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Editorial on the Research Topic
Digital remote patient monitoring in neurodegenerative diseases

Remote monitoring is gaining prominence in patient care enabling the recording of
repeat measurements outside of scheduled clinical visits. In neurodegenerative diseases
this is of added significance as changes that take place are often subtle, span multiple
domains (motor, cognition, sleep, speech, etc.) and new symptoms develop over
several years. This special volume integrates perspectives from experts and thought
leaders in the academy, pharmaceutical industry, and research foundations who
highlight significant new developments.

One of the important elements for adoption of remote monitoring devices in clinical
studies is patient acceptance and to adhere over sustained periods necessary to derive
clinically meaningful data. In a review of wearable device adoption rates, Hirczy et al.
conducted online surveys to identify barriers to uptake among Parkinson’s disease
patients. Surprisingly, among US based patients although greater than 90% of
respondents were interested in new technologies only 24% were using consumer
devices for disease management and only 8% with medical grade wearables.

Similarly, Kangarloo et al. report patient experiences with body-worn sensors used in
clinic and a mobile application used at-home from the WATCH-PD study. This
observational, 12 month study focused on disease progression in early Parkinson’s
Disease among 82 participants with PD and 50 control participants. Results
demonstrated that participants had generally positive views on comfort and use of the
technologies throughout the study duration regardless of group. Significantly, device
proficiency and acceptability in people with early stage PD did not differ from
neurologically healthy older adults, providing impetus for future clinical studies.

Careful study design is paramount when implementing new technologies in clinical
settings including assessing the reliability of the data captured. Lavine et al. examine
the test-retest reliability of accelerometry derived data from at-home studies. Using
raw data derived from triaxial accelerometry involving 21 PD patients and 23 controls
they applied linear mixed models to determine the identity of drug treatment effects.
They conclude that at-home measures have favorable reliability profiles as more data
points can be gathered, and the reduction in sample size needed to detect progression
presents clear justification for their deployment in future studies.
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The design of long term studies of disease tracking will likely
require development of innovative computational approaches to
data capture and interpretation. Zhai et al. present a new
machine learning framework to construct composite digital
biomarkers for progression tracking. The framework was applied
to data collected from an observational PD study involving
movement measurements captured using the Opal TM sensor
combined with MDS-UPDRS Part III scores. The composite
digital measure exhibited a smoother and more significant
increasing trend over time with less variability, and ability to
classify between de novo PD and healthy controls.

Although a majority of studies have focused on movement and
motion tracking, there are a number of exciting developments on
the horizon with alternative measures. Speech and acoustic signals
are a potentially very rich source of clinical information in
neurological diseases and Troger et al. highlight recent findings on
speech intelligibility. They describe a digital measure for speech
intelligibility which was deployed on datasets from patients
suffering from Dysarthria, a motor speech disorder associated with
Parkinson’s Disease (PD), progressive supranuclear palsy (PSP),
Huntington’s Disease (HD) and amyotrophic lateral sclerosis
(ALS). The score, derived from automatic speech recognition
(ASR) systems, showed good to excellent inter-rater reliability and
significant differences in intelligibility scores between pathological
groups and healthy controls.

Ocular analysis is another area of promise and Band et al.
provide a timely overview of the study of eye movement
abnormalities to indicate neurological condition severity and
distinguish disease phenotypes. Recent strides in imaging
sensors and computational power have resulted in a surge in the
development of technologies facilitating the extraction and
analysis of eye movements to assess neurodegenerative diseases.
Their review provides an overview of these advancements, their
potential to offer patient-friendly assessments and explores
current trends and future directions in this exciting field.

Other approaches are being developed with the similar goal of
detecting diseased states at population level using low patient
burden technologies. Jiang et al. reflect on studies in Canada
where automated facial expression analysis (AFEA) was compared
to standard measures such as electroencephalogram (EEG)
technologies and heart rate variability (HRV). The case for
development of composite measures of cognitive decline based on
AFEA is presented, and its utility in remote deployment using
contactless data capture supported by potential economic benefits
through the national healthcare system.

Advancing digital remote monitoring technologies for drug
development studies requires careful approach to study design and
ultimately alignment with prevailing regulatory guidance. In a timely
overview the role of the Critical Path Institute is highlighted,
between the health
pharmaceutical industry sponsors, patient advocates, and the clinical

bridging key interfaces authorities,
research community Stephenson et al. Progress made through the
Critical Path for Parkinson’s Consortium’s (CPP) Digital Drug
Development tool (3DT) serves to showcase their approach. The
initiative has helped accelerate the regulatory maturity of several key

digital health technology measures, and advanced thinking on
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approaches to clinical trial design, data acquisition and the use of Al
methodologies to extract critical features.

A tenet in regulatory guidance for remote patient assessment
is the need to focus on activities of daily living (ADL) and real
world evidence. An emerging trend for patient monitoring is the
development of smart home environments, with sensors and
devices located strategically to capture key health related data.
Grammatikopoulou et al. report findings on the assessment of
ADLs in subjects at the CERTH-IT simulated Smart Home.
Sensor data was used to track activity as subjects (controls and
groups suffering from cognitive decline) conducted various tasks
and operations. Differentiation between controls and other
groups was attainable and valuable feedback obtained to refine
the approach for wider deployment.

These are exciting times for the deployment of patient
monitoring technologies in neurodegenerative diseases. Progress
highlighted by these leaders is having demonstrable impact on
moving the field forward. We hope this inspires others to
innovate, challenge hypotheses, and develop practical solutions
to advance new treatment options and ultimately influence
patient care. Clearly, there is more to come.

Sincerely,
Amit Khanna, Diane Stephenson, Graham Jones
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Assessing the cognitive decline of
people in the spectrum of AD by
monitoring their activities of daily
living in an loT-enabled smart
home environment: a
cross-sectional pilot study

Margarita Grammatikopoulou®™, loulietta Lazarou?,

Vasilis Alepopoulos?, Lampros Mpaltadoros?,

Vangelis P. Oikonomou?, Thanos G. Stavropoulos?,

Spiros Nikolopoulos?, loannis Kompatsiaris!, Magda Tsolaki®3*
and on behalf of RADAR-AD

!Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI),
Thessaloniki, Greece, ?1st Department of Neurology, G.H. "AHEPA”", School of Medicine, Faculty of
Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece, *Greek Association
of Alzheimer's Disease and Related Disorders (GAADRD), Thessaloniki, Greece, “Laboratory of
Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh),
Balkan Center, Buildings A & B, Aristotle University of Thessaloniki, Thessaloniki, Greece

Introduction: Assessing functional decline related to activities of daily living
(ADLs) is deemed significant for the early diagnosis of dementia. As current
assessment methods for ADLs often lack the ability to capture subtle changes,
technology-based approaches are perceived as advantageous. Specifically,
digital biomarkers are emerging, offering a promising avenue for research, as
they allow unobtrusive and objective monitoring.

Methods: A study was conducted with the involvement of 36 participants assigned
to three known groups (Healthy Controls, participants with Subjective Cognitive
Decline and participants with Mild Cognitive Impairment). Participants visited the
CERTH-IT Smart Home, an environment that simulates a fully functional residence,
and were asked to follow a protocol describing different ADL Tasks (namely Task
1 — Meal, Task 2 — Beverage and Task 3 — Snack Preparation). By utilizing data
from fixed in-home sensors installed in the Smart Home, the identification of the
performed Tasks and their derived features was explored through the developed
CARL platform. Furthermore, differences between groups were investigated.
Finally, overall feasibility and study satisfaction were evaluated.

Results: The composition of the ADLs was attainable, and differentiation among
the HC group compared to the SCD and the MCI groups considering the feature
“Activity Duration” in Task 1 — Meal Preparation was possible, while no difference
could be noted between the SCD and the MCI groups.

Discussion: This ecologically valid study was determined as feasible, with
participants expressing positive feedback. The findings additionally reinforce the
interest and need to include people in preclinical stages of dementia in research
to further evolve and develop clinically relevant digital biomarkers.

KEYWORDS
Alzheimer's disease, healthy controls, subjective cognitive decline, mild cognitive

impairment, smart home, sensor technology, activities of daily living
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Grammatikopoulou et al.

1 Introduction

According to the World Health Organisation (WHO), there are
currently over 55 million people living with dementia (PwD) globally
(World Health Organisation Dementia Key Facts, 2022). The sharp
increase in dementia cases is likely to have significant consequences
for healthcare providers, caregivers, and the economy (Aranda et al.,
2021). For this, research has focused on the early detection of
dementia with the primary objective to intervene before symptoms
worsen and lead to loss of independence and greater need for care
(Rasmussen and Langerman, 2019).

This is further supported by the fact that search for effective
treatments of AD has led to the first disease-modifying therapies
(Lecanemab and Aducanumab). These treatments have been approved
by the FDA as well as in Japan and are being considered by the EMA
(European Medicines Agency, 2023). Furthermore, 141 drugs are
currently being tested in clinical trials for the treatment of AD, 80% of
which aim to slow disease progression (Cummings et al., 2023).

The need to identify people at the pre-symptomatic stage becomes
eminent, as the recently developed therapeutic agents exhibit their
greatest potential in early AD (Cummings et al., 2023; van Dyck et al.,
2023). Additionally, lifestyle and other non-pharmacological
interventions (e.g., the multidomain FINGER intervention (Ngandu
et al, 2022)), show promising results in preventing symptom
progression when applied timely, before the onset of dementia.

An early sign of dementia is functional deterioration expressed
often through difficulties in performing Activities of Daily Living
(ADLs), as an association has been found to exist between ADL
deficits and cognitive functioning (Bangen et al., 2010; Jekel et al.,
2015). Current approaches for assessing ADLs to determine functional
decline involve traditional pen and paper methods. As these rely on
informant input and are often not sensitive enough to capture subtle
changes, there is further space for improvement and development of
complementary measures (Sikkes et al., 2009).

Shifting focus to unobtrusive, passive, objective monitoring
approaches, digital biomarkers have emerged showing promising
potential (Anna-Katharine et al., 2023). In a general sense, using
technology-based approaches to evaluate ADLs in older adults is a
promising area of research with several advantages over traditional
cognitive assessment methods. However, a major drawback of these
tools is that they may require prolonged use to detect subtle ADL
differences that indicate cognitive decline. Nevertheless, the obtained
information from digital biomarkers, reflect real-life conditions, while
eliminating reporting bias. They can be derived from passive sensors,
wearables, purposive technological solutions (e.g., games) and other
technological solutions (e.g., assessment of computer mouse
movements, identify if pill box used) (Piau et al, 2019). Digital
biomarkers can be used to assess walking and sleep patterns, physical
activity and also, ADLs. They represent a valuable method, as they
comprise sensitive and precise measures that can detect subtle
changes. This makes them suitable in assessing deterioration in
function that can occur at an early, preclinical stage.

A plethora of sensors has been used and deployed in the context
of Smart Homes (SH) (in the sense of controlled research
environments, care homes or participants’ homes where the sensors
are being installed) allowing for remote in-home sensing and remote
ADL monitoring (Garcia-Constantino et al., 2021; Moyle et al., 2021).
There are many opportunities for the use of various SH technologies
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in community-dwelling PwD, ranging from diagnostic assessment to
long-term and personalized care management. As a result, many
individual studies have been conducted on the development and use
of SH technologies in older populations (Ma et al., 2023; Yu et al,,
2023). Such technologies are being investigated for use in a wide range
of applications and contexts. These can vary from home based
monitoring, personalized care, quality of life improvement, to
independent living, observation and prediction of the actions of a
person, caregiver burden reduction, intervention and disease
progression monitoring, and also identification of emergency
situations (Amiribesheli and Bouchachia, 2018; Ault et al., 2020; Han
et al, 2022; Miller et al., 2022). Furthermore, there is a growing
interest in the use of using digital biomarkers assessing ADLs, as
reliable proxies for screening participants for clinical trials or as
secondary endpoints (Atkins et al., 2015; Gold et al., 2018).

The use of sensor technology to identify cognitive decline through
observing ADL performance is not a novel concept. Even so, the field
of exploring methods and developing digital biomarkers to quantify
and compare ADL performance is still in its infancy.

1.1 Aim of the present work

This work has been conducted in the context of RADAR-AD,' an
EU-funded project that explores the potential of mobile and digital
technologies to improve the assessment of Alzheimer’s Disease (AD)
(Owens et al., 2020; Muurling et al., 2021). In particular, the main
motivation in one of RADAR-AD’s sub-studies was to explore whether
the identification and monitoring of ADLs was achievable, utilizing
data collected from in-home sensors in a Smart Home environment.
Furthermore, it was investigated if the identified ADLs can provide
clinically meaningful insights regarding the preclinical stages of
AD. Additionally, technology acceptance and the overall feasibility of
the study was assessed.

In detail, we assessed a number of people at preclinical and
prodromal stages of AD, namely, the Subjective Cognitive Decline
(SCD) stage, and the Mild Cognitive Impairment (MCI) stage (Dubois
et al., 2016), that were evaluated against healthy control (HC)
participants in terms of their performance during the execution of
particular ADLs. Their performance was monitored through the data
collected by a set of commercially available fixed in-home sensors?
installed in CERTH-ITTs Smart Home.’ The sensor data were
collected, processed and visualized using a platform developed by our
research team (Mpaltadoros et al, 2021). First insights could
be gained, regarding the effectiveness of remotely monitoring ADLs
and their potential to offer quantifiable metrics for discriminating
between the different stages of cognitive impairment. Furthermore, all
participants filled a detailed questionnaire assessing overall study
satisfaction while staying at CERTH-ITT’s SH, evaluating the presented
sensor technologies. The study pipeline is given in Figure 1.

1 https://www.radar-ad.org/
2 FIBARO sensors: https://www.fibaro.com/en/products/all-domotica-devices/

3 https://smarthome.iti.gr/
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2 Materials and methods
2.1 Study protocol

2.1.1 Participants

Participants were recruited from the Greek Association of
Alzheimer’s Disease and Related Disorders (GAADRD)* and a wide
community audience. The study was carried out in accordance with
the Declaration of Helsinki and received approval by the Ethics
Committee of CERTH (ETH.COM 54/17-06-2020) and the Scientific
and Ethics Committee of GAADRD (242/2022 AI_07/10/2021), while
a written informed consent was obtained from all participants prior
to their participation in the study. The Information Forms used to
debrief the participants were prepared according to ICH-GCP
requirements and data protection regulations [European Medicines
Agency (EMA), 2016].

The diagnosis of HC, SCD and MCI was set by a neuropsychiatrist,
specialised in dementia, according to the structural magnetic
resonance imaging (MRI), medical history, neuropsychological tests
and neurological examination. The MCI group fulfilled the Petersen
criteria (Petersen et al., 2009) and it is noted that all MCI cases were
of the amnestic subtype. The SCD group met IWG-2 Guidelines
(Dubois et al., 2014) as well as the SCD-I Working Group instructions
(Molinuevo et al.,, 2017). Regarding the SCD and MCI groups,
we excluded participants with confounding factors based on blood
tests (hormonal disorders, vitamin deficiency etc.), while structural
MRI scans were done for participants in both groups (vascular/
demyelinating lesions, tumours, anatomical variations etc.).
Additional inclusion criteria for the SCD and HC participants
included having a normal general medical, neurological and

4 http://www.alzheimer-hellas.gr/index.php/el/
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neuropsychological examination. Exclusion criteria comprised severe
psychiatric, physical or other neurological disorder, illness or any
other somatic disorder, which may cause cognitive impairment.
Additionally, it is noted that as the study protocol included an EEG
based action [explored in loulietta et al., (2023)], left-handedness
constituted an exclusion criterion (Patel and Azzam, 2005; Cuzzocreo
et al., 2009).

In total, forty participants were recruited, of whom two
participants were considered drop-outs, while data from two
participants were removed from the analysis to ensure that the groups
were age-matched, leading to a total of thirty six participants (N =36).
In detail, the HC group consisted of 12 participants, the SCD group of
13 and the MCI group included 11 participants. The demographic
characteristics of the participants can be found in Table 1. All groups
exhibited a similar range of age and education. Kruskal-Wallis test
revealed no group differences with regards to age and years of
education (Table 1).

As the study was conducted during the pandemic (2021), solely
fully vaccinated (validated vaccination certificates with verified app)
participants were recruited. Moreover, after each participant’s visit
decontamination by experts took place at the SH to ensure the safety
of all people involved.

2.1.2 Study design

Participants had the option of staying overnight at the SH or only
for a daily visit. The study protocol consisted of five Tasks, of which
three Tasks comprised ADL activities, namely, Task 1- Meal Preparation,
Task 2 - Beverage Preparation and Task 3 - Snack Preparation (Figure 2).
Two tasks consisting of meditation sessions were also included in the
protocol (Task 4 - Mindfulness Based Stress Reduction -MBSR; Crane
etal, 2017; Creswell et al., 2019), and Task-5 Kirtan Kriya meditation
(Khalsa, 2015), where participants performance during meditation was
monitored using a portable Muse EEG device. The protocol and the
study outline have been presented in Stavropoulos et al. (2021a) and
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TABLE 1 Demographic characteristics of the participants (N = 36).

10.3389/fnagi.2024.1375131

Demographic characteristics

Age in years 63.9 (6.4) 64.4 (6.4) 69.7 (6.4) 0.109

Gender (F:M) 11:1 9:4 8:3

Years of education 13.8 (2.6) 14.6 (2.1) 12.9 (2.7) 0.292

Neuropsychological tests

Mini Mental State Examination (MMSE) (Folstein et al., 1975) 29.25 27.85 26.00 <0.001
Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) 26.83 25.54 20.64 <0.001
Functional rating scale for symptoms of dementia (FRSSD) Total Score (Hutton et al., 1998) 2.25 2.62 3.27 0.181

Functional and Cognitive Assessment Test (FUCAS) Total Score (Kounti et al., 2006) 42.00 42.00 44.36 <0.001
Rey-Osterrieth Complex Figure Test (ROCFT) Copy (Osterrieth, 1944) 35.25 33.00 30.23 <0.001
Rey-Osterrieth Complex Figure (ROCFT) Delayed Recall (Osterrieth, 1944) 18.50 20.19 10.86 0.002
Rivermead Behavioral Memory Test (RBMT) Immediate Recall (Wilson et al., 1989) 15.42 13.85 10.45 0.003
Rivermead Behavioral Memory Test (RBMT) Delayed Recall (Wilson et al., 1989) 13.83 11.96 7.55 0.002
Rey Auditory Verbal Learning Test (RAVLT) Total Score (Rey, 1964) 45.17 39.15 34.00 0.025

Trail Making Test (TMT) Part B (Tombaugh, 2004) 146.67 151.38 217.82 0.045

Verbal Fluency Test (FAS) (Kosmidis et al., 2004) 11.44 10.13 9.43 0.009
Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) (Rosen et al., 1984) 9.47 11.96 16.58 0.001

Bold values denote statistical significance at the p <0.05 or p <0.001 level.

Lazarou et al. (2022) while the results of the meditation sessions have
been reported in a separate publication (Ioulietta et al., 2023). The
complete protocol and the full step by step description of each Task, as
given to the participants, can be found in the Supplementary information.
The total duration of the study (visit of first participant until visit of last
participant) was approximately 3 months.

Upon arrival, participants were welcomed to the SH by the
researchers and a detailed tour of the house followed. Afterwards, time
for discussion and additional questions was planned and the study
structure/protocol was again presented to the participants. Researchers
then left the SH, and participants were encouraged to feel at home and
perform the requested ADLs alone. For emergencies, they could
contact the researchers via telephone or press one of the installed
panic buttons. A psychologist- clinical research associate at CERTH
was at all times available.

2.1.3 Participants’ feedback (feasibility
assessment)

At the end of the visit, questionnaires regarding study feasibility
and technology evaluation were distributed to the participants,
namely an overall study satisfaction questionnaire, the System
Usability Scale (SUS), and the PANAS questionnaire assessing positive
and negative affect (Supplementary information; Brooke, 1986;
Watson et al., 1988).

2.2 Infrastructure

2.2.1 Smart home setting

The study was performed in the CERTH/ITI nZEB SH (Figure 3),
a fully equipped, real domestic building, where participants can
engage in real-world living scenarios and explore a plethora of
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innovative, smart IoT-based technologies. The SH can be used to test,
validate and evaluate novel technologies from various fields, including
but not limited to, Health, Energy, Big Data, Robotics and Artificial
Intelligence (AI).

In this study, the SH environment was used to resemble and
simulate the participants’ home, with the installation of a number of
sensors in every room allowing for unobtrusive monitoring of
participants’ ADLs. The available to the participants’ spaces in the SH
included one living room, a kitchen, a bedroom and two bathrooms.

2.2.2 loT devices infrastructure

2.2.2.1 Installed sensors

IoT device selection resulted from extensive literature research
and discussions with the partners of the RADAR-AD Consortium’
(Owens et al., 2020; Stavropoulos et al., 2020). Also, focus groups with
EWGPWD® and Alzheimer Europe’” were assembled in order to rate
the devices based on their features and potential usage and finalize the
selection process (Stavropoulos et al., 2021b). Furthermore, an online
meeting was organized (11/03/2021) to collect the EWGPWD’s
feedback on the fixed in-home sensors used in this study.

For the present study, commercially available Motion Sensors
(quantity, n=_8) were added in every room of the SH to detect human
presence. Furthermore, Door/Cabinet Sensors (n=8) were placed on
the main doors, as well as on the kitchen cabinets and drawers to

5 https://www.radar-ad.org/sites/radarad/files/2021-02/RADAR-AD?%20
device%20selection%20report.pdf

6 https://www.alzheimer-europe.org/about-us/european-working-group-
people-dementia

7 https://www.alzheimer-europe.org/
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A
Screening Follow-up
I Data collection using wearables and fixed in-home sensors |
Info from Introduction of Participants’
the clinic wearables feedback
Day 2 (optional) .
T ] T 1
| |
9:00 12:00 16:00 18:00 (10:00
Reception Task B Tasks A& D | Departure Task D)
10:00 14:00 17:00 (9:00 (11:00
Task A Task C Questionnaires Task A) Departure)
B
ADL Tasks Step-by-step Task description Time
Task 1 - Meal 1. Open the cupboard labelled “Food” 13.00-15.00
Preparation 2. Turnon the hot plate ~30 min
3.
E—— 4. e
5. Enjoy your meal!
Task 2 - Beverage | 1. Open the cupboard with the label “Coffee-Tea” | 10.00-10.30
§5¢ Preparation 2. Turn on the boiler machine and/or
3. 16.00-16.30
4. Turn off the kettle ~ <
5 10 min
Task 3 - Snack 1. Open the fridge 10.00-11.00
Preparation 2. Open the cupboard labelled “Dishes” ~ 10 min
3. Turn on the toaster &
J ‘;' 16.30-17.00
6. Wash the dishes * 15 min
FIGURE 2
(A) Overview of the complete study protocol and the structure of the daily visit with the optional overnight stay. (Task A — Beverage Preparation, Task B —
Physical Exercise and Meditation Sessions, Task C — Meal Preparation, Task D — Snack Preparation). (B) Overview of the activities protocol, describing step-
by-step the Tasks to be performed during the participants’ visit (the full step-by-step description can be found in the Supplementary information).

signal if they were being opened and closed. Wall Plugs (n=6) to
measure consumption were added to small electrical appliances (e.g.,
kettle, toaster, hot plate) and four panic buttons were placed in the SH
for emergencies. Examples of the installed fixed in-home sensors can
be seen in Figure 3.

2.2.2.2 Raw data

The sensors generate data that consist of two types of time series,
Signals, and Consumptions, both of which express the change of a
device’s status or metrics, respectively. Motion, Door/Cabinet sensors
and Panic Buttons compose the Event time series, expressing with
Boolean values the sensor’s status (1 for Activated and 0 for Idle). The
sensors are activated when a person interacts with them or with the
environment (e.g., Entering a room activates the Motion Sensor,
Opening the Cupboard activates the Cupboard’s sensor, pressing the
Panic Button sends the corresponding signal). Wall Plugs on the other
hand, express the change of a home appliance’s power consumption.
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2.2.2.3 Hubs

The time series are generated via a small gateway device® designed
to manage an entire SH system. Signal time series comprise signals
from all sensors except for Wall Plugs, for which a Consumption time
series is generated separately. In addition, the gateway device provides
a REST API to serve the data to other services, such as the CARL
Platform developed by our research team (Mpaltadoros et al., 2021).

2.2.3 Data collection and visualization
2.2.3.1 Data model

The CARL Platform (Care Ally: Data Collection and Analysis
Platform for Assisted Living) is an end-to-end data collection and

8 https://www.fibaro.com/en/products/home-center-lite/
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FIGURE 3

sensors in the kitchen, right: Motion sensor in the bedroom).

P e

Top: The smart home site. Bottom: Examples from the sensor installation in the smart home (left: marked Wall Plugs, Door/Cabinet and motion

analysis platform that allows integration with a continuously
expandable list of commercially available wearable and IoT sensors
and apps. Additionally, the platform offers a Visualization Dashboard
for clinicians (real time data representation), to enable operational and
clinical oversight across the entire lifespan of a study, in this way
facilitating informed decision-making.

Integration of the gateway with the CARL Platform was achieved
with the development of two components, the CARL RPi Client and
an Adapter. The CARL RPi Client is a client service designed to detect
the gateway on a local network and consume the generated time series
in order to upload them to the CARL Platform. The Adapter was
responsible for the authentication of the incoming data from CARL
RPi Client instances and the serialization of the raw data. In this way,
all data was transferred to the CARL Platform central database.

2.2.3.2 Visualization services

Once the raw data was saved in CARL Platform’s database, it was
processed to produce Event Objects, representing the duration of various
events that occurred during the participant’s visit (e.g., Cupboard
Opened, Kitchen Presence, Hot Plate On). A clinician could then
visualize these Event Objects through the dashboard, gaining an overview
of all the participant’s interactions with the environment (Figure 4).

2.3 Monitoring and synthesis of ADLs

2.3.1 From raw data to ADLs
In this section, a detailed description of the process followed to
structure and transform the raw data into Tasks and ADLs is
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presented. An overview is given in Figure 5, where it can be seen how
the raw signal and consumption data are converted to Events, while
sequences of these Events are utilized to form ADLs.

2.3.1.1 Raw data to events

The production of Event objects based on Signal data is achieved
by pairing the consecutive alterations of the devices status. When a
Signal has a “newValue” of 1, a new Event object is generated, having
as starting point the Signal’s timestamp. The next Signal with a
“newValue” of 0, will act as the ending point of the Event. An overview
can be found in Table 2.

2.3.1.2 Raw consumption data to event

For Consumption based Events, we took into consideration that
all devices, even when idle, still consume electrical power. Therefore,
depending on the home appliance, we applied an empirical
threshold, used to define when the home appliance was turned on
and off. If the consumption value exceeded the set threshold, then
an Event object was generated with the start time equivalent to the
Consumption’s timestamp. The next Consumption’s timestamp with
a value below the threshold, was used to mark the Event Object’s
end time.

2.3.1.3 Post-processing deviations

Due to the nature of the Cupboard/Door sensors, deviations were
noticed in the duration of some related events (e.g., the cupboard did
not fully close due to the brakes and extreme values were captured). On
such occasions, the events were post-processed by inspecting each
participant’s Event objects from the sensor, to determine the distribution
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FIGURE 4
Event objects visualization using the CARL platform visualization dashboard.
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FIGURE 5
An overview of the transformation of raw sensor data into ADLs.
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of the values. The duration values at the 75th percentile were then
compared to the sum of the 75th percentile and Standard Deviation
values. If the duration value exceeded the sum, we updated the end time
of the Event to match the 75th percentile value. This process was applied
until all duration values were lower than the sum value.

TABLE 2 Signal information obtained by the sensors (CARL: Care Ally:
data collection and analysis platform for assisted living).

Signal information Explanation

1d Unique identifier

Timestamp When it occurred in unix epoch
deviceID Device’s unique identifier
deviceType Device’s type

oldValue Previous status

newValue Current status

TABLE 3 Example of an ADL and the respective sensor activation
sequence.

Sensors activated

Example — Step by step

description for Task 2 -
beverage preparation

« In the kitchen, fill the kettle with water =~ « Motion Sensor “Kitchen

and turn it on from the button Presence” (ON)

o Open the cabinet labelled « Wall plug sensor “Kettle” (ON)
“Coffee - Tea” « Door/Cabinet sensor “Coffee/Tea

. Cabinet” ON for a second

o Make sure you close the button from then OFF
the kettle .

« After finishing drinking your coffee, « Wall Plug sensor “Kettle” (OFF)
wash the cup and the kettle with the « Motion Sensor “Kitchen

dish sponge and leave them in the Presence” (OFF)

sink to dry

10.3389/fnagi.2024.1375131

2.3.1.4 Events to ADLs

Through the CARL platform, it is possible to check whether the
sensors were successfully activated by the participants compared to
the task descriptions provided. An example of a step by step
description and the respective expected sensor activations are
presented in Table 3 for Task - 2 Beverage Preparation.

In order to form each of the three ADL Tasks, the use of a small
electric appliance, depending on the task was considered necessary. In
detail, for Task 1 - Meal Preparation the hot plate should be used, in
Task 2 — Beverage Preparation the kettle was needed, while in Task 3 -
Snack Preparation, the toaster was considered essential.

In Figure 6 the rationale of forming an ADL (Task 1 — Meal
Preparation) is given. Initially, a home appliance based event (“Hot
Plate Event” green bar, Figure 6) was detected. In order to take into
account the event, its duration had to exceed a specific value. This was
set by the researchers during the testing phase and served as a
checkpoint (minimum duration for the hot plate t=10min, kettle
t=2min and toaster t=5min). From there, thresholds were applied
before and after the appliance’s related event (“Threshold prior to Hot
Plate event” and “Threshold after Hot Plate Event” Figure 6). The
thresholds were determined after manual inspection of the data of all
participants and were set for the hot plate at =15 min, the kettle at
t=5min and the toaster at t=5min. All relevant Event objects
occurring in between these thresholds (purple bars and lines, green
bar, Figure 6) were clustered into one entity leading to an ADL (orange
bar, Figure 6).

Apart from allowing the formation of the ADLs, visualization
through the CARL platform offers a plethora of information on the
performed tasks. For example, for Task 1 - Meal Preparation
(Figure 6) it can be seen in which order the different sensors were
activated and for how long during a specific point in time, while the
participant performed the task. In detail, the orange bar shows the
duration of the complete Task, information derived by considering all
the individual sensors involved in the ADL performance as described
above. The green bar shows the duration of the electrical appliance in
use, in this case the hot plate, derived by the consumption observed

Dishes and Cups Cabinet | |

Hot Plate

Cutlery Drawer I I I

Trash Cabinet

Threshold prior to Hot Plate Event
FIGURE 6

visualized through the CARL platform.

Hot Plate Event

o ore =
Activities
Zoom 1h 3h 6h 12h All 29 Nov 2021 — 29 Nov 2021
14:00
13:55 14:00 14:05 ‘14 10 ‘14.15 ‘14‘20 ‘14‘25 14:30 ‘14‘35 ‘14:40
v Meal - Preparation
Fridge Door | |
Food Cabinet [ | | [ | | [ ]

Threshold after Hot Plate Event

ADLs based on the collected data - threshold applied to small electrical appliances consumption (e.g., hot plate). Task — 1 Meal Preparation activity

Frontiers in Aging Neuroscience

frontiersin.org


https://doi.org/10.3389/fnagi.2024.1375131
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

Grammatikopoulou et al.

10.3389/fnagi.2024.1375131

TABLE 4 Feature description and the naming convention followed for the sensors used in each Task/ADL.

Feature Description Data type
Activity_name ADLDs Name (i.e., Task 1 — Meal Preparation, Task 2 - Beverage Preparation, Task 3 — Snack Preparation) Text
Activity_duration The time needed (duration) to perform an ADL (Task 1, Task 2, Task 3). All sensors comprising the ADL are Seconds
taken into account
[The time between the start_time of the first Event Object and the end_time of the last Event Object]
Number_of_steps The total number of sensors activated during the performance of an ADL Integer
Count_<name_of_sensor> The number of times, number of repetitions (count) a Door/Cabinet sensor was activated Integer
Sum_ <name_of_sensor> The time (SUM duration) of a sensor being activated Seconds
Avg_ <name_of_sensor> The time (AVG duration) of a sensor being activated [SUM duration divided by the number of repetitions (sum Seconds
duration and average duration are identical if sensor was used/activated once)] [sum_ <name_of_sensor>/
count_<name_of_sensor>]
Sum_ <inaction_time> Time period during a Task where the participant did not activate any sensors [activity_duration - SUM Seconds
(sum_ < sensors>)]
Sensor name Type of Sensor description Task
sensor
Coffee - Tea cabinet Door/cabinet Door/drawer/cabinet opening - closing 2
Dishes and cups cabinet sensor 1,2,3
Cutlery drawer 1,2,3
Food cabinet 1,3
Trash cabinet 1,2,3
Fridge door 1,3
Hot plate Wall plug Consumption monitoring 1
Kettle 2
Toaster 3
Kitchen, living room, bedroom, Motion Presence/motion capture ADLs were performed
bathrooms, hallways sensors in the Kitchen
during this period of time. The more frequent (due to number of was exported in the form of a csv file, to facilitate

repetitions) and thinner (due to shorter duration) purple signals, show
the various cabinets and drawers opened and closed during the
execution of the Task.

2.3.2 ADL features

Our intention with analysing the raw sensor data into events and
ADLs associated with specific Tasks, was to enable the extraction of
representative features characterising an ADL, and use these features
to detect differences between the groups of participants (HC, SCD
and MCI).

More specifically, we can see the time of the day the participants
performed each task, the duration of each activity (in seconds), as well
as the duration each appliance was in use (in seconds), or the time a
cabinet was left open, and the number of times a sensor was activated
(number of repetitions, count for, e.g., opening a cabinet).
Furthermore, apart from these primary derived features, a secondary
feature/by-product was investigated, namely the “Inaction Time”
which refers to the time recorded between sensor activation. For this,
the durations between different sensor signals were added up and
subtracted from the total activity duration creating the feature
“Inaction Time?”

In Table 4 the description of each feature is given, along with
the naming convention followed for each sensor, the sensor type
and in which of the Tasks they were utilized. All this information
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statistical analysis.

2.3.3 Validation

To ensure the sensors’ and platform’s effectiveness and
reliability, during the study, information was gathered from the
participants by the researchers in the form of free text notes,
regarding the performed ADLs (completed Tasks, approximate
time of the day performed) and used as ground truth. A
comparison between the ground truth and the activities identified
by the platform was made. Differences in the number of activities
recorded by the platform and the available ground truth data could
be attributed to power and internet outage or sensor connectivity
issues. In detail, one “Meal Preparation” and one “Beverage
Preparation” tasks were missing from the platform due to
unexpected power outage in the SH. For two “Snack Preparation”
tasks (performed the same day), the platform collected only data
from the Wall Plug sensor, while the Door/Cabinet sensors
were unresponsive.

2.3.4 Statistical analysis

With the dataset containing all information on the various
features per task at hand, we proceeded to compare the
performance on each ADL, among the three groups at the level
of significance p=0.05. Descriptive analysis and statistical
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analysis were performed using SPSS v25.0 for Windows (IBM
Corporation, Armonk, NY, United States). Descriptive analysis
was performed to depict participants’ data, while statistical
analysis was carried out to locate differences in the various
activities and the individual features.

For assessing the normality assumption for continuous variables
we used the Kolmogorov-Smirnov test. As the depended variables
were not normally distributed, and due to the small sample size
available, non-parametric tests were selected (Mishra et al., 2019).
Between groups comparisons were made using the Kruskal-Wallis
test. For examining the potential statistical significance between two
independent groups (e.g., HC versus SCD), the Mann-Whitney test
was used. Furthermore, the Area under the Curve (AUC) was
also examined.

3 Results

3.1 Exploring ADLs — task comparison
between groups

The assumptions formed in the present study were shaped around
the expectation that more cognitively impaired participants will
exhibit different behavioural patterns compared to healthy controls.
These differences can be attributed to functional deterioration, as AD
is characterized by the impairment of cognitive functions and
increasingly poorer ADL performance.

Specifically, it is expected that the differences in ADL performance
will be observed in the overall time needed to complete an ADL, in
additional steps made and repeated actions noted (e.g., opening/
closing a cabinet more frequently).

Consequently, the features considered meaningful to explore these
assumptions, as derived from feature engineering of the collected
sensor data, include number of steps to complete an ADL, activity
duration, sensor activation duration, number of sensor activations,
and inaction time.

Descriptive statistics and results for the statistical tests are given
for all features in the Supplementary information. It is noted that
while all results are commented in the text, only the more prominent
for discussion features are presented in Figures and Tables to provide
the reader with a clearer overview.

3.1.1 Task completion

Participants were asked to complete three Tasks as entailed in the
protocol. Three tasks were completed by 33% of the participants of the
HC group (4/12), 23% of the SCD (3/13) and 18% (2/11) of the MCI
group. Two tasks were performed by the majority of the SCD group
(61.5%, 8/13), approximately half the participants of the MCI group
(55%, 6/11) and by 42% (5/12) of the HC group. Furthermore, 27%
(3/11) of the MCI group completed only one task, whereas the
percentages are 25% (3/12) and 15% (2/13) for the HC and the SCD
group, respectively.

In detail, it is noted that 11/12 HC (91.67%), 11/13 SCD (92.31%)
and 7/11 MCI (63.64%) performed the activity “Meal Preparation.”
The activity “Beverage Preparation” was performed by 10/12 HC
(76.92%), 11/13 SCD (92.85%) and 6/11 of the MCI (61.53%). Only
twelve participants performed the Task “Snack Preparation,” in detail,
5/12 HC, 4/13 SCD and 3/11 MCL
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3.1.2 Number of steps

The estimated number of steps needed to complete Task 1 —
Meal Preparation, according to the step-by-step task description
is ten. The mean number of steps for each group was found to
be 14.7 (SD=3.8) for HC, 14.6 (SD=5.6) for SCD and 18.8
(SD =8.2) for the MCI group, showing no differences between the
HC and SCD groups, and a larger number of steps for the MCI
group. No statistical significance was noted (Kruskal-Wallis test
p=0.437).

For Task 2 - Beverage Preparation, the description included six
sensor activation steps, while participants performed HC=7
(SD=1.5), SCD=7.1 (SD=1.3), MCI=7.6 (SD =3.9) steps.

The three groups needed approximately the same number of mean
steps to complete Task 3 — Snack Preparation [HC=9.8 (SD=2.9),
SCD=11.3 (SD=4.9), MCI=10.0 (SD=3.6)]. It is noted that the
protocol lists six sensor activation steps for this Task.

3.1.3 Activity duration

Furthermore, the time needed to complete a Task was assessed.
The distribution of the collected data is presented in Figure 7A for the
three Tasks. The results of the Kruskal-Wallis test for the “Activity
Duration” feature for the three Tasks showed a statistically significant
difference across the three groups of participants at a p=0.05 level, in
Task 1 - Meal Preparation [H (2)=7.607, p=0.022] (Table 5). No
statistically significant difference was noted for “Activity Duration” in
Tasks 2 and 3.

Afterwards, in order to determine the groups between which
discrimination was possible in Task 1 - Meal Preparation, Mann
Whitney test was performed, showing that the duration was
statistically significant longer for the SCD group compared to HC
(U=29.00, p=0.040), and also for the MCI group compared to HC
(U=9.00, p=0.015). No differentiation was possible between the SCD
and the MCI group for Task 1.

3.14 Individual sensors

As each Task consists of a synthesis/composition of Events,
signalled by different sensors, it was considered important to
investigate next the activation duration as well as the number of
activations marked for the individual sensors. It is noted that six
sensors were placed to monitor Task 1 — Meal Preparation, five for
Task 2 — Beverage Preparation, and six for Task 3 — Snack Preparation
(Table 4 in previous section).

3.1.4.1 Sensor activation duration

Kruskal Wallis test was performed for all available sensors
regarding the features “sum_ < name_of_sensor>” and “avg_<name_
of sensor> (Supplementary information).

A statistically significant difference was found only for the
duration of the sensors placed on the Fridge Door and the Food
Cabinet in Task 3 - Snack Preparation, while a weak trend was
observed for the Fridge Door sensor in Task 1 — Meal Preparation
(Table 5). Mann Whitney tests for the sensors of Task 3, revealed a
trend between the HC and MCI groups, showing that the MCI group
noted longer durations when utilizing the Fridge Door and the Food
Cabinet during the Snack Preparation task. The data distribution of
the abovementioned sensors can be found in Figure 7B.

Regarding the use of the small electrical appliances, no
differentiation was possible. Boxplots showing the distribution among
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FIGURE 7
Boxplots showing the distribution of the collected data for the various features for the three groups regarding each Task (Task 1 — Meal Preparation, Task 2
— Beverage Preparation, Task 3 — Snack Preparation). The * in (A) indicates the group pairs where a statistical significance at p=0.05 level was found. The
brackets in (B) indicate the group pairs where a weak trend (p=0.057) was found. No statistical significance was found in (C) and (D) between groups.
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TABLE 5 Descriptive statistics (mean value and standard deviation, given in seconds and count according to each feature), Kruskal-Wallis and Mann—
Whitney p values for the explored features regarding the performed Tasks (Task 1 — Meal Preparation, Task 2 — Beverage Preparation, Task 3 — Snack
Preparation).

