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Editorial on the Research Topic
Cell death in cancer immunology

The relationship between cell death and cancer immunology has been studied for
decades with different approaches, as cell death plays a crucial immunomodulatory role in
tumor initiation, progression and metastasis (1). Research has focused on understanding
the immune system’s role in tumor cell resistance to cell death; discerning how cell death
paradoxically promotes immunosuppression and tumor progression; explaining the
mechanisms by which cell death induces tumor immunogenicity; studying the
immunomodulatory effects of dead or dying tumor cells on tumor microenvironment;
and investigating how various immunotherapies trigger tumor cell death.

Given the complex interplay between cancer immunology and cell death, this Research
Topic of fourteen articles highlights the latest advances in the field through three reviews
and eleven original studies. These works can be categorized into two main axes: 1) the
development of prognostic models using machine learning, multiomics and patient
datasets, and 2) the identification and validation of new biomarkers and therapies
focused on the activation of the immune system.

In the last decades, the rise of “omic” technologies has enabled the development of
clinical prediction models aimed at improving medical decision-making, enhancing
patient’s outcomes, and identifying novel biomarkers and therapeutic targets. In the on-
going quest for better treatments and ways to overcome cancer cell death resistance and
immune evasion, new cell death mechanisms linking these processes have been discovered,
offering fresh new strategies to combat cancer.

This is the case of disulfidptosis, a recently described new form of cell death caused by
disulfide stress (2). Disulfides are produced in response to oxidative stress to help maintain
the secondary, tertiary, and quaternary structures of proteins by acting as inter- and intra-
subunit cross-links. Excessive intracellular accumulation of disulfides solute carrier family 7
member 11 (SLC7A11) induces, together with glucose starvation, aberrant disulfide bonds
formation between actin cytoskeleton, causing its collapse in a particular and orderly
manner. Overexpression of SLC7A11 and GLUT inhibitors has proved to inhibit tumor
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growth, which may contribute to the development of a new
therapeutic strategy against cancer.

Consequently, multiple works have been undertaken to answer
these questions in the last months, mostly by predictive models
development. In this sense, Li et al. make use of 20 diagnosed-
related groups (DRGs) and LASSO and Cox regression analysis to
provide, among other immune cell infiltration patterns, a new
potential therapeutic target: POU Class 4 Homeobox 1
(POUA4F1), which promotes cell proliferation, migration and,
most importantly, disulfidptosis in colon adenocarcinoma
(COAD) patients. In a broader application, Wang et al. also
develop a similar analysis making use of disulfidptosis-related
genes identified from CRISPR-Cas9 screenings leading to the
identification of neuronal acetylcholine receptor subunit alpha-5
(CHRNAD5) as a potential therapeutic target due to its impact on cell
proliferation, migration, and disulfidptosis in the context of lung
adenocarcinoma (LUAD). Finally, Zhang et al. focused on Methods
Public datasets to develop a prognostic model for LUAD to predict
patient’s survival and the efficacy of immune checkpoint blockage
considering the expression of disulfidptosis-related genes.

Yang et al. also explore disulfidptosis and immune
microenvironment to develop a new prognostic model to identify
therapeutic targets for hepatocellular carcinoma (HCC) utilizing
bulk ribonucleic acid (RNA) sequencing, spatial transcriptomic
(ST) and single-cell RNA sequencing. Their findings reveal that
N-myc downregulated gene 1 (NDRGI) influences macrophage
differentiation and enables tumor cells to evade the immune system.
Similarly, Zheng et al. leverage RNA sequencing data and clinical
information from HCC patients in the The Cancer Genome Atlas
(TCGA) to create a predictive model for chemotherapy sensitivity
and immunotherapy efficacy in HCC.

To finish the first axis, ferroptosis, a form of cell death
dependent on iron and characterized by the accumulation of
lipid peroxides, and fatty acid metabolism (FAM) in the tumor
microenvironment (TME), is reviewed by Guo et al. in the context
of ovarian cancer and its role in tumor suppression (3, 4).
Ferroptosis role in the onset, progression, and incidence of
ovarian cancer and their synergy with immunotherapy is defined
together with new potential treatments based on these facts. Then,
Zhu et al. explore the relationship between ferroptosis and patients
outcome in colorectal cancer (CRC) with the objective of
anticipating immunotherapy effectiveness. They make use of
TCGA and GEO databases to create the FeFAMscore, which
proved that ferroptosis regulators and FAM-related genes not
only enhance immune activation, but they also contribute to
immune escape. Finally, Wang et al. describe the generation of
the PANoptosis-model, based on PANoptosis cell death, which is
initiated by innate immune sensors and driven by caspases
and receptor-interacting protein kinases (RIPKs) through the so-
called PANoptosome complexes. They make use of clinical and
single-cell data from breast cancer patients and validate them by
means of immunohistochemistry (IHC) assays, proving how this
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model can help in predicting breast cancer prognosis and
treatment personalization.

Regarding the second set of articles of this Research Topic,
Shabrish et al. takes profit of cell-free chromatin particles (cfChPs)
circulating in blood of cancer patients or that have been released by
dying cancer cells, which upon internalization by healthy cells can
modulate the activation of immune checkpoints, providing a novel
form of immunotherapy of cancer. Verhaar et al. make use of MHC
class I chain related-proteins A and B (MICA, MICB) glycoproteins
present on the surface of epithelial and hematopoietic cancer cells
and that bind to natural killer group 2D (NKG2D) and activate the
immune system. By means of nanobodies, Verhaar et al. surface-
dispose MICA together with the Maytansine derivative DM1,
selectively killing MICA positive tumor cells in vitro.

Additionally, with the goal of providing a long-term cancer
protection, Wang et al. review therapeutic strategies to enhance the
immunogenicity of dying tumor cells leading to achieve more
effective and sustained immune activation. They focus on
strategies for inducing ICD and designing vaccines that introduce
more immunogenic antigens and stimulating factors.
Complementing this review, Budhu et al. provide a practical
approach, addressing the common issue of immunotherapy
failure due to the lack of immune infiltrates in tumor. They
compare the effectiveness of anti-PD1 therapy combined with
radiation therapy (RT), vascular targeted photodynamic therapy
(VIP) and cryoablation (Cryo), demonstrating that these tumor
destruction methods can indeed improve therapy outcomes by
eliciting different immune responses.

Taking into account the effect of damage-associated molecular
patterns (DAMPs) and certain cytokines and chemokines in ICD,
Naessens et al. explore the intricate role of CX3CLI in
immunogenic apoptosis induced by mitoxantrone (MTX) in
cancer cells. CX3CL1, which exerts a role in cellular signaling and
immune cell interactions, has been denoted as a “find me” signal
that stimulates chemotaxis of immune cells towards dying cells,
facilitating efferocytosis and antigen presentation. Its role in ICD in
melanoma and fibrosarcoma cells is described by studying its role
upon the activation of an adaptive immune response against cancer
cells undergoing ICD.

To conclude this Research Topic focused on non-invasive
biomarkers for better diagnostics and prognostics in CRC and
liver cancer, de Castro et al. provide a revision on advanced
cytometry panels covering over 40 parameters (computational
cytometry) that make use of elemental mass spectrometry to
detect metal-conjugated antibodies bound to antigens of interest
on single cells. This next generation flow cytometry platform can be
applied to the study of the immune system and the search of novel
biomarkers to aid in diagnosis and prognosis, and to even predict
clinical response to different treatments.

We believe that, collectively, these fifteen contributions in “Cell
Death in Cancer Immunology” will provide a comprehensive
description of current genomic strategies for the development of
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new prognostic methods based on the study of molecular,
immunological, and therapeutic aspects of cancer cell death, and
potential development of new biomarkers for therapeutic gain in
the context of immune system activation.
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Background: Hepatocellular carcinoma (HCC) is a malignant tumor with a
high rate of recurrence and m metastasis that does not respond well to current
therapies and has a very poor prognosis. Disulfidptosis is a novel mode of cell
death that has been analyzed as a novel therapeutic target for HCC cells.

Methods: This study integrated bulk ribonucleic acid (RNA) sequencing
datasets, spatial transcriptomics (ST), and single-cell RNA sequencing to
explore the landscape of disulfidptosis and the immune microenvironment
of HCC cells.

Results: We developed a novel model to predict the prognosis of patients
with HCC based on disulfidptosis. The model has good stability, applicability,
and prognostic and immune response prediction abilities. N-myc
downregulated genel (NDRGI1) may contribute to poor prognosis by
affecting macrophage differentiation, thus allowing HCC cells to evade the
immune system.

Conclusion: Our study explores the disulfidptosis of HCC cells through
multi-omics and establishes a new putative model that explores possible
targets for HCC treatment.

KEYWORDS

HCC, disulfidptosis, putative model, immune microenvironment, NDRG1
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1 Introduction

Liver cancer is the third most common cause of cancer deaths
worldwide, accounting for 8.3% of the overall cancer mortality (1).
Hepatocellular carcinoma (HCC) accounts for about 85%-90% of
all primary liver malignancies (2). Although new therapies have
emerged, like immunotherapy, targeted therapy, and radiation
therapy, the five-year survival of advanced HCC is less than 15%
(3). New immune checkpoint inhibitors, such as Nivolumab,
Atezolizumab, and Ipilimumab, are currently on the market, but
their therapeutic efficacy is not promising, possibly due to immune
escape (4). A lack of effective treatment has prompted a search for
new biomarkers.

Programmed cell death is associated with numerous
pathophysiological processes, including tumor progression and
alterations in the surrounding immune microenvironment (5).
Several new cell death models have recently arisen: apoptosis,
cuproptosis, ferroptosis, necroptosis, lysosome-dependent cell
death, immunogenic cell death, and autophagy-dependent
cell death (6, 7). Liu et al. recently discovered a new mode of
cell death: disulfidptosis. In glucose-starved cells overexpressing
solute carrier family 7 member 11 (SLC7A11), disulfidestress
caused by excessive intracellular cystine accumulation can cause
rapid cell death (8). Normal disulfide bonds between cytoskeletal
proteins are disrupted by accumulation of disulfide material,
leading to collapse of the histone skeleton and cell death.

10.3389/fimmu.2023.1294677

Glucose transporter inhibitors trigger disulfidptosis and suppress
tumor proliferation.

The bulk ribonucleic acid (RNA) sequencing is the average
messenger RNA (mRNA) expression in all cells, which does not
reflect the state of single cells in the tissue. Single-cell RNA sequencing
(scRNA-seq) enables a detailed analysis of the tumor
microenvironment heterogeneity at the single-cell resolution level (9,
10). However, scRNA-seq fails to preserve the tissues’ spatial
structures. The complicated cellular interactions that transpire
across the entire tissue space cannot be accurately deciphered. The
advent of spatial transcriptomics (ST) technology facilitates the spatial
exploration of gene expression and preserves cell arrangements during
multicellular tissue analysis. Thus, combining single-cell technology
with ST may detect details regarding heterogeneous cell populations
and provide insight into spatial tissue organization (11, 12).

In our study, we employed a multi-omics strategy to investigate
the landscape ofdisulfidptosis in HCC. We constructed a survival
prognostic model using bulk RNA sequencing and confirmed the
model has good prognostic and immune response prediction
abilities. Importantly, our findings revealed elevated expression
levels of N-myc downregulated genel (NDRGI1) was expressed
more in tumor macrophages and promoted Polarization of M2-
type macrophages. These findings provide a theoretical basis for
exploring effective biomarkers in HCC and improving the efficacy
of anti-tumor immune therapy. Outline of the study design is

shown in Figure 1.
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FIGURE 1
Study flow chart.
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2 Results

2.1 The expression of disulfidptosis related
genes in pan-cancer

We established a protein-protein correlation network with 15
DRGs (Figure 2A), which was derived from previous research (8)
and identified SLC7AI11 as a key player within this network.
Furthermore, we employed the Single-sample Gene Set
Enrichment Analysis (ssGSEA) algorithm to assess the
disulfidptosis score in pan-cancer. The results revealed a positive
normalized enrichment score, indicating upregulation of
disulfidptosis. In bladder urothelial carcinoma (BLCA), the
normalized enrichment score was negative and disulfidptosis was
downregulated (Figure 2B). In HCC, the expression levels of
SLC7A11, inverted formin 2 (INF2), myosin heavy chain 9
(MYHY), CD2 associated protein (CD2AP), filamon B (FLNB),
actinin alpha 4 (ACTN4), capping actin protein of muscle Z-line
subunit beta (CAPZB), actin B (ACTB), PDZ and LIM domain 1
(PDLIM1), filamin A (FLNA), myosin light polypeptide 6 (MYL6),
talin 1 (TLN1), and destrin (DSTN) were remarkably higher than
the normal tissues. MYH10 and Ras GTPase-activating-like protein
(IQGAP1) (Figure 2C) were not higher, although this difference was
not statistically significant. We then evaluated the expression of
DRGs in tissue sections using ST analysis. Generally, DRGs were
highly expressed around and in tumors, except for MYH9 and
MYHI10 (Figure 2D). To investigate their mutations, we
downloaded copy number variation (CNV) and single nucleotide
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variants (SNV) data from the The Cancer Genome Atlas (TCGA)
database. Figure 2E displays the positions of CNV changes in DRGs
on their corresponding chromosomes. Despite the high frequency
of deletions in MYH10 and FLNA, CNVs were still common and
mostly involved in amplification (Figure 2F). We then analyzed the
prevalence of SNV in 15 DRGs and found that 31 (8.54%) of 367
liver hepatocellular carcinoma (LIHC) samples showed mutations
in the DRGs. Among them, IQGAP1, FLNB, and TLN1 had the
maximum mutation frequency (2%), followed by MYH10, INF2,
and FLN1, while others displayed no obvious mutations
(Figure 2G). Thus, our results suggest that DRGs may act in pan-
cancer onset and progression.

2.2 Methylation levels and drug sensitivity
of DRGs

Figure 3A shows the methylation levels of DRGs in pan-cancer.
CD2AP had the lowest methylation level in uterine corpus
endometrial carcinoma (UCEC), and IQGAPI had the highest
methylation level in UCEC. Except for ACTB in Thymoma and
Ovarian Cancer, the methylation levels of DRGs in pan-cancer had
different degrees of negative correlation with mRNA expression
(Figure 3B). Drug sensitivity prediction against DRGs using two
drug sensitivity databases revealed that the drugs with the strongest
predictive sensitivity in the GDSC were FK866, WZ3105, Ispinesib
Mesylate, and SB52334. In the Cancer Therapeutics Response Portal
(CTRP) database, the drugs with strong predictive sensitivity were

* GAIN -«

LR R I )

©

Alered in 31 (845% of 367 sampls.

Landscape of DRGs in pan-cancer. (A) The correlation network of the 15 DRGs. (B) The enrichment score of DRGs in pan-cancer. (C) The different
expression of DRGs between HCC and normal tissue. (D) Spatial expression levels of DRGs in HCC tissue sections. (E) The location of the CNV
alteration of the changes in DRGs in 23 chromosomes. (F) The frequency of CNV variation in DRGs (blue: CNV deletion; red: CNV amplification).
(G) Analysis of SNV in DRGs. ns, not statistically significant; *P< 0.05; **P< 0.01; ***P< 0.001; ****P< 0.0001.
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CR-1-31B, belinostat, Palmitoyl-DL-carnitine hydrochloride
(PDMP), Repligen 136, and triptolide (Figures 3C, D).

2.3 Identification and exploration of DRGs
in HCC

An unsupervised consistent cluster analysis of patients with
HCC based on the expression of DRGs yielded two disulfidptosis
subgroups (Figures 4A-D). We performed principal component
analysis (PCA) and uniform manifold approximation and
projection (UMAP) analyses and observed that the two clusters
were separated in space (Figures 4E, F). Survival analyses for both
groups of patients indicated a significant difference in their survival
time (Figure 4G), with cluster] showing a better prognosis. Similar
clustering modes were noted in the TCGA dataset (Supplementary
Figure 1A-D). The results of different datasets were highly
consistent, further demonstrating the reliability and stability of

our typing.

2.4 Disulfidptosis score and weighted gene
co-expression network analysis

We utilized the “gene set variation analysis (GSVA)” R package

plage,”
score gene expression in the metadata associated with disulfidptosis.

» «

to apply the “gsva, “zscore,” and “ssgsea” algorithms to
The average value of these scores was calculated. Pearson’s
correlation method and the mean linkage method were employed
to correlate the dendrograms of the samples with disulfidptosis
score traits (Figure 5A). To construct co-expression networks, we
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performed co-expression analysis with a soft threshold of 18 (scale-
free R* = 0.9) to ensure a scale-free network. The dendrograms of all
differentially expressed genes were clustered based on the
differential measure (1-TOM) (Figures 5B, C). Through
hierarchical clustering, a total of nine units were identified.
Among these units, we selected the blue module, which exhibited
the highest correlation with the disulfidptosis score, as the clinically
significant module for further analysis. Within the blue module, we
identified 753 phenotypic genes (Figure 5D).

2.5 Construction and verification of the
blue module-based prognostic signature

We performed a univariate Cox regression analysis on 753
phenotypic genes and screened 507 candidate genes with prognostic
values (Supplementary Figure-2). After performing a LASSO
regression analysis (Figures 6A-C) and multivariate Cox
regression analysis, we obtained a six-gene model. G protein
nucleolar 2 (GNL2), NDRGI, transmembrane and coiled-coil
domains 3 (TMCO3), tribbles pseudokinase 3 (TRIB3), carbonyl
reductase 4 (CBR4), and SEC31 homolog B, COPII coat complex
component (SEC31B) were the prognostic indicators for
establishing a risk model with a C-index of 0.717. Based on the
median risk score, we classified patients into low- (n = 223) and
high-risk groups (n = 222).

We plotted and compared survival analysis and recipient work
characteristic curves to determine the accuracy of the prognostic
characteristic predictions. According to the Kaplan-Meier analysis,
overall survival (OS) was considerably longer in the low-risk group
versus the high-risk group (Figure 6D). The results of the study

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1294677
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yang et al.

A comenss 12 B

Consensus CDF

o clustert =

cluster2

Tracking plot

10.3389/fimmu.2023.1294677

Delta area

retative char

samples. 2

[2}

species
+ cluster!
* cluster2

Survival probabilty

PC3

-15-10-05 00 05 10 15

Number at risk

FIGURE 4

(A) An unsupervised consensus clustering heatmap. (B) The plot of the relative area changes from k = 2 to 9 under the cumulative distribution
function (CDF) curve. (C) Consistent CDF plot. (D) Tracing plot of the clustered samples. (E) Principal Component Analysis. (F) Uniform Manifold

s 188 112 83 34
custer2{ 182 84 45 27

1500 2000 2500
Follow up time(d)

18 6
15 5

3600

3
3

3500

8 500

1000 1500 2000

Follow up time(d)

Approximation and Projection Analysis. (G) The OS curves between clusters.

2500 3000 3500

indicated that in the metadata cohort, the area under the receiver
operating characteristic (ROC) curve of the risk model for one-,
three-, and five-year OS was 0.739, 0.757, and 0.712, respectively.
(Figure 6E). According to the decision curve analysis (DCA), the
risk model predicted favorable net clinical benefits for OS at one,
three, and five years in patients with HCC (Figures 6G-I). To
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FIGURE 5

Weighted gene co-expression network analysis (WGCNA). (A) The cluster dendrogram of co-expression genes in HCC. The red boxes are
dendrogram regions corresponding to disulfidptosis. (B) Cluster analysis of HCC samples to detect outliers (the white-to-red linear gradient color is
associated with the disulfidptosis score, and the grey color indicates missing data). (C) Determination of soft-thresholding power in the WGCNA.

further verify the model’s general applicability, we conducted DCA
analysis, ROC analysis, and Kaplan-Meier analysis on the model
with the validation set TCGA-LIHC and GSE144269. The
validation TCGA-LIHC process demonstrated the model’s
robustness and applicability. Notably, the survival analysis

conducted using the model revealed a significant difference in
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(D) Module-trait relationships in HCC. Each cell contains the corresponding correlation and P-value.
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survival between the high and low-risk groups (P = 0.00091)
(Supplementary Figure 1E). Furthermore, the model’s
performance was evaluated using ROC curves in the validation
set. The area under the curve (AUC) values for 1, 3, and 5 years were
determined to be 0.721, 0.650, and 0.656 (Supplementary
Figure 1F), respectively. These results indicate the model’s ability
to accurately predict patient outcomes. Additionally, the decision
curve analysis demonstrated that the model can provide substantial
net clinical benefits in the validation set (Supplementary Figure 1G).
To further validate the model’s effectiveness, we obtained a new
dataset, GSE144269, from the Gene Expression Omnibus (GEO)
and conducted another round of validation. Remarkably, the results
from this validation set confirmed the previous findings, showing a
significant difference in survival between the high and low-risk
groups (P = 0.029) (Supplementary Figure 1H). The ROC curves for
the model in this validation set yielded AUC values of 0.681, 0.644,
and 0.586 for predicting patient survival at 1, 3, and 5 years
(Supplementary Figure 1I), respectively. Moreover, the DCA
decision curve analysis indicated that the model can provide
substantial net clinical benefits to patients (Supplementary
Figure 1]). Overall, these validation efforts reinforce the reliability
and clinical utility of the prognostic model.

By drawing forest plots of the multifactorial Cox regression
analysis (Figure 6C), we identified SEC31B and CBR4 as the
prognostic protective factors for HCC, whereas the other
prognostic markers were risk factors. To characterize the protein
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expression levels of the signature gene in patients with HCC, we
compared the protein expression profiles identified via
immunohistochemical staining in the HPA database. These
findings suggest that four of the factors in the prognostic profile
(NDRG1, GNL2, TRIB3, and TMCO3) were overexpressed in HCC
tissues (Figure 6]). High expression of SEC31B and CBR4 indicates
a positive prognosis for HCC patients. We included pathologic
staging in the risk score model and developed a nomogram model
to predict one-, three-, and five-year OS (Figure 6F). These findings
indicate that the model has favorable discriminatory power.

2.6 Tumor immune infiltration and
GSVA analyses

To investigate the immune status of various risk groups and
their immunotherapy response, we examined the association
between risk models and infiltrating immune cells. We assessed
differences in the immune status between risk groups by applying
the “xCell” and inverse convolution algorithms. The high-risk
group had relatively higher levels of Th2 cells, Thl cells, iDC,
neutrophils, Macrophages_M1 cells, and CD4 memory T cells.
Levels of the CD8 naive T cells, CD4 Tcm, CD4 naive T cells,
Macrophages M2, and CD8 Tem cells were lower (Figure 7A).

The tumor immune dysfunction and exclusion (TIDE) scores
(Figure 7B, P< 0.0001) and exclusion scores (Figure 7D, P< 0.0001)
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were notably higher, and the dysfunction scores (Figure 7C, P<
0.0001) and microsatellite instability (MSI) scores (Figure 7E, P<
0.0001) were lower in the high-risk group versus the low-risk group.
These outcomes suggest that risk scores in patients with HCC may
indicate lower immune checkpoint blockade therapy efficacy. High-
risk patients may become resistant to immunotherapy. Risk score
may potentially be associated with overexpression of other immune
checkpoint genes (ICGs), rather than the well-known PD-1 or
CTLA4. Figure 7F shows the positive association between risk
scores and CD209, CD47, CD86, LGALS9, TNFESF4, and TNFSF9.
There was a negative association between risk and TDO2, and
TNFSF14. Moreover, GSVA analysis indicated that the high-risk
group had increased “HOMOLOGOUS_RECOMBINATION,”
“MISMATCH_REPAIR,” “RNA_DEGRADATION,” and
“RNA_DEGRADATION” pathways (Figure 7G).

2.7 ScCRNA and pseudotime analyses

We generated 21 subgroups through UMAP-based hierarchical
clustering of GSE166635 and performed cell annotation using the
“singleR” R package, resulting in the identification of 10 distinct cell
subgroups (Figure 8A). By examining the expression of six genes
across various cell types, we observed a significant differential
expression of NDRGI specifically in macrophages (Figure 8B).
Furthermore, employing RNA rate-based trajectory analysis, we
discovered that macrophages in GSE166635 differentiated into two
distinct types. Notably, cluster 1 exhibited an initial high expression
of NDRGI, as evident from the gradient heatmap (Figure 8C). The

Frontiers in Immunology

14

trajectory diagram (Figures 8D, E) revealed that cluster 1
differentiated into a subtype of macrophages. These findings
suggest that the elevated expression of NDRGI contributes to the
polarization of macrophages.

To explore the immune landscape of disulfidptosis in different
tissues, we selected the GSE149614 dataset. Following strict quality
control, we analyzed samples from advanced patients and performed
UMAP-based hierarchical clustering, resulting in the identification
of 15 cell subgroups. Using the “singleR” R package and CellMarker,
we annotated these subgroups as “NK cells, B cells, Endothelial cells,
T cells, Tissue stem cells, Monocytes, Macrophages, Hepatocytes,
and induced pluripotent stem (iPS)” (Figures 9A, B). Analysis of cell
ratios in different tissue sources from patients with advanced HCC
revealed that natural killer (NK) cells were predominant in normal
tissues, while hepatocytes, monocytes, T cells, and iPS cells were
predominantly present in tumor tissues. These results reflect the
malignant, highly differentiated, and immune infiltrative
characteristics of tumors (Figure 9H). Notably, NDRGI exhibited
differential expression across different tissues, with minimal
expression in any cell subtypes of normal tissues and higher
expression in macrophages of tumor tissues, lymphoid tissues, and
portal carcinoma plugs (Figures 9C-G). These findings further
validate our observations in GSE166635.

2.8 Cell-to-cell communication

Conventional bulk RNA sequencing data is limited in its ability
to analyze cellular communication between different cell types. To
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communication at the legend-receptor level. (I-K) A heatmap shows communication between different cell types in SPP1 (1), MIF (J), and MK (K)
tumor signals. The hierarchy plots of the SPP1 (l), MIF (3), and MK (K) signaling pathway network show the sources and targets.

overcome this limitation, we employed the “cellchat” R package to
investigate the pathways involved. Our analysis revealed replicative
crosstalk between cells in the GSE166635 dataset (Figures 8F-H).
Notably, hepatocytes and macrophages exhibited close intercellular
connections and sent secreted phosphoprotein 1 (SPP1) signals to
nearly all other cell types (Figure 8I). Additionally, hepatocytes,
macrophages, monocytes, smooth muscle cells, and T-cells
transmitted macrophage migration inhibitory factor (MIF) signals
to monocytes, macrophages, and B cells (Figure 8]). Furthermore,
endothelial cells, epithelial cells, and hepatocytes conveyed Midkine
(MK) signals to all other cells (Figure 8K).

Next, we aimed to investigate the differential expression of
NDRGLI in macrophages and its role in macrophage activation
during cellular communication. To achieve this, we utilized the
“AUCell,” “UCell,” “singscore,” “ssgsea,” and “AddModuleScore”
algorithms (implemented through the “AUCell,” “UCell,” “irGSEA,”
and “GSVA” R packages) to compute disulfidptosis scores for
advanced tumor tissues in the GSE149614 dataset. Subsequently,
we classified the macrophages within the tumor tissue based on the
median disulfidptosis score, resulting in two groups: Disulfidptosis
score high macrophages (DSThighM) and Disulfidptosis score low
macrophages (DSTlowM). DSThighM macrophages exhibited a
close association with endothelial cells in terms of IL6-IL6ST,
MFNG-NOTCH1, OSM-IL6ST, ADAM17-NOTCHI1, VEGEF1-
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FLT1, VEGF2-FLT1, and PDGFC-FLT1 ligand-receptor linkages.
Furthermore, DSThighM macrophages and endothelial cells
displayed a tight relationship in IGF1-INSR, CXCL12-CXCR4, and
MFNG-NOTCHI1 ligand-receptor pairs (Figure 9I). In terms of
signaling pathways, DSThighM macrophages and hepatocytes
exhibited high activity in Toxoplasmosis, Th17 cell differentiation,
and EGFR tyrosine kinase inhibitor resistance. Conversely, the
MAPK signaling pathway and focal adhesion were highly active in
DSThighM macrophages and endothelial cells. Pathogenic
Escherichia coli infection, non-alcoholic fatty liver disease, and
human cytomegalovirus infection were closely associated with the
autocrine level of DSThighM macrophages. Moreover, the Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT) signaling pathway and chemokine signaling pathway were
highly active in both DSThighM and DSTlowM macrophages
(Figure 9J). Figure 9K illustrates the strength of cellular
connections among different cell types.

2.9 Disulfidptosis landscape at the spatial
transcriptome level

Based on the expression or non-expression of NDRGI, we
classified macrophages into two groups: NDRG1+Macrophages
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showing the overview of cell-cell interaction numbers in tumor tissues.

and NDRGI1-Macrophages. To annotate the spatial patches, we
examined the DRGs of each cluster and HE-stained sections,
resulting in the identification of eight major clusters: tissue stem
cells, endothelial cells, monocytes, T-cells, iPS cells, hepatocytes,
NDRG1-Macrophage cells, and NDRG1+Macrophage cells
(Figures 10A, B). Notably, T-cells, monocytes, and macrophages
exhibited increased accumulation within tumors. Comparatively,
NDRGI1+Macrophage cells were predominantly located in the
tumor center, indicating that this subpopulation has a tendency
to target the tumor center through chemotaxis. This observation,
combined with previous single-cell typing, supports the notion that
NDRGI1+Macrophage subpopulations specifically migrate towards
the tumor center (Figure 10C). To assess active metabolism within
the tumor region at the ST level, we employed the “scMetabolism” R
package, revealing metabolic activity patterns (Figure 10D).
Furthermore, through scoring the co-expression of ligand-
receptor pairs, we discovered a close association between NDRG1
+Macrophages, liver-type cells, and tissue stem cells. Notably, three
immunologically relevant ligand-receptor pairs, including major
histocompatibility complex, class I, A-amyloid beta precursor-like
protein 2 (HLA-A_APLP2), biglycan-toll-like receptor 4
(BGN_TLR4), and B2 microglobulin-human leukocyte antigen-F
(B2M_HLA-F), were significantly co-expressed in the tumor centers
and at the junction of tumors and normal tissues (Figure 11B). This
finding highlights the existence of cellular communication between
different cell types at the spatial transcriptional level. Specifically,
tissue stem cells (defined as tumor cells through tissue sections)

Frontiers in Immunology

16

exhibited close communication with NDRGI1+Macrophages and
hepatocytes (Figure 11A).

2.10 Prognostic gene expression

To validate the robustness of our prognostic model, we
performed an in-depth investigation into the potential relevance of
NDRGI in HCC. We meticulously examined the expression levels of
this prognostic gene in human tissue samples. Through qRT-PCR
analysis, we observed significantly elevated NDRGI expression in
tumor tissues (Figure 12A). Furthermore, to corroborate these
findings at the protein level, we conducted Western blotting and
IHC analyses, both of which confirmed the heightened protein
expression of NDRGI in tumor tissues (Figures 12B-E). These
compelling results unequivocally demonstrate the upregulation of
NDRGI1 in HCC tissues, further emphasizing its potential
significance in the context of HCC prognosis.

2.11 Co-expression of NDRG1,
macrophages, and tumor cells

To elucidate the role of NDRGI
microenvironment, we collected specimens from patients with

in the immune

HCC. Multicolor immunofluorescence results demonstrated a
significant elevation and co-localization of CD206 and NDRGI
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FIGURE 10

Expression of selected genes in the tissue sections. HE-stained images of HCC tissue sections labeled with eight cell clusters. (A) Dimensionality
reduction clustering of spots on tissue slices. (B) Spatial distribution and expression levels of different cell types on tissue sections. (C) Spatial
expression levels of different cell types in HCC tissue sections. (D) The metabolic status of different cell clusters.

expression in hepatocellular carcinoma tissues compared to
paracancerous tissues (Figures 12F-H). These findings suggest
that the high expression of NDRGI in tumor tissues may induce
the concentration of M2-type macrophages towards the tumor
center, thereby facilitating immune escape and ultimately
resulting in a poorer prognosis for patients with HCC.

3 Discussion

Recent developments in immunotherapy, molecularly targeted
agents, and neoadjuvant chemotherapy have resulted in improved
treatments for HCC. However, the prognosis for the long-term
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survival of patients continues to be poor. There is an urgent need for
more sensitive and reliable prognostic indicators to monitor the
progression of HCC and assess patient survival.

Disulfidptosis is a new method of controlling tumor cell
development (8). To investigate disulfidptosis in HCC, we carried
out a comprehensive analysis of ST, sc-RNA seq, and bulk RNA
sequencing. First, we obtained 15 DRGs from Liu’s study and
performed unsupervised consensus clustering, PCA, and UMAP.
We then divided patients with liver cancer into two clusters and
performed a survival analysis to find cluster 2, which had a poorer
prognosis. Next, we used four algorithms to score disulfidptosis in
patients with liver cancer and WGCNA to calculate the score for the
blue modules most strongly related to disulfidptosis.
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Intercellular cmmunication and ligand-rceptor analysis. (A) Intercellular communication at the ST level. (B) Ligand-receptor analysis at the ST level,
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of CD206 and NDRGL1 expression in HCC tissue

We then subjected the genes within the modules to multivariate
Cox regression, LASSO regression, and univariate Cox regression
analyses. Through these analyses, we identified six genes that are
closely associated with liver cancer prognosis and constructed a
prognostic model. Based on the median score, we categorized
patients into low- and high-risk groups. The performance of the
model was assessed using survival analysis, receiver operating
characteristic analysis, and decision curve analysis, demonstrating
its robustness and accuracy. In the study by Li (13), a prognostic
model was constructed using different disulfidptosis modes to
analyze differentially expressed genes. The AUC values under the
ROC curve of the model were only 0.689 and 0.659 for 3-year and 5-
year predictions, respectively. Additionally, in Yang’s study,
although they utilized the WGCNA algorithm to construct a
prognostic model, it only focused on identifying modules most
correlated with clinical features and did not thoroughly analyze the
expression patterns of disulfidptosis in liver cancer patients and the
AUC values of the model’s 3-year and 5-year ROC curves are 0.739
and 0.685, respectively, which are also not as good as our model’s
(14). In our study, for the first time, we calculated the disulfidptosis
scores of liver cancer patients using four different algorithms from
the ssGSEA package. We then identified the module with the
highest correlation to the average disulfidptosis score using
WGCNA (Figure 5). The prognostic model constructed based on
this module exhibited better clinical predictive ability, with AUC
values of 0.739, 0.757, and 0.712 for 1-year, 3-year, and 5-year
predictions, respectively. Furthermore, we conducted an immune
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infiltration analysis and observed that the high-risk population
exhibited upregulation in various cell types, including CLP,
epithelial cells, iDC, osteoblasts, type 1 T helper (Th1) cells, and
the type 2 T helper (Th2) cell pathway. Conversely, CD4 memory T
cells, Thl cells, Th2 cells, Macrophages_M1 cells, and neutrophils
were more likely to infiltrate the high-risk groups. Notably, CD4 T
cells have the ability to produce significant amounts of IL-22
cytokines (15), which have been implicated in driving HCC
progression by promoting tumor cell proliferation (16).
Additionally, cancer cells can influence memory CD4 T cells to
express and release IL-1 in an IL-22-dependent manner, thereby
facilitating tumor growth (17). Regulatory T cells (Tregs), a subset
of immunosuppressive T cells, are commonly enriched in various
cancer types and contribute to immune evasion by tumors. In the
context of human breast cancer (BC), Tregs predominantly
originate from naive CD4 T cells. The presence of Tregs is closely
associated with an abundance of naive CD4 T cells, which serves as
a prognostic indicator for poor outcomes in BC patients (18).

The lack of effector memory T cells (CD8 Tem) and central
memory T cells (CD4 Tcm) explains immune incompetence and
exhaustion in high-risk patients (19). Interestingly, high-risk
patients are infiltrated with a higher number of M1, Thil, and
Th2 macrophages. M1 macrophages secrete multiple inflammatory
factors to sustain a prolonged inflammatory environment and
recruit and initiate T cells early in tumor progression (20). We
noted that high-risk patients were more prone to immune escape
and immune rejection by TIDE analysis. We derived some potential
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immunotherapy targets by analyzing the relationship between the
immune checkpoints and risk score.

Research has revealed that hepatocytes and macrophages
frequently signal MIF and SPP1 to associate with other cell types.
SPP1 is a sialic acid-rich chemokine-like glycoprotein that is
overexpressed in a variety of cancers, including pancreatic cancer
(21). Studies have demonstrated that an interaction between CD44
and SPPI1 induces cell signaling and modulates tumor cell
activation, motility, and adhesion, resulting in cancer progression
and metastasis (22). MIF acts as a critical player in cell proliferation,
tumorigenesis, and metastasis. MIF can activate the PI3K and
MAPK pathways and modulate apoptosis, differentiation,
proliferation, cell survival, and cancer progression (23). Midkine
(MK), a cancer mediator that is highly expressed in a wide range of
human malignancies, modulates cell growth, survival, migration,
metastasis, and angiogenesis (24).

We performed scRNA-seq and spatial transcriptional analysis
and found that the disulfidptosis score was higher in tumor cells and
endothelial cells. NDRG1 was barely expressed in the normal tissues
and highly expressed in the macrophages of metastatic lymph
nodes, portal vein tumor thrombus (PVTT), and primary tumors.
NDRGI1 may promote tumor progression by affecting macrophage
differentiation, as observed by pseudotime analysis, and is mostly
involved in immune and oncogenic pathways. We validated this
via ST.

NDRGI, commonly referred to as a metastasis suppressor
protein, is expressed across various tumor types. This intracellular
protein is composed of 394 amino acids, weighs 43 kD, and exhibits
multiple isoforms (25). NDRGL is actively involved in various
cellular processes, such as DNA repair, immunity, and stress
response. Additionally, NDRGI plays pleiotropic roles depending
on the type of cancer (26). In recent years, cancer immunotherapy
has made significant progress, providing new opportunities for the
treatment of liver cancer. However, the immune tolerance
characteristics of the liver and the immunosuppressive tumor
microenvironment (TME) in HCC have collectively hindered the
development of effective anti-tumor immune responses against
HCC. The presence of an immunosuppressive TME in liver
cancer may be attributed to the accumulation of cells with
negative regulatory immune activity, such as M2-polarized
tumor-associated macrophages (27). Research has shown that
tumor-associated macrophages (TAMs) in the tumor
microenvironment are primarily composed of M2-type
macrophages, which promote the expression of IL-1o, IL-1f,
VEGEF-A, and VEGF-C, thereby facilitating tumor growth and
tumor angiogenesis/lymphangiogenesis (28). Additionally, several
studies have confirmed that NDRG1 is highly expressed in
macrophages within the tumor microenvironment (29).
Observations have been made of a significant decrease in the
serum levels of macrophage colony-stimulating factor (M-CSF)
and macrophage-related cytokines in NDRGI1 knockout mice
(30). The deficiency of NDRG1 has been shown to attenuate the
differentiation of macrophage lineage cells, leading to a suppression
of bone remodeling and inflammatory angiogenesis (30).
Mechanistically, NDRGI interacts with the orphan nuclear
receptor Nur77 and inhibits the transcriptional activity of NF-kB
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(nuclear factor Kappa B) (31). However, the loss of NDRGI
activates the NF-xB pathway, leading to the induction of
epithelial-mesenchymal transition in prostate cancer (32). In their
study, Chang et al. found that NF-xB activity is typically
upregulated in classical M1 macrophages, while M2 macrophages
are believed to have lower NF-«B activity and exhibit strong
immunosuppressive effects (33). These findings indicate that
NDRGI may regulate macrophage polarization through the NF-
KB pathway, ultimately leading to immune evasion. CD206, also
known as an alternative activated macrophage marker, is a
membrane glycoprotein expressed on the surface of macrophages,
particularly M2 macrophages (34). Our multicolor
immunofluorescence results have revealed a significant elevation
and co-localization of CD206 and NDRGI in hepatocellular
carcinoma tissues. This further supports the close relationship
between NDRGI expression and macrophage differentiation.
Tumor-associated macrophages (TAMs) account for more than
50% of all cells in tumors and play a crucial role as immune cells
within the tumor microenvironment (35). Therapeutic strategies
that incorporate or target TAMs have emerged as a promising and
novel approach for anticancer therapy (36). On the other hand, one
of the challenges in immunotherapy is the presence of immune
suppressor cells in the tumor microenvironment, which can
counteract the immune system’s attack on tumor cells. Research
has found that tumor cells also induce immune tolerance by
manipulating cells of the innate immune system, including
polarizing macrophages into tumor-friendly M2 phenotypes and
neutrophils into N2 phenotypes (37). Based on the findings from
these studies, combined with our own research results, we speculate
that NDRG1 may have a potential role in enhancing the efficacy of
immunotherapy and reducing immunotherapy resistance. We aim
to advance gene diagnosis and gene therapy into the early stages of
cancer treatment, discovering more effective combination or
sequential treatment strategies. Through future clinical research,
we hope to gradually refine prognostic models to identify high-risk
patients with poor prognosis in HCC. Targeted gene testing will be
conducted on high-risk patients, and gene technology will be
utilized for personalized treatment, either through specific
knockout of NDRGI1 or the design of NDRGI-targeted inhibitors.
This approach may potentially reduce the M2/M1 ratio of tumor-
associated macrophages in the tumor microenvironment, thereby
preventing immune escape of cancer cells and improving the
efficacy of immunotherapy and patient prognosis. However,
further experimental validation is needed to confirm this
hypothesis and extend it to other types of cancer.

In terms of limitations, our research lacks clinical data to evaluate
the correlation between NDRGI and immune therapy response as
well as survival rates. Furthermore, the specific mechanisms
underlying the interaction of NDRG1 with target genes and
downstream signaling events require further investigation. These
gaps will impede the translation of our findings into clinical
applications, limiting the potential to provide valuable insights for
personalized treatment and patient stratification.

In summary, the immediate research priorities following from
these findings would involve further mechanistic studies, validation
in preclinical models, identification of therapeutic targets,
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exploration of combination therapies, and clinical translation.
These efforts could potentially lead to the development of novel
therapeutic strategies for improving immune responses and
treating HCC.

4 Conclusion

Our study provides the first comprehensive analysis of a
disulfidptosis pattern in HCC in a large sample of the
transcriptome, single-cell transcriptome, and spatial
transcriptomics levels. We constructed a novel putative model
that suggests high expression of the key factor NDRGI1 may
contribute to macrophage polarization, infiltration into the tumor
center, and ultimately lead to a poor prognosis.

5 Materials and methods
5.1 Data acquisition and preprocessing

We obtained clinical information and bulk RNA sequencing data
of HCC patients from various sources. The GEO14520, GSE144269,
International Cancer Genome Consortium-Liver Cancer in Japan
(ICGC-LIRI-JP), and TCGA Liver Hepatocellular Carcinoma
(TCGA-LIHC) datasets were downloaded from the Gene
Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/
), the ICGC data portal (https://dcc.icgc.org/), and TCGA data portal
(https://www.cancer.gov/tcga/), respectively. For single-cell RNA
sequencing (scRNA-seq) data of HCC, we downloaded the
GSE149614 and GSE166635 datasets from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The GSE166635 dataset
contains tumor scRNA-seq data from two HCC patients, while the
GSE146914 dataset includes four relevant sites from 10 patients with
different stages of PVTT, primary tumor, non-tumor liver, and
metastatic lymph node. To acquire spatial transcriptome (ST)
information for HCC tissue sections, we accessed the Single-Cell
Colorectal Cancer Liver Metastases (CRLM) Atlas web portal (http://
www.cancerdiversity.asia/scCRLM). The DRGs were obtained from
Liu’s article (https://doi.org/10.1038/s41556-023-01091-2). After
addressing batch effects, we integrated the GSE14520 and ICGC-
LIRI-JP datasets, resulting in the formation of metadata. This
metadata was used as the training set, while the TCGA-LIHC and
GSE144269 datasets served as independent validation sets. All of the
bulk transcriptome data were transformed logarithmically and
transformed to transcripts per million (TPM) before analysis.

5.2 Expression analysis of disulfidptosis
related genes in pan-cancer

We investigated the expression patterns of DRGs across a
diverse range of tumor types using the Gene Set Cancer Analysis
dataset (GSCALite) (http://bioinfo.life.hust.edu.cn/web/GSCALite/
). Specifically, we examined the genomic locations of CNV
mutations in DRGs on the 23 chromosome pairs, as well as CNV
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mutations and SNV in liver cancer. To visualize these findings, we
employed R (Version 4.2.0) to generate graphical representations
for 15 selected DRGs. Furthermore, we retrieved the protein-
protein interaction network of the DRGs from the STRING
database (https://string-db.org/cgi/input.pl) and visualized it using
Cytoscape 3.9.

5.3 Methylation and drug sensitivity
of DRGs

We conducted an analysis of DNA methylation levels in the
pan-cancer using the GSCALite website, specifically focusing on the
DNA methylation levels of DRGs. Additionally, we investigated the
correlation between mRNA expression and DRG methylation levels
across different tumor types. Furthermore, we performed a drug
sensitivity analysis of DRGs using two databases: the Cancer
Therapeutics Response Portal (CTRP) and the Genomics of Drug
Sensitivity in Cancer (GDSC) databases.

5.4 Unsupervised consensus clustering for
DRGs on patients with
hepatocellular carcinomas

To explore the different disulfidptosis patterns of HCC, we
applied the “ConsensusClusterPlus” R package to determine the
subgroups of patients with HCC based on DRGs. We also verified
the discriminatory degree of the categorization using the UMAP
and PCA dimensionality reduction. Then, we subjected clusters to a
survival analysis by applying the “survival” R package.

5.5 Disulfidptosis score and the weighted
gene co-expression network analysis for
the disulfidptosis-related module

In our study on HCC, we initially utilized four scoring methods
from the “GSVA” R package to assess the disulfidptosis status. The
average value of these scores was then used to represent the
disulfidptosis characteristics of liver cancer patients (38, 39).
Subsequently, we employed the WGCNA method to identify gene
modules that were highly correlated, as well as the interconnections
between these modules and their associations with disulfidptosis
scores. This analysis aimed to identify potential therapeutic targets
or candidate biomarkers. To construct the gene co-expression
network, we utilized the “WGCNA” R package and selected
modules that exhibited the strongest correlation with
disulfidptosis in HCC (39). Prior to the analysis, we pre-
processed the sample data and removed any outliers. We then
constructed a correlation matrix using the “WGCNA” R package.
By determining the optimal soft threshold, we transformed the
correlation matrix into an adjacency matrix and subsequently built
a topological overlap matrix (TOM). Through hierarchical
clustering based on the TOM dissimilarity metric, genes with
similar expression patterns were grouped into gene modules using
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average association. The module that exhibited the strongest
correlation with disulfidptosis was selected as the critical module
for further analysis.

5.6 Construction and verification of the
DRG-based prognostic signature

We constructed and verified the prognostic characteristics of
patients with HCC for key module genes from the WGCNA that are
closely associated with disulfidptosis. First, we screened the
prognosis-associated genes in the metadata training set by applying
univariate Cox regression (“survival” R package). We then conducted
a multivariate Cox regression and least absolute shrinkage and
selection operator (LASSO) regressions (“glmnet” R package) to
minimize the candidate genes and create a prognostic signature.
We calculated the risk score by multiplying the regression coefficient
(b) from the multivariate Cox regression by a linear combination of
gene expression levels. The risk score calculation formula is:

Risk Score = iCoeﬂicient(ﬂi) * X;
i=1

Per the median risk score, we classified patients with HCC into
low- and high-risk groups. We then drew time-dependent ROC
curves (“pROC” R package) and Kaplan-Meyer survival curves
(“survival” and “survminer”) to detect the clinical model’s
prognostic value. We validated the new model’s robustness and
assessed the prognostic value with TCGA-LIHC and GSE144269.
Using the Human Protein Atlas database (HPA) (https://
www.proteinatlas.org), we compared the protein expression patterns
of the signature HCC genes to normal tissue. We built a predictive
nomogram model (“survival” and “rms” R packages) incorporating
tumor Tumor, Node, Metastasis (TNM) pathologic staging to predict
the one-, three-, and five-year OS probability of patients with HCC
based on the multivariate Cox regression analysis results. In addition,
we conducted a DCA to determine the model’s net clinical benefits on
OS at one, three, and five years for patients with HCC.

5.7 Tumor immune infiltration and
GSVA analyses

To assess the tumor microenvironment across different risk
groups, we employed the xCell algorithm (40). Furthermore, we
obtained exclusion scores, dysfunction scores, and TIDE scores
from the TIDE website (http://tide.dfci.harvard.edu/) (41). In order
to evaluate the response to immunotherapy in the high- and low-
risk groups, we compiled a list of 40 ICGs based on the literature
(42). We then conducted a correlation analysis between the risk
scores and the ICGs using the “corrplot” R package. Additionally,
we utilized the “GSVA” R package to examine the expression
patterns of different risk profiles in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) signaling pathway. For this analysis,
we retrieved the C2 (C2.cp.Kegg.v7.4.symbols.gmt) gene set from
the Molecular Signatures Database and generated a heatmap to
visualize the results.
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5.8 Analysis of scRNA-seq data

First, we utilized the “Seurat” package to generate objects and
performed quality control measures to filter out lower-quality cells.
Specifically, we applied the following criteria: cells with fewer than
200 or more than 4000 expressed genes were excluded, and cells
with more than 10% of unique molecular identifiers (UMIs)
mapped to mitochondrial genes were also excluded. We retained
only genes that were expressed in at least three cells. Next, we
normalized the data and identified the top 3000 highly variable
genes using the “FindVariableFeatures” function. Principal
component analysis (PCA) was then performed on the scRNA-
seq data using these 3000 genes. For visualization and clustering
purposes, we retained the first 16 and 22 principal components for
GSE149614 and GSE166635, respectively, and applied the UMAP
algorithm. To address batch effects between samples, we employed
the harmony method (v0.1.0) to remove these effects and integrate
the Seurat objects into a single dataset. Subsequently, we performed
cell clustering using the “FindClusters” function in the “Seurat”
package, with a resolution parameter set to 0.7. To annotate the
cells, we utilized the “singleR” package and CellMarker 2.0 (http://
bio-bigdata.hrbmu.edu.cn/CellMarker).

5.9 Cell-cell interaction and pseudotime
analyses at single-cell level

To investigate cell-cell interactions, we employed the “CellChat”
R package (43) and utilized its “cellchat” function. Our analysis
involved utilizing SCRNA-seq count files and cell type-specific
markers as input data. Using this approach, we examined the
expression of receptors in one cell type and ligands in another. By
assessing the presence of ligand-receptor interactions, we quantified
the enrichment of such interactions between pairs of cell types. This
analysis provided insights into the extent of communication and
signaling between different cell types. To evaluate the cell-type
specificity of a particular ligand-receptor complex, we identified P-
values based on the proportion of mean values greater than or equal
to the actual mean. We utilized a P-value threshold of< 0.05 to select
important cell-cell interactions.

In parallel, we employed a pseudotime analysis of the scRNA-
seq data to measure the evolutionary trajectory of macrophages in
GSE166635. This analysis entailed mapping the high-dimensional
gene expression data onto a one-dimensional quantity called
pseudotime. We inferred cell fates and revealed the cellular
trajectories. We utilized the “Monocle” R packages (Version
2.26.0) (44, 45), which can provide insight into the cellular
developmental trajectory but cannot accurately determine the
origin and direction of this developmental process.

5.10 Spatial transcriptomics data analysis
We processed and visualized the ST data using the “Seurat” R

package. To ensure data comparability, we integrated the ST data
using the SCT approach and subsequently performed clustering of
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similar ST sites using PCA. Specifically, we established filtering
criteria, including a gene count between 300 and 6000, a
mitochondrial ratio below 15%, and the exclusion of genes
expressed in fewer than 10 spots. Then, we used the sctransform
normalization method and PCA dimensionality reduction is
performed first, and then the top 20 dimensions are selected for
clustering and umap dimensionality reduction. Cell clusters were
annotated based on hematoxylin and eosin (HE) staining sections
and genes exhibiting high variability within each cluster. The spatial
expression of DRGs was visualized using the SpatialDimPlot
function. Furthermore, we conducted deconvolution using the
“spacexr” package and utilized the “spotlight” R packages to
identify cell types at specific spatial spots. Subsequently, we
employed the “scMetabolism” R package to evaluate the
metabolic activity of the spatial transcriptional data on slices (46)
Additionally, we utilized the Python “stlearn” package to visualize
and analyze cell-cell interactions, as well as score the co-expression
of ligand-receptor pairs in the tissue slice.

5.11 Human specimens

We obtained 19 HCC pairs and adjacent non-cancerous
specimens from the Department of Hepatobiliary-pancreatic &
Hernia Surgery at Guangdong Second Provincial General
Hospital. The study was authorized by the Medical Research
Ethics Committee of Guangdong Second Provincial General
Hospital, and all of the participants provided written informed
consent. Following specimen isolation, we rapidly froze the liver
tissue in liquid nitrogen and stored it at a temperature of -80°C to
ensure preservation and prevent degradation.

5.12 Quantitative reverse transcription
polymerase chain reaction

We extracted the total RNA with Trizol reagent (Invitrogen,
Carlsbad, CA, USA), and synthesized the cDNA through the ABI
7500 Fast System (Applied Biosystems, Rockville, MD, USA). We
used o-Tubulin as the reference gene. The relative expression level
of the relevant gene was 2- [(Ct of gene) - (Ct of 0o-tubulin)], in
which Ct stands for the threshold cycle. Primer sequences for
amplification were as below: NDRGI (47), forward primer, 5-
CTGCACCTGTTCATCAATGC-3" and reverse primer, 5'-
AGAGAAGTGACGCTGGAACC-3.

5.13 Western blotting

The HCC tissue samples were lysed using a
radioimmunoprecipitation assay buffer containing 1%
phenylmethylsulfonyl fluoride (PMSF, Beyotime, Shanghai,
China). Western blotting was performed following a previously
described protocol. Primary antibodies specific to NDRG1 (1:5000,
T57079S, Abmart) and an anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) antibody (1:5000, Proteintech) were
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used, with GAPDH serving as a control. The obtained results
were subjected to semi-quantitative analysis using Image] software.

5.14 Immunocytochemistry

To evaluate the expression of NDRG1 protein, we performed
immunohistochemistry (IHC) experiments. Fresh human tissues
were fixed overnight in 10% formalin, followed by dehydration,
embedding in paraffin, and sectioning. The sections were then
dewaxed and hydrated accordingly. Antigen retrieval was
performed using citrate, and peroxidase activity in liver samples
was blocked with 3% H,O,. The primary antibodies against NDRG1
(1:500, T57079S, Abmart) were incubated overnight at 4°C.
Subsequently, the slides were incubated with a secondary
antibody at 37°C for one hour. A 3,3’-diaminobenzidine (DAB)
color development kit was employed, followed by hematoxylin
restaining. Finally, the slides were dehydrated, rendered
transparent, and sealed with neutral treacle. We then viewed the
slides under a microscope, and two experienced pathologists
conducted double-blind readings to identify the staining intensity
and the percentage of positive cells, which was scored as follows:<
5% was scored as 0, 5%-25% was scored as 1, 26%-50% was scored
as 2, 51%-75% was scored as 3, and 76%-100% was scored as 4.
Moreover, we assessed staining intensity as follows: 0, 1, 2, and 3 for
colorless, light yellow, tan, and brown, respectively. Lastly, We
acquired the final score by multiplying the staining intensity score
by the percentage of positive cells. Scores of 0, 1-4, 5-8, and 9-12
were negative (-), weakly positive (+), positive (++), and strongly
positive (++++), respectively.

5.15 Immunofluorescence

For immunofluorescence staining, we utilized a multiplex
immunofluorescence staining kit (abs50012, absin, Shanghai,
China) and followed the instructions provided by the
manufacturer. Antibodies against NDRGI1 (1:500, T57079S,
Abmart) and CD206 (1:500, TD4149S, Abmart) were incubated at
room temperature for one hour. Subsequently, the slides were
incubated with anti-rabbit/mouse IgG conjugated with HRP for 15
minutes at room temperature, followed by incubation with
fluorophore-conjugated tyramine molecules (PPD 650, PPD 570, or
PPD 520) for 15 minutes. Finally, the nuclei were stained using DAPI.

5.16 Statistical analysis

We conducted data analysis and visualization using the R
software (Version 4.2.0, https://www.r-project.org/) and Python
software (Version 3.9.0, https://www.python.org/). To compare
two groups and two or more groups, we employed the Wilcoxon
rank-sum test and the Kruskal-Wallis test, respectively. Categorical
variables were compared using Fisher’s exact test or the chi-square
test. Differences in survival curves were assessed using the log-rank
test. We performed a Spearman’s correlation test to determine the
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correlations between the two variables. Statistical significance was
determined at a significance level of P< 0.05.
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Cell-free chromatin particles
released from dying cancer cells
activate immmune checkpoints in
human lymphocytes:
implications for cancer therapy
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Harshali Tandel*? and Indraneel Mittra™*

Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in
Cancer, Tata Memorial Centre, Mumbai, India, ?Homi Bhabha National Institute, Mumbai, India

Immune checkpoint blockade is the exciting breakthrough in cancer, but how
immune checkpoints are activated is unknown. We have earlier reported that cell-
free chromatin particles (cfChPs) that circulate in blood of cancer patients, or those
that are released locally from dying cancer cells, are readily internalized by healthy cells
with biological consequences. Here we report that treatment of human lymphocytes
with cfChPs isolated from sera of cancer patients led to marked activation of the
immune checkpoints PD-1, CTLA-4, LAG-3, NKG2A, and TIM-3. This finding was
corroborated in vivo in splenocytes of mice when cfChPs were injected intravenously.
Significant upregulation of immune checkpoint was also observed when isolated
lymphocytes were exposed to conditioned medium containing cfChPs released from
hypoxia-induced dying Hela cells. Immune checkpoint activation could be down-
regulated by pre-treating the conditioned media with three different cfChPs
deactivating agents. Down-regulation of immune checkpoints by cfChPs
deactivating agents may herald a novel form of immunotherapy of cancer.
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Introduction

Immune checkpoint molecules prevent the immune system from indiscriminately
attacking self-cells. Immunologically altered cancer cells, on the other hand, can protect
themselves from elimination by activating immune checkpoints (1). Consequently,
targeting activated immune checkpoints with specific inhibitors is being widely used in

25 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2023.1331491/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1331491/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1331491/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1331491/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1331491/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1331491&domain=pdf&date_stamp=2024-01-11
mailto:imittra@actrec.gov.in
https://doi.org/10.3389/fimmu.2023.1331491
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1331491
https://www.frontiersin.org/journals/immunology

Shabrish et al.

the treatment of cancer (2, 3). Several immune checkpoint
inhibitors have now been approved by FDA for the treatment of
a variety of cancers (4). Although much has been reported on
immune checkpoint biology and immune therapy, how immune
checkpoints are activated by lymphocytes has not been elucidated.

Several hundred billion to a trillion cells die in the body
everyday (5, 6) and the fragmented chromosomal material in the
form of cell-free chromatin particles (cfChPs) enter into
the extracellular compartment of the body, including into the
circulation (7-9). We have earlier reported that cfChPs that
circulate in blood of cancer patients, and those that are released
locally from dying cancer cells, can readily enter into healthy cells to
activate two hallmarks of cancer viz. DNA damage and
inflammation (10, 11). Since immune escape by the way of
activation of immune checkpoints is another critical hallmark of
cancer (12), we investigated whether cfChPs might be the agents
that also activate immune checkpoints in human lymphocytes. We
approached this question in several ways: 1) by directly treating
isolated human T-cells with cfChPs isolated from sera of cancer
patients; 2) by intravenously injecting cfChPs isolated from sera of
cancer patients into mice; and 3) by using a co-culture system
wherein human T cells were exposed to conditioned medium
containing cfChPs released from hypoxia-induced dying HeLa cells.

Materials and methods
Institutional ethics approval

This study was approved by Institutional Ethics Committee
(IEC) of Advanced Centre for Treatment, Research and Education
in Cancer (ACTREC), Tata Memorial Centre (TMC) for collection
of blood (10mL) from cancer patients and healthy volunteers for
isolation of cfChPs and lymphocytes respectively (Approval no.
900520). All participants signed a written informed consent form
which was approved by the IEC.

Animal ethics approval

The experimental protocol of this study was approved by the
Institutional Animal Ethics Committee (IAEC) of Advanced Centre
for Treatment, Research and Education in Cancer (ACTREC), Tata
Memorial Centre (TMC) (Approval no. 12/2020). The experiments
were carried out in compliance with the TAEC animal safety
guidelines, and with those of ARRIVE guidelines.

ACTREC- TAEC maintains respectful treatment, care and use of
animals in scientific research. It aims that the use of animals in
research contributes to the advancement of knowledge following
the ethical and scientific necessities. All scientists and technicians
involved in this study have undergone training in ethical handling
and management of animals under supervision of FELASA certified
attending veterinarian. Inbred female C57Bl/6 mice were obtained
from our Institutional Animal Facility. All mice were maintained in
covenant with Institutional Animal Ethics Committee (IAEC)
standards. Animals were euthanized at appropriate time points
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under CO, atmosphere by cervical dislocation under supervision of
FELASA trained animal facility personnel.

Collection of blood samples for cfChPs
and lymphocyte isolation

For lymphocyte culture, peripheral blood samples from healthy
adult volunteers were collected using Vacutainer TM tubes (Becton-
Dickinson Vacutainer Systems, Franklin Lakes, NJ, U.S.A.) containing
sodium heparin anticoagulant. For isolation of cfChPs blood was
collected from cancer patients in plain vacutainer (VACUETTE blood
collection tube Serum Clot Activator PREMIUM).

Isolation of cfChPs from human sera

cfChPs were isolated from sera of cancer patients according to a
protocol described by us earlier (11). In order to maintain inter-
experimental consistency, pooled serum (typically from ~5 individuals)
was used to isolate cfChPs and were quantified in terms of their DNA
content as estimated by the Pico-green quantification assay.

Fluorescent dual labelling of cfChPs

cfChPs were fluorescently dually labelled in their DNA by
Platinum Bright 550 (red) and in their histone H4 with ATTO-
TEC 488 (green) according to a protocol described by us earlier (11).

PBMC isolation

Peripheral blood mononuclear cells (PBMC) were isolated
using Ficoll-Hypaque according to standard procedures.

FACs sorting

PBMCs were stained with FITC-conjugated anti-human CD4
antibody (clone PRA-T4, BD Biosciences Pharmingen, San Jose,
CA, USA) and PerCP-conjugated anti-human CD8 antibody (clone
SK1, BD Biosciences Pharmingen, San Jose, CA, USA) or with
FITC-conjugated anti-human CD3 antibody (clone UCHT1, BD
Biosciences Pharmingen, San Jose, CA, USA). Cells were sorted on
FACS Aria III (BD Biosciences, San Jose, CA, USA). Data were
analyzed using FACS Diva software (version 4.0.1.2; Becton,
Dickinson and Company). Sorted cells were seeded in 24-well
plates and were allowed to rest overnight at 37°C in humidified
atmosphere of 5% CO, prior to stimulation.

Preparation of cfChPs deactivating agents

The cfChPs deactivating agents used in our study were:
1) anti-histone antibody complexed nanoparticles (CNPs) (13);
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2) DNase I from bovine pancreas was procured from Sigma-
Aldrich, and 3) a novel pro-oxidant combination of Resveratrol
and Copper(R-Cu), which can deactivate/degrade cfChPs via the
medium of free-radicals (14-17). The concentrations of R and
Cu used in this study were 1mM and 0.0001mM
respectively (14).

Treatment of lymphocytes with cfChPs
isolated from sera of cancer patients

Sorted CD4™T cells and CD8™T cells were plated at a density of
5x10° in 24-well plates containing 1ml of DMEM. After overnight
culture, cells were treated with cfChPs (10ng equivalent of DNA)
isolated from sera of cancer patients and used for determining
upregulation of immune checkpoints.

Procedure for collecting conditioned
media from hypoxia induced dying
Hela cells

A dual chamber system was used to generate conditioned
medium containing cfChPs released from dying cells. HeLa cells
(~1x10°) were seeded on ThinCert® Cell Culture Inserts (pore size
400nm) containing 1.5ml of DMEM and were placed in 6-well
culture plate and were incubated overnight at 37°C. The 6-well plate
with Thincert® Inserts was transferred to a hypoxia chamber with
1% O, for 48h to induce hypoxic cell death. Sufficient DMEM (~700
ul) was added to the lower chamber of the 6-well plate such that the
medium touched the lower surface of the ThinCert® Inserts and
plates were placed at 37°C in humidified atmosphere of 5% CO, for
48h under normoxic conditions. This procedure allowed cfChPs
<400 nm in size released from the hypoxic HeLa cells to seep into
the medium in the lower chamber. Post-incubation, conditioned
media from the wells was pooled and was used for
further experiments.

Fluorescent dual labelling of Hela cells

HeLa cells were dually labeled in their histones (H2B) and
DNA. Histone H2B labelling was done for 36h using CellLight®
Histone 2BGFP (Thermo Fisher Scientific, MA, USA) and DNA
labeling was done for 24h using BrdU (10 uM Sigma Chemicals,
MO, USA). The procedure for dual labelling of culture cells has
been described by us earlier (10). Dually labeled HeLa cells were
seeded on ThinCert® Cell Culture Inserts and cultured in hypoxic
conditions (1% O,) for 48h. Two hundred and fifty micro-liters of
conditioned media containing cfChPs <400nm that had seeped into
the lower chamber of the insert was applied to isolated PBMCs in a
time course experiment (2h, 4h and 6h). Cells were then washed
and processed for fluorescence microscopy to detect presence of
fluorescent signals of BrdU and histone H2BGFP in the
recipient PBMCs.

Frontiers in Immunology

10.3389/fimmu.2023.1331491

Treatment of cells with conditioned media
collected from hypoxic HelLa cells

Conditioned media from hypoxia treated HeLa cells was
collected as described above. Sorted T cells were plated at a
density of 5x10° in 24-well plate containing 250uL of DMEM
media. After overnight culture, cells were treated with 250uL of
conditioned media and a time course analysis using qRT-PCR was
performed to determine up-regulation of immune checkpoint. In
order to confirm that the active agents in the hypoxic media were
cfChPs released from the dying HeLa cells, the hypoxic media was
pre-treated for 1h with the following cfChPs inhibitors: 1) CNPs
(25ug of anti-H4 IgG conjugated nanoparticles) in 125 pL of
phosphate buffer; 2) DNase I in PBS to achieve a final
concentration of 0.05U/mL; 3) R:Cu in distilled water to achieve a
final molar ratio of 1 mM R: 0.0001 mM Cu).

Analyses of immune checkpoints

gRT-PCR

Evaluation of immune checkpoints was performed using qRT-
PCR following treatment of human lymphocytes with cfChPs or
with media of hypoxic dying HeLa cells as described above. The
time points for analyses were: Oh, 30min, 6h, 12h, 24h, 36h and 48h.
Appropriate untreated control cells for each time point were
analyzed in parallel. Total RNA was isolated using RNeasy Mini
Kit (Qiagen, Hilden, Germany) and approximately 1 ug of isolated
RNA was converted to cDNA using RT? First Strand Kit (Qiagen,
Hilden, Germany). cDNA was diluted (1:10) and used in 10ul
reaction volume in duplicates. Real-time PCR was carried out using
SYBR Select Master Mix (Applied Biosystems, CA, USA) and all the
samples were assayed on a QuantStudioTM 12K Flex Real-Time
PCR System (ThermoFisher) using a 384-well block in duplicates.
Data were analyzed using a comparative Cr method and fold
change in mRNA expression was calculated as 2A(-AACy).

Immunofluorescence

For detection of immune checkpoints expression,
immunofluorescence analysis for five immune checkpoints was
performed at peak time points of mRNA expression following
treatment of cells. Methodological details of immunofluorescence
have been described by us earlier (10). Briefly, slides were mounted
with vectashield mounting medium with DAPI (Vector
Laboratories) and analyzed on Applied Spectral Imaging system
as described by us earlier (10). All experiments were performed in
duplicate, and 500 cells were analyzed in each case. Results were
expressed as mean + SEM.

Flow cytometry

After 72hrs of cfChPs treatment, PBMCs were labelled with the
following antibodies; anti-CD3-FITC (clone:UCHT1), anti-CD-8
PerCP (clone:SK1), anti-PD-1-BV421 (clone:EH12.1), anti-CTLA-
4-PE-CF594 (clone:BN13), anti-LAG-3-BUV395 (clone:T47-530),
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anti-NKG2A-BV421 (clone:131411) and anti-TIM-3-BV786
(clone:7D3). All antibodies were purchased from Becton Dickinson
Biosciences, San Jose, CA, USA. Cells were incubated for 20mins in
dark at room temperature followed by PBS wash. Samples were
acquired on FACSAria III cytometer (Becton Dickinson, USA) and
analyzed with Flow]oTM v10.6 Software (ThreeStar Inc, USA).
Lymphocytes were gated on forward and side scatter parameters.
At least 20,000 cells were acquired. Untreated T cells reveal a basal
expression of immune checkpoints which increases following
treatment. Therefore, to determine an increase in percent positive
cells, the difference between negative and positive expression was
defined by the fluorescence minus one (FMO) method.

In vivo studies

Intravenous injection of cfChPs into mice

For the in vivo study, 21 mice (3 per group, 7 groups) were
injected with cfChPs (100ng dissolved in saline for each mouse) and
3 mice acted as untreated controls. Mice were sacrificed under
anesthesia at 6h, 12h, 18h, 24h, 48h, 72h and 96h after cfChPs
injection and spleen was removed.

Preparation of mouse splenocytes

The spleens were minced with a sharp sterile blade, placed in a
40-m nylon cell strainer and pressed with the plunger of a syringe.
Splenocytes were suspended in RPMI-1640 supplemented with 5%
FBS. Red blood cells were lysed with 1XBD Pharmlyse, washed, and
splenocytes were re-suspended in 5% FBS in PBS.

Analysis of activation of immune
checkpoints in splenocytes by
flow cytometry

One million splenocytes were stained for 20 min in the dark
with the following antibodies: CD3-APC-Cy7 (Clone: 17A2), CD4-
FITC (Clone : GK1.5), CD8-APC (Clone:53-6.7), PD-1-BV510
(Clone:29F.1A12), CTLA-4-PE (Clone : UC10-4B9), NKG2A-PE
(Clone:16A11), Tim-3-BV421 (Clone : RMT3-23) and LAG-3-
PerCP-Cy5.5 (Clone:C9B7W). All antibodies were purchased
from BioLegend company (USA). Samples were acquired on BD
FACS Aria III (Becton Dickinson, USA) and analyzed with
Flow]oTM v10.6 Software (ThreeStar Inc, USA) as described above.

Statistical analysis

All data are presented as Mean * Standard Error of Mean (SEM).
Statistical analysis was performed using GraphPad Prism 8 (GraphPad
Software, Inc., USA, Version 8.0). Data were compared using Student’s t-
test (two tailed, unpaired), one-way ANNOVA and Bonferroni’s
multiple comparisons test. p < 0.05 was taken as the level of significance.
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Results

cfChPs are readily internalized by
human lymphocytes

In the context of our first approach i.e. of treating lymphocytes
with cfChPs from cancer patients, we revisited our earlier
experiments wherein we had shown that cfChPs are readily
internalized by mouse fibroblast cells (11). We confirm using
fluorescent microscopy that, like in case of fibroblast cells,
treatment of lymphocytes with dually fluorescently labelled
cfChPs, in their DNA with Platinum Bright 550 and in their
histones with ATTO-TEC-488, results in their rapid uptake
within 2h (Supplementary Figure 1).

cfChPs isolated from sera of cancer
patients activate immune checkpoints in
human lymphocytes

We have earlier reported that cfChPs that circulate in blood of
cancer patients, and those that are released locally from dying
cancer cells, can readily enter into healthy cells to activate two
hallmarks of cancer viz. DNA damage and inflammation (10, 11).
Since immune escape by the way of activation of immune
checkpoints is another critical hallmark of cancer (12), we
investigated whether cfChPs might be the agents that also activate
immune checkpoints in human lymphocytes. To investigate this
possibility, we treated sorted CD4"T and CD8'T cells with cfChPs
(10ng) from cancer patients and performed a time course analyses
using qRT-PCR to detect 5 immune checkpoints. All five immune
checkpoints, viz. PD-1, CTLA-4, LAG-3, NKG2A and TIM-3, were
found to be markedly up-regulated, albeit at different time points
(Figure 1A). We validated the above finding of immune checkpoint
expression by two methods: 1) by immune-florescence at peak time
points of mRNA expression following cfChPs treatment, and 2) by
flow cytometry at 72 h. (Figures 1B, C; Supplementary Figures 2A,
B, D, E; Supplementary Table 1).

cfChPs activate immune checkpoints as a
stress response by lymphocytes

We wondered whether immune checkpoint activation might be
a stress response of the cell to DNA damage inflicted by cfChPs (10,
11). To this end, we examined six different stress markers that are
involved in transcriptional regulation of immune checkpoints (18-
20) viz. c-Jun, c-Fos, NFKB, JunB, EGR-1 and FosB by qRT-PCR
after treating PBMCs with cfChPs (10ng) isolated from sera of
cancer patients. A time-course analysis revealed marked activation
of all six stress markers, albeit at different time points (Figure 2).
These data provided suggestive evidence that cfChPs that circulate
in blood of cancer patients activate immune checkpoints in human
T cells ostensibly as a response to cellular stress.
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FIGURE 1

Upregulation of immune checkpoints on human lymphocytes following treatment of cfChPs isolated from sera of cancer patients. (A) Line graphs
showing time course analysis of MRNA expression of immune checkpoints detected by gRT-PCR in purified CD4+4T cells and CD8+T cells treated
with cfChPs (10ng). The expression fold change was analyzed using a comparative C+ method [2/(-AAC+)]. The histograms represent relative mRNA
expression at respective peak time points on CD4+T cells and CD8+T cells. (B) Histograms depict the results of quantitative Immunofluorescence
(IF) analysis of percent positive cells for immune checkpoints on CD4+T and CD8+T-cells at peak time points of mMRNA expression. Five hundred
cells were examined in duplicate slides and percent biomarker-positive cells were recorded. (C) Histograms depict the results of quantitative flow
cytometry analysis of surface expression of immune checkpoint on CD4+T and CD8+T-cells at 72hrs post cfChPs treatment. All experiments were
performed in duplicates and histograms represent mean + SEM values. Statistical analyses were performed using a two-tailed student’'s unpaired t-

test (GraphPad Prism 8). * p<0.05, ** p<0.01, *** p<0.001

cfChPs upregulate immune checkpoints
in vivo

We next examined if cfChPs could activate immune checkpoints in
vivo. Intravenous injection into mice of cfChPs (100ng) isolated from
sera of cancer patients led to marked activation of several immune
checkpoints in their splenocytes. A time course analysis by flow
cytometry of isolated splenocytes detected significant increased
surface expression of four out of five immune checkpoints on CD4"T
and CD8'T cells. Time points at which immune checkpoints were
activated were variable, viz. PD-1 at 6h, CTLA-4 at 6h, NKG2A at 6h
and LAG-3 at 24h. Expression of TIM-3 was not detected on T cells in
experiments lasting 96h (Figure 3). The variability in time-points of
immune checkpoint activation on mouse splenocytes could be
attributed to their distinct expression on different cell populations.
For example, PD-1 is largely expressed on activated T and B cells and
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on monocytes; CTLA-4 is expressed on activated T-cells; LAG-3 is
expressed on activated T, B, NK, DCs and monocytes; NKG2A is
expressed on CD8+T and NK cells, while TIM-3 is expressed on
monocytes, NK cells, Thl, Tcl and Treg cells (21, 22).

cfChPs released from dying Hela cells are
readily internalized by human lymphocytes

To confirm the above findings in another experimental setting,
we devised a method in which isolated T-cells were exposed to
conditioned medium containing cfChPs released from hypoxia-
induced dying HeLa cells. Such an experimental setting provides
further confirmation of the effect of cfChPs on immune checkpoint
activation in a more physiological situation as it utilizes cfChPs that
has been naturally released into the culture medium from hypoxia
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respective peak time points.

induced dying HeLa cells. As a first step, we confirmed that cfChPs
released from dying cells are internalized by T-cells. For this, we
fluorescently dually labelled HeLa cells in their DNA with BrdU and
in their histones with CellLight® Histone 2BGFP (please see
Methods) and induced them to undergo apoptosis in a hypoxia
chamber for 48h. The culture medium containing dually labelled
cfChPs released from the dying HeLa cells was passed through a
porous membrane (pore size ~400nm). Isolated human T-cells were
incubated in the filtered conditioned medium for 4h (please see
Methods). Fluorescence microscopy at 4h detected copious
presence of dually labelled cfChPs within PBMCs which had
accumulated in their nuclei (Figure 4A).

cfChPs released from dying Hela cells
activate immune checkpoints

Having confirmed that cfChPs released from dying HeLa cells
are readily internalized by T-cells, we performed our next
experiments using conditioned medium of hypoxia-induced dying
but unlabeled HeLa cells. A time course analysis using qRT-PCR
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revealed marked up-regulation of all five immune checkpoints and
six stress markers described above (Supplementary Figure 3).

Activation of immune checkpoint is
abrogated by cfChPs deactivating agents

To confirm that cfChPs in the conditioned media were indeed
the immune checkpoint activating agents, we pre-treated the
conditioned media with three different cfChPs inactivating agents.
These included anti-histone antibody complexed nanoparticles
(CNPs) which inactivate cfChPs by binding to histones (13);
DNase I, which inactivates cfChPs by degrading its DNA
component; and a newly described pro-oxidant combination of
the nutraceuticals Resveratrol and metallic Copper (R-Cu) which
degrades cfChPs through the medium of free radicals (14, 15, 23—
25). Immunofluorescence analysis were performed at the peak time
point of mRNA expression as defined by qRT-PCR and flow
cytometry was performed at 72h after treatment (Supplementary
Figure 3). We found a highly significant reduction in expression of
all three immune checkpoints examined, namely, PD-1, CTLA-4
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Upregulation of immune checkpoints on splenic lymphocytes of mice following intravenous injection of cfChPs (100ng) isolated from sera of cancer
patients. (A) Gating of splenic lymphocytes on forward/side scatter, T-cells were identified by using CD3 antibodies, Th cells were identified by using
CD4 antibodies and Tc cells were identified by using CD8 antibodies. (B) Line graphs showing results of time course analysis of surface expression of
various immune checkpoints on CD4*T cells and CD8*T cells by flow cytometry (N=3 at each time point) (left-hand panels). Representative flow
cytometry plots at respective peak time points are given in right- hand panels. Percent expression of each immune checkpoint was compared with
untreated controls. (C) Histograms represent immune checkpoint expression on CD4+T cells and CD8+T cells at respective peak time points
determined by flow cytometry in control and treated mouse splenocytes. Statistical analyses were performed using Bonferroni’'s multiple
comparisons test (GraphPad Version 8) to compare immune checkpoint expression on T-cells at different time-points in response to cfChPs. A two-
tailed unpaired student’s t-test was used to compare immune checkpoint expression on T-cells of untreated and treated mice at peak time points of

expression. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

and LAG-3 (Figures 4B, C; Supplementary Figure 4). We
specifically focused on these three immune checkpoints because
inhibitors against these have been approved for clinical use.

Discussion

Cancer immunotherapy is considered to be a new breakthrough
in cancer treatment (4). However, how immune checkpoints are
regulated has not been elucidated. We have shown here that cfChPs
that circulate in the blood of cancer patients, or those that are
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released naturally from dying cancer cells, are readily internalized
by human lymphocytes leading them to activate immune
checkpoints. Cell death has been long associated with immune
modulation (26, 27), however, the underlying mechanism(s)
remains unclear. Our results suggest that cfChPs that emerge
from dying cells to enter into the circulation, or those that are
released locally from the dying cells, is the missing link between cell
death and immune response.

We wondered whether stress markers that are involved in
transcriptional regulation of immune checkpoints (18-20) might
be involved in the cfChPs induced activation of immune
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FIGURE 4
Upregulation of immune checkpoints by cfChPs released from hypoxia- induced dying Hela cells and their abrogation by cfChPs deactivating

agents. (A) Uptake by PBMCs of fluorescent cfChPs released from fluorescently dually labelled dying Hela cells in their DNA with BrdU and in their
histones with CellLight® Histone 2BGFP. A dual chamber system of Thincert®Cell Inserts was used and cfChPs released from hypoxia-induced dying
Hela cells were collected from the lower chamber (200ul) and added to PBMCs as described in the methods section. Fluorescence microscopy at
4h detected copious presence of dually labelled cfChPs, released from dying Hela cells, within the nuclei of PBMCs; (B) Results of quantitative IF
analysis of upregulation of three immune checkpoints at peak time points of mMRNA expression (Figure 3A) and their inhibition by concurrent
treatment with the cfChPs deactivators, viz. CNPs, DNase | and R-Cu; (C) Results of quantitative flow cytometry analysis of upregulation of three
immune checkpoints at peak time points of mMRNA expression (Figure 3A) and their inhibition by concurrent treatment with the cfChPs deactivators,
viz. CNPs, DNase | and R-Cu. Experiments were performed in duplicates. Results are represented as mean + SEM values and data were analyzed
using one-way ANOVA (GraphPad Prism 8).
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checkpoints. To this end we show here cfChPs treatment of
lymphocytes leads to simultaneous activation of multiple stress
markers namely, c-Jun, c-Fos, NFKB, JunB, EGR-1 and FosB.

Abrogation of immune checkpoint activation by the three
cfChPs deactivating agents, provided further evidence for the
involvement of cfChPs in immune checkpoint activation and
suggesting therapeutic possibilities. If confirmed in vivo,
prevention of immune checkpoints activation may herald the
prospect of a novel form of immunotherapy which
simultaneously downregulates multiple immune checkpoints all at
once. Above all, cfChPs deactivating agents are likely to be far less
toxic and less expensive than the immunotherapeutic agents that
are currently in use.

Several immune checkpoint inhibitors are currently approved
for clinical use. These inhibitors specifically target PD-1
(Pembrolizumab, Nivolumab and Cemiplimab), CTLA-4
(Ipilimumab and tremelimumab) and LAG-3 (Relatlimab) (28).
However, each of these agents is specific for a single immune
checkpoint, and all of them are associated with considerable
toxicity. Their high cost limits their use in countries with limited
resources. The three cfChPs deactivating agents used in our study
hold the promise of being alternatives to the immune checkpoint
inhibitors, especially because of their ability to down-regulate
multiple immune checkpoints simultaneously. Of the three
agents, CNPs and DNase I, being proteins, are likely to be
therapeutically less attractive. On the other hand, a combination
of Resveratrol and copper (R-Cu), being commonly used
nutraceuticals, would be more attractive, especially since it has
already been shown to be effective in multiple therapeutic
indications in humans (23-25). For example, the administration
of R-Cu to patients with advanced oral cancer down-regulated five
immune check-points in the tumor infiltrating lymphocytes (25),
immediately suggesting its therapeutic potential in other human
cancers. In addition, R-Cu treatment significantly down-regulated
nine additional hall-marks of cancer that have been defined by
Hanahan and Weinberg (25, 29). R-Cu would have the added
advantage of reducing toxic side effects in case it is used as an
adjunct to chemotherapy (23, 24). Taken together, these findings
make R-Cu a worthy alternative to immune checkpoint inhibitors
with which it should be compared in well-designed randomized
clinical trials for the treatment of cancer.
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SUPPLEMENTARY FIGURE 1

Rapid internalization by human PBMCs of cfChPs isolated from sera of cancer
patients. cfChPs were dually labelled in their DNA and histones with Platinum
Bright 550 (red) and ATTO-TEC-488 (green), respectively. Fluorescently dually
labeled cfChPs (10ng) when added to PBMCs, fluorescent microscopy detected
accumulation of dual labelled cfChPs in their nuclei at 2h.

SUPPLEMENTARY FIGURE 2

Representative IF images showing upregulation of five immune checkpoints
at peak time points of mMRNA expression in (A) CD4"T cells and (B) CD8*T
cells following treatment with cfChPs isolated from sera of cancer patients.
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Background: Despite advancements, breast cancer outcomes remain stagnant,
highlighting the need for precise biomarkers in precision medicine. Traditional
TNM staging is insufficient for identifying patients who will respond well
to treatment.

Methods: Our study involved over 6,900 breast cancer patients from 14 datasets,
including in-house clinical data and single-cell data from 8 patients (37,451 cells).
We integrated 10 machine learning algorithms in 55 combinations and analyzed
100 existing breast cancer signatures. IHC assays were conducted for validation,
and potential immunotherapies and chemotherapies were explored.

