeneity, and oxidative stress, all of 

which contribute to AF development. The PREDICT-AF study, 

conducted by Nicoline et al., identified an association between 

BGN and AF, with elevated BGN expression observed in AF 

patients. The underlying mechanism is believed to involve 

fibroblast activation and interaction with collagen. During tissue 

remodeling in AF patients, increased BGN expression may serve 

as an early indicator of ECM remodeling in the atria (16). The 

PFKP gene encodes phosphofructokinase (PFK), a key enzyme 

in glycolysis that directly in-uences energy metabolism across 

various organs (17). In normal cardiac tissue, approximately 

70% of energy supply is from fatty acid oxidation (FAO), while 

the remaining 30% originates primarily from glycolysis and the 

oxidation of lactate-derived pyruvate, which enters the 

mitochondria for oxidative phosphorylation (18). However, in 

the terminal stages of heart failure or under hypoxic conditions, 

the capacity for FAO is significantly damaged, leading to a 

marked shift toward increased glucose uptake and utilization 

(19). Consequently, PFKP is pivotal in the regulation of cardiac 

energy metabolism. Based on the enrichment analysis results in 

this study, PFKP is primarily involved in glycolysis-mediated 

FIGURE 12 

Differential expression of key genes and development and evaluation of the predictive model. (A) Boxplot of differential gene expression of the key 

gene set across different sample groups. (B) Nomogram model for predicting the probability of AF occurrence. (C) Calibration curve of the 

nomogram model. (D) DCA of the nomogram model.
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energy supply and myocardial energy metabolism regulation. 

Aberrant PFKP expression or activity may result in insufficient 

ATP synthesis, affecting ion channel function, thereby altering 

myocardial electrophysiology, shortening the effective refractory 

period, and ultimately promoting AF development (20–22). 

A study by Marta et al. identified PFKP as a key factor in 

pathological cardiac hypertrophy (23). Additionally, PFKP is 

involved in the dynamic balance of focal adhesions, mediating 

cell-matrix adhesion via integrin regulation and potentially 

promoting collagen deposition and fibrosis through the TGF-β 
signaling pathway (24). Research has demonstrated that PFKP 

overexpression in proximal renal tubular epithelial cells 

exacerbates glycolysis and renal fibrosis triggered by TGF-β 
(25). Furthermore, Laurent et al. found that TGF-β1 induces 

PFKP expression, with a stronger induction observed in the 

pulmonary arteries of pulmonary arterial hypertension (PAH) 

individuals and cultured pulmonary arterial endothelial cells. 

This TGF-β1-induced PFKP expression can be inhibited by 

pioglitazone (26).

Furthermore, the key genes (SLC6A6, BGN, and PFKP) were 

positively linked to CD4+ T and B cells, and M2 macrophages 

and inversely related to DCs. Among the 22 immune cell types 

analyzed, M2 macrophages and resting DCs were notably 

elevated in AF samples, whereas Tregs were markedly reduced. 

Tregs are critical in preserving immunological tolerance and 

avoiding excessive immune responses. There was an evident 

reduction in the proportion of Tregs in patients with AF (27), 

possibly owing to impaired immune regulation and chronic 

in-ammation, which may suppress cell proliferation during the 

pathogenesis of AF. The role of M2 macrophages in AF 

development has been well documented (28–30). Our immune 

infiltration analysis revealed a predisposition of M2 

macrophages to infiltrate atrial tissue in AF patients. Upon 

activation by associated immune-in-ammatory responses, this 

infiltration was accompanied by increased fibrotic area in 

cardiac tissue, enhanced collagen deposition, and upregulated 

fibroblast-to-myofibroblast transition, with concurrent 

activation of the TGF-β/Smad downstream signaling pathway, 

thereby further promoting fibrosis progression (30). DCs 

function as antigen-presenting cells and are essential for 

immune responses. However, how DCs contribute to AF 

pathogenesis remains unclear. Previous studies have indicated a 

marked rise in the proportion of immune cells in AF samples, 

with a significantly higher number of DCs in comparison to 

samples from individuals with SR (31, 32). In contrast, this 

study demonstrated a notable increase in the proportion of 

resting DCs in AF patients, whereas significant changes were 

not noted in activated DCs across AF and SR groups. Despite 

the high diagnostic accuracy of the hub genes identified 

through WGCNA and ML methodologies, which have been 

FIGURE 13 

Consensus clustering analysis and PCA. (A) Delta area plot. (B) Cumulative distribution function (CDF) plot at K = 2. (C) Consensus matrix plot at K = 2. 

(D) PCA of AF samples.
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validated using external datasets, our study has limitations. First, 

the foregoing findings primarily rely on bioinformatics analyses 

of hub genes and in vivo and in vitro experimental validation 

is lacking. Therefore, conclusions regarding gene expression 

implicated in the molecular mechanisms of hypoxia-related AF 

should be interpreted with caution, warranting further 

experimental confirmation. Second, the possible in-uence of 

external clinical characteristics on the data were not accounted 

for. Additionally, limited genetic data were used in our 

immune cell infiltration analysis, and in vivo and in vitro 

studies were necessitated for unveiling the specific 

regulatory mechanisms.

FIGURE 15 

Schematic model of hypoxia-related mechanisms in AF.

FIGURE 14 

ROC Curve Analysis. (A–C) ROC curve analysis of the diagnostic efficiency of the key gene set (SLC6A6, PFKP, BGN) in the training dataset (GSE14975 

combined with GSE115574). (D–F) ROC curve analysis of the diagnostic efficiency of the key gene set (SLC6A6, PFKP, BGN) in the external validation 

dataset (GSE41177). (G–I) ROC curve analysis of the diagnostic efficiency of the key gene set (SLC6A6, PFKP, BGN) in the external validation dataset 

(GSE79768).
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4.1 Limitations

This study has limitations. First, Although the expression 

patterns and biological annotations of SLC6A6, BGN, and PFKP 

suggest that they may serve as molecular nodes integrating AF- 

related structural remodeling with hypoxia-responsive 

transcriptional networks, comprehensive experimental studies 

are necessary to confirm their causal roles in hypoxia-induced 

AF pathogenesis. Second, the external validation cohort 

(GSE41177) exhibited higher AUC values than the training 

cohort, likely due to the small control sample size and biological 

heterogeneity between datasets. Hence, these results should be 

interpreted as supportive rather than definitive evidence of 

model generalizability. Third, the immune cell infiltration 

analysis was performed using limited genetic data, and further 

in vitro and in vivo experiments are required to elucidate the 

underlying regulatory mechanisms. Lastly, the transcriptomic 

data were derived from left atrial tissue without direct 

measurement of oxygen tension, the identified hypoxia-related 

genes re-ect molecular signatures of hypoxia responsiveness 

rather than confirmed evidence of actual tissue hypoxia.

5 Conclusion

In conclusion, our findings suggest that SLC6A6, BGN, and 

PFKP serve as potential hypoxia-related biomarkers and 

therapeutic targets in AF. Further investigations into immune 

responses may elucidate the molecular mechanisms underlying 

this condition and provide novel insights into the management 

of its comorbidities.
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Introduction: Cardiovascular diseases, particularly Coronary Artery Disease
(CAD), remain a leading cause of mortality worldwide. Invasive angiography,
while accurate, is costly and risky. This study proposes a non-invasive,
interpretable CAD prediction framework using the Z-Alizadeh Sani dataset.
Methods: A hybrid decision tree–AdaBoost method is employed to select 30
clinically relevant features. To prevent data leakage, SMOTE oversampling is
applied exclusively within each training fold of a 10-fold cross-validation
pipeline. The Support Vector Machine (SVM) model is optimized using
Bayesian hyperparameter tuning and compared against Sea Lion Optimization
Algorithm (SLOA) and grid search. SHapley Additive exPlanations (SHAP) analysis
is utilized to interpret the feature contributions.
Results: The SVM_Bayesian model achieves 97.67% accuracy, 95.45% precision,
100.00% sensitivity, 97.67% F1-score, and 99.00% AUC, outperforming logistic
regression (93.02% accuracy, 92.68% F1-score), random forest (95.45% accuracy,
93.33% F1-score), standard SVM (77.00% accuracy), and SLOA-optimized SVM
(93.02% accuracy). Ablation studies and Wilcoxon signed-rank tests confirm the
statistical superiority of the proposed model.
Discussion: SHAP analysis reveals clinically meaningful feature contributions
(e.g., Typical Chest Pain, Age, EFTTE). 95% bootstrap confidence intervals and
temporal generalization on an independent test set ensure robustness and
prevent overfitting. Future work includes validation on external real-world
datasets. This framework provides a transparent, generalizable, and clinically
actionable tool for CAD risk stratification, aligned with the principles of
network physiology by focusing on interconnected cardiovascular features in
predicting systemic disease.
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1 Introduction

Cardiovascular diseases (CVDs) have become one of the most
prevalent and deadly health challenges in developing countries in
recent decades. According to the National Health and Nutrition
Examination Survey, between 2013 and 2016, approximately 48% of
adults over the age of 20 were affected by some form of CVD, with
incidence rates rising progressively with age (Belgiu and Drăguţ,
2016). Despite extensive efforts by medical professionals to prevent,
diagnose, and treat these conditions, CVD-related mortality
continues to grow. In 2019 alone, an estimated 18.6 million
deaths were attributed to heart diseases. According to the World
Health Organization (WHO), CAD accounted for approximately
32% of global deaths in 2020, and projections estimate this number
will reach 23.6 million annually by 2030.

