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Editorial on the Research Topic  

Digital remote patient monitoring in neurodegenerative diseases

Remote monitoring is gaining prominence in patient care enabling the recording of 

repeat measurements outside of scheduled clinical visits. In neurodegenerative diseases 

this is of added significance as changes that take place are often subtle, span multiple 

domains (motor, cognition, sleep, speech, etc.) and new symptoms develop over 

several years. This special volume integrates perspectives from experts and thought 

leaders in the academy, pharmaceutical industry, and research foundations who 

highlight significant new developments.

One of the important elements for adoption of remote monitoring devices in clinical 

studies is patient acceptance and to adhere over sustained periods necessary to derive 

clinically meaningful data. In a review of wearable device adoption rates, Hirczy et al.

conducted online surveys to identify barriers to uptake among Parkinson’s disease 

patients. Surprisingly, among US based patients although greater than 90% of 

respondents were interested in new technologies only 24% were using consumer 

devices for disease management and only 8% with medical grade wearables.

Similarly, Kangarloo et al. report patient experiences with body-worn sensors used in 

clinic and a mobile application used at-home from the WATCH-PD study. This 

observational, 12 month study focused on disease progression in early Parkinson’s 

Disease among 82 participants with PD and 50 control participants. Results 

demonstrated that participants had generally positive views on comfort and use of the 

technologies throughout the study duration regardless of group. Significantly, device 

proficiency and acceptability in people with early stage PD did not differ from 

neurologically healthy older adults, providing impetus for future clinical studies.

Careful study design is paramount when implementing new technologies in clinical 

settings including assessing the reliability of the data captured. Lavine et al. examine 

the test-retest reliability of accelerometry derived data from at-home studies. Using 

raw data derived from triaxial accelerometry involving 21 PD patients and 23 controls 

they applied linear mixed models to determine the identity of drug treatment effects. 

They conclude that at-home measures have favorable reliability profiles as more data 

points can be gathered, and the reduction in sample size needed to detect progression 

presents clear justification for their deployment in future studies.
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The design of long term studies of disease tracking will likely 

require development of innovative computational approaches to 

data capture and interpretation. Zhai et al. present a new 

machine learning framework to construct composite digital 

biomarkers for progression tracking. The framework was applied 

to data collected from an observational PD study involving 

movement measurements captured using the Opal TM sensor 

combined with MDS-UPDRS Part III scores. The composite 

digital measure exhibited a smoother and more significant 

increasing trend over time with less variability, and ability to 

classify between de novo PD and healthy controls.

Although a majority of studies have focused on movement and 

motion tracking, there are a number of exciting developments on 

the horizon with alternative measures. Speech and acoustic signals 

are a potentially very rich source of clinical information in 

neurological diseases and Tröger et al. highlight recent findings on 

speech intelligibility. They describe a digital measure for speech 

intelligibility which was deployed on datasets from patients 

suffering from Dysarthria, a motor speech disorder associated with 

Parkinson’s Disease (PD), progressive supranuclear palsy (PSP), 

Huntington’s Disease (HD) and amyotrophic lateral sclerosis 

(ALS). The score, derived from automatic speech recognition 

(ASR) systems, showed good to excellent inter-rater reliability and 

significant differences in intelligibility scores between pathological 

groups and healthy controls.

Ocular analysis is another area of promise and Band et al.

provide a timely overview of the study of eye movement 

abnormalities to indicate neurological condition severity and 

distinguish disease phenotypes. Recent strides in imaging 

sensors and computational power have resulted in a surge in the 

development of technologies facilitating the extraction and 

analysis of eye movements to assess neurodegenerative diseases. 

Their review provides an overview of these advancements, their 

potential to offer patient-friendly assessments and explores 

current trends and future directions in this exciting field.

Other approaches are being developed with the similar goal of 

detecting diseased states at population level using low patient 

burden technologies. Jiang et al. re?ect on studies in Canada 

where automated facial expression analysis (AFEA) was compared 

to standard measures such as electroencephalogram (EEG) 

technologies and heart rate variability (HRV). The case for 

development of composite measures of cognitive decline based on 

AFEA is presented, and its utility in remote deployment using 

contactless data capture supported by potential economic benefits 

through the national healthcare system.

Advancing digital remote monitoring technologies for drug 

development studies requires careful approach to study design and 

ultimately alignment with prevailing regulatory guidance. In a timely 

overview the role of the Critical Path Institute is highlighted, 

bridging key interfaces between the health authorities, 

pharmaceutical industry sponsors, patient advocates, and the clinical 

research community Stephenson et al. Progress made through the 

Critical Path for Parkinson’s Consortium’s (CPP) Digital Drug 

Development tool (3DT) serves to showcase their approach. The 

initiative has helped accelerate the regulatory maturity of several key 

digital health technology measures, and advanced thinking on 

approaches to clinical trial design, data acquisition and the use of AI 

methodologies to extract critical features.

A tenet in regulatory guidance for remote patient assessment 

is the need to focus on activities of daily living (ADL) and real 

world evidence. An emerging trend for patient monitoring is the 

development of smart home environments, with sensors and 

devices located strategically to capture key health related data. 

Grammatikopoulou et al. report findings on the assessment of 

ADLs in subjects at the CERTH-IT simulated Smart Home. 

Sensor data was used to track activity as subjects (controls and 

groups suffering from cognitive decline) conducted various tasks 

and operations. Differentiation between controls and other 

groups was attainable and valuable feedback obtained to refine 

the approach for wider deployment.

These are exciting times for the deployment of patient 

monitoring technologies in neurodegenerative diseases. Progress 

highlighted by these leaders is having demonstrable impact on 

moving the field forward. We hope this inspires others to 

innovate, challenge hypotheses, and develop practical solutions 

to advance new treatment options and ultimately in?uence 

patient care. Clearly, there is more to come.

Sincerely,

Amit Khanna, Diane Stephenson, Graham Jones
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Assessing the cognitive decline of 
people in the spectrum of AD by 
monitoring their activities of daily 
living in an IoT-enabled smart 
home environment: a 
cross-sectional pilot study
Margarita Grammatikopoulou 1*, Ioulietta Lazarou 1, 
Vasilis Alepopoulos 1, Lampros Mpaltadoros 1, 
Vangelis P. Oikonomou 1, Thanos G. Stavropoulos 1, 
Spiros Nikolopoulos 1, Ioannis Kompatsiaris 1, Magda Tsolaki 2,3,4 
and on behalf of RADAR-AD
1 Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 
Thessaloniki, Greece, 2 1st Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of 
Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece, 3 Greek Association 
of Alzheimer’s Disease and Related Disorders (GAADRD), Thessaloniki, Greece, 4 Laboratory of 
Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), 
Balkan Center, Buildings A & B, Aristotle University of Thessaloniki, Thessaloniki, Greece

Introduction: Assessing functional decline related to activities of daily living 
(ADLs) is deemed significant for the early diagnosis of dementia. As current 
assessment methods for ADLs often lack the ability to capture subtle changes, 
technology-based approaches are perceived as advantageous. Specifically, 
digital biomarkers are emerging, offering a promising avenue for research, as 
they allow unobtrusive and objective monitoring.

Methods: A study was conducted with the involvement of 36 participants assigned 
to three known groups (Healthy Controls, participants with Subjective Cognitive 
Decline and participants with Mild Cognitive Impairment). Participants visited the 
CERTH-IT Smart Home, an environment that simulates a fully functional residence, 
and were asked to follow a protocol describing different ADL Tasks (namely Task 
1 – Meal, Task 2 – Beverage and Task 3 – Snack Preparation). By utilizing data 
from fixed in-home sensors installed in the Smart Home, the identification of the 
performed Tasks and their derived features was explored through the developed 
CARL platform. Furthermore, differences between groups were investigated. 
Finally, overall feasibility and study satisfaction were evaluated.

Results: The composition of the ADLs was attainable, and differentiation among 
the HC group compared to the SCD and the MCI groups considering the feature 
“Activity Duration” in Task 1 – Meal Preparation was possible, while no difference 
could be noted between the SCD and the MCI groups.

Discussion: This ecologically valid study was determined as feasible, with 
participants expressing positive feedback. The findings additionally reinforce the 
interest and need to include people in preclinical stages of dementia in research 
to further evolve and develop clinically relevant digital biomarkers.

KEYWORDS

Alzheimer’s disease, healthy controls, subjective cognitive decline, mild cognitive 
impairment, smart home, sensor technology, activities of daily living
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1 Introduction

According to the World Health Organisation (WHO), there are 
currently over 55 million people living with dementia (PwD) globally 
(World Health Organisation Dementia Key Facts, 2022). The sharp 
increase in dementia cases is likely to have significant consequences 
for healthcare providers, caregivers, and the economy (Aranda et al., 
2021). For this, research has focused on the early detection of 
dementia with the primary objective to intervene before symptoms 
worsen and lead to loss of independence and greater need for care 
(Rasmussen and Langerman, 2019).

This is further supported by the fact that search for effective 
treatments of AD has led to the first disease-modifying therapies 
(Lecanemab and Aducanumab). These treatments have been approved 
by the FDA as well as in Japan and are being considered by the EMA 
(European Medicines Agency, 2023). Furthermore, 141 drugs are 
currently being tested in clinical trials for the treatment of AD, 80% of 
which aim to slow disease progression (Cummings et al., 2023).

The need to identify people at the pre-symptomatic stage becomes 
eminent, as the recently developed therapeutic agents exhibit their 
greatest potential in early AD (Cummings et al., 2023; van Dyck et al., 
2023). Additionally, lifestyle and other non-pharmacological 
interventions (e.g., the multidomain FINGER intervention (Ngandu 
et  al., 2022)), show promising results in preventing symptom 
progression when applied timely, before the onset of dementia.

An early sign of dementia is functional deterioration expressed 
often through difficulties in performing Activities of Daily Living 
(ADLs), as an association has been found to exist between ADL 
deficits and cognitive functioning (Bangen et al., 2010; Jekel et al., 
2015). Current approaches for assessing ADLs to determine functional 
decline involve traditional pen and paper methods. As these rely on 
informant input and are often not sensitive enough to capture subtle 
changes, there is further space for improvement and development of 
complementary measures (Sikkes et al., 2009).

Shifting focus to unobtrusive, passive, objective monitoring 
approaches, digital biomarkers have emerged showing promising 
potential (Anna-Katharine et  al., 2023). In a general sense, using 
technology-based approaches to evaluate ADLs in older adults is a 
promising area of research with several advantages over traditional 
cognitive assessment methods. However, a major drawback of these 
tools is that they may require prolonged use to detect subtle ADL 
differences that indicate cognitive decline. Nevertheless, the obtained 
information from digital biomarkers, reflect real-life conditions, while 
eliminating reporting bias. They can be derived from passive sensors, 
wearables, purposive technological solutions (e.g., games) and other 
technological solutions (e.g., assessment of computer mouse 
movements, identify if pill box used) (Piau et  al., 2019). Digital 
biomarkers can be used to assess walking and sleep patterns, physical 
activity and also, ADLs. They represent a valuable method, as they 
comprise sensitive and precise measures that can detect subtle 
changes. This makes them suitable in assessing deterioration in 
function that can occur at an early, preclinical stage.

A plethora of sensors has been used and deployed in the context 
of Smart Homes (SH) (in the sense of controlled research 
environments, care homes or participants’ homes where the sensors 
are being installed) allowing for remote in-home sensing and remote 
ADL monitoring (Garcia-Constantino et al., 2021; Moyle et al., 2021). 
There are many opportunities for the use of various SH technologies 

in community-dwelling PwD, ranging from diagnostic assessment to 
long-term and personalized care management. As a result, many 
individual studies have been conducted on the development and use 
of SH technologies in older populations (Ma et al., 2023; Yu et al., 
2023). Such technologies are being investigated for use in a wide range 
of applications and contexts. These can vary from home based 
monitoring, personalized care, quality of life improvement, to 
independent living, observation and prediction of the actions of a 
person, caregiver burden reduction, intervention and disease 
progression monitoring, and also identification of emergency 
situations (Amiribesheli and Bouchachia, 2018; Ault et al., 2020; Han 
et  al., 2022; Miller et  al., 2022). Furthermore, there is a growing 
interest in the use of using digital biomarkers assessing ADLs, as 
reliable proxies for screening participants for clinical trials or as 
secondary endpoints (Atkins et al., 2015; Gold et al., 2018).

The use of sensor technology to identify cognitive decline through 
observing ADL performance is not a novel concept. Even so, the field 
of exploring methods and developing digital biomarkers to quantify 
and compare ADL performance is still in its infancy.

1.1 Aim of the present work

This work has been conducted in the context of RADAR-AD,1 an 
EU-funded project that explores the potential of mobile and digital 
technologies to improve the assessment of Alzheimer’s Disease (AD) 
(Owens et al., 2020; Muurling et al., 2021). In particular, the main 
motivation in one of RADAR-AD’s sub-studies was to explore whether 
the identification and monitoring of ADLs was achievable, utilizing 
data collected from in-home sensors in a Smart Home environment. 
Furthermore, it was investigated if the identified ADLs can provide 
clinically meaningful insights regarding the preclinical stages of 
AD. Additionally, technology acceptance and the overall feasibility of 
the study was assessed.

In detail, we  assessed a number of people at preclinical and 
prodromal stages of AD, namely, the Subjective Cognitive Decline 
(SCD) stage, and the Mild Cognitive Impairment (MCI) stage (Dubois 
et  al., 2016), that were evaluated against healthy control (HC) 
participants in terms of their performance during the execution of 
particular ADLs. Their performance was monitored through the data 
collected by a set of commercially available fixed in-home sensors2 
installed in CERTH-ITI’s Smart Home.3 The sensor data were 
collected, processed and visualized using a platform developed by our 
research team (Mpaltadoros et  al., 2021). First insights could 
be gained, regarding the effectiveness of remotely monitoring ADLs 
and their potential to offer quantifiable metrics for discriminating 
between the different stages of cognitive impairment. Furthermore, all 
participants filled a detailed questionnaire assessing overall study 
satisfaction while staying at CERTH-ITI’s SH, evaluating the presented 
sensor technologies. The study pipeline is given in Figure 1.

1  https://www.radar-ad.org/

2  FIBARO sensors: https://www.fibaro.com/en/products/all-domotica-devices/

3  https://smarthome.iti.gr/
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2 Materials and methods

2.1 Study protocol

2.1.1 Participants
Participants were recruited from the Greek Association of 

Alzheimer’s Disease and Related Disorders (GAADRD)4 and a wide 
community audience. The study was carried out in accordance with 
the Declaration of Helsinki and received approval by the Ethics 
Committee of CERTH (ETH.COM 54/17-06-2020) and the Scientific 
and Ethics Committee of GAADRD (242/2022 ΑΙ_07/10/2021), while 
a written informed consent was obtained from all participants prior 
to their participation in the study. The Information Forms used to 
debrief the participants were prepared according to ICH-GCP 
requirements and data protection regulations [European Medicines 
Agency (EMA), 2016].

The diagnosis of HC, SCD and MCI was set by a neuropsychiatrist, 
specialised in dementia, according to the structural magnetic 
resonance imaging (MRI), medical history, neuropsychological tests 
and neurological examination. The MCI group fulfilled the Petersen 
criteria (Petersen et al., 2009) and it is noted that all MCI cases were 
of the amnestic subtype. The SCD group met IWG-2 Guidelines 
(Dubois et al., 2014) as well as the SCD-I Working Group instructions 
(Molinuevo et  al., 2017). Regarding the SCD and MCI groups, 
we excluded participants with confounding factors based on blood 
tests (hormonal disorders, vitamin deficiency etc.), while structural 
MRI scans were done for participants in both groups (vascular/
demyelinating lesions, tumours, anatomical variations etc.). 
Additional inclusion criteria for the SCD and HC participants 
included having a normal general medical, neurological and 

4  http://www.alzheimer-hellas.gr/index.php/el/

neuropsychological examination. Exclusion criteria comprised severe 
psychiatric, physical or other neurological disorder, illness or any 
other somatic disorder, which may cause cognitive impairment. 
Additionally, it is noted that as the study protocol included an EEG 
based action [explored in Ioulietta et  al., (2023)], left-handedness 
constituted an exclusion criterion (Patel and Azzam, 2005; Cuzzocreo 
et al., 2009).

In total, forty participants were recruited, of whom two 
participants were considered drop-outs, while data from two 
participants were removed from the analysis to ensure that the groups 
were age-matched, leading to a total of thirty six participants (N = 36). 
In detail, the HC group consisted of 12 participants, the SCD group of 
13 and the MCI group included 11 participants. The demographic 
characteristics of the participants can be found in Table 1. All groups 
exhibited a similar range of age and education. Kruskal-Wallis test 
revealed no group differences with regards to age and years of 
education (Table 1).

As the study was conducted during the pandemic (2021), solely 
fully vaccinated (validated vaccination certificates with verified app) 
participants were recruited. Moreover, after each participant’s visit 
decontamination by experts took place at the SH to ensure the safety 
of all people involved.

2.1.2 Study design
Participants had the option of staying overnight at the SH or only 

for a daily visit. The study protocol consisted of five Tasks, of which 
three Tasks comprised ADL activities, namely, Task 1- Meal Preparation, 
Task 2 - Beverage Preparation and Task 3 - Snack Preparation (Figure 2). 
Two tasks consisting of meditation sessions were also included in the 
protocol (Task 4 - Mindfulness Based Stress Reduction –MBSR; Crane 
et al., 2017; Creswell et al., 2019), and Task-5 Kirtan Kriya meditation 
(Khalsa, 2015), where participants’ performance during meditation was 
monitored using a portable Muse EEG device. The protocol and the 
study outline have been presented in Stavropoulos et al. (2021a) and 

FIGURE 1

Study pipeline.
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Lazarou et al. (2022) while the results of the meditation sessions have 
been reported in a separate publication (Ioulietta et al., 2023). The 
complete protocol and the full step by step description of each Task, as 
given to the participants, can be found in the Supplementary information. 
The total duration of the study (visit of first participant until visit of last 
participant) was approximately 3 months.

Upon arrival, participants were welcomed to the SH by the 
researchers and a detailed tour of the house followed. Afterwards, time 
for discussion and additional questions was planned and the study 
structure/protocol was again presented to the participants. Researchers 
then left the SH, and participants were encouraged to feel at home and 
perform the requested ADLs alone. For emergencies, they could 
contact the researchers via telephone or press one of the installed 
panic buttons. A psychologist- clinical research associate at CERTH 
was at all times available.

2.1.3 Participants’ feedback (feasibility 
assessment)

At the end of the visit, questionnaires regarding study feasibility 
and technology evaluation were distributed to the participants, 
namely an overall study satisfaction questionnaire, the System 
Usability Scale (SUS), and the PANAS questionnaire assessing positive 
and negative affect (Supplementary information; Brooke, 1986; 
Watson et al., 1988).

2.2 Infrastructure

2.2.1 Smart home setting
The study was performed in the CERTH/ITI nZEB SH (Figure 3), 

a fully equipped, real domestic building, where participants can 
engage in real-world living scenarios and explore a plethora of 

innovative, smart IoT-based technologies. The SH can be used to test, 
validate and evaluate novel technologies from various fields, including 
but not limited to, Health, Energy, Big Data, Robotics and Artificial 
Intelligence (AI).

In this study, the SH environment was used to resemble and 
simulate the participants’ home, with the installation of a number of 
sensors in every room allowing for unobtrusive monitoring of 
participants’ ADLs. The available to the participants’ spaces in the SH 
included one living room, a kitchen, a bedroom and two bathrooms.

2.2.2 IoT devices infrastructure

2.2.2.1 Installed sensors
IoT device selection resulted from extensive literature research 

and discussions with the partners of the RADAR-AD Consortium5 
(Owens et al., 2020; Stavropoulos et al., 2020). Also, focus groups with 
EWGPWD6 and Alzheimer Europe7 were assembled in order to rate 
the devices based on their features and potential usage and finalize the 
selection process (Stavropoulos et al., 2021b). Furthermore, an online 
meeting was organized (11/03/2021) to collect the EWGPWD’s 
feedback on the fixed in-home sensors used in this study.

For the present study, commercially available Motion Sensors 
(quantity, n = 8) were added in every room of the SH to detect human 
presence. Furthermore, Door/Cabinet Sensors (n = 8) were placed on 
the main doors, as well as on the kitchen cabinets and drawers to 

5  https://www.radar-ad.org/sites/radarad/files/2021-02/RADAR-AD%20

device%20selection%20report.pdf

6  https://www.alzheimer-europe.org/about-us/european-working-group- 

people-dementia

7  https://www.alzheimer-europe.org/

TABLE 1  Demographic characteristics of the participants (N  =  36).

HC SCD MCI
p

N  =  12 N  =  13 N  =  11

Demographic characteristics

Age in years 63.9 (6.4) 64.4 (6.4) 69.7 (6.4) 0.109

Gender (F:M) 11:1 9:4 8:3

Years of education 13.8 (2.6) 14.6 (2.1) 12.9 (2.7) 0.292

Neuropsychological tests

Mini Mental State Examination (MMSE) (Folstein et al., 1975) 29.25 27.85 26.00 <0.001

Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) 26.83 25.54 20.64 <0.001

Functional rating scale for symptoms of dementia (FRSSD) Total Score (Hutton et al., 1998) 2.25 2.62 3.27 0.181

Functional and Cognitive Assessment Test (FUCAS) Total Score (Kounti et al., 2006) 42.00 42.00 44.36 <0.001

Rey-Osterrieth Complex Figure Test (ROCFT) Copy (Osterrieth, 1944) 35.25 33.00 30.23 <0.001

Rey-Osterrieth Complex Figure (ROCFT) Delayed Recall (Osterrieth, 1944) 18.50 20.19 10.86 0.002

Rivermead Behavioral Memory Test (RBMT) Immediate Recall (Wilson et al., 1989) 15.42 13.85 10.45 0.003

Rivermead Behavioral Memory Test (RBMT) Delayed Recall (Wilson et al., 1989) 13.83 11.96 7.55 0.002

Rey Auditory Verbal Learning Test (RAVLT) Total Score (Rey, 1964) 45.17 39.15 34.00 0.025

Trail Making Test (TMT) Part B (Tombaugh, 2004) 146.67 151.38 217.82 0.045

Verbal Fluency Test (FAS) (Kosmidis et al., 2004) 11.44 10.13 9.43 0.009

Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog) (Rosen et al., 1984) 9.47 11.96 16.58 0.001

Bold values denote statistical significance at the p < 0.05 or p < 0.001 level.
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signal if they were being opened and closed. Wall Plugs (n = 6) to 
measure consumption were added to small electrical appliances (e.g., 
kettle, toaster, hot plate) and four panic buttons were placed in the SH 
for emergencies. Examples of the installed fixed in-home sensors can 
be seen in Figure 3.

2.2.2.2 Raw data
The sensors generate data that consist of two types of time series, 

Signals, and Consumptions, both of which express the change of a 
device’s status or metrics, respectively. Motion, Door/Cabinet sensors 
and Panic Buttons compose the Event time series, expressing with 
Boolean values the sensor’s status (1 for Activated and 0 for Idle). The 
sensors are activated when a person interacts with them or with the 
environment (e.g., Entering a room activates the Motion Sensor, 
Opening the Cupboard activates the Cupboard’s sensor, pressing the 
Panic Button sends the corresponding signal). Wall Plugs on the other 
hand, express the change of a home appliance’s power consumption.

2.2.2.3 Hubs
The time series are generated via a small gateway device8 designed 

to manage an entire SH system. Signal time series comprise signals 
from all sensors except for Wall Plugs, for which a Consumption time 
series is generated separately. In addition, the gateway device provides 
a REST API to serve the data to other services, such as the CARL 
Platform developed by our research team (Mpaltadoros et al., 2021).

2.2.3 Data collection and visualization

2.2.3.1 Data model
The CARL Platform (Care Ally: Data Collection and Analysis 

Platform for Assisted Living) is an end-to-end data collection and 

8  https://www.fibaro.com/en/products/home-center-lite/

FIGURE 2

(A) Overview of the complete study protocol and the structure of the daily visit with the optional overnight stay. (Task A – Beverage Preparation, Task B –  
Physical Exercise and Meditation Sessions, Task C – Meal Preparation, Task D – Snack Preparation). (B) Overview of the activities protocol, describing step-
by-step the Tasks to be performed during the participants’ visit (the full step-by-step description can be found in the Supplementary information).
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FIGURE 3

Top: The smart home site. Bottom: Examples from the sensor installation in the smart home (left: marked Wall Plugs, Door/Cabinet and motion 
sensors in the kitchen, right: Motion sensor in the bedroom).

analysis platform that allows integration with a continuously 
expandable list of commercially available wearable and IoT sensors 
and apps. Additionally, the platform offers a Visualization Dashboard 
for clinicians (real time data representation), to enable operational and 
clinical oversight across the entire lifespan of a study, in this way 
facilitating informed decision-making.

Integration of the gateway with the CARL Platform was achieved 
with the development of two components, the CARL RPi Client and 
an Adapter. The CARL RPi Client is a client service designed to detect 
the gateway on a local network and consume the generated time series 
in order to upload them to the CARL Platform. The Adapter was 
responsible for the authentication of the incoming data from CARL 
RPi Client instances and the serialization of the raw data. In this way, 
all data was transferred to the CARL Platform central database.

2.2.3.2 Visualization services
Once the raw data was saved in CARL Platform’s database, it was 

processed to produce Event Objects, representing the duration of various 
events that occurred during the participant’s visit (e.g., Cupboard 
Opened, Kitchen Presence, Hot Plate On). A clinician could then 
visualize these Event Objects through the dashboard, gaining an overview 
of all the participant’s interactions with the environment (Figure 4).

2.3 Monitoring and synthesis of ADLs

2.3.1 From raw data to ADLs
In this section, a detailed description of the process followed to 

structure and transform the raw data into Tasks and ADLs is 

presented. An overview is given in Figure 5, where it can be seen how 
the raw signal and consumption data are converted to Events, while 
sequences of these Events are utilized to form ADLs.

2.3.1.1 Raw data to events
The production of Event objects based on Signal data is achieved 

by pairing the consecutive alterations of the device’s status. When a 
Signal has a “newValue” of 1, a new Event object is generated, having 
as starting point the Signal’s timestamp. The next Signal with a 
“newValue” of 0, will act as the ending point of the Event. An overview 
can be found in Table 2.

2.3.1.2 Raw consumption data to event
For Consumption based Events, we took into consideration that 

all devices, even when idle, still consume electrical power. Therefore, 
depending on the home appliance, we  applied an empirical 
threshold, used to define when the home appliance was turned on 
and off. If the consumption value exceeded the set threshold, then 
an Event object was generated with the start time equivalent to the 
Consumption’s timestamp. The next Consumption’s timestamp with 
a value below the threshold, was used to mark the Event Object’s 
end time.

2.3.1.3 Post-processing deviations
Due to the nature of the Cupboard/Door sensors, deviations were 

noticed in the duration of some related events (e.g., the cupboard did 
not fully close due to the brakes and extreme values were captured). On 
such occasions, the events were post-processed by inspecting each 
participant’s Event objects from the sensor, to determine the distribution 
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FIGURE 4

Event objects visualization using the CARL platform visualization dashboard.

FIGURE 5

An overview of the transformation of raw sensor data into ADLs.
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FIGURE 6

ADLs based on the collected data - threshold applied to small electrical appliances consumption (e.g., hot plate). Task – 1 Meal Preparation activity 
visualized through the CARL platform.

of the values. The duration values at the 75th percentile were then 
compared to the sum of the 75th percentile and Standard Deviation 
values. If the duration value exceeded the sum, we updated the end time 
of the Event to match the 75th percentile value. This process was applied 
until all duration values were lower than the sum value.

2.3.1.4 Events to ADLs
Through the CARL platform, it is possible to check whether the 

sensors were successfully activated by the participants compared to 
the task descriptions provided. An example of a step by step 
description and the respective expected sensor activations are 
presented in Table 3 for Task - 2 Beverage Preparation.

In order to form each of the three ADL Tasks, the use of a small 
electric appliance, depending on the task was considered necessary. In 
detail, for Task 1 – Meal Preparation the hot plate should be used, in 
Task 2 – Beverage Preparation the kettle was needed, while in Task 3 –  
Snack Preparation, the toaster was considered essential.

In Figure  6 the rationale of forming an ADL (Task 1 – Meal 
Preparation) is given. Initially, a home appliance based event (“Hot 
Plate Event” green bar, Figure 6) was detected. In order to take into 
account the event, its duration had to exceed a specific value. This was 
set by the researchers during the testing phase and served as a 
checkpoint (minimum duration for the hot plate t = 10 min, kettle 
t = 2 min and toaster t = 5 min). From there, thresholds were applied 
before and after the appliance’s related event (“Threshold prior to Hot 
Plate event” and “Threshold after Hot Plate Event” Figure 6). The 
thresholds were determined after manual inspection of the data of all 
participants and were set for the hot plate at t = 15 min, the kettle at 
t = 5 min and the toaster at t = 5 min. All relevant Event objects 
occurring in between these thresholds (purple bars and lines, green 
bar, Figure 6) were clustered into one entity leading to an ADL (orange 
bar, Figure 6).

Apart from allowing the formation of the ADLs, visualization 
through the CARL platform offers a plethora of information on the 
performed tasks. For example, for Task 1 – Meal Preparation 
(Figure 6) it can be seen in which order the different sensors were 
activated and for how long during a specific point in time, while the 
participant performed the task. In detail, the orange bar shows the 
duration of the complete Task, information derived by considering all 
the individual sensors involved in the ADL performance as described 
above. The green bar shows the duration of the electrical appliance in 
use, in this case the hot plate, derived by the consumption observed 

TABLE 2  Signal information obtained by the sensors (CARL: Care Ally: 
data collection and analysis platform for assisted living).

Signal information Explanation

Id Unique identifier

Timestamp When it occurred in unix epoch

deviceID Device’s unique identifier

deviceType Device’s type

oldValue Previous status

newValue Current status

TABLE 3  Example of an ADL and the respective sensor activation 
sequence.

Example – Step by step 
description for Task 2 - 
beverage preparation

Sensors activated

	•	 In the kitchen, fill the kettle with water 

and turn it on from the button

	•	 Open the cabinet labelled 

“Coffee - Tea”

	•	 …

	•	 Make sure you close the button from 

the kettle

	•	 After finishing drinking your coffee, 

wash the cup and the kettle with the 

dish sponge and leave them in the 

sink to dry

	•	 Motion Sensor “Kitchen 

Presence” (ON)

	•	 Wall plug sensor “Kettle” (ON)

	•	 Door/Cabinet sensor “Coffee/Tea 

Cabinet” ON for a second 

then OFF

	•	 …

	•	 Wall Plug sensor “Kettle” (OFF)

	•	 Motion Sensor “Kitchen 

Presence” (OFF)
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during this period of time. The more frequent (due to number of 
repetitions) and thinner (due to shorter duration) purple signals, show 
the various cabinets and drawers opened and closed during the 
execution of the Task.

2.3.2 ADL features
Our intention with analysing the raw sensor data into events and 

ADLs associated with specific Tasks, was to enable the extraction of 
representative features characterising an ADL, and use these features 
to detect differences between the groups of participants (HC, SCD 
and MCI).

More specifically, we can see the time of the day the participants 
performed each task, the duration of each activity (in seconds), as well 
as the duration each appliance was in use (in seconds), or the time a 
cabinet was left open, and the number of times a sensor was activated 
(number of repetitions, count for, e.g., opening a cabinet). 
Furthermore, apart from these primary derived features, a secondary 
feature/by-product was investigated, namely the “Inaction Time” 
which refers to the time recorded between sensor activation. For this, 
the durations between different sensor signals were added up and 
subtracted from the total activity duration creating the feature 
“Inaction Time.”

In Table 4 the description of each feature is given, along with 
the naming convention followed for each sensor, the sensor type 
and in which of the Tasks they were utilized. All this information 

was exported in the form of a csv file, to facilitate 
statistical analysis.

2.3.3 Validation
To ensure the sensors’ and platform’s effectiveness and 

reliability, during the study, information was gathered from the 
participants by the researchers in the form of free text notes, 
regarding the performed ADLs (completed Tasks, approximate 
time of the day performed) and used as ground truth. A 
comparison between the ground truth and the activities identified 
by the platform was made. Differences in the number of activities 
recorded by the platform and the available ground truth data could 
be attributed to power and internet outage or sensor connectivity 
issues. In detail, one “Meal Preparation” and one “Beverage 
Preparation” tasks were missing from the platform due to 
unexpected power outage in the SH. For two “Snack Preparation” 
tasks (performed the same day), the platform collected only data 
from the Wall Plug sensor, while the Door/Cabinet sensors 
were unresponsive.

2.3.4 Statistical analysis
With the dataset containing all information on the various 

features per task at hand, we  proceeded to compare the 
performance on each ADL, among the three groups at the level 
of significance p = 0.05. Descriptive analysis and statistical 

TABLE 4  Feature description and the naming convention followed for the sensors used in each Task/ADL.

Feature Description Data type

Activity_name ADL’s Name (i.e., Task 1 – Meal Preparation, Task 2 – Beverage Preparation, Task 3 – Snack Preparation) Text

Activity_duration The time needed (duration) to perform an ADL (Task 1, Task 2, Task 3). All sensors comprising the ADL are 

taken into account

[The time between the start_time of the first Event Object and the end_time of the last Event Object]

Seconds

Number_of_steps The total number of sensors activated during the performance of an ADL Integer

Count_ < name_of_sensor> The number of times, number of repetitions (count) a Door/Cabinet sensor was activated Integer

Sum_ < name_of_sensor> The time (SUM duration) of a sensor being activated Seconds

Avg_ < name_of_sensor> The time (AVG duration) of a sensor being activated [SUM duration divided by the number of repetitions (sum 

duration and average duration are identical if sensor was used/activated once)] [sum_ < name_of_sensor>/

count_ < name_of_sensor>]

Seconds

Sum_ < inaction_time> Time period during a Task where the participant did not activate any sensors [activity_duration – SUM 

(sum_ < sensors>)]

Seconds

Sensor name Type of 

sensor

Sensor description Task

Coffee – Tea cabinet Door/cabinet 

sensor

Door/drawer/cabinet opening - closing 2

Dishes and cups cabinet 1, 2, 3

Cutlery drawer 1, 2, 3

Food cabinet 1, 3

Trash cabinet 1, 2, 3

Fridge door 1, 3

Hot plate Wall plug Consumption monitoring 1

Kettle 2

Toaster 3

Kitchen, living room, bedroom, 

bathrooms, hallways

Motion 

sensors

Presence/motion capture ADLs were performed 

in the Kitchen

16

https://doi.org/10.3389/fnagi.2024.1375131
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Grammatikopoulou et al.� 10.3389/fnagi.2024.1375131

Frontiers in Aging Neuroscience 10 frontiersin.org

analysis were performed using SPSS v25.0 for Windows (IBM 
Corporation, Armonk, NY, United States). Descriptive analysis 
was performed to depict participants’ data, while statistical 
analysis was carried out to locate differences in the various 
activities and the individual features.

For assessing the normality assumption for continuous variables 
we used the Kolmogorov–Smirnov test. As the depended variables 
were not normally distributed, and due to the small sample size 
available, non-parametric tests were selected (Mishra et al., 2019). 
Between groups comparisons were made using the Kruskal-Wallis 
test. For examining the potential statistical significance between two 
independent groups (e.g., HC versus SCD), the Mann–Whitney test 
was used. Furthermore, the Area under the Curve (AUC) was 
also examined.

3 Results

3.1 Exploring ADLs – task comparison 
between groups

The assumptions formed in the present study were shaped around 
the expectation that more cognitively impaired participants will 
exhibit different behavioural patterns compared to healthy controls. 
These differences can be attributed to functional deterioration, as AD 
is characterized by the impairment of cognitive functions and 
increasingly poorer ADL performance.