HC MCI Kru;i(\?;l\{l\l:lus Mann—-Whitney U-test p-value

Task Sensor
Mean value (standard deviation) RISTEIRYS | [alSVERUS | SADVERIS
SCD MCI MCI

Feature “Activity Duration” (in seconds)
1 All sensors comprising 1710 (349) 2,180 (604) 2,546 (619) 0.022 0.040 0.015 0.350
2 the corresponding ADL 346 100 400 (104) 362 (106) 0566 - - -
3 are taken into account 586 (135) 780 (450) 487 (66) 0.546 - - -
Feature “Sensor Activation Duration” (in seconds)
1 Fridge door 17 (14) 27 (26) 44 (24) 0.074 - - -
3 Fridge door 22(9) 35(11) 46 (20) 0.046 - 0.057 -
3 Food cabinet 113) 9(8) 23 (6) 0.050 - 0.057 -
1 Hot plate 941 (282) 1,176 (546) 1,314 (444) 0.139 - - -
2 Kettle 120 (29) 123 (53) 117 (56) 0.963 - - -
3 Toaster 182 (31) 200 (70) 226 (67) 0.554 - - -
Feature “Number of Activations” (count)
1 Cutlery drawer 2.45 (1.13) 3.82 (1.60) 4.33 (2.80) 0.093 - - -
1 Food cabinet 4.64 (2.46) 3.73 (1.95) 6.00 (4.38) 0.517 - - -
2 Coffee - Tea cabinet 1.81 (0.13) 1.92 (0.21) 2.03(0.38) 0.984 - - -
Feature “Inaction Time” (in seconds)
1 Time period during a 647 (284) 854 (305) 1,081 (401) 0.148 - - -
2 Task where no sensors 200 (70) 230 (111) 210 (103) 0.762 - - -
3 were activated 339 (171) 616 (428) 169 (120) 0.394 - - -

Bold values denote statistical significance at the p <0.05 level.

groups are presented in Figure 7B, while descriptive statistics and the
results from the statistical tests are also included in Table 5.

3.1.4.2 Number of activations (count per sensor)

No interesting finding could be noted here. Even though this
feature could be connected with the performed number of steps,
where for Task 1 — Meal Preparation the MCI exhibited a larger
number of mean steps, no statistically significant difference could
be found. Indicative examples of the data obtained can be seen in
Figure 7C and Table 5.

3.1.5 Inaction time

The composite feature “Inaction Time,” aiming to capture the time
participants spent during an activity without activating a sensor (e.g.,
due to wandering, considering their next action), did not yield any
differences between groups. Considerable overlapping between groups
is noted for “Inaction Time,” and no differences emerged from the
Kruskal-Wallis tests performed (Figure 7D; Table 5).

3.2 Sensitivity and specificity

The potential utility of the three ADL tasks as objective markers
to distinguish an individual’s cognitive condition (SCD, MCI)
compared to HC by testing Sensitivity and Specificity among the
groups (Table 6) was investigated.
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In general, an AUC of 0.5 suggests no discrimination (i.e., ability
to diagnose patients with and without the disease or condition based
on the proposed test), 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is
considered excellent, and more than 0.9 is considered outstanding
(Hosmer and Lemeshow, 2000; Mandrekar, 2010).

In detail, we managed to successfully discriminate HC from SCD
in Task 1 - Meal Preparation (AUC=76%, Sensitivity=0.82 and
Specificity=0.64) regarding the “Activity Duration” feature. Also,
we managed to discriminate HC from MCI in Task 1 - Meal
Preparation (AUC=86%, Sensitivity =0.83 and Specificity=0.82) and
Task 3 - Snack Preparation (AUC=75%, Sensitivity=0.75 and
Specificity=0.67). Interestingly, no discrimination could be made
between the SCD and MCI groups. The “Activity Duration” feature of
the Meal Preparation Task can distinguish between HC-MCI and
HC-SCD with acceptable robustness.

3.3 Usability and satisfaction questionnaires

The overall experience as perceived by the participants during the
study in the SH was assessed with a study satisfaction questionnaire
that referred to the visit, the tasks, the time needed to complete the
tasks and the level of difficulty (Supplementary information). No
difference between the three groups could be noted regarding the
given feedback. The majority of the participants (72%) when asked if
they were satisfied with their participation in the study, replied with
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TABLE 6 Sensitivity and specificity of the three ADL tasks (Task 1, Task 2 and Task 3) regarding the feature “Activity Duration” for discriminating between

groups.

Threshold value

Feature “activity duration” : Sensitivity Specificity
(in seconds)

HC versus SCD Task 1 — Meal preparation 0.76 1715 0.82 0.64
Task 2 — Beverage preparation 0.62 342 0.67 0.56
Task 3 - Snack preparation 0.67 700 0.67 0.75

HC versus MCI Task 1 — Meal preparation 0.86 1924 0.83 0.82
Task 2 - Beverage preparation 0.58 352 0.70 0.56
Task 3 - Snack preparation 0.75 500 0.75 0.67

SCD versus MCI Task 1 - Meal preparation 0.65 1977 0.83 0.55
Task 2 - Beverage preparation 0.59 403 0.58 0.80
Task 3 - Snack preparation 0.67 522 0.67 0.67

The sensitivity and specificity scores corresponding to the cut-off thresholds alongside with the AUC. Bold values suggest acceptable discrimination (0.7-0.8) or excellent discrimination

(0.8-0.9), (Hosmer and Lemeshow, 2000; Mandrekar, 2010).

“Extremely satisfied” The participants perceived the study as
“Extremely appealing” (60%), “Very appealing” (22%) and “Appealing”
(14%). The time planned for the Tasks was found to be sufficient with
participants commenting that they did not need more time to
complete the activities (94%). The instructions and task descriptions
were unanimously found to be extremely easy to read and understand,
and the labels placed to mark the different cabinets (labelled “Food,”
“Cutlery”) were perceived as very useful. No technical issues and no
issues of any other nature were noted during the participants’ visit
(e.g., problems with the sensors, person wanting to terminate
participation). All participants replied with “No” when asked if any
skills were required to interact with the proposed technologies.
Describing the overall visit, all participants replied that their
participation was a positive experience and no feeling of inconvenience
was noted (e.g., stress, depression, anxiety). Additionally, the mean
scores (M) per group, for the SUS questionnaire (scores can range
from 0 to 100) (Brooke, 1986), revealed excellent overall usability [HC:
M=94 (SD=5.8), SCD: M=92.9 (SD=4.7), MCI: M=93.9 (SD=5.2)].
The PANAS questionnaire, designed to measure emotional experience
(namely positive affect, PA and negative affect, NA was utilized;
Watson et al., 1988). Respondents are asked to indicate the extent to
which they have experienced each emotion (e.g., excitement, sadness)
over a specific period of time rating them on a scale from 1 to 5 (PA
and NA can range from 10 to 50). The participants showed acceptable
positive and negative affects, while no differences between groups
were observed [HC: Mp,y =36 (5), Mya=20 (5), SCD: M, =35 (3),
Mys = 19 (6), MCL: My, =36 (5), Mys =21 (6)].

4 Discussion

The Smart Home, simulating a domestic residence, offers a unique
environment allowing for controllable experimental conditions.
Through data collection using non-intrusive fixed in-home
sensors in the

CERTH-ITI SH, and instructing participants to follow a protocol
listing a number of ADLs, we aimed to capture, quantify and assess
ADL performances, as these can lead to insightful measures for
functional deterioration. Through this ecologically valid assessment,
we aimed to detect changes between three different cohorts, namely
HC, participants with SCD and participants with MCI. Visualization
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of the collected data and extraction of meaningful features in the form
of a dataset available for analysis was possible by utilizing the
CARL platform.

This preliminary investigation demonstrated that SH technologies
present an opportunity for an unbiased and real-world evaluation of
ADLs in individuals with SCD and MCI. The study allowed for the
assessment of not only whether a task is accomplished but also how it
is carried out.

Discussing protocol adherence and number of overall completed
ADLs, it appeared that participants did not follow precisely the
provided protocol with the step-by-step task descriptions, but
proceeded with the ADLs in a more intuitive way. Additionally,
commenting on the number of steps needed to complete a Task, only
for Task 1 — Meal Preparation was a small difference observed in the
mean number of steps for the MCI group compared to the HC and
SCD groups. In Tasks 2 - beverage preparation and 3 - snack
preparation the three groups performed similar number of steps.

The correctness of the executed steps may not be easily assessed,
using simple statistical analysis methods, as the step sequence differs
not only between groups but also notably, within groups as well.
However, as participants proceeded with the Task execution in a freely
manner, the observations made are in the context of real-environment
monitoring and allow real-life evaluations. Additionally, as
commented in Jekel et al. (2016), we should consider that there could
be significant individual variability in performing a task in a correct
manner, for this, it can be overall argued, if correctness of steps can
pose a useful feature. Also, in the work of Lundstrom et al. (2016)
guidelines provided to participants for performing tasks (e.g., prepare
breakfast, get hot drink, prepare dinner), were written in a simplified
manner to allow for natural variation.

It is noted that overall the HC and SCD groups performed,
respectively, 70 and 74% of the expected tasks and the MCI group 58%.
Specifically for Task 1 - Meal Preparation, the MCI group exhibited
the lowest number of performance compared to the other groups
(11/12 HC, 12/13 SCD, 7/11 MCI). No plausible justification could
be derived for this discrepancy.

Regarding activity duration, Task 1 - Meal Preparation, yielded
differences between the groups, which constitutes an interesting
finding. It was considered that the more elaborate task of preparing a
hot meal, due to its added complexity, was able to highlight the groups’
differences attributed to functional decline due to cognitive
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impairment. Specifically, comparison of participants’ performances in
Task 1 led to statistically significant differences between groups,
namely between HC versus SCD, and HC versus MCI, based on the
time needed to complete the task. It is noteworthy that no
differentiation could be made between SCD and MCI participants.

The meal preparation task has been investigated also in a different
context, in the work of Atkins et al. (2015, 2018), where the Virtual
Reality Functional Capacity Assessment Tool (VRFCAT) was used.
Discriminating healthy older adults from older adults with SCD was
possible, as the latter noted a statistically significant larger amount of
time to complete the given tasks and performed more errors.

Furthermore, ROC Curve values were encouraging for the Task
1- Meal Preparation, reaching 86% in the classification of HC vs. MCI
and exciding 70% in the classification of HC vs. SCD. This is a
promising finding, as available neuropsychological tests do not
discriminate SCD from HC (Sikkes et al., 2009; Kaur et al., 2016).

On the other hand, the more straightforward / simple tasks of
preparing a beverage (Task 2), and a snack (Task 3) were not able to
show between groups differences. This is in accordance with existing
literature. In Jekel et al. (2016), the coffee and sandwich preparation
tasks were also not able to differentiate the HC and MCI participants,
while in Karakostas et al. (2020) assessing various ADLs, no difference
could be observed between HC and MCI for the tea preparation task.
As has been commented in Jekel et al. (2016), these tasks could
be considered as not highly cognitive demanding.

Additionally, regarding the individual sensors, only the ones
placed on the Fridge Door and the Food Cabinet (both Fridge and
Food Cabinet entailing a variety of different products) could show
some difference between groups in their utilization (weak trends).
Again, we are of the opinion that the fridge and the cabinet containing
a number of products could be considered as the more complicated
to handle.

The feature “Inaction Time” was considered promising as it was
assumed that cognitive impairment and functional decline could lead
to increased wandering time between actions due to possible
disorientation (Coughlan et al., 2018). While the participants’ data
distribution for “Inaction Time” in Task 1 - Meal Preparation showed
this expected tendency, no statistical significant difference
was observed.

The duration of utilizing the small electrical appliances was
compared between groups. Since the activation of these appliances
was seen as a requirement for the formation of the ADLs (the ADLs
were built around the data collected from the small electrical
appliances), it was important to determine if this factor predominantly
influenced the overall composite ADL duration feature. However, no
statistically significant difference could be observed between groups.

In general, for many of the collected sensor data, descriptive
statistics revealed an initial trend that MCI participants (and in some
cases SCD participants) exhibit longer durations than HC, but
significant overlapping exists between the groups not allowing further
comparisons. Regarding the features addressing aspects besides
duration, like the number of steps needed to complete a Task, the
number of repetitions in utilizing, e.g., specific cupboards, could not
be used to differentiate the groups. We are of the opinion that these
features are reflecting actions not cognitive demanding and are not
granular enough to highlight differences. For this, further feature
exploration is needed to gain additional markers from the
performed ADLs.
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The present study shows that implementing new technologies that
are able to detect subtle changes in cognitive and functional patterns
may allow earlier diagnosis, even at the point when memory functions
are still intact, such as the SCD stage.

While studies on activity recognition from collected sensor data
are available in the literature (Bouchabou et al., 2021), there is limited
research on efforts of quantifying and comparing the performed ADLs
among early stages of cognitive impairment (Atkins et al., 2018), while
only a comparison between a small number of HC and MCI
participants has been attempted so far (Stucki et al., 2014; Jekel et al.,
2016; Stavropoulos et al.,, 2016; Urwyler et al., 2017; Karakostas
et al., 2020).

Moreover, there is scarce evidence for real-life, smart home-based
use of technologies for early detection of dementia, and no approach
is yet perceived as mature enough (Piau et al., 2019). An exception can
be considered the Collaborative Aging Research Using Technology
(CART) Initiative, a multi-site, nationwide project (Thomas et al.,
2021; Bernstein et al.,, 2022). The study uses multiple embedded
sensing technology and diverse data to support research in the field of
health and independent living, focusing on older adults from various
communities. However, as the authors note, further proof is needed
on the precision, accuracy and reliability of these novel outcome
measures before home-based sensor technologies can be included in
clinical trials and utilized in the monitoring of chronic diseases
(Thomas et al., 2021).

A frequent constraint in the majority of studies that evaluate SH
technologies for monitoring ADLSs, is their lack of focus on participants’
acceptance of the devices, as indicated by a recent systematic review
(Lawson et al., 2023). Along with the fact that elderly participants are
not very keen on using smart technologies (Tiersen et al., 2021; Wei
etal., 2023), participants views need to be considered when introducing
new technologies. The present study and the proposed technologies
were evaluated by the participants, and were regarded as feasible.
Participants answered in a positive manner when asked a number of
questions regarding their experience and their stay, the sensors and
technologies utilized, while they did not experience any issues.

The study has some limitations that need to be acknowledged.
While the sample size (N=36) could be considered sufficient,
considering the exploratory nature of the study and existing literature
(Hayes et al., 2008; Petersen et al., 2015; Seelye et al., 2020) it is noted
that, as some participants did not complete all tasks listed in the
protocol, the dataset was further decreased. For example, a number of
people, independently of their group, did not perform the Task
3-Snack Preparation activity (7/12 HC, 9/13 SCD and 8/11 MCI). This
could be attributed to the fact that as participants stated, “They were
not hungry;” or “preferred to rest some more” and “explore the Smart
Home’s premises instead” This led to a restricted dataset available for
Task 3 for analysis, the findings of which must be viewed with caution.

Additionally, it is noted that, as participants visited a new,
unknown to them environment, this could also have affected the way
they performed the various ADLs. Nevertheless, effort was made to
simulate a real domestic environment while also adequate time was
provided to the participants to feel comfortable in the house and
discuss any concern with the researchers.

During feature extraction, conversion of raw data to events and
activities involved refinement through post-processing. Even though
all data processing was performed in a systematic manner and is
described in the text, and a validation of the ADLs derived from the
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sensors was performed using collected information as ground truth,
in the interest of thoroughness this is acknowledged as a
potential limitation.

Also, the use of flood sensors was investigated, installed in the
kitchen (sink) and the bathroom (sink and flush). However, as the
sensors are designed to detect water leaks and flooding, the necessary
adjustments made to the sensors to monitor water usage instead, did
not allow robust and continuous data collection. For this, the sensors
were not included in the study.

Furthermore, it is noted that, as biofluid biomarkers were not
collected for all participants, the etiology of the MCI and SCD group
cannot be distinguished (amyloid positive vs. amyloid negative).

A limitation of the study, to be addressed in future work,
constitutes the absence of a comparison/correlation to relevant
conventional measures of function [e.g., the informant-based
Amsterdam IADL questionnaire (Sikkes et al., 2012), the Naturalistic
Action Test (Seligman et al., 2014)].

Finally, regarding the study’s feasibility assessment, as researchers
were present while participants filled out the questionnaires, possible
bias could occur.

The herein presented SH study provides a proof-of-concept for the
feasibility of identifying, quantifying and assessing ADLs and
differentiating known-groups via monitoring their performance. It is
evident that new tools will be required to assess and evaluate clinically
significant changes (Atkins et al, 2015; Gold et al., 2018). The
inclusion of people in preclinical stages of AD, constitutes an
important step towards the advancement of digital biomarkers.

5 Conclusion

Participants spent a day in CERTH-ITI’s Smart Home, a controlled
environment that simulates a fully functional house, and were asked
to perform a number of ADLs according to a given protocol. The
results proved the differentiation among the HC group compared to
the SCD and the MCI groups considering the feature “Activity
Duration” in Task 1 - Meal Preparation. Task 1 can be considered
more complex compared to Task 2 - Beverage Preparation and Task 3 -
Snack Preparation.

The distinction of the SCD from the HC group, constitutes an
important finding, as conventional assessments (neuropsychological
questionnaires) note no difference between these groups. Furthermore,
the differentiation of HC and MCI participants, as documented in the
existing literature, confirms the study design and the methodology
followed. Additionally, it is interesting to note that no significant group
differences could be observed between the SCD and the MCI groups.

These findings further support the interest and need to include
people in preclinical stages of dementia in current research.
Furthermore, the study was proven feasible, with participants
expressing positive feedback for the study and the technologies used.

Access to this information, paves the way for detection of
behavioural patterns and deviations allowing for early observation of
deterioration in function. This ecologically valid study provides
evidence that ADL performance can be utilized and further evolved
to develop clinically relevant digital biomarkers. These biomarkers
could serve for monitoring participants in at-home settings,
participant stratification as well as secondary endpoints in clinical
trials to complement established outcome measures.
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Starting from these encouraging findings, further research would
be needed to determine the long-term reliability and predictive value
of the proposed assessment tools in the clinical practice. Consecutive
data collection on the executed ADLSs over an extended period of time,
would allow us to monitor behavioral patterns of the individuals in
depth, identify personalized thresholds and highlight potential
functional deterioration. Additionally, in this way, other factors could
be controlled for and tested. For example, measures of sleep duration
and quality could be incorporated (by using wearable devices, or
pressure sensors placed underneath the mattress on the bed) to better
understand their influence on ADL performance. A longitudinal study
could evaluate and strengthen the presented findings and provide a
useful tool, to serve as a secondary endpoint in drug trials on the
therapeutic efficacy of prescribed drugs.

Furthermore, while study centers are not widely available for
healthcare research, we envision that as technology continues to evolve
and becomes increasingly part of our everyday life, the suggested
assessment could be implemented in home environments, facilitating
the inclusion of people in rural areas. In detail, the integration of smart
devices and appliances, outfitted with microprocessors and WiFi
access, is steadily gaining prominence within domestic settings. This
reflects a significant shift towards the adoption of interconnected
technologies in everyday life. The proposed approach is scalable and
cost-effective. The protocol deploys commercially available sensors,
indicating its practicality and accessibility. Additionally, the developed
CARL platform is device agnostic, allowing the integration of different
sensors and demonstrating flexibility in technological advancements.

As a first step towards the implementation and exploration of
testing this protocol at a home environment, another sub-study
realized in the context of the RADAR-AD project was set up to explore
the feasibility of such an approach. The fixed in-home sensors were
placed in participants’ homes and data collection was ongoing for
4weeks.
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Eye movements have long been recognized as a valuable indicator of
neurological conditions, given the intricate involvement of multiple
neurological pathways in vision-related processes, including motor and
cognitive functions, manifesting in rapid response times. Eye movement
abnormalities can indicate neurological condition severity and, in some cases,
distinguish between disease phenotypes. With recent strides in imaging
sensors and computational power, particularly in machine learning and
artificial intelligence, there has been a notable surge in the development of
technologies facilitating the extraction and analysis of eye movements to
assess neurodegenerative diseases. This mini-review provides an overview of
these advancements, emphasizing their potential in offering patient-friendly
oculometric measures to aid in assessing patient conditions and progress. By
summarizing recent technological innovations and their application in
assessing neurodegenerative diseases over the past decades, this review also
delves into current trends and future directions in this expanding field.

KEYWORDS

eye tracking, eye movement, neurodegeneration, digital biomarkers, computer vision,
machine learning, patient experience

1 Introduction

Neurodegenerative Diseases (NDs) represent a diverse spectrum of conditions
characterized by progressive neuronal dysfunction within the Central Nervous System
(CNS), potentially culminating in neural cell death. Noteworthy among these disorders
are Alzheimer’s disease (AD), Parkinson’s Disease (PD), and Amyotrophic Lateral
Sclerosis (ALS), collectively impacting millions globally each year. For instance, estimates
suggest that approximately 4.7 million individuals aged 65 years or older were diagnosed
with AD in the United States in 2010 (1), with a global prevalence of 6.1 million for PD
in 2016 (2). As the prevalence of NDs correlates with aging demographics (3), projections
anticipate a substantial increase in their volume in the coming years.

The clinical presentation of NDs encompasses a wide range of symptoms spanning
motor, cognitive, and behavioral domains, exhibiting considerable variability not only
between different disorders but also among individuals. This clinical heterogeneity,
compounded by the gradual accumulation of symptoms preceding a definitive
diagnosis, poses significant challenges to accurate diagnosis. Moreover, many NDs
feature a pre-symptomatic phase, which may extend over several years before the onset
of apparent clinical symptoms. This pre-symptomatic period holds significant
implications for potential preventive interventions and disease-modifying therapies.
However, current diagnostic modalities often lack the sensitivity required to detect NDs
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http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2024.1423790&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2024.1423790
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1423790/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1423790/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1423790/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1423790/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2024.1423790
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Band et al.

during this critical phase. Even after diagnosis, uncertainties
persist, particularly in the early stages, further complicated by the
diverse clinical spectrum encompassed within Parkinson’s plus
syndromes (4-6). The inadequacy of reliable diagnostic tools,
coupled with the inherent subjectivity of clinical evaluation and
inter-individual variability, underscores the urgent need for
objective biomarkers capable of capturing both motor and
cognitive processes (7, 8).

Abnormalities in eye movements are evident in various NDs,
including PD (9-12), ALS (13-16), and AD (17-19). Several
types of eye movements are affected by neuronal pathology, of
which the most prominent are saccades—rapid eye movements
that move the line of sight between successive points of fixation
(20).
observed during a standard clinical examination, and a recording

Some of these oculomotor abnormalities cannot be
is required to obtain accurate and objective measurements (7, 16,
21). Various oculomotor abnormalities hold promise as potential
biomarkers for both diagnosing NDs and monitoring their
progression (7, 10, 16, 21). In numerous studies, oculometric
measures (OMs) demonstrate temporal reliability and stay
consistent over short intervals (22-24).

Some OMs were shown to distinguish between different
phenotypes of indications with similar clinical symptoms,
providing valuable insights into disease progression and
management. For instance, smooth pursuit eye movement
features, and specifically gain, were found to be significantly
different in the early stages of PD, Progressive Supranuclear
Palsy (PSP), Corticobasal syndrome (CBD), and Multiple System
Atrophy (MSA), when many clinical symptoms are similar or
indistinctive (6, 12, 18).

Although various OMs strongly correlate with several ND
acknowledged outcome measures, the optimal OM compositions,
and their interpretation remain contingent on the diagnosed
disease. For example, in PD patients, correlations have been
observed between scores on the MDS-Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) and anti-saccade features
(25), while ALS patients show similar correlations of anti-saccade
latency and error rate with their Revised Amyotrophic Lateral
Sclerosis Functional Rating Scale (ALSFRS-R) scores—with
additional correlation between smooth pursuit intrusive saccade
rate and their ALSFRS-R scores (26, 27). Similarly, patients with
AD demonstrate robust correlations between their Mini Mental
State Examination (MMSE) scores and specific OMs, namely
pro-saccadic latency (28) and micro-saccade lateral bias (19).

In this mini-review, we provide an overview of the current
landscape of sensors and techniques for assessing OM abnormalities
(Section 2.1) and explore various examination environments and
setups facilitating objective oculomotor measurements (Section 2.2).
Additionally, we discuss the implications, clinical trends, and
anticipated advancements in Section 3.

2 Extracting oculometric measures

Accurate gaze estimations in eye-tracking technology are

contingent upon several critical parameters to ensure precision
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while prioritizing patient comfort and ease of use. When
considering sample precision, achieving high spatial resolution
and addressing system-specific artifacts to ensure measurement
accuracy are emphasized. Simplifying setup complexity in terms
of device size and complexity, software interfaces, and operator
and user interfaces will be considered when accounting for the
patient experience. Striving for a non-invasive and user-friendly
setup is essential to minimize patient burden, enabling eye
movement measurements without necessitating head restraint or

other restrictive measures.

2.1 Sensors and technology

Theoretically, all OMs may be accurately extracted given a long
enough time series of the subject gaze direction with sufficient
temporal and spatial resolution. Therefore, the main challenges
in the sensing system used for OM extraction are spatial
accuracy and sample rate, limiting the OM types that may be
extracted using a specific sensor. Pro saccadic latency (the time
interval between the stimuli of a saccadic eye movement and the
beginning of the actual eyeball movement) values can be as short
as 100 ms, and the visual angle amplitude of microsaccades may
be as narrow as 0.1 degrees (29). Therefore, OM extraction
abilities depend on the sensors’ combination of spatial accuracy
and sample rate.

Along with the physical limitations of OM extraction, the
advancements in computation capabilities and the reduction in
electronic component sizes enabled the development of sensors
that are both accurate, affordable, and patient-friendly, led by
video imagers accompanied by dedicated computer vision
software. Due to these trends of increasing measurement
accuracy and smaller equipment size, sensors are now planned to
be used more frequently across diverse populations. Therefore,
they are required to be as comfortable as possible, with minimal
burden on the subjects being examined (30, 31).

2.1.1 Electrooculography

Electrooculography (EOG) entails the strategic placement of
electrodes on the periorbital skin to monitor voltage fluctuations
corresponding to ocular movements. This technique facilitates
the distinct capture of both horizontal and vertical eye
movements, even in the absence of any ocular stimulation and
when the subjects’ eye may be closed (30, 32). While EOG
presents distinct advantages in terms of cost-effectiveness and
minimal energy consumption compared to alternative eye-
tracking modalities, its resolution remains constrained by
susceptibility to artifacts, mainly from external sources such as
ambient electrical field perturbations. Moreover, physiological
artifacts originating from muscular activity, particularly during
bodily motions or facial muscle engagement by participants,
contribute further to signal distortion (32-34). Nevertheless, with
continued research endeavors, substantial potential exists to
augment precision and advance the

EOG technologies.

sophistication  of
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2.1.2 Scleral coil system

The scleral coil system involves affixing one or two coils onto the
ocular globe and quantifying induced voltages resulting from
alterations in magnetic fields precipitated by ocular movements.
Most scleral coil sensors are shaped as a ring and placed on the
sclera surrounding the iris, similar to eye contacts, but often with
an additional wire that connects devices external to the eye. Despite
the advantageous feature of minimal noise interference, its invasive
nature warrants consideration, as its utilization is constrained to a
recommended duration of 30 min or less, primarily due to
predictable discomforts, including ocular dryness and transient
corneal deformities. It is imperative to acknowledge that the
presence of the search coil significantly affects select oculomotor
parameters, notably saccadic latency and peak velocity (35, 36).

2.1.3 Video oculography

Video Oculography (VOG), a technology grounded in non-
invasive video graphics, has garnered increasing attention over
the past two decades (37-39). This innovative approach employs
one or multiple cameras (monochromatic or multispectral) to
carefully examine the gathered data from captured images,
seamlessly adaptable through either a head-mounted apparatus
or the integration of head-free webcams within computing
systems or handheld devices (30).

The fusion of video-based tracking alongside advanced software
platforms for the extraction of OMs has recently demonstrated
remarkable precision (16, 31, 40, 41). Vigorous endeavors are
underway to develop models to augment accuracy and achieve
precision levels commensurate with contemporary IR eye trackers,
obviating the necessity for supplementary configurations or costly
apparatus. Extensive research continues exploring the efficacy of
machine learning and neural network architectures in tracking
ocular movements (42). Noteworthy among these advancements is
the NeuraLight platform, leveraging the video-based NeuraLight
Gaze Estimation Model (NLGEM) and the Calibrated Gaze Model
(CGM), showcasing equivalence to established references such as
the Tobii eye tracker (43, 44). The CGM model capitalizes on
visual stimuli for measurements, facilitating ongoing real-time
calibration during testing sessions and obviating the requirement
for discrete calibration procedures (45).

2.1.4 Infrared eye tracker

A notable advancement in the domain of eye tracking
materialized with the advent of infrared (IR) systems. These
setups emit infrared light toward the subject’s eyes, measuring
the reflected light to ascertain the precise location of the pupil’s
center and to approximate the Point-of-Regard (PoR, the
location the subject is looking at) (46, 47). Such systems can be
mounted on desktop monitors and laptops, and even integrated
into wearable head devices (44, 48). Initially, achieving a stable
head orientation was imperative for ensuring measurement
accuracy; however, contemporary iterations of eye trackers
demonstrate commendable resilience, swiftly recuperating from
head movements. Calibration remains a prerequisite for accurate

PoR detection within this framework. Despite exhibiting
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relatively minimal noise levels in comparison to EOG, this
methodology still has its susceptibilities, with various artifacts
potentially  arising from idiosyncratic  patient factors,
encompassing eyelid morphology, eyelash length, and the
utilization of corrective lenses or spectacles (12, 47, 49).
Noteworthy is the treatment of IR technology as a distinct entity
within the broader purview of VOG video-based gaze systems
(31). Within the confines of this mini-review, we opt to delineate
IR technology as a discrete entity, underscored by its distinctive
attributes. Unlike the conventional camera-based VOG systems,
which passively receive data in the visual light spectrum, relying
on external light sources, IR technology proffers an active
component, thereby imbuing it with an additional layer of
functionality. However, similar to VOG methodologies, inherent
challenges may emerge when applying IR tracking technique

from diverse patient characteristics.

2.2 Examination setup

In the past, eye-tracking systems necessitated intrusive
measures, demanding physical constraints on the subject’s head.
Typically, studies relied on visual stimuli presented of a singular
monitor, screen, or light array, with participants seated, and their
heads immobilized using various means such as chin rests. A
visual stimulus would manifest on a screen positioned before
them, set at a specific visual height and a viewing distance
typically ranging between 60 cm and 70 cm (27, 50). However,
within the field have
configurations,  allowing

non-intrusive
participants head
movements while upholding precision (51). Ambient factors,

strides introduced

unrestricted

including light sources, exert notable influence on the accuracy of
gaze detection. Optimal laboratory conditions dictate sound and
light isolated rooms to mitigate distractions and keep participants
focused on the assigned tasks. Hence, minimizing direct and
ambient sunlight, oftentimes achieved by dimming or even
extinguishing non-essential lighting sources, proves indispensable.
A well-lit environment ensures pupil constriction, consequently
enhancing data quality, particularly in scenarios involving
variable luminance stimuli (52).

The evolution of physical eye-tracking setups has been
remarkable, transitioning from conventional head-mounted
apparatuses (48) to the integration of webcams within computing
devices or handheld gadgets such as smartphones (53) or tablets
(54). This progression facilitates precise measurements without
the necessity of head restraining. For instance, in tablet setups,
the device screen is oriented vertically, with the camera side
facing upward, securely affixed at eye level through the
employment of a tablet pole mount. The subject face is
positioned at an approximate distance of 45 cm from the screen
(55). Ongoing endeavors are directed toward refining head-free

tracking capabilities accommodating variations in head
positioning, distances, and illumination conditions (56).
Challenges specific to this domain, such as “head-gaze

correlation overfitting” and “head pose ambiguity,” are diligently
addressed in pursuit of better accuracy.
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Empirical evidence suggests that the accuracy of measurements
obtained solely through smartphone utilization rivals that of
dedicated eye-tracking systems. Notably, one study reported a
minimal error margin of 0.46 cm on the smartphone screen
(equivalent to 0.6-1 degrees of viewing angle), requiring less than
30 s of calibration data per user (42). The potential for enhancing
smartphone-based  eye-tracking systems through refined
calibration methodologies remains palpable (53). Embracing
smartphone technology presents a cost-effective alternative to
conventional eye-tracking devices, fostering scalability and
enabling broader sample sizes in clinical research endeavors (42).
reality (VR)
technology promise to broaden the scope of eye-tracking
Although VR users, those with

neurodegenerative diseases, may experience cybersickness (57, 58)

Looking ahead, advancements in virtual

applications. particularly

or even oculomotor function changes (59), integrating eye-
into VR headsets adds a
dimension to stimuli, enriching the interactive experience (5).

tracking functionalities spatial
These technological strides pave the way for more cost-effective
and portable equipment, thereby extending the reach of eye
tracking beyond traditional laboratory or clinical settings to
telemedical homes and external environments. The expanded
accessibility enhances the prospect of engaging a more diverse
pool of patients and control groups for comparative analyses
(31, 49), thereby fostering the accumulation of richer datasets.
With increased data availability, the potential for accuracy
enhancement and further technological refinement is substantial.

3 Discussion

The integration of high-precision gaze-detection systems with

accessible setups holds promise for significant scientific
advancements in analyzing eye movement and oculometric
measurements among patients with NDs (45). These

advancements facilitate comfortable examination procedures in
clinics as well as remote measurements in patients’ homes,
assuming access to a computing device equipped with a webcam
(e.g., tablet, smartphone, laptop, or desktop computer). Such
remote monitoring enables the sampling of a vastly larger
number of patients, expanding the training sets of various
models and thereby enhancing their accuracy. Higher accuracy
and reliability are suggested to expand usage and increase the
volumes of the training data, closing a positive feedback loop.
oM
platforms are expected to reduce costs in pharmaceutical clinical

Moreover, validated video-based remote assessment
trials and accelerate the usage volume growth, adding diverse

demographics and  ethnicities and  providing positive
reinforcement for the projected adaptation of these platforms.
Looking ahead, self-operated home-based ND monitoring is a
feasible emerging stage in the future ND assessment protocol.

As a field adjusting to recently developed technology, further
research is required to study the correlations between ND
outcome measures and both traditional and newly developed
OMs. However, we surf the front wave of the relevant technologies

and develop the ND assessment platforms accordingly. Rapid
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improvements in computational abilities include complex machine
learning and artificial intelligence models, as well as the reduction
and acceleration of processing units and data storage devices. In
addition, hardware recent developments of imaging sensors in
various wavelengths and sensitivities, both eye tracking
technologies offer an opportunity to integrate their input with the
booming computational power and soon finalize a first validated
platform for ND assessment based on eye movements.

Although minimal and preferably seamless, advanced
examination setups for eye-movement abnormality measurement
present certain challenges. Head-mounted devices are limited in
sampling rate, particularly affecting saccade analysis; handheld
devices encounter numerous issues, including spatial resolution
discrepancies among different cameras, introducing variability in
head positions and angles, and variations in distance from the
camera (49). These challenges must be addressed to enhance the
efficacy of eye-tracking methodologies in ND research.

Future trends in eye-movement assessment for NDs may
introduce platforms that continuously measure and extract OMs
without pre-defined visual stimuli. Such platforms may be
integrated with daily used displays like smartphones or desktop
computers or on any future computing device that enables eye
tracking, including Virtual Reality (VR) or Augmented Reality
(AR) devices. VR/AR devices introduce additional dimension to
the apparent visual field (depth), enabling the extraction of unique
OMs that are influenced by the depth coordinate of the PoR.

Assessing ND severity and progression using eye-movement
abnormality measurements and the development and definition
of the OMs that will found these measurements are emerging
applications in their booming stage. While initial promising
results have already been shown in recent software and hardware
studies, recent advancements have introduced a feasible potential
for a more affordable and patient-friendly platform for assessing

ND condition and progression.
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The aging population in Canada has been increasing continuously throughout
the past decades. Amongst this demographic, around 11% suffer from some
form of cognitive decline. While diagnosis through traditional means (i.e.,
Magnetic Resonance Imagings (MRIs), positron emission tomography (PET)
scans, cognitive assessments, etc.) has been successful at detecting this
decline, there remains unexplored measures of cognitive health that could
reduce stress and cost for the elderly population, including approaches for
early detection and preventive methods. Such efforts could additionally
contribute to reducing the pressure and stress on the Canadian healthcare
system, as well as improve the quality of life of the elderly population. Previous
evidence has demonstrated emotional facial expressions being altered in
individuals with various cognitive conditions such as dementias, mild cognitive
impairment, and geriatric depression. This review highlights the commonalities
among these cognitive health conditions, and research behind the contactless
assessment methods to monitor the health and cognitive well-being of the
elderly population through emotion expression. The contactless detection
approach covered by this review includes automated facial expression analysis
(AFEA), electroencephalogram (EEG) technologies and heart rate variability
(HRV). In conclusion, a discussion of the potentials of the existing
technologies and future direction of a novel assessment design through fusion
of AFEA, EEG and HRV measures to increase detection of cognitive decline in
a contactless and remote manner will be presented.

KEYWORDS

cognitive decline, remote health, contactless detection, machine learning, elderly
population

1 Introduction

The cognitive health of the elderly population has grown to be a central issue in our
society. Statistics estimated that at least 6.5 million of Americans aged 65 years or over are
living with Alzheimer’s disease (AD) (1). In Canada, 597,300 individuals were living with
dementia in 2020, and this number was projected to reach close to a million by 2030 (2).
The demand and reliance on valid and precise diagnostic tools have therefore increased
exponentially. Historically, traditional tools such as neuropsychological tests and brain
imaging techniques have been the state-of-the-art diagnostic methods and assessment of
severity. Although accurate, these techniques involve intense patient participation in the
case of tests or intrusive manipulations in the case of MRIs and PET scans. During the
same period where AD cases increased, the proportion of elders living in collective
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dwellings or assisted living facilities, such as a nursing home, a
chronic care facility or a residence for seniors, also evolved
significantly. The 2011 census indicated that 7.9% of seniors aged
65 or over resided in a collective dwelling, whereas the 2021
census revealed 28% of those aged 80 and above living in such
arrangements (3, 4). Specifically with the impact of COVID-19
pandemic, one in every twenty Canadians aged 65 or over were
living in these facilities in 2021 (5, 6). Thus, our healthcare
systems are facing an unprecedented situation with continuously
increasing needs and burdens. The emerging trend of regrouping
of patients in the facilities brings on new possibilities regarding
the assessments of their disorders and disabilities, such that this
environment could serve as both the treatment and the diagnosis
method. For instance, remote and contactless tools could easily
be integrated into the living installations which AD patients
utilize daily. To this end, existing evidence has demonstrated
emotional facial expressions being altered in individuals with
various cognitive conditions such as dementia, mild cognitive
impairment, and geriatric depression. Technologies such as
Automated Facial Expressions Analysis (AFEA) and remote
photoplethysmography (rPPG) have been shown to provide
accurate and reliable measures which can be related to cognitive
health and disease progression. Given that these technologies can
be added to daily protocols already administered to patients in
care facilities via camera recordings, assessment of patients’
health could be completely re-invented such that intrusive
methods will be on need-basis and less required, and preliminary
diagnosis can occur in community. In this paper, we will review
the use of these technologies in the context of various cognitive
conditions to enhance the accessibility of treatment and progress
tracking for the elderly in a remote and contactless manner.

2 Cognitive impairments in the elderly
population

2.1 Dementia and Alzheimer's disease

Dementia, the most well-known disorder associated with the
elderly, is a general term for several diseases, including AD (7).
Over 350 Canadians on average were diagnosed with dementia
every day in 2022 (2). All these data demonstrate that dementia,
with its prevalence, is a non-negligible condition in the health
assessment of elders in long-term care facilities. Dementia is
understood to affect memory, increase confusion, apathy/
depression, and leads to a loss of ability to complete everyday
tasks (8). Typically, dementia is assessed through various
cognitive and neuropsychological tests such as the Mini-Mental
Status Examination (MMSE). Brain scans, such as MRIs and
PET scans, can also be used to detect dementia through changes
in the brain structure, but these are associated with a high cost
and demand extensive resources. While it remains exploratory
whether the expression of emotions differs between older adults
with dementia and healthy ones, several studies in this space
provided promising results. For example, studies looking into
facial expression of pain found that participants with dementia
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expressed more pain in their faces than participants in the
control group (9). A more recent study also found that across
their participant pool from AD research centers, it appeared that
dementia patients facially expressed fewer positive emotions
during emotion-eliciting events and instead used more negative
expressions (10). In addition, AD patients demonstrated an
overall increase in facial expressiveness (11). Similarly, other
studies have found altered zygomatic activity (i.e., muscles that
control smiling) in patients with dementia while viewing
emotion-eliciting images when compared to healthy elderly
counterparts (12). The flexibility in emotion expressions was also
found to be reduced for AD patients, such that they struggled to
amplify positive emotions facially (13). That being said, while
these techniques have been used increasingly in the clinical
world, no automated assessment of pain through facial
expressions has been tested as a valid tool for detecting dementia
(14), and little effort has been put into relating facial expression
analysis to other physiological measures of dementia. Hence, the
automation of facial expression analysis, paired with other
measures, would therefore provide an interesting option to both

detect dementia, as well as monitor it once it is diagnosed.