CAD is primarily caused by the narrowing or blockage of
coronary arteries due to plaque buildup, leading to reduced
oxygen supply to heart muscles (El-Ibrahimi et al., 2025; Han
et al., 2025; Hefti et al., 2025). Risk factors for CAD include
hypertension, diabetes, smoking, high cholesterol, poor diet,
sedentary lifestyle, psychological stress, and genetic
predispositions (Velusamy and Ramasamy, 2021;
Mohammedqasim et al., 2022). One of the standard diagnostic
tools for CAD is coronary angiography, which offers high
precision and spatial clarity for examining coronary vessel
structure. However, this method is invasive, costly, and requires
highly skilled operators, making it impractical for widespread use as
a screening tool.

Non-invasive alternatives such as electrocardiography (ECG)
and echocardiography are commonly used in clinical evaluations,
though they lack the sensitivity and accuracy offered by invasive
coronary angiography (Alizadehsani et al., 2022). In response to
these limitations, researchers have increasingly turned to artificial
intelligence-based machine learning (ML) methods to improve the
diagnostic capabilities of non-invasive approaches. ML algorithms
have proven effective in diverse fields, including big data analytics,
cybersecurity, IoT, and particularly in medical image analysis and
disease prediction (Nasarian et al., 2020).

Several studies have investigated CAD Prediction using ML
algorithms. For instance, Alizadeh Sani et al. applied
C4.5 decision tree and Bagging classifiers to a dataset of
303 numerical samples for CAD detection (Alizadehsani et al.,
2013). Similarly, Hassan Nataj et al. utilized random forest-based
feature ranking to identify important predictive features (Joloudari
et al., 2020; Arabasadi et al., 2017) experimented with artificial
neural networks and genetic algorithms both independently and in
combination on the same dataset.

The success of any ML-based disease detection system largely
depends on the algorithm used and the number of predictive features
selected (Fajri et al., 2022). Feature selection, which involves
identifying the most relevant input variables, significantly enhances
model accuracy and generalizability (Velusamy and Ramasamy,
2021). Feature selection techniques are broadly categorized into
three types: filter, wrapper, and embedded methods. These
methods aim to reduce the dimensionality of datasets while
preserving essential information (Zebari et al., 2020).

High-dimensional datasets—those with numerous input
variables—pose serious challenges for ML models. As feature

dimensionality increases, models become more complex, making
it harder to optimize and increasing the risk of overfitting.
Overfitting occurs when a model learns training data too closely
and performs poorly on unseen data. Dimensionality reduction
helps alleviate these issues by simplifying models and enhancing
their generalization capabilities.

Numerous studies have focused on effective feature selection to
reduce dataset dimensions. For example (Hassannataj Joloudari
et al., 2022), applied a genetic algorithm for optimization, while
(Velusamy and Ramasamy, 2021) used the Boruta wrapper method
(Jin and Li, 2022). implemented recursive feature elimination using
random forests, and (Mohammedqasim et al., 2022) employed
whale optimization in combination with k-nearest neighbor
algorithms.

Another common challenge in CAD-related datasets is class
imbalance (Nasarian et al., 2020), where samples of one class
significantly outnumber those of others. This imbalance, often
seen in scenarios like fraud detection or rare disease Prediction,
can lead ML models to favor the majority class, reducing overall
accuracy. Most ML algorithms are designed to minimize overall
error without explicitly considering class distribution, thereby
degrading performance on the minority class.

To address this, several studies have incorporated resampling
techniques. For example (Nasarian et al., 2020), employed Synthetic
Minority Oversampling Technique (SMOTE) and Adaptive
Synthetic Sampling (ADASYN) to balance class distributions.
Similarly (Gupta et al., 2022; Mohammedqasim et al., 2022), and
Velusamy and Ramasamy (Velusamy and Ramasamy, 2021) utilized
SMOTE to enhance prediction accuracy on imbalanced datasets.

In current research, the Z-Alizadeh Sani CAD dataset is
statistically analyzed, and missing data are examined. During
preprocessing, the dataset is normalized, and feature selection is
performed using decision tree and AdaBoost algorithms. The dataset
is then split into training and testing subsets using 10-fold cross-
validation. To address class imbalance, the SMOTE algorithm is
employed to synthetically balance the target class. For classification,
a Support Vector Machine (SVM) model is used, with its
hyperparameters optimized via Bayesian optimization (Frazier,
2018) and compared against the performance of the Sea Lion
Optimization Algorithm (SLOA) (Masadeh et al., 2019;
Kumaraswamy and Poonacha, 2021). The final models are
evaluated based on accuracy, sensitivity, and F1-score.

1.1 Contribution of the study

While previous studies have explored CAD detection using ML
methods, this study introduces several innovations that enhance
accuracy, interpretability, statistical rigor, and clinical applicability.

1. Combining decision tree and AdaBoost algorithms for effective
and interpretable feature selection, reducing dimensionality to
30 clinically relevant features without sacrificing
predictive power.

2. Employing Bayesian optimization to fine-tune SVM
hyperparameters, achieving 97.67% accuracy, 100.00%
sensitivity, and 99.00% AUC, outperforming standard SVM
(77.00% accuracy), SLOA-optimized SVM (93.02%), logistic
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regression (93.02%), and random forest (95.45%), while
enabling a systematic and efficient search compared to grid
or random methods.

3. Including a direct comparison with the SLOA, a recent
metaheuristic, demonstrating Bayesian optimization’s
superior efficiency and performance.

4. Addressing class imbalance using SMOTE within a pipeline-
based 10-fold cross-validation framework, preventing data
leakage and ensuring robust detection of minority cases.

5. Evaluating the model using a comprehensive metric suite
(Accuracy, Precision, Sensitivity, F1-score, AUC), reporting
mean ± std across folds, 95% bootstrap confidence intervals,
and temporal generalization on an independent held-out set.

6. Providing clinical interpretability via SHapley Additive
exPlanations (SHAP) analysis, highlighting Typical Chest
Pain, Age, and EF-TTE as top predictors, fully aligned with
ESC/AHA guidelines, and including calibration assessment
(Brier score = 0.088) and cost-sensitive threshold optimization.

7. Delivering collectively a transparent, generalizable, and
deployment-ready framework for non-invasive CAD risk
stratification.

1.2 The workflow of the study

The study follows a structured six-phase workflow: related works,
methodology, results, interpretability analysis, clinical validation, and
conclusion with future directions. Recent CAD prediction studies were
reviewed to identify challenges and gaps. Methodology covers data
preprocessing, hybrid decision tree–AdaBoost feature selection
(30 features), pipeline-based SMOTE for imbalance, 10-fold cross-
validation, and training of logistic regression, random forest, and
SVM with Bayesian hyperparameter optimization compared to
SLOA and grid search. Results include performance metrics,
ablation studies, Wilcoxon tests, and temporal generalization,
confirming Bayesian-optimized SVM superiority (97.67% accuracy,
100.00% sensitivity). Interpretability uses SHAP for feature
explanations. Clinical validation assesses calibration, Brier score, and
thresholds. Conclusion summarizes findings, implications, and future
directions like external validation and trials.

2 Related works

Today, one of the most critical challenges facing human societies
is the prevalence of widespread diseases, many of which lead to high
mortality rates. According to the World Health Organization,
cardiovascular diseases, particularly CAD, are among the leading
causes of death globally, especially in middle-aged and older
populations. Currently, various clinical techniques such as
exercise stress testing, chest X-rays, Computed Tomography (CT)
scans, cardiac magnetic resonance imaging (MRI), coronary
angiography, and electrocardiography (ECG) are employed to
assess the severity of heart conditions.

In recent years, numerous studies have focused on the
application of artificial intelligence techniques for CAD detection
using clinical datasets (Liu et al., 2025). Jain and Lee proposed a

CAD detection model based on the Whale Optimization Algorithm
(WOA) integrated with k-nearest neighbors (k-NN) for feature
selection and a stacked model for Prediction (Jin and Li, 2022).
The WOA was applied to perform continuous-to-binary
transformation and identify optimal feature subsets for each
primary coronary artery. Subsequently, a two-layer stacked model
was developed to diagnose the left anterior descending (LAD), left
circumflex (LCX), and right coronary artery (RCA). Their method
selected 17 features for each Prediction task and achieved
classification accuracies of 89.68%, 88.71%, and 85.81% for LAD,
LCX, and RCA respectively.

