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Editorial on the Research Topic
Novelties in acute myeloid leukemia: from biology to clinical applications

In the last decade, tremendous advances have revolutionized the biological landscape of
acute myeloid leukemia (AML). The application of sophisticated molecular biology tools
has unveiled a plethora of (epi)genomic and transcriptomic alterations, some of which have
been recently recognized in pre-leukemic conditions (e.g. clonal hematopoiesis of
indeterminate potential - CHIP (1)) with implications on AML ontogenesis and
prognosis, paving the way for targeted approaches. The most recent diagnostic and
prognostic schemes have included these latest advances (2), further improving the
clinical management of AML patients.

The present Research Topic has provided a glimpse on some of these aspects, including:
1) new insights on AML biology, with the identification of novel transcriptomic signatures
affecting prognosis, mechanistic description of pathogenic mutations (i.e. RAS) and
oncogenic fusions (SET-CAN/NUP214) and the recent discoveries on leukemia stem
cells (LSCs) at single-cell resolution; 2) new therapeutic perspectives in either induction
(lower-dose chemotherapy + venetoclax or alternative chemotherapies for mixed
phenotype acute leukemia - MPAL) or relapsed/refractory (R/R) AML (venetoclax +
hypomethylating agents — HMA, targeted agent Selinexor, CAR-T cells). As a result, a
balanced selection of articles spanning from AML biology and novel prognostic indicators
to innovative therapeutic strategies has been selected for the readers.

Regarding AML biology, Villar et al. analyzed the transcriptome of 224 AML patients >
65 years-old at diagnosis treated in the Spanish PETHEMA-FLUGAZA clinical trial in
order to identify new prognostic biomarkers in this population. They identified a specific
transcriptomic signature for high-risk patients, revealing that low expression of B7H3 gene
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with high expression of BANP gene identifies a subset with a more
favorable prognosis surviving more than 12 months. This result was
further validated in the BEAT AML cohort.

Zhang et al. focused on autophagy, since beside being known as
a natural cellular response to a wide spectrum of cellular processes,
it is debated whether it might have a pathogenic role in leukemias
and particularly in AML. The authors found >100 differentially
expressed genes (DEGs) related to autophagy between AML and
healthy controls. Next, they selected 12 of these genes and
developed a prognostic model predictive for survival of AML
patients in both TCGA data and independent AML cohorts from
GEO databases.

Wan et al. in a first-time approach based on the differential
expression of lysosome-related genes in AML identified two
different subtypes: cluster]l showed longer overall survival (OS)
and stronger immune infiltration compared to cluster2. The pivotal
differential genes between the two clusters are SYK, whose pro-
carcinogenic mechanism relies in the promotion of AML cell
survival and drug resistance (3), and TLR4 which is thought to
modulate lysosomal function and is in turn degraded by lysosome
themselves (4). Finally, a prognostic model consisting of six genes
identified patients in a low-risk group who survived significantly
longer than those in the high-risk group and had higher immune
infiltration and stronger response to immunotherapy.

Further, Song et al. unravel the role of SET-CAN/NUP214
fusion in leukemia. This aberration mainly occurs in T-cell acute
lymphoblastic leukemia (T-ALL) patients, but it has also been
reported in other leukemias including AML, MPAL and B-ALL.
Leukemias bearing this fusion often share common
immunophenotypic markers such as: CD7, ¢cCD3, CD34, CD33
and CD13. This supports a model where the transformation of SET-
CAN/NUP214+ leukemia may occur in the early stage of myeloid
or lymphocyte differentiation, and it may be related to the
inhibition of differentiation of primitive progenitor cells by the
fusion gene. Patients with SET-CAN/NUP214 fusion usually exhibit
resistance to chemotherapy, including glucocorticoids in the early
stages of induction therapy, however the overall CR rate is
not affected.

In another original paper, Liang et al. focus on the pathogenic
role of RAS mutations in AML, and their impact on cell
metabolism. In fact, RAS gene mutations are prevalent in AML,
and the RAS signaling pathway is closely related to many metabolic
pathways. By using a Ba/F3 cell line model transduced with
NRAS®K and KRASC'?Y mutations, the authors conducted a
DEG analysis between mutant and wild-type cell lines. They
found 1899 DEGs, of which 1089 were related to metabolic
pathways, particularly the DGKzeta and PLA2G4A genes in the
glycerophospholipid metabolism pathway were significantly
upregulated. These findings may contribute to new precision
therapy strategies and the development of new therapeutic drugs
for AML.

In a comprehensive review, Zhou et al. provide a detailed
summary of single-cell sequencing strategies in AML. These
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techniques have revolutionized our understanding of AML
pathogenesis by enabling high-resolution interrogation of the
cellular heterogeneity in the AML ecosystem. The authors focus
on the identification of different leukemia stem cells (LSCs), T-cell
subpopulations displaying exhausted phenotypes permissive
towards AML, and pinpoint novel actionable liabilities. Such
targets include: LGALS1 (promoter of resistance to therapy),
CD52 and CD47 (expressed on the quiescent LSCs), CSFIR and
CD86 (highly expressed on LSCs). These latter two have been
proved to be effective CAR-T targets in preclinical evaluation (5).

On the clinical side, this Research Topic provides both Original
and Review articles highlighting different therapeutic strategies in
AML. Several authors introduce novel combinations on real-life
patients cohorts. Zhang et al. present a different induction strategy
involving 3 days of cyclophosphamide and cytarabine plus low dose
venetoclax in 25 newly diagnosed AML patients, achieving a 92%
CR/Cri rate (all MRD-) and 79% overall survival at 12 months.

The Polish group of Karasek et al. elaborate on a first-line
induction strategy using CLAG-M combination for mixed
phenotype acute leukemia (MPAL) patients, an interesting
approach for a disease still judged “orphan” due to its lineage
ambiguity and elusive biology. The authors report an ORR of 73%,
however responses need to be consolidated with allogeneic
transplant to avoid relapses.

In the context of R/R AML, Chen et al. compared the outcome
of AML patients relapsing after allogeneic transplant and treated
with venetoclax + azacytidine (VEN+HMA) vs those undergoing
intensive chemotherapy. ORR rates were not different between the
two arms (60% vs 64%), leading to a median OS of 6.8 months for
both arms. However, toxicity profile of VEN+HMA was more
favorable, with fewer infections (17% vs 50%), thrombocytopenia
(74% vs 95%) and acute graft-versus-host disease.

A Case Report by Sperotto et al. highlights the efficacy of CPX-
351 (liposomal cytarabine and daunorubicin) as a salvage
chemotherapy in a patient who developed a secondary AML (t-
AML) 15 years after treatment for acute promyelocytic leukemia
(all-trans-retinoic acid and chemotherapy). The patient achieved a
complete remission, underwent an allogeneic transplant and was
alive after 2 years of follow-up.

Despite these and other therapeutic interventions, several AML
patients still fail and/or relapse after first-line chemotherapy; these
are the ones experiencing the worst outcome. Identifying novel
treatment options for this subgroup of patients is an unmet clinical
need. Exportin-1 (XPO-1) is usually overexpressed in various
tumors, including relapsed AML. Selinexor, an inhibitor of XPO1,
effectively promotes nuclear retention and functional activation of
tumor suppressor proteins, thereby inducing apoptosis in cancer
cells. In their original Report, Zhang et al. describe a novel
combination of Selinexor plus decitabine and half-dose CAG
chemotherapy in an elderly patient with R/R AML, leading to
complete remission and good tolerance.

Lastly, among the novel promising treatments, CAR-T cells are
still under evaluation in AML but they might eventually take their
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primal role as in other onco-hematological diseases. A Review on
the role of CAR-T cells by Wei et al. in AML and T-ALL provides a
great summary of the therapeutic efficacy of adoptive cell strategies
in these two entities. CAR-T cells targeting CD5 and CD7 for T-
ALL and CD123, CD33, and CLL1 for AML show promising
efficacy and safety profiles in clinical trials.
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Acute myeloid leukemia (AML) in the elderly remains a clinical challenge, with a
five-year overall survival rate below 10%. The current ELN 2017 genetic risk
classification considers cytogenetic and mutational characteristics to stratify fit
AML patients into different prognostic groups. However, this classification is not
validated for elderly patients treated with a non-intensive approach, and its
performance may be suboptimal in this context. Indeed, the transcriptomic
landscape of AML in the elderly has been less explored and it might help stratify
this group of patients. In the current study, we analyzed the transcriptome of
224 AML patients > 65 years-old at diagnosis treated in the Spanish PETHEMA-
FLUGAZA clinical trial in order to identify new prognostic biomarkers in this
population. We identified a specific transcriptomic signature for high-risk
patients with mutated TP53 or complex karyotype, revealing that low
expression of B/H3 gene with high expression of BANP gene identifies a
subset of high-risk AML patients surviving more than 12 months. This result
was further validated in the BEAT AML cohort. This unique signature highlights
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the potential of transcriptomics to identify prognostic biomarkers in in

elderly AML.
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Introduction

Acute myeloid leukemia (AML) remains a disease of the
elderly, with the median age at diagnosis of 70 years old. While
young and fit patients with AML may receive an intensive
approach with chemotherapy and hematopoietic stem cell
transplantation (HSCT) (1, 2) as consolidation, older or frail
patients do not benefit from this strategy and receive less
intensive and unfrequently curative approaches (3-5).

Current risk stratification in AML patients is based mainly
on cytogenetics and the presence of common genetic aberrations
(NPM1, FLT3-ITD, CEBPA, RUNXI, ASXLI, and TP53
mutations) best exemplified in the ELN risk classification
system (1). This classification has been validated for young
and older but fit patients treated with intensive chemotherapy
(1, 6) and defines 3 prognostic groups based exclusively on
genetic data. In this context core binding factor (CBF)
leukemias, NPM1 and biallelic CEPBA mutations are
considered of good prognosis, while complex or monosomal
karyotype, TP53, FLT3-ITD, RUNXI and ASXLI mutations,
other recurrent translocations and KMT2A rearrangements
confer a poor prognosis. However, this classification is not
validated for elderly patients treated with a non-intensive
approach, and its performance seems to be suboptimal in this
context (7).

In addition to molecular and clinical characteristics,
alternative biomarker panels such as other somatic mutations
and gene expression profiling have been proposed to refine risk
classification in AML patients (8-12), providing models with a
prognostic value. Clinical implementation of an improved AML
risk classification model has the potential to aid in clinical
decision-making including the indication of HSCT for patients
with intermediate and adverse risk. However, the outcome of
patients with specific cytogenetic and molecular abnormalities
such as TP53 mutations or complex karyotype is still
disappointing, especially when both characteristics are present
in the same patient, with virtually all patients relapsing soon
after initial treatment (1, 13).

AML in the elderly remains a clinical challenge. On the one
hand, comorbidities and general performance status are
important factors limiting an intensive therapeutic approach,
thus a careful multi-domain assessment should be ideally
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considered when deciding the best treatment option for an old
patient with AML (14-16). On the other hand, the proportion of
adverse genetic abnormalities such as high risk cytogenetics and
TP53 mutations is higher in the elderly (17, 18). Considering
these clinical features, the prognosis of AML in elderly patients
remains dismal, with a five-year overall survival rate below 10%
(19, 20).

In the current study, we analyzed the transcriptome of 224
newly diagnosed elderly AML patients treated in the Spanish
PETHEMA-FLUGAZA clinical trial, with the aim to define
new prognostic groups in this population. The detailed results
of treatment schedules, clinical outcomes with minimal
residual disease (MRD) data, and genomic landscape of
PETHEMA-FLUGAZA patients have been previously
published (21-23).

Methods
Study design

The multicentric PETHEMA-FLUGAZA phase 3 clinical
trial (NCT02319135) included a total of 283 elderly patients (>
65-year-old) diagnosed with de novo or secondary AML, who
were randomized to receive FLUGA (n=141), consisting of 3
induction cycles with fludarabine and cytarabine followed by 6
consolidation cycles of reduced intensity FLUGA (riFLUGA), or
AZA (n=142), 3 induction cycles with 5-azacitidine followed by
6 identical consolidation cycles (Figure S1A). Patients diagnosed
with acute promyelocytic leukemia and ECOG > 4 were
excluded from the trial.

Clinical data was collected in a standardized form, from a
total of 26 Spanish centers that participated in the PETHEMA-
FLUGAZA trial. Cytogenetic analysis was locally performed.
Regarding molecular landscape, NPM1, FLT3-ITD and CEPBA
mutation assessment was locally performed when possible.
However, wide mutational data was retrospectively analyzed in
a central laboratory with a myeloid NGS platform (Hospital
Universitario 12 de Octubre, Madrid) (23) (Figure 1A). This
clinical trial was conducted in accordance with the Declaration
of Helsinki. Written informed consent was provided by
all patients.
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FIGURE 1
Identification of a long survival group beyond 12 months in elderly AML patients. (A) Scheme of the process carried out to obtain the RNAseq
and mutation data through a myeloid NGS panel in AML samples of the PETHEMA-FLUGAZA clinical trial. (B) Unsupervised hierarchical

clustering of the entire AML patient cohort using full transcriptional profiling, identifying 3 different groups. (C) Overall survival analysis of the 3
different AML groups based on the transcriptional profile.

Frontiers in Oncology frontiersin.org

10


https://doi.org/10.3389/fonc.2022.1054458
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Villar et al.

Sample preparation and RNA sequencing

Bone marrow (BM) samples at diagnosis were characterized
by multidimensional flow cytometry (MFC) in a central
laboratory (CIMA, Centre for Applied Medical Research), and
leukemic cells were purified by FACS. Co-Isolation protocol was
performed to obtain DNA and RNA. Poly-A RNA was captured
for further RNAseq protocol, while DNA was obtained from
poly-A capture supernatant using SPRIselect beads (Figure 1A).

RNAseq was performed following MARS-seq protocol
adapted for bulk RNAseq (24, 25) with minor modifications.
Poly-A RNA was reverse-transcribed using poly-dT oligos
carrying a 7 nt-index. Pooled samples were subjected to linear
amplification by IVT. Resulting aRNA was fragmented and
dephosphorylated. Ligation of partial Illumina adaptor
sequences (24) was followed by a second reverse-transcription
reaction. Full Illumina adaptor sequences were added during
final library amplification. RN Aseq libraries quantification was
done with Qubit 3.0 Fluorometer (Life Technologies), and size
profiles were examined using Agilent’s 4200 TapeStation System.
Libraries were sequenced in an Illumina NextSeq 500 at a
sequence depth of 10 million reads per sample. Raw reads
were demultiplexed according to manufacturer’s instructions
using bcl2fastq2 (v.2.20.0). Sequencing reads were aligned
using STAR alignment tool (26) against hg38 reference
genome. Counts were obtained using featureCounts from
Rsubread R package, using ENSEMBL gene annotation
(version 92). We used R (version 4.0.0) to perform
hierarchical clustering and survival analysis. Results were
visualized using R (Figure 1A).

Statistical analysis

Overall survival (OS) was defined as the time since
enrollment until death from any cause. Univariate and
multivariate Cox regression analyses were calculated using R
(version 4.0.0; The R Foundation, Vienna, Austria). Continuous
variables are presented as means and standard deviations or as
medians with ranges. Categorical variables are represented by
frequencies and percentages. For all analyses, the P values were 2
tailed, and P < 0.05 was considered statistically significant. For
the multivariate analysis, median values of Counts per Million
(CPMs) were calculated for each gene, and then factorized as
Low (Gene Low) or High (Gene High) according to the
median value.

Results

Baseline characteristics of patients included in the study are
summarized in Supplementary Table 1. RNA sequencing
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(RNAseq) was performed on FACS sorted purified BM blasts
obtained at diagnosis in 224 AML patients out of the 283
patients enrolled in the PETHEMA-FLUGAZA clinical trial
(21) (112 of each arm) (Figure 1A). A total of 59 patients were
excluded because of sample unavailability at diagnosis, assay
failure, and/or bad sample quality. The median age at diagnosis
was 75 years old. Median OS of the 224 patients was 5 months.
Detailed treatment design, mutational landscape, ELN
distribution and overall survival of patients are shown in
Figures S1A-D.

Unsupervised hierarchical clustering identified 3 different
groups based on the transcriptional profile (Figure 1B). There
was no association between these transcriptional profiles and
mutations in AML related genes, cytogenetics or ELN genetic
risk categories such as the presence of NPM1, FLT3-ITD, TP53,
RUNXI or ASXLI mutations. Survival analysis of the 3
transcriptomic groups did not show any differences, even
though a trend to a better OS was identified for group
2 (Figure 1C).

Despite the dismal OS of this cohort, a group of elderly AML
patients surviving beyond 12 months was identified (n=76).
These long-term survivors were not characterized by a
distinctive mutational or cytogenetic profile, and therefore we
examined if there was a specific transcriptional signature
associated with this group of patients. A differential expression
analysis between patients surviving more or less than 12 months
did not show any specific transcriptional signature either in the
whole group or according to the treatment arm (Figure S2).