Specifically, it is expected that the differences in ADL performance 
will be observed in the overall time needed to complete an ADL, in 
additional steps made and repeated actions noted (e.g., opening/
closing a cabinet more frequently).

Consequently, the features considered meaningful to explore these 
assumptions, as derived from feature engineering of the collected 
sensor data, include number of steps to complete an ADL, activity 
duration, sensor activation duration, number of sensor activations, 
and inaction time.

Descriptive statistics and results for the statistical tests are given 
for all features in the Supplementary information. It is noted that 
while all results are commented in the text, only the more prominent 
for discussion features are presented in Figures and Tables to provide 
the reader with a clearer overview.

3.1.1 Task completion
Participants were asked to complete three Tasks as entailed in the 

protocol. Three tasks were completed by 33% of the participants of the 
HC group (4/12), 23% of the SCD (3/13) and 18% (2/11) of the MCI 
group. Two tasks were performed by the majority of the SCD group 
(61.5%, 8/13), approximately half the participants of the MCI group 
(55%, 6/11) and by 42% (5/12) of the HC group. Furthermore, 27% 
(3/11) of the MCI group completed only one task, whereas the 
percentages are 25% (3/12) and 15% (2/13) for the HC and the SCD 
group, respectively.

In detail, it is noted that 11/12 HC (91.67%), 11/13 SCD (92.31%) 
and 7/11 MCI (63.64%) performed the activity “Meal Preparation.” 
The activity “Beverage Preparation” was performed by 10/12 HC 
(76.92%), 11/13 SCD (92.85%) and 6/11 of the MCI (61.53%). Only 
twelve participants performed the Task “Snack Preparation,” in detail, 
5/12 HC, 4/13 SCD and 3/11 MCI.

3.1.2 Number of steps
The estimated number of steps needed to complete Task 1 – 

Meal Preparation, according to the step-by-step task description 
is ten. The mean number of steps for each group was found to 
be  14.7 (SD = 3.8) for HC, 14.6 (SD = 5.6) for SCD and 18.8 
(SD = 8.2) for the MCI group, showing no differences between the 
HC and SCD groups, and a larger number of steps for the MCI 
group. No statistical significance was noted (Kruskal-Wallis test 
p = 0.437).

For Task 2 - Beverage Preparation, the description included six 
sensor activation steps, while participants performed HC = 7 
(SD = 1.5), SCD = 7.1 (SD = 1.3), MCI = 7.6 (SD = 3.9) steps.

The three groups needed approximately the same number of mean 
steps to complete Task 3 – Snack Preparation [HC = 9.8 (SD = 2.9), 
SCD = 11.3 (SD = 4.9), MCI = 10.0 (SD = 3.6)]. It is noted that the 
protocol lists six sensor activation steps for this Task.

3.1.3 Activity duration
Furthermore, the time needed to complete a Task was assessed. 

The distribution of the collected data is presented in Figure 7A for the 
three Tasks. The results of the Kruskal-Wallis test for the “Activity 
Duration” feature for the three Tasks showed a statistically significant 
difference across the three groups of participants at a p = 0.05 level, in 
Task 1 – Meal Preparation [H (2) = 7.607, p = 0.022] (Table 5). No 
statistically significant difference was noted for “Activity Duration” in 
Tasks 2 and 3.

Afterwards, in order to determine the groups between which 
discrimination was possible in Task 1 – Meal Preparation, Mann 
Whitney test was performed, showing that the duration was 
statistically significant longer for the SCD group compared to HC 
(U = 29.00, p = 0.040), and also for the MCI group compared to HC 
(U = 9.00, p = 0.015). No differentiation was possible between the SCD 
and the MCI group for Task 1.

3.1.4 Individual sensors
As each Task consists of a synthesis/composition of Events, 

signalled by different sensors, it was considered important to 
investigate next the activation duration as well as the number of 
activations marked for the individual sensors. It is noted that six 
sensors were placed to monitor Task 1 – Meal Preparation, five for 
Task 2 – Beverage Preparation, and six for Task 3 – Snack Preparation 
(Table 4 in previous section).

3.1.4.1 Sensor activation duration
Kruskal Wallis test was performed for all available sensors 

regarding the features “sum_ < name_of_sensor>” and “avg_ < name_
of sensor> (Supplementary information).

A statistically significant difference was found only for the 
duration of the sensors placed on the Fridge Door and the Food 
Cabinet in Task 3 – Snack Preparation, while a weak trend was 
observed for the Fridge Door sensor in Task 1 – Meal Preparation 
(Table 5). Mann Whitney tests for the sensors of Task 3, revealed a 
trend between the HC and MCI groups, showing that the MCI group 
noted longer durations when utilizing the Fridge Door and the Food 
Cabinet during the Snack Preparation task. The data distribution of 
the abovementioned sensors can be found in Figure 7B.

Regarding the use of the small electrical appliances, no 
differentiation was possible. Boxplots showing the distribution among 
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FIGURE 7

Boxplots showing the distribution of the collected data for the various features for the three groups regarding each Task (Task 1 – Meal Preparation, Task 2 
– Beverage Preparation, Task 3 – Snack Preparation). The * in (A) indicates the group pairs where a statistical significance at p = 0.05 level was found. The 
brackets in (B) indicate the group pairs where a weak trend (p = 0.057) was found. No statistical significance was found in (C) and (D) between groups.
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groups are presented in Figure 7B, while descriptive statistics and the 
results from the statistical tests are also included in Table 5.

3.1.4.2 Number of activations (count per sensor)
No interesting finding could be  noted here. Even though this 

feature could be  connected with the performed number of steps, 
where for Task 1 – Meal Preparation the MCI exhibited a larger 
number of mean steps, no statistically significant difference could 
be found. Indicative examples of the data obtained can be seen in 
Figure 7C and Table 5.

3.1.5 Inaction time
The composite feature “Inaction Time,” aiming to capture the time 

participants spent during an activity without activating a sensor (e.g., 
due to wandering, considering their next action), did not yield any 
differences between groups. Considerable overlapping between groups 
is noted for “Inaction Time,” and no differences emerged from the 
Kruskal-Wallis tests performed (Figure 7D; Table 5).

3.2 Sensitivity and specificity

The potential utility of the three ADL tasks as objective markers 
to distinguish an individual’s cognitive condition (SCD, MCI) 
compared to HC by testing Sensitivity and Specificity among the 
groups (Table 6) was investigated.

In general, an AUC of 0.5 suggests no discrimination (i.e., ability 
to diagnose patients with and without the disease or condition based 
on the proposed test), 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is 
considered excellent, and more than 0.9 is considered outstanding 
(Hosmer and Lemeshow, 2000; Mandrekar, 2010).

In detail, we managed to successfully discriminate HC from SCD 
in Task 1 – Meal Preparation (AUC = 76%, Sensitivity = 0.82 and 
Specificity = 0.64) regarding the “Activity Duration” feature. Also, 
we  managed to discriminate HC from MCI in Task 1 – Meal 
Preparation (AUC = 86%, Sensitivity = 0.83 and Specificity = 0.82) and 
Task 3 – Snack Preparation (AUC = 75%, Sensitivity = 0.75 and 
Specificity = 0.67). Interestingly, no discrimination could be  made 
between the SCD and MCI groups. The “Activity Duration” feature of 
the Meal Preparation Task can distinguish between HC-MCI and 
HC-SCD with acceptable robustness.

3.3 Usability and satisfaction questionnaires

The overall experience as perceived by the participants during the 
study in the SH was assessed with a study satisfaction questionnaire 
that referred to the visit, the tasks, the time needed to complete the 
tasks and the level of difficulty (Supplementary information). No 
difference between the three groups could be noted regarding the 
given feedback. The majority of the participants (72%) when asked if 
they were satisfied with their participation in the study, replied with 

TABLE 5  Descriptive statistics (mean value and standard deviation, given in seconds and count according to each feature), Kruskal–Wallis and Mann–
Whitney p values for the explored features regarding the performed Tasks (Task 1 – Meal Preparation, Task 2 – Beverage Preparation, Task 3 – Snack 
Preparation).

Task Sensor

HC SCD MCI
Kruskal Wallis 

p-value
Mann–Whitney U-test p-value

Mean value (standard deviation)
HC versus 

SCD
HC versus 

MCI
SCD versus 

MCI

Feature “Activity Duration” (in seconds)

1 All sensors comprising 

the corresponding ADL 

are taken into account

1710 (349) 2,180 (604) 2,546 (619) 0.022 0.040 0.015 0.350

2 346 100 400 (104) 362 (106) 0.566 – – –

3 586 (135) 780 (450) 487 (66) 0.546 – – –

Feature “Sensor Activation Duration” (in seconds)

1 Fridge door 17 (14) 27 (26) 44 (24) 0.074 – – –

3 Fridge door 22 (9) 35 (11) 46 (20) 0.046 – 0.057 –

3 Food cabinet 11 (3) 9 (8) 23 (6) 0.050 – 0.057 –

1 Hot plate 941 (282) 1,176 (546) 1,314 (444) 0.139 – – –

2 Kettle 120 (29) 123 (53) 117 (56) 0.963 – – –

3 Toaster 182 (31) 200 (70) 226 (67) 0.554 – – –

Feature “Number of Activations” (count)

1 Cutlery drawer 2.45 (1.13) 3.82 (1.60) 4.33 (2.80) 0.093 – – –

1 Food cabinet 4.64 (2.46) 3.73 (1.95) 6.00 (4.38) 0.517 – – –

2 Coffee – Tea cabinet 1.81 (0.13) 1.92 (0.21) 2.03 (0.38) 0.984 – – –

Feature “Inaction Time” (in seconds)

1 Time period during a 

Task where no sensors 

were activated

647 (284) 854 (305) 1,081 (401) 0.148 – – –

2 200 (70) 230 (111) 210 (103) 0.762 – – –

3 339 (171) 616 (428) 169 (120) 0.394 – – –

Bold values denote statistical significance at the p < 0.05 level.
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“Extremely satisfied.” The participants perceived the study as 
“Extremely appealing” (60%), “Very appealing” (22%) and “Appealing” 
(14%). The time planned for the Tasks was found to be sufficient with 
participants commenting that they did not need more time to 
complete the activities (94%). The instructions and task descriptions 
were unanimously found to be extremely easy to read and understand, 
and the labels placed to mark the different cabinets (labelled “Food,” 
“Cutlery”) were perceived as very useful. No technical issues and no 
issues of any other nature were noted during the participants’ visit 
(e.g., problems with the sensors, person wanting to terminate 
participation). All participants replied with “No” when asked if any 
skills were required to interact with the proposed technologies. 
Describing the overall visit, all participants replied that their 
participation was a positive experience and no feeling of inconvenience 
was noted (e.g., stress, depression, anxiety). Additionally, the mean 
scores (M) per group, for the SUS questionnaire (scores can range 
from 0 to 100) (Brooke, 1986), revealed excellent overall usability [HC: 
M = 94 (SD = 5.8), SCD: M = 92.9 (SD = 4.7), MCI: M = 93.9 (SD = 5.2)]. 
The PANAS questionnaire, designed to measure emotional experience 
(namely positive affect, PA and negative affect, NA was utilized; 
Watson et al., 1988). Respondents are asked to indicate the extent to 
which they have experienced each emotion (e.g., excitement, sadness) 
over a specific period of time rating them on a scale from 1 to 5 (PA 
and NA can range from 10 to 50). The participants showed acceptable 
positive and negative affects, while no differences between groups 
were observed [HC: MPA = 36 (5), MNA = 20 (5), SCD: MPA = 35 (3), 
MNA = 19 (6), MCI: MPA = 36 (5), MNA = 21 (6)].

4 Discussion

The Smart Home, simulating a domestic residence, offers a unique 
environment allowing for controllable experimental conditions. 
Through data collection using non-intrusive fixed in-home 
sensors in the

CERTH-ITI SH, and instructing participants to follow a protocol 
listing a number of ADLs, we aimed to capture, quantify and assess 
ADL performances, as these can lead to insightful measures for 
functional deterioration. Through this ecologically valid assessment, 
we aimed to detect changes between three different cohorts, namely 
HC, participants with SCD and participants with MCI. Visualization 

of the collected data and extraction of meaningful features in the form 
of a dataset available for analysis was possible by utilizing the 
CARL platform.

This preliminary investigation demonstrated that SH technologies 
present an opportunity for an unbiased and real-world evaluation of 
ADLs in individuals with SCD and MCI. The study allowed for the 
assessment of not only whether a task is accomplished but also how it 
is carried out.

Discussing protocol adherence and number of overall completed 
ADLs, it appeared that participants did not follow precisely the 
provided protocol with the step-by-step task descriptions, but 
proceeded with the ADLs in a more intuitive way. Additionally, 
commenting on the number of steps needed to complete a Task, only 
for Task 1 – Meal Preparation was a small difference observed in the 
mean number of steps for the MCI group compared to the HC and 
SCD groups. In Tasks 2 – beverage preparation and 3 – snack 
preparation the three groups performed similar number of steps.

The correctness of the executed steps may not be easily assessed, 
using simple statistical analysis methods, as the step sequence differs 
not only between groups but also notably, within groups as well. 
However, as participants proceeded with the Task execution in a freely 
manner, the observations made are in the context of real-environment 
monitoring and allow real-life evaluations. Additionally, as 
commented in Jekel et al. (2016), we should consider that there could 
be significant individual variability in performing a task in a correct 
manner, for this, it can be overall argued, if correctness of steps can 
pose a useful feature. Also, in the work of Lundström et al. (2016) 
guidelines provided to participants for performing tasks (e.g., prepare 
breakfast, get hot drink, prepare dinner), were written in a simplified 
manner to allow for natural variation.

It is noted that overall the HC and SCD groups performed, 
respectively, 70 and 74% of the expected tasks and the MCI group 58%. 
Specifically for Task 1 – Meal Preparation, the MCI group exhibited 
the lowest number of performance compared to the other groups 
(11/12 HC, 12/13 SCD, 7/11 MCI). No plausible justification could 
be derived for this discrepancy.

Regarding activity duration, Task 1 – Meal Preparation, yielded 
differences between the groups, which constitutes an interesting 
finding. It was considered that the more elaborate task of preparing a 
hot meal, due to its added complexity, was able to highlight the groups’ 
differences attributed to functional decline due to cognitive 

TABLE 6  Sensitivity and specificity of the three ADL tasks (Task 1, Task 2 and Task 3) regarding the feature “Activity Duration” for discriminating between 
groups.

Feature “activity duration” AUC
Threshold value 

(in seconds)
Sensitivity Specificity

HC versus SCD Task 1 – Meal preparation 0.76 1715 0.82 0.64

Task 2 – Beverage preparation 0.62 342 0.67 0.56

Task 3 – Snack preparation 0.67 700 0.67 0.75

HC versus MCI Task 1 – Meal preparation 0.86 1924 0.83 0.82

Task 2 – Beverage preparation 0.58 352 0.70 0.56

Task 3 – Snack preparation 0.75 500 0.75 0.67

SCD versus MCI Task 1 – Meal preparation 0.65 1977 0.83 0.55

Task 2 – Beverage preparation 0.59 403 0.58 0.80

Task 3 – Snack preparation 0.67 522 0.67 0.67

The sensitivity and specificity scores corresponding to the cut-off thresholds alongside with the AUC. Bold values suggest acceptable discrimination (0.7–0.8) or excellent discrimination 
(0.8–0.9), (Hosmer and Lemeshow, 2000; Mandrekar, 2010).
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impairment. Specifically, comparison of participants’ performances in 
Task 1 led to statistically significant differences between groups, 
namely between HC versus SCD, and HC versus MCI, based on the 
time needed to complete the task. It is noteworthy that no 
differentiation could be made between SCD and MCI participants.

The meal preparation task has been investigated also in a different 
context, in the work of Atkins et al. (2015, 2018), where the Virtual 
Reality Functional Capacity Assessment Tool (VRFCAT) was used. 
Discriminating healthy older adults from older adults with SCD was 
possible, as the latter noted a statistically significant larger amount of 
time to complete the given tasks and performed more errors.

Furthermore, ROC Curve values were encouraging for the Task 
1- Meal Preparation, reaching 86% in the classification of HC vs. MCI 
and exciding 70% in the classification of HC vs. SCD. This is a 
promising finding, as available neuropsychological tests do not 
discriminate SCD from HC (Sikkes et al., 2009; Kaur et al., 2016).

On the other hand, the more straightforward / simple tasks of 
preparing a beverage (Task 2), and a snack (Task 3) were not able to 
show between groups differences. This is in accordance with existing 
literature. In Jekel et al. (2016), the coffee and sandwich preparation 
tasks were also not able to differentiate the HC and MCI participants, 
while in Karakostas et al. (2020) assessing various ADLs, no difference 
could be observed between HC and MCI for the tea preparation task. 
As has been commented in Jekel et  al. (2016), these tasks could 
be considered as not highly cognitive demanding.

Additionally, regarding the individual sensors, only the ones 
placed on the Fridge Door and the Food Cabinet (both Fridge and 
Food Cabinet entailing a variety of different products) could show 
some difference between groups in their utilization (weak trends). 
Again, we are of the opinion that the fridge and the cabinet containing 
a number of products could be considered as the more complicated 
to handle.

The feature “Inaction Time” was considered promising as it was 
assumed that cognitive impairment and functional decline could lead 
to increased wandering time between actions due to possible 
disorientation (Coughlan et al., 2018). While the participants’ data 
distribution for “Inaction Time” in Task 1 – Meal Preparation showed 
this expected tendency, no statistical significant difference 
was observed.

The duration of utilizing the small electrical appliances was 
compared between groups. Since the activation of these appliances 
was seen as a requirement for the formation of the ADLs (the ADLs 
were built around the data collected from the small electrical 
appliances), it was important to determine if this factor predominantly 
influenced the overall composite ADL duration feature. However, no 
statistically significant difference could be observed between groups.

In general, for many of the collected sensor data, descriptive 
statistics revealed an initial trend that MCI participants (and in some 
cases SCD participants) exhibit longer durations than HC, but 
significant overlapping exists between the groups not allowing further 
comparisons. Regarding the features addressing aspects besides 
duration, like the number of steps needed to complete a Task, the 
number of repetitions in utilizing, e.g., specific cupboards, could not 
be used to differentiate the groups. We are of the opinion that these 
features are reflecting actions not cognitive demanding and are not 
granular enough to highlight differences. For this, further feature 
exploration is needed to gain additional markers from the 
performed ADLs.

The present study shows that implementing new technologies that 
are able to detect subtle changes in cognitive and functional patterns 
may allow earlier diagnosis, even at the point when memory functions 
are still intact, such as the SCD stage.

While studies on activity recognition from collected sensor data 
are available in the literature (Bouchabou et al., 2021), there is limited 
research on efforts of quantifying and comparing the performed ADLs 
among early stages of cognitive impairment (Atkins et al., 2018), while 
only a comparison between a small number of HC and MCI 
participants has been attempted so far (Stucki et al., 2014; Jekel et al., 
2016; Stavropoulos et  al., 2016; Urwyler et  al., 2017; Karakostas 
et al., 2020).

Moreover, there is scarce evidence for real-life, smart home-based 
use of technologies for early detection of dementia, and no approach 
is yet perceived as mature enough (Piau et al., 2019). An exception can 
be considered the Collaborative Aging Research Using Technology 
(CART) Initiative, a multi-site, nationwide project (Thomas et al., 
2021; Bernstein et  al., 2022). The study uses multiple embedded 
sensing technology and diverse data to support research in the field of 
health and independent living, focusing on older adults from various 
communities. However, as the authors note, further proof is needed 
on the precision, accuracy and reliability of these novel outcome 
measures before home-based sensor technologies can be included in 
clinical trials and utilized in the monitoring of chronic diseases 
(Thomas et al., 2021).

A frequent constraint in the majority of studies that evaluate SH 
technologies for monitoring ADLs, is their lack of focus on participants’ 
acceptance of the devices, as indicated by a recent systematic review 
(Lawson et al., 2023). Along with the fact that elderly participants are 
not very keen on using smart technologies (Tiersen et al., 2021; Wei 
et al., 2023), participants views need to be considered when introducing 
new technologies. The present study and the proposed technologies 
were evaluated by the participants, and were regarded as feasible. 
Participants answered in a positive manner when asked a number of 
questions regarding their experience and their stay, the sensors and 
technologies utilized, while they did not experience any issues.

The study has some limitations that need to be acknowledged. 
While the sample size (N = 36) could be  considered sufficient, 
considering the exploratory nature of the study and existing literature 
(Hayes et al., 2008; Petersen et al., 2015; Seelye et al., 2020) it is noted 
that, as some participants did not complete all tasks listed in the 
protocol, the dataset was further decreased. For example, a number of 
people, independently of their group, did not perform the Task 
3-Snack Preparation activity (7/12 HC, 9/13 SCD and 8/11 MCI). This 
could be attributed to the fact that as participants stated, “They were 
not hungry,” or “preferred to rest some more” and “explore the Smart 
Home’s premises instead.” This led to a restricted dataset available for 
Task 3 for analysis, the findings of which must be viewed with caution.

Additionally, it is noted that, as participants visited a new, 
unknown to them environment, this could also have affected the way 
they performed the various ADLs. Nevertheless, effort was made to 
simulate a real domestic environment while also adequate time was 
provided to the participants to feel comfortable in the house and 
discuss any concern with the researchers.

During feature extraction, conversion of raw data to events and 
activities involved refinement through post-processing. Even though 
all data processing was performed in a systematic manner and is 
described in the text, and a validation of the ADLs derived from the 
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sensors was performed using collected information as ground truth, 
in the interest of thoroughness this is acknowledged as a 
potential limitation.

Also, the use of flood sensors was investigated, installed in the 
kitchen (sink) and the bathroom (sink and flush). However, as the 
sensors are designed to detect water leaks and flooding, the necessary 
adjustments made to the sensors to monitor water usage instead, did 
not allow robust and continuous data collection. For this, the sensors 
were not included in the study.

Furthermore, it is noted that, as biofluid biomarkers were not 
collected for all participants, the etiology of the MCI and SCD group 
cannot be distinguished (amyloid positive vs. amyloid negative).

A limitation of the study, to be  addressed in future work, 
constitutes the absence of a comparison/correlation to relevant 
conventional measures of function [e.g., the informant-based 
Amsterdam IADL questionnaire (Sikkes et al., 2012), the Naturalistic 
Action Test (Seligman et al., 2014)].

Finally, regarding the study’s feasibility assessment, as researchers 
were present while participants filled out the questionnaires, possible 
bias could occur.

The herein presented SH study provides a proof-of-concept for the 
feasibility of identifying, quantifying and assessing ADLs and 
differentiating known-groups via monitoring their performance. It is 
evident that new tools will be required to assess and evaluate clinically 
significant changes (Atkins et  al., 2015; Gold et  al., 2018). The 
inclusion of people in preclinical stages of AD, constitutes an 
important step towards the advancement of digital biomarkers.

5 Conclusion

Participants spent a day in CERTH-ITI’s Smart Home, a controlled 
environment that simulates a fully functional house, and were asked 
to perform a number of ADLs according to a given protocol. The 
results proved the differentiation among the HC group compared to 
the SCD and the MCI groups considering the feature “Activity 
Duration” in Task 1 - Meal Preparation. Task 1 can be considered 
more complex compared to Task 2 - Beverage Preparation and Task 3 –  
Snack Preparation.

The distinction of the SCD from the HC group, constitutes an 
important finding, as conventional assessments (neuropsychological 
questionnaires) note no difference between these groups. Furthermore, 
the differentiation of HC and MCI participants, as documented in the 
existing literature, confirms the study design and the methodology 
followed. Additionally, it is interesting to note that no significant group 
differences could be observed between the SCD and the MCI groups.

These findings further support the interest and need to include 
people in preclinical stages of dementia in current research. 
Furthermore, the study was proven feasible, with participants 
expressing positive feedback for the study and the technologies used.

Access to this information, paves the way for detection of 
behavioural patterns and deviations allowing for early observation of 
deterioration in function. This ecologically valid study provides 
evidence that ADL performance can be utilized and further evolved 
to develop clinically relevant digital biomarkers. These biomarkers 
could serve for monitoring participants in at-home settings, 
participant stratification as well as secondary endpoints in clinical 
trials to complement established outcome measures.

Starting from these encouraging findings, further research would 
be needed to determine the long-term reliability and predictive value 
of the proposed assessment tools in the clinical practice. Consecutive 
data collection on the executed ADLs over an extended period of time, 
would allow us to monitor behavioral patterns of the individuals in 
depth, identify personalized thresholds and highlight potential 
functional deterioration. Additionally, in this way, other factors could 
be controlled for and tested. For example, measures of sleep duration 
and quality could be  incorporated (by using wearable devices, or 
pressure sensors placed underneath the mattress on the bed) to better 
understand their influence on ADL performance. A longitudinal study 
could evaluate and strengthen the presented findings and provide a 
useful tool, to serve as a secondary endpoint in drug trials on the 
therapeutic efficacy of prescribed drugs.

Furthermore, while study centers are not widely available for 
healthcare research, we envision that as technology continues to evolve 
and becomes increasingly part of our everyday life, the suggested 
assessment could be implemented in home environments, facilitating 
the inclusion of people in rural areas. In detail, the integration of smart 
devices and appliances, outfitted with microprocessors and WiFi 
access, is steadily gaining prominence within domestic settings. This 
reflects a significant shift towards the adoption of interconnected 
technologies in everyday life. The proposed approach is scalable and 
cost-effective. The protocol deploys commercially available sensors, 
indicating its practicality and accessibility. Additionally, the developed 
CARL platform is device agnostic, allowing the integration of different 
sensors and demonstrating flexibility in technological advancements.

As a first step towards the implementation and exploration of 
testing this protocol at a home environment, another sub-study 
realized in the context of the RADAR-AD project was set up to explore 
the feasibility of such an approach. The fixed in-home sensors were 
placed in participants’ homes and data collection was ongoing for 
4 weeks.
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Eye movements have long been recognized as a valuable indicator of
neurological conditions, given the intricate involvement of multiple
neurological pathways in vision-related processes, including motor and
cognitive functions, manifesting in rapid response times. Eye movement
abnormalities can indicate neurological condition severity and, in some cases,
distinguish between disease phenotypes. With recent strides in imaging
sensors and computational power, particularly in machine learning and
artificial intelligence, there has been a notable surge in the development of
technologies facilitating the extraction and analysis of eye movements to
assess neurodegenerative diseases. This mini-review provides an overview of
these advancements, emphasizing their potential in offering patient-friendly
oculometric measures to aid in assessing patient conditions and progress. By
summarizing recent technological innovations and their application in
assessing neurodegenerative diseases over the past decades, this review also
delves into current trends and future directions in this expanding field.

KEYWORDS

eye tracking, eye movement, neurodegeneration, digital biomarkers, computer vision,

machine learning, patient experience

1 Introduction

Neurodegenerative Diseases (NDs) represent a diverse spectrum of conditions

characterized by progressive neuronal dysfunction within the Central Nervous System

(CNS), potentially culminating in neural cell death. Noteworthy among these disorders

are Alzheimer’s disease (AD), Parkinson’s Disease (PD), and Amyotrophic Lateral

Sclerosis (ALS), collectively impacting millions globally each year. For instance, estimates

suggest that approximately 4.7 million individuals aged 65 years or older were diagnosed

with AD in the United States in 2010 (1), with a global prevalence of 6.1 million for PD

in 2016 (2). As the prevalence of NDs correlates with aging demographics (3), projections

anticipate a substantial increase in their volume in the coming years.

The clinical presentation of NDs encompasses a wide range of symptoms spanning

motor, cognitive, and behavioral domains, exhibiting considerable variability not only

between different disorders but also among individuals. This clinical heterogeneity,

compounded by the gradual accumulation of symptoms preceding a definitive

diagnosis, poses significant challenges to accurate diagnosis. Moreover, many NDs

feature a pre-symptomatic phase, which may extend over several years before the onset

of apparent clinical symptoms. This pre-symptomatic period holds significant

implications for potential preventive interventions and disease-modifying therapies.

However, current diagnostic modalities often lack the sensitivity required to detect NDs
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during this critical phase. Even after diagnosis, uncertainties

persist, particularly in the early stages, further complicated by the

diverse clinical spectrum encompassed within Parkinson’s plus

syndromes (4–6). The inadequacy of reliable diagnostic tools,

coupled with the inherent subjectivity of clinical evaluation and

inter-individual variability, underscores the urgent need for

objective biomarkers capable of capturing both motor and

cognitive processes (7, 8).

Abnormalities in eye movements are evident in various NDs,

including PD (9–12), ALS (13–16), and AD (17–19). Several

types of eye movements are affected by neuronal pathology, of

which the most prominent are saccades—rapid eye movements

that move the line of sight between successive points of fixation

(20). Some of these oculomotor abnormalities cannot be

observed during a standard clinical examination, and a recording

is required to obtain accurate and objective measurements (7, 16,

21). Various oculomotor abnormalities hold promise as potential

biomarkers for both diagnosing NDs and monitoring their

progression (7, 10, 16, 21). In numerous studies, oculometric

measures (OMs) demonstrate temporal reliability and stay

consistent over short intervals (22–24).

Some OMs were shown to distinguish between different

phenotypes of indications with similar clinical symptoms,

providing valuable insights into disease progression and

management. For instance, smooth pursuit eye movement

features, and specifically gain, were found to be significantly

different in the early stages of PD, Progressive Supranuclear

Palsy (PSP), Corticobasal syndrome (CBD), and Multiple System

Atrophy (MSA), when many clinical symptoms are similar or

indistinctive (6, 12, 18).

Although various OMs strongly correlate with several ND

acknowledged outcome measures, the optimal OM compositions,

and their interpretation remain contingent on the diagnosed

disease. For example, in PD patients, correlations have been

observed between scores on the MDS-Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS) and anti-saccade features

(25), while ALS patients show similar correlations of anti-saccade

latency and error rate with their Revised Amyotrophic Lateral

Sclerosis Functional Rating Scale (ALSFRS-R) scores—with

additional correlation between smooth pursuit intrusive saccade

rate and their ALSFRS-R scores (26, 27). Similarly, patients with

AD demonstrate robust correlations between their Mini Mental

State Examination (MMSE) scores and specific OMs, namely

pro-saccadic latency (28) and micro-saccade lateral bias (19).

In this mini-review, we provide an overview of the current

landscape of sensors and techniques for assessing OM abnormalities

(Section 2.1) and explore various examination environments and

setups facilitating objective oculomotor measurements (Section 2.2).

Additionally, we discuss the implications, clinical trends, and

anticipated advancements in Section 3.
2 Extracting oculometric measures

Accurate gaze estimations in eye-tracking technology are

contingent upon several critical parameters to ensure precision
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while prioritizing patient comfort and ease of use. When

considering sample precision, achieving high spatial resolution

and addressing system-specific artifacts to ensure measurement

accuracy are emphasized. Simplifying setup complexity in terms

of device size and complexity, software interfaces, and operator

and user interfaces will be considered when accounting for the

patient experience. Striving for a non-invasive and user-friendly

setup is essential to minimize patient burden, enabling eye

movement measurements without necessitating head restraint or

other restrictive measures.
2.1 Sensors and technology

Theoretically, all OMs may be accurately extracted given a long

enough time series of the subject gaze direction with sufficient

temporal and spatial resolution. Therefore, the main challenges

in the sensing system used for OM extraction are spatial

accuracy and sample rate, limiting the OM types that may be

extracted using a specific sensor. Pro saccadic latency (the time

interval between the stimuli of a saccadic eye movement and the

beginning of the actual eyeball movement) values can be as short

as 100 ms, and the visual angle amplitude of microsaccades may

be as narrow as 0.1 degrees (29). Therefore, OM extraction

abilities depend on the sensors’ combination of spatial accuracy

and sample rate.

Along with the physical limitations of OM extraction, the

advancements in computation capabilities and the reduction in

electronic component sizes enabled the development of sensors

that are both accurate, affordable, and patient-friendly, led by

video imagers accompanied by dedicated computer vision

software. Due to these trends of increasing measurement

accuracy and smaller equipment size, sensors are now planned to

be used more frequently across diverse populations. Therefore,

they are required to be as comfortable as possible, with minimal

burden on the subjects being examined (30, 31).
2.1.1 Electrooculography
Electrooculography (EOG) entails the strategic placement of

electrodes on the periorbital skin to monitor voltage fluctuations

corresponding to ocular movements. This technique facilitates

the distinct capture of both horizontal and vertical eye

movements, even in the absence of any ocular stimulation and

when the subjects’ eye may be closed (30, 32). While EOG

presents distinct advantages in terms of cost-effectiveness and

minimal energy consumption compared to alternative eye-

tracking modalities, its resolution remains constrained by

susceptibility to artifacts, mainly from external sources such as

ambient electrical field perturbations. Moreover, physiological

artifacts originating from muscular activity, particularly during

bodily motions or facial muscle engagement by participants,

contribute further to signal distortion (32–34). Nevertheless, with

continued research endeavors, substantial potential exists to

augment precision and advance the sophistication of

EOG technologies.
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2.1.2 Scleral coil system
The scleral coil system involves affixing one or two coils onto the

ocular globe and quantifying induced voltages resulting from

alterations in magnetic fields precipitated by ocular movements.

Most scleral coil sensors are shaped as a ring and placed on the

sclera surrounding the iris, similar to eye contacts, but often with

an additional wire that connects devices external to the eye. Despite

the advantageous feature of minimal noise interference, its invasive

nature warrants consideration, as its utilization is constrained to a

recommended duration of 30 min or less, primarily due to

predictable discomforts, including ocular dryness and transient

corneal deformities. It is imperative to acknowledge that the

presence of the search coil significantly affects select oculomotor

parameters, notably saccadic latency and peak velocity (35, 36).
2.1.3 Video oculography
Video Oculography (VOG), a technology grounded in non-

invasive video graphics, has garnered increasing attention over

the past two decades (37–39). This innovative approach employs

one or multiple cameras (monochromatic or multispectral) to

carefully examine the gathered data from captured images,

seamlessly adaptable through either a head-mounted apparatus

or the integration of head-free webcams within computing

systems or handheld devices (30).

The fusion of video-based tracking alongside advanced software

platforms for the extraction of OMs has recently demonstrated

remarkable precision (16, 31, 40, 41). Vigorous endeavors are

underway to develop models to augment accuracy and achieve

precision levels commensurate with contemporary IR eye trackers,

obviating the necessity for supplementary configurations or costly

apparatus. Extensive research continues exploring the efficacy of

machine learning and neural network architectures in tracking

ocular movements (42). Noteworthy among these advancements is

the NeuraLight platform, leveraging the video-based NeuraLight

Gaze Estimation Model (NLGEM) and the Calibrated Gaze Model

(CGM), showcasing equivalence to established references such as

the Tobii eye tracker (43, 44). The CGM model capitalizes on

visual stimuli for measurements, facilitating ongoing real-time

calibration during testing sessions and obviating the requirement

for discrete calibration procedures (45).
2.1.4 Infrared eye tracker
A notable advancement in the domain of eye tracking

materialized with the advent of infrared (IR) systems. These

setups emit infrared light toward the subject’s eyes, measuring

the reflected light to ascertain the precise location of the pupil’s

center and to approximate the Point-of-Regard (PoR, the

location the subject is looking at) (46, 47). Such systems can be

mounted on desktop monitors and laptops, and even integrated

into wearable head devices (44, 48). Initially, achieving a stable

head orientation was imperative for ensuring measurement

accuracy; however, contemporary iterations of eye trackers

demonstrate commendable resilience, swiftly recuperating from

head movements. Calibration remains a prerequisite for accurate

PoR detection within this framework. Despite exhibiting
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relatively minimal noise levels in comparison to EOG, this

methodology still has its susceptibilities, with various artifacts

potentially arising from idiosyncratic patient factors,

encompassing eyelid morphology, eyelash length, and the

utilization of corrective lenses or spectacles (12, 47, 49).