2.2 Mild cognitive impairment

Dementia is often first diagnosed as mild cognitive impairment
(MCI), which makes it one of the first observable conditions and
symptoms in one’s cognitive decline. MCI is characterized by a
limbo state between normal aging and dementia (15). For people
with MCI, typical symptoms include memory deficits as well as
other reduced cognitive functions that do not hinder or only
functional abilities. The
with 10.88% of
community-dwellers aged 50-59 years and 21.27% of those aged

slightly affect one’s instrumental

prevalence of MCI increases with age,
80 years and above, as indicated by a recent worldwide meta-
analysis (16). More importantly, up to 30% of adults who
develop MCI will go on to be diagnosed with some form of
dementia; typically AD for those who experience memory deficits
(17). Early detection of MCI is crucial in reducing one’s risk of
developing dementia. Traditional detection tools, however, are
often targeted towards the impairments found in AD and
therefore not very accurate at detecting MCIL. In fact, the MMSE,
which is one of the most commonly used cognitive tests, can
only detect around 18% of MCI cases (18), and it does not
provide substantial support for the early detection of dementia in
MCI patients (19). Therefore, more tools are necessary to better
understand MCI and help early treatment of cognitive decline. It
is known that people with cognitive impairments express
emotions differently through their faces compared to healthy
adults of the same age (20, 21), and a recent effort has been
made to use non-invasive, readily available technologies to assess
MCL
computer vision techniques for the detection of cognitive

For example, Fei and colleagues (18, 22) proposed
impairment, including MCI, in the elderly by analyzing facial

features. As manual coding of these expressions can be tedious,
an automated way of facial expression analysis (i.e., AFEA) could
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potentially provide an efficient, contactless, and non-intrusive
detection tool for MCI and allow for better prevention of dementia.

2.3 Depression

Often overlooked, depression is one of the most common
symptoms in dementia and MCI patients. The prevalence of
depression among elderly individuals tends to vary across
investigations due to different experimental designs (23-25). For
instance, estimates suggest that depression could affect up to 5%
of the elderly population and close to 44% in elders requiring
residential health care (26, 27). Despite its prevalence, late onset
depression remains underdiagnosed and characterized as a part
of normal aging. However, depression has serious impacts on the
elderly’s cognitive and physical health. Late onset of depression
can lead to serious cognitive deficits, often similar to those seen
in MCI (28). Research has shown that MCI patients are more
likely to develop depression, with a prevalence rate between
16.9% and 55% (29). In fact, half of those who experience
depression after the age of 65 and along with cognitive
impairment will go on to develop AD or other types of
dementia. The comorbidity of depression in patients with
dementia can vary between 9 and 68% (30). Hence, depression is
both seen as a risk factor for dementia as well as a symptom of
the disorder. The cognitive damage due to depression can
however be reversed before one progresses into dementia but is
too often ignored or undiagnosed. Typical assessments of
depression such as the Geriatric Depression Scale (GDS) can be
misleading and often wrongly diagnose cognitively impaired
adults as depressive (31). New methods of detection are therefore
needed, one of which could be the analysis of facial expressions
or muscle activity. Facial expression analysis is a common tool
used in adults with depression. For example, it has been shown
that depressed individuals have a loss of facial muscle tone
around the mouth, but higher tone in the brow area, which can
be associated with anxiety and anger. Overall, depressed
individuals express fewer smiles than healthy adults (32).
Depressed individuals also demonstrate decreased activities in the
cheek and brow areas upon viewing happy and sad images,
(33).
between depressive symptoms and end-lip, mouth width, mid-

compared to non-depressed individuals Correlations
top lip, eye-opening, and mid-eyebrow measures have been
found in some studies (34), as well as facial indicators of excess
activity in the grief regions of the face, even during joy-inducing
stimuli (35). Facial expression analysis is able to identify all these
small facial changes during expression of emotions, but it has
never been specifically applied to geriatric or late onset
depression. Therefore, it would be informative to explore the
application of facial expression analysis in the elderly for the
prognosis and detection of depression, which in turn could
contribute to the monitoring of dementia symptoms and
progress in the same population.

Here, we outlined 3 different cognitive and affective conditions
present in the elderly population related to cognitive impairment
(see Table 1 for summary of reviewed articles). While established
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diagnostic methods have been successful in identifying these
diseases and disorders, recent breakthroughs in contactless
technologies show that facial movements during affective states
can be used to monitor cognitive decline and the severity of
conditions. The implications of such methods are not negligible;
remote and contactless assessment would allow for frequent
updates on the cognitive health of elders at risk without invasive
procedures and at a relatively low cost. Furthermore, the addition
of such technologies can easily be integrated into care facilities,
which house hundreds of patients in one place. This facilitates
the routine assessment of cognitive decline daily, fostering a
proactive approach instead of relying on periodic assessments
that could lead to significant deteriorations of disorders.

3 Automated facial expression analysis,
EEG and rPPG in emotion recognition

In recent years, contactless detection for facial expression
analysis and emotion recognition has become a growing field,
with more interest in its applications in the medical health
domain. Today, various automated methods for emotion
assessment have been developed to increase the accuracy of
through different

Expression Analysis, EEG, and heart rate monitoring have been

emotions means. Among them, Facial
emerging as viable ways to understand human emotions. Both
Facial Expression Analysis and heart rate monitoring have been
made available through contactless and remote means such as
AFEAs and rPPG, respectively. In this section, we will present a
summary of these technologies together with their respective
accuracy and usability, as well as express the need for joint usage

of these methods in emotion detection.

3.1 Facial action coding system and
automated facial expression analysis (AFEA)

The Facial Action Coding System (FACS) is a taxonomy system
to identify and classify facial movements during expressions of
emotions (36). FACS has been used by psychologists for decades
and has recently been applied in animations (37, 38). To classify
certain facial expressions, FACS uses Action Units (AUs) to pair
together different movements by facial muscles (39). A total of
46 main action units makes up FACS, through which 7 emotions
can be detected: happiness/joy, sadness, surprise, fear, anger,
disgust, and contempt. Traditionally, FACS required coding of
AUs by human coders. The training required to become a
certified FACS coder is lengthy, with over hundreds of hours
spent coding (40). In the last decade, amazing efforts have been
made to automate FACS coding to speed up the process and
alleviate human efforts. Through deep learning networks,
algorithms have been able to successfully track facial movements
and AUs, and subsequent emotion classifications (40-43).
Analyses on the accuracy of these algorithms have varied, with
some reaching nearly 90% accuracy while others fail to reach
50% accuracy (44-46). For this reason, there are many different
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TABLE 1 Summary of previous research on cognitive decline and depression and facial mobility.

Citation

Article

Measures

10.3389/fdgth.2024.1335289

Main findings

Type

included

37 depressed adults

Kunz et al. (9) Empirical | 42 demented elders Facial action coding Pressure stimulation Facial responses were significantly increased in
system demented patients compared to healthy controls.

54 healthy elders Facial responses were closely related to the intensity of
stimulation for demented patients.

Jiang et al. (10) Empirical | 258 healthy elders Vision-based facial Images of object AD participants expressed significantly fewer positive
expression recognition | scenes emotions, more negative emotions, and higher facial
expressiveness.

235 AD elders Facial emotions expressed during the test allowed
effective differentiation of AD from healthy
participant.

Seidl et al. (11) Empirical | 47 AD patients Facial action coding International Cognitive decline was related to increased facial
system affective picture expressiveness.

system Apathetic symptoms appear to be specifically
associated with facial expression in AD.

Burton & Kaszniak | Empirical | 13 elders with AD Corrugator and International Change in zygomatic activity was significantly

(12) 21 healthy elders zygomatic affective picture different between AD and healthy groups, with AD
electromyography system subjects demonstrating an inverted pattern of activity
(EMG) compared to controls.

Henry et al. (13) | Empirical | 20 healthy elders Expressive emotion Neutral and amusing AD is associated with subtle changes in emotion-
behavior coding video clips expressive behavior.

20 AD elders system AD group displayed significantly lower positive affect
compared with the control group.

Chen et al. (20) Empirical | 99 patients with Subjective emotional | Film clips Patients with AD and FTD tended to experience more
frontotemporal dementia experience “mixed emotions” when watching emotionally

(FTD) arousing film clips.

45 AD patients FTD patients reported more positive and negative

37 healthy controls non-target emotions, whereas AD patients reported
more positive non-target emotions.

Pressman et al. Empirical | 36 healthy adults Expressive emotion Three short films Participants with FTD tended to express less emotion
(21) 89 patients with a behavior coding on their faces than they did through self-report.
neurodegenerative disease system Differences within diagnostic subgroups.
Fei et al. (18) Review N/A Facial features analysis; | N/A Automatic facial expression analysis has the potential
to be used for cognitive impairment detection in the
Facial features elderly.
classification May be better to use a local method of facial
components alignment, employ static approaches in
facial feature extraction and facial feature
classification.
Fei et al. (22) Empirical | 61 healthy and cognitively Deep neural network- | KDEF dataset; The classifier was able to detect the cognitive
impaired elders based emotion analysis | Chinese adults impairment based on the emotion data from the
system dataset; Chinese testing dataset with a detection accuracy of 73.3%.
elderly people dataset
Katsikitis and Empirical | 21 Parkinson’s disease patients | Facial Expression 12 humorous Depressed patients shown smaller mid-eyebrow
Pilowsky (32) 20 depressed patients Measurement program | cartoons measures compared to the control group.

12 healthy adults Depressed and parkinsonian group had significantly
less smiles.

Gebhricke and Empirical | 11 depressed patients Facial EMG Imagery situations Facial muscle activity over the brow and cheek region
Shapiro (33) was reduced in depressed compared to healthy
patients during happy and sad imagery.

11 healthy adults Lack of social context differences in frowning may
suggest social disengagement and an inhibition of sad
facial expression.

Stolicyn et al. (34) | Empirical | 48 depressed participants Facial action coding Delayed match to Symptomatic participants were characterised by less
system sample task; Rapid intense mouth and eyelid movements.
detection task; Classification accuracy using cross-validation (within-
Affective distractions study replication) reached 79%.
Greden et al. (35) | Empirical | 29 healthy controls Facial EMG Imagery situations Patients with endogenous depression had EMG levels

that differentiated them from healthy subjects.
Depressed participants had significantly greater
activity in corrugator happy and corrugator sad
imagery trials.

algorithms available that use different methods to develop their
AFEA using FACS. Certain technology companies have created
“ready-to-use” platforms that can serve multiple usage and
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provide AFEA to a wide range of professionals. Such products,
like iMotions’s Affectiva and Noldus’ FaceReader, allow for
AFEA to occur with video recordings and without the input of
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human coders. These platforms all operate under the same rules
and mostly use similar algorithms to classify emotion expressions
(45). When wusing these algorithms, the choice of camera
hardware to record the data is important, as the resolution will
factor into the facial feature detection accuracy. Studies show that
cameras that have stable framerates, auto-focus, and allow access
to aperture, brightness, and white balance settings offer the best
results (47)." The Microsoft Kinect RGB-D camera was also
found to accurately locate facial features with high resolution
(48-51). However, detailed specifications on the appropriate
hardware requirements have not been well established.

From a software algorithm perspective, most deep learning
networks utilize the Viola-Jones algorithm to detect the presence
of faces within an image or video. The Viola-Jones algorithm
works by first selecting Haar-like features in images (52). It then
creates an integral image and goes through a machine learning
algorithm that identifies the best features to detect a face by
creating classifiers. Based on which classifiers work the best on
training datasets with faces, the best performing ones are kept
and then used to discard non-faces in images through a cascade
of classifiers. In the last stage, an image is finally classified as a
human face. Upon successful face identification, platforms like
FaceReader make a 3D model of the face using the Active
Appearance Method (AAM) (53). The AAM can locate 500
points on the face and also analyze texture. Based on the
location of these points, the AAM can classify facial expressions
through the training of the algorithm with over 10,000 images of
faces. Once an expression is classified, these platforms can assess
the valence and arousal of the expression as well as the intensity
of all AUs involved during the expression (53).

Such models and platforms, while having clear advantages and
benefits of not needing any pre-programming, require commercial
licenses that involve regular payments. In addition, studies have
demonstrated their limited suitability to applications. Because
they are already pre-trained with some generic datasets of face
images, some biases were observed in specific populations (54).
While somewhat accurate at detecting AUs in the general adult
Caucasian population, some research has found that the accuracy
of these models drops significantly when applied to other
ethnicities and different age groups [(44, 54, 55), but see (56) for
new technology addressing AI bias of skin tone]. Therefore, their
usage cannot be applied universally.

Nonetheless, the core foundations of these platforms remain
unbiased prior to the training of the algorithms. Independent
implementation of a similar platform can be done by utilizing open
access deep learning networks. Through the training of the
network, a platform could hypothetically be applied to any specific
group and obtain accurate readings of facial expression. The
consistent with those of most AI/ML
algorithms, is the need for large-volume, diverse, and well-

challenge, however,

The Logitech HD Pro webcam C920 seems to obtain the best results

amongst webcams (45).
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representing datasets, which are known to be rare and limited (57).
To successfully train an AFEA, thousands of images need to be
presented in training to develop highly reliable classifiers. Without
such training, the algorithm’s accuracy will drop significantly, if not
be nonexistent. Furthermore, to apply an AFEA to the aging
population to detect conditions such as dementia and Parkinson’s
disease, an extensive collection of images of elderly people’s faces
would be necessary to train the algorithm. However, because these
to healthy
populations, very few datasets are available (58). Among these few

clinical populations are less prevalent relative
are the University of Regina’s Pain in Severe Dementia dataset and
the UNBC-McMaster Shoulder Pain Expression Archive dataset.
Other larger datasets such as the FACES dataset contain a
subcategory with older adults but cannot be used on its own (57).
Despite the individual limitations, these smaller datasets could
potentially be grouped together to train an algorithm to work on
the elderly population. Interesting alternatives were explored by
researchers responding to the scarcity of available datasets. For
example, online videos, such as YouTube videos, with people
involved with Parkinson’s disease were used to train the AFEA to
recognize patterns of the disease without having to develop their
own dataset (59). This proved to be a promising training technique,
with an accuracy of over 82% for the detection of Parkinson’s
disease reported. Such a method could be used on all populations
that are underrepresented in large datasets (59). Therefore, the
biases seen in most algorithms can be minimized through re-
training using various databases and available images/videos.

3.2 EEG and emotion recognition

In parallel to the externally observable and accessible factors of
the facial mobility approach to cognitive assessment, measurement
and understanding of patients’ internal brain activity using EEG
data has been considered often as a reference information for
clinical evaluation. For this purpose, EEG has been extensively
studied in different populations exhibiting cognitive decline as
well as in demented patients (e.g., AD patients; see Table 2 for
summary of reviewed articles). As a result, there has been a
growing consensus within the scientific community regarding the
overall significance of this approach.

In resting-state EEG recordings, AD and MCI patients showed
an increased spectral power and functional connectivity in the
theta and delta bands, which are the slower frequencies of the
spectrum (60). Interestingly, participants in the control group
showed a decreased spectral power in these bands with advancing
age, thus indicating an inverse aging pattern in the AD and MCI
groups. AD participants also showed a decreased spectral power
and functional connectivity in the alpha band normally observed
in healthy aging. Meghdadi et al. (60) also reported that a [theta/
alpha] ratio was very good at discriminating AD from MCI and
controls, as exhibiting higher values was associated with increasing
cognitive impairment and disease progression. Similarly, early-
onset AD patients exhibited higher spectral power in the lower
frequencies as well as lower spectral power in higher frequencies
when compared to age-matched healthy individuals (61). High
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TABLE 2 Summary of previous research on cognitive decline and EEG.

Citation Article

Measures
included

10.3389/fdgth.2024.1335289

Main findings

type
Meghdadi Empirical

et al. (60)

26 AD patients
53 MCI patients
246 healthy controls

Resting state
EEG

Increases in both spectral power and coherence at slower
frequencies in ADs and MCls.

Decreases in spectral power at slower frequencies in HCs
with advancing age.

Decreases in the spectral power and coherence at Alpha
frequency in ADs, but not in MClIs.

Theta-to-alpha ratio demonstrated the largest and most
significant differences between ADs and HCs.

Ozbek et al.
(61)

Empirical

47 early-onset AD patients
(EOAD)

51 late-onset AD patients

(LOAD)

49 young healthy controls
51 old healthy controls

Resting state
EEG

N/A

Increases in slow frequency bands and decreases in fast
frequency bands in EOADs.

Frontal theta-to-alpha ratio best discriminated between
EOADs and young HCs.

More widespread and severe electrophysiological
abnormalities in EOADs than LOADs and HCs.

Gaubert et al.
(62)

Empirical

314 preclinical AD adults

Resting state
EEG

N/A

Increases in high frequency oscillations and decreases in
low frequency oscillations in frontocentral regions.
Different EEG patterns modulated by the degree of
amyloid burden.

Mini-

review

Palmiero
et al. (63)

N/A

Various

N/A

Contradictory and mixed results.

Increases in left prefrontal EEG activity for approach-
related and positive emotions.

Increases in right EEG prefrontal activity for withdrawal-
related and negative emotions.

Kisley et al.
(64)

Empirical

51 healthy adults

Tasked-evoked
EEG

Emotion-eliciting images

Overall larger LPP amplitudes elicited by negative than by
positive images.

Linear decline of LPP amplitudes with advancing age
towards negative images

Responses towards positive images remained age invariant

Tsolaki et al.
(65)

Empirical

11 young adults
11 elderly adults

Tasked-evoked
EEG

Photographs of fear and
anger facial expressions

Larger amplitudes of the N170 early component in elderly
adults than in young adults.

Less differentiation of N170 topographic maps between
the two negative stimuli in elderly than in young adults.
More differentiation of topographic maps between the age
groups in ‘anger’ than in ‘fear’.

Giintekin
et al. (66)

Empirical

30 healthy controls
30 AD patients

Tasked-evoked
EEG

Photographs of angry,
happy, and neutral facial
expressions

HCs: increased Theta power towards angry expressions,
and increased right hemispheric alpha power.
ADs decreased Theta power towards angry expressions,

and decreased right hemispheric alpha power.
o Increases in alpha power towards angry than towards
neutral expressions.

accuracy was obtained in discriminating the groups by computing a
[alpha/theta] ratio, especially when measured in the frontal regions.
Moreover, several factors related to different etiologies can explain
the clinical of AD,
neurodegeneration and the accumulation of the amyloid-beta

symptoms such as the level of
peptide. Separating groups based on these two variables, Gaubert
et al. (62) reported that the effects of

neurodegeneration on EEG measures were concentrated in the

most notable
frontocentral regions. This was marked by a rise in high-frequency
oscillations (i.e., higher beta and gamma power), along with a
decline in low-frequency oscillations (i.e., lower delta power). In
addition, when measuring changes in EEG features after taking
amyloid burden into account, the authors reported heterogeneity
in participants where the extent of amyloid-beta accumulations
can lead to differential spectral power profiles.

Numerous studies have also used EEG to explore brain activity
related to emotional processing (67-69). For instance, greater
activity in the left prefrontal cortex was found to be associated
with approach- related positive emotions, while greater activity in
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the right prefrontal cortex was associated with withdrawal-related
negative emotions (63). In a study by Kisley et al. (64), the
researchers examined the late positive potentials (LPP) [i.e.,
event-related-potentials (ERPs) reflecting enhanced attention to
emotional stimuli] in adults ranging from 18 to 81 years old.
They found that the LPP amplitudes towards negative images
declined linearly with age but remained consistent across ages for
positive images. Moreover, Tsolaki et al. (65), reported that
healthy older adults demonstrated larger N170 amplitudes than
healthy young adults when viewing facial images displaying
anger and fear expressions. Despite these prolific findings, few
studies have delved into the impairment of facial recognition in
elders with dementia using EEG. One recent study reported that
AD patients were shown to have lower theta power than healthy
controls when perceiving angry facial expressions (66), suggesting
the possible implication of EEG for assessing emotional
processing in patients with neurocognitive disorders.

Overall, there is an agreement that there is a decrease in EEG
activity in cognitive decline, with higher relative spectral power in
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the slower frequencies when compared to cognitively unimpaired
participants. However, the accessibility and the applicability of
EEG sensor devices limit the usage of EEG signals for cognitive
skill evaluation, especially for the cognitive decline measures for
the aging population. Thus, using findings in spectral power across
different frequency bands to validate features from facial mobility
could help in identifying which features from the automated facial
expression analysis are relevant in the remote assessment of
cognitive decline in the elderly population.

3.3 Heart rate and emotion recognition

In recent years, a strong effort has been made to develop contactless
technologies to monitor health through physiological measures. Among
them, rPPG has been used increasingly in the medical field to assess
heart rate (50) and further introduced in emotion analysis (see
Table 3 for summary of reviewed articles). Heart rate variability
(HRV) and heart rate (HR) as in beats per minute (bpm), while
typically measured through electrocardiogram, have successfully been
studied using PPG technologies (70, 74). Indeed, it is now believed
that HRV can serve as a basis for recognizing emotions, detect stress
and overall identify changes in the Autonomic Nervous System (71,
75). According to a systematic review conducted by Cheng et al. (72),
patients with dementia or neurocognitive disorders generally exhibit
lower resting HRV indices compared to healthy controls. However,
after distinguishing between different types of disorders, significant
differences in HRV values are observed only in patients with
Dementia with Lewy Bodies and MCI. On the contrary, there are no

10.3389/fdgth.2024.1335289

significant differences between patients with AD, Vascular Dementia,
and Frontotemporal Dementia and the healthy controls. Furthermore,
rPPG has been used in the study of pain and detection of engagement
(14, 51). Because physiological, cognitive, and affective events can
cause fluctuations in HRV, rPPG can effectively isolate these changes
and attribute them to various states (50). Software platforms, such as
the FaceReader, have been used in multiple research studies as the
heart rate monitoring tools. Great results have been found using this
technology, and it remains the most accessible and well-developed
rPPG on the market (14). However, accuracy of the physiological
monitoring with these software tools remains to be further validated,
and their individual usage as a cognitive assessment tool also requires
further testing (73).

3.4 Data fusion of heart rate, EEG and AFEA

In an effort to increase accuracy in emotion analysis, some studies
have paired rPPG measures with AFEA to establish meaningful
correlations between the facial expressions and the physiological
measures of emotions (49, 70; see Table 4 for summary of reviewed
articles). Interestingly, this pairing allows for both strong (ie.,
surprise, fear, joy, etc.) and subtle (stress, contempt, etc.) affective
states to be identified. rPPG relies on the discrete changes in heart
rate to identify these subtle emotions, while AFEA is successful at
differentiating between strong emotions that elicit similar variations
in heart rate (77). This fusion of measures ensures that micro-
expressions, notorious for escaping AFEAs due to their lack of
intensity, are still detectable and accounted for (78).

TABLE 3 Summary of previous research on cognitive decline and heart rate.

Citation Article type Sample [ EEHUES Main findings
included
Lu et al. (70) | Empirical 42 healthy adults Resting N/A « Correlations in the temporal and frequency domains
electrocardiogram and in nonlinear dynamic analyses between HRV
(ECG); indices derived from PPG and ECG.
o PPG can be a practical alternative to ECG for HRV
Resting earlobe PPG analysis.
Benezeth Empirical 16 healthy adults Camera-based rPPG; Video datasets of High agreement between the HRV analyses derived
et al. (71) participants watching from the camera data and contact sensor.
Contact sensor-based | videos eliciting fear or Strong correlation between the remote HRV feature
PPG anxiety and different emotional states.
Cheng et al. | Systematic review | Dementia patients N/A N/A Lower resting HRV in dementia patients for
(72) and meta- healthy controls parasympathetic functions and total variability
analysis compared to HCs.
Lower HRV in patients with MCIs and with Dementia
with Lewy Bodies compared to HCs.
Lower HRV in patients with Dementia with Lewy
Bodies compared to ADs.
Castillo et al. | Empirical 2 elders with dementia | rPPG; Video datasets of pain Correlation between automated FaceReader™ HR
(14) 2 healthy elders patients estimates and the optimized VM algorithm in baseline
and pain conditions.
Manual FACS coding; Correlation between non-verbal automated
FaceReader™ pain scores and manual FACS coding.
Video Magnification rPPG can be useful for the automated estimations of
(VM) algorithm HR values and non-verbal pain scores.
Benedetto Empirical 24 healthy adults rPPG; Stress test (i.e., Go/No-Go Poor accuracy in FaceReader™ rPPG compared to
et al. (73) task) ECG, especially for lower and higher heart rates.
ECG Lack of studies validating consumer devices and more
assessment should be conducted.
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TABLE 4 Summary of previous research on data fusion of AFEA, rPPG, EEG, and other measures.

Citation Article Measures included

Main findings

type

Monkaresi et al. | Empirical | 23 healthy adults | Heart Rate (HR); Essay writing « Accuracy of 75.8% when detecting engagement with
(51) pairing facial features and HR in live recordings.

Facial-Feature Based Detection of o Results were best when data fusion was used, over just

Engagement facial-feature based detection.

Pham and Empirical 24 healthy adults | Implicit photoplethysmography Video o AttentiveVideo achieved good accuracy (73.59%) on a
Wang (76) (PPG); advertisements clips wide range of emotional measures.
« FEA works better for strong emotions (e.g., joy and

Facial expression analysis (FEA) anger), the PPG channel is more informative for
subtle responses or emotions.

McDuff (77) Doctoral N/A Automated facial expression analysis; | N/A o There are clear trends within the physiological
Thesis responses of individuals and the affect of the content
they are watching.

Remote measurement of physiology o Occurrences of positive valence expressions were
predictors of increased preference toward presented
stimuli.

Lei et al. (78) Empirical Healthy adults Automated facial expression analysis = Emotional videos o Higher correlation between emotion and GSR

(iMotions); compared to emotion and heart rate.

Galvanic skin response (GSR); Heart o Within a participant, there was no distinct pattern

Rate (HR) found with the levels of the three parameters measured.

Nagasawa et al. | Empirical 35 health adults Electroencephalograph (EEG); FilmStim database |« Noncontact measurement features can be estimated
(79) Automated Facial Expression more accurately than EEG extracted features.

Analysis; Heart Rate (HR) « Compared to using only facial expressions, combining
multiple physiological signals like HR enabled more
accurate estimations.

Sun et al. (80) | Empirical 12 healthy adults | Functional near-infrared Emotional videos o Results reveal a strong correlation between
spectroscopy (fNIRS); spontaneous facial affective expressions and the
emotional valence.

Electroencephalograph (EEG); o The affective states were estimated by the fNIRS +
EEG brain activity measurements.

Automated Facial Expression « Joint utilization of facial expression and wearable

Analysis neuroimaging for improved emotional analysis.

Koelstra and Empirical | 24 healthy Electroencephalograph (EEG); Film clips o A feature-level fusion approach is demonstrated to
Patras (81) participants improve upon single modality results.

Automated facial expression analysis o The differences are small and the number of samples
too limited to provide a definite answer on the
benefits of fusion.

While heart rate monitoring and EEG measures have both
individually been paired with automated facial expression
recent

analysis establishing correlations,

investigated employing a multimodal method to increase the

only one study
accuracy in evaluating emotional states. Nagasawa et al. (79),
presented participants with emotion-eliciting videos and obtained
their facial recordings as well as EEG signals. Facial recordings
were later analyzed to extract physiological responses (i.e., facial
HR, After
performing an estimation on all data, researchers correlated them

expressions, and changes in pupil diameter).
with participants’ subjective ratings. Results showed a stronger
correlation between the estimated arousal signal derived from
physiological responses and subjective ratings, compared to those
derived from EEG signals, and a similar trend was observed for
valence. Therefore, it appears that a multimodal measurement
does improve the accuracy of estimating emotions to some extent.

Establishing links between these three measures is imperative in
the study of emotions, mostly because they all serve different
purposes. If one of these factors can be measured, inferences can be
made about the state of the other two. EEG signals can establish
the reference value of emotions one is feeling, even if they are not
facially expressed (ie., sadness while smiling). HRV and HR signals
are especially indicative of subtle emotions, as seen in prior
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literature (74, 76). AFEA performs well when detecting strong
emotions that are visible through facial movements. Hence, they are
all necessary in their own rights in emotion detection. EEG requires
extensive equipment and professional guidance to be accurately
performed, which is not feasible in the context of remote and
contactless emotion analysis, thus only rPPG and AFEA can be
used. Considering the established correlations between heart rate
variability and brain signals, EEG might not be indispensable in
this context. True emotions can be attributed based on heart rate
monitoring and therefore replacing EEG in emotion detection. In
the case of establishing these correlations with contactless
technologies, one would need to conduct a joint study to ensure
that past correlations that have been found in EEG signals, heart
rate monitoring and facial expression analysis still hold true in
contactless technologies (rPPG and AFEA).

In the case of AFEA and EEG specifically, several studies have
shown that EEG data can be used to classify different emotion
categories processed by participants. Wang et al. (82) reported that
the power spectrum was the best EEG analysis method to classify
the emotional valence (i.e., positive, or negative) of the stimuli
presented. In this study, higher frequency bands (ie., beta and
gamma frequency bands) were shown to have increased robustness
at discriminating the valence component of emotions. In addition,
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a classification algorithm using the spectral power on different
channels was able to classify both the emotional valence and
arousal of the emotion processed by participants with a high
accuracy (83). These findings indicate that using a relatively basic
analysis method of the EEG signal such as spectral power can
provide insight into certain components of the emotions being
processed by participants, such as arousal and valence. For instance,
the combination of EEG features and spontaneous facial expression
leads to high accuracy in emotional valence classification (80). This
suggests a potential relationship between EEG activity and facial
expressions regarding emotional processing, and each of these
modalities can offer unique insights. Furthermore, when comparing
EEG and facial features on different dimensions of emotional
processing, it has been shown that both modalities perform equally
at classifying arousal, but that EEG was better at classifying the
valence of the emotional stimuli (81). Thus, it appears that facial
features can inform about the integrity of emotional processing
with an accuracy as good as EEG. This increases the confidence in
using automated facial expression analysis to assess emotional
processing and as it was discussed in the first section, it is possible
to extend this to the assessment of cognitive integrity.

4 Discussion

In the present review, we have highlighted three inter-
connected cognitive conditions across the elderly population that
lack easily accessible, non-invasive detection and progression
MCI, More
specifically, facial expressions and emotional responses, clear

methods: dementia, and geriatric depression.
indicators of cognitive decline, have yet to be utilized in the
clinical assessment of these conditions. The findings reported
here show that there is a link to be made between facial
expression features and cognition by assessing emotional
processing. We therefore put forth the use of facial expression
analysis, augmented by physiological measurements, within the
established assessment of these conditions to enhance the
accessibility of treatment and progress tracking for the elderly.

As stated in the earlier sections of this review, the current state of
the methods used in this clinical area leads to the conclusion that the
remote assessment of automated facial expression analysis through
the presentation of emotionally charged stimuli with the purpose of
assessing cognitive integrity should be further investigated. Given
that we can observe changes in muscle tone and activity through
passive viewing of such images, the monetary and time cost of
cognitive evaluation could be significantly reduced. Although
promising, the links between facial expressions during emotional
states and cognitive health needs to be validated across various
conditions, particularly for the aging population where various levels
of cognitive deficits might be present. Hence, the validation of this
assessment with the use of EEG analyses will provide increased
confidence in the development of robust methods of remote
cognitive decline detection.

The potential avenues that stem from these technological
developments are not negligible. If facial expression analysis is
validated as a viable tool to as an indicator of the progression of
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health, the could be
implemented within the care centers (i.e.; a nursing home, a

cognitive necessary  technologies
chronic care facility or a residence for seniors) where the elderly
are living. The monitoring of their conditions can therefore
occur daily via cameras, for example, placed in common living
areas and information can be automatically extracted and
analyzed by their healthcare provider. This significantly reduces
the need for mobility for the elderly to access continuous
healthcare. The movement towards automated and in-house
health monitoring is already underway, with many products now
available to connect individuals to their provider in the comfort
of their homes [see Philip et al. (84) for a review of the current
technologies for at-home health monitoring for the elderly].
Overall, the combined use of these technologies in emotion
recognition provides an increase in accuracy, for both strong and
subtle emotions and states. Through such methods, one could
potentially obtain true affective states while analyzing the expressed
facial movements in order to better understand cognition and
emotion processing. These technologies would allow us to move
health and medical monitoring into a completely automated phase,
in which minimal professional input is needed while profiting the
patients. Future work should focus on establishing valid and reliable
links between emotional facial expressions and brain activity as well
as testing the acceptance of such technologies in the elderly population.
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Introduction: Dysarthria, a motor speech disorder caused by muscle weakness or
paralysis, severely impacts speech intelligibility and quality of life. The condition is
prevalent in motor speech disorders such as Parkinson's disease (PD), atypical
parkinsonism such as progressive supranuclear palsy (PSP), Huntington's disease
(HD), and amyotrophic lateral sclerosis (ALS). Improving intelligibility is not only an
outcome that matters to patients but can also play a critical role as an endpoint in
clinical research and drug development. This study validates a digital measure for
speech intelligibility, the ki: SB-M intelligibility score, across various motor speech
disorders and languages following the Digital Medicine Society (DiMe) V3 framework.
Methods: The study used four datasets: healthy controls (HCs) and patients with PD,
HD, PSP, and ALS from Czech, Colombian, and German populations. Participants’
speech intelligibility was assessed using the ki: SB-M intelligibility score, which is
derived from automatic speech recognition (ASR) systems. Verification with inter-
ASR reliability and temporal consistency, analytical validation with correlations to
gold standard clinical dysarthria scores in each disease, and clinical validation with
group comparisons between HCs and patients were performed.

Results: Verification showed good to excellent inter-rater reliability between ASR
systems and fair to good consistency. Analytical validation revealed significant
correlations between the SB-M intelligibility score and established clinical
measures for speech impairments across all patient groups and languages.
Clinical validation demonstrated significant differences in intelligibility scores
between pathological groups and healthy controls, indicating the measure’s
discriminative capability.

Discussion: The ki: SB-M intelligibility score is a reliable, valid, and clinically relevant
tool for assessing speech intelligibility in motor speech disorders. It holds promise
for improving clinical trials through automated, objective, and scalable assessments.
Future studies should explore its utility in monitoring disease progression and
therapeutic efficacy as well as add data from further dysarthrias to the validation.

KEYWORDS

amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Parkinson’s disease (PD),
progressive supranuclear palsy (PSP), speech analysis, intelligibility, digital biomarkers
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Introduction

Dysarthria is a motor speech disorder resulting from weakness
or paralysis of speech-related muscles (1). It leads to decreased
speech intelligibility, frequent communication breakdowns, and a
reduced quality of life. Speech intelligibility is reduced in many
types of dysarthria, including typical Parkinson’s Disease (PD)
(2-5), atypical parkinsonism such as progressive supranuclear
palsy (PSP) (4, 6, 7), Huntington’s disease (HD) (8, 9),
amyotrophic lateral sclerosis (ALS) (1, 10), and multiple sclerosis
(MS) (11, 12).

Reduced intelligibility of patients’ speech often leads to
communication difficulties and affects social participation and
quality of life in general (13, 14). Hence, communication deficits
and perceived intelligibility of their speech represents a major
concern for patients with motor speech disorders (15, 16).
Speech intelligibility is a construct depending on (a) a speaker
(sender) e.g.,
conversational speech, and (b) a listener (receiver) who receives

who produces an acoustic signal within,
the signal and interprets it; the success of the interpretation is a
direct function of the intelligibility (17) (see also Figure 1).
Although a major concern, speech intelligibility is not necessarily
dependent on disease severity, duration, or motor phenotype and
patients’ own perceptions of the severity do not necessarily
reflect objective measures (18). Improved intelligibility is often a
primary goal of speech therapy, especially for individuals with
dysarthria, and can be a valuable endpoint for clinical research
and drug development (19).

Accordingly, measuring speech intelligibility is a clinically
relevant assessment for monitoring a dysarthric patient’s status

and tracking the effectiveness of treatments (20). The common

10.3389/fdgth.2024.1440986

method for assessing speech intelligibility is perceptual evaluation
by Standard
assessments for disorders associated with dysarthria, such as the

trained personnel—often clinicians. clinical
Movement Disorder Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) (21), the Unified Huntington’s Disease
Rating Scale (UHDRS), and the revised amyotrophic lateral
sclerosis functional rating scale (ALSFRS-R) (22), are based on
clinician-rated questionnaires and assess, among other symptoms,
speech intelligibility. However, these assessments require patient
and clinician presence and can be subject to observer bias,
pointing to a need for more objective automated methods for
assessing speech disorders.

As the field of automated speech analysis is growing in clinical
research and healthcare applications, there is increasing potential
for digital automatic assessments of speech-related symptoms in
motor speech disorders (23, 24). Digital dysarthria assessments
are better suited for automated patient-administered screening or
stratification at low cost to accelerate clinical trials (24-26).
Furthermore, a high level of automation can easily scale up
outreach to draw unbiased and representative trial populations
beyond established clinical sites and hospital networks. In
addition, within clinical trials, digital markers deliver objective
high-frequency data to guide interventional clinical trial decision-
making and make evaluation more efficient (27).

Previous studies have demonstrated how commercially available
automatic speech recognition (ASR) systems could be a feasible
platform for automatic measures of intelligibility in patients with
motor speech disorders (19, 28). As commercial ASR systems are
developed majorly on typical—presumably non-dysarthric—
speech, the recognition accuracy of such a system should be an
inverse model of the intelligibility of the speaker (29-31).
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Conceptual model of intelligibility; being a receiver/listener-focused measure and being affected by impaired speech subsystems underlying
dysarthrias within the sender: articulation, phonation, resonance, prosody, and respiration.
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However, although promising results have been published in
feasibility studies, there has not been any comprehensive
validation work including multiple pathologies and multiple
languages and following a systematic validation framework. The
Digital Medicine Society (DiMe) V3 framework (verification,
analytical validation, and clinical validation) (32-34) defines
validation cases that digital measures should comply with to be
considered fit-for-purpose for clinical trials and eventually
medical devices, such as digital diagnostics. This framework has
gained in importance in recent years and can be regarded as an
industry standard for digital measures in this field.

In this study, we present a validation following the DiMe V3
framework for a digital measure for intelligibility, the ki: speech
biomarker score for motor speech disorders intelligibility (ki: SB-
M intelligibility score). We validate the SB-M intelligibility score
in individuals with motor speech disorders, including PD, PSP,
HD, and ALS, in multiple languages, including German, Czech,
and Colombian Spanish, representing the Germanic, Slavic, and
Romance language families.

Methods
Data

Four different datasets were used in the analysis: (1) Czech data
from N =39 patients with HD (35), N =43 patients with PD (36),
N=16 patients with ALS (37), N=17 patients with PSP (6), and
N =46 healthy controls (HCs); (2) Colombian data from N =50
HCs and N=50 patients with PD (38); and (3) German data
(39) from N =98 patients with PD. For detailed information on
the initial cohorts, reading texts, and data collection process, we
refer to the initial publications cited; however, for better
readability for this manuscript, a short description will be given
in the following sections. Compare also Table 1.

Czech data

Participants read an 80-word long paragraph in the respective
language, which was phonemically balanced and well-established in
clinical research (3). Recordings were conducted in a quiet room
with low ambient noise, using a condenser microphone placed
approximately 15 cm from the subject’s mouth. Each participant
had one recording session with the speech-language pathologist,

10.3389/fdgth.2024.1440986

without time limits. Participants were briefed on the speaking tasks
and recording process. Each participant provided written informed
consent. The collection of the Czech data was approved by the
Ethics Committee of the General University Hospital in Prague,
Czech Republic (approval number 6/15 Grant GACR VEN).

Colombian data

Participants read 10 sentences of increasing complexity (38).
Recordings were collected in a soundproof booth at the Clinica
Noel in Medellin, Colombia, using a dynamic omnidirectional
microphone and a professional audio card. This study was in
compliance with the Helsinki Declaration and was approved by
the ethics committee of the Clinica Noel in Medellin, Colombia.
Written informed consent was signed by each participant.