We next analyzed the transcriptomic profiles for these long-
term survivors according to the different genetic groups such as
FLT3-ITD, NPM1, TP53, RUNX1, TET2, IDHI1/2 mutations and
complex karyotype. Patients with mutations in NPM1, RUNXI,
IDH1/2 or TET2 did not show a transcriptional profile associated
with long-term survivors (Figure S3). However, a specific
transcriptional profile was identified in long-term survivors
with complex karyotype, TP53 or FLT3-ITD mutations
(Figure 2). When we focused at the differentially expressed
genes between long-term survivors in the FLT3-ITD, TP53
mutated and complex karyotype groups, we found that TP53
mutated and complex karyotype groups showed most of the
differentially expressed genes, 77 and 1099 respectively
(Figure 3A). In this context, we focused our analysis in TP53
mutated and complex karyotype patients. We found 56
differentially expressed genes shared in both groups of
patients, out of which 15 genes (CPXM1, CLDN15, B7H3,
RN7SL2, BANP, ATP2A1, ZNF182, NID1, BDHI, TREMI,
CAV2, BAALC-AS2, CATSPERD, PIP4K2B, and PASK) were
significantly associated with overall survival of AML patients on
the univariate analysis (Figure 3B). Enrichment analysis was
performed with those 15 genes in order to find altered pathways
(Figure 3C and Supplementary Table 2).

On the multivariate analysis including other adverse
category mutations such as RUNXI, ASXLI, and FLT3-ITDmt
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FIGURE 2

Long survival AML patients with complex Karyotype or TP53 mutations show differential transcriptomic profile respect to non-long survival AML
patients with these same genetic alterations. (A-C) Differential expression analysis between long survival AML patients and non-long survival
AML patients with (A) Complex Karyotype, (B) TP53 mutations. (C) FLT3-ITD mutations. (D) Legend.

with NPMI1wt, as well as treatment arm, only the expression of
B7H3 and BANP was significantly associated with OS
(Figure 3D). In fact, the expression of these 2 genes stratified
patients with mutated TP53 or complex karyotype into 3 groups
with a different survival: patients with low expression of B7H3
(CPM expression < 1.56 CPM) and high expression of BANP
(CPM expression > 4.14 CPM) (B7H3lo/ BANPhi) translated into
a significantly better survival, whereas the opposite signature
displayed a very short overall survival (B7H3hi/BANPIo) (MOS 1
month vs 14 months, p < 0.001). Patients with concordant
expression profile (B7H3lo/BANPlo), (B7H3hi/BANPhi),
presented with an intermediate prognosis (median OS 3.6 and
3.4 months respectively) (Figure 4A). Baseline characteristics of
the three prognosis groups are summarized in Supplementary
Table 3. Even though treatment arm did not have an impact in
the multivariate analysis, (Figure 3D) we decided to confirm the
prognostic value of our signature by taking each treatment arm

Frontiers in Oncology

12

separately, (Figure S4), confirming the same prognostic
stratification. Finally, the prognostic value of the expression of
B7H3 and BANP was validated using the BeatAML independent
cohort of AML patients (27) (Figure 4B), which includes also
elderly patients intensively treated. Thus, low expression of
B7H3 (CPM expression, < 1.67 CPM) and high expression of
BANP (CPM expression > 3.96 CPM) seem to identify a subset
of patients with better outcome in the classical high-risk group of
TP53 mutated or complex karyotype elderly patients, including
old AML patients treated with intensive chemotherapy.

Discussion

AML in the elderly remains a clinical challenge. Currently in
the clinical setting, the WHO and ELN risk stratification
guidelines combine cytogenetic abnormalities and genetic
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FIGURE 4

AML patients with low expression of B7H3 and high expression
of BANP show a significantly better overall survival. (A) Overall
survival analysis in AML patients with TP53 mutated or complex
karyotype included in the PETHEMA-FLUGAZA trial using the
expression of B7H3 and BANP genes. (B) Overall survival analysis
in AML patients included in BeatAML cohort using the expression
of B7H3 and BANP genes.

mutations to establish optimal therapies for patients with AML.
The development of novel RNA sequencing based prognostic
scores for AML (28), including the integration of mutational and
gene-expression data, have been found to add prognostic value
to the current European Leukemia Net (ELN) risk classification
as well as to identify new genomic subtypes. However, there is a
need to identify patients that despite their general poor
prognosis may experience a longer survival and/or can benefit
from specific therapy.

In this study, exploiting RN Aseq data obtained from a group
of 224 AML patients homogeneously treated, we aimed to
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identify transcriptional biomarkers to identify patients with a
different prognosis within ELN genetic risk groups. Although the
unsupervised hierarchical clustering of the whole cohort
identified 3 different transcriptional profiles, there were no
association with classical AML related mutational and
cytogenetic data. These findings might be consistent with the
already well stablished heterogeneous nature of AML (10, 29).
The lack of significant differences in survival between the 3
subgroups might be related with the small size of some of the
transcriptional subgroups.

However, our results identified a unique transcriptomic
signature in the typically adverse group with TP53 mutation or
complex karyotype, based on the expression of B7H3 and BANP
genes. This high risk group of patients have commonly a short
survival of less than 12 months (30), and significantly worse if
they are old or unfit (31). Conversely, we demonstrate that high
risk AML patients with low expression of B7H3 together with
high expression of BANP gene display a significantly better
overall survival than the whole group. This signature might
modify the negative prognostic impact of TP53 or complex
karyotype in AML patients.

Beside their role as biomarkers, both genes identified have
been implicated in the pathogenesis of AML. B7H3, a
transmembrane protein type I located in chromosome 15, is
an immune checkpoint from the B7 family. Previous studies
have identified high expression of B7H3 as an adverse factor in
multiple tumors, including AML (32, 33), having an
immunological function, acting essentially as a coinhibitory
immune checkpoint with an important role in immune editing
and immune evasion. Prior studies have shown that B7H3
generates an immunosuppressive tumor microenvironment,
thus favoring immune surveillance evasion and promoting
tumor progression (34). However, in recent years, non-
immunological functions of B7H3 seem to be even more
important than the immunological ones for tumor
aggressiveness. B7H3 regulates migration, invasion and
adhesion (34, 35), as well as promoting apoptosis resistance
and chemoresistance in models of colorectal and breast cancer
(33). Specifically in AML three different studies have addressed
the implications of expression of B7H3 (32, 36, 37). In the most
comprehensive and integrative study including 625 patients with
AML, they found that B7H3 expression was essentially regulated
by DNA methylation, and it was associated with old age, TP53
mutations, and a poor outcome in four independent datasets. In
line with these findings, another study conducted by Zhang, W
(38) showed that B7H3 knockdown in an AML cell line
significantly decreased cell growth and enhanced
chemosensitivity. We found a favorable outcome for high-risk
patients with low B7H3 expression, regardless of treatment arm.
This is consistent with previously described functional
implications of B7H3. AML patients with low B7H3 expression
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could reflect a group with more active antitumor immunity, less
aggressive AML cell properties and a more favorable
chemosensitivity profile. Taken together, all these findings
might explain why these initially high-risk patients do
generally better in our cohort and enhance the potential of
B7H3 as a prognostic biomarker and possibly as a therapeutic
target in high-risk AML.

BANP (BTG3 associated nuclear protein) is a nuclear
matrix attachment region binding protein (MARBP) essential
for nuclear matrix binding that has been implicated in cancer.
MARBPs facilitate a correct chromatin assembly necessary for
the normal gene replication and transcription (39). Thus,
perturbations in these proteins might lead to an incorrect
chromatin folding and aberrant replication and
transcriptional programs, promoting genomic instability and
oncogenesis (40, 41). Kaul et al. conducted the first study in
mouse melanoma cells (42), showing that ectopic expression of
SMARI (murine homolog of BANP) promoted cell arrest.
Subsequent studies have been carried out mainly in breast
cancer models (43, 44). BANP exerts its antitumor activity
through the modulation of crucial transcription factors such as
p53 and NF«P (45). These interactions take place through the
formation of complexes with histone deacetylase (HDACI). In
addition, BANP regulates the TGFf pathway by inducing the
expression of SMAD?7, an inhibitory SMAD that negatively
regulates the TGFPB pathway. These studies reflect the
important role of BANP as a tumor suppressor gene in
cancer and may be consistent with our findings in which
higher levels of BANP expression were associated with a
favorable outcome in high-risk AML patients. In that sense,
therapeutic approaches addressing the stabilization of BANP
expression may be warranted.

In conclusion, we performed RNAseq in 224 elderly AML
patients homogeneously treated, with the aim to define new
prognostic groups. We identified the expression of B7H3 and
BANP genes as unique transcriptomic biomarkers, revealing a
long survival group within TP53 mutated or complex karyotype
AML patients. As a potential limitation of our study, we
acknowledge that TP53 mutation assessment was performed
with NGS, therefore information regarding multihit TP53
mutation was not available. According to our findings,
B7H3lo/BANPhi patients have a clinical course more similar to
a low-risk genetic group, and this signature might reduce the
negative prognostic impact of TP53 or complex karyotype in
AML patients. These two genes might serve as prognostic
biomarkers and functional studies should address its utility as
therapeutic targets in AML.
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Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic
leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic
effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell
acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell
therapy may be a promising approach to treat non-B-cell acute leukemia, given its
promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless,
fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen
selection and complex microenvironment for AML remain significant challenges in
the implementation of CAR-T therapy for T-ALL and AML patients in the clinic.
Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123,
CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical
trials. In this review, we summarize the characteristics of non-B-cell acute
leukemia, the development of CARs, the CAR targets, and their efficacy for
treating non-B-cell acute leukemia.

KEYWORDS

chimeric antigen receptor, T-ALL, AML, antigen, immunotherapy

Introduction
Clinical features, treatment, and prognosis of T-ALL

T-ALL is a highly invasive form of hematological malignancy that results from the
malignant transformation of immature T-cell progenitors, characterized by active cell
proliferation, high tumor burden, leucocyte count, extramedullary involvement, large
thymic masses, and pleural effusions. T-ALL occurs in 10%-15% of pediatric and about
25% of adult ALL cases, respectively (1). Compared with B-ALL, T-ALL cases are
generally diagnosed in older individuals, are biologically distinct to B-ALL and have
different kinetic patterns of disease response. For example, most B-ALL originates from
the pre-pro-B and pro-B-cell, while, in contrast, T-ALL originates from various stages of
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T cells. In addition, T-ALL patients are generally more resistant
to conventional chemotherapeutic drugs than patients with B-
ALL. Notably, B-ALL has also been found to be associated with
favorable (low-risk) genetic subtypes that inform reliable
therapeutic implications and realistic prognostication of their
condition in patients, thereby facilitating risk stratification and
targeted therapy (2-6). However, given the greater genetic and
cellular heterogeneity, such an approach is so far elusive for T-
ALL, with current treatment approaches relying on multidrug
combination followed by intensive consolidation and
maintenance therapy, with central nervous system (CNS)
prophylaxis given at intervals throughout treatment (7).
Nevertheless, treatments for T-ALL show significant success,
with 5-year survival rates of 80%-90% for pediatric cases, yet
30%-40% for adult cases (8, 9), but there are still 20% of T-ALL
patients ultimately die because of relapsed or refractory disease.
The development of radiotherapy, new drugs, and targeted
therapies targeting CD19, CD20, and CD22, have altogether
improved the clinical management of R/R B-ALL. In contrast,
curative treatments for R/R T-ALL remain to be significantly
found, with hematopoietic stem cell transplantation (HSCT)
currently the only such approach.

Clinical features, treatment, and
prognosis of AML

AML is a hematological malignancy formed by abnormal
clonal proliferation of primitive myeloid cells, and characterized
by the accumulation of deformed, immature, and nonfunctional
myeloid cells in bone marrow and blood. The incidence of AML
increases with age, accounting for 15%-20% of leukemia cases in
childhood, and is the second most common form of leukemia in
children while it is the most common adult acute leukemia (10). In
most children, AML often occurs de novo while in adult, a major
proportion of AML are generally preceded by myeloproliferative
neoplasms (MPN) or myelodysplastic syndrome (MDS) (11, 12).
Current strategies for the treatment of AML involve two-phase
chemotherapy, including anthracycline- and cytarabine-based
induction chemotherapy, wherein children also receive central
nervous system (CNS) prophylaxis to prevent central nervous
system relapse. Patients who achieve initial remission then receive
consolidation/intensification therapy, including combination
chemotherapy or HSCT. While the treatment for children with
acute promyelocytic leukemia (APL) includes a third phase called
maintenance, which gives lower dose treatment than those used
during the induction and consolidation phases (13-15). After
treatment with standard regimens, the long-term survival rate of
AML approaches near 70% in children and 35-45% in adult
patients under 60 years, compared with 10-15% for those over 60
years (16). For relapsed patients, the median survival is 6 months
and approximately 10% of patients achieve long-term survival,
relapse and associated complications are common causes of death
in AML (17, 18). Most recently, targeted therapy,
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immunotherapy, and new drugs have provided more treatment
options for AML, but the efficacy in R/R patients remains poor. It
is an urgent need for more effective treatments to improve patient
survival rates for AML.

The structure of CARs

CARs are various receptors that endow T cells with the
capacity to recognize specific tumor antigens and induce
cytotoxicity against malignant cells, based on their expression
of such antigens (19). The basic structure of CARs consists of
four components (as shown in Figure 1): (1) Antigen recognition
domain. The antigen recognition domain is the extracellular
domain of the CAR, which is essential for T-cell activation,
recognition, and cytotoxicity. The most common extracellular
antigen recognition domain is a single-chain variable fragment
(scFv) composed of heavy (V) and light (V) chains derived
from monoclonal antibodies. In addition, natural ligands or
receptors, repeat proteins such as designed ankyrin-repeat
proteins (DARPins) and variable lymphocyte receptors (VLRs)
derived from the sea lamprey genome, T-cell receptor (TCR)
variable fragments, multivalent binding domains, universal
switchable recognition domains, single variable domain on a
heavy chain such as nanobody (also referred as VHH) and
peptide, as well as others, could be used to construct the CAR
(20, 21). (2) Hinge domain. The hinge domain is an extracellular
structure between the antigen recognition domain and the
transmembrane domain. The length and composition of the
hinge domain are known to affect the flexibility of the CAR, CAR
expression, signal transduction, and epitope recognition (22, 23).
Presently, the most commonly effective hinge domains for CAR
design comprise amino acid sequences derived from CDS,
CD28, IgGl, or IgG4 (24). (3) Transmembrane domain. The
transmembrane domain anchors the CAR to the cell surface
membrane and is frequently derived from type I proteins
including CD3{, CD4, CD8ca, and CD28. Different
transmembrane domains influence the stability and function
of CARs. For example, CD3{ mediates CAR dimerization, and

Antigen recognition domain: scFv; natural
ligand/receptor; repeat protein; TCR variable
fragm ns

single variable domain, peptide and
universal switchable recognition domains

Transmembrane domain:
CD3g, CD4, CD8a, or CD28

CD27; MYD:
CD40 and KIR2DS2

B)|  Activation domain: CD3; | ()

Y

FIGURE 1
The basic structure of CARs.
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the insertion of endogenous TCRs can promote CAR-mediated
T-cell activation (25), but it is also less stable compared to the
CD28 transmembrane domain (26). The transmembrane
domain derived from CD8c. induces less IFNy and TNFo
release than CD28 and is less sensitive to activation-induced
cell death (AICD) (27). (4) Intracellular signal domain. This
region is composed of a typical intracellular signal domain that
includes an activation domain, as well as one or more
costimulatory domains. Current CARs activate T-cells through
the CD3{-derived immunoreceptor tyrosine-activated domain
(24). However, the activation domain alone may not be enough
to induce an effective response of CAR-T cells, since the
persistence and activity of CAR-T cells in vivo remain limited
(28). Costimulatory domains combined with the activation
domain-bearing CD19-targeting CAR-T cells result in better
persistence in B-cell malignancies (29). The two most common
costimulatory domains, CD28 and 4-1BB (also known as CD137
or TNFRSF9) are used in most clinical trials and CD28-bearing
and 4-1BB-bearing CD19 CAR have been approved by Food and
Drug Administration (FDA) for B-cell malignancies and
achieved promising clinical responses (30-35). Further, other
costimulatory domains, such as OX40 (also known as CD134),
ICOS (inducible T-cell costimulator), CD27, MYD88-CD40, and
KIR2DS2 (killer cell immunoglobulin-like receptor 2DS2), that
have demonstrated efficacy in preclinical models but have not
yet been validated in clinical studies (36-40).