Noteworthy is the treatment of IR technology as a distinct entity

within the broader purview of VOG video-based gaze systems

(31). Within the confines of this mini-review, we opt to delineate

IR technology as a discrete entity, underscored by its distinctive

attributes. Unlike the conventional camera-based VOG systems,

which passively receive data in the visual light spectrum, relying

on external light sources, IR technology proffers an active

component, thereby imbuing it with an additional layer of

functionality. However, similar to VOG methodologies, inherent

challenges may emerge when applying IR tracking technique

from diverse patient characteristics.
2.2 Examination setup

In the past, eye-tracking systems necessitated intrusive

measures, demanding physical constraints on the subject’s head.

Typically, studies relied on visual stimuli presented of a singular

monitor, screen, or light array, with participants seated, and their

heads immobilized using various means such as chin rests. A

visual stimulus would manifest on a screen positioned before

them, set at a specific visual height and a viewing distance

typically ranging between 60 cm and 70 cm (27, 50). However,

strides within the field have introduced non-intrusive

configurations, allowing participants unrestricted head

movements while upholding precision (51). Ambient factors,

including light sources, exert notable influence on the accuracy of

gaze detection. Optimal laboratory conditions dictate sound and

light isolated rooms to mitigate distractions and keep participants

focused on the assigned tasks. Hence, minimizing direct and

ambient sunlight, oftentimes achieved by dimming or even

extinguishing non-essential lighting sources, proves indispensable.

A well-lit environment ensures pupil constriction, consequently

enhancing data quality, particularly in scenarios involving

variable luminance stimuli (52).

The evolution of physical eye-tracking setups has been

remarkable, transitioning from conventional head-mounted

apparatuses (48) to the integration of webcams within computing

devices or handheld gadgets such as smartphones (53) or tablets

(54). This progression facilitates precise measurements without

the necessity of head restraining. For instance, in tablet setups,

the device screen is oriented vertically, with the camera side

facing upward, securely affixed at eye level through the

employment of a tablet pole mount. The subject face is

positioned at an approximate distance of 45 cm from the screen

(55). Ongoing endeavors are directed toward refining head-free

tracking capabilities accommodating variations in head

positioning, distances, and illumination conditions (56).

Challenges specific to this domain, such as “head-gaze

correlation overfitting” and “head pose ambiguity,” are diligently

addressed in pursuit of better accuracy.
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Empirical evidence suggests that the accuracy of measurements

obtained solely through smartphone utilization rivals that of

dedicated eye-tracking systems. Notably, one study reported a

minimal error margin of 0.46 cm on the smartphone screen

(equivalent to 0.6–1 degrees of viewing angle), requiring less than

30 s of calibration data per user (42). The potential for enhancing

smartphone-based eye-tracking systems through refined

calibration methodologies remains palpable (53). Embracing

smartphone technology presents a cost-effective alternative to

conventional eye-tracking devices, fostering scalability and

enabling broader sample sizes in clinical research endeavors (42).

Looking ahead, advancements in virtual reality (VR)

technology promise to broaden the scope of eye-tracking

applications. Although VR users, particularly those with

neurodegenerative diseases, may experience cybersickness (57, 58)

or even oculomotor function changes (59), integrating eye-

tracking functionalities into VR headsets adds a spatial

dimension to stimuli, enriching the interactive experience (5).

These technological strides pave the way for more cost-effective

and portable equipment, thereby extending the reach of eye

tracking beyond traditional laboratory or clinical settings to

telemedical homes and external environments. The expanded

accessibility enhances the prospect of engaging a more diverse

pool of patients and control groups for comparative analyses

(31, 49), thereby fostering the accumulation of richer datasets.

With increased data availability, the potential for accuracy

enhancement and further technological refinement is substantial.
3 Discussion

The integration of high-precision gaze-detection systems with

accessible setups holds promise for significant scientific

advancements in analyzing eye movement and oculometric

measurements among patients with NDs (45). These

advancements facilitate comfortable examination procedures in

clinics as well as remote measurements in patients’ homes,

assuming access to a computing device equipped with a webcam

(e.g., tablet, smartphone, laptop, or desktop computer). Such

remote monitoring enables the sampling of a vastly larger

number of patients, expanding the training sets of various

models and thereby enhancing their accuracy. Higher accuracy

and reliability are suggested to expand usage and increase the

volumes of the training data, closing a positive feedback loop.

Moreover, validated video-based remote OM assessment

platforms are expected to reduce costs in pharmaceutical clinical

trials and accelerate the usage volume growth, adding diverse

demographics and ethnicities and providing positive

reinforcement for the projected adaptation of these platforms.

Looking ahead, self-operated home-based ND monitoring is a

feasible emerging stage in the future ND assessment protocol.

As a field adjusting to recently developed technology, further

research is required to study the correlations between ND

outcome measures and both traditional and newly developed

OMs. However, we surf the front wave of the relevant technologies

and develop the ND assessment platforms accordingly. Rapid
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improvements in computational abilities include complex machine

learning and artificial intelligence models, as well as the reduction

and acceleration of processing units and data storage devices. In

addition, hardware recent developments of imaging sensors in

various wavelengths and sensitivities, both eye tracking

technologies offer an opportunity to integrate their input with the

booming computational power and soon finalize a first validated

platform for ND assessment based on eye movements.

Although minimal and preferably seamless, advanced

examination setups for eye-movement abnormality measurement

present certain challenges. Head-mounted devices are limited in

sampling rate, particularly affecting saccade analysis; handheld

devices encounter numerous issues, including spatial resolution

discrepancies among different cameras, introducing variability in

head positions and angles, and variations in distance from the

camera (49). These challenges must be addressed to enhance the

efficacy of eye-tracking methodologies in ND research.

Future trends in eye-movement assessment for NDs may

introduce platforms that continuously measure and extract OMs

without pre-defined visual stimuli. Such platforms may be

integrated with daily used displays like smartphones or desktop

computers or on any future computing device that enables eye

tracking, including Virtual Reality (VR) or Augmented Reality

(AR) devices. VR/AR devices introduce additional dimension to

the apparent visual field (depth), enabling the extraction of unique

OMs that are influenced by the depth coordinate of the PoR.

Assessing ND severity and progression using eye-movement

abnormality measurements and the development and definition

of the OMs that will found these measurements are emerging

applications in their booming stage. While initial promising

results have already been shown in recent software and hardware

studies, recent advancements have introduced a feasible potential

for a more affordable and patient-friendly platform for assessing

ND condition and progression.
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Emotion expressions and
cognitive impairments in
the elderly: review of the
contactless detection approach
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2Department of Psychology, McGill University, Montreal, QC, Canada
The aging population in Canada has been increasing continuously throughout
the past decades. Amongst this demographic, around 11% suffer from some
form of cognitive decline. While diagnosis through traditional means (i.e.,
Magnetic Resonance Imagings (MRIs), positron emission tomography (PET)
scans, cognitive assessments, etc.) has been successful at detecting this
decline, there remains unexplored measures of cognitive health that could
reduce stress and cost for the elderly population, including approaches for
early detection and preventive methods. Such efforts could additionally
contribute to reducing the pressure and stress on the Canadian healthcare
system, as well as improve the quality of life of the elderly population. Previous
evidence has demonstrated emotional facial expressions being altered in
individuals with various cognitive conditions such as dementias, mild cognitive
impairment, and geriatric depression. This review highlights the commonalities
among these cognitive health conditions, and research behind the contactless
assessment methods to monitor the health and cognitive well-being of the
elderly population through emotion expression. The contactless detection
approach covered by this review includes automated facial expression analysis
(AFEA), electroencephalogram (EEG) technologies and heart rate variability
(HRV). In conclusion, a discussion of the potentials of the existing
technologies and future direction of a novel assessment design through fusion
of AFEA, EEG and HRV measures to increase detection of cognitive decline in
a contactless and remote manner will be presented.

KEYWORDS

cognitive decline, remote health, contactless detection, machine learning, elderly

population

1 Introduction

The cognitive health of the elderly population has grown to be a central issue in our

society. Statistics estimated that at least 6.5 million of Americans aged 65 years or over are

living with Alzheimer’s disease (AD) (1). In Canada, 597,300 individuals were living with

dementia in 2020, and this number was projected to reach close to a million by 2030 (2).

The demand and reliance on valid and precise diagnostic tools have therefore increased

exponentially. Historically, traditional tools such as neuropsychological tests and brain

imaging techniques have been the state-of-the-art diagnostic methods and assessment of

severity. Although accurate, these techniques involve intense patient participation in the

case of tests or intrusive manipulations in the case of MRIs and PET scans. During the

same period where AD cases increased, the proportion of elders living in collective
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dwellings or assisted living facilities, such as a nursing home, a

chronic care facility or a residence for seniors, also evolved

significantly. The 2011 census indicated that 7.9% of seniors aged

65 or over resided in a collective dwelling, whereas the 2021

census revealed 28% of those aged 80 and above living in such

arrangements (3, 4). Specifically with the impact of COVID-19

pandemic, one in every twenty Canadians aged 65 or over were

living in these facilities in 2021 (5, 6). Thus, our healthcare

systems are facing an unprecedented situation with continuously

increasing needs and burdens. The emerging trend of regrouping

of patients in the facilities brings on new possibilities regarding

the assessments of their disorders and disabilities, such that this

environment could serve as both the treatment and the diagnosis

method. For instance, remote and contactless tools could easily

be integrated into the living installations which AD patients

utilize daily. To this end, existing evidence has demonstrated

emotional facial expressions being altered in individuals with

various cognitive conditions such as dementia, mild cognitive

impairment, and geriatric depression. Technologies such as

Automated Facial Expressions Analysis (AFEA) and remote

photoplethysmography (rPPG) have been shown to provide

accurate and reliable measures which can be related to cognitive

health and disease progression. Given that these technologies can

be added to daily protocols already administered to patients in

care facilities via camera recordings, assessment of patients’

health could be completely re-invented such that intrusive

methods will be on need-basis and less required, and preliminary

diagnosis can occur in community. In this paper, we will review

the use of these technologies in the context of various cognitive

conditions to enhance the accessibility of treatment and progress

tracking for the elderly in a remote and contactless manner.
2 Cognitive impairments in the elderly
population

2.1 Dementia and Alzheimer’s disease

Dementia, the most well-known disorder associated with the

elderly, is a general term for several diseases, including AD (7).

Over 350 Canadians on average were diagnosed with dementia

every day in 2022 (2). All these data demonstrate that dementia,

with its prevalence, is a non-negligible condition in the health

assessment of elders in long-term care facilities. Dementia is

understood to affect memory, increase confusion, apathy/

depression, and leads to a loss of ability to complete everyday

tasks (8). Typically, dementia is assessed through various

cognitive and neuropsychological tests such as the Mini-Mental

Status Examination (MMSE). Brain scans, such as MRIs and

PET scans, can also be used to detect dementia through changes

in the brain structure, but these are associated with a high cost

and demand extensive resources. While it remains exploratory

whether the expression of emotions differs between older adults

with dementia and healthy ones, several studies in this space

provided promising results. For example, studies looking into

facial expression of pain found that participants with dementia
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expressed more pain in their faces than participants in the

control group (9). A more recent study also found that across

their participant pool from AD research centers, it appeared that

dementia patients facially expressed fewer positive emotions

during emotion-eliciting events and instead used more negative

expressions (10). In addition, AD patients demonstrated an

overall increase in facial expressiveness (11). Similarly, other

studies have found altered zygomatic activity (i.e., muscles that

control smiling) in patients with dementia while viewing

emotion-eliciting images when compared to healthy elderly

counterparts (12). The flexibility in emotion expressions was also

found to be reduced for AD patients, such that they struggled to

amplify positive emotions facially (13). That being said, while

these techniques have been used increasingly in the clinical

world, no automated assessment of pain through facial

expressions has been tested as a valid tool for detecting dementia

(14), and little effort has been put into relating facial expression

analysis to other physiological measures of dementia. Hence, the

automation of facial expression analysis, paired with other

measures, would therefore provide an interesting option to both

detect dementia, as well as monitor it once it is diagnosed.
2.2 Mild cognitive impairment

Dementia is often first diagnosed as mild cognitive impairment

(MCI), which makes it one of the first observable conditions and

symptoms in one’s cognitive decline. MCI is characterized by a

limbo state between normal aging and dementia (15). For people

with MCI, typical symptoms include memory deficits as well as

other reduced cognitive functions that do not hinder or only

slightly affect one’s instrumental functional abilities. The

prevalence of MCI increases with age, with 10.88% of

community-dwellers aged 50–59 years and 21.27% of those aged

80 years and above, as indicated by a recent worldwide meta-

analysis (16). More importantly, up to 30% of adults who

develop MCI will go on to be diagnosed with some form of

dementia; typically AD for those who experience memory deficits

(17). Early detection of MCI is crucial in reducing one’s risk of

developing dementia. Traditional detection tools, however, are

often targeted towards the impairments found in AD and

therefore not very accurate at detecting MCI. In fact, the MMSE,

which is one of the most commonly used cognitive tests, can

only detect around 18% of MCI cases (18), and it does not

provide substantial support for the early detection of dementia in

MCI patients (19). Therefore, more tools are necessary to better

understand MCI and help early treatment of cognitive decline. It

is known that people with cognitive impairments express

emotions differently through their faces compared to healthy

adults of the same age (20, 21), and a recent effort has been

made to use non-invasive, readily available technologies to assess

MCI. For example, Fei and colleagues (18, 22) proposed

computer vision techniques for the detection of cognitive

impairment, including MCI, in the elderly by analyzing facial

features. As manual coding of these expressions can be tedious,

an automated way of facial expression analysis (i.e., AFEA) could
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potentially provide an efficient, contactless, and non-intrusive

detection tool for MCI and allow for better prevention of dementia.
2.3 Depression

Often overlooked, depression is one of the most common

symptoms in dementia and MCI patients. The prevalence of

depression among elderly individuals tends to vary across

investigations due to different experimental designs (23–25). For

instance, estimates suggest that depression could affect up to 5%

of the elderly population and close to 44% in elders requiring

residential health care (26, 27). Despite its prevalence, late onset

depression remains underdiagnosed and characterized as a part

of normal aging. However, depression has serious impacts on the

elderly’s cognitive and physical health. Late onset of depression

can lead to serious cognitive deficits, often similar to those seen

in MCI (28). Research has shown that MCI patients are more

likely to develop depression, with a prevalence rate between

16.9% and 55% (29). In fact, half of those who experience

depression after the age of 65 and along with cognitive

impairment will go on to develop AD or other types of

dementia. The comorbidity of depression in patients with

dementia can vary between 9 and 68% (30). Hence, depression is

both seen as a risk factor for dementia as well as a symptom of

the disorder. The cognitive damage due to depression can

however be reversed before one progresses into dementia but is

too often ignored or undiagnosed. Typical assessments of

depression such as the Geriatric Depression Scale (GDS) can be

misleading and often wrongly diagnose cognitively impaired

adults as depressive (31). New methods of detection are therefore

needed, one of which could be the analysis of facial expressions

or muscle activity. Facial expression analysis is a common tool

used in adults with depression. For example, it has been shown

that depressed individuals have a loss of facial muscle tone

around the mouth, but higher tone in the brow area, which can

be associated with anxiety and anger. Overall, depressed

individuals express fewer smiles than healthy adults (32).

Depressed individuals also demonstrate decreased activities in the

cheek and brow areas upon viewing happy and sad images,

compared to non-depressed individuals (33). Correlations

between depressive symptoms and end-lip, mouth width, mid-

top lip, eye-opening, and mid-eyebrow measures have been

found in some studies (34), as well as facial indicators of excess

activity in the grief regions of the face, even during joy-inducing

stimuli (35). Facial expression analysis is able to identify all these

small facial changes during expression of emotions, but it has

never been specifically applied to geriatric or late onset

depression. Therefore, it would be informative to explore the

application of facial expression analysis in the elderly for the

prognosis and detection of depression, which in turn could

contribute to the monitoring of dementia symptoms and

progress in the same population.

Here, we outlined 3 different cognitive and affective conditions

present in the elderly population related to cognitive impairment

(see Table 1 for summary of reviewed articles). While established
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diagnostic methods have been successful in identifying these

diseases and disorders, recent breakthroughs in contactless

technologies show that facial movements during affective states

can be used to monitor cognitive decline and the severity of

conditions. The implications of such methods are not negligible;

remote and contactless assessment would allow for frequent

updates on the cognitive health of elders at risk without invasive

procedures and at a relatively low cost. Furthermore, the addition

of such technologies can easily be integrated into care facilities,

which house hundreds of patients in one place. This facilitates

the routine assessment of cognitive decline daily, fostering a

proactive approach instead of relying on periodic assessments

that could lead to significant deteriorations of disorders.
3 Automated facial expression analysis,
EEG and rPPG in emotion recognition

In recent years, contactless detection for facial expression

analysis and emotion recognition has become a growing field,

with more interest in its applications in the medical health

domain. Today, various automated methods for emotion

assessment have been developed to increase the accuracy of

emotions through different means. Among them, Facial

Expression Analysis, EEG, and heart rate monitoring have been

emerging as viable ways to understand human emotions. Both

Facial Expression Analysis and heart rate monitoring have been

made available through contactless and remote means such as

AFEAs and rPPG, respectively. In this section, we will present a

summary of these technologies together with their respective

accuracy and usability, as well as express the need for joint usage

of these methods in emotion detection.
3.1 Facial action coding system and
automated facial expression analysis (AFEA)

The Facial Action Coding System (FACS) is a taxonomy system

to identify and classify facial movements during expressions of

emotions (36). FACS has been used by psychologists for decades

and has recently been applied in animations (37, 38). To classify

certain facial expressions, FACS uses Action Units (AUs) to pair

together different movements by facial muscles (39). A total of

46 main action units makes up FACS, through which 7 emotions

can be detected: happiness/joy, sadness, surprise, fear, anger,

disgust, and contempt. Traditionally, FACS required coding of

AUs by human coders. The training required to become a

certified FACS coder is lengthy, with over hundreds of hours

spent coding (40). In the last decade, amazing efforts have been

made to automate FACS coding to speed up the process and

alleviate human efforts. Through deep learning networks,

algorithms have been able to successfully track facial movements

and AUs, and subsequent emotion classifications (40–43).

Analyses on the accuracy of these algorithms have varied, with

some reaching nearly 90% accuracy while others fail to reach

50% accuracy (44–46). For this reason, there are many different
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TABLE 1 Summary of previous research on cognitive decline and depression and facial mobility.

Citation Article
Type

Sample Measures
included

Stimuli Main findings

Kunz et al. (9) Empirical 42 demented elders

54 healthy elders

Facial action coding
system

Pressure stimulation • Facial responses were significantly increased in
demented patients compared to healthy controls.

• Facial responses were closely related to the intensity of
stimulation for demented patients.

Jiang et al. (10) Empirical 258 healthy elders

235 AD elders

Vision-based facial
expression recognition

Images of object
scenes

• AD participants expressed significantly fewer positive
emotions, more negative emotions, and higher facial
expressiveness.

• Facial emotions expressed during the test allowed
effective differentiation of AD from healthy
participant.

Seidl et al. (11) Empirical 47 AD patients Facial action coding
system

International
affective picture
system

• Cognitive decline was related to increased facial
expressiveness.

• Apathetic symptoms appear to be specifically
associated with facial expression in AD.

Burton & Kaszniak
(12)

Empirical 13 elders with AD
21 healthy elders

Corrugator and
zygomatic
electromyography
(EMG)

International
affective picture
system

• Change in zygomatic activity was significantly
different between AD and healthy groups, with AD
subjects demonstrating an inverted pattern of activity
compared to controls.

Henry et al. (13) Empirical 20 healthy elders

20 AD elders

Expressive emotion
behavior coding
system

Neutral and amusing
video clips

• AD is associated with subtle changes in emotion-
expressive behavior.

• AD group displayed significantly lower positive affect
compared with the control group.

Chen et al. (20) Empirical 99 patients with
frontotemporal dementia
(FTD)
45 AD patients
37 healthy controls

Subjective emotional
experience

Film clips • Patients with AD and FTD tended to experience more
“mixed emotions” when watching emotionally
arousing film clips.

• FTD patients reported more positive and negative
non-target emotions, whereas AD patients reported
more positive non-target emotions.

Pressman et al.
(21)

Empirical 36 healthy adults
89 patients with a
neurodegenerative disease

Expressive emotion
behavior coding
system

Three short films • Participants with FTD tended to express less emotion
on their faces than they did through self-report.

• Differences within diagnostic subgroups.

Fei et al. (18) Review N/A Facial features analysis;

Facial features
classification

N/A • Automatic facial expression analysis has the potential
to be used for cognitive impairment detection in the
elderly.

• May be better to use a local method of facial
components alignment, employ static approaches in
facial feature extraction and facial feature
classification.

Fei et al. (22) Empirical 61 healthy and cognitively
impaired elders

Deep neural network-
based emotion analysis
system

KDEF dataset;
Chinese adults
dataset; Chinese
elderly people dataset

• The classifier was able to detect the cognitive
impairment based on the emotion data from the
testing dataset with a detection accuracy of 73.3%.

Katsikitis and
Pilowsky (32)

Empirical 21 Parkinson’s disease patients
20 depressed patients
12 healthy adults

Facial Expression
Measurement program

12 humorous
cartoons

• Depressed patients shown smaller mid-eyebrow
measures compared to the control group.

• Depressed and parkinsonian group had significantly
less smiles.

Gehricke and
Shapiro (33)

Empirical 11 depressed patients

11 healthy adults

Facial EMG Imagery situations • Facial muscle activity over the brow and cheek region
was reduced in depressed compared to healthy
patients during happy and sad imagery.

• Lack of social context differences in frowning may
suggest social disengagement and an inhibition of sad
facial expression.

Stolicyn et al. (34) Empirical 48 depressed participants Facial action coding
system

Delayed match to
sample task; Rapid
detection task;
Affective distractions

• Symptomatic participants were characterised by less
intense mouth and eyelid movements.

• Classification accuracy using cross-validation (within-
study replication) reached 79%.

Greden et al. (35) Empirical 29 healthy controls

37 depressed adults

Facial EMG Imagery situations • Patients with endogenous depression had EMG levels
that differentiated them from healthy subjects.

• Depressed participants had significantly greater
activity in corrugator happy and corrugator sad
imagery trials.

Jiang et al. 10.3389/fdgth.2024.1335289
algorithms available that use different methods to develop their

AFEA using FACS. Certain technology companies have created

“ready-to-use” platforms that can serve multiple usage and
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provide AFEA to a wide range of professionals. Such products,

like iMotions’s Affectiva and Noldus’ FaceReader, allow for

AFEA to occur with video recordings and without the input of
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human coders. These platforms all operate under the same rules

and mostly use similar algorithms to classify emotion expressions

(45). When using these algorithms, the choice of camera

hardware to record the data is important, as the resolution will

factor into the facial feature detection accuracy. Studies show that

cameras that have stable framerates, auto-focus, and allow access

to aperture, brightness, and white balance settings offer the best

results (47).1 The Microsoft Kinect RGB-D camera was also

found to accurately locate facial features with high resolution

(48–51). However, detailed specifications on the appropriate

hardware requirements have not been well established.

From a software algorithm perspective, most deep learning

networks utilize the Viola-Jones algorithm to detect the presence

of faces within an image or video. The Viola-Jones algorithm

works by first selecting Haar-like features in images (52). It then

creates an integral image and goes through a machine learning

algorithm that identifies the best features to detect a face by

creating classifiers. Based on which classifiers work the best on

training datasets with faces, the best performing ones are kept

and then used to discard non-faces in images through a cascade

of classifiers. In the last stage, an image is finally classified as a

human face. Upon successful face identification, platforms like

FaceReader make a 3D model of the face using the Active

Appearance Method (AAM) (53). The AAM can locate 500

points on the face and also analyze texture. Based on the

location of these points, the AAM can classify facial expressions

through the training of the algorithm with over 10,000 images of

faces. Once an expression is classified, these platforms can assess

the valence and arousal of the expression as well as the intensity

of all AUs involved during the expression (53).

Such models and platforms, while having clear advantages and

benefits of not needing any pre-programming, require commercial

licenses that involve regular payments. In addition, studies have

demonstrated their limited suitability to applications. Because

they are already pre-trained with some generic datasets of face

images, some biases were observed in specific populations (54).

While somewhat accurate at detecting AUs in the general adult

Caucasian population, some research has found that the accuracy

of these models drops significantly when applied to other

ethnicities and different age groups [(44, 54, 55), but see (56) for

new technology addressing AI bias of skin tone]. Therefore, their

usage cannot be applied universally.

Nonetheless, the core foundations of these platforms remain

unbiased prior to the training of the algorithms. Independent

implementation of a similar platform can be done by utilizing open

access deep learning networks. Through the training of the

network, a platform could hypothetically be applied to any specific

group and obtain accurate readings of facial expression. The

challenge, however, consistent with those of most AI/ML

algorithms, is the need for large-volume, diverse, and well-
1The Logitech HD Pro webcam C920 seems to obtain the best results

amongst webcams (45).
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representing datasets, which are known to be rare and limited (57).

To successfully train an AFEA, thousands of images need to be

presented in training to develop highly reliable classifiers. Without

such training, the algorithm’s accuracy will drop significantly, if not

be nonexistent. Furthermore, to apply an AFEA to the aging

population to detect conditions such as dementia and Parkinson’s

disease, an extensive collection of images of elderly people’s faces

would be necessary to train the algorithm. However, because these

clinical populations are less prevalent relative to healthy

populations, very few datasets are available (58). Among these few

are the University of Regina’s Pain in Severe Dementia dataset and

the UNBC-McMaster Shoulder Pain Expression Archive dataset.

Other larger datasets such as the FACES dataset contain a

subcategory with older adults but cannot be used on its own (57).

Despite the individual limitations, these smaller datasets could

potentially be grouped together to train an algorithm to work on

the elderly population. Interesting alternatives were explored by

researchers responding to the scarcity of available datasets. For

example, online videos, such as YouTube videos, with people

involved with Parkinson’s disease were used to train the AFEA to

recognize patterns of the disease without having to develop their

own dataset (59). This proved to be a promising training technique,

with an accuracy of over 82% for the detection of Parkinson’s

disease reported. Such a method could be used on all populations

that are underrepresented in large datasets (59). Therefore, the

biases seen in most algorithms can be minimized through re-

training using various databases and available images/videos.
3.2 EEG and emotion recognition

In parallel to the externally observable and accessible factors of

the facial mobility approach to cognitive assessment, measurement

and understanding of patients’ internal brain activity using EEG

data has been considered often as a reference information for

clinical evaluation. For this purpose, EEG has been extensively

studied in different populations exhibiting cognitive decline as

well as in demented patients (e.g., AD patients; see Table 2 for

summary of reviewed articles). As a result, there has been a

growing consensus within the scientific community regarding the

overall significance of this approach.

In resting-state EEG recordings, AD and MCI patients showed

an increased spectral power and functional connectivity in the

theta and delta bands, which are the slower frequencies of the

spectrum (60). Interestingly, participants in the control group

showed a decreased spectral power in these bands with advancing

age, thus indicating an inverse aging pattern in the AD and MCI

groups. AD participants also showed a decreased spectral power

and functional connectivity in the alpha band normally observed

in healthy aging. Meghdadi et al. (60) also reported that a [theta/

alpha] ratio was very good at discriminating AD from MCI and

controls, as exhibiting higher values was associated with increasing

cognitive impairment and disease progression. Similarly, early-

onset AD patients exhibited higher spectral power in the lower

frequencies as well as lower spectral power in higher frequencies

when compared to age-matched healthy individuals (61). High
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TABLE 2 Summary of previous research on cognitive decline and EEG.

Citation Article
type

Sample Measures
included

Stimuli Main findings

Meghdadi
et al. (60)

Empirical 26 AD patients
53 MCI patients
246 healthy controls

Resting state
EEG

N/A • Increases in both spectral power and coherence at slower
frequencies in ADs and MCIs.

• Decreases in spectral power at slower frequencies in HCs
with advancing age.

• Decreases in the spectral power and coherence at Alpha
frequency in ADs, but not in MCIs.

• Theta-to-alpha ratio demonstrated the largest and most
significant differences between ADs and HCs.

Özbek et al.
(61)

Empirical 47 early-onset AD patients
(EOAD)
51 late-onset AD patients
(LOAD)
49 young healthy controls
51 old healthy controls

Resting state
EEG

N/A • Increases in slow frequency bands and decreases in fast
frequency bands in EOADs.

• Frontal theta-to-alpha ratio best discriminated between
EOADs and young HCs.

• More widespread and severe electrophysiological
abnormalities in EOADs than LOADs and HCs.

Gaubert et al.
(62)

Empirical 314 preclinical AD adults Resting state
EEG

N/A • Increases in high frequency oscillations and decreases in
low frequency oscillations in frontocentral regions.

• Different EEG patterns modulated by the degree of
amyloid burden.

Palmiero
et al. (63)

Mini-
review

N/A Various N/A • Contradictory and mixed results.
• Increases in left prefrontal EEG activity for approach-

related and positive emotions.
• Increases in right EEG prefrontal activity for withdrawal-

related and negative emotions.

Kisley et al.
(64)

Empirical 51 healthy adults Tasked-evoked
EEG

Emotion-eliciting images • Overall larger LPP amplitudes elicited by negative than by
positive images.

• Linear decline of LPP amplitudes with advancing age
towards negative images

• Responses towards positive images remained age invariant

Tsolaki et al.
(65)

Empirical 11 young adults
11 elderly adults

Tasked-evoked
EEG

Photographs of fear and
anger facial expressions

• Larger amplitudes of the N170 early component in elderly
adults than in young adults.

• Less differentiation of N170 topographic maps between
the two negative stimuli in elderly than in young adults.

• More differentiation of topographic maps between the age
groups in ‘anger’ than in ‘fear’.

Güntekin
et al. (66)

Empirical 30 healthy controls
30 AD patients

Tasked-evoked
EEG

Photographs of angry,
happy, and neutral facial
expressions

• HCs: increased Theta power towards angry expressions,
and increased right hemispheric alpha power.

• ADs decreased Theta power towards angry expressions,
and decreased right hemispheric alpha power.

• Increases in alpha power towards angry than towards
neutral expressions.

Jiang et al. 10.3389/fdgth.2024.1335289
accuracy was obtained in discriminating the groups by computing a

[alpha/theta] ratio, especially when measured in the frontal regions.

Moreover, several factors related to different etiologies can explain

the clinical symptoms of AD, such as the level of

neurodegeneration and the accumulation of the amyloid-beta

peptide. Separating groups based on these two variables, Gaubert

et al. (62) reported that the most notable effects of

neurodegeneration on EEG measures were concentrated in the

frontocentral regions. This was marked by a rise in high-frequency

oscillations (i.e., higher beta and gamma power), along with a

decline in low-frequency oscillations (i.e., lower delta power). In

addition, when measuring changes in EEG features after taking

amyloid burden into account, the authors reported heterogeneity

in participants where the extent of amyloid-beta accumulations

can lead to differential spectral power profiles.

Numerous studies have also used EEG to explore brain activity

related to emotional processing (67–69). For instance, greater

activity in the left prefrontal cortex was found to be associated

with approach- related positive emotions, while greater activity in
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the right prefrontal cortex was associated with withdrawal-related

negative emotions (63). In a study by Kisley et al. (64), the

researchers examined the late positive potentials (LPP) [i.e.,

event-related-potentials (ERPs) reflecting enhanced attention to

emotional stimuli] in adults ranging from 18 to 81 years old.

They found that the LPP amplitudes towards negative images

declined linearly with age but remained consistent across ages for

positive images. Moreover, Tsolaki et al. (65), reported that

healthy older adults demonstrated larger N170 amplitudes than

healthy young adults when viewing facial images displaying

anger and fear expressions. Despite these prolific findings, few

studies have delved into the impairment of facial recognition in

elders with dementia using EEG. One recent study reported that

AD patients were shown to have lower theta power than healthy

controls when perceiving angry facial expressions (66), suggesting

the possible implication of EEG for assessing emotional

processing in patients with neurocognitive disorders.

Overall, there is an agreement that there is a decrease in EEG

activity in cognitive decline, with higher relative spectral power in
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the slower frequencies when compared to cognitively unimpaired

participants. However, the accessibility and the applicability of

EEG sensor devices limit the usage of EEG signals for cognitive

skill evaluation, especially for the cognitive decline measures for

the aging population. Thus, using findings in spectral power across

different frequency bands to validate features from facial mobility

could help in identifying which features from the automated facial

expression analysis are relevant in the remote assessment of

cognitive decline in the elderly population.
3.3 Heart rate and emotion recognition

In recent years, a strong effort has beenmade to develop contactless

technologies to monitor health through physiological measures. Among

them, rPPG has been used increasingly in the medical field to assess

heart rate (50) and further introduced in emotion analysis (see

Table 3 for summary of reviewed articles). Heart rate variability

(HRV) and heart rate (HR) as in beats per minute (bpm), while

typically measured through electrocardiogram, have successfully been

studied using PPG technologies (70, 74). Indeed, it is now believed

that HRV can serve as a basis for recognizing emotions, detect stress

and overall identify changes in the Autonomic Nervous System (71,

75). According to a systematic review conducted by Cheng et al. (72),

patients with dementia or neurocognitive disorders generally exhibit

lower resting HRV indices compared to healthy controls. However,

after distinguishing between different types of disorders, significant

differences in HRV values are observed only in patients with

Dementia with Lewy Bodies and MCI. On the contrary, there are no
TABLE 3 Summary of previous research on cognitive decline and heart rate.

Citation Article type Sample Measures
included

Lu et al. (70) Empirical 42 healthy adults Resting
electrocardiogram
(ECG);

Resting earlobe PPG

N

Benezeth
et al. (71)

Empirical 16 healthy adults Camera-based rPPG;

Contact sensor-based
PPG

V
pa
vi
an

Cheng et al.
(72)

Systematic review
and meta-
analysis

Dementia patients
healthy controls

N/A N

Castillo et al.
(14)

Empirical 2 elders with dementia
2 healthy elders

rPPG;

Manual FACS coding;

Video Magnification
(VM) algorithm

V
pa

Benedetto
et al. (73)

Empirical 24 healthy adults rPPG;

ECG

St
ta
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significant differences between patients with AD, Vascular Dementia,

and Frontotemporal Dementia and the healthy controls. Furthermore,

rPPG has been used in the study of pain and detection of engagement

(14, 51). Because physiological, cognitive, and affective events can

cause fluctuations in HRV, rPPG can effectively isolate these changes

and attribute them to various states (50). Software platforms, such as

the FaceReader, have been used in multiple research studies as the

heart rate monitoring tools. Great results have been found using this

technology, and it remains the most accessible and well-developed

rPPG on the market (14). However, accuracy of the physiological

monitoring with these software tools remains to be further validated,

and their individual usage as a cognitive assessment tool also requires

further testing (73).
3.4 Data fusion of heart rate, EEG and AFEA

In an effort to increase accuracy in emotion analysis, some studies

have paired rPPG measures with AFEA to establish meaningful

correlations between the facial expressions and the physiological

measures of emotions (49, 70; see Table 4 for summary of reviewed

articles). Interestingly, this pairing allows for both strong (i.e.,

surprise, fear, joy, etc.) and subtle (stress, contempt, etc.) affective

states to be identified. rPPG relies on the discrete changes in heart

rate to identify these subtle emotions, while AFEA is successful at

differentiating between strong emotions that elicit similar variations

in heart rate (77). This fusion of measures ensures that micro-

expressions, notorious for escaping AFEAs due to their lack of

intensity, are still detectable and accounted for (78).
Stimuli Main findings

/A • Correlations in the temporal and frequency domains
and in nonlinear dynamic analyses between HRV
indices derived from PPG and ECG.

• PPG can be a practical alternative to ECG for HRV
analysis.

ideo datasets of
rticipants watching
deos eliciting fear or
xiety

• High agreement between the HRV analyses derived
from the camera data and contact sensor.