Nasarian et al. introduced a novel hybrid feature selection
algorithm named HFS2, which was applied to the Nasarian CAD
dataset (Nasarian et al., 2020). This dataset included not only clinical
variables but also workplace and environmental features. To address
data imbalance, SMOTE and ADASYN aproaches were used. Various
classifiers, including Decision Tree, Gaussian Naive Bayes, Random
Forest, and XGBoost were employed. Their proposed method, when
combined with SMOTE and XGBoost, achieved a classification
accuracy of 81.23%. Moreover, the approach was validated on
other well-known CAD datasets, yielding classification accuracies
of 83.94%, 81.58%, and 92.58% on Hungarian, Long-Beach-VA,
and Z-Alizadeh Sani datasets, respectively.

(Alizadehsani et al., 2013) applied Decision Tree C4.5 and
Bagging classifiers to a dataset of 303 numerical samples for
CAD detection. Feature selection was conducted using
information gain and Gini index. The Bagging classifier, when
combined with these feature selection methods, outperformed
C4.5, achieving classification accuracies of 79.54%, 65.09%, and
66.31% for detecting stenosis in three major coronary arteries. In
comparison, the C4.5 algorithm achieved respective accuracies of
76.56%, 63.10%, and 63.38%.

(Arabasadi et al., 2017) used neural networks and genetic
algorithms both individually and in combination for CAD
Prediction on a dataset of 303 samples. Feature selection
employed several techniques including SVM weighting, Gini
index, information gain, and principal component analysis
(PCA). Results showed that the neural network alone achieved
an accuracy of 84.62%, while the hybrid neural-genetic algorithm
reached 93.85% using 10-fold cross-validation.

(Khozeimeh et al., 2023) proposed an active learning method
combined with an ensemble of classifiers for CAD detection. Their
framework incorporated four classifiers: three focused on
diagnosing stenosis in the three main coronary arteries, and one
to predict the overall presence of CAD. Among 19 active learning
algorithms, their ensemble method paired with an SVM classifier
achieved the best performance with an accuracy of 97.01%.

(Hassannataj Joloudari et al., 2022) introduced a novel hybrid
machine learningmodel combining Genetic Algorithm and Analysis
of Variance (ANOVA) as the kernel function for SVM. This model
was evaluated on the Z-Alizadeh Sani dataset, with feature selection
handled by a genetic optimizer. Additionally, multiple SVM variants
such as ANOVA-SVM, linear SVM, and RBF-kernel SVM—were
applied. Using 10-fold cross-validation and 31 selected features, an
accuracy of 89.45% was achieved.

In another study, a two-level genetic algorithm was integrated
with NuSVM to create a hybrid model named N2Genetic-NuSVM,
tested on 303 samples (Abdar et al., 2019). The dual-level genetic
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algorithm simultaneously optimized the SVM parameters and
selected relevant features. The model achieved a CAD detection
accuracy of 93.08% using 10-fold cross-validation.

(Eyupoglu and Karakuş, 2024), focusing on the challenge of
feature redundancy in CAD Prediction, demonstrated that reducing
features while maintaining accuracy can facilitate early detection.
Their study combined eight search techniques with PCA and
AdaBoostM1, achieving 91.8% accuracy on the Z-Alizadeh Sani
dataset using only five features: age, blood pressure, typical chest
pain, inverted T wave, and wall motion abnormality.

(Hashemi et al., 2024) also utilized the Z-Alizadeh Sani dataset for
CAD detection. By applying genetic algorithms for feature selection in
neural networks, they achieved an accuracy of 94.71%, sensitivity of
96.29%, and Area Under the Receiver Operating Characteristic Curve
(AUC-ROC) of 93.5%, demonstrating strong diagnostic performance
using machine learning techniques.

(Koloi et al., 2024) introduced amachine learning framework for
early-stage CAD prediction using clinical and laboratory test data
from 19,826 patients. They demonstrated that their approach could
accurately identify early CAD cases, achieving a classification
accuracy of 79% and an AUC-ROC of 0.79. The study
highlighted the potential of machine learning in enhancing early
diagnostic capabilities for CAD.

(Brendel et al., 2025) applied deep learning to detect CAD using
photon-counting coronary CT angiography (PC-CCTA). Their deep
learning model achieved an AUC-ROC of 0.90 at the patient level and
0.92 at the vessel level, indicating high diagnostic performance. The
study underscored the effectiveness of combining PC-CCTA imaging
with advanced learning algorithms for accurate CAD diagnosis.

(Wang et al., 2024) developed an explainable CAD prediction
model using Automated Machine Learning (AutoML). The
AutoGluon-based ensemble model achieved an accuracy of
91.67% and an AUC of 0.9562 in 4-fold cross-bagging. The
integration of SHAP values provided transparency in feature
importance, enhancing the interpretability and trustworthiness of
the model in clinical applications.

(Akella and Akella, 2021) evaluated six open-source machine
learning algorithms for CAD prediction using the Cleveland dataset.
Among the tested models, the neural network achieved the highest
accuracy of 93% and a recall of 93.8%. The study underscored the
potential of accessible machine learning-based CAD prediction tools
for enhancing diagnostic capabilities in clinical settings.

Despite the growing body of research on CAD Prediction using
artificial intelligence, several open challenges remain in improving
diagnostic accuracy, reducing feature dimensionality, and effectively
handling uncertainty in medical predictions. Prior studies have
primarily focused on integrating optimization algorithms such as
genetic algorithms and whale optimization with classifiers like SVM,
decision tree, and XGBoost. Although these approaches have
reported respectable accuracies ranging from 85% to 93%, several
methodological limitations persist. For instance, studies such as
(Hassannataj Joloudari et al., 2022; Abdar et al., 2019) have
employed evolutionary algorithms to tune the hyperparameters of
SVMs, but probabilistic modeling using Bayesian theory has largely
been overlooked. Incorporating prior distributions and Bayesian
inference could offer a more principled alternative to stochastic
parameter search, potentially reducing overfitting and improving
model robustness. In addition, feature selection techniques used in

earlier research such as principal component analysis and the Gini
index are typically deterministic and fail to account for the inherent
uncertainty in medical data. A Bayesian-driven evaluation of feature

FIGURE 1
The proposed methodology.
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relevance, based on posterior probabilities, could yield more reliable
and interpretable feature subsets. Moreover, while some studies,
such as (Nasarian et al., 2020), have used oversampling techniques
like SMOTE and ADASYN to manage data imbalance, relatively
little attention has been paid to combining these sampling methods
with probabilistic weighting schemes that could more accurately
reflect the uncertainty associated with minority class samples during
model training. Another significant issue is that most existing
approaches handle feature selection and model optimization as
separate processes.

In the current study, a unified Bayesian framework that jointly
selects features and tunes model parameters was proposed to
improve classification accuracy, enhance model interpretability,
and better handle the uncertainty inherent in complex medical
datasets such as CAD. This approach was compared with the
SLOA, and results demonstrated that the Bayesian-optimized
SVM outperformed SLOA, confirming its superior performance
and reliability.

3 Proposed methodology

In this study, a Bayesian-optimized SVM was employed for the
prediction of heart disease, using a feature selection approach to

identify the most significant attributes within the Z-Alizadeh Sani
dataset. The proposed methodology consists of four main phases:
data preparation, data preprocessing, classification modeling, and
hyperparameter optimization. After completing these phases, a final
decision is made regarding the presence or absence of the CAD. The
entire process is illustrated in Figure 1, and each phase is described
in detail in the following sections.

In addition to the workflow shown in Figure 1, a redesigned
system architecture diagram has been included to provide a more
comprehensive illustration of the methodology. This architecture
explicitly depicts the flow of data, the preprocessing steps, the feature
selection stage, and the role of each algorithm used in classification
and optimization.

3.1 Phase 1: data preparation

The dataset used in this research is the Z-Alizadehsani dataset,
which is publicly available through the UCI Machine Learning
Repository1. This dataset consists of 303 samples, including

TABLE 1 Quantitative features of the Z-Alizadehsani dataset.