The evolution of CAR development

Since the first generation CAR was described in the late 1990s;
four further generations of CARs have been developed,
(summarised in Figure 2). The first generation CAR contained

10.3389/fonc.2022.967754

the CD3{ intracellular signaling domain but without
costimulatory domains, and it induced low interleukin (IL)-2
production and displayed inadequate proliferation and short
lifespan in vivo (41). From this, the second generation CAR
comprised an additional costimulatory domain, such as CD28,
4-1BB, or OX-40, and this led to enhanced proliferation,
cytotoxicity, and persistence for CAR (42). The third generation
CAR combined multiple costimulatory signaling domains.
Although these represent a good safety profile in tumor therapy,
their efficacy was not significantly improved compared with the
second generation CAR (43). The fourth generation CAR refers to
T-cells redirected for universal cytokine-mediated killing
(TRUCKSs), which added IL-12 based on the second generation
CAR. In this design, IL-12 is expressed either constitutively or
inducibly after CAR activation, which promotes the production
and secretion of desired cytokines, as well as enhances cytotoxicity
against tumor cells through multiple synergistic mechanisms (44,
45). The fifth generation CAR design involved the addition of a 3-
chain domain of the IL-2 receptor based on the second generation
CAR, which comprises a binding site for the transcription factor
STATS3. Antigen-specific activation of this receptor can trigger
three signals: the TCR via CD3{ domains, the costimulatory
domain via the CD28 domain, and cytokine signaling via JAK-
STAT, which act synergistically to activate and expand CAR-T
cells (46, 47).

The advantage of CAR-T therapy

When compared with TCRs, CARs are major
histocompatibility complex (MHC) independent and can
recognize targeted antigens expressed on the cell surface (48,
49), which is in contrast to TCRs that only recognize natural
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generation generation generation generation CAR generation
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FIGURE 2
Five generation of CARs.
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antigens presented by MHC (50). Thus, loss of MHC class I is
recognized as the major mechanism of immune escape for tumor
cells. As such, the characteristic of MHC independence makes
CAR-T cells more applicable for tumor therapy (51). CAR-T cells
eliminate tumor cells by recognizing tumor-specific antigens
(TSA) on the surface of tumor cells, which has the advantage of
minimizing damage to normal tissues (52, 53). In addition, tumor
cells downregulate the expression of costimulatory molecules, and
the intracellular structure of CAR contains a costimulatory
domain that counteracts this effect, leading to improved
therapeutic efficacy for treating tumors. It is noteworthy that
CAR not only recognizes protein antigens but also recognizes
carbohydrates and lipids antigens, thereby providing more design
options for the preparation of effective CAR (54, 55).

CAR-T therapy for non-B-cell
acute leukemia

The development of CAR-T therapy for non-B-cell acute
leukemia faces some unique challenges, such as fratricide,
malignant contamination, T-cell aplasia for T-ALL and
antigen heterogeneity, and immunosuppressive environment
for AML. Although there are obstacles in the development of
CAR-T therapy for non-B-cell acute leukemia, some strategies
have been developed to solve these problems, as shown in
Figure 3. In this review, we focus on specific targets with
promising efficacy and safety, which have been verified in
preclinical or clinical trials.

Antigen targets of CAR-T therapy
in T-ALL

CD5
CD5 is a surface marker of T-cell malignancies and is
expressed in approximately 80%-95% of T-ALL or T

10.3389/fonc.2022.967754

lymphoblastic lymphoma (TLL) (56, 57). Typically, CD5 is
also expressed on mature peripheral blood T cells, thymocytes,
and some B-cell lymphocytes in healthy tissues, which lead to
fratricide of CAR-T cells (58, 59). In 2015, Mamonkin et al.
reported that CD5 CAR-T cells only exhibit partial fratricide,
following which these could be expanded in vitro. The expanded
CAR-T cells also maintained killing efficacy in T-ALL/TLL
tumor cell lines (including Jurkat, CCRF-CEM, MOLT4,
Hut78, and SupTl) and primary T-ALL cells in vitro and
Jurkat and CCRF-CEM cell lines in vivo. Further investigation
found that the incomplete fratricide of CD5 CAR-T cells was due
to the internalization of surface CD5 molecules after ligand
binding which, in turn, downregulated CD5 expression on the
normal T-cell surface (60). To prevent fratricide completely, in
2017, Raikar et al. genetically knocked out CD5 expression on
the surface of T cells with CRISPR-Cas9 genome editing, and
CD5-edited effector T cells overcame the challenge of self-
activation and fratricide, which demonstrating the feasibility
for CD5 CAR-T therapy in T-cell malignancies (61). To prolong
the persistence of CAR-T cells in vivo, in 2018, Mamonkin et al.
designed a doxycycline (Dox) controlled Tet-Off system to
inhibit CAR expression to prevent fratricide of 4-1BB CD5
CAR instead of CD28 CD5 CAR. In this study, CD5
expression in CAR-T cells occurred after Dox withdrawal,
leading to improved and prolonged antitumor ability against
CD5+ T-ALL cell lines Jurkat and CCRF-CEM in vitro, as well as
the Jurkat mouse model in vivo (62). To explore the feasibility of
CD5 CAR-T therapy as a bridge to HSCT in the clinic, in 2019,
Hill et al. treated 9 heavily treated patients with autologous CD5
CAR-T cells, and 3/9 patients achieved CR, 4/9 patients obtained
an objective response, and 2/9 patients relapsed at 6 weeks and 7
months post-infusion, all side-effects were manageable. These
results proved that CD5 CAR-T cells could allow ineligible
patients to proceed to HSCT with safety and clinical response
for R/R CD5+ malignancies (63). Except for the fratricide, T-cell
aplasia is also an important challenge for CD5 CAR. In 2020,
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Wada et al. used alemtuzumab, which targets CD52 as an
inducible safety switch, to remove CAR-T cells from systemic
blood circulation without affecting the anti-tumor efficacy in the
mouse model, thus avoiding T-cell aplasia after therapy (64). T-
cell malignancies with CNS infiltration always have poor
outcomes and limited treatment options, IL-15 could
strengthen the anti-tumor response. In 2021, Feng et al.
modified a CD5-IL-15/IL15sushi CAR which secretes an IL-
15/IL-15 complex, to explore its clinical effectiveness against one
refractory T-cell lymphoma patient with CNS infiltration. This
patient obtained a rapid ablation of the CNS lymphoblast and
lymphoma and was accompanied by brief and transient T-cell
aplasia (65). In another study, Dai et al. manufactured a new
biepitopic CAR with fully human heavy-chain variables FHV 43
and FHVyl, which could bind different epitopes of CD5. As
such, CD5KO FHVy3/Vyl CAR-T cells showed prolonged and
sustained efficacy against CD5+ T-ALL cell lines, such as Jurkat,
CCRF-CEM, MOLT4, SupT1 in vitro, and CCREF-CEM in vivo,
with moderate cytokine production, proved that this new CD5
CAR deserved more exploration (66). Due to recurrence
occurring in some patients after CAR-T therapy which targets
single antigen CD5 or CD7 (63, 67), in 2022, Dai et al. designed a
bispecific CAR that targeted CD5 and CD7 with a fully human
variable heavy chain (FHVy;). The results showed that fratricide-
resistant FHV;-derived CD5/CD7 bispecific CAR-T cells
showed potent antitumor activity to Jurkat, CCRF-CEM,
MOLT-4, and SUP-T1 cell lines in vitro and CCRF-CEM T-
ALL mouse model in vivo, it provided the possibility to the
populations with antigen heterogeneous (68). Pan et al. explored
the safety and efficacy of donor-derived CD5 CAR-T cells in
CD7-negative relapsed patients after CD7 CAR therapy. The
data showed that all five patients achieved CR at 1 month and no
dose-limiting toxicities occurred. Donor-derived CD5 CAR
showed promising clinical safety and response in R/R T-ALL,
but the evaluation of durable remission and functional immune
system reconstitution needs longer follow-ups (69). Possible
approaches to overcome the challenges such as fratricide and
T-cell aplasia include internalization of surface CD5, CRISPR-
Cas9, or Tet-Off system technologies that could be used to deal
with complete fratricide without affecting the efficacy of CAR-T
cells, while alemtuzumab could be used as a safety switch to
deplete CAR-T cells after therapy to prevent T-cell aplasia.
Taken together, CD5 is a promising target for CD5+

TABLE 1 Recruiting for CD5 CAR clinical trials.

NCT Number Interventions
NCT03081910 Autologous CD5.CAR/28 zeta CAR T
NCT04594135 anti-CD5 CAR T

NCT05032599 Donor-derived CD5 CAR T
NCT05487495 Donor-derived CD5 CAR T (CT125B)
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hematological malignancies, there are 4 clinical trials about
CD5 CARs that are being recruited, as shown in Table 1.

CD3

CD3 is a pan-T-cell surface antigen, expressed predominantly
on all mature T-cells (70), however, the development of CAR-T
targeting CD3 remains limited due to the complete fratricide of
CAR-T cells. In 2018, Rasaiyaah et al. tried to disrupt endogenous
TCRaB/CD3 on T cells by adopting transcription activator-like
effector nuclease (TALEN) to construct a CAR targeting CD3e and
CAR-T cells exhibited specific toxicity against the T-ALL cell line
Jurkat in vitro and in vivo (71). However, since T-ALL and TLL cells
derived from patients typically express cytoplasmic CD3 (cCD3)
rather than membrane CD3 (mCD?3) (72), the therapeutic effect of
CAR targeting CD3 is limited in its clinical application. No clinical
trials are currently documented in the literature.

CDh7

CD7 is a 40-kD Ig superfamily member expressed on normal
T and NK cells (73-75) and is expressed in over 95% of ALL and
30% of AML, as well as some lymphomas (56, 76-79). CAR-T
cells targeting CD7 showed complete fratricide and could not be
expanded, thereby resulting in limited studies of CAR targeting
CD7 until 2017. Gomes-Silva et al. first knocked out CD7
expression on normal T cells by CRISPR-Cas9 pre-T-
transfection so that CD7-knocked out CAR-T cells could be
expanded, and these cells showed specific cytotoxicity to both
CD7+ cell lines Jurkat, CCRF-CEM, MOLT-4, Hut78 and
SupT1, also primary blasts, these provided a new insight for
CD7 CAR (76). Png et al. reported a study that blocked CD7 in
the ER/Golgi by using a protein expression blocker (PEBL)
system, in which CD7 could not be expressed on the surface
of T cells. This method alleviated fratricide without affecting the
proliferation of CAR-T cells, while CD7 CAR-T cells showed
strong antileukemia activity to CD7+ cell lines including Jurkat,
CCRF-CEM, Loucy, MOLT4, and KGla (80). Due to CD7
expression on both normal and malignant T cells, fratricide
and malignant contamination occurred during CAR-T cell
preparation. To solve both issues, allogeneic T cells may be
another choice to prepare CAR-T cells. Then in 2018, Cooper
et al. knocked out CD7 and the T-cell receptor alpha chain
(TRAC) of T cells by CRISPR-Cas9, and CD7 CAR-T cells
showed antileukemia efficacy against T-ALL cell lines MOLT-3,

First posted Phase Locations
16-Mar-17 I United States
20-Oct-20 I China
2-Sep-21 I China
4-Aug-22 I China
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MOLT-4, HSB-2, and CCRF-CEM without graft-versus-host-
disease (GVHD) (81). In 2020, Zhang et al. explored the
antitumor activity and toxicity of CD7 CAR in clinical trials
for the first time. The author reported that 2 of 3 enrolled R/R
ALL/TLL patients obtained complete remission (CR) with
minimal residual disease (MRD) negative at day 28 post-
infusion. At the same time, cytokine release syndrome (CRS)
occurred which was controllable. Nevertheless, this study
showed the significant potential value for the clinical
application of CD7 CAR (82). To address CRS after CAR-T
cell therapy, in 2021, Li et al. treated 2 T-ALL patients with “off-
the-shelf” allogeneic CD7 CAR-T cells combined with
ruxolitinib. Strong CAR-T-cell expansion and rapid tumor cell
clearance were detected after CAR-T cell infusion, and both
patients achieved CR with MRD negative. While, both patients
developed grade 3 CRS, but it was manageable with co-treatment
of ruxolitinib (83). Yang et al. conducted a phase I clinical trial of
CD7 CAR-T cell therapy for 14 R/R T-ALL. The data showed
that 13/14 (92.9%) patients achieved MRD negative CR at day 28
post-infusion and all patients experienced mild CRS (grade<2)
(84). For T-ALL patients, there may be not enough normal T
cells for CAR-T cells preparation, Pan et al. used donor-derived
CD7 CAR-T cells to explore the efficacy and safety in R/R T-
ALL, 18/20 patients achieved CR with 7 patients proceeding to
HSCT and with a manageable safety profile (67). Furthermore,
CAR-T/NK targeting CD7 will clear CD7-positive normal T/NK
cells in vivo, HSCT is usually required after CAR-T therapy;
otherwise, the treatment causes severe immunodeficiency and
potentially life-threatening infection by pathogenic
microorganisms. Kim et al. knocked out CD7 in hematopoietic
stem cells (HSCs) and found that these CD7-KO HSCs
differentiated into CD7-negative T-cells and NK cells that
exhibited effector functions after transplantation into mice.
This study suggests that such an approach could resolve T-cell
immunodeficiency caused by CD7-CAR therapy, altogether
providing a potential new approach for the development of
CD7 CAR (85). In 2022, Dai et al. reported a case that
haploidentical CD7 CAR-T cells induced remission in an 11-
year-old TP53 mutated R/R ETP-ALL/LBL patient, and grade 3
CRS and macrophage activation syndrome were observed but
manageable (86). Due to the GVHD occurring in some patients
after donor-derived CD7 CAR-T cell therapy, Zhao et al. treated
five R/R T-ALL/LBL with autologous CAR-T cell therapy. The
results showed that 4/5 patients achieved CR at day 30 post-
infusion without neurotoxicity, GVHD, or infection (87). Due to
3-10% CD7- T cells exiting in peripheral blood, Lu et al. obtained
naturally selected 7CAR (NS7CAR) T cells, which are a subtype
of CD7 negative T-cells that survived from fratricide. The
NS7CAR T cells comprised a higher proportion of CAR+ cells
and CD8+ central memory T cells while maintaining similar
therapeutic activity to cell line CCRF-CEM in vitro and in vivo
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when compared with CD7 knocked-out 7CAR T cells. Most
importantly, a study of 14 R/R T-ALL and 6 T-LBL patients who
received NS7CAR T therapy found that 19/20 patients achieved
MRD CR in bone marrow at day 28, all with manageable side
effects (88). In another study, Freiwan et al. sorted CD7- T cells
from PBMC before transducing them with CD7 CAR, the CD7-
CAR-T cells contained more CD4+ memory phenotype and
have a robust antitumor activity to CD7+ cell lines CCRF-CEM
and MOLT3 in vitro and eliminated CCRF-CEM cells in the
mouse model, as well as bypass fratricide (89). Li et al. combined
donor-derived CD7 CAR-T therapy with allogeneic HSCT for a
3-year-old hepatitis B-positive T-ALL patient. The patient had
CR at seven months post-infusion and the copy number of
hepatitis B virus continuously decreased during treatment (90).
Hu et al. resisted fratricide, GVHD, and allogeneic rejection in
healthy donor-derived CD7 CAR (RD13-01) by genetic
modifications. Twelve patients were recruited in the phase I
clinical trial, and the data showed that 81.8% of patients achieved
objective responses and 63.6% of patients received CR with no
dose-limiting toxicity, GVHD, neurotoxicity, or severe CRS (91).
CD7 CAR showed satisfied efficacy and safety in various clinical
trials, gene editing technologies such as CRISPR-Cas9, TALEN,
or PEBL, and recently reported natural selection could be
applied to overcome fratricide, while HSCT could be applied
in combination with CAR to address potential T-cell aplasia, and
CRS could be controlled by ruxolitinib. Taken together, CD7
CAR is a promising therapeutic target for R/R T-cell
malignancies. Currently, there are 23 clinical trials of CD7
CAR recruiting to explore its therapeutic effects in T-cell
malignancies, as shown in Table 2.

In addition to CARs targeting T-cell pan-antigens, some
antigens are only expressed on a subset of T cells, which can
avoid complete fratricide during CAR-T preparation and T-cell
immunodeficiency during therapy.

CDh4

CD4 is expressed in most TLLs and some T-ALLs and its
expression is restricted to the hematopoietic compartment but it
is not expressed in HSCs. As the target of CAR, it can potentially
reduce the off-target side effects for non-hematological tissues.
But the persistence of CD4 CAR T cells after removal of tumor
cells can lead to aplasia of CD4 positive T cells and cause HIV/
AIDS-like syndrome. In 2016, Ma et al. utilized CAMPATH
(alemtuzumab) as a natural safety switch to deplete CD4 CAR T
cells post-therapy in mice. They found that this approach was
effective to kill Jurkat cells in vitro and in vivo with minimal toxic
side effects from loss of CD4+ T-cells (92). CD4 is expressed on a
subset of normal T cells, which could prevent complete fratricide
and be used to kill CD4 high-expressed malignant T cells. Three
CD4 CARs are currently being recruited to explore clinical
efficacy in T-ALL, as shown in Table 3.
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TABLE 2 Recruiting CD7 CAR clinical trials.