• Strong correlation between the remote HRV feature
and different emotional states.

/A • Lower resting HRV in dementia patients for
parasympathetic functions and total variability
compared to HCs.

• Lower HRV in patients with MCIs and with Dementia
with Lewy Bodies compared to HCs.

• Lower HRV in patients with Dementia with Lewy
Bodies compared to ADs.

ideo datasets of pain
tients

• Correlation between automated FaceReaderTM HR
estimates and the optimized VM algorithm in baseline
and pain conditions.

• Correlation between non-verbal automated
FaceReaderTM pain scores and manual FACS coding.

• rPPG can be useful for the automated estimations of
HR values and non-verbal pain scores.

ress test (i.e., Go/No-Go
sk)

• Poor accuracy in FaceReaderTM rPPG compared to
ECG, especially for lower and higher heart rates.

• Lack of studies validating consumer devices and more
assessment should be conducted.
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TABLE 4 Summary of previous research on data fusion of AFEA, rPPG, EEG, and other measures.

Citation Article
type

Sample Measures included Stimuli Main findings

Monkaresi et al.
(51)

Empirical 23 healthy adults Heart Rate (HR);

Facial-Feature Based Detection of
Engagement

Essay writing • Accuracy of 75.8% when detecting engagement with
pairing facial features and HR in live recordings.

• Results were best when data fusion was used, over just
facial-feature based detection.

Pham and
Wang (76)

Empirical 24 healthy adults Implicit photoplethysmography
(PPG);

Facial expression analysis (FEA)

Video
advertisements clips

• AttentiveVideo achieved good accuracy (73.59%) on a
wide range of emotional measures.

• FEA works better for strong emotions (e.g., joy and
anger), the PPG channel is more informative for
subtle responses or emotions.

McDuff (77) Doctoral
Thesis

N/A Automated facial expression analysis;

Remote measurement of physiology

N/A • There are clear trends within the physiological
responses of individuals and the affect of the content
they are watching.

• Occurrences of positive valence expressions were
predictors of increased preference toward presented
stimuli.

Lei et al. (78) Empirical Healthy adults Automated facial expression analysis
(iMotions);
Galvanic skin response (GSR); Heart
Rate (HR)

Emotional videos • Higher correlation between emotion and GSR
compared to emotion and heart rate.

• Within a participant, there was no distinct pattern
found with the levels of the three parameters measured.

Nagasawa et al.
(79)

Empirical 35 health adults Electroencephalograph (EEG);
Automated Facial Expression
Analysis; Heart Rate (HR)

FilmStim database • Noncontact measurement features can be estimated
more accurately than EEG extracted features.

• Compared to using only facial expressions, combining
multiple physiological signals like HR enabled more
accurate estimations.

Sun et al. (80) Empirical 12 healthy adults Functional near-infrared
spectroscopy (fNIRS);

Electroencephalograph (EEG);

Automated Facial Expression
Analysis

Emotional videos • Results reveal a strong correlation between
spontaneous facial affective expressions and the
emotional valence.

• The affective states were estimated by the fNIRS +
EEG brain activity measurements.

• Joint utilization of facial expression and wearable
neuroimaging for improved emotional analysis.

Koelstra and
Patras (81)

Empirical 24 healthy
participants

Electroencephalograph (EEG);

Automated facial expression analysis

Film clips • A feature-level fusion approach is demonstrated to
improve upon single modality results.

• The differences are small and the number of samples
too limited to provide a definite answer on the
benefits of fusion.

Jiang et al. 10.3389/fdgth.2024.1335289
While heart rate monitoring and EEG measures have both

individually been paired with automated facial expression

analysis establishing correlations, only one recent study

investigated employing a multimodal method to increase the

accuracy in evaluating emotional states. Nagasawa et al. (79),

presented participants with emotion-eliciting videos and obtained

their facial recordings as well as EEG signals. Facial recordings

were later analyzed to extract physiological responses (i.e., facial

expressions, HR, and changes in pupil diameter). After

performing an estimation on all data, researchers correlated them

with participants’ subjective ratings. Results showed a stronger

correlation between the estimated arousal signal derived from

physiological responses and subjective ratings, compared to those

derived from EEG signals, and a similar trend was observed for

valence. Therefore, it appears that a multimodal measurement

does improve the accuracy of estimating emotions to some extent.

Establishing links between these three measures is imperative in

the study of emotions, mostly because they all serve different

purposes. If one of these factors can be measured, inferences can be

made about the state of the other two. EEG signals can establish

the reference value of emotions one is feeling, even if they are not

facially expressed (i.e., sadness while smiling). HRV and HR signals

are especially indicative of subtle emotions, as seen in prior
Frontiers in Digital Health 0839
literature (74, 76). AFEA performs well when detecting strong

emotions that are visible through facial movements. Hence, they are

all necessary in their own rights in emotion detection. EEG requires

extensive equipment and professional guidance to be accurately

performed, which is not feasible in the context of remote and

contactless emotion analysis, thus only rPPG and AFEA can be

used. Considering the established correlations between heart rate

variability and brain signals, EEG might not be indispensable in

this context. True emotions can be attributed based on heart rate

monitoring and therefore replacing EEG in emotion detection. In

the case of establishing these correlations with contactless

technologies, one would need to conduct a joint study to ensure

that past correlations that have been found in EEG signals, heart

rate monitoring and facial expression analysis still hold true in

contactless technologies (rPPG and AFEA).

In the case of AFEA and EEG specifically, several studies have

shown that EEG data can be used to classify different emotion

categories processed by participants. Wang et al. (82) reported that

the power spectrum was the best EEG analysis method to classify

the emotional valence (i.e., positive, or negative) of the stimuli

presented. In this study, higher frequency bands (i.e., beta and

gamma frequency bands) were shown to have increased robustness

at discriminating the valence component of emotions. In addition,
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a classification algorithm using the spectral power on different

channels was able to classify both the emotional valence and

arousal of the emotion processed by participants with a high

accuracy (83). These findings indicate that using a relatively basic

analysis method of the EEG signal such as spectral power can

provide insight into certain components of the emotions being

processed by participants, such as arousal and valence. For instance,

the combination of EEG features and spontaneous facial expression

leads to high accuracy in emotional valence classification (80). This

suggests a potential relationship between EEG activity and facial

expressions regarding emotional processing, and each of these

modalities can offer unique insights. Furthermore, when comparing

EEG and facial features on different dimensions of emotional

processing, it has been shown that both modalities perform equally

at classifying arousal, but that EEG was better at classifying the

valence of the emotional stimuli (81). Thus, it appears that facial

features can inform about the integrity of emotional processing

with an accuracy as good as EEG. This increases the confidence in

using automated facial expression analysis to assess emotional

processing and as it was discussed in the first section, it is possible

to extend this to the assessment of cognitive integrity.
4 Discussion

In the present review, we have highlighted three inter-

connected cognitive conditions across the elderly population that

lack easily accessible, non-invasive detection and progression

methods: dementia, MCI, and geriatric depression. More

specifically, facial expressions and emotional responses, clear

indicators of cognitive decline, have yet to be utilized in the

clinical assessment of these conditions. The findings reported

here show that there is a link to be made between facial

expression features and cognition by assessing emotional

processing. We therefore put forth the use of facial expression

analysis, augmented by physiological measurements, within the

established assessment of these conditions to enhance the

accessibility of treatment and progress tracking for the elderly.

As stated in the earlier sections of this review, the current state of

the methods used in this clinical area leads to the conclusion that the

remote assessment of automated facial expression analysis through

the presentation of emotionally charged stimuli with the purpose of

assessing cognitive integrity should be further investigated. Given

that we can observe changes in muscle tone and activity through

passive viewing of such images, the monetary and time cost of

cognitive evaluation could be significantly reduced. Although

promising, the links between facial expressions during emotional

states and cognitive health needs to be validated across various

conditions, particularly for the aging population where various levels

of cognitive deficits might be present. Hence, the validation of this

assessment with the use of EEG analyses will provide increased

confidence in the development of robust methods of remote

cognitive decline detection.

The potential avenues that stem from these technological

developments are not negligible. If facial expression analysis is

validated as a viable tool to as an indicator of the progression of
Frontiers in Digital Health 0940
cognitive health, the necessary technologies could be

implemented within the care centers (i.e.,: a nursing home, a

chronic care facility or a residence for seniors) where the elderly

are living. The monitoring of their conditions can therefore

occur daily via cameras, for example, placed in common living

areas and information can be automatically extracted and

analyzed by their healthcare provider. This significantly reduces

the need for mobility for the elderly to access continuous

healthcare. The movement towards automated and in-house

health monitoring is already underway, with many products now

available to connect individuals to their provider in the comfort

of their homes [see Philip et al. (84) for a review of the current

technologies for at-home health monitoring for the elderly].

Overall, the combined use of these technologies in emotion

recognition provides an increase in accuracy, for both strong and

subtle emotions and states. Through such methods, one could

potentially obtain true affective states while analyzing the expressed

facial movements in order to better understand cognition and

emotion processing. These technologies would allow us to move

health and medical monitoring into a completely automated phase,

in which minimal professional input is needed while profiting the

patients. Future work should focus on establishing valid and reliable

links between emotional facial expressions and brain activity as well

as testing the acceptance of such technologies in the elderly population.
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An automatic measure for speech
intelligibility in dysarthrias—
validation across multiple
languages and neurological
disorders
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1ki elements GmbH, Saarbrücken, Germany, 2Cobtek (Cognition-Behaviour-Technology) Lab, University
Côte d’azur, Nice, France, 3Centre de Mémoire de Ressources et de Recherche, Centre Hospitalier
Universitaire Nice (CHUN), Nice, France, 4Department of Neurology, Faculty of Medicine and University
Hospital Cologne, Cologne, Germany, 5IfL Phonetics, Faculty of Arts and Humanities, University of
Cologne, Cologne, Germany, 6GITA Lab, Faculty of Engineering, University of Antioquia, Medellín,
Colombia, 7Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany, 8Department of Circuit Theory, Czech Technical University in Prague, Prague, Czechia
Introduction: Dysarthria, a motor speech disorder caused by muscle weakness or
paralysis, severely impacts speech intelligibility and quality of life. The condition is
prevalent in motor speech disorders such as Parkinson’s disease (PD), atypical
parkinsonism such as progressive supranuclear palsy (PSP), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS). Improving intelligibility is not only an
outcome that matters to patients but can also play a critical role as an endpoint in
clinical research and drug development. This study validates a digital measure for
speech intelligibility, the ki: SB-M intelligibility score, across various motor speech
disorders and languages following the Digital Medicine Society (DiMe) V3 framework.
Methods: The study used four datasets: healthy controls (HCs) and patients with PD,
HD, PSP, and ALS from Czech, Colombian, and German populations. Participants’
speech intelligibility was assessed using the ki: SB-M intelligibility score, which is
derived from automatic speech recognition (ASR) systems. Verification with inter-
ASR reliability and temporal consistency, analytical validation with correlations to
gold standard clinical dysarthria scores in each disease, and clinical validation with
group comparisons between HCs and patients were performed.
Results: Verification showed good to excellent inter-rater reliability between ASR
systems and fair to good consistency. Analytical validation revealed significant
correlations between the SB-M intelligibility score and established clinical
measures for speech impairments across all patient groups and languages.
Clinical validation demonstrated significant differences in intelligibility scores
between pathological groups and healthy controls, indicating the measure’s
discriminative capability.
Discussion: The ki: SB-M intelligibility score is a reliable, valid, and clinically relevant
tool for assessing speech intelligibility in motor speech disorders. It holds promise
for improving clinical trials through automated, objective, and scalable assessments.
Future studies should explore its utility in monitoring disease progression and
therapeutic efficacy as well as add data from further dysarthrias to the validation.
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Introduction

Dysarthria is a motor speech disorder resulting from weakness

or paralysis of speech-related muscles (1). It leads to decreased

speech intelligibility, frequent communication breakdowns, and a

reduced quality of life. Speech intelligibility is reduced in many

types of dysarthria, including typical Parkinson’s Disease (PD)

(2–5), atypical parkinsonism such as progressive supranuclear

palsy (PSP) (4, 6, 7), Huntington’s disease (HD) (8, 9),

amyotrophic lateral sclerosis (ALS) (1, 10), and multiple sclerosis

(MS) (11, 12).

Reduced intelligibility of patients’ speech often leads to

communication difficulties and affects social participation and

quality of life in general (13, 14). Hence, communication deficits

and perceived intelligibility of their speech represents a major

concern for patients with motor speech disorders (15, 16).

Speech intelligibility is a construct depending on (a) a speaker

(sender) who produces an acoustic signal within, e.g.,

conversational speech, and (b) a listener (receiver) who receives

the signal and interprets it; the success of the interpretation is a

direct function of the intelligibility (17) (see also Figure 1).

Although a major concern, speech intelligibility is not necessarily

dependent on disease severity, duration, or motor phenotype and

patients’ own perceptions of the severity do not necessarily

reflect objective measures (18). Improved intelligibility is often a

primary goal of speech therapy, especially for individuals with

dysarthria, and can be a valuable endpoint for clinical research

and drug development (19).

Accordingly, measuring speech intelligibility is a clinically

relevant assessment for monitoring a dysarthric patient’s status

and tracking the effectiveness of treatments (20). The common
FIGURE 1

Conceptual model of intelligibility; being a receiver/listener-focused me
dysarthrias within the sender: articulation, phonation, resonance, prosody, a
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method for assessing speech intelligibility is perceptual evaluation

by trained personnel—often clinicians. Standard clinical

assessments for disorders associated with dysarthria, such as the

Movement Disorder Society Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS) (21), the Unified Huntington’s Disease

Rating Scale (UHDRS), and the revised amyotrophic lateral

sclerosis functional rating scale (ALSFRS-R) (22), are based on

clinician-rated questionnaires and assess, among other symptoms,

speech intelligibility. However, these assessments require patient

and clinician presence and can be subject to observer bias,

pointing to a need for more objective automated methods for

assessing speech disorders.

As the field of automated speech analysis is growing in clinical

research and healthcare applications, there is increasing potential

for digital automatic assessments of speech-related symptoms in

motor speech disorders (23, 24). Digital dysarthria assessments

are better suited for automated patient-administered screening or

stratification at low cost to accelerate clinical trials (24–26).

Furthermore, a high level of automation can easily scale up

outreach to draw unbiased and representative trial populations

beyond established clinical sites and hospital networks. In

addition, within clinical trials, digital markers deliver objective

high-frequency data to guide interventional clinical trial decision-

making and make evaluation more efficient (27).

Previous studies have demonstrated how commercially available

automatic speech recognition (ASR) systems could be a feasible

platform for automatic measures of intelligibility in patients with

motor speech disorders (19, 28). As commercial ASR systems are

developed majorly on typical—presumably non-dysarthric—

speech, the recognition accuracy of such a system should be an

inverse model of the intelligibility of the speaker (29–31).
asure and being affected by impaired speech subsystems underlying
nd respiration.
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However, although promising results have been published in

feasibility studies, there has not been any comprehensive

validation work including multiple pathologies and multiple

languages and following a systematic validation framework. The

Digital Medicine Society (DiMe) V3 framework (verification,

analytical validation, and clinical validation) (32–34) defines

validation cases that digital measures should comply with to be

considered fit-for-purpose for clinical trials and eventually

medical devices, such as digital diagnostics. This framework has

gained in importance in recent years and can be regarded as an

industry standard for digital measures in this field.

In this study, we present a validation following the DiMe V3

framework for a digital measure for intelligibility, the ki: speech

biomarker score for motor speech disorders intelligibility (ki: SB-

M intelligibility score). We validate the SB-M intelligibility score

in individuals with motor speech disorders, including PD, PSP,

HD, and ALS, in multiple languages, including German, Czech,

and Colombian Spanish, representing the Germanic, Slavic, and

Romance language families.
Methods

Data

Four different datasets were used in the analysis: (1) Czech data

from N = 39 patients with HD (35), N = 43 patients with PD (36),

N = 16 patients with ALS (37), N = 17 patients with PSP (6), and

N = 46 healthy controls (HCs); (2) Colombian data from N = 50

HCs and N = 50 patients with PD (38); and (3) German data

(39) from N = 98 patients with PD. For detailed information on

the initial cohorts, reading texts, and data collection process, we

refer to the initial publications cited; however, for better

readability for this manuscript, a short description will be given

in the following sections. Compare also Table 1.
Czech data
Participants read an 80-word long paragraph in the respective

language, which was phonemically balanced and well-established in

clinical research (3). Recordings were conducted in a quiet room

with low ambient noise, using a condenser microphone placed

approximately 15 cm from the subject’s mouth. Each participant

had one recording session with the speech-language pathologist,
TABLE 1 Demographic information of the samples and as essential clinical in

German Colombian

PD DE PD CO HCs CO
N 98 (32 F) 50 (25 F) 50 (25 F)

Age (years) 62.7 (±8.23) 61.02(±9.44) 60.98 (±9.46) 6

MDS-UPDRS, UHDRS,
NNIPPS, ALSFRS-R

37.43 (±10.89) 37.66 (±18.32) — 20

Clinical scale speech items 0.80 (±0.90) 1.34 (±0.82) — 0

ki: SB-M intelligibility score 0.82 (±0.18) 0.73 (±0.18) 0.86 (±0.11) 0

CO, Colombian Spanish; CZ, Czech; DE, German.

ALSFRS-R: note that ALSFRS-R has an inverse relationship to disease severity, unlike

items: MDS-UPDRS item 3.1, UHDRS dysarthria score, NNIPPS speech item, ALSFRS-R
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without time limits. Participants were briefed on the speaking tasks

and recording process. Each participant provided written informed

consent. The collection of the Czech data was approved by the

Ethics Committee of the General University Hospital in Prague,

Czech Republic (approval number 6/15 Grant GACR VFN).

Colombian data
Participants read 10 sentences of increasing complexity (38).

Recordings were collected in a soundproof booth at the Clinica

Noel in Medellin, Colombia, using a dynamic omnidirectional

microphone and a professional audio card. This study was in

compliance with the Helsinki Declaration and was approved by

the ethics committee of the Clinica Noel in Medellin, Colombia.

Written informed consent was signed by each participant.

German data
Participants read an 80-word long paragraph in the respective

language, which was phonemically balanced, well-established, and

taken from the German protocol version of the Dysarthria

Analyzer (40). Speech data were collected in the Department of

Neurology of the University Hospital Cologne in a room with

low ambient noise using a condenser microphone headset to

keep the mouth-to-microphone distance constant at

approximately 7 cm from the mouth. Each participant provided

written informed consent. The data collection was approved by

the local ethics committee (protocol code: 23-1461-retro).

After the reading task, patients in all three cohorts underwent a

range of clinical assessments (different for each study and cohort),

of which the following are important for this study: the MDS-

UPDRS (21), UHDRS (41), Natural History and Neuroprotection

in Parkinson Plus Syndromes—Parkinson Plus Scale (NNIPPS)

(42), and ALSFRS-R (22).
Automatic speech recognition and
intelligibility score

To calculate the automatic intelligibility scores, we first ran the

audios from the reading passage and reading sentences (in

Colombian Spanish) through SIGMA the ki: proprietary speech

processing library, which—besides other preprocessing and

feature extraction steps—also interfaces with commercially

available ASR systems; for verification, we selected two different
formation.

Czech

PD CZ HD CZ PSP CZ ALS CZ HCs CZ
43 (19 F) 39 (20 F) 17 (6 F) 16 (11 F) 46 (21 F)

3.0 (±9.92) 48.28 (±13.4) 66.76 (±4.8) 60.0 (±10.66) 51.54 (±14.05)

.88 (±10.92) 26.51 (±11.47) 67.12 (±26.7) 35.06 (±6.97) —

.81 (±0.63) 0.81 (±0.46) 1.88 (±0.7) 2.75 (±0.86) —

.81 (±0.07) 0.67 (±0.17) 0.54 (±0.28) 0.58 (±0.29) 0.85 (±0.04)

the other scales where higher scores mean greater severity. Clinical scale speech

speech item from the bulbar score.

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1440986
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Tröger et al. 10.3389/fdgth.2024.1440986
providers: Google Speech API (43) and Amazon Transcribe (44).

Based on the transcripts and the target reading texts, we

calculated the word error rate (WER, error between the number

of target words in the reading text and that in the ASR

transcripts) and word accuracy (WA, similar to [28]). From

those raw measures, we then derived an automatic proxy for the

intelligibility of the speech—the ki: SB-M intelligibility score.
V3 framework

The V3 framework established by the DiMe Society (32)

provides a unified evaluation framework for digital measures. V3

includes three distinct phases in sequential order: verification,

analytical validation, and clinical validation. For all the three

phases, different data have to be collected and statistically

analyzed to provide the necessary results.
Verification
Verification entails the systematic evaluation of sample-level

sensor outputs against prespecified criteria. The ki: SB-M

intelligibility score relies on ASR. Therefore, the most critical

part of the sensor output and preprocessing pipeline is the

automatic transcription of speech. The ki: SB-M intelligibility

score uses a proprietary speech processing pipeline leveraging

commercial ASR providers. To verify the performance at this

stage, we calculated intraclass correlation coefficients (ICCs) for

the WER and SB-M intelligibility score between Google and

Amazon ASR. Previous studies and our own work have shown

that error rates on a low level, such as phoneme error rate, do

not necessarily model losses of perceptual intelligibility (45). We

performed verification across the whole data sets except for the

German PD data due to a lack of consent from patients.

In addition, we computed ICCs between repeated tests for data sets

in which participants performed two repeated reading passages (all CZ

data sets). Although tests are executed in quick succession, this can

provide first insights into the retest reliability of the measures. Based

on the current state of the art in the field, we considered an ICC of

0.40 (fair correlation) acceptable for verification (46).
Analytical validation
Analytical validation evaluates performance to measure a

certain concept of interest (similar to construct validity). The ki:

SB-M intelligibility score is related to speech impairments

resulting in reduced speech intelligibility. For the analytical

validation, we compared the ki: SB-M intelligibility score against

established clinical anchor measures for speech impairments or

dysarthria in the respective populations. Depending on the

pathology, these measures differ: PD→MDS-UPDRS→ speech

item, HD→UHDRS→ dysarthria item, PSP→NNIPPS→ speech

item, and ALS→ALSFRS-R→ speech item (please note that in

direct comparison with the other clinical scales, the ALSFRS-R

has an inverse relationship to disease severity, meaning patients

lose points as the disease progresses). For the comparison with

the clinical anchors, we computed Spearman’s rank correlation
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coefficient between the ki: SB-M intelligibility score and the

respective speech impairment measure.

Clinical validation
Clinical validation evaluates the ability to validly measure

clinically meaningful change within an intended scenario,

including a specified clinical population. The ki: SB-M

intelligibility score is built to measure clinically meaningful

change in the intelligibility of speech in dysarthrias. To cover a

significant range of dysarthrias, we included clinical validation on

the following pathologies: PD, HD, PSP, and ALS.

We performed Kruskal–Wallis test group comparisons in the

ki: SB-M intelligibility score between the different diagnostic

groups (HC vs. pathology). In addition, we analyzed Spearman’s

rank correlation between the ki: SB-M intelligibility score and the

respective global clinical staging measure: MDS-UPDRS, UHDRS,

NNIPPS, and ALSFRS-R.
Results

Verification

For verification of the SB-M intelligibility score, we report

reliability between the SB-M intelligibility score based on two

different ASR methods and reliability between successive

performances of the reading task and calculation of the SB-M

intelligibility score.

Inter-rater reliability for ASRs
We compared different ASRs (Google and Amazon) as the

basis for the SB-M intelligibility score. For most of the

pathological groups, the ICC between both ASR methods showed

a good to excellent performance (ICC equal or above 0.30).

However, for Colombian PD data, the ICC was only fair and for

Czech PD poor; both were still highly significant. The overall HC

ICC (across all languages) was also only poor. For details,

compare Table 2. WERs showed similar trends to the final

intelligibility score, with the following pattern: HCs < PD <HC,

PSP = ALS.

Consistency
Consistency over a short period of time (i.e., the same day in

the same assessment reading the paragraph twice) was calculated

based on repeated paragraph reading in all groups except the

Colombian group, which read multiple sentences of increasing

difficulty and not one overall homogenous paragraph. The ICCs

for consistency were above 0.70, representing a good to excellent

agreement. Compare also Table 2.
Analytical validation

For the analytical validation, we compared the ki: SB-M

intelligibility score against established clinical anchor measures

for speech impairments or dysarthria in the respective
frontiersin.org
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TABLE 2 Agreement between two different ASR methods—Google Speech API and Amazon Transcribe—and the resulting SB-M intelligibility score and
raw word error rate.

HC overall HC CZ HC CO PD CO PD CZ HD CZ PSP CZ ALS CZ
Google SB-M intelligibility score 0.862 (0.182) 0.853 (0.039) 0.859 (0.200) 0.733 (0.273) 0.810 (0.073) 0.675 (0.173) 0.537 (0.281) 0.590 (0.283)

Amazon SB-M intelligibility score 0.968 (0.088) 0.900 (0.041) 0.980 (0.090) 0.917 (0.177) 0.882 (0.050) 0.775 (0.126) 0.666 (0.28) 0.714 (0.238)

ICC SB-M intelligibility score 0.295 (0.0) 0.180 (0.008) 0.283 (0.0) 0.486 (0.0) 0.290 (0.0) 0.702 (0.0) 0.841 (0.0) 0.869 (0.0)

Google word error rate 0.167 (0.184) 0.238 (0.038) 0.160 (0.2) 0.303 (0.276) 0.288 (0.084) 0.437 (0.154) 0.540 (0.231) 0.479 (0.237)

Amazon word error rate 0.058 (0.113) 0.198 (0.042) 0.032 (0.106) 0.121 (0.202) 0.22 (0.066) 0.372 (0.143) 0.425 (0.228) 0.364 (0.193)

ICC consistency — — — — 0.75 0.858 0.955 0.982

CO, Colombian Spanish; CZ, Czech.
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populations. We found significant correlations between the

intelligibility score and the respective dysarthria anchor score for

DE PD (r =−0.46, p < 0.01, d = 1.03), CO PD (r =−0.39, p < 0.01,
d = 0.85), CZ PD (r =−0.32, p < 0.05, d = 0.67), and CZ HD

(r =−0.37, p < 0.05, d = 0.80). Probably owing to the small

sample size, statistically we only found a trend in CZ PSP

(r =−0.42, p < 0.10, d = 0.92) and CZ ALS (r = 0.32, p = 0.21,

d = 0.68), although effect sizes were medium to large. Compare

also Figure 2.
Clinical validation

For the group comparisons, we found significant differences,

with the ki: SB-M intelligibility score being significantly lower for

the respective pathological group for all cohorts: HC CO > PD

CO (H = 17.425, p < 0.001, η2 = 0.17), HC CZ > PD CZ
FIGURE 2

Scatter plots for the correlations between the intelligibility score and respecti
DE PD correlation with the MDS-UPDRS speech item; CO PD correlation wit
speech item; CZ PSP DE PD correlation with the NNIPPS speech item; CZ H
with the ALSFRS-R speech item (note that ALSFRS-R has an inverse relatio
mean greater severity). DE, German; CO, Colombian Spanish; CZ, Czech.

Frontiers in Digital Health 0547
(H = 13.304, p < 0.001, η2 = 0.14), CZ HC > CZ HD (H = 44.437,

p < 0.001, η2 = 0.52), CZ HC > CZ PSP (H = 29.696, p < 0.001,

η2 = 0.46), and CZ HC > CZ ALS (H = 18.565, p < 0.001,

η2 = 0.29). For description, please see Table 2, and a graphical

overview of the group differences is provided in Figure 3.

Post hoc group comparisons revealed that the intelligibility

scores were comparable for the CZ HD, PSP, and ALS groups,

and the CZ PD and CO PD groups. However, German PD

showed significantly better intelligibility than the other patient

groups, actually performing on a par with the other language

HC groups.
Discussion

This study aimed to validate the ki: speech biomarker for

motor speech disorders intelligibility score (ki: SB-M
ve speech dysarthria clinical anchor score. From upper left to lower right:
h the MDS-UPDRS speech item; CZ PD correlation with the MDS-UPDRS
D correlation with the UHDRS dysarthria score; and CZ ALS correlation

nship to disease severity, unlike the other scales in which higher scores
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FIGURE 3

Boxplots of the SB-M intelligibility score for all groups. Blue, PD; white, HC; purple, HD, PSP, and ALS. Asterisks denote a significant post hoc group
comparison. CO, Colombian Spanish; CZ, Czech.
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intelligibility score) using the DiMe V3 framework, covering

verification, analytical validation, and clinical validation across

multiple languages and dysarthria pathologies. Making use of off-

the-shelf ASR systems, we took a state-of-the-art approach to

automatically measure speech intelligibility in dysarthrias (19, 28,

47). On a conceptual level, we went beyond the aforementioned

studies, as we followed the DiME society V3 framework for

assessing the readiness of digital measures for clinical research

and also included multiple pathologies from the dysarthria

spectrum as well as two different ASR systems.

We ran verification on the SB-M intelligibility score, calculating

it based on two different automatic speech recognition systems:

Google Speech API and Amazon Transcribe. Overall, the ICC

indicated good to excellent agreement between the two ASR

systems for most pathological groups. However, discrepancies

were noted in the Colombian PD and Czech PD data, in which

the ICC was only fair to poor, respectively. Poor stability of

ASR-based intelligibility measures has been reported previously,

especially for typical and mildly impaired severity groups,

specifically decreasing their ability to measure changes in the

early phases of motor speech disorders (19). The discrepancy

might be due to the rather small variance and very good speech

recognition, performing almost at an HC level of 0.80, whereas

HD, PSP, and ALS have intelligibility scores of 0.70–0.50, with

much bigger variances. In these cases, we assume that already

small word-level differences inflate discrepancies between ASRs

and might cause low ICCs. Especially with the advent of ever-

improving ASRs, which also push the needle in dysarthric speech

recognition alongside other underrepresented groups, this issue

has to be watched closely.

The validity of Google and Amazon ASRs as commercial

products naturally extends beyond pathological groups. Both ASR
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systems have shown high accuracy in recognizing speech from

healthy individuals, providing a strong benchmark for

comparison (48). However, ensuring robust performance for

underrepresented groups remains crucial for the broad

applicability and reliability of ASR systems in clinical and

everyday settings. On the level of ASR performance in dysarthric

speakers, our results compare well with other studies in the field.

Gutz et al. (19) found WERs of 10% for mild ALS-related

dysarthria to approximately 50% for moderate cases and

approximately 80% for severe cases. This is in line with our

results for the Czech ALS population, which can be classified as

moderately dysarthric based on the ALSFRS-R speech item and

shows a 40%–50% WER depending on the ASR system.

Consistency was assessed by comparing the intelligibility scores

obtained from repeated paragraph readings. Overall, the ICC values

indicated good to excellent consistency. This is an encouraging

result but has to be further investigated for repeated

measurements of the SB-M intelligibility score assessed longer

timeframes apart, such as a couple of days or weeks.

Analytical validation compared the SB-M intelligibility score

against established clinical anchor measures for dysarthrias

derived from the respective gold standard clinical staging scale.

Significant correlations were observed between the SB-M

intelligibility score and the respective dysarthria anchor scores

for the German PD, Colombian PD, Czech PD, and Czech HD

groups. Although specific items are not designed as stand-alone

assessments of dysarthria and even less as assessments of

intelligibility in principle, we could still demonstrate correlations

between the ki: SB-M intelligibility score and those measures.

These findings support the SB-M intelligibility score’s validity as

a measure of perceived speech intelligibility being associated with

dysarthria on the speaker side, as confirmed by traditional
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clinical assessments such as the MDS-UPDRS, NNIPPS, and

ALSFRS-R speech items or the UHDRS dysarthria score. Despite

medium to large effect sizes, statistical significance was not

achieved for the Czech PSP and Czech ALS groups, likely due to

smaller sample sizes. Future studies should aim to include larger

cohorts to increase statistical power and provide more robust

analytical validation.

Our approach to measuring speech intelligibility differs from

other research by using a direct measure based on ASR

performance, rather than classifying speech into different states/

classes of intelligibility. This research is sometimes carried out

using machine learning techniques (49, 50). This line of research

frames intelligibility as a classification problem, requiring labeled

training data to categorize speech into predefined stages. By

contrast, our method leverages the continuous output of ASR

systems as a proxy for intelligibility, offering multiple benefits.

This continuous measure might provide finer granularity and

sensitivity to subtle changes in speech quality over time or

between groups. In addition, using an off-the-shelf ASR

approach eliminates the need for additional machine learning

training, making it more accessible and easier to implement in

various clinical and research settings.

One of the major limitations of the analytical validation we

performed is that we cannot prove this further by comparing

with manual intelligibility ratings by either trained professionals

or human raters in general, as has been carried out by

Gutz et al. in ALS (19). Future studies should add this piece of

analytical validation, leveraging existing methods to rate

intelligibility by multiple trained and/or untrained raters (51). In

addition, our approach presents, in some respect, a black

box approach that directly evaluates dysarthria based on

intelligibility as perceived by a somehow non-transparent ASR

black box. There is a whole research tradition on using carefully

crafted acoustic features to estimate dysarthria and different

subsystems, as mentioned in the introduction. Pursuing a

hybrid approach that taps into ASR-based intelligibility and

traditional acoustic analysis features (e.g., pause rate, articulation

rate, pitch instability, or monotonicity) to evaluate patients’

dysarthrias would increase the impact of such research and be an

important next step.

Clinical validation demonstrated significant differences in SB-

M intelligibility scores between healthy controls and pathological

groups across all cohorts. This finding underscores the potential

of the SB-M intelligibility score as a discriminative tool for

identifying and quantifying speech impairments in individuals

with motor speech disorders. The consistent pattern of lower

intelligibility scores in pathological groups compared with

healthy controls across different languages and disorders further

supports the robustness and generalizability of the measure.

Nevertheless, the experiments presented here still only cover a

fraction of the total spectrum of motor-speech-disorder-related

dysarthrias or dysarthrias in general. However, our data set of

more than 250 patients across four different pathologies and

three languages covers a significant amount in this field of

research; for rare diseases such as ALS or atypical PD in

particular, datasets of that size are rarely reported. In addition,
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we acknowledge that we did not perform specific testing for

cognitive involvement, as the primary aim was to investigate

motor speech deviations that are the main contributors to

reduced intelligibility. Furthermore, we did not measure the vital

capacity of our patients; cohorts such as ALS and PSP may have

respiratory impairments that could significantly contribute to

reduced intelligibility.

In general, we observed better speech intelligibility in patients

with PD than in patients with HD, PSP, or ALS. One reason

could be that in the earlier stages of PD, articulation impairment

is not as pronounced, allowing for relatively clearer speech.

Conversely, HD is characterized by hyperkinetic irregular

articulation, and ALS and PSP are associated with hypertonia,

leading to imprecise consonant production (52). These speech

deficits in HD, ALS, and PSP significantly contribute to reduced

intelligibility. These imprecise consonant and uncontrolled

(sometimes spastic) irregularities in speech are known to hamper

speech intelligibility a lot more than monopitch and

monoloudness, which are typically observed in early PD. In

addition, the spread in intelligibility scores was a lot greater for

HD, PSP, and ALS than for PD, which was also in line with

studies on those diseases showing more heterogeneity in their

behavioral and speech impairment phenotype.

Between the separate PD groups (DE, CO, and CZ), we

observed comparable intelligibility scores in CO and CZ but the

German PD group was significantly more intelligible—actually

performing on a par with the other language HC groups. This

could be related to different recording setups in each study or a

general language difference in the underlying ASR performance.

ASR and the measures derived from it exhibit considerable

variability when applied to different types of dysarthria (53).

Articulatory precision has been identified as the most critical

factor influencing speech intelligibility, surpassing the impact of

prosody (54).