German data

Participants read an 80-word long paragraph in the respective
language, which was phonemically balanced, well-established, and
taken from the German protocol version of the Dysarthria
Analyzer (40). Speech data were collected in the Department of
Neurology of the University Hospital Cologne in a room with
low ambient noise using a condenser microphone headset to
the
approximately 7 cm from the mouth. Each participant provided
written informed consent. The data collection was approved by

keep mouth-to-microphone  distance  constant at

the local ethics committee (protocol code: 23-1461-retro).

After the reading task, patients in all three cohorts underwent a
range of clinical assessments (different for each study and cohort),
of which the following are important for this study: the MDS-
UPDRS (21), UHDRS (41), Natural History and Neuroprotection
in Parkinson Plus Syndromes—Parkinson Plus Scale (NNIPPS)
(42), and ALSFRS-R (22).

Automatic speech recognition and
intelligibility score

To calculate the automatic intelligibility scores, we first ran the
audios from the reading passage and reading sentences (in
Colombian Spanish) through SIGMA the ki: proprietary speech
processing library, which—besides other preprocessing and
feature extraction steps—also

available ASR systems; for verification, we selected two different

interfaces with commercially

TABLE 1 Demographic information of the samples and as essential clinical information.

Colombian
PD CO HCs CO PD CZ HD CZ
N 98 (32 F) 50 (25 F) 50 (25 F) 43 (19 F) 39 (20 F) 17 (6 F) 16 (11 F) 46 (21 F)
Age (years) 62.7 (£8.23) 61.02(£9.44) | 60.98 (£9.46) | 63.0 (9.92) 4828 (+134) | 66.76 (+4.8) | 60.0 (£10.66) | 51.54 (+14.05)

MDS-UPDRS, UHDRS,
NNIPPS, ALSFRS-R

37.43 (+10.89)

37.66 (+18.32)

20.88 (£10.92)

26.51 (£11.47)

67.12 (+26.7)

35.06 (+£6.97)

Clinical scale speech items

0.80 (+0.90)

1.34 (+0.82)

0.81 (+0.63)

0.81 (+0.46)

1.88 (+0.7)

2.75 (+0.86)

ki: SB-M intelligibility score

0.82 (+0.18)

0.73 (+0.18)

0.86 (+0.11)

0.81 (+0.07)

0.67 (+0.17)

0.54 (+0.28)

0.58 (+0.29)

0.85 (+0.04)

CO, Colombian Spanish; CZ, Czech; DE, German.

ALSFRS-R: note that ALSFRS-R has an inverse relationship to disease severity, unlike the other scales where higher scores mean greater severity. Clinical scale speech
items: MDS-UPDRS item 3.1, UHDRS dysarthria score, NNIPPS speech item, ALSFRS-R speech item from the bulbar score.
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providers: Google Speech API (43) and Amazon Transcribe (44).
Based on the transcripts and the target reading texts, we
calculated the word error rate (WER, error between the number
of target words in the reading text and that in the ASR
transcripts) and word accuracy (WA, similar to [28]). From
those raw measures, we then derived an automatic proxy for the
intelligibility of the speech—the ki: SB-M intelligibility score.

V3 framework

The V3 framework established by the DiMe Society (32)
provides a unified evaluation framework for digital measures. V3
includes three distinct phases in sequential order: verification,
analytical validation, and clinical validation. For all the three
phases, different data have to be collected and statistically
analyzed to provide the necessary results.

Verification

Verification entails the systematic evaluation of sample-level
sensor outputs against prespecified criteria. The ki: SB-M
intelligibility score relies on ASR. Therefore, the most critical
part of the sensor output and preprocessing pipeline is the
automatic transcription of speech. The ki: SB-M intelligibility
score uses a proprietary speech processing pipeline leveraging
commercial ASR providers. To verify the performance at this
stage, we calculated intraclass correlation coefficients (ICCs) for
the WER and SB-M intelligibility score between Google and
Amazon ASR. Previous studies and our own work have shown
that error rates on a low level, such as phoneme error rate, do
not necessarily model losses of perceptual intelligibility (45). We
performed verification across the whole data sets except for the
German PD data due to a lack of consent from patients.

In addition, we computed ICCs between repeated tests for data sets
in which participants performed two repeated reading passages (all CZ
data sets). Although tests are executed in quick succession, this can
provide first insights into the retest reliability of the measures. Based
on the current state of the art in the field, we considered an ICC of
0.40 (fair correlation) acceptable for verification (46).

Analytical validation

Analytical validation evaluates performance to measure a
certain concept of interest (similar to construct validity). The ki:
SB-M intelligibility score is related to speech impairments
resulting in reduced speech intelligibility. For the analytical
validation, we compared the ki: SB-M intelligibility score against
established clinical anchor measures for speech impairments or
dysarthria in the respective populations. Depending on the
pathology, these measures differ: PD — MDS-UPDRS — speech
item, HD — UHDRS — dysarthria item, PSP — NNIPPS — speech
item, and ALS — ALSFRS-R — speech item (please note that in
direct comparison with the other clinical scales, the ALSFRS-R
has an inverse relationship to disease severity, meaning patients
lose points as the disease progresses). For the comparison with
the clinical anchors, we computed Spearman’s rank correlation
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coefficient between the ki: SB-M intelligibility score and the
respective speech impairment measure.

Clinical validation

Clinical validation evaluates the ability to validly measure
clinically meaningful change within an intended scenario,
The ki: SB-M
intelligibility score is built to measure clinically meaningful

including a specified clinical population.
change in the intelligibility of speech in dysarthrias. To cover a
significant range of dysarthrias, we included clinical validation on
the following pathologies: PD, HD, PSP, and ALS.

We performed Kruskal-Wallis test group comparisons in the
ki: SB-M intelligibility score between the different diagnostic
groups (HC vs. pathology). In addition, we analyzed Spearman’s
rank correlation between the ki: SB-M intelligibility score and the
respective global clinical staging measure: MDS-UPDRS, UHDRS,

NNIPPS, and ALSFRS-R.
Results
Verification
For verification of the SB-M intelligibility score, we report
reliability between the SB-M intelligibility score based on two

different ASR methods and
performances of the reading task and calculation of the SB-M

reliability between successive

intelligibility score.

Inter-rater reliability for ASRs

We compared different ASRs (Google and Amazon) as the
basis for the SB-M intelligibility score. For most of the
pathological groups, the ICC between both ASR methods showed
a good to excellent performance (ICC equal or above 0.30).
However, for Colombian PD data, the ICC was only fair and for
Czech PD poor; both were still highly significant. The overall HC
ICC (across all languages) was also only poor. For details,
compare Table 2. WERs showed similar trends to the final
intelligibility score, with the following pattern: HCs < PD < HC,
PSP = ALS.

Consistency

Consistency over a short period of time (i.e., the same day in
the same assessment reading the paragraph twice) was calculated
based on repeated paragraph reading in all groups except the
Colombian group, which read multiple sentences of increasing
difficulty and not one overall homogenous paragraph. The ICCs
for consistency were above 0.70, representing a good to excellent
agreement. Compare also Table 2.

Analytical validation

For the analytical validation, we compared the ki: SB-M
intelligibility score against established clinical anchor measures
for speech impairments or

dysarthria in the respective
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TABLE 2 Agreement between two different ASR methods—Google Speech APl and Amazon Transcribe—and the resulting SB-M intelligibility score and

raw word error rate.

HC overall HC CZ HC CO PD CO PD CZ HD CZ PSP CZ ALS CZ
Google SB-M intelligibility score 0.862 (0.182) | 0.853 (0.039) | 0.859 (0.200) | 0.733 (0.273) | 0.810 (0.073) | 0.675 (0.173) | 0.537 (0.281) | 0.590 (0.283)
Amazon SB-M intelligibility score | 0.968 (0.088) | 0.900 (0.041) | 0.980 (0.090) | 0.917 (0.177) | 0.882 (0.050) | 0.775 (0.126) 0.666 (0.28) 0.714 (0.238)
ICC SB-M intelligibility score 0.295 (0.0) 0.180 (0.008) 0.283 (0.0) 0.486 (0.0) 0.290 (0.0) 0.702 (0.0) 0.841 (0.0) 0.869 (0.0)
Google word error rate 0.167 (0.184) | 0.238 (0.038) 0.160 (0.2) 0.303 (0.276) | 0.288 (0.084) | 0.437 (0.154) | 0.540 (0.231) | 0.479 (0.237)
Amazon word error rate 0.058 (0.113) | 0.198 (0.042) | 0.032 (0.106) | 0.121 (0.202) 0.22 (0.066) 0.372 (0.143) | 0.425 (0.228) | 0.364 (0.193)
ICC consistency — — — — 0.75 0.858 0.955 0.982

CO, Colombian Spanish; CZ, Czech.

populations. We found significant correlations between the
intelligibility score and the respective dysarthria anchor score for
DE PD (r=-0.46, p<0.01, d=1.03), CO PD (r=-0.39, p<0.01,
d=085), CZ PD (r=-032, p<0.05, d=0.67), and CZ HD
(r=-0.37, p<0.05, d=0.80). Probably owing to the small
sample size, statistically we only found a trend in CZ PSP
(r=—042, p<0.10, d=092) and CZ ALS (r=0.32, p=0.21,
d=0.68), although effect sizes were medium to large. Compare
also Figure 2.

Clinical validation

For the group comparisons, we found significant differences,
with the ki: SB-M intelligibility score being significantly lower for
the respective pathological group for all cohorts: HC CO >PD

(H=13.304, p<0.001, n*=0.14), CZ HC>CZ HD (H =44.437,
p<0.001, n*=052), CZ HC>CZ PSP (H=29.69, p<0.001,
n*=046), and CZ HC>CZ ALS (H=18.565 p<0.001,
n*=0.29). For description, please see Table 2, and a graphical
overview of the group differences is provided in Figure 3.

Post hoc group comparisons revealed that the intelligibility
scores were comparable for the CZ HD, PSP, and ALS groups,
and the CZ PD and CO PD groups. However, German PD
showed significantly better intelligibility than the other patient
groups, actually performing on a par with the other language
HC groups.

Discussion

This study aimed to validate the ki: speech biomarker for

CO (H=17425, p<0.001, 7°=0.17), HC CZ>PD CZ motor speech disorders intelligibility score (ki: SB-M
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FIGURE 2
Scatter plots for the correlations between the intelligibility score and respective speech dysarthria clinical anchor score. From upper left to lower right:
DE PD correlation with the MDS-UPDRS speech item; CO PD correlation with the MDS-UPDRS speech item; CZ PD correlation with the MDS-UPDRS
speech item; CZ PSP DE PD correlation with the NNIPPS speech item; CZ HD correlation with the UHDRS dysarthria score; and CZ ALS correlation
with the ALSFRS-R speech item (note that ALSFRS-R has an inverse relationship to disease severity, unlike the other scales in which higher scores
mean greater severity). DE, German; CO, Colombian Spanish; CZ, Czech.
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FIGURE 3
Boxplots of the SB-M intelligibility score for all groups. Blue, PD; white, HC; purple, HD, PSP, and ALS. Asterisks denote a significant post hoc group
comparison. CO, Colombian Spanish; CZ, Czech.

intelligibility score) using the DiMe V3 framework, covering
verification, analytical validation, and clinical validation across
multiple languages and dysarthria pathologies. Making use of off-
the-shelf ASR systems, we took a state-of-the-art approach to
automatically measure speech intelligibility in dysarthrias (19, 28,
47). On a conceptual level, we went beyond the aforementioned
studies, as we followed the DIiME society V3 framework for
assessing the readiness of digital measures for clinical research
and also included multiple pathologies from the dysarthria
spectrum as well as two different ASR systems.

We ran verification on the SB-M intelligibility score, calculating
it based on two different automatic speech recognition systems:
Google Speech API and Amazon Transcribe. Overall, the ICC
indicated good to excellent agreement between the two ASR
systems for most pathological groups. However, discrepancies
were noted in the Colombian PD and Czech PD data, in which
the ICC was only fair to poor, respectively. Poor stability of
ASR-based intelligibility measures has been reported previously,
especially for typical and mildly impaired severity groups,
specifically decreasing their ability to measure changes in the
early phases of motor speech disorders (19). The discrepancy
might be due to the rather small variance and very good speech
recognition, performing almost at an HC level of 0.80, whereas
HD, PSP, and ALS have intelligibility scores of 0.70-0.50, with
much bigger variances. In these cases, we assume that already
small word-level differences inflate discrepancies between ASRs
and might cause low ICCs. Especially with the advent of ever-
improving ASRs, which also push the needle in dysarthric speech
recognition alongside other underrepresented groups, this issue
has to be watched closely.

The validity of Google and Amazon ASRs as commercial
products naturally extends beyond pathological groups. Both ASR
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systems have shown high accuracy in recognizing speech from
healthy
comparison (48). However, ensuring robust performance for
broad
applicability and reliability of ASR systems in clinical and

individuals, providing a strong benchmark for

underrepresented groups remains crucial for the
everyday settings. On the level of ASR performance in dysarthric
speakers, our results compare well with other studies in the field.
Gutz et al. (19) found WERs of 10% for mild ALS-related
dysarthria to approximately 50% for moderate cases and
approximately 80% for severe cases. This is in line with our
results for the Czech ALS population, which can be classified as
moderately dysarthric based on the ALSFRS-R speech item and
shows a 40%-50% WER depending on the ASR system.
Consistency was assessed by comparing the intelligibility scores
obtained from repeated paragraph readings. Overall, the ICC values
indicated good to excellent consistency. This is an encouraging
result but has to be further
measurements of the SB-M intelligibility score assessed longer

investigated for repeated
timeframes apart, such as a couple of days or weeks.

Analytical validation compared the SB-M intelligibility score
against established clinical anchor measures for dysarthrias
derived from the respective gold standard clinical staging scale.
Significant correlations were observed between the SB-M
intelligibility score and the respective dysarthria anchor scores
for the German PD, Colombian PD, Czech PD, and Czech HD
groups. Although specific items are not designed as stand-alone
assessments of dysarthria and even less as assessments of
intelligibility in principle, we could still demonstrate correlations
between the ki: SB-M intelligibility score and those measures.
These findings support the SB-M intelligibility score’s validity as
a measure of perceived speech intelligibility being associated with
dysarthria on the speaker side, as confirmed by traditional
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clinical assessments such as the MDS-UPDRS, NNIPPS, and
ALSFRS-R speech items or the UHDRS dysarthria score. Despite
medium to large effect sizes, statistical significance was not
achieved for the Czech PSP and Czech ALS groups, likely due to
smaller sample sizes. Future studies should aim to include larger
cohorts to increase statistical power and provide more robust
analytical validation.

Our approach to measuring speech intelligibility differs from
other research by using a direct measure based on ASR
performance, rather than classifying speech into different states/
classes of intelligibility. This research is sometimes carried out
using machine learning techniques (49, 50). This line of research
frames intelligibility as a classification problem, requiring labeled
training data to categorize speech into predefined stages. By
contrast, our method leverages the continuous output of ASR
systems as a proxy for intelligibility, offering multiple benefits.
This continuous measure might provide finer granularity and
sensitivity to subtle changes in speech quality over time or
between groups. In addition, using an off-the-shelf ASR
approach eliminates the need for additional machine learning
training, making it more accessible and easier to implement in
various clinical and research settings.

One of the major limitations of the analytical validation we
performed is that we cannot prove this further by comparing
with manual intelligibility ratings by either trained professionals
or human raters in general, as has been carried out by
Gutz et al. in ALS (19). Future studies should add this piece of
analytical validation, leveraging existing methods to rate
intelligibility by multiple trained and/or untrained raters (51). In
addition, our approach presents, in some respect, a black
box approach that directly evaluates dysarthria based on
intelligibility as perceived by a somehow non-transparent ASR
black box. There is a whole research tradition on using carefully
crafted acoustic features to estimate dysarthria and different
subsystems, as mentioned in the introduction. Pursuing a
hybrid approach that taps into ASR-based intelligibility and
traditional acoustic analysis features (e.g., pause rate, articulation
rate, pitch instability, or monotonicity) to evaluate patients’
dysarthrias would increase the impact of such research and be an
important next step.

Clinical validation demonstrated significant differences in SB-
M intelligibility scores between healthy controls and pathological
groups across all cohorts. This finding underscores the potential
of the SB-M intelligibility score as a discriminative tool for
identifying and quantifying speech impairments in individuals
with motor speech disorders. The consistent pattern of lower
intelligibility scores in pathological groups compared with
healthy controls across different languages and disorders further
supports the robustness and generalizability of the measure.
Nevertheless, the experiments presented here still only cover a
fraction of the total spectrum of motor-speech-disorder-related
dysarthrias or dysarthrias in general. However, our data set of
more than 250 patients across four different pathologies and
three languages covers a significant amount in this field of
research; for rare diseases such as ALS or atypical PD in
particular, datasets of that size are rarely reported. In addition,
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we acknowledge that we did not perform specific testing for
cognitive involvement, as the primary aim was to investigate
motor speech deviations that are the main contributors to
reduced intelligibility. Furthermore, we did not measure the vital
capacity of our patients; cohorts such as ALS and PSP may have
respiratory impairments that could significantly contribute to
reduced intelligibility.

In general, we observed better speech intelligibility in patients
with PD than in patients with HD, PSP, or ALS. One reason
could be that in the earlier stages of PD, articulation impairment
is not as pronounced, allowing for relatively clearer speech.
Conversely, HD is characterized by hyperkinetic irregular
articulation, and ALS and PSP are associated with hypertonia,
leading to imprecise consonant production (52). These speech
deficits in HD, ALS, and PSP significantly contribute to reduced
intelligibility. These imprecise consonant and uncontrolled
(sometimes spastic) irregularities in speech are known to hamper
speech intelligibility a lot more than monopitch and
monoloudness, which are typically observed in early PD. In
addition, the spread in intelligibility scores was a lot greater for
HD, PSP, and ALS than for PD, which was also in line with
studies on those diseases showing more heterogeneity in their
behavioral and speech impairment phenotype.

Between the separate PD groups (DE, CO, and CZ), we
observed comparable intelligibility scores in CO and CZ but the
German PD group was significantly more intelligible—actually
performing on a par with the other language HC groups. This
could be related to different recording setups in each study or a
general language difference in the underlying ASR performance.

ASR and the measures derived from it exhibit considerable
variability when applied to different types of dysarthria (53).
Articulatory precision has been identified as the most critical
factor influencing speech intelligibility, surpassing the impact of
prosody (54).

Finally, another limitation to this study is that we compared
intelligibility for audios collected from different studies with
different audio recording settings. Although all studies used
state-of-the-art microphones for audio recording and professional
recording setups—as recommended by recent guidelines (5)—
differences in audio recording setups can always play a role in
head-to-head comparisons; this is especially the case when
comparing our results from CZ directly with CO and DE.
Eventually, the accuracy of an automatic speech intelligibility
measure is highly dependent on recording conditions. Poor
recording environments, such as those with high background
noise or subpar microphone quality, can introduce significant
bias, leading to artificially low intelligibility ratings. This may
result in the erroneous classification of normal speech as
dysarthric. Furthermore, different recording devices and handling
methods introduce substantial variance, which can confound the
measurements and reduce their sensitivity to detect small
changes over time or differences between low dysarthria groups.
However, one of the most promising scenarios in which to
deploy this kind of technology is in at-home environments,
where the patient is monitored in everyday life, always using the
same device and with similar acoustic conditions. This approach
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has shown promising results (55). Future studies in this field
should adhere even closer to a standardized recording setup or
record with multiple devices—one standardized

being a

microphone setup next to others.

Conclusion

Opverall, this study provides a comprehensive validation of the
ki: SB-M intelligibility score for assessing speech intelligibility in
motor speech disorders across multiple languages and
pathologies. The findings support its reliability, validity, and
clinical relevance, highlighting its potential as a standardized tool
for clinical and research applications. Automated objective
measures of speech intelligibility, such as the SB-M intelligibility
score, can increase the efficiency and accuracy of dysarthria
assessments, reduce observer bias, and facilitate remote
monitoring. This is particularly advantageous for large-scale
international clinical trials, in which high-frequency data
collection and scalability are critical.

Future efforts should complement validation by investigating
the SB-M intelligibility score’s ability to monitor disease
progression and treatment efficacy. Longitudinal studies assessing
changes in the intelligibility score over time and in response to
therapeutic interventions could provide valuable insights into the

clinical utility of this digital measure.

Data availability statement

The data analyzed in this study are subject to the following
licenses/restrictions: the speech data can be accessed from the
respective cohort-associated author upon reasonable request.
Please navigate through the linked reference for each study in the
Methods section. Requests to access these datasets should be
directed to rafael.orozco@udea.edu.co, rusz.mz@gmail.com, and
tabea.thies@uk-koeln.de.

Ethics statement

The studies involving humans were approved by local ethics
committees in Cologne, Germany, Prague, Czech Republic, and
Medellin, Colombia. The studies were conducted in accordance
with the local legislation and institutional requirements. The

References

1. Darley FL, Aronson AE, Brown JR. Differential diagnostic patterns of dysarthria.
J Speech Hear Res. (1969) 12(2):246-69. doi: 10.1044/jshr.1202.246

2. Amato F, Borzi L, Olmo G, Artusi CA, Imbalzano G, Lopiano L. Speech
impairment in Parkinson’s disease: acoustic analysis of unvoiced consonants in
Italian native speakers. IEEE Access. (2021) 9:166370-81. doi: 10.1109/ACCESS.
2021.3135626

3. Rusz J, Cmejla R, Tykalova T, Ruzickova H, Klempir J, Majerova V, et al.
Imprecise vowel articulation as a potential early marker of Parkinson’s disease:

Frontiers in Digital Health

50

10.3389/fdgth.2024.1440986

participants provided their written informed consent to

participate in this study.

Author contributions

JT: Writing - original draft, Writing - review & editing. FD:
Writing - original draft, Writing - review & editing. LS: Writing -
original draft, Writing — review & editing. NL: Writing — original
draft, Writing - review & editing. AK: Writing - original draft,
Writing - review & editing. TT: Writing - original draft,
Writing — review & editing. MB: Writing — original draft, Writing -
review & editing. JO-A: Writing — original draft, Writing - review &
editing. JR: Writing - original draft, Writing — review & editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article.

JR received grant funding from The Czech Ministry of
Health (NW24-04-00211) and National Institute for
Neurological Research (Programme EXCELES, ID Project No.
LX22NPO5107)—Funded by the
Generation EU. The work on the Colombian data was partially
funded by CODI at UdeA (P12023-58010).

European  Union—Next

Conflict of interest

JT, FD, LS, NL, and AK are employed by the speech biomarker
company ki:elements GmbH. JT and NL also hold shares in the
speech biomarker company ki:elements GmbH.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

effect of speaking task. J Acoust Soc Am. (2013) 134(3):2171-81. doi: 10.1121/1.
4816541

4. Rusz J, Tykalova T, Salerno G, Bancone S, Scarpelli J, Pellecchia MT. Distinctive
speech signature in cerebellar and parkinsonian subtypes of multiple system atrophy.
J Neurol. (2019) 266(6):1394-404. doi: 10.1007/s00415-019-09271-7

5. Rusz J, Tykalova T, Ramig LO, Tripoliti E. Guidelines for speech recording and
acoustic analyses in dysarthrias of movement disorders. Mov Disord. (2021) 36
(4):803-14. doi: 10.1002/mds.28465

frontiersin.org


mailto:rafael.orozco@udea.edu.co
mailto:rusz.mz@gmail.com
mailto:tabea.thies@uk-koeln.de
https://doi.org/10.1044/jshr.1202.246
https://doi.org/10.1109/ACCESS.2021.3135626
https://doi.org/10.1109/ACCESS.2021.3135626
https://doi.org/10.1121/1.4816541
https://doi.org/10.1121/1.4816541
https://doi.org/10.1007/s00415-019-09271-7
https://doi.org/10.1002/mds.28465
https://doi.org/10.3389/fdgth.2024.1440986
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Troger et al.

6. Daoudi K, Das B, Tykalova T, Klempir J, Rusz J. Speech acoustic indices for
differential diagnosis between Parkinson’s disease, multiple system atrophy and
progressive supranuclear palsy. NPJ Parkinsons Dis. (2022) 8(1):1-13. doi: 10.1038/
541531-021-00272-w

7. Kim Y, Kent RD, Kent JF, Dufty JR. Perceptual and acoustic features of dysarthria
in multiple system atrophy. ] Med Speech-Lang Pathol. (2010) 18(4):66-71.

8. Diehl SK, Mefferd AS, Lin YC, Sellers ], McDonell KE, De Riesthal M, et al. Motor
speech patterns in Huntington disease. Neurology. (2019) 93(22):E2042-52. doi: 10.
1212/WNL.0000000000008541

9. Kouba T, Frank W, Tykalova T, Miihlback A, Klempif J, Lindenberg KS, et al.
Speech biomarkers in Huntington disease: a cross-sectional study in pre-
symptomatic, prodromal and early manifest stages. Eur ] Neurol. (2023) 1262-71.
doi: 10.1111/ene.15726

10. Tomik B, Guiloff R]. Dysarthria in amyotrophic lateral sclerosis: a review.
Amyotroph Lateral Scler. (2010) 11(1-2):4-15. doi: 10.3109/17482960802379004

11. Darley FL, Brown JR, Goldstein NP. Dysarthria in multiple sclerosis. J Speech
Hear Res. (1972) 15(2):229-45. doi: 10.1044/jshr.1502.229

12. Rusz J, Benova B, Ruzickova H, Novotny M, Tykalova T, Hlavnicka J, et al.
Characteristics of motor speech phenotypes in multiple sclerosis. Mult Scler Relat
Disord. (2018) 19:62-9. doi: 10.1016/j.msard.2017.11.007

13. Van Uem JMT, Marinus J, Canning C, Van Lummel R, Dodel R, Liepelt-
Scarfone I, et al. Health-related quality of life in patients with Parkinson’s disease—
a systematic review based on the ICF model. Neurosci Biobehav Rev. (2016)
61:26-34. doi: 10.1016/j.neubiorev.2015.11.014

14. Chu SY, Tan CL. Subjective self-rated speech intelligibility and quality of life in
patients with Parkinson’s disease in a Malaysian sample. Open Public Health ]. (2018)
11(1):485-93. doi: 10.2174/1874944501811010485

15. McAuliffe MJ, Baylor CR, Yorkston KM. Variables associated with
communicative participation in Parkinson’s disease and its relationship to measures
of health-related quality-of-life. Int ] Speech Lang Pathol. (2017) 19(4):407-17.
doi: 10.1080/17549507.2016.1193900

16. Schrag A, Jahanshahi M, Quinn N. How does Parkinson’s disease affect
quality of life? A comparison with quality of life in the general population. Mov
Disord. (2000) 15(6):1112-8. doi: 10.1002/1531-8257(200011)15:6<1112::AID-
MDS1008>3.0.CO;2-A

17. Yorkston KM, Yorkston KM. Management of motor speech disorders in children
and adults. 2nd ed. Austin, TX: Pro-Ed (1999). p. 618.

18. Miller N, Allcock L, Jones D, Noble E, Hildreth AJ, Burn D]J. Prevalence and
pattern of perceived intelligibility changes in Parkinson’s disease. ] Neurol
Neurosurg Amp Psychiatry. (2007) 78(11):1188-90. doi: 10.1136/jnnp.2006.110171

19. Gutz SE, Stipancic KL, Yunusova Y, Berry JD, Green JR. Validity of off-the-shelf
automatic speech recognition for assessing speech intelligibility and speech severity in
speakers with amyotrophic lateral sclerosis. J Speech Lang Hear Res. (2022) 65
(6):2128-43. doi: 10.1044/2022_JSLHR-21-00589

20. Kent RD, Weismer G, Kent JF, Rosenbek JC. Toward phonetic intelligibility
testing in dysarthria. J Speech Hear Disord. (1989) 54(4):482-99. doi: 10.1044/jshd.
5404.482

21. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P,
et al. Movement disorder society-sponsored revision of the unified Parkinson’s
disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing
results: MDS-UPDRS: clinimetric assessment. Mov Disord. (2008) 23(15):2129-70.
doi: 10.1002/mds.22340

22. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The
ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of
respiratory function. J Neurol Sci. (1999) 169(1-2):13-21. doi: 10.1016/S0022-510X
(99)00210-5

23. Fagherazzi G, Fischer A, Ismael M, Despotovic V. Voice for health: the use of
vocal biomarkers from research to clinical practice. Digit Biomark. (2021) 5
(1):78-88. doi: 10.1159/000515346

24. Espay AJ, Hausdorff JM, Sanchez-Ferro A, Klucken J, Merola A, Bonato P, et al.
A roadmap for implementation of patient-centered digital outcome measures in
Parkinson’s disease obtained using mobile health technologies. Mov Disord. (2019)
34(5):657-63. doi: 10.1002/mds.27671

25. Salmon K, Genge A. “Clinical trials in ALS—current challenges and strategies for
future directions”. In: Shaw CA, Morrice JR, editors. Spectrums of Amyotrophic Lateral
Sclerosis. 1st ed. Hoboken, NJ: John Wiley & Sons, Inc. (2021). p. 161-80.

26. Bowden M, Beswick E, Tam J, Perry D, Smith A, Newton J, et al. A systematic
review and narrative analysis of digital speech biomarkers in motor neuron disease.
NPJ Digit Med. (2023) 6(1):228. doi: 10.1038/s41746-023-00959-9

27. Dorsey ER, Papapetropoulos S, Xiong M, Kieburtz K. The first frontier: digital
biomarkers for neurodegenerative disorders. Digit Biomark. (2017) 1(1):6-13.
doi: 10.1159/000477383

28. Viésquez-Correa JC, Orozco-Arroyave JR, Bocklet T, N6th E. Towards an
automatic evaluation of the dysarthria level of patients with Parkinson’s disease.
J Commun Disord. (2018) 76:21-36. doi: 10.1016/j.jcomdis.2018.08.002

Frontiers in Digital Health

10.3389/fdgth.2024.1440986

29. De Russis L, Corno F. On the impact of dysarthric speech on contemporary ASR
cloud platforms. J Reliab Intell Environ. (2019) 5(3):163-72. doi: 10.1007/s40860-019-
00085-y

30. Mustafa MB, Rosdi F, Salim SS, Mughal MU. Exploring the influence of general
and specific factors on the recognition accuracy of an ASR system for dysarthric
speaker. Expert Syst Appl. (2015) 42(8):3924-32. doi: 10.1016/j.eswa.2015.01.033

31. Keshet J. Automatic speech recognition: a primer for speech-language pathology
researchers. Int J Speech Lang Pathol. (2018) 20(6):599-609. doi: 10.1080/17549507.
2018.1510033

32. Goldsack JC, Coravos A, Bakker JP, Bent B, Dowling AV, Fitzer-Attas C, et al.
Verification, analytical validation, and clinical validation (V3): the foundation of
determining fit-for-purpose for biometric monitoring technologies (BioMeTs). NPJ
Digit Med. (2020) 3(1):1-15. doi: 10.1038/s41746-020-0260-4

33. Coravos A, Doerr M, Goldsack J, Manta C, Shervey M, Woods B, et al.
Modernizing and designing evaluation frameworks for connected sensor technologies
in medicine. NPJ Digit Med. (2020) 3(1):37. doi: 10.1038/s41746-020-0237-3

34. Goldsack JC, Dowling AV, Samuelson D, Patrick-Lake B, Clay I. Evaluation,
acceptance, and qualification of digital measures: from proof of concept to
endpoint. Digit Biomark. (2021) 5(1):53-64. doi: 10.1159/000514730

35. Rusz J, Klempit J, Tykalovd T, Baborovd E, Cmejla R, Ruzi¢ka E, et al.
Characteristics and occurrence of speech impairment in Huntington’s disease:
possible influence of antipsychotic medication. J Neural Transm. (2014) 121
(12):1529-39. doi: 10.1007/s00702-014-1229-8

36. Hlavni¢ka J, Cmejla R, Tykalové T, Sonka K, Ruzicka E, Rusz J. Automated
analysis of connected speech reveals early biomarkers of Parkinson’s disease in
patients with rapid eye movement sleep behaviour disorder. Sci Rep. (2017) 7(1):12.
doi: 10.1038/s41598-017-00047-5

37. Novotny M, Melechovsky J, Rozenstoks K, Tykalova T, Kryze P, Kanok M, et al.
Comparison of automated acoustic methods for oral diadochokinesis assessment in
amyotrophic lateral sclerosis. J Speech Lang Hear Res. (2020) 63(10):3453-60.
doi: 10.1044/2020_JSLHR-20-00109

38. Orozco-Arroyave JR, Arias-Londono JD, Vargas-Bonilla JF, Gonzélez-Rétiva
MC, Néth E. New Spanish speech corpus database for the analysis of people suffering
from Parkinson’s disease. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14); 26-31 May 2014; Reykjavik, Iceland.
Paris: European Language Resources Association (ELRA) (2014). p. 342-7.

39. Thies T, Miicke D, Lowit A, Kalbe E, Steffen J, Barbe MT. Prominence marking
in parkinsonian speech and its correlation with motor performance and cognitive
abilities. Neuropsychologia. (2020) 137:107306. doi: 10.1016/j.neuropsychologia.2019.
107306

40. Hlavnicka J. The dysarthria analyzer. Available online at: https://www.dysan.cz/
(accessed June 25, 2024).

41. Kieburtz K, Penney JB, Como P, Ranen N, Shoulson I, Feigin A, et al. Unified
Huntington’s disease rating scale: reliability and consistency. Mov Disord. (1996) 11
(2):136-42. doi: 10.1002/mds.870110204

42. Payan CAM, Viallet F, Landwehrmeyer BG, Bonnet AM, Borg M, Durif F, et al.
Disease severity and progression in progressive supranuclear palsy and multiple
system atrophy: validation of the NNIPPS—Parkinson plus scale. PLoS One. (2011)
6(8):€22293. doi: 10.1371/journal.pone.0022293

43. Google LLC. Google speech-to-text V2.25.1 (2023). Available online at: https://
cloud.google.com/speech-to-text/ (Accessed July 29, 2022).

44, Amazon Web Services Inc. Amazon Transcribe V1.20.15 (2023). Available
online at: https://aws.amazon.com/pm/transcribe/ (Accessed April 11, 2024).

45. Van Nuffelen G, Middag C, De Bodt M, Martens J. Speech technology-based
assessment of phoneme intelligibility in dysarthria. Int ] Lang Commun Disord.
(2009) 44(5):716-30. doi: 10.1080/13682820802342062

46. Ratitch B, Trigg A, Majumder M, Vlajnic V, Rethemeier N, Nkulikiyinka R.
Clinical validation of novel digital measures: statistical methods for reliability
evaluation. Digit Biomark. (2023) 7:74-91. doi: 10.1159/000531054

47. Dimauro G, Di Nicola V, Bevilacqua V, Caivano D, Girardi F. Assessment of
speech intelligibility in Parkinson’s disease using a speech-to-text system. IEEE
Access. (2017) 5:22199-208. doi: 10.1109/ACCESS.2017.2762475

48. Zhang Y, Han W, Qin J, Wang Y, Bapna A, Chen Z, et al. Google USM: scaling
automatic speech recognition beyond 100 languages. arXiv [preprint]. (2023).
Available online at: https://arxiv.org/abs/2303.01037 (accessed July 1, 2024).

49. Kim J, Kumar N, Tsiartas A, Li M, Narayanan SS. Automatic intelligibility
classification of sentence-level pathological speech. Comput Speech Lang. (2015) 29
(1):132-44. doi: 10.1016/j.cs1.2014.02.001

50. Huang A, Hall K, Watson C, Shahamiri SR. A review of automated intelligibility
assessment for dysarthric speakers. In: 2021 International Conference on Speech
Technology and Human-Computer Dialogue (SpeD); 13-15 Oct 2021; Bucharest,
Romania. New York, NY: IEEE (2021). p. 19-24.

51. Stipancic KL, Tjaden K, Wilding G. Comparison of intelligibility measures for
adults with Parkinson’s disease, adults with multiple sclerosis, and healthy controls.
J Speech Lang Hear Res. (2016) 59(2):230-8. doi: 10.1044/2015_JSLHR-S-15-0271

frontiersin.org


https://doi.org/10.1038/s41531-021-00272-w
https://doi.org/10.1038/s41531-021-00272-w
https://doi.org/10.1212/WNL.0000000000008541
https://doi.org/10.1212/WNL.0000000000008541
https://doi.org/10.1111/ene.15726
https://doi.org/10.3109/17482960802379004
https://doi.org/10.1044/jshr.1502.229
https://doi.org/10.1016/j.msard.2017.11.007
https://doi.org/10.1016/j.neubiorev.2015.11.014
https://doi.org/10.2174/1874944501811010485
https://doi.org/10.1080/17549507.2016.1193900
https://doi.org/10.1002/1531-8257(200011)15:6%3C1112::AID-MDS1008%3E3.0.CO;2-A
https://doi.org/10.1002/1531-8257(200011)15:6%3C1112::AID-MDS1008%3E3.0.CO;2-A
https://doi.org/10.1136/jnnp.2006.110171
https://doi.org/10.1044/2022_JSLHR-21-00589
https://doi.org/10.1044/jshd.5404.482
https://doi.org/10.1044/jshd.5404.482
https://doi.org/10.1002/mds.22340
https://doi.org/10.1016/S0022-510X(99)00210-5
https://doi.org/10.1016/S0022-510X(99)00210-5
https://doi.org/10.1159/000515346
https://doi.org/10.1002/mds.27671
https://doi.org/10.1038/s41746-023-00959-9
https://doi.org/10.1159/000477383
https://doi.org/10.1016/j.jcomdis.2018.08.002
https://doi.org/10.1007/s40860-019-00085-y
https://doi.org/10.1007/s40860-019-00085-y
https://doi.org/10.1016/j.eswa.2015.01.033
https://doi.org/10.1080/17549507.2018.1510033
https://doi.org/10.1080/17549507.2018.1510033
https://doi.org/10.1038/s41746-020-0260-4
https://doi.org/10.1038/s41746-020-0237-3
https://doi.org/10.1159/000514730
https://doi.org/10.1007/s00702-014-1229-8
https://doi.org/10.1038/s41598-017-00047-5
https://doi.org/10.1044/2020_JSLHR-20-00109
https://doi.org/10.1016/j.neuropsychologia.2019.107306
https://doi.org/10.1016/j.neuropsychologia.2019.107306
https://www.dysan.cz/
https://doi.org/10.1002/mds.870110204
https://doi.org/10.1371/journal.pone.0022293
https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://aws.amazon.com/pm/transcribe/
https://doi.org/10.1080/13682820802342062
https://doi.org/10.1159/000531054
https://doi.org/10.1109/ACCESS.2017.2762475
https://arxiv.org/abs/2303.01037
https://doi.org/10.1016/j.csl.2014.02.001
https://doi.org/10.1044/2015_JSLHR-S-15-0271
https://doi.org/10.3389/fdgth.2024.1440986
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Troger et al.

52. Campi M, Peters GW, Toczydlowska D. Ataxic speech disorders and Parkinson’s
disease diagnostics via stochastic embedding of empirical mode decomposition. PLoS
One. (2023) 18(4):€0284667. doi: 10.1371/journal.pone.0284667

53. Rowe HP, Gutz SE, Maffei MF, Tomanek K, Green JR. Characterizing
dysarthria diversity for automatic speech recognition: a tutorial from the
clinical perspective. Front Comput Sci. (2022) 4:770210. doi: 10.3389/fcomp.2022.
770210

Frontiers in Digital Health

52

10.3389/fdgth.2024.1440986

54. Tu M, Wisler A, Berisha V, Liss JM. The relationship between perceptual
disturbances in dysarthric speech and automatic speech recognition performance.
J Acoust Soc Am. (2016) 140(5):EL416-22. doi: 10.1121/1.4967208

55. Arias-Vergara T, Vasquez-Correa JC, Orozco-Arroyave JR, Noth E. Speaker
models for monitoring Parkinson’s disease progression considering different
communication channels and acoustic conditions. Speech Commun. (2018)
101:11-25. doi: 10.1016/j.specom.2018.05.007

frontiersin.org


https://doi.org/10.1371/journal.pone.0284667
https://doi.org/10.3389/fcomp.2022.770210
https://doi.org/10.3389/fcomp.2022.770210
https://doi.org/10.1121/1.4967208
https://doi.org/10.1016/j.specom.2018.05.007
https://doi.org/10.3389/fdgth.2024.1440986
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

& frontiers | Frontiers in Digital Health

‘@ Check for updates

OPEN ACCESS

APPROVED BY
Frontiers Editorial Office,
Frontiers Media SA, Switzerland

*CORRESPONDENCE
Johannes Troger
johannes.troeger@ki-elements.de

RECEIVED 29 August 2024
ACCEPTED 31 October 2024
PUBLISHED 13 November 2024

CITATION

Troger J, Dorr F, Schwed L, Linz N, Kénig A,
Thies T, Barbe MT, Orozco-Arroyave JR and
Rusz J (2024) Corrigendum: An automatic
measure for speech intelligibility in dysarthrias
—validation across multiple languages and
neurological disorders.