NCT Number Interventions
NCT04033302 CD7 CAR gene-engineered T
NCT05127135 Allogeneic CART7
NCT04702841 CD7 CAR-Y0 T
NCT04620655 RD13-01 cells

NCT04480788 CD7-CART

NCT04916860 Senl-T7

NCT04689659 Donor-derived CD7 CAR-T
NCT04264078 CD7 UCAR-T
NCT04785833 autologous CD7 CAR-T
NCT04823091 CAR7-T Cells

NCT04840875 Autologous CD7 CAR-T
NCT04938115 CD7 CAR-T

NCT04762485 Humanized CD7 CAR-T
NCT03690011 Autologous CD7.CAR/28zeta CAR-T
NCT05043571 anti-CD7 CAR-T
NCT05170568 PA3-17 CAR-T
NCT04984356 WU- CART-007
NCT04934774 Non-gene edited CD7 CAR-T
NCT04004637 CD7 CAR-T

NCT04599556 anti-CD7 CAR-T
NCT05212584 CD7CAR-T

NCT05290155 Anti-CD7 CAR-T
NCT05398614 Senl 101

10.3389/fonc.2022.967754

First posted Phase Location
26-Jul-19 /11 China
19-Nov-21 I China
11-Jan-21 1 China
9-Nov-20 NA China
21-Jul-20 I China
8-Jan-21 NA China
30-Dec-20 1I China
11-Feb-20 I China
8-Mar-21 NA China
30-Mar-21 I China
12-Apr-21 I China
24-Jun-21 NA China
21-Feb-21 /11 China
1-Oct-18 I United States
14-Sep-21 I Singapore
28-Dec-21 I China
30-Jan-21 /11 United States
22-Jan-21 I China
2-Jul-19 I China
22-Oct-22 /11 China
28-Jan-22 1 China
22-Mar-22 I China
1-Jun-22 1 China

“NA” means “Not Applicable”.

CD1la

The expression of CD1a is largely restricted to developing
cortical thymocytes, and neither CD34+ progenitor cells nor T-
cells are expressed during ontogeny. In contrast, however, CD1a
is only expressed in cortical T-ALL (coT-ALL) and its expression
persists in relapsed patients. Diego et al. found that CD1a CAR-
T cells are fratricide-resistant and showed good efficacy against
CDla+ Jurkat and MOLT4 cell lines and primary coT-ALL cells
in vitro and Jurkat T-ALL mouse models in vivo (93). Although
CDla CAR could be used to treat coT-ALL, some limitations
exist to CD1la CAR in clinical use, such as that only a minority of
cases of T-ALL express CD1la. Furthermore, CD1a is associated
with relatively a favorable prognosis, and CD1la+ patients rarely
relapsed or are refractory to treatment.

Others, such as CCR4 (C-C chemokine receptor type 4) and
TRBC (T-cell receptor beta constant), are also expressed in some

TABLE 3 Recruiting CD4 CAR clinical trials.

NCT Number Interventions
NCT04162340 CD4 CAR T

NCT04219319 LCAR-T2C CAR T
NCT04973527 LCAR-T2C CAR T

Frontiers in Oncology

T-ALL and can be potential targets for T-ALL immunotherapy
(94, 95).

Antigen targets of CAR-T therapy in AML

CD123

One potential target for AML is CD123, an IL-3 receptor
alpha chain that acts as a high-affinity receptor for stem cell
factor (SCF) and is expressed at low levels in early hematopoietic
cells, such as hematopoietic stem/progenitor cells (HSPCs) (96).
CD123 is expressed in approximately 97% of AML patients and
is overexpressed in 45% of patients, and at low levels by HSPCs,
monocytes, a subset of dendritic cells, and endothelial cells (97-
99). As early as 2013, Tettamanti et al. designed CD123 CAR-
infected cytokine-induced killer cells (CIKs). These CIKs

First posted Phase Locations
14-Nov-19 I China
7-Jan-20 1 China
22-Jul-21 1 China
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showed efficacy against CD123+ THP1 cell line and primary
AML blasts, with minimal effects on healthy monocytes and
endothelial cells with low expression of CD123, which proves the
feasibility of CD123 as a therapeutic target (100). In 2014,
Mardiros et al. demonstrated that CD123 CAR-T cells were
effective in eliminating CD123+ LCL, KG-1a cell lines, and
primary AML blasts without eliminating granulocyte/
macrophage and erythroid colony formation in vitro. Notably,
patients-derived CAR-T cells could eliminate autologous AML
blasts in vitro (101). Gill et al. found that CD123 CAR was
efficient in clearing human primary leukemia cells, meanwhile
inducing myeloablation in xenograft mouse models, which
suggests that CD123 CAR-based myeloablation may be used to
bridge HSCT (102). Due to CD123 and CD33, both are
expressed on AML cells and normal HSPCs, Pizzitola et al.
modified CKI cells with the CD123 and CD33 CAR to compare
their efficacy and safety. Both these CAR-T cells efficiently
eliminated primary human AML KG-1a cells in mice, but only
CD123 CAR showed limited killing efficacy on normal HSPCs
compared to CD33 CAR (103). In 2015, Luio et al. first treated
one relapsed AML-M2 (FLT3/ITD+), male patient with
apoptosis-inducible CD123 CAR, and the patient subsequently
achieved partial remission within 20 days. Although CRS
occurred on day 4, it was effectively controlled with a single
dose of Tocilizumab (104). To address myeloablation after
CD123 CAR-T therapy in AML, Tasian et al. compared three
CAR-T-cell clearance strategies: (1) transiently active anti-
CD123 messenger RNA electroporated CAR T cells (RNA-
CART123); (2) T-cell clearance with alemtuzumab after
CD123 CAR-T-cell therapy; and (3) T cell ablation with
rituximab to CD20-coexpressing CART123(CART123-CD20)
after therapy. The author found that CD123 CAR-T cells
showed strong antitumor activity to MOLM14 cell line and
primary AML blasts in mouse xenograft models, and all these
three approaches could efficiently deplete CAR-T cells without
affecting antileukemic effects. Notably, the ablation of CAR-T
cells allowed subsequent HSCT rescue in normal hematopoiesis
xenograft models (105). Thus, strategies for posttreatment CAR-
T cell clearance may be effective to alleviate detrimental side
effects, such as myeloablation. Further to this area of
investigation, Arcangeli et al. designed a rational mutation in
the anti-CD123 CAR antigen binding domain to reduce the
binding affinity of CAR, which could minimize the toxicity and
side effects against normal tissues with low expression of CD123
without affecting the antileukemic activity to tumor cells;
altogether demonstrating the manageable safety of CD123
CAR in AML (106). The same year (2017), Budde et al.
reported in an abstract form that a Phase I dose escalation
clinical trial, which evaluated the efficacy and safety of CD123
CAR in 6 patients with refractory AML after treatment with
autologous HSCT (alloHSCT). In this study, 4 of 6 patients
achieved CR, and 2 patients reported reduced blast counts but
did not achieve remission after a single or second infusion of
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CAR-T cells. Notably, all side effects were reversible and
controllable (107). Meanwhile, to ablate CAR-T cells after
therapy in patients, Cummins et al. evaluated the safety of
CD123 CAR in R/R AML patients with mRNA electroporate
technology. CART123 cells did not expand successfully in vivo,
and all 5 patients treated with mRNA CARTI23 eventually
developed clinical progression (108). To improve the efficacy
and persistence of CAR-T cells in vivo, in 2018, Mu et al.
developed CD123 CAR-expressing IL-15. The results showed
that genetically engineered CD123 CAR improved the anti-AML
activity against CD123+ cell lines in vitro and eliminated
primary AML cells in vivo (109). Loff et al. redirected CD123
CAR-T cells using a switch-controllable universal CAR T
platform (UniCAR) based on two major elements: a non-
reactive inducible CAR and a soluble targeting module (TM)
enabling UniCAR-T reactivity in an antigen-specific manner.
UniCAR T 123 exhibited potent cytotoxic activity against patient
derived CD123+ leukemia cells in vitro and in vivo. Notably, in
this study, the activation, cytolytic activity, and cytokine release
profiles for UniCAR T123 were all tightly controlled. Compared
with traditional CD123 CAR-T cells, UNICAR T 123 cells can
additionally distinguish malignant leukemia cells with high
CD123 expression from healthy tissues with low CD123
expression, features that further improve the safety of CD123
CAR (110). A phase I clinical trial of UNICAR-CD123-CAR is
currently in progress (111). In 2019, Qin et al. developed a
simple and highly selective D-domain, which was derived from
de novo-designed o-helical bundle-03D, to target CD123 for a
unique CD123 CAR. The work revealed that CD123 CAR
composed of D-domain mediated efficiently mediated T-cell
activation and cytotoxicity to MOLM14, IM9, KG-1a, and
NALMS6 cell lines, and induced complete and durable
remission in two AML xenograft mouse models. This work
supports the development of multifunctional CARs through
such an approach (112). Yao et al. used donor-derived CD123
CARTT cells as a conditioning regimen for haploidentical HSCT
(haploid-HSCT) in a patient with FUS-ERG+ AML and found
that CD123 CAR-T cells reduced chemotherapy-resistance
blasts without affecting donor chimerism and myeloid
implantation (113). To enhance the anti-tumor function of
CD123 CAR-T cells, in 2020, You et al. combined decitabine
treatment with CD123 CAR for AML. The results showed that
decitabine enhances the anti-leukemia efficacy of CD123 CAR-T
cells to THP1 cell line in vitro and in vivo, alongside CD123
CAR-T cells differentiate into naive and memory phenotypes
(114). In 2021, UniCAR-T-123 with the targeting module
TMI123 was used to treat 3 R/R AML patients. 1 patient
showed partial remission and 2 patients showed CR and
adverse events were generally mild (115). This clinical trial is
still ongoing. To minimize the side effect on normal
hematopoietic progenitor cells and prolong the persistence of
CD123 CAR-T cells, Khawanky et al. found that demethylating
therapy could increase the CD123 expression on leukemia cells
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and increase CTLA4- CD123 CAR-T cell proportion and
showed superior cytotoxicity against AML cells, accompanied
by higher TNFo. production in leukemia-bearing mice (116).
Due to CD123 could distinguish HSC from leukemia stem cells
(LSCs), to eliminate LSCs and preserve normal HSC, in 2022,
TALEN gene-editing technology was used to produce a TCRo,3
negative allogeneic CD123 CAR (UCART123), which
preferentially eliminates primary AML than normal cells with
modest toxicity in vitro (117). While CAR targeting CD123 has
shown efficacy and safety in preclinical and some clinical trials,
but myeloablation occur after CAR-T therapy. Therefore, some
strategies such as transiently active messenger RNA for CAR,
alemtuzumab or rituximab treatment, and UniCAR may be
utilized to ablate CAR-T cells in vitro and in vivo. The
depletion of CAR-T cells after therapy requires further
investigation in clinical studies. Nevertheless, the safety and
efficacy profiles of CAR therapy targeting CD123 are reflected
in the finding that 7 clinical trials are recruiting to explore its
feasibility to treat AML, as shown in Table 4.

CD33

CD33 is a transmembrane receptor of the sialic-acid-binding
immunoglobulin-like lectin (SIGLEC) family and is expressed
on myeloid cells ranging from progenitors to well-differentiated
cells, including neutral granulocytes, monocytes, and tissue-
resident macrophages (118). However, in pathological states,
CD33 is expressed in approximately 80-90% of AML patients
and may also be expressed on LSCs (119-122). In 2010, to
improve the effector functions of CIK cells, Marin et al.
transduced anti-CD33-{ and anti-CD33-CD28-0X40-{ CARs
into CIK cells and found that the CD33 CAR enhanced the anti-
leukemic functions of CIK cells against HL60 and KG-1a cell
lines and primary AML blasts (123). In 2012, to decrease tumor
escape, Dutour et al. transduced human Epstein Barr virus
(EBV)-specific cytotoxic T cells with CD33 CAR, and the
CAR-T cells displayed EBV and HLA-unrestricted bispecificity
in vitro and anti-AML tumor activity in CD33+ human AML-
bearing mice without irreversibly disrupting the formation of
CD34(+) hematopoietic progenitor clones (124). In 2014,
Pizzitola compared the cytotoxicity of CD123 and CD33 CAR
on AML, and find that no difference in anti-leukemic activity, yet

TABLE 4 Recruiting CD123 CAR clinical trials.
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CD33 CAR appeared to have stronger cytotoxicity on normal
HSPCs compared with CD123 CAR (103). In 2015, Wang et al.
reported an autologous CD33 CAR in one R/R AML patient,
with no uncontrollable clinical toxicities, but with subsequent
disease progression at 9 weeks post-T-cells infusion (125).
Kenderian and colleagues used the scFv of gemtuzumab
ozogamicin (clone My96) to develop a CD33 CAR (CART33).
CART?33 exhibited significant cytotoxicity against the MOLM14
cell line in vitro and eradication of leukemia in AML xenograft,
yet a reduction of myeloid progenitors in xenograft models was
also observed. Thus, the author prepared transient CART33 cells
by expressing modified mRNA, which exhibited potent but self-
limited activity against AML (126). To minimize the
myelosuppression after CAR-T therapy, in 2016, Minagawa
et al. designed Caspase9-CAR CD33T cells inducibly selected
by ACD19, which could specifically lyse CD33+ MV4-11 tumor
cells and primary leukemic blasts in vitro, following which CAR-
T cells were largely eliminated by suicide gene activation (127).
In 2018, Kim et al. proved that CD33 KO HSPC showed normal
engraftment and differentiation in the mouse model, and
autologous rhesus macaques CD33 KO HSPC showing normal
myeloid function in vivo. Most importantly, CD33 CAR-T cells
showed efficient elimination of leukemia, while CD33-deficient
cells were spared without myelotoxicity, as observed in human
xenograft models (128). Li et al. demonstrated that 4-1BB as a
costimulator could endow CAR-T cells with increased central
memory and prolonged survival for maximum efficacy, as
compared to CD28, and both CD28 and 4-1BB (129). Due to
PI3K pathway being activated in CD33 CAR-T cells, to increase
the persistence of CAR-T cells in vivo, Zhang et al. used PI3K
inhibitors to modulate the differentiation of CD33 CAR-T cells.
The data showed that it maintained CAR-T cells at a lower
differentiated state without affecting CAR-T-cell expansion
(130). Schneider et al. constructed a humanized CAR33VH
CAR, comprised of a human heavy-chain variable fragment,
that exhibited antitumor activity to CD33 high expressed
MOLMI14 and HL60 cell lines and eliminated tumors in a
MOLT-14 AML mouse model (131). In 2021, Tambaro and
colleagues conducted a Phase I clinical trial to evaluate the
efficacy and safety of CD33 CAR-T in R/R AML patients. It
was reported that three patients received one low dose of CAR-T

NCT Number Interventions First posted Phase Locations
NCT03190278 Allogeneic UCART123v1.2 16-Jun-17 I United States
NCT04010877 CLL-1, CD33 and/or CD123-specific CAR gene-engineered T cells 8-Jul-19 /I China
NCT04265963 CD123 CAR-T cells 12-Feb-20 /i China
NCT04272125 CD123 CAR-T cells 17-Feb-20 /11 China
NCT04230265 UniCAR02-T 18-Jan-20 I Germany
NCT04318678 CD123-CAR T 24-Mar-20 I United States
NCT04678336 CART123 cells 21-Dec-20 I United States
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cells, and biologic activity was observed by associated symptoms
and increased cytokine levels, however, an anti-leukemic
response was not documented, and no dose-limiting toxicities
were observed (132). To explore the impact of costimulatory
domains on the CD33 CAR-T cells, Qin et al. developed six
CD33-targeted CARs with one of three scFv of clinically tested
CD33 antibodies, paired with CD28 or 4-1BB costimulatory
domains. These six CARs exhibited cytotoxicity against CD33+
AML cell lines in vitro and in vivo and showed strong anti-
leukemia activity against patient-derived xenograft (PDX)
derived from pediatric AML patients. Furthermore, CD28-
based CD33 CAR-T cells exhibited superior anti-leukemia
compared with 4-1BB, and the safety and efficacy in patients
were evaluated in a phase I clinical trial (133). In 2022, Liu et al.
proved that the third generation CD33 CAR-T showed stronger
vitality, proliferation ability, and stronger cytotoxicity than the
second generation CAR. Notably, the third generation CD33
CAR-T preferentially killed leukemia cells while sparing CD33-
deficient HSPCs (134). CD33 CAR showed efficient anti-AML
activity in vitro, different costimulators, different generation
CAR structures, and PI3K inhibitors may affect the anti-tumor
activity, proliferation, and persistence of CD33 CAR-T cells. The
efficacy of CD33 CAR in patients did not show promising results
in some previous studies, more efforts are needed to improve the
anti-tumor response of CD33 CAR. 6 clinical trials are recruited
to explore the efficacy and safety of CD33 CAR in AML patients,
as shown in Table 5.