Finally, another limitation to this study is that we compared

intelligibility for audios collected from different studies with

different audio recording settings. Although all studies used

state-of-the-art microphones for audio recording and professional

recording setups—as recommended by recent guidelines (5)—

differences in audio recording setups can always play a role in

head-to-head comparisons; this is especially the case when

comparing our results from CZ directly with CO and DE.

Eventually, the accuracy of an automatic speech intelligibility

measure is highly dependent on recording conditions. Poor

recording environments, such as those with high background

noise or subpar microphone quality, can introduce significant

bias, leading to artificially low intelligibility ratings. This may

result in the erroneous classification of normal speech as

dysarthric. Furthermore, different recording devices and handling

methods introduce substantial variance, which can confound the

measurements and reduce their sensitivity to detect small

changes over time or differences between low dysarthria groups.

However, one of the most promising scenarios in which to

deploy this kind of technology is in at-home environments,

where the patient is monitored in everyday life, always using the

same device and with similar acoustic conditions. This approach
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has shown promising results (55). Future studies in this field

should adhere even closer to a standardized recording setup or

record with multiple devices—one being a standardized

microphone setup next to others.
Conclusion

Overall, this study provides a comprehensive validation of the

ki: SB-M intelligibility score for assessing speech intelligibility in

motor speech disorders across multiple languages and

pathologies. The findings support its reliability, validity, and

clinical relevance, highlighting its potential as a standardized tool

for clinical and research applications. Automated objective

measures of speech intelligibility, such as the SB-M intelligibility

score, can increase the efficiency and accuracy of dysarthria

assessments, reduce observer bias, and facilitate remote

monitoring. This is particularly advantageous for large-scale

international clinical trials, in which high-frequency data

collection and scalability are critical.

Future efforts should complement validation by investigating

the SB-M intelligibility score’s ability to monitor disease

progression and treatment efficacy. Longitudinal studies assessing

changes in the intelligibility score over time and in response to

therapeutic interventions could provide valuable insights into the

clinical utility of this digital measure.
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Introduction: Digital health technologies (DHTs) have the potential to alleviate
challenges experienced in clinical trials through more objective, naturalistic, and
frequent assessments of functioning. However, implementation of DHTs come
with their own challenges, including acceptability and ease of use for study
participants. In addition to acceptability, it is also important to understand device
proficiency in the general population and within patient populations who may be
asked to use DHTs for extended periods of time. We thus aimed to provide an
overview of participant feedback on acceptability of DHTs, including body-worn
sensors used in the clinic and a mobile application used at-home, used
throughout the duration of the Wearable Assessments in the Clinic and at Home
in Parkinson’s Disease (WATCH-PD) study, an observational, longitudinal study
looking at disease progression in early Parkinson’s Disease (PD).
Methods: 82 participants with PD and 50 control participants were enrolled at 17
sites throughout the United States and followed for 12 months. We assessed
participants’ general device proficiency at baseline, using the Mobile Device
Proficiency Questionnaire (MDPQ). The mean MDPQ score at Baseline did not
significantly differ between PD patients and healthy controls (20.6 [2.91] vs
21.5 [2.94], p = .10).
Results: Questionnaire results demonstrated that participants had generally
positive views on the comfort and use of the digital technologies throughout
the duration of the study, regardless of group.
Discussion: This is the first study to evaluate patient feedback and impressions of
using technology in a longitudinal observational study in early Parkinson’s
Disease. Results demonstrate device proficiency and acceptability of various
DHTs in people with Parkinson’s does not differ from that of neurologically
healthy older adults, and, overall, participants had a favorable view of the
DHTs deployed in the WATCH-PD study.

KEYWORDS

digital tool, patient feedback, Parkinson, wearability, wearable sensors

1 Introduction

Advances in digital technologies, such as mobile phones and wearables, are now

ubiquitous and have changed how we interact with others and the world around us.

For example, a 2020 poll showed that 90% of Americans own a smartphone and 21%

own a smartwatch or fitness tracker (1, 2). Beyond giving us the capabilities to post
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pictures, play games, or track our workouts, these technologies

have become particularly valuable in the health and research

sectors (3). In clinical trials, for example, as opposed to

traditional assessments, which are subjective and performed

infrequently, digital tools have the potential to provide a more

holistic view of disease symptoms (4–6), progression (7–9), and

response to treatment (5). Furthermore, using digital tools in

fully decentralized or hybrid clinical trials can reduce or fully

eliminate site visits, a documented barrier to clinical trial

participation due to patient and caregiver burden (10).

Although using digital health technologies (DHTs) may

alleviate some of the challenges faced in clinical trials, they often

come with their own challenges resulting in lower rates of

adaptation, particularly among older individuals. There is a false

assumption of device proficiency in the general population,

especially when working with a population of older adults, who

require greater assistance in relation to digital technologies than

younger populations (11). For instance, a nonexperimental study

design exploring attitudes about technology in older adults found

that older adults were willing to use technology but had negative

outlooks associated with technology creating inconveniences and

unhelpful features, thus making it harder to use and navigate

(12). Other factors that have contributed to low technology

adaptation in older adults include poor technology designs that

don’t consider the perceptual and cognitive abilities of older

adults, and poor training on use of the technology (13).

One disease consisting primarily of older adults where the use

of DHTs has been especially relevant in clinical trial measurement

is Parkinson’s Disease (PD). PD, the second most prevalent and

fastest growing movement disorder in the world, affects about

1% of adults 60 years and older (14). The cardinal features of the

disease are motor impairments such as tremor, rigidity, and

bradykinesia, however, the clinical features extend beyond that as

patients typically bring to light the cognitive and mood

impairments caused by the disease (15, 16). The current gold

standard for assessing progression in PD, the Movement

Disorders Society Unified Parkinson’s Disease Rating Scale

(MDS-UPDRS) (17), has limitations which pose challenges for

clinical trials. For instance, to properly power a phase II clinical

trial to see a change in the MDS-UPDRS studies must have large

sample sizes and long study durations (18, 19). The frequency in

which participants need to come into the clinic in traditional

clinical trials can also be a hurdle as clinical trials are typically

run in large, academic hospitals researchers are only capturing

participants that live in metropolitan areas or have the means to

travel to study sites (20). Using digital technologies in clinical

trials can not only give us better, more sensitive, measures of

disease progression but can also help us reach a wider range of

participants by reducing the number of clinic visits or potentially

shifting towards totally remote clinical trials.

One method to assess comfort with technology in older adults is

the Mobile Device Proficiency Questionnaire (MDPQ). The MDPQ

includes items related to comfort using devices, such as tablets and

smartphones, and has been found to be a highly reliable measure

of mobile device proficiency in older adults (21). The MDPQ could

serve as a tool to identify participants who may need more training
Frontiers in Digital Health 0256
in using digital technologies in clinical trials. Additionally,

researchers can evaluate patients’ first-hand experiences using

DHTs by harnessing the voice of the individuals participating in

research studies and clinical trials. Acquiring patient feedback early

and often, through panels, interviews, and questionnaires, can

provide insights related to the acceptability of these technologies

and help inform future study design.
1.1 Current study

The Wearable Assessments in the Clinic and at Home in

Parkinson’s Disease [WATCH-PD (4);] study was a one-year,

observational study exploring disease progression using DHTs in

early Parkinson’s Disease. Perceptions of the DHTs used in the

WATCH-PD study were captured from participants throughout

the study. In this paper we aim to give an overview of participant

feedback with the goal of providing a better understanding of the

feasibility and burden of using these technologies during

participation in longitudinal clinical trials. Specifically, we aimed to

report if there are differences between people with PD and control

participants in (1) device proficiency at baseline as measured by

the MDPQ and (2) overall impressions of using digital

technologies during participation in a 12-month longitudinal study.
2 Methods

2.1 Trial design

The Wearable Assessments in the Clinic and at Home in PD is

a prospective, longitudinal, multisite natural history study in people

with early, untreated PD (<2 yr since diagnosis) and neurologically

healthy matched controls. 82 participants with PD and 50 control

participants were enrolled at 17 sites throughout the United States

and followed for 12 months. Participants completed regular clinic

visits in addition to completing self-administered assessments of

motor and non-motor function outside of the clinic using a

mobile application twice monthly. A brief description is provided

below. For a fuller description, please see Adams et al. (4).
2.2 Participants

Participants were recruited from clinics, study interest registries,

and social media. We aimed to evaluate a population similar to the

Parkinson’s Progression Markers Initiative (PPMI) (22). Thus, at

enrollment, PD patients were required to be aged 30 or older,

within 2 years of diagnosis, untreated with symptomatic

medications [including levodopa, dopamine agonists, Monoamine

oxidase-B (MAO-B) inhibitors, amantadine, anticholinergics] and

not expected to require medication for at least 6 months at baseline,

a modified Hoehn and Yahr ≤2, and at least two of the following

symptoms: resting tremor, bradykinesia, or rigidity (must have

either resting tremor or bradykinesia as one of two symptoms); OR

either asymmetric resting tremor or asymmetric bradykinesia.
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Control participants were required to be aged 30 or older at the time

of enrollment, with no diagnosis of a significant Central Nervous

System (CNS) disease (other than PD), history of repeated head

injury, history of epilepsy or seizure disorder other than febrile

seizures as a child, or history of a brain magnetic resonance

imaging (MRI) scan indicative of clinically significant abnormality.

For both PD patients and controls, a Montreal Cognitive

Assessment (MoCA) score < 24 was considered exclusionary.
2.3 Study assessments

Each participant completed clinic visits at Screening/Baseline,

1, 3, 6, 9, 12 months. Clinic visits consisted of three core

components: (1) a comprehensive battery of clinician and

patient-reported outcomes measuring both motor and non-motor

function, (2) a set of motor assessments completed while wearing

inertial sensors distributed across the body, and (3) completion

of a custom-developed, self-administered mobile phone battery

designed to measure aspects of motor and non-motor function.

In addition to in-clinic assessments, participants were asked to

wear a smartwatch on the wrist of their most affected side for

7 days following each clinic visit and were asked to complete the
FIGURE 1

Digital devices evaluated in-clinic and at-home during WATCH-PD. Adapte
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same mobile battery they completed during clinic visits every

two weeks for the duration of the study. Due to COVID-19 a

subset of individuals did some of the in-clinic assessments

remotely and not all data were available.
2.4 Instrumented motor assessments

At each clinic visit, participants were instrumented with a set of

six Opal sensors (OPAL system, APDM, Inc., Portland, OR, United

States) placed on each wrist, around each foot, and one sensor each

positioned on the sternum and the lumbar area (Figure 1). The

Opal sensors contain 3-axis, accelerometers, gyroscopes, and

magnetometers, and were used to capture raw kinematic data

during the performance of the MDS-UPDRS Part III motor

examination, as well as a 5× sit-to-stand task, a 30 s standing

balance task (eyes open), a two-minute walking task and a two-

minute walking task under cognitive load (serial sevens).
2.5 Mobile assessment battery

As noted above, participants were provided with a provisioned

smartphone and smartwatch and completed a custom-designed
d from Adams et al. (4).
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mobile battery, developed by Clinical Ink (Clinical Ink, Horsham,

PA USA), at each clinic visit and every two weeks during their

participation in the study. The purpose of completing the mobile

battery during clinic visits was twofold. First, it provided a means

of orienting participants to the devices and tasks to be

performed. In addition, it allowed comparison of performance

measures derived from the mobile assessments to

contemporaneously collected measures acquired through the

Opal system and clinician and patient reported outcomes

completed during each visit. The mobile battery took

approximately 15–20 min to complete, and participants were

asked to complete the entire battery at once. They were allowed

up to an hour to complete the tasks, providing time for

unexpected interruptions or breaks. The battery consisted of

three core components, measuring both motor and non-motor

domains. First, participants completed a set of six, brief PRO

questions, providing responses on a 1–7 Likert scale with

questions related to current mood, fatigue, sleepiness, and

cognition, as well as the current severity of bradykinesia and

tremor (Table 1). Participants then completed a set of brief

cognitive and psychomotor tasks and a brief speech recording

battery. Finally, participants completed a brief instrumented

motor exam consisting a of a 1-minute walking task, a 30 s

balance task, and 20 s resting and postural tremor tasks.
2.6 Mobile device proficiency questionnaire

At baseline participants completed an abridged version of the

MDPQ focused on a subscale of Mobile Device Basics most

relevant to the tools being used in the current study. The MDPQ

Mobile Device Basics subscale is comprised of nine questions that

ask participants to rate their ability to perform tasks on a

smartphone or tablet device on a 1–5 Likert scale (1 = never tried,

2 = not at all, 3 = not very easily, 4 = somewhat easily, 5 = very

easily). The MDPQ was available for all participants at Baseline.
2.7 Wearability and comfort questionnaire

At baseline,Months 1, 6, and end of study (month 12), participants

were asked to take a questionnaire with quantitative questions related

to using the digital technologies both in the clinic and at home

(Supplemental 1). Quantitative questions relating to comfort, ease of

use, and burden were either on a Likert or categorical (Yes/No/

Neutral) scale. The Likert Scale was a 1 to 5 scale for both

comfort of devices (1 =Very Acceptable, 2 = Acceptable, 3 =Neutral,

4 = Unacceptable, 5 = Very Unacceptable) and ease of use (1 =Very
TABLE 1 Results of the mobile device proficiency questionnaire (MDPQ) in
Parkinson’s disease participants and controls at baseline.

PD (N= 82) Control (N= 50) P-value

MDPQ score
Mean (SD) 20.6 (2.91) 21.5 (2.94) 0.0962

Median [Min, Max] 20.0 [15.0, 25.0] 20.5 [15.0, 25.0]
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easy, 2 = Easy, 3 =Neutral, 4 =Difficult, 5 = Very Difficult). At the

end of the study, participants completed an exit questionnaire which

addressed qualitative questions related to the use of the devices, and

non-device questions related to length of study and compensation.

At baseline, the Wearability and Comfort Questionnaire was

available for 80 participants with PD and 49 controls, however

some questions were left blank which is reflected in our results.

At month 1, the Wearability and Comfort Questionnaire was

available for 72 participants with PD and 40 controls and at

month 12, it available for 80 participants with PD and 46 controls.
2.8 Statistical analysis

Descriptive statistics for the MDPQ total subset score and

Wearability and Comfort Questionnaire scores at Baseline,

Month 1, and Month 12 were reported for PD participants and

controls. A two-tailed t-test was performed between PD

participants and controls on the MDPQ to determine if there

was a difference in scores between the two groups where p < 0.05

was considered statistically significant. All analyses were

performed in R Statistical Software (v4.1.2; R Core Team 2021).
3 Results

3.1 Mobile device proficiency questionnaire

Table 2 summarizes the results of the MDPQ at Baseline. The

mean [SD] score in PD participants [20.6 (2.91)] was numerically

smaller than controls [21.5 (2.94)] but did not differ significantly

across the two groups (p = 0.10).
3.2 Wearability and comfort questionnaire

Figure 2 summarizes the results of the Wearability and

Comfort Questionnaire at Baseline, Month 1, and Month 12.
3.3 Baseline

For overall comfort of the devices, the majority of the PD

participants (75.9%) found the comfort of wearing the Opals to

be very acceptable. Positive feedback was also reported for the

mobile phone and smartwatch with the majority of participants

reporting the comfort of the devices very acceptable (71.2% and

78.8% respectively). Similarly, controls reported very acceptable

comfort for the Opals (77.6%), mobile phone (79.6%), and

smartwatch (77.6%).

In relation to the mobile assessment, 85.2% of PD participants

found the instructions on the mobile assessment to be clear and

easy to understand, but 81.5% found the text was not easy to

read. Likewise, 87.8% of controls found the instructions on the

mobile assessment easy to be clear and easy to understand and

79.6% found the text was not easy to read (Figure 3).
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TABLE 2 Description and location of assessments conducted with the digital devices used in WATCH-PDa.

Device Assessment Description Location
Wearable sensors Timed walk test The participant is timed while walking for a distance of 10 meters. The individual walks the 10-m

path back and forth, turning at the end of their path, for 2 min.
In-clinic

Repeat timed walk test with
serial sevens

The participant repeats the Timed Walk Test described above. While walking, the participant
performs a serial subtraction of sevens beginning with the number 100.

Sit-to-stand test The participant sits against the back of a chair and stands up as quickly as they can for 5
repetitions without stopping.

Postural sway The participant stands still, looking straight ahead for 30 s.

Smartphone
application

Symptom tracker The participant answers a 5-item survey on the phone including questions about mood,
sleepiness, thinking, tremor severity, and difficulty with movement.

In-clinic and remotely
biweekly

Symbol digit modalities test The participant is given a key that connects symbols to numbers. The participant is presented
with a symbol and must speak aloud the corresponding number.

Trail making test The participant must connect a set of dots as quickly as possible using the index finger on their
dominant hand while still maintaining accuracy.

Visuospatial working
memory

The participant is briefly shown four colored boxes. The participant is then shown a single-
colored box and must indicate if that box was in the previous set of four.

Finger tapping The participant performs rapid alternating finger movements by tapping two targets that appear
side by side using their index and middle fingers.

Fine motor test The participant is presented with a pink object and an outline. The individual must use 1–2
fingers to move and rotate the object into the outline as quickly as possible.

Speech assessment Participants must perform a sustained phonation task, a verbal articulation task repeating the
syllables “pa ta ka,” and a sentence reading task.

Smartwatch Timed walk test The participant must walk in a straight line, turning at the end of their path, for 1 min. In-clinic and remotely
biweeklyBalance test The participant must stand still with their arms at their side for 30 s.

Tremor task The participant must rest their hands in their lap for 10 s, then extend their arms out in front of
them for 10 s.

aTable 2 adapted from Adams et al. (4).

FIGURE 2

Impressions of using DHTs at baseline, Months 1, and 12 of PD and control participants.
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FIGURE 3

Feedback of mobile device platform at baseline from PD participants (n = 80) and controls (n = 49).

TABLE 3 Qualitative feedback from participants on use of smartwatch and
smartphone at-home in WATCH-PD.

Smartwatch Smartphone
“Too bulky”
“Sometimes when tremors are acting up,
the watch was uncomfortable”
“The strap interfered with writing and
using a computer mouse”
“Would prefer to wear it on non-
dominant wrist”
“The walking activity, when both the
phone and watch are used alternatively,
was confusing”

“The study phone was just a brick when
not used for sessions”
“Sometimes between uses the battery dies
so a call or text would be helpful”
“A call or text on my personal phone to
remind me about study tasks would be
helpful”
“Froze once so I had to reboot”

Kangarloo et al. 10.3389/fdgth.2024.1435693
3.4 Month 1

For overall comfort of the devices in Month 1, the majority of the

PD participants (82.1%) found the comfort of wearing the Opals to

be very acceptable. Positive feedback was also reported for the mobile

phone and smartwatch with the majority of participants reporting the

comfort of the devices very acceptable (74.0% and 80.8% respectively),

including acceptability of putting the smartwatch on at home (76.7%).

Similarly, controls reported very acceptable comfort for the Opals

(73.0%), mobile phone (70.0%), and smartwatch (72.5%), and 83.0%

reported the ease of putting on the smartwatch as very acceptable.

“Would be helpful to have study
reminders on the watch”
3.5 Month 12

For overall comfort of the devices in Month 12, the majority of

PD participants (74.4%) found the comfort of wearing the Opals to

be very acceptable. Positive feedback was also reported for the

mobile phone and smartwatch with the majority of participants

reporting the comfort of the devices very acceptable (65.0% and

73.8% respectively), including acceptability of putting the

smartwatch on at home (72.5%). Similarly, controls reported very

acceptable comfort for the Opals (66.0%), mobile phone (57.4%),

and smartwatch (68.1%), and 83.0% reported the ease of putting

on the smartwatch as very acceptable.

Highlights of the qualitative feedback related to the devices at

Month 12 was grouped and can be found in Table 3.
Frontiers in Digital Health 0660
Participants highlighted the need for a better watch strap, more

notifications on the mobile device to complete the battery, and

frustrations with technological issues.
4 Discussion

This work aimed to gather participant perceptions of the DHTs

used in the WATCH-PD study. This is the first study to evaluate

feedback and impressions of using common DHTs in both

controls and people with early PD in the context of a

longitudinal, observational study. We show that for an early PD
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population, experiences and comfort with technology are not

different from the general experience in neurologically healthy

older adults. Furthermore, there was an overall favorable view of

the usability and comfort of the digital technologies deployed in

the WATCH-PD study, both in-clinic and at-home.

Results from the MDPQ mobile subscale at baseline

demonstrated no significant differences in device proficiency

between the PD participants and controls. The results from the

Wearability and Comfort Questionnaire overall demonstrated

generally positive views on the comfort and use of the digital

technologies in this study. Consistently, over the 12-month

study duration, within both cohorts, most participants found

wearing the Opal sensors, mobile phone, and smartwatch either

very acceptable or acceptable regarding comfort. The ease of

putting on the Apple Watch band was also favorable throughout

the study, which was encouraging given that many of the PD

participants presented with tremor dominant symptoms

at baseline.

The study is not without limitations. The baseline MDPQ

scores combined with the highly positive results on the

Wearability and Comfort Questionnaire might suggest that the

study was biased towards recruiting people who were already

very comfortable with technology. This cohort was also

homogenous, potentially limiting the generalizability of our

findings. Thus, it is recommended that future work collect

similar measures in more diverse cohorts, potentially through a

fully remote study design to widen recruitment and include a

broader range of individuals. Moreover, there were a few

limitations which we could not control, including the maximum

size of the screen of the mobile device.
5 Conclusions

The current research in early PD, along with extant literature

on DHT usability and acceptability more generally, provides a

foundation for understanding the acceptability of using digital

tools in early PD clinical trials. Our work provides insights into

how older individuals, especially those with a movement

disorder, will adapt to using digital technologies in clinical trials.

A key to overcoming possible challenges with the use of DHTs

in older participants with neurological disorders is to incorporate

the patient voice by gathering regular formal and informal

feedback throughout study design and conduct. Furthermore, the

option of co-design with the end users provides an opportunity

to collect valuable feedback and create a collaborative experience

between researchers and patients.
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Introduction: Parkinson’s Disease affects over 8.5 million people and there are
currently no medications approved to treat underlying disease. Clinical trials
for disease modifying therapies (DMT) are hampered by a lack of sufficiently
sensitive measures to detect treatment effect. Reliable digital assessments of
motor function allow for frequent at-home measurements that may be able to
sensitively detect disease progression.
Methods: Here, we estimate the test-retest reliability of a suite of at-home
motor measures derived from raw triaxial accelerometry data collected from
44 participants (21 with confirmed PD) and use the estimates to simulate
digital measures in DMT trials. We consider three schedules of assessments
and fit linear mixed models to the simulated data to determine whether a
treatment effect can be detected.
Results: We find at-home measures vary in reliability; many have ICCs as high as
or higher than MDS-UPDRS part III total score. Compared with quarterly in-clinic
assessments, frequent at-home measures reduce the sample size needed to
detect a 30% reduction in disease progression from over 300 per study arm to
150 or less than 100 for bursts and evenly spaced at-home assessments,
respectively. The results regarding superiority of at-home assessments for
detecting change over time are robust to relaxing assumptions regarding the
responsiveness to disease progression and variability in progression rates.
Discussion: Overall, at-home measures have a favorable reliability profile for
sensitive detection of treatment effects in DMT trials. Future work is needed to
better understand the causes of variability in PD progression and identify the
most appropriate statistical methods for effect detection.

KEYWORDS

Parkinson’s disease, digital health technology, measurement reliability, clinical trials,
statistical power, disease progression, longitudinal data, simulation study

1 Introduction

Parkinson’s Disease (PD) is a slow-progressing neurodegenerative disease that affects

over 8.5 million people worldwide and is currently the fastest growing neurodegenerative

disease in the world (1). Hallmarks of PD include slowness of movement and rigidity, and

the impacts are felt in many aspects of everyday motor function including gait, eating,

speech, and dressing. Currently available PD medications address symptoms but do not

treat the underlying disease. Recent advances in drug development show promise for

disease modifying therapies (DMTs) but evaluation of these treatments is hampered

by outcome measures such as the Movement Disorder Society-Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS), which requires large sample sizes and/or long
01 frontiersin.org63
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term follow-up to detect modest treatment effects, especially given

that existing symptomatic treatment can mask underlying

progression (2). Digital at-home measures, which allow for more

frequent assessment, are a promising option for detecting

treatment effects in shorter timeframes and/or with a smaller

number of participants.

Digital measures are currently recommended as exploratory

endpoints in randomized controlled trials (RCTs) (3). For use as

primary and secondary endpoints, and regardless of whether the

measure is considered a biomarker or a clinical outcome

assessment, a better understanding of their reliability and

responsiveness to disease progression is necessary to determine

their optimal context of use and assessment schedule. Clinimetric

properties of digital tools have been assessed in a wide range of

studies to determine how they can be useful in PD (see

Supplementary Table 1 and references within). Multiple studies

of digital measures derived from at-home app-based assessments,

such as finger tapping and timed walk tests, demonstrate

associations with aligned in-clinic assessments and high test-

retest reliability [(4–7), Supplementary Table 1]. The reliability of

many of these measures is as good as or better than test-retest

reliability for MDS-UPDRS part III scores (8).

In current clinical trials for novel DMTs for PD, the MDS-

UPDRS or one of its subparts is the gold standard outcome

measure (3). Composed of four parts, each of which consists of

multiple items scored ordinally from 0 to 4 (where 0 is no

symptoms and 4 is severe symptoms), the items comprise

patient-reported outcomes and clinician assessments (9). Parts II

and III relate to motor function, measuring patient perception

and clinician ratings of motor impacts respectively. These parts

have excellent test-retest reliability as measured by intraclass

correlation coefficients (ICCs) across spans of 1−2 weeks [ICCs

for part II: 0.96, part III: 0.93 (8)]; however, it remains

challenging to detect changes in early disease burden, especially

in the face of symptomatic treatments (2). One explanation for

this apparent conundrum is that there are three fundamentally

different sources of variability in measurements of PD motor

function: measurement error, short-term clinical fluctuations, and

long-term variability in underlying disease progression.

On the timescale of days to a few weeks, there is no expectation

of change in underlying disease severity, yet measures vary from one

time point to the next due to measurement error and day-to-day

fluctuations in symptoms. Measurement error may be present in

clinician ratings due to, for example, interrater reliability (10, 11)

and in at-home digital assessments due to, for example, variability

in the setting in which patients use the digital devices assessments

(12). Also on a short time scale, clinical variability results from

day-to-day and diurnal symptom fluctuations including those

induced by levodopa and other symptomatic treatment

medications (13). These types of variability can be quantified with

the ICC, standard error of measurement (σm), and minimum

detectable change (MDC) in cross-sectional studies and have been

established for both in-clinic and at-home assessments.

In contrast, long-term variability in underlying disease

progression arises from PD being a heterogeneous disease. When

averaged over individuals, the progression of PD motor
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manifestations as measured by MDS-UPDRS or digital assessments

can be approximated as linear over the span of a year or two

(2, 14). However, PD’s motor manifestations do not change at a

constant rate across months within (2, 15) or between (16, 17)

individuals. The causes of inter- and intra-individual variability in

disease progression are not well known and may include differences

in underlying disease etiology, seasonality, stress, climate, and

changes in living situation (15, 16). Variability in progression rate is

harder to estimate because it is only apparent at long timescales;

however, it is detectable in longitudinal MDS-UPDRS data such as

those collected in the PPMI study (18) and has been disentangled

from measurement error by Evers et al. (15).

Digital assessments can help overcome the challenges posed to

clinical trials by all three of these types of variability by allowing for

more frequent measures. Including repeat measures reduces the

standard error of endpoint estimates such as the rate of change

from baseline. In contrast with clinician-observed outcome

assessments, which are typically captured infrequently due to the

burden and cost of clinic visits, the schedule of assessments for

digital measures can be driven by study designs that yield the

highest power for detecting the treatment effect.

Multiple outcome measures have been considered from

assessments completed using digital tools. These include

individual measures, such as number of taps or gait speed

derived from a mobile app-based assessment, and summary

statistics of a burst of the same assessment, such as the median

of 6 tapping assessments completed over the course of seven

days. There is a trade-off between these two outcome measures:

individual measures can be completed more frequently, but

median values of bursts have higher test-retest reliability (7).

While digital measures have been used in clinical trials as

exploratory endpoints, it remains unclear under what conditions

they will outperform in-clinic assessments and how best to

distribute assessments across the length of the trial to detect the

treatment effect. We undertook analyses to address these gaps with

the following objectives: (1) Estimate measurement error in a variety

of at-home digital assessments spanning gait, tapping, and tremor,

which are part of a neuroscience toolkit developed by Koneksa

Health for use in clinical trials. The measures, derived from raw

triaxial accelerometry sensor data (19), were applied to data

collected in the Objective PD sub-study of the mPower study (20).

(2) Simulate various DMT study designs that implement individual

measures and bursts using at-home digital assessments vs. in-clinic

MDS-UPDRS. We use the Gaussian state space framework

developed by Evers et al. (15), which explicitly models measurement

error and variability in disease progression rates. (3) Assess the

power to detect a treatment effect in the various scenarios by fitting

linear mixed effects models to the simulated measures.
2 Methods

2.1 Data

The data used in this study to estimate reliability of digital

assessments derive from the ObjectivePD sub-study (20), which
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recruited 44 participants (21 with confirmed PD diagnosis, 23

healthy controls). Participants were followed for 6 months and

seen in clinic three times at 0, 3 and 6 months. During the

entire 6 months, they were also asked to complete daily digital

health measures administered through the mPower mobile

application (20). These assessments consisted of (1) speeded

finger tapping alternating between the index and middle

finger, (2) a 30-s walk test with the phone in the pocket, and

(3) three tremor assessments including resting, postural and

hand-to-nose tremor. Each participant in the ObjectivePD

sub-study performed on average 182 tapping sessions, 147

gait assessments, and 134 tremor sessions throughout the 6

months study timeframe. Additional details of the

measures are available in prior publications (20, 21) and

Supplementary Table 2.
2.2 Reliability measure estimation

We estimated measurement error and test-retest reliability of

at-home digital measures using a linear random intercept model.

We assessed the test-retest reliability of measures derived from

individual at-home assessments and measures that summarize

multiple at-home assessments completed within a 7-day period

with their median. Specifically, at-home measurements

assessed longitudinally per participant were grouped by

fortnight, and a linear model was fit per digital measure with

random intercepts for participant and participant-by-fortnight

interaction. In contrast with conventional methods for

calculating test-retest reliability that rely on two parallel

assessments (e.g., assessments taken on the same participant

over a short period of time, or assessments collected from two

raters at the same point in time), assessment of test-retest

reliability with a longitudinal model uses all measurements

collected during the study and are robust to missing data (22).

Furthermore, test-retest reliability in this context can be

interpreted as the consistency between measurements collected

during any 2-week period. Implicit in this calculation is the

assumption that underlying disease progression between

observations within a fortnight will be minor (8). This analysis

was performed separately for measures that summarized bursts

and measures that represented individual assessments. Model

residuals were plotted to assess whether the model was an

appropriate choice.

For each fitted model, we extracted the measurement

error associated with a particular measure as the residual

variance, σ2m. Test-retest reliability, assessed with the intraclass

correlation coefficient, is extracted from the fitted model; it is

the proportion of the overall variability in a digital measure

explained by the participant effect and the participant-by-

fortnight interaction effect.

We calculated the minimum detectable change (MDC)

associated with each digital measure following Weir (23) as:

MDC ¼ 1:96� ffiffiffi

2
p � sm
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2.3 Model for simulating digital and in-clinic
data

We generated simulated study data from a Gaussian state space

model of PD progression and measurement (Figure 1) that showed

a good fit to longitudinal MDS-UPDRS data from the PPMI cohort

(15), see Supplementary Text for further discussion of the

modeling framework). In brief, unobserved underlying disease

severity, θ, is simulated for a study population of size n by

randomly drawing n initial values from a normal distribution.

Each participant’s disease severity is updated to the next time

step by adding the mean trend, τ, (i.e., the underlying disease

progression rate) plus Gaussian noise representing variability in

the progression process (σT). The rate of disease progression, τ, is

the only parameter that differs between placebo and DMT study

arms. The updating procedure is repeated for each participant

across the length of a simulated trial with Q observed timepoints.

Observed values, y, are then simulated from the time series of

underlying disease severity, θ, by adding normally distributed

measurement error, v, representing a combination of inter- and

intra-rater reliability and short-term fluctuations that are not

related to underlying disease progression. The updating process

is encapsulated in the following equations, for i [ {1, 2, . . . n}

and t [ {1, 2, . . .Q}.

yt,i ¼ ut,i þ vt,i, vt,i � N(0, sm)

ut,i ¼ ut�1,i þ wt,i, wt,i � N(t, sT)

The elements of clinical study design included in the

simulations were the number of participants per study arm,

schedule of assessments, and study duration. For simulations of

in-clinic MDS-UPDRS part III scores, all parameters were taken

from estimates described in Evers et al. (15).

For simulations of digital at-home measures, measurement

parameters were estimated from the mPower data (i.e., starting

mean, μs, starting standard deviation, σs and standard error of

the measurement, σm, as described above for individual

assessments). Bursts were simulated by drawing 6 individual

assessments per burst and taking the median. Unfortunately, we

lack empirical estimates of the trend and trend variance (τ and

σ2T) from at-home assessments because we do not have sufficient

longitudinal data on digital measures to disentangle measurement

error from progression variability.

Because τ and σ2T represent the trend and trend variance in

underlying disease progression, respectively, we began by

assuming that these are independent of measurement type and

scale with the mean value of a measure, which allowed us to

estimate them from the in-clinic measures. That is, τdigital = τclinic
(μdigital/μclinic) and σT,digital = σT,clinic (μdigital/μclinic). However,

while in-clinic and at-home assessments both measure

underlying motor function, they do so in somewhat different

ways, and we therefore relaxed this assumption and considered

the robustness of our results to the possibility that at-home

measures may be less responsive than in-clinic measures by
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FIGURE 1

Conceptual model and simulation framework. (A) Visual representation of the Gaussian state space model used for simulations. (B) Three stochastic
realizations of the model, using in-clinic MDS-UPDRS part III parameters (see Table 1). Underlying disease progression is represented by gray lines in
(B) and ut,i in (A) The variability in progression rates between individuals and across time within individuals arises from the variability in the trend,
simulated by dt,i and result in the unobserved underlying disease states (gray lines). The observed measurements (i.e., MDS-UPDRS scores, digital
assessment scores, etc.) are represented by yt,i in (A) and points in (B) The vertical distance between the gray line and its associated points
represents the variability induced by the measurement process, 1t,i . (C) The three main study designs considered: (1) quarterly clinic visits, (2)
bursts of 6 assessments 8 times per year, and (3) weekly individual assessments.
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reducing τdigital to varying degrees relative to in-clinic measures.

We modeled the effect, e, of a DMT as a reduction in the

progression rate, τ, such that the progression rate in the

treatment arm is eτ, where 0 < e≤ 1.
2.4 Study designs

We considered three core study designs (Figure 1C): (1) in-

clinic MDS-UPDRS every 3 months, (2) 48 digital at-home

assessments per year clustered into 8 bursts of six assessments

each, and (3) 48 digital at-home assessments per year evenly

spaced across the study duration. We additionally assessed the

robustness of our results to study designs with different

clustering of bursts by grouping the 48 assessments into 4, 6, 12

and 24 bursts.
2.5 Progression rate estimation from
simulations & power calculations

We used these simulations to determine the statistical power

of a clinical trial to detect treatment effect. Statistical power

measures the sensitivity of a study to an effect of interest and

is used here to compare the sensitivity of different longitudinal

study designs to detect reduced PD progression induced by a

DMT. After simulating data for placebo and treatment arms,
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we assessed the power to detect a treatment effect by fitting a

linear mixed effects model to the simulated observations, y,

with fixed effects for time, study arm and their interaction,

and a random intercept for participant. A first-order

autoregressive, AR(1), process was used to model the residual

covariance structure between observations within participants

following model selection. Model residuals were examined to

assess goodness of fit.