Feature Mean Std. Dev Min 25% Median (50%) 75% Max

Age 58.90 10.39 30.00 51.00 58.00 66.00 86.00

Weight 73.83 11.99 48.00 65.00 74.00 81.00 120.00

Length 164.72 9.33 140.00 158.00 165.00 171.00 188.00

BMI 27.25 4.10 18.12 24.51 26.78 29.41 40.90

BP 129.55 18.94 90.00 120.00 130.00 140.00 190.00

PR 75.14 8.91 50.00 70.00 70.00 80.00 110.00

FBS 119.18 52.08 62.00 88.50 98.00 130.00 400.00

CR 1.06 0.26 0.50 0.90 1.00 1.20 2.20

TG 150.34 97.96 37.00 90.00 122.00 177.00 1,050.00

LDL 104.64 35.40 18.00 80.00 100.00 122.00 232.00

HDL 40.23 10.56 15.90 33.50 39.00 45.50 111.00

BUN 17.50 6.96 6.00 13.00 16.00 20.00 52.00

ESR 19.46 15.94 1.00 9.00 15.00 26.00 90.00

HB 13.15 1.61 8.90 12.20 13.20 14.20 17.60

K 4.23 0.46 3.00 3.90 4.20 4.50 6.60

Na 141.00 3.81 128.00 139.00 141.00 143.00 156.00

WBC 7562.05 2413.74 3700.00 5800.00 7100.00 8800.00 18000.00

Lymph 32.40 9.97 7.00 26.00 32.00 39.00 60.00

Neut 60.15 10.18 32.00 52.50 60.00 67.00 89.00

PLT 221.49 60.80 25.00 183.50 210.00 250.00 742.00

EF-TTE 47.23 8.93 15.00 45.00 50.00 55.00 60.00

1 https://archive.ics.uci.edu/dataset/412/z+alizadeh+sani
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216 patients diagnosed with CAD and 87 healthy individuals,
described by 54 features. The dataset encompasses clinical
characteristics, signs and symptoms, echocardiographic data, and
laboratory test results.

The study variables are divided into dependent and independent
variables. The target variable, labeled as cath, is the dependent
variable and represents the presence or absence of disease. The
independent variables refer to the input features extracted from the
dataset, categorized as follows:

• Clinical Features: Age, weight, gender, Body Mass Index
(BMI), diabetes mellitus, hypertension, current smoker, ex-
smoker, family history, obesity, chronic renal failure,

cerebrovascular accident, airway disease, thyroid disease,
congestive heart failure, dyslipidemia.

• Signs and Symptoms: Systolic and diastolic blood pressure,
heart rate (beats per minute), edema, weak peripheral pulse,
pulmonary rales, systolic murmur, diastolic murmur, typical
chest pain, dyspnea, functional class, atypical symptoms, non-
anginal chest pain, exertional chest pain.

• Echocardiography: Rhythm, Q wave, ST elevation, ST
depression, T wave inversion, left ventricular hypertrophy,
poor R wave progression.

• Laboratory Tests and Echocardiographic Parameters: Fasting
blood sugar (mg/dL), creatinine (mg/dL), triglycerides (mg/
dL), low-density lipoprotein (mg/dL), high-density lipoprotein
(mg/dL), blood urea nitrogen (mg/dL), erythrocyte
sedimentation rate (mm/h), hemoglobin (g/dL), potassium
(mEq/L), sodium (mEq/L), white blood cell count (cells/
mL), lymphocyte percentage, neutrophil percentage, platelet
count (×1,000/mL), ejection fraction (%), regional wall
motion, abnormality score (numeric), severity of valvular
heart disease.

Within the system architecture, this dataset serves as the input
layer, from which clinical, echocardiographic, and laboratory
features are extracted. The architecture highlights this stage as
the foundation upon which all subsequent analysis and modeling
steps are built.

3.2 Phase 2: data preprocessing

3.2.1 Statistical analysis
During the preprocessing phase, it was identified that among the

55 features in the dataset, 54 are independent variables and 1 is the
dependent variable. Statistical analysis helped reveal hidden patterns
and correlations among the data. Furthermore, 21 of the features
were found to be quantitative in nature. These numerical features are
listed in Table 1, which presents the quantitative attributes of the
Z-Alizadehsani dataset. The categorical variables examined in this
study include 31 items, which are presented in Table 2. In addition to

TABLE 2 The categorical variables.

Feature name Number of unique
values

Unique
values

Sex 2 Male, Female

DM 2 0, 1

HTN 2 1, 0

Current_Smoker 2 1, 0

EX-Smoker 2 1, 0

Obesity 2 Y, N

CR 2 1, 0

CVA 2 N, Y

Airway_disease 2 N, Y

Thyroid_Disease 2 N, Y

CHF 2 N, Y

DLP 2 Y, N

Weak_Peripheral_Pulses 2 N, Y

Lung_rales 2 N, Y

Systolic_Murmur 2 N, Y

Diastolic_Murmur 2 N, Y

Typical_Chest_Pain 2 N, Y

Dyspnea 2 N, Y

Atypical 2 N, Y

Nonanginal 2 N, Y

Exertional_CP 2 N, Y

Q_Wave 2 0, 1

ST_Elevation 2 0, 1

ST_Depression 2 1, 0

Inversion_T 2 0, 1

LVH 2 N, Y

Poor_R_Progression 2 N, Y

Target variable (Cath) 2 CAD, Normal

FIGURE 2
Class distribution of the target variable (Cath), indicating
imbalance across categories.
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the categorical variables, three ordinal variables were also analyzed
in this study. The first is Function_Class, which contains four unique
values: 0, 1, 2, and 3. The second variable, Region_RWMA, includes
five distinct levels: 0, 1, 2, 3, and 4. The third, VHD, consists of four
qualitative levels: ‘N’ (normal), ‘mild’, ‘Moderate’, and ‘Severe’.
These variables were treated as ordinal data in subsequent analyses.

3.2.2 Missing data analysis
To assess the presence of missing values, the dataset was

examined using the pandas library in Python. The analysis
revealed that there were no missing entries in the dataset; all
data points were fully recorded. As a result, no imputation or
deletion procedures were required.

3.2.3 Data balance evaluation
An initial inspection of the dataset indicated that the target

variable, CAD, was imbalanced. The number of instances across the
different classes of this variable showed significant disparity. This
imbalance is illustrated in Figure 2, highlighting the potential impact
on classification performance and underscoring the need for
appropriate handling strategies in the modeling phase.

3.2.4 Data normalization
The normalization process began by converting non-numeric

features—such as those represented by textual values like ‘y’ and
‘n’—into binary numerical values (1 and 0). This transformation was
performed after completing the initial statistical analysis. Following

FIGURE 3
Ranked important features and their relative contributions to the prediction task.

FIGURE 4
Illustration of the dataset splitting into training and testing subsets using stratified 10-fold cross-validation.
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this encoding step, the dataset underwent a scaling process to bring
all features, including numerical ones, into a standardized range
between 0 and 1. For this purpose, the RobustScaler method was
applied. Unlike the StandardScaler, which relies on mean and
standard deviation and is sensitive to outliers, RobustScaler is
designed based on robust statistics, specifically the median and
interquartile range (IQR). This approach centers each feature by
subtracting its median and then scales it by dividing by the IQR (the
difference between the 75th and 25th percentiles). By doing so, it
effectively minimizes the influence of outliers while preserving the
underlying structure of the data distribution. This makes
RobustScaler particularly suitable for datasets with skewed
distributions or extreme values, ensuring that key data
characteristics are maintained during normalization (Prusty
et al., 2022).

The Robust Normalization formula, as shown in Equation 1, is
used to scale data in a way that minimizes the influence of outliers.

Xrobust � X −Median( )
IQR

(1)

In this formula, X represents the original value from the dataset
that we aim to normalize. The term Median refers to the median of
all values in the corresponding column, which serves as a robust
measure of central tendency. Q1 and Q3 denote the first and third
quartiles, respectively. Q1 is the value below which 25% of the data
fall, while Q3 is the value below which 75% of the data fall. The
interquartile range, IQR =Q3 - Q1, captures the spread of the central
50% of the data and helps reduce the impact of extreme values.
Finally, X_robust is the normalized value obtained after applying the
robust normalization process. This method is especially useful when
dealing with datasets that contain outliers, as it relies on measures
(median and IQR) that are less sensitive to such anomalies
compared to mean and standard deviation.

3.2.5 Feature selection
After completing the initial preprocessing and transformation

phases, feature selection techniques were applied to reduce
computational costs. In recent years, hybrid and ensemble
methods for feature selection have shown promising results,
proving effective in identifying relevant attributes within datasets
(Belgiu and Drăguţ, 2016).

TABLE 3 Model hyperparameter settings based on Bayesian optimization.

Model name Configuration

Random Forest RandomForestClassifier (n_estimators = 380, max_depth =
22, min_samples_split = 2, min_samples_leaf = 13,
criterion = ’gini’)

Logistic Regression LogisticRegression (penalty = ’l2′, C = 58.48737264443094)

Support Vector
Machine

SVC (C = 239.59501536334488, kernel = ’rbf’, gamma =
0.36055928693321015)

FIGURE 5
Comparative performance of the models.

TABLE 4 Performance results of machine learning models.

Model Accuracy (%) Precision (%) Sensitivity (%) F1-score (%) AUC (%)

Logistic Regression 93.02 95.00 90.48 92.68 97.92

Random Forest 95.45 91.30 95.45 93.33 98.00

Bayesian-Optimized SVM with AdaBoost + Decision Tree feature
selection

97.67 95.45 100.00 97.67 99.00

Frontiers in Network Physiology frontiersin.org08

Baratpur et al. 10.3389/fnetp.2025.1658470

132

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1658470


Hybrid techniques typically combine two different feature
selection strategies, such as wrapper and filter methods, or use
two approaches with similar evaluation criteria. By merging the
strengths of eachmethod, these techniques enhance the effectiveness
of the feature selection process. A commonly used hybrid strategy
involves integrating filter and wrapper methods—where filter
approaches evaluate features independently of learning models
using statistical metrics, while wrapper methods assess feature
subsets based on model performance. This combination enables
fast elimination of irrelevant features via filtering, followed by more
refined selection using wrapper-based evaluation, resulting in
improved model performance and reduced computation time.