Results: We pinpointed six stable Panoptosis-related genes from multi-center
cohorts, leading to a robust Panoptosis-model. This model outperformed
existing clinical and molecular features in predicting recurrence and mortality
risks, with high-risk patients showing worse outcomes. IHC validation from 30
patients confirmed our findings, indicating the model's broader applicability.
Additionally, the model suggested that low-risk patients benefit more from
immunotherapy, while high-risk patients are sensitive to specific
chemotherapies like BI-2536 and ispinesib.

Conclusion: The Panoptosis-model represents a major advancement in breast
cancer prognosis and treatment personalization, offering significant insights for
effectively managing a wide range of breast cancer patients.
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Introduction

Breast cancer remains a significant health challenge globally,
being one of the leading causes of cancer-related deaths among
women (1). Despite advancements in early detection and treatment
strategies aiming to reduce recurrence and mortality, the battle
against breast cancer continues (2). The quest for improved
prognosis and therapeutic outcomes is ongoing, with early
diagnosis playing a crucial role in enhancing survival rates (3).

Recent scientific developments have shed light on PANoptosis,
a sophisticated form of programmed cell death that integrates
elements of pyroptosis, apoptosis, and necroptosis (4). This
process is crucial for maintaining the body’s balance and
defending against diseases by removing harmful cells (5).
Intriguingly, PANoptosis has been implicated in the progression
of various diseases, including cancer, highlighting its potential as a
target for innovative treatments (6). For example, research has
indicated that manipulating PANoptosis pathways could influence
the development of tumors and the effectiveness of cancer
therapies (7).

Despite the known significance of programmed cell death
mechanisms like apoptosis in cancer, the specific contributions of
PANoptosis to breast cancer progression and patient outcomes
remain underexplored (8). While prognostic models based on
PANoptosis-related genes have shown promise in other cancers, a
dedicated model for breast cancer prognosis is yet to be established
(9). This gap underscores the need for a deeper understanding of
PANoptosis in breast cancer, which could unlock new avenues for
diagnosis and treatment (10).

This study aims to bridge this gap by conducting a thorough
analysis of breast cancer samples from the TCGA-BRCA and GEO
datasets. By employing cutting-edge single-cell sequencing
technologies and a comprehensive set of machine learning
techniques, we have identified critical PANoptosis-related genes
associated with breast cancer outcomes. Using these insights, we
developed a novel prognostic model that categorizes breast cancer
patients into distinct risk groups, offering a new tool for predicting
survival and guiding treatment decisions. Our model’s effectiveness
was rigorously tested across multiple datasets, and we further
investigated the molecular and immunological profiles of the risk
categories identified, providing a comprehensive view of the
implications of PANoptosis in breast cancer.

Materials and methods
Data acquisition

The foundation of our research involved the compilation of
PANoptosis genes, encompassing elements of pyroptosis, apoptosis,
and necroptosis, which were meticulously curated from GeneCards,
GSEA gene sets, KEGG pathways, and relevant literature (11, 12).
This curation process yielded a comprehensive list of genes integral
to the PANoptosis pathway, detailed in Supplementary Table S1.

The training dataset was assembled from the TCGA database,
which included gene profiles, mutational data, and clinical
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information from breast cancer cases. Samples without survival
data were carefully excluded from the dataset to ensure data
completeness and accuracy.

To enhance the robustness of our findings and validate our
model, we obtained additional datasets from the Gene Expression
Omnibus (GEO) database and MetaGxData (13). These validation
datasets were comprised of samples from various studies, namely
GSE93601, GSE76250, GSE70947, GSE20685, GSE131769,
GSE96058, GSE20711, GSE24450, GSE202203, GSE21653,
GSEB6166, GSE48391, GSE88770 and PNC. This comprehensive
approach allowed us to validate our results across diverse datasets
and strengthen the reliability of our findings.

Single-cell analysis

Single-cell RNA sequencing data for breast cancer was sourced
from the GEO database (accession number GSE161529) as the basis
for our single-cell analysis (14). Our preprocessing protocol began
with the elimination of genes that were not expressed in any
samples, specifically those with zero counts across all cells. This
step was critical to focus our analysis on active genetic elements
within the samples. We then normalized the gene expression
matrix. This normalization process, conducted using the
“SCTransform” function within the Seurat R package, allowed for
the correction of technical variances and the stabilization of
variance across features. Subsequent dimensionality reduction
techniques, including PCA, tSNE, and UMAP, were employed to
distill the high-dimensional data into a more interpretable form,
facilitating the identification of cellular phenotypes and states. Cell
populations were categorized using the “FindNeighbors” and
“FindClusters” functions, which are instrumental in discerning
the heterogeneity within the cell populations. We augmented our
quality control measures by identifying and removing doublets with
the DoubletFinder R package, further ensuring the integrity of our
dataset (15).

Following these rigorous quality control measures, we retained
approximately 37,451 cells for subsequent analyses. The final step
involved cell type assignment; a task made efficient using Celltypist
(16). This comprehensive approach ensured the robust processing
and analysis of the single-cell data, setting a strong foundation for
our research endeavors.

CellChat analysis

For the investigation of intercellular communication within the
tumor microenvironment, we utilized the “CellChat” R package,
which allows for the analysis of cell-cell interactions based on
ligand-receptor pairs (17). We constructed CellChat objects for
each group using their respective UMI count matrices. The
“CellChatDB.human” database was employed as the reference for
known ligand-receptor interactions, enabling us to analyze the
complex signaling networks within our samples. Using the default
settings within CellChat, we performed a comparative analysis of
the interaction counts and strengths between different cell types. To
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synthesize this information across groups, we merged the individual
CellChat objects using the “mergeCellChat” function. This step was
crucial for aggregating data to observe broader trends in cell
communication. Differences in interaction number and strength
among specific cell types across groups were visualized using the
“netVisual_diffInteraction” function. We ascertained variations in
signaling pathways through the “rankNet” function and depicted
the spread of signaling gene expression across groups with
“netVisual_bubble” and “netVisual_aggregate” functions.

Functional analyses

To elucidate the complex landscape of differential PANoptosis-
related gene expression between tumor and normal tissues, we
utilized the GO and KEGG databases for a thorough assessment of
associated functional activities and pathways (18, 19). The
Enrichplot package within R was employed to visualize the results
of this enrichment analysis. In parallel, the clusterProfiler algorithm
facilitated Gene Set Enrichment Analysis (GSEA) to distinguish the
biological functions between distinct breast cancer risk subgroups
identified by our model (20). We established a False Discovery Rate
(FDR) below 0.05 to denote statistical significance, enhancing the
robustness of our findings by performing 1,000 permutations for
each analysis. This comprehensive approach allowed us to identify
key functional pathways differentially activated in our PANoptosis-
related gene sets, providing insight into the molecular
underpinnings of breast cancer pathology and prognosis.

Establishment of the PANoptosis score

To uncover the significance of PANoptosis in BC, a systematic
methodology was adopted. This exploration commenced with a
differential analysis, specifically comparing gene expression patterns
between tumor and normal tissues using the TCGA-BRCA dataset.

To visually depict the outcomes of differential gene expression, we
employed a heatmap, effectively illustrating the observed disparities.
Concurrently, we analyzed gene correlations, utilizing the igraph
package. The crucial PANoptosis Score was then meticulously
calculated. This calculation was based on the differentially expressed
PANoptosis-related genes. In this effort, we utilized the ssGSEA
algorithm for bulk data analysis (21), while for single-cell data, we
employed the Ucell algorithm (22). This dual approach ensured a
comprehensive and robust assessment of the PANoptosis Score,
facilitating a deeper understanding of its role in breast cancer.

Development and validation of the
PANoptosis-model

In constructing a prognostic model for breast cancer based on
PANoptosis, we followed the analytical workflow established by Liu
et al. (23). We integrated ten classical computational algorithms,
including Random Forest (RSF), Least Absolute Shrinkage and
Selection Operator (LASSO), Gradient Boosting Machine (GBM),
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Survival Support Vector Machine (Survival-SVM), Supervised
Principal Components (SuperPC), Ridge Regression, Partial Least
Squares Regression for Cox (plsRcox), CoxBoost, Stepwise Cox, and
Elastic Network (Enet). each bringing unique strengths in
dimensionality reduction and variable selection, as detailed in
Supplementary Table S2. The TCGA-BRCA dataset served as the
training cohort, with the combination of these algorithms being
used to create the prognostic signature. We then evaluated the
model’s predictive power using the average concordance index (C-
index) across five external test cohorts from the GEO database. This
process allowed us to identify the most effective prognostic model
for breast cancer, which we refer to as the PANoptosis-model:

riskscore = En:(ﬂ,- x Exp;)
i=1

Where ‘n’ represents the number of PANoptosis genes, ‘Exp’
signifies the PANoptosis gene profile, and ‘B’ denotes the multi-
Cox coefficient.

This model calculates a risk score based on the expression profile of
PANoptosis genes and their respective coefficients derived from
multivariate Cox regression. Patients from the TCGA-BRCA dataset
were stratified into different risk groups according to these scores. The
generalizability of the risk score was then validated using additional
external datasets, which served as independent test cohorts. Kaplan-
Meier survival analysis, conducted with R v4.2, was employed to
discern survival differences between the risk groups, with a p-value
of less than 0.05 indicating statistical significance. This meticulous
approach ensured that the PANoptosis-model was robustly validated
and capable of accurately predicting patient outcomes.

Genomic character analysis

To unravel the genomic alteration disparities between the
PANoptosis-model subgroups, we conducted an extensive
examination of mutation and Copy Number Alteration (CNA)
data within the TCGA-BRCA dataset.

We initiated this analysis by extracting the raw mutation file and
proceeded to calculate the Tumor Mutation Burden (TMB) for each
sample. To provide insights into the genetic landscape, we visually
represented the top 28 genes utilizing the maftools package. Following
the methodology described by Wang et al. (24), we employed the
deconstructSigs package to derive mutational signatures unique to each
patient. Notably, we highlighted four signatures with notable
occurrence frequencies in BRCA: SBS1, SBS3, SBS11, and SBS12.

Furthermore, we selected the top 5 regions exhibiting a high-
level CNA frequency. Particular attention was given to genes within
chromosomes 13q34, including CDK19, SOBP, ATG5, and FYN.
This comprehensive analysis provided valuable insights into the
genomic alterations within the PANoptosis-model subgroups.

Estimation of TME variations

We collected five algorithms [MCPcounter (25), xCell (26),
CIBERSORT (27), quanTIseq (28), and TIMER (29)] to estimate
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the abundance of diverse immune cells through different risk score
groups using the IOBR package (30). Furthermore, we utilized
ESTIMATE and TIDE to assess the composition, structure, and
state of the tumor microenvironment (31, 32). This analysis
provided crucial insights into the biological traits and prognosis
of the tumor. Finally, the expression features of multiple immune
checkpoints were also quantified to explore the immune state,
preliminary predicting therapeutic sensitivity to ICIs therapy.

Selections of therapeutic targets
and agents

For estimating drug targets and predicting chemotherapeutic
responses, we obtained comprehensive target data for 6,125
compounds from the Drug Repurposing Hub (https://clue.io/
repurposing), resulting in 2,249 distinct drug targets after
removing duplicates (33). We used Spearman correlation analysis
to identify potential drug targets associated with unfavorable
prognosis by correlating the gene expression of targetable genes
with risk scores (correlation coefficient > 0.25, P< 0.05).
Subsequently, we correlated CERES scores with risk scores for
brain cell lines from CCLE, identifying genes (correlation
coefficient < -0.2, P< 0.05) associated with poor prognosis
dependence (34).

To predict drug responses accurately, we leveraged CTRP and
PRISM datasets, which contain extensive drug screening and
molecular data across cancer cell lines. We performed differential
expression analyses between bulk and cell line samples. For drug
response prediction, we employed the reliable ridge regression
model within the pRRophetic package. This model was trained on
expression profiles and drug response data from solid Cancer Cell
Lines (CCLs) and exhibited robust performance, validated by
default 10-fold cross-validation (35).

Additionally, we conducted a Supplementary Connectivity Map
(CMap) analysis to assess the therapeutic potential of candidate
agents in BC (36). We performed differential gene expression
analysis between tumor and normal tissue samples and then
submitted the top 300 genes (150 up-regulated and 150 down-
regulated) to the dedicated CMap website (https://clue.io/query).
This analysis drew on gene expression signatures from CMap vl
and the LINCS database. Negative connectivity scores indicated the
potential therapeutic efficacy of perturbations in the disease context.

Human sample collection and IHC staining

In this study, we obtained specimens from a cohort of 30 patients
diagnosed with BC at the Guizhou Provincial People’s Hospital.
These specimens were collected during surgical procedures.
Hematoxylin and eosin (HE) staining was applied to the specimens
based on established protocols. Diagnostic evaluations were
independently conducted by two pathologists. Comprehensive
cohort details are provided in Supplementary Table S3.

Immunohistochemistry (IHC) was conducted on paraffin-
embedded samples, adhering to methods outlined in our earlier
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publications (37, 38). The antibodies utilized are enumerated in
Supplementary Table S4. Evaluation was consistent with established
protocols and scoring guidelines. Two pathologists independently
assessed protein expression levels, consistent with the methodology
described in our previous work (38).

gRT-PCR and patient stratification

RNA was isolated from breast cancer samples using TRIzol
reagent (Invitrogen, Carlsbad, CA, USA). This was followed by the
synthesis of cDNA and qRT-PCR procedures, employing GoScript
reverse transcriptase and Master Mix (Promega), following the
manufacturer’s instructions. Data were captured using the CFX96
Touch Real-Time PCR Detection System (BioRad, Hercules, CA,
USA). The relative quantification of gene expression was performed
with the 2**“Y method, normalizing against GAPDH as the
reference gene.

Patient stratification into low-risk and high-risk categories was
achieved through the evaluation of gene expression levels, applying
a specific threshold based on the PANoptosis-model’s equation.

Statistical analysis

Data processing and statistical analysis were conducted using R
software (version 4.2.3). We applied the Wilcoxon signed-rank test
to evaluate expression differences between BC patients and controls.
Pearson and Spearman correlation analyses were utilized to
determine statistical correlations between parametric and non-
parametric variables, respectively. Significance was established at a
p-value< 0.05, with gradations indicated as *p< 0.05, **p< 0.01,
©erp< 0,001, #p< 0.0001.

Results

Differential expression of PANoptosis
genes in breast cancer tissues

The overall design of this study is displayed in Figure 1. We
identified 52 pyroptosis genes, 581 apoptosis genes, 101 necroptosis
genes, and 28 potential PANoptosis genes. To comprehensively
evaluate the expression landscape of PANoptosis-related genes in
BC, we conducted differential gene expression analysis comparing
tumor samples to normal counterparts within the TCGA-BRCA
dataset. The heatmap depiction underscores a pervasive pattern of
dysregulated PANoptosis gene expression within BC samples,
delineating a stark contrast between malignant and non-
malignant tissue profiles (Supplementary Figure SI1A;
Supplementary Table S5). In our subsequent analysis, we
discerned 61 genes with prognostic significance within the realm
of PANoptosis, segregating these into four distinct clusters of
expression (as depicted in Figure 2A). A particularly compelling
positive correlation emerged between IFNG and FASLG within
cluster A (cor = 0.84, P-value< 0.001), suggesting a concerted
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The overall flow of this study.

regulatory mechanism at play. Similarly, cluster B showcased a
noteworthy synergistic expression pattern between YWHAZ and
CD24 (cor = 0.300, P-value< 0.001). In stark contrast, cluster D
revealed an intriguing negative correlation between POU4F1 and
SIAH2 (cor = -0.34, P-value< 0.001), hinting at an intricate
antagonistic interaction pertinent to BC progression (Figure 2A).

Further refining our investigative scope, we introduced a novel
metric, the PANoptosis-score, crafted to quantify the cumulative
activity of PANoptosis pathways within BC. Our scrutiny extended
across the foundational TCGA-BRCA dataset and was corroborated
by analyses within three ancillary datasets (GSE93601, GSE76250,
and GSE70947). The data cohesively pointed to an elevated
PANoptosis-score in BC patients relative to normal groups, a
finding consistently replicated across all datasets examined
(Figures 2B-E). The enrichment analyses were conducted to clarify
the function and pathways of these genes within BC patients. The
Proteomaps indicated that these differentially expressed genes related
to PANoptosis displayed strong relationships with 15 top roles, such
as signal transduction, signaling molecules and interaction, and
transcription. Massive signaling pathways were exhibited including
IL19, IL16, PDXI and IL33 (Supplementary Figure S1B).

Based on the background that tumor microenvironment (TME)
participates in the progression of tumors, the association between the
PANoptosis-score and 26 infiltrated immune cells was further
elaborated as unraveled in Figure 2F, of which Thl cells, Tregs and
M1 macrophages were positively infiltrated with PANoptosis-score in
BC patients, in contrast, taking M2 macrophages as an example, 11
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immune cells were negatively correlated with PANoptosis-score.
According to the correlation analysis results from Figures 2G, H, it
was confirmed that the PANoptosis-score exhibited a positive
relevance with CD8T cells, but a negative relation to M2 macrophages.

Single-cell analysis reveals PANoptosis
dynamics in BC

To further assess the PANoptosis features in BC, the single-cell
transcriptome analysis was performed, of which a total of eight
patients and two groups (tumor and normal) were enrolled in this
analysis (Figures 3A, B). We then grouped them into fifteen cell
clusters and identified seven cell types (Figures 3C, D). The bar chart
clearly and intuitively presented the proportion of seven cell types in
normal and BC tissues, of which three cell types, including T cells,
macrophages, and epithelial cells, accounted for far over fifty percent
in tumor tissues relative to the normal tissues, and conversely,
Pericytes, fibroblasts and endothelial cells occupied higher
proportion in normal tissues (Figure 3E). To accurately observe the
distribution of these cells, they were individually annotated by their
biomarkers. For example, T cells were marked by IL7R, CD36 was
specifically expressed in the surface of endothelial cells, and
fibroblasts were exclusively annotated by COL1A1 and PFGFRA, in
addition, CD68, CD14, RGS5 and EPCAM were the markers of
macrophages, Pericytes and epithelial cells, respectively (Figure 3G).
Moreover, the mRNA expression levels of massive protein molecules
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were observed across these seven cells (Figure 3H), revealing that
these specifically expressed molecules served as potential biomarkers
for corresponding cell types.

Subsequently, the Ucell algorithm was applied for the
calculation of the PANoptosis-score among diverse cells as shown
in Figure 3F as well as it was outlined that this score existed notable
distinctions in separate cell types. The mountain map plainly and
separately unfolded the divergence of the PANoptosis-score among
these seven cell types, finding that this score was distinctive in each
cell subtype, and noting that epithelial cells, endothelial cells and
fibroblasts possessed higher PANoptosis-score (Figure 3I). We
further utilized copykat algorithms to identify the tumor cell from
epithelial cells in tumor tissues (Figure 3]). Corresponding with the
results of bulk sequence, in epithelial cells, the PANoptosis-scores of
tumor-aneuploid exceeded the score in normal and tumor-diploid
samples, suggesting that the extent of PANoptosis was tightly
correlated with the development of tumor.

Deciphering the variations of cell-cell
interactions within BC patients

To clarify the interaction status among these seven cell types
(epithelial cells, endothelial cells, B cells, T cells, plasma cells,
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macrophages, and fibroblasts) in two groups, the bar chart
revealed that the numbers and strength of cell-cell interaction in
normal groups outperformed BC patients (Figure 4A).
Subsequently, the network map visually displayed the interaction
among seven cells, hence it was found that these three cells,
including epithelial cells, fibroblasts and endothelial cells, had
stronger interaction in normal populations, accompanied by a
weak interaction relationship with the other four cells, such as
macrophages, plasma cells, T cells and B cells, in contrast to BC
patients (Figure 4B). Ulteriorly, the interaction of each intracellular
pathway within distinctive groups was identified, witnessing that
most of the signaling pathways were notably active in normal
populations, such as SELE, ANGPT, CCL, ANGPTL, and other
twenty pathways, whereas the activation of seven pathways, namely
APP, MIF, MK, ESAM, PECAMI, CD99 and SPP1, primarily
occurred in BC patients (Figure 4C).

To accurately identify the cell groups in dynamic situations
where the received or submitted signals were changed, the
comparison based on the outgoing and incoming interaction
strength was developed in 4D space. According to this result, it
was displayed that epithelial cells, endothelial cells and fibroblasts
were classified as primary sources and targets for normal
populations, while the chief sources of BC patients were
macrophages and plasma cells, indicating the potential that they
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Single-cell analysis reveals PANoptosis dynamics in BC. (A) Distribution of cells collected from 8 patients. (B) Distribution of cells from tumor and
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tumor-diploid, and tumor-aneuploid in epithelial cells. ****P < 0.0001.

partook in the progression of BC (Figure 4D). Additionally, we
further examined the strong interaction probability among T cells,
B cells, plasma cells and macrophages. It was seen that the
interaction obtained between CDL6A2 and CD44 and ITGAV
+ITGBS8 exclusively belonged to normal groups, while the
interplay between CD44 and SPP1, FN1 merely occurred in BC
patients (Figure 4E).

Machine learning approaches to develop a
prognostic PANoptosis model

In the TCGA dataset and other five testing cohorts, 55
combined algorithms were leveraged to establish the PANoptosis-
model, as well as obtained the mean C-index value of each
algorithm for each combination (Figure 5A). As the result
unveiled, the mean C-index of the RSF algorithm was highest
compared with other algorithm combinations, emphasizing that
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this algorithm was competent to recruit prognostic genes and
construct a predictive model (Figure 5A). To ensure the
effectiveness of the subsequent established predictive model, the
random forest model was deployed, as well a smaller generalization
error (or OOB error) was strongly demanded. It was seen that OOB
error was continuously decreasing and dynamic equilibrium
between 0.4 and 0.38 (Figure 5B). Meanwhile, based on the
analysis of random forest, we ultimately recruited six of the most
signiﬁcant genes pertinent to PANoptosis, namely, CD24, BMF,
DAPK2, GNAI3, NR4A2 and SRC, which could be utilized to
construct a prognostic model further (Figure 5C):

riskscore = CD24 x 0.3459 + BMF x 0.1461 — DAPK2 x 0.1456—
GNAI3 x 0.0007 — NR4A2 x 0.0413 — SRC x 0.1437

Consequently, two subgroups were successfully divided
according to multivariate coefficient of the six genes, of which the
low-risk group was superior in prognosis, accompanied by longer
OS and more alive people, which was in contrast to the high-risk
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Deciphering the variations of cell-cell interactions within BC patients. (A) Comparison of interaction number and strength of multiple cell types
between two groups. (B) Detailed cell communications among each cell type. (C) The bar chart signifies the proportion of massive signaling
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tumor samples.

group. Moreover, the expression profiles of these six genes were
visualized, of which SRC, NR4A2 and DAPK2 were exceedingly
abundant in low-risk populations, while GNAI3, BMF and CD24
exhibited higher expression levels in the high-risk patients
(Figure 5D). Furthermore, the PANoptosis-model predicted the
survival probability of separate-risk patients, displaying that low-
risk patients possessed longer OS than high-risk BC patients
(Figure 5E). The analysis of the Kernel-smoothing hazard also
reflected the fact that the high-risk patients possessed a higher
probability of BC recurrence compared to low-risk BC patients
according to the hazard values (Figure 5F). Ultimately, the ROC
curve evaluated the predictive ability of this model, since the range
of AUC value was between 0.603 and 0.613, demonstrating that it
was a robust and reliable prognostic model (Figure 5G).
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Predictive performance of the PANoptosis
prognostic model

The univariate and multivariate Cox regression analyses were
resorted to evaluate the independence of our prognostic model and
other clinical factors. The result from univariate Cox analysis
indicated that these indicators, including risk score, menopause,
stage, T, N and M, were capable of exerting influences on the
survival rate of BC patients. Interestingly, the multivariate Cox
regression analysis interpreted that risk score and age conformed to
the criteria (P< 0.05), demonstrating that our PANoptosis-model was
equipped with independence of prediction for BC patients
(Figure 6A). Since the stage is a valuable reference in clinical
practice, we then established a PANoptosis-nomogram to precisely
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Machine learning approaches to develop a prognostic PANoptosis model. (A) The C-indexes of the 55 machine-learning algorithm combinations in
the six testing cohorts. (TCGA, GSE20685, GSE131769, GSE96058, GSE2071 and GSE24450). (B) The forest model showcases the error rate in several
different trees. (C) The importance of each significant PANoptosis gene. (D) The difference in OS, and survival status between two groups. Heatmap
quantifying the expression levels of six PANoptosis genes in distinctive populations. (E) KM survival illustrates the survival probability in these two
groups. (F) The kernel-smoothing hazard function plot demonstrates the correlation between relapse hazard and moths in two populations. (G) The
ROC curves visualize the AUC values of the PANoptosis-model at one-, three-, and five-year.

predict the survival probability for BC patients at one-, three-, and
five-year, which is composed of risk score, stage and age (Figure 6B).
As the calibration curves illuminated, the nomogram-predicted OS
was extremely consistent with the observed OS, confirming the
accuracy of this nomogram (Figure 6C). In addition, the decision
curve analysis (DCA) and the Hosmer-Lemeshow analysis continued
to be conducted to enhance the nomogram persuasiveness. The DCA
manifested that the net benefit of the PANoptosis-model curve far
outweighed the other two curves, representing the efficiency of this
model (Figure 6D). Similarly, its salient performance was again
validated via the Hosmer-Lemeshow analysis, due to the result that
the PANoptosis-nomogram curve did not exist apparent distinction
with the ideal curve (P =
predictive capability of this model. According to these data, it was
summarized that the PANoptosis-nomogram had terrific potential

0.132) (Figure 6E), implying a superb

and value for clinical application.

We also observed the predictive performance of eleven factors via
the ROC curve, of which except for ER (AUC = 0.42) and PR (AUC =
0.4), the AUC value< 0.5, the good predictive potential of other factors
was demonstrated (AUC > 0.5, Figure 6F). The C-index is a
fundamental approach to appraise the predictive capability of
distinctive models. We proceeded to assess the predictive efficacy of
our model against 100 published signatures through C-index
evaluation across the training cohort and ten testing cohorts.
Remarkably, our PANoptosis-model demonstrated consistently
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higher precision compared to other models in the majority of the
cohorts, underscoring model’s robustness (Supplementary Figure S2).

Genomic alterations and their prognostic
implications in PANoptosis

The above findings had preliminarily mentioned genetic
alterations in two groups, to deeply analyze these diversities
between two populations, we introduced multi-omics analysis to
inspect the genetic variations within separate groups (Figure 7A). It
was observed that the tumor mutational burden (TMB) of low-risk
patients was comparatively lower in comparison to the high-risk
populations. Moreover, this finding was again emphasized via the
findings from Figures 7B, C. In Figure 7B, we calculated and
visualized the TMB value, of which a lower TMB value was
detected in low-risk patients instead of in high-risk populations (P<
0.05). Additionally, the TP53 mutational frequency was individually
calculated among these two groups, respectively, as well as a higher
proportion of the TP53 MUT was discovered in high-risk patients,
which accounted for 58% and far surpassed the 38% of low-risk
patients (Figure 7C). These three mutational signatures of SBS12,
SBSI and SBS11 primarily occurred in high-risk patients. Secondly, it
was also detected that the mutation frequency of other genes, such as
PIK3A, TTN, HMCN1 and CCDC168, also showed obvious
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Predictive performance of the PANoptosis prognostic model. (A) The univariate Cox regression analysis comprised of risk score, age, menopause, LN,
PR, ER, HER2, stage, T, N, and M, and the multivariate Cox regression analysis composed of risk score, age, menopause, stage, T, N, and M

(B) The establishment of a PANoptosis-nomogram made up of risk score, stage, and age. (C) The calibration curves assess the correctness of this
nomogram prediction for OS at 1-, 3-, and 5-year. (D) The PANoptosis-model possesses higher net benefit and threshold probability than treat all and
treat none. (E) The Hosmer-Lemeshow curve of PANoptosis-nomogram plotted by actual PANoptosis-model and nomogram predicted probability. (F)
11 ROC curves respectively unfolding the corresponding AUC values of the risk score and ten clinicopathological indexes. ***P < 0.001.

heterogeneity between these two populations. Besides, the
amplification of 3p25.1, 6q21 and 13q34, as well as the deletion of
1p21.2, 17p12, 17q21.31 and 19p13.3 were identified in high-risk
patients. These results were demonstrated due to the gain of
oncogenic genes CDK19, SOBP, ATG5 and FYN in chr6q2l
(Figure 7A). After that, the expression levels of six PANoptosis-
related genes were quantified, as the heatmap showcased that SRC,
DAPK2 and NR4A2 were primarily up-regulated in low-risk BC
patients, while other three PANoptosis genes had higher expression
levels in other risk patients (Figure 7D). Subsequently, the relevance
between the risk score and survival status (Figure 7E) and tumor
grade (Figure 7F) was explained, respectively. The risk score
presented a remarkably positive correlation with status and grade,
hinting that PANoptosis was pivotal in BC development. Ultimately,
we compared the enrichment divergences of landmark pathways
between two populations using GSEA analysis, of which five signaling
pathways related to the immunoreaction had lower abundances in
the high-risk patients, such as T cell-mediated cytotoxicity, antigen
processing and presentation of peptide antigen, taking the positive
regulation of epithelial cell differentiation pathway as an example,
these five pathways, which were involved in cell development, were
dramatically down-regulated in the low-risk patients (Figure 7G).

Tumor microenvironment evaluations
using the PANoptosis model

Due to the significance of the TME in tumor development, we
explored the immune discrepancies between these two populations
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using multiple methods, including CIBERSORT, xCell, MCP
counter, TIMER and quanTIseq, to deeply analyze the prognostic
mechanisms. We observed that a majority of immune cell types
were prominently distributed in low-risk BC patients, such as
neutrophil cells, monocyte cells, CD4™T cells and NK cells, and a
minority of cells were found in the high PANoptosis-score patients,
for instance, pDC cells, Tregs, and dendritic cells (Figure 8A).
Consistent with immune infiltration, low-risk patients possessed a
higher abundance of ICIs compared to high-risk patients,
accompanied by a favorable prognosis (Figure 8B). To further
assess the TME variation and validate the analyzed results, we
performed THC staining based on key cell markers and ICIs in-
house collected samples, the representative IHC images and statical
results are shown in Figures 8C, D.

Prognostic implications of PANoptosis for
ICIs therapy response

Through the evaluation of TME, it was speculated that low-risk
BC patients may be superior in response to immunotherapy based
on more immune cell infiltration and higher expression levels of
ICIs genes, consequently demanding further validation. It is well-
known that TIDE has been widely utilized to examine the efficiency
of immunotherapy, and it typified a negative relevance with the
responsiveness. Here, higher Dysfunction values were observed in
low-risk patients, but there were no prominent differences in the
TIDE and Exclusion scores between these two patients (P > 0.05)
(Figure 9A). The survival probabilities included four combinations
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FIGURE 7

Genomic alterations and their prognostic implications in PANoptosis. (A) Genomic alteration landscape according to PANoptosis-model, including
TMB, mutational signature, mutated frequencies of top 28 genes, CNV alteration and the distribution of selected genes in Chr6p21; Bar chart
visualized the proportion. (B) The logarithmic value of TMB was computed in each group. (C) The TP53 MUT separately accounted for 58% and 38%
in high- and low-risk patients, and similarly the percentages of WT were 42% and 62% between them, respectively (D) The heatmap presenting the
expression profiling of five important PANoptosis genes in distinct populations and other clinicopathological factors, such as age, LN, stage, and
HER2. (E, F) The violin charts individually indicated the association of risk score and status (E) and grade (F). (G) GSEA analyses results from the high-
risk subgroup compared with the low-risk one. *P<0.05, **P<0.01, ***P<0.001, ****P < 0.0001.
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that were separately evaluated as shown by four KM survival curves,

suggesting that low-risk score and high TIDE were superior in the
outcome than other combinations, which claimed that low-risk
patients with high TIDE value implied the further improvement of
prognosis effect and risk score played a domain and decisive

role (Figure 9B).
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We estimated the tumor immunogenicity characteristics

according to these indexes including CTA score, recombination
defect, wound healing and proliferation, since their dysregulation
could furnish new impetus for the development of tumors. As the
outcomes exhibited, these four indexes displayed sensibly positive

relations with the risk score, proposing that high-risk BC patients
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FIGURE 8

Tumor microenvironment evaluations using the PANoptosis model. (A) The distribution of multiple infiltrated immune cells derived from five algorithms
(xCell, CIBERSORT, quanTlseq, TIMER) in two populations. (B) The expression features of massive immune checkpoints in these two risk-score
subgroups. (C) IHC images of infiltrated immune cells and ICls targeting the representative makers. (D) Statistical result of (C). *P<0.05, **P<0.01,
***P<0.001, ****P < 0.0001. ns, not significant.

possessed inferior prognoses (Figure 9C). Until now, it has not been  to ICIs therapy between distinctive groups, as well as low-risk BC
determined which groups were more suitable for ICIs therapy, so  patients were more beneficial for this treatment in clinical.

we introduced the IPS score from the TCGA dataset to diagnose. It

was emphasized that the IPS scores were all extremely high in low-

risk BC patients, representing that this group was more likely to Chemothera Py response and

acquire benefits from immunotherapy, no matter what alone or PANOptOSiS Slg natures

combined therapy methods were (Figure 9D). Ultimately, the

assessment of response to PD1, PDL1, CTLA4 and MAGE-A3 While novel therapeutic approaches, including targeted
treatment provided the immunotherapy chance for high-risk  therapy, have been explored, chemotherapy remains an essential
populations, but this group was merely limited to response to  option for clinical cancer treatment. Therefore, it is imperative to
anti-PD-1 and MAGE-A3 treatments (P< 0.05) (Figure 9E).  employ the PANoptosis model to predict chemotherapy response in
Collectively, the PANoptosis-model predicted the responsiveness  BC patients, to improve the prognosis, especially for high-risk BC
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FIGURE 9

Prognostic implications of PANoptosis for icis therapy response. (A) Differences of TIDE value, dysfunction value and exclusion value in low- and
high- risk populations. (B) To compare the OS of four combinations composed of (low or high) TIDE and (low or high) risk score, individually. (C) The
relevance of the risk score and CTA score, recombination defect, wound healing and proliferation. (D) IPS (Immunophenoscore) value of each
combination among two risk groups. (E) Putative ICls therapy response in two risk BC patients.

patients. The identification of therapeutic targets is deemed a
pivotal measurement to breaking undruggable dilemmas. So,
Spearman’s correlation analysis was utilized to select, finding that
four proteins had a higher abundance in high-risk patients, which
also indicated that this group was more prone to chemotherapy.
Moreover, the CERES scores also supported the finding that these
four proteins were considered therapeutic targets for high-risk BC
patients (Figure 10A). Meanwhile, the candidate drug targeting
these four anti-cancer drugs was characterized as having higher
drug sensitivity (Figure 10B). Together, ACTB, SLC15A1, SLC5A6,
and SQLE were recommended as potential therapeutic targets.

In the following, we continued to identify underlying drugs from
PRISM and CTRP datasets. This study displayed that a total of six
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candidate compounds were listed, among them ispinesib and
LY2606368 compounds from the PRISM dataset (Figure 10C), and
the CTRP dataset including SB-743921, paclitaxel, BI-2536 and
GSK461364 compounds (Figure 10D). We also found that lower
AUC value was reported in high-risk patients, hinting a better
responsiveness to chemotherapy in this population. Since the above
finding was unable to determine the most superior drugs, therefore, a
multiple-perspective analysis was further conducted. Among them,
the clinical status, experimental evidence, mRNA expression levels
and CMap score of these six compounds were disclosed, based on the
criterion CMap score< -35, concluding that only BI-2536 and
ispinesib were ultimately chosen as therapeutic drugs for high-risk
BC populations (Figure 10E; Supplementary Table S6).
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Chemotherapy response and PANoptosis signatures. (A) The left plots illuminating the spearman’s rank correlation coefficient of five candidates,
among them the red and blue plots signifying the positive and negative correlations, respectively. Correspondingly, the right scatter plots separately
denoting the relevance between the risk score and each candidate’ protein abundance and CERES score. (B) Spearman correlation between mRNA
expression of potential targets and drug sensitivity across cancer cell line. (C, D) Correlation coefficients of two compounds from PRISM dataset (C)
and of four compounds gotten from CTRP (D), of which the larger circle, the lower P-value. Accordingly, the right boxplot illustrating the remarkable
distinction of AUC value between these two risk groups in each compound. (E) A multiple-perspective analysis was constituted by clinical status,
experimental evidence, mRNA expression and CMap score of six compounds. ***P < 0.001.

Discussion

Our investigation into the role of PANoptosis in breast cancer
marks a significant stride toward refining prognostic tools and
personalizing patient care. By developing a risk score rooted in the
intricate mechanisms of PANoptosis—encompassing pyroptosis,
apoptosis, and necroptosis—we’ve unveiled a multifaceted
perspective on tumor biology and patient outcomes. This
approach not only sheds light on the underlying processes driving
breast cancer progression but also sets the stage for targeted
therapeutic strategies that could dramatically alter the
clinical landscape.

The introduction of our PANoptosis-based risk score has the
potential to revolutionize treatment paradigms in breast cancer care.
By accurately stratifying patients according to their risk, we can pave
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the way for more nuanced treatment strategies—those at higher risk
might benefit from innovative, aggressive treatments earlier in their
disease course, while lower-risk patients could avoid unnecessary side
effects from overtreatment. Moreover, our findings underscore the
potential of targeting the PANoptosis pathway as a novel therapeutic
avenue, offering hope for treatments that could inhibit tumor growth
and metastasis more effectively.

Crucially, our study illuminates the complex relationship between
PANoptosis and key processes in cancer development. While our
analysis provides valuable insights into PANoptosis and its association
with breast cancer prognosis, we did not directly investigate its
relationship with EMT or other specific pathways involved in cancer
metastasis. However, the identification of key PANoptosis-related
genes and their prognostic significance underscores the potential of
further research in these areas. Future studies could explore how these
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genes interact within the broader network of cancer progression
mechanisms, potentially uncovering novel targets for therapeutic
intervention. Understanding how PANoptosis intersects with other
cellular processes to drive or inhibit cancer spread is essential for
developing targeted interventions that could halt progression and
improve survival outcomes.

While our study represents a pivotal step forward, we must
acknowledge the limitations inherent in our current model, most
notably the exclusion of molecular subtypes of breast cancer. This
oversight is significant; the diversity of breast cancer at the molecular
level profoundly influences both prognosis and therapeutic response.
Future iterations of our research will need to incorporate these
subtypes to fully capture the complexity of breast cancer and refine
the applicability of our risk score in diverse clinical contexts.

Looking forward, integrating our PANoptosis-based risk score
with molecular subtyping and other biomarkers could yield a
robust, multifactorial tool for breast cancer prognosis and
treatment planning. Collaborative research efforts that bridge
basic science and clinical practice are essential for translating
these insights into tangible benefits for patients. Moreover,
exploring the potential of combination therapies that target both
PANoptosis pathways and other key drivers of tumor growth and
resistance may offer new hope for challenging cases of breast cancer.

In sum, our study contributes a vital piece to the puzzle of breast
cancer prognosis and treatment, highlighting the importance of
PANoptosis in shaping patient outcomes. While challenges remain
in translating these findings into clinical practice, the promise of
more personalized, effective treatment strategies based on our
understanding of PANoptosis offers a new horizon in breast
cancer care. As we move forward, expanding the scope of our
research to address the limitations identified and exploring the full
therapeutic potential of targeting PANoptosis will be crucial in our
ongoing battle against breast cancer.
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MICA and MICB are Class | MHC-related glycoproteins that are upregulated on
the surface of cells in response to stress, for instance due to infection or
malignant transformation. MICA/B are ligands for NKG2D, an activating
receptor on NK cells, CD8" T cells, and ¥ T cells. Upon engagement of MICA/
B with NKG2D, these cytotoxic cells eradicate MICA/B-positive targets. MICA is
frequently overexpressed on the surface of cancer cells of epithelial and
hematopoietic origin. Here, we created nanobodies that recognize MICA.
Nanobodies, or VHHSs, are the recombinantly expressed variable regions of
camelid heavy chain-only immunoglobulins. They retain the capacity
of antigen recognition but are characterized by their stability and ease of
production. The nanobodies described here detect surface-disposed MICA on
cancer cells in vitro by flow cytometry and can be used therapeutically as
nanobody-drug conjugates when fused to the Maytansine derivative DM1. The
nanobody-DM1 conjugate selectively kills MICA positive tumor cells in vitro.

KEYWORDS

MICA, NKG2D, NKG2D ligands, cancer, nanobodies, VHHs, immuno-oncology,
nanobody drug conjugate

1 Introduction

The Class I MHC-like molecules MICA and MICB are stress-induced surface
glycoproteins, absent from healthy cells but upregulated on virus-infected or malignantly
transformed human cells (1). MICA/B are ligands for NKG2D, an activating receptor on NK
cells, CD8" T cells, and yd T cells (2). Upon engagement of NKG2D, these cytotoxic cells can
eradicate MICA-positive targets, assisted by secretion of cytokines (3-5). Elevated levels of
MICA/B occur in hematopoietic malignancies, as well as in epithelial solid tumors such as
colorectal cancer (6), ovarian cancer (7), cervical cancer (8), breast cancer (9), pancreatic
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cancer (10), melanoma (11) and cholangiocarcinoma (12). MICA/B
are thus considered possible targets for immunotherapy.

Nanobodies, a registered trademark, are also referred to as VHHs.
They are the smallest immunoglobulin fragments that retain the
capacity of antigen binding. They are the recombinantly expressed
variable regions of camelid heavy chain-only immunoglobulins (13).
Nanobodies have a short circulatory half-life, are poorly
immunogenic, and show excellent tissue penetration compared to
conventional full-sized immunoglobulins (14, 15). Many nanobodies
do not require disulfide bonds for their stability, nor do they depend
on glycosylation for expression. They are therefore easily and
affordably produced in prokaryotic cells (16-18). Nanobodies have
proven valuable as the point of departure for the construction of PET
imaging agents (19-24), nanobody-drug conjugates (25-27), and
chimeric antigen receptors in cell-based therapies (28-38).

Because MICA is expressed on stressed and cancerous cells, the
ability to detect such aberrations in vivo would be an important
diagnostic tool to detect premalignant and malignant lesions. Here,
we report the generation of nanobodies that recognize MICA, and
apply these nanobodies to detect surface-bound MICA in vitro by flow
cytometry. Fused to the microtubule inhibitor Maytansine (DM1),
these nanobodies can be used therapeutically as nanobody-
drug conjugates.

2 Materials and methods

2.1 Alpaca immunization and phage
library construction

We immunized an alpaca with 250 ug of the purified
extracellular portion of MICA*009 (obtained by baculovirus
expression in the lab of K.-W. Wucherpfennig (39)) comprising
the a1, 02, and o3 domains in alum adjuvant, followed by 3 booster
injections at 2-week intervals. Immunizations were carried out by
Camelid Immunogenics. The immune response of the animal was
checked by immunoblot (Supplementary Figure 1). Briefly, 1 ug of
antigen was resolved by SDS PAGE and transferred to a PVDF
membrane. The membrane was incubated with at 1:5000 dilution of
alpaca serum collected 2 weeks after the last boost. HRP-linked
goat-anti-llama (0.05 pug/mL; Bethyl, NC9656984) was used as the
secondary antibody. Membranes were developed with ECL Western
Lightning Plus. Mononuclear cells from peripheral blood of the
immunized alpaca were isolated by Ficoll gradient separation. The
VHH library was generated according to an established protocol (Maas
etal., 2007). Briefly, RNA was extracted (RNeasy RNA purification kit,
Qiagen) and cDNA was prepared (Superscript ITI first-strand synthesis
system, Invitrogen). The DNA sequences from conventional and
heavy-chain only Ig genes are not distinguishable based on the use of
specific primers, but two distinct hinge regions are generated between
the VHH domain and the CH2 region. We amplified the VHH
repertoire from the alpaca using VHH-specific primers that target
these hinge sequences (Supplementary Table 1). We pooled the VHH
PCR products and ligated them into a phagemid vector in-frame with
the pIII gene of the M13 phagemid to construct a phagemid library

Frontiers in Immunology

10.3389/fimmu.2024.1368586

display. We performed two rounds of panning against MICA*009
immobilized on an ELISA plate, following previously described
protocols (40).

2.2 Production of recombinant VHHs and
sortase reactions

DNA from positive clones was sequenced and 9 clones were
selected for further characterization. The relevant VHH sequences
were subcloned into a pHENG6 expression vector with C-terminal
modifications, so that each nanobody sequence included an LPETG
motif recognized by sortase A, followed by a (His)s-tag to facilitate
recovery and purification. Briefly, VHH sequences were amplified from
the phagemid vector by PCR (primers in Supplementary Table 1) and
the pHENG vector was linearized using the Ncol and BstEII restriction
enzymes. Gibson assembly was performed following manufacturer’s
directions (Gibson Assembly® Master Mix, NEB). Positive VHH
clones were expressed in WK6 E.Coli in terrific broth and
periplasmic protein expression was activated by induction with
isopropyl B-D-thiogalactopyranoside (1 mM) at an OD600 of 0.6.
VHHs were harvested from the periplasm by osmotic shock. The C-
terminal (His)s-tag allows purification of the recombinant proteins
using Ni-NTA agarose beads (Qiagen), followed by FPLC purification
on an S75 column by FPLC (AKTA, Cytiva Life Sciences). Sortase
reactions were performed by incubating each nanobody with a 10-fold
molar excess of GGG-nucleophile in the presence of 25 uM Sortase 7M
(41) overnight at 4°C. Because the LPETG sequence is cleaved during
transpeptidation, the (His)s-tag immediately C-terminal of the LPETG
motifis lost. This allows enrichment of the desired modified product by
depletion of His-tagged sortase and unreacted nanobody on a NiNTA
matrix, while the unbound fraction contains the modified nanobody.

2.3 Competitive ELISA and estimation of
binding affinity

An ELISA was performed to determine the concentration at
which each biotinylated nanobody showed ~80% binding to
recombinant MICA*009 (5 mg/mL) immobilized on an ELISA
plate. Biotinylated nanobody at a concentration that yielded 80%
of the maximum attainable binding value was then mixed with a
500-fold excess of unlabeled competitor nanobody and allowed to
compete for binding to 5 ug/mL MICA*009 coated on an ELISA
plate. Plates were incubated with streptavidin-HRP (0.00025 pg/
mL) for 45-60 minutes at room temperature. After addition of TMB
substrate, absorbance was read out at 450 nm on a Spectramax iD5
plate reader (Molecular Devices). If the unlabeled nanobody binds
to an epitope distinct from that recognized by the biotinylated
nanobody, no diminution of the signal at 450 nm is expected.
Nanobodies that recognize the same epitope as that seen by the
biotinylated nanobody will show a reduction in the signal at 450nm.

We estimated the binding affinity of VHH-A1 and VHH-H3 by
performing an ELISA as previously described (42). Briefly, we
incubated plates coated with 100uL PBS containing 2.5 pg/mL
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recombinant MICA*009 or GFP as negative control with
biotinylated VHH-A1 and VHH-H3 in various concentrations
(10-fold serial dilutions; 0.000001 nM - 1000 nM). Streptavidin-
HRP at 0.00025 pg/mL was used as detection agent. After addition
of TMB substrate, absorbance was read at 450 nm on a
Spectramax iD5 plate reader (Molecular Devices). Binding affinity
was estimated by calculating the IC50 obtained from three
experimental replicates with each sample added in duplicates.
Recombinant MICA*009 was produced by transfection of EXPI-
293 cells with pcDNA3.1(+) vector encoding for extracellular
MICA*009 containing a C-terminal LPETG sortase motif
followed by a His (6)-tag to facilitate recovery and purification on
a NiNTA matrix (Supplementary Figure 2). EXPI-293 cells were
transfected using the EXpiFectamineTM 293 Transfection Kit,
according to manufacturer’s directions (Gibco).

2.4 Cell culture

B16F10 and EL-4 cells and their MICA™ transfectants were a gift
from the lab of Kai Wucherpfennig. B16F10 cells were cultured in
complete DMEM (DMEM with 4.5 g/L glucose, substituted with
10% Fetal Bovine Serum (FBS) and 100 U/mL penicillin/
streptomycin). EL-4 cells were cultured in complete RPMI 1640
(RPMI 1640, substituted with 10% FBS and 100 U/mL penicillin/
streptomycin). Cells were maintained at optimal densities in a
humidified 5% CO2 incubator at 37°C.

2.5 Flow cytometry

EL-4 WT and MICA" cells, or BI6F10 WT and MICA™ cells,
were stained with biotinylated VHH-A1 and VHH-H3 for 30
minutes on ice, washed, and incubated with a cocktail of
Streptavidin-conjugated PE at 0.0025 pg/mL (Invitrogen) and 2
pg/mL propidium iodide (Life technologies) for EL-4 or LIVE/
DEAD™ Fixable Violet Dead Cell Stain Kit (Invitrogen) for
B16F10, both according to manufacturer’s directions for 30
minutes on ice. Cells were analyzed on an LSR Fortessa flow
cytometer (BD Biosciences). Gating strategies were based on cell
lines stained with the appropriate controls, where single cells and
live cells were appropriately selected.

2.6 VHH-drug conjugate creation and in
vitro cytotoxicity assays

VHH-DMI was produced in a sortase-mediated transpeptidation
reaction. Briefly, 500-1000 pg of VHH containing a C-terminal
LPETG-motif was mixed with a 10-fold molar excess of GGG-
DMI1 and incubated with 25 uM Sortase for 16 hours at 4°C.
GGG-DMI was produced in-house by modifying a GGG-peptide
linker to contain a maleimide group and allowing it to react with the
thiol group on DMI1 (Broadpharm) (Supplementary Figure 3A).
Unreacted VHH and Sortase, both containing a (His)s-tag, were
depleted by incubation with NiNTA agarose (Qiagen or
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Prometheus). Excess free GGG-DM1 was removed by desalting on
a PD-10 desalting column (Cytiva). We plated 4000 cells/well in a 96-
well plate and incubated cells with serial 3-fold dilutions of VHH-
drug adduct or free DM4 (Broadpharm), a structural analog of DM1
(Supplementary Figure 3B) at 37°C in a humidified 5% CO2
atmosphere. After 72 hours, we measured cell viability by CellTiter
GloTM assay according to the manufacturer’s directions (Promega).
For co-culture experiments, MICA expression was determined after a
72-hour incubation. Each treatment was performed in duplicate. For
flow cytometry, the duplicate wells of each condition were combined,
and the cell mixture was stained with 0.0006 pg/mL biotinylated anti-
human MICA/B antibody (Clone 6D4, Biolegend) for 30 minutes on
ice. Cells were washed and incubated with Streptavidin-conjugated
PE at 0.0025 pg/mL (Invitrogen) and LIVE/DEAD'™ Fixable Violet
Dead Cell Stain Kit according to manufacturer’s directions
(Invitrogen) for 30 minutes on ice. Cells were washed and viability
and MICA positivity were determined by flow cytometry on an LSR
Fortessa flow cytometer (BD Biosciences).

2.7 Statistical analysis

All statistical analysis was performed with GraphPad Prism 8.
Flow cytometry data was analyzed with Flow]Jo (v10.8.1 and v10.9.0).

3 Results

3.1 Alpaca immunization and phage display
panning yields MICA-specific nanobodies

We immunized an alpaca with purified recombinant MICA*009
in alum adjuvant, followed by 3 booster injections at 2-week
intervals. We checked the immune response of the animal by
immunoblot using serum samples collected prior to each boost.
Having recorded a positive response after the 3rd boost,
construction of a phage display library, followed by screening for
MICA-reactive hits, yielded positive clones. DNA from positive
clones was sequenced and 9 clones were selected for further
characterization. Because nanobodies interact with their antigen
mainly via their CDR3 region, and to a lesser extent via the
germline-encoded CDRI and CDR2 (43), we chose clones that
were unique in their CDR3. A detailed comparison of the nanobody
clones based on sequence similarity in the framework and CDR
regions is described in the caption of Figure 1.

Relevant VHH sequences were subcloned into a pHENG6
expression vector to encode a VHH product with C-terminal
modifications, so that each VHH sequence included an LPETG
motif at its C-terminus, recognized by sortase A, and a (His),-tag to
facilitate recovery and purification (Figure 1). This arrangement
enables the installation of fluorophores, biotin, and other
substituents by a site-specific and efficient sortase-catalyzed
transpeptidation reaction (41). Because the LPETG sequence is
cleaved during transpeptidation, the (His)s-tag immediately C-
terminal of the LPETG motif is lost. This allows enrichment of
the desired modified product by depletion of His-tagged sortase and
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FR1 CDR1 FR2 CDR2 FR3
D8 QLQLVESGGGLVQPGGSLRLSCAASGFTLIY YAIGWFRQAPGKEREGVSLCISSSDGSTYYADSVKGRFTISRDNAK
Cc12 QLQLVESGGGLVQPGGSLRLSCAASGFTLIYYAIGWFRQAPGKEREGVSLCI-SSDGSTYYADSVKDRFTISRDNAK
279 QLQLVETGGGLVQPGGSLRLSCAASGFTLDNYAIGWFRQAPGKEREGVSLCI-TSDGSTYYSDSVKGRFTISRDNAK
Al QVQLVESGGGLVQPGGSLRLSCAASGFTL YDI FRQAPGKEREGVSLITSSDGSTYYADSVKGRFTISRDNAK
B1l1l QVQLVETGGGLVQPGGSLRLSCAASGFTL FRQAPGKEREGVSLI-TSDGNTYYADSVKGRFTISRDNAK
2B5 QVQLVETGGGLVQPGGSLRLSCAASGFTL FAIG YROQAPGKEREGVSLCIVSSDGSTYYADSVKGRFTISSDIAK
E9 QVQLVETGGGLVQPGGSLRLSCAASGFTL FRQAPGKEQEGVSLI-TSDGDTYYADSVKGRFTISRDNAK
2D5 QLQLVETGGGLVQPGGSLRLSCAASGFTL YAIG FRQAPGKEREGVALI-TSDGSTYYADSVKGRFTISRDNAK
H3 QVQLVETGGGLVQAGGSLRLSCAASGRTF FRQAPGKEREFVA[GISWSGGSTYYGDSVKGRFTISRDNAK
1 10 20 30 40 50 60 70
C-terminal
FR3 CDR3 FR4 modification
D8 NTVYLQMNSLKPEDTAVYYCRA---DCLSSTWRT----— S——————— AYLGQGTQVTVSSGGLPETGGHHHHHH
Cc1l2 NTVYLOMNSLKPEDTAVYYCRK---DCLSSSWRT -—--— S—————— AYVEQGTQVTVSSIGGLPETGGHHHHHH
279 NTVYLOMNSLKPEDTAVYYCAP---NCLSSNWRS——--— S———— GYWGEQGTQVTVSS|GGLPETGGHHHHHH
Al NTVYLOMNSLKPEDTAVYYCRA---DCTKPQWKS———-KT-——————— EAWGQGTQVTVSSIGGLPETGGHHHHHH
B11l NTVYLQMNSLKPEDTAVYYCRA---DCLSSTWRT-———-— N-————-—- AYLGQGTQVTVSSIGGLPET GGHHHHHH
2B5 NTVYLQMNSLKSEDTAVYYCRA---DCRQG--RK-————————————— DYWEQGTQVTVSSIGGLPETGGHHHHHH
E9 NTVYLQMNSLKPEDTAVYYCAA---DCLSSNWRT----— S————— AYWAQGTQVTVSSIGGLPETGGHHHHHH
2D5 NTVYLQMNSLKPEDTAVYYCRA---DCLSSTWRT-—--— G-———————— AYLGQOGTQVTVSSIGGLPETGGHHHHHH
H3 NTVYLLMNSLKPEDTAVYYCRADLVRSYGSSWPSLFQFRNPEDVQDGMD YWSKGTLVTVSS|IGGLPETGGHHHHHH
80 90 100 110 120 130 140

FIGURE 1

Alpaca immunization and nanobody panning. After construction of a phage display library and screening for positive clones with plate-based
panning, nanobody sequences were determined and 9 unique clones were selected. Neutral amino acid substitutions attributable to somatic
hypermutations are underscored. Unique substitutions in framework regions are highlighted in blue and in CDR's are highlighted in red. Nanobodies
harboring such mutations are more likely derived from different germline V regions rather than somatic hypermutation. The framework regions of
nanobodies D8 and C12 are identical. The alpaca IGHHV-3-3*01 gene is the possible germline version of these nanobodies (44). The single
difference of VHH Al with D8 and C12 in its framework regions is an L2V substitution. A1 may thus be derived from the same germline V gene as D8
and C12 by a single (somatic) point mutation. The framework regions of nanobodies 2A9 and 2D5 are mostly identical to each other, with a single
S49A substitution between them. Nanobody E9 has both a D29E and a R45Q substitution, indicating that E9 may be derived from a different V gene.
In comparison with the other MICA-specific nanobodies, H3 has the largest number of differences in its framework regions and is clearly derived
from a different germline V gene, likely the alpaca IGHHV3-1*01 (44). The CDR1 and CDR2 regions are mostly conserved. The most obvious
deviation is a deletion at position 53 in VHH C12, B11, 2A9, 2D5, and E9. The MICA-specific nanobodies have CDR3 regions of 13-16 amino acids,
but H3 has a 31-residue CDR3. Except for VHH H3, Al and 2B5, the remaining CDR3 regions are enriched for the sequence "AXDCLSSxWRx". The
VHH sequences were subcloned into the pHen6 expression vector and modified at the C-terminus to contain an LPETG motif and (His)e tag.

unreacted nanobody on a NiNTA matrix, while the unbound
fraction contains the modified nanobody.

3.2 Nanobodies recognize recombinant
MICA and surface-exposed MICA on
cancer cells

To determine whether the isolated MICA-specific nanobodies
recognized similar or distinct epitopes on MICA, we performed
cross-competition experiments by ELISA. Competition of unlabeled
nanobodies with a biotinylated nanobody for binding to MICA
showed that this set of nanobodies recognizes two distinct epitopes,
one defined by the H3 nanobody and the second by all the other
nanobodies. None of the nanobodies compete for binding with the
7C6 monoclonal antibody, an agent that inhibits shedding of MICA
(45) (Figure 2A). Typically, not all nanobodies are suitable for use in
immunoblotting experiments, but the biotinylated versions of Al
and H3 yielded a strong and specific signal in immunoblots on
recombinant MICA (Figure 2B). The binding affinities of VHH-A1
and VHH-H3 are both in the nanomolar range, at ~0.2 and ~0.4
nM for Al and H3 respectively (Figure 2C), as estimated by ELISA
assay. By examining the binding of the A1 and H3 nanobodies to a
subset of MICA/B allelic products, available in purified form, we
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conclude that the Al and H3 nanobodies recognize the MICA*008
and MICA*009 alleles (Figure 2D) which, combined, cover 51.1% of
the Caucasian population (46). To verify that Al and H3 also
recognize surface-disposed MICA, we used B16F10 transfectants
that express MICA*009, and EL-4 transfectants that express
MICA*008, with B16F10 and EL-4 wild type cells serving as
negative controls. Both Al and H3 showed excellent staining of
the MICA transfectants by flow cytometry and yielded no signal for
the untransfected parental cell lines (Figure 2E) with a significant
difference determined by mean fluorescence intensity (MFI)
(Figure 2F). Gating strategies are shown in Supplementary Figure 4.

3.3 Anti-MICA nanobodies fused to
Maytansine (DM1) for targeted cytotoxicity
of MICA™ cancer cells

The reactivity of VHH-A1 and VHH-H3 make them appealing
candidates for the construction of nanobody-drug conjugates. To test
this, we ligated the Maytansine derivative DMI, a microtubule
disrupting agent, to VHH-A1 or to a VHH that targets mouse
MHC-II (VHHpuc ) (47) as a negative control via a sortase-
mediated transpeptidation reaction (Figure 3A) and confirmed
successful ligation with SDS-PAGE (Figure 3B). We performed an in
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FIGURE 2

Characterization of MICA-specific VHHSs. (A) Cross-competition ELISA shows that VHH-A1 and VHH-H3 recognize distinct epitopes on MICA.
Neither VHH cross-competes for binding with the monoclonal antibody 7C6. (B) VHH-A1 and VHH-H3 recognize MICA in immunoblot. 500 ng
recombinant MICA*009 in non-specific E. coli whole cell lysate (WCL) was separated by SDS-PAGE and transferred to a PVDF membrane. Blots were
stained with 1 pg/mL biotinylated VHH-A1 or VHH-H3 respectively. Detection with strep-HRP (0.3 ng/mL) shows a clear signal for both VHHs.

(C) Binding affinity as estimated by ELISA coated with 2.5 ug/mL recombinant MICA*009, or GFP as the negative control. Estimated Kd values are
0.22 nM and 0.37 nM for VHH-A1 and VHH-H3 respectively. (D) ELISA coated with different recombinant MICA alleles shows that VHH-A1 and VHH-
H3 both recognize MICA*008 and MICA*009. (E) Flow cytometry with biotinylated VHH-A1 and VHH-H3, using streptavidin-conjugated PE as
secondary agent, shows a clear signal in the PE channel for MICA* EL-4 and B16F10 cells, but not for the WT cells, indicating recognition of
membrane-disposed MICA on the surface of cells by both nanobodies. Gating strategies for flow cytometry are shown in Supplementary Figure 4.
(F) We calculated the MFI after flow cytometry. The MFI of B16F10 WT cells was 394 for VHH-A1 and 299 for VHH-H3. The MFI of B16F10 MICA*
cells was 23430 for VHH-AL and 27411 for VHH-H3. The MFI of EL-4 WT was 310 for VHH-A1 and 511 for VHH-H3. MFI of EL-4 MICA" cells was
7955 for VHH-A1 and 6417 for VHH-H3. We averaged the MFI from the WT or MICA* cells and determined a significant difference in hanobody
staining of WT versus MICA* cells (p = 0.00713 for B16F10; p = 0.0128 for EL-4, calculated by multiple T-test).

vitro cytotoxicity assay by titration of VHHyc-DM1, VHH,,-
DM1, or free DM4 (a functional analog of DM1) on EL-4 WT and
MICA" cells. EL-4 MICA" cells were sensitive to VHH,;-DM1, with a
stronger cytotoxic effect at lower doses of the VHH-drug conjugate
compared to VHHyc-DM1, as estimated by IC50. The IC50 of
VHH,,-DM1 treated EL-4 MICA™ cells was comparable to that of cells
treated with free DM4. Similarly treated WT cells showed no obvious
reduction in viability with either nanobody-drug conjugate (Figure 3C).

To further validate selectivity of VHH,,-DMI for MICA™ cells, we
co-cultured EL-4 WT and EL-4 MICA™ cells at a 1:1 ratio, and added
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VHHygcii-DM1, VHH,,-DM1, or free DM4 at different
concentrations. We determined the ratio of viable EL-4 WT and EL-
4 MICA" cells after 72 hours by flow cytometry using a live/dead cell
stain. We stained the MICA" cells in the co-culture with a biotinylated
oMICA mAb, using streptavidin-conjugated PE as secondary reagent.
Gating on live cells and MICA™ cells showed specific elimination of
MICAT cells at adduct concentrations between 1.71 nM and 416 nM
for VHH4;-DML. A difference in ratio between WT and MICA™ cells
was not observed in cells treated with VHHyzci-DM1 or free DM4.
Because WT cells proliferate slightly faster than MICA™ cells in culture,
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FIGURE 3

Anti-MICA VHHSs as nanobody-drug conjugate with the Maytansine derivative DM1. (A) We ligated the microtubule inhibitor Maytansine GGG-DML1 to
VHH-AL or VHHupc. as non-targeting control through sortase-mediated transpeptidase reaction. (B) Because GGG-DM1 has a slight positive
charge, the modified VHHs will migrate slightly lower on the SDS-PAGE gel compared to the unmodified VHHs. (C) The in vitro cytotoxicity assay
was performed with limited dilutions of VHHuuc.i-DM1, VHHA;-DM1, or free DM4 on EL-4 WT cells and their MICA* counterparts. After incubation
for 72 hours, we measured cell viability by CellTiter Glo™ assay. MICA™ cells treated with VHHA;-DM1 showed a significant reduction in ICso, and
thus a reduction in viability with smaller amounts of drug added, compared to similarly treated WT cells, or cells treated with the non-targeting
VHHMuci-DML. (D) We co-cultured EL-4 WT and EL-4 MICA* cells at a 1:1 ratio and added VHHmuci-DM1, VHHA;-DM1, or free DM4 at different
concentrations. Viability of EL-4 WT and MICA* cells was determined using a live/dead cell stain. MICA* cells were stained with a biotinylated anti-
MICA mAb, using streptavidin-PE as secondary agent. Gating on live cells and PE showed elimination of MICA* cells at VHH-drug adduct
concentrations between 1.71 nM and 416 nM for VHHa;-DML1. A difference in [WT : MICA] was not observed in cells treated with VHHumpc;-DM1 or
free DM4. Gating strategies for flow cytometry are shown in Supplementary Figure 5. (E) We incubated EL-4 WT and MICA* cells with 2.5 nM of
VHHupci-DML, VHHA1-DML, or free DM4 in the presence of sMICA (two-fold dilutions; 0-5 nM/0-170 ng/mL) for 72 hours. We measured viability by
CellTiter Glo™ assay. We did not observe a decreased effect on cytotoxicity of VHHA1-DM1 on MICA™ cells with addition of sMICA in the medium.

the distribution shifted to ~65% WT and 35% MICA" cells after 72
hours in culture. Thus, numbers were normalized according to the
percentage of cells of either line in the untreated (“0 nM”) group
(Figure 3D). Gating strategies are shown in Supplementary Figure 5.

Tumor cells can downregulate surface expression of MICA
through shedding, mediated by proteolytic cleavage at the o3
domain. Increased levels of soluble MICA (sMICA) in the serum
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of patients are associated with poor prognosis and worse disease
progression (10, 48-50). To address the possible competition of
SMICA for binding with the anti-MICA nanobody, we performed
an in vitro cytotoxicity assay. EL-4 WT and MICA" cells were
incubated with VHHyyci-DM1, VHH, -DM1, or free DM4 at a
fixed concentration of 2.5 nM, in the presence of sSMICA at various
concentrations (serial 2-fold dilutions; 0-5 nM/0-170 ng/mL). We
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observed no reduction in cytotoxicity of VHH,;-DM1 on MICA™
cells upon addition of sMICA to the medium (Figure 3E).
Publications report concentrations of sMICA in the serum of
MICA" patients in the range of 0.1-15 ng/mL (51-53) which is at
least 10-fold lower than the sMICA concentration in our
competition assay. We thus expect little to no impact of sSMICA
in patients’ serum on the ability of these nanobodies to target
membrane-bound MICA in vivo.

4 Discussion

MICA and MICB are Class I MHC-related proteins expressed on
stressed and cancerous cells. Their presence can serve not only as a
diagnostic marker but may also be exploited as a target for therapy.
While the typical immunoglobulins exert their functional properties
through Fc effector functions, their size compromises efficient tissue
penetration. Nanobodies offer an appealing alternative to
immunoglobulins for the purpose of launching an immune attack on
MICA-positive tumors. Nanobodies are characterized by their small
size, showing superior tissue penetration compared to intact
immunoglobulins, and ease of production and modification (14, 15,
17, 18). Lastly, nanobodies are poorly immunogenic, presumably
because of their considerable sequence homology with human Vi
regions (44). Because nanobodies lack an Fc portion, for them to exert
cytotoxic activity they require functionalization, for example with a
cytotoxic drug creating a nanobody-drug conjugate, as done here for
the VHH-DM1 adducts. Compared to antibody-drug conjugates using
conventional immunoglobulins, the small size of the nanobody allows
superior penetration into tumor tissue. Furthermore, owing to the
relatively short circulatory half-life, the nanobody-drug conjugate that
is not bound to its target will be eliminated more quickly from the
circulation, resulting in less systemic cytotoxicity by slow release of the
drug attached to the antibody-drug conjugate.

We produced and characterized in further detail two nanobodies,
Al and H3, that recognize the MICA alleles *008 and *009 with nM
affinities. An analysis of the MICA-specific nanobodies shows that
they are unique sequences, thus the isolated nanobodies were likely
derived from a few different germline V genes (see Figure 1 and
legend). The germline sequences of the V genes of the (outbred)
alpaca used for immunization are not known. We can only compare
the sequences of the MICA-specific nanobodies with each other, and
with reference germline sequences from unrelated alpacas.

The alpaca IGHHV-3-3*01 gene is the possible germline version of
the D8 and C12 nanobodies (44). The single difference of VHH A1 with
D8 and C12 in its framework regions is an L2V substitution, thus Al
may be derived from the same germline V gene as D8 and CI12 by
somatic mutation. Nanobody E9 has a D29E and an R45Q substitution,
indicating that E9 may be derived from a different V gene. In comparison
with the other MICA-specific nanobodies, H3 has the largest number of
differences in its framework regions and is clearly derived from a different
germline V gene, likely the alpaca IGHHV3-1*01 (44).

Highly similar CDR regions, specifically CDR3, imply
recognition of related antigens (54-57). For the MICA-specific
nanobodies, the CDR1 and CDR2 regions are mostly conserved.
The most obvious deviation in the CDR2 region is a deletion at
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position 53 in VHH Cl12, B11, 2A9, 2D5, and E9. Somatic
hypermutation can produce deletions and insertions in V genes
(58-60) but given the overall similarity in framework regions, the
use of a distinct V gene that lacks residue 53 is the more plausible
explanation. Except for H3, Al and 2B5, the remaining CDR3
regions are enriched for the sequence “AxDCLSSxWRx”.

We show that these nanobodies bind to surface-disposed MICA
on cells and can thus be used for diagnostic and therapeutic purposes.
The specific targeting of MICA™ cells make them suitable candidates
as diagnostic markers, as building blocks for nanobody-drug
conjugate, or for the construction of chimeric antigen receptors
(29, 30, 37, 61). MICA and MICB are highly polymorphic in the
human population, with hundreds of alleles for MICA and MICB
identified so far (46, 62). The isolated nanobodies were tested for
recognition of the MICA alleles *002, *008 and *009, and MICB allele
*005. Of the tested alleles, the nanobodies recognize MICA*008 and
MICA*009, which together cover over 50% of the investigated
German population (46). Expanding the nanobody pool to cover a
larger portion of the alleles of MICA and MICB should be considered.
We recognize the limitations of using a MICA™ cell line obtained by
transfection. The availability of a suitable patient-derived cell line that
expresses the correct alleles of MICA is a limiting factor, an issue
worth exploring in future research.

We created a nanobody-drug conjugate by conjugating the
microtubule inhibitor DM1 to VHH-Al. We show increased
cytotoxicity of MICA" tumor cells compared to WT tumor cells
in vitro, with efficacy comparable to that of free drug but with much
higher specificity for MICA" cells. The production of these
nanobody adducts should be scaled up for testing on in vivo
tumor models. The creation of different VHH-drug combinations,
for example by inclusion of DNA damaging agents or other
cytotoxic drugs (63, 64), or even radiopharmaceuticals for
targeted radiotherapy (65, 66), deserves consideration as well.

Cleavage of the 03 domain involving the disulphide isomerase
ERp5 and ADAM-type proteases such as ADAMI10 and ADAM17
(48-50, 67, 68), and thus shedding of the MICA/B from the cancer
cell surface, may lead to immune evasion and failure to be recognized
by NKG2D-positive cytotoxic cells. The monoclonal antibody 7C6
inhibits the shedding of MICA/B, and thus increases the density of
MICA/B proteins on the surface of tumor cells (45) Although we saw
no reduction in efficacy of VHH,,-DM1 on MICA" cells upon
addition of sSMICA to the medium, the combination of anti-MICA
nanobody adducts with the 7C6 antibody might therefore be
therapeutically more attractive than either treatment alone.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: 10.6084/m9.figshare.25289806.

Ethics statement

The animal study was approved by TACUC University of
Massachusetts Amherst. The study was conducted in accordance
with the local legislation and institutional requirements.

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1368586
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Verhaar et al.

Author contributions

EV: Writing - original draft, Visualization, Validation, Supervision,
Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. AK: Writing - review & editing, Investigation,
Data curation. NP: Writing - review & editing, Resources,
Investigation. XL: Writing — review & editing, Resources. WvK:
Writing - review & editing, Investigation. KW: Writing - review &
editing, Resources. HP: Writing - review & editing, Writing -
original draft, Supervision, Project administration, Funding
acquisition, Conceptualization.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was supported by the NIH Pioneer Grant (DP1AI150593-05) to HP
and an RO1 from NCI (CA238039) to KW.

Acknowledgments

We gratefully acknowledge Dr. Thomas Balligand for
helpful discussions.

References

1. Agaugue S, Hargreaves A, De Sousa P, De Waele P, Gilham D. The high expression of
NKG2D ligands on tumor and the lack of surface expression on healthy tissues provides a
strong rationale to support NKG2D-based therapeutic approaches for cancer. Ann Oncol.
(2018) 29:viii420. doi: 10.1093/annonc/mdy288.052

2. Bauer S, Groh V, Wu J, Phillips JH, Lanier LL, Spies T. Activation of NK cells and
T cells by NKG2D, a receptor for stress-inducible MICA. Sci (1979). (1999) 285:727-9.
doi: 10.1126/science.285.5428.727

3. Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D ligands in immuno-
oncology. Front Immunol. (2021) 12:713158. doi: 10.3389/fimmu.2021.713158

4. Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, et al. NKG2D
and its ligands: “One for all, all for one.” Front Immunol. (2018) 9:476. doi: 10.3389/
fimmu.2018.00476

5. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the
NKG2D activating receptor. Annu Rev Immunol. (2013) 31:413-41. doi: 10.1146/
annurev-immunol-032712-095951

6. McGilvray RW, Eagle RA, Watson NFS, Al-Attar A, Ball G, Jafferji I, et al
NKG2D ligand expression in human colorectal cancer reveals associations with
prognosis and evidence for immunoediting. Clin Cancer Res. (2009) 15:6993-7002.
doi: 10.1158/1078-0432.CCR-09-0991

7. Li K, Mandai M, Hamanishi J, Matsumura N, Suzuki A, Yagi H, et al. Clinical
significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high
expression of ULBP2 is an indicator of poor prognosis. Cancer Immunology
Immunotherapy. (2009) 58:641-52. doi: 10.1007/s00262-008-0585-3

8. Cho H, Chung JY, Kim S, Braunschweig T, Kang TH, Kim J, et al. MICA/B and
ULBP1 NKG2D ligands are independent predictors of good prognosis in cervical
cancer. BMC Cancer. (2014) 14:1-11. doi: 10.1186/1471-2407-14-957

9. de Kruijf EM, Sajet A, van Nes JG, Putter H, THBM Smit V, Eagle RA, et al.
NKG2D ligand tumor expression and association with clinical outcome in early breast
cancer patients: an observational study (2012). Available online at: http://www.
biomedcentral.com/1471-2407/12/24.

10. Chen J, Xu H, Zhu XX. Abnormal expression levels of sMICA and NKG2D are
correlated with poor prognosis in pancreatic cancer. Ther Clin Risk Manag. (2015)
12:11-8. doi: 10.2147/TCRM.S96869

11. Vetter CS, Groh V, thor Straten P, Spies T, Brocker E-B, Becker JC. Expression of
stress-induced MHC class I related chain molecules on human melanoma. J Invest
Dermatol. (2002) 118:600-5. doi: 10.1046/j.1523-1747.2002.01700.x

Frontiers in Immunology

10.3389/fimmu.2024.1368586

Conflict of interest

Author KW serves on the scientific advisory boards of DEM
BioPharma, Solu Therapeutics, D2M Biotherapeutics and
Nextechinvest. He is a co-founder of Immunitas Therapeutics
and receives sponsored research funding from Novartis and
Fate Therapeutics.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1368586/
full#supplementary-material

12. Tsukagoshi M, Wada S, Yokobori T, Altan B, Ishii N, Watanabe A, et al.
Overexpression of natural killer group 2 member D ligands predicts favorable
prognosis in cholangiocarcinoma. Cancer Sci. (2016) 107:116-22. doi: 10.1111/cas.12853

13. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C,
Bajyana Songa E, et al. Naturally occurring antibodies devoid of light chains. Naturel.
(1993) 363:446-8.

14. Fang T, Lu X, Berger D, Gmeiner C, Cho J, Schalek R, et al. Nanobody
immunostaining for correlated light and electron microscopy with preservation of
ultrastructure. Nat Methods. (2018) 15:1029-32. doi: 10.1016/j.physbeh.2017.03.040

15. Tijink BM, Laeremans T, Budde M, Stigter-Van Walsum M, Dreier T, De Haard
HJ, et al. Improved tumor targeting of anti-epidermal growth factor receptor
Nanobodies through albumin binding: Taking advantage of modular Nanobody
technology. Mol Cancer Ther. (2008) 7:2288-97. doi: 10.1158/1535-7163.MCT-07-2384

16. Kijanka M, Dorresteijn B, Oliveira S, Van Bergen En Henegouwen PMP.
Nanobody-based cancer therapy of solid tumors. Nanomedicine. (2015) 10:161-74.
doi: 10.2217/nnm.14.178

17. Van Der Linden RHJ, Frenken LGJ, De Geus B, Harmsen MM, Ruuls RC, Stok
W, et al. Comparison of physical chemical properties of llama VHH antibody
fragments and mouse monoclonal antibodies. Biochim Biophys Acta. (1999)
1431:37-46. doi: 10.1016/S0167-4838(99)00030-8

18. Tanha J, Xu P, Chen Z, Ni F, Kaplan H, Narang SA, et al. Optimal design features
of camelized human single-domain antibody libraries. J Biol Chem. (2001) 276:24774—
80. doi: 10.1074/jbc.M100770200

19. Rashidian M, Keliher EJ, Dougan M, Juras PK, Cavallari M, Wojtkiewicz GR,
et al. Use of 18F-2-fluorodeoxyglucose to label antibody fragments for immuno-
positron emission tomography of pancreatic cancer. ACS Cent Sci. (2015) 1:142-7.
doi: 10.1021/acscentsci.5b00121

20. Ingram JR, Dougan M, Rashidian M, Knoll M, Keliher EJ, Garrett S, et al. PD-L1
is an activation-independent marker of brown adipocytes. Nat Commun. (2017) 8:1-
15. doi: 10.1038/s41467-017-00799-8

21. Rashidian M, LaFleur MW, Verschoor VL, Dongre A, Zhang Y, Nguyen TH,
et al. Immuno-PET identifies the myeloid compartment as a key contributor to the
outcome of the antitumor response under PD-1 blockade. PNAS. (2019) 116:16971-80.
doi: 10.1073/pnas.1905005116

22. Van Elssen CHMJ, Rashidian M, Vrbanac V, Wucherpfennig KW, El Habre Z,
Sticht J, et al. Noninvasive imaging of human immune responses in a human xenograft

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1368586/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1368586/full#supplementary-material
https://doi.org/10.1093/annonc/mdy288.052
https://doi.org/10.1126/science.285.5428.727
https://doi.org/10.3389/fimmu.2021.713158
https://doi.org/10.3389/fimmu.2018.00476
https://doi.org/10.3389/fimmu.2018.00476
https://doi.org/10.1146/annurev-immunol-032712-095951
https://doi.org/10.1146/annurev-immunol-032712-095951
https://doi.org/10.1158/1078-0432.CCR-09-0991
https://doi.org/10.1007/s00262-008-0585-3
https://doi.org/10.1186/1471-2407-14-957
http://www.biomedcentral.com/1471-2407/12/24
http://www.biomedcentral.com/1471-2407/12/24
https://doi.org/10.2147/TCRM.S96869
https://doi.org/10.1046/j.1523-1747.2002.01700.x
https://doi.org/10.1111/cas.12853
https://doi.org/10.1016/j.physbeh.2017.03.040
https://doi.org/10.1158/1535-7163.MCT-07-2384
https://doi.org/10.2217/nnm.14.178
https://doi.org/10.1016/S0167-4838(99)00030-8
https://doi.org/10.1074/jbc.M100770200
https://doi.org/10.1021/acscentsci.5b00121
https://doi.org/10.1038/s41467-017-00799-8
https://doi.org/10.1073/pnas.1905005116
https://doi.org/10.3389/fimmu.2024.1368586
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Verhaar et al.

model of graft-versus-host disease. ] Nucl Med. (2017) 58:1003-8. doi: 10.2967/
jnumed.116.186007

23. Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, et al. Noninvasive
imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the
extracellular matrix. PNAS. (2019) 116:14181-90. doi: 10.1073/pnas.1817442116

24. Fang T, Van Elssen CHM]J, Duarte JN, Guzman JS, Chahal JS, Ling J, et al.
Targeted antigen delivery by an anti-class I MHC VHH elicits focused omUC1(Tn)
immunity. Chem Sci. (2017) 8:5591-7. doi: 10.1039/c75c00446j

25. Altintas I, Heukers R, van der Meel R, Lacombe M, Amidi M, Van Bergen En
Henegouwen PMP, et al. Nanobody-albumin nanoparticles (NANAPs) for the delivery
of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. J Controlled
Release. (2013) 165:110-8. doi: 10.1016/j.jconrel.2012.11.007

26. Fang T, Duarte N, Ling J, Li Z, Guzman JS, Ploegh HL. Structurally-defined
oMHC-II nanobody-drug conjugates: Therapeutic and imaging platforms for B-cell
lymphoma. Angewandte Chemie Int Edition. (2016) 55:2416-20. doi: 10.1016/
j-pep.2015.11.007.Simple

27. Bachran C, Schréder M, Conrad L, Cragnolini JJ, Tafesse FG, Helming L, et al.
The activity of myeloid cell-specific VHH immunotoxins is target-, epitope-, subset-
and organ dependent. Sci Rep. (2017) 7:2-11. doi: 10.1038/s41598-017-17948-0

28. Hajari Taheri F, Hassani M, Sharifzadeh Z, Behdani M, Arashkia A, Abolhassani
M. T cell engineered with a novel nanobody-based chimeric antigen receptor against
VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life. (2019) 71:1259-67.
doi: 10.1002/iub.2019

29. De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M, Weening K, et al. Nanobody
based dual specific CARs. Int ] Mol Sci. (2018) 19:1-11. doi: 10.3390/ijms19020403

30. Xie Y], Dougan M, Jailkhani N, Ingram J, Fang T, Kummer L, et al. Nanobody-based
CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in
immunocompetent mice. PNAS. (2019) 116:7624-31. doi: 10.1073/pnas.1817147116

31. Xie YJ, Dougan M, Ingram JR, Pishesha N, Fang T, Momin N, et al. Improved
antitumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody
fragments. Cancer Immunol Res. (2020) 8:518-30. doi: 10.1158/2326-6066.CIR-19-0734

32. You F, Wang Y, Jiang L, Zhu X, Chen D, Yuan L, et al. A novel CD7 chimeric
antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic
leukemia. Am | Cancer Res. (2019) 9:64-78.