CLL-1

C-type lectin-like molecule-1 (CLL-1) is reportedly
expressed in more than 80% of AML blasts, and LSCs. Its
expression is restricted to the myeloid lineage and absent in
normal CD34+CD38- HSCs. Significantly, CLL1 is present on a
small subset of chemotherapy-resistant LSCs (135-137),
suggesting that it may be a potential target for therapeutic
intervention. In 2017, Tashiro et al. first designed a CLL1 CAR
with specific killing efficacy on CLL1+ HL60 and THP1 cell lines
and primary AML blasts in vitro, as well as exhibited anti-
leukemia activity in an HL60-AML xenograft mouse model.
Notably, CLL1 CAR-T cells eliminated mature normal myeloid
cells yet selectively spared healthy HSCs, to allow immune
recovery after therapy (138). Laborda and colleagues designed

TABLE 5 Recruiting CD33 CAR clinical trials.

NCT Number Interventions
NCT03795779 CLL1-CD33 CAR T cells

NCT04010877 CLL-1, CD33 and/or CD123 CAR T cells
NCT03971799 CD33 CAR T cells

NCT04835519 Functionally enhanced CD33 CAR T cells
NCT05248685 Dual CD33/CLL1 CAR T cells
NCT03927261 PRGN-3006 T cells
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an scFv-based CLL1 CAR that showed cytotoxic activity against
HL60 and MOLM14 AML cell lines and patient-derived AML
blasts in vitro, as well as clearance against tumor cells in mouse
xenografts, while without damaging healthy HSCs. Compared
with CAR designs utilizing CD8 as a hinge domain, 1gG4
induced higher cytotoxicity in cell lines (139). In 2018, Wang
et al. constructed a new CLL1 CAR using scFv from C57BL/6
mouse-derived CLL antibody, which has good anti-leukemia
activity to U937 cell line and primary AML blasts in vitro and
eliminated human AML in xenograft mouse models without
targeting normal HSCs (140). Liu et al. first explored the safety
and efficacy of CLL1 CAR in patient. A compound CAR
targeting CLL1 and CD33 was constructed and allennimumab
was used to clear CAR-T cells after tumor eradication. A 6-year-
old patient with a complex karyotype of FLT3-ITD mutation
received two split doses of CAR-T cells and achieved CR on day
19, followed by HSCT (141). In 2019, Atilla and colleagues
explored the impact of different combinations of spacers,
transmembrane, and intracellular signaling domains to CLL-1
CAR. By comparing their proliferation, functional persistence,
and antitumor activity in vitro and in vivo, the data showed that
CD28z CAR with a short hinge region or with a CD8
intracellular domain is better than others for CLL1 CAR (142).
In 2020, Zhang et al. reported the case of one 10-year-old patient
with secondary AML treated with CLL CAR-T cells. This patient
finally achieved morphological, immunophenotypic, and
molecular CR over 10 months, which provides a new
treatment option for secondary AML (143). Atilla et al.
demonstrated that CLL-1 CAR T cells with additional
transgenic IL15 supplementation, and combined with a TNFo
blocker antibody as well as activation of caspase-9 control
switcher increased expansion, persistence, and anti-leukemia
of CLL1 CAR-T cells in PDX and HL60 xenograft mouse
models while avoided excessive cytokine production (144).
PD-1 expression was increased after the activation of CAR-T
cells and caused T cells exhaustion, to evaluate the efficacy of
combination of PD-1 silencing and CLL-1 CAR-T therapy, in
2021, Lin et al. designed a PD-1-silenced CLL-1 CAR and
reported that PD-1 silencing enhanced the cytotoxicity of
CLL-1 CAR (145). Similar to this, Zhang et al. designed a
CLL-1 CAR based on the apoptosis-inducing gene FKBP-
Caspase9 and evaluated the efficacy and safety in four R/R

First posted Phase Locations
8-Jan-19 1 China
8-Jul-19 /11 China
3-Jan-19 /11 United States
8-Apr-21 /1x China
21-Feb-22 I China
25-Apr-19 I United States
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AML patients. The author reported that three patients achieved
CR with MRD negativity, while the fourth survived for 5
months, with manageable side effects (146). CLL1 CAR
showed promising anti-tumor efficiency in pre-clinical
experiments and anti-AML response in AML patients and
selectively spared normal HSCs. There are 8 clinical trials for
CLL-1 CAR currently recruiting, as shown in Table 6.

CD70

CD70 is a tumor necrosis factor (TNF) receptor ligand and is
proven to be absent in normal tissues and hematopoietic cells,
but highly expressed on most AML blasts and AML stem/
progenitor cells (147, 148). In 2017, Riether et al. reported that
CD70/CD27 signaling promotes blast stemness, and blocking
CD70/CD27 by mAb could prolong survival in murine AML
xenografts, representing that CD70/CD27 is a promising
therapeutic strategy for AML (149). CD19 CAR-T cell therapy
has presented revolutionary progression in CD19+
hematological malignancies, but some patients reccurence due
to the exiting of CD19- tumor cells (150). Therefore, it is
necessary to develop alternative antigens to avoid antigen
escape. In 2021, Deng et al. designed L/H and H/L svFv-based
CD70 CAR, truncated CD27-based CD70 CAR and anti-CD19
CAR as controls. The results showed that anti-CD70 (H/L)
effectively killed CD19+ and CD19- Raji cells in vitro and in
NSG xenograft mouse models, altogether providing a new
therapeutic option for patients who have CD19- recurrence
(151). Sauer et al. compared a panel of scFv-based CD70
CARs with the same scFv and different size and flexibility of
the extracellular spacer, different transmembrane, and different
costimulatory domains to CD27-based CD70 CAR. The results

TABLE 6 Recruiting CLL1 CAR clinical trials.

NCT Number Interventions
NCT04884984 anti-CLL1 CAR T cells

NCT03795779 CLL1-CD33 cCAR T cells

NCT04010877 CLL-1, CD33 and/or CD123 CAR T cells
NCT04219163 CLL-1 CAR T cells

NCT04789408 KITE-222

NCT04923919 Anti-CLL1 CAR T cells

NCT05248685 Dual CD33/CLL1 CAR T cells
NCT05252572 CLL1 CAR T cells

TABLE 7 Recruiting CD70 CAR clinical trials.

NCT Number Interventions

NCT004662294 CD70 CAR T-cells

10.3389/fonc.2022.967754

showed that the ligand CD27-based CD70 CAR presents
superior proliferation and antitumor activity against AML cell
lines Molm-13, THP-1, and IMS-M2 in vitro and Molm-13 AML
mouse xenografts and primary AML in vivo (152). In 2022, Leick
et al. used azacitidine to increase antigen density of CD7 in
tumor cells and designed a CD8 hinger and transmembrane-
modified CD27-based CD70 CAR to mitigate cleavage of the
extracellular portion of CD27, altogether could enhance avidity
and expansion of CD70 CAR-T cells and lead to more potent
activity in vivo (153). The safety and efficacy of CD70 CAR in
patients need more exploration in the clinical trial. There are
only one clinical trial about CD70 CAR-T in AML currently
recruiting as shown in Table 7.

In addition, some antigens such as CD38, FLT3 et al., can be
potential targets for AML CAR-T therapy. The recruiting clinical
trials are shown in Table 8.

Summary

Compared with B-ALL, T-ALL and AML are forms of
leukemia that display more complex morphological features
and are associated with poor prognosis. Furthermore, T-ALL
and AML are associated with fewer treatment options after
relapse or refractory. Given the significant success of CAR-T-
cell therapy in B-cell malignancies, a similar approach for
non-B-cell acute leukemia appears to represent a promising
direction for the development of improved treatments.
Although CAR-T therapy for non-B-cell leukemia still faces
great challenges, researchers are already exploring multiple
therapeutic targets, with promising results in preclinical and

First posted Phase Locations
13-May-21 /11 China
8-Jan-19 I China
8-Jul-19 /11 China
6-Jan-20 I United States
9-Mar-21 1 United States
1-Jun-21 I China
21-Feb-22 I China
23-Feb-22 1 China

First posted Phase Locations

10-Dec-20 I China
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TABLE 8 Recruiting other CAR clinical trials for AML.

NCT Number Interventions
NCT05023707 Anti-FLT3 CAR-T
NCT05432401 FLT3 CAR-T
NCT05017883 FLT3 CAR-T
NCT05488132 Anti-siglec-6 CAR-T
NCT04692948 CD276 CAR-T
NCT04169022 ILIRAP CAR-T
NCT04351022 CD38 CAR-T
NCT04662294 CD70 CART
NCT04803929 Anti-ILT3 CAR-T

clinical studies, such as with CD7, CD5, CD4, and other
targets in T-ALL that overcome CAR-T-cell fratricide, tumor
cell contamination and T-cell immunodeficiency.
Furthermore, targets such as CD123, CD33, CLL1, and
CD70 also show great promise for the treatment of AML.
Taken altogether, the collective efforts of researchers and
clinicians to develop CARs and deliver them in current
clinical trials will fulfill the promise to find effective
treatments for non-B-cell leukemia.
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Acute myeloid leukemia (AML) is one of the most common malignant blood
neoplasma in adults. The prominent disease heterogeneity makes it
challenging to foresee patient survival. Autophagy, a highly conserved
degradative process, played indispensable and context-dependent roles in
AML. However, it remains elusive whether autophagy-associated
stratification could accurately predict prognosis of AML patients. Here, we
developed a prognostic model based on autophagy-associated genes, and
constructed scoring systems that help to predicte the survival of AML patients
in both TCGA data and independent AML cohorts. The Nomogram model also
confirmed the autophagy-associated model by showing the high concordance
between observed and predicted survivals. Additionally, pathway enrichment
analysis and protein-protein interaction network unveiled functional signaling
pathways that were associated with autophagy. Altogether, we constructed the
autophagy-associated prognostic model that might be likely to predict
outcome for AML patients, providing insights into the biological risk
stratification strategies and potential therapeutic targets.
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Zhang et al.

Introduction

Acute myeloid leukemia (AML), the most common acute
leukemia in adults, is a heterogeneous group of leukemias
characterized by aberrant clone transformation of
hematopoietic precursors through the acquisition of
chromosomal arrangements and abnormal gene expression
patterns, exhibiting partial or complete arrest of maturation in
the bone marrow, peripheral blood or other tissues (1). With
application and refinement of the detection methodology such as
chromosome banding, fluorescence in situ hybridization/
chromosomal painting and the next generation sequencing,
there have been incremental understanding of abnormal
genetic and molecular alterations in the pathogenesis of AML
(2).With these efforts, it is gradually accepted that AML is rather
an umbrella diagnosis that comprises diverse subtypes with
different prognostic and predictive markers, which are
recommended for distinguished classification criteria and
require selective and possible targeted therapies (3, 4).
However, approximately half of AML patients lack predicable
or prognostic biomarker and widely variable transcriptome data
and the overall prognosis remains dismal [5-year overall survival
28.7%] (5), highlighting the need for identifying novel genetic
and molecular predictors.

Autophagy is a critical intracellular degradative process,
leading to the turnover of cellular material and providing
macromolecular precursors (6). Dysfunctional autophagy has
been implicated linked to multiple disorders especially in cancer
cells (7), but its biological roles vary a lot and the
pathophysiologic mechanism has not yet been fully elucidated.
As is mentioned, autophagy is required for hematopoietic stem
cell (HSC) survival as well as normal hematopoiesis (8).
Dysfunctional autophagy raises the occurrence of
hematological malignant neoplasms especially in leukemia (9).
However, the exact role of autophagy in leukemogenesis remains
debatable, in that it appears to be both leukemia-promoting and
-suppressive. Some thought that reduced level of autophagy-
related genes might be beneficial for AML cells due to decreased
autophagic flux with accumulation of impaired mitochondrial
within leukemic cells. For example, a body of evidence suggested
that key autophagy genes such as ULKI, ATG3, ATG4D and
ATGS5 were significantly downregulated in primary AML cells
compared to normal granulocytes (10). Lower expression of
Beclin-1, LC3, UVRAG, Rubicon and NBRI were identified in the
high-risk AML patient group with higher white blood cel(WBC)
counts and worse overall survival (11). Marine studies
demonstrated that inhibition of autophagy by deletion of Atg5
or Atg7 prolonged survival in leukemic mice and decreased
functional leukemia-initial cells (LICs) (12). However, others
found that the autophagy flux was significantly higher in AML
patients with TP53 mutations and inactivation of the autophagy
triggered a p53-dependent increase in apoptosis in AML CD34"*
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cells (13). Nguye et al. reported loss of the autophagy receptor
p62 deteriorated the expansion and colony-forming ability and
impaired leukemia progression in murine models (14).
Moreover, autophagy could lower the risk of myelodysplastic
syndromes (MDS) progression to AML by suppress ROS
levels (15).

Given the above, it is reasonable to believe that autophagy
participates in the initiation and progression of AML due to its
diverse roles. A deep understanding of autophagy in AML might
contribute to identifying novel biomarkers in terms of diagnosis,
risk stratification, prognosis as well as potential therapeutic
targets. Given the functional role and therapeutic potential of
autophagy in AML, we screened 12 key genes from autophagy-
associated genes, and constructed risk scores that significantly
predicted survival outcomes of AML patients in the study. The
scoring system was also validated in an independent AML
cohort. Moreover, we explored the biological pathways in that
autophagy-associated genes are mainly involved. Overall, our
study illustrates that the autophagy-associated model which
might provide previously unrecognized risk stratification
options for AML patients, shedding novel insights on potential
personalized therapeutic strategies.

Methods

Selecting autophagy-associated
signature

Autophagy-associated genes were collected by retrieving the
GeneCards website (https://www.genecards.org/ ) using the term
“autophagy”. Relevance scores denote the correlation between
autophagy activity and individual genes. A total of 117
autophagy-associated genes were identified with relevance
score at the criteria of |logFC | = 1 and P-value< 0.05.

Data collection

The gene expression matrix and corresponding clinical
parameters of AML patients were collected from TCGA
database, consisting of 200 adult patients and 51normal
controls. The validation cohorts were downloaded from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/),
under the accession of GSE23143 (16).

Hierarchical clustering analysis and
principal component analysis

Hierarchical clustering analysis of the Euclidean distance of
all collected autophagy-associated genes was used to investigate
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the subtypes of AML. The discrimination and accuracy of the
subtypes of AML patients were further evaluated by principle
component analysis (PCA).

Construction of prognostic model based
on autophagy-associated genes

Differential expression analyses were used to filter
autophagy-associated genes that were also significantly
differentially expressed between the high-risk groups and low-
risk groups. Count matrices were loaded in R package “limma”
(version 3.38)[PMID: 28367255]. Significant genes were selected
at the criteria of |log2 fold change | > 1 and false discovery rate
(FDR)< 0.05. In total, 6061 genes were kept for the
following analyses.

The optimal autophagy-associated prognostic model was
constructed by multivariable Cox regression method with the
least absolute shrinkage and selection operator (LASSO)
algorithm in the R package “glmnet” (version 2.0-18) (17).
Using the 10-fold cross-validation, the best lambda that
achieved the best model performance was selected. The risk
score was calculated using the formula below.

risk score = écoef (j) = Expr(j)
=1

Coef(j) denotes the coefficient of j gene in the Cox model,
and Expr(j) represents the expression levels of autophagy-related
gene j. The median risk score was selected as the cutoff to
separate AML patients into high-risk and low-risk groups. The
same method was applied in another independent AML cohort
(GSE23143), to further evaluate the predictive power of the Cox
model that was trained in TCGA data.

The time-dependent receiver operating characteristic curve
(ROC) was used to estimate the sensitivity and specificity in the
R package “survival ROC” (version 1.0.3) (18). The area under
the curve (AUCs) estimated the prognostic accuracy for 1-, 3-,
and 5-year overall survival respectively, to evaluate the predictive
power of survival prediction using the selected 12 autophagy-
related genes. Kaplan-Meier survival curve analysis was
performed and visualized by R package “survival” (version 3.1-
12). Log-rank test was applied to check the significant differences
between high-risk and low-risk groups. Multivariate Cox
regression and univariate Cox regression were applied to
investigate the associations between genes within the 12 genes
and overall survival.