A typical hybrid pipeline might consist of the following steps
(Prusty et al., 2022; Eyupoglu and Karakuş, 2024; Hashemi et al., 2024):

• Initial Filtering: A filter method such as mutual information
(for nonlinear dependencies) or Pearson correlation (for linear
relationships) is used to remove features with minimal
relevance to the target variable. This step reduces the
dimensionality by eliminating low-importance features.

• Wrapper-Based Refinement: Once the feature space is reduced,
a wrapper method is used for more precise evaluation. For
example, a genetic algorithm coupled with a machine learning
model (such as a neural network) can be employed to explore
optimal feature combinations, aiming to maximize the model’s
predictive power.

In contrast, ensemble methods attempt to form clusters of
feature subsets and aggregate their outputs. These methods often

rely on subsampling strategies, applying a given selection algorithm
across multiple subsets of the data, then integrating the results to
form a more robust feature set.

In general, feature selection plays a critical role in identifying
important variables within a dataset, assigning higher scores to more
influential features while downranking less informative ones.
Effective feature selection improves model performance and
reduces training time. However, different selection methods may
yield different results, as a feature deemed significant by one
technique may receive a lower score from another. Therefore,
assigning consistent and reliable importance scores can be
challenging. Despite this, hybrid methods offer flexible and
effective solutions, allowing researchers to adapt the feature
selection process to the specific properties of their datasets and
achieve better learning outcomes.

In this study, feature selection was performed using a hybrid
approach based on the combination of AdaBoost and Decision Tree
algorithms. The joint importance scores provided by both models
were used to identify the most relevant features, as described below:

• Model Training: Both the Decision Tree and AdaBoost models
were trained on the dataset consisting of the feature matrix (X)
and the target variable (Y).

• Importance Scoring: After training, each model generated
importance scores for the features. Decision Trees ranked
features based on their contribution to splitting nodes,
while AdaBoost evaluated them according to their role in
gradient boosting.

• Score Integration: The core idea of the hybrid approach lies in
combining the importance scores from both models. This was
achieved by averaging the individual scores, aiming to balance
the biases of each model and provide a more stable and flexible
assessment of feature relevance.

• Feature Ranking: Features were then ranked based on the
combined scores, producing a sorted list in descending order
of importance.

• Utilization of Ranked Features: This ranked list can be used for
various purposes, such as reducing the feature space to

TABLE 5 Accuracy comparison among different SVM variants.

Method Accuracy (%)

Standard SVM 77.00

SLOA Optimized SVM 93.02

Bayesian Optimized SVM (Proposed) 97.67

FIGURE 6
ROC curve of the Bayesian-optimized SVM.

FIGURE 7
ROC curve of the sea lion optimized SVM.
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improve computational efficiency, emphasizing the most
relevant features to boost model performance, or gaining
insights into the key drivers of the target variable.

This integrated scoring strategy offers several benefits:

• Reduced Bias: By averaging across models, the approach
mitigates individual model bias, yielding a more balanced
evaluation.

• Higher Stability: Relying on multiple models leads to more
reliable estimates and lowers the risk of overfitting to a
particular selection method.

• Adaptability: The hybrid technique can be tailored to a variety
of datasets and machine learning scenarios, offering a flexible
and generalizable feature selection strategy.

As a result of this process, 29 important features were selected
through the combination of AdaBoost and Decision Tree
algorithms. In the system architecture, the feature selection
process is represented as a dedicated module. Here, Decision
Tree and AdaBoost algorithms are explicitly labeled, showing
how their combined importance scores contribute to selecting the
most influential attributes. This visualization clarifies the transition
from raw data to a reduced and more informative feature set.

The contribution of each feature to the prediction task is
illustrated in Figure 3.

According to Figure 3, a total of 29 features were identified
through a hybrid selection approach integrating decision tree and
AdaBoost algorithms.

3.2.6 Dataset partitioning
Cross-validation (CV) is a fundamental technique in machine

learning and data science, widely employed for evaluating and
validating predictive models. The core idea of cross-validation
involves partitioning the dataset into multiple
subsets—commonly referred to as folds—to assess the
generalizability of a model and reduce sensitivity to overfitting.
Among various forms of cross-validation, stratified K-fold cross-
validation is particularly effective when dealing with imbalanced
datasets or when maintaining class distribution across partitions is
essential (Abdar et al., 2019).

Stratified K-fold ensures that each fold maintains approximately
the same distribution of class labels as the original dataset. This leads
to more consistent and reliable model evaluation, especially in
classification tasks involving skewed data.

Unlike the conventional approach of splitting the data into three
separate subsets—training, validation, and test—cross-validation
reduces the need for a dedicated test set. Instead, the training
data is divided into multiple parts, each of which is used in turn
for both training and evaluation.

In K-fold cross-validation, the dataset is divided into K equally
sized folds, and the model undergoes the following iterative process:

• Data Splitting: The dataset is randomly partitioned into K
subsets of equal size. In each iteration, one fold is designated as
the test set, while the remaining K−1 folds serve as the
training set.

• Model Training: The model is trained on the training folds.T
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• Model Evaluation: The trained model is evaluated on the held-
out test fold, and its performance is recorded.

• Iteration: Steps 2 and 3 are repeated K times, with a different
fold used as the test set in each iteration.

• Performance Averaging: The evaluation metrics from all K
iterations are averaged to obtain an overall estimate of the
model’s performance.

• Final Decision: The final performance metrics derived from
the K-fold cross-validation inform the overall effectiveness of
the model.

In this study, after identifying and ranking the most important
features, 10-fold cross-validation was adopted to divide the dataset
into training and testing sets. This approach helps to mitigate the
risk of overfitting and yields a more robust assessment of the model.
The overall data splitting process is illustrated in Figure 4.

To strengthen the robustness of our evaluation and minimize the
risk of overfitting, we applied stratified 10-fold cross-validation (k =
10) throughout the training and testing process. By ensuring that each
fold preserved the original class distribution, this procedure provided
a more reliable estimate of model performance and contributed to the
overall reproducibility of our findings.

One of the main challenges in working with the Z-Alizadehsani
dataset is the imbalance between classes. To overcome this issue, we

applied the SMOTE, which generates new synthetic samples for the
minority class instead of simply duplicating existing ones. By
interpolating between each minority instance and its nearest
neighbors, SMOTE produces more diverse examples that help the
model learn the underlying patterns of the minority class more
effectively (Guyon and Elisseeff, 2003). This approach leads to a
more balanced dataset and reduces the bias toward the majority
class, ultimately improving the model’s generalization.

After dividing the dataset, SMOTE was applied to balance the
class distribution, resulting in an approximately equal number of
samples for the majority and minority classes. Furthermore, to
ensure that this balance was preserved during model evaluation,
we employed stratified 10-fold cross-validation, which maintains
the original class proportions in every fold. This combined
strategy allowed us to both address class imbalance and
guarantee a fair and reliable assessment of the model’s
performance.

3.3 Phase 3: classification models

Machine learning is a subfield of computer science that enables
systems to learn from data without being explicitly programmed.
Among the main approaches in this domain are supervised and

FIGURE 8
Mean Absolute SHAP Values for the 30 Selected Features. Features are ranked by global importance. The proposed pipeline prioritizes clinically
validated CAD predictors.
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unsupervised learning (Chandrashekar and Sahin, 2014). In
supervised learning, models are trained on labeled datasets,
meaning that each input sample is paired with its
corresponding output (Saeys et al., 2007). The objective is for
the model to learn the patterns from this data and make accurate
predictions when faced with unseen inputs. In other words, in
supervised learning, the model is provided with training data that
includes correct outputs. By analyzing this information, the model
learns to associate input features with output labels. Supervised
learning is widely applied in tasks such as classification, regression,
and object detection.

As illustrated in the architecture diagram, the classification stage
includes three supervised learning algorithms: Logistic regression,
Random forest, and Support vector machine. Each classifier is
presented as an independent block, enabling comparative
evaluation and supporting the identification of the best-
performing model for CAD prediction. The following sections
describe each algorithm in detail.

3.3.1 Support vector machine
Support Vector Machine is one of the most powerful and widely

used supervised learning algorithms, applicable to both classification
and regression problems (Alizadehsani et al., 2013). However, its
primary application lies in classification tasks in machine learning.
The main goal of SVM is to find an optimal decision boundary in the
feature space that can separate data points belonging to different
classes. This boundary, known as the hyperplane, helps the model
classify new data points accurately. The SVM can be categorized into
two types: linear and nonlinear.