33. Hambach J, Riecken K, Cichutek S, Schiitze K, Albrecht B, Petry K, et al.
Targeting CD38-expressing multiple myeloma and burkitt lymphoma cells in vitro with
nanobody-based chimeric antigen receptors (Nb-CARs). Cells. (2020) 9:1-14.
doi: 10.3390/cells9020321

34. Rajabzadeh A, Ahmadvand D, Salmani MK, Rahbarizadeh F, Hamidieh AA. A VHH-
based anti-MUCI chimeric antigen receptor for specific retargeting of human primary T cells
to MUCI-positive cancer cells. Cell J. (2021) 22:502-13. doi: 10.22074/cellj.2021.6917

35. Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Mahboudi F, Ahmadvand D,
Sharifzadeh Z, et al. T cells expressing VHH-directed oligoclonal chimeric HER2
antigen receptors: Towards tumor-directed oligoclonal T cell therapy. Biochim Biophys
Acta (BBA) - Gen Subj. (2014) 1840:378-86. doi: 10.1016/j.bbagen.2013.09.029

36. Rahbarizadeh F, Ahmadvand D, Moghimi S. CAR T-cell bioengineering: Single
variable domain of heavy chain antibody targeted CARs. Adv Drug Delivery Rev. (2019)
141:41-6. doi: 10.1016/j.addr.2019.04.006

37. Bao C, Gao Q, Li LL, Han L, Zhang B, Ding Y, et al. The application of nanobody
in CAR-T therapy. Biomolecules. (2021) 11:1-18. doi: 10.3390/biom11020238

38. Zajc CU, Salzer B, Taft JM, Reddy ST, Lehner M, Traxlmayr MW. Driving CARs
with alternative navigation tools - the potential of engineered binding scaffolds. FEBS J.
(2021) 288:2103-18. doi: 10.1111/febs.15523

39. Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X, Sobral M, et al. A vaccine
targeting resistant tumours by dual T cell plus NK cell attack. Nature. (2022) 606:992-8.
doi: 10.1038/s41586-022-04772-4

40. Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkonig A, Ruf A, et al. A
general protocol for the generation of Nanobodies for structural biology. Nat Protoc.
(2014) 9:674-93. doi: 10.1038/nprot.2014.039

41. Jeong HJ, Abhiraman GC, Story CM, Ingram JR, Dougan SK. Generation of Ca2
+-independent sortase A mutants with enhanced activity for protein and cell surface
labeling. PloS One. (2017) 12:1-10. doi: 10.1371/journal.pone.0189068

42. Beatty JD, Beatty BG, Vlahos WG. Measurement of monoclonal antibody affinity
by non-competitive enzyme immunoassay. J Immunol Methods. (1987) 100:173-9.
doi: 10.1016/0022-1759(87)90187-6

43. Truong TTT, Huynh VQ, Vo NT, Nguyen HD. Studying the characteristics of
nanobody CDR regions based on sequence analysis in combination with 3D structures.
] Genet Eng Biotechnol. (2022) 20:1-13. doi: 10.1186/s43141-022-00439-9

44. Klarenbeek A, El Mazouari K, Desmyter A, Blanchetot C, Hultberg A, de Jonge
N, et al. Camelid Ig V genes reveal significant human homology not seen in therapeutic
target genes, providing for a powerful therapeutic antibody platform. MAbs. (2015)
7:693-706. doi: 10.1080/19420862.2015.1046648

Frontiers in Immunology

10.3389/fimmu.2024.1368586

45. De Andrade LF, En Tay R, Pan D, Luoma AM, Ito Y, Badrinath S, et al.
Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven
tumor immunity. Sci (1979). (2018) 359:1537-42. doi: 10.1126/science.aa00505

46. Klussmeier A, Massalski C, Putke K, Schifer G, Sauter J, Schefzyk D, et al. High-
throughput MICA/B genotyping of over two million samples: workflow and allele
frequencies. Front Immunol. (2020) 11:314. doi: 10.3389/fimmu.2020.00314

47. Fang T, Duarte )N, Ling J, Li Z, Guzman JS, Ploegh HL. Structurally defined aMHC-
I nanobody-drug conjugates: A therapeutic and imaging system for B-cell lymphoma.
Angewandte Chemie - Int Edition. (2016) 55:2416-20. doi: 10.1002/anie.201509432

48. Kaiser BK, Yim D, Chow I-T, Gonzales S, Dai Z, Mann HH, et al. Disulphide-
isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature. (2007)
447:482-6. doi: 10.1038/nature05768

49. Salih HR, Rammensee H-G, Steinle A. Cutting edge: down-regulation of MICA
on human tumors by proteolytic shedding. J Immunol. (2002) 169:4098-102.
doi: 10.4049/jimmunol.169.8.4098

50. Xing S, Ferrari de Andrade L. NKG2D and MICA/B shedding: a ‘tag game’
between NK cells and Malignant cells. Clin Transl Immunol. (2020) 9:1-10.
doi: 10.1002/cti2.1230

51. Hervier B, Ribon M, Tarantino N, Mussard J, Breckler M, Vieillard V, et al.
Increased concentrations of circulating soluble MHC class I-related chain A (sMICA)
and sMICB and modulation of plasma membrane MICA expression: potential
mechanisms and correlation with natural killer cell activity in systemic lupus
erythematosus. Front Immunol. (2021) 12:633658. doi: 10.3389/fimmu.2021.633658

52. Li JJ, Pan K, Gu MF, Chen MS, Zhao JJ, Wang H, et al. Prognostic value of
soluble MICA levels in the serum of patients with advanced hepatocellular carcinoma.
Chin ] Cancer. (2013) 32:141-8. doi: 10.5732/¢jc.012.10025

53. Arai ], Otoyama Y, Fujita K, Goto K, Tojo M, Katagiri A, et al. Baseline soluble
MICA levels act as a predictive biomarker for the efficacy of regorafenib treatment in
colorectal cancer. . BMC Cancer. (2022) 22:1-10. doi: 10.1186/s12885-022-09512-5

54. Henry Dunand CJ, Wilson PC. Restricted, canonical, stereotyped and
convergent immunoglobulin responses. Philos Trans R Soc Lond B Biol Sci. (2015)
370:1-8. doi: 10.1098/rstb.2014.0238

55. Tian C, Hromatka BS, Kiefer AK, Eriksson N, Noble SM, Tung JY, et al.
Genome-wide association and HLA region fine-mapping studies identify susceptibility
loci for multiple common infections. Nat Commun. (2017) 8:1-13. doi: 10.1038/
541467-017-00257-5

56. Tsuji I, Vang F, Dominguez D, Karwal L, Sanjali A, Livengood JA, et al. Somatic
hypermutation and framework mutations of variable region contribute to anti-zika
virus-specific monoclonal antibody binding and function. J Virol. (2022) 96:1-18.
doi: 10.1128/jvi.00071-22

57. Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H, Georgiev IS, et al. Somatic
mutations of the immunoglobulin framework are generally required for broad and
potent HIV-1 neutralization. Cell. (2013) 153:126-38. doi: 10.1016/j.cell.2013.03.018

58. Briney BS, Willis JR, Crowe JE. Location and length distribution of somatic
hypermutation-associated DNA insertions and deletions reveals regions of antibody
structural plasticity. Genes Immun. (2012) 13:523-9. doi: 10.1038/gene.2012.28

59. Wilson PC, De Bouteiller O, Liu Y-J, Potter K, Banchereau J, Capra JD, et al.
Somatic Hypermutation Introduces Insertions and Deletions into Immunoglobulin V
Genes (1998). Available online at: http://www.jem.org.

60. Bemark M, Neuberger MS. By-products of immunoglobulin somatic
hypermutation. Genes Chromosomes Cancer. (2003) 38:32-9. doi: 10.1002/gcc.10241

61. Albert S, Arndt C, Feldmann A, Bergmann R, Bachmann D, Koristka S, et al. A
novel nanobody-based target module for retargeting of T lymphocytes to EGFR-
expressing cancer cells via the modular UniCAR platform. Oncoimmunology. (2017)
6:1-17. doi: 10.1080/2162402X.2017.1287246

62. Koskela S, Tammi S, Clancy J, Lucas JAM, Turner TR, Hyvarinen K, et al. MICA
and MICB allele assortment in Finland. HLA Immune Response Genet. (2023) 102:52—
61. doi: 10.1111/tan.15023

63. Fuentes-Antras J, Genta S, Vijenthira A, Siu LL. Antibody-drug conjugates: in search
of partners of choice. Trends Cancer. (2023) 9:339-54. doi: 10.1016/j.trecan.2023.01.003

64. FuY, Ho M. DNA damaging agent-based antibody-drug conjugates for cancer
therapy. Antib Ther. (2018) 1:43-53. doi: 10.1093/abt/tby007

65. Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer
therapy. Nat Rev Drug Discovery. (2004) 3:488-98. doi: 10.1038/nrd1413

66. Lin M, Paolillo V, Le DB, Macapinlac H, Ravizzini GC. Monoclonal antibody
based radiopharmaceuticals for imaging and therapy. Curr Probl Cancer. (2021) 45.
doi: 10.1016/j.currproblcancer.2021.100796

67. Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD. Cutting edge: the
membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of
MHC class I chain-related molecule A independent of A disintegrin and
metalloproteinases. J Immunol. (2010) 184:3346-50. doi: 10.4049/jimmunol.0903789

68. Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig
A, et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. (2008)
68:6368-76. doi: 10.1158/0008-5472.CAN-07-6768

frontiersin.org


https://doi.org/10.2967/jnumed.116.186007
https://doi.org/10.2967/jnumed.116.186007
https://doi.org/10.1073/pnas.1817442116
https://doi.org/10.1039/c7sc00446j
https://doi.org/10.1016/j.jconrel.2012.11.007
https://doi.org/10.1016/j.pep.2015.11.007.Simple
https://doi.org/10.1016/j.pep.2015.11.007.Simple
https://doi.org/10.1038/s41598-017-17948-0
https://doi.org/10.1002/iub.2019
https://doi.org/10.3390/ijms19020403
https://doi.org/10.1073/pnas.1817147116
https://doi.org/10.1158/2326-6066.CIR-19-0734
https://doi.org/10.3390/cells9020321
https://doi.org/10.22074/cellj.2021.6917
https://doi.org/10.1016/j.bbagen.2013.09.029
https://doi.org/10.1016/j.addr.2019.04.006
https://doi.org/10.3390/biom11020238
https://doi.org/10.1111/febs.15523
https://doi.org/10.1038/s41586-022-04772-4
https://doi.org/10.1038/nprot.2014.039
https://doi.org/10.1371/journal.pone.0189068
https://doi.org/10.1016/0022-1759(87)90187-6
https://doi.org/10.1186/s43141-022-00439-9
https://doi.org/10.1080/19420862.2015.1046648
https://doi.org/10.1126/science.aao0505
https://doi.org/10.3389/fimmu.2020.00314
https://doi.org/10.1002/anie.201509432
https://doi.org/10.1038/nature05768
https://doi.org/10.4049/jimmunol.169.8.4098
https://doi.org/10.1002/cti2.1230
https://doi.org/10.3389/fimmu.2021.633658
https://doi.org/10.5732/cjc.012.10025
https://doi.org/10.1186/s12885-022-09512-5
https://doi.org/10.1098/rstb.2014.0238
https://doi.org/10.1038/s41467-017-00257-5
https://doi.org/10.1038/s41467-017-00257-5
https://doi.org/10.1128/jvi.00071-22
https://doi.org/10.1016/j.cell.2013.03.018
https://doi.org/10.1038/gene.2012.28
http://www.jem.org
https://doi.org/10.1002/gcc.10241
https://doi.org/10.1080/2162402X.2017.1287246
https://doi.org/10.1111/tan.15023
https://doi.org/10.1016/j.trecan.2023.01.003
https://doi.org/10.1093/abt/tby007
https://doi.org/10.1038/nrd1413
https://doi.org/10.1016/j.currproblcancer.2021.100796
https://doi.org/10.4049/jimmunol.0903789
https://doi.org/10.1158/0008-5472.CAN-07-6768
https://doi.org/10.3389/fimmu.2024.1368586
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Shensi Shen,
Sichuan University, China

REVIEWED BY
Daoming Zhu,

Southern Medical University, China
Joanna Rossowska,

Polish Academy of Sciences, Poland

*CORRESPONDENCE

Leilei Bao
annabao212@126.com

Quangang Zhu
zhugg@shskin.com

Zongguang Tai
taizongguang@126.com

"These authors have contributed equally to
this work

RECEIVED 21 February 2024
AccepTED 10 April 2024
PUBLISHED 29 April 2024

CITATION

Wang J, Ma J, Xie F, Miao F, lv L,
Huang Y, Zhang X, Yu J, Tai Z, Zhu Q
and Bao L (2024) Immunogenic cell
death-based cancer vaccines:
promising prospect in cancer therapy.
Front. Immunol. 15:1389173.

doi: 10.3389/fimmu.2024.1389173

COPYRIGHT

© 2024 Wang, Ma, Xie, Miao, lv, Huang, Zhang,
Yu, Tai, Zhu and Bao. This is an open-access
article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TYPE Review
PUBLISHED 29 April 2024
po110.3389/fimmu.2024.1389173

Immunogenic cell death-based
cancer vaccines: promising
prospect in cancer therapy

Jiandong Wang'***, Jinyuan Ma**, Fangyuan Xie*,
Fengze Miao**, Lei lv?, Yueying Huang?, Xinyue Zhang>®*,
Junxia Yu'??, Zongguang Tai**, Quangang Zhu**

and Leilei Bao*

tSchool of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China, 2Department of Pharmacy,
Third Affiliated Hospital of Naval Medical University, Shanghai, China, *Shanghai Skin Disease Hospital,
School of Medicine, Tongji University, Shanghai, China, “Shanghai Engineering Research Center of
External Chinese Medicine, Shanghai, China

Tumor immunotherapy is a promising approach for addressing the limitations of
conventional tumor treatments, such as chemotherapy and radiotherapy, which
often have side effects and fail to prevent recurrence and metastasis. However,
the effectiveness and sustainability of immune activation in tumor
immunotherapy remain challenging. Tumor immunogenic cell death,
characterized by the release of immunogenic substances, damage associated
molecular patterns (DAMPs), and tumor associated antigens, from dying tumor
cells (DTCs), offers a potential solution. By enhancing the immunogenicity of
DTCs through the inclusion of more immunogenic antigens and stimulating
factors, immunogenic cell death (ICD) based cancer vaccines can be developed
as a powerful tool for immunotherapy. Integrating ICD nanoinducers into
conventional treatments like chemotherapy, photodynamic therapy,
photothermal therapy, sonodynamic therapy, and radiotherapy presents a
novel strategy to enhance treatment efficacy and potentially improve patient
outcomes. Preclinical research has identified numerous potential ICD inducers.
However, effectively translating these findings into clinically relevant applications
remains a critical challenge. This review aims to contribute to this endeavor by
providing valuable insights into the in vitro preparation of ICD-based cancer
vaccines. We explored established tools for ICD induction, followed by an
exploration of personalized ICD induction strategies and vaccine designs. By
sharing this knowledge, we hope to stimulate further development and
advancement in the field of ICD-based cancer vaccines.
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1 Introduction

Cancer remains the most formidable disease globally, with over
19,292,789 new cases and approximately 9,958,133 cancer-related
deaths recorded worldwide each year (1). As is well-known, tumor
cells primarily evade immune surveillance by downregulating tumor-
associated antigens (TAAs) and tumor-specific antigens (TSAs), and
releasing soluble antigens and MHC molecules (2). Therefore, tumor
immunotherapy has emerged as a crucial therapeutic approach for
suppressing both primary and metastatic tumors. Moreover,
immunotherapy can confer long-term immune protection for the
body (3). Immune checkpoint blockade (ICB) represents a novel
groundbreaking tumor immunotherapy that targets two key immune
checkpoint pathways programmed cell death protein 1/programmed
death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated
protein 4/B7 (CTLA-4/B7). By disrupting the mechanisms of tumor
immune resistance, ICB can effectively promote antigen-specific T-
cell immune responses. Currently, more than ten ICB drugs have
been approved by the FDA for the treatment of a broad spectrum of
tumors, offering new hope in the fight against cancer (4). However,
the efficacy of ICB drugs appears to be less than satisfactory against
late-stage patients in relevant clinical trials, with only a few patients
benefiting from these treatments (5).

Cancer vaccines represent a promising emerging approach in
tumor immunotherapy, offering extensive application prospects (6).
The complexity of the preparation process, coupled with insufficient
antigenic immune effects and immune cell dysfunction, have
emerged as the primary factors limiting the development of cancer
vaccines (7, 8). Nonetheless, the identification of immunogenic cell
death (ICD) as a distinct form of tumor-regulated cell demise has
offered new prospects to overcome the limitations hampering the
advancement of cancer vaccines (9). In this regard, the capacity
of chemotherapy, radiotherapy, photothermal therapy, and
sonodynamic therapy to induce ICD, as evidenced in recent
studies, could present a novel approach for reshaping conventional
methods in oncology (10). It is now understood that the importance
of ICD-based cancer vaccines lies in the in vivo application of ICD
nanomedicine inducers and the production of dying tumor cells
(DTCs) in vitro during tumor treatment (Figure 1).

ICD, induced by the chronic release and exposure of damage-
associated molecular patterns (DAMPs) including calreticulin (CRT),
adenosine triphosphate (ATP), high mobility histone 1 (HMGBI),
heat shock protein (HSP) activates the recruitment and activation
functions of neutrophils, macrophages, and dendritic cells. This
orchestrated immune response associated within the tumor
microenvironment exhibits characteristics akin to vaccination, a
concept gaining significant traction within the research community
(11). Simultaneously, during the study of ICD induction against
tumor cells in vitro, it has been discovered that a substantial number
of immunogenic DTCs are generated following ICD induction. These
DTCs possess a strong ability to release immunogenic substances,
such as DAMPs, which continuously trigger a potent immune stress
response, remodel the immune microenvironment, and enhance the
body’s immune surveillance capabilities. In summary, “ICD-based
cancer vaccines” offer advantages such as broad-spectrum antigens
and diverse induction conditions, which can mitigate numerous
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adverse factors in the development and application of cancer
vaccines. Overall, the advent of ICD-based cancer vaccines has
demonstrated significant potential for the immunotherapy of
relevant tumors (12).

However, the pursuit of efficient and stable methods for ICD
induction remains critical for developing and evaluating relevant
ICD-stimulating nanomedicines. Since ICD inducers and induction
strategies are key focuses in ICD-based cancer vaccine research, this
review highlights recent advancements in ICD-based cancer
vaccines from both in vivo and in vitro perspectives. Our goal is
to provide more reliable preparation protocols and strategies for
ICD-based cancer vaccines, thereby promoting their continued
development and application. A crucial area of investigation for
these vaccines, compared to other immunotherapies, lies in their
potential to address tumor recurrence in long-term survivors of
metastatic and invasive cancers To achieve curative potential, we
advocate for the synergistic combination of immune-stimulating
tools with ICD-based cancer vaccine therapy.

2 The role of ICD in anti-
cancer immunity

Well-documented by numerous studies, immunogenic cell
death plays a critical role in generating an immunogenic tumor
phenotype, effectively overcoming immunosuppressive effects of a
non-immunoreactive tumor microenvironment (TME).ICD is
characterized by CRT exposure, ATP release, and leakage of
HMGBI1 and HSP (13). These processes facilitate the uptake of
TAAs by adaptive immune cells, triggering a broad-spectrum
antigen-specific immune response, promoting DC maturation,
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FIGURE 1
ICD-based cancer vaccines utilize methods to induce anti-cancer
immunity within the TME.
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and enhancing the search for DTCs (14). Furthermore, ICB therapy
relies on the production and activation of tumor antigen-specific T
cells. Consequently, the release of specific antigens from ICD tumor
cells is crucial for reshaping the TME and has been validated in the
combination of ICB with chemotherapy and radiotherapy. The
recruitment of adaptive immune cells, neutrophils, macrophages,
and NK cells all can activate innate effector mechanisms (15).

Immunogenic substances released during ICD can be classified
into constitutive DAMPs (cDAMPs) and inducible DAMPs
(iDAMPs). cDAMPs consist of immune-stimulating molecules
such as CRT, ATP, HMGBI, and HSP, which are expressed prior
to tumor cell death (16). iDAMPs are endogenous molecules
produced by underlying mechanisms during tumor cell death,
primarily including cytotoxic T-lymphocytes (CTLs) with CD3+,
CD4+, and CD8+, releasing interferon-o. (IFN-ot), granzymes,
lysins, and perforins (17). In this respect, CRT and HSP emit eat-
me signals. CRT-CD91 and HSP90-CD91 interactions promote
endocytosis signals in tumor cells, inducing antigen presentation
and specific CTL responses. Additionally, the release of tumor
necrosis factor-o¢ (TNF-o) and interleukin-6 (IL-6) (18); ATP
emit energy signals, ATP-P2RY2 binding is involved in the
recruitment of monocytes or macrophages, neutrophils, and
promoting DC maturation (19); HMGBI, aided by chemokines,
binds to pattern recognition receptor (PRR) (P2RX7, P2RY2),
CD91, CD40, and Toll-like receptor 4 (TLR4) receptors on the
surface of antigen-presenting cells (APCs) (20). Upon the
functional activation of APCs, those APCs exposed to TAA and
TSA immunostimulants initiate cross-presentation to CD4+/CD8+
T cells, enhancing DC antigen presentation and CTLs proliferation
(14). Consequently, the transition from a “cold” to a “hot” tumor
immune microenvironment occurs, accompanied by changes in the
secretion levels of immunostimulatory and immunosuppressive
factors (up-regulation of IFN-y, TNF-o, and IL-12; down-
regulation of IL-4, IL-6, and IL-10), as well as the depletion of
myeloid-derived suppressor cells (MDSCs), regulatory T cells
(Tregs), and tumor-associated macrophages 2 (TAM2) (21). The
above studies overlap in their assertion that ICD, as an in-situ
vaccine, possesses potential immunomodulatory abilities and holds
great value in reversing the TME and improving the efficacy of
tumor immunotherapy.

3 Inducers of in situ ICD-based
cancer vaccines

Over the years, a multitude of ICD inducers have been
developed, especially when integrated with nanotechnology, to
boost the effectiveness of ICDs. Administering ICD nano-
inducers to the tumor site not only averts degradation and
premature active ingredient release but also enhances their
penetration and retention capabilities (EPR) (22). Presently, the
primary driving methods of ICDs encompass chemotherapy,
photodynamic, photothermal, radiotherapy, and sonodynamic
therapies Table 1. Thus, a comprehensive investigation of ICD
induction mechanisms and inducers holds substantial importance
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in advancing the development of “in situ ICD-based cancer
vaccines”. The release of cancer cell immunogenic antigens
induced by ICD and the presentation of these antigens by APCs
constitute the fundamental stages of the “cancer vaccine-like
function” observed in vivo (Figure 2). We introduce the ICD
induction methods with some latest research to provide more
evidence in the field of ICD-vaccine.

3.1 Chemotherapy-induced ICD-based
cancer vaccines

Chemotherapeutic agents that have been shown to be effective
for ICD induction include: Idarubicin; Epirubicin, Doxorubicin
(DOX) (23), Mitoxantrone, Oxaliplatin (Oxp) (25), Bortezomib,
Cyclophosphamide, and Paclitaxel (PTX) (27, 47). Studies have
demonstrated that the induction of ICD by chemotherapeutic
agents, particularly anthracyclines, is accompanied by phenomena
such as the unfolded protein response within the endoplasmic
reticulum (ER) and the generation of reactive oxygen species
(ROS). These events are primarily caused by the DNA damage
induced by chemotherapeutic agents to secondary structures,
including the cytoplasm (28). Chemotherapy-induced ICD can
also lead to the release of CRT, ATP, HMGBI1, CXCL1, and
CXCL2, which ultimately induces an immune stress response,
triggering a sustained antitumor effect (48).

In experiments exploring the use of chemotherapeutic
nanomedicines for ICD induction, some researchers employed
nanoprecipitation technology to develop and design nanomedicines
(called Nano-Folox), which contain Oxp derivatives and FnA. Nano-
Folox not only induced ICD, but also synergistically interacted with
free 5-Fu to induce a shift from cold to hot tumors. This ultimately
led to a significant inhibition of tumor growth in CRC mouse models
(29). Liu et al. synthesized liposomes carrying Oxp and coupled with
indoximod (IND) precursors; the nanoparticles not only enhanced
the ability of Oxp to induce ICD in pancreatic ductal carcinoma
(PDAC) but also stimulated antitumor immune responses in PDAC
(49). In recent years, researchers have designed nanoplatforms
integrating OXA with polyethylene glycolated photosensitizer (PS)
prodrugs, exhibiting good stability in blood circulationand able to
complete drug release and ICD induction under near-infrared (NIR)
irradiation. They also explored the enhancing effect of CD47 blockade
on tumor ICD induction (50). Xie et al. designed nanoparticles MDP
NPs self-assembled from DOX, MnO2 nanoparticles, Fe3+, and
PEG-polyphenol ligands, which could enhance DOX-based tumor
ICD induction and achieve high expression of TAAs, DC maturation,
and infiltration of tumor-specific T-cells (51). Some researchers have
constructed ROS-responsive polymers (R-SIP) using hydrophilic
polyethylene glycol (PEG) and a hydrophobic self-immolative
backbone, loaded with DOX. This nanoparticle could release DOX
in response to spontaneous depolymerization of ROS and undergo
depolymerization to produce azoquinone methyl ether derivatives
that significantly deplete GSH, increase the level of oxidative stress,
and ultimately enhance the induction of ICD in oncological
treatments (52).
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TABLE 1 ICD-based cancer vaccines with common inducers.

ICD-induced
methods

Inducer

Inducer structural formula

10.3389/fimmu.2024.1389173

Detection of ICD based biomarkers

Doxorubicin CRT, HMGBI1, ATP (23, 24)
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Oxaliplatin O HMGB1 (25, 26)
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Paclitaxel CRT (27, 28)
Chemotherapy P
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TABLE 1 Continued
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ICD-induced Inducer Inducer structural formula Detection of ICD based biomarkers
methods
Rose Bengal CRT, ATP, (36)
HMGBI, HSP
1CG 7 CRT (37)
- \/j DVﬂv\/\
O 0T
X0
PDA Ho P pHo L prre o CRT, ATP, HMGB1 (38)
PPT IR780 CRT, ATP, HMGB1 (39)
CuS CRT, ATP, HMGB1 (40)
ZnO CRT, ATP, HMGB1 (41)
IR780 CRT, ATP, HMGB1 (42, 43)
Perfluorocarbon F F F, F F F CRT, HMGB1 (44)
F
F FF FF F
ICG CRT, ATP, HMGB1 (38)
CUR CRT, ATP, HMGB1 (45)
it HO
Others Icaritin ho o CRT, ATP, HMGB1 (46)
O~
v
OH
He— S
CH,

3.2 PDT-induced ICD-based
cancer vaccines

PDT has shown effectiveness in inducing tumor cell death,
solidifying its role as a viable clinical application in oncology.
Currently, photosensitizers with the ability to induce cell death
include Hypericin (33), 5-ALA (34), and Rose-Bengal acetate (36).
The induction of ICD in tumor cells during PDT treatment is
primarily attributed to the generation of intracellular ROS under
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NIR irradiation, which occurs after photosensitizer aggregation in
the ER, causing disruptions in ER homeostasis, elevating calcium
levels in the ER, and losing SERCA2 function. Mitochondrial
dysfunction, characterized by oxidative damage to mtDNA and
BAX/BAK-mediated apoptosis, triggers a series of events
culminating in immunogenic stress. This process begins with the
release of ATP and exposure of CRT on the mitochondrial surface.
Subsequently, DAMPs, such as heat shock protein 70 (HSP70), are
released, initiating a localized inflammatory response. Ultimately,
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FIGURE 2

Overview of ICD-based cancer vaccines and the associated mechanisms involved in ICD regulation.

these events contribute to the development of an immunogenic
stress response (53). Beyond the intrinsic properties of the
photosensitizer, the ROS generation and ICD-inducing effects can
be severely limited by the constraints of hypoxia and insufficient
tumor penetration in the TME (54). Therefore, it is crucial to
address adverse factors in the TME to enhance ICD induction by
PDT. Several strategies can be employed for this purpose, such as
inducing mitochondrial damage that causes ER disorders and
calcium overload (55); utilizing oxygen carriers like hemoglobin
(Hb) as catalysts for ROS generation, and modifying the targeting
effect of ER-targeting pardaxin (FAL) to enable more drugs to be
internalized into the ER, thus increasing the efficacy of PDT (37).

Studies onPDT-induced ICD have explored the use of a smart
semiconductor polymer nano-immunomodulator (SPNI) that could be
activated under acidic TME. When it was used in the therapeutic
process, SPNI exerted a photodynamic effect, directly ablating tumors
and inducing ICD when exposed to NIR light treatment, while R837
promoted DC maturation and pro-inflammatory cytokine secretion
(56). Qiu et al. incorporated the photosensitizer Chlorin e6 (Ce6)
doped with the chemotherapeutic agent 10-hydroxycamptothecin
(HCPT) into calcified nanocarriers CHC NPs. CHC NPs can
generate ROS, causing mitochondrial dysfunction and inducing the
ICD. This phenomenon is also crucial to compensate for the lack of
results from insufficient immunogenic tumor microenvironment
(ITME) in HCPT treatment (31). Zhu et al. demonstrated that a
platelet membrane fusion liposome nanovesicle system (named TFL)
loaded with type I AIE photosensitizer TBP-2. In this study, TBP-2 has
the potential to increase the incidence of cuproptosis and induce the
vaccine-function in tumor site (57, 58).

3.3 PTT-induced ICD-based
cancer vaccines

PTT is a potential non-invasive treatment strategy that converts
NIR energy into heat by photothermal agents, ultimately leading to
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tumor ablation. Interestingly, it was found that PTT could induce
ICD and assume a role akin to a vaccine (59). The types of
photothermal agents that can induce the photothermal effect at
present include (1) precious metals Au, Ag, Pt, etc., which have high
photothermal conversion efficiency and imaging; (2) Carbon
materials graphene, carbon nanorods, with large photothermal
conversion area but poor NIR absorption; (3) Metal and non-
metal compounds, CuS, ZnS; with high photothermal and low cost;
(4) Organic and inorganic nanomaterials. The ICD-inducing ability
of PTT therapy may be attributed to several factors. Firstly, the
photothermal agent initiates temperature changes at the tumor site,
leading to a Fenton-like reaction, peroxidation reaction, and direct
induction of H,0, production in the TME (60). These results in
intracellular Ca®* overload within tumor organelles (61). The
process involves mitochondria damage including reduced
membrane potential and the generation of mitochondrial reactive
oxygen species (mtROS) and the up-regulation of the PERK-
mediated eukaryotic initiation factor 20 (eIF20.) phosphorylation
pathway. Disruption of the ER structure is a hallmark of ICD. This
process ultimately culminates in the release of a significant amount
of DAMPs into the cytoplasm (62).

In recent years, the catalytic properties of Fenton metals,
particularly copper and iron, have emerged as crucial mechanisms
for inducing cell death processes termed copper death and iron
death. The utilization of photo-activated copper, exhibiting
exceptional photo-oxidation and reduction catalytic efficiency has
ushered in a new era of photosensitizers. This advancement has
significantly contributed to the burgeoning research in innovative
photodynamic and photothermal therapies for tumors (63). One
approach involves the synthesis of multifunctional nanoplatforms,
such as Cu-PDA-FA, by combining polydopamine (PDA) with Cu*
" through chelation technology. Cu-PDA-FA not only induces ICD
and cancer vaccine-like effects but also amplifies the efficiency of
conversion (38). Some researchers designed CaO, and Cu,Se
conjugates, which showed the ability to induce ICD after being
activated by NIR-II. Indeed, the Ca®" overload in the ER enhances
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the immune activation capacity. Reinforcing this concept, research
on photothermal materials (40). Zinc oxide (ZnO) has been
identified as an efficient drug carrier responsive to tumor pH that
significantly inhibits tumor growth. Building on these findings,
scientists have designed a multifunctional composite nanoplatform
(AuNP@mSiO2@DOX-ZnO) to harness the synergistic therapeutic
effects. This platform could promote ICD, maturation of DCs, and
proliferation of effector T cells, ultimately preventing tumor growth
and metastasis (41). Ran et al. designed nano-platforms PBDB-T
NPs using the organic photovoltaic material PBDB-T through a
nanoprecipitation method. PBDB-T NPs exhibited favorable
photothermal therapeutic effects and the ability to induce ICD.
Importantly, they increased the efficiency of DAMPs production
after mild-temperature PTT (mPTT) treatment (64). Tian et al.
developed a mesoporous polydopamine nanoparticle MPDA. IR-
780@MPDA not only induced ICD-activated CTLs in a therapeutic
4T1-homozygous mouse model under NIR treatment, but it also
demonstrated its utility for in vivo photoacoustic (PA) imaging, as
evidenced by the PA imaging tracings (39).

3.4 SDT-induced ICD-based
cancer vaccines

It is well-established that SDT enables the concentration of
ultrasound energy at the tumor site, leveraging the cavitation effect
to elevate local temperatures and enhance drug decomposition. This
process can generate free radicals and produce ROS under the
action of endogenous substances in the cell, thereby achieving the
purpose of local killing of the tumor. SDT offers several advantages,
inducing high tissue penetration, low invasiveness, high
controllability, and low costs (65). Consequently, SDT is safer
than the traditional means of tumor treatment, such as
chemotherapy, radiotherapy, and can minimize damage to
normal tissues during the treatment process. Furthermore,
ultrasound (US) has an ideal depth of tissue penetration (10 cm),
which greatly mitigates the inhibitory effects of hypoxia, low pH,
and other unfavorable factors in complex TME, which confers SDT
a stronger ICD induction effect (66).

In recent years, a new type of calreticulin nanoparticles (CRT-
NP) has been developed, which can be activated by focused
ultrasound (FUS) and induce ICD during melanoma
immunotherapy. The CRT-NP in vivo therapeutic study of CRT-
NP benefits from the non-invasiveness of has the advantage of
ultrasound, couple with a thermal effect that transforms the TME to
enhance TAA release, HSP expression, and up-regulation of CRT to
stimulate tumor immune stress response (67). Some researchers
designed perfluorocarbon nanoparticles (LIP-PFH NPs), which also
exhibited tumor suppression effect and ICD induction effect on
breast cancer cells by SDT (68). Besides, researchers have
synthesized mitochondria-targeted liposome nanoparticles
(MLipRIR NPs), which could be activated by ultrasound and
released R162 that disrupted the glutaminolysis pathway in
mitochondria and down-regulates glutathione peroxidase (GPx)
enzyme expression. At the same time, IR780 generated large
amounts of ROS in response to US treatment, disrupting normal
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mitochondrial function and inducing ICD (42). Building on the
discovery that a combined photodynamic and sonodynamic
therapy(PSDT) reduces sonosensitizer dose and energy loss,
Zheng et al. developed the OIX-NP. This nanoparticle comprises
poly(lactic-co-glycolic acid) (PLGA) encapsulating oxygen-carrying
perfluoropentane (PFP), an ICG near-infrared dye and an Oxp
chemoinducer. The OIX-NP not only efficiently induce
ICD, but also demonstrated significant potential for imaging
applications (44).

3.5 RT-induced ICD-based cancer vaccines

It has been reported that RT can accumulate energy in the
tumor site by using high-energy X-rays, Y-rays, or other
isoelectronic radiation (IR). Then RT induces DNA damage,
destroying double-stranded DNA (dsDNA), leading to ICD. This
process results in the release of key signaling molecules, including
CRT, HSP70 and HMGBI, within the TME (69). The induction of
ICD by RT mainly involves the up-regulation of histocompatibility
complex I (MHC-I) molecule, intercellular adhesion molecule-1,
and factor-related apoptosis (Fas) (70). This process contributes to
the so-called “distant effect” and inhibits the development of
metastasis. Thus, RT has the potential to act as an in-situ vaccine
(71, 72).

While radiotherapy is a mainstay of local tumor treatment, its
effectiveness in controlling distant tumor spread is limited.
However, the recent discovery of RT’s ability to induce ICD offers
a promising avenue to revitalize RT therapy. Importantly, research
suggests that the degree of immune modulation within the tumor
microenvironment by RT is dependent on the radiation dose (73).
He et al. found that gold nanoparticles AuNPs were able to increase
the expression of phosphorylated elF2o (p-elF2a) in G422
glioblastoma cells under RT treatment, promote elF2o. protein
phosphorylation, and induce ICD. The study also verified the
ICD-inducing ability of AuNPs under RT treatment in a
therapeutic G422 tumor-bearing mice model (74).

4 |n vitro induction of DTCs for
cancer vaccines

“ICD-based cancer vaccines” involve DTCs for re-infusion
vaccination in vivo, ultimately leading to tumor therapy. DTCs,
produced after treatment with ICD inducers, exhibit excellent
immunogenicity (Figure 3). In this respect, studies have reported
that ICD-based cancer vaccines can induce robust immune
activation in mouse models during prophylactic vaccination trials
in vivo (75). ICD-based cancer vaccines offer a distinct advantage by
inducing a comprehensive tumor cell antigen expression profile.
This eliminates the dependence on a single antibody for
recognition, a major hurdle in conventional immunotherapy. By
promoting the expression of diverse tumor antigens, ICD vaccines
significantly reduce the risk of tumor cells evading immune attack
during treatment. The rationale behind this approach lies in the
ability of ICD inducers to stimulate the spontaneous production of
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FIGURE 3

Schematic illustration of the design of cancer vaccines inspired by
DTCs for eliciting humoral and cellular immunity, which can be
broken into three key stages: the preparation of ICD-based cancer
vaccines (blue circle), the immune activation include DC maturation
and antigen presentation (red circle), and the immune effect of CD8
+T cells in TME for anti-tumor therapy (grey circle). Created by ©
2023 BioRender.

relevant antigens, DAMPs, and immune activation molecules
within tumor cells. This comprehensive immune response
translates to potent antitumor effects, establishment of long-term
immune memory against the tumor, and aligns perfectly with the
evolving paradigm of immunotherapy, which seeks to integrate
preventive and therapeutic strategies.

Studies have explored various methods for the preparation of
ICD-based cancer vaccines include: One approach utilizes
chemotherapy. Qing et al. demonstrated that DOX can induce
tumor cells to become dendritic cell activators. They employed
liquid nitrogen cryogenics to generate frozen dying tumor cells
(FDTs), which achieved a 38% tumor elimination rate in the
MCI100 peritoneal carcinoma mouse model. Furthermore, in
combination with cytokines IL-12 and aPD-LI, they achieved
100% eradication in the peritoneal metastasis model of colorectal
carcinoma (76). Li et al. showed that tumor antigens CIAs induced
by chemotherapeutic agents in vitro, triggering an immune
response and demonstrating synergistic effects with anti-PD-1
therapy (77). Another approach involves using radiotherapy.
Researchers have successfully prepared nano-vaccines in vitro
using RT-induced tumor cells. These vaccines demonstrated
efficacy in treating metastatic tumors and enhanced
immunotherapeutic effects when combined with anti-PD-1
treatment (78).Although research on ICD inducers and strategies
is more advanced, the development of ICD-based cancer vaccines in
vitro is still in the preliminary stage. However, achieving high
efficiency and low cost remains crucial research criteria for ICD-
based cancer vaccines. Therefore, investigating whether
photodynamic and sonodynamic therapy can be an ideal
induction for ICD-based cancer vaccines is expected to be a
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worthy direction for more researchers to explore. Given the
promising results of ICD induction using chemotherapy and
radiotherapy, investigating the potential of PDT and SDT as
triggers for ICD-based cancer vaccines warrants further
exploration. we posit that the personalized design of these ICD-
based cancer vaccines holds immense potential for advancing
clinical translation in antitumor immunotherapy translation. As
an example, previously mentioned strategies like encapsulating
patient-specific nanoparticles and obtaining DC activators from
tumors offer valuable avenues for personalization. While current
personalized cancer vaccine development primarily focus on
immune cells loaded with immune-stimulating agents, future
breakthroughs lie in utilizing specific immune elements to create
novel and highly effective therapeutic strategies.

5 ICD related clinical cancer therapy

In clinical immunotherapy studies involving non-small cell lung
cancer, hepatocellular carcinoma, breast cancer, bladder cancer,
melanoma, squamous carcinoma, and other solid tumors, the
induction of ICD has demonstrated the ability to enhance the
presentation function of APCs such as DCs, deplete Treg cells, and
activate the vitality of immune cytotoxic effector cells. Thess combined
effects ultimately lead to improved efficacy in tumor therapy.

As summarized in (Table 2), clinical trials have primarily
focused on chemotherapy and radiotherapy for inducing ICD,
demonstrating its clinical applicability. Researchers have further
shown that physical treatments, like cryoablation, can also trigger
ICD, potentially improving cost-effectiveness and clinical
translation efficiency. However, significant progress is needed to
develop and translate ICD-based cancer vaccines for clinical use.
Therefore, exploring novel therapeutic approaches based on ICD-
based cancer vaccines research and establishing a system to
comprehensively evaluate the types and levels of immunogenic
substance generated by ICD are crucial next steps.

6 Discussion and conclusion

The immunological adjuvant effect of ICD is now understood to be
intricately linked to the exposure and release of cellular DAMPs. These
DAMPs include exposed CRT, secreted ATP, ANXA1, TNF-a, and
HMGBI, as well as phosphorylated eIF2o. However, additional
valuable markers likely remain undiscovered. For example, low levels
of autophagy can both protect cells and limit the release of
immunogenic substances, while potentially increasing the risk of
oncogenicity during treatment. Mounting evidence suggests that
tumor autophagy, once thought to be similar to apoptosis, can also
impact the effectiveness of antitumor immunotherapy. As expected, the
autophagy inducer called STF-62247 (STF) can effectively convert
protective autophagy into ICD, thereby enhancing antitumor
immune activation. Furthermore, the uncertainty surrounding
conventional methods of inducing ICD and determining the optimal
dosage of ICD inducers makes it challenging to accurately quantify the
release of associated immunogenic DAMPs. As ICD-based cancer
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TABLE 2 Clinical studies about tumor treatment based on ICD.

ICD-based
treatment
form

Tumor type

Intervention

10.3389/fimmu.2024.1389173

Aims of the study

Identifier

Ovarian Cancer

Carboplatin-pegylated Liposomal Doxorubicin
(PLD) or Doxorubicin Combination
Chemotherapy with Tocilizumab and Pegylated
Interferon Alpha (Peg-Intron)

Feasibility of the Combination of
Chemotherapy (Carbo/Caelyx or Carbo/
Doxorubicin) With Tocilizumab (mAb
IL-6R) and Peg-Intron in Patients With
Recurrent Ovarian Cancer

NCT01637532

Hepatocellular carcinoma

Envafolimab; Lenvatinib combined with TACE
PD-L1 inhibitor

Envafolimab, Lenvatinib Combined With
TACE in the Treatment of Unresectable
Locally Advanced
Hepatocellular Carcinoma

NCT05582109

Head and Neck Cancer

Colorectal Cancer Metastatic

Digoxin

Capecitabine; Oxaliplatin;
Bevacizumab; Pembrolizumab

Potentiation of Cisplatin-based
Chemotherapy by Digoxin in Advanced
Unresectable Head and Neck
Cancer Patients

Chemotherapy and Immunotherapy as
Treatment for MSS Metastatic Colorectal
Cancer With High Immune Infiltrate

NCT02906800

NCT04262687

Cholangiocarcinoma

Non-small Cell Lung Cancer

Rectal Neoplasms

Combination

of chemotherapy Colorectal Cancer Metastatic

Novel combination of chemotherapy
and immunotherapy

Nivolumab; Oxaliplatin; Ipilimumab

Oxaliplatin; Capecitabine and Anti-PD-1
monoclonal antibody

Nivolumab FLOX

Durvalumab and Tremelimumab With
Platinum-based Chemotherapy in
Intrahepatic Cholangiocarcinoma

Nivolumab and Ipilimumab in
CombinationWith Immunogenic
Chemotherapy for Patients With

Advanced NSCLC

Rectal Artery Infusion Chemotherapy
Combined With Anti-PD1 Antibody for
MSS LARC

METIMMOX: Colorectal Cancer
METastasis - Shaping Anti-tumor
IMMunity by OXaliplatin

NCT04989218

NCT04043195

NCT05307198

NCT03388190

Non-small Cell Lung Cancer

Atezolizumab and Vinorelbine

Trial to Evaluate Safety and Efficacy of
Vinorelbine With Metronomic
Administration in Combination With
Atezolizumab as Second-line Treatment
for Patients With Stage IV Non-small
Cell Lung Cancer

NCT03801304

Solid Tumor

Mycosis Fungoides

Squamous Cell Carcinoma of
the Head and Neck

SQZ-AAC-HPV; Ipilimumab; Nivolumab

Cemiplimab

Atezolizumab and UCPVax

Study of SQZ-AAC-HPV in Patients
With HPV16+ Recurrent, Locally
Advanced or Metastatic Solid Tumors

BIOmarker-guided Study to Evaluate the
Efficacy and Safety of cemipLimab for
advanced Cutaneous T-cell Lymphoma

Combination of UCPVax Vaccine and
Atezolizumab for the Treatment of
Human Papillomavirus Positive Cancers

NCT04892043

NCT05538988

NCT03946358

Solid Tumor

RAPA-201 Rapamycin Resistant T Cells and
Chemotherapy Prior to RAPA-201 Therapy

RAPA-201 Therapy of Solid Tumors

NCT05144698

Melanoma

Hepatocellular Carcinoma

Ipilimumab and Nivolumab

Nivolumab and SIR-Spheres

Isolated Hepatic Perfusion in
Combination With Ipilimumab and
Nivolumab in Patients With Uveal

Melanoma Metastases

A Study of the Safety and Antitumoral
Efficacy of Nivolumab After SIRT for the
Treatment of Patients With HCC

NCT04463368

NCT03380130

Olaparib; MEDI4736; Bevacizumab

NCT02734004
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TABLE 2 Continued

10.3389/fimmu.2024.1389173

ICD-based
treatment Tumor type Intervention Aims of the study Identifier
form
A Phase I/II Study of MEDI4736 i
Ovarian Breast SCLC 'ase' / .u Vo . 'm
Gastric Cancer Combination With Olaparib in Patients
astric Lancers With Advanced Solid Tumors
High- ioth, 1 Detection of Ci ing Bi kers of
Non- Small Cell Lung Cancer igh-dose .radlo't erapy alone or concurrent etection o Clrcul.atmg iomarkers o NCT02921854
cisplatin-doublet therapy Immunogenic Cell Death
Study of Stereotactic Ablative
Radiotherapy Followed by Atezolizumab/
Non-small Cell Lung Cancer Radiotherapy and atezolizumab/tiragolumab Tiragolumab in Treatment-naive Patients =~ NCT05034055
With Metastatic Non-small Cell
Lung Cancer
Safety of Navoximod and NLG802 With
i B ioth . .
Advanced Solid Tumors Ster::?;i G(S)g; Eijf;;l:(f }l;rzz‘:ZX;mOd Stereotactic Body Radiotherapy NCT05469490
& Treatment of Advanced Solid Tumors
Combination Esophageal Squamous Radiotherapy combined with immune Hybrid Dose-fraction Radiotherapy for NCT05348668
of Radiotherapy Cell Carcinoma checkpoint inhibitors Metastatic Non-small Cell Lung Cancer
Comprehensive Bladder Preservation
Urinary Bladder Neoplasms radiotherapy and Tislelizumab Therapy on Patients With Muscle NCT05445648
Invasive Bladder Cancer
A Pil f i I
. Durvalumab and Tremelimumab combined ot .Study (,) ‘C,‘)mpmed m'mur'le
Biliary Tract Neoplasms; . . Checkpoint Inhibition in Combination
. with Trans-arterial Catheter . . . . .
Liver Cancer; L . With Ablative Therapies in Subjects With = NCT02821754
. Chemoembolization Radiofrequency . 0
Hepatocellular Carcinoma . . Hepatocellular Carcinoma or Biliary
Ablation Cryoablation X
Tract Carcinomas
Trial of SBRT With C t
Melanoma Radiotherapy and Ipilimumab . 'n © . ! -oncurren NCT02406183
Ipilimumab in Metastatic Melanoma
To Detect Cryoimmunologic Response
Breast Cancer Cryoablation Induced by Early Breast Cancer NCT05727813
Ultrasound-guided Cryoablation
Cryoth for Locally Ad d
Esophageal Cancer Cryotherapy ryotherapy for Locally Advance NCT04248582
Esophageal Cancer
Others To Detect Immunogenic Cell Death as a
Bladder Cancer Mitomycin C Novel Mechanism of Mitomycin C NCT04256616
Activity in Bladder Cancer
Thymic Epithelial T ;
e EpItela’ Tumor PT-112 in Subjects With Thymoma and
Recurrent Thymoma PT-112 X . NCT05104736
. Thymic Carcinoma
Thymic Cancer

therapy gains wider acceptance in clinical settings, it becomes
increasingly important to select closely correlated assay secretions for
screening ICD inducers that possess efficient induction capabilities for
future development of ICD-based cancer vaccines.

Meanwhile, the development of safer and more reliable in vitro
systems for ICD-based cancer vaccines, as well as the elimination of
unfavorable factors in vivo, are areas that warrant attention and in-
depth exploration. While some personalized ICD-based cancer vaccine
research has been discussed above, providing potential mechanisms for
their effectiveness, the activation of immunity by cancer vaccines is a
complex process. For instance, studies have demonstrated that
targeting the STING pathway can activate innate immune signaling
in immune-infiltrating cells and within tumor cells, ultimately inducing
ICD. However, the effectiveness of STING pathway activation within
tumor cells may vary depending on the tumor type., Nanotechnology
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offers a potential solution by enhancing the delivery of STING
activators to cells, thereby improving their efficacy (79). The
involvement of the CXCL12/CXCR4 signaling pathway also plays a
role in various physiological processes, such as tumor survival,
invasion, metastasis, angiogenesis, and the creation of hypoxic
environments (80). Additionally, CXCR4 expression can facilitate the
transportation of MDSCs in different tumors, leading to the creation of
an immunosuppressive TME and immune resistance (81). In gliomas,
blocking CXCR4 signaling using nanoparticles loaded with CXCR4
inhibitors can reduce the infiltration of immunosuppressive MDSC
and trigger an adaptive immune response (82).

In recent years, immunotherapy has made remarkable strides in
the treatment of cancer, particularly with the emergence of cancer
vaccines based on immune cell death. These vaccines hold great
promise for expanding and enhancing tumor immunotherapy. In
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this article, we expounded on the mechanisms of ICD as a potent
tool for regulating TME and explored the vast potential of ICD-
based cancer vaccines. The successful clinical application of ICD-
based cancer vaccines necessitates a rigorous evaluation of their
therapeutic value. Therefore, we advocate for the identification of
more robust clinical evaluation indicators, particularly those that
assess the efficacy of ICD induction by these vaccines. A
comprehensive assessment of both safety and efficacy is
paramount in determining the transformative potential of this
approach in cancer treatment. Further exploration of the intricate
mechanisms underlying ICD and its role in tumor immunotherapy
is crucial to unlocking the full potential of this innovative strategy.
Our ongoing research endeavors to contribute to the expanding
body of knowledge surrounding ICD-based cancer vaccines and
ultimately pave the way for their successful translation into clinical
practice through meticulous evaluation and analysis. In conclusion,
the utilization of immunogenic patterns generated by ICD in tumor
cells represents a paradigm shift in the field of tumor
immunotherapy. By advancing the development of disease-
specific cancer vaccines, we can harness the full potential of this
approach to significantly improve treatment outcomes for cancer
patients. Rigorous evaluation and analysis are essential to ensure the
clinical relevance and applicability of these vaccines, ultimately
leading to improved patient outcomes on a global scale.
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Glossary
DAMPs damage-associated molecular patterns
DTCs dying tumor cells
ICD immunogenic cell death
TAAs tumor-associated antigens
TSAs tumor-specific antigens
ICB Immune checkpoint blockade
PD-1/PD-L1 programmed cell death protein 1/programmed death
ligand 1
CTLA-4/B7 cytotoxic T lymphocyte-associated protein 4/B7
CRT calreticulin
ATP adenosine triphosphate
HMGBI1 high mobility histone 1
HSP heat shock protein
cDAMPs constitutive DAMPs
iDAMPs inducible DAMPs
TME tumor microenvironment
CTLs cytotoxic T-lymphocytes
IFN-o interferon-o
TNF-ou tumor necrosis factor-ou
IL-6 interleukin-6
PRR pattern recognition receptor
TLR4 Toll-like receptor 4
APCs antigen-presenting cells
MDSCs myeloid-derived suppressor cells
Tregs regulatory T cells
TAM2 tumor-associated macrophages 2
EPR enhances penetration and retention
DOX Doxorubicin
Oxp Oxaliplatin
PTX Paclitaxel
IND indoximod
PDAC pancreatic ductal carcinoma
PS photosensitizer
R-SIP ROS-responsive polymers
PEG polyethylene glycol
ER endoplasmic reticulum
ROS reactive oxygen species
GSH glutathione
NIR near-infrared
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Continued
Cas9-Cdks CRISPR/Cas9-Cdk5 plasmid
HSP70 heat shock protein 70
Hb hemoglobin
FAL ER-targeting pardaxin
SPNI semiconductor polymer nano-immunomodulator
Ce6 Chlorin e6
HCPT hydroxycamptothecin
ITME insufficient immunogenic tumor microenvironment
mtROS mitochondrial reactive oxygen species
TLR7 Toll-like receptor 7

poly (ethylene
glycol)-block

poly(2-(diisopropylamino)ethyl methacrylate)

PBEs phenylboronic acid esters

PPa photosensitizer pheophorbide a

aPD-L1 anti-PD-L1 antibody

elF2a eukaryotic initiation factor 2a.

PDA polydopamine

ZnO Zinc oxide

PA photoacoustic

BSA bovine serum albumin

mPTT mild-temperature PTT

Us ultrasound

CRT-NP calreticulin nanoparticles

FUS focused ultrasound

LIP-PFH NPs perfluorocarbon nanoparticles

MLipRIR NPs mitochondria-targeted liposome nanoparticles

GPx glutathione peroxidase

PFH perfluoro hexane

EOC epithelial ovarian cancer

PSDT PDT/SDT treatment modality

PLGA poly (lactic-co-glycolic acid)

PFP perfluoropentane

IR isoelectronic radiation

dsDNA destroying double-stranded DNA

MHC-I mainly involves the up-regulation of
histocompatibility complex I

Fas factor-related apoptosis

H@Gd-NCPs Hemin@ Gd3+/5’ -GMP NCPs

5'-GMP 5’-guanosine monophosphate

Gd-NCPs Gd3+/5'-GMP NCPs
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Continued
p-elF2o phosphorylated elF20u
FDTs frozen dying tumor cells
LNs lymph nodes
PLD Carboplatin-pegylated Liposomal Doxorubicin
Peg-Intron Pegylated Interferon Alpha
SBRT Stereotactic Body Radiotherapy
TACE Trans-arterial Catheter Chemoembolization
RFA Radiofrequency Ablation
STF STF-62247
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Introduction: Lung cancer, with the highest global mortality rate among cancers,
presents a grim prognosis, often diagnosed at an advanced stage in nearly 70% of
cases. Recent research has unveiled a novel mechanism of cell death termed
disulfidptosis, which is facilitated by glucose scarcity and the protein SLC7A11.

Methods: Utilizing the least absolute shrinkage and selection operator (LASSO)
regression analysis combined with Cox regression analysis, we constructed a
prognostic model focusing on disulfidptosis-related genes. Nomograms,
correlation analyses, and enrichment analyses were employed to assess the
significance of this model. Among the genes incorporated into the model,
CHRNAS was selected for further investigation regarding its role in LUAD cells.
Biological functions of CHRNAS were assessed using EdU, transwell, and CCK-
8 assays.

Results: The efficacy of the model was validated through internal testing and an
external validation set, with further evaluation of its robustness and clinical
applicability using a nomogram. Subsequent correlation analyses revealed
associations between the risk score and infiltration of various cancer types, as
well as oncogene expression. Enrichment analysis also identified associations
between the risk score and pivotal biological processes and KEGG pathways. Our
findings underscore the significant impact of CHRNA5 on LUAD cell proliferation,
migration, and disulfidptosis.

Conclusion: This study successfully developed and validated a robust prognostic
model centered on disulfidptosis-related genes, providing a foundation for
predicting prognosis in LUAD patients.
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disulfidptosis, LASSO, prognostic model, lung cancer, immune infiltration
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1 Introduction

Lung cancer remains the leading cause of cancer-related death
worldwide, and its mortality accounts for approximately 18% of
all types of cancer (1). Non-small cell lung cancer (NSCLC) is the
most common lung cancer subtype, and it comprises two major
histological types: lung squamous cell carcinoma (LUSC) and lung
adenocarcinoma (LUAD). In addition to conventional therapies
such as surgery, chemotherapy and radiotherapy, targeted therapy
and immunotherapy for lung cancer have also developed rapidly in
recent years. However, these therapies can only benefit some
patients and have many limitations, such as side effects and high
costs (2, 3). Nearly 70% of patients with NSCLC are initially
diagnosed at a locally advanced stage and suffer from a poor
prognosis (4). The 5-year survival rate is less than 3% for patients
with advanced NSCLC (5). Therefore, exploring new diagnostic and
prognostic markers is an important way to improve the early
diagnosis and prognosis of lung cancer.

In the past few years, an increasing number of forms of cell
death have been discovered, providing more possibilities for
humans to combat various diseases (6). Activating specific forms
of death through agonist treatment can provide new strategies for
cancer treatment. Recent research has revealed a novel form of cell
death, disulfidptosis, which is a form of cell death induced by
glucose deficiency and SLC7A11 (7, 8). Specifically, disulfidptosis
was triggered when cells with high SLC7A11 protein expression
were subjected to glucose starvation. Treatment with glucose
transporter (GLUT) inhibitors can induce disulfidptosis in cancer
cells with high SLC7A11 expression without significant toxicity to
normal tissues, thus effectively inhibiting tumor growth (7). This
new form of death opens new doors for the development of cancer
treatment strategies. Although the basic concept of disulfidptosis
has been proposed, its detailed mechanisms remain unclear,
especially its role across different cell types and under disease

10.3389/fimmu.2024.1371831

conditions. Currently, GLUT inhibitors are the only known
inducers of disulfidptosis, highlighting the limited understanding
of their mechanisms and therapeutic targets (9).

In this study, disulfidptosis-related genes (DRGs) identified
from CRISPR-Cas9 screenings were obtained from a previous
study (8), and they were used to establish a prognostic model
based on the LUAD dataset in the TCGA database and another
LUAD dataset in the GEO database using the least absolute contact
and selection operator (LASSO) and Cox regression analysis
(Figure 1). The model-derived risk factors were further analyzed
for associations with immune cell infiltration, tumor suppressor
gene expression, tumor-related biological functions and drug
sensitivity. Moreover, the key genes in the model were further
validated by in vitro assays.

2 Methods
2.1 Data collection

The LUAD data of 572 patients, including 59 normal tissues
adjacent to cancer tissues, 513 tumor tissues and corresponding
clinical information, were retrieved from The Cancer Genome Map
(TCGA) database. The expression profile and clinical results are
open and accessible. To validate the prognostic model based on the
TCGA LUAD cohort, another LUAD dataset (GSE13213) was
retrieved from the Gene Expression Omnibus (GEO) database as
an external validation dataset. The GSE13213 (10) dataset contains
gene expression data and prognosis information for 117 primary
lung adenocarcinoma samples.

The disulfidptosis-related genes (DRGs) were extracted
via CRISPR-Cas9 screening from a previous study (8). Genes with
|normZ values| > 2 and P values< 0.05, including 399 suppressors and
409 synergists, were further screened to construct a prognostic model.
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2.2 Prognostic model construction
and validation

The chi-square test was used to analyze the differences between
the training set, the internal test set and the total dataset in terms of
sex, age, tumor stage, depth of invasion (T), lymph node metastasis
(N), distal metastasis (M) status and smoking history. The
univariate Cox model was used to study the relationship between
continuous expression levels of DRGs and OS. The risk ratio (HR)
and P value from the univariate Cox regression analysis were used
to identify candidate survival-related DRGs. DRGs with an HR > 1
were considered risky DRGs, and those with an HR< 1 were defined
as protective DRGs. DRGs that met the criterion of a P value<0.05
were identified as survival-related DRGs and further included in
LASSO and multivariate Cox regression analyses to construct a
prognostic model. The risk score for each LUAD patient was
calculated based on the expression of DRGs (Exp;) and Cox
coefficients (coef;) Risk score = D' Exp; x coef;. All patients in
each dataset were divided into high- or low-risk groups according to
the median value. K-M plots were generated to evaluate patient
survival in each dataset between the high- and low-risk groups.
Moreover, multivariate Cox regression analysis was performed
to estimate whether the risk score was independent of
clinicopathological features. To investigate the performance of the
prognostic model in predicting LUAD patient outcomes, the area
under the curve (AUC) of the ROC curve (AUC) was calculated. In
addition, the expression of each MRG in the model and its
correlation with clinicopathological features were also analyzed.

All analyses were performed with R software (version 4.3.1) and
the corresponding fundamental package. The “care” package was used
to randomly divide the patients into two datasets at a ratio of 6:4
according to their survival status, which were used as training sets and
internal test sets, respectively. The “glmnet” package was used for
LASSO regression model analysis. In addition, the “survival” and
“survminer” packages were used to perform univariate and
multivariate Cox analyses and to generate Kaplan—Meier plots. The
“TimeROC” package was used to generate the time-dependent receiver
operating characteristic (ROC) curve, and the “survivalROC” package
was used to calculate the area under the curve (AUC). Nomogram plots
were generated with the “rms” package.

2.3 Enrichment analysis

Based on the correlation analysis between the risk score and all
mRNAs, gene set enrichment analysis (GSEA) was further
performed by using the “ClusterProfiler” package of R software
(version 4.3.1).

In addition, the differentially expressed genes (DEGs) between
the low and high groups were identified based on the R package
“limma” with the thresholds of log(fold change) >1 and P value< 0.05.
The DEGs were further input into the DAVID online tool (https://
david.ncifcrf.gov/) for pathway and biological process enrichment.
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2.4 Correlation analysis

To further explore the biological role and clinical significance of
the DRG prognostic model, correlation analysis was performed
between the risk score and the expression of oncogenes, tumor
mutation burden (TMB), immune regulatory gene expression,
immune cell infiltration and tumor immune dysfunction and
exclusion (TIDE) score. Correlation analysis was performed with
the Spearman method based on the “psych” package.

The oncogenes were extracted from the ONGene database
(http://www.ongene.bioinfo-minzhao.org) (11). A total of
73 immunomodulatory genes (IMGs) (12) were extracted
from previous studies. The immune cell infiltration score was
calculated by using the XCELL algorithm (13). Moreover, the
TIDE score, dysfunction score and exclusion score of each patient
in the datasets were predicted using the TIDE online tool (http://
tide.dfci.harvard.edu/) following standard procedures (14).

The Genomics of Drug Sensitivity in Cancer (GDSC) database
was developed by the Sanger Research Institute to collect data on
the sensitivity and response of tumor cells to drugs (15).
“OncoPredict” was used to calculate the drug sensitivity of each
sample in the training and validation datasets based on the GDSC
V2.0 database (16).

2.5 shRNA and overexpression
plasmid construction

CHRNAS5 shRNA sequences were designed according to BLOCK-
iT™ RNAi Designer (https://rnaidesigner.thermofisher.com/
rnaiexpress), and the annealed double-stranded shRNA was cloned
and inserted into the pGreen vector. After testing the knockdown
efficiency of several candidate shRNAs, the sequence 5’-
GGGTCACTATGGAGTTCAAAG-3 targeting CHRNAS5 and the
sequence 5-GCAGCTGAAATATCCTAAACT-3’ targeting FTO
were selected for subsequent experiments. A scrambled nonspecific
control ShRNA (shNC) was also cloned and inserted into the same
vector and used as a negative control. For overexpression, the full-
length coding sequence of CHRNAS5 was amplified and cloned and
inserted into the pCDH plasmid.

2.6 Cell culture and transfection

The human lung cancer cell lines A549 and H1299 were
purchased from the American Type Culture Collection (ATCC).
All cells were cultured in DMEM (Thermo Fisher Scientific, Inc.)
supplemented with 10% FBS (Thermo Fischer Scientific, Inc.) at
37°C in the presence of 5% CO2.

GC cells were seeded in 6-well plates in each well and grown for
24 h. Then, the cells were transfected with 2.5 ug of siCHRNA5 or
shNC using Lipofectamine 6000 reagent (Beyotime, China)
following the manufacturer’s protocol.
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2.7 Cell proliferation and migration assays

For cell proliferation, lung cancer cells were initially seeded into
6-well plates. These cells were then incubated with 10 uM EdU for 2
hours. Next, the cells were stabilized with 4% paraformaldehyde and
permeabilized using 0.3% Triton X-100, a process conducted in a
PBS environment. A subsequent step involved incubating the cells
with a click reaction solution, a product provided by the Beyotime
Institute of Biotechnology in China. Within a 24-hour timeframe,
images of the cells were obtained using an inverted fluorescence
microscope, and the resulting data were analyzed with the
assistance of NIH ImageJ software (version 1.8.0).

In terms of the cell migration assay, cells from each group were
methodically placed in the upper chambers of each Transwell
membrane (Corning, Inc., USA). Next, 1 ml of medium without FBS
and 2 ml of complete medium were added to the bottom chamber.
After a 24-hour incubation period at 37°C in an environment with 5%
CO2, the cells were stabilized in methanol and stained with 0.5% crystal
violet for 30 minutes. The final stage involved washing the cells in the
upper chamber with phosphate-buffered saline (PBS, provided by
Gibco, USA) three times. The cells were then imaged using a
microscope and evaluated with NIH Image] software (version 1.8.0).

2.8 Western blot

Total protein from lung cancer cells was extracted using RIPA
lysis buffer (Beyotime, China). Protein concentrations were
quantified via an Enhanced BCA Kit (Beyotime, China). The
proteins, in equivalent quantities, were separated via SDS-PAGE,
and 30 ug of each protein was transferred onto a PVDF membrane
(Millipore Sigma, Billerica, MA). After blocking with 5% BSA, the
membranes were incubated at 4°C overnight with the following
primary antibodies: anti-E-cadherin (CDHI, ProteinTech Group,
Inc., USA) and anti-N-cadherin (CDH2, ProteinTech Group, Inc.,
USA), both at a 1:1,000 dilution. Anti-GAPDH (1:1,000 dilution, Cell
Signaling Technology Inc., USA) was used as a loading control. The
membranes were then incubated with HRP-labeled secondary
antibodies for 2 hours at room temperature and subsequently
washed three times with TBST. The protein bands were visualized
using an enhanced chemiluminescence (ECL) substrate and the
GeneTools GBox system (Syngene) and were scanned and
quantified with Image] software (National Institutes of Health, NIH).

2.9 Disulfidptosis assays

Glucose-free DMEM was used to simulate glucose deprivation
conditions. When CHRNAS5 was knocked down or overexpressed in
cells, the culture medium was replaced with glucose-free medium,
and the regulatory effect of the gene on dysfildptosis was
determined by measuring cell viability and apoptosis.
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2.10 Statistical analysis

Statistical analyses were conducted using GraphPad V8.3.0
software (GraphPad Software, LLC), and the data are presented as
the means + standard deviations. To ascertain the existence of
statistically significant differences between the means of two or
more groups, Student’s t test and analysis of variance (ANOVA)
were employed. All the statistical tests were two-tailed, and a P value
less than 0.05 was considered to indicate statistical significance.

3 Manuscript formation
3.1 Data collection

Three LUAD cohorts and corresponding clinical data were
obtained from the TCGA and GEO databases. The demographic and
clinical data for the training, internal testing and independent
validation sets are summarized in Table 1. After filtering out the
samples with missing clinical information from the TCGA LUAD
dataset, a total of 504 LUAD patients, including 183 living patients and
321 patients who died at the end of follow-up, were included in this
study (median follow-up: 2.474 years). This dataset was randomly
divided into a training set (n = 303, 60%) and an internal testing set
(n = 201, 40%). As expected, no significant differences were found in
the major clinicopathological features between the training, testing and
entire TCGA LUAD datasets (Table 1). In addition, this study also
included a GEO dataset (GSE13213) including 117 LUAD patients,
which included 41.88% of deaths at the end of follow-up (median
follow-up time was 5.306 years).

3.2 Construction and validation of the
prognostic model according to the DEGs
in LUAD patients

Based on the CRISPR-Cas9 screenings, a total of 808 DRGs
were screened with the criteria of [normZ values| > 2 and P value<
0.05 (Supplementary Figure 1). Forty prognosis-related DRGs were
identified based on the TCGA training set using univariate Cox
regression analysis (Figure 2A). Consequently, LASSO-penalized
Cox analysis further identified 20 DRGs for multivariate analysis
(Supplementary Figures 2A-B). The multivariate Cox proportional
hazard model was built stepwise using the likelihood-ratio forward
method to reach the highest significance. Hence, 14 DRGs were
further screened to construct a risk model to assess the prognostic
risk of patients with LUAD: risk score = (0.577 x GNGI12 Exp) +
(0.358 x UQCRB Exp) + (0.317 x AP3B1 Exp) + (0.313 x SLC35E3
Exp) + (0.298 x CHDIL Exp) + (0.237 x DDIT4 Exp) + (0.219 x
KCNJ14 Exp) + (0.204 x CHRNAS5 Exp) + (0.180 x LEFTY1 Exp) +
(-0.119 x LAX1 Exp) + (-0.265 x SLC46A3 Exp) + (-0.288 x MYO6
Exp) + (-0.445 x IVD Exp) + (-0.456 x GDPDI Exp) (Figure 2B).
ROC curves demonstrated that the risk score serves as a significant
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TABLE 1 Clinical features of the LUAD patients in the training set, testing set and validation set.

TCGA-LUAD
Characteristics Training set Testing set All data X2 GSE13213
(60%) (40%) n = 504 P value n =117
n = 303 n = 201
Gender
female 162 (53.47%) 108 (53.73%) 270 (53.57%) 57 (48.72%)
male 141 (46.53%) 93 (46.27%) 234 (46.43%) o 60 (51.28%)
Age
<60 95 (31.99%) 63 (31.98%) 158 (31.98%) 52 (44.44%)
>60 202 (68.01%) 134 (68.02%) 336 (68.02%) . 65 (55.56%)
M
MO 206 (93.64%) 129 (92.14%) 335 (93.06%)
0.863
M1 14 (6.36%) 11 (7.86%) 25 (6.94%)
N
NO 195 (66.33%) 129 (65.82%) 324 (66.12%) 87 (74.36%)
N1/2/3 99 (33.67%) 67 (34.18%) 166 (33.88%) o 30 (25.64%)
T
T1/2 258 (85.15%) 180 (89.55%) 438 (86.90%) 104 (88.89%)
T3/4 45 (14.85%) 21 (10.45%) 66 (13.10%) o 13 (11.11%)
Stage
Stage I/1T 239 (78.88%) 151 (75.12%) 390 (77.38%) 79 (67.52%)
Stage TII/IV 64 (21.12%) 50 (24.88%) 114 (22.62%) e 38 (32.48%)
Smoke history
Nonsmoke 120 (39.60%) 80 (39.80%) 200 (39.68%)
0.999
Smoke 183 (60.40%) 121 (60.20%) 304 (60.32%)
OS time
<« 171 (56.44%) 114 (56.72%) 285 (56.55%) 13 (11.11%)
0.998
>2 132 (43.56%) 87 (43.28%) 219 (43.45%) 104 (88.89%)
(O
Live 188 (62.05%) 133 (66.17%) 321 (63.69%) 68 (58.12%)
Dead 115 (37.95%) 68 (33.83%) 183 (36.31%) e 49 (41.88%)

predictor of the OS of LUAD patients, with AUCs greater than
0.730 at 1-5 years (Figure 2C). Samples in the training set were
classified into low- and high-risk groups based on the median value
of the risk score. KM survival analysis indicated that the low-risk
group had significantly favorable OS for LUAD patients
(Figure 2D). The distribution of risk scores between the low-risk
and high-risk groups and the survival status and survival time of
patients in the two different risk groups are depicted in Figure 2E.
The relative expression of the 14 DRGs for each patient is shown
in Figure 2F.

To further verify the accuracy and reliability of the prognostic
model obtained from the training set, we applied it to the internal
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testing set and other independent validation cohorts, viz. GSE13213. By
using the same prognostic model, the classifier could also successfully
subdivide patients in the internal testing set (n = 201) into high-risk or
low-risk groups with marked differences in overall survival (P = 0.008;
Supplementary Figure 3). In addition, the same observation was also
found in the entire TCGA LUAD dataset (training set and internal
testing set, Figure 3A), as well as in the GSE13213 validation cohort
(Figure 3B). Additionally, ROC curves indicated that the risk score was
an effective predictor of the OS of LUAD patients in both the TCGA
LUAD (Figure 3C) and GSE13213 (Figure 3E) datasets, with AUCs
greater than 0.750. Consistent with the results demonstrated in the
training set, the KM survival analysis indicated that the DRG risk score
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A B
CCT6A Gene HR(95%Cl) P value____Coefficients
AHSA1 - GNG12 .781[1.373, 2.311 —=—  <0.001 0.577
SERBP1 UQCRB  1.430[0.919, 2.225 —s—  0.113 0.358
LSM5 AP3B1 1.373[0.924, 2.039 = 0.116 0.317
CISD1 1 SLC35E3  1.368 [1.073, 1.744 —— 0.012 0.313
UQCRB A CHD1L 1.347 [0.995, 1.823 —=— 0.054 0.298
NOP10 - DDIT4 1.267 [1.070, 1.501 L} 0.006 0.237
SLO3A2 KCNJ14  1.245 [1.061, 1.461 Fet 0.007 0.219
MRPS2 CHRNA5 1.227 [1.070, 1.406 Ll 0.003 0.204
NDUFA10 - LEFTY1  1.197 [1.090, 1.313 e <0.001 0.180
AP3B1 1 0.888 [0.775, 1.017 e 0.087 -0.119
PSMB4 - SLC46A3 0.767 [0.615, 0.957 e 0.019 -0.265
PFDN2 1 MYO6 0.749 [0.571, 0.984 e 0.038 -0.288
CMAS IVD 0.641 [0.502, 0.818] +=— <0.001 -0.445
HN%{gEB - GDPD1 0.634 [0.500, 0.803] = <0.001 -0.456
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FIGURE 2

Construction of the prognostic model of DRGs. (A) Univariate Cox regression analysis for the selection of DRGs correlated with the OS of LUAD
patients. (B) Forest plot showing the multivariate Cox regression analysis of 14 DRGs. (C) ROC curves for 1-year OS in the training set. (D) K-M curve
of OS in the training group. (E) Risk score distribution and survival status of the training group. (F) Heatmap showing the expression of 14 DRGs in
the training group. DRGs, disulfidptosis-related genes; OS, Overall survival; ROC, receiver operating characteristic curve.
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was a significant risk factor for OS in LUAD patients in the above 2
datasets (all P< 0.001, Figure 3D, F). Importantly, when the other 3
survival indicators, namely, disease-specific survival (DSS), disease-free
interval (DFI) and progression-free interval (PFI), were considered,
Kaplan-Meier curves and receiver operating characteristic (ROC)
curves indicated that the low-risk group had significantly favorable
outcomes for LUAD patients (Supplementary Figure 4).
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3.3 The DRG risk score is independent of
clinical features

As depicted in Supplementary Table 1, the DRG risk score was
related to several clinicopathological features in the TCGA-LUAD
dataset, including sex, lymph node metastasis, invasion depth and
stage. To assess whether the risk score is an independent indicator in
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FIGURE 3
Validation of the prognostic model with 14 DRGs constructed from the training dataset. Risk score distribution, survival status and expression of 14
DRGs in the TCGA-LUAD dataset (A) and external validation datasets, viz. and GSE31213 (B). ROC curves for overall survival in the TCGA-LUAD (C)
and GSE31213 (D) datasets. K—M curves of OS in the TCGA-LUAD (E) and GSE13213 (F) datasets. DRGs, disulfidptosis-related genes; ROC, dependent
receiver operating curve; TCGA, the cancer genome map; LUAD, lung adenocarcinoma.

LUAD patients, the effect of each clinicopathologic feature on OS was
analyzed by univariate Cox regression (Figure 4A). As shown in
Figure 4B, after multivariable adjustment, the risk score remained a
powerful and independent factor in the entire TCGA-LUAD dataset.
Moreover, the risk score was verified as an independent factor based
on the GSE13213 dataset (Supplementary Figures 5A-B).
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The discrepancies in OS stratified by lymph node metastasis (N)
and invasion depth (T) stage were analyzed between the low- and
high-risk groups in the entire TCGA-LUAD dataset. According to
the subgroups classified by N and T stage, the OS of the low-risk
group was superior to that of the high-risk group (Supplementary
Figures 6A-D).
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A
Characteristics ¢ Group_ _Hazard ratio (95% CI) Pvalue J _____________________
Gender Male - Female 1.07[0.80, 1.43] 0.656
Age <60 - >60 1.19[0.86, 1.64] 0.285 19—
Distant metastasis MO - M1 2.12[1.24,3.63) 0.006 —r—
Lymph node metastasis NO - N1/2/3 259[1.93,348] <0.001 ——
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FIGURE 4

The DRG risk score was an independent prognostic factor for OS in the TCGA-LUAD dataset. Univariate (A) and multivariate (B) Cox regression
analyses of the risk score and clinicopathological features for overall survival in the TCGA-LUAD dataset. (C) The nomogram consists of the 14-gene

risk score and 6 clinical indicators based on the TCGA-LUAD dataset. The

points from these variables are combined, and the locations of the total

points are determined. The total points projected on the bottom scales indicate the probabilities of 1-year, 3-year and 5-year overall survival.

Calibration plots (D) and receiver operating characteristic (ROC) curves (E)

were used to validate the prognostic nomogram constructed based on

the TCGA-LUAD dataset. DRGs, disulfidptosis-related genes; ROC, dependent receiver operating curve; TCGA, the cancer genome map; LUAD,

lung adenocarcinoma.

To ensure the robustness and practicability of the 14-DRG
prognostic model, a prognostic nomogram for predicting overall
survival in LUAD patients was established using the TCGA-LUAD
and GSE13213 datasets (Figure 4C and Supplementary Figure 5C).
Major clinicopathological features and risk scores were included in the
nomogram. The nomogram was internally validated by computing the
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bootstrap C-index (= 0.700 both in TCGA-LUAD and GSE13213) and
a calibration plot (Figure 4C and Supplementary Figure 6E). The ROC
curve confirmed that the score calculated based on the nomogram was
highly predictive of overall survival, with AUCs of 0.830 and 0.905 at 1
year in the TCGA-LUAD cohort and GSE13213 cohort, respectively
(Figure 4C and Supplementary Figure 6F).
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3.4 The DRG risk score is associated with
the immune landscape

Based on the XCELL algorithm and TCGA-LUAD dataset, the
DRG risk score was found to be associated with infiltration of
multiple immune cell types (Figure 5A), including CD4+ T cells,
Th2 cells, common lymphoid progenitors, mast cells, and B cells, as
well as the microenvironment and immune score. Additionally, the
risk score was associated with infiltration of many types of immune
cells, as was the immune score based on the GSE13213 dataset
(Figure 5B). In addition, a significant negative correlation between
the risk score and dysfunction score was found based on the TIDE
algorithm in the TCGA-LUAD dataset (r = -0.239), and the low-
risk group had a higher TIDE score (Figure 5F). A positive
correlation was found between the exclusion score and the risk
score (r = 0.457), and the high-risk group had the highest score
(Figure 5G). After comprehensive consideration of the dysfunction
and exclusion scores, a positive correlation was found between the
TIDE score and the risk score (r = 0.169), and the high-risk group
had a higher score (Supplementary Figures 7A-B). Additionally, the
same results were found in the GSE13213 validation dataset
(Supplementary Figures 7C-H). Overall, the TIDE results suggest
that the DRG risk score may be associated with poorer immune
checkpoint inhibition therapeutic efficacy.

3.5 DRG risk score is associated with
cancer progression

Correlation analysis revealed that the DRG risk score was
significantly related to multiple oncogenes in both the TCGA-
LUAD (Figure 6A) and GSE13213 (Figure 6B) datasets. After the
intersection of the oncogenes correlated with the risk score in both
datasets, 35 positively correlated and 4 negatively correlated
oncogenes were identified (Figure 6C), including FOSL1, FOXM1,
CDK1, and CCNB2. By analyzing the differentially expressed genes
(DEGsS) between the high-risk and low-risk groups in the TCGA-
LUAD and GSE13213 datasets, we obtained a total of 554 genes that
were upregulated in both datasets and 401 genes that were
downregulated (Supplementary Figure 8). The enrichment
analysis revealed that these DEGs were significantly enriched in
several important biological processes and pathways, including lung
alveolus development, G2/M transition of mitotic cell cycle,
extracellular matrix organization, cell proliferation, DNA
replication, cell adhesion and immune response (Figure 6D), as
well as drug metabolism, ABC transporters, p53 signaling pathway,
ECM-receptor interaction, cell cycle and PI3K-Akt signaling
pathway (Figure 6E). Moreover, GSEA was performed to
investigate the biological processes and pathways potentially
related to the DRG risk score. As depicted in Figure 6F, the DRG
risk score was related to multiple cancer-related biological
processes, including DNA replication, recombination repair,
double-strand break repair, cell cycle checkpoint signaling and
the B-cell receptor signaling pathway, as well as other vital
processes, in both the TCGA-LUAD and GSE13213 datasets
(Figure 6G). Additionally, the risk score was related to several
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cancer-associated pathways (Figure 6H), mainly the proteasome,
cell cycle, DNA replication, mismatch repair and RNA degradation
pathways, as well as other crucial pathways (Figure 6I).

3.6 CHRNAS contributes to lung
cancer progression

Among these DRGs in the constructed risk model, CHRNA5
had a high normalized Z score (normZ = 2.23, Figure 7A) and the
highest correlation with SLC7A11 (r = 0.432, Figures 7B-C).
Survival analysis revealed that patients with lower CHRNA5
expression had longer overall survival in both the TCGA-LUAD
datasets (Supplementary Figure 9A). When considering
disease-specific survival and progression-free survival, a better
prognosis was found for patients with low CHRNAS5 expression
(Supplementary Figures 9B-C). CHRNAS expression was greater in
tumors than in normal tissues in multiple LUAD datasets
(Figure 7D). Further correlation analysis revealed that CHRNA5
expression was significantly correlated with multiple oncogenes
(Figure 7E). Additionally, CHRNAS5 expression was positively
correlated with the sensitivity to several antitumor drugs
(Figure 7F). Correlation analysis of immune cell infiltration
revealed that CHRNAS5 was significantly correlated with several
cell types (Figure 7G), including DC4+ T cells (Th1/2), cancer-
associated fibroblasts (Figure 7H), monocytes, mast cells, and M2
macrophages, as well as the microenvironment, stroma and
immune score. Moreover, CHRNAS5 expression was correlated
with tumor stemness in the TCGA-LUAD cohort (Figure 7I).
GSEA further demonstrated that CHRNAS5 is related to many
cancer-related KEGG pathways (Figures 7J-K) and biological
processes (Supplementary Figure 9D), including the cell cycle
(NES = 2.868), DNA replication (NES = 2.586), the JAK-STAT
signaling pathway (NES = -2.198) and cell adhesion molecules
(NES = -2.823), as well as several other vital terms.

3.7 CHRNAS regulates proliferation,
migration and disulfidptosis in LUAD cells

To evaluate the biological function of CHRNAS5 in LUAD cells,
we constructed shRNA plasmids to knock down CHRNAS5 and a
plasmid to overexpress CHRNAS5 (Supplementary Figure 10). EAU
assays revealed that CHRNAS5 knockdown attenuated LUAD cell
proliferation, while CHRNAS5 overexpression amplified proliferation
in A549 and H1299 cells (Figures 8A-B). The transwell migration
assay indicated that CHRNA5 knockdown significantly reduced cell
migration, while CHRNAS5 overexpression significantly increased cell
migration (Figures 8C-D). The western blotting results demonstrated
that CHRNAS5 knockdown significantly promoted CDH1 expression
(Figures 8E-F) but inhibited CDH2 expression (Figure 8G).
Conversely, CHRNA5 overexpression resulted in the upregulation
of CDH2 and the downregulation of CDH1 (Figures 8E-G).
To further evaluate the synergistic role of CHRNAS5 in
disulfidptosis, we used glucose-deprived medium to culture
LUAD cells. The results of the CCK-8 assay revealed that
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FIGURE 5
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and immune cell infiltration based on the XCELL algorithm in the TCGA-LUAD (A) and GSE13213 (B) datasets. Scatter plots showing the results of the
correlation analysis between the risk score and sensitivity to antitumor drugs in the TCGA-LUAD (C) and GSE13213 (D) datasets. (E) Heatmap
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FIGURE 6

The DRG risk score is associated with cancer progression. Scatter plots showing the results of the correlation analysis between the risk score and
oncogenes in the TCGA-LUAD (A) and GSE13213 (B) datasets. (C) Heatmap showing the intersection of the oncogenes significantly correlated with
the risk score. *** represent P value of correlation analysis less than 0.001. Lollipop plots showing the enrichment analysis of the differentially
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intersecting biological processes in the TCGA-LUAD and GSE13213 datasets based on GSEA. (G) GSEA plots showing the enrichment results of three
biological processes related to the risk score. (H) Heatmap showing the intersecting biological processes in the TCGA-LUAD and GSE13213 datasets
based on GSEA. (I) GSEA plots showing the enrichment results of three biological processes related to the risk score. GSEA, gene set enrichment
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CHRNAS is highly expressed in LUAD and is related to cancer progression. (A) The lollipop plot shows the normalized Z score of the DRGs in the risk
model. (B) The lollipop plot shows the correlation between SLC7A11 and the DRGs in the risk model. (C) Scatter plot showing the correlation
between the expression of SLC7A11 and CHRNAS. (D) Heatmap showing the change in CHRNAS expression in tumors compared with normal tissue
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CHRNAS5 promotes cell proliferation, migration and disulfidptosis in LUAD. Representative images (A) and the quantified results (B) of the EdU cell
proliferation assay in LUAD cells with CHRNAS knockdown or knockdown. Representative images (C) and the quantified results (D) of the transwell

cell migration assay in LUAD cells with CHRNA5 knockdown or knockdown.