Pathway enrichment analysis and
regulatory network

Pathway enrichment analyses in Gene Ontology (GO)

databases, including biological process, cellular component,
and molecular function, were performed and visualized in the
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R package “clusterProfiler” (version 3.10.1) (19). These analyses
were also conducted in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (https://www.genome.jp/kegg/ ).
Significant pathways were identified as these with adjusted p
values less than 0.05.

Protein-protein interaction networks were built and
visualized on STRING website (https://string-db.org/ ), with all
autophagy-associated genes.

Construction of nomogram model

Individual genes within 12 selected autophagy-associated
genes were used to build a nomogram, using the R package
“survival” and “rms” (version 6.0-1). Calibration curves were
plotted to evaluate the concordance between actual survival and
predicted survival for 6 months, 1 year, and 3 years. The
concordance index (C-index) was used to measure the model
performance for predicting prognosis.

Statistical analysis

All the statistics were conducted in the R software (version
3.5.2). The Wilcoxon test was applied to compare two groups
with nonnormally distributed data. The Kruskal-Wallis tests
were used for comparing more than two groups with
nonnormally distributed data. Correlation coefficients were
assessed by Spearman or Pearson correlations. Statistical
significance in survival analysis was determined by the log-
rank test. Significant p values were denoted as follows: ns
20.05, *<0.05, **<0.01, ***<0.001, and ****<0.0001. The
statistical information for the experiments is detailed in the
figure legends.

Results

Identification of prognostic signatures
from autophagy-associated genes
in AML

A total of 200 AML patients and 51 matched healthy
controls (HC) were collected in TCGA database, and the
autophagy-related genes were retrieved from Genotype-Tissue
Expression database. Based on hieratical clustering of gene
expressions of autophagy-related genes, the AML patients and
HCs were divided into two different clusters (Figure 1A).
Consistently, the principle component analysis also indicated
that AML patients were separated from HCs clusters
(Figure 1B). These results suggested that autophagy-related
genes expressed differently between AML patients and HCs
in general.
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Autophagy-associated genes distinguished AML patients from controls. (A) Heatmap showing that the hieratical clustering of autophagy-
associated genes separated AML patients from normal controls. (B) Scatterplot showing the gene expressions of autophagy-associated genes in

AML patients are different from normal controls by PCA analysis.

To recognize the prognosis-related genes from the
autophagy-associated genes, we identified 117 differentially
expressed genes (DEGs) between AML patients and normal
healthy controls, and then performed Cox regression model with
LASSO algorithm. Using the best lambda parameters in the 10-
fold validations, we finally selected 12 hub autophagy-associated
genes, including APOL1, BAG1, BAG3, BAX, CAPN10, DNAJB2,
KLHL24, P4HB, RACI, RAFI, SERPINAI, and SIRTI
(Figures 2A, B), which, as expected, were significantly
differentially expressed in AML patients (Figure 2C).
Univariate Cox analysis revealed that some of the 12 genes
were correlated to the overall survival (OS) of AML patients. For
instance, KLHL24 has a hazard ratio of less than 1 in AML
patients and was regarded as a protective gene (HR=0.71, 95%
CI=0.53-0.94, P=0.016, Figure 2D), while BAG3 was considered
a risk gene (HR=1.23, 95% CI=1.08-1.40, P=0.002, Figure 2D).
Multivariate Cox analyses were also conducted to confirm that
BAG3 was significantly correlated with worse overall survivals of
AML patients (HR=1.201, 95% CI=1.021-1.412, P=0.027,
Figure 2E). These analyses are consistent with the
indispensable role of BAG3 in cancer progression and tumor
resistance to therapy (20).

Reconstruction of prognostic evaluations
for AML patients

We then calculated the risk score for individual AML
patients based on the gene expression patterns and coefficients
in LASSO model. Specifically, the risk score was the sum of gene
expressions of the 12 autophagy-associated genes weighted by
their corresponding coefficients in multivariable LASSO
regression (Methods). The unsupervised hieratical clustering of
gene expression profiles of 12 autophagy-associated genes
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exhibited that their expressions and the corresponding risk
scores were confounded by age, gender and race in AML
(Figure 3A). AML patients were then divided into the high-
risk and low-risk groups based on the median value of risk scores
(Figure 3B). Next, we evaluated the predictive power of the risk
score in prognosis of AML patients. Compared with age and
gender, risk scores indicated the highest hazard ratio with the OS
of AML patients in the univariate COX regression model
(HR=23, 95% CI=7.1-72, P<0.001, Figure 3C). These results
revealed that the risk scores were an independent prognostic
predictor in AML.

Evaluation of the prognostic model
in AML

To evaluate the predictive power of the risk score in AML
prognosis, we conducted Kaplan-Meier analyses, and found the
AML patients with high-risk scores showed significantly worse
overall survivals than patients with relatively low-risk scores in
TCGA database (Figure 4A). The time-dependent ROC curve
also revealed that the risk scores were capable to predict 6-
month (Figure 4D), 1-year (Figure 4E) and 3-year (Figure 4F)
survivals with area under curve more than 0.579 (AUC for 6
months, 0.579; AUC for 1 year, 0.729; AUC for 3 years,
0.803, Figure 4B).

Next, we developed a nomogram model of individual
autophagy-associated genes to predict patients’ survivals
(Figure 4C). The calibration curve showed that the
combination of these autophagy genes achieved better
performance for AML patients’ 6-month, 1-year prognosis,
compared with each one alone (Figure 4D). These findings
consistently revealed the success of 12 autophagy-related genes
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FIGURE 2

Construction of autophagy-associated prognostic model in TCGA-AML cohort. (A) 10-fold cross-validation of tuning parameter selection in
LASSO model using the TCGA- AML data. (B) LASSO coefficient of the selected 12 autophagy-associated genes. (C) Boxplot comparing the
difference in gene expression of the selected 12 autophagy-associated genes between AML patients and normal controls. (D, E) Univariate Cox
analysis (D) and multivariate Cox analysis (E) show the coefficients and corresponding p values of individual genes within 12 autophagy-

associated genes.

in predicting patient survivals, suggesting the critical role of
autophagy signaling in the development of AML progression.

Validating the performance of the
autophagy-associated prognostic model

We further validated the prognostic model in independent
dataset (GSE23143), including the 200 AML patients. Applied
the same methods, we calculated the risk scores based on the 12
autophagy-associated genes, and then divided AML patients into
two groups, including high-risk and low-risk groups. Consistent
with the results in TCGA data (Figure 4A), we found the high-
risk groups showed the significantly worse overall survivals for 6
months, 1 year, and 3 years (p-value = 0.035 for 6 months; p-
value = 0.048 for 1 year; p-value = 0.007 for 3 years; Figures 5A-
C). These results suggested the effectiveness of autophagy-
associated model in predicting prognosis in AML cohorts.

Pathway analyses showed the
autophagy-related signaling pathways

In order to decipher the biological pathways related to
autophagy-related risks, we viewed the 12 autophagy-
associated genes as baits to find 106 most related neighbor
genes in TCGA-AML cohort. Totally, 106 genes were
identified as neighbor genes. Biological pathway analysis in
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GO database showed that cellular response to nutrients levels
and response to starvations pathways were prominently related
to the 12 genes, in addition to autophagy pathway (Figure 6A).
Cell component analyses in GO databases showed consistently
enriched in the autophagosome and autophagosome membrane
(Figure 6B). Molecular function enrichment displayed several
related functions, such as protein serine/threonine kinase
activity, ubiquitin-like protein ligase binding and ubiquitin
protein ligase binding (Figure 6C). These findings are also in
line with the fact that the ubiquitin-proteasome system and
autophagy are two major quality control systems responsible for
protein degradation (21).

Pathway enrichment in KEGG database showed several
disease-related pathways, including amyotrophic lateral
sclerosis, shigellosis, and Kaposi sarcoma-associated
herpesvirus infection (Figure 6D). The significant enrichments
of disease pathways indicated that the 12 autophagy-associated
genes might play an essential role in the development of these
human diseases. The tight protein-protein interaction network
of the 12 autophagy genes and their neighbor genes reflect their
close relationships as well (Figure 6E).

Discussion

The genetic alterations in AML are highly heterogeneous
and the manifestation of the disease is distinguishing in each
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patient. New therapeutic targeted drugs have shown promising
effects but these are directed only to specific AML subgroups
(22). There still remains around half of the patients who cannot
be reasonably categorized due to a lack of prognostic
biomarkers. Given this context, there is urgent need to better
understand the molecular mechanisms pathogenesis involved in
AML and novel classification systems are needed to improve the
accuracy of predicting patients’ prognosis.

In this study, we focused on the autophagy-associated genes
due to their essential roles in leukemogenesis. We constructed a
multivariate prognostic model and identified 12 key autophagy
associated genes that indicated significant relevance with
prognosis. The filtered 12 genes provided previously
unrecognized stratification strategies for AML patients, and
also potentially promising targets for AML treatments (23, 24).

We constructed the autophagy-based risk scores based on 12
LASSO regression-selected prognostic genes. The scoring
systems are robust to predict the outcome of AML patients in
both TCGA-AML cohorts and another independent cohort.
Multivariate Cox analysis also revealed that the risk scores
were an independent factor, but not the age and gender. These
findings are consistent with previous studies that have reported
autophagy was involved in cancer initiation via regulating many
oncogenes and tumor suppressor genes (25-27). Altogether, our
analysis suggested the undermined role of autophagy in
AML development.

Among the selected 12 key genes, we identified several genes
which have been reported to participate in tumor prognosis and
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tumorigenesis. For instance, Bcl2-associated athanogene-3
(BAG3), also known as CAIR-1(CAI-stressed-1), belongs to
the family of co-chaperones interacted with the ATPase
domain of the hear shock protein Hsp 70 via the structural
domain known as BAG domain(110-124 amino acids) (28).
BAG3 gene expression is constitutive in normal cells such as
the skeletal and heart muscles, while aberrant expressed BAG3 is
also found in neoplastic cell lines as well as primary AML and
CML cell (29, 30). Studies has confirmed that overexpressed
BAGS3 could reverse the pro-apoptotic effect of WT1 silencing
and regulate the leukemia stem cell-supporting activity (31).
Further evidence demonstrated that BAG3 down-modulation
resulted in a reduction of the anti-apoptotic protein level such as
MCL1, BCL2 and BCL-XL, which are capable of regulating
autophagy in AML cells (32). It is expected that BAG3 will
serve as a key player in leukemogenesis and potential therapeutic
drug target (33-35). RAC1, a member of the Ras superfamily of
small guanosine triphosphatases (GTPases), is capable to
activate several signaling pathways and cytoskeletal
arrangements, resulting in cell cycle progression,
morphogenesis, migration as well as autophagy (36).
Abnormal overexpression has been regularly reported in
cancer. Early research indicated that inactivation of RACI-
GTPase suppressed migration and promoted drug induced
apoptosis in KG-1 cells (37). Recent in vitro studies found that
suppression of RAC with a RAC inhibitor (EHT-1864) could
increase autophagy, apoptosis, cell cycle, modulation of p53
factor and inhibit the PI3K/AKT/mTOR signaling pathway in
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AML cell lines (38). In fact, it has recently been reported that the
combination of EHT-1846, venetoclax(BCL-2 inhibitor) and
midostaurin(FLT3 inhibitor) could reverse midostaurin
resistance in AML cells (39). Sirtuin 1, known as NAD-
dependent deacetylase sirtuin-1, promoted cancer cell
proliferation and metastasis via STAT3/MMP-13 signaling
(40), which is also found participated in the abnormal
metabolism pathways in AML. Recent study suggested that
SIRT1 was a downstream factor of AdipoRl and ANRIL in
glucose metabolism and regulate AML cell survival (41).
Apolipoprotein L1 (APOLI) functions as both extra- and

intra-cellular regulators in host innate immunity and cellular
homeostasis in the kidney (42). It is worth noting that these
identified autophagy genes have not been fully recognized in the
development of hematopoietic disorders especially in AML,
which might provide novel promising molecular targets and
help to predict the outcomes, monitor the minimal residue
disease and find therapeutic targets in AML.

The protein-protein interaction analysis and pathway
enrichment results demonstrate that autophagy is related to
environmental stimulations. Similarly, autophagy can respond
to a wide spectrum of cellular stresses, including nutrient
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Validation of autophagy-associated prognostic model in independent AML cohort. (A-C) Kaplan-Meier analysis of 6-month (A), 1-year (B) and
3-year (C) survivals based on the 12 autophagy-associated genes in GSE23143 cohort.

Frontiers in Oncology

40

frontiersin.org


https://doi.org/10.3389/fonc.2022.1074057
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al. 10.3389/fonc.2022.1074057
A B
autophagy | j autophagosome | ]
process utilizing autophagic mechanism | vacuolar membrane { .
padust
macroautophagy1{ L ] - late endosome { [ ] s
cellular response to external stimulus{ @ : : mitochondrial outer membrane | [ ] o
9008
vacuole organization{ @ = organelle outer membrane | [
Count
cellular response to extracellular stimulus{ @ ame phagophore assembly site { LN}
9630228022 ® o
cellular response to nutrient levels | @ 18T melanosome | o=
2890808021 ®
autophagosome assembly{® 385491621 pigment granule [ &
[ X0
autophagosome organization{® autophagosome membrane{ @
response to starvation{® phagophore assembly site membrane {®
02 03 04 008 010 012 0.14
GeneRatio GeneRatio
Cc D
protein serinethreonine kinase activity{ ] Autophagy - animal ]
ubiquitin-like protein ligase binding . Amyotrophic lateral sclerosis | L ]
p.adust
ubiquitin protein ligase binding ® padst Shigellosis { [ ]
25012
chaperone binding L ] oot Kaposi sarcoma-associated herpesvirus infection [ ] Sowss
0.00008 7.5e-12
heat shock protein binding S Apoptosis|{ @ 10wt
0.00018 Coint
phosphatase binding Count Protein in L J ®
. ®
cysteine-type endopeptidase actiity [ X Mitophagy - animal{ @ o
o [
protein phosphatase binding @ Autophagy - other{ @ [ &
. “©
Hsp70 protein binding{ @ Longewity regulating pathway | @
BH domain binding{ ® Pancreatic cancer {®
004 008 012 016 02 03 04
GeneRatio GeneRatio
E
Proteins: 117 Cine
Interactions: 893 G
Expected i ions: 226 (p )
http://version10.string-db.org/10/p/1659592272
FIGURE 6
Signaling and networks related to autophagy-associated genes. (A-C) Dot plot reveals the GO enrichment of autophagy-associated genes,
showing the significant biological pathways (A), cellular components (B), and molecular functions (C), respectively. (D) Dot plot displays the
significant pathways that were enriched in KEGG databases. Dot sizes denote the count number of enriched genes in the pathway, and dot
color represents the adjusted p value of the enriched pathway. (E) Protein-protein interaction network shows the relationships among
autophagy-associated proteins in the STRING database.

Frontiers in Oncology

41

frontiersin.org


https://doi.org/10.3389/fonc.2022.1074057
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al.

deprivation, hypoxia, and abnormal macromolecule
accumulation (43, 44). Also, KEGG enrichment analysis
revealed the significant enrichment of disease-related
pathways, which could be partly explained by its essential
functions for cell survival, bioenergetic homeostasis, and
intracellular component degradation (45). Indeed, it is
gradually recognized that autophagy might be responsible for
tumorgenesis in multiple direct and indirect signaling ways. For
example, aberrations in metabolic rewiring has been described in
leukemogenesis due to dysfunctional autophagy in recent years
(46). As our analysis aimed mainly to the autophagy, it is
insufficient to fully display the pathways of autophagy in
leukemia pathogenesis. Additionally, in different setting of
chemotherapy, immunotherapy as well as hematopoietic stem
cell transplantation, the role of the identified autophagy-genes in
AML still remains largely unknown and more objective proof of
this waits further experimental testing and detailed
functional analyses.

Besides that, there are other limitations in our study. This
study aimed to identify a prognostic autophagy-associated gene
signature in patients with AML. However, our analysis was
mainly based on TCGA and GEO databases which could have
biased our conclusions. Considering this, more validations in
larger clinical population groups are required to provide more
applicable results and enhance the clinical application value as
prognostic tools in the AML patients.

Taken together, we recognized a 12-autophagy-associated
gene signature which might likely act as an independent
predictor of prognosis based on multiple AML cohorts. A
nomogram model and Cox regression analyses revealed the
accuracy of the gene signature in predicting 6-month, 1-year
and 3-year survival probability for individual AML patients.
Pathway enrichment analyses demonstrated the potentially
related biological pathways of autophagy. Our finding
illustrates that the 12-autophagy gene signature would provide
new insight into a better understanding of autophagy in AML.
Although further validation is needed, we hope it will provide
promising prognostic significance and potential therapeutic
targets in AML treatment.
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Introduction: Since allogeneic stem cell transplantation (allo-HSCT) is
considered one of the curative treatments for acute myeloid leukemia (AML)
and myelodysplastic syndrome (MDS), hematological relapse following allo-
HSCT remained a crucial concern for patients’ survival.