Front. Digit. Health 6:1488178.

doi: 10.3389/fdgth.2024.1488178

COPYRIGHT

© 2024 Troger, Dorr, Schwed, Linz, Konig,
Thies, Barbe, Orozco-Arroyave and Rusz. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Digital Health

Correction
13 November 2024
10.3389/fdgth.2024.1488178

Corrigendum: An automatic
measure for speech intelligibility
in dysarthrias—validation across
multiple languages and
neurological disorders

Johannes Troger'™, Felix Dérr', Louisa Schwed', Nicklas Linz’,
Alexandra Kénig'*®, Tabea Thies*’, Michael T. Barbe®,
Juan Rafael Orozco-Arroyave®” and Jan Rusz’

ki elements GmbH, Saarbriicken, Germany, 2Cobtek (Cognition-Behaviour-Technology) Lab,
University Cote d'azur, Nice, France, *Centre de Mémoire de Ressources et de Recherche, Centre
Hospitalier Universitaire Nice (CHUN), Nice, France, “Department of Neurology, Faculty of Medicine
and University Hospital Cologne, Cologne, Germany, °IfL Phonetics, Faculty of Arts and Humanities,
University of Cologne, Cologne, Germany, °GITA Lab, Faculty of Engineering, University of Antioquia,
Medellin, Colombia, “Pattern Recognition Lab, Friedrich-Alexander-Universitat Erlangen-Nurnberg,
Erlangen, Germany, Department of Circuit Theory, Czech Technical University in Prague, Prague,
Czechia

KEYWORDS

amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Parkinson's disease (PD),
progressive supranuclear palsy (PSP), speech analysis, intelligibility, digital biomarkers

A Corrigendum on
An automatic measure for speech intelligibility in dysarthrias—validation

across multiple languages and neurological disorders
By Troéger J, Dorr F, Schwed L, Linz N, Kénig A, Thies T, Barbe MT, Orozco-Arroyave JR and
Rusz J (2024). Front Digit Health 6: 1440986. doi: 10.3389/fdgth.2024.1440986
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was erroneously excluded. The corrected author list appears below.
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Acceptability of digital health
technologies in early Parkinson's
disease: lessons from WATCH-PD
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Introduction: Digital health technologies (DHTs) have the potential to alleviate
challenges experienced in clinical trials through more objective, naturalistic, and
frequent assessments of functioning. However, implementation of DHTs come
with their own challenges, including acceptability and ease of use for study
participants. In addition to acceptability, it is also important to understand device
proficiency in the general population and within patient populations who may be
asked to use DHTs for extended periods of time. We thus aimed to provide an
overview of participant feedback on acceptability of DHTSs, including body-worn
sensors used in the clinic and a mobile application used at-home, used
throughout the duration of the Wearable Assessments in the Clinic and at Home
in Parkinson's Disease (WATCH-PD) study, an observational, longitudinal study
looking at disease progression in early Parkinson’s Disease (PD).

Methods: 82 participants with PD and 50 control participants were enrolled at 17
sites throughout the United States and followed for 12 months. We assessed
participants’ general device proficiency at baseline, using the Mobile Device
Proficiency Questionnaire (MDPQ). The mean MDPQ score at Baseline did not
significantly differ between PD patients and healthy controls (20.6 [2.91] vs
21.5[2.94], p = .10).

Results: Questionnaire results demonstrated that participants had generally
positive views on the comfort and use of the digital technologies throughout
the duration of the study, regardless of group.

Discussion: This is the first study to evaluate patient feedback and impressions of
using technology in a longitudinal observational study in early Parkinson's
Disease. Results demonstrate device proficiency and acceptability of various
DHTs in people with Parkinson’s does not differ from that of neurologically
healthy older adults, and, overall, participants had a favorable view of the
DHTs deployed in the WATCH-PD study.

KEYWORDS

digital tool, patient feedback, Parkinson, wearability, wearable sensors

1 Introduction

Advances in digital technologies, such as mobile phones and wearables, are now
ubiquitous and have changed how we interact with others and the world around us.
For example, a 2020 poll showed that 90% of Americans own a smartphone and 21%
own a smartwatch or fitness tracker (1, 2). Beyond giving us the capabilities to post
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pictures, play games, or track our workouts, these technologies
have become particularly valuable in the health and research
sectors (3). In clinical trials, for example, as opposed to
traditional assessments, which are subjective and performed
infrequently, digital tools have the potential to provide a more
holistic view of disease symptoms (4-6), progression (7-9), and
response to treatment (5). Furthermore, using digital tools in
fully decentralized or hybrid clinical trials can reduce or fully
eliminate site visits, a documented barrier to clinical trial
participation due to patient and caregiver burden (10).

Although using digital health technologies (DHTs) may
alleviate some of the challenges faced in clinical trials, they often
come with their own challenges resulting in lower rates of
adaptation, particularly among older individuals. There is a false
assumption of device proficiency in the general population,
especially when working with a population of older adults, who
require greater assistance in relation to digital technologies than
younger populations (11). For instance, a nonexperimental study
design exploring attitudes about technology in older adults found
that older adults were willing to use technology but had negative
outlooks associated with technology creating inconveniences and
unhelpful features, thus making it harder to use and navigate
(12). Other factors that have contributed to low technology
adaptation in older adults include poor technology designs that
don’t consider the perceptual and cognitive abilities of older
adults, and poor training on use of the technology (13).

One disease consisting primarily of older adults where the use
of DHTs has been especially relevant in clinical trial measurement
is Parkinson’s Disease (PD). PD, the second most prevalent and
fastest growing movement disorder in the world, affects about
1% of adults 60 years and older (14). The cardinal features of the
disease are motor impairments such as tremor, rigidity, and
bradykinesia, however, the clinical features extend beyond that as
patients typically bring to light the cognitive and mood
impairments caused by the disease (15, 16). The current gold
standard for assessing progression in PD, the Movement
Disorders Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) (17), has limitations which pose challenges for
clinical trials. For instance, to properly power a phase II clinical
trial to see a change in the MDS-UPDRS studies must have large
sample sizes and long study durations (18, 19). The frequency in
which participants need to come into the clinic in traditional
clinical trials can also be a hurdle as clinical trials are typically
run in large, academic hospitals researchers are only capturing
participants that live in metropolitan areas or have the means to
travel to study sites (20). Using digital technologies in clinical
trials can not only give us better, more sensitive, measures of
disease progression but can also help us reach a wider range of
participants by reducing the number of clinic visits or potentially
shifting towards totally remote clinical trials.

One method to assess comfort with technology in older adults is
the Mobile Device Proficiency Questionnaire (MDPQ). The MDPQ
includes items related to comfort using devices, such as tablets and
smartphones, and has been found to be a highly reliable measure
of mobile device proficiency in older adults (21). The MDPQ could
serve as a tool to identify participants who may need more training
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in using digital technologies in clinical trials. Additionally,
researchers can evaluate patients’ first-hand experiences using
DHTs by harnessing the voice of the individuals participating in
research studies and clinical trials. Acquiring patient feedback early
and often, through panels, interviews, and questionnaires, can
provide insights related to the acceptability of these technologies
and help inform future study design.

1.1 Current study

The Wearable Assessments in the Clinic and at Home in
Parkinson’s Disease [WATCH-PD (4);] study was a one-year,
observational study exploring disease progression using DHTSs in
early Parkinson’s Disease. Perceptions of the DHTs used in the
WATCH-PD study were captured from participants throughout
the study. In this paper we aim to give an overview of participant
feedback with the goal of providing a better understanding of the
feasibility and burden of wusing these technologies during
participation in longitudinal clinical trials. Specifically, we aimed to
report if there are differences between people with PD and control
participants in (1) device proficiency at baseline as measured by
the MDPQ and (2) overall

technologies during participation in a 12-month longitudinal study.

impressions of using digital

2 Methods
2.1 Trial design

The Wearable Assessments in the Clinic and at Home in PD is
a prospective, longitudinal, multisite natural history study in people
with early, untreated PD (<2 yr since diagnosis) and neurologically
healthy matched controls. 82 participants with PD and 50 control
participants were enrolled at 17 sites throughout the United States
and followed for 12 months. Participants completed regular clinic
visits in addition to completing self-administered assessments of
motor and non-motor function outside of the clinic using a
mobile application twice monthly. A brief description is provided
below. For a fuller description, please see Adams et al. (4).

2.2 Participants

Participants were recruited from clinics, study interest registries,
and social media. We aimed to evaluate a population similar to the
Parkinson’s Progression Markers Initiative (PPMI) (22). Thus, at
enrollment, PD patients were required to be aged 30 or older,
within 2 years of diagnosis, untreated with symptomatic
medications [including levodopa, dopamine agonists, Monoamine
oxidase-B (MAO-B) inhibitors, amantadine, anticholinergics] and
not expected to require medication for at least 6 months at baseline,
a modified Hoehn and Yahr <2, and at least two of the following
symptoms: resting tremor, bradykinesia, or rigidity (must have
either resting tremor or bradykinesia as one of two symptoms); OR

either asymmetric resting tremor or asymmetric bradykinesia.
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Control participants were required to be aged 30 or older at the time
of enrollment, with no diagnosis of a significant Central Nervous
System (CNS) disease (other than PD), history of repeated head
injury, history of epilepsy or seizure disorder other than febrile
seizures as a child, or history of a brain magnetic resonance
imaging (MRI) scan indicative of clinically significant abnormality.
For both PD patients and controls, a Montreal Cognitive
Assessment (MoCA) score < 24 was considered exclusionary.

2.3 Study assessments

Each participant completed clinic visits at Screening/Baseline,
1, 3, 6, 9
components: (1) a comprehensive battery of clinician and

12 months. Clinic visits consisted of three core

patient-reported outcomes measuring both motor and non-motor
function, (2) a set of motor assessments completed while wearing
inertial sensors distributed across the body, and (3) completion
of a custom-developed, self-administered mobile phone battery
designed to measure aspects of motor and non-motor function.
In addition to in-clinic assessments, participants were asked to
wear a smartwatch on the wrist of their most affected side for
7 days following each clinic visit and were asked to complete the

10.3389/fdgth.2024.1435693

same mobile battery they completed during clinic visits every
two weeks for the duration of the study. Due to COVID-19 a
subset of individuals did some of the in-clinic assessments

remotely and not all data were available.

2.4 Instrumented motor assessments

At each clinic visit, participants were instrumented with a set of
six Opal sensors (OPAL system, APDM, Inc., Portland, OR, United
States) placed on each wrist, around each foot, and one sensor each
positioned on the sternum and the lumbar area (Figure 1). The
Opal sensors contain 3-axis, accelerometers, gyroscopes, and
magnetometers, and were used to capture raw kinematic data
during the performance of the MDS-UPDRS Part III motor
examination, as well as a 5x sit-to-stand task, a 30 s standing
balance task (eyes open), a two-minute walking task and a two-
minute walking task under cognitive load (serial sevens).

2.5 Mobile assessment battery

As noted above, participants were provided with a provisioned
smartphone and smartwatch and completed a custom-designed

In-Clinic Assessments
Perform MDS-UPDRS Part 11|

At-Home Assessments

FIGURE 1

Symptom Tracker, Cognitive and Psychomotor Tasks

Digital devices evaluated in-clinic and at-home during WATCH-PD. Adapted from Adams et al. (4).
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mobile battery, developed by Clinical Ink (Clinical Ink, Horsham,
PA USA), at each clinic visit and every two weeks during their
participation in the study. The purpose of completing the mobile
battery during clinic visits was twofold. First, it provided a means
of orienting participants to the devices and tasks to be
performed. In addition, it allowed comparison of performance
the
contemporaneously collected measures acquired through the

measures derived from mobile assessments  to

Opal system and clinician and patient reported outcomes
The took
approximately 15-20 min to complete, and participants were

completed during each visit. mobile battery
asked to complete the entire battery at once. They were allowed
up to an hour to complete the tasks, providing time for
unexpected interruptions or breaks. The battery consisted of
three core components, measuring both motor and non-motor
domains. First, participants completed a set of six, brief PRO
questions, providing responses on a 1-7 Likert scale with
questions related to current mood, fatigue, sleepiness, and
cognition, as well as the current severity of bradykinesia and
tremor (Table 1). Participants then completed a set of brief
cognitive and psychomotor tasks and a brief speech recording
battery. Finally, participants completed a brief instrumented
motor exam consisting a of a 1-minute walking task, a 30s

balance task, and 20 s resting and postural tremor tasks.

2.6 Mobile device proficiency questionnaire

At baseline participants completed an abridged version of the
MDPQ focused on a subscale of Mobile Device Basics most
relevant to the tools being used in the current study. The MDPQ
Mobile Device Basics subscale is comprised of nine questions that
ask participants to rate their ability to perform tasks on a
smartphone or tablet device on a 1-5 Likert scale (1 = never tried,
2=not at all, 3=not very easily, 4=somewhat easily, 5=very
easily). The MDPQ was available for all participants at Baseline.

2.7 Wearability and comfort questionnaire

Atbaseline, Months 1, 6, and end of study (month 12), participants
were asked to take a questionnaire with quantitative questions related
to using the digital technologies both in the clinic and at home
(Supplemental 1). Quantitative questions relating to comfort, ease of
use, and burden were either on a Likert or categorical (Yes/No/
Neutral) scale. The Likert Scale was a 1 to 5 scale for both
comfort of devices (1 = Very Acceptable, 2 = Acceptable, 3 = Neutral,
4 = Unacceptable, 5= Very Unacceptable) and ease of use (1 = Very

TABLE 1 Results of the mobile device proficiency questionnaire (MDPQ) in
Parkinson’s disease participants and controls at baseline.

‘_ PD (N =82) Control (N =50)

MDPQ score
Mean (SD) 20.6 (2.91) 21.5 (2.94) 0.0962
Median [Min, Max] | 20.0 [15.0, 25.0] 20.5 [15.0, 25.0]

Frontiers in Digital Health

58

10.3389/fdgth.2024.1435693

easy, 2 =Easy, 3 =Neutral, 4 =Difficult, 5= Very Difficult). At the
end of the study, participants completed an exit questionnaire which
addressed qualitative questions related to the use of the devices, and
non-device questions related to length of study and compensation.
At baseline, the Wearability and Comfort Questionnaire was
available for 80 participants with PD and 49 controls, however
some questions were left blank which is reflected in our results.
At month 1, the Wearability and Comfort Questionnaire was
available for 72 participants with PD and 40 controls and at
month 12, it available for 80 participants with PD and 46 controls.

2.8 Statistical analysis

Descriptive statistics for the MDPQ total subset score and
Wearability and Comfort Questionnaire scores at Baseline,
Month 1, and Month 12 were reported for PD participants and
controls. A two-tailed t-test was performed between PD
participants and controls on the MDPQ to determine if there
was a difference in scores between the two groups where p <0.05
statistically ~ significant. All analyses

performed in R Statistical Software (v4.1.2; R Core Team 2021).

was considered were

3 Results
3.1 Mobile device proficiency questionnaire

Table 2 summarizes the results of the MDPQ at Baseline. The
mean [SD] score in PD participants [20.6 (2.91)] was numerically
smaller than controls [21.5 (2.94)] but did not differ significantly
across the two groups (p =0.10).

3.2 Wearability and comfort questionnaire

Figure 2 summarizes the results of the Wearability and
Comfort Questionnaire at Baseline, Month 1, and Month 12.

3.3 Baseline

For overall comfort of the devices, the majority of the PD
participants (75.9%) found the comfort of wearing the Opals to
be very acceptable. Positive feedback was also reported for the
mobile phone and smartwatch with the majority of participants
reporting the comfort of the devices very acceptable (71.2% and
78.8% respectively). Similarly, controls reported very acceptable
comfort for the Opals (77.6%), mobile phone (79.6%), and
smartwatch (77.6%).

In relation to the mobile assessment, 85.2% of PD participants
found the instructions on the mobile assessment to be clear and
easy to understand, but 81.5% found the text was not easy to
read. Likewise, 87.8% of controls found the instructions on the
mobile assessment easy to be clear and easy to understand and
79.6% found the text was not easy to read (Figure 3).
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TABLE 2 Description and location of assessments conducted with the digital devices used in WATCH-PD?.

Device

Wearable sensors

Assessment
Timed walk test

Description

The participant is timed while walking for a distance of 10 meters. The individual walks the 10-m
path back and forth, turning at the end of their path, for 2 min.

Repeat timed walk test with
serial sevens

The participant repeats the Timed Walk Test described above. While walking, the participant
performs a serial subtraction of sevens beginning with the number 100.

Sit-to-stand test

The participant sits against the back of a chair and stands up as quickly as they can for 5
repetitions without stopping.

Postural sway

The participant stands still, looking straight ahead for 30 s.

Location

In-clinic

Smartphone Symptom tracker The participant answers a 5-item survey on the phone including questions about mood, In-clinic and remotely
application sleepiness, thinking, tremor severity, and difficulty with movement. biweekly
Symbol digit modalities test | The participant is given a key that connects symbols to numbers. The participant is presented
with a symbol and must speak aloud the corresponding number.
Trail making test The participant must connect a set of dots as quickly as possible using the index finger on their
dominant hand while still maintaining accuracy.
Visuospatial working The participant is briefly shown four colored boxes. The participant is then shown a single-
memory colored box and must indicate if that box was in the previous set of four.
Finger tapping The participant performs rapid alternating finger movements by tapping two targets that appear
side by side using their index and middle fingers.
Fine motor test The participant is presented with a pink object and an outline. The individual must use 1-2
fingers to move and rotate the object into the outline as quickly as possible.
Speech assessment Participants must perform a sustained phonation task, a verbal articulation task repeating the
syllables “pa ta ka,” and a sentence reading task.
Smartwatch Timed walk test The participant must walk in a straight line, turning at the end of their path, for 1 min. In-clinic and remotely

Balance test

The participant must stand still with their arms at their side for 30s.

Tremor task

The participant must rest their hands in their lap for 10 s, then extend their arms out in front of
them for 10's.

biweekly

“Table 2 adapted from Adams et al. (4).

Ease of navigating
through the tasks on

FIGURE 2
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FIGURE 3

Feedback of mobile device platform at baseline from PD participants (n = 80) and controls (n = 49).

3.4 Month 1

For overall comfort of the devices in Month 1, the majority of the
PD participants (82.1%) found the comfort of wearing the Opals to
be very acceptable. Positive feedback was also reported for the mobile
phone and smartwatch with the majority of participants reporting the
comfort of the devices very acceptable (74.0% and 80.8% respectively),
including acceptability of putting the smartwatch on at home (76.7%).
Similarly, controls reported very acceptable comfort for the Opals
(73.0%), mobile phone (70.0%), and smartwatch (72.5%), and 83.0%
reported the ease of putting on the smartwatch as very acceptable.

3.5 Month 12

For overall comfort of the devices in Month 12, the majority of
PD participants (74.4%) found the comfort of wearing the Opals to
be very acceptable. Positive feedback was also reported for the
mobile phone and smartwatch with the majority of participants
reporting the comfort of the devices very acceptable (65.0% and
73.8% respectively), including acceptability of putting the
smartwatch on at home (72.5%). Similarly, controls reported very
acceptable comfort for the Opals (66.0%), mobile phone (57.4%),
and smartwatch (68.1%), and 83.0% reported the ease of putting
on the smartwatch as very acceptable.

Highlights of the qualitative feedback related to the devices at
Month 12 was grouped and can be found in Table 3.

Frontiers in Digital Health

TABLE 3 Qualitative feedback from participants on use of smartwatch and
smartphone at-home in WATCH-PD.

Smartwatch
“Too bulky”

Smartphone
“The study phone was just a brick when

“Sometimes when tremors are acting up,
the watch was uncomfortable”

“The strap interfered with writing and
using a computer mouse”

“Would prefer to wear it on non-

not used for sessions”

“Sometimes between uses the battery dies
so a call or text would be helpful”

“A call or text on my personal phone to
remind me about study tasks would be

dominant wrist”

“The walking activity, when both the
phone and watch are used alternatively,
was confusing”

“Would be helpful to have study
reminders on the watch”

helpful”

“Froze once so I had to reboot”

Participants highlighted the need for a better watch strap, more
notifications on the mobile device to complete the battery, and
frustrations with technological issues.

4 Discussion

This work aimed to gather participant perceptions of the DHT's
used in the WATCH-PD study. This is the first study to evaluate
feedback and impressions of using common DHTs in both
controls and people with early PD in the context of a
longitudinal, observational study. We show that for an early PD
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population, experiences and comfort with technology are not
different from the general experience in neurologically healthy
older adults. Furthermore, there was an overall favorable view of
the usability and comfort of the digital technologies deployed in
the WATCH-PD study, both in-clinic and at-home.

Results from the MDPQ mobile
demonstrated no significant differences in device proficiency

subscale at baseline

between the PD participants and controls. The results from the
Wearability and Comfort Questionnaire overall demonstrated
generally positive views on the comfort and use of the digital
technologies in this study. Consistently, over the 12-month
study duration, within both cohorts, most participants found
wearing the Opal sensors, mobile phone, and smartwatch either
very acceptable or acceptable regarding comfort. The ease of
putting on the Apple Watch band was also favorable throughout
the study, which was encouraging given that many of the PD

dominant symptoms

participants  presented with tremor
at baseline.

The study is not without limitations. The baseline MDPQ
scores combined with the highly positive results on the
Wearability and Comfort Questionnaire might suggest that the
study was biased towards recruiting people who were already
very comfortable with technology. This cohort was also
homogenous, potentially limiting the generalizability of our
findings. Thus, it is recommended that future work collect
similar measures in more diverse cohorts, potentially through a
fully remote study design to widen recruitment and include a
broader range of individuals. Moreover, there were a few
limitations which we could not control, including the maximum

size of the screen of the mobile device.

5 Conclusions

The current research in early PD, along with extant literature
on DHT usability and acceptability more generally, provides a
foundation for understanding the acceptability of using digital
tools in early PD clinical trials. Our work provides insights into
how older individuals, especially those with a movement
disorder, will adapt to using digital technologies in clinical trials.
A key to overcoming possible challenges with the use of DHTs
in older participants with neurological disorders is to incorporate
the patient voice by gathering regular formal and informal
feedback throughout study design and conduct. Furthermore, the
option of co-design with the end users provides an opportunity
to collect valuable feedback and create a collaborative experience
between researchers and patients.
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Introduction: Parkinson’s Disease affects over 8.5 million people and there are
currently no medications approved to treat underlying disease. Clinical trials
for disease modifying therapies (DMT) are hampered by a lack of sufficiently
sensitive measures to detect treatment effect. Reliable digital assessments of
motor function allow for frequent at-home measurements that may be able to
sensitively detect disease progression.

Methods: Here, we estimate the test-retest reliability of a suite of at-home
motor measures derived from raw triaxial accelerometry data collected from
44 participants (21 with confirmed PD) and use the estimates to simulate
digital measures in DMT trials. We consider three schedules of assessments
and fit linear mixed models to the simulated data to determine whether a
treatment effect can be detected.

Results: We find at-home measures vary in reliability; many have ICCs as high as
or higher than MDS-UPDRS part lll total score. Compared with quarterly in-clinic
assessments, frequent at-home measures reduce the sample size needed to
detect a 30% reduction in disease progression from over 300 per study arm to
150 or less than 100 for bursts and evenly spaced at-home assessments,
respectively. The results regarding superiority of at-home assessments for
detecting change over time are robust to relaxing assumptions regarding the
responsiveness to disease progression and variability in progression rates.
Discussion: Overall, at-home measures have a favorable reliability profile for
sensitive detection of treatment effects in DMT trials. Future work is needed to
better understand the causes of variability in PD progression and identify the
most appropriate statistical methods for effect detection.

KEYWORDS

Parkinson’s disease, digital health technology, measurement reliability, clinical trials,
statistical power, disease progression, longitudinal data, simulation study

1 Introduction

Parkinson’s Disease (PD) is a slow-progressing neurodegenerative disease that affects
over 8.5 million people worldwide and is currently the fastest growing neurodegenerative
disease in the world (1). Hallmarks of PD include slowness of movement and rigidity, and
the impacts are felt in many aspects of everyday motor function including gait, eating,
speech, and dressing. Currently available PD medications address symptoms but do not
treat the underlying disease. Recent advances in drug development show promise for
disease modifying therapies (DMTs) but evaluation of these treatments is hampered
by outcome measures such as the Movement Disorder Society-Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS), which requires large sample sizes and/or long
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term follow-up to detect modest treatment effects, especially given
that existing symptomatic treatment can mask underlying
progression (2). Digital at-home measures, which allow for more
frequent assessment, are a promising option for detecting
treatment effects in shorter timeframes and/or with a smaller
number of participants.

Digital measures are currently recommended as exploratory
endpoints in randomized controlled trials (RCTs) (3). For use as
primary and secondary endpoints, and regardless of whether the
measure is considered a biomarker or a clinical outcome
assessment, a better understanding of their reliability and
responsiveness to disease progression is necessary to determine
their optimal context of use and assessment schedule. Clinimetric
properties of digital tools have been assessed in a wide range of
studies to determine how they can be useful in PD (see
Supplementary Table 1 and references within). Multiple studies
of digital measures derived from at-home app-based assessments,
such as finger tapping and timed walk tests, demonstrate
associations with aligned in-clinic assessments and high test-
retest reliability [(4-7), Supplementary Table 1]. The reliability of
many of these measures is as good as or better than test-retest
reliability for MDS-UPDRS part III scores (8).

In current clinical trials for novel DMTs for PD, the MDS-
UPDRS or one of its subparts is the gold standard outcome
measure (3). Composed of four parts, each of which consists of
multiple items scored ordinally from 0 to 4 (where 0 is no
symptoms and 4 is severe symptoms), the items comprise
patient-reported outcomes and clinician assessments (9). Parts II
and III relate to motor function, measuring patient perception
and clinician ratings of motor impacts respectively. These parts
have excellent test-retest reliability as measured by intraclass
correlation coefficients (ICCs) across spans of 1-2 weeks [ICCs
for part II: 0.96, part III: 0.93 (8)]; however, it remains
challenging to detect changes in early disease burden, especially
in the face of symptomatic treatments (2). One explanation for
this apparent conundrum is that there are three fundamentally
different sources of variability in measurements of PD motor
function: measurement error, short-term clinical fluctuations, and
long-term variability in underlying disease progression.

On the timescale of days to a few weeks, there is no expectation
of change in underlying disease severity, yet measures vary from one
time point to the next due to measurement error and day-to-day
fluctuations in symptoms. Measurement error may be present in
clinician ratings due to, for example, interrater reliability (10, 11)
and in at-home digital assessments due to, for example, variability
in the setting in which patients use the digital devices assessments
(12). Also on a short time scale, clinical variability results from
day-to-day and diurnal symptom fluctuations including those
other
medications (13). These types of variability can be quantified with

induced by levodopa and symptomatic  treatment
the ICC, standard error of measurement (6,), and minimum
detectable change (MDC) in cross-sectional studies and have been
established for both in-clinic and at-home assessments.

In contrast, long-term variability in underlying disease
progression arises from PD being a heterogeneous disease. When
individuals, the

averaged over progression of PD motor
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manifestations as measured by MDS-UPDRS or digital assessments
can be approximated as linear over the span of a year or two
(2, 14). However, PD’s motor manifestations do not change at a
constant rate across months within (2, 15) or between (16, 17)
individuals. The causes of inter- and intra-individual variability in
disease progression are not well known and may include differences
in underlying disease etiology, seasonality, stress, climate, and
changes in living situation (15, 16). Variability in progression rate is
harder to estimate because it is only apparent at long timescales;
however, it is detectable in longitudinal MDS-UPDRS data such as
those collected in the PPMI study (18) and has been disentangled
from measurement error by Evers et al. (15).

Digital assessments can help overcome the challenges posed to
clinical trials by all three of these types of variability by allowing for
more frequent measures. Including repeat measures reduces the
standard error of endpoint estimates such as the rate of change
from baseline. In contrast with clinician-observed outcome
assessments, which are typically captured infrequently due to the
burden and cost of clinic visits, the schedule of assessments for
digital measures can be driven by study designs that yield the
highest power for detecting the treatment effect.

Multiple outcome measures have been considered from
These
individual measures, such as number of taps or gait speed

assessments completed using digital tools. include
derived from a mobile app-based assessment, and summary
statistics of a burst of the same assessment, such as the median
of 6 tapping assessments completed over the course of seven
days. There is a trade-off between these two outcome measures:
individual measures can be completed more frequently, but
median values of bursts have higher test-retest reliability (7).

While digital measures have been used in clinical trials as
exploratory endpoints, it remains unclear under what conditions
they will outperform in-clinic assessments and how best to
distribute assessments across the length of the trial to detect the
treatment effect. We undertook analyses to address these gaps with
the following objectives: (1) Estimate measurement error in a variety
of at-home digital assessments spanning gait, tapping, and tremor,
which are part of a neuroscience toolkit developed by Koneksa
Health for use in clinical trials. The measures, derived from raw
triaxial accelerometry sensor data (19), were applied to data
collected in the Objective PD sub-study of the mPower study (20).
(2) Simulate various DMT study designs that implement individual
measures and bursts using at-home digital assessments vs. in-clinic
MDS-UPDRS. We use the Gaussian state space framework
developed by Evers et al. (15), which explicitly models measurement
error and variability in disease progression rates. (3) Assess the
power to detect a treatment effect in the various scenarios by fitting
linear mixed effects models to the simulated measures.

2 Methods
2.1 Data

The data used in this study to estimate reliability of digital
assessments derive from the ObjectivePD sub-study (20), which
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recruited 44 participants (21 with confirmed PD diagnosis, 23
healthy controls). Participants were followed for 6 months and
seen in clinic three times at 0, 3 and 6 months. During the
entire 6 months, they were also asked to complete daily digital
health measures administered through the mPower mobile
application (20). These assessments consisted of (1) speeded
finger tapping alternating between the index and middle
finger, (2) a 30-s walk test with the phone in the pocket, and
(3) three tremor assessments including resting, postural and
hand-to-nose tremor. Each participant in the ObjectivePD
sub-study performed on average 182 tapping sessions, 147
gait assessments, and 134 tremor sessions throughout the 6
Additional  details of the
measures are available in prior publications (20, 21) and

months study timeframe.

Supplementary Table 2.

2.2 Reliability measure estimation

We estimated measurement error and test-retest reliability of
at-home digital measures using a linear random intercept model.
We assessed the test-retest reliability of measures derived from
individual at-home assessments and measures that summarize
multiple at-home assessments completed within a 7-day period
with  their
assessed longitudinally per participant were grouped by
fortnight, and a linear model was fit per digital measure with

median. Specifically, at-home measurements

random intercepts for participant and participant-by-fortnight
with
calculating test-retest reliability that rely on two parallel

interaction. In contrast conventional methods for
assessments (e.g., assessments taken on the same participant
over a short period of time, or assessments collected from two
raters at the same point in time), assessment of test-retest
reliability with a longitudinal model uses all measurements
collected during the study and are robust to missing data (22).
Furthermore, test-retest reliability in this context can be
interpreted as the consistency between measurements collected
during any 2-week period. Implicit in this calculation is the
assumption that underlying disease progression between
observations within a fortnight will be minor (8). This analysis
was performed separately for measures that summarized bursts
and measures that represented individual assessments. Model
residuals were plotted to assess whether the model was an
appropriate choice.

For each fitted model,

error associated with a particular measure as the residual

we extracted the measurement

variance, 62,,,. Test-retest reliability, assessed with the intraclass
correlation coefficient, is extracted from the fitted model; it is
the proportion of the overall variability in a digital measure
explained by the participant effect and the participant-by-
fortnight interaction effect.

We calculated the minimum detectable change (MDC)
associated with each digital measure following Weir (23) as:

MDC = 1.96 X V2 X o,
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2.3 Model for simulating digital and in-clinic
data

We generated simulated study data from a Gaussian state space
model of PD progression and measurement (Figure 1) that showed
a good fit to longitudinal MDS-UPDRS data from the PPMI cohort
(15), see Supplementary Text for further discussion of the
modeling framework). In brief, unobserved underlying disease
severity, 0, is simulated for a study population of size n by
randomly drawing # initial values from a normal distribution.
Each participant’s disease severity is updated to the next time
step by adding the mean trend, 1, (i.e, the underlying disease
progression rate) plus Gaussian noise representing variability in
the progression process (7). The rate of disease progression, 1, is
the only parameter that differs between placebo and DMT study
arms. The updating procedure is repeated for each participant
across the length of a simulated trial with Q observed timepoints.
Observed values, y, are then simulated from the time series of
underlying disease severity, 8, by adding normally distributed
measurement error, v, representing a combination of inter- and
intra-rater reliability and short-term fluctuations that are not
related to underlying disease progression. The updating process
is encapsulated in the following equations, for i € {1, 2, ...n}
and t € {1,2, ...Q}

Vi = Oi +vii vii ~ N(O, o)
Oi = 61 + Wi, wii ~ N(7, or)

The elements of clinical study design included in the
simulations were the number of participants per study arm,
schedule of assessments, and study duration. For simulations of
in-clinic MDS-UPDRS part III scores, all parameters were taken
from estimates described in Evers et al. (15).

For simulations of digital at-home measures, measurement
parameters were estimated from the mPower data (i.e., starting
mean, |, starting standard deviation, o, and standard error of
described
assessments). Bursts were simulated by drawing 6 individual

the measurement, o,, as above for individual
assessments per burst and taking the median. Unfortunately, we
lack empirical estimates of the trend and trend variance (t and
o’7) from at-home assessments because we do not have sufficient
longitudinal data on digital measures to disentangle measurement
error from progression variability.

Because 1 and o’ represent the trend and trend variance in
underlying disease progression, respectively, we began by
assuming that these are independent of measurement type and
scale with the mean value of a measure, which allowed us to
estimate them from the in-clinic measures. That is, Tgigital = Tlinic
(Maigita/Mctinic)  and O digital = OT.clinic  (Mdigital/Melinic).  However,
while in-clinic and at-home assessments both measure
underlying motor function, they do so in somewhat different
ways, and we therefore relaxed this assumption and considered
the robustness of our results to the possibility that at-home

measures may be less responsive than in-clinic measures by
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FIGURE 1

Conceptual model and simulation framework. (A) Visual representation of the Gaussian state space model used for simulations. (B) Three stochastic
realizations of the model, using in-clinic MDS-UPDRS part Il parameters (see Table 1). Underlying disease progression is represented by gray lines in
(B) and 6;; in (A) The variability in progression rates between individuals and across time within individuals arises from the variability in the trend,
simulated by &;; and result in the unobserved underlying disease states (gray lines). The observed measurements (i.e., MDS-UPDRS scores, digital
assessment scores, etc.) are represented by y.; in (A) and points in (B) The vertical distance between the gray line and its associated points
represents the variability induced by the measurement process, ;. (C) The three main study designs considered: (1) quarterly clinic visits, (2)
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bursts of 6 assessments 8 times per year, and (3) weekly individual assessments

reducing Tgigial to varying degrees relative to in-clinic measures.
We modeled the effect, e, of a DMT as a reduction in the
progression rate, T, such that the progression rate in the
treatment arm is et, where 0 <e <1.

2.4 Study designs

We considered three core study designs (Figure 1C): (1) in-
clinic MDS-UPDRS every 3 months, (2) 48 digital at-home
assessments per year clustered into 8 bursts of six assessments
each, and (3) 48 digital at-home assessments per year evenly
spaced across the study duration. We additionally assessed the
robustness of our results to study designs with different
clustering of bursts by grouping the 48 assessments into 4, 6, 12
and 24 bursts.

2.5 Progression rate estimation from
simulations & power calculations

We used these simulations to determine the statistical power
of a clinical trial to detect treatment effect. Statistical power
measures the sensitivity of a study to an effect of interest and
is used here to compare the sensitivity of different longitudinal
study designs to detect reduced PD progression induced by a
DMT. After simulating data for placebo and treatment arms,
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we assessed the power to detect a treatment effect by fitting a
linear mixed effects model to the simulated observations, vy,
with fixed effects for time, study arm and their interaction,
and a participant. A first-order
autoregressive, AR(1), process was used to model the residual

random intercept for
covariance structure between observations within participants
following model selection. Model residuals were examined to
assess goodness of fit.

For every set of parameters, 1,000 simulations were run and
statistical power was calculated as the proportion of assessments
for which the coefficient of the interaction term for treatment-
arm-by-time had a p-value <0.05, as determined from a
t-distribution with the appropriate degrees of freedom using the
R package nlme (24). An additional criterion for trial success is
included in the supplement; in these simulations, in addition to a
p-value <0.05, the mean difference in change between the
treatment and placebo group across the study duration must
exceed the MDC for the measure of interest.

2.6 Software

ICC calculations were performed using Python 3.11 and
simulations and power calculations were carried out in R 4.2.1
(25). The code used for analysis and simulations is available
upon request.
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TABLE 1 Parameters used in main simulations (Figure 2).

Parameter | MDS-UPDRS part Ill | Digital at-home
score [values from step length
Evers ()] (meters)
T 2.63 year™" (13% year™") 0.04-0.07 (8%-13% year ")
or 5.58 year™! 0.15 year™
Om 3.94° 0.06°

“Independent estimate from Martinez-Martin (8): 4.3.
YEstimated from mPower data.

3 Results

3.1 Reliability of at-home digital PD
assessments

We assessed the reliability of at-home digital measures
obtained from (1) a 30-s walk test (“gait measures”), (2) a
speeded finger tapping assessment (“finger tap measures”), and
(3) a tremor assessment (“tremor measures”). Figure 2
summarizes the test-retest reliability as measured by ICCs for
each at-home digital measure, separated by whether they were
considered individually or an average across multiple measures
taken within a 7-day period. Measurements obtained from bursts
are summarized by calculating the median value per burst. A
median of 6 measurements (mean = 4.6, standard deviation = 2.6)
were included in each burst calculation. Most measures obtained
from individual or burst assessments exhibited good-to-excellent
reliability  (26).

reliability overall (e.g., log step time discrepancy, log tap interval

However, several measures showed poorer

symmetry, and tap correctness, collected during individual
assessments; log tap interval change collected during burst
assessments). The modeling approach used for estimation
appeared reasonable based on Q-Q plots and other visualizations
of residuals (Supplementary Figure 1). The MDC varied across
measures, ranging from less than 10% of the mean (e.g., postural
tremor displacement) to over 150% of the mean (e.g., change in
tap interval) (Supplementary Tables 2, 3).

3.2 Power calculations for at-home
measures & study design implications

Power calculations were carried out by fitting a linear mixed
model to data generated from the Gaussian state space model.
Examination of model residuals suggested a reasonable fit between
the model used for effect detection and that used for data
generation (Supplementary Figure 2). A comparison between
mixed models with and without an autoregressive correlation
structure of order 1 AR(1) indicated a significantly better fit by
AIC values for the AR(1) model (Supplementary Figure 3), and
that model is used for all power calculations presented here.

Based on empirical estimates of measurement error in digital
and in-clinic assessments, and assuming that digital measures
progress at the same rate as in-clinic measures after rescaling to
account for different units, repeated at-home assessments
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MEDIAN BURST  INDIVIDUAL ASSESSMENT
TEST-RETEST ICC TEST-RETEST ICC
GAIT MEASURES
Step Period, sec 0.841
Stride Period, sec 0.841
Step Length, meters 0.803
Distance, meters 0.861
Gait Speed, meters/sec 0.804
Cadence, steps/min 0.797
Step Count m 0.837
Z-axis Variability, g 0538
Y-axis Variability, g 0.500
X-axis Variability, g 0.478
Freeze Index 0.587
Stride Similarity 0698
XY-axis Variability, g 0517
Log10(Step Time Discrepancy) m 0.381
HAND-TO-NOSE TREMOR MEASURES
Log10(Tremor Amplitude, g) 0.852
Peak Frequency, Hz 0.540
Adj. Peak Frequency, Hz 0.589
POSTURAL TREMOR MEASURES
Log10(RMS Tremor Acceleration, g) 0.781
Tremor Frequency, Hz 0.677
Log10(Tremor Amplitude) m 0.636
Log10(RMS Tremor Displacement, meters) _ 0.609
Peak Frequency Acceleration, Hz 0.676
RESTING TREMOR MEASURES
Log10(RMS Tremor Acceleration, g) [oX:10]0] 0.623
Log10(RMS Tremor Displacement, meters) 0.549
Tremor Frequency, Hz 0.594
Log10(Tremor Amplitude) 0.548
Peak Frequency Acceleration, Hz 0454
FINGER TAP MEASURES
Tap Count 0899
Tap Speed, taps/sec _ 0.865
Tap Positional Accuracy, pixels 0.641
Log10(Tap Regularity, sec) m 0419
Tap Correctness m 0.351
Log10(Tap Interval Symmetry, sec) [ 0.512 0.285
Log10(Tap Interval Change, sec) 0.284 0.420
MDS-UPDRS Part Il Test-Retest ICC: 0.96
MDS-UPDRS Part Il Test-Retest ICC: 0.93
Reference: Martinez-Martin, 2013
FIGURE 2
Test-retest reliability per digital at-home measure and study design.
For burst assessments, test-retest reliability is calculated between
the median of measurements within each burst; for individual
assessments, test-retest reliability is calculated between the
individual measurements.

consistently outperformed in-clinic assessments taken once every
3 months, regardless of whether the digital assessments were
implemented in bursts or assessed weekly (evenly spaced), during
a l-year trial (Figure 3). For 2-year trials, at-home assessments
implemented in bursts perform similarly to in-clinic assessments
taken once every 3 months, assuming equivalent responsiveness.