Representative images (E) and the quantified results (F-G) of western

blotting for CDH1 and CDH2 in LUAD cells with CHRNAS knockdown or expression. A CCK-8 assay was used to measure the cell death induced by
glucose deprivation in A549 (H) and H1299 (1) cells with CHRNAS5 knockdown or expression. LUAD, lung adenocarcinoma. #, ## and ### represent
P value less than 0.05, 0.01 and 0.001 versus shNC group, respectively. ** and *** represent P value less than 0.05, 0.01 and 0.001 versus Blank

group, respectively

CHRNA5 knockdown significantly attenuated cell death induced by
glucose deprivation, while CHRNAS5 overexpression significantly
amplified cell death (Figures 8H-I).

4 Discussion

Disulfidptosis is a new form of regulated cell death in cancers
with high SLC7A11 expression under glucose starvation conditions,
providing a novel therapeutic strategy for treating malignant
tumors (7, 8). Here, we established a prognosis prediction model
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based on DRGs using LASSO and Cox regression analysis and
further screened a key gene in the model, CHRNAS5, for functional
analysis in lung cancer cells.

Recently, several studies have built risk prediction models for
different cancers, including cervical cancer (17), bladder cancer (18,
19), colorectal cancer (20) and lung cancer (21, 22), based on DRGs.
With respect to lung cancer, a previous study identified 465 DRGs
based on correlation analysis and established a 21-gene-based risk
prediction model with an AUC = 0.747 at 1 year (22). Additionally,
another study devised a 7-gene-based model with an AUC = 709 at
1 year (21). Compared to these studies, the present study established
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a risk prediction model with an AUC of 0.805 in lung cancer based
on DRGs obtained from CRISPR/Cas9 screening. The superiority of
this model was further validated in internal testing and external
validation sets, with AUCs of 0.786 and 0.783, respectively. The
robustness and practicability of this model were measured by the
nomogram, and the nomogram based on the risk score showed
better prediction accuracy, with an AUC = 0.830. These results
revealed that our DRG risk score model has good predictive
accuracy and certain practical value.

The tumor microenvironment (TME) has attracted increasing
attention due to its important role in tumor immunosuppression,
distant metastasis and drug resistance (23). The TME is mainly
composed of tumor cells, infiltrating immune cells, cancer-related
stromal cells, endothelial cells and other components (24, 25). The
generation and progression of tumors largely depend on external
signals received from the surrounding immune cells and
nonimmune cells of the TME (26). Our correlation analysis
revealed that the risk score was positively correlated with the
immune score, microenvironment score and infiltration of mast
cells and other cell types. Mast cells are located at the edge of the
tumor and TME, usually around blood vessels (27), and have both
protumor and antitumor properties. After activation and
degranulation, they become highly proinflammatory and actively
recruit cells from the innate immune system, mainly neutrophils,
macrophages, and eosinophils, as well as cells from the acquired
immune system (B cells and T cells), to coordinate antitumor
immune responses (28). In contrast, they may also support
angiogenesis and MMP9 degradation in the ECM and promote
metastasis by releasing VEGF, which is beneficial for tumor
progression (28). In addition, the risk score is also correlated with
dysfunction and exclusion of T cells, as is the TIDE score, which can
predict the clinical response to cancer immunotherapy (14). Further
GSEA revealed that the risk score was correlated with DNA
replication, the cell cycle, cell adhesion and the immune response,
as well as several vital KEGG pathways. Moreover, positive
correlations were found between the risk score and the expression
of multiple oncogenes and the sensitivity to several antitumor
drugs. These results suggest that our DRG risk prediction model
may serve as a potential indicator for the prediction of immune
microenvironment homeostasis, the evaluation of immune
checkpoint blockade therapy, and the evaluation of the biological
functional status of tumors.

Among the 14 DRGs included in the risk prediction model, we
selected CHRNAS, which had a high normalized Z score based on
CRISPR screening and the highest correlation with SLC7A11, to
further investigate its regulation of biological function and
disulfidptosis in LUAD cells. CHRNAS5, a member of the
nicotinic acetylcholine receptor superfamily, is a key modulator of
nicotine-dependent lung cancer and other malignancies (29, 30).
CHRNAS accelerates lung cancer progression via the MAPK and
VEGF pathways (31), influences melanoma growth via Notchl
regulation (32), and promotes radioresistance in oral squamous
cell carcinoma by modulating E2F transcription factors (33). In this
study, we found that CHRNA5 might function as an oncogene, as
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evidenced by its upregulation in lung cancer and its positive
correlation with oncogene expression. Moreover, survival analysis
indicated that patients with high CHRNA5 expression generally
have a poorer prognosis. Furthermore, in vivo experiments revealed
that knocking down CHRNAS5 significantly reduced both
cell proliferation and migration in LUAD cells. We also
investigated its regulatory role in disulfidptosis under glucose-
deprived conditions. The results revealed that CHRNAS5
knockdown inhibited cell death induced by glucose deprivation,
whereas CHRNAS5 overexpression enhanced cell death. These
findings underscore the significant influence of CHRNA5 on
the proliferation and migration of LUAD cells, as well as
on disulfidptosis.

In conclusion, our study successfully established and validated a
robust risk prediction model rooted in disulfidptosis-related genes
(DRGs) for LUAD patients. Notably, this risk score is associated
with the homeostasis of the immune microenvironment and the
biological function of tumors. CHRNAS5, a critical component of
this model, has been confirmed to enhance cell proliferation,
migration, and disulfidptosis in LUAD cells.
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Despite that colorectal and liver cancer are among the most prevalent tumours in
the world, the identification of non-invasive biomarkers to aid on their diagnose
and subsequent prognosis is a current unmet need that would diminish both their
incidence and mortality rates. In this context, conventional flow cytometry has
been widely used in the screening of biomarkers with clinical utility in other
malignant processes like leukaemia or lymphoma. Therefore, in this review, we
will focus on how advanced cytometry panels covering over 40 parameters can
be applied on the study of the immune system from patients with colorectal and
hepatocellular carcinoma and how that can be used on the search of novel
biomarkers to aid or diagnose, prognosis, and even predict clinical response to
different treatments. In addition, these multiparametric and unbiased approaches
can also provide novel insights into the specific immunopathogenic mechanisms
governing these malignant diseases, hence potentially unravelling novel targets
to perform immunotherapy or identify novel mechanisms, rendering the
development of novel treatments. As a consequence, computational
cytometry approaches are an emerging methodology for the early detection
and predicting therapies for gastrointestinal cancers.

KEYWORDS

spectral cytometry, mass cytometry, colorectal cancer, hepatocellular carcinoma,
computational cytometry, biomarkers, gastric cancer
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GRAPHICAL ABSTRACT

1 Digestive tumours

Currently, and according to the International Agency for
Research on Cancer (1), the most prevalent cancers in the world
are lung, breast, colorectal, prostate, stomach, and liver cancers,
respectively. Although lung cancer is currently the one with the
highest mortality, tumours within the gastrointestinal tract
(colorectal, liver, and stomach) are the most prevalent ones when
considering overall incidence and mortality. Among them,
colorectal cancer (CRC) is actually the second global cause (1)
of cancer-related mortality. Most of the CRC cases are
adenocarcinoma, and 60%-65% of them are sporadic, 25% have a
CRC family case without any hereditary syndrome, and 5% of them
are caused by a cancer hereditary syndrome such as non-polyposis
colorectal cancer (or Lynch syndrome) and familial adenomatous
polyposis (FAP). Lynch syndrome is caused by mutations in
genes encoding mismatch DNA repairing proteins, while FAP is
due to mutations in the tumour suppressor gene APC. Moreover,
colorectal cancer can be subdivided based on microsatellite stability
(MSS) and microsatellite instability (MSI) due to this deficiency
of mismatch repairing proteins. MSI tumours have better prognosis,
as they can be easily treated with immunotherapy than MSS
tumours (2-4). While there are more several factors such as aging
or location (right side CRC has worse survival than the left side) (5)
underlying its development, the most relevant risk contributors
include modifiable elements such as obesity, sedentary lifestyle, low
fruit and vegetable intake, red meat consumption, and smoking
and alcoholic habits. Its frequency is higher in economically
developed countries, although it is also increasing in westernised
developing societies (6-8). Indeed, in 2022, colorectal cancer was
the most diagnosed tumour and the second leading cause of
cancer death in Europe (9). Its 5-year survival rate ranges
from 10% to 90% depending on the stage at diagnose with a
better prognosis if it is diagnosed at earlier stages. Screening
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methods include faecal occult blood test or double contrast
barium enema, which are subsequently followed (if positive) by a
colonoscopy (10).

Gastric cancer is the fifth most common tumour (1) in the
world, and, as CRC, most of them are adenocarcinoma (11). It is
usually classified as cardia gastric (upper stomach) and non-cardia
gastric cancer (mid and distal stomach) having both different risk
factors and epidemiological patterns (12). Of the gastric cancer
cases, 90% are due to environmental factors while the remaining
10% have a familiar component. Hereditary diffuse gastric cancer,
which has a worse survival than sporadic gastric tumours, is
commonly caused by germinal mutations in CDHI gene, which
codes E-cadherin protein. Hereditary Peutz-Jeghers syndrome
predisposes to early-onset gastric cancer. Lynch syndrome also
increases the lifetime risk of developing it (13-17). Whereas non-
cardia gastric cancer is related to smoking and deficient diet, cardia
class correlates with obesity and gastroesophageal reflux disease
(18). Despite overall predisposing factors including dietary factors
(like high consumption of processed meats, smoked foods, and high
salt diets) (19), Helicobacter pylori infection is responsible for
almost 90% of distal gastric cancers. Indeed, the International
Agency for Research on Cancer labels this bacterium as a human
carcinogen due to its correlation with gastric cancer, as it provokes
gastritis, which can derive on stomach atrophy, metaplasia, and
dysplasia. Its 5-year survival rate for early stages is 75.4% (20), so
screening analysis, such as esophagogastroduodenoscopy, are
usually implemented.

Last, but not the least, liver cancer remains the sixth most
common tumour (1) worldwide. As opposed to both colorectal and
gastric cancer, this one is a remarkable heterogeneous disease that
has been redefined over time. However, hepatocellular carcinoma is
its most frequent histological manifestation appearing in
approximately 90% of the cases (21). Risk factors include alcohol
abuse, diabetes, exposure to aflatoxin, and genetic predisposition.
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Nevertheless, almost 80% (22) of hepatocellular carcinoma are
associated with hepatitis B/C virus infection. In addition, high-
risk groups include patients with non-alcoholic fatty liver and
cirrhosis. The Barcelona Clinic for Liver Cancer (BCLC) classifies
hepatocellular carcinoma status and determine treatments options
based on it (from 0 to D). Another common indicator is the MELD
model (Model for End-stage Liver Disease), which examines the
bilirubin, creatinine, and International Normalised Ratio (INR)
from each patient to predict the 3-month mortality with a
statistical confidence of 80%, in order to prioritise those patients
who need an earlier transplant (23). Although early stages of
hepatocellular carcinoma are treatable, only 20% of diagnosed
patients survive more than 1 year. Liquid biopsies such as cell-
free DNA or o-fetoprotein are being studied as potential early
detection biomarkers, but further research is required (22, 24, 25).

Given therefore the aggressive nature of digestive tumours,
there is no doubt that early diagnosis is still the best weapon to
fight them. In this regard, the identification of novel biomarkers can
provide novel tools not only to aid on their diagnosis and predict
their subsequent prognosis (26-30) but also unveil novel targets to
perform immune therapy. However, although this has been partially
achieved in the gastric one given the role that H. pylori infection
elicits on its trigger, such goal remains elusive for both CRC and
liver cancer.

Regarding hepatocellular carcinoma (HCC), alpha-fetoprotein
(AFP) is widely used combined with abdominal ultrasound in order
to determine HCC illness. However, it is also true that targeted
therapies are essential for the treatment of hepatocellular carcinoma
(HCCQ), yet tackling this type of cancer is challenging owing to its
molecular heterogeneity. Some predictive biomarkers based on gene
polymorphisms (like VEGFD), serum protein levels, or clinical
predictors such as hypertension can be used to identify
responders to sorafenib or levantinib, both of which serve as first-
line systemic therapies (31). However, it is obvious that more
studies are needed to obtain new biomarkers with utility in the
clinical practice.

Related to CRC, clinicians focus on DNA signatures to design
treatment options. As previously stated, high MSI is the phenotype
of 15% colorectal tumours. These tumours typically do not
metastasise and show poor response to chemotherapy. Despite
this, they have a better clinical course than MSS tumours because
of the higher production of neoantigens, making them more
susceptible to treatment with immunotherapy (32). Other
therapeutic strategies focus on the MAPK pathway status. RAS,
which controls cells proliferation, is often mutated in CRC (33), and
monoclonal antibodies (mAbs) anti-EFGR as cetuximab are
typically used to stop the abnormal signalling. Other mAbs like
encorafenib targets KRAF, which is usually mutated in CRC, and it
is used when anti-EFGR are not effective, as it is downstream in the
MAPK pathway (32). Focusing on liquid biopsies, several serum
proteins such as carcinoembryonic antigen (CEA) are found in
CRC. However, they do not correlate significantly with prognosis or
survival rates. New approaches also investigate circulating tumour
cells and circulating tumour DNA in the blood. In contrast with
CEA and other serum proteins, these markers correlate with
treatment response and survival rates, making them desirable
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biomarkers to study in depth before starting a therapeutic option
(32, 34, 35).

Building from the current needs, this manuscript will therefore
focus on the utility that flow cytometry elicits on the search of novel
biomarkers with aid on the clinical practise of digestive tumours.

2 Conventional and mass cytometry

Conventional flow cytometry (CFC) is a fluorescence-based
technique, which allows the immunotyping of immune cells at
single-cell resolution, which has been used in the clinical setting for
over 50 years (36). In addition, it is currently used for B- and T-cell
leukaemia and lymphoma immunophenotyping, helping to identify
their optimal treatment. However, given that CFC is based on the use
of fluorochrome-labelled specific antibodies, the maximum number
of fluorochromes—and therefore markers—which can be analysed by
classical CFC, is restricted to the number of available channels in the
equipment. Therefore, conventional cytometers in the clinical setting
do not usually provide more than 8 or 10 channels, hence limiting the
number of parameters that can be analysed. Although that has been
recently overridden by the development of novel equipment, which
display up to 20 channels and, therefore, can identify up to 20
markers at the same time (37), the development of CFC panels using
more than 15 markers simultaneously requires advanced skills to
compensate the fluorescence among the different markers. In
addition, fluorochromes with a similar emission wavelength or
close emission peaks cannot be combined in the same panel, hence
limiting the capacity to perform complex panels.

In order to overcome these limitations, mass cytometry or
CyTOF (cytometry time-of-flight) allows the analysis of over 40
markers at the single-cell level. That can be achieved because, as
opposed to CFC, antibodies are tagged with heavy metals (like
stable lanthanide isotopes) instead of fluorochromes, so cells
are characterised based on atomic weight (38). Therefore,
mass cytometry has proven to be highly valuable in the deep
characterisation of immune cells (39) given its ability to identify
over 40 parameters within a single cell (40, 41), rendering it a
“pseudo-omic” technique (38), which has allowed the identification
of novel biomarkers (42-46).

3 Computational cytometry

The capacity, however, of developing complex panels with over
40 parameters in a single-cell comes with a cost. Although flow
cytometry data analyses are traditionally performed following a
hierarchical gating strategy of serial selections in two-dimensional
plots, this approach is time consuming, subjective, and can be also
influenced by the operator’s experience and biases. In addition, the
amount of obtained data with complex panels is exponentially
increased. Therefore, when addressing complex panels, it becomes
obvious that novel unbiased approaches are required in order to
address the whole variability (47, 48). Thus, computational
approaches based on unsupervised algorithms have emerged to
address such complexity (49).
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To that end, preliminary data cleaning (either with an
unsupervised cleaning algorithm or with manual removal) is
essential to remove outlier events due to abnormal flow behaviours
resulting from clogs and other common technical problems. Once
that has been performed, a subsequent unbiased exploratory
approach can be performed on the dataset in an efficient and
reproducible way. Dimensionality reduction algorithms, which are
commonly used to perform an unsupervised and exploratory
cytometry analysis, organise the data based on the protein
expression levels, projecting all the variables into two or three
dimensions. T-distributed Stochastic Neighbour Embedding (t-
SNE) focuses on the non-linear differences between cells in protein
marker expression to create a two-dimension map retaining the local
data structure. However, the global distances are not reliable, and the
number of cells that it can support is limited (50). Hence, it is
common to perform a randomised method of event downsizing to a
given dataset called “Downsampling” or “Subsampling”. Although
this entails the possibility of losing under-represented populations
along the way, it is possible to perform a subsequent unsupervised
analysis by directly addressing the previously identified populations
of interest, allowing the use of a larger number of events from these
populations, which would confer greater robustness to the results. In
addition, it is possible to implement the hierarchical analysis as a way
of validating the results obtained, thus avoiding the loss of
information that would involve doing the process in reverse
(50, 51). Hierarchical Stochastic Neighbour Embedding (H-SNE)
overcomes t-SNE because it allows to achieve dimension reduction
algorithm without subsampling, becoming a solid and powerful
single-cell analysis method (52). Given that t-SNE quadratically
scales its computation time in function of the number of cells
being analysed, another algorithm option is the Uniform Manifold
Approximation and Projection (UMAP), which has a faster
computation time than t-SNE, preserves better the global data
structure, and attaches additional data to an existing plot, reasons
why it has a powerful clinical monitoring impact (for instance,
comparing a treatment efficacy) (50). However, such approaches
have certain issues, such as the absence of a standardised and agreed-
upon pipeline protocol (due to his novelty) or the inability to
eliminate subjectivity in the analysis steps and the technical
limitations. Although computational cytometry approaches become
more widespread, they are a highly computationally demanding
method (50, 51).

In spite of that, results obtained by computational cytometry
approaches are data-driven and operator-independent, hence
increasing their reproducibility, comparability, and accuracy,
which, altogether, allow the identification of novel cell subsets
related to a specific condition that otherwise may have gone
unnoticed (50, 51) so they can be further analysed (and isolated)
following directed hierarchical gating approaches.

4 Mass cytometry and
colorectal cancer

Mass cytometry and computational cytometry have been used
in several studies involving mouse models to better understand
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patient’s cancer and improve their therapeutic options. For
instance, although PD-1/PD-L1 is a promising immunotherapy
based on the inhibition of these immune checkpoints, not all
patients derive benefit from this treatment; hence, it may need to
be enhanced by other immune checkpoint blockade (ICB). Beyrend
etal. (53) generated a CRC mouse model treated with PBS or PD-L1
therapy, and their tumour-infiltrating lymphocytes (TILs) were
analysed by computational and mass cytometry. They found that
the PD-L1 group showed a distinct T-cell subset expressing LAG-3
(inhibitory molecule) and ICOS (activating molecule). These
findings suggest that enhancing antitumour immunity could be
achieved by targeting LAG-3 or ICOS. Moreover, Krieg et al. (54)
found that the complement component 3a receptor (C3aR) was
downregulated in patients with CRC independently of their MSS
or MSI status. Despite the role of the C3a-C3aR interaction
in maintaining homeostasis and creating a tumour-free
microenvironment, their CRC model lacking C3aR demonstrated
that their protumourogenic faecal microbiota induced a significant
immune infiltrate, which could be targeted with ICB. In addition,
macrophages in CRC, known as tumour-associated macrophages
(TAMs), can develop a proinflammatory (M1) or anti-
inflammatory (M2) phenotype, leading this last one to T-cell
exhaustion and poor prognosis (55). MS4A4A is a
transmembrane protein related to these events, and it serves as a
biomarker for the M2 phenotype (56); however, the role in CRC of
TAMs and MS4A4A remains unclear. Using murine models, Li
et al. (57) showed that MS4A4A induces polarisation towards the
M2 phenotype, leading to T-cell exhaustion and a poor prognosis.
Blocking MS4A4A with anti-MS4A4A detained CRC progression
and enhanced the efficacy of anti-PD-1 therapy.

On this wise, Tang et al. (58) found that colon cancer mice
injected with IFN-y and anti-PD-1 had reduced tumour growth and
less amount of M2 macrophages; however, they also observed an
upregulation of LAG-3 in response to anti-PD-1 therapy.

Oncolytic virus therapy is a kind of nanomaterial used to treat
cancer. Zhang et al. (59) designed a protein nanocage with the
structure of hepatitis B virus and CpG motifs, which are
immunostimulatory. Using a CRC murine model, they found by
mass cytometry that after being exposed to the nanocages, the
tumour microenvironment was modified having a higher
expression of CD8 (cytotoxic) T cells and decreasing the T-cell
exhaustion. The treatment led to enhanced antitumour immunity.

Specifically focused in the human setting, the application of
novel and complex multiparametric panels in the CRC setting by
CyTOF has proved that there is a huge immune diversity between
different patients and within each individual, not only between the
blood and the intestinal immune infiltrate but also between the
affected and non-affected tissue (60). In addition, certain circulating
immune cells such as monocytes and NK cells subsets are altered
during perioperative period (61), confirming that CRC requires a
personalised approach.

Mass cytometry has, for instance, proved that the pregnane X
receptor mediates the mechanisms of oxaliplatin therapy resistance
in tumour cells by eliminating the drug from the cells (62). In
addition, and following the first cycle of oxaliplatin chemotherapy,
patients reduce their total NK cell numbers due to a specific
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decrease in the CD56%™CD16" subset. In a similar manner, the
CD16" NK fraction was also reduced due the presence of several
proinflammatory cytokines (IL-2, IL-15, and IL-18), which
ultimately leads to lose their cytotoxic activity (63). In addition,
Ting Zhang et al. (64) have shown that although EpCAM"CD4" T-
cell subsets can infiltrate the tumour in a CCR5- and CCR6-
dependent manner, they nevertheless displayed an exhausted and
immunosuppressive phenotype, as they were both not only PD-1"
but also PD-L17. Not surprisingly, and given its immune-
suppressive effect, such cell subset has become the target for
immune checkpoint blockade therapies. In addition, Yang Luo
et al. (65) found that high levels of circulating T-cell co-
expressing CD103"CD39" predict clinical response to such
immune checkpoint inhibitors.

In line with the above, Tsunenori et al. (66) proved that IL-6
produced by stromal and tumour cells correlated with lower T,.q
(CD4"FOXP3") cells in the tumour microenvironment. In addition,
IL-6 serum levels positively correlated with enhanced levels of
myeloid-derived suppressor cells (MDSCs) and effector regulatory
T-cells (€T,eg), two types of immunosuppressive cell subsets, while
high levels of IL-6 in the tumour microenvironment correlates with
immune evasion and a debilitated antitumour activity. In a similar
manner, €T, (defined as BLIMP-1"FOXP3") were increased in the
tumour infiltrate. These cells can be further divided into FOXP3'°
and FOXP3". In addition, higher levels of the first subset in the
tumour infiltrate correlate with good outcomes while the later
correlate with bad prognosis. Therefore, and given that €T\, cells
have been associated with both good and bad prognosis in CRC, it
seems obvious that further investigation is required in order to
specifically identify the specific subset, which can be used as a
therapeutic target (67).

Cytokeratin 20 (CK20) is a common biomarker used to
determine CRC tumour stage and histological grade. In addition,
its expression on tumour cells is related to poor prognosis, whereas
its absence indicates a less-invasive cancer (68). Despite that,
terminally differentiated epithelial cells have a lower proportion of
CK20 expression in CRC tissues referred to controls, while its
expression also differs, within CRC patients, based on the tumour
microsatellite stability. This reveals the necessity of fully
understanding the colorectal cancer status of the patients in each
of its different stages (69).

On the other hand, it is obvious that the gut microbiota can also
modulate the outcome of immune responses in CRC (70). Indeed,
mucosa-associated invariant T cells (MAIT) cells recognise bacterial
riboflavin antigens following presentation by the non-classic
histocompatibility complex MR1. Building from that, Shamin Li
et al. (71) found that tumour-infiltrating MAIT cells are CD39"
and display an increased expression of exhaustion markers PD-1"
and CTL4" coupled with lower cytokine production. Together, these
suggest that chronic activation of MAIT cells induces the expression
of CD39 together with senescence markers leading to T-cell
exhaustion. In addition, Fusobacterium nucleatum induces CD39
expression on MAIT in a TCR-dependent manner, hence providing a
mechanism by which such bacteria are bad prognosis factors in CRC.

One of the most advantageous locations for identifying
biomarkers are liquid biopsies like peripheral blood where we
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have PBMCs. Kong et al. (72) studied the differences between
immune subsets during CRC development. Through mass
cytometry and computational analysis, they revealed that central
memory CD4* T cells, switched B cells, CD16~ NK cells,
monocytes, and basophils were increased in adenocarcinoma
compared with adenoma and healthy controls, while double-
negative T cells were decreased in adenoma and adenocarcinoma.
Moreover, effector CD4" T cells and naive B cells were higher in
CRC patients with lymph node metastasis, while basophils and
unswitched B cells were lower.

Mass cytometry can also monitor the effects of a clinical trial in
the patient’s immune system. Monjazeb et al. (73) performed mass
cytometry to evaluate the immune impact on the patients of a phase
2 trial of combined anti-CTLA-4 and anti-PD-1 therapy. They
found that patient’s PBMCs had a lower amount of CD4" and CD8"
T cells compared with patients treated with two different radiation
regimens (with generally no differences between them). This
included activation markers such as CXCR3 or ICOS.

Yang et al. (74) decided to use mass cytometry among other
exploratory methods to study primary liver cancers and liver
metastases from other cancers including CRC. They found that
hepatic metastatic CRC had higher levels of CD4" T, LAG-
3°CD4" T-cells, CD27"PD-1"CD8" T-cells, and lower levels of
CD57"PD-17CD8" T cells than non-hepatic metastatic CRC.
Circulating levels of this immune subsets have therefore the
potential to be considered as novel biomarkers to predict patients
with a higher probability of subsequently developing metastases.

5 Mass cytometry and liver cancer

Mass cytometry has also been implemented in the context of
liver cancer and its main variant, hepatocellular carcinoma (HCC).
The full comprehension of HCC illness becomes complicated due to
its heterogeneity. In addition, although there is a wide range of
different treatments based on tumour stage, they however do not
always translate into clinical remission (75); it appears mandatory
to explore new targets and therapeutic options (21). Moreover, mass
cytometry approaches can be also applied as diagnostic tools.
Hence, a complex panel applied on blood samples can identify
several immune disturbances, which can be used to allow an early
detection of different solid tumours including HCC (56).

Animal models of HCC are often used to study this condition
through mass cytometry. In the search of new proposing target
markers for therapies, research in mice revealed that GDF15 protein
induces enhancement of T, through CD48 (76), and this leads to
immunosuppression in HCC; blockade of this protein could
potentially be translated to human therapies. When studying
effectiveness of treatments, it was found that SUMOylation levels
are higher in HCC liver than in normal liver tissues. Subsequently, it
was proved that inhibition of this process enhances antitumour
activity and could be a therapeutic option (77). In another study
using mice, it was found that “M2-like” tumour-associated
macrophages are more prevalent in a specific type of mouse
model resistant to anti-anti-PD-1 therapy (78). However, the
conclusion highlights the wide diversity in the immune tumour
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microenvironments among preclinical models, in addition to the
intrinsic heterogeneity of HCC in humans. It seems imperative to
expand studies in mouse models to obtain translational results for
humans. Therefore, in this review, we will focus on human studies.

Focused on the human setting, potential new therapeutic
strategies could benefit from mass cytometry studies regarding
HCC cells mechanisms. For example, it has been revealed that
tumour cells and their intrinsic activation of B-catenin pathway
results in the recruitment of MDSC and the formation of immune
“desert” phenotype, which could be a potential treatment strategy
option (79). However, immune system description regarding HCC
involves not only novel immunotherapy targets but also prognosis
and evolution biomarkers and cell subsets. Undeniably, the role of
NK cells remain fundamental for immunity and especially in cancer
(80). Indeed, CD56" and CD56%™ NK cells may be useful as
immunotherapies targets for HCC patients, as they have
impairment phenotypes in hepatocarcinoma affected from
different aetiologies, especially in non-alcoholic fatty liver disease
(NAFLD) patients (21, 81).

In HCG, it is also possible to explore the patient’s immunity
depending on the stage or type of development that they have
achieved. Although patients with HCC who successfully had a
transplant are scarce, they display a unique immune fingerprint,
since mass cytometry approaches have shown that such differential
immune profile can be used to stratify and predict patients with risk
of recurrence, which can be very helpful when designing patient
treatment (82).

Also building from mass cytometry results, it has been proven
that the CD1617/CD161~ ratio within peripheral CD8"PD-1" T
cells predicts subsequent disease outcome with better prognosis
with higher ratios (83). Specifically focused on the tissue (affected,
non-affected, and border area), although PD-1 expression does not
predict the outcome of the patients, it is actually the balance
between tissue resident memory and PD-1" exhausted T cells that
is relevant for such outcome, since a high tissue resident memory/
exhausted T-cell ratio in tumour microenvironment determines
positive patient prognosis (84, 85). Better prognosis conditions are
expected from HCC patients who have a non-terminally exhausted
phenotype in tumour-resident memory T cells, which are specific to
HBV response (86), and also for those patients with enriched
CD4'CD8" T cells, especially if they are expressing PD-1 and
located in leading-edge regions (87).

When focusing on ongoing therapies, radiofrequency ablation is
the primary first-line treatment option for HCC patients who are
not eligible for surgery. Aiming to study its effects on tumour
immune response, a mass cytometry study revealed that decreased
levels of CD8" effector and memory T cells, among others,
correlated with a worst immune response against tumour cells
(88). As for current therapy options, immune checkpoint
inhibitors (including PD-1/PD-L1) have reached long-term
response rates of 14%-20% in HCC patients. However, there is
no information about patients who would benefit from this
treatment due to its aetiology. In addition, CyTOF analyses
revealed that neither viral aetiology nor the current viral status in
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HCC patients were variables to consider when deciding to prescribe
PD-1 inhibitor therapy (89). On the other hand, the use of
threonine tyrosine kinase inhibitor changes the proportion of
circulating immune subsets before following treatment, with
bigger changes on patients with a better outcome (90). Another
scenario in which immune activation occurs, leading to a favourable
response in HCC patients, is Yttrium90-Radioembolisation
treatment (91). There are other types of uncommon treatments
under study, such as the use of compound 2,5-dimethylcelecoxib
(92), which has proven an increased infiltrate of NK cells within
HCC tumours, resulting in favourable prognosis and suggesting its
potential as a therapy target.

In summary, HCC pathology, heterogeneity, and treatment
response have been broadly studied by CyTOF. Some immune
cell subsets like CD56 NK cells or the CD161"/CD161™ ratio within
CD8'PD-1" T cells may indeed be useful to stratify patients
based on their aetiology and their subsequent outcome, while
other subsets can predict clinical response to immune
checkpoint inhibitors.

6 Future perspectives and remarks

Mass cytometry has undoubtedly shown a great potential in the
study of human gastrointestinal tumours. Nevertheless, it is also
true that although this approach overcomes most of the CFC
approaches, it also has some specific handicaps (41, 93).

The main one is the low acquisition rate, as it only allows to
acquire approximately 500 cells per second instead of more than
10,000 in CFC. In addition, it is an expensive technique, since the
costs of not only the equipment but also the special reagents and
labelling compounds are significantly higher than those in flow
cytometry. In a similar manner, cell vaporisation is an irreversible
process and restricts the potential for subsequent ad hoc sorting.
Likewise, due to lower cell recovery, there is a decrease in sensitivity
for detecting low abundance proteins. Last, but not the least, as with
a classical sorter, the equipment requires operation by a highly
trained person, hence limiting its widespread accessibility.

An alternative to overcome these limitations is spectral
cytometry, which combines the principal features of CyTOF while
abrogating its handicaps. Therefore, as opposed to the CFC, spectral
cytometry provides a measure of the entire fluorescence emission
spectrum. That way, classical issues associated with CFC
compensation and autofluorescence issues are reduced through a
concrete unmixing algorithm (94). In addition, as it uses
fluorochromes, reagents are usually cheaper, since it is not the
same ones used in CFC. Moreover, its acquisition speed is high (up
to 30,000 events per second) (95). Overall, these are even more
attractive features, especially considering that comparable results
can be expected from both procedures (96).

However, both spectral and mass cytometry data must offer
high-quality, reliable, and robust information to be considered
valid. Hence, a careful panel design and validation, titration, and
optimisation of antibodies and reference controls are required.
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Having said that, and given the properties of mass cytometry, it is
also true that the implementation of novel panels is usually faster in
that approach, since no unmixing controls are required to optimise
a panel. Either way, sample staining on both approaches should
always include normalisation control and correct equipment
handling (97). On the contrary, both mass and spectral cytometry
are capable of performing complex panels of up to 40 parameters
(47). As a consequence, all the known immune cell subsets can be
identified in a given sample by using these techniques. Hence, the
ability to obtain such a wide range of information from each
analysis provides a major reason to implement these approaches,
spectral or mass cytometry, in various types of studies, especially in
those aimed at discovering new biomarkers needed for some
illnesses. In this regard, Table 1 summarises the different aspects
to take into consideration before considering mass or spectral
cytometry approaches. Therefore, it seems obvious that spectral
cytometry overtakes the approaches performed by mass cytometry,
as it is faster, cheaper, and requires a smaller sample size. Indeed,
there are several issues that need to be addressed in the near future
for both CRC and HCC, and they may be overcome when using
different types of approaches, for example spectral cytometry
studies, which, to the best of our knowledge, have not been
performed in this context.

In addition, these techniques provide a high-resolution single-
cell analysis, so the more parameters can be detected on cancer cells,
the more specific will be the exploration of the tumour
heterogeneity. The classification of the function and phenotype of
the immune cells leads to an accurate examination of the altered
cellular process, early diagnosis and detection, and prediction of
therapy response. The integration of cytometry, proteomics, and
genomics technologies will bring a promising precision medicine in
order to improve patients’ outcomes and life expectancy (98).

7 Conclusions

The only current approach for CRC diagnosis and monitoring is
the use of regular colonoscopies, which, however, are not only
invasive and uncomfortable for the patients but also expensive and
time consuming for the health systems. On the other hand,

TABLE 1 Conventional mass and spectral cytometry features.

Conventional

Mass Spectral
Hlow Cytometr Cytomet
Cytometry y y y i
Parameters 130 >60 Up to 50
0 0
capability P P
Cell labelling  Fluorochrome Heavy metal Fluorochrome
Cell >10,000 500 30,000
throughout events/second events/second events/second
Fl
. uor.escence Mass Fluorescence
Detection (maximum
. spectrometry (whole spectrum)
peak emission)
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regarding HCC, most of its current knowledge has been obtained
from murine models, which, although essential to deepen our
understanding on such disease, they may not always translate into
the human setting (99, 100). Therefore, given the large amount of
information that computational cytometry approaches provide,
these approaches will allow the identification of novel (and better)
biomarkers to aid on CRC or HCC diagnosis, monitoring, or even
predicting disease outcome. In addition, given that both mass and
spectral cytometry usually focus on the study of the immune
system, they may not only identify biomarkers but also provide
novel insights into the specific pathogenic mechanisms potentially
unravelling novel targets to perform immunotherapy or identify
novel mechanisms, hence rendering to the development of
novel treatments.
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Introduction: Immunotherapy is revolutionizing the management of multiple
cancer types. However, only a subset of patients responds to immunotherapy.
One mechanism of resistance is the absence of immune infiltrates within the
tumor. In situ vaccine with local means of tumor destruction that can induce
immunogenic cell death have been shown to enhance tumor T cell infiltration
and increase efficacy of immune checkpoint blockade.

Methods: Here, we compare three different forms of localize tumor destruction
therapies: radiation therapy (RT), vascular targeted photodynamic therapy (VTP)
and cryoablation (Cryo), which are known to induce immunogenic cell death,
with their ability to induce local and systemic immune responses in a mouse 4T1
breast cancer model. The effects of combining RT, VTP, Cryo with anti-PD1 was
also assessed.

Results: We observed that RT, VTP and Cryo significantly delayed tumor growth
and extended overall survival. In addition, they also induced regression of non-
treated distant tumors in a bilateral model suggesting a systemic immune
response. Flow cytometry showed that VTP and Cryo are associated with a
reduction in CD11b+ myeloid cells (granulocytes, monocytes, and macrophages)
in tumor and periphery. An increase in CD8+ T cell infiltration into tumors was
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observed only in the RT group. VTP and Cryo were associated with an increase in
CD4+ and CD8+ cells in the periphery.

Conclusion: These data suggest that cell death induced by VTP and Cryo elicit
similar immune responses that differ from local RT.

KEYWORDS

radiation therapy, vascular photodynamic therapy, cryoablation, immune checkpoint
blockade, breast cancer

Introduction

Immunotherapies have shown great potential to control cancer by
enhancing T cell responses to cancer antigens. Immune checkpoint
blockade (ICB) targeting the cytotoxic T-lymphocyte associated protein
4 (CTLA-4), programmed cell death protein 1 (PD-1) and lymphocyte
activating gene 3 (LAG-3) have been approved for treating multiple
cancers, however, a large fraction of patients still do not respond to
these therapies. This is mainly due to multiple mechanisms of immune
resistance that may exist within tumors, such as the lack of T cell
infiltration or immune desert tumor microenvironment (TME), low
tumor mutation burden or an immunosuppressive TME. In poorly
infiltrated tumors (cold tumors), enhancing tumor T cell infiltration by
physically disrupting the tumor can be utilized using local ablation
therapies, such as with radiation therapy (RT), vascular targeted
photodynamic therapy (VIP), or cryoablation (Cryo). In highly
infiltrated tumors (hot tumors), immune suppressive cells have been
shown to play a major role in limiting the efficacy of anti-tumor
immunity (1). The presence of high levels of immune suppressive cells
such as myeloid derived suppressive cells (MDSCs) have been shown to
correlate with poor prognosis and ICB resistance (2, 3). Combination
strategies that can convert a cold tumor into a hot tumor while targeting
the immunosuppressive TME are key to the design of therapeutic
combinations that can overcome such resistance mechanisms.

Local ablative therapies have all been shown induce tumor cell
death that can be immunogenic (4-6) because they not only release
tumor antigens that can trigger an in-situ vaccination effect but also
secreted factors such as danger associated molecular patterns (DAMPs)
that can facilitate the maturation of antigen presenting cells (APCs)
further enhancing the immune response to the cancer (7). In addition,
inflammatory or secreted factors such as cytokines can recruit more
immune cells into to the tumor microenvironment. The resulting
outcome of immunogenic cell death in the context of cancer is
activation of a tumor specific immune response in the host.
Therefore, not only can the immune system recognize and kill the
primary tumor but also distant metastases (termed the abscopal effect).

Prior studies have demonstrated that the abscopal effect of RT, in
which localized RT causes distant tumors to regress, may be due to the
release of tumor-antigens that can enhance the immunogenicity of
tumors, which can then increase susceptibility to systemic immune-
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stimulating agents (8). This effect has been seen in the regression of a
metastatic melanoma case treated with local RT, which enhanced
systemic responses to an anti-CTLA-4 antibody (ipilimumab) (9). This
co-occurred with increase in NY-ESO-1 expression and CD4'1COS"e"
cells, both of which correlated with increased benefit from ipilimumab.
In a recent clinical study of RT in combination with CTLA-4 blockade
in chemo-refractory metastatic non-small-cell lung cancer (NSCLC)
where anti-CTLA-4 antibodies had failed to demonstrate significant
efficacy alone or in combination with chemotherapy, RT and CTLA-4
blockade showed objective responses in 18% patients and 31% disease
control and induced systemic anti-tumor T cells (10). In preclinical
breast cancer models, radiation controls tumor growth both directly
through cell killing and indirectly through immune activation (11).

Another local therapy with both ablative and immunologic effects
is VIP, a form of photodynamic therapy, which uses an intravenously
administered photosensitizing agent (padeliporfin/TOOKAD Soluble/
WST11; STEBA Biotech, Luxembourg) and near-infrared light to
create radical oxygen species that lead to tumor vasculature collapse
and subsequent tissue destruction (12). Photodynamic therapy, which
is Food and Drug Administration-approved for several malignancies
(13), has been reported to cause acute inflammation and increase
tumor antigen presentation (14). Similarly, VTP treatment of
preclinical models induces a defined local inflammatory response,
including TFNYy production and infiltration of tumors by T cells and
neutrophils in colon cancer models (15). In an orthotopic murine
model of renal cell carcinoma that develops lung metastases, VTP in
combination with anti-PD-1/PD-L-1 antibodies demonstrates superior
anti-tumor activity as compared to checkpoint blockade alone and
induces immune infiltration in primary and metastatic sites (16).
Modulation of PD-L1 expression by VIP in human xenograft
tumors was also observed.

An additional local ablation option is Cryo, which employs needle
applicators (cryoprobes) to transmit pressurized argon and helium
gases to the tumor to cause localized tissue freezing and thawing (17).
As intracellular and extracellular fluid freezes, tissue destruction results
from cell membrane disruption by ice crystals, cellular dehydration,
and vascular thrombosis at temperatures below -20 to -40°C. Cryo
induces cell lysis and leaves tumor proteins and tumor-associated
antigens immunologically intact, different from hyperthermia-based
ablation modalities (18). Cryo also results in the induction of both a
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tumor-specific T cell response in the tumor draining lymph node
(TDLN) and increased systemic NK cell activity, correlating with
rejection of tumors upon re-challenge in a murine model of breast
cancer (18). When performed in conjunction with CTLA-4 blockade,
Cryo improved survival in a TRAMP C2 mouse model of prostate
cancer, also generating intratumoral and systemic expansion of CD8"
T cells against the SPAS-1 tumor-specific antigen (19). A safety/
feasibility study of preoperative single-dose ipilimumab and/or Cryo
in 19 women with early-stage breast cancer showed that this
combination strategy increased Thl-cytokine production, peripheral
T cell proliferation/activation, and intratumoral proliferation of effector
T cells relative to regulatory T cells (20).

Since RT, VTP and Cryo are all clinically available treatment
options for overlapping but also different indications, it is
imperative to understand the immune modulatory effect of each
therapy to delineate the best strategy in combination with
immunotherapy. As each of these modes of treatment are given
locally to the tumors only and have been shown to synergize well
with immune modulatory agents, we compared the effects of three
local ablation therapies: RT, Cryo and VTP using 4T1 triple
negative murine breast cancer (TNBC) model. Unlike melanomas
such as mouse B16 melanoma, 4T1 tumors have been shown to be
poorly infiltrated by T cells but highly infiltrated with myeloid
(CD11b") immune cells (2). These CD11b" myeloid cells in the
spleens and tumors of 4T1 bearing mice display a MDSC phenotype
and have been shown to be functionally immunosuppressive (2, 3).
Thus, 4T1 tumors represent the classical T cell desert or
immunologically “cold” tumors but highly immunosuppressive
(enriched in MDSCs) that have been shown to contribute to the
poor response of 4T1 tumors to ICB.

The main goal of this study is to measure how RT, VTP, or Cryo
effect the innate and adaptive immune responses not only in the
treated tumors but also on the immune system systemically. Our
results demonstrate that immune modulation with RT, VTP, or
Cryo therapy can generate potent local and systemic antitumor
responses. These modalities may represent an effective strategy to
treat poorly infiltrated or immunologically “cold” tumors known to
be resistant to ICB by modulating the immunosuppressive TME
along with systemic T cell activation to enhance therapeutic efficacy
of ICB.

Materials and methods

Cell line

The murine breast cancer cell line 4T1 was maintained in RPMI
medium supplemented with 10% FBS, 2 mM L-glutamine and
penicillin with streptomycin.

In vivo studies
2x10° 4T1 cells were subcutaneously injected in the right

hindlimb of BALB/c] female mice (7-8 weeks old, JACKSON
LABORATORY, Bar Harbor, ME) 12 days prior to RT, VIP and
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Cryo. For bilateral models, two sequential injections of 2x10° 4T1
cells 12 days and 5 days prior to the treatments were administered
in the mice. The mice bearing tumors were randomly assigned to
different cohorts for further experiments. For efficacy studies
(tumor growth and survival), n = 10 mice were used for each
experimental group (Control, RT, VIP, Cryo +/- anti-PD1) and for
ex vivo studies (e.g., flow cytometry, IHC, cytokines), n = 5 mice
were used for each experimental group. Local tumor growth was
monitored twice a week using caliper measurements (Perkin-Elmer,
Waltham, MA). The tumor area/volume curves averaged at each
time point per group are reported for as long as all mice in a group
are alive. Overall survival curves of each treatment group were
analyzed using the Kaplan-Meier estimator. The survival curves
measure time from start of experiment to a tumor size of 2000 mm?>
(in which case the mouse needs to be euthanized) or death.

Tumor directed radiation therapy

A single dose of 15 Gy was used to irradiate 4T1 tumors. This
dose was previously determined to be optimal for immune
infiltration in a mouse B16 melanoma model (21). On day 12,
mice were anesthetized with isoflurane and placed in a radiation jig
where only the hindlimb is exposed (22). The right hindlimb
bearing 4T1 tumors was irradiated with 15 Gy RT using the X-
RAD 320 focus beam irradiator such that only the exposed
hindlimb bearing the tumors receives the radiation.

WST-11 VTP

WST-11, a photosensitizer, was reconstituted in sterile 5%
dextran in water at 2 mg/mL under light protected condition and
the aliquots were stored at -20°C. At the time of VTP treatment, an
aliquot was thawed and filtered through 0.2 pm disc syringe filter
(Sartorius Stedin Biotech North America, Bohemia, NY). The mice
were intravenously infused with WST-11 (9 mg/kg) for 5 min
followed immediately by 10 minutes laser (Modulight, Tampere,
Finland) illumination (755 nm, 100 mW/cm) through a 1 mm
frontal diffuser fiber (MedLight S.A., Ecublens, Switzerland). The
light field was set up to cover the entire tumor area plus 1 mm rim
using red-light aiming beam.

Cryoablation

Visually guided cryoablation with 1.7 mm Per Cryo probes was
used to treat tumors. Mice were anesthetized with a mixture of 100
mg/kg ketamine and 10 mg/kg xylazine, and the targeted area were
shaved and cleaned with iodine and 70% alcohol swabs. A small cut
in the skin was made to allow the cryoprobe tip to enter the tumor.
Freeze cycle was discontinued when ice crystals encompassed the
visible tumor and thaw cycles was discontinued when ice crystals
were no longer visible. The treatment parameter was evaluated
using single cycle at 20% freeze rate for up to 60 seconds. A control
group was not ablated. After the treatment, mice were monitored
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for bleeding or other complications according to the standard
recovery procedure of the approved animal protocol.

Dosing schedule of anti-PD1

Animals received three doses of intraperitoneal (i.p.) injection
of anti-PD1 (BioXCell, West Lebanon, NH; clone RMP1-14, 250
ug/mouse) on the same day of and 3- and 6-days post treatment.

Immunohistochemistry

Tumors and spleens from 3 mice/group were harvested 6 days
after treatment with RT, VTP and Cryo. Tissues were then fixed in
10% buffered formalin (Fisher Scientific, Pittsburgh, PA), embedded
in paraffin, sectioned at 5 micrometer thickness, and stained with
hematoxylin-eosin (H&E), anti-mouse CD8 and CD11b antibodies.
Slides were scanned and analyzed for immunoreactivity the image
analysis platform HALO by Indica Labs (Albuquerque, NM). For
quantification, heathy areas within tumors and spleens were
selected in parallel sections based on H&E staining. 3-5 regions/
slide were selected and the percent of CD8" and CD11b" area were
calculated and normalized to tissue surface area.

Isolation of tumor-infiltrating cells and
leukocytes and flow analysis

Spleens, LNs and tumors were prepared by mechanical dissociation
through 40 and 100 pm cell strainers (BD Biosciences, Franklin Lakes,
NJ) in RPMI supplemented with 7.5% FCS to isolate single cells. Red
blood cells (RBCs) were lysed with ACK Lysing Buffer (Lonza, Basel,
Switzerland) when required, all samples were washed and resuspended
in FACS buffer (PBS without Ca™"/Mg"" supplemented with 0.5% BSA
and 2mM EDTA). For staining for flow cytometry analysis, 100-200uL
of single cell suspensions of each tissue were plated into two 96-well
round bottom plates: one plate for T cell analysis (anti-CD45-Alexa
700, anti-CD8-PerCP-Cy?5, anti-CD4-v450, anti-CD25-APC-Cy?7, anti-
CD62L-PE, anti-CD44-PE-Cy7, anti-FoxP3-APC, anti-Ki67-FITC,
anti-Granzyme B PE-Texas Red, and a fixable viability dye eFluor506
(Invitrogen, Waltham, MA)) and one plate for myeloid cell analysis
(anti-CD45-FITC, anti-CD11c-PE, anti-CD8-PE-Texas Red, anti-
Ly6G-PerCP-Cy5, anti-Ly6C-PE-Cy7, anti-MHCII-v450, anti-CD86-
APC, anti-CD11b-APC-Cy7, and the viability dye eFluor506). Cells
were pelleted by spinning at 2,000 rpm for 5 mins. Cells were incubated
in 100puL of 5 pg/ml Fc-block antibody (clone 2.4G2, BD Biosciences)
for 20 mins on ice in FACS buffer. After Fc-block, cells were stained in
FACS buffer containing fluorophore conjugated surface antibodies and
for 20 mins on ice. Samples were then washed 2 times with 200uL
FACS buffer. All intracellular staining were done using the Foxp3
fixation/permeabilization buffer according to the manufacturer’s
instructions. Events were acquired using a multi-channel flow
cytometer (BD LSRII, BD Biosciences, San Diego, CA). FlowJo
software V10 (FlowJo,LLC) was used to analyze all data. The gating
strategies for each myeloid and T cell panel are shown in
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Supplementary Figures S2, S6. We identified the immune cell
populations as follows: live cells - viability dye negative, total
immune infiltrates CD45", total myeloid cells - CD45"CD11b".
Myeloid cells were subgated into Neutrophils/Granulocytes — Ly6G",
Monocytes - Ly6C", Macrophages - Ly6C Ly6G . Antigen presenting
cells (APCs/DCs) were identified as CD45"CD11¢"MHC II* and
subgated into cross-presenting DCs (CD8" DCs) - CD8",
conventional DCs (CD11b* DCs) -CD11b", other DCs -CD§"
CD11b". Additionally, we examine expression of two markers of
antigen presentation (CD86 and MHC II) as activation markers on
myeloid cell subsets. CD8 T cells were identified as CD45" CD8", CD4
Teff - CD45" CD4" Foxp3’, CD4 Treg - CD45" CD4" Foxp3™. For T
cell differentiation states, naive T cells were defined as CD62L"CD44,
central memory T cells as CD62L*CD44", effector memory T cells as
CD62L°CD44". Additionally, we examined expression of several T cell
activation markers: Ki67, Granzyme B, and CD25.

For intracellular cytokine staining (IFNy and TNFa,), single cell
suspensions of tissues were plated in 96-well round bottom plates
containing 200 pL RPMI supplemented with 10% FCS and
stimulated with 1 uM PMA (Sigma, St. Louis, MO) and 1 uM
Ionomycin (Sigma) for 30 mins at 37°C, then Brefeldin A (1000x
dilution, BD Biosciences) and 10 pg/ml Monensin (Sigma) was
added and incubated for an additional 5 hr at 37°C. The plates were
chilled at 4°C and stained for surface and intracellular markers as
described above.

Statistical analysis

Unless otherwise indicated p values were calculated using a 2-
tailed Student’s t test or two-way ANOVA-test. A p value of < 0.05
was considered statistically significant. p values comparing survival
curves were calculated using the Log-rank (Mantel-Cox) test.
Correlations of immune cell frequencies with tumor weight were
done using Pearson’s correlation. All graphs and statistical
calculations were done using GraphPad Prism software and
Microsoft Excel.

Results

RT, VTP and Cryo elicit anti-tumor
responses in 4T1 murine breast
cancer model

A summary comparing the kinetics and doses of RT, VTP and
Cryo used in this study is listed in the table of Figure 1A. To examine
the anti-tumor effects of three local ablation therapies, mice
implanted with 4T1 breast tumor cells were treated with RT, VTP
or Cryo according to the schedule outlined in Figure 1A. For the
combination treatment with anti-PD-1, mice were also
intraperitoneally administered with 3 doses of anti-PD1 antibody at
250 pg/mouse with the first dose given immediately after each
treatment. Mice were monitored for tumor growth (Supplementary
Figure S1; Figure 1B) and overall survival (Figure 1C). All three
therapies delayed tumor growth, with VTP (p<0.0001) and Cryo
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FIGURE 1

RT, VTP and Cryoablation elicit anti-tumor responses in 4T1 breast cancer. (A) Experiment schema of the comparative study with with RT, VTP and
Cryo. 2 x 10° 4T1 mouse breast cancer cells were injected subcutaneously in the hind limb of 6-8 week female Balbc mice (n=10 mice per group).
12 days later, mice were treated with RT, VTP or Cryo therapy. For combinations with anti-PD-1, mice were injected intraperitoneally with anti-PD-1
antibody every 3 days for a total of 3 doses. (B) Comparison average tumor growth and (C) overall survival of 4 cohorts relative to the control. (D)
Comparison of the average tumor growth +/- SEM and overall survival for individual cohorts with and without anti-PD1 are shown. Statistics were
calculated using student T-tests on day 30 for tumor growth and the Logrank method for survival: *p < 0.05, ***p < 0.005.

(p<0.0005) showing statistical significance. VIP and Cryo also
improved overall survival (OS) of the animals compared to control
group (VIP, p<0.05; Cryo, p<0.0005). RT showed a trend toward
improved survival; however, this was not significant (p=0.139). One
caveat in comparing these therapies is that treatment with RT and
VTP regimens were aimed for suboptimal ablation of the tumors
while the dose of Cryo in these studies was optimally ablative due to
the nature of the procedure. The addition of anti-PD1 to each of these
therapies further delayed tumor growth in a few tumors but had
minimal effect on overall survival (Figure 1D). The cohort treated
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with VTP + anti-PD1 trended towards better survival than VTP alone
however this difference was not significant (p=0.1663). OS in all three
combination cohorts was improved compared to anti-PD1
monotherapy (RT combination vs. anti-PD-1, p<0.088; VTP
combination vs. anti-PD-1, p<0.005; Cryo combination vs. anti-
PD-1, p<0.0001). Some of the tumors treated with these therapies
completely regressed in response to the therapies: two mice in VTP, 7
mice in Cryo, 6 mice in VTP + anti-PD1 combination and 7 mice in
Cryo + anti-PD1 combination were tumor free at day 98 post
treatment (Supplementary Figure S1).
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RT, VTP and Cryo leads to activation of
myeloid cells in the tumor, spleen and
draining LN

To understand the changes in the TME after RT, VTP and Cryo,
we performed flow cytometry analysis on tumors, tumor draining
lymph nodes (LNs) and spleens isolated from animals treated with
RT, VTP and Cryo according to the schedule outlined in Figure 2A.
Identification of each innate immune cell population was
determined using the gating strategy outlined in Supplementary
Figure S2. We found a significant increase in the frequencies of
viable CD45" total immune cells infiltrating the tumors at 3 days
after RT, VTP and Cryo (Figure 2B). This effect diminished over
time in the VTP and Cryo groups quickly however, RT showed
different kinetics over time. The increases in immune cell
infiltration in the tumor appears to mainly be due to an increase
in CD11b"* myeloid cells. We found an increase in CD11b" myeloid
cells in the tumors at 3 days post all 3 treatments while CD11b*
population in spleen and TDLN showed minimal increase (RT) or
decrease (VIP & Cryo) (Figure 2C; Supplementary Figure S3).
When CD11b+ cells are sub-gated into granulocytes (CD11b"
Ly6G™), monocytes (CD11b" Ly6C"), and macrophages (CD11b"

A 3, 6, 9 days post treatment: B
FACS analysis on Tumor,
draining LN and Spleen

RT, VTP, Cryo /
I t }
0 14 17 2
f Fr ot

Implant 4T1 cells Inject anti-PD-1 (250pg/mouse) i.p.

[/ ¢

(right hindlimb)
c Day 3 Day 6 Day 9
Log FC Log FC
CD45+ 0
CD11b+ 0
Granulocytes 2.5
Monocytes
Macrophages
APCs
CD8+ DCs
CD11b+ DCs
Other DCs
S & K @
& &S
E Control —
Granulocytes o
A g
vowores| O
o | A g
E ws| 3
L g
< ooes| | D
a ]
(8] - GO11bDCs S
A 3
(<)
Giher DCs i
-10° 0 10° 10°
Como-APC-A :: CD86 (,\'”
FIGURE 2

10.3389/fonc.2024.1405486

Ly6G'Ly6C"), (Supplementary Figure S2), we find that the majority
of the cells infiltrating the tumors at day 3 are granulocytes and
monocytes. These cells are decreased in the tumors treated with
VTP and Cryo at 6- and 9-days post treatment. However, they
remain higher in the RT treated tumors (Figure 2C). In addition, RT
was associated with a significant (p < 0.05) increase in CD8" DCs in
the tumors at 9 days after treatment (Figure 2C). This is consistent
with previous reports that local RT activates cross-presenting DCs
which elicits CD8" T cell activation (23, 24).

There was an increase although not significant in macrophages
(CD11b"Ly6G Ly6CF4/80%) and antigen presenting cells (APCs:
CD11¢"MHC II") in tumors 3 days after treatment with RT and
Cryo, however there is a global decrease in these populations over
time (Figure 2C). When we examine the correlations of all the
innate cells with tumor burden (tumor weight at time of excision),
we find that macrophages and APCs have the strongest positive
correlation with tumor burden (Figure 2D), suggesting that these
cells may help promote tumor progression. Of note, all the APC
subtypes correlates positively with tumor burden whereas other
immune subsets such as monocytes showed no correlation
(Supplementary Figure S4). While we did observe a decrease in
macrophages and APCs over time, the quality of these cells appears
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Activation of Myeloid cells in the tumor of animals treated with localized therapies. 2 x 10° 4T1 mouse breast cancer cells were injected
subcutaneously in the right hind limb of 6-8 week female Balbc mice (n=5 mice/group). 12 days later when the tumors reached 50-60mm?2 in size,
mice were treated with 15 Gy radiation (RT), VTP or Cryo therapy according to the doses listed in Figure 1A and methods. (A) Experiment schema of
timeline of tumor challenge, treatment dates and tissue harvest for flow cytometry. (B) bivariate plot to show the gating strategy for total immune
infiltrates in the tumors (live CD45%) and fold change in The frequencies of CD45" cells of each treatment group represented at fold change over
the control in the tumor at the indicated time points. (C) Heatmaps representing the logl10 fold change (Log FC) of the immune cell populations in
the tumor. (D) Pearson correlations of tumor burden (weight (g)) vs. frequencies of myeloid cells (as a % of CD45" cells) from experiments outlined
in (A). (E) Histogram plots showing relative expression levels of two activation markers associated with antigen presentation (CD86 and MHC II) on
each myeloid cell in the tumor at day 3 post treatment. Bar graphs represent fold change in expression over the control group. Statistics were

calculated using a student T-test: *p < 0.05, ***p < 0.005.
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to be different after treatment with VTP and Cryo. In fact, most of
the innate immune cells showed increased expression of markers
associated with antigen presentation after treatment. All the innate
cells examined show increased expression of CD86 (B7.2, the co-
receptor for CD28 on T cells), however, only neutrophils and
monocytes showed increased MHC II expression over the control.
This is mainly because macrophages and all the subsets of APCs
already express high levels of MHC II in the tumors and this
expression does not change after treatment (Figure 2E,
histogram plots).

Since RT, VTP and Cryo are all localized therapies given
directly to the tumors, we sought to determine whether these
therapies can elicit a systemic effect on innate immune cells.
Consistent with that data from the tumors, we found a reduction
of CD11b" population in the spleens (Supplementary Figure S5A)
and tumor draining LNs (Supplementary Figure S5B) treated with
VTP and Cryo. The effect was seen as early as 3 days post treatment
and persists for up to 9 days post treatment. Similar decreases in
APCs were seen in the LNs but not the spleens of treated animals.
When we examined expression of activation markers involved in
antigen presentation, we found that most of the innate cells in the
LN and to a lesser extent in the spleen, showed an increase in
expression of CD86 and MHC II. This expression peaks in the LN at
3 days after treatment in the RT groups, and 6 days after treatment
with VTP and Cryo. This suggest that the kinetics for RT is different
from VTP and Cryo.

RT, VTP and Cryo leads to activation of T
cells in the tumor, spleen and draining LN

In addition to examining cells of the innate immune system,
we conducted flow cytometry analysis on the adaptive immune
system using markers for CD8" T cells, CD4" effector T cells
(Teffs) and CD4" Foxp3™ regulatory T cells (Tregs). Tumor
bearing animals were treated according to the schedule
outlined in Figure 1A and tumors, draining LNs and spleens
were isolated and processed for flow cytometry according to the
timeline in Figure 2A. Identification of T cell population and
their activation/differentiation states were defined by the gating
strategy outlined in Supplementary Figure S6. In addition to
comparing the effects of RT, VTP and Cryo on the adaptive
immune system, we also compared the effects of adding anti-PD-
1 to each treatment since anti-PD-1 is known to affect T cell
proliferation and activation.

We observed a global decrease in all T cell populations in the
tumor at all 3 timepoints examined (Figure 3A, left and
Supplementary Figure S7). The relative abundance of the effector
T cells (CD8" T cells or CD4" Teffs) with respect to CD4" Tregs can
be used to estimate immune responses to immunotherapies. In
these experiments even though there is a decrease in these
populations, we did observe an increase in the ratio of CD8:Treg
and CD4:Treg at day 3 with VTP and Cryo. At day 9, the addition of
anti-PD-1 significantly increased the ratio of CD8:Treg in the
control, RT and VTP treated groups and there was a trend (not
statistically significant) towards an increase in the Cyro group
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(Figure 3A, left and Supplementary Figure S7). This effect was
especially striking in the RT group where an increase in both CD8:
Treg and CD4:Treg was observed with the addition of anti-PD-1. In
contrast to the tumors, we found a significant increase in both CD8"
T cells and CD4" Teffs in the spleen of treated animals at all time
points examined (Figure 3A, middle and Supplementary Figure S8).
However, there was also an increase in CD4" Tregs which led to a
decreased CD8:Treg and CD4:Treg ratio. In the tumor draining
LNs, there was an early increase in CD8" T cells and CD4" Teffs
coupled with an overall decrease in Tregs in all treatment groups.
The net effect is an increase in CD8:Treg and CD4:Treg ratios
(Figure 3A, right and Supplementary Figure S9). The addition of
anti-PD-1 did not appear to significantly affect the T cell
populations in the spleen or LNs.

When we examined the activation status of T cells in the tumor,
spleen and LNs at all three time points, we found T cells were
activated in the tumor and spleen with slightly different kinetics
(Supplementary Figures S7, S8). No significant changes in T cell
activation were observed in the draining LNs (Supplementary
Figure S9). In some of the conditions, the tumors were at times
too small to obtain enough data for statistical power, this was
especially the case in the VIP and Cryo treated tumors. However,
we did observe some significant changes in the samples which were
analyzed. There was an early increase in T cell activation markers
mainly on CD8" T cells among tumor samples at 3 days post
therapy (Supplementary Figure S7). Notably, there was an increase
in CD25 (the IL-2Ra: chain) in the RT, VTP and Cryo groups. There
was also an increase in the cytolytic protein, Granzyme B,
expression in CD8" T cells in the RT groups. There was also a
significant increase in effector memory (TEM) cells in all the
treatment groups. The addition of anti-PD-1 did not significantly
enhance the activation state of CD8" T cells or CD4" Teffs in the
tumor at any of the time points examined.

There were some significant increases in T cell activation in the
spleen at 6- and 9-days post treatment which was most striking in
the VTP and Cryo groups (Supplementary Figure S8; Figure 3B).
There was an increase in Granzyme B, and the proliferation marker
Ki67 in both CD8" T cells and CD4" Teffs (Figures 3B, C;
Supplementary Figure S10A). There was an increase in both
central memory (TCM) and effector memory (TEM) CD4" Teffs
at 9 days following all three treatments (Figures 3B, C;
Supplementary Figure S10B). The addition of anti-PD-1 at this
time point did not enhance the presence of TCM CD4" Teffs but did
enhance the frequencies of TEM CD4" T cells. In addition, anti-PD-
1 also enhanced Ki67 on CD4" Teffs in the RT and VTP groups at
day 9 (Figure 3C). The addition of anti-PD-1 had the strongest
effects on T cell activation in the spleen at day 3 post treatment
where there was a significant increase in the expression of CD25 in
both CD8" T cells and CD4" Teffs in the RT and VTP treated
animals (Figure 3B; Supplementary Figure S10C). There was also an
increase in TCM and/or TEM CD8" T cells and CD4" Teffs in all
three groups with the strongest changes observed in the RT groups.
On day 6, there was an increase in Ki67 in CD8" T cells and CD4"*
Teffs in animals treated with Cryo and anti-PD-1. In addition, at
this time point VTP alone induced a significant increase in
Granzyme B expression in both CD8" T cells and CD4" Teffs.
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FIGURE 3

Activation of T cells in the tumor, spleen and draining LN of animals treated with localized therapies. 2 x 10° 4T1 mouse breast cancer cells were

injected subcutaneously in the right hind limb of 6-8 week female Balbc

schedule in Figure 1A. 3, 6 and 9 days after the start of treatment, tumor,

mice and treated with RT, VTP or Cryo therapy according to the doses and
spleen and draining LNs were harvested and processed for flow cytometry.

(A) Heatmaps represents the log10 fold change (Log FC) of the CD8" T cells, CD4" Teffs and CD4" Tregs as well as the CD8:Treg and CD4:Treg

ratios in the tumor, spleen and LN at 3, 6, and 9 days post treatment. (B)

Heatmaps represents the log;q fold change (Log FC) relative to the control

group of T cell activation markers in the spleen with the indicated therapies. (C) Quantification of effector memory (Tem) and proliferating (Ki67+)

CD4* Teffs (CD4"Foxp3’) in the spleen 9 days after treatment. *p < 0.05.

In summary, the changes of T cell activation states in the spleen
peaked 6-9 days post treatment with the monotherapies. These
observations are highly significant because they show that localized
treatments such as RT, VIP and Cryo can have systemic effects on
the adaptive immune responses.

IHC analysis show a decrease in CD11b™*
myeloid cells and an increase in CD8* T
cells in the spleens of animals treated with
VTP and Cryo

While flow cytometry can give us a great deal of information on
the breadth and depth of immune cells and their activation state, it
cannot assess the spatial distribution of these cells throughout the
tissues. To understand the spatial distribution of immune cells in
4T1 breast tumors, we performed immunohistochemistry (IHC)
analysis on paraffin embedded sections of spleens and tumors from
mice treated with RT, VIP and Cryo. Tumor bearing animals were
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treated according to the schema outlined in Figure 1A and tissues
were harvested 6 days after treatment and processed for IHC. Serial
paraffin sections were cut and stained with anti-CD8 and anti-
CD11b and H&E. From the IHC data, we observed that 4T1 tumors
which have not received any treatment are poorly infiltrated with
CD8" T cells (Supplementary Figure S11; Figure 4A). On the
contrary, these tumors are more heavily infiltrated by CD11b"
myeloid cells, however, many of these cells appear to be confined
to the stroma and necrotic tumor areas rather than tumor cell dense
areas (Supplementary Figure S11). The density in CD11b" myeloid
cells in the spleens of 4T1 tumor bearing mice also appear to be high
in untreated animals (Supplementary Figure S12). These
observations are in agreement with the flow cytometry data and
previously published data that 4T1 tumors are poorly infiltrated by
T cells and highly infiltrated with myeloid cells (2).

Analysis of the IHC data showed that 2/3 RT treated tumors
and 1/3 VTP treated tumors showed an increase in CD8 infiltration
relative to the control (Figures 4A, B). In the anti-PD-1 treated
groups, 3/3 RT tumors showed significant increased CD8+ T cell
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FIGURE 4

IHC analysis show an increase in CD11b* myeloid cells infiltrating the tumors of animals treated with RT, VTP and Cryoablation. 2 x 10° 4T1 mouse
breast cancer cells were injected subcutaneously in the right hind limb of 6-8 week female Balbc mice and treated with RT, VTP or Cryo therapy
according to the doses and schedule in Figure 1A. 6 days after treatment, tumors and spleens were harvested and processed for
immunohistochemistry (IHC). (A) Shown are representative images of serial sections for H&E, CD8 and CD11b for each treatment group. Bar =
100um. (B, C) Relative densities of CD8 and CD11b expression in the tumor and spleens. Shown are % of tissue stained positive for each marker
calculated and normalized per tissue area using the HALO Image Analysis Software. N=3 mice/group. Statistics were calculated using student’s T-
test: *p < 0.05, **p < 0.01. n/a means statistics could not be calculated since the Cryo group had only one analyzable tumor.
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infiltration relative to the control or anti-PD-1 alone (Figure 4B). In
agreement with the flow data (Figure 1C), we also observed a slight
increase in CD11b" myeloid cell infiltration into the tumors treated
with RT (Figure 4C). Because VIP and Cryo destroys the tumor
tissue, it is difficult to get large enough healthy tumor areas to
effectively quantify immune infiltrates. When the few healthy
sections were analyzed, we did not observe any significant
changes in CD8+ T cell infiltration into tumors treated with VIP
and Cryo (Figures 4A, B). Similar to the flow data at early time
points, we observed a trend towards an increase in CD11b" cells
infiltrating tumors treated with VTP and Cryo (Figures 4A, C).

Remarkably, while VTP and Cryo did not appear to induce a T
cell response in the tumors, they appear have a strong effect on T
cells in the spleen as noted by larger T cell zones in the H&E
sections and increased CD8" T cell in the IHC slides
(Supplementary Figure S12, Figure 4B). In addition, VTP and
Cryo significantly decrease the CD11b" myeloid population in the
spleen (Supplementary Figure S12, Figure 4C). These data support
the conclusion that that localized treatments such as VTP and Cryo
can have systemic effects on the immune system.

Frontiers in Oncology

RT, VTP and Cryo led to increased cytokine
production by CD4+ and CD8+ T cells in
the spleen

Our findings that T cell activation markers are increased on
CD4" and CD8" T cells in the spleens of animals treated with
localized therapies such as RT, VTP and Cryo suggests a systemic
effect of these therapies on the adaptive immune system. To
determine whether these phenotypic increases translate into a
function change by T cells, we stimulated single cell suspensions
isolated from the spleens of treated animals with PMA and
Ionomycin in the presence of Golgi inhibitors (Brefeldin A and
monensin) to examine the T cells’ ability to produce pro-
inflammatory cytokines such as interferon-gamma (IFNy) and
tumor necrosis factor-alpha (TNFo). We also examined if these T
cells can produce both IFNy and TNFo simultaneously. These
polyfunctional T cells have been shown to be the most functional
effector cells (25). We found that there was an increase in both
IFNY" and TNFo" CD4" and CD8" T cells as well as IFNy" TNFo."
double positive polyfunctional T cells in the spleen in response to
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RT, VTP and Cryo. The most robust increases seen in the VIP and
Cryo groups (Figures 5A, B). The addition of anti-PD-1 to these
treatments significantly increased the cytokine production of T cells
in the RT groups but did not further enhance the effects of VTP and
Cryo (Figure 5B). These data suggest that all three therapies elicited
systemic effector T cell responses.

RT, VTP and Cryo delayed growth of
secondary tumors in a bilateral
tumor model

The finding that RT, VTP and Cryo can induce a systemic
immune response suggest that these therapies may be capable of

10.3389/fonc.2024.1405486

inducing an abscopal effect by controlling the growth of distant
tumors or metastases. To assess whether these treatments can elicit
regression of distant tumors, we used a bilateral tumor model where
the tumor implanted at 12 days prior to treatment is treated and the
second implanted at 7 days prior to treatment is left untreated
(Figure 5C). We monitored growth of the treated and untreated
tumors over time. We found that all three modalities (RT, VTP,
Cryo) delayed the growth of both the treated and untreated tumors
(Figure 5C) with Cryo having the greatest effect on the secondary
tumors. However, the addition of anti-PD1 to the treatment did not
affect the secondary tumor growth. This data is consistent with the
fact that anti-PD1 has modest effects on enhancing activation of T
cells when combined with these treatment regimens (Figures 3, 4A,
B; Supplementary Figures S7-S9).
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FIGURE 5
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RT, VTP and Cryoablation incudes systemic T cell activation and promotes regression of secondary tumors. (A, B) 2 x 10° 4T1 cells were injected
subcutaneously in the right hind limb of 6-8 week female Balbc mice (5 mice/group) and treated with RT, VTP or Cryo therapy according to the
doses and schedule in Figure 1A. 6 days after treatment, tumors, LNs and spleens were harvested and single cells suspension were stimulated with
PMA/lonomycin in the presence of Golgi inhibitors for 6hr then processed for intracellular cytokine staining (ICS). (A) Representative plots of IFNy vs.

TNFo by CD4" Teffs and CD8" T cells from the spleen. (B) Frequencies of

IFNY*TNFo™ CD4* Teffs and CD8* T cells in the spleen. (C) 10° 4T1 cells

were injected subcutaneously in the right hind limb on day 0 and left flank on day 5 of female Balbc mice (10 mice/group). Twelve days after the
initial tumor injection, the right hind limb tumors were treated with 15 Gy RT, VTP or Cryoablation as outlined in the treatment schedule. Tumor size

was measured using calipers, shown are the average tumor size (mm?) +/-

SEM in both primary treated and secondary non-treated tumors. Statistics

were calculated using a student T-test. For tumor growth curves, statistics were calculated on day 29 post tumor inoculation. *p < 0.05, **p < 0.01,

***p < 0.005.
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Discussion

Here we show that while RT, VIP and Cryo have been all
shown to induce immunogenic cell death, they have differential
effects on the adaptive and innate immune system. In general, VTP
and Cryo have similar effects while RT appears to be different. One
explanation for this may be the differences between the kinetics in
which these treatments work. RT induces cell death through DNA
damage and subsequent apoptosis or mitotic catastrophe, but these
effects may take days to weeks to manifest, and the effects continue
for weeks to months after therapy ends. Necrosis can be seen within
tumors as well post RT, but at a relatively low frequency (26). There
are parallel effects to the radiosensitive capillaries lined with
endothelial cells, which dysregulates the balance of pro- and anti-
inflammatory factors. Radiation-induced vascular damage increases
the expression of ICAM-1 and E-selectin, which are adhesion
molecules that mediate inflammatory reactions and promote
recruitment of macrophages (27). The kinetics of VTP and Cryo
are much more rapid and changes to the tumor (e.g., changes to the
endothelium and tissue destruction) can be observed within hours
of treatment. For VTP treatment, production of short-lived super
oxide and hydroxyl radicals initiate rapid destruction of the targeted
vasculature followed by coagulative necrosis of the tumors (12, 28).
Recent studies using non-invasive optical imaging such as raster-
scanning optoacoustic mesoscopy (RSOM) (28) and Multispectral
Optoacoustic Tomography (MSOT) (29) have revealed that
vascular destruction by VIP occurs from minutes up to an hour
in subcutaneous murine tumor models (CT26 colon and RENCA
renal tumor) followed by eschar, edema and tumor necrosis at 48
hours after VIP. By 5 days, there was no visible tumor detected at
an optimal treatment condition. With Cryo, cellular damage and
death is immediate through rapid freezing and thawing, with
subsequent tissue necrosis. In the periphery of the treatment
zone, further effect is seen with apoptotic cell death in tissue not
exposed to immediately lethal temperatures. There is also evidence
of a vascular effect, as ice crystal formation within blood vessels
damages the endothelium, which comes into contact with platelets
in the reperfusion period, leading to thrombus formation and
delayed ischemia, as well as inflammatory cytokine release that
increases vascular permeability (30). Additionally, the tumor
growth delay induced by VTP and Cryo appears to be more rapid
as seen in Figures 1B, D.

One of the most significant observations from this study is the
decrease in myeloid cells after treatment with VTP and Cryo. The
populations that we phenotypically defined as granulocytes and
monocytes based on their expression of CD11b, Ly6G and Ly6C are
also known as granulocytic MDSCs (G-MDSCs) and monocytic
MDSCs (31). These populations when isolated from 4T1 tumors
have been shown to be immunosuppressive (2, 3). VTP and Cryo
significantly decrease the presence of MDSCs in 4T1 tumors and in
the spleens of tumor bearing animals. This also correlated with an
increase in CD4" and CD8" T cell responses such as increase in
expression of T activation markers and cytokine production

Frontiers in Oncology

10.3389/fonc.2024.1405486

(Figures 5A, B). However, we observed mixed responses of Tregs
with these different modalities. There was a decrease in Tregs in the
tumors and draining LNs after treatment with all three therapies,
which was linked to an increase in the effector:Treg ratios in both
tissues with VTP and Cryo and in the LNs only with RT. However,
there was an overall increase in Tregs in the spleens of treated
animals in all three treatment modalities. Tregs have been shown to
play a role in the recruitment of immunosuppressive myeloid cells
in the tumors (32), therefore it is not surprising that both Tregs and
MDSCs are decreased in the tumors after treatment with VTP
and Cryo.

TNBC is also an attractive model for novel therapies such as
VTP and Cryo. Unlike other subtypes of breast cancer, it has limited
therapeutic options. We selected 4T1 breast cancer as the preclinical
model for this study because it is one of the most well characterized
models for TNBC. And like TNBC in patients, 4T1 tumors have
been shown to be poorly responsive to ICB. While there are very few
alternatives for preclinical models for TNBC other than 4T1, they
are less characterized. Therefore, one potential limitation of this
study is that we have only one model of TNBC. 4T1 tumors have
poor T cell infiltration and high MDSC infiltration (2). Mechanisms
that target immunosuppressive myeloid cells have been shown to
re-sensitize 4T1 tumors to ICB (2). In this study, the decrease in
myeloid cells after VTP and Cryo, while significant, did not sensitize
4T1 tumors to ICB with anti-PD-1 in concert with these treatments
using this regimen. The antitumor efficacy of anti-PD-1 in
combination with RT, VIP and Cryo was modest and for the
most part not significant. Since 4T1 tumors are highly infiltrated by
MDSC and immunosuppressive macrophages (2), we hypothesize
that there are still significant amounts of the immunosuppressive
cells remaining in the tumors to restrict the T cell responses induced
by anti-PD1. On day 9 post therapy, there was approximately a 27%
decrease with VTP and 66% decrease with Cryo of the total myeloid
(CD11b") cells in the tumors on day 9. One way to potentially
circumvent this problem is to combine these therapies with myeloid
depleting or repolarizing regimens such as PI3K gamma inhibition
(2) or CSF-1R blockade (33, 34).

We also found evidence of the abscopal effect, which is a
phenomenon where localized treatment of a tumor causes
regression of distant untreated metastatic tumors. This
phenomenon has been extensively described in patients
undergoing ionizing RT, and it is known that the immune system
plays a major role. However, the abscopal effect is not limited to RT.
In fact, any localized treatment can induce a systemic immune
response that can regress secondary tumors. An important finding
of this study is that tumor directed therapies such as RT, VTP and
Cryo can control the growth of distal untreated tumors in a bilateral
tumor model. The delay in growth of the distal untreated tumors by
these therapies suggests that a systemic immune response to tumor
antigen was induced by these modalities. Data from the spleen and
LNs of treated animal also show activation of T cells in response to
RT, VIP and Cryo. These include increase in T cell activation
markers, memory markers and cytokine production. Similar to
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what was observed in the single tumor models, the addition of anti-
PD-1 did not have any significant effects of delaying growth of the
secondary untreated tumors.

While we have demonstrated the variations in the
immunomodulatory effects of these three local tumor ablation
options, there are important differences in the clinical
applicability of each treatment method, with implications on
future therapeutic designs. RT can theoretically be used to target
any tumor location within the body, but there are collateral damage
risks to surrounding organs (26). Moreover, an important
limitation to the usage of RT is the cumulative body dose limit,
and so RT cannot be delivered to the same patient in indefinite
amounts (35). In contrast, VIP, which has expanding indications
with clinical trials investigating its utility in the treatment of
prostate (36-38) (NCT03315754), esophageal (NCT03133650),
and upper tract urothelial cancers (NCT04620239), has more
tumor-selective properties by exploiting the increase in
vasculature, and thus uptake of photosensitizer, within tumors.
The treatment effect is not by direct cell damage, as seen with RT
and Cryo, but by the creation of ROS that collapse the tumor
vasculature. Thus, the risk of collateral damage is also less, which
confers a particular advantage to the treatment of endoluminal
tumors such as in the upper urothelial tract, where the
consequences of collateral damage (ureteral stricture or
obliteration and renal obstruction) are very high (39). Cryo has
been applied to cervical, eye, kidney, liver, lung, and prostate
cancers, and it is also an option for reducing bone pain and in
local tumor control of bone and soft tissue oligometastasis (40-42).
However, treatment is mostly done percutaneously or
laparoscopically, which is a major limitation to Cryo since target
tumors need to be reachable by the cryoprobe (30). In patients with
underlying emphysema, cryoablation may increase the risk of
pneumothorax and bleeding, which could be detrimental in
patients with poor pulmonary reserve. Compared with heat-based
thermal ablation therapies, VIP (non-thermal) and cryoablation
(freezing) preserve the collagenous tissue and are safer options near
large vasculature (43). Both therapies can be performed multiple
times (VIP: UTUC Phase 1) and if necessary, can be followed by
salvage therapies. Lastly, RT is typically fractionated into separate
doses due to the slower proliferation of normal versus tumor tissues,
which confers a survival advantage to normal tissue by better
repairing sublethal radiation damage. However, this requires
multiple doses of RT, typically over several weeks. On the other
hand, VTP and Cryo can be performed in one outpatient sitting,
albeit under sedation or anesthesia.

In summary, any means of local tumor destruction that was
studied here can provide an in-situ vaccination effect that can
generate a systemic adaptive immune response. The specificity
and timing of each intervention should be taken into
consideration when designing therapeutic interventions and
combination therapies.
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Disulfidptosis, a regulated form of cell death, has been recently reported in
cancers characterized by high SLC7A1l expression, including invasive breast
carcinoma, lung adenocarcinoma, and hepatocellular carcinoma. However, its
role in colon adenocarcinoma (COAD) has been infrequently discussed. In this
study, we developed and validated a prognostic model based on 20
disulfidptosis-related genes (DRGs) using LASSO and Cox regression analyses.
The robustness and practicality of this model were assessed via a nomogram.
Subsequent correlation and enrichment analysis revealed a relationship between
the risk score, several critical cancer-related biological processes, immune cell
infiltration, and the expression of oncogenes and cell senescence-related genes.
POUA4F1, a significant component of our model, might function as an oncogene
due to its upregulation in COAD tumors and its positive correlation with
oncogene expression. [n vitro assays demonstrated that POU4F1 knockdown
noticeably decreased cell proliferation and migration but increased cell
senescence in COAD cells. We further investigated the regulatory role of the
DRG in disulfidptosis by culturing cells in a glucose-deprived medium. In
summary, our research revealed and confirmed a DRG-based risk prediction
model for COAD patients and verified the role of POU4F1 in promoting cell
proliferation, migration, and disulfidptosis.

KEYWORDS

disulfidptosis, LASSO, prognostic model, cell senescence, POU4F1
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Introduction

Colon adenocarcinoma (COAD) is the third most common
cancer and has the second highest cancer-related mortality rate
worldwide. Compared with USA and Japan, China has the highest
all-age incidence for both sexes combined (1). Early-stage COAD
has a 5-year survival rate of more than 90% after treatment;
however, even after comprehensive treatment with surgery,
radiotherapy, chemotherapy, molecular targeted therapy, and
immunotherapy, for late-stage patients with distant metastases,
the rate is still only 14% (2-4). In the clinical treatment of
COAD, the TNM staging system has been the most commonly
applied method for predicting patient prognosis in recent decades,
but this method has limitations. Therefore, it is imperative to
develop a molecular predictive system to help clinicians
determine treatment options and drug choices for COAD patients.