Methods: We retrospectively compared patients who received venetoclax plus
hypomethylating agents (VEN+HMA, n=23) or intensive chemotherapy (IC,
n=42) for hematological relapse of myeloid malignancies after allo-HSCT.
HMA selection included decitabine (n=2) and azacitidine (n=21), and combined
donor lymphocyte infusion was administered to 21 and 42 patients in VEN+HMA
and IC groups, respectively.

Results: Median age of all patients was 39 (16-64) years old. Overall response rates,
including complete response (CR), CR with incomplete recovery of normal
neutrophil or platelet counts (CRi) and partial response (PR), were not
significantly different between VEN+HMA and IC groups (60.1% versus 64.3%,
P=0.785). CR/CRIi rate was 52.2% in VEN+HMA and 59.5% in IC group (P=0.567).
The rate of relapse after response was 66.7% in VEN+HMA group and 40.7% in IC
group (P=0.176). Median overall survival was 209.0 (95%Cl 130.9-287.1) days for
VEN+HMA group versus 211.0 (95%ClI 28.7-393.3) days for IC group (P=0.491). The
incidence of lung infection (17.4% versus 50.0%, P=0.010), thrombocytopenia
(73.9% versus 95.2%, P=0.035) and acute graft-versus-host disease (aGvHD)
(50.0% versus 13.0%, P=0.003) was significantly higher in IC group.

Discussion: In conclusion, VEN+HMA is not inferior to IC regimen in terms of
improving response and survival, and is associated with a lower incidence of
adverse events and aGvHD. However, further research is required to enhance
long-term survival.
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Introduction

As a curative therapies, allogeneic stem cell transplantation
(allo-HSCT) plays a crucial role in treating acute myeloid leukemia
(AML) and high high-risk myelodysplastic syndrome (MDS),
particularly for prolonging relapse-free survival and overall
survival in patients with intermediate- and poor-risk AML (1).
However, up to half of the patients may experience post-
transplantation relapse, depending on disease status and patients’
characteristics (2, 3). Relapse often occurs during the 3-6 months
following transplantation, with an overall survival of only 19% at 2
years (4). Intensive chemotherapy, donor lymphocyte infusion and
second-HSCT have been utilized without significant success (5-8),
indicating a need for further investigation of appropriate treatment
protocols for relapse of myeloid malignancies after allo-HSCT.

BCL-2 and its inhibitors have been the subject of increasingly
deepened hematological research, starting with the study of
follicular lymphoma conducted by Fukuhara et al. (9) Venetoclax,
the most clinically promising BCL-2 inhibitor, has been granted
approval by FDA in combination with hypomethylating agents
(HMA) for the treatment of newly diagnosed AML in patients not
tolerant to intensive chemotherapy. Additionally, recent studies
have demonstrated the impressive efficacy of venetoclax plus
intensive chemotherapy for newly diagnosed and relapsed/
refractory (R/R) AML (10, 11). The combination treatment of
venetoclax and HMA in R/R AML patients has also been
reported with varying remission rates and survival (12-15).
However, its safety and effectiveness compared to other regimens
in post-transplantation relapse has yet to be determined. In this
retrospective study, we investigated 65 patients treated with either
venetoclax plus hypomethylating agents (VEN+HMA) (n=23) or
intensive chemotherapy (IC) (n=42) for hematological relapsed
myeloid malignancies after allo-HSCT and compared response,
survival, graft-versus-host disease (GvHD) and adverse events
between the two regimens.

Methods
Patients

A retrospective analysis of clinical data was performed on 65
patients diagnosed with relapse of myeloid malignancy after allo-
HSCT, who were treated at the Institute of Hematology and Blood
Diseases Hospital, Chinese Academy of Medical Sciences and
Peking Union Medical College, between November 2013 and
December 2022. The study included 23 patients who received
VEN+HMA and 42 patients who received IC. Patients who were
initially diagnosed with primary or secondary AML or MDS and
experienced hematological relapse after allo-HSCT were included in
the study, while patients with severe organic dysfunction were
excluded. Risk stratification, diagnosis of relapse and response
criteria were according to European Leukemia Network 2017
criteria (16). Overall response rate (ORR) was defined as CR+CRi
+PR. MRD positivity is defined as >0.01% myeloid blasts detected
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by multiparameter flow cytometry or >0.001% leukemia-associated
genes detected by RT-qPCR. This study was approved by the ethical
committee of the Institute of Hematology and Blood Diseases
Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College, and informed consent forms were
obtained from all patients.

Treatments and efficacy evaluation

Azacitidine (50mg/m*/d for 5 days) was used as prophylactic
therapy in 4 patients after allo-HSCT. All relapsed patients
discontinued immunosuppressants after diagnosis. In VEN+HMA
group, venetoclax was gradually increased to a maximal dose of
400mg/d in 3 days and each treatment cycle was 14-28 days.
Combined hypomethylating agents include azacitidine (75mg/m?/
d for 7 days) or decitabine (20mg/m*/d for 5 days). Furthermore,
eleven patients in VEN+HMA group received low-dose cytarabine
(20 mg/m* twice daily) for 14 days. Patients in IC group received
CLAG or FLAG (cladribine 5mg/m*/day or fludarabine 30mg/m*
plus cytarabine 1-2g/m*/day plus G-CSF 5 ug/kg for 5 days) or
IDAGC, including cytarabine 1 g/m*/q12h plus mitoxantrone 8-10
mg/m°/d or idarubicin 8-12 mg/m>/d or daunorubicin 45-60 mg/
m?*/d or amsacrine 100 mg/m?/d for 3 days. Previous unsuccessful
regimens were avoided in the selection of IC regimens. Donor
lymphocyte infusion (DLI) was obtained from previously
cryopreserved donor graft or donor’s peripheral blood.
Concomitant DLI infusion was administered in 63 patients, and
calcineurin inhibitor was administered in patients receiving DLI
from haploidentical donors or matched unrelated donors (MUD) to
prevent GvHD. GvHD prophylaxis was identical between the two
groups. Median mononuclear cells and median CD34" cells each
dose were 2.13 (1.22-4.00) *10%/kg and 0.60(0.08-2.12)*10°/kg in
VEN+HMA group, and were 2.76 (0.96-8.33) *108/kg (P=0.144)
and 0.65(0.17—4.27)*106/kg (P=0.442) in IC group. Bone marrow
aspiration was performed after each treatment course and then
continued monthly to evaluate efficacy in patients achieving
complete response (CR)/CR with incomplete recovery of normal
neutrophil or platelet counts (CRi). Overall survival (OS) was
recorded from initiation of venetoclax or IC to last follow-up or
death. Relapse-free survival (RFS) was defined as time from CR/CRi
to the date of hematologic relapse or last follow-up. And Data cutoff
date was January 31™ 2023. Treatment-related mortality (TRM)
was defined as death not directly caused by relapse.

Adverse events and GvHD

During treatment session, blood routine examination, kidney and
hepatic functions were monitored in all patients. Patients with
neutropenic fever underwent blood culture for pathogenic
microorganisms, chest imaging examination and antimicrobial therapy.
Adverse events were evaluated according to CTCAE v5.0. Acute GVHD
(aGVHD) and chronic GVHD (cGVHD) were diagnosed according to
Glucksberg (17) and NIH (18) criteria, respectively.
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Statistical analysis

The statistical analysis was performed using IBM SPSS (v.26)
and R programming language (v 4.21). Quantitative variables were
expressed as median (range), categorical variables were presented as
rate and percentage. Mann-Whitney U test was performed for non-
normally distributed quantitative data, Chi-square test and Fisher
exact probability test were used for comparison of categorical
variables. Survival analysis was conducted using Kaplan-Meier
method and compared using log-rank test. Univariable and
multivariable analyses were calculated via Cox proportional
hazards regression model. Co-variables were selected using a
stepwise forward procedure, and clinical factors with a P<0.1 in
univariable analysis were selected to fit the multivariable model. A
P<0.05 was considered statistically significant.

TABLE 1 Baseline patients and transplantation characteristics.

10.3389/fonc.2023.1137175

Results

Primary disease status, treatment
and transplantation

Patient information is summarized in Table 1. No significant
differences were observed between VEN+HMA and IC groups
concerning age, gender, initial disease types, risk stratification,
therapies before allo-HSCT, donor types and disease status at
transplantation. Patients in VEN+HMA group carried FLT3-ITD
(n=7), RUNX1 (n=2) and c¢-KIT (n=1) mutations, while those
receiving IC regimen had FLT3-ITD (n=3), TP53 (n=4), ASXL1
(n=3), GATA2 (n=2) and ¢-KIT (n=2) mutations. Additionally,
complex karyotypes were presented in 1 patient in VEN+HMA
group and 6 patients in IC groups. All patients received

Iltem VEN+HMA (n=23), n (%) IC (n=42), n (%) P value
Age (years), median (range) 39 (16-60) 39.6 (16-64) 0.842
Gender 0.725
Male 11 (47.8%) 22 (52.4%)
Female 12 (52.2%) 20 (47.6%)

Initial disease 0.289
Primary AML 19 (82.6%) 28 (66.7%)

Secondary AML 1 (4.3%) 7 (16.7%)
MDS$ 3 (13.0%) 7 (16.7%)
MDS-MLD 3 (13.0%) 0 (0)
MDS-EB-2 0 (0) 7 (16.7%)

ECOG score 0.306

0 12 (55.0%) 11 (26.2%)

1 5 (21.7%) 14 (33.3%)

2 3 (13.0%) 3(7.1%)

NA 2 (8.7%) 14 (33.3%)

Median (range) 0 (0-2) 1(0-2) 0.337

ELN 2017 risk stratification 0.436
Favorable 1 (4.3%) 5 (11.9%)

Intermediate 15 (65.2%) 20 (47.6%)
Adverse 6 (26.1%) 12 (28.6%)
NA 1 (4.3%) 5 (11.9%)

Pre-transplant treatment
Intensive chemotherapy 20 (87.0%) 34 (81.0%) 0.786
Decitabine exposure 5(21.7%) 7 (16.7%) 0.865
Azacitidine exposure 6 (26.1%) 5 (11.9%) 0.266
Venetoclax exposure 3 (13.0%) 0 (0) 0.075
Median lines of therapies (range) 3 (0-5) 3 (0-6) 0.615

Time from diagnosis to transplant (days), median (range) 167 (24-343) 170.5 (41-801) 0.661

Disease status at transplant 0.286
CR/CRi 16 (69.1%) 28 (66.7%) 0.811
MRD- 12 (52.2%) 16 (38.1%) 0.273
PR 0 (0) 4(9.5%)

NR 4 (17.4%) 3(7.1%)
MDS 3 (13.0%) 7 (16.7%)

Donor type 0.771
Haploidentical donor 10 (43.5%) 15 (35.7%) 0.538
MSD 11 (47.8%) 24 (57.1%) 0471
MUD 2 (8.7%) 3 (7.1%) 0.793

VEN, venetoclax; HMA, hypomethylating agent; IC, intensive chemotherapy; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MDS-MLD, MDS with multilineage dysplasia;
MDS-EB, MDS with excess blasts; ECOG, Eastern Cooperative Oncology Group; ELN, European leukemia network; CR, complete remission; CRi, CR with incomplete hematologic recovery;
MRD, minimal residual disease; PR, partial response; NR no response; MSD, matched sibling donor; MUD, matched unrelated donor.
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myeloablative conditioning and GvHD prophylaxis before allo-
HSCT. The majority of patients in both VEN+HMA (n=11) and
IC (n=24, P=0.471) groups used matched-sibling donors (MSD).
One patient in VEN+HMA group and 3 patients in IC group
received azacitidine maintenance after transplantation.

Relapse and treatment

Relapse and treatment information is displayed in Table 2. One
patient in VEN+HMA group suffered from skin involvement and
received radiation therapy. In IC group, orbital chloroma (n=1),
invasion of skin (n=2), ribs (n=1), lymph nodes (n=1) and vertebras
(n=2) were observed. Two patients were treated with radiotherapy
and four patients with either skin or vertebras invasion presented
with concurrent bone marrow relapse. Notably, 17.4% of relapsed
patients (n=4) in VEN+HMA group suffered from concomitant
GVHD or lung infection (aGvHD=1, cGVHD=1, pneumocystis
pneumonia =1, mycoplasma pneumonia with decreased oxygen
saturation=1), while only 9.5% patients in IC group (n=4, P=0.597)
had similar diseases (aGvHD=2, ¢cGvHD=1, pulmonary
mycosis=1). In VEN+HMA group, four patients used VEN
+HMA as second (n=3) or third line (n=1) treatment, two of
whom received previous IC regimen without response and
switched to venetoclax-based regimen. Twenty-one patients
received azacitidine and 2 patients used decitabine in
combination with venetoclax. In addition, 11 patients in VEN
+HMA group received 14-day low-dose cytarabine. In IC group,
IC was the first-line treatment in 37 patients, second-line in 4
patients and third-line in 1 patient. IDAC (n=15), FLAG (n=16)
and CLAG (n=11) were used. IDAC treatment included cytarabine

TABLE 2 Relapse and treatment information.

10.3389/fonc.2023.1137175

combined with mitoxantrone (n=7) or idarubicin (n=4) or
daunorubicin (n=3) or amsacrine (n=1).

Efficacy and survival

Treatment efficacy was shown in Table 3. All treatment responses
were achieved in one cycle. Patients who did not respond, but were
medically fit and willing to receive further therapies, were switched to
a different regimen. In VEN+HMA group, twelve patients (52.2%)
achieved CR/CRi (CR=2, CRi=10), with 4 patients (17.4%) reaching
MRD negativity. However, eight of the 12 CR/CRi patients (66.7%)
relapsed later. One of the 2 patients who failed prior IC achieved CRi,
MRD+. Of the eight CR/CRi patients who continued with
venetoclax-based treatment, one proceeded to second allo-HSCT
and was alive until last follow-up. The other 4 responders all
relapsed and were either treated successfully with FLAG (n=1) or
died (n=3). Of the 11 non-responders, five switched to intensive
(n=2) or low-dose chemotherapy (n=3), and allo-HSCT was
performed in 1 NR patient, who later died of relapse. In the IC
group, twenty-five (59.5%) patients achieved CR/CRi (CR=8,
CRi=17), and 12 patients (28.6%) achieved MRD negativity. Eleven
of the 25 patients (40.7%) who responded later relapsed. Eleven
responders continued treatment with azacitidine (n=4), venetoclax
(n=3), or DLI (n=4), and 6 of 17 non-responders were treated with
azacitidine (n=1), DLI (n=4) or intensive chemotherapy (n=1). No
statistical significance was observed between two groups regarding
response, relapse after response, treatment-related mortality and
early mortality.

Kaplan-meier survival analysis showed that achieving CR/CRi
significantly improved patients’” prognosis (median OS 524 days in

Item VEN+HMA (n=23),n (%) IC (n=42), n (%) P value
Relapse type, n (%) 0.293
Bone marrow only 22 (95.7%) 35 (83.3%)

Extramedullary +/- BM relapse 1 (4.3%) 7 (16.7%)

Relapse within 1 years after transplantation 12 (52.2%) 27 (64.3%) 0.341
Concomitant disease at relapse 4 (17.4%) 4 (9.5%) 0.597
Active GVHD 2 (8.7%) 3 (7.1%) 0.793
Lung infection 2 (8.7%) 1(2.3%) 0.588
BM blasts at relapse, median (range) 21.0 (1.5-90.0) % 20.5 (0.5-91.5) % 0.429
Hemogram at relapse, median (range)

Median WBC, 10'%/L 2.9 (0.9-49.6) 3.9 (1.3-97.6) 0.424
Median hemoglobin, 10°/L 105 (49-141) 115 (61-156) 0.131
Median platelet, 10°/L 69.5 (10-192) 57.5 (3-205) 0.625
Post-relapse treatment before HMA+venetoclax, n (%)

IC exposure 2 (8.7%) 1(2.3%) 0.588
AZA exposure 2 (8.7%) 1(2.3%) 0.588
DAC exposure 1 (4.3%) 2 (4.7%) 0.588
DLI 2 (8.7%) 3(7.1%) 0.793
Median lines of therapies, median (range) 0 (0-2) 0 (0-2) 0.466
Median time from relapse to venetoclax+HMA/IC (days), median (range) | 6 (0-178) 4 (0-104) 0.525
Concomitant DLI, n (%) 21 (91.3%) 42 (100.0%) 0.122

VEN, venetoclax; HMA, hypomethylating agent; IC, intensive chemotherapy; GvHD, graft-versus-host disease; BM, bone marrow; WBC, white blood cell; AZA, azacitidine; DAC, decitabine;

DLI, donor lymphocyte infusion.
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TABLE 3 Clinical outcomes.