For every set of parameters, 1,000 simulations were run and

statistical power was calculated as the proportion of assessments

for which the coefficient of the interaction term for treatment-

arm-by-time had a p-value <0.05, as determined from a

t-distribution with the appropriate degrees of freedom using the

R package nlme (24). An additional criterion for trial success is

included in the supplement; in these simulations, in addition to a

p-value <0.05, the mean difference in change between the

treatment and placebo group across the study duration must

exceed the MDC for the measure of interest.
2.6 Software

ICC calculations were performed using Python 3.11 and

simulations and power calculations were carried out in R 4.2.1

(25). The code used for analysis and simulations is available

upon request.
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TABLE 1 Parameters used in main simulations (Figure 2).

Parameter MDS-UPDRS part III
score [values from
Evers (15)]

Digital at-home
step length
(meters)

τ 2.63 year−1 (13% year−1) 0.04–0.07 (8%–13% year−1)

σT 5.58 year−1 0.15 year−1

σm 3.94a 0.06b

aIndependent estimate from Martinez-Martin (8): 4.3.
bEstimated from mPower data.

FIGURE 2

Test-retest reliability per digital at-home measure and study design.

Lavine et al. 10.3389/fdgth.2024.1430994
3 Results

3.1 Reliability of at-home digital PD
assessments

We assessed the reliability of at-home digital measures

obtained from (1) a 30-s walk test (“gait measures”), (2) a

speeded finger tapping assessment (“finger tap measures”), and

(3) a tremor assessment (“tremor measures”). Figure 2

summarizes the test-retest reliability as measured by ICCs for

each at-home digital measure, separated by whether they were

considered individually or an average across multiple measures

taken within a 7-day period. Measurements obtained from bursts

are summarized by calculating the median value per burst. A

median of 6 measurements (mean = 4.6, standard deviation = 2.6)

were included in each burst calculation. Most measures obtained

from individual or burst assessments exhibited good-to-excellent

reliability (26). However, several measures showed poorer

reliability overall (e.g., log step time discrepancy, log tap interval

symmetry, and tap correctness, collected during individual

assessments; log tap interval change collected during burst

assessments). The modeling approach used for estimation

appeared reasonable based on Q-Q plots and other visualizations

of residuals (Supplementary Figure 1). The MDC varied across

measures, ranging from less than 10% of the mean (e.g., postural

tremor displacement) to over 150% of the mean (e.g., change in

tap interval) (Supplementary Tables 2, 3).

For burst assessments, test-retest reliability is calculated between
the median of measurements within each burst; for individual
assessments, test-retest reliability is calculated between the
individual measurements.
3.2 Power calculations for at-home
measures & study design implications

Power calculations were carried out by fitting a linear mixed

model to data generated from the Gaussian state space model.

Examination of model residuals suggested a reasonable fit between

the model used for effect detection and that used for data

generation (Supplementary Figure 2). A comparison between

mixed models with and without an autoregressive correlation

structure of order 1 AR(1) indicated a significantly better fit by

AIC values for the AR(1) model (Supplementary Figure 3), and

that model is used for all power calculations presented here.

Based on empirical estimates of measurement error in digital

and in-clinic assessments, and assuming that digital measures

progress at the same rate as in-clinic measures after rescaling to

account for different units, repeated at-home assessments
Frontiers in Digital Health 0567
consistently outperformed in-clinic assessments taken once every

3 months, regardless of whether the digital assessments were

implemented in bursts or assessed weekly (evenly spaced), during

a 1-year trial (Figure 3). For 2-year trials, at-home assessments

implemented in bursts perform similarly to in-clinic assessments

taken once every 3 months, assuming equivalent responsiveness.

As the responsiveness of digital measures (i.e., the trend, τ)

decreases compared with clinic MDS-UPDRS Part III total score,

statistical power decreases, regardless of the method of at-home

assessment (collected weekly or within bursts). However, for the

full range of parameters considered in these simulations, weekly

at-home assessments retained higher statistical power compared

to in-clinic assessments performed once every 3 months.
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FIGURE 3

Power curves comparing study designs incorporating in-clinic and at-home assessments. The top row shows results for 1-year long studies, the
bottom for 2-year. The left column models a DMT that reduces disease progression rate by 30% and the right column by 50%. In comparing DMT
with placebo cohorts, the effect size for calculating study power is the difference in slopes of the measure over time (MDS-UPDRS Part III score
for in-clinic assessments, Step Length during the 20-s walk test for at-home assessments), assessed using a linear mixed-effects model. Sample
size calculations for in-clinic assessments (red, dashed line) assume responsiveness to progression and measurement error estimated by Evers
et al. (15). The gray, dashed line represents the threshold for 80% power.
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Additionally, the temporal spacing of at-home measures had a

significant impact on statistical power. Study designs incorporating

weekly assessments (48 assessments per year) consistently

outperformed designs incorporating at-home bursts every 6

weeks (8 median bursts per year). Further, we found that a more

even distribution of assessments always increased power under

the assumption that the reliability was the same (Supplementary

Figure 4). For example, 48 individual assessments provided

greater power than 24 bursts of 2, which provided more power

than 12 bursts of 4, and so on.

Based on an 80% statistical power threshold, we can make

several different comparisons in sample size requirements

between different study designs. For example:

• Assuming a 30% progression rate reduction and 100%

responsiveness of the digital measure, a 2-year study would

require approximately 110, 350, and 350 participants per study

arm based on measures obtained weekly at-home, in 6-week

bursts at home, and in-clinic every 3 months, respectively.

• Assuming a 50% progression rate reduction and 100%

responsiveness of the digital measure, a 1-year study would

require approximately 110, 270, and 390 participants per study

arm based on endpoints obtained weekly at-home, in 6-week

bursts at home, and in-clinic every 3 months, respectively.
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We additionally considered the sensitivity of power calculations

to estimates of trend and measurement error. The results

indicated that in the presence of high variability in progression

rates (σ2T = 30 for MDS-UPDRS part III total score), in the

range estimated for PD (15), measurement error had little effect

on statistical power (Supplementary Figure 5). In contrast, when

progression rates had less variability (e.g., σ2T = 1 or 5), a more

precise measure (e.g., σ2m = 1 or 5) substantially increased

statistical power, especially for infrequent assessments. An

increase in trend error of 20%–40% increases necessary sample

sizes (Supplementary Figure 6), but its impact is less than that of

a 20%–40% decrease in measure responsiveness (Figure 3).
3.3 Responsiveness of at-home measures

The responsiveness of digital measures to changes in motor

function in PD is not yet well characterized; we therefore

consider the impact of reduced responsiveness of a digital

measure on the sample size needed for 80% power to detect a

30% reduction in progression rate in a treatment arm

throughout a 1-year study (Figure 4). Using at-home

assessments taken weekly would allow for detection of a

modest 30% reduction in the rate of disease progression within
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FIGURE 4

Sample size calculation results for a 1-year long DMT trial. The sample size for in-clinic assessments (red, dashed line) assumes responsiveness to
progression and measurement error estimated by Evers et al. (15). Sample size calculations for DHT trials assume measurement error as estimated
from the data (see Figure 2, Step Length) and consider a range of responsiveness of digital measures to underlying disease progression. The
simulations for the blue curve include 48 assessments per year. The cyan curve includes 8 bursts per year, with 6 assessments per burst.
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1 year with fewer than 910 participants per study arm even if the

digital assessments were only 60% as responsive to progression

as in-clinic MDS-UPDRS Part III total score. In the “ideal”

scenario for which digital assessments are as responsive as-

clinic MDS-UPDRS Part III, assuming a 30% reduction in the

rate of disease progression, such a study would require 320

participants per arm compared to 1,150 per arm in a study

that assesses MDS-UPDRS Part III in-clinic every 3 months.
3.4 False positive rate and minimum
detectable change

Finally, we considered the implications of this modeling

approach on the false positive rate. We found that while there

was no strong evidence of bias in the estimates (Supplementary

Figure 7), the probability of finding a significant difference

between study arms when there was none (i.e., type I error)

increased with both assessment frequency and trend variance

(σ2T, Supplementary Figure 8). One way to manage this is to

consider not only statistical but also clinical significance of the

results. Indeed, the problem of type I error is mitigated if a

simulation is considered to demonstrate study success if and only

if the following two criteria are met: (1) the p-value for the

difference in rates of change between treatment arms is <0.05

and (2) the estimated mean difference in the measure is greater

than the minimum detectable change (MDC) (Supplementary
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Figure 9), though as expected, the probability of study success is

reduced in this scenario.
4 Discussion

We estimated the reliability of a suite of at-home digital

assessments administered on a smartphone to measure motor

function in PD and performed simulations of clinical trial

designs to assess the ramifications of implementing in-home

digital health measures in DMT studies. In agreement with

estimates of the reliability of other digital PD measures, we

found the test-retest reliability for bursts of digital measures were

as good as or better than the reliability of MDS-UPDRS part III

scores. Interestingly, even though individual digital assessments

typically have poorer test-retest reliability than in-clinic or at-

home burst assessments, we found that a study design with

evenly spaced digital weekly assessments outperformed both

alternatives. This result suggests that the key challenge in

measuring PD progression stems not from a lack of sufficiently

sensitive and reliable measurement tools, but rather from the

inherent variability in PD disease burden at points in time that

renders infrequent measurement insufficient.

The result of superiority of frequent at-home assessments to in-

clinic assessments every 3 months is robust to substantially

decreased responsiveness of digital at-home measures compared

with in-clinic (Figure 3). However, the quantitative results
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regarding the necessary sample size were greatly affected by the

responsiveness, and this will be important in future trial design.

This is a difficult parameter to estimate as it requires

longitudinal data. Ongoing and future multi-year studies that

incorporate frequent digital measures in PD will be necessary to

quantify this [e.g., (6, 27, 28)].

The results of this study suggest that evenly spaced assessments

provide greater power than any configuration of an equal number

of assessments distributed in bursts. This may be understood in the

context of information theory; when compressing data using a

logically irreversible process, such as summarizing a burst of

assessments with a median, there is inherent loss of information

as measured, for example, by Shannon entropy (29). The

superiority of evenly spaced assessments also has implications for

the implementation of DHTs in clinical trials. Frequent, evenly

spaced measures require participants to consistently perform

digital assessments across long periods of time. Adherence to at-

home assessment regimens in clinical trials may decrease over

time [e.g., (30)], and methods for maintaining usage will be

important. Additionally, understanding the causes and impacts of

missing assessments will be important.

We note that the results assumed progression rates and

variability estimated in a patient population on standard of care

medications such as levodopa (15). DMT studies are often

longitudinal and conducted in patients in the early stages of PD

[e.g., (31, 32)], which can include treatment-naive participants.

Smaller sample sizes may be sufficient to detect DMT effects in

treatment naive individuals, in part because the estimated

progression rate is higher in the absence of medication (2).

However, while participants may be unmedicated at the start of

the study, over the course of a year or more they are likely to

start symptomatic treatment (33). This transition can be

challenging to account for in models of disease progression, and

whether inclusion of covariates such as levodopa equivalent daily

dose (LEDD) is sufficient to account for the changes induced by

starting treatment remains an open question. There is substantial

evidence that digital measures can detect levodopa effects [e.g.,

(20, 34, 35)], but as of yet, little evidence of detecting

progression (14). Further work is needed to identify what clinical

variables will be necessary to disentangle temporary fluctuations

from underlying disease progression.

A key assumption in this study is that progression in both the

treatment and placebo groups, while highly variable, is on average

linear with time. Varying rates of progression with time could

occur due to intrinsic characteristics of the motor function being

measured, a learning effect, or time-dependent treatment effects

of a DMT. Prior studies provide evidence for two of these: linear

models in time are suitable for some but not all digital measures

(14), and learning effects can be detected in at-home measures

[e.g., (36, 37)]. As there are no approved DMTs for PD, the

importance of time-dependent treatment effects remains

unknown, but it is considered in other similar modeling

assumptions (38) and is likely relevant. For measures whose

progression cannot be approximated as linear, a study design

that facilitates treating time as a discrete variable, such as bursts

of assessments, may be beneficial. It should also be noted that
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this study does not model subpopulations within PD that may

have different mean progression rates (16). Further work is

necessary to understand how this type of heterogeneity in a

population may affect the benefits and study design of digital at-

home assessments. Additionally, data collected at higher

frequency can require consideration of autocorrelation and

temporal confounders (39).

One drawback of the mixed effects modeling approach taken in

this study for power calculations is the possibility for false positive

results. While estimates of trend using linear mixed effect models

are largely insensitive to model misspecification (40), the

standard error of the fixed effects may be underestimated in the

presence of misspecified random effects such as autocorrelation

(41, 42). The increased false positive rate with frequent sampling

observed in the simulations can be understood in the context of

the mismatch between the data generation process (i.e., a

random walk with trend) and the model fitting procedure. As

described here, one solution to this problem is to require not

only statistical but also clinical significance. However, this comes

with a loss of power to detect small changes, especially in shorter

time windows. Analysis methods tailored to data that arise from

underlying processes with this type of autocorrelation may be

important in this context (43).

Future work to better understand the biological mechanisms

underlying the progression of motor symptoms in PD can

inform choices of models used for detecting treatment effects. In

this study, the data generating process was chosen because it has

been shown to parsimoniously explain heterogeneity present in

the disease’s dynamics in PPMI data (15), and therefore seems a

reasonable candidate for a mechanistic model. The model

assumes the mean underlying progression rate is the same across

all patients, which we know to be an oversimplification. For

example, certain genotypes progress more quickly than others

[e.g., (44)]. One outcome of this assumption is that the trend

variance reported by Evers (15) may be an overestimate as it

accounts for not only random variation across time but also

consistent variation between individuals that exists among the

PPMI patients.

The mixed model framework used for effect detection has been

used in longitudinal assessments of PD progression, including in

PPMI data (2). However, while the model may appear to be a

reasonable fit based on standard examination of residuals, our

results suggest that care needs to be taken to avoid

overconfidence in detection of small effects. Given the trade-off

between power to detect treatment effect and the false positive

rate that results from fitting misspecified models, future work to

investigate the underlying mechanisms of motor function

progression and the empirical autocorrelation structure of PD

measurements will be important. Digital measures may provide

an important window into the nuances of PD progression and its

variability and allow for empirical examination of temporal

correlation structures in data that can help determine optimal

analysis methods (20). Given the high and increasing burden of

PD around the globe, therapies that can stop or slow its

progression will benefit millions of people (45). As of 2023, there

were 63 ongoing clinical trials for PD DMTs, including 32 phase
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II and 6 phase III (46). For these trials to be successful, in addition

to an effective therapeutic agent, they must utilize measurements

that allow for detection of treatment effect in the face of the high

degree of variability inherent to PD progression. This study

demonstrates that frequent measures enabled by digital health

technologies that can be used consistently in patients’ homes

may increase the power to detect treatment effects in smaller and

shorter trials.
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The current state of wearable
device use in Parkinson’s
disease: a survey of individuals
with Parkinson’s
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Background: Interest in wearable device use in Parkinson’s disease (PD) has
grown rapidly with many compelling studies supporting diagnostic and
therapeutic uses. Concurrently, consumer devices have proliferated and their
role in health and wellness has expanded. However, incorporation of
consumer and medical wearable devices into medical care has in our
experience been limited.
Objective: We sought to assess the current state of consumer and medical
wearable device use among those with PD and to understand the factors
impacting their rate of use.
Methods: An anonymous online survey of individuals with PD in the US was
conducted from July 9th, 2023, to Jan 8th, 2024, with 298 completed
responses collected.
Results: Greater than 90% of respondents were interested in new technologies
with 67% having had experiences with consumer wearable devices. Only 24%
were using consumer devices for disease management and many functions
were not fully utilized. Medical wearable device use was very limited with only
8% having used a device. Users of both consumer and medical wearables
generally reported low barriers to use despite continued strong perceptions
on the importance of cost, impact on care, comfort, and other factors.
Conclusion: This study demonstrates that for the clinical management of PD
there is limited use of wearable devices even among individuals who are
motivated and experienced with consumer wearable device use. Additionally,
it is suggested that substantial barriers to medical wearable use are likely
originating from the provider and/or systemic level.

KEYWORDS

Parkinson’s disease, wearable, clinical practice, survey, barriers to use, consumer
devices, medical devices

Introduction

Parkinson’s disease (PD) is a neurodegenerative condition which results in abnormal

movements, cognitive changes, and autonomic dysfunction. Diagnosis and management

are made challenging due to inherent fluctuations in the severity of disease

manifestations as well as dynamic changes that are induced by treatment. Standard

clinical practice can only capture brief snapshots of the patient’s experience and relies

heavily on subjective report and quasi-objective exams, thus ability to optimally

intervene is limited (1–4). Recently, there has been considerable interest in addressing

these challenges through the creation of objective and continuous measures which hope
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to allow for better understanding of each person’s unique disease

state and thereby improve treatment and reduce disability (5).

Wearable devices have been of great interest in healthcare due

to their ability to contain imbedded sensors that help track various

physiologic signals. Research in wearables in Parkinson’s disease

has been focused on the evaluation of motor features, and

various devices have data supporting their ability to detect sub-

clinical motor features, disease state fluctuations, disease

progression, and to assist with therapeutic adjustments (6–9).

However, various physiologic signals such as sleep (10), heart

rate variability (11), cerebral oxygenation (12), and many others

have been studied in PD with wearables. Studies in this area have

rapidly increased over time with PubMed entries for “wearable”

AND “Parkinson’s Disease” going from a mere seven in 2012 to

170 in 2022. To help researchers and clinicians understand this

landscape, many excellent reviews are available (13–18).

However, collection of valid data alone is not sufficient to

change practice. The patient’s perspective on device usability and

utility is critical, and this has not been forgotten. Many studies

of specific devices have included patient perspectives on features

of interest, usability, and barriers to use (19–21). Additionally,

more conceptually focused studies using surveys and focused

groups have identified key features of interest such as wearability,

ability to provide feedback, and clinical accuracy (22, 23). All this

research has ultimately culminated in several medical wearable

devices that are validated, designed with the patient in mind, and

cleared for clinical use.

Concurrent with this explosion of research and approval of

medical wearable use, there has been substantial adoption of

consumer wearable devices for health tracking and lifestyle

management. Devices such as the Apple Watch and Fitbit were

in 2020 estimated to be used by around 25%–30% of the US

population for health monitoring (24). These consumer devices

also appear to have merits in PD as they offer the ability to

potentially improve medication adherence, encourage and track

physical activity, document symptoms, monitor sleep, and collect

various other forms of information.

However, despite the extensive research on validation, the

understanding of the factors important to patient users available

to device manufacturers, the widespread use of consumer

wearable devices, and the availability of approved medical devices

for clinical use, real-world clinical data appears to be scant. In

our clinical experience and after discussion with colleagues, few

individuals are using these devices. While issues with the payor

model for device use, lack of clinical impact, poor tolerability for

patient and clinician users, and general disinterest in new

technologies are commonly mentioned as factors playing a role,

the evaluation of these barriers has not been extensively

evaluated in routine clinical care.

We therefore sought to conduct a comprehensive evaluation of

the current usage of wearable devices in PD, and to go beyond the

controlled research setting to understand the real-world usage of

wearable devices both consumer and medical. Additionally, we

wanted to understand what factors were currently playing a role

in current device usage and whether these were the same as

those reported previously.
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Methods

An anonymous online survey was conducted from July 9th,

2023, to Jan 8th, 2024. Respondents were self-identified individuals

with PD and were requested to be at least 18 years of age.

Wearables were defined in this survey as any technological

accessory which is affixed to the surface of an individual and

which provides information on their movements (monitoring

devices). A medical wearable device definition was not supplied,

but options were explicitly listed (Apple Watch with StrivePD,

PKG, KinesiaU, PDMonitor). Of note, given that StrivePD is an

application that functions on a consumer device, we asked users

of StrivePD to answer both as consumer wearable device Apple

Watch users and as medical wearable device users.

The survey was designed by the study team with input from

other specialist clinicians. Question topics included basic

demographics, disease state, understanding and use of wearable

devices (divided into consumer and medical device categories),

general perceptions as related to theoretical devices, and general

barriers to use. Survey questions were generally multiple-choice

questions, but free response sections were provided in many cases

to allow participants to provide answers that were not accounted

for by the survey developers (Supplementary Survey Document).

Recruitment was conducted by collaborating groups who

distributed study-related information and a link to the survey.

The American Parkinson Disease Association (APDA) and the

Washington State Parkinson Disease Registry participated in

participant outreach (25).

Interested individuals followed the link and were brought to the

online REDCap electronic data capture tool. The first page of the

survey provided potential participants with information about the

study and associated risks and benefits. Interested individuals would

electronically confirm that they consented to participate, which

would then allow them to proceed to the survey content (26, 27).

After survey completion, PD disease status nor any other

characteristics of participants were verified. It was determined that

verification would have limited the response rate and would have

introduced more risk of identification and more bias as the systems

available for use would tie individuals to specific medical systems.

Additionally, it was believed that false representation was unlikely,

as the survey was targeted, a response required substantial effort,

and no notable financial incentive was present for respondents.

After survey closure, data processing and statistical analysis were

performed using the R statistical analysis platform. Targeted sub-

group analysis evaluating the effects of demographic and disease

features on perceptions and experiences was performed post-hoc.
Results

Survey response, demographics, and
disease state

A total of 346 responses were collected with 298 completed

surveys (86%). The response rate was unknown but was
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suspected to be very low given the size of the APDA distribution

network. Only completed surveys were included in the analysis.

Responses came from individuals living in 28 states with the

greatest number coming from Washington State (63%)

(Supplementary Table S1). A limited set of demographic features

were recorded (Table 1). Disease related symptoms and

characteristics varied encompassing both early and late stages of

disease (Supplementary Tables S2, S3).
TABLE 1 Respondent demographic characteristics (n = 298).

Characteristics Count Percentage

Age
<40 1 0.3%

40–50 9 3.0%

50–60 38 12.8%

60–70 110 36.9%

70–80 120 40.3%

80+ 20 6.7%

Gender
Male 128 43.0%

Female 169 56.7%

Prefer not to answer 1 0.3%

Residential setting
Suburban 155 52.0%

Urban 92 30.9%

Rural 51 17.1%

Care setting
Private/Non-university 180 60.4%

Tertiary/Academic 77 25.8%

VA/National Gov. 25 8.4%

County/Public 16 5.4%

FIGURE 1

Respondent interest, knowledge, or experiences with wearable device use. F
interested were combined, neutral or below were not incorporated. All oth
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Technology and consumer device
experiences

Regarding technology and wearable device use, there was a

high degree of interest in new technologies with 91% of

individuals either very or somewhat interested. Knowledge

about and use of wearable devices was also high with 87%

knowing about wearable devices, 67% having used a device,

and 56% currently using one (Figure 1). Most respondents

knew about smart watches and fitness trackers (Supplementary

Table S4); the Apple Watch was the most used and most

preferred consumer device among respondents (Supplementary

Table S5). Device use retention rates were also high with

84% of those with experience with wearable devices continuing

to use a device. Among all device users, device usage

time was very high with 90% using their preferred device

nearly always or at least all the time while awake

(Supplementary Table S6).
Consumer wearable device feature use

However, use of wearable devices for the management of PD

was low at only 24% of respondents. Among those using

wearable devices, individuals were using them most to track

physical activity, medication timings, and sleep (Figure 2). Post-

hoc subgroup analysis of Apple Watch wearable device users was

performed to evaluate whether device capability limitations were

playing a large role in lack of management related use, however

findings mirrored those seen among all device users

(Supplementary Figure S1).
or the interested in technologies category answers of moderately or very
er questions were yes or no responses.
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FIGURE 2

Use of specific consumer device functions for the management of PD. Calculated as the percentage of respondents using each function from the
subset of respondents who affirmed that they were using consumer wearables to manage PD (n= 72).
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Consumer wearable devices effect on
disease management

Among those using wearables to manage PD, 76% reported a

positive impact on personal management of PD (38%

substantially, 39% somewhat), 24% reported that use was not

particularly impactful, and no negative responses were recorded.

Impact on medical team management of PD was felt to be not

particularly impactful by 57% of respondents, though

substantially positive (10%) or somewhat positive (33%)

responses were reported, and no negative responses were reported.
Consumer wearable device barrier to use

Among survey respondents, current device use was limited

most frequently because of lack of knowledge about the abilities

of wearable devices and by cost (Supplementary Table S7). More

generally, individuals were also surveyed on the use of

smartphones and other applications for PD monitoring with 26%

reporting the use of an application.
Medical wearable device usage and barrier
to use

Medical wearable device use among respondents was 8%

(n = 23). There were 19 StrivePD, 3 PD Monitor, 1 PKG, and 0

Kinesia users. Device use frequency was variable and many

limitations on use were noted (Table 2). Impact on personal

management was 26% positive (9% substantially, 17% somewhat)

and impact on medical team management was 30% positive (4%

substantially, 26% somewhat) (Supplementary Table S8).
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General wearable interest and limitations

To separate perceptions and experiences tied to current

consumer or medical devices, we asked about two similar

theoretical devices. We described a version which provided

information to the patient but did not directly provide it to

the healthcare team (Type A) and one that provided

information directly to both (Type B). For both versions,

individuals were interested in using such a device

(Supplementary Figure S2). Additionally, among those who

would consider using the devices greater than 90% of

respondents were willing to use either device at least all day

while awake (Supplementary Figure S3). However, only 49% of

those interested were willing to pay for a device if not covered

by insurance. Of those who were willing to pay for such a

device, the median one-time payment was $200 for both and

the mean $252 (Type A) and $259 (Type B). Alternatively, we

also asked about subscription pricing and what

individuals would be willing to pay with the median being $10

for both devices and mean being $14 (Type A) and $15

dollars (Type B). There was no difference between the cost

individuals were willing to pay for device [p = 0.6 (lump sum)

and p = 0.2 (subscription), Wilcoxon paired signed rank test in

the setting of non-normality of data shown by Shapiro-

Wilk testing].

Finally, individuals were surveyed on barriers to their use of

wearable devices for PD (Figure 3). Respondents reported

concerns about all surveyed barriers with most respondents

reporting at least a moderate level of concern for 4 out of the

5 surveyed barriers. Respondents reported the largest

proportion of extreme concern for cost and impact on care.

Additionally, we compared perceptions between individuals

with different levels of wearable device experience

(Supplementary Figure S4).
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FIGURE 3

Perceived significance of certain barriers to respondents’ personal use of wearable devices for management of PD as rated on a 5-point scale from not
a concern to an extremely significant barrier (n= 298).

TABLE 2 Respondent medical wearable device use, frequency of use, and limitations on use. Other limitations reported for Strive PD were that the device
was in the process of being setup (1), difficulties logging in (1), geographic limitations on use (1), and an allergic response (1).

Device

Any StrivePD PDMonitor PKG
Total users 23 19 3 1

Use frequency
Nearly always 43% 47% 33% 0%

All day when awake 26% 32% 0% 0%

>50% of wake time 4% 0% 33% 0%

Not daily but more than 3 days a week 4% 5% 0% 0%

Weekly 0% 0% 0% 0%

Monthly 0% 0% 0% 0%

Less than monthly 0% 0% 0% 0%

No longer using 22% 16% 33% 100%

Limitations on use
No limitations 43% 47% 33% 0%

Uncomfortable/Difficult to keep on 0% 0% 0% 0%

Too much effort to maintain 9% 11% 0% 0%

Insufficient capabilities 9% 11% 0% 0%

Data input difficulties 17% 16% 0% 100%

Data review or access difficulties 4% 5% 0% 0%

Lack of impact on PD 26% 21% 67% 0%

Not utilized by healthcare provider 13% 11% 33% 0%

Concerns about accuracy of data 4% 5% 0% 0%

Discontinued by healthcare provider 4% 0% 33% 0%

Cost issues 0% 0% 0% 0%

Other 17% 21% 0% 0%

Hirczy et al. 10.3389/fdgth.2024.1472691
Discussion

This study captured wearable device experiences and

perceptions among individuals with PD. Respondents were very

technologically inclined (91% reporting interest) and were more

likely to use wearable devices than the general US population,

67% vs. 35% (Morning Consult, Survey, 2023). Consumer devices

among respondents also appeared to be well tolerated as

discontinuation of wearables was rare and users also wore the

devices most of the time.

However, despite the barriers to general consumer use being

overcome, consumer wearable use for the specific purpose of
Frontiers in Digital Health 0577
managing PD was strikingly low at 24% and use of commonly

available devices functions was low. This incomplete pattern of

usage remained true even after removing ambiguity in the

definition of “management” and ensuring that all functions

queried were possible. In this subset, despite previous reported

interest (28) and the importance placed on these features in PD,

less than three quarters reported using the device to track

physical activity, less than half tracked sleep, and less than a

quarter tracked symptoms. Participants reported the lack of PD

related use to be most often due to knowledge of functionality

(26.2%). Features previously noted as important to address such

as difficulties with wearability or comfort (4.7%), data input
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(9.4%), and data review (5.0%) were not prominently reported (23).

These findings are supportive of the acceptability and usability of

current consumer devices in PD.

While consumer wearable device use for PD was sub-optimal,

medical wearable device use was marginal. Only 8% of respondents

had any experience with them, which was less than 1/8th the

number of consumer wearable device users. However, there did

not appear to be marked barriers to use once implemented, given

43% of respondents reported no limitations. The most noted

barrier to use was lack of impact on care 26% and this was

additionally supported by most medical device users indicating

that their devices had negligible impact on their healthcare

providers’ management of PD and even on their own

management. However, other issues appear to be reasonably

addressed with less than 20% reporting difficulties with data

input, less than 10% issues with wearability, and less than 5%

issues with data review.

To better understand what factors were limiting wearable use

and to compare current perceptions to prior research, many

questions were directed to assess their perceptions on the

significance of certain barriers, and it was again seen that

individuals with PD were concerned about comfort, usability,

and impact on care, as well as cost and privacy (23). However,

these results seemingly conflict with the results obtained from

direct questioning about their personal wearable use. Due to this

conflict we sought to assess whether this was due to differences

between users with more and less experience. However,

consumer and medical wearable users still appeared to endorse

similar levels of concern. These findings therefore suggest that

while certain factors are still of high importance to people with

PD they have generally been addressed by the current generation

of devices.

Ultimately, it appears that the barriers to medical wearable

device use and to a lesser degree consumer wearable device use

in Parkinson’s disease do not stem from individuals with PD.

Even when an individual with PD is motivated, experienced with

wearable use, and interested in theoretical medical wearable

devices there is still a high likelihood that they will not be a

wearable device user. We believe that this reflects difficulties with

technology and device integration at the level of the provider

user and/or the healthcare system.

The main strengths of this study were the number of

respondents, the diversity of disease stages included, the

inclusion of multiple wearables, and the level of detail obtained

about perceptions and experiences. As with most survey studies,

there were meaningful limitations. Foremost among them was

sampling bias which was likely substantial given the online

format and low estimated respondent rate. Respondents were

likely highly motivated and technologically inclined. The use

patterns and perceptions noted in this study do not directly

reflect those of the population. However, they retain value as

they are almost certainly a reflection of the upper bound of

device use and their perceptions likely reflect the most positive

reflections of the population, as such one can reasonably infer

that the population rate of experience is lower and that

perceptions are likely to be less positive than were seen in this
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sample. Additionally, the survey was heavily biased towards the

Pacific Northwest region of the United States despite the goal of

having a national distribution, demographic and socioeconomic

data was limited, and the number of respondents for questions

relating to consumer wearable device use in PD and medical

wearables was relatively small.

Future studies should work to better understand the true

perceptions of the PD population by expanding distribution,

reducing respondent barriers, collecting more demographic and

socioeconomic data, and engaging the community. Furthermore,

future longitudinal studies should be performed to assess the

evolution of individual perceptions of wearables as they evolve in

relation to exposure to wearable devices and disease progression.

In conclusion, this study confirms the existence of a highly

motivated subpopulation of individuals with PD who have a

strong interest in wearable devices and confirms the feasibility of

high levels of wearable device use in real-world use. Novelly, it

identifies and partially quantifies large gaps in the use of

consumer wearable device health tracking features and

integration of wearable devices into PD related health

management. Additionally, it confirms that medical wearable

device use is low, but suggests that this isn’t an issue with patient

usability, thereby implicating provider and/or systemic barriers as

the bottleneck to medical device use. We believe that these

results call for further investigation into understanding the

barriers affecting real-world use among clinician users and

healthcare systems, as well as studies targeted at enhancing the

utility and understanding of all forms of wearable device use in PD.
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SUPPLEMENTARY FIGURE S1

Use of specific consumer device functions for the management of PD.
Calculated as the percentage of respondents using each function from the
subset of respondents who affirmed that they were using consumer
wearables to manage PD and who were using the Apple Watch as their
preferred device (n= 41).

SUPPLEMENTARY FIGURE S2

Respondent degree of interest in using theoretical wearable devices in PD.
Device A was defined as a device with the ability to help individuals better
understand their disease and responses to medical interventions, but
without ability to directly provide information to healthcare providers.
Device B was similarly defined but with the added benefit of healthcare
provider integration (n= 192).

SUPPLEMENTARY FIGURE S3

Amount of time respondents were willing to wear theoretical devices A and
B if there were no issues with comfort or usability. (Device A n= 293, Device
B n= 292).

SUPPLEMENTARY FIGURE S4

Significance of barriers to wearable device use among individuals with
different degrees of experience with wearable device use. MWU=medical
wearable device user, CWU+ PD= consumer wearable device user who
manages PD with the device. CWU-PD = consumer wearable device user
not managing PD with the device. Ex CWU= participants who have used
consumer wearable devices but no longer are. Non-User = no experience
with wearable devices (n= 298).

SUPPLEMENTARY TABLE S1

States in which survey respondents reside (n= 298).

SUPPLEMENTARY TABLE S2

Respondent PD related characteristics and symptom characteristics
(n= 298).

SUPPLEMENTARY TABLE S3

Respondent assistive gait device utilization frequencies among those who
reported using an assistive device (n= 58).

SUPPLEMENTARY TABLE S4

Respondent awareness of and experiences with wearable devices (n= 298).

SUPPLEMENTARY TABLE S5

Respondent wearable use preferences among those with experience with
wearable devices (n= 193). Other responses for preferred device: apollo
neuro (1), iphone (1), kospet (1), and Samsung watch (1).

SUPPLEMENTARY TABLE S6

Preferred consumer wearable device use time among individuals still using
thei preferred device (n= 160).

SUPPLEMENTARY TABLE S7

Respondent reported current barriers to the use of consumer wearable
devices for the management of PD. Individual respondents could affirm
the presence of multiple barriers.

SUPPLEMENTARY TABLE S8

Medical wearable device user perceptions on impact of devices on
management of PD (n= 23).
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Background: Current methods of measuring disease progression of
neurodegenerative disorders, including Parkinson’s disease (PD), largely rely on
composite clinical rating scales, which are prone to subjective biases and lack the
sensitivity to detect progression signals in a timely manner. Digital health technology
(DHT)-derived measures offer potential solutions to provide objective, precise, and
sensitive measures that address these limitations. However, the complexity of DHT
datasets and the potential to derive numerous digital features that were not
previously possible to measure pose challenges, including in selection of the most
important digital features and construction of composite digital biomarkers.
Methods: We present a comprehensive machine learning based framework to
construct composite digital biomarkers for progression tracking. This framework
consists of a marginal (univariate) digital feature screening, a univariate association
test, digital feature selection, and subsequent construction of composite
(multivariate) digital disease progression biomarkers using Penalized Generalized
Estimating Equations (PGEE). As an illustrative example, we applied this framework
to data collected from a PD longitudinal observational study. The data consisted of
OpalTM sensor-based movement measurements and MDS-UPDRS Part III scores
collected at 3-month intervals for 2 years in 30PDand 10healthy control participants.
Results: In our illustrative example, 77 out of 235 digital features from the study
passed univariate feature screening, with 11 features selected by PGEE to include
in construction of the composite digital measure. Compared to MDS-UPDRS Part
III, the composite digital measure exhibited a smoother and more significant
increasing trend over time in PD groups with less variability, indicating improved
ability for tracking disease progression. This composite digital measure also
demonstrated the ability to classify between de novo PD and healthy control groups.
Conclusion: Measures from DHTs show promise in tracking neurodegenerative
disease progression with increased sensitivity and reduced variability as compared
to traditional clinical scores. Herein, we present a novel framework and
methodology to construct composite digital measure of disease progression
from high-dimensional DHT datasets, which may have utility in accelerating the
development and application of composite digital biomarkers in drug development.