Disulfidptosis is a form of regulated cell death (RCD) reported
in cancers characterized by a high expression of solute carrier family
7 member 11 (SLC7A11) (5). Disulfidptosis mainly originates from
the process by which nicotinamide adenine dinucleotide phosphate
(NADPH) fails to reduce cystine to cysteine, which induces
disulfide stress and actin cytoskeleton protein disulfide bond
cross-linking and cytoskeleton contraction and ultimately induces
disulfidptosis (6, 7). Disulfidptosis is triggered when cancer cells
with high SLC7A11 expression are subjected to glucose starvation,
and disulfidptosis-related genes (DRGs) were identified via
CRISPR-Cas9 screening (8, 9). In preclinical models, treatment
with a glucose transporter (GLUT) inhibitor can effectively inhibit
glucose uptake, induce disulfidptosis in SLC7A11"¢"-expressing
cancer cells, and limit the growth of SLC7A11"¢"
such as UMRCS6 kidney cell carcinoma xenografts in mice, which

cancer cells,

highlights the need for the development of cancer treatment
strategies (8, 9). The interactions of tumor-related genes (TRGs)
in the tumor microenvironment (TME) affect the survival, growth,
migration, and adhesion of cancer cells. This study is based on the
hypothesis that disulfidptosis, a form of cell death associated with
high SLC7AI11 expression, plays a significant role in colorectal
adenocarcinoma (COAD) and can be used to predict prognosis
through a specific gene signature based on DRGs.

Based on technological developments in transcriptomics and
bioinformatics, such as CRISPR-Cas9 screening, bulk RNA-seq,
and scRNA-seq, prognostic models of malignant tumors have been
established to help determine the prognosis of cancer patients, but,
to date, few DRG prognostic models of COAD have been reported.
In our research, we constructed a molecular prognostic model for
COAD based on DRGs by least absolute contact and selection
operator (LASSO) and Cox regression analysis with transcriptomic
and clinical data from COAD patients in the TCGA, GEO, and
DRG databases. After accuracy and specificity validation, we
constructed a novel disulfidptosis-related prognostic model that
could predict the prognosis of COAD patients via the DRG-related
risk score, which can be explained by the analyses of biological
effects such as immune infiltration, specific tumorigenic pathways,
and drug response and synergy. The aim of this study was to
establish a solid platform for devising patient-specific treatment
regimens and assisting clinicians in the prognostic assessment and
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clinical treatment of COAD patients. Additionally, the key gene
POU4F1I in the model was further validated by in vitro assays.

Materials and methods

RNA-sequencing data and bioinformatics
analysis data collection

The data and clinical information of 454 CRC patients and 92
normal colon tissue samples were obtained from the TCGA database
(https://portal.gdc.cancer.gov). The data of 585 CRC patients and 19
nontumoral patients (GSE39582) were downloaded from the GEO
database (https://www.ncbinlm.nih.gov/geo/). DRGs were extracted
based on CRISPR-Cas9 screens from Gan’s study (5). Genes,
including 32 synergists and 63 suppressors, were identified
according to the criteria of a |[NormZ value| >2 and a P-value <0.05
for further construction of the prognostic model.

Construction and validation of a
prognostic model based on DRGs

After the GSE39582 data were integrated, we used the “care”
package to randomly subdivide the patients into two datasets at a
ratio of 7:3 according to their survival status; these datasets were
used as training sets and internal test sets, respectively. A total of
555 patients in the TCGA database were used as independent
validation sets. DRGs downloaded and identified from CRISPR-
Cas9 screenings were obtained from a previous study (5, 6). Gene
expression data from the patients were used to identify DEGs, and
least absolute shrinkage and selection operator (LASSO) regression
analysis and multivariate Cox regression were used to construct the
prognostic model. The risk score for each COAD patient was
calculated based on the expression of DRGs (Exp;) and Cox
coefficients (coef;), Riskscore =" Exp; x coef,, We used the
“glmnet” package for LASSO regression model analysis. Patients
with COAD were divided into a high-risk group and a low-risk
group according to the median risk score. We used the “survival”
and “survminer” packages to perform univariate and multivariate
Cox analyses, generate Kaplan—Meier plots, and estimate whether
the risk score was an independent factor of clinicopathological
features. To assess the prognosis of both groups, OS was analyzed
via Kaplan—Meier curves. The prognostic ability of the risk model
was evaluated by time-dependent receiver operating characteristic
(ROC) curve analysis using the “survival ROC” software package.
We investigated the ability of the prognostic model to predict the
outcome of CRC patients by using the “TimeROC” package to
generate a time-dependent receiver operating characteristic (ROC)
curve. The area under the curve (AUC) of the ROC curve was
calculated with the “survivalROC” package. Nomogram plots were
generated with the “rms” package. To verify the DRG signature, the
risk score of COAD patients in the TCGA dataset was used to verify
the accuracy of the model. The risk score of COAD patients in the
GSE39582 dataset was determined via the same method to verify
the accuracy of the model.
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Establishment of a prognostic nomogram
for COAD

In the training set and test set, the associations between the DRG
signatures and clinicopathological features were analyzed with the “rms”
package. In addition, both univariate and multivariate Cox regression
analyses were conducted to explore whether the risk score has an
independent prognostic value in patients with COAD. The probabilities
of 1+, 2-, 3-, 4-, and 5-year OS in COAD patients were assessed by clinical
variables and risk scores. The accuracy of the nomogram was evaluated by
the concordance index (CI) and calibration curve.

Determination of DRGs’
differential expression

The differentially expressed genes (DEGs) were identified by the
“limma” package with a |threshold of log (fold change)| >1 and a P-
value <0.05 between the low and high groups.

Enrichment analysis

Based on the correlation analysis between the risk score and all
mRNAs, gene set enrichment analysis (GSEA) was further
performed by using the “ClusterProfiler” package of R software
(version 4.3.1).

In addition, the differentially expressed genes (DEGs) between
the low and high groups were identified based on the R package
“limma” with the thresholds of log(fold change) >1 and P-value
<0.05. The DEGs were further input into the DAVID online
tool (https://david.ncifcrf.gov/) for pathway and biological
process enrichment.

Correlation analysis

To further explore the biological function and clinical relevance
of the DRG prognostic model, we performed a correlation analysis
to evaluate the associations between the risk score and the
expression of oncogenes, tumor mutation burden (TMB),
immune regulatory gene expression, immune cell infiltration, and
tumor immune dysfunction and exclusion (TIDE) score. This
analysis utilized the Spearman method with the “psych” package.

Oncogene data were sourced from the ONGene database (http://
www.ongene.bioinfo-minzhao.org) (10), while 73 immunomodulatory
genes (IMGs) (11) were derived from earlier research. The immune
cell infiltration score was calculated with the XCELL algorithm (12).
Furthermore, the TIDE score, dysfunction score, and exclusion score
for each dataset patient were estimated using the standard process with
the TIDE online tool (http://tide.dfciharvard.edu/) (13).

The Sanger Research Institute created the Genomics of Drug
Sensitivity in Cancer database (GDSC) to gather information on
tumor cell sensitivity and response to drugs (14). “OncoPredict”
was employed to determine the drug sensitivity of each sample in
the training and validation datasets, leveraging the GDSC V2.0
database (15).
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Cell lines and culture

The human colon adenocarcinoma cell line SW480 (SW-480),
which was isolated from the large intestine of a Dukes C colorectal
cancer patient, was obtained from the National Collection of
Authenticated Cell Culture at the Chinese Academy of Science
(Shanghai, China). Colon adenocarcinoma HCT116 cells
(ab255451) were isolated from the colon of an adult male with
colon adenocarcinoma obtained from the Abcam Trading
(Shanghai, China). The SW480 cells were cultured in DMEM
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin—streptomycin from Thermo Fisher Scientific (Shanghai,
China). The HCT116 cells were cultured in McCoy’s 5A medium
supplemented with 10% FBS (Gibco) and 1% penicillin
—streptomycin (Gibco). All cells were incubated at 37°C with 5%
CO, for culture and passage unless otherwise stated. For the glucose
deprivation experiments, cells were cultured in glucose-free DMEM
supplemented with dialyzed FBS as previously described.

Short hairpin RNA construction, plasmid
vectors, and transfection

The POU4F1 sequences of the primers used were as follows:

Forward: 5" - ACGCACGAACTGAGTCGAAA - 3’
Reverse: 5'-CACTTCCCGGGATTGGAGAG-3’

The POU4F1 shRNA plasmid (sc-29839-SH) was purchased
from Santa Cruz Biotechnology. The transfection of plasmid vectors
was carried out in Opti-MEM (Invitrogen) using Lipofectamine
3000 reagent (Invitrogen) according to the manufacturer’s
transfection protocol.

Transwell migration assays and Transwell
invasion assays

For the Transwell migration assay, cells were seeded in the
upper chamber of a Transwell membrane (Corning, Inc., USA) with
200 pL of FBS-free medium, and 600 pL of complete medium was
added to the lower chamber. After the cells were cultured at 37°C
for 24 h, they were fixed with 4% paraformaldehyde and stained
with 0.5% crystal violet solution. Subsequently, the cells in the upper
chamber of the Transwell membrane were removed. Images of the
migrated cells were captured under an inverted microscope and
were then assessed using NIH Image] software (version 1.8.0).

Western blotting and antibodies

Total protein was extracted from cells by using RIPA lysis buffer
(Beyotime, China) and quantitated by using Enhanced BCA Kit
(Beyotime, China). Total protein (30 pg) was separated via SDS
—PAGE and transferred onto PVDF Transfer Membranes (Thermo
Fisher Scientific, China). After blocking with 5% BSA, the
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membrane was incubated at 4°C overnight with primary antibodies
against POU4F1 (PA5-41509) and beta-actin (MA5-15452), which
were purchased from Thermo Fisher Scientific (Shanghai, China).
Following the primary incubation, the membranes were incubated
with HRP-labeled secondary antibodies. The protein bands were
visualized using enhanced chemiluminescence (ECL) substrate and
the GeneTools GBox (Syngene) system, the intensity of each band
was quantified using Image] software (National Institutes of
Health), and beta-actin was used as the internal control.

B-gal fluorescence imaging

The cell aging detection reagent SPIiDER-[3-gal was used for -
gal fluorescence staining. Briefly, after the cells were washed with
wash buffer, SPIDER-B-gal staining solution was added. The plate
was incubated in the dark for 15 min, and the cells were washed
twice with PBS, followed by observation and imaging under a
fluorescence microscope.

Disulfidptosis assay

Glucose-free DMEM was used to simulate glucose deprivation
conditions. When POU4FI1 was knocked down or overexpressed in
cells, the culture medium was replaced with a glucose-free medium,
and the regulatory effect of the gene on disulfidptosis was
determined by measuring cell viability and apoptosis.

Statistical analysis

All statistical analyses were performed using R software (version
4.1.3). Continuous variables were tested by Student’s -test, while
categorical variables were tested by chi-square test. A p-value <0.05
was considered significant.

Results
Data collection

Three COAD cohorts and corresponding clinical data were
obtained from the TCGA and GEO databases (GSE39582). The
demographic and clinical data for the training, internal testing, and
independent validation sets are summarized in Table 1. After ruling
out the samples with missing clinical information in the GEO (584
patients) dataset, the samples were randomly divided into a training
set (n = 393, 70%) and an internal testing set (n = 168, 30%). As
expected, no significant differences were found in the major
clinicopathological features between the training, testing, and
entire GEO datasets (p > 0.05) (Table 1).
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Construction and validation of the DRG
prognostic model in COAD patients

A total of 808 DRGs were screened with the criteria of [normZ
values| >2 and P-value <0.05 based on the CRISPR-Cas9 screenings
(Supplementary Figure S1). Using univariate Cox regression
analysis, 95 prognosis-related DRGs were identified based on the
GEO training set (Figure 1A). Consequently, LASSO-penalized Cox
analysis further identified 20 DRGs for multivariate analysis
(Figures 1B, C). The multivariate Cox proportional hazard model
was built stepwise using the likelihood-ratio forward method to
reach the highest significance. A total of 20 DRGs were further
screened to construct a risk model to assess the prognostic risk of
COAD patients: risk score = (1.057 x KIF7 Exp) + (1.005 X
SLCO1C1 Exp) + (0.886 x MAFG Exp) + (0.751 x THSD7B Exp)
+ (0.747 x POU4F1 Exp) + (0.701 x ACAP2 Exp) + (0.668 x
TM2D3 Exp) + (0.563 x RAB6B Exp) + (0.315 x ARC Exp) + (0.292
x GDPD3 Exp) + (0.265 x LETM2 Exp) + (-0.102 x CXCL13 Exp) +
(-0.189 x AMACR Exp) + (-0.296 x OASI Exp) + (-0.394 x
CCDC134 Exp) + (-0.457 x TXN2 Exp) + (-0.799 x CYB561D1
Exp) + (-0.805 x ADDI Exp) + (-0.987 x C110f42 Exp) + (-1.092 x
DIMT1 Exp) (Figure 1D). ROC curves demonstrated that the risk
score serves as a significant predictor of the OS of COAD patients,
with AUCs greater than 0.765 at 1-5 years (Figure 1E). K-M
survival analysis indicated that the low-risk group had a
significantly favorable overall survival for COAD patients
(Figure 1F). The samples in the training set were classified into
low-risk and high-risk groups based on the median value of the risk
score (Figure 1G). The distribution of risk scores between the low-
risk and high-risk groups and the survival status and survival time
of patients in the two different risk groups are depicted. The relative
expression of the 20 DRGs for each patient is shown in a
heatmap (Figure 1H).

Prognostic value of the DRG model
signature in the training cohort and
validation cohort

According to the median risk score, the patients in the internal
testing dataset and the entire GSE39582 dataset were divided into high-
risk and low-risk groups. The patients in the low-risk group in both
datasets had a significantly longer OS than did those in the high-risk
group (p < 0.0001), with AUC values of 0.760 and 0.781, respectively
(Supplementary Figures S2A, B, Figures 2A, B). According to the
distribution of risk scores, the number of deaths in the high-risk group
was significantly greater than that in the low-risk group
(Supplementary Figure S2C, Figure 2C). The heatmap showed the
differential expression of these 20 disulfidptosis-related risk genes
between the low-risk group and the high-risk group (Supplementary
Figure S2D, Figure 2D). The signature in the independent validation set
also yielded the same result (Figures 2E-H).
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TABLE 1 Clinicopathological features of the GSE39682 and TCGA_COAD datasets.

GSE39582
Characteristics TCGA_COAD
Training Testing All

<60 107 (27.23%) 50 (29.76%) 160 (27.40%) 160 (28.83%)
Age 0.808

>60 286 (72.77%) 118 (70.24%) 424 (72.60%) 395 (71.17%)

Female 179 (45.43%) 74 (44.05%) 263 (44.96%) 264 (47.57%)
Gender 0.955

Male 215 (54.57%) 94 (55.95%) 322 (55.04%) 291 (52.43%)

Proximal 153 (38.83%) 67 (39.88%) 232 (39.79%)
Location 0.949 NA

Distal 241 (61.17%) 101 (60.12%) 351 (60.21%)

pPMMR 306 (85.00%) 138 (88.46%) 459 (85.63%)
MMR 0.574 NA

dMMR 54 (15.00%) 18 (11.54%) 77 (14.37%)

WT 105 (43.21%) 54 (50.94%) 161 (45.87%)
TP53_MUT 0.410 NA

MU 138 (56.79%) 52 (49.06%) 190 (54.13%)

WT 224 (58.79%) 101 (63.12%) 328 (60.18%)
KRAS_MUT 0.643 NA

MU 157 (41.21%) 59 (36.88%) 217 (39.82%)

WT 321 (89.92%) 138 (91.39%) 461 (90.04%)
BRAF_MUT 0.865 NA

MU 36 (10.08%) 13 (8.61%) 51 (9.96%)

Negative 72 (22.22%) 36 (26.47%) 112 (23.28%)
CIN_status 0.616 NA

Positive 252 (77.78%) 100 (73.53%) 369 (76.72%)

Stage /11 202 (51.27%) 92 (54.76%) 309 (52.82%) 307 (55.12%)
TNM_stage 0.739

Stage ITI/TV 192 (48.73%) 76 (45.24%) 276 (47.18%) 250 (44.88%)

MO 338 (88.95%) 141 (88.12%) 499 (89.11%) 405 (83.51%)
TNM_M 0.941

M1 42 (11.05%) 19 (11.88%) 61 (10.89%) 80 (16.49%)

NO 204 (51.78%) 95 (56.55%) 314 (53.68%) 326 (58.53%)
TNM_N 0.576

N1/2/3 190 (48.22%) 73 (43.45%) 271 (46.32%) 231 (41.47%)

T1/2 36 (9.14%) 19 (11.31%) 61 (10.43%) 103 (18.49%)
TNM_T 0.690

T3/4 358 (90.86%) 149 (88.69%) 524 (89.57%) 454 (81.51%)

0 261 (66.24%) 110 (65.48%) 385 (66.49%) 412 (77.30%)
[ON) 0.970

1 133 (33.76%) 58 (34.52%) 194 (33.51%) 121 (22.70%)

<2 232 (58.88%) 100 (59.52%) 334 (57.69%) 266 (49.91%)
OS.time 0.884

>2 162 (41.12%) 68 (40.48%) 245 (42.31%) 267 (50.09%)

MMR, defective mismatch repair; OS, overall survival. NA, Not applicable.

DRG risk score is independent of multicollinearity test and multivariable adjustment, the risk

clinical features

As depicted in Supplementary Table S1, the mitophagy risk
score was related to several clinicopathological features in the
GSE39582 dataset, including MMR, TNM_stage, TNM_M,
TNM_N, and TNM_T. To assess whether the risk score is an
independent indicator in COAD patients, the effect of each
clinicopathological feature on OS was analyzed by univariate
Cox regression (Figure 3A). As shown in Figure 3B, after
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score remained a powerful and independent factor in the
GSE39582 dataset. Moreover, the risk score was verified as an
independent factor based on the TCGA-COAD dataset
(Supplementary Figures S3A, B). The discrepancies in OS
stratified by M_stage and age were analyzed between the low-
risk and high-risk groups in the GSE39582 and TCGA-COAD
datasets. According to the subgroups classified by age and M stage,
the OS of the low-risk score group was superior to that of the high-
risk group (Figures 3C-F, Supplementary Figures S3C, D).
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FIGURE 1
Construction of the DRG prognostic model of COAD. (A) Univariate Cox regression analysis for the selection of DRGs correlated with the overall

survival (OS) of COAD patients. (B, C) LASSO-penalized Cox analysis revealed 20 DRGs related to overall survival. (D) Forest plot showing the
multivariate Cox regression analysis of 20 DRGs. (E) ROC curves for 5-year OS in the training set. (F) Kaplan—Meier curve of overall survival in the
training group. (G) Risk score distribution and survival status of the training group. (H) Heatmap showing the expression of genes in 20 DRGs in the
training group. DRGs, disulfidptosis-related genes; ROC, receiver operating characteristic; COAD, colon adenocarcinoma.

Major clinicopathological features and risk scores were included in
the nomogram. The nomogram was internally validated by
computing the bootstrap C-index (20.785 both in the GSE31210
and TCGA-COAD datasets) and a calibration plot (Figure 4B,

To ensure the robustness and practicability of the 20-DRG
prognostic model, a prognostic nomogram for predicting overall
survival in COAD patients was established using the GSE31210 and
TCGA-COAD datasets (Figure 4A, Supplementary Figure S4A).
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FIGURE 2
Validation of the prognostic model with 20 DRGs constructed from the training dataset. ROC curves for overall survival in the entire GSE39582 (A)
and TCGA-COAD (E) datasets. K-M curves of overall survival in the entire GSE39582 (B) and TCGA-COAD (F) datasets. Risk score distribution and
survival status in the entire GSE39582 dataset (C) and external validation dataset (G). Heatmaps showing the expression of these 20 disulfidptosis-
related risk genes between the low-risk group and the high-risk group in the entire GSE39582 dataset (D) and external validation dataset (H). DRGs,
disulfidptosis-related genes; ROC, receiver operating characteristic; COAD, colon adenocarcinoma.

Supplementary Figure S4B). The ROC curve confirmed that the
score calculated based on the nomogram was highly predictive of
overall survival, with AUCs of 0.845 and 0.862 at 1 year in the
GSE31210 and TCGA-COAD cohorts, respectively (Figure 4C,
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Supplementary Figure S4C). The DCA for the nomogram is
presented in Figure 4D. The nomogram provided a better net
benefit than did the “treat-all” or “treat-none” schemes and the
current TNM staging system.
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FIGURE 3

The DRG risk score was an independent prognostic factor for overall survival in the entire GSE39582 dataset. Univariate (A) and multivariate (B) Cox
regression analyses of the risk score and clinicopathological features for overall survival in the entire GSE39582 dataset. (C, D) Kaplan—Meier analysis
of overall survival stratified by the patients’ age. (E, F) Kaplan—Meier analysis of overall survival stratified by TNM_M stage. DRGs, disulfidptosis-related

genes; VIF, variance inflation factor.

DRG risk score correlated with immune

cell infiltration

The single-sample gene set enrichment analysis package
“XCELL” was used to quantify the infiltration of 24 immune cell
types, and Spearman correlation analysis was used to assess the

Frontiers in Immunology

correlation of immune cell infiltration with the DRG risk score. The
results revealed that the risk score was significantly correlated with
the infiltration of multiple immune cell types in both the GEO39582
and TCGA-COAD datasets (Figures 5A, B). Specifically, we found a
significant negative correlation between risk scores and T cells and
the infiltration of CD4+ T cells (Th1), common lymphoid dendritic
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progenitors, and plasmacytoid dendritic cells in both datasets
(Figure 5C). Additionally, the risk score was positively correlated
with the infiltration of hematopoietic stem cells, endothelial cells,
stroma score, cancer-associated fibroblasts, and common myeloid

10.3389/fimmu.2024.1344637

progenitors (Figure 5C). In addition, a correlation analysis revealed
that the risk score was positively correlated with the expression of
several immune checkpoint genes, mainly LILRB2, HAVCR2,
SIRPA, TIGIT, CTLA4, and BTLA, in both datasets (Figures 5D-
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F). As shown in Supplementary Figure S5, we found that the
risk score was significantly correlated with the expression of
multiple immune regulatory genes and the sensitivity to multiple
antitumor drugs.

DRG risk score correlated with
cancer progression

GSEA revealed that the DRG risk score was significantly
correlated with several vital cancer-related biological processes
(Figure 6A), mainly cytochrome complex assembly (NES = -3.47,
Figure 6B), DNA replication initiation (NES = -3.43, Figure 6B),
mitochondrial cytochrome ¢ oxidase assembly, cell cycle DNA
replication, and base excision repair. In addition, the risk score
was related to several important KEGG pathways (Figure 6C),
including DNA replication (NES = -3.79, Figure 6D), base
excision repair (NES = -2.849, Figure 6D), mismatch repair, and
ECM receptor interaction. Moreover, the correlation analysis
demonstrated that the DRG risk score was significantly positively
correlated with multiple oncogenes (N = 285, 40.2%, Figure 6E),
including MIR99AHG (r = 0.558, Figure 6F), RUNXIT1 (r = 0.491,
Figure 6G), MEIS1 (r = 0.490, Figure 6H), and PRDMS6 (r = 0.485,
Figure 5I). In addition, we found that the DRG risk score was
positively correlated with many cell senescence-related genes
(N = 95, 34.80%, Figure 6]), including EPHA3 (r = 0.504,
Figure 6K), NOTCH3 (r = 0.490, Figure 6L), CPEBI (r = 0.481,
Figure 6M), and MYLK (r = 0.464, Figure 6N). These results
revealed that the DRG risk score was correlated with multiple
oncogenes and cell senescence-related genes as well as several
cancer-related biological bioprocesses and KEGG pathways.

POUA4F1 is highly expressed in COAD and is
related to cancer progression

Among these DRGs in the constructed risk model, POU4F1 had
the highest normalized Z score (Figure 7A). POU4F1 expression
was greater in COAD tumor tissues than in normal tissues in the
TCGA-COAD dataset (Figure 7B). Additionally, an increased
expression of POU4F1 was detected in paired normal tissue
specimens (Figure 7C). A survival analysis revealed that patients
with lower POU4F1 expression had a longer overall survival in both
the GSE395852 (Figure 7D) and TCGA-COAD (Figure 7E)
datasets. When considering disease-specific survival and disease-
free survival, a better prognosis was found for patients with low
POU4F1 expression (Supplementary Figures S6A, B). A further
correlation analysis revealed that POU4F1 expression was
significantly correlated with multiple oncogenes in both the
TCGA-COAD and GSE39582 datasets (Figure 7F, Supplementary
Figures S6C, D), indicating that POU4F1 may serve as an oncogene
in COAD. Additionally, POU4F1 expression was positively
correlated with multiple cell senescence-related genes in both the
TCGA-COAD and GSE39582 datasets (Figure 7G, Supplementary
Figures S6E, F).
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POUA4F1 promotes cell proliferation,
migration, and disulfidptosis in COAD

To evaluate the biological function of POU4F1 in COAD cells,
we constructed shRNA plasmids to knock down POU4FI and a
plasmid to overexpress POU4F1 (Supplementary Figure S7). The
CCK-8 assay demonstrated that POU4F1 knockdown significantly
inhibited the proliferation of SW480 (Figure 8A) and HCT116
(Figure 8B) cells. Conversely, POU4F1 overexpression significantly
promoted proliferation (Figures 8C, D). Additionally, the EdU assay
revealed that POU4F1 knockdown attenuated COAD cell
proliferation, while POU4F1 overexpression increased
proliferation (Figures 8E, F). The Transwell migration assay
indicated that POU4F1 knockdown significantly reduced the
number of migrated cells, while POU4F1 overexpression
significantly increased the number of migrated cells (Figures 8G,
H). During cell senescence, the B-galactosidase (B-gal) staining
assay demonstrated that POU4F1 knockdown significantly
promoted [-gal expression (Figures 81, J). To further evaluate the
synergistic role of POU4F1 in disulfidptosis, we used a glucose-
deprived medium to culture COAD cells. The results of the CCK-8
assay revealed that POU4F1 knockdown significantly attenuated
cell death induced by glucose deprivation, while POU4F1
overexpression significantly amplified cell death (Figures 8K-N).

Discussion

Colorectal adenocarcinoma (COAD) has emerged as a
significant global medical challenge attributed to environmental
factors and genetic mutations and has an alarming increase in
younger patients. Advances in gene sequencing technology and the
accessibility of public genetic databases have enabled us to predict
COAD prognosis by quantifying molecular prognostic markers and
constructing prognostic models (16). Disulfidptosis, which is a
newly recognized form of regulated cell death in cancers with
high SLC7A11 expression under glucose starvation conditions, is
a novel therapeutic strategy for treating malignant tumors (7, 8). In
this study, we developed a prognosis prediction model based on
disulfidptosis-related genes using LASSO and Cox regression
analyses. Subsequently, we identified a key gene in this model,
namely, POU4F], for further functional analysis.

Risk prediction models have been developed for various
cancers, including cervical cancer, bladder cancer, and colorectal
cancer, based on disulfidptosis-related genes (DRGs). For colorectal
cancer specifically, a previous study constructed a risk prediction
model based on genes, achieving an AUC of 0.567 at 1 year (17).
Another study developed a model based on four IncRNAs, with an
AUC of 0.679 at 1 year (18). In comparison to these studies, our
research established a risk prediction model with an AUC of 0.793
using DRGs based on DRGs obtained from CRISPR Cas9 screening
results that Gan et al. published. The superiority of our model was
further validated using internal testing and external validation sets,
which achieved AUC values of 0.781 and 0.762, respectively. The
robustness and practicality of our model were assessed using a
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nomogram, which demonstrated an improved prediction accuracy The tumor microenvironment (TME) has garnered significant
with an AUC of 0.845 based on the risk score. These results attention due to its crucial role in tumor immunosuppression,
highlight the favorable predictive accuracy and practical value of  distant metastasis, and drug resistance (19). The TME is
our DRG prognostic model. primarily composed of tumor cells, infiltrating immune cells,
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cancer-related stromal cells, endothelial cells, and other
components (20, 21). Among the various stromal cells within the
TME, cancer-related fibroblasts (CAFs) are recognized as key
contributors that exhibit tumor-promoting effects and participate

Frontiers in Immunology

126

in multiple stages of tumor development through various pathways
(22, 23). Tumor endothelial cells, another important type of stromal
cell in the TME, have been reported to release “angiocrine factors”
that promote tumor progression (24). Through a correlation
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FIGURE 8

POUA4F1 promotes cell proliferation, migration, and disulfidptosis in colon adenocarcinoma (COAD). (A—D) A CCK-8 assay was used to measure the
effect of POU4F1 knockdown or overexpression in SW480 and HCT116 cells. Representative images (E) and the quantified results (F) of the EdU cell
proliferation assay for COAD cells with POU4F1 knockdown or knockdown. Representative images (G) and the quantified results (H) of the Transwell
cell migration assay for COAD cells with POU4F1 knockdown or knockdown. Representative images () and the quantified results (J) of the B-
galactosidase staining assay for COAD cells with POU4F1 knockdown or knockdown. (K—N) A CCK-8 assay was used to measure the cell death
induced by glucose deprivation in COAD cells with POU4F1 knockdown or knockdown. Compare with shNC, # p<0.05, ## p<0.01, ### p<0.001;

compare with Blank, * p<0.05, ** p<0.01, *** p<0.001

analysis, we found that the risk score derived from our model was
positively correlated with the stromal score and the infiltration of
endothelial cells and CAFs. Additionally, the risk score was
correlated with the expression of several immune checkpoint
molecules, including BTLA, CTLA4, and SIRPA. Immune
checkpoint genes regulate the immune system by either
stimulating or suppressing immune responses, and this regulatory
mechanism is widely observed in tumors under physiological

conditions (25). Gene set enrichment analysis (GSEA) revealed
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potential biological processes associated with the risk score. Our
findings indicate that the risk score is correlated with DNA
replication, cytochrome complex assembly, and base excision
repair. Moreover, we observed a positive correlation between
the risk score and the expression of multiple oncogenes and
cell senescence-associated genes. Cellular aging, characterized by
permanent cell cycle arrest, is characterized by various physiological
and pathological processes, such as tissue remodeling, injury,
cancer, and aging. While cellular aging acts as an effective barrier
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to prevent tumors, there are instances where aged cells can support
tumor progression (26). These results suggest that our risk
prediction model based on DRGs has potential as an indicator for
predicting immune microenvironment homeostasis, evaluating
immune checkpoint blockade therapy, and assessing the
biological functional status of tumors. Although this study
proposes a prognostic prediction model based on DRGs and
preliminarily validates the role of POU4F1 in COAD, these
findings remain hypothetical and require additional experimental
validation and clinical research to confirm their effectiveness in
practical clinical applications.

Among the 20 DRGs included in our risk prediction model, we
focused on POU4F1, which demonstrated the highest normalized Z
score based on CRISPR screening. Our aim was to investigate its role
in regulating biological functions and cell death in COAD cells.
Previous studies have identified POU4F1 as a factor that induces
resistance to trastuzumab in breast cancer cells by mediating the
ERK1/2 pathway (27). As a transcription factor, POU4F1 has been
shown to transcribe and regulate the expression of MEK in
melanoma, thereby reactivating the MAPK pathway and leading to
resistance against BRAF inhibitors (28). Our findings indicate that
POU4F1 may act as an oncogene due to its upregulation in COAD
tumors and its positive correlation with the expression of oncogenes.
Furthermore, survival analysis revealed that a high POU4F1
expression was associated with a poor prognosis in COAD patients.
Further in vivo assays indicated that POU4F1 knockdown
significantly attenuated cell proliferation and migration while
increasing cell senescence in COAD cells. Our research highlights
the nuanced roles of SLC7All1 and POU4F1 in COAD, where
SLC7A11 overexpression may inhibit metastasis, in contrast with
the ability of POU4F1 to facilitate tumor growth and migration,
suggesting that gene functions vary significantly across cancers due to
unique genetic and epigenetic landscapes (29). We further evaluated
the regulatory effect of the DRGs on disulfidptosis by culturing the
cells in a glucose-deprived medium. The results demonstrated that
POU4F1 knockdown inhibited glucose deprivation-induced cell
death, while POU4F1 overexpression promoted cell death. These
results revealed that POU4F1 has important effects on the
proliferation, migration, and senescence of COAD cells as well as
disulfidptosis. In summary, our study revealed and validated a risk
prediction model based on DRGs in COAD patients. Furthermore,
we have provided evidence that POU4F1 promotes cell proliferation,
migration, and disulfidptosis in COAD.

In conclusion, our study revealed and verified a risk prediction
model based on disulfidptosis-related genes (DRGs) in COAD
patients. The risk score is related to immune microenvironment
homeostasis, expression of immune checkpoints, and tumor
biological functions. POU4F1, a crucial component of this model,
has been confirmed to promote cell proliferation, migration, and
disulfidptosis in COAD cells. This prognostic model not only
enhances our understanding of COAD progression mechanisms
but also provides a new tool for the stratified management of
colorectal cancer patients, allowing clinicians to more accurately
predict patient prognosis and formulate personalized treatment
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plans, thereby improving treatment outcomes and patient
survival rates.
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CX3CL1 release during
Immunogenic apoptosis

Is associated with enhanced
anti-tumour immunity
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Ghent, Belgium, 2Cancer Research Institute Ghent, Ghent, Belgium, *Institute of Biology and
Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny
Novgorod, Russia

Introduction: Immunogenic cell death (ICD) has emerged as a novel option for
cancer immunotherapy. The key determinants of ICD encompass antigenicity (the
presence of antigens) and adjuvanticity, which involves the release of damage-
associated molecular patterns (DAMPs) and various cytokines and chemokines.
CX3CL1, also known as neurotactin or fractalkine, is a chemokine involved in
cellular signalling and immune cell interactions. CX3CL1 has been denoted as a
“find me” signal that stimulates chemotaxis of immune cells towards dying cells,
facilitating efferocytosis and antigen presentation. However, in the context of ICD,
it is uncertain whether CX3CL1 is an important mediator of the effects of ICD.

Methods: In this study, we investigated the intricate role of CX3CL1 in
immunogenic apoptosis induced by mitoxantrone (MTX) in cancer cells. The
Luminex xMAP technology was used to quantify murine cytokines, chemokines
and growth factors to identify pivotal regulatory cytokines released by murine
fibrosarcoma MCA205 and melanoma B16-F10 cells undergoing ICD. Moreover,
a murine tumour prophylactic vaccination model was employed to analyse the
effect of CX3CL1 on the activation of an adaptive immune response against
MCA205 cells undergoing ICD. Furthermore, thorough analysis of the TCGA-
SKCM public dataset from 98 melanoma patients revealed the role of CX3CL1
and its receptor CX3CR1 in melanoma patients.

Results: Our findings demonstrate enhanced CX3CL1 release from apoptotic
MCA205 and B16-F10 cells (regardless of the cell type) but not if they are
undergoing ferroptosis or accidental necrosis. Moreover, the addition of
recombinant CX3CL1 to non-immunogenic doses of MTX-treated,
apoptotically dying cancer cells in the murine prophylactic tumour vaccination
model induced a robust immunogenic response, effectively increasing the
survival of the mice. Furthermore, analysis of melanoma patient data revealed
enhanced survival rates in individuals exhibiting elevated levels of CD8+ T cells
expressing CX3CR1.
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Conclusion: These data collectively underscore the importance of the release of
CX3CL1 in eliciting an immunogenic response against dying cancer cells and
suggest that CX3CL1 may serve as a key switch in conferring immunogenicity

to apoptosis.

KEYWORDS

immunogenic apoptosis, fractalkine, cytokines, immunogenic cell death,

chemokines, CX3CL1

1 Introduction

Immunogenic cell death (ICD) has emerged as a paradigm-
shifting concept in the field of immunology and cancer
therapeutics. It combines the ability to kill cancer cells and
restore the lost immunological ability to identify and interact
with dying cancer cells. This leads to the stimulation of innate
and adaptive immune responses, and thereby establishment of
long-term immunological memory (1). ICD is an overarching
term that includes cell death modalities such as apoptosis (2),
necroptosis (3-5), and ferroptosis (6-8). It can be induced by
specific stimuli, including oncolytic viruses (9), conventional
chemotherapeutics such as mitoxantrone (MTX) (10), and
physical interventions such as radiotherapy, including heavy ions
(11) or X-rays radiotherapy (12), or photodynamic therapy (13).
Perturbation of endoplasmic reticulum (ER) homeostasis and
activation of ER stress pathways, also known as the unfolded
protein response (14), together with the generation of reactive
oxygen species, are essential components of nearly (15) all
scenarios in which ICD occurs (16-18). For cell death to possess
immunogenic properties also requires both antigenicity and
adjuvanticity (1, 19, 20). Antigenicity refers to the availability of
either tumour-speciﬁc antigens, tumour-associated antigens, or
neo-antigens, which enable the specific recognition and killing of
the tumour cells by the immune system. Adjuvanticity involves the
spatio-temporal release of damage-associated molecular patterns
(DAMPs) and pro-inflammatory cytokines/chemokines from the
dying cancer cells. This triggers the recruitment, activation and
maturation of antigen-presenting cells (APCs), such as dendritic
cells, via their respective pattern recognition receptors (PRRs).
Several crucial DAMPs and cytokines have been discovered,
including but not limited to high-mobility group Bl, surface-
exposed calreticulin, extracellular secretion of adenosine
triphosphate, annexin Al and several members of the type 1
interferon family (1, 21). Upon engulfment of dying tumour cells,
APCs undergo activation and maturation characterised by
upregulation of major histocompatibility complex class II
molecules and costimulatory markers, such as CD80 and CD86,
while migrating to the tumour-draining lymph nodes to present
cancer antigens to CD8" T cells. The activated cytotoxic CD8" T
lymphocytes then relocate to the tumour site, releasing interferon
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gamma, promoting eradication of the neoplastic lesion, and
stimulating the formation of a long-lasting immunological
memory against the tumour (1, 22).

CX3C chemokine ligand 1 (CX3CL1), originally named
neurotactin (23) and later fractalkine (24), is a chemokine
intricately involved in cell signalling and in immune cell
recruitment and activation (25). CX3CLI1 can exist as a
membrane-bound variant (mCX3CL1) serving as an adhesion
protein for cells expressing the CX3CL1 receptor (CX3CR1),
including various immune cell types such as NK cells, monocytes,
dendritic cells, granulocytes, and CD3" T cells (24, 26, 27).
Conversely, the soluble form of CX3CL1 (sCX3CL1), which is
released upon proteolytic cleavage of mCX3CL1, predominantly
exerts a potent chemoattractant function (24, 25, 27-30).
Importantly, CX3CL1 has been identified as a “find me” signal
that attracts immune cells towards dying cells, facilitating
efferocytosis (31-35). However, in the context of ICD, it remains
uncertain whether CX3CL1 is an important mediator of the effect of
ICD or, due to its potential pro-tumourigenic features (36-42),
might act as a “keep out” signal, hindering efferocytosis and the
initiation of an effective ICD immune cycle (43, 44).

In this study, we assessed the secretion of CX3CL1 from MTX-
treated murine fibrosarcoma MC205 and melanoma B16-F10 cells
undergoing immunogenic apoptosis (i.e., apoptotic cell death
exhibiting ICD characteristics (10, 45)), and explored its potential
as a mediator of anti-tumour immunity during ICD. Our results
demonstrate that CX3CLLI is released specifically during apoptotic
cell death regardless of the cell type. Furthermore, the addition of 1
ng or 10 ng of recombinant CX3CL1 (rCX3CL1) to a non-
immunogenic dose of dying/dead cancer cells for prophylactic
vaccination of mice significantly increased the tumour-free
survival of mice and restored immunogenicity of dying cancer
cells. In addition, analysis of publicly available human database
(The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-
SKCM)) containing data from 98 melanoma patients revealed a
correlation between high levels of CX3CR1 expression and higher
overall survival probability. Moreover, CX3CR1 was predominantly
associated with increased presence of CD8" T cells, and a high level
of CX3CRI expression was correlated with increased expression of
CD8" T cell signature. These findings identify CX3CL1 as an
effective mediator of an adaptive immune response during
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immunogenic apoptosis and position it as a promising therapeutic
adjuvant in ICD-based treatment.

2 Materials and methods
2.1 Cell lines and cell culture

Murine fibrosarcoma MCA205 cells were cultured in Roswell
Park Memorial Institute (RPMI) 1640 (Gibco, 21875-034)
supplemented with heat-inactivated foetal bovine serum (FBS,
Thermo Fisher Scientific, 10%, 10270-106), penicillin (100 U/
mL), and streptomycin (Gibco, 100 pg/L, 15140-122). B16-F10
murine melanoma cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) (Gibco, 10938-025) supplemented with
10% FBS, 1% L-glutamine (Gibco, 25030-024), 1% sodium pyruvate
(Gibco, 11360-039) and 1% penicillin/streptomycin. All cells were
maintained under constant conditions of 37°C, 5% CO,, and a
humidified atmosphere in a cell culture incubator. The medium was
changed every two days, and detaching and splitting of cells were
done using trypsin-EDTA (0.05%) (Gibco, 25300-054).

2.2 Cell death assay by flow cytometry

Cells were stimulated with 2 uM mitoxantrone (MTX) (Sigma
Aldrich, M6545) or 2.5 uM RAS-selective lethal 3 (RSL3) (Sigma
Aldrich, SM12234) for 24 h. The cells were washed in Annexin-V
binding buffer (10 mM HEPES, pH 7.4, 0.14 mM NaCl, and 2.5 mM
CaCl,), followed by staining with Sytox Blue Nucleic Acid Stain
(Molecular Probes, S11348, 2.5 mM), Annexin-V (AnV), and Alexa
Fluor 488 conjugate (Molecular Probes, A13201). The cells were run
on a Becton Dickinson (BD) LSRII flow cytometer, and the data
were analysed by using FlowJo software (V.10.0.8). Flow cytometry
experiments were performed at the Core Flow Cytometry (BOF/
COR/2022/001) at Ghent University.

2.3 Multiplex analysis of cytokines

Supernatants of treated cells was analysed using the Luminex
XMAP technology. The multiplexing analysis was performed using
the Luminex " 200 system (Luminex, Austin, TX, USA) by Eve
Technologies Corp (Calgary, Alberta). The samples were
simultaneously measured using Eve Technologies’ Mouse Cytokine
Discovery Assay® (MD44). The assay was run according to the
manufacturer’s protocol. Assay sensitivities of these markers range
from 0.3-30.6 pg/mL. Individual analyte sensitivity values are
available in the Millipore Sigma MILLIPLEX® MAP protocol.

2.4 Mice

The in vivo experiments were performed on immune-
competent C57BL/6] mice (7-9 weeks old) (Janvier Labs, France).
The mice were housed in specific pathogen-free conditions. All in
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vivo experiments were conducted according to the guidelines of the
local Ethics Committee of Ghent University at the Core ARTH
Animal Facilities at Ghent University (Belgium).

2.4.1 Prophylactic tumour vaccination
mice model

To confirm the role of CX3CL1 in immunogenic apoptosis, a
non-immunogenic dose of MTX-treated MCA205 cells was used in
the prophylactic tumour vaccination mouse model. MCA205
cancer cells were seeded at a density of 2 x 10° cells per flask and
induced to undergo cell death with 2 uM MTX for 24 h. After
incubation overnight, 2.5 x 10> MTX-treated MCA205 cells (non-
immunogenic dose) or 5 x 10° dying cancer cells were collected in
PBS (200 pL per mouse, Gibco, 14190-144). Cell death analysis was
performed using flow cytometry (See 2.2). The cells were injected
subcutaneously (s.c.) in the left flank of C57BL/6] mice. After seven
days, the mice were challenged with 10° viable/untreated MCA205
cells in the opposite (right) flank, and tumour growth on both sides
was measured with a digital calliper.

By using a non-immunogenic dose, the recovery of
immunogenicity by CX3CL1 was investigated further. MCA205
cancer cells were seeded at a density of 2 x 10° cells per flask and
induced to undergo apoptosis with 2 uM MTX for 24 h. After
incubation overnight, 2.5 x 10°> dying cancer cells (non-immunogenic
dose) were collected and mixed with different doses (0, 1, 10 or 100 ng)
of recombinant murine CX3CL1 (R&D system, 472-FF/CF) in PBS at a
volume of 200 pL per mouse. Cell death analysis was performed using
flow cytometry (See 2.2). The cells were s.c. injected in the left flank of
C57BL/6] mice. Mice injected only with PBS or only recombinant
murine CX3CL1 (1 ng, 10 ng or 100 ng) served as negative controls.
Seven days post-immunisation, the mice were challenged as described
above. Tumour growth was monitored with the digital calliper once
every two days for up to 21 days after challenge. When a tumour
became too big (> 1,500 mm?) or an open necrotic lesion developed,
the mouse was euthanised by cervical dislocation.

2.4.2 Therapeutic tumour mice model

5 x 10> MCA205 cells were injected s.c. in the right flank of
C57BL/6] mice. After 7 days, when the tumour had reached about
20-45 mm?>, the mice were treated intraperitoneally (i.p.) with 100
uL of 5.2 mg/kg MTX in PBS. 12 h and 24 h after treatment, the
mice were injected intratumourally with 1 or 10 ng CX3CLI in 10
uL of PBS or, for the control mice, with PBS only. This was repeated
on day 14. The efficacy of therapy was analysed by monitoring
tumour growth with a digital calliper once every two days for up to
29 days after tumour cell injection. When a tumour became too big
(> 1,500 mm®) or became an open necrotic lesion, the mouse was
euthanised by cervical dislocation.

2.5 Public dataset

RNA-sequencing (RNA-seq) data and corresponding patient
clinical information of the TCGA-SKCM project were downloaded
from The Cancer Genome Atlas (https://portal.gdc.cancer.gov/).
Patients with no reported vital status (alive or dead), with recurrent
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tumour, or with an unknown survival time were excluded. The
TCGA-SKCM dataset comprises 98 patients with a primary
tumour, of whom 28 have a vital status of ‘Dead’ and 70 have a
vital status of ‘Alive’. For analysis, we used STAR-count files
containing the number of mapped reads (counts) for each gene.
The non-protein-coding genes were filtered out, leaving 19,938
genes. The expression count data were normalised by transcripts
per million (TPM) and then transformed to log, values.

2.5.1 Survival analysis

Survival analysis of patients from the public dataset was
performed in Python using the lifelines v0.27.4 package. For each
specific gene, patients were divided into two groups based on
median expression level (high or low). Overall survival was
estimated using the Kaplan-Meier method. Log-rank test
(Mantel-Cox) was used to compare the statistical differences
between groups, and a p-value < 0.05 was considered statistically
significant. Where survival curves intersected, a weighted log-rank
test (Fleming-Harrington test) was additionally used for evaluation.
Depending on the values of parameters p and q, this test can
determine early (p > q) or late (p < q) differences in survival. For p =
q = 0, the test reduces to the unweighted log-rank test.

2.5.2 Estimation of tumour-infiltrating cells

The immunedeconv v2.0.4 (46) R package was used to analyse
the abundance of immunocyte infiltration from bulk gene
expression data. This package evaluates cell proportions using
algorithms such as EPIC (47), TIMER (48), quanTIseq (49),
MCP-counter (50) and xCell (51).

2.6 Statistical analysis

Statistics for the public dataset were calculated in Python
using the scipy v.1.9.3 package. As the data were often not
normally distributed according to the Shapiro-Wilk test, a
nonparametric Mann-Whitney U test was used to evaluate the
differences between two groups. P-values < 0.05 were considered
statistically significant.

Statistical analysis with one-way or two-way Analysis of
Variance (ANOVA) and graphs were plotted in GraphPad Prism
(V.8.0.1). Kaplan-Meier survival curves showing the timelines of
tumour development were analysed by log-rank Mantel-Cox test.
Differences between groups were considered significant if the
corresponding p-value was < 0.05.

3 Results

3.1 CX3CL1 release is associated with
immunogenic apoptosis

Different types of cell death modalities (i.e., apoptosis,

ferroptosis and accidental necrosis) were induced in both murine
fibrosarcoma (MCA205) (Figures 1A, B) and melanoma (B16-F10)
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cells (Figures 1D, E). MCA205 and B16-F10 are commonly used cell
lines in ICD studies (6, 13, 45, 52). Immunogenic apoptosis was
induced with MTX for 24 h (10, 45), ferroptosis (non-
immunogenic) was induced with RSL3 (6), and accidental
necrosis of low immunogenicity was induced with three freeze/
thaw (F/T) cycles (6, 13, 53, 54). The used cell death inducers have
already been extensively described and defined (6, 10, 13, 45, 53,
54). Treatment for 24 h with RSL3 or F/T cells were used as negative
controls because they do not induce the characteristics of ICD (6).
Cell death rates, quantified by AnV and Sytox blue staining, were
comparable with previously published data (6), i.e. approximately
20% for MTX (Figures 1A, D). Sytox Blue positivity refers to cell
membrane permeabilisation and, together with positive AnV
staining, detects a late phase of cell death, while single AnV
positivity occurs at an early phase of cell death (6). Since B16
cells are resistant to RSL3 (55, 56), it was not used for BI16.
Supernatants were collected from the dying murine fibrosarcoma
MCA205 and melanoma B16-F10 cells, as well as from viable cells
as a control, and analysed for cytokine secretion using the Luminex
xMAP technology from Eve Technologies. CX3CL1 was associated
only with MTX-treatment (i.e., immunogenic apoptosis) despite the
limited membrane permeabilisation (Figures 1C, F). This release
from both cancer cell types excludes the possibility of effects specific
to a particular cancer cell type. During late ferroptosis in MCA205
cells, CX3CLI levels remained unaltered compared to the viable
control, whereas during accidental necrosis, the levels of CX3CL1
even diminished in both MCA205 and B16-F10 cells. These data
suggest a strong association of CX3CL1 secretion with the specific
induction of immunogenic apoptosis but not with the other cell
death modalities.

3.2 CX3CL1 reverts non-immunogenic
apoptosis to ICD

To investigate the importance of CX3CL1 secretion in
immunogenic apoptosis, the tumour prophylactic vaccination
mouse model was used (Figures 2A, C). Mice were vaccinated
with MTX-treated MCA205 cells in one flank and one week later
challenged in the opposite flank with viable cancer cells of the same
cancer type. For this experiment, a non-immunogenic low-dose of
MTX-treated MCA205 cells was used for vaccination (Figures 2A,
B). Vaccination of mice with 5 x 10> MTX-treated MCA205 cells
protected approximately 70% of the mice against tumour challenge,
whereas the half-dose of 2.5 x 10° cells protected only 20% of the
mice (Figure 2B). Therefore, this so-called non-immunogenic dose
of 2.5 x 10° cells was used in the following experiments. Doses of 1
ng, 10 ng or 100 ng of murine rCX3CL1 were added to the non-
immunogenic dose of MTX-treated cancer cells to analyse whether
the addition of CX3CL1 can enhance the immunogenicity of dying
cancer cells (Figure 2C). Indeed, addition of 1 ng or 10 ng of
rCX3CLI effectively increased tumour-free survival (p = 0.0084) in
mice from 10% (non-immunogenic MCA205 MTX only) to 50%,
demonstrating restored immunogenicity (Figure 2D). Interestingly,
the addition of a dose of 100 ng rCX3CL1 to the MTX-treated
cancer cells did not increase tumour-free survival and vaccination
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FIGURE 1

Sytox Blue-Pacific Blue

CX3CL1 release is associated with immunogenic apoptosis. (A, D) Cell death measured by flow cytometry of MCA205 cells (A) and B16-F10 cells (D)
treated with 2 uM or 8 uM MTX (MCA205 and B16-F10 respectively), 2.5 uM RSL3, or three cycles of F/T. Quantification was done by AnV and Sytox
Blue staining. The values are the means + SEM and represent three independent experiments. (B, E) Representative dot plots of the cell death
measurement shown in (A, D). (C, F) The concentration (pg/mL) of CX3CL1 measured in the supernatants of dying cells using Luminex xMAP
technology. The values are the means + SEM and represent three independent experiments. Statistical significance was calculated by one-way
ANOVA followed by Tukey's multiple comparisons test: **p < 0.01, ****p < 0.0001. MTX, mitoxantrone; RSL3, RAS-lethal selective 3; F/T, freeze/

thaw; AnV, Annexin-V; Sytox, Sytox Blue

with rCX3CL1 alone (i.e., without MTX-treated cancer cells) did
not exhibit any effect (Supplementary Figure S1). These data
indicate the importance of CX3CLI secretion in establishing an
effective immune response during immunogenic apoptosis,
although this occurs only for an appropriate dose. Of note, the
therapeutic effect of CX3CLI during MTX treatment in MCA205
tumour-bearing mice decreased the tumour size but this decrease
was not statistically significant (Supplementary Figure S2).

3.3 CX3CR1 is associated with increased
CD8+ T cells and increased patient survival

To understand the relevance of CX3CL1 in human patients, a
cohort of 98 SKCM patients was thoroughly screened utilising the
publicly available TCGA dataset. We found that the presence of
the receptor of CX3CL1, CX3CRI, was associated with a
significantly higher five-year survival of melanoma patients (log-
rank Mantel-Cox test, p = 0.04) (Figure 3A). Additionally, a late-
weighted Fleming-Harrington test also showed a significant
difference in survival (p=4.85e-03). Moreover, CX3CR1 was
mainly associated with CD8" cytotoxic T cells (Figure 3B).
Finally, a high expression level of CX3CRI in melanoma
patients was correlated with increased abundance of cytotoxic
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CD8" T-cells (Figure 3C). Taken together, the increase of CX3CL1
results in mobilisation and recruitment of CX3CR1-positive cells.
A heightened abundance of CX3CRI in melanoma patients,
particularly associated with increased presence of CD8" T cells,
was correlated with increased overall survival probability among
the individuals with melanoma.

4 Discussion

We examined the secretion of CX3CL1 from MTX-treated
cancer cells undergoing immunogenic apoptosis and its potential
role as a mediator of anti-tumour immunity during ICD. In our
study, CX3CLI1 was released exclusively during apoptotic cell death
induced by MTX in murine fibrosarcoma MCA205 and melanoma
B16-F10 cells. Moreover, in prophylactic vaccination of mice, the
addition of 1 ng or 10 ng of rCX3CL1 to non-immunogenic doses of
dying/dead cancer cells significantly enhanced tumour-free survival
and restored immunogenicity of the dying cancer cells.
Furthermore, analysis of the TCGA-SKCM database of data from
98 melanoma patients revealed a significant correlation between
increased CX3CRI1 expression and the patients’ improved overall
survival probability. In addition, CX3CR1 was predominantly
associated with increased abundance of CD8" T cells, with high
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FIGURE 2

CX3CL1 reverts non-immunogenic apoptosis to ICD. (A) Schematic representation of the tumour prophylactic vaccination mouse model. On day 0,
mice were vaccinated in the left flank with either 5 x 10° or 2.5 x 10° MTX-treated MCA205 cells. On day 7, the mice were challenged in the opposite
flank with 10° viable cancer cells of the same type and tumour growth was monitored with a digital calliper. (B) Kaplan-Meier curve of the progression
of tumour development over time. The reduction of dose of MTX-treated MCA205 cells from 5 x 10° cells to 2.5 x 10° cells significantly decreased
tumour-free survival from 70% to 20%. The statistical differences were calculated by a log-rank (Mantel-Cox) test. Survival curves comparison:

**p < 0.01. (C) Schematic representation of the tumour prophylactic vaccination mouse model. On day 0, mice were vaccinated in the left flank with
either PBS, 2.5 x 10°> MTX-treated MCA205 cells alone or 2.5 x 10° MTX-treated cells in combination with different doses of recombinant CX3CL1

(1 ng, 10 ng or 100 ng). On day 7, mice were challenged in the opposite flank with 10° viable cancer cells of the same type and afterwards tumour
growth was followed with a digital calliper. (D) Kaplan-Meier curve of the progression of tumour development over time. The addition of 1 ng or 10 ng
of rCX3CL1 to MTX-treated MCA205 cells significantly increased tumour-free survival from 10% (MCA205 MTX alone) to 50%. Interestingly, 100 ng of
rCX3CL1 had no significant effect on tumour-free survival. The statistical differences were calculated by a log-rank (Mantel-Cox) test. Survival curves

comparison: *p < 0.05, **p < 0.01, ***p < 0.001. ICD, immunogenic cell death; MTX, mitoxantrone; PBS, phosphate-buffered saline; rCX3CL1,
recombinant CX3CL1.
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FIGURE 3

CX3CR1 is associated with increased CD8" T cells and increased patient survival probability. (A) The association between CX3CR1 expression and
overall survival (OS) in the TCGA-SKCM dataset. OS curves were generated by setting median expression as cut-off. (B) Statistical analysis of cell

infiltration stratified based on CX3CR1 expression in the TCGA-SKCM dataset. Cellul

ar deconvolution was performed by five algorithms (EPIC, TIMER,

quanTlseq, MCP-counter and xCell). The orange square means that the abundance of cells is significantly greater in patients with a high expression
level of the receptor than in those with a low expression level. A grey square means that cell proportion does not differ statistically between groups,
ns — not significant. A dash means that the method does not determine the proportions of the corresponding cells. Mann-Whitney U test, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Boxplots of CD8+ T-cell signature expression stratified according to CX3CR1 expression in the TCGA-
SKCM dataset. High (coral) and low (cyan) expression level groups were generated by setting median expression as cut-off. Mann-Whitney U test, *p

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant

CX3CR1 expression levels correlating with increased CD8" T
cell signature.

Cytokines and chemokines are recognised as crucial regulators
in cancer development, cell dynamics within the tumour
microenvironment, and intercellular signalling processes. These
molecular mediators are also an integral part of ICD, acting as
signals for cellular recruitment (“find me” and “eat me” signals), as
well as for immune evasion (“keep out” and “don’t eat me” signals)
(1). The concept of ICD has gained significant attention as a novel
immunotherapeutic strategy and is characterised by the release of
DAMPs and pro-inflammatory cytokines/chemokines that can be
detected by APCs via their corresponding PRRs (21). This drives the
recruitment of APCs to the tumour site, facilitates recognition,
engulfment, and subsequent processing and presentation of tumour
antigens by APCs, and provides guidance for cytotoxic
lymphocytes. CX3CL1 has been described as an important
chemokine that can be implicated in the context of cancer,
although controversies persist regarding the properties and
activities of this chemokine due to its pro- and anti-cancer
characteristics (25). But what is the role of CX3CL1 during ICD,
in particular during immunogenic apoptosis?

In our experimental findings, we demonstrated that CX3CL1
was only detected in the supernatants of MTX-treated
immunogenic apoptotic fibrosarcoma MCA205 and melanoma
B16-F10 cells, and to a significantly lesser extent in the
supernatants of viable cancer cells, RSL3-treated non-
immunogenic late ferroptotic (6) cancer cells and non-

Frontiers in Immunology

immunogenic F/T accidentally necrotic cancer cells (Figures 1C,
F). This indicates the exclusivity of CX3CL1 release during
immunogenic apoptosis, suggesting its potential role in mediating
immunogenicity of cancer cells undergoing apoptotic ICD. The
receptor for CX3CL1, CX3CRI, is expressed on various immune
cells, including NK cells, monocytes, dendritic cells, granulocytes,
and CD3" T cells, stimulating their adhesion, retention, and
transendothelial migration to sites characterised by strong
inflammatory reactions (24, 57). It has been shown that sCX3CL1
also serves as a potent chemoattractant for these CX3CRI-
expressing immune cells, enabling their chemotaxis towards the
cancer niche and activation of their anti-cancer functions (24, 30,
58-61). Moreover, CX3CL1 expression is crucial for dendritic cell
migration, maturation, and adhesion to T cells (58), while the
presence of CX3CL1 on mature dendritic cells also activates resting
NK cells (62). Hence, the release of CX3CLI by the MTX-induced
dying cancer cells (Figures 1C, F) may establish a gradient directed
towards the tumour, presumably augmenting CX3CR1" immune
cell migration along the gradient and activation of an anti-tumour
immune cycle. Nevertheless, it is important to note that the
upregulation of CX3CRI expression may be associated with
increased expression of this protein on the tumour cells, which
may result in metastasis when the cancer cells enter the bloodstream
and bind CX3CR1 on endothelial cells (25). However, due to the
elevated concentration of CX3CL1, cancer cells expressing CX3CR1
might also be retained within the tumour and become the target of
immune cells.
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Furthermore, we demonstrated that the addition of CX3CL1 to
a non-immunogenic dose of MTX-treated dying cancer cells is
sufficient to elicit an immunogenic response in a tumour
prophylactic mouse model, thereby revealing CX3CL1 as a power
switch of immunogenic apoptosis induced by MTX (Figure 2D).
Since it has been shown that CX3CL1 enhances efferocytosis of
apoptotic thymocytes (34), it is conceivable that the presence of
CX3CL1 in the prophylactic vaccine may lead to increased
recruitment of phagocytes and clearance of dying cancer cells,
consequently culminating in an overall improved anti-tumour
immunity. However, the presence of CX3CL1 can also be
associated with tolerogenic apoptosis (63). This underscores the
nuanced and context-dependent role of CX3CL1 during cell death,
where different factors intricately interact to determine the ultimate
outcome. During immunogenic apoptosis, the secretion of other
DAMPs fosters the anti-tumour effect, whereas during tolerogenic
apoptosis DAMPs release is minimal, thus constraining the
activation of an adaptive immune response. Therefore, it will be
interesting to determine the differences in CX3CL1 secretion
between tolerogenic apoptosis and immunogenic apoptosis, as the
quantity of CX3CLI secretion might be the key to shifting
tolerogenic cell death towards an immunogenic form. In addition,
it is important to note that prophylactic vaccination of mice with
CX3CLI alone (i.e., without any MTX-treated cancer cells) had no
effect on the tumour-free survival of the mice (Supplementary
Figure S1), logically due to the absence of any antigens
(antigenicity) or other DAMPs (adjuvanticity) during vaccination.

Remarkably, our findings from the tumour prophylactic
vaccination experiments (Figure 2D) demonstrate that only lower
doses (1 ng or 10 ng) of CX3CL1 exhibit an enhanced anti-tumour
effect of ICD, whereas use of a high dose (100 ng) leads to almost
complete absence of the anti-tumour effect (Figure 2D). This
observation might indicate that the inherently inflammatory
nature of CX3CL1 could contribute to hyperinflammation at
higher doses, potentially promoting a pro-tumourigenic
environment. Moreover, lack of sufficient DAMPs (due to a non-
immunogenic dose of MTX-treated cancer cells) and excessive
influx of immune cells (30, 58, 59) (due to a high CX3CL1 dose)
might diminish activation of infiltrating immune cells, leading to an
immunosuppressive phenotype and thus loss of the anti-tumour
effect in the presence of a high dose of CX3CLI. Although gene
therapy involving the transfer of CX3CLl to cancer cells was
demonstrated to induce a robust anti-cancer effect (64-66), we
did not see a significant reduction in tumour size following co-
treatment with CX3CL1 and MTX in the therapeutic mouse model
(Supplementary Figure S2). It is conceivable that the supplementary
CX3CL1 introduced alongside the already secreted CX3CL1 by the
MTX-treated tumour cells resulted in an excessively high
concentration of CX3CL1, which ceases to elicit an additive effect.

Of interest, analysis of RNA-seq data and corresponding patient
clinical information of the TCGA-SKCM of 98 melanoma patients
demonstrated a positive correlation between increased CX3CR1
levels and increased overall survival probability in the melanoma
patients, along with a discernible CD8" T cell signature (Figure 3).
CX3CRI1 has been reported to be associated with CD8" T cells that
respond to PDI therapy while resisting cell death during
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chemotherapy (67). Moreover, CX3CR1-deficient mice injected
with melanoma cells had increased tumour burden, cachexia, and
defective anti-tumour responses (68). It has also been shown that an
increase in CX3CL1 expression in the tumour is linked to improved
prognosis of many cancer patients with breast carcinoma (69),
colorectal cancer (70, 71) or lung adenocarcinoma (72), among
other cancers (70-75).

In summary, our study indicates that CX3CL1 serves as a potent
mediator of immunogenicity during immunogenic apoptosis
induced by MTX. CX3CL1 is released by immunogenic apoptotic
cancer cells regardless of the cancer cell type. Moreover, the
addition of CX3CL1 to non-immunogenic doses of MTX-treated
dying cancer cells in mouse prophylactic tumour vaccination
models resulted in the activation of an adaptive immune response
and effectively lengthened survival. In addition, an increase in
CX3CRI expression was correlated with increased overall survival
probability of melanoma patients and increased CD8" T cell
signature. Our data provide a rationale for exploiting CX3CL1 as
a future adjuvant to render therapy-induced cell death
immunogenic. The addition of CX3CL1 to other treatments could
affect their immunogenicity, unleashing their full immunogenic
potential during cell death in anti-cancer therapy. However, to
achieve an overall favourable immunogenic outcome, accurate
dosing of CX3CL1 might be of paramount importance.
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Instruction: Colorectal cancer (CRC) poses a challenge to public health and is
characterized by a high incidence rate. This study explored the relationship
between ferroptosis and fatty acid metabolism in the tumor microenvironment
(TME) of patients with CRC to identify how these interactions impact the
prognosis and effectiveness of immunotherapy, focusing on patient outcomes
and the potential for predicting treatment response.

Methods: Using datasets from multiple cohorts, including The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO), we conducted an in-depth
multi-omics study to uncover the relationship between ferroptosis regulators
and fatty acid metabolism in CRC. Through unsupervised clustering, we
discovered unique patterns that link ferroptosis and fatty acid metabolism, and
further investigated them in the context of immune cell infiltration and pathway
analysis. We developed the FeFAMscore, a prognostic model created using a
combination of machine learning algorithms, and assessed its predictive power
for patient outcomes and responsiveness to treatment. The FeFAMscore
signature expression level was confirmed using RT-PCR, and ACAA2
progression in cancer was further verified.

Results: This study revealed significant correlations between ferroptosis
regulators and fatty acid metabolism-related genes with respect to tumor
progression. Three distinct patient clusters with varied prognoses and immune
cell infiltration were identified. The FeFAMscore demonstrated superior
prognostic accuracy over existing models, with a C-index of 0.689 in the
training cohort and values ranging from 0.648 to 0.720 in four independent
validation cohorts. It also responses to immunotherapy and chemotherapy,
indicating a sensitive response of special therapies (e.g., anti-PD-1, anti-CTLA4,
osimertinib) in high FeFAMscore patients.
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Conclusion: Ferroptosis regulators and fatty acid metabolism-related genes not
only enhance immune activation, but also contribute to immune escape. Thus,
the FeFAMscore, a novel prognostic tool, is promising for predicting both the
prognosis and efficacy of immunotherapeutic strategies in patients with CRC.
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1 Introduction

Colorectal cancer (CRC) is one of the most prevalent malignant
tumors of the digestive system. According to the American Cancer
Society, approximately 81,860 patients with CRC were diagnosed
and 28,470 deaths occurred in the United States of America in 2023,
causing serious problems for patients and public health (1).
Although endoscopic screening has reduced the mortality and
morbidity rates of CRC in recent years, and recurrence and
metastasis remain major challenges (2). Currently, primary
treatments for CRC include surgery, chemotherapy, and
radiotherapy. Nevertheless, advances in immunotherapies,
including anti-PD-1, anti-PD-L1, and anti-CTLA4 treatments,
have presented a new and promising therapeutic paradigm for
CRC with significant potential efficacy (3). For instance, the
successful anti-PD-1 application in patients with CRC and
mismatch repair deficiency (AMMR) or high microsatellite
instability (MSI-H) significantly causes progression-free survival
in CRC (4, 5). A new combination of radiotherapy and
immunotherapy promotes robust antitumor immune priming (6,
7). However, these methodologies face constraints arising from
spatiotemporal heterogeneity, moderate precision, or limited
representation of population subsets (8-10). Consequently, in the
context of personalized treatment paradigms, the identification of
robust biomarkers is essential for optimizing prognosis and
enhancing the efficacy of drug therapies for CRC.

Ferroptosis, driven by biochemical and genetic components, is a
programmed cell death pathway reliant on iron and activated by lipid
peroxide buildup on cellular membranes. Its involvement extends to
tumor advancement and therapeutic responses across various
malignancies and is often intertwined with reactive oxygen species
(ROS) that participate in cancer-related pathways (10). Fatty acid
metabolism is a crucial cellular process that transforms nutrients into
metabolic intermediates used for membrane synthesis, energy
reservation, and signaling molecule production. This process has
garnered significant attention as a potential target for cancer therapy,
particularly because it is associated with regulatory and CD8+ T cells
(11-13). Glutathione peroxidase 4 (GPx4) and prolyl hydroxylase-3
(PHD3) represent significant regulators of ferroptosis and fatty acid
metabolism, respectively, emphasizing the potential role of both in
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immunotherapy (14, 15). Recent studies indicated a significant
association between fatty acid metabolism and ferroptosis.
Microsomal triglyceride transfer protein (MTTP)expression
increases in the body during fatty acid metabolism, which inhibits
ferroptosis and decreases the density of chemotherapy (16). Similar
results were observed for phospholipids containing a single
polyunsaturated fatty acyl tail (PL-PUFAIls), which are also
strongly correlated with ferroptosis (17). Additionally, cytochrome
P450 1B1 (CYP1B1) and cyclin-dependent kinase 1 (CDK1) degrade
acyl-CoA synthetase long-chain family member 4 (ACSL4), who
plays an essential role in fatty acid metabolism and inhibits
ferroptosis, thereby inducing resistance to anti-PD-1 and
oxaliplatin, respectively (18, 19). Thus, the fatty acid metabolism-
related genes appear to regulate ferroptosis and function as
intermediates. The relationship between ferroptosis regulators and
fatty acid metabolism-related genes, which may significantly
influence prognosis and drug resistance in colorectal cancer, has
been less explored. The tumor microenvironment (TME), which
consists of tumor cells, stromal cells, and immune cells, plays an
irreplaceable role in the metastasis and tumor progression and also
affects the efficacy of immune checkpoint blockade (ICB) treatment
(20, 21). Considering the special relationship between ferroptosis and
fatty acid metabolism regulators, a unique TME may induce novel
metabolic pathways in CRC. Thus, the interactions between
ferroptosis and fatty acid metabolism regulatory molecules should
be explored in multicenter cohorts from a multi-omics perspective,
including the TME, immunotherapy, and epigenetic mutations.

In this study, we conducted a thorough pan-cancer multi-omics
analysis to examine the molecular correlations between ferroptosis
and fatty acid metabolism regulators in 33 cancer types. By
performing unsupervised clustering, we identified three distinct
clusters related to ferroptosis and fatty acid metabolism based on
the TME, gene expression, and biological functions. Utilizing a
robust combination of 117 machine-learning algorithms, we
developed the FeFAMscore, which demonstrated superior
predictive performance in both the training cohort and four
independent external validation cohorts. It also effectively exhibits
potential in forecasting immunotherapy and chemotherapy drug
sensitivity in CRC patients. Overall, the FeFAMscore is promising
for the advancement of novel treatment strategies, fostering a
nuanced and personalized approach to medicine.
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2 Methods
2.1 Data acquisition and pre-processing

The workflow is illustrated in Supplementary Figure S1. The
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/
geo/) and The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/databases were used to obtain the CRC
RNA expression profiles, in addition to the associated
comprehensive clinical annotations, including TCGA-COAD,
TCGA-READ, GSE17536, GSE17537, GSE29621, GSE38832, and
GSE39582. The Meta-cohort and Train cohorts (TCGA-COAD,
TCGA-READ, and GSE39582) were established and the batch
effects were estimated using the “sva” package in R software.
Additionally, three immunotherapy cohorts with different
immunotherapy efficacies downloaded from the TIGER website
(http://tiger.canceromics.org/), including IMVigor210 (anti-PD-
L1), Braun (anti-PD-1), and PRJNA23709 (anti-PD-1 + anati-
CTLA4) were investigated. The microarray data from the GEO
were normalized and corrected background by the “impute” R
package. The ferroptosis regulators and fatty acid metabolism-
related genes investigated in this study were extracted from
FerrDb (22) and MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb/) (Supplementary Table S1). Finally, 1448 patients with
survival information were acquired from the database. The data of
Copy Number Variation (CNV) is extracted from TCGA database
in 33 cancers and analyzed by the “matfool” packages.

2.2 Unsupervised clustering of ferroptosis
regulators and fatty acid metabolism-
related genes

The tumor-related FeFAM genes were obtained from TCGA
database using “limma” and “survival” packages in the R software.
Univariate Cox analysis was used to filter the 50 prognosis genes in
the training cohort based on p<0.05. Next, the training cohort was
subjected to unsupervised clustering to identify distinct patterns.
The potential groupings were delineated using K-means clustering
analysis with varying cluster numbers (k = 2-9) (23). We then
performed the “Nuclst” package to verify the most appropriate
clusters with 28 criteria and repeated 1000 times on resample rate of
0.8 to validate the classification stability. Principal component
analysis (PCA) was subsequently employed to validate the
clustering results using the expression profiles of these genes. This
analysis confirmed the co-expression patterns of ferroptosis
regulators and fatty acid metabolism-associated genes.

2.3 Cell infiltration estimation

We evaluated the immune cell microenvironment using the
CIBERSORT algorithm, EPIC algorithm, MCPCOUNTER
algorithm, TIMER algorithm, quantiseq algorithm, and XCELL
algorithm of the “IBOR” and “GSVA” R package. Single-sample
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gene set enrichment analysis (ssGSEA) algorithm was used to verify
the results. Additionally, the TIDE algorithm (http://
tide.dfci.harvard.edu/) was used to evaluate the tumor immune
dysfunction and exclusion (TIDE) score, CAF, dysfunction and
exclusion of immune cells, PD-L1, and cytotoxic T cells (CTL)
score. A high TIDE score may reflect poor ICI efficacy.

2.4 Pathway enrichment analysis

To investigated the biological difference between three patterns and
cancer-related pathways, we downloaded “h.all.v7.5.1.symbols.gmt”
and “c2.cp.kegg.v7.4.symbols” from the MsigDB database
(c2.cp.kegg.symbols), and analyzed using the GSVA program. We
further explored the differences in cancer-, immune-, and metabolism-
related patterns as reported previously (24-27). The pathways with the
highest expression among the three patterns with p<0.05 were
considered activated.

2.5 FeFAMscore prognostic
model construction

To further explore the biofunction and prognostic value of
FeFAM genes, we first randomly combined 10 machine learning
algorithms, including random survival forest (RSF), elastic network
(Enet), Ridge, Stepwise Cox, Lasso, CoxBoost, partial least squares
regression for Cox (plsRcox), generalized boosted regression
modelling (GBM), supervised principal components (SuperPC),
and survival support vector machine (survival-SVM), as reported
previously (28). Then, the training cohorts were input as the
training group to the combined 117 algorithms, and each model
was detected in four independent datasets (GSE17536, GSE17537,
GSE29621, and GSE38832). Next, Harrell’s concordance index (C-
index) was calculated for each model across all validation cohorts
using the FeFAMscore derived from the training cohorts. Based on
the average C-index in all validation cohorts, we selected the
optimal model and compared the FeFAMscore with those of 69
published models in the past decade, which proved its reliable and
robust predictive power.

2.6 Cell culture

Normal colon mucosal epithelial cells (NCM460) and HCT116,
DLD-1, and CACO?2 cell lines were obtained from the Chinese
Academy of Sciences (Shanghai, China), cultured in DMEM
supplemented with 10% fetal bovine serum (both from Thermo
Fisher Scientific, Waltham, MA, USA), and maintained under
standard cell culture conditions (37°C, 5% CO,) in a cell incubator.

2.7 RNA extraction and RT-gPCR

Cellular and tissue RNA was extracted using TRIzol reagent
(R411-01, Vazyme, Nanjing, China), followed by reverse
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transcription using HiScript III RT SuperMix (R323, Vazyme).
Quantitative PCR analysis was performed using the Universal
SYBR Green Fast qPCR Mix (ABclonal, Hong Kong, China,
RK21203). The data were analyzed using the 2(-~AACt) method,
with GADPH serving as the internal control. The primer sequences
are provided in Supplementary Table S1.

2.8 siRNA transfection

siRNA-ACAA2-1 or siRNA-ACAA2 (GenePharma, Shanghai,
China) was used to silence the ACAA2 gene. The siRNA sequences
were as follows: si-ACAA2-1 (sense: 5'-UGCUGAGACAGU
GAUUGUATT-3’; antisense: 5-UACAAUCACUGUCUCUCATT-
3"), and si-ACAA2-2 (sense: 5'-GGGCACTGAAGAAAGCAGGA-3';
antisense: 5'-CGTGAACCAGGTGTGCAGTA-3'). Transfection was
performed using Lipofectamine 3000 (Thermo Fisher Scientific)
following the manufacturer’s instructions.

2.9 Cell viability assay

CRC cell viability was evaluated using the Cell Counting Kit 8
(CCK-8, Dojindo, Japan). Briefly, 3000-5000 cells were seeded per
well in 96-well plates. Subsequently, 100 uL medium containing 10
UL CCK-8 solution was added to each well and incubated at 37°C
for 3 h. The absorbance at 450 nm was measured.

2.10 Transwell assay

HCT116 and CACO2 cell lines transfected with siRNAs
targeting ACAA2 (si-ACAA2-1 and si-ACAA2-2) or non-
targeting control siRNA (si-NC) were harvested, washed twice
with PBS, and resuspended in DMEM. The suspended cells were
then placed in the upper chamber of 24-well chambers equipped
with 8 im pore inserts.

2.11 Colony formation assay

To evaluate colony formation in the monolayer culture, 1000
cells were seeded in 6-well plates. Following two weeks of culture,
the colonies were fixed and stained with 4% paraformaldehyde and
0.1% crystal violet for 30 min at room temperature.

2.12 Western blot

Protein concentration was determined using the BCA Protein
Assay Kit (Thermo Fisher Scientific, USA). Samples containing 30
lg of protein were separated on a 12% SDS-PAGE gel and
transferred onto a PVDF membrane. The membrane was blocked
with 5% BSA for 2 hours and then incubated overnight at 4°C with
the primary antibody. Afterward, the membranes were incubated
for 1 hour with the secondary antibody and washed three times with
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TBST buffer. Antibody signals were detected using the ECL system
(Bio-Rad, California, USA).

2.13 Immunotherapeutic
response prediction

We predicted the immunotherapy response of the FeFAMscore
by analyzing the expression of tumor mutational burden (TMB),
TIDE score, and differences in pathway enrichment. Based on these
results, we calculated the FeFAMscore of patients in the training
cohort to explore the function of the FeFAMscore in
immunotherapy. Subsequently, we used Subclass Mapping
(Submap) to determine the relationship between high or low
FeFAMscore groups and anti-PD-1 and anti-CTLA4 antibodies.
In addition, we utilized immunotherapy cohorts with clinical
response information to validate the immunotherapy response.
The IMVigor210CoreBiologies R package was used to obtain
transcriptome, survival, and immunotherapy efficacy data for the
IMVigor210 cohort (29). The anti-PD-1 and anti-CTLA4 cohorts
were validated using Braun and PRJNA23709.

2.14 Chemotherapeutic
sensitivity prediction

The correlation with FeFAMscore and drug sensitivity was
predicted by the GDSC and CTRP datasets with “oncoPredict”
packages. The relation with gene expression and drug sensitivity
was measured by the “Hmsic” package in R software.

2.15 Statistical analysis

Data processing and visualization were performed using R
software (version 4.3.2) and GraphPad Prism 8.0, respectively.
Group comparisons were performed using the Wilcoxon test for
pairwise comparisons, while ANOVA and Kruskal-Wallis tests
were used to assess variable distributions among multiple groups,
considering normality assumptions. Categorical variables were
analyzed using the chi-square and Fisher’s exact tests.
Correlations were determined using the Spearman and Pearson
techniques. Survival disparities were evaluated using the Kaplan-
Meier method and log-rank test. Statistical significance was set at
p<0.05, and all p-values were two-tailed.

3 Result

3.1 Identification of novel correlations
between ferroptosis and fatty acid
metabolism regulators

To explore the relationship between cell death and metabolism,

we investigated the crosstalk between ferroptosis-associated
regulators and fatty acid metabolism-regulating genes. The 486

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1416443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhu et al.

ferroptosis-associated genes derived from the FerrDb included
markers, suppressors, and drivers (Supplementary Table SI).
Meanwhile, 272 FAM genes were retained from the MSigDB
database. Genome-wide omics data for 33 cancer types were
retrieved from the TCGA database for analysis. The frequency of
mutations in these genes was significantly correlated between
ferroptosis and fatty acid metabolism in the tumors (Figure 1A).
PCA was performed to measure the levels of ferroptosis-associated
and FAM genes in the 33 cancer types database, then the
Spearman’s analysis further demonstrated a significant correlation
between them (Supplementary Figure S1A). Interestingly, the
COREAD database, with the largest number of patients,
exhibiting a prominent association between them (R = -0.93)
(Figures 1B, C). Consequently, to further explore the colorectal
cancer, the top 10 mutations in ferroptosis-associated regulators
and fatty acid genes were identified in 480 (95.98%) of 497 patients
with COREAD. The highest mutation frequencies were detected in
TP53 (67%), KRAS (44%), and PIK3CA (26%) (Supplementary
Figure S2B). The exploration of copy number variation (CNV)
alteration frequency showed a high incidence of CNV gains in the
TCGA cohort, demonstrating the potential for therapy in CRC
(Supplementary Figure S2C). The locations of FeFAM genes with
CNVs on the chromosomes are marked in the Circle Map
(Supplementary Figure S2C). Additionally, co-mutations were
common among these genes (Supplementary Figures S2E, F).
Based on the analysis of results, we compared the CRC and
normal samples from COREAD databases in TCGA, which finally
identified 159 ferroptosis-associated and fatty acid metabolism-
related genes according to logFC>1 and FDR <0.05 (Figure 1D).
To counterbalance the implications between TCGA and GEO
database, we enrolled COREAD database and GSE39582 and
adopted the “sva” package to remove batch effects and extract
relevant genes as the training cohort. A total of 50 genes were
subsequently screened using univariate Cox regression analysis (P
<0.05) of the FeFAM genes in the combined database
(Supplementary Figure S2G). The KEGG analysis, depicted using
a barplot, revealed enrichment of these genes in pathways such as

» o«

“PPAR signaling pathway”,

» o«

fatty acid degradation”, “fatty acid
metabolism”, “propanoate metabolism”, “tyrosine metabolism”,
and “p53 signaling pathway”. Furthermore, GO analysis of
molecular functions (MF), biological processes (BP), and cellular
components (CC) highlighted their relevance in fatty acid
metabolism, response to oxygen levels, and cancer pathways.
(Figure 1E). Network analysis offered a holistic view of the
prognostic implications and molecular interactions within the
FeFAM framework (Figure 1F). Considering the discernible
differences in the transcriptional profiles and the unique interplay
between these molecules, dysregulation within the FeFAM network
significantly contributes to CRC initiation and progression.

3.2 Discovery of novel FeFAM patterns
through unsupervised clustering analysis

To elucidate the potential FeFAM phenotypes in CRC, we
utilized K-means-based unsupervised clustering in the training
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cohort. The R package “ConsensusClusterPlus” was used to
initially categorize the patients with CRC into k (k=2-9) FeFAM
clusters (Figure 1G; Supplementary Figures S3A-K). The
cumulative distribution function (CDF) curves, derived from the
consensus score matrix and PAC statistics, elucidated the optimal
number of clusters (k=3) across the entire training patient cohort.
These clusters, denoted A, B, and C, exhibited discernible
segregation patterns (Figure 1H). Nbclust testing, which included
28 criteria, yielded the same results (Supplementary Figure S3L).
The PCA demonstrated a clear distinction between the three
clusters (Figure 1I). The Kaplan-Meier curve showed that cluster
C had better survival prognosis than clusters A and B (p<0.001)
(Figure 1J). The expression of FeFAM genes also indicated the
ability to differentiate between the three subtypes (Figure 1K).