• Linear SVM: This type is used when the data is linearly
separable, meaning it can be divided into two classes using
a straight line (in 2D) or a flat plane (in 3D).

• Nonlinear SVM: When the data is not linearly separable, the
algorithm transforms the input space into a higher-
dimensional space using kernel functions, making it easier
to find a separating hyperplane.

There can be multiple decision boundaries in the
n-dimensional space, but SVM aims to identify the one with
the maximum margin, which ensures better generalization to
new data. The data points that lie closest to the hyperplane and
influence its position are called support vectors, and they play a
critical role in defining the model.

3.3.2 Logistic regression
Logistic regression is a fundamental and commonly used

algorithm in supervised learning, primarily utilized for
classification tasks (Charbuty and Abdulazeez, 2021). It is
used when the dependent variable is categorical, and the goal
is to estimate the probability that a given input belongs to a
certain class. Unlike linear regression, which outputs continuous
values, logistic regression predicts a probability between 0 and 1.
Based on a defined threshold (e.g., 0.5), this probability is
converted into a discrete class label such as yes/no, 0/1, or
true/false. In logistic regression, instead of fitting a straight
line, a logistic function (also known as the sigmoid function)
is used. This S-shaped curve predicts the likelihood of an event
based on a linear combination of input features. This model is
widely applicable in various domains, such as predicting whether
a cell is cancerous or not, or whether a lab mouse is obese based
on its weight. Logistic regression is favored due to its
interpretability, the ability to handle both continuous and
categorical predictors, and its capability to provide
probability estimates.

Moreover, the model can identify which features are most
influential in making classification decisions.

A decision threshold is employed: if the predicted probability
is above the threshold, the input is classified into the positive
class; otherwise, it is placed in the negative class. Mathematically,
logistic regression can be derived from linear regression
as follows:

• Mathematically, logistic regression can be derived from linear
regression as shown in Equation 2.

y � b0 + b1x1 + b2x2 + b3x3 + . . . + bnxn (2)

FIGURE 9
SHAP Summary Plot. Each point represents a patient-feature pair.
Regarding Figure 9, red colore indicates positive contribution
(increased CAD risk), blue color indicates negative. The plot confirms
model reliance on evidence-based clinical markers.
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• Since logistic regression models probabilities, the odds ratio y/
(1 - y) is computed in Equation 3.

y

1 − y
; 0 for y � 0, and infinity for y � 1 (3)

• Taking the logarithm of the odds ratio yields the expression
presented in Equation 4:

log
y

1 − y
[ ] � b0 + b1x1 + b2x2 + b3x3 + . . . + bnxn (4)

This final equation represents the core of logistic regression and
forms the basis for classification decisions.

3.3.3 Random forest
Random Forest is an ensemble algorithm used for supervised

learning (Rigatti, 2017). It is a machine learning technique that falls
under the category of supervised learning and is designed to handle

both classification and regression problems. Introduced in the early
2000s by Leo Breiman, the Random Forest algorithm quickly gained
popularity due to its high accuracy and robustness against
overfitting (Breiman, 2001). The name “Random Forest” derives
from the combination of two main ideas:

1. Randomness – Random subsets of data samples and features
are used to build each individual tree.

2. Forest – A collection of many decision trees whose results are
combined to improve overall performance.

Random Forest operates based on the principle of ensemble
learning, where multiple weak learners (decision trees) are
combined to create a stronger model. This method reduces
variance and provides a better balance between bias and variance,
leading to improved predictive performance compared to a single
decision tree.

TABLE 8 Ablation study results: 10-Fold cross-validation. Mean ± standard deviation of Accuracy and F1-score across 10 folds. Strict separation between
training and validation folds. No data leakage.

Model Accuracy (mean ± std) F1-score (mean ± std)

SVM_All 0.8350 ± 0.0680 0.6920 ± 0.1250

SVM_Selected 0.8420 ± 0.0700 0.7050 ± 0.1280

SVM_Selected + SMOTE 0.8490 ± 0.0720 0.7420 ± 0.1120

SVM_SLOA 0.8620 ± 0.0380 0.7980 ± 0.0720

SVM_Grid 0.8450 ± 0.0420 0.7280 ± 0.0880

SVM_Bayesian (Proposed) 0.8850 ± 0.0280 0.8720 ± 0.0380

TABLE 7 SHAP-based feature importance with clinical interpretation (top 15).

Rank Feature SHAP value Clinical interpretation

1 Typical Chest Pain 0.953 Primary clinical symptom of ischemia; most reliable predictor of CAD

2 Age 0.894 Major non-modifiable risk factor; incidence increases with age

3 EF-TTE 0.785 Left-ventricular ejection fraction; reduced values indicate impaired function

4 FBS 0.663 Hyperglycemia reflects metabolic dysfunction; linked to atherosclerosis

5 BMI 0.581 Obesity-related factor associated with dyslipidemia and cardiovascular burden

6 Tinversion 0.480 ECG T-wave inversion; reflects myocardial ischemia or repolarization abnormality

7 TG 0.451 Hypertriglyceridemia increases risk of plaque formation

8 Region RWMA 0.436 Regional wall motion abnormalities detected in echocardiography; strong CAD indicator

9 HTN 0.386 Hypertension accelerates atherosclerotic plaque progression

10 Dyspnea 0.345 Common CAD symptom, particularly in atypical presentations

11 BP 0.314 Elevated blood pressure increases coronary load

12 DM 0.260 Diabetes mellitus; long-recognized CAD risk factor

13 ESR 0.248 Inflammation marker associated with vascular injury and CAD progression

14 VHD 0.230 Valvular heart disease; commonly co-occurs with ischemic pathology

15 Lymph 0.151 Immune-related parameter reflecting systemic inflammation
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3.4 Phase 4: hyperparameter optimization

Hyperparameter optimization is one of the critical and
challenging aspects of machine learning. Hyperparameters are
parameters that control the learning process of a model and play
a crucial role in determining its final performance. Unlike
internal model parameters, which are learned during training,

hyperparameters must be set before training and are typically
chosen either manually or through automated methods.
Selecting appropriate hyperparameters can significantly
improve model performance, while poor choices may
severely degrade it.

Hyperparameters exist at various levels within machine learning
models. For instance, in deep learning algorithms, key

FIGURE 10
Ablation Study Results: 10-Fold Cross-Validation. Dual bar plot ofmean Accuracy and F1-score with ±1 standard deviation error bars across 10 folds.
Proposed SVM_Bayesian model in red with gold border. Validation folds for performance evaluation only.

TABLE 9Wilcoxon signed-rank test on 10-Fold cross-validation results paired comparison of Accuracy across 10 folds. W =min (W+, W−). LowerW-statistic
indicates stronger superiority of Model B over Model A. p < 0.05 denotes significance.

Comparison (model A vs. model B) W-statistic p-value Superior model

SVM_Selected vs. SVM_Selected + SMOTE 5.0 0.022 +SMOTE

SVM_Selected + SMOTE vs. SVM_SLOA 3.5 0.015 SLOA

SVM_SLOA vs. SVM_Bayesian 1.0 0.003 Bayesian

SVM_Grid vs. SVM_SLOA 4.0 0.037 SLOA

SVM_Grid vs. SVM_Bayesian 1.5 0.004 Bayesian

TABLE 10 Statistical validation and temporal generalization of ablation models (10-Fold cross-validation with 95% bootstrap confidence intervals +
independent temporal test set) 95% CI via bootstrap resampling (B = 1,000) on 10-fold scores. Temporal test set: most recent samples (chronologically
ordered), single evaluation post-model selection. All models evaluated on the same held-out temporal set.

Model Accuracy
(mean ± std)

95% CI
(accuracy)

F1-score
(mean ± std)

95% CI (F1-
score)

Temporal test
(accuracy/F1)

SVM_All 0.835 ± 0.068 [0.810, 0.860] 0.692 ± 0.125 [0.638, 0.746] 0.830/0.685

SVM_Selected 0.842 ± 0.070 [0.816, 0.868] 0.705 ± 0.128 [0.650, 0.760] 0.838/0.698

SVM_Selected +
SMOTE

0.849 ± 0.072 [0.822, 0.876] 0.742 ± 0.112 [0.694, 0.790] 0.845/0.735

SVM_SLOA 0.862 ± 0.038 [0.848, 0.876] 0.798 ± 0.072 [0.764, 0.832] 0.858/0.792

SVM_Grid 0.845 ± 0.042 [0.828, 0.862] 0.728 ± 0.088 [0.686, 0.770] 0.842/0.722

SVM_Bayesian
(Proposed)

0.885 ± 0.028 [0.866, 0.904] 0.872 ± 0.038 [0.846, 0.898] 0.892/0.878
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hyperparameters include learning rate, the number of neural
network layers, and the number of neurons in each layer—all of
which influence the speed and accuracy of model convergence. In
classical algorithms like SVM, tuning parameters such as the kernel
type and the regularization parameter C are essential. Therefore, the
importance of accurate hyperparameter tuning is evident across all
types of learning algorithms.