As the responsiveness of digital measures (i.e., the trend, 1)
decreases compared with clinic MDS-UPDRS Part III total score,
statistical power decreases, regardless of the method of at-home
assessment (collected weekly or within bursts). However, for the
full range of parameters considered in these simulations, weekly
at-home assessments retained higher statistical power compared
to in-clinic assessments performed once every 3 months.
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Effect size: Difference in progression rates between treatment and placebo groups
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FIGURE 3
Power curves comparing study designs incorporating in-clinic and at-home assessments. The top row shows results for 1-year long studies, the
bottom for 2-year. The left column models a DMT that reduces disease progression rate by 30% and the right column by 50%. In comparing DMT
with placebo cohorts, the effect size for calculating study power is the difference in slopes of the measure over time (MDS-UPDRS Part Ill score
for in-clinic assessments, Step Length during the 20-s walk test for at-home assessments), assessed using a linear mixed-effects model. Sample
size calculations for in-clinic assessments (red, dashed line) assume responsiveness to progression and measurement error estimated by Evers
et al. (15). The gray, dashed line represents the threshold for 80% power.

Additionally, the temporal spacing of at-home measures had a
significant impact on statistical power. Study designs incorporating
weekly assessments (48 assessments per year) consistently
outperformed designs incorporating at-home bursts every 6
weeks (8 median bursts per year). Further, we found that a more
even distribution of assessments always increased power under
the assumption that the reliability was the same (Supplementary
Figure 4). For example, 48 individual assessments provided
greater power than 24 bursts of 2, which provided more power
than 12 bursts of 4, and so on.

Based on an 80% statistical power threshold, we can make
several different comparisons in sample size requirements
between different study designs. For example:

o Assuming a 30% progression rate reduction and 100%
responsiveness of the digital measure, a 2-year study would
require approximately 110, 350, and 350 participants per study
arm based on measures obtained weekly at-home, in 6-week
bursts at home, and in-clinic every 3 months, respectively.

o Assuming a 50% progression rate reduction and 100%
responsiveness of the digital measure, a 1-year study would
require approximately 110, 270, and 390 participants per study
arm based on endpoints obtained weekly at-home, in 6-week
bursts at home, and in-clinic every 3 months, respectively.
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We additionally considered the sensitivity of power calculations
The results
indicated that in the presence of high variability in progression
rates (6?r=30 for MDS-UPDRS part III total score), in the
range estimated for PD (15), measurement error had little effect

to estimates of trend and measurement error.

on statistical power (Supplementary Figure 5). In contrast, when
progression rates had less variability (e.g., 6°;=1 or 5), a more
precise measure (e.g, 6%,=1 or 5) substantially increased
statistical power, especially for infrequent assessments. An
increase in trend error of 20%-40% increases necessary sample
sizes (Supplementary Figure 6), but its impact is less than that of
a 20%-40% decrease in measure responsiveness (Figure 3).

3.3 Responsiveness of at-home measures

The responsiveness of digital measures to changes in motor
function in PD is not yet well characterized; we therefore
consider the impact of reduced responsiveness of a digital
measure on the sample size needed for 80% power to detect a
30% reduction in progression rate in a treatment arm
(Figure 4).
assessments taken weekly would allow for detection of a

throughout a 1-year study Using at-home

modest 30% reduction in the rate of disease progression within
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FIGURE 4

Sample size calculation results for a 1-year long DMT trial. The sample size for in-clinic assessments (red, dashed line) assumes responsiveness to
progression and measurement error estimated by Evers et al. (15). Sample size calculations for DHT trials assume measurement error as estimated
from the data (see Figure 2, Step Length) and consider a range of responsiveness of digital measures to underlying disease progression. The
simulations for the blue curve include 48 assessments per year. The cyan curve includes 8 bursts per year, with 6 assessments per burst.

80% 90% 100%

At-home burst every 6 weeks

Assuming a 30% reduction in progression during 1-year study

1 year with fewer than 910 participants per study arm even if the
digital assessments were only 60% as responsive to progression
as in-clinic MDS-UPDRS Part III total score. In the “ideal”
scenario for which digital assessments are as responsive as-
clinic MDS-UPDRS Part III, assuming a 30% reduction in the
rate of disease progression, such a study would require 320
participants per arm compared to 1,150 per arm in a study
that assesses MDS-UPDRS Part III in-clinic every 3 months.

3.4 False positive rate and minimum
detectable change

Finally, we considered the implications of this modeling
approach on the false positive rate. We found that while there
was no strong evidence of bias in the estimates (Supplementary
Figure 7), the probability of finding a significant difference
between study arms when there was none (i.e., type I error)
increased with both assessment frequency and trend variance
(6*1, Supplementary Figure 8). One way to manage this is to
consider not only statistical but also clinical significance of the
results. Indeed, the problem of type I error is mitigated if a
simulation is considered to demonstrate study success if and only
if the following two criteria are met: (1) the p-value for the
difference in rates of change between treatment arms is <0.05
and (2) the estimated mean difference in the measure is greater
than the minimum detectable change (MDC) (Supplementary
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Figure 9), though as expected, the probability of study success is
reduced in this scenario.

4 Discussion

We estimated the reliability of a suite of at-home digital
assessments administered on a smartphone to measure motor
function in PD and performed simulations of clinical trial
designs to assess the ramifications of implementing in-home
digital health measures in DMT studies. In agreement with
estimates of the reliability of other digital PD measures, we
found the test-retest reliability for bursts of digital measures were
as good as or better than the reliability of MDS-UPDRS part III
scores. Interestingly, even though individual digital assessments
typically have poorer test-retest reliability than in-clinic or at-
home burst assessments, we found that a study design with
evenly spaced digital weekly assessments outperformed both
alternatives. This result suggests that the key challenge in
measuring PD progression stems not from a lack of sufficiently
sensitive and reliable measurement tools, but rather from the
inherent variability in PD disease burden at points in time that
renders infrequent measurement insufficient.

The result of superiority of frequent at-home assessments to in-
clinic assessments every 3 months is robust to substantially
decreased responsiveness of digital at-home measures compared
with in-clinic (Figure 3). However, the quantitative results
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regarding the necessary sample size were greatly affected by the
responsiveness, and this will be important in future trial design.
This is
longitudinal data. Ongoing and future multi-year studies that

a difficult parameter to estimate as it requires

incorporate frequent digital measures in PD will be necessary to
quantify this [e.g., (6, 27, 28)].

The results of this study suggest that evenly spaced assessments
provide greater power than any configuration of an equal number
of assessments distributed in bursts. This may be understood in the
context of information theory; when compressing data using a
logically irreversible process, such as summarizing a burst of
assessments with a median, there is inherent loss of information
as measured, for example, by Shannon entropy (29). The
superiority of evenly spaced assessments also has implications for
the implementation of DHTs in clinical trials. Frequent, evenly
spaced measures require participants to consistently perform
digital assessments across long periods of time. Adherence to at-
home assessment regimens in clinical trials may decrease over
time [e.g, (30)], and methods for maintaining usage will be
important. Additionally, understanding the causes and impacts of
missing assessments will be important.

We note that the results assumed progression rates and
variability estimated in a patient population on standard of care
medications such as levodopa (15). DMT studies are often
longitudinal and conducted in patients in the early stages of PD
[e.g., (31, 32)], which can include treatment-naive participants.
Smaller sample sizes may be sufficient to detect DMT effects in
treatment naive individuals, in part because the estimated
progression rate is higher in the absence of medication (2).
However, while participants may be unmedicated at the start of
the study, over the course of a year or more they are likely to
start symptomatic treatment (33). This transition can be
challenging to account for in models of disease progression, and
whether inclusion of covariates such as levodopa equivalent daily
dose (LEDD) is sufficient to account for the changes induced by
starting treatment remains an open question. There is substantial
evidence that digital measures can detect levodopa effects [e.g.,
(20, 34, 35)], but as of yet, little evidence of detecting
progression (14). Further work is needed to identify what clinical
variables will be necessary to disentangle temporary fluctuations
from underlying disease progression.

A key assumption in this study is that progression in both the
treatment and placebo groups, while highly variable, is on average
linear with time. Varying rates of progression with time could
occur due to intrinsic characteristics of the motor function being
measured, a learning effect, or time-dependent treatment effects
of a DMT. Prior studies provide evidence for two of these: linear
models in time are suitable for some but not all digital measures
(14), and learning effects can be detected in at-home measures
[e.g., (36, 37)]. As there are no approved DMTs for PD, the
effects
unknown, but it is considered in other similar modeling

importance of time-dependent treatment remains
assumptions (38) and is likely relevant. For measures whose
progression cannot be approximated as linear, a study design
that facilitates treating time as a discrete variable, such as bursts

of assessments, may be beneficial. It should also be noted that
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this study does not model subpopulations within PD that may
have different mean progression rates (16). Further work is
necessary to understand how this type of heterogeneity in a
population may affect the benefits and study design of digital at-
Additionally,
frequency can require consideration of autocorrelation and

home assessments. data collected at higher
temporal confounders (39).

One drawback of the mixed effects modeling approach taken in
this study for power calculations is the possibility for false positive
results. While estimates of trend using linear mixed effect models
are largely insensitive to model misspecification (40), the
standard error of the fixed effects may be underestimated in the
presence of misspecified random effects such as autocorrelation
(41, 42). The increased false positive rate with frequent sampling
observed in the simulations can be understood in the context of
the mismatch between the data generation process (ie, a
random walk with trend) and the model fitting procedure. As
described here, one solution to this problem is to require not
only statistical but also clinical significance. However, this comes
with a loss of power to detect small changes, especially in shorter
time windows. Analysis methods tailored to data that arise from
underlying processes with this type of autocorrelation may be
important in this context (43).

Future work to better understand the biological mechanisms
underlying the progression of motor symptoms in PD can
inform choices of models used for detecting treatment effects. In
this study, the data generating process was chosen because it has
been shown to parsimoniously explain heterogeneity present in
the disease’s dynamics in PPMI data (15), and therefore seems a
The model
assumes the mean underlying progression rate is the same across

reasonable candidate for a mechanistic model.

all patients, which we know to be an oversimplification. For
example, certain genotypes progress more quickly than others
[e.g., (44)]. One outcome of this assumption is that the trend
variance reported by Evers (15) may be an overestimate as it
accounts for not only random variation across time but also
consistent variation between individuals that exists among the
PPMI patients.

The mixed model framework used for effect detection has been
used in longitudinal assessments of PD progression, including in
PPMI data (2). However, while the model may appear to be a
reasonable fit based on standard examination of residuals, our
that to be
overconfidence in detection of small effects. Given the trade-off

results suggest care needs taken to avoid
between power to detect treatment effect and the false positive
rate that results from fitting misspecified models, future work to
investigate the underlying mechanisms of motor function
progression and the empirical autocorrelation structure of PD
measurements will be important. Digital measures may provide
an important window into the nuances of PD progression and its
variability and allow for empirical examination of temporal
correlation structures in data that can help determine optimal
analysis methods (20). Given the high and increasing burden of
PD around the globe, therapies that can stop or slow its
progression will benefit millions of people (45). As of 2023, there

were 63 ongoing clinical trials for PD DMTs, including 32 phase
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II and 6 phase III (46). For these trials to be successful, in addition
to an effective therapeutic agent, they must utilize measurements
that allow for detection of treatment effect in the face of the high
degree of variability inherent to PD progression. This study
demonstrates that frequent measures enabled by digital health
technologies that can be used consistently in patients’ homes
may increase the power to detect treatment effects in smaller and
shorter trials.
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Background: Interest in wearable device use in Parkinson's disease (PD) has
grown rapidly with many compelling studies supporting diagnostic and
therapeutic uses. Concurrently, consumer devices have proliferated and their
role in health and wellness has expanded. However, incorporation of
consumer and medical wearable devices into medical care has in our
experience been limited.

Objective: We sought to assess the current state of consumer and medical
wearable device use among those with PD and to understand the factors
impacting their rate of use.

Methods: An anonymous online survey of individuals with PD in the US was
conducted from July 9th, 2023, to Jan 8th, 2024, with 298 completed
responses collected.

Results: Greater than 90% of respondents were interested in new technologies
with 67% having had experiences with consumer wearable devices. Only 24%
were using consumer devices for disease management and many functions
were not fully utilized. Medical wearable device use was very limited with only
8% having used a device. Users of both consumer and medical wearables
generally reported low barriers to use despite continued strong perceptions
on the importance of cost, impact on care, comfort, and other factors.
Conclusion: This study demonstrates that for the clinical management of PD
there is limited use of wearable devices even among individuals who are
motivated and experienced with consumer wearable device use. Additionally,
it is suggested that substantial barriers to medical wearable use are likely
originating from the provider and/or systemic level.

KEYWORDS

Parkinson's disease, wearable, clinical practice, survey, barriers to use, consumer
devices, medical devices

Introduction

Parkinson’s disease (PD) is a neurodegenerative condition which results in abnormal
movements, cognitive changes, and autonomic dysfunction. Diagnosis and management
are made challenging due to inherent fluctuations in the severity of disease
manifestations as well as dynamic changes that are induced by treatment. Standard
clinical practice can only capture brief snapshots of the patient’s experience and relies
heavily on subjective report and quasi-objective exams, thus ability to optimally
intervene is limited (1-4). Recently, there has been considerable interest in addressing
these challenges through the creation of objective and continuous measures which hope
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to allow for better understanding of each person’s unique disease
state and thereby improve treatment and reduce disability (5).

Wearable devices have been of great interest in healthcare due
to their ability to contain imbedded sensors that help track various
physiologic signals. Research in wearables in Parkinson’s disease
has been focused on the evaluation of motor features, and
various devices have data supporting their ability to detect sub-
clinical motor features, disease state fluctuations, disease
progression, and to assist with therapeutic adjustments (6-9).
However, various physiologic signals such as sleep (10), heart
rate variability (11), cerebral oxygenation (12), and many others
have been studied in PD with wearables. Studies in this area have
rapidly increased over time with PubMed entries for “wearable”
AND “Parkinson’s Disease” going from a mere seven in 2012 to
170 in 2022. To help researchers and clinicians understand this
landscape, many excellent reviews are available (13-18).

However, collection of valid data alone is not sufficient to
change practice. The patient’s perspective on device usability and
utility is critical, and this has not been forgotten. Many studies
of specific devices have included patient perspectives on features
of interest, usability, and barriers to use (19-21). Additionally,
more conceptually focused studies using surveys and focused
groups have identified key features of interest such as wearability,
ability to provide feedback, and clinical accuracy (22, 23). All this
research has ultimately culminated in several medical wearable
devices that are validated, designed with the patient in mind, and
cleared for clinical use.

Concurrent with this explosion of research and approval of
medical wearable use, there has been substantial adoption of
consumer wearable devices for health tracking and lifestyle
management. Devices such as the Apple Watch and Fitbit were
in 2020 estimated to be used by around 25%-30% of the US
population for health monitoring (24). These consumer devices
also appear to have merits in PD as they offer the ability to
potentially improve medication adherence, encourage and track
physical activity, document symptoms, monitor sleep, and collect
various other forms of information.

However, despite the extensive research on validation, the
understanding of the factors important to patient users available
to device manufacturers, the widespread use of consumer
wearable devices, and the availability of approved medical devices
for clinical use, real-world clinical data appears to be scant. In
our clinical experience and after discussion with colleagues, few
individuals are using these devices. While issues with the payor
model for device use, lack of clinical impact, poor tolerability for
patient and clinician users, and general disinterest in new
technologies are commonly mentioned as factors playing a role,
the evaluation of these barriers has not been extensively
evaluated in routine clinical care.

We therefore sought to conduct a comprehensive evaluation of
the current usage of wearable devices in PD, and to go beyond the
controlled research setting to understand the real-world usage of
wearable devices both consumer and medical. Additionally, we
wanted to understand what factors were currently playing a role
in current device usage and whether these were the same as

those reported previously.

Frontiers in Digital Health

10.3389/fdgth.2024.1472691

Methods

An anonymous online survey was conducted from July 9th,
2023, to Jan 8th, 2024. Respondents were self-identified individuals
with PD and were requested to be at least 18 years of age.

Wearables were defined in this survey as any technological
accessory which is affixed to the surface of an individual and
which provides information on their movements (monitoring
devices). A medical wearable device definition was not supplied,
but options were explicitly listed (Apple Watch with StrivePD,
PKG, KinesiaU, PDMonitor). Of note, given that StrivePD is an
application that functions on a consumer device, we asked users
of StrivePD to answer both as consumer wearable device Apple
Watch users and as medical wearable device users.

The survey was designed by the study team with input from
other specialist clinicians. Question topics included basic
demographics, disease state, understanding and use of wearable
devices (divided into consumer and medical device categories),
general perceptions as related to theoretical devices, and general
barriers to use. Survey questions were generally multiple-choice
questions, but free response sections were provided in many cases
to allow participants to provide answers that were not accounted
for by the survey developers (Supplementary Survey Document).

Recruitment was conducted by collaborating groups who
distributed study-related information and a link to the survey.
The American Parkinson Disease Association (APDA) and the
Washington State Parkinson Disease Registry participated in
participant outreach (25).

Interested individuals followed the link and were brought to the
online REDCap electronic data capture tool. The first page of the
survey provided potential participants with information about the
study and associated risks and benefits. Interested individuals would
electronically confirm that they consented to participate, which
would then allow them to proceed to the survey content (26, 27).

After survey completion, PD disease status nor any other
characteristics of participants were verified. It was determined that
verification would have limited the response rate and would have
introduced more risk of identification and more bias as the systems
available for use would tie individuals to specific medical systems.
Additionally, it was believed that false representation was unlikely,
as the survey was targeted, a response required substantial effort,
and no notable financial incentive was present for respondents.

After survey closure, data processing and statistical analysis were
performed using the R statistical analysis platform. Targeted sub-
group analysis evaluating the effects of demographic and disease
features on perceptions and experiences was performed post-hoc.

Results

Survey response, demographics, and
disease state

A total of 346 responses were collected with 298 completed
surveys (86%). The response rate was unknown but was
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suspected to be very low given the size of the APDA distribution
network. Only completed surveys were included in the analysis.
Responses came from individuals living in 28 states with the
(63%)
(Supplementary Table S1). A limited set of demographic features

greatest number coming from Washington State

were recorded (Table 1). Disease related symptoms and
characteristics varied encompassing both early and late stages of

disease (Supplementary Tables S2, S3).

TABLE 1 Respondent demographic characteristics (n = 298).

10.3389/fdgth.2024.1472691

Technology and consumer device
experiences

Regarding technology and wearable device use, there was a
high degree of interest in new technologies with 91% of
individuals either very or somewhat interested. Knowledge
about and use of wearable devices was also high with 87%
knowing about wearable devices, 67% having used a device,
and 56% currently using one (Figure 1). Most respondents
knew about smart watches and fitness trackers (Supplementary
Table S4); the Apple Watch was the most used and most
preferred consumer device among respondents (Supplementary

Characteristics Count Percentage ] ] ] i
Table S5). Device use retention rates were also high with
Age . . . . -
z) . 039% 84% of those with experience with wearable devices continuing
< 3%
2050 5 3.0% to use a device. Among all device users, device usage
50-60 33 12.8% time was very high with 90% using their preferred device
60-70 110 36.9% nearly always or at least all the time while awake
70-80 120 40.3% (Supplementary Table S6).
80+ 20 6.7%
Gender
Male 128 43.0% C ble devi f
Female ) 6.7% onsumer wearable device feature use
Prefer not to answer 1 0.3%
Residential setting However, use of wearable devices for the management of PD
Suburban 155 52.0% was low at only 24% of respondents. Among those using
Urban 92 30.9% wearable devices, individuals were using them most to track
Rural 51 17.1% physical activity, medication timings, and sleep (Figure 2). Post-
Care setting hoc subgroup analysis of Apple Watch wearable device users was
Private/Non-university 180 60.4% performed to evaluate whether device capability limitations were
Tertiary/Academic 7 25.8% playing a large role in lack of management related use, however
VA/National Gov. 25 84% findings mirrored those seen among all device users
County/Public 16 5.4% .
(Supplementary Figure S1).
91%
87%
Qo
£
£
& 67%
<
3]
c 56%
©
S
(=]
Q
d
Q
<
°
[V
&
= 24%
Q
Q
S
Q
(=9
8%
Interested in Tech Know about Have used Currently using PDrelated use Medical wearable
wearables wearables use
FIGURE 1
Respondent interest, knowledge, or experiences with wearable device use. For the interested in technologies category answers of moderately or very
interested were combined, neutral or below were not incorporated. All other questions were yes or no responses.
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Track/plan physical activity
Track medication timing 1
Track sleep 1

Track symptoms

Provide data to your HCP 1
Other 1

Track falls 1

Track treatment effects 1

FIGURE 2

Use of specific consumer device functions for the management of PD. Calculated as the percentage of respondents using each function from the
subset of respondents who affirmed that they were using consumer wearables to manage PD (n =72).

50 75 100

Percentage

Consumer wearable devices effect on
disease management

Among those using wearables to manage PD, 76% reported a
of PD (38%
substantially, 39% somewhat), 24% reported that use was not

positive impact on personal management
particularly impactful, and no negative responses were recorded.
Impact on medical team management of PD was felt to be not
impactful by 57% of though
(10%) or somewhat (33%)

responses were reported, and no negative responses were reported.

particularly respondents,

substantially ~positive positive

Consumer wearable device barrier to use

Among survey respondents, current device use was limited
most frequently because of lack of knowledge about the abilities
of wearable devices and by cost (Supplementary Table S7). More
generally, individuals were also surveyed on the use of
smartphones and other applications for PD monitoring with 26%
reporting the use of an application.

Medical wearable device usage and barrier
to use

Medical wearable device use among respondents was 8%
(n=23). There were 19 StrivePD, 3 PD Monitor, 1 PKG, and 0
Kinesia users. Device use frequency was variable and many
limitations on use were noted (Table 2). Impact on personal
management was 26% positive (9% substantially, 17% somewhat)
and impact on medical team management was 30% positive (4%
substantially, 26% somewhat) (Supplementary Table S8).
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General wearable interest and limitations

To separate perceptions and experiences tied to current
consumer or medical devices, we asked about two similar
theoretical devices. We described a version which provided
information to the patient but did not directly provide it to
the healthcare team (Type A)
information directly to both (Type B). For both versions,

and one that provided

individuals were interested in using such a device
(Supplementary Figure S2). Additionally, among those who
would consider using the devices greater than 90% of
respondents were willing to use either device at least all day
while awake (Supplementary Figure S3). However, only 49% of
those interested were willing to pay for a device if not covered
by insurance. Of those who were willing to pay for such a
device, the median one-time payment was $200 for both and
the mean $252 (Type A) and $259 (Type B). Alternatively, we
asked what
individuals would be willing to pay with the median being $10
for both devices and mean being $14 (Type A) and $15

dollars (Type B). There was no difference between the cost

also about  subscription  pricing and

individuals were willing to pay for device [p=0.6 (lump sum)
and p =0.2 (subscription), Wilcoxon paired signed rank test in
the setting of non-normality of data shown by Shapiro-
Wilk testing].

Finally, individuals were surveyed on barriers to their use of
wearable devices for PD (Figure 3). Respondents reported
concerns about all surveyed barriers with most respondents
reporting at least a moderate level of concern for 4 out of the
5 the
proportion of extreme concern for cost and impact on care.

surveyed barriers. Respondents reported largest
Additionally, we compared perceptions between individuals
with  different

(Supplementary Figure $4).

levels of wearable device experience
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TABLE 2 Respondent medical wearable device use, frequency of use, and limitations on use. Other limitations reported for Strive PD were that the device
was in the process of being setup (1), difficulties logging in (1), geographic limitations on use (1), and an allergic response (1).

Device
Any StrivePD PDMonitor

Total users 23 19 3 1
Use frequency
Nearly always 43% 47% 33% 0%
All day when awake 26% 32% 0% 0%
>50% of wake time 4% 0% 33% 0%
Not daily but more than 3 days a week 4% 5% 0% 0%
Weekly 0% 0% 0% 0%
Monthly 0% 0% 0% 0%
Less than monthly 0% 0% 0% 0%
No longer using 22% 16% 33% 100%
Limitations on use
No limitations 43% 47% 33% 0%
Uncomfortable/Difficult to keep on 0% 0% 0% 0%
Too much effort to maintain 9% 11% 0% 0%
Insufficient capabilities 9% 11% 0% 0%
Data input difficulties 17% 16% 0% 100%
Data review or access difficulties 4% 5% 0% 0%
Lack of impact on PD 26% 21% 67% 0%
Not utilized by healthcare provider 13% 11% 33% 0%
Concerns about accuracy of data 4% 5% 0% 0%
Discontinued by healthcare provider 4% 0% 33% 0%
Cost issues 0% 0% 0% 0%
Other 17% 21% 0% 0%

High cost q

Lack of impact or benefit on care 1
Uncomfortable

Concerns around privacy

Hard to use 1§

Significance of Barrier

. Extreme
. Significant
. Moderate

Minimal

. Not a concern

FIGURE 3

a concern to an extremely significant barrier (n = 298).

Percentage of Respondents

Perceived significance of certain barriers to respondents’ personal use of wearable devices for management of PD as rated on a 5-point scale from not

Discussion

This study captured wearable device experiences and
perceptions among individuals with PD. Respondents were very
technologically inclined (91% reporting interest) and were more
likely to use wearable devices than the general US population,
67% vs. 35% (Morning Consult, Survey, 2023). Consumer devices
among respondents also appeared to be well tolerated as
discontinuation of wearables was rare and users also wore the
devices most of the time.

However, despite the barriers to general consumer use being

overcome, consumer wearable use for the specific purpose of
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managing PD was strikingly low at 24% and use of commonly
available devices functions was low. This incomplete pattern of
usage remained true even after removing ambiguity in the
definition of “management” and ensuring that all functions
queried were possible. In this subset, despite previous reported
interest (28) and the importance placed on these features in PD,
less than three quarters reported using the device to track
physical activity, less than half tracked sleep, and less than a
quarter tracked symptoms. Participants reported the lack of PD
related use to be most often due to knowledge of functionality
(26.2%). Features previously noted as important to address such
as difficulties with wearability or comfort (4.7%), data input
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(9.4%), and data review (5.0%) were not prominently reported (23).
These findings are supportive of the acceptability and usability of
current consumer devices in PD.

While consumer wearable device use for PD was sub-optimal,
medical wearable device use was marginal. Only 8% of respondents
had any experience with them, which was less than 1/8th the
number of consumer wearable device users. However, there did
not appear to be marked barriers to use once implemented, given
43% of respondents reported no limitations. The most noted
barrier to use was lack of impact on care 26% and this was
additionally supported by most medical device users indicating
that their devices had negligible impact on their healthcare
their
management. However, other issues appear to be reasonably
addressed with less than 20% reporting difficulties with data
input, less than 10% issues with wearability, and less than 5%

providers’ management of PD and even on own

issues with data review.

To better understand what factors were limiting wearable use
and to compare current perceptions to prior research, many
questions were directed to assess their perceptions on the
significance of certain barriers, and it was again seen that
individuals with PD were concerned about comfort, usability,
and impact on care, as well as cost and privacy (23). However,
these results seemingly conflict with the results obtained from
direct questioning about their personal wearable use. Due to this
conflict we sought to assess whether this was due to differences
between users with more and less experience. However,
consumer and medical wearable users still appeared to endorse
similar levels of concern. These findings therefore suggest that
while certain factors are still of high importance to people with
PD they have generally been addressed by the current generation
of devices.

Ultimately, it appears that the barriers to medical wearable
device use and to a lesser degree consumer wearable device use
in Parkinson’s disease do not stem from individuals with PD.
Even when an individual with PD is motivated, experienced with
wearable use, and interested in theoretical medical wearable
devices there is still a high likelihood that they will not be a
wearable device user. We believe that this reflects difficulties with
technology and device integration at the level of the provider
user and/or the healthcare system.

The main strengths of this study were the number of
respondents, the diversity of disease stages included, the
inclusion of multiple wearables, and the level of detail obtained
about perceptions and experiences. As with most survey studies,
there were meaningful limitations. Foremost among them was
sampling bias which was likely substantial given the online
format and low estimated respondent rate. Respondents were
likely highly motivated and technologically inclined. The use
patterns and perceptions noted in this study do not directly
reflect those of the population. However, they retain value as
they are almost certainly a reflection of the upper bound of
device use and their perceptions likely reflect the most positive
reflections of the population, as such one can reasonably infer
that the population rate of experience is lower and that
perceptions are likely to be less positive than were seen in this
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sample. Additionally, the survey was heavily biased towards the
Pacific Northwest region of the United States despite the goal of
having a national distribution, demographic and socioeconomic
data was limited, and the number of respondents for questions
relating to consumer wearable device use in PD and medical
wearables was relatively small.

Future studies should work to better understand the true
perceptions of the PD population by expanding distribution,
reducing respondent barriers, collecting more demographic and
socioeconomic data, and engaging the community. Furthermore,
future longitudinal studies should be performed to assess the
evolution of individual perceptions of wearables as they evolve in
relation to exposure to wearable devices and disease progression.

In conclusion, this study confirms the existence of a highly
motivated subpopulation of individuals with PD who have a
strong interest in wearable devices and confirms the feasibility of
high levels of wearable device use in real-world use. Novelly, it
identifies and partially quantifies large gaps in the use of
health tracking features and
devices into PD related health
management. Additionally, it confirms that medical wearable

consumer wearable device

integration of wearable

device use is low, but suggests that this isn’t an issue with patient
usability, thereby implicating provider and/or systemic barriers as
the bottleneck to medical device use. We believe that these
results call for further investigation into understanding the
barriers affecting real-world use among clinician users and
healthcare systems, as well as studies targeted at enhancing the
utility and understanding of all forms of wearable device use in PD.
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Background: Current methods of measuring disease progression of
neurodegenerative disorders, including Parkinson's disease (PD), largely rely on
composite clinical rating scales, which are prone to subjective biases and lack the
sensitivity to detect progression signals in a timely manner. Digital health technology
(DHT)-derived measures offer potential solutions to provide objective, precise, and
sensitive measures that address these limitations. However, the complexity of DHT
datasets and the potential to derive numerous digital features that were not
previously possible to measure pose challenges, including in selection of the most
important digital features and construction of composite digital biomarkers.

Methods: We present a comprehensive machine learning based framework to
construct composite digital biomarkers for progression tracking. This framework
consists of a marginal (univariate) digital feature screening, a univariate association
test, digital feature selection, and subsequent construction of composite
(multivariate) digital disease progression biomarkers using Penalized Generalized
Estimating Equations (PGEE). As an illustrative example, we applied this framework
to data collected from a PD longitudinal observational study. The data consisted of
Opal™ sensor-based movement measurements and MDS-UPDRS Part Ill scores
collected at 3-month intervals for 2 years in 30 PD and 10 healthy control participants.
Results: In our illustrative example, 77 out of 235 digital features from the study
passed univariate feature screening, with 11 features selected by PGEE to include
in construction of the composite digital measure. Compared to MDS-UPDRS Part
Ill, the composite digital measure exhibited a smoother and more significant
increasing trend over time in PD groups with less variability, indicating improved
ability for tracking disease progression. This composite digital measure also
demonstrated the ability to classify between de novo PD and healthy control groups.
Conclusion: Measures from DHTs show promise in tracking neurodegenerative
disease progression with increased sensitivity and reduced variability as compared
to traditional clinical scores. Herein, we present a novel framework and
methodology to construct composite digital measure of disease progression
from high-dimensional DHT datasets, which may have utility in accelerating the
development and application of composite digital biomarkers in drug development.

KEYWORDS

composite digital biomarker, Parkinson’'s disease, disease progression, linear mixed
effects model, machine learning, penalized generalized estimating equations
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1 Introduction

Neurodegenerative diseases, including Parkinson’s Disease
(PD), are an area of vast unmet medical need. Drug development
efforts in this area have increasingly focused on the search for
disease-modifying therapies that slow down the underlying
disease progression mechanisms. However, a lack of validated
measures that allow for disease progression to be monitored
objectively, relatively rapidly, and with high precision makes it
challenging to effectively demonstrate therapeutic efficacy and
hinders drug development efforts. PD clinical trials generally use
the Movement Disorder Society—Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) to
longitudinally. However, MDS-UPDRS is subjective in nature,

track disease progression

relies on patient and caregiver-reported symptoms and clinician’s

qualitative ratings (1), is slow to change, and has low
measurement precision, resulting in large and lengthy clinical
trials to test efficacy for potential disease modifying therapies (2).

Recent advances in digital health technologies (DHTs) offer
unprecedented opportunities to collect more objective, precise,
and sensitive measures, both in the clinic and remotely, that were
out of reach in the past. Such measures could provide new
insights into neurogenerative disease progression, including for
studies  that

investigated using measures from sensor-based digital health

Parkinson’s disease. There are many have
technologies in neurodegenerative diseases (3-11). These studies
have collectively demonstrated that many neurodegenerative
disease symptoms can be quantified by DHTs. Moreover,
multiple longitudinal observational studies have shown that
digital measures can pick up changes over time that are
indicative of disease progression (12-18). It is further thought
that the objective measures enabled by DHTs could offer
improved sensitivity and reduced variability (12, 19), which could
translate to smaller and shorter clinical trial designs (20) and, in
turn, potential for accelerated drug development. Despite
promising results, the longitudinal studies published to date have
used different DHTs and analysis methodologies to identify the
digital features of importance and to derive respective digital
clinical measures, making it difficult to compare across studies or
create consensus among the research community. Open
discussions on the methodology of digital clinical measure
development and evaluation are critically needed to move the
field forward.

It has been increasingly recognized that composite digital
measures, rather than reliance on individual digital features, are
needed for more effective measurement of disease progression as
compared to traditional clinical composite scores. Adams et al.
(21) showed that no individual digital feature (from gait, tremor,
turns, speech, and cognition) outperformed MDS-UPDRS Part
III (a composite clinical score) in terms of the standardized
change from baseline after 12 months in a PD observational
(WATCH-PD). Czech et al. (22)

demonstrated individual sensor-based digital features of upper

study Furthermore,

and lower extremity bradykinesia often lacked strong sensitivity

to longitudinal changes, whereas digital composite scores showed
significant differences over 12 months in WATCH-PD.
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There have been several examples where composite digital
measures were developed for disease classification and/or tracking
symptom progression (22-30); however, the approach taken has
varied, and there have been limited discussions on the
methodologies to effectively select informative digital features and
construct the most performant composite measures. For example,
Perumal and Sankar (23) developed a Linear Discriminant
Analysis (LDA) classifier using multiple gait features collected
from wearable sensors to distinguish between PD patients and
healthy control (HC) subjects. Czech et al. (22) constructed
composite digital scores using pre-defined combinations of
features from single tasks (pronation-supination and toe-tapping)
them
bradykinesia after 1 year. Sotirakis et al. (30) developed a Random
Forest model to estimate the MDS-UPDRS III values using gait

and sway features and used the model to detect progression of

and used to measure longitudinal progression of

motor symptoms longitudinally. These efforts vary in terms of the
measure construction (pre-defined vs. supervised ML, choice of
models), the clinical label selection (MDS-UPDRS III total score
or single item), the selection of digital tasks (single task e.g., toe-
tapping or a combination of tasks), as well as the selection of
input features (e.g., whether features are pre-screened). Overall, the
field has not adopted consistent and systematic methods and/or
analysis frameworks. Therefore, there is an urgent need to develop
methodologies and analysis pipelines for the construction of
composite digital measures for disease progression tracking,
tailored for high-dimensional, longitudinal data with digital
features collected from sensor technologies.

The types of data generated by DHTs are often longitudinal and
high dimensional, which differs from traditional clinical measures,
calling for novel analytical strategies to handle such data for the
construction of composite digital measures. Unlike traditional
clinical measures that collect a defined set of measures at each
time point, DHTs leverage various sensors to generate large
amounts of time-series data (e.g., acceleration, screen touch, audio/
video, keyboard press), either collected from defined active task-
based assessments or from passive monitoring. Such data are often
not readily analysable statistically and need to be aggregated and
first. For
measurement of physical activity, continuous accelerometer signals

transformed into digital features example, for
are often converted to epoch level activity counts and then
aggregated over time into features such as daily total activity
count, total steps, non-sedentary time, etc., for further statistical
analysis. There can be large numbers of features derived from the
high-frequency sensor signals; such features may have various data
types (i.e., categorical, continuous, duration, etc.) and clinimetric
properties, many of which may not yet have been fully explored as
it was not previously possible to measure them without use of
DHTs. These could have

distribution, floor/ceiling effects, as well as unknown redundancies

features intrinsic  skewness in
and covariances. In addition, the high frequency nature of DHT
data collection and potential for remote data acquisition can also
lend itself to higher levels of data missingness. Furthermore, not
all digital features that can be generated from sensor data may
have clinical significance or be valuable for creating composite

digital measures. These attributes of DHT data make it a unique
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challenge in the development of composite digital measures to track
longitudinal disease progression.

Machine learning (ML) methods offer a valuable tool for selecting
the most informative digital features to reflect disease progression and
to construct clinically meaningful composite digital measures. ML-
based techniques can often improve prediction performance in
analysing digital data in neurodegenerative diseases; however,
existing ML methodologies for longitudinal data analysis are also
challenged by the high dimensionality of DHT data. For example,
although the generalized estimating equations (GEE) method (31)
incorporating different patterns of working correlation matrix
across multiple timepoints has been widely used in longitudinal
data analysis, the direct use of classical unpenalized GEE in high-
dimensional longitudinal data analysis may lead to misleading
results (32). To address this, an ML-based penalized GEE (PGEE)
method (32) could be used to improve upon the GEE method in
handling DHT data. PGEE performs simultaneous coefficient
estimation and variable selection for longitudinal data analysis with
high-dimensional covariates by including a penalty term in the
GEE model, which can be better-suited to handle high-dimensional
feature sets.

In this paper, we propose a principled, scalable, and
comprehensive methodology framework for the development of
novel composite digital biomarkers, derived from DHT data and
anchored to the MDS-UPDRS score, to measure neurodegenerative
disease progression. This framework includes data processing,
univariate digital feature screening, multivariate (composite) digital
biomarker construction (using PGEE methods), and composite
biomarker performance evaluation.

We further demonstrate the utility of this framework by applying
it to a sample dataset containing high-dimensional, longitudinal
movement data collected by a body-worn accelerometer system
from a PD longitudinal observation study. The current analytical
challenges of high-dimensional and longitudinal digital data and
path forward for the application of composite digital biomarkers in
measurement disease

of neurodegenerative progression  are

also discussed.

2 Materials and methods
2.1 Study overview

To illustrate our proposed methodology to construct composite
digital measures for tracking longitudinal disease progression, we
applied the framework to data from 30 PD patients (10 de novo
PD patients, 10 mild-to-moderate PD patients on levodopa, and
10 advanced PD patients) and 10 healthy control subjects from a
PD longitudinal observational study conducted at John Radcliffe
Hospital in Oxford, UK (11, 30, 33). The participants visited the
clinic once every 3 months for 2 years. At each visit, they wore
six synchronized inertial measurement units (IMUs) (“Opal”
sensors, APDM Wearable Technologies, a Clario Company)
across their body and performed two-minute walk, postural sway,
and timed up-and-go (TUG) tasks. The Mobility Lab™ software
(APDM Wearable Technologies, a Clario Company) was then
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used to process these raw sensor signals and generate epoch-level
digital features at each instance of a time period or physical
movement (e.g., per minute, per step, per turn, or per sit-to-
stand event). The MDS-UPDRS Part III assessments were also
conducted at these clinic visits. The MDS-UPDRS Part III score
and subscales (including Bradykinesia, Postural and Gait,
Rigidity, and Tremor, defined in Supplementary Table S1) were
calculated. Demographic data including age and sex of the

participants were also collected at the beginning of the study.

2.2 Statistical analysis

The workflow of our proposed comprehensive machine learning
based framework is illustrated in Figure 1, which comprises five
main steps: (1) data collection and processing; (2) univariate
feature screening; (3) univariate association testing; (4) multivariate
analysis (using PGEE) to construct a composite digital measure for
longitudinal disease progression; (5) performance evaluation. The
specifics of each step are described below.

2.2.1 Data processing and quality control

In this first step, data aggregation and pre-processing are
performed to convert high-frequency, epoch-level data into a set
of aggregated digital features for each task. The movement data
collected from DHTs often include epoch-level features (e.g., per
second, per minute, or per walking step) that are collected
repeatedly during an active task (e.g., two-minute walk). This
step simplifies such data and produces a clean, high-dimensional
feature set for each participant at each clinical time point, in
order to facilitate subsequent longitudinal analyses.