3.3 TME characterization in different
FeFAM patterns

The ssGSEA method, which simulates the entire tumor immune
process, was first used to calculate tumor immune cell infiltration in
the training cohorts to investigate the differences in the TME
(Figure 2A). Next, six different algorithms, such as CIBERSORT,
EPIC, MCPCOUNTER, TIMER, QuantiSeq, and XCELL, obtained
the same results, verifying the crucial effects of FeFAM genes in the
immune system (Supplementary Figure S4A). Meanwhile,
according to the Spearman’s correlation analysis, almost all
FeFAM genes were significantly implicated in the immune
microenvironment composition (Figure 2B). Ferroptosis-
associated regulators, including ENPP2, CAV1, FABP4, PDK4,
ADIPOQ, NOX4, COKN2A, CDO1, WWTR1, DDR2, CPEBI,
and TIMPI1, are preferentially associated with the most
immunosuppressive cells, whereas FAM genes correlated with
immune microenvironment activation. Furthermore, Spearman’s
analysis demonstrated significant co-expression of the Fe and FAM
genes (Supplementary Figure S4B). Compared to FeFAM clusters B
and C, FeFAM cluster A had a significantly worse prognosis.
Analysis of gene signatures revealed an increased presence of
immune cells exhibiting notable immunosuppressive
functionality, macrophages, regulatory T cells (Tregs), and type 2
T helper cells, including within FeFAMA cluster A across all
cohorts. Remarkably, CD4+ T cells, CD8+ T cells, neutrophils,
dendritic cells, and natural killer (NK) cells were abundant in the
FeFAM cluster A across nearly all the algorithms, suggesting that
the immune cells within FeFAM cluster A may concurrently govern
immune evasion and anti-tumor activities. Despite having similar
prognoses, FeFAM clusters B and C exhibited contrasting levels of
immune infiltration, implying that they may have different
immunotherapeutic potentials. The XCELL and ESTIMATE
algorithms also demonstrated high immune, stroma, and
microenvironment scores in FeFAM clusters A and C
(Supplementary Figure S4C). Consequently, FeFAM clusters A, B,
and C were considered immune-excluded, immune-desert, and
immune-activated clusters, respectively. To ensure stability of the
results, the TIDE algorithm, which is commonly adopted to
measure immune escape levels and ICD treatment efficacy, was
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FIGURE 1

Landscape of genetic and relation of FeFAM regulators and discovery of novel FeFAM patterns. (A) Mutation frequency of FeFAM regulators in
33 types cancers in TCGA. (B) PCA of FeFAM regulators in the CRC. (C) Scatter plot showed the spearmen correlation of FeFAM regulators.
(D) Volcano plot showed the differential FeFAM regulators in CRC. (E) KEGG and GO analyze of 50 OS-related FeFAM regulators. (F) Network
showed the interactions among FeFAM regulators in CRC. (G) A The consensus score matrix of all samples when k = 3. (H) The CDF curves of
consensus matrix for each k (indicated by colors). (I) Principal component (PC) analysis revealed remarkable difference between three FeFAM
patterns from train cohort (n = 1029). (J) Kaplan-Meier curves of survival for three FeFAM patterns based on CRC patients from train cohort.
(K) This boxplot demonstrates the expression variations in the FeFAM-related genes among three FeFAM patterns. The top portion
represented Fisher's precise test. The lower portion indicated the Wilcoxon rank-sum test. ***p < 0.001. FeFAM, ferroptosis and fatty acid
metabolism regulators.
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FIGURE 2
Characterization of tumor microenvironment, signing and immune pathways in different FeFAM patterns. (A) Characteristics of immune infiltrating
cells in different FeFAMclusters. (B) Characteristics of immune infiltrating cells in different FeFAM regulators. (C-J) Box plots showed the significant
difference in CAF (C), IFNG (D), Dyfunction (E), Exclusion (F), TIDE (G), PD-L1 (H), MDSC (I), and CTL.score (J). (K) The cancer-related, immune-
related and metabolism-related pathways between the three FeFAM subtypes. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, not significant. FeFAM,
ferroptosis and fatty acid metabolism regulators.

used. We discovered that FeFAM cluster A showed the highest ~ CTL.scores and dysfunction were similar, suggesting that
CAF, IFN, TIDE, PD-LI and exclusion among the three clusters,  activated ferroptosis and fatty acid pathways may inhibit
consistent with the above analysis results and possibly attributed to  intratumoral CD8+ T cell effector function and impair their anti-
immune escape (Figures 2C-J). Interestingly, although FeFAM  tumor ability, which was similar to previously reported results (12,
cluster A had more MDSCs than FeFAM cluster C, their =~ 30-32). Above all, ferroptosis regulators may cooperate with fatty
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acid metabolism-associated genes to contribute to a particular
immune microenvironment, thereby presenting potential targets
for immunotherapy.

3.4 Signaling and immune pathway
differences between the FeFAM patterns

Utilizing the “gsva” package, we executed GSVA-enrichment
experiments to investigate various cancer-related signaling
pathways across the three patterns within the Hallmarker and
KEGG pathways (Supplementary Figure S4D). The findings
indicate that FeFAM cluster A was significantly enriched in
immune- and tumor-related pathways, such as “apoptosis”,
“epithelial mesenchymal transition (EMT)”, “inflammatory
response”, and “VEGF signaling pathway”. The FeFAM clusters B
and C are two distinct groups with specific associations in terms of
their biological functions and metabolic pathways. FeFAM cluster
B, for instance, is substantially associated with “DNA repair and
replication”, “protein export”, and “spliceosome”, while FeFAM
cluster C is associated with the metabolic pathway “fatty acid
metabolism”, “linoleic acid metabolism”, “nicotinate and
nicotinamide metabolism” and “nitrogen metabolism”.
Consequently, we further investigated the carcinogen-signaling,
immune-related, and metabolic pathways to compare the
differences among the three patterns. Wnt, TGF, Notch, MAPK,
KRAS, TLR, TCR, RLR, NK cells, chemokine pathway, hypoxia, and
apoptosis were activated in cluster A. PPAR, PI3K, P53, xenobiotics,
ROS, HEME, fatty acids, and bile acids were activated in cluster C,
indicating that ferroptosis and fatty acid metabolism may be
upgraded to improve prognosis and prevent immune escape
(Figure 2K). These analyses provided additional evidence that
FeFAM molecules regulate the immune microenvironment and
facilitate immune evasion in patients with CRC through diverse
signaling pathways. This underscores the potential of FeFAM as a
promising target for immunotherapy.

3.5 Integrated construction and consistent
prognostic value of the FeFAMscore

Based on the varying expression levels of FeFAM genes among
the three patterns, we subjected the 50 FeFAM-related genes to our
machine learning-based integrative approach to construct an
FeFAM-related signature, termed the FeFAMscore. In the training
cohort, 117 algorithms generated from a random permutation of 10
machine-learning algorithms were employed to compute the C-
index using a 10-fold cross-validation framework. The model was
subsequently evaluated across four cohorts to gauge its predictive
efficacy and to determine its consistency across different datasets.
Following this evaluation, the model with the highest average C-
index among the validation cohorts was identified. Specifically, the
combination of CoxBoost and StepCox (backward and both)
yielded the highest average C-index of 0.689, establishing it as the
optimal model (Figure 3A; Supplementary Table S2). Fifteen genes
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were first screened using the CoxBoost model and then subjected to
backward Cox proportional hazards regression. A final set of 15
genes was identified, including KIF20A, ACSF2, NOX1, BID,
AADAT, ACAA2, FABP1, CA2, SLC22A5, PPPIR13L, AQP5,
HOTAIR, DDR2, TIMP1, and CD36 (Figure 3B). Subsequently,
the FeFAM score for each patient was determined by employing the
expression levels of 15 genes, which were weighted using the
regression coefficients obtained from a Cox model (Figure 3B).
Subsequently, all patients were dichotomized into high- and low-
FeFAMScore groups. These 15 genes significantly distinguished
high-risk individuals from low-risk individuals (Figures 3C-H).
Patients categorized into the high FeFAMscore group exhibited
significantly poorer overall survival (OS) compared to those in the
low FeFAMscore group, as determined by Kaplan-Meier survival
analysis in both the combined training (N=1029, P<0.001) and four
validation datasets: GSE17536 (N=177, P<0.001), GSE17537 (N=55,
P=0.003), GSE29621 (N=65, P=0.007), and GSE38832 (N=122,
P<0.001). A similar outcome was observed in the meta-cohort
(N=1448), thereby affirming the predictive accuracy and reliability
of the model. An alluvial diagram illustrates the correlation between
FeFAMcluster and FeFAMscore (Figure 3I).

3.6 Consistent prognostic value
of FeFAMscore

Receiver operating characteristic (ROC) curve analysis was
conducted to evaluate the discriminative ability of the
FeFAMscores. In the training cohort, the areas under the ROC
curve (AUC) for 1-, 3-, and 5-year survival were 0.701, 0.712, and
0.668, respectively. Furthermore, excellent results were also
indicated in the test cohorts, including 0.738, 0.718, and 0.64 in
GSE17536; 0.729, 0.684, and 0.687 in GSE17537; 0.769, 0.670, and
0.649 in GSE29621; and 0.799, 0.773, and 0.708 in GSE38832
(Figure 4A). The meta-cohort of these patients showed AUC
values of 0.687, 0.683, and 0.644, indicating that the FeFAMscore
model is predictive and reliable in multiple independent CRC
cohorts (Figure 4A).

The C-index [95% confidence interval] was 0.67 [0.652-0.688],
0.648 [0.617-0.679], 0.684 [0.639-0.807], 0.666 [0.614-0.790],
0.720 [0.649-0.804], 0.649 [0.646-0.711] in the four independent
validation cohorts and meta-cohorts, respectively (Figure 4B). To
predict patient prognosis, clinical characteristics including age, sex,
T stage, N stage, M stage, and stage are widely acknowledged.
Therefore, the C-index was applied to measure the predictive
accuracy between the FeFAMscore and clinical traits in the
training and four independent validation cohorts. The
FeFAMscore exhibited significantly higher predictive accuracy
than other clinical traits in the training, GSE17536, GSE17537,
and GSE38832 cohorts (Figures 4C-G). In contrast, the
performance of the FeFAMscore in GSE29621 cohort was similar
to that of the M stage and stages, which may have been due to the
small sample size and data bias. These results indicate that
FeFAMScore may be a prospective alternative biomarker for
predicting survival risk in clinical practice.
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FIGURE 3

Construction of a machine learning-based signature. (A) The top C-index of 50 machine learning methods in four validation cohorts. (B) The
heatmap demonstrates the relationships between the three FeFAM phenotypes, clinicopathologic characteristics, coef value and the expression
variations of the FeFAM-related genes in train cohort. (C—H) Kaplan-Meier curves of OS according to the FeFAMscore in Train cohorts (log-rank test:
p<0.001) (C). GSE17536 (Log-rank test: p<0.001) (D). GSE17537 (Log-rank test: p = 0.003) (E). GSE29621 (Log-rank test: p = 0.007) (F). GSE38832
(Log-rank test: p < 0.001) (G). Meta-cohort (Log-rank test: p < 0.001) (H). (I) Alluvial diagram showing the correlation of FeFAMclusters and
FeFAMscore. *** p < 0.001. FeFAM, ferroptosis and fatty acid metabolism regulators.
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FIGURE 4
Comparison between the FeFAMscore and the other 69 signatures in colorectal cancer. (A) Time-dependent ROC analysis for predicting OS at 1,3,
and 5 years in train cohort (n = 1029), GSE17536 (n = 177), GSE17537 (n = 55), GSE29621 (n = 65), and GSE38832 (n = 122). (B) C-index of
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GSE17536 (D), GSE17537 (E), GSE29621 (F), and GSE38832 (G). (H-K) C-index of FeFAMscore and 69 published signatures in GSE17536 (H), GSE17537
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3.7 Resilient predictive performance
of FeFAMscore

As the sequencing depth continually increases, CRC treatment
outcomes are well predicted. Machine learning-based prognostic
models for CRC have been increasingly developed in recent years.
To quantify the performance of the FeFAMscore, we systematically
retrieved mRNA signatures from CRC research over the past decade
and finally acquired 69 mRNA signatures. We compared the predictive
ability of the FeFAMscore using the C-index value in the four
independent validation cohorts. The FeFAMscore ranked first in the
GSE17536 and GSE29621 datasets, followed by GSE17537 and
GSE38832 (Figures 4D-G). However, some models exhibited
appreciable predictive performance for the GSE17537 and GSE38832
datasets and performed moderately in other cohorts, further proving
the uniqueness and reliability of our models. The Chen-FM model, for
instance, showed a better C-index than the FeFAMscore in GSE38832
and was poorly displayed in GSE17536, GSE17537, and GSE38832
with a C-index of less than 0.6. The above results demonstrated the
good predictive performance of the FeFAMscore (Figures 4H-K).

3.8 ACAA2 is associated with tumor
progression in CRC

To further evaluate the expression and function of the
FeFAMscore, we first performed RT-qPCR in cell lines from
patients with CRC for the six genes. The other nine genes
involved in the FeFAM score have been demonstrated by other
researchers (33-41). Compared with those in normal human
colonic cells (NCM460 cells), the expression of ACAA2 was
significantly higher in HCT116 and CACO2 cells, while the
expression of ACSF2, DDR2 and SLC22A5 was significantly
increased in the CRC cells (Figures 5A, B). Among the expression
and correlation of the genes, ACAA2 was significantly
overexpressed in the tumor tissues and strong correlated with
ferroptosis regulators. We then used two small interfering RNAs
(siRNAs) to downregulate ACAA2 expression in HCT116 and
CACO2 CRC cell lines (Figure 5C). The western blot further
demonstrated the results (Figure 5D). Cell viability was reduced
by ACAA2 downregulation after 72 h (Figures 5E, F). In addition,
Cell colony formation experiments demonstrated a significant
reduction in colony numbers in HCT116 and CACO2 cell lines
following ACAA2 knockdown. (Figure 5G). Transwell assays also
confirmed that ACAA2 knockdown significantly reduced the
migratory ability of CRC cells (Figures 5H-J). Taken together,
these results indicate that ACAA2 not only induces CRC cell
proliferation, but also promotes CRC cell migration.

3.9 Mutation status in high and low
FeFAMscore groups

To explore the mechanisms underlying the FeFAMScore,
somatic mutations in the patients with CRC in the TCGA cohort
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were further analyzed. As expected, more mutations in top 15 genes
were observed in the high FeFAMscore group than that in the low
FeFAMscore group (Figures 6A, B). In addition, co-occurrence and
mutual exclusion were observed among these genes (Figures 6C, D).
The forest plot also revealed that the BRAF gene, which is generally
regarded as a potential prognostic risk factor, had more mutations
than the low one, which indicates poor prognostic survival and
worse ICI efficacy (Figure 6E). Moreover, the high FeFAMscore
groups exhibited a higher TMB than the low FeFAMscore groups
(Figure 6F). Poor prognosis was also demonstrated by high TMB
combined with a high FeFAMscore (Figure 6G).

3.10 Immune characteristics related
to FeFAMscore

We first adopted the ssGSEA algorithm to explore the correlation
between tumor-infiltrating immune cells and the FeFAMscore in the
training cohorts (Supplementary Figure S5A), which indicated that the
FeFAMscore had a positive relationship with the immune cells. These
findings suggest that the high FeFAMscore group, despite exhibiting a
worse prognosis, harbored a higher abundance of immunologically
activated cells than the low FeFAMscore group. Additionally, the high
FeFAMscore group demonstrated an increased presence of
immunosuppressive cells such as MDSCs, macrophages, mast cells,
and regulatory T cells (Supplementary Figure S5B). Therefore, ssGSEA
and six external algorithms, including CIBERSORT, EPIC,
MCPCOUNTER, TIMER, quantiseq, and XCELL were further used,
yielding similar results: the high FeFAMscore group had a high
ImmuneScore, StromaScore, and MicroenvironmentScore
(Supplementary Figure S5C). Next, we investigated the cancer-,
immune-, and metabolic-related pathways between the two groups,
which means that a high FeFAMscore prefers to be enriched in cancer-
related and immune-related pathways (Supplementary Figure S5D).
Interestingly, fatty acid metabolism was significantly activated in the
low FeFAMscore group, which may improve the prognosis. Based on
these findings, the high FeFAMscore groups probably had several
targets that may benefit from specifically targeted immunotherapy,
even though they had a worse prognosis.

3.11 FeFAMscore predicts CRC response
to immunotherapy

We first used TIDE and ESTIMATE algorithms to measure the
microenvironment in patients with low and high FeFAMscores
(Figures 7A-F; Supplementary Figure S5E). The results indicated
that the high FeFAMscore group was associated with high immune
infiltration but high TIDE, CTL.score, dysfunction, MSI, and PD-
L1, which means that although these individuals with poor survival
prognosis contain immunosuppressive cells, this is the main reason
for immune evasion and poor ICI efficacy in these individuals. This
suggests that the high FeFAMscore group with poor survival may be
a special target for activated immune cells, improving survival
prognosis. Hence, the submap algorithm was used to assess the
feasibility of the FeFAMscore in predicting immunotherapy
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FIGURE 5

ACAA2 promotes colorectal cancer progression. (A, B) Comparison of the expression levels of ACAA2, DDR2, SLC22A5, PPP1R13L, AADAT and
ACSF2 between NCM460 cells, HCT116 cells, and CACO2 cells. (C) The knockdown efficiency of ACAA2 in HCT116 cells and CACO?2. (D)
Representative western blots examined the expression of ACAA2 protein levels after the downregulation of ACAA2 of HCT116 and CACO?2 cell lines.
(E, F) The CCK8 assay detected cell viability after decreased ACAA2 expression in HCT116 (E) and CACO2 (F) cell lines. (G) Knockdown of ACAA2
significantly reduced the number of clones in HCT116 and CACO2 cell lines. (H) The transwell assay detected the migration ability of HCT116 and
CACO2 cells after decreased ACAA2 expression. (1-J) Quantification results of numbers of relative migration rates in transwell assay in HCT116 (1)

and CACO2 (J) cells. *** p < 0.001, ns, not significant.

efficacy. These findings affirmed that individuals in the high
FeFAMscore group may benefit from both anti-PD-1 and anti-
CTLA4 therapies (Figure 7G).

Based on the previous analysis, we determined the FeFAMscore in
the IMvigor210 cohorts (anti-PD-L1 therapy) (42), Braun cohorts (anti-
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PD-1 therapy) (43) and PRJNA23709 (anti-PD-1 therapy + anti-
CLTA4 therapy) (44). In the IMvigor210 dataset, patients with low
FeFAMscores exhibited better prognoses than those with high
FeFAMscores. Additionally, individuals with low FeFAMscores were
likely to respond favorably to anti-PD-L1 immunotherapy (Figures 7H,
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The FeFAMscore related to the tumor mutation status. (A, B) Visual summary showing common genetic alterations in low (A) and high (B)
FeFAMscore groups. (C, D) Interaction effect of genes mutating in the low (C) and high (D) FeFAMscore groups. (E) Forest plot gene mutations in the
CRC patients. (F) The TMB in low and high FeFAMscore groups. (G) Survival analysis for CRC patients measured by both FeFAMscore and TMB using
Kaplan-Meier curves. * p < 0.05, ns, not significant. FeFAM, ferroptosis and fatty acid metabolism regulators.

K, N). Interestingly, in the Braun cohort, patients with high
FeFAMscores demonstrated the potential for benefit from anti-PD-1
therapy (Figures 71, L, O). As expected, patients with renal cell
carcinoma and high FeFAMscore had significantly improved survival
probability and were likely to respond to anti-PD-1 therapy. The results
were shown in PRJNA23709 when patients with high FeFAMscore
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received combined anti-PD-1 and anti-CTLA4 therapy (Figures 7], M,
P). They not only greatly improved survival prognosis, but also acquired
a remarkable response rate to immune therapy. These results suggest
that individuals with a low FeFAMscore may benefit from
immunotherapy, but that individuals with a high FeFAMscore obtain
excellent response rates and survival with specific immunotherapies.
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3.12 FeFAMscore predicts CRC sensitivity
to chemotherapeutic response analysis

To assess potentially effective drugs associated with the
FeFAMscore, we investigated chemotherapeutic agents using the
“oncoPredict” package. With the compared differences between two
risk FeFAM groups by the Wilcoxion test with p<0.05, we
significantly filtered 316 (total: 545) and 95 (total: 224)
compounds in the CTRP and GDSC, respectively. Next, we
investigated the drug intersections in the two databases
(Supplementary Figure S6A). Spearman’s method was used to
measure the correlation between FeFAM genes and drug
sensitivity. Some genes and drugs, such as KIF20A and AADAT,
interacted antagonistically (Supplementary Figures S6B, C).
However, the ACSF2 and FABP1 interacted synergistically. To
validate the irreplaceable role of FeFAM molecules in
chemotherapy, we applied the FeFAMscore to guide
chemotherapeutic selection for CRC in clinical practice. Exploring
in the CRC related chemotherapy drugs, the osimertinib,
oxaliplatin, gefitinib, eriotinib, navitoclax, and cyclophosphamide
are beneficial for the patients with high FeFAMscore, unlike
irinotecan, niraparib, gemcitabine, niraparib, dabrafenib, and
selumetinib (Supplementary Figures S6D-0O). These findings
underscore the availability of diverse chemotherapy modalities
tailored to specific patients with CRC, thereby paving the way for
precision chemotherapy and personalized treatment approaches.

4 Discussion

Several therapeutic modalities, including surgery,
chemotherapy, immunotherapy, radiotherapy, and targeted
therapy have emerged as key strategies in CRC research (3, 5, 45,
46). These diverse treatment approaches represent a profound
advancement in CRC management, reflecting the multifaceted
approach necessitated by disease complexity (47). Among these,
immunotherapy is a promising frontier that exploits the intricate
interplay between the immune system and malignant cells to elicit
therapeutic responses (48). However, a subset of patients with CRC
exhibiting deficient mismatch repair or microsatellite instability-
high (AMMR/MSI-H) represents a relatively small fraction,
comprising approximately 15% and 4% patients with CRC and
metastatic colorectal cancer (mCRC), respectively; a proportion of
these patients swiftly progress to a state of immune resistance (38,
39). The AJCC staging system is a widely accepted criterion for
clinical management and encompasses therapeutic decision-
making and surveillance strategies for CRC. The utility of the
AJCC staging system is constrained by the variability in clinical
outcomes observed among patients classified within the same stage
(49). This may not only result in overtreatment and
undertreatment, but also make it difficult to reflect the sensitivity
of immunotherapy and chemotherapy because it does not reflect the
TME. To bridge this gap, identifying novel prognostic and
therapeutic targets for CRC is vital.

Cell death is a regulated process in cells and may be related to
metabolism during tumor progression, metastasis, and drug
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resistance. Ferroptosis is an iron-related cell death pathway
characterized by lipid peroxide accumulation (50, 51). Fatty acid
metabolism plays a pivotal role in tumorigenesis, disease
progression, and treatment resistance by facilitating augmented
lipid synthesis, storage, and catabolism (52). Numerous studies
have demonstrated that ferroptosis is significantly correlated with
metabolism, particularly lipid metabolism (50-53). For instance,
ASL4, a fatty acid metabolism-related gene, is induced by the T cell-
derived interferon (IFN)-7y to change the tumor lipid pattern, which
increased arachidonic acid (AA) production to promote ferroptosis
(32). SLC47A1, which regulates lipid remodeling and survival
during ferroptosis, inhibits the anticancer activity of ferroptosis
inducers (54). Moreover, they interact to modulate drug sensitivity
(32, 55). Consequently, the influence of ferroptosis regulators and
fatty acid molecules on the TME as well as their predictive capacity
for prognosis and response to immunotherapy in CRC,
remain unclear.

This study elucidated the genetic and transcriptomic diversity of
FeFAMs across 33 cancer species using a multi-omics approach.
Similar frequencies observed among the ferroptosis and fatty acid
metabolism regulators indicate their interconnectedness.
Spearman’s rank correlation coefficient further demonstrated a
strong correlation of ferroptosis and fatty acid metabolism
regulators between 33 cancer species, especially in CRC (R= -0.93;
p<0.001). Furthermore, after screening 50 genes using the “limma”
package and univariate Cox regression analysis, the patients were
stratified into three distinct phenotypes, each exhibiting significant
disparities in genetic profiles and immune infiltration within
the clusters.

We then distinguished three ferroptosis- and fatty acid
metabolism-related patterns, named FeFAM clusters A/B/C. The
TME characteristics in the three patterns indicated differential
immune cell compositions. FeFAM clusters A and C were
correlated with immune cell abundance; however, they displayed
disparate prognostic outcomes. The FeFAM cluster A processed
with high immune activate, StromaSocre, PD-L1 expression, CAF
expression, and high activation of TGF-P signaling pathway proved
a strong relation with immune-exclude subtypes, while the FeFAM
cluster C associated with excellent prognosis and abundant immune
cell was regarded as an immune-inflamed phenotype. Interestingly,
FeFAM cluster C exhibited the same levels of dysfunction and
CTL.score and high metabolism levels, such as the ROS and fatty
acids, than FeFAM cluster A, which indicated that the interaction of
ferroptosis and fatty acid metabolism may coordinate with T cell
dysfunction (32). MDSC density was the highest in FeFAM cluster
B, which is defined as the immune desert subtype. These results
demonstrate that FeFAM molecules play a vital role in the TME and
may trigger extrinsic immune escape.

Further FeFAM molecule characterization in CRC is
imperative. Developing features associated with FeFAM molecules
will facilitate prognosis prediction and immune response evaluation
in CRC. To avoid model selection bias and confirm model accuracy,
we randomly combined 10 classical algorithms and eventually
obtained 117 combined algorithms. Subsequently, we developed
FeFAMscore, a machine-learning-based FeFAM-related model,
which exhibited the best performance among the 117 signatures.
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Recognizing the heterogeneity often observed in the patients with
CRC, we externally validated the FeFAMscore using four additional
CRC databases. The highest C-index among the validations not
only confirmed the selection of the optimal model, CoxBoost
combined with stepwise Cox (backward direction), but also
underscored the accuracy and generalizability of the model.
Moreover, a comparison of 69 published CRC signatures showed
improved accuracy, exhibiting robustness. To validate model
accuracy, we identified ACAA2 as a key FeFAMscore regulator
and conducted cellular experiments, which revealed that ACAA2
promotes CRC proliferation and migration.

Furthermore, FeFAMscore demonstrated a robust association
with survival outcomes. The adverse prognosis observed in the high
FeFAMscore group may be attributed to improved activation of
anti-immune components, potentially fostering a TME conducive
to immune evasion. Interestingly, the FeFAMscore and tumor
immune infiltration extent in CRC is positively correlated.
Moreover, mutations leading to tumor neoantigens, along with a
high tumor mutational burden (TMB), increase tumor
immunogenic neoantigen abundance (56). The patients with high
TMB may benefit from immunotherapy, but many patients do not
achieve the desired results (42). Similar results were observed in this
study. Tide, a computational method developed by Peng Jiang,
models T cell dysfunction and exclusion mechanisms of tumor
immune evasion by infiltration of cytotoxic T lymphocytes (CTL),
showed the same results (42). However, owing to the variances in
immune-related pathways between the two cohorts and the primary
mechanism of immune evasion being dysfunction, it is plausible
that there may be specific therapeutic benefits for the high
FeFAMscore group. The Submap algorithm further supported
these results, showing that the high FeFAMscore group processes
were more sensitive to anti-PD-1 and anti-CTLA4 therapies.
According to the results of previous studies, the predominant
mechanism suggests that both high and low fatty acid metabolism
can affect the expression level of iron death, consequently affecting
the mode of action of CTLs (30, 32). The high FeFAMscore group
exhibited diminished fatty acid metabolism, potentially regulating
ferroptosis to augment CTL sensitivity. To validate these results, we
analyzed the FeFAMSscores in immunotherapy cohorts receiving
anti-PD-L1 therapy, anti-PD-1 therapy, and anti-PD-1 combined
with anti-CTLA4 therapy. Similar results were observed in these
cohorts, further demonstrating the limitations of TMB and TIDE.
Furthermore, regarding chemotherapeutic agents, the FeFAMscore
exhibited promising predictive capabilities. Collectively, these
findings indicate that FeFAMscore holds promise as a valuable
tool for formulating efficacious CRC treatment strategies.

This study had some limitations. First, the intricate regulatory
mechanisms governing ferroptosis and fatty acid metabolism
remain unclear. Moreover, retrospective cohorts sourced from
publicly available online databases were used. Large multicenter
prospective clinical investigations are warranted to corroborate
these findings. Finally, to validate the predictive utility of the
FeFAMscore in immunotherapy response, additional indicators
are required, along with prospective cohorts of patients with

glioma undergoing immunotherapeutic interventions.
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In conclusion, through a comprehensive approach integrating
multicenter analysis and machine learning algorithms, we
developed a stable and reliable prognostic and
immunotherapeutic response predictor, the FeFAMscore, for
CRC. Notably, the high FeFAMscore group demonstrated an
increased sensitivity to anti-PD-1 and anti-CTLA4 therapies. The
FeFAMscore holds promise as a valuable tool for tailoring
efficacious treatment regimens for CRC.
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Background: Lung adenocarcinoma accounts for the majority of lung cancer
cases and impact survival rate of patients severely. Immunotherapy is an effective
treatment for lung adenocarcinoma but is restricted by many factors including
immune checkpoint expression and the inhibitory immune microenvironment.
This study aimed to explore the immune microenvironment in lung
adenocarcinoma via disulfidptosis.

Methods: Public datasets of lung adenocarcinoma from the TCGA and GEO
was adopted as the training and validation cohort. Based on the differences in
the expression of disulfidptosis -related genes, a glucose metabolism and
immune response prognostic model was constructed. The prognostic value
and clinical relationship of the model were further explored. Immune-related
analyses were performed according to CIBERSORT, ssGSEA, TIDE, IPS.

Results: We verified that the model could accurately predict the survival
expectancy of lung adenocarcinoma patients. Patients with lung
adenocarcinoma and a low-risk score had better survival outcomes
according to the model. Moreover, the high-risk group tended to have an
immunosuppressive effect, as reflected by the immune cell components,
phenotypes and functions. We also found that the clinically relevant immune
checkpoint CTLA-4 was significantly higher in low-risk group (P<0.05),
indicating that the high-risk group may suffer worse tumor immunotherapy
efficacy. Finally, we found that this model has accurate predictive value for the
efficacy of immune checkpoint blockade in non-small cell lung
cancer (P<0.05).
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Conclusion: The prognostic model demonstrated the feasibility of predicting
survival and immunotherapy efficacy via disulfidptosis-related genes and will
facilitate the development of personalized anticancer therapy.

KEYWORDS

lung adenocarcinoma, tumor microenvironment, disulfidptosis-related genes, immune
checkpoint, programmed cell death

Introduction

Lung cancer is one of the most common causes of cancer-related
death worldwide, and lung adenocarcinoma (LUAD) accounts for the
majority of lung cancer cases among all histological subtypes (1).
Because LUAD is prone to metastasis in the early stage, the prognosis
of LUAD patients is usually poor, with an average 5-year survival rate
less than 20% (2). At present, personalized and precise treatments for
lung cancer have been increasingly emphasized (3). Unfortunately,
although great progress has been made in targeted therapy, the 5-year
overall survival (OS) rate of LUAD patients is still low (4). Therefore,
identification of better ways to improve the effectiveness of therapy is
urgently needed.

Under normal circumstances, the immune system can identify
and eliminate tumor cells in the tumor microenvironment (TME)
(5). However, in order to survive and grow, tumor cells will escape
the body’s immune surveillance in different ways, ultimately
resulting in immune escape (6). Therefore, restoring the
antitumor immune response to control and eliminate tumor
cells is the core idea of tumor immunotherapy (7). In clinical
practice, immunotherapy has been successful at enhancing the
tumor Kkilling effect of tumor immune cells by inhibiting
programmed death proteins (8). A case in point is pablizumab,
whose inhibitory site is the PD-1 molecule. Tumor cells express
PD-LI and bind to the PD-1 receptor on effector T cells, thereby
inducing programmed cell death (PCD) in effector T cells (9).
PCD refers to the process in which cells initiate the expression of
death-related genes through targeted signals in the internal and
external environment, which promotes cell “suicide”, thus
removing unnecessary or abnormal cells from the body (10). To
date, the PCD family has expanded from apoptosis and necrosis to
pyroptosis, ferroptosis, cuproptosis and other forms (11). In the
latest research of Gan et al., a new form of PCD—disulfidptosis—
was also found to be involved (12).

Disulfidptosis refers to glucose deficiency resulting in the
excessive accumulation of disulfide bonds in cells highly
expressing SLC7A11, which leads to abnormal crosslinking of
disulfide bonds between cytoskeleton proteins (13), ultimately
resulting in abnormal contraction of the cytoskeleton, collapse of
the actin network and even cell death (14). Tumor cells usually need
to highly express the SLC7A11 protein to recruit additional cystine
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for the synthesis of reduced glutathione, which balances the
oxidation caused by the highly active metabolism of tumor cells
(15). In addition, glucose metabolism plays an important role in the
biochemical energy supply and cell substance transformation.
Cystine entry into cells mediated by the SLC7AI11 protein needs
to be further reduced to cysteine by reduced nicotinamide adenine
dinucleotide phosphate (NADPH) produced by the pentose
phosphate pathway (PPP) in glucose metabolism (16). This
process can reduce the toxicity of cystine and provide raw
materials for the synthesis of glutathione. However, when glucose
is deficient, NADPH depletion leads to abnormal accumulation of
cystine and other disulfides in cells highly expressing SLC7A11 and
triggers disulfidptosis (17). As a species of high-metabolism and
high-energy-consumption cell, tumor cells with high SLC7A11
expression exhibit a stronger disulfidptosis response when glucose
is depleted (18).

Therefore, in this study, we investigated disulfidptosis-related
molecules and pathways using immune- and glucose metabolism-
related genes by analyzing LUAD patient gene expression in the TCGA
database. We established a risk model to predict LUAD patient survival
and immunotherapy efficacy based on disulfidptosis-related genes,
providing a therapeutic reference for LUAD patients.

Methods
Patients and datasets

The fragments per kilobase of transcript per million mapped
reads (FPKM) standardized RNA-seq data of 600 samples,
including 59 normal lung tissues and 541 tumor samples and
corresponding clinical, prognostic and tumor mutation burden
(TMB) data downloaded from The Cancer Genome Atlas (TCGA)
website (https://portal.gdc.cancer.gov/projects/TCGA-LUAD),
were used to identify DEGs between normal samples and tumor
samples. Patients with unknown clinical information or an overall
survival time less than 30 days were excluded. Then, three gene
expression profiles of LUAD (GSE26939, GSE68465, and
GSE72094) were downloaded from the Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo) and used to validate the
accuracy of the prognostic model. The 32 genomes involved in
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glucose metabolism were downloaded from the Molecular
Signatures Database (MsigDB) via gene set enrichment analysis
(GSEA; https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) and
used to identify disulfidptosis-related genes involved in glucose
metabolism. Finally, two databases, IMMPORT (https://
www.immport.org/) and InnateDB (https://www.innatedb.ca/),
were used to obtain immune-related genes (19). The selected
genes were subsequently used to identify disulfidptosis-related
genes involved in the immune response.

TCGA differential analysis

We performed differential expression analysis of genes encoding
proteins (or their active subunits) that affect glucose metabolism in
the TCGA cohort by the Wilcoxon test (20). Gene expression profiles
were processed by CIBERSORT to determine the cell composition of
complex tissues. The Wilcoxon test was subsequently used to analyze
the difference in infiltrating immune cell diversity between normal
tissues and lung adenocarcinoma tissues. The differential gene
mechanism and signaling pathway enrichment analyses were
performed by gene set variation analysis (GSVA) based on the
Gene Ontology (GO) dataset (c5.g0.v2023.1.Hs.symbols.gmt) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset
(c2.cp.kegg.v2023.1. Hs.symbols.gmt) from the TCGA cohort. We
performed correlation analysis to identify disulfidptosis-related
genes (DRGs) via the R packages “corrplot” and “circlize”.
Additionally, heatmaps were constructed to visualize the results of
the differential expression gene (DEG) analysis in the TCGA cohort
via the R packages “limma” and “pheatmap”. Ultimately, immune cell
infiltration was analyzed and visualized by correlation analysis
between DEGs and immune cells.

Identification of g/i-DRG-DEGs

A total of 24 DRGs were classified from recently published
literature (21) to identify g/i-DRG-DEGs (disulfidptosis-related
genes involved in glucose metabolism and the immune response).
According to previous reports, Pearson analysis was considered an
accepted method for revealing the correlation between DRGs and
genes involved in glucose metabolism and the immune response in
the RNA-seq data of TCGA LUAD patients (22). The cutoff values
of R > 0.4 and P < 0.001 were acceptable. The differences in the
expression levels of the g/i-Genes between LUAD tissues and
normal tissues from the lungs were subsequently evaluated via the
Wilcoxon test. A false discovery rate (FDR) < 0.05 and a fold
change (FC)> 1 were set as screening criteria for obtaining
differentially expressed g/i-DEGs. The g/i-DEG and g/i-DRGs
intersect to obtain the g/i-DRG-DEG. The g-/i-DRG-DEGs were
subsequently subjected to univariate Cox analysis to determine the
prognostic value of the g-/i-DRG in LUAD patients via the R
package “survival”. Least absolute shrinkage and selection
operator (LASSO) Cox regression analysis was applied to
construct a 7-g/i-DRG-DEG predictive signature (23).
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Construction of the disulfidptosis-related
prognostic signature

Initially, 7 prognostic genes were screened out on the basis of the
optimal penalty parameter 1 determined by tenfold cross-validation
following the minimum criteria. Afterwards, Multivariate Cox
regression analysis was conducted to establish a seven-gene
predictive model. The computational formula used for determining
the disulfidptosis-related prognostic risk score was as follows:

Risk score = Coefl genel x genel expression + Coefl gene2 x gene2
expression + - + Coefl gene X gene expression. Coefi represents the
coefficient value of the corresponding gene. Patients were divided into
low-risk and high-risk groups based on the median risk score (24).

Time-dependent receiver operating characteristic (ROC)
analyses and Kaplan-Meier log-rank tests were used to evaluate
the performance and prognostic ability of the predictive signature
using the TCGA and GEO datasets via the R packages “timeROC”
and “survival”, respectively. Additionally, univariate and
multivariate Cox regression analyses were performed to assess the
ability of the risk model to predict patient prognosis independent of
other clinicopathological features.

Clinical and functional analysis

A nomogram for predicting the 1-, 3-, and 5-year survival of
LUAD patients was developed using the risk model in conjunction
with clinicopathological parameters such as age, sex, and stage
(25). We employed a calibration curve to determine if the
anticipated survival rate was congruent with the observed
survival rate. GSEA was performed to determine which pathway
genes were enriched mainly between the high- and low-risk
groups via the GO dataset and the KEGG dataset from the
molecular signature dataset (https://www.gsea-msigdb.org/gsea/
msigdb) as references. The criteria for statistical significance were
FC>1, nominal p<0.05 and FDR<0.25. Then, functional enrichment
analyses based on the KEGG dataset and GO dataset were
performed separately (26).

Immune infiltration analysis

Twenty-nine different kinds of tumor infiltrating immune cells
(TTICs) were examined by ssGSEA (27). The Wilcoxon test was
performed to compare the tumor-infiltrating immune cell scores.
K-M survival curves and the log-rank test were used to compare the
prognostic significance of immune cells with significant differences
between the high-infiltration and low-infiltration groups in the TCGA
cohort (28). Additionally, the expression levels of immune checkpoint
molecules were extracted from 541 LUAD tissues in the TCGA
database. The differential expression of immune checkpoint
molecules in the high- and low-risk groups was explored using the
Wilcoxon test. The same method was used to analyze the difference in
HLA expression (29).
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Immune analysis

Tumor immune dysfunction and exclusion (TIDE) is a
computational framework for evaluating the possibility of tumor
immune escape according to the gene expression profiles of tumor
samples. We obtained TIDE scores (http://tide.dfciharvard.edu/) and
performed a difference analysis of TIDE scores for the high- and
low-risk groups using Wilcox’s method to predict immune escape.
To further verify the accuracy of the risk score model, we generated
ROC curves for the risk score, TIDE score and TIS. First, we
calculated the tumor mutation burden (TMB) for each tumor
sample in the TCGA cohort and performed differential analysis of
the TMB using the Wilcoxon test. Subsequently, we performed
combined survival analysis on the same samples by combining
TMB and risk score data. We classified tumors into six subtypes
based on immunological characteristics (30). The immune
checkpoint inhibitor (ICI) sensitivity score of tumor samples
from each TCGA cohort was calculated by the R package
“oncoPredict”. Finally, we downloaded the immune cell
proportion score (IPS) from The Cancer Imaging Archive
database (TCIA) and combined it with the TCGA expression
data. We used the R packages reshape2 and ggpubr to perform a
rank sum test on the IPS between the high- and low-risk groups,
and the results were visualized with box plots.

Other statistical analyses

RStudio and its associated packages were used to conduct all the
statistical analyses. The ‘ggplot2’ package was used to visualize the
graphs. Wilcox analysis was performed through the ‘limma’ package.
The chi-square test was used to examine differences in the
proportions of clinical features. A paired t test was used to analyze
the difference in the survival of LUAD tissues and adjacent normal
tissues. Differences among multiple groups were analyzed by one-way
ANOVA. p<0.05 was considered to indicate statistical significance.

Results

Selection and differential analysis of the
TCGA cohort

The overall data analysis workflow is shown in Figure 1. We
selected the TCGA cohort, which included 600 samples (including
541 LUAD cases and 59 normal tissue cases). Samples with
duplicate names were removed by quality control (the expression
values of the same patient were averaged), and 508 LUAD samples
were ultimately obtained. We annotated the standardized RNA-seq
data in the TCGA cohort and obtained a total of 59427 genes. By
analyzing the differential expression of the genes affecting glucose
metabolism, we found that several hypoxia-inducible genes (such as
HIF-1A and PDK-1, P<0.05) were significantly upregulated.
Moreover, glucose transport-, glycolysis-, and pentose phosphate
pathway-related genes (such as SLC2A1, PKM, PFKP, IDH2 and
G6PDH, P<0.05) were significantly upregulated, suggesting that
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there were additional active glucose transport, glycolysis and
pentose phosphate pathway processes in LUAD cells (Figure 2A).
Furthermore, we analyzed the differences in immune cells in
the tumor microenvironment in this cohort (Figure 2C). Through
gene set variation analysis (GSVA) analysis based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) analyses, we found significant differences in
immune-related, metabolism-related and tumor-related
pathways (Supplementary Figures S1A, B). Moreover, the
expression of 24 disulfidptosis-related genes (DRGs) was
significantly different in different tumor-infiltrating immune
cells (Figure 2D), and most DRGs were expressed at low levels
in CD4+ regulatory T cells and plasma cells. We found that there
were 22 DRGs in the TCGA cohort (Figure 2B). We performed
differential expression analysis of the DRGs, and all the DRGs
were significantly different between normal and tumor tissues
(P<0.05). Among them, SLC7A11, LRPPRC and other genes were
significantly expressed at low levels in normal tissues, while
MYHI10, PDLIM1 and other genes were significantly highly
expressed in normal tissues (Supplementary Figure S1C).

Identification and construction of the
7-9/i-DRG-DEG signature model

We selected a total of 1009 genes from 32 glucose metabolism-
related gene sets from the GSEA database and then extracted the
expression of 1009 genes from the TCGA cohort via Perl scripts.
Using the same method, we evaluated the expression of 2328 genes
involved in the immune response from the IMMORT and INNATE
gene sets. These two gene sets were combined to obtain the total gene
set (g/i-Genes) related to glucose metabolism or the immune
response (Figure 3A). The expression levels of the g/i-Genes were
performed via differential gene analysis and correlation analysis with
the DRGs: a. Through differential gene expression analysis (log2|
FC|>1, FDR<0.01), we obtained 905 glucose metabolism- and
immune-related genes (g/i-DEGs). b. A total of 707 DRG-related
genes (g/i-DRGs) were screened by Pearson correlation analysis (R >
0.4, P < 0.001). A total of 128 differentially expressed disulfidptosis-
related genes involved in glucose metabolism and the immune
response (g/i-DRG-DEG) were obtained by taking the intersection
of g/i-DEG and g/i-DRG. Ultimately, we used the overall survival
(OS) data of LUAD patients in the TCGA cohort to examine the
predictive ability of g/i-DRG-DEGs through univariate Cox
regression analysis, and 37 prognostic g/i-DRG-DEGs were
identified as “risk genes”.

Subsequently, 508 LUAD patients were randomly divided into
two groups: the training group and the validation group. We used
the expression profiles of 37 prognostic g/i-DRG-DEGs in the
training cohort to construct a 7-g/i-DRG-DEG model containing
7 signatures through LASSOCOX regression analysis, including
ARRB1, LIFR, PDGFB, LGR4, KIF20A, NT5E, PHKAI
(Figures 3B, C). There were significant differences in the expression
of these seven genes in the TCGA cohort (Figure 3D). Multivariate
Cox regression was used to analyze the expression risk score of the
7-g/i-DRG-DEG for each sample. Tumor stage and risk score were
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Analysis workflow of our work. LUAD, Lung Adenocarcinoma; TCGA, The Cancer Genome Atlas; GSVA, Gene Set Variation Analysis; DEG, Differential

Expression Gene; DRG, Disulfidptosis-Related Gene

found to be important predictors of OS in LUAD patients by
univariate Cox regression analysis (Figure 3E, P<0.001). Tumor
stage and the risk score were independent determinants of OS in
LUAD patients by multivariate Cox analysis (Figure 3F, P<0.001).
To better demonstrate the prognostic value of this model for LUAD
patients, we used a nomogram to predict the prognosis of LUAD
patients at 1, 3, and 5 years (Figure 3G). The calibration curve
further verified that the 1-, 3-, and 5-year survival rates were highly
consistent with the predicted survival rates (Figure 3H).

Prognostic reliability of 7-g/i-DRG-
DEG model

We focused on the prognostic value of the 7-g/i-DRG-DEG
signature model and evaluated its performance. Patients in the
TCGA training cohort were divided into high-risk and low-risk
groups by the median cutoff (Figure 4A), and deaths among LUAD
patients increased as risk scores increased (Figure 4D). K-M curve
analysis revealed that OS was significantly shorter in the high-risk
subgroup than in the low-risk subgroup (P<0.001) (Figure 4G).
Moreover, the area under the curve (AUC) values for 1-year, 3-year
and 5-year survival were 0.694, 0.706 and 0.749, respectively
(Figure 4]). The risk score had greater predictive accuracy than did
the other single factors (Figure 4M). To evaluate the prognostic value of
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OS in the entire TCGA dataset, we further performed confirmatory
analyses of the model in the validation cohort and the entire TCGA
cohort. Consistent with the results observed in the training cohort,
samples from both risk categories were reasonably distributed in the
validation cohort (Figures 4B, E, H, K, N) and the entire cohort
(Figures 4C, F, 1, L, O). Finally, we conducted external validation on
three GEO datasets (the GSE26939, GSE68465 and GSE72094 cohorts)
to further verify the generalizability of the model. The results
demonstrated that the model had the same stable performance
(Supplementary Figure S2). The above analyses revealed that the
disulfidptosis-related 7-g/i-DRG-DEG signature is a reliable
independent predictor of LUAD patients.

The clinical and functional characteristics
of risk score based on the 7-g/i-DRG-
DEG model

First, we visualized the DEGs between the high-risk and low-
risk groups via heatmaps (Supplementary Figure S3). A total of 782
genes were significantly differentially expressed. Among the seven
modeling genes, NT5E (log2|FC|=1.06, p<0.05) and KIF20A (|
FC|=1.02, p<0.05) were significantly highly expressed in the high-
risk group. We divided LUAD patients in the TCGA cohort into
different groups randomly according to clinical stage, T stage, age,
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FIGURE 2

Selection and difference analysis of the TCGA cohort. (A) Differential expression analysis of the key glycolysis-related genes involved in disulfidptosis.
(B) Correlation analysis of 22 disulfidptosis-related genes expressed in this TCGA cohort. (C) Analysis of immune cells in the tumor
microenvironment in this TCGA cohort. (D) Disulfidptosis-related genes correlation analysis with different tumor-infiltrating immune cells. NK cells,

Natural Killer cells. *P<0.05; **P<0.01; *** P<0.001.

sex, and four representative gene mutations (KRAS, EGFR, TP53,
STK11) to study whether the prognostic model could predict LUAD
patient OS based on these clinical features (Supplementary
Figure S4). We also performed a correlation analysis of risk
scores between different clinical variable subgroups and detected
significant differences in tumor stage (P<0.001), T stage (P<0.05)
and TP53 mutation status (P<0.001). In addition, we found that the
OS time of high-risk patients was significantly shorter than that of
low-risk patients in every clinical characteristic subgroup (P<0.01).
In summary, the 7-g/i-DRG-DEG model can accurately predict the
prognosis of LUAD patients without considering certain essential
clinical characteristics.

Then, we performed GSEA, KEGG and GO enrichment analyses.
Through gene set enrichment analysis (GSEA), we found that several
pathways related to tumor development and progression, including
the cell cycle, ECM receptor interaction, focal adhesion, actin
regulatory, and spliceosome pathways, were upregulated in the
high-risk group (Figure 5A), wherein actin regulation is closely
related to disulfide denaturation. Moreover, there were also
significant differences in several biological processes between the
two groups, including intermediate filament, mitotic nuclear, mitotic
nuclear regulation, axial filament assembly and ciliary movement
(Figures 5B, C). KEGG enrichment analysis revealed significant
differences in the cell cycle, motor proteins, complement and
coagulation cascades, pancreatic secretion, protein digestion and
absorption, metabolism of xenobiotics by cytochrome P450, linoleic
acid metabolism and the alpha-linolenic acid metabolism pathway
(Figure 5D). GO functional enrichment analysis also revealed
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significant differences in cytoskeletal motor activity, microtubule
motor activity, glycosaminoglycan binding, heparin binding, serine
metabolism-related enzyme activities, organelle fission, nuclear
division, chromosome segregation, chromosome-associated regions,
organelles involved in cell division, and the collagen-containing
extracellular matrix (Figure 5E). Importantly, cytoskeletal motor
activity and microtubule motor activity are strongly correlated
with disulfidptosis.

Immune correlation analysis

To verify whether the signature genes of the 7-g/i-DRG-DEG
model are related to tumor immunity, we used the CIBERSORT and
ssGSEA algorithms to compare TIICs (31). CIBERSORT analysis
demonstrated that there were significant differences in plasma cells,
CD8+ T cells, CD4+ memory activated T cells, resting NK cells, MO
macrophages, M1 macrophages, resting dendritic cells, and resting
and activated mast cells between the high- and low-risk groups
(Figure 6A). K-M analysis further verified that OS was related to
different TIIC infiltration levels (P<0.05; Figures 6C-G). Similarly,
ssGSEA revealed significant differences in coinhibitory effects on
APCs, B cells, CCRs, iDCs, mast cells, class 1 MHC, NK cells,
inflammatory cells, T helper cells, TILs, Treg T cells, the type I IFN
response and the type II IFN response between the high- and low-
risk groups (Figure 6B), as well as in OS time, which was related to
different TIIC infiltration levels (Figures 6H-N).
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In addition, we analyzed the tumor mutation burden (TMB) in
the TCGA cohort and found that, except for ZNF536 and FLG, the
mutation frequency of the remaining genes with the highest
mutation frequency was greater in the high-risk group
(Figures 7A, B). In detail, the TMB of all samples in the high-risk
subgroup was significantly different from that in the low-risk
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Nomogram-predicted OS (%)

subgroup (P=0.02) (Figure 7F), and the OS time of the high-TMB
subgroup was longer than that of the low-TMB subgroup (P=0.024;
Figure 7C). The high-TMB plus low-risk subgroup had the longest
OS time; in contrast, the low-TMB plus high-risk subgroup had the
shortest OS time (P<0.001; Figure 7D). According to Thorsson’s
study on dividing cancer sample cells into six immune subtypes, we
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Prognostic reliability validation of the 7-g/i-DRG-DEG signature model. (A—C) Dividing the cohort into high- and low-risk groups by the median
cutoff. (D—F) Deaths situation of LUAD patients in the cohort between high- and low-risk groups. (G-I) Overall Survival of LUAD patients between
the high- and low-risk groups. (J—L) Area Under Curve (AUC) at 1-year, 3-year and 5-year survival time. (M—0) AUC at risk group, age, gender and
tumor stage. (A, D, G, J, M) Analysis of the TCGA training cohort. (B, E, H, K, N) Analysis of the TCGA internal validation cohort. (C, F, I, L, O) Analysis
of the TCGA entire cohort.

also found that C1-C6 immunophenotypes were significantly
different between the high-risk and low-risk groups (P=0.001)
(Figure 7E). Furthermore, we found that there were also
significant differences in the expression of immune checkpoint
molecules between the high- and low-risk groups (Figures 8A, B).
PDCI and CD274, the most commonly used immune checkpoints,
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were significantly highly expressed in the high-risk group.
Moreover, the HLA gene encoding MHC-I molecules was highly
expressed in the high-risk group, while the genes encoding MHC-II
were highly expressed in the low-risk group (Figures 8C, D).
Fortunately, the predictive accuracy of our risk-scoring model
was comparable to that of the TIDE and TIS models (Figure 8E).
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We further verified that the high-risk group in our model had a
significantly greater score than the low-risk group by TIDE scoring
(P<0.001; Figure 8F), which indicated that the high-risk patients
suffered a worse response to immune checkpoint inhibitor (ICI)
treatment. However, there was no significant difference in the PD-
1-positive group according to the Immunephenoscore (IPS), which
indicated that it was difficult for our model to predict the efficacy of
PD-1 blockers. The low-risk group with CTLA-4 positive had
higher scores than did the high-risk group (P<0.01; Figure 8G),
which indicated that the low-risk group might possess stronger
CTLA-4 blocker sensitivity. CTLA4 is upregulated in activated
regulatory T cells (Tregs) and can bind to CD80 or CD86 on the
surface of antigen-presenting cells, thus “shutting down” tumor
immunity (32). We noticed that Treg numbers decreased
significantly in the high-risk group according to ssGSEA, which
further confirmed the predictive effect of our model on CTLA-4
immune checkpoints. To further verify the predictive effect of this
risk model on immunotherapy efficacy, we selected data sets
(GSE135222 and GSE126044) which contained lung cancer
samples after treatment with Ipilimumab, Nivolumab or
Pembrolizumab (33). As a result, we found this model had a good
predictive effect on immune efficacy, with AUC at 12 and 18
months both exceeding 0.8 (Figure 8H). The PES of the low-risk
group was significantly longer than the high-risk group (P<0.05;
Figure 8I). In addition, as the risk score increased, the number of
non-responders to ICB treatment was also significantly more than
that of responders (P<0.05; Figure 8]). These verifications further
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illustrated that the 7-g/i-DRG-DEG model could predict the ICB
efficacy in NSCLC accurately.

Discussion

From the discovery of aerobic glycolysis to the pentose
phosphate pathway (PPP), characterizing the special metabolism
of tumor cells has always been a research direction for breakthrough
tumor treatment (34). When the oxygen supply cannot meet the
energy production needs of mitochondria, tumor cells increase
glycolysis to fill the energy gap caused by insufficient ATP,
thereby preventing tumor cell death caused by hypoxia (35).
Tumor cells steal more glucose by overexpressing glucose
transporter proteins, and excess raw material increases glycolysis
levels in tumor cells (36). Simply put, tumor cells reprogram the
normal process of glucose metabolism to gain an advantage in
confronting immune cells and competing with normal tissue cells
(37). To further confirm this conclusion, we selected a cohort of 600
samples from the TCGA database and performed differential gene
analysis on glucose metabolism-associated genes. We found that
genes related to hypoxia, glycolysis, glucose transport, and the PPP
were differentially upregulated, which indirectly explained why the
hypoxic environment of tumor cells led to a high consumption and
low production state in the glucose metabolism pathway. Therefore,
the highly expressed glucose transporter (GLUT) plays an
important role in maintaining this state of tumor cells.
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Nevertheless, an important reason for the occurrence of
disulfidptosis is the insufficient supply of reduced NADPH during
glucose starvation, which leads to the abnormal accumulation of
cystine and other disulfides in cells with high SLC7A11 expression.
As a new form of PCD, disulfidptosis of tumor cells can be further

Presenting Cells; NK cells, Natural Killer cells; IFN, Interferon; DC, Dendritic

exacerbated by limiting glucose uptake via the use of GLUT
inhibitors (38). We further performed differential expression
analysis of 22 DRGs, and the results showed that SLC7A11, a key
gene involved in disulfidoptosis, was differentially elevated in
tumors. Moreover, we found that DRGs expression was also
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differentially increased in several important TIICs involved in
tumor suppressive immunity, such as CD4+ T cells and tumor-
associated macrophages (TAMs). Therefore, we infer that GLUT
inhibitors can also have therapeutic effects on the suppressive tumor
immune microenvironment (39).

Immunotherapy plays an irreplaceable role in tumor treatment.
However, ICB has great limitations in clinical application. On the
one hand, only a few tumors highly express immune checkpoints;
on the other hand, the efficacy of ICB is uncertain even in some
immune checkpoint-positive tumors (40). Moreover, in some
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EGFR-mutated tumors, ICB may even lead to tumor
hyperprogression (41). There is an urgent need for effective
means to predict immune efficacy in the clinic. Therefore, we
constructed models related to immunity and glucose metabolism
to address this issue.

We extracted a total of 3337 genes through the GSEA,
IMMORT and INNATE datasets. We selected 905 genes that
were differentially expressed in tumors (g/i-DEG) and 707 genes
related to disulfidptosis (g/i-DRG) and then intersected the two
gene sets to obtain 128 differentially expressed disulfidptosis-related
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genes (g/i-DRG-DEG). Thirty-seven “risk” genes were identified by
Cox regression analysis of OS time. Finally, through LASSO Cox
regression analysis, we constructed a 7-g/i-DRG-DEG model
containing 7 signature genes (ARRBI1, LIFR, PDGFB, LGR4,
KIF20A, NT5E and PHKALI) in the training cohort. We verified
the reliability of the model in the validation set and 3 external GEO
datasets stratified by different risk score groups. The results proved
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that this model can better predict the survival of tumor patients
than can the classical TNM staging and risk score models.

We studied the relationship between the 7-g/i-DRG-DEG
model risk score and cellular functions. Through differential gene
analysis, we found that the NT5E and KIF20A genes, which are
highly related to tumor development, were differentially elevated in
the high-risk group. The GSEA, KEGG and GO analyses revealed
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enrichment of genes involved in various functions and pathways,
including the cell cycle, cytoskeleton movement activity,
microtubule movement activity, organelle division, nuclear
division, chromosome segregation, chromosome-related regions,
organelles involved in cell division and extracellular matrix
containing collagen. Notably, the genes in the high-risk group
were positively correlated with the cell cycle, ECM receptor
interaction, regulation of the actin cytoskeleton, and regulation of
mitosis, indicating that the genes in the high-risk group had
stronger cell proliferation and division functions. This result is
consistent with the clinical observation that poorly differentiated
and highly proliferative tumor cells usually have a worse prognosis
(42). As mentioned before, disulfidptosis relies on abnormal cross-
linking of disulfide bonds between cytoskeletal proteins, and the
high-risk group also exhibited a greater ability to regulate the actin
cytoskeleton (43).

Given that the immune response of the tumor microenvironment
is an important factor in determining tumor cell aggressiveness and
progression (44), we further verified the immune impact of the 7-g/i-
DRG-DEG model. By comparing TIICs through the CIBERSORT
and ssGSEA algorithms respectively, we found that immune cells
with direct tumor killing functions, such as plasma cells and CD8+ T
cells, were significantly reduced in the high-risk group, while immune
cells with auxiliary functions, such as M0 macrophages, M1
macrophages, and activated CD4+ T cells, were significantly
increased in the high-risk group. However, tumor-associated
macrophages (TAMs) have been a hot topic of cancer research in
recent years. An increasing number of studies have proven that TAM
infiltration is strongly correlated with the poor prognosis of tumor
patients due to a series of functions that promote tumor development,
such as supporting tumor cell proliferation, invasion, and metastasis
(45). We also noted that in another similar disulfidptosis-related
model, the expression of signature genes was positively correlated
with M1 cell migration and invasion, indicating that there is obvious
tropism of M1 cells in the high-risk group (46).

In addition, CD8+ T cells in the high-risk group were more
susceptible to immune checkpoint effects. We found that the
immune checkpoint molecule CTLA-4, which is currently widely
used in clinical applications, was significantly overexpressed in the
high-risk group, indicating that the high-risk group may have a
suppressive TME that is more unfavorable for tumor immunity.
Subsequently, the accuracy of the prediction of ICB efficacy was
verified to further illustrate that this model has reference value for
the clinical application of ICB. Specifically, The high expression of
HLA-I class molecules in the high-risk group also confirmed this
conclusion. HLA-I class molecules stimulate cytotoxic immune
responses by binding CD8+ T cells, and HLA-II class molecules
bind to CD4+ T cells (47). An increase in HLA class I molecules in
the high-risk group indicated a decrease in CD8+ T cells. HLA-II
class molecules were lower in the high-risk group, further indicating
that CD4" immune cells increased, which proved by immune
infiltration analysis. For the immune phenotype, the expression of
angiogenic genes was enhanced in the high-risk group, which had a
high proliferation rate, and Th2 cells were prone to acquired
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immune osmosis, which stimulated the proliferation of CD4+ T
cells and B cells. These results indicate that the TME in the high-risk
group was more inclined to exhibit a “cold immune” phenotype,
which is associated with greater tumor malignancy and a more
tolerant immune environment (48).

In summary, benefiting from the development of bioinformatics
technology, we constructed a 7-gene signature prediction model
based on TCGA LUAD patient data and evaluated patient tumor
prognosis risk through signature gene expression. We demonstrated
the reliability of this model and further validated its value in
predicting tumor immunity through immune infiltration analysis.
Such studies will help to develop more personalized treatment
strategies in the future, promote the development of new drugs,
and ultimately extend the survival expectancy of cancer patients.
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Ovarian cancer is currently the second most common malignant tumor among
gynecological cancers worldwide, primarily due to challenges in early diagnosis,
high recurrence rates, and resistance to existing treatments. Current therapeutic
options are inadequate for addressing the needs of ovarian cancer patients.
Ferroptosis, a novel form of regulated cell death with demonstrated tumor-
suppressive properties, has gained increasing attention in ovarian malignancy
research. A growing body of evidence suggests that ferroptosis plays a significant
role in the onset, progression, and incidence of ovarian cancer. Additionally, it has
been found that immunotherapy, an emerging frontier in tumor treatment,
synergizes with ferroptosis in the context of ovarian cancer. Consequently,
ferroptosis is likely to become a critical target in the treatment of ovarian cancer.

KEYWORDS

ferroptosis, ovarian cancer, Xc system, MDSC, immunotherapy

1 Introduction

Ovarian cancer is one of the most prevalent and deadly subtypes of gynecological
malignant tumors. There are several types of ovarian cancer, with epithelial ovarian cancer
being the most common (1). Ovarian cancer is typically diagnosed using a combination of
therapies, including surgery, chemotherapy, and innovative immunotherapy. Between 1976
and 2015, the death rate from ovarian cancer in the United States declined by 33%, while its
incidence fell by 29% between 1985 and 2014 (2). However, the five-year survival rate of
patients remained less than thirty percent (2), leading to a higher mortality rate among
female reproductive system malignancies, as the majority of ovarian cancers were only
discovered in stage III (51%) or stage IV (29%) (3). Furthermore, there is a lack of treatment
resistance and early diagnostic targets for ovarian cancer. Therefore, novel therapeutics are
urgently needed to improve the early diagnosis, treatment, and prognosis of ovarian cancer.
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Ferroptosis is a novel process of iron-dependent regulated cell
death induced by erastin, characterized by the accumulation of iron
ions, increased lipid peroxide concentration, reduced glutathione
peroxidase 4 (GPx4) activity, and often accompanied by large
amounts of reactive oxygen species (4). Ferroptosis has been shown
to be intimately associated with several biological processes and
diseases, including Alzheimer’s disease and brain hemorrhage.
Furthermore, it has been proposed that ferroptosis may play a role
in tumor suppression (5). Recent studies have demonstrated that
ferroptosis is closely related to the growth regulation of ovarian
cancers through mechanisms involving the transsulfuration pathway,
Hippo signaling pathways, and p53. Additionally, the combination of
immunotherapy and ferroptosis treatment is becoming a research
hotspot in ovarian cancer. This review outlines the current
understanding and research on ferroptosis in ovarian cancer, as
many specific regulatory processes and mechanisms remain
unclear. Further elucidation of the ferroptosis process in ovarian
cancer is expected to identify more therapeutic targets and drugs,
laying the groundwork for novel treatment approaches and
improved prognoses.

2 Mechanism of ferroptosis

Ferroptosis is commonly believed to be regulated primarily by
three mechanisms: iron overload, lipid peroxidation, and the
oxidized form mediated by the xc-cysteine/glutamate antiporter
system (6).Notably, ferroptosis is primarily caused by unbalanced
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cellular metabolic processes, including dysregulated iron and lipid
metabolism, and the production of reactive oxygen species (ROS)
(7).This unique characteristic of ferroptosis has led to the discovery
of new pathways and mechanisms which closely related to
ferroptosis regulation in recent years (Figure 1).

2.1 GPX4-GSH pathway

The XC-system is an amino acid transporter that forms the GPX4-
GSH pathway with the functional subunit SLC7A11 and the regulatory
subunit SLC3A2, playing a crucial role in the cellular antioxidant
system. Through the XC-system, cystine and glutamate are exchanged
between the inside and outside of the cell. Inside the cell, cystine is
converted to cysteine, which is further transformed into glutathione
(GSH). GSH acts as a cofactor for glutathione peroxidase 4 (GPX4),
helping to restore polyunsaturated fatty acids (PUFAs) and inhibiting
ferroptosis, making it a vital regulator of ferroptosis (8). When GPX4 is
suppressed, it promotes the accumulation of lipid ROS, accelerates cell
death, induces the occurrence of ferroptosis, and inhibits the growth of
tumor cells (9). Studies have found that drugs such as erastin (10),
sulfasalazine (11), ssorafenib (12), and p53 (13)can causing the
production of GSH by inhibiting the XC system and induce the
occurrence of ferroptosis. In ovarian cancer, Luo et al. discovered
that PAXS8, a gene that suppresses ferroptosis, can be inhibited by
PAXS8i to induce ferroptosis through the GPX4 pathway in
combination with RSL3. This approach increases sensitivity to
ferroptosis inducers and inhibits the progression of ovarian cancer (14).
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FIGURE 1
The main mechanism of ferroptosis.
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Mammal cells can also obtain cysteine through the
transsulfuration pathway in certain cases, in addition to their
dependence on the XC system (15). Methionine can be converted
to cysteine via the catalytic actions of cystathionine [-synthase
(CBS) and cystathionine gamma-lyase (CSE). Verschoor and
colleagues discovered that blocking the transsulfuration pathway
lowers the level of GSH and GPX activity in an ovarian cancer
model cell line (16), which ultimately results in ferroptosis.

2.2 Lipid peroxidation

Ferroptosis is primarily caused by the lipid peroxidation of
polyunsaturated fatty acids (PUFAs). The acyl-CoA synthetase long-
chain family member 4 (ACSL4) and lysophosphatidylcholine
acyltransferase 3 (LPCATS3) catalyze the production of polyunsaturated
fatty acid-phosphatidylethanolamine (PUFA-PE) from PUFA (17).
PUFA-PE is the most susceptible to the oxidation of lipids, which
under the influence of the Fenton reaction undergo a series of oxidative
reactions, thereby promoting the production of PL-OOH (18).This
extensive lipid peroxide reaction induces the occurrence of ferroptosis
(19). Sebastian Doll (20) and colleagues found that inhibiting ACSL4 can
suppress ferroptosis by regulating lipid peroxidation, suggesting that
ACSL4 may be a potential target for preventing ferroptosis-
related diseases.

2.3 FSP1-CoQ10-NAD (P) H pathway

A recently identified antioxidant system that controls ferroptosis
without relying on the GPX4 pathway is ferroptosis suppressor
protein 1 (FSP1) (21). By reducing and restoring coenzyme Q10
(CoQ10), which inhibits lipid peroxide, FSP1 is drawn to the plasma
membrane to prevent ferroptosis. FSP1, possessing NAD(P)H
oxidase activity (22), can catalyze the conversion of ubiquinone to
ubiquinol, with the resulting ubiquinol scavenging free radicals and
thereby preventing ferroptosis. However, Kang et al. discovered that
in FSP1-knockout cells, CoQ10 cannot reverse the ferroptosis
induced by ferroptosis inducers. On the other hand, the ESCRT-III
membrane repair system lets the ferroptosis inductor do its job again,
which is to cause ferroptosis in FSP-1 cells. Consequently, it is
unlikely that FSP1 might also be involved in ESCRT-III-mediated
ferroptosis suppression (23). Additionally, it has been shown that
dihydroorotate dehydrogenase (DHODH) can prevent ferroptosis in
the mitochondrial membrane by converting ubiquinone to ubiquinol.
In GPX4-deficient cancer cells, DHODH inactivation leads to
extensive lipid peroxidation and ferroptosis (24). However, none of
the specific mechanisms are clear enough.

2.4 The BH4-GCH1 pathway

GTP cyclohydrolase 1 (GCHI1) produces tetrahydrobiopterin
(BH4) from GTP, acting as a speed limit enzyme. GCH1 prevents
ferroptosis by acting as an antioxidant through BH4/BH2. High-
expressed BH4 cells can prevent oxidative damage by producing
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CoQ10, which prevents oxidation directly and prevents cellular
ferroptosis (25).

2.5 Iron overload

The transferrin receptor (TFRC) recognizes Fe (3+) bound to
transferrin (TF) in the serum and facilitates its entry into the cell.
Once inside, Fe (3+) is reduced to Fe (2+) and stored in the iron
pool. An excess of Fe (2+) activates iron-containing enzymes,
which react with H202 to generate a significant amount of
reactive oxygen species (ROS), leading to ferroptosis (26). When
the stored ferritin is recognized by NCOA4, it is recruited into
the autophage, causing oxidative damage, a process also known
as ferritinophagy, which can help induce ferroptosis (5).
Simultaneously, the susceptibility to ferroptosis is increased
when ferritinophagy takes place, which results in a significant
amount of free iron (27).

3 Regulation of ferroptosis in
ovarian cancer

3.1 Signal pathway

3.1.1 HIPPO pathway

The hippo pathway is a tumor-suppressing pathway that can
detect and control cell density. The two main transcript coactivators
of this pathway are Yes-associated protein 1 (YAP) and transcription
coactivator with PDZ-binding motif (TAZ). Transcription
enhancement-related domains (TEAD) members can interact with
TAP to mediate multi-cancer proliferation, renewal, transfer, and
drug resistance (28). The Hippo pathway controls ferroptosis in
ovarian cancer through YAP and TAZ. When TAZ is overexpressed,
OVCA cells become susceptible to ferroptosis. TAZ also causes
ferroptosis by controlling the level of its direct target gene,
angiooietin-like 4(ANGPTL4), which in turn controls the activity
of NADPH oxidase 2 (NOX2) (29). When TAZ is overexpressed,
OVCA cells become susceptible to ferroptosis. When SKP2 or YAP
are removed, lipid oxidation is inhibited during the ferroptosis
inducer (30).Therefore, the Hippo pathway may be a major target
in ovarian tumor cell ferroptosis and play a crucial role in controlling
the susceptibility of ferroptosis inducers to ovarian tumor ferroptosis.

3.1.2 Nrf2 pathway

To keep cell metabolism, oxidation restoration, protein
sedimentation balance, and antioxidation going, nuclear factor
erythroid 2-related factor 2 (NRf2) is a transcription factor that is
very important. It has been discovered that numerous significant
ferroptosis regulators are NRF2’s target genes (31). For example,
research has discovered that NRF2 can govern the ferroptosis of
tumor cells through many downstream targets such as GPX4
channels (32, 33), HMOX1 (34), ferritinophagy activating proteins
(ATGS etc.) (31), while NRF 2 has also been reported to be connected
with the prognosis of tumors (35).
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Several studies have found that NRF2 is a regulatory factor in
ovarian tumor ferroptosis. Apatinib can induce ferroptosis by
combining olaparib with NRf2, inhibiting GPX4 expression (36).
Pachymaran can induce ferroptosis by lowering NRF2 mRNA to
raise Fe2+ and lower levels of NRF2,HO-1 and GPX4 proteins in
ovarian cancer cells (37). Norcantharidin (NCTD) can also
regulate ferroptosis by acting on the NRF2/HO-1/GPX4/xCT
axis, leading to ferroptosis of ovarian cancer cells by inhibiting
NREF?2 (38). Tripterygium glycosides, by targeting the NRF2/GPX4
signal axis, disrupt the stability of the oxidation restoration
reaction and induce ferroptosis in ovarian tumor cells, thereby
enhancing the chemical susceptibility of ovarian cancer to
cisplatin (39). Wang et al. found that eryodictyol reduced NRF2
expression in mouse tumor tissue and regulated ferroptosis in
ovarian cancer through NRF2/HO-1/NQO1 signal pathways (40).
Furthermore, NRF2 can enhance erastin-induced ferroptosis
resistance by upgrading the expression of CBS in anti-erastin
cells in the transsulfuration pathway (41). Chelerythrine (CHE),
widely recognized as an anticancer agent, was found by Jia et al. to
exert inhibitory effects on ovarian cancer cell growth. This
inhibition was achieved through its action on Nrf2, which
mediated the expression of ferroptosis-related proteins and
subsequently promoted ferroptosis (42). NRF2 can also play a
role in ferritin synthesis and degradation NRF2 regulates ferritin
by HECT and RLD domains containing E3 ubiquitin protein
ligase 2(HERC2), NCOA4 and vesicle-associated membrane
protein 8(VAMPS). In addition, ovarian cancer cells with high
NFE2L2/NRF2 expression have been found to increase sensitivity
to the ferroptosis inducer (43).This demonstrates that NRF2 is an
important treatment target for ovarian cancer and plays a role in a
variety of regulatory pathways. While other ferroptosis regulating
factors in ovarian cancer that are regulated by NRF2 are not yet
fully studied, future studies of NRf2 in ovary cancer are to
be expected.

3.1.3 P53 pathway

P53 is a tumor suppressor protein that plays a powerful role in
cell aging, death, and DNA damage repair. In recent years, more
and more research has found that P53 plays a crucial role in
ferroptosis. The regulatory effect of P53 is two-way and has a
different effect as the environment changes. When lipid peroxide is
slight, it inhibits the occurrence of ferroptosis, helping the cell to
survive. However, when lipid peroxide is persistent and severe, it
induces ferroptosis, helping tumor cell death (44). For the GPX4-Xc
system, P53 can combine and degrade SLC7All, enhance the
expression of SAT1 and GLS2 in cells (5, 13), and reduce the
production of GSH by inhibiting CBS (45) expression, thereby
suppressing GPX4.When p53 elevates SAT1 expression, it can
indirectly promote ALOX15 elevation, promoting lipid peroxide
(46).Studies have also shown that p53 can inhibit the development
of ferroptosis by blocking dipeptidyl-peptidase-4 (DPP4) activity,
limiting the peroxidation of lipids (47). P53 inhibits TFR1 and ZRT/
IRT-like Protein 14 (ZIP14),reducing cellular Fe (2+) (48). p53 can
also inhibit the occurrence of ferroptosis by reactivating the two-
minute binoculars (MDM2) in mice, activating FSP1 (49).
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Through p53, PARP inhibitors block SLC7A11 expression in
ovarian cancer, which lowers GSH synthesis and increases lipid
peroxide and ferroptosis (50). Apatinib combined with olaparib
causes ferroptosis in ovarian cancer through p53 dependent way
(36). A lack of MEX3A causes the p53 protein to become more
stable, which prevents ferroptosis and encourages ovarian cancer
(51). To encourage OVCAR-3-cell ferroptosis, ursolic acid (UA)
can trigger the JNK/p53 signal pathway (52).

3.2 Gene

3.2.1SCD1

Stearoyl-CoA Desaturase 1(SCD1) is an enzyme that catalyzes
the synthesis of monounsaturated fatty acids in ovarian cancer cells
and is highly expressed in ovary tumor cells (53). Inhibition or
absence of the SCD1 gene can induce cellular ferroptosis. SCD1/
FADS2 has a positive ratio to the level of unsaturated fatty acids,
which can regulate lipid peroxide. Inhibiting SCD1/FADS?2 can also
directly degrade GPX4, thereby inducing the development of
ferroptosis (54). Menin-mixed-lineage leukemia(Menin-MLL)
inhibitor MI-463 can mediate ferroptosis in cancer cells through
lipid peroxide regulated by SCD1 (55). Furthermore, in ovarian
cancer cells, agrimonolide can target SCD1 as a new ferroptosis
inducer (56). The ferroptosis pathway is one of the SCD1 routes that
TP53 (13) can regulate, indicating that ovarian cancer with TP53
mutations may respond better to a SCD1 inhibitor. In addition to
increasing ovarian sensitivity to ferroptosis, SCD1 medication
suppression may be more advantageous for TP53-mutated
ovarian malignancies (57). TESFAY found that ferroptosis
inhibitor erastin can be used in conjunction with SCD1-inhibitors
A939572 to regulate lipid metabolism, significantly enhancing the
anti-tumor effect of the induced ferroptosis inducer in the ovarian
cells, increasing ovarian cell susceptibility to ferroptosis inducers
(53). Treatment with the SCD1-inhibitors MF-438, CAY10566, and
939572 makes ovarian carcinoma cells more susceptible to the death
ferroptosis-inducers RSL3 and Erastin (58). Treatment of ovarian
tumor cells with SCD1/FADS2 inhibitors in combination with
ferroptosislatin can raise the rate of apoptosis, decrease the rate of
cell mobility and tumor metastasis, and increase the sensitivity of
ovarian tumor cells to ferroptosislatin (54). According to a number
of studies, SCD1 inhibitors in ovarian cancer can dramatically
increase the effect of ferroptosis and aid in tumor cell regression,
in addition to increasing the sensitivity of ferroptosis inducers. This
suggests that SCD1 may one day serve as a novel therapeutic.

3.2.2 FZD7

Wnt receptor Frizzled-7 (FZD7) is a transmembrane receptor
that functions beyond the signals of both the canonical pathway and
the Wnt/Ca2+ pathway. Overexpression of FZD7 can drive the
development of ovarian tumors via the Wnt signal pathway (59).
FZD7 directly links to the expression of GSS, GSR, GPX2, and IDH
genes related to GSH metabolism. In ovarian cancer tissue, FZD7 can
activate the carcinogen P63, enhance the expression of GPX4, prevent
tumor cell ferroptosis, and decrease the susceptibility of drug-
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resistant ovarian cancer cells to ferroptosis (60). In addition, miR-1-
3p significantly improves the sensitivity of ovarian cancer cells to
Erastin or RSL3-induced ferroptosis by decreasing FZD7 expression
(61). This shows that treating ovarian cancer cells resistant to
platinum may benefit from targeting FZD7. Simultaneously, an
innovative prospect of combining a ferroptosis inducer with a
FZD7 inhibitor emerged.

3.2.3 SNAI2

Research has demonstrated strong expression of SNAI2 in
ovarian cancer cells, directly linking this expression to the cells’
ability to survive, proliferate, invade, and spread. The promoter area
of SLC7A11 is bound by SNAI2, and when SNAI2 is blocked,
SLC7A11 expression is down-regulated, which causes ferroptosis in
ovarian carcinoma cells (62). A leucine zipper transcription factor
called CCAAT/enhancer binding protein gamma(CEBPG) has also
been found to enhance transcription in SLC7A11 and promote
GPX4 expression, thereby inhibiting ferroptosis in the OC. and
leading to tumor cell development. Additionally, at the clinical level,
CEBPG expression has been observed to be associated with an
adverse prognosis in patients with OC (63). The E3 ubiquitin ligase
3-hydroxy-3-methylglutaryl reductase degradation (HRD1) inhibits
the growth of tumors in a variety of cancer forms. HRD1 has the
capacity to control ubiquitination and OC cell stability. Through
increasing SLC7A11 degradation, HRD1 interacts with SLC7A11 in
OC cells to encourage ferroptosis and prevent the growth of OC
tumors (64).

3.2.4 PARP

Poly (ADP-ribose) polymerases (PARP) are involved in cellular
processes such as DNA repair, transcription, metabolic regulation
and cell death (65). PARP inhibitors are currently an effective
treatment for BRCA mutant ovarian cancer (66). PARPi reduces
the expression of SLC7A1l in a p53 dependent way, thereby
reducing the biosynthesis of GSH and promoting lipid peroxide
and ferroptosis. It was also found that PARPi was associated with
the expression of CBS, FSP-1,etc. (50).Olaparib is a classic PARP
inhibitor for treating BRCA mutant ovarian cancer. The combined
treatment of olaparib and arsenic trioxide (ATO) activates the
AMPKo. pathway and inhibits SCD1 expression, resulting in a
significant increase in lipid peroxide in ovarian cancer cells, which
induces the occurrence of ferroptosis (67).However, BRCA (wild
type) ovarian cancer can produce olaparib resistance by repairing
PARPi-induced DNA damage. On this basis, PARPi combined with
FINS targeting SLC7A11 or GPX4 can synergistically enhance
ferroptosis, thereby producing an effective tumor suppression
effect against BRCA (wild type) ovarian cancer (50).Similarly,
Apatinib combined with olaparib reduced GPX4 by inhibiting
expression of NRF2 and autophagy, inducing ferroptosis in
ovarian cancer. However, in P53 (wild type) ovarian cancer cells,
the p53 activator RITA can increase the sensitivity of resistant cells
to ferroptosis, enhancing the effect of ferroptosis (36).PARP
inhibitors, in addition to their therapeutic effects on BRCA
mutant ovarian cancer cells, have also been combined with
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ferroptosis inducers or critical factors to enhance the sensitivity of
mutant ovary cancer to ferroptosis.

3.2.5 ARDHEP 15

In the clinical treatment of malignancies, microtubule-targeted
agents (MTA) are useful chemotherapeutic agents, and the
interaction of microtubulin with VDAC provides a novel target
for inducing ferroptosis in cancer cells (68). Tubulin polymerization
can be inhibited by the newly synthesized novel aroyl diheterocyclic
pyrrole (ARDHEP) 15. ARDHEP may induce ferroptosis in ovarian
tumor cells and prevent tumor cell growth by upregulating GPX4,
increasing intracellular ROS and Fe(2+) buildup, and stimulating
cellular oxidative damage (69). It is a novel therapeutic target
for tumors.

ALDH3A2 is a member of the ALDH family. Studies have
shown that removing ALDH3A2 boosts lipid metabolism and,
when combined with GPX4, helps prevent ferroptosis.
Additionally, the expression of ALDH3A2 is directly correlated
with the ferroptosis susceptibility of ovarian cancer cells, which can
prevent ferroptosis in ovarian cancerous cells (69).

3.2.6 RNA

Microscopic RNAs (miRNAs) are a class of endogenous
expressions of non-coding RNA that are highly significant in
biological processes such as differentiation, proliferation, mortality,
etc. Recent research has also discovered that miRNAs regulate
ferroptosis, connecting them to numerous diseases, including
cancer (70). By directly combining the 3’ Untranslated Regions
(UTR) with ACSL4, mir-424-5p inhibits the expression of ACSL4,
thereby reducing the ferroptosis induced by erastin and RSL3, thereby
lowering the sensitivity of ovarian cancer tissue to ferroptosis,
ultimately leading to the malignant progression of OC (71).
Researchers found that Extrinsic Fe and DFO target miR-485-3P
and miR-194 to regulate the expression of FPN. Large-scale induction
of miR-485-3P expression can reduce intraocular FPN, which raises
Fe2+ in ovarian cancer cells and causes the cells to undergo
ferroptosis (72). By boosting miR-382-5p to lower SLC7A11 and so
preventing the proliferation, invasion, and transfer of ovarian cancer
cells, lidocaine also causes a buildup of iron content and reactive
oxygen species (ROS) in the OC. cells (73). IncRNA is a non-coding
RNA with a length longer than 200 nucleocarbons and plays a
significant role in epigenetic regulation, cell cycle regulation, and
cell differentiation regulation (67).IncRNA ADAMTS9-AS1 can
block the process of ferroptosis in OC cells via modulating the mir-
587/SLC7A11 axis, which can further the malignant growth of OC
cells (73). JIN et al. found that LncRNA CACNAI1G-AS1 can
stimulate the growth and transfer of ovarian cancer cells through
the FTH1-IGE2BP1 axis to regulate the expression of FTHI and
inhibit ferritinophagy (74). According to recent research, circRNA
regulates ferroptosis, anemia, metabolism, tumor growth, and anemia
(75). CircRNASnx12 improves immunomodulatory resistance in
ovarian cancer by targeting miR-194-5p/SLC7A11 pathways to
block ferroptosis. CircRNASnx12 can therefore serve as an effective
therapeutic target for overcoming cisplatin resistance (76) (Table 1).
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TABLE 1 Genes involved in ferroptosis of ovarian cancer cell.