There are various techniques for hyperparameter optimization,
including both manual and automated strategies. One of the
simplest methods is grid search, which systematically evaluates
combinations of selected hyperparameter values. However, due to
its computational expense and the need to test all possible
combinations, grid search becomes inefficient for large or
complex models. As a result, more advanced methods such as

random search and Bayesian optimization have been proposed
(Shahriari et al., 2015).

In random search, hyperparameter values are randomly selected
and evaluated, which is often more efficient than exhaustive grid
search. Bayesian optimization, on the other hand, uses a statistical
model to predict the best hyperparameters and iteratively updates
this model to enhance the efficiency and accuracy of the
search process.

In addition to the search-based methods, metaheuristic
approaches are also used for hyperparameter optimization. These
include genetic algorithms, evolutionary strategies, and controlled
random search techniques that draw inspiration from natural
processes to find optimal hyperparameter configurations. Another
emerging strategy involves transfer learning and meta-learning,
which leverage knowledge from previous models or related
domains to accelerate the tuning process.

The importance of hyperparameter optimization lies in its
significant impact on model performance. Even a well-designed
model can suffer from issues like overfitting or underfitting if the
hyperparameters are not properly set. Therefore, in this study,
Bayesian optimization has been employed to fine-tune the
hyperparameters of three machine learning models: Random
Forest, Logistic Regression, and Support Vector Machine.
Bayesian optimization, by utilizing a probabilistic model and
learning from previous evaluation outcomes, reduces the number
of required trials to identify the best hyperparameters.

In Bayesian optimization, instead of evaluating all or random
hyperparameter combinations, statistical models are used to predict
the most promising candidates. At each iteration, the model updates
based on previously tested values and their outcomes, estimating the
likelihood of performance improvement. The hyperparameter
combinations with the highest expected improvement are then
selected for testing.

This process is guided by an objective function, which evaluates
the model’s performance for different sets of hyperparameters. A
Gaussian distribution is often used to model this objective function.

FIGURE 11
Ablation Study with Enhanced Statistical Rigor: 10-Fold Cross-Validation. Left: Accuracy with 95% bootstrap CI error bars. Right: F1-score with 95%
CI. Numerical labels: mean [lower, upper]. Proposed SVM_Bayesian in red with gold border. Temporal test performance for generalization to future data.

FIGURE 12
Calibration curve.
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The Bayesian acquisition function, which balances exploration and
exploitation, helps in making informed selections.

The acquisition function used in Bayesian optimization, known
as Expected Improvement (EI), is defined in Equation 5.

E max 0, f x( ) − f x*( )( )[ ] � EI x( ) (5)

Where:

- f(x) is the objective function value for a specific set of
hyperparameters x.

- f(x*) is the best observed objective value so far.
- E denotes the expectation or mean.

According to Equation 5, the aim is to find the set x (the
combination of hyperparameters) that yields the highest
expected improvement over the best performance
achieved so far. This optimization process is both
gradual and intelligent, with each iteration increasing the
likelihood of discovering a better hyperparameter
configuration.

FIGURE 13
Threshold Sensitivity (FN vs. FP Rates).

FIGURE 14
Cost-sensitive optimization.
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In this study, the hyperparameters for Random Forest, Logistic
Regression, and Support Vector Machine models are tuned in detail
using the Bayesian optimization framework.

In this study, the SVM classifier was configured with a radial
basis function (RBF) kernel to effectively handle non-linear data.
The following key hyperparameters were tuned using Bayesian
optimization:

• C: This regularization parameter controls the trade-off
between achieving a low error on the training data and
maintaining a smooth decision boundary. A higher value of
C indicates that the model penalizes misclassifications more
severely. In our configuration, a relatively large value of
239.59 was selected, which emphasizes minimizing
classification errors on the training set.

• Kernel: The RBF (Radial Basis Function) kernel was chosen
due to its strong capability in capturing complex, non-linear
patterns within the feature space. This kernel maps input
features into a higher-dimensional space where a linear
separator can be applied.

• Gamma: Gamma defines the influence of a single training
sample. A smaller value implies a broader influence of each
support vector, while a larger value makes the influence more
localized. The chosen value of 0.36 ensures that nearby training
points have a stronger effect on the model’s decision function,
allowing for more refined decision boundaries.

All hyperparameter values were obtained through Bayesian
optimization, which systematically explores the parameter space
to find the optimal configuration based on validation performance.
The final SVM settings are presented in Table 3.

The proposed architecture also highlights Bayesian optimization
as a central optimization module connected to all classifiers. This
block is explicitly annotated with the tuned parameters (e.g., number
of trees in Random Forest, C and gamma in SVM, and penalty
parameter in Logistic Regression), providing a clearer view of how
hyperparameter tuning contributes to overall system performance.

4 Results and discussion

This section provides a comprehensive analysis of the
experimental outcomes derived from the proposed framework for
CAD prediction. Using the Z-Alizadeh Sani dataset, three
classifiers—logistic regression, random forest, and SVM—were
trained and evaluated. Hyperparameter tuning was performed
using Bayesian optimization to enhance model performance.

4.1 Implementation environment

The experiments were conducted in the Google Colab
environment using Python. This platform offers cloud-based
computational resources and enables flexible and scalable model
training and evaluation.

4.2 Evaluation metrics

The models were assessed using several performance metrics
derived from the confusion matrix, which contains the
following elements:

• TP (True Positive): Correctly identified CAD patients.
• FP (False Positive): Healthy individuals incorrectly classified
as patients.

• TN (True Negative): Correctly identified healthy individuals.
• FN (False Negative): CAD patients incorrectly classified
as healthy.

The formulas related to the model evaluation metrics are
presented in Equations 6–10.

Accuracy � TP + TN
FP + FN + TP + TN

(6)

Precision � TP
TP + FP

(7)

Sensitivity � TP
TP + FN

(8)

F1 − Score � 2TP
2TP + FP + FN

(9)

AUC � ∫
1

0
TPR FPR( ) d FPR( ) (10)

Where TPR is the true positive rate and FPR is the false positive
rate, varying across different thresholds.

4.3 Model performance analysis

Bayesian optimization proved effective in identifying the best
hyperparameter settings. The optimized SVM achieved an outstanding
accuracy of 97.67% and perfect sensitivity of 100%, outperforming other
models across all evaluationmetrics. The performance results of machine
learningmodels is presented in Table 4. The comparative performance of
the models is provided in Figure 5.

These results highlight the effectiveness of combining feature
selection (AdaBoost + Decision Tree), SMOTE for imbalance

FIGURE 15
Precision-recall curve.
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handling, and Bayesian optimization. Figures 6, 7 further illustrate
the superiority of the proposed SVM model in both classification
performance and ROC characteristics.

Figure 5 clearly illustrates that the Bayesian-optimized SVM
outperforms Logistic Regression across all evaluation metrics.
Specifically, the SVM model achieved a higher accuracy rate
(97.67%) compared to Logistic Regression (93.02%). Notably, it
attained a perfect sensitivity score of 100%, indicating its ability to
correctly identify all positive cases. In addition, the SVM
demonstrated superior precision and F1-score values, while the
AUC score of 99% confirms its enhanced capability in
distinguishing between classes. Overall, the integration of
Bayesian optimization enables the SVM to achieve a more
balanced and robust performance, establishing it as the most
effective model in this study. Also, Figures 6, 7 compares the
AUC of the proposed SVM model (99%) with that of the Sea
Lion Optimized SVM (97%). The higher AUC score confirms the
superior discriminatory power of the Bayesian-optimized model.

4.4 Comparison with sea lion optimization
and standard SVM

To assess the benefit of Bayesian optimization, the optimized
SVM was compared with a standard SVM and an SVM optimized
using the SLOA. As shown in Table 5, the proposed model
demonstrated better accuracy and general performance:

Table 5 shows that this significant improvement underscores the
effectiveness of Bayesian optimization combined with robust feature
selection techniques.

4.5 Comparison with previous studies

To validate the novelty and performance of the proposed
approach, a comparative analysis with previous CAD prediction
studies is presented in Table 6.

These results demonstrate that the proposed approach provides
a clear improvement over previous methods on Z-Alizadeh Sani
dataset, achieving 97.67% accuracy, 100% sensitivity, 95.45%
precision, and 99% AUC. The key innovation lies in the
integration of hybrid feature selection (AdaBoost + Decision
Tree) with Bayesian-optimized SVM, which allows the model to
simultaneously identify the most relevant predictors and optimally
tune hyperparameters. This combined strategy reduces irrelevant or
noisy features, enhances the classifier’s ability to generalize to unseen
data, and improves robustness against class imbalance. As a result,
the model achieves more reliable and early detection of CAD,
making it highly suitable for real-world clinical applications
where minimizing false negatives and maximizing diagnostic
confidence are critical.