In our illustrative PD example, summary statistics (mean,
median, standard deviation, and mean absolution deviation) were
calculated to represent the repeated measurements across the
entire task for features that had repeated measurements during
the task. For example, during the two-minute walk task, step
lengths of every step that the participant took were recorded;
these were aggregated into task-level features such as mean step
length during the two-minute walk task period. After that, we
had 256 digital features generated in total. Then, distributions of
all features were examined, and the non-informative features that
had few distinct values, included a large amount of data
missingness, or contained extreme values were removed. For the
remaining features, missing data imputation was performed using
the mean of available data in each feature. Finally, additional
feature quality control steps were implemented, which included
removing highly correlated features, log-transforming skewed
features, and removing outliers. 141 unique digital features were
left for univariate progression screening in the next step.

2.2.2 Univariate progression screening

In the second step of our framework, univariate progression
screening is recommended to identify whether each digital feature
detected disease progression during the study duration. In this
step, a linear mixed effects model (LMM) is used to screen the
univariate features against a set of pre-determined criteria. Each
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Data Collection
Data Processing
+  Convert multiple observations in each task/
assessment into one aggregated observation
+ Quality control
+ Missing data imputation
ﬁlnivariate Progression Screening
+ Linear mixed-effects model
+  Screening criteria for longitudinal progression
of digital features
+ Additional criteria for classifying disease state
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+  Build composite measure for tracking disease
progression and/or classifying disease state

Performance Evaluation

- Standard clinical measure vs. single digital feature vs. composite
digital measure

+  Comparison in terms of progression and variability

FIGURE 1

The analysis pipeline to select relevant digital features from high-dimensional DHT data and construct a composite digital measure for disease
progression tracking, including (1) DHT data collection and processing, (2) univariate feature progression screening, (3) univariate association test
(optional), (4) multivariate/composite digital measure construction, and (5) performance evaluation

digital feature is used as the response variable for the screening
separately. Independent variables are added to the model as fixed
effects, including covariates to be adjusted, group membership,
visit, group-by-visit interaction, and covariate-by-visit interactions.
Random intercept and slope are added to the model as
random effects.

In our illustrative PD example, we applied relatively relaxed
screening criteria to select digital features for downstream
analysis. We considered a digital feature as a “candidate” if (1)
its longitudinal trend was flat in the HC group (i.e., the LMM
slope p-value of HC group was larger than 0.05) and (2) it

Frontiers in Digital Health

demonstrated a progression trend with time in PD groups (i.e.,
the LMM group-by-visit interaction p-value was <0.1 or the
p-value of the differential slope between de novo/mild-to-
moderate/advanced PD and HC was <0.1).

2.2.3 Univariate association test

To gain additional insights on the univariate associations
between the standard clinical measure (i.e., MDS-UPRDS Part
III) and the candidate digital features that passed the univariate
progression screening, our framework employs a univariate
association test step. In this step, a linear mixed effects model is
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employed, with the clinical measure as the dependent variable and
each individual digital feature as the independent variable.
Covariates to be adjusted are also included in the model.
Random intercepts for each subject are allowed in the model and
p-values are calculated to assess the significance of the
association between the clinical measure and digital features.

An optional procedure is to further filter the candidate digital
features based on their associations to the standard reference
measure (i.e., MDS-UPDRS Part III and its subscales in our
example) and exclude non-significant features. In our example,
we chose to implement relatively relaxed screening criteria to
retain more features for the subsequent feature selection, and
therefore, we did not exclude features that did not show
association with MDS-UPDRS Part III in our downstream analysis.

2.2.4 Mutltivariate prediction model

In the final step of our framework, a multivariate prediction
model is developed to select a subset of digital features from those
that passed the univariate progression screening and combine
them into a composite digital biomarker of disease progression.

For feature selection, we used the longitudinal MDS-UPDRS
Part III data as the training endpoint in our illustrative example.
Additionally, we included features that were important for
classifying the de novo PD cohort from healthy controls in the
feature selection process since patient identification could also be
an important attribute for the composite digital biomarker.
Importantly, depending on the intended context-of-use of the
developed measure, one could use our proposed framework to
optimize the measure for disease progression tracking, or patient
identification, or both, by adjusting the screening criteria and the
training endpoints used.

To model the high-dimensional longitudinal data, our
framework ML-based Penalized Generalized
Estimating Equations (PGEE) method (32), which performs
simultaneous
Compared to the traditional GEE method, PGEE introduces a
penalty term to the estimating function of GEE (details of PGEE

includes a

coefficient estimation and variable selection.

is provided in Supplementary Method S1).

To determine the optimal number of digital features (P) to be
included into the final multivariate prediction model, a cross-
validation (CV) strategy is implemented into the framework to
avoid overfitting (34). Specifically, all digital features are first
ranked by their PGEE estimates from the training set, then a
series of PGEE models with different numbers of top features are
built and evaluated in the testing set. The optimal number of
features is then determined to be the number of features from
the model with the smallest Root Mean Squared Error (RMSE).
The approach is further described in Supplementary Method S2.

Once P is determined, the PGEE estimates of the digital
features that pass the univariate screening are calculated again
using the whole dataset, and the top P features with the largest
PGEE estimates were selected. Two sets of digital features were
identified based on a PGEE model for MDS-UPDRS Part III
progression and another PGEE model for de novo PD vs.
Healthy Control classification, respectively. These two feature sets
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were merged into a final feature set for the composite digital
measure construction.

A GEE model is then fitted, with this final feature set plus the
covariates as independent variables, and MDS-UPDRS Part III as a
continuous dependent variable. This generates our final composite
digital measure for performance evaluations.

3 Results

3.1 Patient demographics and baseline
characteristics

The baseline demographic characteristics for the participants
included in our illustrative analysis are shown in Table 1 and
Supplementary Figure S1. The mean ages of four groups (de
novo PD, mild-to-moderate PD, advanced PD, and HC) were
66.2, 61.6, 71.2, and 65.6 years, respectively. The ratios of male-
to-female subjects in the four groups were 5:5, 9:1, 5:5, and
3:7, respectively.

To determine if age and sex needed be considered covariates to
be adjusted for in our models, we calculated the age-by-visit and
sex-by-visit interaction p-values in linear mixed effects models
with MDS-UPDRS Part III as the response in the pooled PD
group. The results, summarized in Supplementary Table S2,
suggested that age would affect the slope of MDS-UPDRS Part
III progression (with p-value =0.04) while sex would not (with
p-value =0.19). We therefore considered only age as a covariate
to be adjusted in our data analysis models.

3.2 Univariate progression screening results

In our illustrative example, our univariate progression
screening criteria were such that a digital feature would “pass” if
the LMM model for that digital feature showed (1) no
progression in the control group and (2) a progression in at least
one of the three PD groups. 77 digital features out of 141
screened passed these criteria, including 15 features from
postural sway task, 5 features from timed up-and-go (TUG) task,
and 57 features from two-minute walk task. Among these, Walk
GLLGS (Gait—Lower Limb—Gait Speed) had the smallest group-
by-visit interaction p-value (6.0 x 1077) and the smallest de novo
PD vs. HC progression slope p-value (4.7 x 107*); Walk GLLDS

TABLE 1 Patient baseline characteristics (age and sex) for the three PD
groups and healthy control group.

Advanced | Healthy

de novo | Mild-to-

moderate Control
PD (on-
therapy)
N 10 10 10 10
Age (years) 662 (6.46) | 61.6 (10.76) 712 (4.78) | 65.6 (6.98)
[mean (SD)]
Sex [Male 5 (50)/5 (50) | 9 (90)/1 (10) | 5 (50)/5 (50) | 3 (30)/7 (70)

(%)/Female (%)]
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(Gait—Lower Limb—Double Support) had the smallest mild-to-
moderate PD vs. HC progression slope p-value (0.01); and Walk
GLLSD (Gait—Lower Limb—Step Duration) had the smallest
advanced PD vs. HC progression p-value (1.2 x 107°). P-values of
TUG TPV (Timed Up and Go—Turn Peak Velocity) for group-
by-visit interaction, de novo PD vs. HC progression slope, mild-
to-moderate PD vs. HC progression slope, and advanced PD vs.
HC progression slope were 0.008, 0.001, 0.147, and 0.013,
respectively. A summary heatmap of all 77 digital features that
met the screening criteria is displayed in Figure 2, and the
heatmap of all the digital features that were screened is displayed
Supplementary Table S3.

3.3 Univariate association analysis results

Figure 3 shows the univariate association testing results between
the 77 digital features that passed the univariate screening in our
illustrative example and MDS-UPDRS Part III scores (and its
subscales). 37 of these 77 digital features (48.1%) showed
significant associations (i.e., p-value < 0.05) with MDS-UPDRS Part
III scores (including 32 features from the Walk task, 3 features
from the TUG task, and 2 features from the Sway task). The
associations of digital features with the MDS-UPDRS Part III
scores were generally consistent with their associations with the
Bradykinesia (BK) subscale within MDS-UPDRS Part IIL
Specifically, 40 of the 77 digital features were associated with the
BK subscale (including 31 features from the Walk task, 3 features
from the TUG task, and 6 features from the Sway task). In
addition, 59 of the 77 digital features were associated with the
Postural Instability and Gait (PIGD) subscale (including 54
features from the Walk task, 4 features from the TUG task, and 1
feature from the Sway task), while only 3 of the 77 features (TUG
TPV, TUG TA, and Walk GULMYV) were associated with the
Tremor Dominant (TD) subscale.

Turn Peak Velocity (TPV), obtained from the Timed Up and
Go (TUG) test (35), demonstrated the most significant
association with MDS-UPDRS Part III. TUG TPV is defined as
the maximum achieved angular velocity of trunk rotation in the
y-axis during 180-degree turns (deg/sec) and has been found to
be related to PD progression in multiple studies (12, 36-38). The
progression characteristics of TUG TPV are shown in Figure 4,
where the group-wise and subject-wise lines were obtained from
the linear mixed effect model and the points represented the
observed data. In terms of TUG TPV, the mild-to-moderate, on
therapy PD and HC groups were stable, while the de novo and
advanced PD groups showed progression.

In general, the univariate association observations were
consistent with the progression patterns seen in the MDS-
UPDRS Part III and its
Supplementary Figure S2. Specifically, compared to the HC

subscales, which is shown in
group, the BK subscale progressed across all PD groups (at
a=0.1 level). The PIGD subscale progressed in de novo and
advanced PD groups while staying stable in the mild-to-
moderate, on-therapy PD group. This pattern was similar to

most of the digital features included in the analysis, as indicated
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in Figure 2. In contrast, the TD subscale progressed in the mild-
to-moderate, on-therapy PD group, while remaining unchanged
in de novo and advanced PD groups.

3.4 Multivariate feature selection and
prediction results

3.4.1 Feature selection

We first conducted multivariate feature selection to determine
the optimal number of features to be selected for inclusion into the
composite score and prediction model in our illustrative example
analysis. Supplementary Figure S3 indicated that for developing a
composite digital measure for disease progression tracking, using
9 top features (ranked by their PGEE estimates in training sets
during cross-validation) overall yielded the smallest RMSE; and
for classifying disease status, using 3 top features resulted in the
largest AUC via internal cross-validation.

We then ranked all pre-screened features (i.e., digital features)
according to their PGEE estimates in the whole dataset supervised
by the continuous endpoint (i.e., MDS-UPDRS Part III) and the
binary endpoint (ie., de novo PD vs. HC), respectively. Nine
digital features (TUG TD, TUG TPV, TUG STSD, Walk TA,
Walk GLLC, Walk GLLSW, Walk GLLLSM, Walk APAMAA,
and Sway PSANO95ESA) were selected for disease progression
tracking; additionally, three digital features (TUG TPV, Walk
GLLTOA, and Walk GULMYV) were selected for PD vs. Control
classification. Table 2 lists the description of these selected
features. The two sets of digital features were further merged;
since one of the features (TUG TPV) was in both feature sets, 11
unique digital features were included in the final feature set. This
feature set was then used to create the composite digital
biomarker by fitting a GEE model.

3.4.2 Composite digital biomarker for tracking
MDS-UPDRS part IlI

The performance of the composite digital biomarker was
evaluated using 10-fold cross-validation in PD and HC groups,
respectively. As shown in Figure 5, the composite digital measure
showed a pattern of no change vs. time in the HC group as
expected (with RMSE in HC group =2.8). On the other hand, it
had a smoother increasing trend in the overall PD group, as well
as each PD subgroup (with RMSE in PD group =12.7).

We further compared performances among MDS-UPDRS Part
III, the composite digital measure, and each of the univariate
digital features included in the composite digital measure (e.g,
TUG TPV) quantitatively in terms of both progression and
variability. Detailed results are summarized in Table 3. Overall, the
group-by-visit interaction p-value of the composite digital measure
was close to that of MDS-UPDRS Part III (7.65%x 107> vs.
6.22x107%). The increasing trend of the composite digital
measure was much more significant compared to MDS-UPDRS
Part III and individual digital feature TUG TPV in de novo and
advanced PD groups. Specifically, for de novo PD vs. HC, the
effect sizes of progression slope were 1.41, 2.14, and 1.37 for
MDS-UPDRS Part III, composite digital measure, and TUG TPV,
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FIGURE 2

Heatmap representation of the p-values of the 77 digital features that passed the progression screening. The screening criteria applied were (1) no time
progression in the HC group (i.e., LMM slope p-value of HC > 0.05), and (2) time progression in at least one of the three PD groups (i.e., LMM group-
by-visit interaction p-value < 0.1 or p-value of differential slope between de novo/mild-to-moderate/advanced PD and HC <0.1).
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Heatmap of the univariate association testing p-values between MDS-UPDRS part Ill (and its subscales: BK, TD, PIGD, RG) and the 77 digital features
that passed the univariate screening. P-values were calculated from a linear mixed effects model with MDS-UPDRS Part Ill or its subscales as the
outcome variable. The 77 features were ranked based on their association p-values from the analysis with the MDS-UPDRS Part Il score. Each
digital feature and age were included as independent variables. Random intercept was added as a random effect.
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FIGURE 4
Results from a digital feature, TUG TPV: turn peak velocity (TPV), obtained from the timed Up and Go (TUG) test, which showed the most significant
association with the MDS-UPDRS part Ill score. Each row represents the three PD groups and the HC group. Each panel within a row corresponds to a
particular subject. The thick lines and thin lines denote the group-wise and subject-wise estimates of progression lines fitted by the linear mixed
effects model, respectively. The points denote the observed data.

TABLE 2 Description of the selected features: 9 features selected for longitudinally disease progression tracking, and 3 features selected for de novo PD
vs. HC classification.

Objective for feature selection Feature Statistic | Side Description PGEE Estimate

Disease progression tracking TUG TD Median Turns—Duration 0.39
TUG TPV Median Turns—Turn Velocity —0.38
TUG STSD Mean Stand to Sit—Duration 0.34
Walk TA Median Turns—Angle 0.26
Walk GLLC MAD A Gait/Lower Limb—Cadence 0.16
Walk GLLSW MAD L Gait/Lower Limb—Swing 0.07
Walk GLLLSM Median L Gait/Lower Limb—Circumduction —0.06
Walk APAMAA Mean Anticipatory Postural Adjustment—Forward APA Peak —-0.06
Sway PSAN95ESA | Mean Postural Sway/Angles—Sway Area 0.05

de novo PD vs. HC classification TUG TPV Median Turns—Turn Velocity —0.60
Walk GLLTOA MAD A Gait/Lower Limb—Toe Out Angle —0.43
Walk GULMV Median A Gait/Upper Limb—Arm Swing Velocity —0.27

MAD, Mean Absolute Deviation; A, Affected side; L, Less affected side.

respectively. For advanced PD vs. HC, the effect sizes of progression ~ what is observed in Figure 5. Recall that none of the 11 selected
slope were 0.76, 0.90, and 0.76 for MDS-UPDRS Part III, composite  digital features had significant univariate progression in the mild-
digital measure, and TUG TPV, respectively. On the other hand, the ~ to-moderate, on-therapy PD group (for example, the mild-to-
composite digital measure didn’t show significant progression in the =~ moderate PD vs. HC slope p-value of TUG TPV was not
mild-to-moderate, on-therapy PD group, which was consistent with  significant, p=0.15). Thus, it was not surprising that the
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TABLE 3 Performance comparison among MDS-UPDRS part Ill, the composite digital measure, and TUG TPV in terms of both progression and variability.

MDS-UPDRS Part Il | Composite Digital Measure TUG TPV
Group-by-visit p-value 6.22 x 107° 7.65x 107 8.05x 1072
de novo PD vs. HC: slope p-value 0.02 8.28 x 107 1.35x107°
Mild-to-moderate PD vs. HC: slope p-value 225%107* 0.16 0.15
Advanced PD vs. HC: slope p-value 0.07 422x107° 0.01
HC slope p-value 0.01 0.58 0.78
Between-subject coefficient of variation 39.0% 20.4% 17.2%
Within-subject coefficient of variation 34.1% 16.9% 9.7%
Effect size in progression slope between de novo PD and HC 1.41 (0.51, 2.31) 2.14 (1.24, 3.04) 1.37 (0.47, 2.27)
Effect size in progression slope between mild-to-moderate PD and HC 2.28 (1.40, 3.16) 0.86 (—0.02, 1.73) 0.60 (—0.28, 1.47)
Effect size in progression slope between advanced PD and HC 0.76 (—=0.11, 1.64) 0.90 (0.02, 1.77) 0.76 (—0.12, 1.64)

composite digital measure preserved the same pattern. Moreover, the
composite digital measure showed smaller between-/within-subject
coefficient of variation than MDS-UPDRS Part III. In summary,
the results from Figure 5 and Table 3 indicate that the composite
digital measure is an attractive aggregated measure for tracking PD
progression compared to MDS-UPDRS Part III and to individual
digital features.

3.4.3 Performance in classifying de novo PD and
HC

We further examined if the composite digital measure
developed above (for tracking PD progression longitudinally) was
also effective in classifying between de novo PD and HC subjects.
Results are shown in Figure 6, where the boxplot of composite
digital measures in the de novo PD subgroup is clearly higher
than the boxplot in the HC subgroup. The composite digital
measure had an AUC of 0.992 in such classification, which was
very similar to that achieved for the classification model based
on MDS-UPDRS Part III (AUC of 0.991). This demonstrated
that the composite digital measure was able to preserve the
ability to differentiate PD from HC groups and was effective in
classifying de novo PD and HC.

Frontiers in Digital Health

4 Discussion

DHT-derived measures have shown great promise in both
tracking disease progression and disease classification. However, it
remains challenging to identify digital features for predicting
disease progression longitudinally in a high dimensional space.
Furthermore, methodologies for combining individual digital
features into composite digital measures have not been fully
explored and standardized in the field of DHTs. Although there
have been several examples where composite digital measures were
developed for tracking symptom progression, many of these prior
efforts used simple sums of pre-defined, unweighted features
without optimizing for performance (22, 29). In other cases where
digital composite measures were trained/optimized to predict
clinical scores, machine learning methodologies were often used
without consideration of the longitudinal nature of the features
(15, 30). The field has not adopted consistent and systematic
methods and/or analysis frameworks that use statistical or
machine learning methods capable of handling high-dimensional
longitudinal data for feature selection and prediction while
considering the within-subject correlation across visits. Therefore,
there is an urgent need to develop this kind of new methodologies
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Boxplots of (A) the composite digital measure vs. (B) the MDS-UPDRS Part Ill in de novo PD and HC groups, respectively. Each dot indicates the
composite digital measure or clinical score of each subject at each visit; the dotted line indicates the optimized threshold for classification: 12.14
for composite digital measure and 11 for MDS-UPDRS Part Ill. Dots above the line were classified into de novo PD, and dots below the line were
classified into HC. Values that lead to false classifications are shown in red. The composite digital measure has AUC of 0.992 and MDS-UPDRS
Part Ill has AUC of 0.991.

and analysis pipelines for the construction of composite digital
measures for disease progression tracking, tailored for high-
dimensional, longitudinal data with digital features collected from
sensor technologies. In this paper, we propose a principled,
scalable, and comprehensive methodology for the identification of
relevant digital features of disease progression from large DHT
data sets, and subsequent construction of a composite digital
measure for disease progression tracking. Specifically, in Step 1,
data is collected and processed for aggregated observation and
quality control. In Step 2, we apply a linear mixed effects model
for univariate screening for longitudinal progression of digital
features. In Step 3, a univariate association test is conducted
between candidate digital features (i.e., features that pass the
univariate screening) and clinical scores, for example the MDS-
UPDRS Part III and/or its subscales. In Step 4, the candidate
digital features are ranked via a ML-based method, PGEE, for
high-dimensional longitudinal data analysis. The optimal number
of top features to be included into the composite digital measure
is further determined using a cross-validation based algorithm to
avoid overfitting. Note that PGEE (penalized GEE) method is
designed for longitudinal data analysis with high-dimensional
covariates by including a penalty term in the traditional GEE
model. PGEE is particularly useful in handling high-dimensional
feature sets, applicable for data from DHTs.

To demonstrate the utility of our methodology, we applied it to
the data collected from a PD longitudinal observational study,
which of Opal™
measurements and MDS-UPDRS Part III scores collected from
PD patients at a range of disease stages and healthy controls over

consisted sensor-based  movement

a 2-year duration. Our primary interest in developing a
composite digital measure is to track disease progression. The
composite digital measure developed from this illustrative
example generally showed a smoother and more significant
increasing trend in PD groups and smaller between-/within-
subject coefficients of variation than MDS-UPDRS Part III in
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this small dataset (N=40), indicating potential utility for the

composite digital measures to be used to track disease
progression more sensitively and with less variability vs. standard
clinical measures. It should be noted that the dataset in our
illustrative example was small (N =40), and therefore, results of
our analysis should be interpreted with caution. The analysis
reported here was presented as an illustration of our proposed
methodology and framework and was not intended as a
proposed composite measure for use in future studies. We also
note that the composite digital measure shows less significant
progression in mild-to-moderate,

patients compared to in de novo and advanced PD patients. This

trending on-therapy PD
outcome is consistent with the trends observed by Brzezicki et al.
(11) using data derived from the OxQUIP study. We further
evaluated the classification performance between de novo PD and
HC using the composite digital measure built from our
methodology (primarily for tracking PD progression). The
measure had an AUC ROC of 0.992 for classification (vs.
AUC=0.991 when using MDS-UPDRS Part III), indicating that
the composite digital measure also had a good performance in
classifying between de novo PD and HC subjects, comparable to
MDS-UPDRS Part III

Note that in our analysis, the top digital features (i.e., those
with the largest PGEE estimates from the multivariate penalized
regression model) were selected for both tracking MDS-UPDRS
Part IIT progression and classifying between de novo PD and HC.
While the digital feature TUG TPV ranked high in both subsets
of selected features, we observe that the digital features that are
important for disease progression tracking are not necessarily the
same as digital features important for patient identification. We
constructed the composite digital biomarker with the merged
feature list in this example.

Regarding performance, this composite digital biomarker keeps
the main characteristics of individual digital features but exhibits a
more significant increasing trend indicative of disease progression.
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On one hand, this composite digital biomarker shows progression
in de novo and advanced PD groups but remains flat in mild-to-
moderate, on-therapy PD and HC groups which is consistent
with the general behaviours of individual digital features
(Figure 2). On the other hand, it exhibits a more significant
increasing longitudinal trend compared to individual digital
features (including TUG TPV). It is worth noting that the
features selected using the PGEE model tend to have diverse
The final
combination of the best-performing individual features in terms

measurement properties. feature set is not a
of individual progression signal (i.e., neither features with the
most progressions in PD groups nor features with the most
significant univariate association with MDS-UPDRS Part III).
A possible explanation is that combining top features with high
correlations doesn’t necessarily add additional information to the
composite; there could be redundancy among digital features. It
also suggests opportunities to further improve the performance
of the composite digital measure by enriching the feature set
with different assessments/tasks and measures.

The superior performance observed in the multivariate analysis,
albeit from a small pilot dataset, suggests promises for use of
composite digital measures for progression tracking in future
studies. Recent modelling efforts have shown that an increased
precision made possible by more objective and frequent composite
digital measures could lead to smaller and shorter proof-of-
concept studies to demonstrate disease-modifying treatment effect
(20), which is critical in enabling and accelerating drug
development. Open discussions on methodologies to identify the
relevant digital features (from the multitude of digital measure
possible with DHTSs) and construct composite digital measures are
critical to enable the adoption of such digital measures, and we
present a methodology for this herein.

We see broad applicability of our proposed framework in
DHT datasets and
developing novel digital biomarkers for disease progression. To

handling high-dimensional, longitudinal
gain confidence in the use of such biomarkers for decision-making
in clinical development, we anticipate that further efforts in
technical validation and clinical validation will also be needed to
build confidence in the constructed composite digital measures.
Additionally, operational feasibility and user acceptance are critical
to ensure that the measure can be successfully collected in clinical
trials. All these elements will be part of the evidence package to
support the fit-for-purpose use of a new digital biomarker and will
to both
interpretation of results.

be important clinical implementation and the

Lastly, although we propose here a machine learning-based
approach to develop composite digital biomarkers as indicators of
traditional clinical endpoints, it is also valuable to further explore
the clinical and biological relevance of the identified features. For
example, one could examine the univariate associations between
individual digital features and the clinical scores or domain sub-
scores (as included in our pipeline and illustrated in Figure 3).
Further, the relevance of many symptom features to the
underlying disease mechanism have also been reported in the
literature. In our illustrative example, several turning features,
including peak velocity, duration, and angle, were identified to be
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valuable for progression tracking; coincidentally, turning has been
highlighted in many prior publications as a common challenge in
PD (39-42) and is also included in a Phase 2 interventional study
as a key digital feature (38).

There are several limitations of our work. First, a major caveat
of the results reported from the illustrative example herein is that
this analysis only used a small number of participants. Our
proposed analysis workflow for digital biomarker development
needs to be applied to additional studies with larger N to further
demonstrate utility. The identified individual digital features of
Parkinson’s disease progression and the composite digital
measure presented herein is solely for purposes of illustrating the
methodology approach. They would need to be validated and
verified in an independent dataset in further research before they
can be used as digital biomarkers of disease progression and
treatment response. Second, the digital features in our study were
obtained from sensor-based movement measurements using one
DHT system used during supervised, in-clinic tasks. Different or
expanded digital features may be available with different DHTs,
different task-based assessments, use of passive monitoring
approaches, technology evolution, and further algorithm
development. It is worth noting that we mainly use this feature
set to demonstrate the methodology, and our proposed high-
dimensional longitudinal data analysis framework (including
feature selection and predictive modelling) is adaptive for
different feature sets collected from different sensor technologies.
Third, in our illustrative example, we examined potential
confounders (ie., age and sex) in the pooled PD group to
identify factors that might significantly impact the progression
trending. As a result, age was identified and included into our
model as a covariate to be adjusted. It would have been preferred
to assess potential confounders in each PD subgroup (i.e., de
novo PD, mild-to-moderate PD, and advanced PD) rather than
the pooled PD group; however, the small sample size and
imbalanced datasets within the subgroups posed challenges to
doing so.

Notably, the current dataset is longitudinal but only contains
in-clinic visit data. One advantage of DHTs is that they may
offer the ability to capture data outside of the clinic much more
frequently. Other studies, including the Phase 2 Trial of Anti a-
Synuclein Antibody in Early Parkinson’s Disease (PASADENA)
study (10) (daily tasks) and the Personalized Parkinson Project
(PPP) study (43) (bi-weekly tasks), have shown utility in
collected DHT data with
measurement frequency. Increased measurement frequency could
further of digital
quantifying disease progression, as it could address the day-to-

capturing remotely increased

enhance the performance measures in

day symptom fluctuations and reduce the measurement
variability. Such remotely acquired digital features could also be
applied to the methodology and framework we’ve reported here.
In addition, there is emerging research into characterization of
the neurodegenerative disease progression directly from raw sensor
signals recorded by DHTs (e.g., wearable sensors, environmental
sensors, smartphone sensors) using deep neural networks and
other black box algorithms (44, 45). Germane to these efforts is

an important question about the interpretability of the ensuing
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models and results (46, 47). In our work, we identified candidate

digital features of disease progression using inherently
interpretable linear models. We did not explore deep learning of
the raw sensor data directly; such an approach is an interesting
future direction of research.

In summary, with the rapid development of DHTs, digital
measures are playing an increasingly important role in not only
neurodegenerative disease detection, but also longitudinally
tracking disease progression over time and detection of
therapeutic response. Our proposed ML-based framework for
identifying digital features of progression and constructing
composite digital measures adds to the existing body of literature
on digital measure analysis methodologies and may help
accelerate the translation of digital measures to utility for drug

development and clinical practice.

Data availability statement

The datasets presented in this article are not readily available
because the original data presented in this paper is from the
ongoing OxQUIP study and cannot be shared until completion
of the whole study and full dissemination of results. This is
expected to become possible within 24 months from the end of
the study. Qualified researchers will be able to contact the
Principal Investigator at the University of Oxford. Requests to
these should be directed
A. Antoniades, chrystalina.antoniades@ndcn.ox.ac.uk.

access datasets to Chrystalina

Ethics statement

The studies involving humans were approved by a research
ethics committee and the Health Research Authority (REC16/
SW/0262). The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in
this study.

Author contributions

SZ: Writing - original draft, Writing - review & editing,
Conceptualization, Data curation, Formal Analysis, Methodology,
Software, Visualization. AL: Conceptualization, Formal Analysis,
Methodology, Writing - review & editing, Visualization. JS:

Conceptualization, Methodology, Writing - original draft,
Writing - review & editing, Supervision. YX: Data curation,
Formal Analysis, Writing - review & editing. VS:

Conceptualization, Methodology, Writing — review & editing. JF:
Funding acquisition, Investigation, Writing - review & editing.
CA: Funding acquisition, Investigation, Writing - review &
editing. DH: Methodology, Writing - review & editing. MD:

Frontiers in Digital Health

10.3389/fdgth.2024.1500811

Supervision, Writing — review & editing. JR: Writing - original
draft, Writing - review & editing, Conceptualization, Data
curation, Methodology, Supervision. RB: Writing — original draft,
Writing - review & editing, Conceptualization, Data curation,
Methodology, Supervision.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. J.J.F and
C.A.A were supported by the National Institute for Health
Research Oxford Biomedical Research Centre. J.J.F has received
consulting fees from Abbott and Medtronic, unrelated to this
study. J.J.F and C.A.A have received research grant support from
UCB Pharma and MSD Laboratories. We thank the participants
and their families for their endless support with our research work.

Conflict of interest

SZ, AL, JS, YX, VS, DH, MD, JR and RB were employed by
Merck & Co., Inc. JS is a review editor for Statistical Genetics
and Methodology in Frontiers in Genetics. JF is an Associate
Editor for Neuroprosthetics in Frontiers in Neuroscience. CA is a
review editor for Perception Science in Frontiers in Neuroscience
and Frontiers in Psychology. JR is a review editor for Soft Matter
Physics in Frontiers in Physics. RB is a review editor for Medical
Physics and Imaging in Frontiers in Physiology and Frontiers
in Physics.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdgth.2024.
1500811/full#supplementary-material

frontiersin.org


mailto:chrystalina.antoniades@ndcn.ox.ac.uk
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1500811/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1500811/full#supplementary-material
https://doi.org/10.3389/fdgth.2024.1500811
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Zhai et al.

References

1. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al.
Movement disorder society-sponsored revision of the unified Parkinson’s disease
rating scale (MDS-UPDRS): scale presentation and clinimetric testing results.
Movement Disord. (2008) 23(15):2129-70. doi: 10.1002/mds.22340

2. Committee for Medicinal Products for Human Use. Qualification Opinion on
Dopamine Transporter Imaging as an Enrichment Biomarker for Parkinson’s
Disease Clinical Trials in Patients with Early Parkinsonian Symptoms. European
Medicines Agency:EMA/CHMP SAWP/765041/2017 (2018).

3. Horak FB, Mancini M. Objective features of balance and gait for Parkinson’s
disease using body-worn sensors. Mov Disord. (2013) 28(11):1544-51. doi: 10.1002/
mds.25684

4. Heldman DA, Espay AJ, LeWitt PA, Giuffrida JP. Clinician versus machine:
reliability and responsiveness of motor endpoints in Parkinson’s disease.
Parkinsonism Relat D. (2014) 20(6):590-5. doi: 10.1016/j.parkreldis.2014.02.022

5. LeBaron V, Hayes J, Gordon K, Alam R, Homdee N, Martinez Y, et al. Leveraging
smart health technology to empower patients and family caregivers in managing
cancer pain: protocol for a feasibility study. Jmir Res Protoc. (2019) 8(12):e16178.
doi: 10.2196/16178

6. Evers L], Raykov YP, Krijthe JH, de Lima ALS, Badawy R, Claes K, et al. Real-life
gait performance as a digital biomarker for motor fluctuations: the Parkinson@home
validation study. J Med Internet Res. (2020) 22(10):e19068. doi: 10.2196/19068

7. Erb MK, Karlin DR, Ho BK, Thomas KC, Parisi F, Vergara-Diaz GP, et al.
Mhealth and wearable technology should replace motor diaries to track motor
fluctuations in Parkinson’s disease. NPJ Digitl Med. (2020) 3(1):6. doi: 10.1038/
541746-019-0214-x

8. Mahadevan N, Demanuele C, Zhang H, Volfson D, Ho B, Erb MK, et al. Development
of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable
device. NPJ Digit Med. (2020) 3(1):5. doi: 10.1038/s41746-019-0217-7

9. Burq M, Rainaldi E, Ho KC, Chen C, Bloem BR, Evers LJW, et al. Virtual exam
for Parkinson’s disease enables frequent and reliable remote measurements of motor
function. NPJ Digit Med. (2022) 5(1):65. doi: 10.1038/s41746-022-00607-8

10. Pagano G, Boess FG, Taylor KR, Ricci B, Mollenhauer B, Poewe W, et al. A
phase II study to evaluate the safety and efficacy of prasinezumab in early
Parkinson’s disease (PASADENA): rationale, design, and baseline data. Front
Neurol. (2021) 12:705407. doi: 10.3389/fneur.2021.705407

11. Brzezicki MA, Conway N, Sotirakis C, FitzGerald JJ, Antoniades CA.
Antiparkinsonian medication masks motor signal progression in de novo patients.
Heliyon. (2023) 9(11):e16415. doi: 10.1016/j.heliyon.2023.e16415

12. Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, et al.
Trial of prasinezumab in early-stage Parkinson’s disease. New Engl ] Med. (2022) 387
(5):421-32. doi: 10.1056/NEJM0a2202867

13. Robin J, Xu M, Detke M, Simpson W. Validation of an objective, SpeechBased
object content score for measuring disease progression in AD. ] Prev Alzheimer’s Dis.
(2022) 9:5190. doi: 10.14283/jpad.2022.97 (P143).

14. Liu Y, Zhang G, Tarolli CG, Hristov R, Jensen-Roberts S, Waddell EM, et al.
Monitoring gait at home with radio waves in Parkinson’s disease: a marker of
severity, progression, and medication response. Sci Transl Med. (2022) 14(663):
eadc9669. doi: 10.1126/scitranslmed.adc9669

15. Yang Y, Yuan Y, Zhang G, Wang H, Chen YC, Liu Y, et al. Artificial intelligence-
enabled detection and assessment of Parkinson’s disease using nocturnal breathing
signals. Nat Med. (2022) 28(10):2207-15. doi: 10.1038/s41591-022-01932-x

16. Kadirvelu B, Gavriel C, Nageshwaran S, Chan JPK, Nethisinghe §,
Athanasopoulos S, et al. A wearable motion capture suit and machine learning
predict disease progression in Friedreich’s ataxia. Nat Med. (2023) 29:86-94.
doi: 10.1038/s41591-022-02159-6

17. Ricotti V, Kadirvelu B, Selby V, Festenstein R, Mercuri E, Voit T, et al. Wearable full-
body motion tracking of activities of daily living predicts disease trajectory in Duchenne
muscular dystrophy. Nat Med. (2023) 29(1):95-103. doi: 10.1038/s41591-022-02045-1

18. Johnson SA, Karas M, Burke KM, Straczkiewicz M, Scheier ZA, Clark AP, et al.
Wearable device and smartphone data quantify ALS progression and may provide novel
outcome measures. NPJ Digit Med. (2023) 6(1):34. doi: 10.1038/s41746-023-00778-y

19. Giboin LS, Simillion C, Rennig J, Bamdadian A, Kinsella F, McColgan P, et al.
A digital motor score for sensitive detection of disease progression in early
manifest Huntington’s disease (2023). Available online at: https://medically.roche.
com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?
cid=slprxx2304nehdchdi2023 (Accessed December 19, 2024).