KEYWORDS

composite digital biomarker, Parkinson’s disease, disease progression, linear mixed
effects model, machine learning, penalized generalized estimating equations
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1 Introduction

Neurodegenerative diseases, including Parkinson’s Disease

(PD), are an area of vast unmet medical need. Drug development

efforts in this area have increasingly focused on the search for

disease-modifying therapies that slow down the underlying

disease progression mechanisms. However, a lack of validated

measures that allow for disease progression to be monitored

objectively, relatively rapidly, and with high precision makes it

challenging to effectively demonstrate therapeutic efficacy and

hinders drug development efforts. PD clinical trials generally use

the Movement Disorder Society—Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS) to track disease progression

longitudinally. However, MDS-UPDRS is subjective in nature,

relies on patient and caregiver-reported symptoms and clinician’s

qualitative ratings (1), is slow to change, and has low

measurement precision, resulting in large and lengthy clinical

trials to test efficacy for potential disease modifying therapies (2).

Recent advances in digital health technologies (DHTs) offer

unprecedented opportunities to collect more objective, precise,

and sensitive measures, both in the clinic and remotely, that were

out of reach in the past. Such measures could provide new

insights into neurogenerative disease progression, including for

Parkinson’s disease. There are many studies that have

investigated using measures from sensor-based digital health

technologies in neurodegenerative diseases (3–11). These studies

have collectively demonstrated that many neurodegenerative

disease symptoms can be quantified by DHTs. Moreover,

multiple longitudinal observational studies have shown that

digital measures can pick up changes over time that are

indicative of disease progression (12–18). It is further thought

that the objective measures enabled by DHTs could offer

improved sensitivity and reduced variability (12, 19), which could

translate to smaller and shorter clinical trial designs (20) and, in

turn, potential for accelerated drug development. Despite

promising results, the longitudinal studies published to date have

used different DHTs and analysis methodologies to identify the

digital features of importance and to derive respective digital

clinical measures, making it difficult to compare across studies or

create consensus among the research community. Open

discussions on the methodology of digital clinical measure

development and evaluation are critically needed to move the

field forward.

It has been increasingly recognized that composite digital

measures, rather than reliance on individual digital features, are

needed for more effective measurement of disease progression as

compared to traditional clinical composite scores. Adams et al.

(21) showed that no individual digital feature (from gait, tremor,

turns, speech, and cognition) outperformed MDS-UPDRS Part

III (a composite clinical score) in terms of the standardized

change from baseline after 12 months in a PD observational

study (WATCH-PD). Furthermore, Czech et al. (22)

demonstrated individual sensor-based digital features of upper

and lower extremity bradykinesia often lacked strong sensitivity

to longitudinal changes, whereas digital composite scores showed

significant differences over 12 months in WATCH-PD.
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There have been several examples where composite digital

measures were developed for disease classification and/or tracking

symptom progression (22–30); however, the approach taken has

varied, and there have been limited discussions on the

methodologies to effectively select informative digital features and

construct the most performant composite measures. For example,

Perumal and Sankar (23) developed a Linear Discriminant

Analysis (LDA) classifier using multiple gait features collected

from wearable sensors to distinguish between PD patients and

healthy control (HC) subjects. Czech et al. (22) constructed

composite digital scores using pre-defined combinations of

features from single tasks (pronation-supination and toe-tapping)

and used them to measure longitudinal progression of

bradykinesia after 1 year. Sotirakis et al. (30) developed a Random

Forest model to estimate the MDS-UPDRS III values using gait

and sway features and used the model to detect progression of

motor symptoms longitudinally. These efforts vary in terms of the

measure construction (pre-defined vs. supervised ML, choice of

models), the clinical label selection (MDS-UPDRS III total score

or single item), the selection of digital tasks (single task e.g., toe-

tapping or a combination of tasks), as well as the selection of

input features (e.g., whether features are pre-screened). Overall, the

field has not adopted consistent and systematic methods and/or

analysis frameworks. Therefore, there is an urgent need to develop

methodologies and analysis pipelines for the construction of

composite digital measures for disease progression tracking,

tailored for high-dimensional, longitudinal data with digital

features collected from sensor technologies.

The types of data generated by DHTs are often longitudinal and

high dimensional, which differs from traditional clinical measures,

calling for novel analytical strategies to handle such data for the

construction of composite digital measures. Unlike traditional

clinical measures that collect a defined set of measures at each

time point, DHTs leverage various sensors to generate large

amounts of time-series data (e.g., acceleration, screen touch, audio/

video, keyboard press), either collected from defined active task-

based assessments or from passive monitoring. Such data are often

not readily analysable statistically and need to be aggregated and

transformed into digital features first. For example, for

measurement of physical activity, continuous accelerometer signals

are often converted to epoch level activity counts and then

aggregated over time into features such as daily total activity

count, total steps, non-sedentary time, etc., for further statistical

analysis. There can be large numbers of features derived from the

high-frequency sensor signals; such features may have various data

types (i.e., categorical, continuous, duration, etc.) and clinimetric

properties, many of which may not yet have been fully explored as

it was not previously possible to measure them without use of

DHTs. These features could have intrinsic skewness in

distribution, floor/ceiling effects, as well as unknown redundancies

and covariances. In addition, the high frequency nature of DHT

data collection and potential for remote data acquisition can also

lend itself to higher levels of data missingness. Furthermore, not

all digital features that can be generated from sensor data may

have clinical significance or be valuable for creating composite

digital measures. These attributes of DHT data make it a unique
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challenge in the development of composite digital measures to track

longitudinal disease progression.

Machine learning (ML) methods offer a valuable tool for selecting

the most informative digital features to reflect disease progression and

to construct clinically meaningful composite digital measures. ML-

based techniques can often improve prediction performance in

analysing digital data in neurodegenerative diseases; however,

existing ML methodologies for longitudinal data analysis are also

challenged by the high dimensionality of DHT data. For example,

although the generalized estimating equations (GEE) method (31)

incorporating different patterns of working correlation matrix

across multiple timepoints has been widely used in longitudinal

data analysis, the direct use of classical unpenalized GEE in high-

dimensional longitudinal data analysis may lead to misleading

results (32). To address this, an ML-based penalized GEE (PGEE)

method (32) could be used to improve upon the GEE method in

handling DHT data. PGEE performs simultaneous coefficient

estimation and variable selection for longitudinal data analysis with

high-dimensional covariates by including a penalty term in the

GEE model, which can be better-suited to handle high-dimensional

feature sets.

In this paper, we propose a principled, scalable, and

comprehensive methodology framework for the development of

novel composite digital biomarkers, derived from DHT data and

anchored to the MDS-UPDRS score, to measure neurodegenerative

disease progression. This framework includes data processing,

univariate digital feature screening, multivariate (composite) digital

biomarker construction (using PGEE methods), and composite

biomarker performance evaluation.

We further demonstrate the utility of this framework by applying

it to a sample dataset containing high-dimensional, longitudinal

movement data collected by a body-worn accelerometer system

from a PD longitudinal observation study. The current analytical

challenges of high-dimensional and longitudinal digital data and

path forward for the application of composite digital biomarkers in

measurement of neurodegenerative disease progression are

also discussed.
2 Materials and methods

2.1 Study overview

To illustrate our proposed methodology to construct composite

digital measures for tracking longitudinal disease progression, we

applied the framework to data from 30 PD patients (10 de novo

PD patients, 10 mild-to-moderate PD patients on levodopa, and

10 advanced PD patients) and 10 healthy control subjects from a

PD longitudinal observational study conducted at John Radcliffe

Hospital in Oxford, UK (11, 30, 33). The participants visited the

clinic once every 3 months for 2 years. At each visit, they wore

six synchronized inertial measurement units (IMUs) (“Opal”

sensors, APDM Wearable Technologies, a Clario Company)

across their body and performed two-minute walk, postural sway,

and timed up-and-go (TUG) tasks. The Mobility LabTM software

(APDM Wearable Technologies, a Clario Company) was then
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used to process these raw sensor signals and generate epoch-level

digital features at each instance of a time period or physical

movement (e.g., per minute, per step, per turn, or per sit-to-

stand event). The MDS-UPDRS Part III assessments were also

conducted at these clinic visits. The MDS-UPDRS Part III score

and subscales (including Bradykinesia, Postural and Gait,

Rigidity, and Tremor, defined in Supplementary Table S1) were

calculated. Demographic data including age and sex of the

participants were also collected at the beginning of the study.
2.2 Statistical analysis

The workflow of our proposed comprehensive machine learning

based framework is illustrated in Figure 1, which comprises five

main steps: (1) data collection and processing; (2) univariate

feature screening; (3) univariate association testing; (4) multivariate

analysis (using PGEE) to construct a composite digital measure for

longitudinal disease progression; (5) performance evaluation. The

specifics of each step are described below.

2.2.1 Data processing and quality control
In this first step, data aggregation and pre-processing are

performed to convert high-frequency, epoch-level data into a set

of aggregated digital features for each task. The movement data

collected from DHTs often include epoch-level features (e.g., per

second, per minute, or per walking step) that are collected

repeatedly during an active task (e.g., two-minute walk). This

step simplifies such data and produces a clean, high-dimensional

feature set for each participant at each clinical time point, in

order to facilitate subsequent longitudinal analyses.

In our illustrative PD example, summary statistics (mean,

median, standard deviation, and mean absolution deviation) were

calculated to represent the repeated measurements across the

entire task for features that had repeated measurements during

the task. For example, during the two-minute walk task, step

lengths of every step that the participant took were recorded;

these were aggregated into task-level features such as mean step

length during the two-minute walk task period. After that, we

had 256 digital features generated in total. Then, distributions of

all features were examined, and the non-informative features that

had few distinct values, included a large amount of data

missingness, or contained extreme values were removed. For the

remaining features, missing data imputation was performed using

the mean of available data in each feature. Finally, additional

feature quality control steps were implemented, which included

removing highly correlated features, log-transforming skewed

features, and removing outliers. 141 unique digital features were

left for univariate progression screening in the next step.

2.2.2 Univariate progression screening
In the second step of our framework, univariate progression

screening is recommended to identify whether each digital feature

detected disease progression during the study duration. In this

step, a linear mixed effects model (LMM) is used to screen the

univariate features against a set of pre-determined criteria. Each
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FIGURE 1

The analysis pipeline to select relevant digital features from high-dimensional DHT data and construct a composite digital measure for disease
progression tracking, including (1) DHT data collection and processing, (2) univariate feature progression screening, (3) univariate association test
(optional), (4) multivariate/composite digital measure construction, and (5) performance evaluation.
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digital feature is used as the response variable for the screening

separately. Independent variables are added to the model as fixed

effects, including covariates to be adjusted, group membership,

visit, group-by-visit interaction, and covariate-by-visit interactions.

Random intercept and slope are added to the model as

random effects.

In our illustrative PD example, we applied relatively relaxed

screening criteria to select digital features for downstream

analysis. We considered a digital feature as a “candidate” if (1)

its longitudinal trend was flat in the HC group (i.e., the LMM

slope p-value of HC group was larger than 0.05) and (2) it
Frontiers in Digital Health 0484
demonstrated a progression trend with time in PD groups (i.e.,

the LMM group-by-visit interaction p-value was <0.1 or the

p-value of the differential slope between de novo/mild-to-

moderate/advanced PD and HC was <0.1).

2.2.3 Univariate association test
To gain additional insights on the univariate associations

between the standard clinical measure (i.e., MDS-UPRDS Part

III) and the candidate digital features that passed the univariate

progression screening, our framework employs a univariate

association test step. In this step, a linear mixed effects model is
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employed, with the clinical measure as the dependent variable and

each individual digital feature as the independent variable.

Covariates to be adjusted are also included in the model.

Random intercepts for each subject are allowed in the model and

p-values are calculated to assess the significance of the

association between the clinical measure and digital features.

An optional procedure is to further filter the candidate digital

features based on their associations to the standard reference

measure (i.e., MDS-UPDRS Part III and its subscales in our

example) and exclude non-significant features. In our example,

we chose to implement relatively relaxed screening criteria to

retain more features for the subsequent feature selection, and

therefore, we did not exclude features that did not show

association with MDS-UPDRS Part III in our downstream analysis.
TABLE 1 Patient baseline characteristics (age and sex) for the three PD
groups and healthy control group.

de novo
PD

Mild-to-
moderate
PD (on-
therapy)

Advanced
PD

Healthy
Control

N 10 10 10 10

Age (years)
[mean (SD)]

66.2 (6.46) 61.6 (10.76) 71.2 (4.78) 65.6 (6.98)

Sex [Male
(%)/Female (%)]

5 (50)/5 (50) 9 (90)/1 (10) 5 (50)/5 (50) 3 (30)/7 (70)
2.2.4 Multivariate prediction model
In the final step of our framework, a multivariate prediction

model is developed to select a subset of digital features from those

that passed the univariate progression screening and combine

them into a composite digital biomarker of disease progression.

For feature selection, we used the longitudinal MDS-UPDRS

Part III data as the training endpoint in our illustrative example.

Additionally, we included features that were important for

classifying the de novo PD cohort from healthy controls in the

feature selection process since patient identification could also be

an important attribute for the composite digital biomarker.

Importantly, depending on the intended context-of-use of the

developed measure, one could use our proposed framework to

optimize the measure for disease progression tracking, or patient

identification, or both, by adjusting the screening criteria and the

training endpoints used.

To model the high-dimensional longitudinal data, our

framework includes a ML-based Penalized Generalized

Estimating Equations (PGEE) method (32), which performs

simultaneous coefficient estimation and variable selection.

Compared to the traditional GEE method, PGEE introduces a

penalty term to the estimating function of GEE (details of PGEE

is provided in Supplementary Method S1).

To determine the optimal number of digital features (P) to be

included into the final multivariate prediction model, a cross-

validation (CV) strategy is implemented into the framework to

avoid overfitting (34). Specifically, all digital features are first

ranked by their PGEE estimates from the training set, then a

series of PGEE models with different numbers of top features are

built and evaluated in the testing set. The optimal number of

features is then determined to be the number of features from

the model with the smallest Root Mean Squared Error (RMSE).

The approach is further described in Supplementary Method S2.

Once P is determined, the PGEE estimates of the digital

features that pass the univariate screening are calculated again

using the whole dataset, and the top P features with the largest

PGEE estimates were selected. Two sets of digital features were

identified based on a PGEE model for MDS-UPDRS Part III

progression and another PGEE model for de novo PD vs.

Healthy Control classification, respectively. These two feature sets
Frontiers in Digital Health 0585
were merged into a final feature set for the composite digital

measure construction.

A GEE model is then fitted, with this final feature set plus the

covariates as independent variables, and MDS-UPDRS Part III as a

continuous dependent variable. This generates our final composite

digital measure for performance evaluations.
3 Results

3.1 Patient demographics and baseline
characteristics

The baseline demographic characteristics for the participants

included in our illustrative analysis are shown in Table 1 and

Supplementary Figure S1. The mean ages of four groups (de

novo PD, mild-to-moderate PD, advanced PD, and HC) were

66.2, 61.6, 71.2, and 65.6 years, respectively. The ratios of male-

to-female subjects in the four groups were 5:5, 9:1, 5:5, and

3:7, respectively.

To determine if age and sex needed be considered covariates to

be adjusted for in our models, we calculated the age-by-visit and

sex-by-visit interaction p-values in linear mixed effects models

with MDS-UPDRS Part III as the response in the pooled PD

group. The results, summarized in Supplementary Table S2,

suggested that age would affect the slope of MDS-UPDRS Part

III progression (with p-value = 0.04) while sex would not (with

p-value = 0.19). We therefore considered only age as a covariate

to be adjusted in our data analysis models.
3.2 Univariate progression screening results

In our illustrative example, our univariate progression

screening criteria were such that a digital feature would “pass” if

the LMM model for that digital feature showed (1) no

progression in the control group and (2) a progression in at least

one of the three PD groups. 77 digital features out of 141

screened passed these criteria, including 15 features from

postural sway task, 5 features from timed up-and-go (TUG) task,

and 57 features from two-minute walk task. Among these, Walk

GLLGS (Gait—Lower Limb—Gait Speed) had the smallest group-

by-visit interaction p-value (6.0 × 10−7) and the smallest de novo

PD vs. HC progression slope p-value (4.7 × 10−4); Walk GLLDS
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(Gait—Lower Limb—Double Support) had the smallest mild-to-

moderate PD vs. HC progression slope p-value (0.01); and Walk

GLLSD (Gait—Lower Limb—Step Duration) had the smallest

advanced PD vs. HC progression p-value (1.2 × 10−6). P-values of

TUG TPV (Timed Up and Go—Turn Peak Velocity) for group-

by-visit interaction, de novo PD vs. HC progression slope, mild-

to-moderate PD vs. HC progression slope, and advanced PD vs.

HC progression slope were 0.008, 0.001, 0.147, and 0.013,

respectively. A summary heatmap of all 77 digital features that

met the screening criteria is displayed in Figure 2, and the

heatmap of all the digital features that were screened is displayed

Supplementary Table S3.
3.3 Univariate association analysis results

Figure 3 shows the univariate association testing results between

the 77 digital features that passed the univariate screening in our

illustrative example and MDS-UPDRS Part III scores (and its

subscales). 37 of these 77 digital features (48.1%) showed

significant associations (i.e., p-value < 0.05) with MDS-UPDRS Part

III scores (including 32 features from the Walk task, 3 features

from the TUG task, and 2 features from the Sway task). The

associations of digital features with the MDS-UPDRS Part III

scores were generally consistent with their associations with the

Bradykinesia (BK) subscale within MDS-UPDRS Part III.

Specifically, 40 of the 77 digital features were associated with the

BK subscale (including 31 features from the Walk task, 3 features

from the TUG task, and 6 features from the Sway task). In

addition, 59 of the 77 digital features were associated with the

Postural Instability and Gait (PIGD) subscale (including 54

features from the Walk task, 4 features from the TUG task, and 1

feature from the Sway task), while only 3 of the 77 features (TUG

TPV, TUG TA, and Walk GULMV) were associated with the

Tremor Dominant (TD) subscale.

Turn Peak Velocity (TPV), obtained from the Timed Up and

Go (TUG) test (35), demonstrated the most significant

association with MDS-UPDRS Part III. TUG TPV is defined as

the maximum achieved angular velocity of trunk rotation in the

y-axis during 180-degree turns (deg/sec) and has been found to

be related to PD progression in multiple studies (12, 36–38). The

progression characteristics of TUG TPV are shown in Figure 4,

where the group-wise and subject-wise lines were obtained from

the linear mixed effect model and the points represented the

observed data. In terms of TUG TPV, the mild-to-moderate, on

therapy PD and HC groups were stable, while the de novo and

advanced PD groups showed progression.

In general, the univariate association observations were

consistent with the progression patterns seen in the MDS-

UPDRS Part III and its subscales, which is shown in

Supplementary Figure S2. Specifically, compared to the HC

group, the BK subscale progressed across all PD groups (at

α = 0.1 level). The PIGD subscale progressed in de novo and

advanced PD groups while staying stable in the mild-to-

moderate, on-therapy PD group. This pattern was similar to

most of the digital features included in the analysis, as indicated
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in Figure 2. In contrast, the TD subscale progressed in the mild-

to-moderate, on-therapy PD group, while remaining unchanged

in de novo and advanced PD groups.
3.4 Multivariate feature selection and
prediction results

3.4.1 Feature selection
We first conducted multivariate feature selection to determine

the optimal number of features to be selected for inclusion into the

composite score and prediction model in our illustrative example

analysis. Supplementary Figure S3 indicated that for developing a

composite digital measure for disease progression tracking, using

9 top features (ranked by their PGEE estimates in training sets

during cross-validation) overall yielded the smallest RMSE; and

for classifying disease status, using 3 top features resulted in the

largest AUC via internal cross-validation.

We then ranked all pre-screened features (i.e., digital features)

according to their PGEE estimates in the whole dataset supervised

by the continuous endpoint (i.e., MDS-UPDRS Part III) and the

binary endpoint (i.e., de novo PD vs. HC), respectively. Nine

digital features (TUG TD, TUG TPV, TUG STSD, Walk TA,

Walk GLLC, Walk GLLSW, Walk GLLLSM, Walk APAMAA,

and Sway PSAN95ESA) were selected for disease progression

tracking; additionally, three digital features (TUG TPV, Walk

GLLTOA, and Walk GULMV) were selected for PD vs. Control

classification. Table 2 lists the description of these selected

features. The two sets of digital features were further merged;

since one of the features (TUG TPV) was in both feature sets, 11

unique digital features were included in the final feature set. This

feature set was then used to create the composite digital

biomarker by fitting a GEE model.

3.4.2 Composite digital biomarker for tracking
MDS-UPDRS part III

The performance of the composite digital biomarker was

evaluated using 10-fold cross-validation in PD and HC groups,

respectively. As shown in Figure 5, the composite digital measure

showed a pattern of no change vs. time in the HC group as

expected (with RMSE in HC group = 2.8). On the other hand, it

had a smoother increasing trend in the overall PD group, as well

as each PD subgroup (with RMSE in PD group = 12.7).

We further compared performances among MDS-UPDRS Part

III, the composite digital measure, and each of the univariate

digital features included in the composite digital measure (e.g.,

TUG TPV) quantitatively in terms of both progression and

variability. Detailed results are summarized in Table 3. Overall, the

group-by-visit interaction p-value of the composite digital measure

was close to that of MDS-UPDRS Part III (7.65 × 10−3 vs.

6.22 × 10−3). The increasing trend of the composite digital

measure was much more significant compared to MDS-UPDRS

Part III and individual digital feature TUG TPV in de novo and

advanced PD groups. Specifically, for de novo PD vs. HC, the

effect sizes of progression slope were 1.41, 2.14, and 1.37 for

MDS-UPDRS Part III, composite digital measure, and TUG TPV,
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FIGURE 2

Heatmap representation of the p-values of the 77 digital features that passed the progression screening. The screening criteria applied were (1) no time
progression in the HC group (i.e., LMM slope p-value of HC > 0.05), and (2) time progression in at least one of the three PD groups (i.e., LMM group-
by-visit interaction p-value < 0.1 or p-value of differential slope between de novo/mild-to-moderate/advanced PD and HC < 0.1).
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FIGURE 3

Heatmap of the univariate association testing p-values between MDS-UPDRS part III (and its subscales: BK, TD, PIGD, RG) and the 77 digital features
that passed the univariate screening. P-values were calculated from a linear mixed effects model with MDS-UPDRS Part III or its subscales as the
outcome variable. The 77 features were ranked based on their association p-values from the analysis with the MDS-UPDRS Part III score. Each
digital feature and age were included as independent variables. Random intercept was added as a random effect.
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FIGURE 4

Results from a digital feature, TUG TPV: turn peak velocity (TPV), obtained from the timed Up and Go (TUG) test, which showed the most significant
association with the MDS-UPDRS part III score. Each row represents the three PD groups and the HC group. Each panel within a row corresponds to a
particular subject. The thick lines and thin lines denote the group-wise and subject-wise estimates of progression lines fitted by the linear mixed
effects model, respectively. The points denote the observed data.

TABLE 2 Description of the selected features: 9 features selected for longitudinally disease progression tracking, and 3 features selected for de novo PD
vs. HC classification.

Objective for feature selection Feature Statistic Side Description PGEE Estimate
Disease progression tracking TUG TD Median Turns—Duration 0.39

TUG TPV Median Turns—Turn Velocity −0.38
TUG STSD Mean Stand to Sit—Duration 0.34

Walk TA Median Turns—Angle 0.26

Walk GLLC MAD A Gait/Lower Limb—Cadence 0.16

Walk GLLSW MAD L Gait/Lower Limb—Swing 0.07

Walk GLLLSM Median L Gait/Lower Limb—Circumduction −0.06
Walk APAMAA Mean Anticipatory Postural Adjustment—Forward APA Peak −0.06
Sway PSAN95ESA Mean Postural Sway/Angles—Sway Area 0.05

de novo PD vs. HC classification TUG TPV Median Turns—Turn Velocity −0.60
Walk GLLTOA MAD A Gait/Lower Limb—Toe Out Angle −0.43
Walk GULMV Median A Gait/Upper Limb—Arm Swing Velocity −0.27

MAD, Mean Absolute Deviation; A, Affected side; L, Less affected side.
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respectively. For advanced PD vs. HC, the effect sizes of progression

slope were 0.76, 0.90, and 0.76 for MDS-UPDRS Part III, composite

digital measure, and TUG TPV, respectively. On the other hand, the

composite digital measure didn’t show significant progression in the

mild-to-moderate, on-therapy PD group, which was consistent with
Frontiers in Digital Health 0989
what is observed in Figure 5. Recall that none of the 11 selected

digital features had significant univariate progression in the mild-

to-moderate, on-therapy PD group (for example, the mild-to-

moderate PD vs. HC slope p-value of TUG TPV was not

significant, p = 0.15). Thus, it was not surprising that the
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FIGURE 5

Tracking PD progression via (A) the MDS-UPDRS part III and (B) the composite digital measure based on the 11 selected digital features. The dashed
lines represented the observed MDS-UPDRS Part III scores and the predicted composite digital measures in the combined PD group, respectively.

TABLE 3 Performance comparison among MDS-UPDRS part III, the composite digital measure, and TUG TPV in terms of both progression and variability.

MDS-UPDRS Part III Composite Digital Measure TUG TPV
Group-by-visit p-value 6.22 × 10−3 7.65 × 10−3 8.05 × 10−3

de novo PD vs. HC: slope p-value 0.02 8.28 × 10−3 1.35 × 10−3

Mild-to-moderate PD vs. HC: slope p-value 2.25 × 10−4 0.16 0.15

Advanced PD vs. HC: slope p-value 0.07 4.22 × 10−3 0.01

HC slope p-value 0.01 0.58 0.78

Between-subject coefficient of variation 39.0% 20.4% 17.2%

Within-subject coefficient of variation 34.1% 16.9% 9.7%

Effect size in progression slope between de novo PD and HC 1.41 (0.51, 2.31) 2.14 (1.24, 3.04) 1.37 (0.47, 2.27)

Effect size in progression slope between mild-to-moderate PD and HC 2.28 (1.40, 3.16) 0.86 (−0.02, 1.73) 0.60 (−0.28, 1.47)
Effect size in progression slope between advanced PD and HC 0.76 (−0.11, 1.64) 0.90 (0.02, 1.77) 0.76 (−0.12, 1.64)
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composite digital measure preserved the same pattern. Moreover, the

composite digital measure showed smaller between-/within-subject

coefficient of variation than MDS-UPDRS Part III. In summary,

the results from Figure 5 and Table 3 indicate that the composite

digital measure is an attractive aggregated measure for tracking PD

progression compared to MDS-UPDRS Part III and to individual

digital features.

3.4.3 Performance in classifying de novo PD and
HC

We further examined if the composite digital measure

developed above (for tracking PD progression longitudinally) was

also effective in classifying between de novo PD and HC subjects.

Results are shown in Figure 6, where the boxplot of composite

digital measures in the de novo PD subgroup is clearly higher

than the boxplot in the HC subgroup. The composite digital

measure had an AUC of 0.992 in such classification, which was

very similar to that achieved for the classification model based

on MDS-UPDRS Part III (AUC of 0.991). This demonstrated

that the composite digital measure was able to preserve the

ability to differentiate PD from HC groups and was effective in

classifying de novo PD and HC.
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4 Discussion

DHT-derived measures have shown great promise in both

tracking disease progression and disease classification. However, it

remains challenging to identify digital features for predicting

disease progression longitudinally in a high dimensional space.

Furthermore, methodologies for combining individual digital

features into composite digital measures have not been fully

explored and standardized in the field of DHTs. Although there

have been several examples where composite digital measures were

developed for tracking symptom progression, many of these prior

efforts used simple sums of pre-defined, unweighted features

without optimizing for performance (22, 29). In other cases where

digital composite measures were trained/optimized to predict

clinical scores, machine learning methodologies were often used

without consideration of the longitudinal nature of the features

(15, 30). The field has not adopted consistent and systematic

methods and/or analysis frameworks that use statistical or

machine learning methods capable of handling high-dimensional

longitudinal data for feature selection and prediction while

considering the within-subject correlation across visits. Therefore,

there is an urgent need to develop this kind of new methodologies
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FIGURE 6

Boxplots of (A) the composite digital measure vs. (B) the MDS-UPDRS Part III in de novo PD and HC groups, respectively. Each dot indicates the
composite digital measure or clinical score of each subject at each visit; the dotted line indicates the optimized threshold for classification: 12.14
for composite digital measure and 11 for MDS-UPDRS Part III. Dots above the line were classified into de novo PD, and dots below the line were
classified into HC. Values that lead to false classifications are shown in red. The composite digital measure has AUC of 0.992 and MDS-UPDRS
Part III has AUC of 0.991.
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and analysis pipelines for the construction of composite digital

measures for disease progression tracking, tailored for high-

dimensional, longitudinal data with digital features collected from

sensor technologies. In this paper, we propose a principled,

scalable, and comprehensive methodology for the identification of

relevant digital features of disease progression from large DHT

data sets, and subsequent construction of a composite digital

measure for disease progression tracking. Specifically, in Step 1,

data is collected and processed for aggregated observation and

quality control. In Step 2, we apply a linear mixed effects model

for univariate screening for longitudinal progression of digital

features. In Step 3, a univariate association test is conducted

between candidate digital features (i.e., features that pass the

univariate screening) and clinical scores, for example the MDS-

UPDRS Part III and/or its subscales. In Step 4, the candidate

digital features are ranked via a ML-based method, PGEE, for

high-dimensional longitudinal data analysis. The optimal number

of top features to be included into the composite digital measure

is further determined using a cross-validation based algorithm to

avoid overfitting. Note that PGEE (penalized GEE) method is

designed for longitudinal data analysis with high-dimensional

covariates by including a penalty term in the traditional GEE

model. PGEE is particularly useful in handling high-dimensional

feature sets, applicable for data from DHTs.

To demonstrate the utility of our methodology, we applied it to

the data collected from a PD longitudinal observational study,

which consisted of OpalTM sensor-based movement

measurements and MDS-UPDRS Part III scores collected from

PD patients at a range of disease stages and healthy controls over

a 2-year duration. Our primary interest in developing a

composite digital measure is to track disease progression. The

composite digital measure developed from this illustrative

example generally showed a smoother and more significant

increasing trend in PD groups and smaller between-/within-

subject coefficients of variation than MDS-UPDRS Part III in
Frontiers in Digital Health 1191
this small dataset (N = 40), indicating potential utility for the

composite digital measures to be used to track disease

progression more sensitively and with less variability vs. standard

clinical measures. It should be noted that the dataset in our

illustrative example was small (N = 40), and therefore, results of

our analysis should be interpreted with caution. The analysis

reported here was presented as an illustration of our proposed

methodology and framework and was not intended as a

proposed composite measure for use in future studies. We also

note that the composite digital measure shows less significant

progression trending in mild-to-moderate, on-therapy PD

patients compared to in de novo and advanced PD patients. This

outcome is consistent with the trends observed by Brzezicki et al.

(11) using data derived from the OxQUIP study. We further

evaluated the classification performance between de novo PD and

HC using the composite digital measure built from our

methodology (primarily for tracking PD progression). The

measure had an AUC ROC of 0.992 for classification (vs.

AUC = 0.991 when using MDS-UPDRS Part III), indicating that

the composite digital measure also had a good performance in

classifying between de novo PD and HC subjects, comparable to

MDS-UPDRS Part III.

Note that in our analysis, the top digital features (i.e., those

with the largest PGEE estimates from the multivariate penalized

regression model) were selected for both tracking MDS-UPDRS

Part III progression and classifying between de novo PD and HC.

While the digital feature TUG TPV ranked high in both subsets

of selected features, we observe that the digital features that are

important for disease progression tracking are not necessarily the

same as digital features important for patient identification. We

constructed the composite digital biomarker with the merged

feature list in this example.

Regarding performance, this composite digital biomarker keeps

the main characteristics of individual digital features but exhibits a

more significant increasing trend indicative of disease progression.
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1500811
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Zhai et al. 10.3389/fdgth.2024.1500811
On one hand, this composite digital biomarker shows progression

in de novo and advanced PD groups but remains flat in mild-to-

moderate, on-therapy PD and HC groups which is consistent

with the general behaviours of individual digital features

(Figure 2). On the other hand, it exhibits a more significant

increasing longitudinal trend compared to individual digital

features (including TUG TPV). It is worth noting that the

features selected using the PGEE model tend to have diverse

measurement properties. The final feature set is not a

combination of the best-performing individual features in terms

of individual progression signal (i.e., neither features with the

most progressions in PD groups nor features with the most

significant univariate association with MDS-UPDRS Part III).

A possible explanation is that combining top features with high

correlations doesn’t necessarily add additional information to the

composite; there could be redundancy among digital features. It

also suggests opportunities to further improve the performance

of the composite digital measure by enriching the feature set

with different assessments/tasks and measures.

The superior performance observed in the multivariate analysis,

albeit from a small pilot dataset, suggests promises for use of

composite digital measures for progression tracking in future

studies. Recent modelling efforts have shown that an increased

precision made possible by more objective and frequent composite

digital measures could lead to smaller and shorter proof-of-

concept studies to demonstrate disease-modifying treatment effect

(20), which is critical in enabling and accelerating drug

development. Open discussions on methodologies to identify the

relevant digital features (from the multitude of digital measure

possible with DHTs) and construct composite digital measures are

critical to enable the adoption of such digital measures, and we

present a methodology for this herein.

We see broad applicability of our proposed framework in

handling high-dimensional, longitudinal DHT datasets and

developing novel digital biomarkers for disease progression. To

gain confidence in the use of such biomarkers for decision-making

in clinical development, we anticipate that further efforts in

technical validation and clinical validation will also be needed to

build confidence in the constructed composite digital measures.

Additionally, operational feasibility and user acceptance are critical

to ensure that the measure can be successfully collected in clinical

trials. All these elements will be part of the evidence package to

support the fit-for-purpose use of a new digital biomarker and will

be important to both clinical implementation and the

interpretation of results.

Lastly, although we propose here a machine learning-based

approach to develop composite digital biomarkers as indicators of

traditional clinical endpoints, it is also valuable to further explore

the clinical and biological relevance of the identified features. For

example, one could examine the univariate associations between

individual digital features and the clinical scores or domain sub-

scores (as included in our pipeline and illustrated in Figure 3).

Further, the relevance of many symptom features to the

underlying disease mechanism have also been reported in the

literature. In our illustrative example, several turning features,

including peak velocity, duration, and angle, were identified to be
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valuable for progression tracking; coincidentally, turning has been

highlighted in many prior publications as a common challenge in

PD (39–42) and is also included in a Phase 2 interventional study

as a key digital feature (38).

There are several limitations of our work. First, a major caveat

of the results reported from the illustrative example herein is that

this analysis only used a small number of participants. Our

proposed analysis workflow for digital biomarker development

needs to be applied to additional studies with larger N to further

demonstrate utility. The identified individual digital features of

Parkinson’s disease progression and the composite digital

measure presented herein is solely for purposes of illustrating the

methodology approach. They would need to be validated and

verified in an independent dataset in further research before they

can be used as digital biomarkers of disease progression and

treatment response. Second, the digital features in our study were

obtained from sensor-based movement measurements using one

DHT system used during supervised, in-clinic tasks. Different or

expanded digital features may be available with different DHTs,

different task-based assessments, use of passive monitoring

approaches, technology evolution, and further algorithm

development. It is worth noting that we mainly use this feature

set to demonstrate the methodology, and our proposed high-

dimensional longitudinal data analysis framework (including

feature selection and predictive modelling) is adaptive for

different feature sets collected from different sensor technologies.