Gene Mechanism  Function Reference
TAZ Target %nduce ferropAuA)sAis and 29)
ANGPTL4/NOX2 | increase sensitivity
induce f tosis and
YAP Target SKP2 jncuce ferroprosts a1 (30)
increase sensitivity
Target GPX4/HO-
NRF2 inhibit fe i 41
1/HMOX1/CBS inhibit ferroptosis (41)
P53 GPX4/Xc system induce ferroptosis (77)
PARP GPX4/Xc system/ ?nduce ferroptf)s?s and (50)
P53/FSP-1 increase sensitivity
MEX3A Target P53 induce ferroptosis (51)
SCD1 Target GPX4 inhibit ferroptosis (54, 57)
F7D7 Target Wnt/ inhibit ferrop.tc.)S{S and (60)
GPX4/TP63 decrease sensitivity
induce ferroptosis and
miR-1-3p Target F7D7 induce ferroplosis an (61)
increase sensitivity
SNAI2 Target SLC7A11 inhibit ferroptosis (62)
GEBPG Target SLC7A11 inhibit ferroptosis (63)
HRD1 Target SLC7A11 induce ferroptosis (64)
inhibit f tosis and
ALDH3A2 Target GPX4 {TIDIL ferroptosis and - ;g
decrease sensitivity
inhibit ferroptosis and
mir-424-5p Target ACSL4 bt errop' (?Sl,s an (71)
decrease sensitivity
miR-485-3P Target FPN induce ferroptosis (72)
miR-194 Target FPN induce ferroptosis (76)
miR-382-5p Target SLC7A11 induce ferroptosis (73)
IncRNA
ADAMTS9- mir-587/SLC7A11 inhibit ferroptosis (79)
AS1
IncRNA Target
arge A .
CACNAI1G- FTH1-IGE2BP1 inhibit ferroptosis (74)
AS1
circRNASnx12 Target miR-194- ?nhibit ferrogt?sfs and 76)
5p/SLC7A11 increase sensitivity
inhibit ferroptosis and
HNF1 Target P53 . - (80, 81)
increase sensitivity
inhint fe tosis and
EDX1 Target ROS [t TEropTosis A (g2)
decrease sensitivity
Target
- inhibit fe i 83
c-myc NCOA4/HMGBI inhibit ferroptosis (83)
MTHFR Target HMOX1 inhibit ferroptosis (84)

3.3 Drug therapy

Researchers are still studying the development of ferroptosis-
related drugs for ovarian cancer despite the increasing clarity on
many mechanisms of ferroptosis. The thioredoxin reductase
auranofin, is used in conjunction with the MENIN-MLL inhibitor
MI-463 to induce ferroptosis in ovarian tumor cells (55). Artesunate
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(ART) is a widely used anti-malaria drug that has been studied to
find multiple cellular responses involved in tumor cells, such as
mortality, malnutrition, ferroptosis, etc. (85). Greenshields and
others found that ART treatment induces ovarian cancer cells to
produce a large amount of ROS, which exerts a potent anti-
proliferative and cell-toxic effect on ovarian cancers. At the same
time, neither the use of mortality inhibitors nor ferroptosis related-
inhibitors can completely eliminate the effect of ART, indicating
that ART has a combined inhibitory effect on ovarian cancer tumor
cells in a variety of ways (86).Octreotide, an FDA-approved
medication that is commonly used in the clinical treatment of
ovarian cancer, can directly decrease the expression of GPX4
inducing ferroptosis (87). A rating system of ferroptosis-related
genes constructed using TCGA mRNA expression data found
Dimethyloxalylglycine (DMOG) to be a potentially sensitive drug
for ovarian cancer (88). Large doses of selenium induce cell death
mediated by ferroptosis through abnormal GPx4 and lipid peroxide
mechanisms, thereby producing anti-cancer effects. High doses of
selenium have been speculated to lead to GPx4 deficiency through
the Wnt/B-catenin signal pathway (89). After the treatment of
ovarian cancer stem cells (OCSCs) with anisomycin, the levels of
triphosadenine and total glutathione were found to be significantly
reduced, Fe2+ levels increased, lipid peroxide increased, and
the activity of OCSCs significantly decreased. Furthermore,
anisomycin reduces the level of transcription of gene clusters that
encode pathways related to the regulation of ferroptosis, such as
glutathione metabolism and the autophagy signal transduction
pathway. The genes of the core factor ATF4 of these two
pathways are significantly expressed in ovarian cancer tissue and
are associated with a poor prognosis. Thus, anisomycin may induce
ferroptosis in ovarian cancer stem cells by reducing ATF4 to
regulate glutathione metabolism (90). Leukemia inhibitory factor
(LIF) and its receptor (LIFR) can induce ferroptosis via the GPX4
system. Additionally, LIF and LIFR have been found to act on M1
macrophages, enhancing the activity of CD8+ T cells and thereby
regulating the immunogenicity of ovarian cancer cells. However,
the specific mechanisms and pathways involved in this process
remain unclear (91).

As a new direction in ferroptosis applications, nanomaterials are
safer, more durable and more accurate in applications that induce
ferroptosis to produce ovarian tumor suppression (92). In addition,
nanomaterials have been found to enhance the immunotherapy effect
of induced ferroptosis (93). Superparamagnetic iron oxid spio-serum
can effectively induce lipid peroxide and produce a large amount of
toxic ROS by reducing the expression of the ferroptosis related
proteins SLC7A11 and GPX4 in OVCA cells, play synergies with
p53 and promote the occurrence of ferroptosis in ovarian cancer
cells (77). Biomimetic magnetic nanoparticles Fe304-SAS @ PLT are
constructed by Fe304 and a platelet membrane covering containing
sulfasalazine (SAS), which can increase the sensitivity to ferroptosis,
inducing ferroptosis by inhibiting the Xc-system. In addition, Fe304-
SAS @ PLT can also produce mild immunogenicity that triggers the
immunotherapy response to ovarian cancer (94). Chemokinetic
therapy (CDT) is considered one of the most promising cancer
treatments, mainly through the Fenton reaction. As a Fenton
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reagent, iron nitroprusside, (FeNP) has a therapeutic effect on ovarian
cancer organs originating from high-grade serous ovarian carcinoma
(HGSOC) by inhibiting GPX4’s involvement in ferroptosis (95)
(Table 2).

Although research on medications linked to ferroptosis is still
ongoing, there is still hope for significant future developments in

ovarian cancer management.

TABLE 2 The drug that regulate ferroptosis and sensitivity of ovarian
tumor cell to chemotherapy.

DRUG Mechanism = Function Reference
erastin target ROS induce ferroptosis (96)
target NRF2/
Apatinib g;g); 1p53 inhibit ferroptosis (36)
target NRF2/
pachymaran arge inhibit ferroptosis (37)
HO-1
target . .
NCTD fe 38
C NRE2/GPX4 induce ferroptosis (38)
tripterygium target NRF2/ induce ferroptosis and 39)
glycosides HO-1/NQO1 increase sensitivity
target Nrf2/HO-
eriodictyol la/rﬁeQ Olr induce ferroptosis (40)
UA target JNK/P53 induce ferroptosis (52)
MI-463 target SCD1 induce ferroptosis (54)
Agrimonolide = target SCD1 induce ferroptosis (56)
ARDHEP15 target GPX4 induce ferroptosis (69)
ART target induce ferroptosis (86)
mTOR/ROS P
Octreotide target GPX4 induce ferroptosis (87)
Sodium target Wnt/B-
i fe i 97
Selenite catenin/GPX4 induce ferroptosis ©n
Anisomyci target induce ferroptosi 0)
nisomycin induce ferroptosis
i ATF4/GPX4 P
L target ) .
spio=serum SLCTAL/GPX4 induce ferroptosis (77)
Fe304 - SAS
N target Xc system | induce ferroptosis (98)
@ PL
FeNP target GPX4 induce ferroptosis (95)
ferlixit target Fe2+ induce ferroptosis (99)
Sorafenib target induce fel tosis (100)
ratent SLC7A11/GPXg | 1 CHee IETTOPIOsh
induce f tosis and
MAP30 target Ca2+ jneluce fermoplosts an (101)
increase sensitivity
oncgly'tic . {arget CXCR4 ?nduce ferrop'tf)s'is and (102)
vaccinia virus increase sensitivity
induce f¢ tosis and
GALNT14 EGFR/MTOR | oo CHOPIosis al (103)
increase sensitivity
Chelerythrine | target Nrf2 induce ferroptosis (42)
LIF Target GPX4 induce ferroptosis (91)

Frontiers in Immunology

10.3389/fimmu.2024.1410018

3.4 Enhancement of chemoresistance

Currently, the main clinical treatments for ovarian cancer are
surgery and chemotherapy with paclitaxel combined with platinum
drugs. However, the prognosis for ovarian cancer patients who are
susceptible to chemotherapy resistance is poor. Nevertheless, research
has shown that ferroptosis inducers can improve the chemotherapy
sensitivity of ovarian cancer cells (104). The ferroptosis inducer
erastin has been shown to activate the apoptosis pathway, which
may increase the sensitivity of HEY and SKOV3 cells to cisplatin
(105). Furthermore, expression due to ATP binding cassette
subfamily B member 1 (ABCB1) in OVCA cells that are resistant
to another chemotherapeutic drug, dositase, erastin exhibits a strong
reversal effect of ABCBI, increasing the susceptibility of OVCAC cells
to docetaxel (94).

The sensitivity of cells to ferroptosis and ferroptosis conditions is
strongly correlated, and the iron compound ferlixit joint erastin can
overcome the chemotherapeutic resistance of ferroptosis ovarian cancer
(99). Studies have also demonstrated that the acquired synthesis of
cystine and glutathione impacts carboplatin resistance in ovarian
cancer. Hepatocyte nuclear factor-1-beta (HNF1) can promote
glutathione synthesis to avoid carboplatin resistance to ovarian clear
cell carcinoma (80). Simultaneously, P53 was identified as a key
pathway in the bioinformatic analysis of the resistance of HNF1 to
ovarian cancer (81). The loss of Fdx1 mediated by siRNA in cisplatin-
resistant cells is potentiated by an elevation in mitochondrial
membrane potential and cisplatin-induced lipid peroxidation,
ultimately leading to ferroptosis. Immunohistochemical analysis of
clinical specimens from ovarian cancer patients revealed higher
expression levels of Fdx1 in cisplatin-resistant specimens compared
to cisplatin-sensitive ones. Fdx1 may be a new and appropriate
diagnostic and prognostic marker and therapeutic molecular target
for the treatment of COVID-19 (82). SLC7A1l and GPX4 high
expression levels linked to platinum resistance in EOC patients. The
combined expression of SLC7A11 and GPX4 may be a significant
independent prognostic factor and a potential treatment target for EOC
patients (106). For example, Tripterygium glycosides target the NRF2/
GPX4 signal axis and mess up the stable reaction of oxidation
restoration. They also cause ferroptosis in A2780/DDP cells and
make ovarian cancer more likely to respond to cisplatin (39).

Statistics for progression-free survival and clinically significant
improvement were found in patients with ovary cancer who were
treated with sorafenib combined with topotecan maintenance
therapy (100). MAP30 protein from Momordica charantia and
cisplatin can synergistically induce ferroptosis in ovarian cancer
cells by altering metabolism (101). GALNT14, a member of the
acetylgalactosaminyltransferases family, which can regulate the
stability of EGFR proteins to inhibit the EGFR/mTOR pathway,
has significantly higher levels of GALNT14 in cisplatin resistance
ovarian cancer tissue compared to cisplatin sensitive ovarian cancer
tissue. The combination of cisplatin and the mTOR inhibitor
GALNT14 had a cumulative effect by promoting apoptosis and
ferroptosis of ovarian cancer cells, which may offer a new target for
overcoming cisplatin resistance in ovarian cancer (103).By
increasing ROS, lipid peroxidation, and iron homeostasis in high-
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OXPHOS high-grade serous ovarian cancer (HGSOC), the
promyelocytic leukemia protein-peroxisome proliferator-activated
receptor gamma coactivator-la (PML-PGC-1a) axis can help make
ovarian cancer more sensitive to chemotherapy. These features are
regulatory mechanisms for ferroptosis. It is therefore suspected that
this mechanism may improve resistance in ovarian cancer by
modulating ferroptosis (107). Furthermore, it was discovered in
Zhang ‘s study that chemotherapeutic drugs can also result in lipid
peroxidation through an excess of ROS, which can lead to
ferroptosis in normal ovarian cells (108). Figuring out the exact
way ferroptosis works and what it targets in chemotherapy could
help make ovarian cancer cells more sensitive to chemotherapy
drugs while keeping healthy ovarian tissue as safe as possible.

4 |Immunotherapy

The study of immunotherapy in the field of ovarian cancer is a
hot topic right now. The three main approaches are tumor antigen
vaccines, monoclonal antibodies that target the expression of
immune checkpoint inhibitors, and immunostimulatory cytokines.
Cancer cells can escape immune therapy by modulating immune
checkpoint pathways. The study found that when TYRO3 inhibits
ferroptosis by regulating ferroptosis pathways such as NRF2, Xc
system, tumor cells express high resistance to anti-PD-1/PD-L1
therapy (109).In addition, IFN 7y released by CD8(+)T cells has
been found to promote ferroptosis by acting on SLC3A2 and
SLC7A11 on cancer cells, which also enhances anti-tumor
immunotherapy against PD-L1 (110). Studies have shown that
ovarian cancer is immunogenic (111), and that immunotherapy
can extend the survival period of patients with ovarian cancer
while lowering the recurrence rate (111). This means that using
ferroptosis inducers along with immune checkpoint inhibitors might
work well to treat ovarian tumors.

4.1 DAMPs

When tumor cells die due to external stimuli, the process from
the non-immunogenic to the immunogenic immune response of
the mediated organism is known as immune cell death (ICD).
Tumor cells experiencing ICD can release large amounts of cell
content into the extracellular space through sudden and
uncontrolled cell death. The damage signal molecule is called the
damage-associated molecular pattern (DAMPs). The presence of
DAMPs in extracellular space triggers a strong immune response,
drawing in more phagocytes and other immune cells to eliminate
the threat and encourage tissue repair (112). Some anti-tumor drugs
can induce ICD through DAMPs (112), recruit immune-
inflammatory cells, release a large amount of inflammatory
agents, and cause inflammation responses that cause the
destruction of normal surrounding tissue, stimulate the formation
of neonatal blood vessels, increase vascular permeability, weaken
adaptive immune responses, promote tumor development, cancer
transfer and tumor resistance (113). Ferroptosis kills cancer cells by
enhancing immune cell activity (114). The DAMPs that primarily
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contribute to ferroptosis include HMGBI1, CRT, ATP, and others.
The release of ATP from dead cells is a self-dependent process. The
presence of ATP serves as a “find me” signal in extracellular space,
which is a chemoattractant of the DC precursor. ATP binds to the
P2RX7 receptor on DCs, facilitating inflammasome mediated
secretion of interleukin 1B (IL-1B), and the binding signals
stimulate the production of the pro-inflammatory cytokine IL8
(115), and increase the recruitment of neutrophils and phagocytic
potential. CRT is also a recognized DAMP molecule that plays a key
role in the onset of immune cell death. The CRT on the membrane
of the dead cell serves as a “eat me” signal to the APCs and triggers
immune stimulation. HMGBI is currently mainly believed to play a
role through the promotion of inflammatory mediators, achieving
inflammation responses, and initiating immunotherapy in
ferroptosis (116) (Figure 2).

4.2 Immune cells

Immunol cells can perform anti-tumor immune functions by
releasing cytokines that promote the ferroptosis activity of tumor
cells. CTL-released IFNY activates the Janus kinase (JAK) signal and
signal transducer and activator of transcription 1 (STATI)
pathways, thereby reducing the expression of SLC3A2 and
SLC7A11 to inhibit Xc system expression, increasing the iron
content stored in the cell, and thus inducing ferroptosis (117).
IFNY released by CD8(+)T cells inhibits the expression of SLC7A11
synergistically, leading to the activation of ferroptosis, thereby
enhancing anti-PD-L1 anti-tumor immunotherapy, enhancing
lipid oxidation and ferroptosis in tumors, and improving tumor
control (110). Similarly, the transformed growth factor-B (TGF-1)
released by macrophageal cells can inhibit transcription of the Xc
system through SMAD signals, thereby promoting ferroptosis
(118). The SAPE-OOH on the surface of the deferrous cell, as an
eat-me signal, guides swallowing by targeting TLR 2 on the
macrophageal cell (119) (Figure 2).

4.3 Immunosuppressive cells

Some immunosuppressive cells can antagonize ferroptosis
through high expression of GPX4 or other components (110). In
addition, Gpx4 can suppress anti-tumor immunity by promoting
Treg cell survival in the tumor (120). In Tregs with TCR/CD28 co-
stimulation activation,GPX4 expression was promoted, thereby
reducing the occurrence of ferroptosis (121).With the absence of
GPX4,M1 cells express high amounts of nitric oxide synthase
(iNOS) and create more NO free radicals (NO-), which can have
an impact akin to GPX4. (NO-) down-regulates the expression of
ferroptosis (122). Intratumoral prostaglandin E2 (PGE2) is an
immunosuppressive mediator that directly inhibits cytotoxic T
cell activity (123). It also decreases the number of DCs infiltrating
into the TME by inhibiting the chemokines CCL5 and XCL1 (124).
The release of PGE2 is linked to the induction of ferroptosis in
tumor cell (8, 125, 126). PGE2 overproduction inhibits the tumor
immune response and promotes tumor immune evasion (127).
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FIGURE 2

DAMPs such as HMGB1, CRT, ATP, and PGE2 are created when ferroptosis occurs in ovarian cancer cells. These molecules primarily operate on DC
through various signals; DC can also act on CD8+T cells by releasing cytokines like IL-1B, IFN-v, IL-8, and so on. T cells can control the incidence
of ferroptosis by inhibiting the Xc system through JAK/STAT1 and promoting Fe through the release of IFN-y. Macrophages mainly influence the Xc
system by means of TGF-B1. To control ferroptosis, immunosuppressive cells can operate on the GPX4 system in a variety of ways.

Immunocytosuppressive tumors, or “cold tumors,” do not have
tumor-infiltrating T cells, which do not respond to immune
checkpoint inhibitors. In cold tumors, T cells lack cystathionase
and Xc transporters, while myeloid-derived suppressor cells
(MDSCs) lack ASC neutral amino acid transporters and limiting
extracellular cysteine, inhibiting T cell activation (128), and its TME
is immersed in various immunosuppressive cells (129, 130). We are
aware that MDSC is an immunosuppressive cell in ovarian tumor
cells. Several studies have demonstrated that MDSC has an
immunosuppressive impact by preventing CD8+T cells from
infiltrating TME (131, 132), increasing PGE2 to induce PD-L1
expression in ovarian tumor cells (133). As the research goes
deeper, there are greater expectations for the combination of ICIs
with ferroptosis inducers. Immunosuppressant M2 can be re-
polarized to M1 (98, 134) when ferroptosis is caused by certain
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circumstances, providing an environment for ICIs. Research has
demonstrated that CD36 facilitates the absorption of fatty acids by
CD8 T cells in TME that have invaded tumors, inducing lipid
peroxide and ferroptosis, resulting in reduced cytotoxic cytokine
generation and impaired anti-tumor capacity. Blocking CD36 or
inhibiting ferroptosis in CD8 T cells effectively restores its anti-
tumor activity. More importantly, it has a greater antitumor effect
when combined with anti-PD-1 antibodies (135). As an inducer of
ferroptosis, erastin has little effect on autoimmune activity.
However, when combined with oncolytic vaccinia virus (OVV),
erastin promotes therapeutic effectiveness and anti-tumor
immunity by increasing the number of activated DCs and
promoting the activity of tumor-specific CD8+T cells in the
tumor (102). The combination also led to increased expression of
PD-1 and CTLA-4 in the TME. It provides a molecular basis for
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future ICIS combination therapy. Therefore, the combination of
ferroptosis inducers with ICIs enhances tumor immunotherapy.

However, the combination of ferroptosis inducers with ICIs is
also likely to increase immunosuppression, which is mainly the role
played by MDSC. Ferroptosis of PMN MDSCs in TME gives them
stronger immunosuppressive capabilities that are sufficient to
convert non-inhibiting PMNs into immune-inhibitory PMN-
MDSCs. Even though ferroptosis lowers the number of PMN
MDSCs in the TME, it also increases the release of molecules that
weaken the immune system, which stops T cells from working. In
addition, PMN MDSCs in TME are known to produce PGE2, which
undermines the anti-tumor function of innate and adaptive
immune cells, inhibits ferroptosis, protects PMN MDSC, and
blocks the release of immunosuppressive factors, thereby
facilitating the conversion of PMN MDSC to classical non-
inhibitory PMN. In some models, the immunosuppressive effects
of ferroptosis in PMN-MDSC can exceed its tumor-suppressive
effect on cancer cell death. PMN-MDSCs can also rely on peroxide
enzymes for lipid peroxidation and transfer lipid to DC cells,
blocking the cross-presentation of DC, thus exerting pro-tumor
activity (136). The study found that GPx4 deficiency did not inhibit
the development of tumors, instead, the GPx4-related ferroptosis
caused the cytotoxic CD8+T cell CXCL10 dependent immersion,
which was offset by the PD-L1 upgradation of the tumor cell and the
significant HMGB1-mediated MDSC infiltration, resulting in a
tumor-inhibiting immune response. Therefore, the combination
of ferroptosis inducers with ICIs has not yet been clearly concluded.
However, there are also ferroptosis inducers that can inhibit MDSC.
Dihydroartemisinin (DHA) has a marked anti-tumor and inducing
ferroptosis function in tumors, which can be achieved using the
PDAC orthotopic tumor model, which significantly inhibits MDSC
(137). TLR2 and Runxl can also regulate MDSC through the
ferroptosis path (124). The combination of induced ferroptosis
with PD-L1 and MDSC blockage induced ferroptosis doesn’t rely
on the presence of particular mutations in tumor cells, meaning that
any type of tumor may be treated with this combination therapy.
The TME reaction to ferroptosis will determine how well the
therapy works (138). Zhu et al. found that Asah2 is highly
expressed in tumor-infiltrating MDSCs, which can regulate the
ferroptosis of MDSCs through the P53-HMOX1 pathway. The use
of the Asah2 inhibitor NC06 to target ASAH2 to induce MDSC
ferroptosis is a potentially effective therapy for inhibiting the MDSC
accumulation in cancer immunotherapy (139). In addition, Zhang
and others constructed a biomimetic magnetosome composed of
Fe304 magnetic nanocluster (NC) as a core, loaded with TGF-3
inhibitors and PD-1 antibodies (Pa).When entering the tumor, Pa
and Ti synergistically form an immunogenic micro-environment
that increases the amount of H202 in the polarized M1 macrophage
cells, thereby promoting the Fenton reaction released with NCs.
Meanwhile, the produced (OH) induces the ferroptosis of ovarian
tumor cells, and the micro-environmental immunogenicity is
increased by the exposed tumor antigen. The synergistic effect of
ferroptosis and immune therapy in ovarian cancer was generated
(140). This gives us the clue that it may be possible to use the
ferroptosis inducer in conjunction with ICIs for immunotherapy of
tumors in cases where MDSC is suppressed.
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It also gives us new ideas for ovarian cancer immunotherapy. The
study discovered that ferroptosis was closely associated with ovarian
tumor immunity (141). However, in contrast to other tumors, current
studies on ferroptosis in immunotherapy are more likely to induce
ferroptosis release of DAMP, causing tumor development and a poor
prognosis. For instance, C-MYC inhibits ferroptosis induced
HMGBI release mediated by NCOA4 in ovarian cancer cells (83).
Low-concentration erastin by STAT3 mediated M2 polarization of
macrophage cells increased ferroptosis resistance to ovarian cancer.
The macrophage cells processed by erastin also secrete the key
cytokines IL-8, which encourage the invasion and migration of
anti-ferroptosis O.C. cells (96). However, studies have also found
that immune cells can have an anti-tumor effect by inducing the
ferroptosis of ovarian cells. ICIs can induce CD8+ T cells to trigger
ferroptosis in mouse ovarian tumor cells (142). Immunotherapy-
activated CD8+T cells can release IFN-y and enhance the anti-tumor
effect of immunotherapy by inducing ovarian cancer cell ferroptosis.
IFN-y kills mouse OVCA cells ID8 through inhibiting the Xc system,
increasing lipid ROS, and reducing tumor growth (117). The study
found that inhibition of ovarian cancer metastasis was achieved
through targeted MDSC immersion TME (143). By encouraging
the release of C5 by ovarian cancer cells and their interaction with
PPIP5K2, LncOVM can aid in the infiltration of MDSCs in TME,
which leads to lymphatic metastasis in ovarian cancer cells. By
blocking this pathway, the C5aR antibody or inhibitor (CCX168)
can prevent the recruitment of MDSCs and reinstate the in vivo
suppression of tumor genesis and metastasis (143). Ferroptosis
inducers in conjunction with ICDs for ovarian cancer have not
been investigated for their precise process and effectiveness, but this
combination might represent a potent target for ovarian cancer
therapy. Due to its unique way of competing with T cells for
cysteine, glutamine metabolism will be targeted by MDSC to lower
its activity and down-regulate the immunosuppressive tumor
microenvironment at the same time. Ferroptosis inducers that
affect the Xc-system could be more important in promoting
immunity and preventing immunological escape.

DAMPs such as HMGBI1, CRT, ATP, and PGE2 are created
when ferroptosis occurs in ovarian cancer cells. These molecules
primarily operate on DC through various signals; DC can also act
on CD8+T cells by releasing cytokines like IL-1f3, IFN-y, IL-8, and
so on. T cells can control the incidence of ferroptosis by inhibiting
the Xc system through JAK/STAT1 and promoting Fe through the
release of IFN-y. Macrophages mainly influence the Xc system by
means of TGF-B1. To control ferroptosis, immunosuppressive cells
can operate on the GPX4 system in a variety of ways (Figure 2).

4.4 Related gene prediction models

Using bioinformation technology, several researchers have
constructed prediction models for ovarian cancer and discovered
ferroptosis genes that are associated with both tumor inhibition and
ovarian cancer prediction. The ferroptosis driving gene ALOX12,
for instance, was found to be overexpressed in ovarian cancer cells
and induce lipid production, showing high sensitivity and
specificity for serous ovarian cystadenocarcinoma (144). Its
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increased expression was associated with a poor prognosis in OC
patients, according to multiple studies using the mRNA expression
data of TCGA, IGCG, GTEx, and clinical OC patients. ALOX12
may be a possible risk factor for OC, as inhibition of ALOX12
decreases the migration and proliferation of ovarian cancer cells
(145, 146). Comprehensive evaluation of gene expression, related
signaling pathways, and immunomodulatory functions also found
that the ferroptosis related gene PRNP also played a tumor
suppressor role in OC. It may be a potential new biomarker for
OC diagnosis, prognosis, and immunotherapy response (147).
The identification of appropriate and effective immune
prediction targets will significantly increase the practicality
of immunotherapy for ovarian cancer. The realization and
implementation of ovarian cancer immunotherapy must take into
consideration the immunosuppressive network of ovarian cancer.
Researchers are increasingly developing immunotherapy bio-
information technology models that utilize ferroptosis-related
genes to predict the effects, side-effects, and prognosis of
immunotherapies. Studies have constructed a model containing
nine ferroptosis-related genes, showing that ferroptosis is closely
linked to tumor immunity through the ssGSEA method, but further
experimental validation is needed (141). When paired with clinical
variables, the risk model developed by YE et al. based on five
ferroptosis-related characteristics linked to tumor immunity can
more accurately predict the prognosis of OC patients (146). A
model of 15 FRGs (c) divided patients into high- and low-risk
groups, showing good survival differences. Additionally, in the low-
risk group, characteristic enrichment sets were detected with
immunity pathways related to ovarian cancer, which suggests that
the model can be used to precisely treat immunotherapy for ovarian
cancer and for prognosis (148). Using Cox analysis, three
prognostic genes were identified from 63 FRGs. Significant
differences were found in activated DCs, plasma cells, MO
infiltration, and important immune checkpoint molecules
between the two groups when the CIBERSORT algorithm was
applied to the various tumor immune microenvironments
between the two groups based on the grouping of prognostic
genes. The low-risk group also responded better to
immunotherapy and chemotherapy at the same time, which was
predictive of prognosis and immune response (149). Similar
outcomes were achieved by Wang et al. when they developed a
risk score model based on various prognostic signal FRGS.
Additionally, it has been proposed that in high-risk patients, the
combination of immunity and ferroptosis may result in a worse
prognosis (150). A clinical risk stratification tool based on four DEG
(differentially expressed genes from immune and ferroptosis) has
been developed for serous ovarian cancer. It can exhibit a strong
correlation with immune markers and induced pluripotent stem
cells (IPS). Encourage additional clinical judgment in the areas of
personalized treatment planning, prognostic assessment, and
follow-up scheduling (151). A risk model established by finding
significantly differentially expressed genes associated with
ferroptosis was found to have favorable immune cell and
prognostic associations (152). Furthermore, ferroptosis and
oxidative stress-related genes (FORGs) have been found to be
associated with immunotherapy in ovarian cancer. Based on the
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expressive characteristics of 19 FORGs, ovarian cancer patients
were divided into two FORG subtypes. The high-risk group had
immunosuppression and a poor prognosis. The risk scores
significantly correlated with immunosurgery expression and
chemotherapy sensitivity, demonstrating the usefulness of
prognostication and chemotherapy for O.C (153). Xiang et al.
conducted molecular subtyping of ferroptosis-related genes in
ovarian cancer and developed a predictive model. They
discovered that high-risk patients exhibited a tumor immune
microenvironment with increased infiltration of M2 macrophages
and reduced numbers of CD8+ T cells, which impaired immune
responses and led to poor prognoses (154). Li and colleagues also
construct risk models in conjunction with genes related to
ferroptosis and cuprotosis, which can predict individual
sensitivity to various immunotherapies and chemotherapy drugs
based on specific groups, and have strong immune prediction and
prognostic ability (155) (Table 3).

TABLE 3 The role of ferroptosis related gene in prediction and
immunotherapy of ovarian cancer cell.

Related
Prognostic  to
function immune

response

ferroptosis-
€rroptosis reference

related genes

PRNP v R (147)

15-FRG (CYBB, VDAC2,
SOCS1, LINC00472,
ELAVLI, IENG, IDH1; N N
NRAS, MT1G, ACSL3,
SLC3A2; PTGS2, SLC1A4,
PCK2, XBP1)

(148)

CXCL11, CX3CRI,
v v

151
FH, DNAJB6 (151)

SLC7A11, ZFP36, TTBK2 =V y (149)

ALOX12, ACACA,
v v

14
SLC7A1l, FTHI1, CD44 (146)

FORG y V (153)

HIC1, N N

1
LPCAT3, DUOX1 (150

LPCAT3, ACSL3,

CRYAB, PTGS2. J
ALOX12, HSBPI,

SLC1A5, SLC7AIl1, ZEB1

X (141)

CDKN1B, CXCR4,
FAS, FOS, FOXOIl,
GABARAPLI, HDACI,
IENG, IL24, v x
MTMR14, NFKBI,
PEX3, PPPIRISA,
RB1, SIRT2

(156)

GFPT2, VSIG4, HOXAS5, N N

155
CXCL9, and LYPDI. (155)

ALOXI2, RBI,
DNAJB6, v x
STEAP3, SELENOS

(145)

(Continued)
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TABLE 3 Continued

Related
Prognostic  to
function immune

response

ferroptosis-

reference
related genes

DNAJB6, RB1, VIMP/
SELENOS, STEAP3, y x
BACHI and ALOX12

(144)

LAMP2, NOS2, ALOX5,

CD44, CHMP5, FH, J
GOT1, DUOX2, SLC7All,

and DDIT3

(152)

PDP1, FCGBP, EPHAA4,

GASI, SLC7A11, N J
BLOCI1S1, SPOCK2,

and CXCL9

(154)

v, provided; x : not provided.

5 Conclusion and perspectives

As a new type of cell death found to be used to suppress tumor
cells, ferroptosis is significant and has recently become a hotspot in
the field of tumors. The regulatory role of specific mechanisms
such as the GPX4 (157) and Xc system in ferroptosis and
related pathways and targets has been gradually clarified. Many
new mechanisms for ferroptosis, pathways and genes have been
gradually discovered, but further research is still to be undertaken.
Many of the currently known treatments for ovarian cancer are
highly toxic and ineffective. Studies have found that ferroptosis
combination therapy can help increase ovarian cancer sensitivity
to the drug and improve the prognosis. The mechanism of
ferroptosis is closely related to oxidative stress and ROS
production, with research often focusing on mitochondria.
Ferroptosis is characterized by distinct morphological changes,
including smaller mitochondria, shriveled mitochondrial
membranes, and reduced or absent mitochondrial cristae, while
the cell membrane remains intact and the cell nucleus size remains
normal (10). In ovarian cancer, PML-PGC-1o (107) can promote
mitochondrial respiration, cysteine (158) restriction affects Fe-S
cluster synthesis in mitochondria, and compounds like eriodictyol
(40) and SPIO-serum (40) exacerbate mitochondrial dysfunction,
all of which regulate ferroptosis. Recent studies have identified
Mitotic Arrest Deficient 2 Like 2 (MAD2L2), an important tumor-
associated protein primarily located in ribosomes, as having a
potential role in mitochondrial elongation. MAD2L2 can promote
ovarian cancer proliferation and migration by inhibiting ferroptosis
and is closely associated with various immune cells. However, the
specific and complete mechanisms and pathways of ferroptosis in
mitochondria remain unclear. Future research in this area is
expected to provide a more comprehensive understanding of
ferroptosis (157).Furthermore, due to the immunosuppressive
nature of ovarian cancer, single immunotherapy currently has
good therapeutic effects in only a fraction of ovarian cancer
patients, therapy combined with other new tumor treatments is a
new research trend. Ferroptosis, as a new type of treatment, can not
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only play a role in suppressing ovarian tumors but also induce
immunotherapy. However, immunosuppression of ovarian cancer
has been found to reduce this combined effect and even lead to bad
side effects. The study also found that it may be possible to inhibit
the immunosuppressive microenvironment of ovarian tumors by
targeting immune cells, thereby helping in the combination of
ferroptosis inducers and immunotherapy. The application of
nanomaterials in this field has endless potential and can be
targeted therapeutically, inducing ferroptosis to produce the effect
of immunotherapy and play more accurate, longer-lasting, and with
fewer side effects. However, the specific mechanisms are not clear
enough. In recent years, considerable research has been undertaken
on immuno-predictive models built from bioinformatics and
ferroptosis-related genes, which may help in the research and
development of targets and drugs for ovarian cancer treatment. In
the future, the association of ferroptosis-related inducers and
inhibitors with other treatments for ovarian cancer is still
worth exploring.

Author contributions

KG: Writing - original draft, Writing — review & editing. ML:
Writing - review & editing. JB: Conceptualization, Writing - review
& editing. TY: Writing - review & editing. JG: Writing - review &
editing. FR: Conceptualization, Writing - review & editing. LZ:
Writing - review & editing, Funding acquisition.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article.
The present study was supported by scientific research fund
project of Liaoning Provincial Department of Education
(general project, 2021, Grant No. LJKZ0752); 345 Talent Project
of Shengjing Hospital.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1410018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Guo et al.

References

1. Cho KR, Shih I-M. Ovarian cancer. Annu Rev Pathol Mech Dis. (2009) 4:287-313.
doi: 10.1146/annurev.pathol.4.110807.092246

2. Yeung T-L, Leung CS, Yip K-P, Au Yeung CL, Wong STC, Mok SC. Cellular and
molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and
Molecular Processes in Cancer Metastasis. Am ] Physiol Cell Physiol. (2015) 309:C444-
456. doi: 10.1152/ajpcell.00188.2015

3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer |
Clin. (2021) 71:7-33. doi: 10.3322/caac.21654

4. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol.
(2016) 26:165-76. doi: 10.1016/j.tcb.2015.10.014

5. Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon S, et al. Ferroptosis:
a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. (2017)
171:273-85. doi: 10.1016/j.cell.2017.09.021

6. Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Annu Rev Cancer Biol.
(2019) 3:35-54. doi: 10.1146/annurev-cancerbio-030518-055844

7. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. (2016) 73:2195-
209. doi: 10.1007/s00018-016-2194-1

8. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS,
et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. (2014) 156:317-31.
doi: 10.1016/j.cell.2013.12.010

9. LiD, Zhang M, Chao H. Significance of glutathione peroxidase 4 and intracellular
iron level in ovarian cancer cells—“utilization” of ferroptosis mechanism. Inflammation
Res. (2021) 70:1177-89. doi: 10.1007/s00011-021-01495-6

10. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al.
Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. (2012) 149:1060—-
72. doi: 10.1016/j.cell.2012.03.042

11. Guan J, Lo M, Dockery P, Mahon S, Karp CM, Buckley AR, et al. The xc- cystine/
glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of
sulfasalazine. Cancer Chemother Pharmacol. (2009) 64:463-72. doi: 10.1007/s00280-
008-0894-4

12. Sun X, Niu X, Chen R, He W, Chen D, Kang R, et al. Metallothionein-1G
facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. (2016)
64:488-500. doi: 10.1002/hep.28574

13. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, et al. Ferroptosis as a p53-
mediated activity during tumor suppression. Nature. (2015) 520:57-62. doi: 10.1038/
naturel4344

14. Luo Y, Liu X, Chen Y, Tang Q, He C, Ding X, et al. Targeting PAXS8 sensitizes
ovarian cancer cells to ferroptosis by inhibiting glutathione synthesis. Apoptosis. (2024).
doi: 10.1007/s10495-024-01985-y

15. Sbodio JI, Snyder SH, Paul BD. Regulators of the transsulfuration pathway. Br J
Pharmacol. (2019) 176:583-93. doi: 10.1111/bph.14446

16. Verschoor ML, Singh G. Ets-1 regulates intracellular glutathione levels: key target for
resistant ovarian cancer. Mol Cancer. (2013) 12:138. doi: 10.1186/1476-4598-12-138

17. MeiFang W, De-Guan L. Research progress of ferroptosis in cardiovascular and
cerebrovascular diseases. Chin Bullet Life Sci. (2019) 31(09):886-93. doi: 10.13376/
j.cbls/2019109

18. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in
disease. Nat Rev Mol Cell Biol. (2021) 22:266-82. doi: 10.1038/s41580-020-00324-8

19. Agmon E, Stockwell BR. Lipid homeostasis and regulated cell death. Curr Opin
Chem Biol. (2017) 39:83-9. doi: 10.1016/j.cbpa.2017.06.002

20. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4
dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol.
(2017) 13:91-8. doi: 10.1038/nchembio.2239

21. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ
oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. (2019)
575:688-92. doi: 10.1038/s41586-019-1705-2

22. Marshall KR, Gong M, Wodke L, Lamb JH, Jones DJL, Farmer PB, et al. The
human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin
cofactor and DNA binding activity. J Biol Chem. (2005) 280:30735-40. doi: 10.1074/
jbc.M414018200

23. Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. AIFM2 blocks ferroptosis
independent of ubiquinol metabolism. Biochem Biophys Res Commun. (2020) 523:966—
71. doi: 10.1016/j.bbrc.2020.01.066

24. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated
ferroptosis defense is a targetable vulnerability in cancer. Nature. (2021) 593:586-90.
doi: 10.1038/s41586-021-03539-7

25. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Miiller C, Zandkarimi F, et al.
GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid
remodeling. ACS Cent Sci. (2020) 6:41-53. doi: 10.1021/acscentsci.9b01063

26. Shen Z, Liu T, Li Y, Lau ], Yang Z, Fan W, et al. Fenton-reaction-acceleratable
magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano.
(2018) 12:11355-65. doi: 10.1021/acsnano.8b06201

Frontiers in Immunology

10.3389/fimmu.2024.1410018

27. Bellelli R, Federico G, Matte’ A, Colecchia D, Iolascon A, Chiariello M, et al.
NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. (2016) 14:411-21.
doi: 10.1016/j.celrep.2015.12.065

28. Dey A, Varelas X, Guan K-L. Targeting the Hippo pathway in cancer, fibrosis,
wound healing and regenerative medicine. Nat Rev Drug Discovery. (2020) 19:480-94.
doi: 10.1038/s41573-020-0070-z

29. Yang W-H, Huang Z, Wu J, Ding C-KC, Murphy SK, Chi J-T. A TAZ-
ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in
epithelial ovarian cancer. Mol Cancer Res. (2020) 18:79-90. doi: 10.1158/1541-
7786.MCR-19-0691

30. Yang W-H, Lin C-C, Wu J, Chao P-Y, Chen K, Chen P-H, et al. The hippo
pathway effector YAP promotes ferroptosis via the E3 ligase SKP2. Mol Cancer Res.
(2021) 19:1005-14. doi: 10.1158/1541-7786.MCR-20-0534

31. Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Breakdown of an
ironclad defense system: The critical role of NRF2 in mediating ferroptosis. Cell Chem
Biol. (2020) 27:436-47. doi: 10.1016/j.chembiol.2020.03.011

32. Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, et al. PRMT4 promotes
ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the
Nrf2/GPX4 pathway. Cell Death Differ. (2022) 29:1982-95. doi: 10.1038/s41418-022-
00990-5

33. Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, et al. Edaravone ameliorates
depressive and anxiety-like behaviors via Sirtl/Nrf2/HO-1/Gpx4 pathway. |
Neuroinflamm. (2022) 19:41. doi: 10.1186/s12974-022-02400-6

34. Chang L-C, Chiang S-K, Chen S-E, Yu Y-L, Chou R-H, Chang W-C. Heme
oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. (2018) 416:124—
37. doi: 10.1016/j.canlet.2017.12.025

35. Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis.
Antioxidants Redox Signaling. (2018) 29:1756-73. doi: 10.1089/ars.2017.7176

36. Yue W, Yupeng G, Jun C, Kui J. Apatinib combined with olaparib induces
ferroptosis via a p53-dependent manner in ovarian cancer. J Cancer Res Clin Oncol.
(2023) 149(11):681-9. doi: 10.1007/s00432-023-04811-1

37. Jing T, Guo Y, Wei Y. Carboxymethylated pachyman induces ferroptosis in
ovarian cancer by suppressing NRF1/HO-1 signaling. Oncol Lett. (2022) 23:161.
doi: 10.3892/01.2022.13281

38. Zhu X, Chen X, Qiu L, Zhu J, Wang J. Norcantharidin induces ferroptosis via the
suppression of NRF2/HO-1 signaling in ovarian cancer cells. Oncol Lett. (2022) 24:359.
doi: 10.3892/01.2022.13479

39. Ma B, Zhong Y, Chen R, Zhan X, Huang G, Xiong Y, et al. Tripterygium
glycosides reverse chemotherapy resistance in ovarian cancer by targeting the NRF2/
GPX4 signal axis to induce ferroptosis of drug-resistant human epithelial ovarian
cancer cells. Biochem Biophys Res Commun. (2023) 665:178-86. doi: 10.1016/
j.bbrc.2023.04.111

40. Wang X, Chen J, Tie H, Tian W, Zhao Y, Qin L, et al. Eriodictyol regulated
ferroptosis, mitochondrial dysfunction, and cell viability via Nrf2/HO-1/NQO1
signaling pathway in ovarian cancer cells. J Biochem Mol Toxicol. (2023) 37(7):
€23368. doi: 10.1002/jbt.23368

41. Liu N, Lin X, Huang C. Activation of the reverse transsulfuration pathway
through NRF2/CBS confers erastin-induced ferroptosis resistance. Br J Cancer. (2020)
122:279-92. doi: 10.1038/s41416-019-0660-x

42. ZhouJ, Wang Y, Fu Y, Lin Z, Lin H, Lv G, et al. Chelerythrine induces apoptosis
and ferroptosis through Nrf2 in ovarian cancer cells. Cell Mol Biol (Noisy-le-grand).
(2024) 70:174-81. doi: 10.14715/cmb/2024.70.3.26

43. Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, et al. NRF2 controls
iron homeostasis and ferroptosis through HERC2 and VAMPS. Sci Adv. (2023) 9:
eade9585. doi: 10.1126/sciadv.ade9585

44. Xu R, Wang W, Zhang W. Ferroptosis and the bidirectional regulatory factor
p53. Cell Death Discovery. (2023) 9:197. doi: 10.1038/s41420-023-01517-8

45. Guo X, Liu N, Liu M. Long non-coding RNA LINC00336 as an
independentprognostic indicator and an oncogenic IncRNA in bladder cancer. Arch
Med Sci. (2019) 19(2):478-87. doi: 10.5114/a0ms.2019.89661

46. Ou Y, Wang S-J, Li D, Chu B, Gu W. Activation of SATI engages polyamine
metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U.S.A. (2016)
113:E6806-12. doi: 10.1073/pnas.1607152113

47. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits
ferroptosis by blocking DPP4 activity. Cell Rep. (2017) 20:1692-704. doi: 10.1016/
j.celrep.2017.07.055

48. LiuY, Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian.
Cell Death Differ. (2022) 29:895-910. doi: 10.1038/s41418-022-00943-y

49. Venkatesh D, O’Brien NA, Zandkarimi F, Tong DR, Stokes ME, Dunn DE, et al.
MDM?2 and MDMX promote ferroptosis by PPARo-mediated lipid remodeling. Genes
Dey. (2020) 34:526-43. doi: 10.1101/gad.334219.119

50. Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, et al. PARP inhibition promotes
ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-

frontiersin.org


https://doi.org/10.1146/annurev.pathol.4.110807.092246
https://doi.org/10.1152/ajpcell.00188.2015
https://doi.org/10.3322/caac.21654
https://doi.org/10.1016/j.tcb.2015.10.014
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1146/annurev-cancerbio-030518-055844
https://doi.org/10.1007/s00018-016-2194-1
https://doi.org/10.1016/j.cell.2013.12.010
https://doi.org/10.1007/s00011-021-01495-6
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1007/s00280-008-0894-4
https://doi.org/10.1007/s00280-008-0894-4
https://doi.org/10.1002/hep.28574
https://doi.org/10.1038/nature14344
https://doi.org/10.1038/nature14344
https://doi.org/10.1007/s10495-024-01985-y
https://doi.org/10.1111/bph.14446
https://doi.org/10.1186/1476-4598-12-138
https://doi.org/10.13376/j.cbls/2019109
https://doi.org/10.13376/j.cbls/2019109
https://doi.org/10.1038/s41580-020-00324-8
https://doi.org/10.1016/j.cbpa.2017.06.002
https://doi.org/10.1038/nchembio.2239
https://doi.org/10.1038/s41586-019-1705-2
https://doi.org/10.1074/jbc.M414018200
https://doi.org/10.1074/jbc.M414018200
https://doi.org/10.1016/j.bbrc.2020.01.066
https://doi.org/10.1038/s41586-021-03539-7
https://doi.org/10.1021/acscentsci.9b01063
https://doi.org/10.1021/acsnano.8b06201
https://doi.org/10.1016/j.celrep.2015.12.065
https://doi.org/10.1038/s41573-020-0070-z
https://doi.org/10.1158/1541-7786.MCR-19-0691
https://doi.org/10.1158/1541-7786.MCR-19-0691
https://doi.org/10.1158/1541-7786.MCR-20-0534
https://doi.org/10.1016/j.chembiol.2020.03.011
https://doi.org/10.1038/s41418-022-00990-5
https://doi.org/10.1038/s41418-022-00990-5
https://doi.org/10.1186/s12974-022-02400-6
https://doi.org/10.1016/j.canlet.2017.12.025
https://doi.org/10.1089/ars.2017.7176
https://doi.org/10.1007/s00432-023-04811-1
https://doi.org/10.3892/ol.2022.13281
https://doi.org/10.3892/ol.2022.13479
https://doi.org/10.1016/j.bbrc.2023.04.111
https://doi.org/10.1016/j.bbrc.2023.04.111
https://doi.org/10.1002/jbt.23368
https://doi.org/10.1038/s41416-019-0660-x
https://doi.org/10.14715/cmb/2024.70.3.26
https://doi.org/10.1126/sciadv.ade9585
https://doi.org/10.1038/s41420-023-01517-8
https://doi.org/10.5114/aoms.2019.89661
https://doi.org/10.1073/pnas.1607152113
https://doi.org/10.1016/j.celrep.2017.07.055
https://doi.org/10.1016/j.celrep.2017.07.055
https://doi.org/10.1038/s41418-022-00943-y
https://doi.org/10.1101/gad.334219.119
https://doi.org/10.3389/fimmu.2024.1410018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Guo et al.

proficient ovarian cancer. Redox Biol. (2021) 42:101928. doi: 10.1016/j.redox.
2021.101928

51. Wang C-K, Chen T-J, Tan GYT, Chang F-P, Sridharan S, Yu C-HA, et al.
MEX3A mediates p53 degradation to suppress ferroptosis and facilitate ovarian cancer
tumorigenesis. Cancer Res. (2023) 83:251-63. doi: 10.1158/0008-5472.CAN-22-1159

52. Fang R, Yunfei W, Jishui W. Exploration on role and mechanism of ursolic acid -
Induced iron death in ovarian cancer cell line OVCAR-3 based on JNK / p53 pathway. Chin
Arch Traditional Chin Med. (2021) 39:62-64+267. doi: 10.13193/j.issn.1673-7717.2021.07.016

53. Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, et al. Stearoyl-coA
desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. (2019)
79:5355-66. doi: 10.1158/0008-5472.CAN-19-0369

54. Xuan Y, Wang H, Yung MM, Chen F, Chan W-S, Chan Y-S, et al. SCD1/FADS2
fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in
ascites-derived ovarian cancer cells. Theranostics. (2022) 12:3534-52. doi: 10.7150/
thno.70194

55. Kato I, Kasukabe T, Kumakura S. Menin—-MLL inhibitors induce ferroptosis and
enhance the anti—proliferative activity of auranofin in several types of cancer cells. Int |
Oncol. (2020) 57(4):1057-71. doi: 10.3892/ij0.2020.5116

56. Liu Y, Liu X, Wang H, Ding P, Wang C. Agrimonolide inhibits cancer
progression and induces ferroptosis and apoptosis by targeting SCD1 in ovarian
cancer cells. Phytomedicine. (2022) 101:154102. doi: 10.1016/j.phymed.2022.154102

57. Carbone M, Melino G. Stearoyl coA desaturase regulates ferroptosis in ovarian
cancer offering new therapeutic perspectives. Cancer Res. (2019) 79:5149-50.
doi: 10.1158/0008-5472.CAN-19-2453

58. McCabe KE, Bacos K, Lu D, Delaney JR, Axelrod J, Potter MD, et al. Triggering
necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma. Cell Death
Dis. (2014) 5:€1496-6. doi: 10.1038/cddis.2014.448

59. Do M, Wu CCN, Sonavane PR, Juarez EF, Adams SR, Ross J, et al. A FZD7-
specific antibody-drug conjugate induces ovarian tumor regression in preclinical
models. Mol Cancer Ther. (2022) 21:113-24. doi: 10.1158/1535-7163.MCT-21-0548

60. Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, et al. Frizzled-7
identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res.
(2021) 81:384-99. doi: 10.1158/0008-5472.CAN-20-1488

61. Zhang D, Qu B, Hu B, Cao K, Shen H. MiR-1-3p enhances the sensitivity of
ovarian cancer cells to ferroptosis by targeting FZD7. Zhong Nan Da Xue Xue Bao Yi
Xue Ban. (2022) 47:1512-21. doi: 10.11817/j.issn.1672-7347.2022.210800

62. Jin Y, Chen L, Li L, Huang G, Huang H, Tang C. SNAI2 promotes the
development of ovarian cancer through regulating ferroptosis. Bioengineered. (2022)
13:6451-63. doi: 10.1080/21655979.2021.2024319

63. Zhang X, Zheng X, Ying X, Xie W, Yin Y, Wang X. CEBPG suppresses
ferroptosis through transcriptional control of SLC7A11 in ovarian cancer. J Transl
Med. (2023) 21:334. doi: 10.1186/s12967-023-04136-0

64. Wang Y, Wang S, Zhang W. HRD1 functions as a tumor suppressor in ovarian
cancer by facilitating ubiquitination-dependent SLC7A11 degradation. Cell Cycle.
(2023) 22:1116-26. doi: 10.1080/15384101.2023.2178102

65. Bai P, Canto C. The role of PARP-1 and PARP-2 enzymes in metabolic
regulation and disease. Cell Metab. (2012) 16:290-5. doi: 10.1016/j.cmet.2012.06.016

66. Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous
recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer.
Cancer Discovery. (2015) 5:1137-54. doi: 10.1158/2159-8290.CD-15-0714

67. Tang S, Shen Y, Wei X, Shen Z, Lu W, Xu J. Olaparib synergizes with arsenic
trioxide by promoting apoptosis and ferroptosis in platinum-resistant ovarian cancer.
Cell Death Dis. (2022) 13:826. doi: 10.1038/s41419-022-05257-y

68. Zhou ], Pang Y, Zhang W, OuYang F, Lin H, Li X, et al. Discovery of a novel
stilbene derivative as a microtubule targeting agent capable of inducing cell ferroptosis.
] Med Chem. (2022) 65:4687-708. doi: 10.1021/acs.jmedchem.1c01775

69. Puxeddu M, Wu J, Bai R, D’Ambrosio M, Nalli M, Coluccia A, et al. Induction of
ferroptosis in glioblastoma and ovarian cancers by a new pyrrole tubulin assembly
inhibitor. ] Med Chem. (2022) 65:15805-18. doi: 10.1021/acs.jmedchem.2c01457

70. Zuo Y-B, Zhang Y-F, Zhang R, Tian J-W, Lv X-B, Li R, et al. Ferroptosis in
cancer progression: role of noncoding RNAs. Int ] Biol Sci. (2022) 18:1829-43.
doi: 10.7150/ijbs.66917

71. Ma L-L, Liang L, Zhou D, Wang S-W. Tumor suppressor miR-424-5p abrogates
ferroptosis in ovarian cancer through targeting ACSL4. neo. (2021) 68:165-73.
doi: 10.4149/neo_2020_200707N705

72. Sangokoya C, Doss JF, Chi J-T. Iron-responsive miR-485-3p regulates cellular
iron homeostasis by targeting ferroportin. PloS Genet. (2013) 9:e1003408. doi: 10.1371/
journal.pgen.1003408

73. Sun D, Li Y-C, Zhang X-Y. Lidocaine promoted ferroptosis by targeting miR-
382-5p /SLC7A11 axis in ovarian and breast cancer. Front Pharmacol. (2021)
12:681223. doi: 10.3389/fphar.2021.681223

74. Jin Y, Qiu ], Lu X, Ma Y, Li G. LncRNA CACNA1G-AS1 up-regulates FTHI to
inhibit ferroptosis and promote Malignant phenotypes in ovarian cancer cells. Oncol
Res. (2023) 31:169-79. doi: 10.32604/0r.2023.027815

75. Zhou X, Zhan L, Huang K, Wang X. The functions and clinical significance of
circRNAs in hematological Malignancies. ] Hematol Oncol. (2020) 13:138. doi: 10.1186/
513045-020-00976-1

Frontiers in Immunology

10.3389/fimmu.2024.1410018

76. Qin K, Zhang F, Wang H, Wang N, Qiu H, Jia X, et al. circRNA circSnx12 confers
Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-
194-5p/SLC7A11 axis. BMB Rep. (2023) 56:184-9. doi: 10.5483/BMBRep.2022-0175

77. Zhang Y, Xia M, Zhou Z, Hu X, Wang J, Zhang M, et al. p53 promoted
ferroptosis in ovarian cancer cells treated with human serum incubated-
superparamagnetic iron oxides. IJN. (2021) 16:283-96. doi: 10.2147/IJN.S282489

78. Dong H, He L, Sun Q, Zhan J, Li ], Xiong X, et al. Inhibit ALDH3A2 reduce
ovarian cancer cells survival via elevating ferroptosis sensitivity. Gene. (2023)
876:147515. doi: 10.1016/j.gene.2023.147515

79. Cai L, Hu X, Ye L, Bai P, Jie Y, Shu K. Long non-coding RNA ADAMTS9-AS1
attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11
axis in epithelial ovarian cancer. Bioengineered. (2002) 13:8226-39. doi: 10.1080/
21655979.2022.2049470

80. Yamaguchi K, Kitamura S, Furutake Y, Murakami R, Yamanoi K, Taki M, et al.
Acquired evolution of mitochondrial metabolism regulated by HNF1B in ovarian clear
cell carcinoma. Cancers (Basel). (2021) 13:2413. doi: 10.3390/cancers13102413

81. Li ], Zhang Y, Gao Y, Cui Y, Liu H, Li M, et al. Downregulation of HNF1
homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep. (2014) 32
(3):979-88. doi: 10.3892/0r.2014.3297

82. Takahashi R, Kamizaki K, Yamanaka K, Terai Y, Minami Y. Expression of
Ferredoxinl in cisplatin—resistant ovarian cancer cells confers their resistance against
ferroptosis induced by cisplatin. Oncol Rep. (2023) 49:124. doi: 10.3892/0r.2023.8561

83. Jin Y, Qiu J, Lu X, Li G. C-MYC inhibited ferroptosis and promoted immune
evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells.
(2022) 11:4127. doi: 10.3390/cells11244127

84. Wang X, Xu Z, Ren X, Chen X, Yi Q, Zeng S, et al. MTHFR inhibits TRC8-
mediated HMOX1 ubiquitination and regulates ferroptosis in ovarian cancer. Clin
Transl Med. (2022) 12:¢1013. doi: 10.1002/ctm2.1013

85. Efferth T. From ancient herb to modern drug: Artemisia annua and artemisinin for
cancer therapy. Semin Cancer Biol. (2017) 46:65-83. doi: 10.1016/j.semcancer.2017.02.009

86. Greenshields AL, Shepherd TG, Hoskin DW. Contribution of reactive oxygen
species to ovarian cancer cell growth arrest and killing by the anti-malarial drug
artesunate. Mol Carcinog. (2017) 56:75-93. doi: 10.1002/mc.v56.1

87. Woo JH, Shimoni Y, Yang WS, Subramaniam P, Iyer A, Nicoletti P, et al.
Elucidating compound mechanism of action by network perturbation analysis. Cell.
(2015) 162:441-51. doi: 10.1016/j.cell.2015.05.056

88. You Y, Fan Q, Huang J, Wu Y, Lin H, Zhang Q. Ferroptosis-related gene
signature promotes ovarian cancer by influencing immune infiltration and invasion. J
Oncol. (2021) 2021:9915312. doi: 10.1155/2021/9915312

89. Choi J-A, Lee EH, Cho H, Kim J-H. High-dose selenium induces ferroptotic cell
death in ovarian cancer. Int ] Mol Sci. (2023) 24:1918. doi: 10.3390/ijms24031918

90. Xiong Y, Liu T, Chen J. Anisomycin has the potential to induce human ovarian
cancer stem cell ferroptosis by influencing glutathione metabolism and autophagy
signal transduction pathways. J Cancer. (2023) 14:1202-15. doi: 10.7150/jca.83355

91. Ebrahimi B, Viswanadhapalli S, Pratap UP, Rahul G, Yang X, Pitta Venkata P,
et al. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of
ovarian cancer cells to ferroptosis. NPJ Precis Oncol. (2024) 8:118. doi: 10.1038/s41698-
024-00612-y

92. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer
therapy based on ferroptosis. Adv Mater. (2018) 30:e1704007. doi: 10.1002/
adma.201704007

93. LuJ, Tai Z, Wu ], Li L, Zhang T, Liu J, et al. Nanomedicine-induced programmed
cell death enhances tumor immunotherapy. ] Adv Res. (2024) 14:199-217. doi: 10.1016/
jjare.2023.09.018

94. Zhou H-H, Chen X, Cai L-Y, Nan X-W, Chen J-H, Chen X-X, et al. Erastin
reverses ABCB1-mediated docetaxel resistance in ovarian cancer. Front Oncol. (2019)
9:1398. doi: 10.3389/fonc.2019.01398

95. Asif K, Adeel M, Rahman MM, Caligiuri I, Perin T, Cemazar M, et al. Iron
nitroprusside as a chemodynamic agent and inducer of ferroptosis for ovarian cancer
therapy. ] Mater Chem B. (2023) 11:3124-35. doi: 10.1039/D2TB02691K

96. Cang W, Wu A, Gu L, Wang W, Tian Q, Zheng Z, et al. Erastin enhances
metastatic potential of ferroptosis-resistant ovarian cancer cells by M2 polarization
through STAT3/IL-8 axis. Int Immunopharmacol. (2022) 113:109422. doi: 10.1016/
j.intimp.2022.109422

97. Mao G, Xin D, Wang Q, Lai D. Sodium molybdate inhibits the growth of ovarian
cancer cells via inducing both ferroptosis and apoptosis. Free Radical Biol Med. (2022)
182:79-92. doi: 10.1016/j.freeradbiomed.2022.02.023

98. Jiang Q, Wang K, Zhang X, Ouyang B, Liu H, Pang Z, et al. Platelet membrane-
camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy.
Small. (2020) 16:2001704. doi: 10.1002/smll.202001704

99. Battaglia AM, Sacco A, Perrotta ID, Faniello MC, Scalise M, Torella D, et al. Iron
administration overcomes resistance to erastin-mediated ferroptosis in ovarian cancer
cells. Front Oncol. (2022) 12:868351. doi: 10.3389/fonc.2022.868351

100. Chekerov R, Hilpert F, Mahner S, El-Balat A, Harter P, De Gregorio N, et al.
Sorafenib plus topotecan versus placebo plus topotecan for platinum-resistant ovarian

cancer (TRIAS): a multicenter, randomized, double-blind, placebo-controlled, phase 2
trial. Lancet Oncol. (2018) 19:1247-58. doi: 10.1016/S1470-2045(18)30372-3

frontiersin.org


https://doi.org/10.1016/j.redox.2021.101928
https://doi.org/10.1016/j.redox.2021.101928
https://doi.org/10.1158/0008-5472.CAN-22-1159
https://doi.org/10.13193/j.issn.1673-7717.2021.07.016
https://doi.org/10.1158/0008-5472.CAN-19-0369
https://doi.org/10.7150/thno.70194
https://doi.org/10.7150/thno.70194
https://doi.org/10.3892/ijo.2020.5116
https://doi.org/10.1016/j.phymed.2022.154102
https://doi.org/10.1158/0008-5472.CAN-19-2453
https://doi.org/10.1038/cddis.2014.448
https://doi.org/10.1158/1535-7163.MCT-21-0548
https://doi.org/10.1158/0008-5472.CAN-20-1488
https://doi.org/10.11817/j.issn.1672-7347.2022.210800
https://doi.org/10.1080/21655979.2021.2024319
https://doi.org/10.1186/s12967-023-04136-0
https://doi.org/10.1080/15384101.2023.2178102
https://doi.org/10.1016/j.cmet.2012.06.016
https://doi.org/10.1158/2159-8290.CD-15-0714
https://doi.org/10.1038/s41419-022-05257-y
https://doi.org/10.1021/acs.jmedchem.1c01775
https://doi.org/10.1021/acs.jmedchem.2c01457
https://doi.org/10.7150/ijbs.66917
https://doi.org/10.4149/neo_2020_200707N705
https://doi.org/10.1371/journal.pgen.1003408
https://doi.org/10.1371/journal.pgen.1003408
https://doi.org/10.3389/fphar.2021.681223
https://doi.org/10.32604/or.2023.027815
https://doi.org/10.1186/s13045-020-00976-1
https://doi.org/10.1186/s13045-020-00976-1
https://doi.org/10.5483/BMBRep.2022-0175
https://doi.org/10.2147/IJN.S282489
https://doi.org/10.1016/j.gene.2023.147515
https://doi.org/10.1080/21655979.2022.2049470
https://doi.org/10.1080/21655979.2022.2049470
https://doi.org/10.3390/cancers13102413
https://doi.org/10.3892/or.2014.3297
https://doi.org/10.3892/or.2023.8561
https://doi.org/10.3390/cells11244127
https://doi.org/10.1002/ctm2.1013
https://doi.org/10.1016/j.semcancer.2017.02.009
https://doi.org/10.1002/mc.v56.1
https://doi.org/10.1016/j.cell.2015.05.056
https://doi.org/10.1155/2021/9915312
https://doi.org/10.3390/ijms24031918
https://doi.org/10.7150/jca.83355
https://doi.org/10.1038/s41698-024-00612-y
https://doi.org/10.1038/s41698-024-00612-y
https://doi.org/10.1002/adma.201704007
https://doi.org/10.1002/adma.201704007
https://doi.org/10.1016/j.jare.2023.09.018
https://doi.org/10.1016/j.jare.2023.09.018
https://doi.org/10.3389/fonc.2019.01398
https://doi.org/10.1039/D2TB02691K
https://doi.org/10.1016/j.intimp.2022.109422
https://doi.org/10.1016/j.intimp.2022.109422
https://doi.org/10.1016/j.freeradbiomed.2022.02.023
https://doi.org/10.1002/smll.202001704
https://doi.org/10.3389/fonc.2022.868351
https://doi.org/10.1016/S1470-2045(18)30372-3
https://doi.org/10.3389/fimmu.2024.1410018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Guo et al.

101. Chan DW, Yung MM, Chan Y-S, Xuan Y, Yang H, Xu D, et al. MAP30 protein
from Momordica charantia is therapeutic and has synergic activity with cisplatin
against ovarian cancer in vivo by altering metabolism and inducing ferroptosis.
Pharmacol Res. (2020) 161:105157. doi: 10.1016/j.phrs.2020.105157

102. Liu W, Chen H, Zhu Z, Liu Z, Ma C, Lee Y], et al. Ferroptosis inducer improves
the efficacy of oncolytic virus-mediated cancer immunotherapy. Biomedicines. (2022)
10:1425. doi: 10.3390/biomedicines10061425

103. Li H, Liu M, Jiang X, Song T, Feng S, Wu J, et al. GALNT14 regulates
ferroptosis and apoptosis of ovarian cancer through the EGFR/mTOR pathway. Future
Oncol. (2022) 18:149-61. doi: 10.2217/fon-2021-0883

104. Lin C-C, Chi J-T. Ferroptosis of epithelial ovarian cancer: genetic determinants
and therapeutic potential. Oncotarget. (2020) 11:3562-70. doi: 10.18632/
oncotarget.v11i39

105. Cang W, Wu A, Divin, Qiu L, et al. Ferroptosis inducer Erastin enhances cisplatin
sensitivity in human epithelial ovarian cancer cells by activating apoptosis. Department
Obstetrics Gynecology. (2020) 29:730-3. doi: 10.13283/j.cnki.xdfckjz.2020.10.030

106. Wu X, Shen S, Qin J, Fei W, Fan F, Gu J, et al. High co-expression of SLC7A11
and GPX4 as a predictor of platinum resistance and poor prognosis in patients with
epithelial ovarian cancer. BJOG: Int ] Obstetrics Gynecology. (2022) 129:40-9.
doi: 10.1111/1471-0528.17327

107. Gentric G, Kieffer Y, Mieulet V, Goundiam O, Bonneau C, Nemati F, et al.
PML-regulated mitochondrial metabolism enhances chemosensitivity in human
ovarian cancers. Cell Metab. (2019) 29:156-173.10. doi: 10.1016/j.cmet.2018.09.002

108. Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y, et al. Chemotherapy
impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis.
(2023) 14:340. doi: 10.1038/s41419-023-05859-0

109. Jiang Z, Lim S-O, Yan M, Hsu JL, Yao J, Wei Y, et al. TYRO3 induces anti-PD-
1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J Clin
Invest. (2021) 131:e139434. doi: 10.1172/JCI139434

110. Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and
immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic
repression of SLC7A11. Cancer Discovery. (2019) 9:1673-85. doi: 10.1158/2159-
8290.CD-19-0338

111. Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian
cancer immunotherapy and personalized medicine. Int J Mol Sci. (2021) 22(12):6532.
doi: 10.3390/ijms22126532

112. ChenJ, Wei Z, Fu K, Duan Y, Zhang M, Li K, et al. Non-apoptotic cell death in
ovarian cancer: Treatment, resistance and prognosis. Biomedicine Pharmacotherapy.
(2022) 150:112929. doi: 10.1016/j.biopha.2022.112929

113. Hinggi K, Vasilikos L, Valls AF, Yerbes R, Knop J, Spilgies LM, et al. RIPK1/
RIPK3 promotes vascular permeability to allow tumor cell extravasation independent
of its necroptotic function. Cell Death Dis. (2017) 8:¢2588. doi: 10.1038/cddis.2017.20

114. SongJ, Liu T, Yin Y, Zhao W, Lin Z, Yin Y, et al. The deubiquitinase OTUD1
enhances iron transport and potentiates host antitumor immunity. EMBO Rep. (2021)
22(2):¢51162. doi: 10.15252/embr.202051162

115. Sdve S, Persson K. Extracellular ATP and P2Y receptor activation induce a
proinflammatory host response in the human urinary tract. Infect Immun. (2010)
78:3609-15. doi: 10.1128/TAI1.00074-10

116. Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGBI in
ferroptosis. Biochem Biophys Res Commun. (2019) 510:278-83. doi: 10.1016/
j.bbrc.2019.01.090

117. Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, et al. CD8+ T
cells regulate tumor ferroptosis during cancer immunotherapy. Nature. (2019) 569
(7755):270-4. doi: 10.1038/s41586-019-1170-y

118. Kim DH, Kim WD, Kim SK, Moon DH, Lee S]. TGF-B1-mediated repression of
SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell
Death Dis. (2020) 11:406. doi: 10.1038/541419-020-2618-6

119. Luo X, Gong H-B, Gao H-Y, Wu Y-P, Sun W-Y, Li Z-Q, et al. Oxygenated
phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting
with TLR2. Cell Death Differ. (2021) 28:1971-89. doi: 10.1038/s41418-020-00719-2

120. Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, et al. The glutathione
peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell
activation and suppression of antitumor immunity. Cell Rep. (2021) 35:109235.
doi: 10.1016/j.celrep.2021.109235

121. Drijvers JM, Gillis JE, Muijlwijk T, Nguyen TH, Gaudiano EF, Harris IS, et al.

Pharmacologic screening identifies metabolic vulnerabilities of CD8+ T cells. Cancer
Immunol Res. (2021) 9:184-99. doi: 10.1158/2326-6066.CIR-20-0384

122. Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, et al.
Redox lipid reprogramming commands susceptibility of macrophages and microglia to
ferroptotic death. Nat Chem Biol. (2020) 16:278-90. doi: 10.1038/s41589-019-0462-8

123. Wang D, DuBois RN. Immunosuppression associated with chronic
inflammation in the tumor microenvironment. Carcinogenesis. (2015) 36:1085-93.
doi: 10.1093/carcin/bgv123

124. Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M,
Sammicheli S, et al. NK Cells Stimulate Recruitment of ¢DC1 into the Tumor
Microenvironment Promoting Cancer Immune Control. Cell. (2018) 172:1022-
1037.e14. doi: 10.1016/j.cell.2018.01.004

Frontiers in Immunology

10.3389/fimmu.2024.1410018

125. Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, et al.
Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. (2019)
569:73-8. doi: 10.1038/541586-019-1118-2

126. Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol.
(2012) 188:21-8. doi: 10.4049/jimmunol.1101029

127. TangR, XuJ, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and
pyroptosis in anticancer immunity. J Hematol Oncol. (2020) 13:110. doi: 10.1186/
513045-020-00946-7

128. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S.
Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and
cysteine. Cancer Res. (2010) 70:68-77. doi: 10.1158/0008-5472.CAN-09-2587

129. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to
T cell-based immunotherapy. Nat Rev Clin Oncol. (2019) 16:151-67. doi: 10.1038/
s41571-018-0142-8

130. Bear AS, Vonderheide RH, O’Hara MH. Challenges and opportunities for
pancreatic cancer immunotherapy. Cancer Cell. (2020) 38:788-802. doi: 10.1016/
j.ccell.2020.08.004

131. Baert T, Vankerckhoven A, Riva M, Van Hoylandt A, Thirion G, Holger G,
et al. Myeloid derived suppressor cells: key drivers of immunosuppression in ovarian
cancer. Front Immunol. (2019) 10:1273. doi: 10.3389/fimmu.2019.01273

132. Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, et al.
Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor
immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer
Res. (2017) 23:587-99. doi: 10.1158/1078-0432.CCR-16-0387

133. Komura N, Mabuchi S, Shimura K, Yokoi E, Kozasa K, Kuroda H, et al. The role
of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting
PD-L1 expression in epithelial ovarian cancer. Cancer Immunol Immunother. (2020)
69:2477-99. doi: 10.1007/500262-020-02628-2

134. Guo P, Wang L, Shang W, Chen J, Chen Z, Xiong F, et al. Intravesical in situ
immunostimulatory gel for triple therapy of bladder cancer. ACS Appl Mater Interfaces.
(2020) 12:54367-77. doi: 10.1021/acsami.0c15176

135. MaX, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens
intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell
Metab. (2021) 33:1001-1012.€5. doi: 10.1016/j.cmet.2021.02.015

136. Ugolini A, Tyurin VA, Tyurina YY, Tcyganov EN, Donthireddy L, Kagan VE,
et al. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-
presentation by dendritic cells in cancer. JCI Insight. (2020) 5:e138581. doi: 10.1172/
jci.insight.138581

137. Zhang H, Zhuo Y, Li D, Zhang L, Gao Q, Yang L, et al. Dihydroartemisinin
inhibits the growth of pancreatic cells by inducing ferroptosis and activating antitumor
immunity. Eur ] Pharmacol. (2022) 926:175028. doi: 10.1016/j.ejphar.2022.175028

138. Conche C, Finkelmeier F, Pesic M, Nicolas AM, Bottger TW, Kennel KB, et al.
Combining ferroptosis induction with MDSC blockade renders primary tumors and
metastases in liver sensitive to immune checkpoint blockade. Gut. (2023) 72(9):1774-
82. doi: 10.1136/gutjnl-2022-327909

139. Zhu H, Klement JD, Lu C, Redd PS, Yang D, Smith AD, et al. Asah2 represses
the p53-hmox1 axis to protect myeloid-derived suppressor cells from ferroptosis. J
Immunol. (2021) 206:1395-404. doi: 10.4049/jimmunol.2000500

140. Zhang F, Li F, Lu G-H, Nie W, Zhang L, Lv Y, et al. Engineering magnetosomes
for ferroptosis/immunomodulation synergism in cancer. ACS Nano. (2019) 13:5662—
73. doi: 10.1021/acsnano.9b00892

141. Yang L, Tian S, Chen Y, Miao C, Zhao Y, Wang R, et al. Ferroptosis-related
gene model to predict overall survival of ovarian carcinoma. J Oncol. (2021)
2021:6687391. doi: 10.1155/2021/6687391

142. Immunotherapy activates unexpected cell death mechanism. Cancer Discovery.
(2019) 9:0F2. doi: 10.1158/2159-8290.CD-NB2019-058

143. 1Li Y, Zhang Q, Wu M, Zhang P, Huang L, Ai X, et al. Suppressing MDSC
infiltration in tumor microenvironment serves as an option for treating ovarian cancer
metastasis. Int ] Biol Sci. (2022) 18:3697-713. doi: 10.7150/ijbs.70013

144. YuZ, He H, Chen Y, Ji Q, Sun M. A novel ferroptosis related gene signature is
associated with prognosis in patients with ovarian serous cystadenocarcinoma. Sci Rep.
(2021) 11:11486. doi: 10.1038/s41598-021-90126-5

145. Cheng Z, Chen Y, Huang H. Identification and validation of a novel prognostic
signature based on ferroptosis-related genes in ovarian cancer. Vaccines (Basel). (2023)
11:205. doi: 10.3390/vaccines11020205

146. Ye Y, Dai Q, Li S, He J, Qi H. A novel defined risk signature of the ferroptosis-
related genes for predicting the prognosis of ovarian cancer. Front Mol Biosci. (2021)
8:645845. doi: 10.3389/fmolb.2021.645845

147. Hu K, Zhang X, Zhou L, Li J. Downregulated PRNP facilitates cell proliferation
and invasion and has effect on the immune regulation in ovarian cancer. ] Immunol Res.
(2022) 2022:3205040. doi: 10.1155/2022/3205040

148. Liu Y, Du S, Yuan M, He X, Zhu C, Han K, et al. Identification of a novel
ferroptosis-related gene signature associated with prognosis, the immune landscape,
and biomarkers for immunotherapy in ovarian cancer. Front Pharmacol. (2022)
13:949126. doi: 10.3389/fphar.2022.949126

149. Yang J, Wang C, Cheng S, Zhang Y, Jin Y, Zhang N, et al. Construction and
validation of a novel ferroptosis-related signature for evaluating prognosis and immune

frontiersin.org


https://doi.org/10.1016/j.phrs.2020.105157
https://doi.org/10.3390/biomedicines10061425
https://doi.org/10.2217/fon-2021-0883
https://doi.org/10.18632/oncotarget.v11i39
https://doi.org/10.18632/oncotarget.v11i39
https://doi.org/10.13283/j.cnki.xdfckjz.2020.10.030
https://doi.org/10.1111/1471-0528.17327
https://doi.org/10.1016/j.cmet.2018.09.002
https://doi.org/10.1038/s41419-023-05859-0
https://doi.org/10.1172/JCI139434
https://doi.org/10.1158/2159-8290.CD-19-0338
https://doi.org/10.1158/2159-8290.CD-19-0338
https://doi.org/10.3390/ijms22126532
https://doi.org/10.1016/j.biopha.2022.112929
https://doi.org/10.1038/cddis.2017.20
https://doi.org/10.15252/embr.202051162
https://doi.org/10.1128/IAI.00074-10
https://doi.org/10.1016/j.bbrc.2019.01.090
https://doi.org/10.1016/j.bbrc.2019.01.090
https://doi.org/10.1038/s41586-019-1170-y
https://doi.org/10.1038/s41419-020-2618-6
https://doi.org/10.1038/s41418-020-00719-2
https://doi.org/10.1016/j.celrep.2021.109235
https://doi.org/10.1158/2326-6066.CIR-20-0384
https://doi.org/10.1038/s41589-019-0462-8
https://doi.org/10.1093/carcin/bgv123
https://doi.org/10.1016/j.cell.2018.01.004
https://doi.org/10.1038/s41586-019-1118-2
https://doi.org/10.4049/jimmunol.1101029
https://doi.org/10.1186/s13045-020-00946-7
https://doi.org/10.1186/s13045-020-00946-7
https://doi.org/10.1158/0008-5472.CAN-09-2587
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.1016/j.ccell.2020.08.004
https://doi.org/10.1016/j.ccell.2020.08.004
https://doi.org/10.3389/fimmu.2019.01273
https://doi.org/10.1158/1078-0432.CCR-16-0387
https://doi.org/10.1007/s00262-020-02628-2
https://doi.org/10.1021/acsami.0c15176
https://doi.org/10.1016/j.cmet.2021.02.015
https://doi.org/10.1172/jci.insight.138581
https://doi.org/10.1172/jci.insight.138581
https://doi.org/10.1016/j.ejphar.2022.175028
https://doi.org/10.1136/gutjnl-2022-327909
https://doi.org/10.4049/jimmunol.2000500
https://doi.org/10.1021/acsnano.9b00892
https://doi.org/10.1155/2021/6687391
https://doi.org/10.1158/2159-8290.CD-NB2019-058
https://doi.org/10.7150/ijbs.70013
https://doi.org/10.1038/s41598-021-90126-5
https://doi.org/10.3390/vaccines11020205
https://doi.org/10.3389/fmolb.2021.645845
https://doi.org/10.1155/2022/3205040
https://doi.org/10.3389/fphar.2022.949126
https://doi.org/10.3389/fimmu.2024.1410018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Guo et al.

microenvironment in ovarian cancer. Front Genet. (2022) 13:1094474. doi: 10.3389/
fgene.2022.1094474

150. Wang H, Cheng Q, Chang K, Bao L, Yi X. Integrated analysis of ferroptosis-
related biomarker signatures to improve the diagnosis and prognosis prediction of
ovarian cancer. Front Cell Dev Biol. (2022) 9:807862. doi: 10.3389/fcell.2021.807862

151. Yuan X, Zhou Q, Zhang F, Zheng W, Liu H, Chen A, et al. Identification of
immunity- and ferroptosis-related genes for predicting the prognosis of serous ovarian
cancer. Gene. (2022) 838:146701. doi: 10.1016/j.gene.2022.146701

152. Xiong T, Wang Y, Zhu C. A risk model based on 10 ferroptosis regulators and
markers established by LASSO-regularized linear Cox regression has a good prognostic
value for ovarian cancer patients. Diagn Pathol. (2024) 19:4. doi: 10.1186/s13000-023-
01414-9

153. Li S, Cao T, Wu T, Xu J, Shen C, Hou S, et al. Identification of a ferroptosis- and
oxidative stress-associated gene signature for prognostic stratification of ovarian
cancer. Am ] Transl Res. (2023) 15:2645-55.

Frontiers in Immunology

189

10.3389/fimmu.2024.1410018

154. Sun X, He W, Lin B, Huang W, Ye D. Defining three ferroptosis-based
molecular subtypes and developing a prognostic risk model for high-grade serous
ovarian cancer. Aging (Albany NY). (2024) 16:9106-26. doi: 10.18632/aging.v16i10

155. LiY, Fang T, Shan W, Gao Q. Identification of a novel model for predicting the
prognosis and immune response based on genes related to cuproptosis and ferroptosis
in ovarian cancer. Cancers (Basel). (2023) 15:579. doi: 10.3390/cancers15030579

156. Zhang J, Xi J, Huang P, Zeng S. Comprehensive analysis identifies potential
ferroptosis-associated mRNA therapeutic targets in ovarian cancer. Front Med. (2021)
8:644053. doi: 10.3389/fmed.2021.644053

157. Xu K, Zheng X, Shi H, Ou J, Ding H. MAD21.2, a key regulator in ovarian cancer
and promoting tumor progression. Sci Rep. (2024) 14:130. doi: 10.1038/541598-023-50744-7

158. Novera W, Lee Z-W, Nin DS, Dai MZ-Y, Binte Idres S, Wu H, et al. Cysteine
deprivation targets ovarian clear cell carcinoma via oxidative stress and iron-sulfur
cluster biogenesis deficit. Antioxid Redox Signal. (2020) 33:1191-208. doi: 10.1089/
ars.2019.7850

frontiersin.org


https://doi.org/10.3389/fgene.2022.1094474
https://doi.org/10.3389/fgene.2022.1094474
https://doi.org/10.3389/fcell.2021.807862
https://doi.org/10.1016/j.gene.2022.146701
https://doi.org/10.1186/s13000-023-01414-9
https://doi.org/10.1186/s13000-023-01414-9
https://doi.org/10.18632/aging.v16i10
https://doi.org/10.3390/cancers15030579
https://doi.org/10.3389/fmed.2021.644053
https://doi.org/10.1038/s41598-023-50744-7
https://doi.org/10.1089/ars.2019.7850
https://doi.org/10.1089/ars.2019.7850
https://doi.org/10.3389/fimmu.2024.1410018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Laura Senovilla,

Spanish National Research Council (CSIC),
Spain

REVIEWED BY

Luis Castro-Sanchez,
University of Colima, Mexico
Omar Motifio,

University of Valladolid, Spain

*CORRESPONDENCE

Xiaolong Liu
12218318@zju.edu.cn

Xiaoxiao Fan
fanxx_gs@zju.edu.cn

"These authors have contributed equally to
this work

RECEIVED 04 April 2024
ACCEPTED 19 September 2024
PUBLISHED 07 October 2024

CITATION

Zheng H, Cheng J, Zhuang Z, Li D,
Yang J, Yuan F, Fan X and Liu X (2024)
A disulfidptosis-related IncRNA
signature for analyzing tumor
microenvironment and clinical
prognosis in hepatocellular carcinoma.
Front. Immunol. 15:1412277.

doi: 10.3389/fimmu.2024.1412277

COPYRIGHT

© 2024 Zheng, Cheng, Zhuang, Li, Yang, Yuan,

Fan and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TvPE Original Research
PUBLISHED 07 October 2024
po110.3389/fimmu.2024.1412277

A disulfidptosis-related IncRNA
signature for analyzing

tumor microenvironment

and clinical prognosis in
hepatocellular carcinoma

Haishui Zheng", Jigan Cheng", Ziyun Zhuang?**', Duguang Li*,
Jing Yang®, Fan Yuan?, Xiaoxiao Fan™ and Xiaolong Liu™
‘Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University,
Hangzhou, China, 2Shantou University Medical College, Shantou, China, *Department of Breast

Cancer, Cancer Center, Guangdong Provincial People's Hospital. Guangdong Academy of Medical
Sciences, Guangzhou, China

Introduction: Disulfidptosis is a recently identified form of non-apoptotic
programmed cell death which distinguishes itself from classical cell death
pathways. However, the prognostic implications of disulfidptosis-related long
non-coding RNAs (DRLs) and their underlying mechanisms in hepatocellular
carcinoma (HCC) remain largely unexplored.