20. Mori H, Wiklund SJ, Zhang JY. Quantifying the benefits of digital biomarkers
and technology-based study endpoints in clinical trials: project moneyball. Digit
Biomark. (2022) 6(2):36-46. doi: 10.1159/000525255

21. Adams JL, Kangarloo T, Gong Y, Khachadourian V, Tracey B, Volfson D, et al.
Using a smartwatch and smartphone to assess early Parkinson’s disease in the
WATCH-PD study over 12 months. NPJ Park.’s Dis. (2024) 10:112. doi: 10.1038/
541531-024-00721-2

Frontiers in Digital Health

10.3389/fdgth.2024.1500811

22. Czech MD, Badley D, Yang L, Shen J, Crouthamel M, Kangarloo T, et al.
Improved measurement of disease progression in people living with early
Parkinson’s disease using digital health technologies. Commun. Med. (2024) 4(1):49.
doi: 10.1038/s43856-024-00481-3

23. Perumal SV, Sankar R. Gait and tremor assessment for patients with Parkinson’s
disease using wearable sensors. Ict Express. (2016) 2(4):168-74. doi: 10.1016/j.icte.
2016.10.005

24. Dinov ID, Heavner B, Tang M, Glusman G, Chard K, Darcy M, et al. Predictive
big data analytics: a study of Parkinson’s disease using large, complex, heterogeneous,
incongruent, multi-source and incomplete observations. PLoS One. (2016) 11(8):
€0157077. doi: 10.1371/journal.pone.0157077

25. Alaskar H, Hussain A. Prediction of Parkinson disease using gait signals. 2018
11th International Conference on Developments in ESystems Engineering (DeSE)
(2018). p. 23-6

26. Gao C, Sun H, Wang T, Tang M, Bohnen NI, Miiller ML, et al. Model-based and
model-free machine learning techniques for diagnostic prediction and classification of
clinical outcomes in Parkinson’s disease. Sci Rep. (2018) 8(1):7129. doi: 10.1038/
541598-018-24783-4

27. Tsoulos IG, Mitsi G, Stavrakoudis A, Papapetropoulos S. Application of machine
learning in a Parkinson’s disease digital biomarker dataset using neural network
construction (NNC) methodology discriminates patient motor Status. Frontiers Ict.
(2019) 6:10. doi: 10.3389/fict.2019.00010

28. Dadu A, Satone V, Kaur R, Hashemi SH, Leonard H, Iwaki H, et al.
Identification and prediction of Parkinson’s disease subtypes and progression using
machine learning in two cohorts. NPJ Park.’s Dis. (2022) 8(1):172. doi: 10.1038/
541531-022-00439-z

29. Taylor K, Lipsmeier F, Volkova-Volkmar E, Rukina D, Anzures-Cabrera J,
Essioux L, et al. Prasinezumab reduced progression of Parkinson’s disease motor
features measured by roche PD Mobile application v2 sensor features: PASADENA
phase II part 1 [abstract]. Mov Disord. (2021) 36(suppl 1). https://www.
mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-
motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-
pasadena-phase-ii-part-1/

30. Sotirakis C, Su Z, Brzezicki MA, Conway N, Tarassenko L, FitzGerald JJ, et al.
Identification of motor progression in Parkinson’s disease using wearable sensors
and machine learning. NPJ Park.’s Dis. (2023) 9(1):142. doi: 10.1038/s41531-023-
00581-2

31. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models.
Biometrika. (1986) 73(1):13-22. doi: 10.1093/biomet/73.1.13

32. Wang L, Zhou J, Qu A. Penalized generalized estimating equations for high-
dimensional longitudinal data analysis. Biometrics. (2012) 68(2):353-60. doi: 10.
1111/j.1541-0420.2011.01678.x

33. Pereira MF, Buchanan T, Hoglinger GU, Bogdanovic M, Tofaris G, Prangnell S,
et al. Longitudinal changes of early motor and cognitive symptoms in progressive
supranuclear palsy: the OxQUIP study. BMJ Neurology Open. (2022) 4:¢000214.
doi: 10.1136/bmjno-2021-000214

34. Svetnik V, Liaw A, Tong C, Wang T. Application of breiman’s random forest to
modeling structure-activity relationships of pharmaceutical molecules. In: Roli F,
Kittler J, Windeatt T, editors. Multiple Classifier Systems. MCS 2004. Lecture Notes
in Computer Science, vol 3077. Berlin, Heidelberg: Springer (2004). doi: 10.1007/
978-3-540-25966-4_33

35. Zampieri C, Salarian A, Carlson-Kuhta P, Aminian K, Nutt JG, Horak FB. The
instrumented timed up and go test: potential outcome measure for disease modifying
therapies in Parkinson’s disease. ] Neurology Neurosurg Psychiatry. (2010) 81(2):171.
doi: 10.1136/jnnp.2009.173740

36. Koop MM, Ozinga SJ, Rosenfeldt AB, Alberts JL. Quantifying turning behavior
and gait in Parkinson’s disease using mobile technology. Ibro Reports. (2018) 5:10-6.
doi: 10.1016/j.ibror.2018.06.002

37. Lowry K, Woods T, Malone A, Krajek A, Smiley A, Van Swearingen J. The
figure-of-8 walk test used to detect the loss of motor skill in walking among
persons with Parkinson’s disease. Physiother Theory Pract. (2022) 38(4):552-60.
doi: 10.1080/09593985.2020.1774948

38. Lipsmeier F, Taylor KI, Postuma RB, Volkova-Volkmar E, Kilchenmann T,
Mollenhauer B, et al. Reliability and validity of the Roche PD Mobile application
for remote monitoring of early Parkinson’s disease. Sci Rep-uk. (2022) 12(1):12081.
doi: 10.1038/s41598-022-15874-4

39. Stack E, Ashburn A. Dysfunctional turning in Parkinson’s disease. Disabil
Rehabil. (2008) 30(16):1222-9. doi: 10.1080/09638280701829938

40. Hulbert S, Ashburn A, Robert L, Verheyden G. Narrative review of turning
deficits in people with Parkinson’s disease. Disabil Rehabil. (2014) 37(15):1382-9.
doi: 10.3109/09638288.2014.961661

41. Mak MK, Patla A, Hui-Chan C. Sudden turn during walking is impaired in
people with Parkinson’s disease. Exp Brain Res. (2008) 190(1):43-51. doi: 10.1007/
s00221-008-1446-1

frontiersin.org


https://doi.org/10.1002/mds.22340
https://doi.org/10.1002/mds.25684
https://doi.org/10.1002/mds.25684
https://doi.org/10.1016/j.parkreldis.2014.02.022
https://doi.org/10.2196/16178
https://doi.org/10.2196/19068
https://doi.org/10.1038/s41746-019-0214-x
https://doi.org/10.1038/s41746-019-0214-x
https://doi.org/10.1038/s41746-019-0217-7
https://doi.org/10.1038/s41746-022-00607-8
https://doi.org/10.3389/fneur.2021.705407
https://doi.org/10.1016/j.heliyon.2023.e16415
https://doi.org/10.1056/NEJMoa2202867
https://doi.org/10.14283/jpad.2022.97
https://doi.org/10.1126/scitranslmed.adc9669
https://doi.org/10.1038/s41591-022-01932-x
https://doi.org/10.1038/s41591-022-02159-6
https://doi.org/10.1038/s41591-022-02045-1
https://doi.org/10.1038/s41746-023-00778-y
https://medically.roche.com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?cid=slprxx2304nehdchdi2023
https://medically.roche.com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?cid=slprxx2304nehdchdi2023
https://medically.roche.com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?cid=slprxx2304nehdchdi2023
https://doi.org/10.1159/000525255
https://doi.org/10.1038/s41531-024-00721-2
https://doi.org/10.1038/s41531-024-00721-2
https://doi.org/10.1038/s43856-024-00481-3
https://doi.org/10.1016/j.icte.2016.10.005
https://doi.org/10.1016/j.icte.2016.10.005
https://doi.org/10.1371/journal.pone.0157077
https://doi.org/10.1038/s41598-018-24783-4
https://doi.org/10.1038/s41598-018-24783-4
https://doi.org/10.3389/fict.2019.00010
https://doi.org/10.1038/s41531-022-00439-z
https://doi.org/10.1038/s41531-022-00439-z
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://doi.org/10.1038/s41531-023-00581-2
https://doi.org/10.1038/s41531-023-00581-2
https://doi.org/10.1093/biomet/73.1.13
https://doi.org/10.1111/j.1541-�0420.2011.01678.x
https://doi.org/10.1111/j.1541-�0420.2011.01678.x
https://doi.org/10.1136/bmjno-2021-000214
https://doi.org/10.1007/978-3-540-25966-4_33
https://doi.org/10.1007/978-3-540-25966-4_33
https://doi.org/10.1136/jnnp.2009.173740
https://doi.org/10.1016/j.ibror.2018.06.002
https://doi.org/10.1080/09593985.2020.1774948
https://doi.org/10.1038/s41598-022-15874-4
https://doi.org/10.1080/09638280701829938
https://doi.org/10.3109/09638288.2014.961661
https://doi.org/10.1007/s00221-�008-�1446-�1
https://doi.org/10.1007/s00221-�008-�1446-�1
https://doi.org/10.3389/fdgth.2024.1500811
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Zhai et al.

42. Ragothaman A, Miranda-Dominguez O, Brumbach BH, Giritharan A, Fair DA,
Nutt JG, et al. Relationship between brain volumes and objective balance and gait
measures in Parkinson’s disease. J Park.’s Dis. (2021) 12(1):283-94. doi: 10.3233/
JPD-202403

43. Bloem BR, Marks WJ, de Lima ALS, Kuijf ML, van Laar T, Jacobs BPF, et al. The
personalized Parkinson project: examining disease progression through broad
biomarkers in early Parkinson’s disease. BMC Neurol. (2019) 19(1):160. doi: 10.
1186/512883-019-1394-3

44. Atri R, Urban K, Marebwa B, Simuni T, Tanner C, Siderowf A, et al. Deep
learning for daily monitoring of Parkinson’s disease outside the clinic using
wearable sensors. Sensors. (2022) 22(18):6831. doi: 10.3390/s22186831

Frontiers in Digital Health

10.3389/fdgth.2024.1500811

45, Khan P, Fazlul Kader MD, Riazul Islam SM, Rahman AB, Sshahriar Kamal MD,
Uddin Toha M, et al. Machine learning and deep learning approaches for brain disease
diagnosis: principles and recent advances. IEEE Access. (2021) 9:37622-55. doi: 10.
1109/ACCESS.2021.3062484

46. Rudin C, Chen C, Chen Z, Huang H, Semenova L, Zhong C. Interpretable
machine learning: fundamental principles and 10 grand challenges. Stat Surv.
(2022) 16:1-85. doi: 10.1214/21-SS133

47. US Food and Drug Administration. Good machine learning practice for medical
device development: guiding principles (2021). Available online at: https://www.fda.
gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-guiding-principles (Accessed December 19, 2024).

95 frontiersin.org


https://doi.org/10.3233/JPD-202403
https://doi.org/10.3233/JPD-202403
https://doi.org/10.1186/s12883-019-1394-3
https://doi.org/10.1186/s12883-019-1394-3
https://doi.org/10.3390/s22186831
https://doi.org/10.1109/ACCESS.2021.3062484
https://doi.org/10.1109/ACCESS.2021.3062484
https://doi.org/10.1214/21-SS133
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://doi.org/10.3389/fdgth.2024.1500811
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

& frontiers | Frontiers in Digital Health

") Check for updates

OPEN ACCESS

EDITED BY
Toshiyo Tamura,
Waseda University, Japan

REVIEWED BY

Anupama Ginige,

Western Sydney University, Australia
Graham Jones,

Tufts Medical Center, United States

*CORRESPONDENCE
Derek L. Hill
derek.hill@ucl.ac.uk

RECEIVED 10 April 2024
ACCEPTED 25 September 2025
PUBLISHED 23 October 2025

CITATION
Hill DL, Carroll C, Belfiore-Oshan R and
Stephenson D (2025) Aligning with regulatory
agencies for the use of digital health
technologies in drug development: a case
study from Parkinson’s disease.

Front. Digit. Health 7:1415202.

doi: 10.3389/fdgth.2025.1415202

COPYRIGHT

© 2025 Hill, Carroll, Belfiore-Oshan and
Stephenson. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Digital Health

Policy and Practice Reviews
23 October 2025
10.3389/fdgth.2025.1415202

Aligning with regulatory agencies
for the use of digital health
technologies in drug
development: a case study from
Parkinson’s disease

Derek L. Hill'"*, Camile Carroll*’, Ramona Belfiore-Oshan® and
Diane Stephenson®

'Biomedical Engineering, University College London, London, United Kingdom, Translational and
Clinical Research Institute, Newcastle University, Newcastle, United Kingdom, *National Institute for
Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University,
Newcastle, United Kingdom, “Critical Path Institute, Tucson, AZ, United States

Digital Health Technologies (DHTs) have been under investigation for many
years as innovative tools for Parkinson’s disease motor symptoms given their
inherent high-frequency, sensitive, and objective measurement properties.
DHTs used in drug development, can be defined as Drug Development Tools
(DDT), though some DHTs may also be categorized as medical devices. The
recent rapid increase in use of DHTs in clinical trials has been accompanied
by a rapidly evolving regulatory landscape, resulting in a challenging
environment for widespread implementation of DHTs in applications that will
provide clear impact on pharmaceutical company drug development
pipelines. Parkinson’'s disease represents a disease of escalating burden with
high unmet need for therapies that are disease modifying. Early intervention
is a key area of focus, yet the heterogeneity of symptoms and lack of
biomarkers poses challenges for drug development. Furthermore, the
technologies and device platforms, both hardware and software, are rapidly
evolving, and the companies developing the underlying devices frequently
have objectives and timelines that may not align with those of the
pharmaceutical industry. DHTs therefore have a unique set of challenges in
terms of devising meaningful measures, standardization of data collected,
responding to evolving regulatory expectations, and ensuring alignment
across stakeholders. There is a growing need for new models of collaboration
to bring together diverse stakeholders required to achieve regulatory
endorsement of DHTs for use as DDTs. Collaborations between stakeholders
working on DHTs need to be firmly anchored in the regulatory ecosystem as
many regulatory challenges in DHTs have parallels in other technologies.
Furthermore, there is an especially urgent need to define the pre-competitive
space in which DHT data can be shared, data collection standards devised,
and novel analysis approaches that are robust to residual variability
developed. Critical Path for Parkinson's Consortium's (CPP) Digital Drug
Development Tool (3DT) initiative is highlighted as a case example to illustrate
how pre-competitive public private partnerships can advance the regulatory
maturity of digital health technology measures for use in clinical trials.
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Parkinson’s disease, neurological disorders

96 frontiersin.org


http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2025.1415202&domain=pdf&date_stamp=2020-03-12
mailto:derek.hill@ucl.ac.uk
https://doi.org/10.3389/fdgth.2025.1415202
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1415202/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1415202/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1415202/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1415202/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1415202/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2025.1415202

Hill et al.

1 Introduction

Digital Health Technologies (DHTs) used as

Development tools (DDTSs) represent an important example of a

Drug

regulated technology to support medical product development.
These technologies have the potential to meet pharmaceutical
industry needs for high frequency, sensitive, and objective
measures of a patient’s disease progression, and a patient’s
response to treatment in real-world settings (1).

DHTs have attracted particular interest in chronic progressive
diseases of the nervous system (2). This is due to the heterogenous
nature of symptoms, slow insidious onset of symptoms with long
duration of presymptomatic underlying disease, and lack of
patient centered measures that can be used to define true impact
of novel therapies on patient’s quality of life.

DHT measures may therefore accelerate the development of
new drug and biological therapies in areas of unmet medical
need and enable these treatments to be better focused on
treating the aspect(s) of disease of most importance to patients.

DHTs, when used to support drug development, sit at the
The
applicable regulatory landscape is rapidly evolving including

interface between medicine and device regulations.
across regulatory authorities. Here we make use of terminology
from the FDA’s recent guidance document on Digital Health
Technologies for Remote Data Acquisition (3), and limit our
discussion to DHTs that incorporate sensors (e.g., motion
sensors). We use the term “DHT measure” to mean the output
of a DHT used as a drug development tool, and “DHT Device”
for the data collection device e.g., wearable sensor from which
the DHT measure is obtained or derived.

In this paper, we describe the work of Critical Path Institute’s
(C-Path) Critical Path for Parkinson’s (CPP) Digital Drug
Development Tools (3DT) initiative to collect evidence that
DHTs can reliably and accurately measure PD progression at
early stages in drug naive patients over one year duration, in
order to advance the regulatory maturity of DHTs for assessing
patients with Parkinson’s disease (PD). CPP is a public private
partnership focused on the development of drug development
tools targeting early stages of the disease. The key milestones for
DHTs being used as DDTs are (a) letter of support and (b)
qualification. A letter of support is issued by the medicines
regulator to describes the regulator’s thoughts on the potential
value of a DDT and encourages further evaluation. A DDT
qualification is a public regulatory opinion that encourages the
use of a qualified DDT for a specific context of use to expedite
drug development and review of regulatory applications.

The regulatory landscape for DHTs has been evolving
significantly since CPP was launched in 2015 (4): there has been a
rapid increase in the response of regulators to the needs of DHTSs
and their use in drug development. Regulatory agencies have
published several guidance and discussion documents focused on
DHTs and with some DHT measures reaching a high level of
maturity with certain regulators. This regulatory framework
enables DHTs to be used on a protocol-specific basis, or to be
qualified for more general application in a context of use. Many
DHT measures are generated using machine learning (ML) and
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artificial intelligence (AI), which means they may be impacted by
Al-specific regulations being proposed in several jurisdictions,
including the European Union AI Act (5).

Table 1 shows the timeline for advances in the regulatory
landscape over the past several years both in U.S. and Europe, with
key regulatory publications from the U.S. Food and Drug
Administration (FDA) and European Medicines Agency (EMA)
highlighted. Although primarily focused on regulation of medicinal
products, we include cybersecurity guidance documents focused on
medical devices generally relevant to all DHTs, whether medical
devices or not. Notably, the FDA’s March 2024 “AI & Medical
Products” guidance specifically describes how medicines and device
regulators are working together in this rapidly evolving area.

2 Unique challenges of DHTs

Regulators have made much progress in provision of guidance
for DHTs in drug development, though the impact of DHTs in
clinical trials has so far been limited; for example, no drug has
yet been approved by the FDA based on a DHT derived
primary endpoint (6) and the EMA has recently described
regulatory experience with DHTs in the context of registrational
studies as minimal (7). Issues relate to the rapid rate of
innovation in digital technologies, the types of companies in the
ecosystem, and the intersection between regulations related to
clinical trials, medical devices, and data protection/privacy.

2.1 Rapid rate of innovation

The rapid rate of innovation in the technologies incorporated
in DHTs (e.g., sensors, ML algorithms, connected devices) means
that the product lifecycle of a DHT is often a small number of
years. A DHT may rely on consumer computing platforms such
as smartphones. The lifetime of DHT devices, and sometimes
even digital companies, is short compared to the timescale of
drug development. It is therefore hard for DHTs to “travel with
a molecule” from phase I to approval, which might be a period
of more than 10 years. Even if a particular hardware remains
stable, the installed software might periodically upgrade in ways
that make the data non-comparable.

2.2 Standardization and harmonization

A consequence of the rapid rate of innovation in the hardware,
software and measurements from DHTs is the need to obtain
comparable data across time and studies. The diversity in
technologies available, the speed of innovation, including
software upgrades and new versions of hardware, and the
proprietary nature of some algorithms means that obtaining
comparable data is a considerable challenge.

One state-of-the-art approach in this area has been described
by the Mobilise-D consortium (8), in which multiple types of
motion sensors have been compared against a gold standard in
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TABLE 1 Recent key regulatory guidance and frameworks relevant to DHTs. The majority are published by medicines regulators though cybersecurity
guidance documents published by medical device regulators are also included.

DE(] Regulator Title Comment Link
June 2018 | FDA Patient-Focused Drug Development: Guidance document https://www.fda.gov/regulatory-information/search-fda-
Collecting Comprehensive and guidance-documents/patient-focused-drug-development-
Representative Input collecting-comprehensive-and-representative-input
June 2020 | EMA - Human Questions and Answers: Qualification of Document to support https://www.ema.europa.eu/en/documents/other/
Medicines Division Digital Technology-Based Methodologies to | qualification of DHT questions-and-answers-qualification-digital-technology-
Support Approval of Medicinal Products methodologies based-methodologies-support-approval-medicinal-
products_en.pdf
July 2020 | EMA - Medical MDCG 2019-16 Rev.1 Guidance on Guidance Document https://health.ec.europa.eu/document/download/
Device Coordination | Cybersecurity for medical devices b23b362f-8a56-434c-922a-5b3ca4d0a7al_en
Group
February | FDA Patient-Focused Drug Development: Guidance document https://www.fda.gov/regulatory-information/search-fda-
2022 Methods to Identifying What Is Important to guidance-documents/patient-focused-drug-development-
Patients methods-identify-what-important-patients
June 2022 | FDA Patient-Focused Drug Development: Guidance document https://www.fda.gov/regulatory-information/search-fda-
Selecting, Developing, or Modifying Fit-for- guidance-documents/patient-focused-drug-development-
Purpose Clinical Outcome Assessments selecting-developing-or-modifying-fit-purpose-clinical-
outcome
April 2023 | FDA Patient-Focused Drug Development: Guidance document https://www.fda.gov/regulatory-information/search-fda-
Incorporating Clinical Outcome Assessments guidance-documents/patient-focused-drug-development-
Into incorporating-clinical-outcome-assessments-endpoints-
regulatory
May 2023 | FDA - CDER Artificial Intelligence for Drug Development | Informational https://www.fda.gov/about-fda/center-drug-evaluation-
and-research-cder/artificial-intelligence-drug-
development
May 2023 | FDA - CDER Using Artificial Intelligence & Machine Discussion Paper/Request | https://www.fda.gov/media/167973/download
Learning in the Development of Drug & for Feedback
Biological Products
March FDA Framework for the Use of Digital Health Framework; PDUFA VII | https://www.fda.gov/media/166396/download?attachment
2023 Technologies in Drug and Biological Product
Development
March EMA - GCP IWG Guideline on computerised systems and Guidance Document https://www.ema.europa.eu/en/documents/regulatory-
2023 electronic data in clinical trials procedural-guideline/guideline-computerised-systems-
and-electronic-data-clinical-trials_en.pdf
Sept 2023 | FDA Cybersecurity in Medical Devices: Quality Guidance Document https://www.fda.gov/regulatory-information/search-fda-
System Considerations and Content of guidance-documents/cybersecurity-medical-devices-
Premarket Submissions quality-system-considerations-and-content-premarket-
submissions
Dec. 2023 | FDA Digital Health Technologies for Remote Data | Guidance Document https://www.fda.gov/regulatory-information/search-fda-
Acquisition in Clinical Investigations guidance-documents/digital-health-technologies-remote-
data-acquisition-clinical-investigations
Jan 2025 | FDA Considerations for the Use of Artificial Draft Guidance https://www.fda.gov/media/184830/download
Intelligence To Support Regulatory Decision-
Making for Drug and Biological Products
June 2025 | FDA Cybersecurity in Medical Devices: Quality Guidance document https://www.fda.gov/media/119933/download
System Considerations and Content of
Premarket Submissions

a laboratory setting. This highlighted considerable remaining
challenges in standardizing DHT data even from accelerometers,
which are arguably the most mature of DHT sensor technology.
The authors suggest guidelines to assist standardization efforts
for future studies.

Parallels have previously been drawn between DHTs and
imaging. Putting in place suitable standardization has been
important in the development of neuroimaging in clinical trials (9,
10) and is a focus of the FDA guidance on imaging endpoints in
clinical trials (11). It is important to note that, while there are
parallels with imaging, DHTs are used for remote data acquisition
(e.g., in the home) and there is considerable additional variability
compared to that of the in-clinic controlled environment applicable
to imaging. This puts additional the

requirements on
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standardization of DHTs that allow for bridging in-clinic with at-
Standardization of a particular DHT
measure, therefore, should consider implications of hardware,

home measurements.

software, and measurement environment. The experience of
standardizing imaging endpoints encourages the standardization to
be done in the context of a specific measurement such as
hippocampal volume (12) or Positron Emission Tomography
standardized uptake value (PET SUV) (10), and for measurements
obtained from diverse scanners (sometimes with contrast or
tracers) and algorithms to be compared in terms of effect size in a
relevant comparison e.g., separating diseased from normal or
progressing from non-progressing subjects (13, 14). Once a
measurement is clearly defined, the standardization task is easier to
specify. The lack of consensus on specific DHT measures has been
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a barrier to progress in this measurement-driven standardization.
Because some DHT devices can generate multiple possible DHT-
derived measures (for example the output from a wrist-worn
accelerometer could be used to calculate measures of gait, tremor
or sleep), the appropriate standardization and algorithm validation
should be measure rather than device specific.

2.3 Business models and data protection
and privacy

Technology companies, whether focused on digital health or
consumer tech, frequently have business models that involve
monetizing data (15). Sophisticated consumer hardware and
software used by individuals is provided at low cost (and for
software, often free) in exchange for the user agreeing to
transfer their data to the tech company and give ownership, or
at least wide-ranging rights to use it for commercial purposes.
The huge volumes of data thus acquired by the tech companies
can be used to improve the product, but also can be sold freely,
so an individual’s data may be used by unknown third parties
for purposes that were neither pre-defined nor specifically
consented to by the user. These data-centric business models are
potentially incompatible with the desire of pharmaceutical
companies, healthcare providers, and regulators to ensure that
patient data is carefully controlled and only used for pre-
specified purposes with informed consent.

2.4 Intersection between different
regulatory systems

A further challenge relates to DHTSs operating at the interface
between different regulatory frameworks. Many DHT devices (e.g.,
smartphones and smartwatches with fitness apps and activity
trackers) are designed for consumer use and have limited
regulatory oversight. A sub-set of DHT devices are either
medical devices or contain software components that are
“software as a medical device”. Use of any of these DHT devices
in clinical trials adds new regulatory requirements around
validation of computer systems that come from Good Clinical
Practice (GCP) (16) (21CFR11 in USA, Annex 11 of the Clinical
Trial Regulation in Europe). The EMA has made clear in recent
publications that GCP regulations around validation and audit
trail apply to mass market wearables and mobile phones (17).
Some digital health companies struggle to put in place systems
that are compliant with these requirements and do not see a
business case for achieving compliance, given the small size of
the clinical trial market for most of these companies.

The need for different models of data use, and the
audit that
commercial collaborations between the pharmaceutical and tech

requirements of validation and trail, mean
sectors can be challenging.

This further emphasizes that for DHTSs to have a significant
impact on the development of new treatments, new models of

collaboration are needed. There is also a need to acknowledge
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that the price point of the technologies used in clinical trials is
likely to be significantly higher than the prices that end-users
are used to for consumer digital technologies.

3 The need for new models of
collaboration to develop DHTs

In recent years, there has been significant optimism that
“digital” technologies could rapidly impact drug development, and
as a result, relevant industry and public organizations are
investing in DHTs across various therapeutic areas. There has
been an associated rapid increase in the number of clinical studies
incorporating DHTs (2), particularly in chronic progressive
disorders of the nervous system where the failure rate is high and
there is a lack of sensitive, clinically meaningful DDTs. The
application of DHTs to disorders of the nervous system is
growing at a rapid rate with Parkinson’s being most prominent of
all (Evidence from https://www.ClinicalTrials.gov on the growth of
Digital Health Technologies in neurology trials (2).

It is increasingly clear that while DHTs have great potential to
positively impact drug development, the timescale of their
development has not proved to be rapid in comparison to other
technologies such as imaging, and at the date of writing, we
have not yet seen any new drugs approved based on a DHT
One DHT measure that has achieved the
regulatory milestone of being qualified as a primary endpoint in
Duchenne muscular dystrophy (DMD) by the EMA is the Stride
Velocity 95th centile (SV95C) (18). This effort took more than a
decade (19) to complete, which is not indicative of the

measurement.

minimum (or maximum) time required but illustrates the
challenges of navigating the regulatory environment for DHTs.
While most recent DMD studies have included SV95C as a
secondary outcome (NCT05524883, NCT05096221,
NCT06138639, NCT05982119, NCT04906460), the use of this
measure has been explored for other neuromuscular diseases
including Spinal Muscular Atrophy, Facioscapulohumeral
muscular dystrophy, and Limb Girdle muscular dystrophy.
However, it is still unclear how the learnings from the DMD
qualification will be applied or whether they are fully
translatable to those other diseases (20).

Many pharmaceutical companies and research institutions
have been independently working on developing DHT measures,
which has resulted in an explosion of proposed approaches to
measuring concepts of interest such as gait (21). It is becoming
increasingly clear that the challenges are too big to overcome as
individual companies and organizations alone, necessitating a
collaborative ~ and  harmonized approach. Increasingly,
pharmaceutical companies are looking for a clear impact on
their drug development programs and adapting their investment
in DHTs accordingly. A consortium-based approach is therefore
desirable and aligns with regulatory agency recommendations
for public-private partnerships to increase their efficiency in
advancing DHTs (22, 23). Some industry-led consortia have
sought to develop high-impact DHT measures that are disease-

agnostic or are cross-disease digital endpoints in areas such as
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fatigue, sleep (24), and mobility (21). Regulators, however, have
consistently communicated that, just as for other (non-digital)
technologies, data should be submitted for a single disease and
context of use (COU).

It is therefore increasingly important that, for reasons of cost
effectiveness and rate of progress, development of DHTs is
than in isolation, and
that

experience in development of non-DHT DDTs. Some of the

undertaken collaboratively rather

anchored within  organizations have wide-ranging
DHT challenges identified above could be addressed by means

of collaborative data analysis platforms such as federated learning.

4 The evolving DHT regulatory
landscape

While DHTs have been used in clinical research for decades
(25), there has been significant increase in use over the last 5
years particularly post-COVID-19 pandemic, and a rapid
evolution in the regulatory landscape for DHTs as DDTs. In
particular, there are recent regulatory publications specific to
DHTs (3, 26) and those that can apply to DHTs including those
on patient-focused drug development, use of Al in devices (27),
drug development (28), and validation of computer systems (17).

Industry has proposed the use of DHTs for several
applications in drug development that span a variety of different
intended uses to enhance decision making in clinical trials, not
only as digital endpoints (29). DHTs have potential to be used
for advancing novel candidate therapies at all stages of drug
development including patient subgroup characterization,
optimizing trial design, patient identification and recruitment,
risk assessment and adverse event prevention, remote
interventions to enable decentralized clinical trials, externally
controlled trials, and label indication expansion.

Up until 5 years ago, it was common to refer to all DHT
measures as “digital biomarkers”. However, the DHT measures
can be used for multiple purposes to support drug development,
and as such, the use of DHTs might meet either the definition

of a biomarker or of a clinical outcome assessment (30):

« Digital Biomarker: “a characteristic or set of characteristics,
collected from digital health technologies, that is measured as
an indicator of normal biological processes, pathogenic
processes, or responses to an exposure or intervention,
including therapeutic interventions.” (31)

« Clinical outcome assessment (COA): an assessment of how

someone feels, functions, or survives (32).

For some DHT measures, this distinction remains a matter of
debate (33). For example, it is possible to argue that change in a
measure of gait due to progression or treatment of PD is both
“an indicator of a pathogenic process or biological response”
and that it
functions”. This distinction has practical applications. For a

is an “assessment of how someone feels or

“biomarker”, the sensitivity of the measure to the pathogenic
process or biological response is the priority, with the goal of
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achieving a larger effect size and hence needing fewer
participants and/or less time for a clinical trial for a new
medicine, in which demonstration of drug efficacy is the
objective. For COA, however, clinical meaningfulness is the
priority, and a sensitive measure that is not meaningful to the
participant or their physician would be considered inappropriate
in a trial in which the objective is demonstration of clinical
effectiveness. This has implications for the types of data needed
to advance the regulatory maturity of DHTs. The next section
discusses the regulatory focus on patient-focused drug
development, which is of great relevance to the use of DHTs

for COAs.

4.1 Patient-focused drug development

Medicines regulators have an increasing focus on ensuring that
data collected during clinical trials of new medicines takes account
of the patients’ voice. The FDA’s recent series of guidance
documents on patient-focused drug development (34-37) refer to
DHTs in various places, and it is clear that regulators will treat
many DHT measures as a type of Clinical Outcome Assessment
(COA). The implication for the use of DHTs in clinical trials is
that regulators want to see evidence that the DHT measure is
relevant to a meaningful aspect of health for the patient. For
example, accelerometers have become ubiquitous for tracking
activity in smartphones and smartwatches. There are established
ways of calculating “activity metrics” from this acceleration data,
e.g., step count, cadence and amount of vigorous activity, and
many novel motion-sensor-derived measures can be developed
using machine learning and artificial intelligence. The focus on
meaningfulness of DHT measures means that it is necessary to
show that the DHT measure can be linked to a concept of interest
relevant to the condition, and a meaningful aspect of patient
health. This approach is being followed by consortia working in
some disease areas e.g., nocturnal scratch (38). This linkage
between DHT measure and meaningful aspects of health needs to
be shown for each clinical condition, and regulatory agencies have
similar expectations as to data required for drug development tools
such as biomarkers and COAs (e.g., both observational and clinical
trial data to support a defined COU).

Regulators are using the term “fit for purpose” to describe
when a DHT measure is ready for use in a clinical investigation,
and they make clear that a DHT measure has to be validated for
a single COU,: it is considered fit-for-purpose when “the level of
validation associated with a medical product development tool is
sufficient to support its context of use” (30).

Whether a DHT is fit for purpose is determined by the
strength of the evidence in support of interpreting the DHT
measure as reflecting the concept of interest within the COU.
Fit-for-purpose in the regulatory context means the same thing
as valid within modern validity theory, e.g., validity is “the
degree to which evidence and theory support the interpretations
of test scores for proposed uses of tests” (39).
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4.2 FDA digital health technology
guidance/framework

In 2021, the FDA published a draft guidance, “Digital Health
Data
Investigations” (40), and subsequently published a framework
document that seeks to explain how DHTs fit into FDA’s thinking
(26); a final version of the DHT guidance was published in

Technologies for Remote Acquisition in  Clinical

December 2023 (3). Key implications of this guidance are that the
initial step in choosing an appropriate DHT is to “consider the
clinical event or characteristic of the disease or condition of
interest that is to be measured, identify appropriate technical and
performance specifications of a DHT, and consider the proposed
trial population”. In practice, very often innovation in DHTs has
started  with DHT  devices (e.g.
accelerometers) and sought to derive from this DHT device a

available wrist-worn
DHT measure that meets a drug development need. This guidance
further emphasizes the need to clearly define a rationale for the
selection of a particular DHT for a context of use, the need for
appropriate verification, validation, usability assessment, and the
consideration of risks, including confounds (they give the example
of false positive detection of tremor in PD from a person traveling
in a car on a bumpy road). In the framework published, the FDA
acknowledged that it needs to adapt internally to be able to
properly consider DHTs and provide sponsors with consistent
feedback between review divisions.

4.3 Machine learning and Al in drug
development

Many DHT measures are calculated using machine learning
(ML) or artificial intelligence (AI). Developers and users of
DHTs therefore need to take account of the evolving regulatory
landscape for Al This is an area of rapid evolution in
regulatory thinking and a potentially significant divergence
between jurisdictions. The FDA has recently published a
discussion paper “Using Artificial Intelligence and Machine
Learning in the Development of Drug and Biological Products”
(28), which is relevant to DHTs. Of particular relevance is the
need to manage risk that arises from use of ML/AI models,
which the regulators argue can be distinct from risk in
traditional rules-based software. These risks include data quality
risks, bias risks (e.g., selection bias, confounding variables), and
data security and privacy risks (41).

4.4 Recent DHT regulatory milestones

As of August 2025 there are a total of two letters of support
and two full qualification opinions from the EMA on the use of
DHTs as drug development tools as digital endpoints. The FDA
manages a public website (41) showing it has accepted multiple
digital endpoints into the COA qualification program for a
range of conditions including DMD, Multiple Sclerosis (MS),
chronic heart failure, sarcopenia and atopic dermatitis. By
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reviewing the Agency feedback provided in each case example
there are common issues to be addressed even though the
specific indication may be different (42). Sharing of such
knowledge and learnings promises to catalyze progress and
avoid redundancies and inefficiencies.

5 Critical path institute’'s 3DT initiative

C-Path is a not-for-profit organization that has nearly two
decades of experience leading public-private partnerships
spanning multiple diseases to advance regulatory maturity of
drug development tools (Table 2) across several neurological
disorders including Alzheimer’s disease (AD), PD, and DMD.
C-Path-led consortia have achieved regulatory milestones from
full qualification opinions to Letters of Support and Fit for
Purpose FDA and EMA endorsements (43).

The 3DT initiative in Parkinson’s disease was launched in
2018 under the auspices of the established global consortium,
CPP, as a data-driven collaborative path to share knowledge and
resources. The vision of 3DT is to advance the regulatory
maturity of DHTs as drug development tools for decision-
making in PD trials targeting early Parkinson’s disease.

CPP’s 3DT initiative has provided a data-driven framework
for multiple sponsors who have agreed to collaborate on
optimizing the use of DHTSs in PD drug development. The 3DT
consortium involves sharing of patient-level digital device data
(including raw data) with members. The 3DT consortium has
maintained interaction with medicines regulators,
including a Critical Path Innovation Meeting (CPIM) held with
the FDA and an Innovation Task Force (ITF) meeting with
EMA, both in 2019. Regular additional interactions include with
FDA staff members regularly attending monthly consortium

regular

meetings, thereby providing an ongoing regulatory dialogue.
These interactions with regulators have highlighted several
challenges facing the field, including the need for strategies for
establishing meaningful clinical endpoints, controlling sources of
variability, and evaluating DHT performance in normative as
well as diseased cohorts.

A key focus of CPP 3DT is the observational study WATCH-
PD (Wearable Assessment in the Clinic and at Home in PD)
(NCT03681015) which is focused on an early de novo PD target
population. This study evaluates the ability of research-grade
wearable sensors, a smartwatch and a smartphone to assess key
features of PD, using a platform that maps directly onto the
MDS-UPDRS. WATCH-PD aims to determine the specific
disease features these digital tools can detect, whether the

TABLE 2 Critical path institute (C-path) regulatory milestones to date.

Regulator  Letters of support Qualifications
% led by % led by
C-Path C-Path

FDA 25 44% 16 50%

EMA 49 20% 30 30%

FDA, US Food and Drug Administration; EMA, European Medicines Agency, as of March 2024.
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measures differed between individuals with early PD and age-
matched controls, and how well the digital measures correlated
with traditional ones (44, 45). The CPIM and ITF meetings in
2019 provided regulatory feedback that was used to refine the
Watch-PD protocol, adding a normal control arm, and
including more rigorous qualitative evaluation of the
meaningfulness of the DHT measures to study participants,
illustrating the value of early interaction with regulators. CPP
that WATCH-PD is a study that is

noninterventional and has limitations.

recognizes single

5.1 3DT progress to date

3DT has brought together a group of leading industry
partners, academic key opinion leaders, patient advocacy
organizations, and people living with PD from around the world.
The key components and milestones in the phases of 3DT are

shown in Table 3.

6 Discussions and conclusions

There is an evolving regulatory landscape for Digital Health

Technologies as drug development tools, with multiple
stakeholders independently approaching regulatory agencies for
endorsement.  Experience of many parallel initiatives
approaching regulatory agencies to date suggests that navigating
the regulatory path to enable DHTs to have a significant impact
on drug development and defining success in addressing drug
development needs remain challenging. The experiences of the
3DT consortium highlight the value of collaborative approaches
involving pharma industry and academic experts, leveraging
Critical Path Institute’s experience of advancing the regulatory
maturity of a diverse range of drug development tools, from
Patient Reported Outcomes (PROs) to imaging biomarkers (46).
Tackling

challenges collectively by advancing data-driven

solutions and sharing costs and risks, as well as embracing open

TABLE 3 Key components of C-path’s CPP 3DT.

Regulatory alignment

Data strategy

10.3389/fdgth.2025.1415202

science, can avoid duplication of effort and therefore improve
the efficiency with which we advance the regulatory acceptance
of DHTs and their use in clinical trials. While DHTs make use
of different technologies from those used in other DDTs,
C-Path’s experience in other types of DDTs, and its existing
infrastructure for legal, data, and regulatory engagement has
proved valuable in enabling the 3DT consortium to progress.
Specific regulatory feedback on the Watch-PD case study itself
(such as the need to incorporate a control group, and to add a
qualitative element to the study to assess the symptoms of most
importance to patients) has informed multiple sponsors as to
which considerations are essential across device platforms, both
in other PD applications and in different disease areas.

The experiences to date make clear that, while digital
technologies have many distinct characteristics, the use of DHT
measures as drug development tools needs to fit into the same
framework as other DDT technologies. It is therefore essential
to precisely define:

o The concept of interest (COI): a clinical event or characteristic
of the disease or condition of interest that is to be measured, as
either a COA or biomarker.

o The application of the DHT In terms of how it will be applied
for drug development decision making (COU). The way the
DHT measures the COI will impact the
development process.

drug

o The rationale for the use of a particular DHT measure relevant
to that COI including why it meets the required technical and
performance specifications.

« How the selected DHT measure is meaningful.

o The evidence that demonstrates the DHT measure is
sufficiently well validated for the COU (“fit for purpose”).

For much work to date on DHT- measures as DDTs, it is hard to
precisely define all these elements. A diversity of stakeholders is
key to success and spans technology experts, clinicians, industry,
academic experts, nonprofit organizations, people with lived
experience, and regulators themselves. New approaches and new
models of collaboration are needed to advance the field as

Patient focused

Legal framework

Formal engagement with FDA (CPIM) and EMA | C-Path platform for curation and sharing of

(ITF and qualification advice)
consortia
Informal engagement with FDA and EMA
regulators at consortium meetings and
workshops including joint with EFPIR
Role of C-Path consortia highlighted at 4
workshops hosted by regulators studies.

Feedback from regulators impacted Watch-PD

DHT data, including raw sensor data, within

Sharing of unprocessed in-clinic and at-home
WATCH-PD data while study on-going.

Sharing of DHT data from pharma sponsored

approach

Included PD-affected individual | Informed consent for WATCH-PD
in WATCH-PD study design included data sharing with C-Path

Shared patient-centric trial
recommendations using DHT

Data sharing agreements in place
with consortium members and

C-Path advisors.
Data from qualification study | HIPAA and GDPR compliance

shared with patients.

Anonymised Data available to individual

protocol and analysis plans including addition of | sponsors for research and development use only

control arm (not commercialization)
Co-authored abstracts and manuscripts

feedback.

Analysis design takes account of regulatory

EMA, European Medicines Agency; FDA, Food and Drug Administration; EFPIA, European Federation of Pharmaceutical Industries and Associations; ITF, Innovative Task Force; CPIM,

critical path innovation meeting; HIPAA, health insurance portability and accountability Act; GDPR, general data protection regulation.
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TABLE 4 Nine recommended next steps to take the field forward.

‘H Recommendation

Define a pre-competitive space in which pharmaceutical companies, device
companies, academic experts and people with lived experience can collaborate
on specific COIs and COUs.

2 | Ensure alignment of incentives for all stakeholders, taking account of differing
business models and the need to devise tools that can be deployed in settings
with low network bandwidth, limited digital literacy, and in low and middle-
income countries.

3 | Build on this alignment within the pre-competitive space to enable meaningful
sharing of DHT data for defined regulatory purposes, taking into account
ethical and pragmatic considerations.

4 | Establish good practice for demonstrating meaningfulness of DHT-derived
measures.

5 | Establish good practice for demonstrating equivalence between different
hardware/software for a given DHT measure.

6 | Devise standardization approaches in data acquisition, how devices are used in
studies, data handling, and data analysis for defined DHT measurements for a
COI and catalyze the implementation of these in future studies.

7 | Develop collaborative data analytics platforms that are able to handle the large
data volumes collected and are designed to be robust to residual variation in
data collection given the rapidly evolving and heterogenous nature of DHT
hardware and embedded software.

8 | Provide a clearer roadmap for demonstrating “fit for purpose” DHTs by
focusing on some exemplar measures. Align across parallel consortia to
advance multiple data sources synergistically.

9 | Define pathways to improve usability to reduce patient and site burden,
especially in diverse and global clinical trial populations.

efficiently as possible to be able to attend to the time-sensitive
needs of patients. Such collaborative approaches should learn
lessons from other types of DDTs (e.g., imaging) to address
challenges of standardization and collaborative implementation
rather than
Given the
challenges of integrating and harmonizing legacy data collected

of analysis methods to enable convergence

divergence of proposed DHT measurements.

across distinct device platforms, it is recommended that
precompetitive collaborations focus on sharing risks, costs, and
prospective study design and collection to optimize DHT studies
for the future. We propose nine crucial next steps to advance
the field, as shown in Table 4. While these recommendations
are based on experience with this Parkison’s disease case study,
they are more generally applicable for DHTs used as DDTs in
this regulatory environment.
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