Third, in our illustrative example, we examined potential

confounders (i.e., age and sex) in the pooled PD group to

identify factors that might significantly impact the progression

trending. As a result, age was identified and included into our

model as a covariate to be adjusted. It would have been preferred

to assess potential confounders in each PD subgroup (i.e., de

novo PD, mild-to-moderate PD, and advanced PD) rather than

the pooled PD group; however, the small sample size and

imbalanced datasets within the subgroups posed challenges to

doing so.

Notably, the current dataset is longitudinal but only contains

in-clinic visit data. One advantage of DHTs is that they may

offer the ability to capture data outside of the clinic much more

frequently. Other studies, including the Phase 2 Trial of Anti α-

Synuclein Antibody in Early Parkinson’s Disease (PASADENA)

study (10) (daily tasks) and the Personalized Parkinson Project

(PPP) study (43) (bi-weekly tasks), have shown utility in

capturing remotely collected DHT data with increased

measurement frequency. Increased measurement frequency could

further enhance the performance of digital measures in

quantifying disease progression, as it could address the day-to-

day symptom fluctuations and reduce the measurement

variability. Such remotely acquired digital features could also be

applied to the methodology and framework we’ve reported here.

In addition, there is emerging research into characterization of

the neurodegenerative disease progression directly from raw sensor

signals recorded by DHTs (e.g., wearable sensors, environmental

sensors, smartphone sensors) using deep neural networks and

other black box algorithms (44, 45). Germane to these efforts is

an important question about the interpretability of the ensuing
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models and results (46, 47). In our work, we identified candidate

digital features of disease progression using inherently

interpretable linear models. We did not explore deep learning of

the raw sensor data directly; such an approach is an interesting

future direction of research.

In summary, with the rapid development of DHTs, digital

measures are playing an increasingly important role in not only

neurodegenerative disease detection, but also longitudinally

tracking disease progression over time and detection of

therapeutic response. Our proposed ML-based framework for

identifying digital features of progression and constructing

composite digital measures adds to the existing body of literature

on digital measure analysis methodologies and may help

accelerate the translation of digital measures to utility for drug

development and clinical practice.
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Digital Health Technologies (DHTs) have been under investigation for many 

years as innovative tools for Parkinson’s disease motor symptoms given their 

inherent high-frequency, sensitive, and objective measurement properties. 

DHTs used in drug development, can be defined as Drug Development Tools 

(DDT), though some DHTs may also be categorized as medical devices. The 

recent rapid increase in use of DHTs in clinical trials has been accompanied 

by a rapidly evolving regulatory landscape, resulting in a challenging 

environment for widespread implementation of DHTs in applications that will 

provide clear impact on pharmaceutical company drug development 

pipelines. Parkinson’s disease represents a disease of escalating burden with 

high unmet need for therapies that are disease modifying. Early intervention 

is a key area of focus, yet the heterogeneity of symptoms and lack of 

biomarkers poses challenges for drug development. Furthermore, the 

technologies and device platforms, both hardware and software, are rapidly 

evolving, and the companies developing the underlying devices frequently 

have objectives and timelines that may not align with those of the 

pharmaceutical industry. DHTs therefore have a unique set of challenges in 

terms of devising meaningful measures, standardization of data collected, 

responding to evolving regulatory expectations, and ensuring alignment 

across stakeholders. There is a growing need for new models of collaboration 

to bring together diverse stakeholders required to achieve regulatory 

endorsement of DHTs for use as DDTs. Collaborations between stakeholders 

working on DHTs need to be firmly anchored in the regulatory ecosystem as 

many regulatory challenges in DHTs have parallels in other technologies. 

Furthermore, there is an especially urgent need to define the pre-competitive 

space in which DHT data can be shared, data collection standards devised, 

and novel analysis approaches that are robust to residual variability 

developed. Critical Path for Parkinson’s Consortium’s (CPP) Digital Drug 

Development Tool (3DT) initiative is highlighted as a case example to illustrate 

how pre-competitive public private partnerships can advance the regulatory 

maturity of digital health technology measures for use in clinical trials.
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1 Introduction

Digital Health Technologies (DHTs) used as Drug 

Development tools (DDTs) represent an important example of a 

regulated technology to support medical product development. 

These technologies have the potential to meet pharmaceutical 

industry needs for high frequency, sensitive, and objective 

measures of a patient’s disease progression, and a patient’s 

response to treatment in real-world settings (1).

DHTs have attracted particular interest in chronic progressive 

diseases of the nervous system (2). This is due to the heterogenous 

nature of symptoms, slow insidious onset of symptoms with long 

duration of presymptomatic underlying disease, and lack of 

patient centered measures that can be used to define true impact 

of novel therapies on patient’s quality of life.

DHT measures may therefore accelerate the development of 

new drug and biological therapies in areas of unmet medical 

need and enable these treatments to be better focused on 

treating the aspect(s) of disease of most importance to patients.

DHTs, when used to support drug development, sit at the 

interface between medicine and device regulations. The 

applicable regulatory landscape is rapidly evolving including 

across regulatory authorities. Here we make use of terminology 

from the FDA’s recent guidance document on Digital Health 

Technologies for Remote Data Acquisition (3), and limit our 

discussion to DHTs that incorporate sensors (e.g., motion 

sensors). We use the term “DHT measure” to mean the output 

of a DHT used as a drug development tool, and “DHT Device” 

for the data collection device e.g., wearable sensor from which 

the DHT measure is obtained or derived.

In this paper, we describe the work of Critical Path Institute’s 

(C-Path) Critical Path for Parkinson’s (CPP) Digital Drug 

Development Tools (3DT) initiative to collect evidence that 

DHTs can reliably and accurately measure PD progression at 

early stages in drug naïve patients over one year duration, in 

order to advance the regulatory maturity of DHTs for assessing 

patients with Parkinson’s disease (PD). CPP is a public private 

partnership focused on the development of drug development 

tools targeting early stages of the disease. The key milestones for 

DHTs being used as DDTs are (a) letter of support and (b) 

qualification. A letter of support is issued by the medicines 

regulator to describes the regulator’s thoughts on the potential 

value of a DDT and encourages further evaluation. A DDT 

qualification is a public regulatory opinion that encourages the 

use of a qualified DDT for a specific context of use to expedite 

drug development and review of regulatory applications.

The regulatory landscape for DHTs has been evolving 

significantly since CPP was launched in 2015 (4): there has been a 

rapid increase in the response of regulators to the needs of DHTs 

and their use in drug development. Regulatory agencies have 

published several guidance and discussion documents focused on 

DHTs and with some DHT measures reaching a high level of 

maturity with certain regulators. This regulatory framework 

enables DHTs to be used on a protocol-specific basis, or to be 

qualified for more general application in a context of use. Many 

DHT measures are generated using machine learning (ML) and 

artificial intelligence (AI), which means they may be impacted by 

AI-specific regulations being proposed in several jurisdictions, 

including the European Union AI Act (5).

Table 1 shows the timeline for advances in the regulatory 

landscape over the past several years both in U.S. and Europe, with 

key regulatory publications from the U.S. Food and Drug 

Administration (FDA) and European Medicines Agency (EMA) 

highlighted. Although primarily focused on regulation of medicinal 

products, we include cybersecurity guidance documents focused on 

medical devices generally relevant to all DHTs, whether medical 

devices or not. Notably, the FDA’s March 2024 “AI & Medical 

Products” guidance specifically describes how medicines and device 

regulators are working together in this rapidly evolving area.

2 Unique challenges of DHTs

Regulators have made much progress in provision of guidance 

for DHTs in drug development, though the impact of DHTs in 

clinical trials has so far been limited; for example, no drug has 

yet been approved by the FDA based on a DHT derived 

primary endpoint (6) and the EMA has recently described 

regulatory experience with DHTs in the context of registrational 

studies as minimal (7). Issues relate to the rapid rate of 

innovation in digital technologies, the types of companies in the 

ecosystem, and the intersection between regulations related to 

clinical trials, medical devices, and data protection/privacy.

2.1 Rapid rate of innovation

The rapid rate of innovation in the technologies incorporated 

in DHTs (e.g., sensors, ML algorithms, connected devices) means 

that the product lifecycle of a DHT is often a small number of 

years. A DHT may rely on consumer computing platforms such 

as smartphones. The lifetime of DHT devices, and sometimes 

even digital companies, is short compared to the timescale of 

drug development. It is therefore hard for DHTs to “travel with 

a molecule” from phase I to approval, which might be a period 

of more than 10 years. Even if a particular hardware remains 

stable, the installed software might periodically upgrade in ways 

that make the data non-comparable.

2.2 Standardization and harmonization

A consequence of the rapid rate of innovation in the hardware, 

software and measurements from DHTs is the need to obtain 

comparable data across time and studies. The diversity in 

technologies available, the speed of innovation, including 

software upgrades and new versions of hardware, and the 

proprietary nature of some algorithms means that obtaining 

comparable data is a considerable challenge.

One state-of-the-art approach in this area has been described 

by the Mobilise-D consortium (8), in which multiple types of 

motion sensors have been compared against a gold standard in 
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a laboratory setting. This highlighted considerable remaining 

challenges in standardizing DHT data even from accelerometers, 

which are arguably the most mature of DHT sensor technology. 

The authors suggest guidelines to assist standardization efforts 

for future studies.

Parallels have previously been drawn between DHTs and 

imaging. Putting in place suitable standardization has been 

important in the development of neuroimaging in clinical trials (9, 

10) and is a focus of the FDA guidance on imaging endpoints in 

clinical trials (11). It is important to note that, while there are 

parallels with imaging, DHTs are used for remote data acquisition 

(e.g., in the home) and there is considerable additional variability 

compared to that of the in-clinic controlled environment applicable 

to imaging. This puts additional requirements on the 

standardization of DHTs that allow for bridging in-clinic with at- 

home measurements. Standardization of a particular DHT 

measure, therefore, should consider implications of hardware, 

software, and measurement environment. The experience of 

standardizing imaging endpoints encourages the standardization to 

be done in the context of a specific measurement such as 

hippocampal volume (12) or Positron Emission Tomography 

standardized uptake value (PET SUV) (10), and for measurements 

obtained from diverse scanners (sometimes with contrast or 

tracers) and algorithms to be compared in terms of effect size in a 

relevant comparison e.g., separating diseased from normal or 

progressing from non-progressing subjects (13, 14). Once a 

measurement is clearly defined, the standardization task is easier to 

specify. The lack of consensus on specific DHT measures has been 

TABLE 1 Recent key regulatory guidance and frameworks relevant to DHTs. The majority are published by medicines regulators though cybersecurity 
guidance documents published by medical device regulators are also included.

Date Regulator Title Comment Link

June 2018 FDA Patient-Focused Drug Development: 

Collecting Comprehensive and 

Representative Input

Guidance document https://www.fda.gov/regulatory-information/search-fda- 

guidance-documents/patient-focused-drug-development- 

collecting-comprehensive-and-representative-input

June 2020 EMA – Human 

Medicines Division

Questions and Answers: Qualification of 

Digital Technology-Based Methodologies to 

Support Approval of Medicinal Products

Document to support 

qualification of DHT 

methodologies

https://www.ema.europa.eu/en/documents/other/ 

questions-and-answers-qualification-digital-technology- 

based-methodologies-support-approval-medicinal- 

products_en.pdf

July 2020 EMA – Medical 

Device Coordination 

Group

MDCG 2019–16 Rev.1 Guidance on 

Cybersecurity for medical devices

Guidance Document https://health.ec.europa.eu/document/download/ 

b23b362f-8a56-434c-922a-5b3ca4d0a7a1_en

February 

2022

FDA Patient-Focused Drug Development: 

Methods to Identifying What Is Important to 

Patients

Guidance document https://www.fda.gov/regulatory-information/search-fda- 

guidance-documents/patient-focused-drug-development- 

methods-identify-what-important-patients

June 2022 FDA Patient-Focused Drug Development: 

Selecting, Developing, or Modifying Fit-for- 

Purpose Clinical Outcome Assessments

Guidance document https://www.fda.gov/regulatory-information/search-fda- 

guidance-documents/patient-focused-drug-development- 

selecting-developing-or-modifying-fit-purpose-clinical- 

outcome

April 2023 FDA Patient-Focused Drug Development: 

Incorporating Clinical Outcome Assessments 

Into

Guidance document https://www.fda.gov/regulatory-information/search-fda- 

guidance-documents/patient-focused-drug-development- 

incorporating-clinical-outcome-assessments-endpoints- 

regulatory

May 2023 FDA - CDER Artificial Intelligence for Drug Development Informational https://www.fda.gov/about-fda/center-drug-evaluation- 

and-research-cder/artificial-intelligence-drug- 

development

May 2023 FDA - CDER Using Artificial Intelligence & Machine 

Learning in the Development of Drug & 

Biological Products

Discussion Paper/Request 

for Feedback

https://www.fda.gov/media/167973/download

March 

2023

FDA Framework for the Use of Digital Health 

Technologies in Drug and Biological Product 

Development

Framework; PDUFA VII https://www.fda.gov/media/166396/download?attachment

March 

2023

EMA – GCP IWG Guideline on computerised systems and 

electronic data in clinical trials

Guidance Document https://www.ema.europa.eu/en/documents/regulatory- 

procedural-guideline/guideline-computerised-systems- 

and-electronic-data-clinical-trials_en.pdf

Sept 2023 FDA Cybersecurity in Medical Devices: Quality 

System Considerations and Content of 

Premarket Submissions

Guidance Document https://www.fda.gov/regulatory-information/search-fda- 

guidance-documents/cybersecurity-medical-devices- 

quality-system-considerations-and-content-premarket- 

submissions

Dec. 2023 FDA Digital Health Technologies for Remote Data 

Acquisition in Clinical Investigations

Guidance Document https://www.fda.gov/regulatory-information/search-fda- 

guidance-documents/digital-health-technologies-remote- 

data-acquisition-clinical-investigations

Jan 2025 FDA Considerations for the Use of Artificial 

Intelligence To Support Regulatory Decision- 

Making for Drug and Biological Products

Draft Guidance https://www.fda.gov/media/184830/download

June 2025 FDA Cybersecurity in Medical Devices: Quality 

System Considerations and Content of 

Premarket Submissions

Guidance document https://www.fda.gov/media/119933/download
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a barrier to progress in this measurement-driven standardization. 

Because some DHT devices can generate multiple possible DHT- 

derived measures (for example the output from a wrist-worn 

accelerometer could be used to calculate measures of gait, tremor 

or sleep), the appropriate standardization and algorithm validation 

should be measure rather than device specific.

2.3 Business models and data protection 
and privacy

Technology companies, whether focused on digital health or 

consumer tech, frequently have business models that involve 

monetizing data (15). Sophisticated consumer hardware and 

software used by individuals is provided at low cost (and for 

software, often free) in exchange for the user agreeing to 

transfer their data to the tech company and give ownership, or 

at least wide-ranging rights to use it for commercial purposes. 

The huge volumes of data thus acquired by the tech companies 

can be used to improve the product, but also can be sold freely, 

so an individual’s data may be used by unknown third parties 

for purposes that were neither pre-defined nor specifically 

consented to by the user. These data-centric business models are 

potentially incompatible with the desire of pharmaceutical 

companies, healthcare providers, and regulators to ensure that 

patient data is carefully controlled and only used for pre- 

specified purposes with informed consent.

2.4 Intersection between different 
regulatory systems

A further challenge relates to DHTs operating at the interface 

between different regulatory frameworks. Many DHT devices (e.g., 

smartphones and smartwatches with fitness apps and activity 

trackers) are designed for consumer use and have limited 

regulatory oversight. A sub-set of DHT devices are either 

medical devices or contain software components that are 

“software as a medical device”. Use of any of these DHT devices 

in clinical trials adds new regulatory requirements around 

validation of computer systems that come from Good Clinical 

Practice (GCP) (16) (21CFR11 in USA, Annex 11 of the Clinical 

Trial Regulation in Europe). The EMA has made clear in recent 

publications that GCP regulations around validation and audit 

trail apply to mass market wearables and mobile phones (17). 

Some digital health companies struggle to put in place systems 

that are compliant with these requirements and do not see a 

business case for achieving compliance, given the small size of 

the clinical trial market for most of these companies.

The need for different models of data use, and the 

requirements of validation and audit trail, mean that 

commercial collaborations between the pharmaceutical and tech 

sectors can be challenging.

This further emphasizes that for DHTs to have a significant 

impact on the development of new treatments, new models of 

collaboration are needed. There is also a need to acknowledge 

that the price point of the technologies used in clinical trials is 

likely to be significantly higher than the prices that end-users 

are used to for consumer digital technologies.

3 The need for new models of 
collaboration to develop DHTs

In recent years, there has been significant optimism that 

“digital” technologies could rapidly impact drug development, and 

as a result, relevant industry and public organizations are 

investing in DHTs across various therapeutic areas. There has 

been an associated rapid increase in the number of clinical studies 

incorporating DHTs (2), particularly in chronic progressive 

disorders of the nervous system where the failure rate is high and 

there is a lack of sensitive, clinically meaningful DDTs. The 

application of DHTs to disorders of the nervous system is 

growing at a rapid rate with Parkinson’s being most prominent of 

all (Evidence from https://www.ClinicalTrials.gov on the growth of 

Digital Health Technologies in neurology trials (2).

It is increasingly clear that while DHTs have great potential to 

positively impact drug development, the timescale of their 

development has not proved to be rapid in comparison to other 

technologies such as imaging, and at the date of writing, we 

have not yet seen any new drugs approved based on a DHT 

measurement. One DHT measure that has achieved the 

regulatory milestone of being qualified as a primary endpoint in 

Duchenne muscular dystrophy (DMD) by the EMA is the Stride 

Velocity 95th centile (SV95C) (18). This effort took more than a 

decade (19) to complete, which is not indicative of the 

minimum (or maximum) time required but illustrates the 

challenges of navigating the regulatory environment for DHTs. 

While most recent DMD studies have included SV95C as a 

secondary outcome (NCT05524883, NCT05096221, 

NCT06138639, NCT05982119, NCT04906460), the use of this 

measure has been explored for other neuromuscular diseases 

including Spinal Muscular Atrophy, Facioscapulohumeral 

muscular dystrophy, and Limb Girdle muscular dystrophy. 

However, it is still unclear how the learnings from the DMD 

qualification will be applied or whether they are fully 

translatable to those other diseases (20).

Many pharmaceutical companies and research institutions 

have been independently working on developing DHT measures, 

which has resulted in an explosion of proposed approaches to 

measuring concepts of interest such as gait (21). It is becoming 

increasingly clear that the challenges are too big to overcome as 

individual companies and organizations alone, necessitating a 

collaborative and harmonized approach. Increasingly, 

pharmaceutical companies are looking for a clear impact on 

their drug development programs and adapting their investment 

in DHTs accordingly. A consortium-based approach is therefore 

desirable and aligns with regulatory agency recommendations 

for public-private partnerships to increase their efficiency in 

advancing DHTs (22, 23). Some industry-led consortia have 

sought to develop high-impact DHT measures that are disease- 

agnostic or are cross-disease digital endpoints in areas such as 
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fatigue, sleep (24), and mobility (21). Regulators, however, have 

consistently communicated that, just as for other (non-digital) 

technologies, data should be submitted for a single disease and 

context of use (COU).

It is therefore increasingly important that, for reasons of cost 

effectiveness and rate of progress, development of DHTs is 

undertaken collaboratively rather than in isolation, and 

anchored within organizations that have wide-ranging 

experience in development of non-DHT DDTs. Some of the 

DHT challenges identified above could be addressed by means 

of collaborative data analysis platforms such as federated learning.

4 The evolving DHT regulatory 
landscape

While DHTs have been used in clinical research for decades 

(25), there has been significant increase in use over the last 5 

years particularly post-COVID-19 pandemic, and a rapid 

evolution in the regulatory landscape for DHTs as DDTs. In 

particular, there are recent regulatory publications specific to 

DHTs (3, 26) and those that can apply to DHTs including those 

on patient-focused drug development, use of AI in devices (27), 

drug development (28), and validation of computer systems (17).

Industry has proposed the use of DHTs for several 

applications in drug development that span a variety of different 

intended uses to enhance decision making in clinical trials, not 

only as digital endpoints (29). DHTs have potential to be used 

for advancing novel candidate therapies at all stages of drug 

development including patient subgroup characterization, 

optimizing trial design, patient identification and recruitment, 

risk assessment and adverse event prevention, remote 

interventions to enable decentralized clinical trials, externally 

controlled trials, and label indication expansion.

Up until 5 years ago, it was common to refer to all DHT 

measures as “digital biomarkers”. However, the DHT measures 

can be used for multiple purposes to support drug development, 

and as such, the use of DHTs might meet either the definition 

of a biomarker or of a clinical outcome assessment (30): 

• Digital Biomarker: “a characteristic or set of characteristics, 

collected from digital health technologies, that is measured as 

an indicator of normal biological processes, pathogenic 

processes, or responses to an exposure or intervention, 

including therapeutic interventions.” (31)

• Clinical outcome assessment (COA): an assessment of how 

someone feels, functions, or survives (32).

For some DHT measures, this distinction remains a matter of 

debate (33). For example, it is possible to argue that change in a 

measure of gait due to progression or treatment of PD is both 

“an indicator of a pathogenic process or biological response” 

and that it is an “assessment of how someone feels or 

functions”. This distinction has practical applications. For a 

“biomarker”, the sensitivity of the measure to the pathogenic 

process or biological response is the priority, with the goal of 

achieving a larger effect size and hence needing fewer 

participants and/or less time for a clinical trial for a new 

medicine, in which demonstration of drug efficacy is the 

objective. For COA, however, clinical meaningfulness is the 

priority, and a sensitive measure that is not meaningful to the 

participant or their physician would be considered inappropriate 

in a trial in which the objective is demonstration of clinical 

effectiveness. This has implications for the types of data needed 

to advance the regulatory maturity of DHTs. The next section 

discusses the regulatory focus on patient-focused drug 

development, which is of great relevance to the use of DHTs 

for COAs.

4.1 Patient-focused drug development

Medicines regulators have an increasing focus on ensuring that 

data collected during clinical trials of new medicines takes account 

of the patients’ voice. The FDA’s recent series of guidance 

documents on patient-focused drug development (34–37) refer to 

DHTs in various places, and it is clear that regulators will treat 

many DHT measures as a type of Clinical Outcome Assessment 

(COA). The implication for the use of DHTs in clinical trials is 

that regulators want to see evidence that the DHT measure is 

relevant to a meaningful aspect of health for the patient. For 

example, accelerometers have become ubiquitous for tracking 

activity in smartphones and smartwatches. There are established 

ways of calculating “activity metrics” from this acceleration data, 

e.g., step count, cadence and amount of vigorous activity, and 

many novel motion-sensor-derived measures can be developed 

using machine learning and artificial intelligence. The focus on 

meaningfulness of DHT measures means that it is necessary to 

show that the DHT measure can be linked to a concept of interest 

relevant to the condition, and a meaningful aspect of patient 

health. This approach is being followed by consortia working in 

some disease areas e.g., nocturnal scratch (38). This linkage 

between DHT measure and meaningful aspects of health needs to 

be shown for each clinical condition, and regulatory agencies have 

similar expectations as to data required for drug development tools 

such as biomarkers and COAs (e.g., both observational and clinical 

trial data to support a defined COU).

Regulators are using the term “fit for purpose” to describe 

when a DHT measure is ready for use in a clinical investigation, 

and they make clear that a DHT measure has to be validated for 

a single COU,: it is considered fit-for-purpose when “the level of 

validation associated with a medical product development tool is 

sufficient to support its context of use” (30).

Whether a DHT is fit for purpose is determined by the 

strength of the evidence in support of interpreting the DHT 

measure as reNecting the concept of interest within the COU. 

Fit-for-purpose in the regulatory context means the same thing 

as valid within modern validity theory, e.g., validity is “the 

degree to which evidence and theory support the interpretations 

of test scores for proposed uses of tests” (39).
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4.2 FDA digital health technology 
guidance/framework

In 2021, the FDA published a draft guidance, “Digital Health 

Technologies for Remote Data Acquisition in Clinical 

Investigations” (40), and subsequently published a framework 

document that seeks to explain how DHTs fit into FDA’s thinking 

(26); a final version of the DHT guidance was published in 

December 2023 (3). Key implications of this guidance are that the 

initial step in choosing an appropriate DHT is to “consider the 

clinical event or characteristic of the disease or condition of 

interest that is to be measured, identify appropriate technical and 

performance specifications of a DHT, and consider the proposed 

trial population”. In practice, very often innovation in DHTs has 

started with available DHT devices (e.g., wrist-worn 

accelerometers) and sought to derive from this DHT device a 

DHT measure that meets a drug development need. This guidance 

further emphasizes the need to clearly define a rationale for the 

selection of a particular DHT for a context of use, the need for 

appropriate verification, validation, usability assessment, and the 

consideration of risks, including confounds (they give the example 

of false positive detection of tremor in PD from a person traveling 

in a car on a bumpy road). In the framework published, the FDA 

acknowledged that it needs to adapt internally to be able to 

properly consider DHTs and provide sponsors with consistent 

feedback between review divisions.

4.3 Machine learning and AI in drug 
development

Many DHT measures are calculated using machine learning 

(ML) or artificial intelligence (AI). Developers and users of 

DHTs therefore need to take account of the evolving regulatory 

landscape for AI. This is an area of rapid evolution in 

regulatory thinking and a potentially significant divergence 

between jurisdictions. The FDA has recently published a 

discussion paper “Using Artificial Intelligence and Machine 

Learning in the Development of Drug and Biological Products” 

(28), which is relevant to DHTs. Of particular relevance is the 

need to manage risk that arises from use of ML/AI models, 

which the regulators argue can be distinct from risk in 

traditional rules-based software. These risks include data quality 

risks, bias risks (e.g., selection bias, confounding variables), and 

data security and privacy risks (41).

4.4 Recent DHT regulatory milestones

As of August 2025 there are a total of two letters of support 

and two full qualification opinions from the EMA on the use of 

DHTs as drug development tools as digital endpoints. The FDA 

manages a public website (41) showing it has accepted multiple 

digital endpoints into the COA qualification program for a 

range of conditions including DMD, Multiple Sclerosis (MS), 

chronic heart failure, sarcopenia and atopic dermatitis. By 

reviewing the Agency feedback provided in each case example 

there are common issues to be addressed even though the 

specific indication may be different (42). Sharing of such 

knowledge and learnings promises to catalyze progress and 

avoid redundancies and inefficiencies.

5 Critical path institute’s 3DT initiative

C-Path is a not-for-profit organization that has nearly two 

decades of experience leading public-private partnerships 

spanning multiple diseases to advance regulatory maturity of 

drug development tools (Table 2) across several neurological 

disorders including Alzheimer’s disease (AD), PD, and DMD. 

C-Path-led consortia have achieved regulatory milestones from 

full qualification opinions to Letters of Support and Fit for 

Purpose FDA and EMA endorsements (43).

The 3DT initiative in Parkinson’s disease was launched in 

2018 under the auspices of the established global consortium, 

CPP, as a data-driven collaborative path to share knowledge and 

resources. The vision of 3DT is to advance the regulatory 

maturity of DHTs as drug development tools for decision- 

making in PD trials targeting early Parkinson’s disease.

CPP’s 3DT initiative has provided a data-driven framework 

for multiple sponsors who have agreed to collaborate on 

optimizing the use of DHTs in PD drug development. The 3DT 

consortium involves sharing of patient-level digital device data 

(including raw data) with members. The 3DT consortium has 

maintained regular interaction with medicines regulators, 

including a Critical Path Innovation Meeting (CPIM) held with 

the FDA and an Innovation Task Force (ITF) meeting with 

EMA, both in 2019. Regular additional interactions include with 

FDA staff members regularly attending monthly consortium 

meetings, thereby providing an ongoing regulatory dialogue. 

These interactions with regulators have highlighted several 

challenges facing the field, including the need for strategies for 

establishing meaningful clinical endpoints, controlling sources of 

variability, and evaluating DHT performance in normative as 

well as diseased cohorts.

A key focus of CPP 3DT is the observational study WATCH- 

PD (Wearable Assessment in the Clinic and at Home in PD) 

(NCT03681015) which is focused on an early de novo PD target 

population. This study evaluates the ability of research-grade 

wearable sensors, a smartwatch and a smartphone to assess key 

features of PD, using a platform that maps directly onto the 

MDS-UPDRS. WATCH-PD aims to determine the specific 

disease features these digital tools can detect, whether the 

TABLE 2 Critical path institute (C-path) regulatory milestones to date.

Regulator Letters of support Qualifications

Total % led by 
C-Path

Total % led by 
C-Path

FDA 25 44% 16 50%

EMA 49 20% 30 30%

FDA, US Food and Drug Administration; EMA, European Medicines Agency, as of March 2024.
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measures differed between individuals with early PD and age- 

matched controls, and how well the digital measures correlated 

with traditional ones (44, 45). The CPIM and ITF meetings in 

2019 provided regulatory feedback that was used to refine the 

Watch-PD protocol, adding a normal control arm, and 

including more rigorous qualitative evaluation of the 

meaningfulness of the DHT measures to study participants, 

illustrating the value of early interaction with regulators. CPP 

recognizes that WATCH-PD is a single study that is 

noninterventional and has limitations.

5.1 3DT progress to date

3DT has brought together a group of leading industry 

partners, academic key opinion leaders, patient advocacy 

organizations, and people living with PD from around the world.

The key components and milestones in the phases of 3DT are 

shown in Table 3.

6 Discussions and conclusions

There is an evolving regulatory landscape for Digital Health 

Technologies as drug development tools, with multiple 

stakeholders independently approaching regulatory agencies for 

endorsement. Experience of many parallel initiatives 

approaching regulatory agencies to date suggests that navigating 

the regulatory path to enable DHTs to have a significant impact 

on drug development and defining success in addressing drug 

development needs remain challenging. The experiences of the 

3DT consortium highlight the value of collaborative approaches 

involving pharma industry and academic experts, leveraging 

Critical Path Institute’s experience of advancing the regulatory 

maturity of a diverse range of drug development tools, from 

Patient Reported Outcomes (PROs) to imaging biomarkers (46). 

Tackling challenges collectively by advancing data-driven 

solutions and sharing costs and risks, as well as embracing open 

science, can avoid duplication of effort and therefore improve 

the efficiency with which we advance the regulatory acceptance 

of DHTs and their use in clinical trials. While DHTs make use 

of different technologies from those used in other DDTs, 

C-Path’s experience in other types of DDTs, and its existing 

infrastructure for legal, data, and regulatory engagement has 

proved valuable in enabling the 3DT consortium to progress. 

Specific regulatory feedback on the Watch-PD case study itself 

(such as the need to incorporate a control group, and to add a 

qualitative element to the study to assess the symptoms of most 

importance to patients) has informed multiple sponsors as to 

which considerations are essential across device platforms, both 

in other PD applications and in different disease areas.

The experiences to date make clear that, while digital 

technologies have many distinct characteristics, the use of DHT 

measures as drug development tools needs to fit into the same 

framework as other DDT technologies. It is therefore essential 

to precisely define: 

• The concept of interest (COI): a clinical event or characteristic 

of the disease or condition of interest that is to be measured, as 

either a COA or biomarker.

• The application of the DHT In terms of how it will be applied 

for drug development decision making (COU). The way the 

DHT measures the COI will impact the drug 

development process.

• The rationale for the use of a particular DHT measure relevant 

to that COI including why it meets the required technical and 

performance specifications.

• How the selected DHT measure is meaningful.

• The evidence that demonstrates the DHT measure is 

sufficiently well validated for the COU (“fit for purpose”).

For much work to date on DHT- measures as DDTs, it is hard to 

precisely define all these elements. A diversity of stakeholders is 

key to success and spans technology experts, clinicians, industry, 

academic experts, nonprofit organizations, people with lived 

experience, and regulators themselves. New approaches and new 

models of collaboration are needed to advance the field as 

TABLE 3 Key components of C-path’s CPP 3DT.

Regulatory alignment Data strategy Patient focused 
approach

Legal framework

Formal engagement with FDA (CPIM) and EMA 

(ITF and qualification advice)

C-Path platform for curation and sharing of 

DHT data, including raw sensor data, within 

consortia

Included PD-affected individual 

in WATCH-PD study design

Informed consent for WATCH-PD 

included data sharing with C-Path

Informal engagement with FDA and EMA 

regulators at consortium meetings and 

workshops including joint with EFPIR

Sharing of unprocessed in-clinic and at-home 

WATCH-PD data while study on-going.

Shared patient-centric trial 

recommendations using DHT

Data sharing agreements in place 

with consortium members and 

C-Path advisors.

Role of C-Path consortia highlighted at 4 

workshops hosted by regulators

Sharing of DHT data from pharma sponsored 

studies.

Data from qualification study 

shared with patients.

HIPAA and GDPR compliance

Feedback from regulators impacted Watch-PD 

protocol and analysis plans including addition of 

control arm

Anonymised Data available to individual 

sponsors for research and development use only 

(not commercialization)

Co-authored abstracts and manuscripts Analysis design takes account of regulatory 

feedback.

EMA, European Medicines Agency; FDA, Food and Drug Administration; EFPIA, European Federation of Pharmaceutical Industries and Associations; ITF, Innovative Task Force; CPIM, 

critical path innovation meeting; HIPAA, health insurance portability and accountability Act; GDPR, general data protection regulation.
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efficiently as possible to be able to attend to the time-sensitive 

needs of patients. Such collaborative approaches should learn 

lessons from other types of DDTs (e.g., imaging) to address 

challenges of standardization and collaborative implementation 

of analysis methods to enable convergence rather than 

divergence of proposed DHT measurements. Given the 

challenges of integrating and harmonizing legacy data collected 

across distinct device platforms, it is recommended that 

precompetitive collaborations focus on sharing risks, costs, and 

prospective study design and collection to optimize DHT studies 

for the future. We propose nine crucial next steps to advance 

the field, as shown in Table 4. While these recommendations 

are based on experience with this Parkison’s disease case study, 

they are more generally applicable for DHTs used as DDTs in 

this regulatory environment.
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TABLE 4 Nine recommended next steps to take the field forward.

# Recommendation

1 Define a pre-competitive space in which pharmaceutical companies, device 

companies, academic experts and people with lived experience can collaborate 

on specific COIs and COUs.

2 Ensure alignment of incentives for all stakeholders, taking account of differing 

business models and the need to devise tools that can be deployed in settings 

with low network bandwidth, limited digital literacy, and in low and middle- 

income countries.

3 Build on this alignment within the pre-competitive space to enable meaningful 

sharing of DHT data for defined regulatory purposes, taking into account 

ethical and pragmatic considerations.

4 Establish good practice for demonstrating meaningfulness of DHT-derived 

measures.

5 Establish good practice for demonstrating equivalence between different 

hardware/software for a given DHT measure.

6 Devise standardization approaches in data acquisition, how devices are used in 

studies, data handling, and data analysis for defined DHT measurements for a 

COI and catalyze the implementation of these in future studies.

7 Develop collaborative data analytics platforms that are able to handle the large 

data volumes collected and are designed to be robust to residual variation in 

data collection given the rapidly evolving and heterogenous nature of DHT 

hardware and embedded software.

8 Provide a clearer roadmap for demonstrating “fit for purpose” DHTs by 

focusing on some exemplar measures. Align across parallel consortia to 

advance multiple data sources synergistically.

9 Define pathways to improve usability to reduce patient and site burden, 

especially in diverse and global clinical trial populations.
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