Methods: In this study, we leveraged RNA-sequencing data and clinical
information of HCC patients from the TCGA database. Through expression
correlation and prognostic correlation analyses, we identified a set of top-
performing long non-coding RNAs. Subsequently, a 5-DRLs predictive
signature was established by conducting a Lasso regression analysis.

Results: This signature effectively stratified patients into high- and low-risk groups,
revealing notable differences in survival outcomes. Further validation through
univariate and multivariate Cox regression analyses confirmed that the risk score
derived from our signature independently predicted the prognosis of HCC
patients. Moreover, we observed significant disparities in immune cell infiltration
and tumor mutation burden (TMB) between the two risk groups, shedding light on
the potential connection between immune-related mechanisms and
disulfidptosis. Notably, the signature also exhibited predictive value in the
context of chemotherapeutic drug sensitivity and immunotherapy efficacy for
HCC patients. Finally, we performed experimental validation at both cellular and
patient levels and successfully induced a disulfidptosis phenotype in HCC cells.

Discussion: In general, this multifaceted approach provides a comprehensive
overview of DRLs profiles in HCC, culminating in the establishment of a novel risk
signature that holds promise for predicting prognosis and therapy outcomes of
HCC patients.

KEYWORDS

hepatocellular carcinoma, disulfidptosis, IncRNA, tumor microenvironment, SLC7A11

190 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412277/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412277/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412277/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412277/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412277/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1412277&domain=pdf&date_stamp=2024-10-07
mailto:12218318@zju.edu.cn
mailto:fanxx_gs@zju.edu.cn
https://doi.org/10.3389/fimmu.2024.1412277
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology

Zheng et al.

1 Introduction

Hepatocellular carcinoma (HCC) is a multifaceted, globally
impactful disease (1). Owing to its inconspicuous clinical
symptoms in the early stages and the presence of numerous risk
factors, it poses a significant clinical challenge. Primary liver cancer
is the sixth most common cancer in the world and the third leading
cause of cancer-related deaths in 2022, according to global cancer
statistics published in 2024 (2). HCC accounts 80-90% of primary
liver cancer cases and is the most common type (3). In recent years,
enormous strides in targeted therapies and immunotherapies have
been developed, offering renewed hope for better patient outcomes
(4). However, patients with HCC continue to experience high rates
of recurrence, metastasis, and drug resistance, contributing to an
unfavorable prognosis (5). This underlines the necessity for early
detection and a multidisciplinary approach for managing this
formidable malignancy. Therefore, it is imperative to explore the
intricate molecular mechanisms underlying HCC. The development
of innovative therapies is indispensable in the ongoing battle
against HCC.

Cell death is crucial for the development and homeostasis of
multicellular organisms, and its dysregulation can lead to various
diseases including cancer (6). A comprehensive understanding of
programmed cell death modes could potentially pave the way for
the targeted elimination of cancer cells, thereby improving cancer
treatment outcomes (7). For example, the apoptotic signaling
pathway has been the focal point of tumor chemotherapy in the
past few decades. Some chemotherapeutic drugs, such as Paclitaxel
and Vinca Alkaloids, can induce apoptosis of tumor cells by
targeting microtubules and oxidative phosphorylation, thus
achieving a therapeutic effect on tumors (8, 9). However, these
therapies are associated with a high rate of drug resistance, posing
significant challenges. Therefore, it is necessary to expand our

Abbreviations: DRLs, Disulfidptosis-related long non-coding RNAs; HCC,
Hepatocellular carcinoma; TMB, Tumor mutation burden; GLUT, Glucose
transporter; ORF, Open reading frame; ROS, Lipid reactive oxygen species;
TCGA, The cancer genome atlas; TME, Tumor microenvironment; FPKM,
Fragments per kilobase of transcript per million mapped reads; OS, Overall
survival; DCLs, Disulfidptosis co-expressed IncRNAs; DELs, Differentially
expressed IncRNAs; LASSO, Least absolute shrinkage and selection operator;
IPS, Immunophenoscore; MAF, Mutation annotation format; IC50, The semi-
inhibitory concentration; DAVID, Database for annotation, visualization, and
integrated discovery; GSEA, Gene set enrichment analysis; KEGG, Kyoto
encyclopedia of genes and genomes analysis; GO, Gene ontology analysis; FBS,
Fetal bovine serum; SRRSH, Sir run run shaw hospital; GAPDH, Glyceraldehyde
3-phosphate dehydrogenase; RIPA, Radioimmunoprecipitation assay; BCA,
Bicinchoninic acid; PVDF, Polyvinylidene difluoride; ECL, Enhanced
chemiluminescence; DRGs, Disulfidptosis-related genes; DCDELs,
Disulfidptosis co-expressed and differentially expressed IncRNAs; PCA,
Principal component analysis; PES, Progression-free survival; t-SNE, t-
Distributed stochastic neighbor embedding; AUC, Area under curve; DCA,
Decision curve analysis; ICB, Immune checkpoint blockade; DEGs,
Differentially expressed genes; TMEMY, Transmembrane protein 9; GSH,
Cysteine-dependent glutathione; ECs, Endothelial cells; M1, Type 1-polarized
macrophages; M2, Type 2-polarized macrophages.
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understanding of regulated cell death modes beyond apoptosis to
facilitate the discovery of potential therapeutic targets. In recent
years, research has increasingly shown that many forms of non-
apoptotic cell death are also executed in a regulated manner, which
are collectively referred to as “regulated non-apoptotic cell death
modes” (10). These newly named cell death modes include
necroptosis, oxytosis, pyroptosis, parthanatos, NETosis,
ferroptosis and cuproptosis (11-16). Recently, Gan et al. proposed
a novel form of cell death known as disulfidptosis, which opens a
promising avenue for cancer treatment. Disulfidptosis is triggered
by the significant accumulation of disulfide molecules within cancer
cells in the absence of glucose, particularly in those with elevated
SLC7A11 expression. This phenomenon results in abnormal
disulfide bonding between actin cytoskeletal proteins, disrupting
their organization, and ultimately leading to the collapse of the actin
protein network and cell death. Gan et al. treated cancer cells with a
glucose transporter (GLUT) inhibitor and observed that the
outcome was similar to that under glucose-deprived conditions
(17). This inventive discovery has immense potential for developing
targeted therapies for cancer treatment. It is crucial to acknowledge
that the comprehension of distinct forms of cell death, including
apoptosis, necrosis, ferroptosis, and the newly discovered
disulfidptosis, remains an evolving frontier in the realm of cell
biology and cancer research. Further investigations are warranted to
comprehensively elucidate disulfidptosis, its relevance in the
context of cancer, and its potential as a target for
therapeutic interventions.

LncRNAs are a class of non-coding RNA molecules with a
length exceeding 200 nucleotides. This type of RNA lacks an open
reading frame (ORF) and does not encode proteins, leading to the
belief that it exists solely as a transcriptional byproduct. However,
extensive research has demonstrated that IncRNAs participate in
various biological processes including DNA methylation, histone
modification, post-transcriptional regulation of RNA, and protein
translation (18). Additionally, IncRNAs play pivotal roles in
processes related to immunology, neurobiology, inflammatory
responses, and cancer (19). Furthermore, IncRNAs are critical
regulators of cellular proliferation and programmed cell death.
Sun et al. discovered that IncRNA-ATB regulates the formation of
tumor metastasis foci by modulating the stability of IL-11 mRNA
and STAT3 phosphorylation (20). Concerning regulated cell death,
IncRNA-HEPFAL was found to promote ferroptosis by reducing
SLC7A11 expression and increasing levels of lipid reactive oxygen
species (ROS) and iron ions (21). The association between IncRNAs
and HCC has been extensively explored, notably in the regulation of
cell death processes in HCC. For example, Chen et al. revealed that
IncRNA DUXAPS decreased the sensitivity of HCC to sorafenib-
induced ferroptosis by interacting with SLC7A11 (22). In the era of
precision medicine, identification of precise IncRNAs that regulate
disulfidptosis in HCC, along with a thorough elucidation of their
mechanisms, could offer innovative insights and perspectives for the
treatment of HCC.

In this study, we collected HCC data from The Cancer Genome
Atlas (TCGA) database to elucidate the prognostic and biological
functions of disulfidptosis-related long non-coding RNAs (DRLs)
through various bioinformatic analyses. Our 5-DRLs signature
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exhibited excellent performance in predicting patient survival and
remarkable superiority over the other clinically independent
variables. Additionally, we established a potential relationship
between the risk signature and tumor microenvironment (TME),
as well as tumor mutation burden (TMB), through immune
infiltration analysis and TMB analysis. Furthermore, KEGG and
GO analyses were performed between the high- and low-risk groups
to identify the potential molecular pathways. Overall, our findings
shed light on the understanding of molecular mechanisms related to
disulfidptosis in HCC and could help to develop individualized
therapies for patients with HCC.

2 Materials and methods
2.1 Data acquisition

A total of 374 HCC samples and 50 adjacent normal hepatic
sample fragments per kilobase of transcript per million mapped
reads (FPKM)-standardized RNA-seq data were downloaded from
The Cancer Genome Atlas(TCGA) (https://portal.gdc.cancer.gov/
projects/TCGA-LIHC). Ensembl IDs were processed and converted
to official gene symbols encompassing various elements, such as
IncRNAs, protein-coding genes, and miRNAs. Additional
information, including clinical data, was also acquired from
patients with HCC in the TCGA database. Samples lacking
survival information and those with an overall survival (OS) of
less than 30 days were excluded from subsequent analysis. Ten
Disulfidptosis-related Genes (DRGs) were obtained in a recent
study (Table 1) (17).

2.2 Identification of disulfidptosis
co-expressed IncRNAs

Pearson’s correlation analysis was chosen as a widely accepted
method to explore the correlation between coding genes and

TABLE 1 Disulfidptosis-related genes.

Official Symbol Official Full Name

GYS1 Glycogen Synthase 1
NDUFS1 NADH Dehydrogenase Fe-S Protein 1
OXSM 3-Oxoacyl-ACP Synthase, Mitochondrial
LRPPRC Leucine Rich Pentatricopeptide Repeat Containing
NDUFAI1 NADH: Ubiquinone Oxidoreductase Subunit A11
NUBP Iron-Sulfur Cluster Assembly
NUBPL Factor, Mitochondrial
NCKAP1 NCK Associated Protein 1
RPN1 Ribophorin I
SLC3A2 Solute Carrier Family 3 Member 2
SLC7A11 Solute Carrier Family 7 Member 11
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IncRNAs. Using a cutoff criterion of R > 0.3 and P < 0.001,
Pearson correlation analysis was applied to identify IncRNAs that
were co-expressed with the 10 DRGs from the RNA-seq data of
TCGA HCC samples.

2.3 ldentification of differentially
expressed INncRNAs

Differentially expressed IncRNAs between HCC and normal
patients from TCGA were identified using the R package “Limma.”
The significance criterion for identifying DEGs was set as [log,
(fold-change) | > 1 and p < 0.001.

2.4 Univariate cox analysis for
prognostic IncRNAs

By using the ‘survival’ R package and defining p < 0.05 as
screening criteria, the intersecting IncRNAs of DCLs and DELs were
subsequent to univariate cox analysis for obtaining prognostic
DRLs in HCC patients.

2.5 Construction and validation of the
disulfidptosis-related prognostic signature

To construct a disulfidptosis-related prognostic signature, least
absolute shrinkage and selection operator (LASSO) Cox regression
analysis was used to select the most appropriate IncRNAs and
estimate and weight the regression coefficients of the optimal DRLs
(23). Initially, nine prognostic IncRNAs were screened based on the
optimal penalty parameter A determined by tenfold cross-validation
following the minimum criteria. Afterwards, a multivariate Cox
regression analysis was conducted to establish a five-IncRNA
predictive model. The Risk score of each HCC patient was
calculated using the following formula: Risk score = (Coef.DRL1
x DRLI exp.) + (Coef.DRL2 x DRL2 exp.) + (...) + (Coef. DRLn x
DRLn exp.). Patients were categorized into low- and high-risk
groups based on the median risk score. The performance and
prognostic ability of the predictive signature were evaluated using
time-dependent receiver operating characteristic (ROC) analyses
and Kaplan-Meier log-rank tests. These analyses were conducted
with the R packages “timeROC” and “survival,” respectively (24).
Furthermore, in combination with the DRL prognostic signature,
the clinical characteristics of patients with HCC from TCGA were
analyzed using univariate and multivariate Cox regression analyses.

2.6 Establishment of a nomogram

Package “rms” was utilized to create a nomogram, offering
valuable clinical prognostic insights for HCC patients, including
their risk scores and various clinicopathological attributes,
particularly about 1-, 3-, and 5-year OS (25). Subsequently, we
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conducted calibration curve analysis to validate the clinical accuracy
of the nomogram.

2.7 Relationship of DRL risk signature with
tumor microenvironment in HCC

The immune and stromal scores of each HCC patient were
calculated using the ESTIMATE algorithm (26). Next, the levels of
22 immune cell subtypes of each patient were computed using the
CIBERSORT algorithm (27). The differentially expressed immune
checkpoint genes between high- and low- risk groups were
identified using R package “Limma.” Immunophenoscore (IPS)
was obtained from the TCIA database (https://tcia.at/home) to
predict the relative immune response (28).

2.8 Tumor mutation burden analysis

To delineate the mutational profiles of HCC patients within two
distinct risk groups, the Mutation Annotation Format (MAF) was
generated using the “maftools” package (29). This MAF served to
characterize the mutational landscape of patients with HCC from
different DRL risk groups.

2.9 Drug sensitivity analysis

The semi-inhibitory concentration (IC50) values for commonly
used chemotherapy agents in HCC patients were calculated using
the “pRRophetic” package to predict the clinical performance of
chemotherapy agents in different DRL risk groups for HCC
patients (30).

2.10 Gene set enrichment analysis, Kyoto
encyclopedia of genes and genomes and
gene ontology analysis

To identify the potential molecular pathways between the high-
and low-risk groups, KEGG, GO, and GSEA were performed.
Firstly, R package “Limma” was performed to classified
differential expressed genes between high- and low-risk groups (|
log, FC| > 1, p < 0.05). Significant genes were inserted into the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID, https://david.ncifcrf.gov/) to enrich closely related
metabolic pathways. GSEA was performed using GSEA software
with c¢5.all.v7.4 symbols.gmt as a template. The criteria for statistical
significance were nominal p < 0.05 and FDR< 0.25.

2.11 Cell culture and human samples

The normal human liver cell line MIHA and the human
hepatocellular carcinoma cell lines HA22T, HCCLM3, HepG2,
and JHH-7 were purchased from the Cell Bank of the Chinese

Frontiers in Immunology

10.3389/fimmu.2024.1412277

Academy of Sciences. All cell lines were cultured in DMEM
medium (Gibco, USA) containing 10% fetal bovine serum (FBS,
Gibco) at 37°C in humidified air with 5% CO,. A total of 16 HCC
samples and adjacent normal tissues were collected from patients
with HCC who underwent surgical resection at the Sir Run Run
Shaw Hospital (SRRSH), in accordance with the principles of the
Declaration of Helsinki. Written informed consent was obtained
from all the patients. All human samples were obtained after
obtaining informed consent as approved by the Institutional
Review Board of SRRSH, School of Medicine, Zhejiang
University, Hangzhou, China (ethical code: 20210729-282).

2.12 RNA extraction and quantitative real-
time PCR

RNA extraction was performed using an RNA-Quick
Purification Kit (AG21023, Accurate Biology). Reverse
transcription was conducted according to the protocol of the Eco
M-MLV RT Premix Kit (AG11706, Accurate Biology). RT-qPCR
was conducted on a QuantStudio 1 (Applied Biosystems, Thermo
Fisher Scientific, USA) using the SYBR Green Premix Pro Tag HS
qPCR kit (AG11701, Accurate Biology). Target gene expression was
normalized to the endogenous control gene glyceraldehyde 3-
phosphate dehydrogenase (GAPDH). The primers used in this
study was listed in Table 2.

2.13 Cell counting kit-8 assay
HepG2 and JHH-7 cell viability was assessed using the CCK-8

reagent (Meilunbio, China), following the manufacturer’s
instructions. Cells were seeded in 96-well plates at a density of

TABLE 2 Primers for RT-gPCR in this study.

Primer name Sequence (5°-3’)

TMCCI-ASI-F GGTAGGGTAGCAGGTCAGCATATC
TMCCI-AS1-R TTGTCACAGGCCAGACTACCAG
FOXD2-AS1-F TATGTGGTAGGGGACTCGCT
FOXD2-ASI1-R GGTTTCAAGTGGCGCTGTTT
LINCO01063-F CCTGAGCCTGGAAGGTGATT
LINCO01063-R TGACTGAGGTTCGCTGTGAC

SLC25A30-AS1-F CAAGTGCCCCTCAGGATCTTC

SLC25A30-AS1-R AATTTCTCTTCCACCTCCCAGTC
AC009283.1-F GCATCTGAGCAGCTGTGCAGCA

AC009283.1-R CCTCCTCATCATCCTCCTGTGGGT

GAPDH-F CTCTGCTCCTCCTGTTCGAC
GAPDH-R ACCAAATCCGTTGACTCCGA
SLC7A11-F TCTCCAAAGGAGGTTACCTGC
SLC7A11-R AGACTCCCCTCAGTAAAGTGAC

frontiersin.org


https://tcia.at/home
https://david.ncifcrf.gov/
https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zheng et al.

3000 cells/well in 100 UL of medium. Subsequently, CCK8 solution
(10 puL) was added to each well at 3, 6, 12, 24, 36, and 48 hours after
treatment with glucose-free DMEM. The cells were then further
incubated at 37°C for 2 h. The absorbance of each well was
measured at 450 nm wavelength using a spectrophotometer.

2.14 Confocal microscopic imaging of F-
actin staining

HepG2 and JHH-7 cells were seeded in 24-well plates at a
density of 20000 cells per well and treated with DMEM Medium
without glucose for 24 h. For actin filament staining, cells were fixed
for 30 min at room temperature with 4% paraformaldehyde and
then permeabilized for 10 min with permeabilization buffer (0.1%
Triton X-100 in PBS). Subsequently, the cells were incubated in
darkness at room temperature for 1-2 hours with TRITC Phalloidin
(Solarbio, CA1610). Afterward, the cells were then washed twice
and mounted with antifade mounting medium containing DAPI
(Beyotime, P0131). Finally, all fluorescence images were captured
using a confocal microscope (LSM 880, Zeiss).

2.15 Drugs and reagents

7Z-VAD-FMK (ZVE, §7023), ferrostatin-1 (Fer-1, S$7243),
necrostatin-1 (Nec-1, S8037), and N-acetyl cysteine (NAC, S5804)
were purchased from Selleck. Tetrathiomolybdate (TTM, 323446)
was purchased from Sigma. Tris (2-carboxyethyl) phosphine
(TCEP, T2556) was purchased from Thermo Fisher. The
concentration of ZVE, Fer-1, Nec-1, NAC, TTM and TCEP were
30uM, 10uM, 20uM, 1mM, 20uM, 1mM.

2.16 Western blotting

Proteins from cells were extracted using radioimmunoprecipitation
assay (RIPA) buffer (Fude Biotech, China) containing protease
inhibitors. Subsequently, protein concentrations were determined
using a Bicinchoninic Acid (BCA) Protein Assay Kit (Meilunbio,
China). A total of 20 pg of protein was subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to
a 022 or 0.45 pm polyvinylidene difluoride (PVDF) membrane.
PVDF membranes were then blocked in 5% skim milk for 2 h.

TABLE 3 Sequences of siRNAs for related IncRNAs.

10.3389/fimmu.2024.1412277

Subsequently, samples were incubated with specific primary
antibodies at 4°C overnight. The primary antibodies were as follows:
SLC7A11 (82115-2-RR, Proteintech, Wuhan, China), GAPDH
(AC002, Abclonal, Wuhan, China). Following this, membranes were
incubated with the appropriate secondary antibodies for 2 h at room
temperature. Finally, the protein bands were visualized with enhanced
chemiluminescence (ECL) Western blotting substrate (Fude
Biotech, China).

2.17 RNA interference

The small interference RNAs (siRNAs) was designed and
synthesized in GenePharma(China), which could effectively knock
down IncRNAs effectively. Cells were transfected with 100 nM of
smart silencer for each well using the Lipofectamine " 3000
transfection reagent (L3000015; Thermo Fisher, USA). After 48
hours of transfection, cells were collected and processed for RT-
qPCR and other experiments. The sequences of the IncRNA siRNA
were listed in Table 3.

2.18 Statistical analysis

All statistical analyses were conducted using R software (Version
4.1.2). Wilcox test was used to compare IncRNA expression levels
between HCC and para-noncancerous tissues sourced from TCGA.
Differences in the proportions of clinical features were assessed using
the chi-square test. A paired t-test was used to compare data between
HCC and adjacent normal tissues obtained in-house. Variances
among multiple groups were analyzed using one-way ANOVA.
Statistical significance was defined as a p-value < 0.05.

3 Results

3.1 Identification of disulfidptosis-related
differentially expressed and prognostic
IncRNAs in HCC

Initially, we retrieved data from 374 patients diagnosed with
HCC from TCGA database, consisting of transcriptomes and
clinical information. Subsequently, we identified ten DRGs, as
previously reported (Table 1) (17). The flowchart was presented

LncRNA name
FOXD2-AS1-Homo-1
FOXD2-AS1-Homo-2

FOXD2-AS1-Homo-3

sense(5'-3')

GAGGGACAGCCAAGAAUACTT

AGUCCCAGACAGGGUAACUTT

GUCAGGAACUAAAGGACUGTT

antisense(5'-3’)
GUAUUCUUGGCUGUCCCUCTT
AGUUACCCUGUCUGGGACUTT

CAGUCCUUUAGUUCCUGACTT

LINC01063-Homo-1
LINC01063-Homo-2

LINC01063-Homo-3
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AUCAAGCGGUGGCAGUUCATT

GGAAGGUGAUUGGCUAGAGTT

UGCGAGCAUCAUGUUGCCUTT

UGAACUGCCACCGCUUGAUTT
CUCUAGCCAAUCACCUUCCTT

AGGCAACAUGAUGCUCGCATT
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Supplementary Table 1, and the volcano plot in Figure 2B depicted
the variation in IncRNA expression levels between HCC and
adjacent normal tissues. To investigate the relationship between

Pearson correlation analysis

with a threshold of R>0.3 and p<0.001, leading to the identification
of 863 DCLs, as shown in Supplementary Figure 1. The correlation
between DRGs and IncRNAs were shown in Supplementary
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FIGURE 2

Identification of disulfidptosis-related differentially expressed and prognostic IncRNAs in HCC. (A) Co-expression network of 10 DRGs. (Red and
blue colors represent a positive correlation and a negative correlation, respectively) (B) Volcano plot showed the differentially expressed IncRNA
between the HCC tissues and adjacent normal tissues. (red: upregulated, blue: downregulated, grey: no significant) (C) Venn diagram displayed the
IncRNAs shared by DCLs and DELs. (D) Forest plots presented the results of the univariate cox regression analysis of the 23 prognostic DCDELs.
(E) Correlation of 23 prognostic DCDELs with 10 DRGs in TCGA-HCC Cohort. The color of each unit showed an indication of the degree of
correlation. (Red implied a positive relationship, while blue indicated the opposite.) (F) The Sankey diagram demonstrated the roles of DCDELs and
DRGs in HCC based on of Pearson’s R>0.3and p<0.001. HCC, hepatocellular carcinoma; DRGs, disulfidptosis-related genes; IncRNAs, long
noncoding RNAs; DRLs, disulfidptosis-related long non-coding RNAs; DCLs, disulfidptosis co-expressed IncRNAs; DELs, differentially expressed

InCRNAs; *p < 0.05, **p < 0.01, and ***p < 0.001.
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Table 2. We further integrated the DCLs and DELSs, resulting in a set
of 494 IncRNAs that were both differentially expressed and
correlated, which named “DCDELs” (Figure 2C). Subsequently,
we conducted a univariate Cox regression analysis to evaluate the
prognostic ability of these DCDELSs based on overall survival (OS)
data from the TCGA clinical database. This analysis identified 23
prognostic DCDELs (Figure 2D, Supplementary Table 3). The
correlation and differential expression between these prognostic
DCDELs and DRGs were illustrated in Figure 2E, red indicates a
positive correlation, while blue indicates a negative correlation.
Furthermore, we generated a Sankey diagram (Figure 2F) to visually
represent the roles of DCDELs and DRGs in HCC, providing a clear
depiction of their correlation and prognostic significance in the
context of patients with HCC.

3.2 Construction and validation of
prognostic DRLs signature in HCC

First, we randomly divided 342 patients into training and test
cohorts at a 1:1 ratio. Next, we conducted LASSO regression and
multivariate Cox regression analyses to construct a prognostic
signature based on the expression profiles of the previously identified
23 prognostic DCDELs (Figure 3A). Figure 3B illustrated the lambda
curves obtained from LASSO regression analysis. LASSO regression
selected nine IncRNAs based on the optimal penalty parameter A, and
multivariate Cox regression analysis further refined these to five
IncRNAs, which were ultimately used to build the disulfidptosis-
related prognostic signature. Ultimately, we identified five prognostic
DRLs using the optimal penalty parameter A determined through
tenfold cross-validation following the minimum criteria. The risk score
for each HCC patient was calculated using the following formula: Risk
score = (1.583xTMCCI1-AS1 expression) + (0.515xFOXD2-AS1
expression) + (0.577xLINC01063 expression) + (-0.698xAC009283.1
expression) + (-0.890xSLC25A30-AS1 expression) (detailed in
Supplementary Table 4).

Based on the median risk score, patients were categorized into
low- and high-risk groups (Figures 3C-E). To evaluate the feasibility
and universality of the prognostic signature, we validated it in the
train, test, and all cohorts. All cohorts exhibited a similar distribution
in that the mortality rate increased in the high-risk score group,
whereas the mortality rate decreased in the low-risk score group
(Figures 3F-H). Furthermore, we compared the OS between the high-
risk and low-risk groups using the Kaplan-Meier method, and the
results revealed that the high-risk group had a significantly shorter
OS than the low-risk group (p < 0.001) (Figures 3I-K). Principal
Component Analysis (PCA) effectively discriminated the two risk
subgroups in the train cohort, test cohort, and all cohorts (Figures 3L-
N). The signature showed good performance in predicting survival in
all cohorts (1, 3, and 5 years: AUC, 0.782, 0.735, and 0.734), in the
train cohort (1, 3, and 5 years: AUC, 0.798, 0.761, and 0.713), and in
the test cohort (1, 3, and 5 years: AUC, 0.762, 0.709, and 0.712)
(Figures 30-Q). Taken together, these findings demonstrated that
this DRLs signature could serve as a reliable independent predictive
tool for patients with HCC.
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Additionally, when we compared progression-free survival
(PFS) between the high- and low-risk groups, we observed that
the PFS of the high-risk group was significantly lower than that of
the low-risk group (Supplementary Figures 2A, C, E). Moreover, t-
distributed Stochastic Neighbor Embedding (t-SNE) analysis
revealed significant differences in distributions between the high-
and low-risk groups in the overall dataset, test cohort, and train
cohort (Supplementary Figures 2B, D, F).

3.3 Correlation between DRLs signature
and clinicopathological features in
HCC patients

To explore the association between the 5-DRLs signature and
disulfidptosis, we compared the expression levels of 10 DRGs
between the low-risk and high-risk groups. The results indicated
that the majority of DRGs expression exhibited distinct differences
with significant p-values (Supplementary Figure 3). We further
analyzed the connections in clinicopathological parameters between
the two risk groups (Figure 4A). Significant variations were
analyzed in factors such as Survival Status (p<0.001), gender
(p<0.01), grade (p<0.05), T stage (p<0.05), stage (p<0.01) and
AFP level (p<0.05) between the low- and high-risk groups and
the differences were shown in Supplementary Figure 4. In addition,
the 5-DRLs exhibited different distributions. AC009283.1 and
SLC25A30-AS1 had higher expression levels in the low-risk
group, while FOXD2-AS1, LINC01063, and TMCC1-AS1 showed
the opposite trend. To further validate the performance of the 5-
DRLs prognostic signature, we constructed ROC curves to
demonstrate its superiority in terms of predictive accuracy
compared to other clinicopathological parameters (Figures 4B-D).
The results revealed that our risk signature exhibited excellent
predictive performance, with AUC values of 0.782, 0.798, and
0.762 for the total, train, and test groups, respectively, which were
significantly higher than those of other clinical univariate variables.

In addition, patients with HCC were categorized into different
groups based on their age, gender, AFP level, tumor grade, TNM
stage, and vascular invasion to verify whether our predictive model
could be an effective supplement to the current staging system. For
each group, the overall survival of the high-risk patients was
remarkably lower than that of the low-risk group (Figures 4E-P).
Model validation in different clinical subgroups indicated that the
performance and predictive capability of the prognostic signature
remained stable and effective under specific clinical conditions.
However, if the model excels in a particular clinical subgroup, it
may suggest that patients in that subgroup are more suitable for our
predictive signature. For instance, our prognostic signature showed
superior predictive performance in patients with advanced HCC
(stages II-IV) compared to those in the early stage (p<0.001 vs.
p=0.015) (Figures 4K, L), indicating its suitability for advanced
HCC patients. In summary, validation of our novel signature in
clinical subgroups is a pivotal step, ensuring the reliability of
research outcomes and providing profound insights for the
practical application of the model in clinical practice.
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*p < 0.05, **p < 0.01 and ***p < 0.001.
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3.4 The predictive value evaluation of the
5-DRLs signature, and the construction
and validation of the predictive nomogram

Univariate and multivariate Cox regression analyses were used
to explore whether the risk score calculated by the predictive
signature could be an independent prognostic indicator for
predicting the outcomes of HCC patients. Univariate Cox
regression analysis showed that the risk score (hazard ratio [HR]
=1.349, 95%CI = 1.215-1.496, p < 0.001) was a prominent predictor
of patients’ prognosis. In addition, gender, grade, stage, T stage, and

A

10.3389/fimmu.2024.1412277

M stage were all related to prognosis by univariate Cox regression
analysis (Figure 5A). However, in the multivariate Cox regression
analysis, only grade (HR=2.117, 95%CI=1.216-3.686, p< 0.008) and
risk score (HR=1.277, 95%CI=1.142-1.148, p< 0.001) were
significant predictors of patients’ prognosis (Figure 5B). The C-
index was used to evaluate the discrimination ability of our
predictive model. The risk score calculated by our signature
exhibited a higher C-index than other clinical variables,
underscoring the superiority of our signature (Figure 5C).
Additionally, decision curve analysis (DCA) was employed to
validate the performance of the prognostic signature. The positive
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FIGURE 5

The predictive value evaluation of the 5-DRLs signature, and the construction and validation of the predictive nomogram. (A, B) The univariate cox
and the multivariate cox regression analysis between risk score and other clinicopathological variables in HCC patients. (C) The concordance index
of five indicators for OS in patients with HCC. (D) Decision-curve analysis for five indicators for OS in patients with HCC. (E) A nomogram combined
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predict overall survival time in HCC patients. (F-H) Nomogram-predicted probability of 1, 3, 5-year OS
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clinical net benefit interval of the risk scores surpassed others in the
risk threshold range of 0.1-0.2, which also indicated the superior
performance of our five DRLs signature (Figure 5D).

A nomogram, a common tool to estimate the personal
prognosis of tumors, was able to create an individual numerical
probability of a clinical event by calculating many prognostic and
crucial factors (31). To simplify our model into an easy numerical
estimate of the probability of 1-, 3-, and 5-year OS of HCC, a
nomogram based on age, gender, grade, stage, T stage, M stage, N
stage, vascular invasion, and risk score was established (Figure 5E)
(25). The 1-, 3-, and 5-year calibration curves revealed that the
predictive outcome was close to the actual OS rate, suggesting a
notable predictive value of our signature (Figures 5F-H).

3.5 5-DRLs prognostic signature for
immune microenvironment and
immunotherapy response discrimination
in HCC

Besides the crucial roles of gene mutations and epigenetic
alterations in cancer, further investigations have found that the
tumor immune microenvironment (TME) play an increasingly
pivotal role in tumor physiology (32). The different characteristics
of tumors were determined by distinctive stromal cell types and
various sub-cell types (33). To explore the correlation between the
5-DRLs signature and TME, the CIBERSORT algorithm, which can
estimate the abundance of immune cell types, was used (34). It
could be found in the heatmap that various immune cells were
significantly distinguished between the low-risk group and the high-
risk group (Figure 6A). Specifically, MO macrophages (p < 0.05), M2
macrophages (p < 0.001), and neutrophils (p < 0.01) were more
abundant in the high-risk group, whereas CD8+ T cells (p < 0.01),
activated mast cells (p < 0.01), and monocytes (p < 0.05) were more
percentage in the low-risk group (Figure 6D). Spearman’s
correlation test was used to determine the relationship between
the immune score and risk score (R=0.05, p=0.36) and between the
stromal score and risk score (R=0.037, p=0.49). However, neither
had an apparent relationship (Figures 6B, C).

The expression levels of CD200R1, CD200, TNESF4, CD80,
VTCN1, CD276, LGALS9, HHLA2, TNFRSF18, CD86, HAVCR2,
TNESF15, and LAIR1 were all significantly higher in the high-risk
group, with the exception of ADORA2A (Figure 6E). Remarkably, the
expression of CD276 was considerably higher in the high-risk group
than in the low-risk group (p < 0.001). Simultaneously,
immunophenoscore (IPS), a score based on immunogenicity to
predict immunotherapy potential, was used to assess the potential
effects of two common immune treatment targets, CTLA-4 and PD-1
(35). As shown in the violin plot, IPS, IPS-CTLA4, IPS-PD1, and IPS-
PD1+CTLA4+ were all significantly higher in the low-risk group than
in the high-risk group. (P< 0.01) (Figures 6F-I). Therefore, the 5-DRLs
signature established in this study has potential immunotherapy
predictive value for clinical HCC treatment.
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3.6 Correlation between 5-DRLs signature
and TMB, and predictive analysis of
drug sensitivity

Tumor mutation burden (TMB), which is based on the
generation of immunogenic neoantigens from tumor gene
mutations, had been regarded as a predictive biomarker for the
response to immune checkpoint blockade (ICB) (36). Therefore, we
analyzed the correlation between the 5-DRLs signature and TMB
and found that their mutative frequencies were similar (high-risk
group, 83.04%; low-risk group, 80.25%). Specifically, TP53 (39%),
TTN (25%), CTNNB1(18%), MUC16(13%), and PCLO (13%) were
the five most frequently mutated genes in the high-risk group,
whereas CTNNB1(33%), TTN (20%), MUC16 (19%), TP53 (14%),
and ALB (12%) were the top five genes in the low-risk group
(Figures 7A, B). Meanwhile, we explored the OS rates between the
high-TMB and low-TMB groups and further explored them by
considering different risk scores separately. As depicted in
Figures 7C, D, the high-TMB group had a relatively more
unfavorable outcome (P<0.025) (Figure 7C). In addition, the low-
TMB plus low-risk group was the most favorable one among the
four groups (P<0.001) (Figure 7D).

To predict the potential for medical treatment and achieve
precise individualized oncology therapy, drug-sensitivity analysis
based on the different risk groups was performed. The IC50 values
of Elesclomol, Docetaxel and Vinblastine were lower in the low-risk
group than in the high-risk group, which indicated that they were
probably more sensitive to low-risk HCC patients (Figures 7E-G).
Conversely, the IC50 values for Sunitinib, Gemcitabine and
Paclitaxel were higher in the low-risk group, suggesting a higher
likelihood of obtaining better responses in the high-risk group
(Figures 7H-]).

3.7 Pathway and functional enrichment
analyses of DEGs

To elucidate the potentially different mechanisms in the high-
and low-risk groups, we selected differentially expressed genes
(DEGs). KEGG pathway enrichment and GO functional
annotation analyses were conducted based on the DEGs between
the low- and high-risk groups. In KEGG pathway enrichment,
many signaling pathways were significantly enriched, and the top 20
involved pathways, including pathways in cancer, cellular
senescence, PPAR signaling pathway, and ECM-receptor
interaction pathway, were depicted (Figure 8A). The top 100
pathways in the KEGG analysis of the DEGs were shown in
Supplementary Table 5. The top 20 pathways enriched by GO
functional annotation analysis of DEGs were shown in Figure 8B,
which show that pathways such as extracellular matrix
organization, nucleus, and identical protein binding were
enriched. The top 100 pathways in the GO analysis of the DEGs
were shown in Supplementary Table 6.
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FIGURE 6

5-DRLs prognostic signature for immune microenvironment and immunotherapy response discrimination in HCC. (A) Relative proportion of 22 different
immune cells based on CIBERSORT in the low-risk group and the high-risk group. Immune cells in red indicated that there was a significant difference
between two groups. (B) The relationship between the risk score and immune Score. (C) The relationship between the risk score and Stromal Score.
(D) The proportion of MO macrophages, M2 macrophages, activated mast cell, monocyte, neutrophil, and CD8+ T cell in the low-risk group and the
high-risk group. (E) Differential expressions of immune checkpoint genes between high- and low-risk groups. (F-I) Immunophenoscore predicts
response to immunotherapy with CTLA-4 and PD-1 blockers. *p < 0.05, **p < 0.01, and ***p < 0.001.

Furthermore, GSEA was performed to reveal potential
biological processes and mechanistic pathways between the
different risk groups. The top 100 pathways in the GSEA-KEGG
and GSEA-GO analyses between the high- and low-risk groups
were shown in Supplementary Table 7. Surprisingly, it was revealed
that the regulation of the actin cytoskelet.
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on and microtubule motor activity were enriched in the high-
risk group (Figures 8C, D). Previous studies had demonstrated that
actin, microtubules, and intermediate filaments were integral
components of the cytoskeleton. The formation of disulfide bonds
in actin cytoskeleton proteins that led to F-actin collapse and
generation of forces within cells, ultimately inducing disulfidptosis
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(17, 37). Hence, it could be inferred that the 5-DRLs signature is
closely associated with disulfidptosis.

3.8 Verification of 5 DRLs expressions in
HCC cell lines and tissues

According to the data presented in Figure 9A, there were
significantly higher expression levels of the five DRLs in HCC
tissues than in normal tissues from TCGA database. To further
verify this finding, we conducted experiments using a normal liver
cell line MIHA and four distinct liver cancer cell lines: HA22T,
JHH-7, HCCLM3, and HepG2. Subsequently, we extracted RNA
from each cell line and used RT-qPCR to confirm the expression
levels of these IncRNAs. The results demonstrated that the five
DRLs exhibited higher expression levels in HCC cells than in
normal liver cells (Figures 9B-F). For further corroboration, we
collected 16 pairs of HCC tissues and adjacent normal tissues from
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patients with HCC who had undergone surgical resection. Similar
results were observed in these clinical samples, indicating higher
expression levels of the aforementioned IncRNAs in HCC tissues,
except SLC25A30-AS1 (Figures 9G-K).

3.9 Validation of disulfidptosis phenotype
in HCC cell lines

To verify the phenomenon of disulfidptosis could be repeated in
HCC, we induced disulfidoptosis in selected HCC cell lines through
glucose deprivation. Initially, we compared the expression levels of
SLC7A11 gene among different liver cell lines and HCC cell lines in
mRNA level and protein level. The result revealed that all of HCC
cell lines exhibited higher expression levels than the normal liver
cell line MIHA. Among the HCC cell lines, HepG2 and HCCLM3
displayed significantly elevated expression, whereas HA22T and
JHH-7 had relatively lower levels (Figures 10A, B). Subsequently,

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zheng et al.

10.3389/fimmu.2024.1412277

Type
Type
TMCC1-AS1 ] $

FOXD2-AS1 4
2
0
LINC01063 -2
-4
4”” ‘ ‘ ‘ ‘ AC009283.1
SLC25A30-AS1
FOXD2-AS1 LINC01063 TMCC1-AS1 SLC25A30-AS1 AC009283.1
= N g » g ok 9 o = .
=3 > =3
;— s _ * g 10 Ak :2” 5 AR ‘2— s - :_:4 P
o -g s - e xxkk
A ﬁ s ns wrxr N -
3, % N 3. 2 3. 4 3.
< < < < < ?
F4 Z z b4 =z
g 2 © x, %2 %
£ = £ £ £y
1 o 2
2 t
k]
’ & W A ol S 2 g’ ¥ 1g ’ Ll N 1g ’ ¥ oA © A
& 4 B F P A F & A A < ST e,
s é‘&éo“\' S & ¥ Qo"v N S ¥ Q,o"v S < éﬁéoc‘\' N ¥ %oc’v N
FOXD2-AS1 LINC01063 TMCC1-AS1 SLC25A30-AS1 AC009283.1
— 154 %k %k k — 30+ 25+ % %k — 20+ %
g _ R * %k Xk R 3 ns Q;30-
g : . & | -8 :
s s H 8 s15 o H
2 104 2 20] = 2 a PR
L 4 215_ e n [
o o [ am o - o 104 " _n 5 u
; § ° L = §10 § °° . p-! —
[ ] - ™1 o0 Em z ]
§ 5 10 e = % % g 2 10 "1
= o £ £ £ 5] o0 =uH £
_g :oo 2 o8 =" 2 5- an 2 o am 2 R
s 03 K H K ue k] eo o u 5 -
2 ol goe 2 o 2ol agge = gl e am @] 3853 e
Normal  Tumor Normal Tumor Normal Tumor Normal Tumor Normal Tumor

FIGURE 9

Verification of 5 DRLs expressions in HCC cell lines and tissues. (A) The heatmap of the expression of 5 DRLs in HCC tissues and adjacent tissues
from TCGA database. (B-F) 5 IncRNAs' (FOXD2-AS1, LINC01063, TMCC1-AS1, SLC25A30-AS1, AC009283.1) expression levels in liver cell lines and
different HCC cell lines including MIHA, HA22T, HCCLM3, JHH-7, HepG2 (n=3) (One-way ANOVA). (G-K) 5 IncRNAs' expression levels in HCC
tissues and adjacent normal tissues (T-test). *p < 0.05, **p < 0.01, ***p < 0.001 and ****p<0.0001. ns, no significance.

we selected HepG2, characterized by high SLC7AI11 expression
level, and JHH-7, characterized by low SLC7A11 expression level, to
validate the disulfidoptosis phenotype in HCC. The cell viability
curve indicated that HepG2 was more sensitive to disulfidoptosis
(Figure 10C). Besides, after exposing both cell lines in glucose
deprivation for 12 hours, we fixed those cells in 4% formaldehyde
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and stained them with phalloidin. HepG2 cells exhibited
substantially morphological changes, including intensified
cytoskeletal staining. Compared with normal cells, treated cells
displayed contraction, actin filament accumulation and reduced
cell volume (Figure 10D). Relatively lesser changes were observed in
JHH-7 cells (Figure 10E).
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We also explored the expression of ten disulfidptosis-related
genes in the TCGA database and in 16 HCC patients. As shown in
Supplementary Figures 5 and 6, we presented the expression of
these ten genes in TCGA and HCC patients, respectively. It was
observed that most of the disulfidptosis-related genes were more
highly expressed in HCC tissues compared to normal tissues. This
indicates that these genes could potentially be targeted to induce
disulfidptosis and serve as treatment targets for HCC in future.

To further confirm that cell death induced by glucose deficiency
was not caused by other forms of cell death, we introduced various
cell death inhibitors, such as Ferrostatin-1 (Fer-1, a ferroptosis
inhibitor), Necrostatin-1 (Nec-1, a necroptosis inhibitor), Z-VAD-
FMK (ZVF, an apoptosis inhibitor), N-acetyl cysteine (NAC, an
antioxidant), Tetra thiomolybdate (TTM, a cuproptosis inhibitor)
to the treatment groups during the 12-hour glucose starvation and
detected the cell viability. However, these inhibitors did not alleviate
cells death. Surprisingly, the addition of Tris(2-carboxyethyl)
phosphine (TCEP), a non-thiol reducing agent, resulted in a
remarkable rescue in cell death (Figures 10F, G). In summary,
our study conclusively showed that glucose deprivation could
trigger disulfidptosis in HCC. The extent of this novel cell death
was directly correlated with the expression level of the SLC7A11
gene. Besides, this cellular damage resulting from sulfide
accumulation could be mitigated by TCEP.

3.10 Disulfidptosis regulated by LINC01063
and FOXD2-AS1

According to the disulfidptosis-related IncRNA signature, five
IncRNAs (AC009283.1, SLC25A30-AS1, FOXD2-AS1, LINC01063,
and TMCCI1-AS1) were identified as central components within
this network, suggesting their potential significance in the
disulfidptosis of HCC.

We selected two IncRNAs, FOXD2-AS1 and LINC01063, for
further investigation. Initially, we designed silencing RNAs to knock
down the expression of FOXD2-AS1 and LINC01063 in the HepG2
cell line. The knockdown efficiency was confirmed via RT-qPCR,
revealing that LIN010613 siRNA1 and FOXD2-AS1 siRNA2
achieved greater than 70% knockdown efficiency (Figures 11A, D).
Subsequent cell viability assays demonstrated that the depletion of
FOXD2-AS1 and LINCO01063 sensitized HCC cells to disulfidptosis
(Figures 11B, E). After 24 hours of glucose starvation, cells with
LINC01063 and FOXD2-AS1 knockdown showed significantly lower
viability compared to the control group. Additionally, fluorescence
microscopy with F-actin staining further demonstrated that, after 12
hours of glucose starvation, cells with LINC01063 and FOXD2-AS1
knockdowns displayed more markedly abnormal cell morphology
(Figures 11C, F). Specifically, these HepG2 cells exhibited substantial
morphological changes, including intensified cytoskeletal staining,
pronounced cytoskeletal shrinkage, actin filament accumulation, and
reduced cell volume (Figures 11G, H).

These findings corroborate our bioinformatics analysis, which
indicated that the IncRNAs within the prognostic signature play a
regulatory role in disulfidptosis. Specifically, the downregulation of
IncRNAs such as LINC01063 and FOXD2-AS1 enhances the
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sensitivity of HCC cells to disulfidptosis. The precise regulatory
mechanisms underlying this effect warrant further investigation.

4 Discussion

HCC is the sixth most common cancer worldwide and is known
for its high mortality rate and aggressiveness (38). Therefore,
understanding the pathogenesis of HCC and exploring new
diagnostic and prognostic markers are crucial. Meanwhile,
disulfidptosis has provided a new theoretical foundation for the
development of innovative antitumor treatments (17). In this study,
we conducted a comprehensive analysis of the transcriptional
expression of 10 disulfidptosis-related genes (DRGs) in HCC
patients based on the TCGA database. Subsequently, we identified
the co-expressed IncRNAs associated with these DRGs and
developed a novel scoring system based on five co-expressed
prognostic-related IncRNAs (FOXD2-AS1, SLC25A30-AS1,
TMCCI1-AS1, LINC01063, and AC009283.1). ROC, C-index, and
DCA analyses revealed that the risk signature had high accuracy
and excellent sensitivity. Moreover, univariate and multivariate Cox
analyses confirmed it to be an independent prognostic factor for
patients according to univariate and multivariate Cox analyses. In
addition, we created a nomogram by combining the risk score with
other clinicopathological features. This nomogram provided an
intuitive and quick individualized risk assessment for patients
with HCC. We established a signature of IncRNAs associated
with disulfidptosis, providing a potential strategy for guiding
individualized treatment and contributing to the prediction of
prognosis and immune response in HCC patients. Finally, we
validated the relative expression of the five IncRNAs in both cell
lines and HCC tissues and verified the disulfidptosis phenotype of
HCC under glucose deprivation.

The five DRLs, components of our signature, were identified as
potentially associated with HCC and disulfidptosis in the existing
literature. We discovered that these IncRNAs had been previously
studied in various types of cancers. For instance, Miranda’s research
indicated that IncRNA AC009283.1 may be causally related to
carcinogenesis. It has been suggested that AC009283.1,
contributes to the malignant phenotype of the HER2-rich subtype
of breast cancer, leading to an upregulation of tumor cell
proliferation capacity and resistance to apoptosis (39). However,
in our risk signature, AC009283.1 exhibited higher expression levels
in the lower-risk group (Figure 4A). The heterogeneity of tumors
may be responsible for this inconsistency. For LINC01063, Xu’s al.
reported that it acted as an oncogene in melanoma by functioning
as a sponge for miR-5194, leading to increased cancer cell
proliferation, migration, invasion, and epithelial-mesenchymal
transition (40). TMCC1-AS1 has also been implicated as a tumor
promoter; its suppression led to increased E-cadherin expression
and decreased proliferating cell nuclear antigen Ki67 expression in
HCC cells (41). Mechanistic insights into FOXD2-AS1 have been
extensively explored in gastric cancer, colorectal cancer, breast
cancer, and other malignancies, primarily focusing on its cancer-
promoting properties. For example, Xu et al. revealed that the
knockdown of FOXD2-AS1 reduced transmembrane protein 9
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LINC01063 and FOXD2-AS knockdown increases susceptibility to disulfidptosis in HepG2 cells. (A, D) The expression levels of LINC01063 and
FOXD2-AS IncRNAs in HepG2 cells, with or without siRNA treatment, are shown (n=3) (One-way ANOVA). (B, E) HepG2 cells with or without
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fluorescence microscope (T-test). (G, H) Representative fluorescence images of F-actin staining after 12 hours of glucose starvation are shown for
HepG2 cells with or without LINC01063 and FOXD2-AS knockdown. **p < 0.01, ***p < 0.001 and ****p < 0.0001.

(TMEMY) expression and increased the sensitivity of HCC cells to
sorafenib (42). In addition, SLC25A30-AS1 showed a lower
expression level in the high-risk group of our risk signature,
which correlated with poor prognosis (Figure 4A). Hence, further
experiments are required to elucidate how SLC25A30-AS1 regulates
the malignant behavior of HCC.

TMB, associated with neoantigens present on the surface of
cancerous cells, complements conventional biomarkers for
predicting the effectiveness of ICB (43). Previous studies have
reported that patients with high TMB tend to have poorer survival
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and better response to ICB (44). In this study, there was a significant
disparity in TP53 and CTNNBI gene mutations between the two
groups: the high-risk group exhibited a higher frequency of TP53
gene mutations, whereas the low-risk group showed an elevated
frequency of CTNNBI gene mutations. CTNNB1-mutated HCC has
been proven to be a homogeneous subtype of non-proliferative
tumors with well-differentiated characteristics such as an intact
tumor capsule, cholestasis, microtrabecular, and pseudoglandular
architectural patterns (45, 46). Conversely, TP53-mutated tumors
were poorly differentiated, with a compact pattern, multinucleated
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and pleomorphic cells, and vascular invasion (46). Additionally,
previous studies have shown that TP53 could inhibit the expression
of SLC7A11 (a key component of the cystine/glutamate antiporter),
reducing the uptake of cystine and synthesis of cysteine-dependent
glutathione (GSH), destroying cellular antioxidant defenses,
ultimately accelerating ROS accumulation, and inducing ferroptosis
(15, 47). However, high expression of SLC7A11 combined with
glucose starvation could result in disulfidptosis (47, 48). Therefore,
the cellular and molecular mechanism of how TP53 regulated the
disulfidptosis and the balance between disulfidptosis and ferroptosis
require further exploration.

Tumor cells under continuous evolution driven by constant
selection and mutual interaction within the entire cellular ecosystem,
ultimately giving rise to adaptive cellular phenotypes within the tumor
microenvironment (TME) (49, 50). In our study, M2 macrophages
were highly recruited to the high-risk group. Macrophages, which are
versatile and heterogeneous innate immune cells, possessed plasticity
that allows them to interact with a wide range of cell type including
tumor cells, T lymphocytes, endothelial cells (ECs), and fibroblasts.
This interaction can subsequently promote tumor tolerance and
progression (51). Recent research has revealed a correlation between
an unfavorable prognosis and M0 macrophages in HCC (52). In
addition, there were two distinct types of polarized macrophages.
Type 1-polarized macrophages (M), identified by the expression of
CD80, CD86, MHC 11, iNOS, and CD68, were phagocytic and could
impede tumor progression. In contrast, type 2-polarized macrophages
(M2), induced under the influence of IL-4, IL-13, IL-10, and M-CSF,
were immunosuppressive cells characterized by the expression of
CD206, CD204, VEGF, CD163, and Arg-1. These actions can
suppress the anti-cancer immune response (32, 53). Therefore, the
high-risk group with higher recruitment of M2 macrophages in our
study may have a relatively worse anticancer immune response,
highlighting the predictive value of the prognostic signature in
the TME.

In recent years, immune checkpoint inhibitors have been
vigorously developed for cancer therapy. Atezolizumab plus
Bevacizumab and Tremelimumab plus Durvalumab have been
widely approved as standard-of-care first-line therapies for HCC
(54). Tremelimumab, an anti-CTLA-4 antibody, inhibit the
interaction between CTLA-4 and B7-1 (CD80) and CTLA-4 and
B7-2 (CD86), reactivating T lymphocytes (55). As illustrated in
Figure 6E, the gene expression of CD80 and CD86 was higher in the
high-risk group, suggesting that Tremelimumab may be more
effective in this group. In addition, the expression of CD276 (B7-
H3) was significantly higher in the high-risk group. CD276, which is
selectively expressed in tumor and immune cells, was associated
with tumor cell proliferation, metastasis, and therapeutic resistance
(56). Therefore, our 5-DRLs signature may have the potential to
predict the expression of immune checkpoint genes and related
immunotherapeutic responses.

However, this study remained several limitations. Firstly, our
analysis relied on retrospective patient information available from
public datasets. No external database was available to validate the
reliability of the signature in terms of IncRNA expression and
clinical prognostic data. Additional verification using prospective
multicenter real-world data is required for this risk signature.
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Secondly, we only verified the differential expression of five
IncRNAs in HCC compared to normal subjects using a small
sample size. Thirdly, we only confirmed that disulfidptosis could
be induced in HCC, without further investigation into the
mechanisms and applications of this signature. Therefore, further
studies are needed to thoroughly elucidate the function of
disulfidptosis-related IncRNAs in HCC in future research.

5 Conclusion

In summary, we developed a novel 5-DRLs signature with
excellent specificity and sensitivity, serving as a reliable prognostic
indicator for patients with HCC. The nomogram, which includes
age, clinical TNM staging, and risk scores, provides a
straightforward tool for predicting the survival period of patients
with HCC. Additionally, our signature has the potential to predict
the effectiveness of immunotherapy and targeted therapies. We
believe that our signature can build a bridge between HCC and
disulfidptosis, ultimately serving as a clinically applicable diagnostic
and therapeutic tool.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by Sir Run Run
Shaw Hospital (SRRSH), School of Medicine, Zhejiang University,
Hangzhou, China. The studies were conducted in accordance with
the local legislation and institutional requirements. The participants
provided their written informed consent to participate in this study.

Author contributions

HZ: Data curation, Formal analysis, Investigation, Methodology,
Software, Visualization, Writing — original draft. JC: Data curation,
Formal analysis, Investigation, Methodology, Software, Writing -
original draft. ZZ: Data curation, Formal analysis, Investigation,
Methodology, Resources, Software, Visualization, Writing — original
draft. DL: Formal analysis, Investigation, Methodology, Software,
Supervision, Visualization, Writing — review & editing. JY: Formal
analysis, Investigation, Methodology, Project administration,
Resources, Writing — review & editing. FY: Data curation, Formal
analysis, Investigation, Methodology, Writing — original draft. XF:
Conceptualization, Funding acquisition, Supervision, Validation,
Visualization, Writing - review & editing. XL: Conceptualization,
Investigation, Methodology, Supervision, Validation, Writing -
original draft, Writing — review & editing, Software.

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zheng et al.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Natural Science Foundation of
China (82102105) and Natural Science Foundation of Zhejiang
Province (LQ22H160017).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

1. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al.
Hepatocellular carcinoma. Nat Rev Dis Primers. (2021) 7:7.

2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: Cancer ] For Clin. (2024) 74:229-63. doi: 10.3322/
caac.21834

3. Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, et al. Global burden
of primary liver cancer in 2020 and predictions to 2040. ] Hepatol. (2022) 77:1598-606.
doi: 10.1016/j.jhep.2022.08.021

4. Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, et al. Evolving
therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol
Hepatol. (2023) 20:203-22. doi: 10.1038/s41575-022-00704-9

5. Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW, et al.
Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat
Cancer. (2022) 3:386-401. doi: 10.1038/s43018-022-00357-2

6. Ke B, Tian M, Li J, Liu B, He G. Targeting programmed cell death using small-
molecule compounds to improve potential cancer therapy. Med Res Rev. (2016)
36:983-1035. doi: 10.1002/med.2016.36.issue-6

7. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in
cancer: key pathways and targeted therapies. Signal Transduct Target Ther. (2022)
7:286. doi: 10.1038/s41392-022-01110-y

8. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. ] Exp Clin Cancer
Res. (2011) 30:87. doi: 10.1186/1756-9966-30-87

9. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The
manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev
Cancer. (2022) 22:45-64. doi: 10.1038/s41568-021-00407-4

10. Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-
apoptotic cell death. Nat Rev Drug Discovery. (2023) 22:723-42. doi: 10.1038/s41573-
023-00749-8

11. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical
inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain
injury. Nat Chem Biol. (2005) 1:112-9. doi: 10.1038/nchembio711

12. ShiJ, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature. (2015) 526:660-5.
doi: 10.1038/nature15514

13. Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in
cell death: parthanatos. Ann N Y Acad Sci. (2008) 1147:233-41. doi: 10.1196/
nyas.2008.1147.issue-1

14. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke
R, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide
generation. Cell Res. (2011) 21:290-304. doi: 10.1038/cr.2010.150

15. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al.
Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. (2012) 149:1060-
72. doi: 10.1016/j.cell.2012.03.042

16. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al.
Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. (2022)
375:1254-61. doi: 10.1126/science.abf0529

17. Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, et al. Actin cytoskeleton
vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. (2023) 25:404-14.
doi: 10.1038/541556-023-01091-2

Frontiers in Immunology

10.3389/fimmu.2024.1412277

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.
1412277/full#supplementary-material

18. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in
development and disease. Cell. (2013) 152:1298-307. doi: 10.1016/j.cell.2013.02.012

19. Li D, Fan X, Li Y, Yang J, Lin H. The paradoxical functions of long noncoding
RNAs in hepatocellular carcinoma: Implications in therapeutic opportunities and
precision medicine. Genes Dis. (2022) 9:358-69. doi: 10.1016/j.gendis.2020.11.014

20. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA
activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular
carcinoma. Cancer Cell. (2014) 25:666-81. doi: 10.1016/j.ccr.2014.03.010

21. Zhang B, Bao W, Zhang S, Chen B, Zhou X, Zhao J, et al. LncRNA HEPFAL
accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11
ubiquitination. Cell Death Dis. (2022) 13:734. doi: 10.1038/s41419-022-05173-1

22. Shi Z, Li Z, Jin B, Ye W, Wang L, Zhang S, et al. Loss of LncRNA DUXAP8
synergistically enhanced sorafenib induced ferroptosis in hepatocellular carcinoma via
SLC7A11 de-palmitoylation. Clin Transl Med. (2023) 13:e1300. doi: 10.1002/
ctm2.v13.6

23. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med.
(1997) 16:385-95. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-
SIM380>3.0.CO;2-3

24. Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW. A
practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg.
(2010) 143:331-6. doi: 10.1016/j.0tohns.2010.05.007

25. Tasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a
nomogram for cancer prognosis. J Clin Oncol. (2008) 26:1364-70. doi: 10.1200/
JCO.2007.12.9791

26. Meng Z, Ren D, Zhang K, Zhao J, Jin X, Wu H. Using ESTIMATE algorithm to
establish an 8-mRNA signature prognosis prediction system and identify immunocyte
infiltration-related genes in Pancreatic adenocarcinoma. Aging (Albany NY). (2020)
12:5048-70. doi: 10.18632/aging.102931

27. Wei C, Wei Y, ChengJ, Tan X, Zhou Z, Lin S, et al. Identification and verification
of diagnostic biomarkers in recurrent pregnancy loss via machine learning algorithm
and WGCNA. Front Immunol. (2023) 14:1241816. doi: 10.3389/fimmu.2023.1241816

28. Zanfardino M, Pane K, Mirabelli P, Salvatore M, Franzese M. TCGA-TCIA
impact on radiogenomics cancer research: A systematic review. Int ] Mol Sci. (2019)
20:6033. doi: 10.3390/ijms20236033

29. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747-56.
doi: 10.1101/gr.239244.118

30. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One.
(2014) 9:¢107468. doi: 10.1371/journal.pone.0107468

31. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: more
than meets the eye. Lancet Oncol. (2015) 16:e173-80. doi: 10.1016/S1470-2045(14)71116-7

32. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting
the tumor microenvironment: removing obstruction to anticancer immune responses
and immunotherapy. Ann Oncol. (2016) 27:1482-92. doi: 10.1093/annonc/mdw168

33, Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the
tumor microenvironment. Cancer Cell. (2012) 21:309-22. doi: 10.1016/j.ccr.2012.02.022

34. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453-7. doi: 10.1038/nmeth.3337

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412277/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412277/full#supplementary-material
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1016/j.jhep.2022.08.021
https://doi.org/10.1038/s41575-022-00704-9
https://doi.org/10.1038/s43018-022-00357-2
https://doi.org/10.1002/med.2016.36.issue-6
https://doi.org/10.1038/s41392-022-01110-y
https://doi.org/10.1186/1756-9966-30-87
https://doi.org/10.1038/s41568-021-00407-4
https://doi.org/10.1038/s41573-023-00749-8
https://doi.org/10.1038/s41573-023-00749-8
https://doi.org/10.1038/nchembio711
https://doi.org/10.1038/nature15514
https://doi.org/10.1196/nyas.2008.1147.issue-1
https://doi.org/10.1196/nyas.2008.1147.issue-1
https://doi.org/10.1038/cr.2010.150
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1038/s41556-023-01091-2
https://doi.org/10.1016/j.cell.2013.02.012
https://doi.org/10.1016/j.gendis.2020.11.014
https://doi.org/10.1016/j.ccr.2014.03.010
https://doi.org/10.1038/s41419-022-05173-1
https://doi.org/10.1002/ctm2.v13.6
https://doi.org/10.1002/ctm2.v13.6
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1016/j.otohns.2010.05.007
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.18632/aging.102931
https://doi.org/10.3389/fimmu.2023.1241816
https://doi.org/10.3390/ijms20236033
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zheng et al.

35. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. (2017)
18:248-62. doi: 10.1016/j.celrep.2016.12.019

36. McGrail DJ, Pilie PG, Rashid NU, Voorwerk L, Slagter M, Kok M, et al. High
tumor mutation burden fails to predict immune checkpoint blockade response across
all cancer types. Ann Oncol. (2021) 32:661-72. doi: 10.1016/j.annonc.2021.02.006

37. Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and
mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol. (2022) 23:836-52.
doi: 10.1038/s41580-022-00508-4

38. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer ] Clin. (2021) 71:209-49.
doi: 10.3322/caac.21660

39. Cedro-Tanda A, Rios-Romero M, Romero-Cordoba S, Cisneros-Villanueva M,
Rebollar-Vega RG, Alfaro-Ruiz LA, et al. A IncRNA landscape in breast cancer reveals a
potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched
subtype. Sci Rep. (2020) 10:13146. doi: 10.1038/s41598-020-69905-z

40. Xu J, Ou R, Nie G, Wen J, Ling L, Mo L, et al. LINC01063 functions as an
oncogene in melanoma through regulation of miR-5194-mediated SOX12 expression.
Melanoma Res. (2022) 32:218-30. doi: 10.1097/CMR.0000000000000803

41. Chen C, Su N, Li G, Shen Y, Duan X. Long non-coding RNA TMCCI-AS1
predicts poor prognosis and accelerates epithelial-mesenchymal transition in liver
cancer. Oncol Lett. (2021) 22:773. doi: 10.3892/01.2021.13034

42. SuiC, Dong Z, Yang C, Zhang M, Dai B, Geng L, et al. LncRNA FOXD2-AS1 as a
competitive endogenous RNA against miR-150-5p reverses resistance to sorafenib in
hepatocellular carcinoma. J Cell Mol Med. (2019) 23:6024-33. doi: 10.1111/jcmm.14465

43. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al.
Development of tumor mutation burden as an immunotherapy biomarker: utility for
the oncology clinic. Ann Oncol. (2019) 30:44-56. doi: 10.1093/annonc/mdy495

44. Valero C, Lee M, Hoen D, Wang J, Nadeem Z, Patel N, et al. The association

between tumor mutational burden and prognosis is dependent on treatment context.
Nat Genet. (2021) 53:11-5. doi: 10.1038/s41588-020-00752-4

Frontiers in Immunology

211

10.3389/fimmu.2024.1412277

45. Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and histological
correlations in liver cancer. | Hepatol. (2019) 71:616-30. doi: 10.1016/
jjhep.2019.06.001

46. Calderaro ], Couchy G, Imbeaud S, Amaddeo G, Letouzé E, Blanc J-F, et al.
Histological subtypes of hepatocellular carcinoma are related to gene mutations and
molecular tumor classification. J Hepatol. (2017) 67:727-38. doi: 10.1016/
jjhep.2017.05.014

47. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, et al. Ferroptosis as a p53-
mediated activity during tumor suppression. Nature. (2015) 520:57-62. doi: 10.1038/
naturel4344

48. Liu X, Zhuang L, Gan B. Disulfidptosis: disulfide stress-induced cell death.
Trends Cell Biol. (2023) 34(4):327-37. doi: 10.1016/j.tcb.2023.07.009

49. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their
microenvironment. Trends Genet. (2009) 25:30-8. doi: 10.1016/j.tig.2008.10.012

50. Anderson ARA, Weaver AM, Cummings PT, Quaranta V. Tumor morphology
and phenotypic evolution driven by selective pressure from the microenvironment.
Cell. (2006) 127:905-15. doi: 10.1016/j.cell.2006.09.042

51. Kloosterman DJ, Akkari L. Macrophages at the interface of the co-evolving
cancer ecosystem. Cell. (2023) 186:1627-51. doi: 10.1016/j.cell.2023.02.020

52. Zhang Y, Zou J, Chen R. An MO macrophage-related prognostic model for
hepatocellular carcinoma. BMC Cancer. (2022) 22:791. doi: 10.1186/s12885-022-
09872-y

53. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex
role of tumor-infiltrating macrophages. Nat Immunol. (2022) 23:1148-56. doi: 10.1038/
$41590-022-01267-2

54. Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, et al. Biomarkers
for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol. (2023) 20:780—
98. doi: 10.1038/541571-023-00816-4

55. Keam SJ. Tremelimumab: first approval. Drugs. (2023) 83(3):93-102.
doi: 10.1007/s40265-022-01827-8

56. Getu AA, Tigabu A, Zhou M, Lu J, Fodstad @, Tan M. New frontiers in immune
checkpoint B7-H3 (CD276) research and drug development. Mol Cancer. (2023) 22:43.
doi: 10.1186/s12943-023-01751-9

frontiersin.org


https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1038/s41580-022-00508-4
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41598-020-69905-z
https://doi.org/10.1097/CMR.0000000000000803
https://doi.org/10.3892/ol.2021.13034
https://doi.org/10.1111/jcmm.14465
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1038/s41588-020-00752-4
https://doi.org/10.1016/j.jhep.2019.06.001
https://doi.org/10.1016/j.jhep.2019.06.001
https://doi.org/10.1016/j.jhep.2017.05.014
https://doi.org/10.1016/j.jhep.2017.05.014
https://doi.org/10.1038/nature14344
https://doi.org/10.1038/nature14344
https://doi.org/10.1016/j.tcb.2023.07.009
https://doi.org/10.1016/j.tig.2008.10.012
https://doi.org/10.1016/j.cell.2006.09.042
https://doi.org/10.1016/j.cell.2023.02.020
https://doi.org/10.1186/s12885-022-09872-y
https://doi.org/10.1186/s12885-022-09872-y
https://doi.org/10.1038/s41590-022-01267-2
https://doi.org/10.1038/s41590-022-01267-2
https://doi.org/10.1038/s41571-023-00816-4
https://doi.org/10.1007/s40265-022-01827-8
https://doi.org/10.1186/s12943-023-01751-9
https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Frontiers In
Immunology

Explores novel approaches and diagnoses to treat
immune disorders.

The official journal of the International Union of
Immunological Societies (IUIS) and the most cited
in its field, leading the way for research across
basic, translational and clinical immunology.

Discover the latest
Research Topics  trontiers

Frontiers in

Immunology

Frontiers

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

+41(0)21 510 17 00
frontiersin.org/about/contact

& frontiers | Research Topics



https://www.frontiersin.org/journals/immunology/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Cell death in cancer immunology
	Table of contents

	Editorial: Cell death in cancer immunology
	Author contributions
	Conflict of interest
	Publisher’s note
	References

	Integrative analysis of disulfidptosis and immune microenvironment in hepatocellular carcinoma: a putative model and immunotherapeutic strategies
	1 Introduction
	2 Results
	2.1 The expression of disulfidptosis related genes in pan-cancer
	2.2 Methylation levels and drug sensitivity of DRGs
	2.3 Identification and exploration of DRGs in HCC
	2.4 Disulfidptosis score and weighted gene co-expression network analysis
	2.5 Construction and verification of the blue module-based prognostic signature
	2.6 Tumor immune infiltration and GSVA analyses
	2.7 ScRNA and pseudotime analyses
	2.8 Cell-to-cell communication
	2.9 Disulfidptosis landscape at the spatial transcriptome level
	2.10 Prognostic gene expression
	2.11 Co-expression of NDRG1, macrophages, and tumor cells

	3 Discussion
	4 Conclusion
	5 Materials and methods
	5.1 Data acquisition and preprocessing
	5.2 Expression analysis of disulfidptosis related genes in pan-cancer
	5.3 Methylation and drug sensitivity of DRGs
	5.4 Unsupervised consensus clustering for DRGs on patients with hepatocellular carcinomas
	5.5 Disulfidptosis score and the weighted gene co-expression network analysis for the disulfidptosis-related module
	5.6 Construction and verification of the DRG-based prognostic signature
	5.7 Tumor immune infiltration and GSVA analyses
	5.8 Analysis of scRNA-seq data
	5.9 Cell-cell interaction and pseudotime analyses at single-cell level
	5.10 Spatial transcriptomics data analysis
	5.11 Human specimens
	5.12 Quantitative reverse transcription polymerase chain reaction
	5.13 Western blotting
	5.14 Immunocytochemistry
	5.15 Immunofluorescence
	5.16 Statistical analysis

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Cell-free chromatin particles released from dying cancer cells activate immune checkpoints in human lymphocytes: implications for cancer therapy
	Introduction
	Materials and methods
	Institutional ethics approval
	Animal ethics approval
	Collection of blood samples for cfChPs and lymphocyte isolation
	Isolation of cfChPs from human sera
	Fluorescent dual labelling of cfChPs
	PBMC isolation
	FACs sorting
	Preparation of cfChPs deactivating agents
	Treatment of lymphocytes with cfChPs isolated from sera of cancer patients
	Procedure for collecting conditioned media from hypoxia induced dying HeLa cells
	Fluorescent dual labelling of HeLa cells
	Treatment of cells with conditioned media collected from hypoxic HeLa cells
	Analyses of immune checkpoints
	qRT-PCR
	Immunofluorescence
	Flow cytometry

	In vivo studies
	Intravenous injection of cfChPs into mice

	Preparation of mouse splenocytes
	Analysis of activation of immune checkpoints in splenocytes by flow cytometry
	Statistical analysis

	Results
	cfChPs are readily internalized by human lymphocytes
	cfChPs isolated from sera of cancer patients activate immune checkpoints in human lymphocytes
	cfChPs activate immune checkpoints as a stress response by lymphocytes
	cfChPs upregulate immune checkpoints in vivo
	cfChPs released from dying HeLa cells are readily internalized by human lymphocytes
	cfChPs released from dying HeLa cells activate immune checkpoints
	Activation of immune checkpoint is abrogated by cfChPs deactivating agents

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Integrating PANoptosis insights to enhance breast cancer prognosis and therapeutic decision-making
	Introduction
	Materials and methods
	Data acquisition
	Single-cell analysis
	CellChat analysis
	Functional analyses
	Establishment of the PANoptosis score
	Development and validation of the PANoptosis-model
	Genomic character analysis
	Estimation of TME variations
	Selections of therapeutic targets and agents
	Human sample collection and IHC staining
	qRT-PCR and patient stratification
	Statistical analysis

	Results
	Differential expression of PANoptosis genes in breast cancer tissues
	Single-cell analysis reveals PANoptosis dynamics in BC
	Deciphering the variations of cell-cell interactions within BC patients
	Machine learning approaches to develop a prognostic PANoptosis model
	Predictive performance of the PANoptosis prognostic model
	Genomic alterations and their prognostic implications in PANoptosis
	Tumor microenvironment evaluations using the PANoptosis model
	Prognostic implications of PANoptosis for ICIs therapy response
	Chemotherapy response and PANoptosis signatures

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	MICA-specific nanobodies for diagnosis and immunotherapy of MICA+ tumors
	1 Introduction
	2 Materials and methods
	2.1 Alpaca immunization and phage library construction
	2.2 Production of recombinant VHHs and sortase reactions
	2.3 Competitive ELISA and estimation of binding affinity
	2.4 Cell culture
	2.5 Flow cytometry
	2.6 VHH-drug conjugate creation and in vitro cytotoxicity assays
	2.7 Statistical analysis

	3 Results
	3.1 Alpaca immunization and phage display panning yields MICA-specific nanobodies
	3.2 Nanobodies recognize recombinant MICA and surface-exposed MICA on cancer cells
	3.3 Anti-MICA nanobodies fused to Maytansine (DM1) for targeted cytotoxicity of MICA+ cancer cells

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Immunogenic cell death-based cancer vaccines: promising prospect in cancer therapy
	1 Introduction
	2 The role of ICD in anti-cancer immunity
	3 Inducers of in situ ICD-based cancer vaccines
	3.1 Chemotherapy-induced ICD-based cancer vaccines
	3.2 PDT-induced ICD-based cancer vaccines
	3.3 PTT-induced ICD-based cancer vaccines
	3.4 SDT-induced ICD-based cancer vaccines
	3.5 RT-induced ICD-based cancer vaccines

	4 In vitro induction of DTCs for cancer vaccines
	5 ICD related clinical cancer therapy
	6 Discussion and conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary

	Identifying and assessing a prognostic model based on disulfidptosis-related genes: implications for immune microenvironment and tumor biology in lung adenocarcinoma
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Prognostic model construction and validation
	2.3 Enrichment analysis
	2.4 Correlation analysis
	2.5 shRNA and overexpression plasmid construction
	2.6 Cell culture and transfection
	2.7 Cell proliferation and migration assays
	2.8 Western blot
	2.9 Disulfidptosis assays
	2.10 Statistical analysis

	3 Manuscript formation
	3.1 Data collection
	3.2 Construction and validation of the prognostic model according to the DEGs in LUAD patients
	3.3 The DRG risk score is independent of clinical features
	3.4 The DRG risk score is associated with the immune landscape
	3.5 DRG risk score is associated with cancer progression
	3.6 CHRNA5 contributes to lung cancer progression
	3.7 CHRNA5 regulates proliferation, migration and disulfidptosis in LUAD cells

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	State-of-the-art cytometry in the search of novel biomarkers in digestive cancers
	1 Digestive tumours
	2 Conventional and mass cytometry
	3 Computational cytometry
	4 Mass cytometry and colorectal cancer
	5 Mass cytometry and liver cancer
	6 Future perspectives and remarks
	7 Conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Comparative study of immune response to local tumor destruction modalities in a murine breast cancer model
	Introduction
	Materials and methods
	Cell line
	In vivo studies
	Tumor directed radiation therapy
	WST-11 VTP
	Cryoablation
	Dosing schedule of anti-PD1
	Immunohistochemistry
	Isolation of tumor-infiltrating cells and leukocytes and flow analysis
	Statistical analysis

	Results
	RT, VTP and Cryo elicit anti-tumor responses in 4T1 murine breast cancer model
	RT, VTP and Cryo leads to activation of myeloid cells in the tumor, spleen and draining LN
	RT, VTP and Cryo leads to activation of T cells in the tumor, spleen and draining LN
	IHC analysis show a decrease in CD11b+ myeloid cells and an increase in CD8+ T cells in the spleens of animals treated with VTP and Cryo
	RT, VTP and Cryo led to increased cytokine production by CD4+ and CD8+ T cells in the spleen
	RT, VTP and Cryo delayed growth of secondary tumors in a bilateral tumor model

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Identifying and evaluating a disulfidptosis-related gene signature to predict prognosis in colorectal adenocarcinoma patients
	Introduction
	Materials and methods
	RNA-sequencing data and bioinformatics analysis data collection
	Construction and validation of a prognostic model based on DRGs
	Establishment of a prognostic nomogram for COAD

	Determination of DRGs’ differential expression
	Enrichment analysis
	Correlation analysis
	Cell lines and culture
	Short hairpin RNA construction, plasmid vectors, and transfection
	Transwell migration assays and Transwell invasion assays
	Western blotting and antibodies
	β-gal fluorescence imaging
	Disulfidptosis assay
	Statistical analysis

	Results
	Data collection
	Construction and validation of the DRG prognostic model in COAD patients
	Prognostic value of the DRG model signature in the training cohort and validation cohort
	DRG risk score is independent of clinical features
	DRG risk score correlated with immune cell infiltration
	DRG risk score correlated with cancer progression
	POU4F1 is highly expressed in COAD and is related to cancer progression
	POU4F1 promotes cell proliferation, migration, and disulfidptosis in COAD

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	CX3CL1 release during immunogenic apoptosis is associated with enhanced anti-tumour immunity
	1 Introduction
	2 Materials and methods
	2.1 Cell lines and cell culture
	2.2 Cell death assay by flow cytometry
	2.3 Multiplex analysis of cytokines
	2.4 Mice
	2.4.1 Prophylactic tumour vaccination mice model
	2.4.2 Therapeutic tumour mice model

	2.5 Public dataset
	2.5.1 Survival analysis
	2.5.2 Estimation of tumour-infiltrating cells

	2.6 Statistical analysis

	3 Results
	3.1 CX3CL1 release is associated with immunogenic apoptosis
	3.2 CX3CL1 reverts non-immunogenic apoptosis to ICD
	3.3 CX3CR1 is associated with increased CD8+ T cells and increased patient survival

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Developing a machine learning-based prognosis and immunotherapeutic response signature in colorectal cancer: insights from ferroptosis, fatty acid dynamics, and the tumor microenvironment
	1 Introduction
	2 Methods
	2.1 Data acquisition and pre-processing
	2.2 Unsupervised clustering of ferroptosis regulators and fatty acid metabolism-related genes
	2.3 Cell infiltration estimation
	2.4 Pathway enrichment analysis
	2.5 FeFAMscore prognostic model construction
	2.6 Cell culture
	2.7 RNA extraction and RT-qPCR
	2.8 siRNA transfection
	2.9 Cell viability assay
	2.10 Transwell assay
	2.11 Colony formation assay
	2.12 Western blot
	2.13 Immunotherapeutic response prediction
	2.14 Chemotherapeutic sensitivity prediction
	2.15 Statistical analysis

	3 Result
	3.1 Identification of novel correlations between ferroptosis and fatty acid metabolism regulators
	3.2 Discovery of novel FeFAM patterns through unsupervised clustering analysis
	3.3 TME characterization in different FeFAM patterns
	3.4 Signaling and immune pathway differences between the FeFAM patterns
	3.5 Integrated construction and consistent prognostic value of the FeFAMscore
	3.6 Consistent prognostic value of FeFAMscore
	3.7 Resilient predictive performance of FeFAMscore
	3.8 ACAA2 is associated with tumor progression in CRC
	3.9 Mutation status in high and low FeFAMscore groups
	3.10 Immune characteristics related to FeFAMscore
	3.11 FeFAMscore predicts CRC response to immunotherapy
	3.12 FeFAMscore predicts CRC sensitivity to chemotherapeutic response analysis

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	A disulfidptosis-related glucose metabolism and immune response prognostic model revealing the immune microenvironment in lung adenocarcinoma
	Introduction
	Methods
	Patients and datasets
	TCGA differential analysis
	Identification of g/i-DRG-DEGs
	Construction of the disulfidptosis-related prognostic signature
	Clinical and functional analysis
	Immune infiltration analysis
	Immune analysis
	Other statistical analyses

	Results
	Selection and differential analysis of the TCGA cohort
	Identification and construction of the 7-g/i-DRG-DEG signature model
	Prognostic reliability of 7-g/i-DRG-DEG model
	The clinical and functional characteristics of risk score based on the 7-g/i-DRG-DEG model
	Immune correlation analysis

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Ferroptosis: mechanism, immunotherapy and role in ovarian cancer
	1 Introduction
	2 Mechanism of ferroptosis
	2.1 GPX4-GSH pathway
	2.2 Lipid peroxidation
	2.3 FSP1-CoQ10-NAD (P) H pathway
	2.4 The BH4-GCH1 pathway
	2.5 Iron overload

	3 Regulation of ferroptosis in ovarian cancer
	3.1 Signal pathway
	3.1.1 HIPPO pathway
	3.1.2 Nrf2 pathway
	3.1.3 P53 pathway

	3.2 Gene
	3.2.1 SCD1
	3.2.2 FZD7
	3.2.3 SNAI2
	3.2.4 PARP
	3.2.5 ARDHEP 15
	3.2.6 RNA

	3.3 Drug therapy
	3.4 Enhancement of chemoresistance

	4 Immunotherapy
	4.1 DAMPs
	4.2 Immune cells
	4.3 Immunosuppressive cells
	4.4 Related gene prediction models

	5 Conclusion and perspectives
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	A disulfidptosis-related lncRNA signature for analyzing tumor microenvironment and clinical prognosis in hepatocellular carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition
	2.2 Identification of disulfidptosis co-expressed lncRNAs
	2.3 Identification of differentially expressed lncRNAs
	2.4 Univariate cox analysis for prognostic lncRNAs
	2.5 Construction and validation of the disulfidptosis-related prognostic signature
	2.6 Establishment of a nomogram
	2.7 Relationship of DRL risk signature with tumor microenvironment in HCC
	2.8 Tumor mutation burden analysis
	2.9 Drug sensitivity analysis
	2.10 Gene set enrichment analysis, Kyoto encyclopedia of genes and genomes and gene ontology analysis
	2.11 Cell culture and human samples
	2.12 RNA extraction and quantitative real-time PCR
	2.13 Cell counting kit-8 assay
	2.14 Confocal microscopic imaging of F-actin staining
	2.15 Drugs and reagents
	2.16 Western blotting
	2.17 RNA interference
	2.18 Statistical analysis

	3 Results
	3.1 Identification of disulfidptosis-related differentially expressed and prognostic lncRNAs in HCC
	3.2 Construction and validation of prognostic DRLs signature in HCC
	3.3 Correlation between DRLs signature and clinicopathological features in HCC patients
	3.4 The predictive value evaluation of the 5-DRLs signature, and the construction and validation of the predictive nomogram
	3.5 5-DRLs prognostic signature for immune microenvironment and immunotherapy response discrimination in HCC
	3.6 Correlation between 5-DRLs signature and TMB, and predictive analysis of drug sensitivity
	3.7 Pathway and functional enrichment analyses of DEGs
	3.8 Verification of 5 DRLs expressions in HCC cell lines and tissues
	3.9 Validation of disulfidptosis phenotype in HCC cell lines
	3.10 Disulfidptosis regulated by LINC01063 and FOXD2-AS1

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