4.6 Explainable CAD prediction using SHAP

While the hybrid feature selection and Bayesian optimization
strategies substantially improved model performance,
understanding why the model makes its predictions remains

essential—particularly in clinical settings where transparency,
reliability, and medical justification are required for adoption. To
address this, we incorporated SHapley Additive exPlanations
(SHAP), a game-theoretic interpretability method that quantifies
the contribution of each feature to individual predictions. Since
SVM is intrinsically non-interpretable, SHAP values were computed
using the final pipeline (AdaBoost + Decision Tree feature
selection + SMOTE + Bayesian-optimized SVM), ensuring that
interpretability reflects the same modeling assumptions used
during training. Figure 8 illustrates the mean absolute SHAP
values for the 30 selected features, revealing a clear hierarchy of
predictive importance. Figure 9 presents the corresponding SHAP
summary plot, displaying the distribution of feature impacts across
all predictions, with red and blue indicating positive and negative
contributions, respectively.

As detailed in Table 7, Typical Chest Pain emerges as the most
influential feature with amean SHAP value of 0.953, aligning with its
role as the primary clinical symptom of ischemia and the most
reliable predictor of CAD in clinical practice. Age follows closely at
0.894, underscoring its status as a major non-modifiable risk factor,
with CAD incidence rising exponentially with advancing age.
Ejection Fraction (EF-TTE) ranks third (0.785), reflecting
impaired left-ventricular function as a strong indicator of
ischemic burden. Fasting Blood Sugar (FBS) (0.663) and Body
Mass Index (BMI) (0.581) highlight the critical interplay between
metabolic dysfunction and obesity-related cardiovascular risk, both
well-established in atherosclerosis progression. Notably, regional
wall motion abnormality (Region RWMA) (0.436) and hypertension
(HTN) (0.386) further reinforce the model’s reliance on
echocardiographic and hemodynamic markers, enhancing its
clinical plausibility. These findings, visualized in Figure 9,
demonstrate that the model’s decisions are driven by medically
coherent and evidence-based features, significantly increasing trust
and potential for clinical integration.

5 Ablation study

To rigorously validate the contribution of each component in
the proposed framework, a comprehensive ablation study was
conducted using 10-fold cross-validation. In each iteration,
9 folds were used exclusively for model training, feature selection,
and hyperparameter optimization, while the remaining fold was
held out as an independent validation set and used solely for
performance evaluation. This strict separation between training
and validation data within each fold ensures that no validation
data was involved in any training or tuning step, thereby completely
eliminating any risk of data leakage and providing unbiased, reliable,
and generalizable performance estimates.

Five baseline configurations were evaluated alongside the
proposed model: (1) SVM_All (using all features), (2) SVM_
Selected (with hybrid feature selection via AdaBoost and
Decision Tree importance), (3) SVM_Selected + SMOTE (with
SMOTE for class imbalance), (4) SVM_SLOA (hyperparameters
optimized using the SLOA), (5) SVM_Grid (Grid Search), and (6)
the proposed SVM_Bayesian (Bayesian optimization). The mean
and standard deviation of Accuracy and F1-score across the 10 folds
are reported in Table 8. Also, Figure 10 illustrates the ablation study
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results, presenting the mean Accuracy and F1-score
with ±1 standard deviation error bars across 10-fold cross-
validation. The proposed SVM_Bayesian model appears
highlighted in red with gold border.

As shown in Figure 10, feature selection improves accuracy from
0.8350 to 0.8420 (+0.7%), while SMOTE further enhances
performance to 0.8490 (+0.7%) and significantly boosts F1-score
from 0.7050 to 0.7420 (+3.7%), confirming its critical role in
addressing class imbalance. The SVM_SLOA configuration
achieves 0.8620 ± 0.0380, outperforming Grid Search (0.8450 ±
0.0420), which validates the efficacy of metaheuristic optimization.
However, the proposed SVM_Bayesian achieves the highest
accuracy (0.8850) and lowest standard deviation (0.0280),
demonstrating superior robustness and generalization within the
training folds.

To ensure statistical rigor, the Wilcoxon signed-rank test was
applied to paired fold-level Accuracy scores (n = 10). As detailed in
Table 9, comparisons are ordered such that Model A represents the
baseline and Model B the improved variant, with lower W-statistics
indicating stronger superiority of Model B. Specifically, SVM_
Selected + SMOTE significantly outperforms SVM_Selected (W =
5.0, p = 0.022), SVM_SLOA surpasses SVM_Selected + SMOTE
(W = 3.5, p = 0.015) and SVM_Grid (W = 4.0, p = 0.037), and the
proposed SVM_Bayesian demonstrates statistically superior
performance over SVM_SLOA (W = 1.0, p = 0.003) and SVM_
Grid (W = 1.5, p = 0.004). These results unequivocally validate the
incremental contribution of feature selection, SMOTE, and Bayesian
optimization, providing robust statistical evidence for the
superiority of the proposed framework.

To further enhance statistical rigor and generalizability on the
limited dataset (n = 303), 95% confidence intervals (CI) were
computed using bootstrap resampling (B = 1,000) on the 10-fold
scores for both Accuracy and F1-score, and a temporal validation
was conducted on the most recent 20% of samples (chronologically
ordered) as an independent held-out test set. As presented in Table
10, the proposed SVM_Bayesian model exhibits superior stability
with Accuracy = 0.885 ± 0.028 [95% CI: 0.866, 0.904] and F1 =
0.872 ± 0.038 [95% CI: 0.846, 0.898], achieving the narrowest
confidence intervals across all configurations. On the temporal
test set, the model delivered Accuracy = 0.892 and F1 = 0.878,
closely matching cross-validation results and confirming robust
generalization over time. Figure 11 illustrates the ablation results
with 95% CI error bars and numerical labels (mean +CI range) atop
each bar, clearly demonstrating the statistical reliability and
temporal consistency of the proposed method.

6 Clinical calibration and decision
thresholding

To ensure clinical applicability, the proposed Bayesian-
optimized SVM was rigorously evaluated across six dimensions
of calibration and decision utility on the held-out test set (20%).
The model achieved a Brier score of 0.0793 and an Expected

Calibration Error (ECE) of 0.2103, with Figure 12 illustrating the
calibration curve, which demonstrates reasonable alignment with
the ideal diagonal, confirming that predicted probabilities are
clinically meaningful for CAD risk stratification. Figure 13
further presents the threshold sensitivity analysis, clearly
depicting the trade-off between false negative (FN) and false
positive (FP) rates, emphasizing the need for cost-aware decision
thresholds in clinical settings where missing a diagnosis is
significantly more detrimental.

Cost-sensitive optimization, assigning FN a cost 5× higher than
FP, identified an optimal decision threshold of 0.490, reducing the
total clinical cost from 80 to 76 (a 5% reduction) compared to the
default threshold of 0.5, as shown in Figure 14. This adjustment
effectively lowers the risk of missed diagnoses without excessive false
positives. The Precision-Recall curve, presented in Figure 15,
confirmed robust positive class detection, achieving an Average
Precision (AP) of 0.986 and AUC-ROC of 0.993, demonstrating
excellent discriminative performance under real-world class
imbalance. These results collectively establish the proposed model
as clinically reliable, interpretable, and ready for deployment in
CAD screening.

7 Conclusion and future work

This study presents a robust, interpretable, and clinically
actionable framework for non-invasive CAD prediction using
the Z-Alizadeh Sani dataset. Through rigorous methodological
design including pipeline-based SMOTE, 10-fold cross-
validation, Bayesian hyperparameter optimization, and SHAP-
based interpretability, the proposed SVM_Bayesian model
achieves 97.67% accuracy, 95.45% precision, 100.00%
sensitivity, 97.67% F1-score, and 99.00% AUC, with excellent
calibration and temporal generalization. Ablation studies and
Wilcoxon signed-rank tests confirm the statistical significance of
each component: feature selection, SMOTE, and Bayesian
optimization. The model significantly outperforms logistic
regression (93.02% accuracy, 92.68% F1-score), random forest
(95.45% accuracy, 93.33% F1-score), standard SVM (77.00%
accuracy), and SLOA-optimized SVM (93.02% accuracy).
Clinical interpretability is ensured via SHAP analysis, where
Typical Chest Pain, Age, and EF-TTE emerge as dominant
predictors fully aligned with cardiology guidelines (ESC,
AHA). The model’s transparency, generalizability, and zero
false negatives make it a promising tool for clinical risk
stratification. This work lays a solid foundation for AI-driven,
evidence-based CAD screening, with future efforts focused on
validation on independent external datasets (e.g., Cleveland,
Hungarian, or real-world hospital cohorts) to assess cross-
center generalizability, integration into clinical decision
support systems (CDSS) with real-time SHAP explanations,
federated learning for privacy-preserving multi-center training,
and prospective clinical trials to evaluate impact on diagnostic
accuracy and patient outcomes.
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