10.3389/fonc.2023.1137175

VEN+HMA (n=23), n (%) IC (n=42), n (%) P value
Reponse status, n (%)
ORR 14 (60.1%) 27 (64.3%) 0.785
CR 2 (8.7%) 8 (19.0%) 0.455
CRi 10 (43.5%) 17 (40.5%) 0.814
MRD- in CR/CRi 4 (17.4%) 12 (28.6%) 0.317
PR 2 (8.7%) 2 (4.8%) 0.927
NR 9 (39.1%) 15 (35.7%) 0.785
Time to response (days), median (range) 39 (14-55) 32.5 (14-71) 0.334
Relapse after response, n (%) 8/12 (66.7%) 11/27 (40.7%) 0.176
Duration of response (days), median (range) 131 (27-394) 181 (39-1231) 0.520
Mortality, n (%)
Day-30 mortality 1 (4.3%) 1 (2.4%) 1.000
Day-60 mortality 3 (13.0%) 6 (14.3%) 0.813
Day-90 mortality 4 (17.4%) 11 (26.2%) 0.421
Treatment-related mortality 1(4.3%) 9 (21.4%) 0.143

VEN, venetoclax; HMA, hypomethylating agent; IC, intensive chemotherapy; ORR, overall response rate (CR+CRi+PR); CR, complete remission; CRi, CR with incomplete hematologic recovery;

MRD, minimal residual disease; PR, partial response; NR no response.

CR/CRIi versus 130 days in PR/NR, P=0.004) (Figure 1A). Patients
reaching MRD negativity also had significantly prolonged median
OS (742 days in MRD negativity versus 169 days in MRD positivity,
P=0.014) (Figure 1B). The median time of post-transplantation
follow-up was not significant different (614 days in VEN+HMA
group versus 377 days in IC group, P=0.347). Median OS was 209
days for VEN+HMA group and 211 days for IC group (P=0.491)
(Figure 1C). In VEN+HMA group, ten patients died due to no
response to regimen (n==8), relapse after CR/CRi (n=1) or severe
pneumonia (n=1). In IC group, lack of response and relapse led to
the death of 10 and 9 patients, respectively, and 8 patients died of
infection (n=4) or GvHD (n=1) or multiorgan failure (n=3).

Clinical factors for survival and
subgroup analysis

The univariable and multivariable analysis using Cox
proportional hazards regression model (Table 4) revealed that
certain characteristics of patients’ initial diseases, including age,
baseline ECOG score and adverse mutations did not significantly
impact survival. TP53 mutation (HR=3.077 (95%CI 1.055-8.972),
P=0.040), Grade III/IV aGvHD after treatment (HR=4.011 (95%CI
1.689-9.525), P=0.002) and time from allo-HSCT to relapse>1 year
(HR=0.214 (95%CI 0.093-0.491), P<0.001) were found to have
significant effects on survival in univariable analysis. Furthermore,
multivariable analysis confirmed that late-onset relapse (HR=0.083
(95%CI 0.020-0.339), P=0.001) and treatment-induced grade III/IV
aGvHD (HR=3.534 (95%CI 1.141-10.953), P=0.029) significantly
impacted survival. In addition, multivariable analysis identified
male gender (HR=4.406 (95% CI 1.599-12.140), P=0.004), FLT3-
ITD mutation (HR=3.523 (95% CI 1.091-11.376), P=0.035),
concomitant pulmonary infection (HR=4.060 (95% CI 1.027-
16.056), P=0.046) and WBC>10,000/microL at relapse (HR=4.720
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(95%CI 1.561-14.271), P=0.006) as posing significant risks. The
subgroup analysis of survival was displayed in Figure 2,
demonstrating the positive trending effect of VEN+HMA regimen
in multiple subgroups, with significance observed in patients with
Hgb < 110g/L at relapse.

Adverse events and GvHD

Detailed information of adverse events and GvHD is shown in
Table 5. All patients experienced grade 3-5 adverse events during their
initial course of treatment. Thrombocytopenia was the most common
event in both treatment groups, but the incidence was significantly
higher in IC group than in VEN+HMA group (95.2% versus 73.9%,
P=0.035). Pneumonia was the most common infection, with a
significant higher incidence rate in IC group (50.0% versus 17.4%,
P=0.010). The incidence of bacteremia was comparable between VEN
+HMA group (17.4%) and the IC group (21.4%, P=0.948), and sepsis
occurred in 4.3% and 4.8% patients, respectively (P=0.588). No cases of
tumor lysis syndrome, patient intolerance or medication reduction
were recorded, except the reduction of venetoclax to 100mg when
combined with azoles. Of the 11 patients receiving further venetoclax
therapy in VEN+HMA (n=_8) and IC group (n=3), grade 3-5 adverse
events were observed, including thrombocytopenia (n=5), neutropenia
(n=3), upper respiratory infection (n=1), urinary tract infection (n=1),
elevated aminotransferase (n=1).

After treatment of relapse, aGvHD incidence was significantly
lower in VEN+HMA group (13.0% versus 50.0% in IC group,
P=0.003). Grade III/TV aGvHD was observed in one patient (4.3%)
in the VEN+HMA group and five patients (11.9%) in the IC group
(P=0.577). Among patients with concomitant aGvHD at relapse in
VEN+HMA (n=1) and IC group (n=2), one patient in each group
suffered aGvHD progression. The disease severity of the 2 patients
with concomitant cGvHD did not progress during treatment.
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FIGURE 1

Survival analysis of all patients. Overall survival of patients achieving
CR/CRi versus non-CR/CRi (A), MRD negativity versus MRD positivity
(B) and receiving venetoclax-based treatment vs. IC treatment (C).
VEN, venetoclax; HMA, hypomethylating agent; IC intensive
chemotherapy

Discussion

Allo-HSCT is considered as one of the curative treatments for
high-risk AML and MDS. Despite this, relapse after transplantation
remains a significant challenge. Currently available treatments,
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including intensive chemotherapy, DLI, etc., were partially
hindered by poor efficacy and toxicity (2, 4, 19). Previous
researches on IC treatment for post-transplantation AML relapse
have demonstrated CR rates from 13% to 71% and 1-year OS from
25% to 34.4% (20). A recent study including 175 patients showed a
remission rate of 36% and median OS of 188 days, while early
mortality within 28 days occurred in 12% patients (21). The
promising efficacy of venetoclax-based treatment in newly-
diagnosed AML also promoted its use in R/R AML and post-
transplantation relapse of myeloid malignancies. A retrospective
study analyzed the efficacy of venetoclax-combined and IC
regimens in R/R AML, clinical outcomes of VEN and IC groups
were 59.3% and 44.4% for ORR rate (P=0.081) and 8.9 months and
12.4 months for median OS (P=0.724), revealing the comparable
remission and survival provided by venetoclax (22). In contrast, two
other researches showed venetoclax-based regimen can achieve
significantly improved response and OS in R/R AML compared
to IC treatment (23, 24). Venetoclax combination therapy for
relapse of myeloid malignancies after transplantation has been
reported with a CR/CRi rate ranging from 26.9% to 47.1% and a
median OS from 3.4 to 9.5 months (25-28). However, these studies
lack a comparison of venetoclax versus other regimens. To address
this gap, we conducted this study to compare efficacy and adverse
events of different salvage regimens in 65 patients with post-
transplantation relapse of myeloid malignancies. Patients included
received VEN+HMA (n=23) or IC treatment (n=42).

Patients’ characteristics prior to hematological relapse did not
significantly differ between the two groups, CR/CRi rates were
52.2% and 59.5% for VEN+HMA and IC groups (P=0.567) and
MRD negativity rates were 17.4% and 28.6%, respectively
(P=0.317). However, lung infection (17.4% versus 50.0%,
P=0.010), thrombocytopenia (73.9% versus 95.2%, P=0.035) and
aGvHD (13.0% versus 50.0%, P=0.003) occurred significantly more
frequent in IC group. Median OS was 209.0 days in VEN+HMA
group versus 211.0 days in IC group (P=0.491). Although VEN
+HMA achieved noninferior response and fewer adverse events,
significantly improved survival was not demonstrated in OS, early
mortality rate and most subgroup analyses. Patients in our study
would switch to another regimen after failing the first course of
venetoclax. However, previous researches have indicated the
significance of multiple cycles of venetoclax treatment, as a
portion of patients may reach remission after several cycles (26,
28). In addition, an increasing number of studies have emphasized
the efficacy and tolerability of venetoclax maintenance therapy (29-
31). Although Kaplan-Meier (median OS not reached versus 157
days, P=0.007) and univariate analysis (HR=0.184 (95%CI 0.047-
0.713), P=0.014) both revealed that patients receiving continued
venetoclax achieved prolonged survival versus those without
maintenance therapy, the significance could be biased since
patients with better physical condition were more likely to receive
further treatment. Therefore, we could only speculate that the lack
of continued venetoclax treatment in our study may have partially
contributed to suboptimal survival.

The study found that only one patient in VEN+HMA group
and 3 patients in IC group received prophylactic azacitidine
maintenance, and none experienced aGvHD after relapse and
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TABLE 4 Prognostic factors for overall survival using univariable and multivariable analysis .

Univariable analysis

Multivariable analysis

HR (95% CI) P value HR (95% CI) P value

Age 1.000 (0.973-1.027) 0.982

>40 1.081 (0.566-2.064) 0.814

Gender (male vs. female) 1.852 (0.951-3.607) 0.070 4.406 (1.599-12.140) 0.004
Baseline ECOG score 2.328 (0.781-6.941) 0.129

(2-3 vs. 0-1)

Adverse ELN risk stratification 1.915 (0.943-3.890) 0.072 2.469 (0.904-6.745) 0.078
FLT3-ITD mutation 2.345 (0.937-5.864) 0.068 3.523 (1.091-11.376) 0.035
TP53 mutation 3.077 (1.055-8.972) 0.040 0.849 (0.216-3.333) 0.814
ASLX1 1.301 (0.306-5.522) 0.722

GATA2 1.584 (0.375-6.693) 0.531

VEN-based treatment vs. IC 0.773 (0.370-1.613) 0.493

GvHD at any time 1.057 (0.520-2.150) 0.878

Grade III/IV aGvHD after treatment 4.011 (1.689-9.525) 0.002 3.534 (1.141-10.953) 0.029
Time from allo-HSCT to relapse>1 year 0.214 (0.093-0.491) <0.001 0.083 (0.020-0.339) 0.001
GvHD at relapse 1.415 (0.431-4.650) 0.567

Pulmonary infection at relapse 3.407 (1.024-11.334) 0.046 4.060 (1.027-16.056) 0.046
BM blasts at first relapse 1.003 (0.991-1.015) 0.679

BM blasts>20% at relapse 1.733 (0.882-3.407) 0.111

WBC at relapse 1.002 (0.985-1.020) 0.796

‘WBC>10,000/microL 2.054 (0.921-4.579) 0.078 4.720 (1.561-14.271) 0.006
Hgb at relapse 0.993 (0.980-1.005) 0.260

Hgb<110g/L 1.386 (0.679-2.831) 0.370

PLT at relapse 0.998 (0.992-1.003) 0.399

PLT<100,000/microL 1.450 (0.697-3.016) 0.320

Concomitant DLI 1.493 (0.204-10.947) 0.693

Previous HMA after relapse 0.873 (0.266-2.862) 0.823

HR, hazard ratio; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; VEN, venetoclax; IC, intensive chemotherapy; GvHD, graft-versus-host disease; DLI, donor lymphocyte
infusion; aGvHD, acute graft-versus-host disease; allo-HSCT, allogeneic hematopoietic stem cell transplantation; BM, bone marrow; PLT, platelet; HMA, hypomethylating agent.

treatment. The patient in VEN+HMA group suffered disease
progression, whereas 3 patients in IC group all reached CRi, but 2
of them later relapsed. Univariable cox analysis did not show
difference in terms of HMA prophylaxis (HR=0.772 (95% CI
0.185-3.225), P=0.723). Besides the fact results based on limited
data may not accurately assess effects, previous research suggested
that regular maintenance therapy could be necessary to improve
survival (31, 32). Additionally, some researches (28, 33-35) revealed
negative impacts of previous HMA on VEN+HMA efficacy, while
other studies (14, 15) did not. In the VEN+HMA group, none of the
patients with prior HMA exposure as maintenance or pre-emptive
treatment achieved CR/CRi, compared to 50.0% (10/20) of those
without HMA exposure. But univariable analysis did not
demonstrate any significant impact of prior HMA exposure or
the usage of VEN+HMA as a first-line therapy on survival.

The role of DLI and GvHD on survival also remained
controversial. Previous research has produced conflicting results,
with some studies indicating a positive effect of DLI and GvHD on
disease remission and survival (27), while others showing no such
benefits (25, 28). Our study examined the association between
concomitant DLI or GvHD and patient outcomes and found no
significant improvement in survival with either factor. Nevertheless,
we did observe that grade III/IV aGvHD after treatment
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prognosticated significantly poorer survival, particularly in IC
group (HR=6.547 (95% CI 2.201-19.474), P=0.001). In addition,
grade III/IV aGvHD occurred with no significant difference in MSD
(2/35, 5.7%) and non-MSD recipients (4/30, 13.3%, P=0.530),
indicating the importance of immunosuppressants in reducing
severe aGvHD in haploidentical or MUD recipients. Our study
also found that relapse combined with pulmonary infection
increased risks in patients treated with VEN+HMA (HR=16.598
(95%CI 2.298-119.915), P=0.005). Therefore, we recommend
initiating VEN-based regimens in relapsed patients without
concomitant infection. Additionally, VEN-treated patients may be
more tolerant to treatment-induced GvHD than those receiving IC.

Adverse genetic abnormalities are strongly associated with R/R
AML and lead to worse survival (36-38). In this study, ELN adverse
stratification only showed a trend towards reducing survival
(HR=2.469 (95% CI 0.904-6.745), P=0.078). Larger studies (22,
38) with more cases of R/R AML patients have shown significant
impact of ELN risk stratification on survival. However, its effect has
not been clearly established in patients with post-transplantation
relapse. In addition, detecting new mutations at relapse and
reassessing ELN risk at that time point might more accurately
indicate patients’ survival. Nevertheless, due to lack of genetic
testing for every patient at relapse, we were not able to
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Subgroup VEN+HMA, mOS (days) IC, mOS (days) Hazard ratio (95%Cl)
All patients 209 211 —— 0.773 (0.370-1.613)
ELN risk stratification
Adverse 130 205 1.242 (0.370-4.170)
Non-adverse NR 339 —— 0.818 (0.309-2.163)
FLT-ITD mutation
Yes 209 211 1.186 (0.213-6.589)
No 193 293 —— 0.730 (0.290-1.835)
Acute GVHD after treatment
Yes 209 145 0.580(0.074-4.524)
No 193 293 — 0.867 (0.363-2.072)
Active GvHD at relapse
Yes 193 386 = 1.225 (0.076-19.862)
No 209 211 —— 0.768 (0.355-1.661)
Time from allo-HSCT to relapse
>1 year NR 1057 0.687 (0.132-3.575)
<1 year 1567 115 —_— 1.032 (0.452-2.361)
BM blast percentage at relapse
>=20% 167 127 —_— 1.060 (0.434-2.588)
<20% NR 293 — 0.682 (0.282-1.650)
WBC at relapse
>=10,000/microL 49 127 2.808 (0.394-20.017)
<10,000/microL NR 293 — 0.749 (0.307-1.828)
Hgb at relapse
Hgb>=110g/L 193 320 —_— 1.330 (0.518-3.420)
Hgb<110g/L NR 76 —-—— 0.259 (0.069-0.968)
PLT at relapse
PLT>=100,000/microL NR 598 —— 0.338 (0.070-1.639)
PLT<100,000/microL 130 211 —_—— 1.155 (0.479-2.786)

; 0'5 1 1'5 2' 2'5 ; 3'5 ; 4'5 ;
VEN+HMA «—------ — IC
FIGURE 2

Subgroup analysis of survival VEN, venetoclax; HMA hypomethylating agent;

IC, intensive chemotherapy; ELN, European leukemia network; DLI,

donor lymphocyte infusion; GvHD, graft-versus-host disease; aGvHD, acute graft-versus-host disease; allo-HSCT, allogeneic hematopoietic stem
cell transplantation; BM, bone marrow; WBC, white blood cell; HgB, hemoglobin; PLT, platelet.

TABLE 5 Adverse Events and GvHD.

Events VEN+HMA (n=23), n (%)
Grade 3-5 adverse events (CTCAE v5.0) 23 (100.0%)
Infection
Sepsis 1 (4.3%)
Lung infection 4 (17.4%)
Upper respiratory infection 1 (4.3%)
Laryngitis 2 (8.7%)
Gum infection 1 (4.3%)
Oral mucositis 1 (4.3%)
Anal mucositis 3 (13.0%)
Intestine infection 0 (0)
Abdominal infetion 0 (0)
Skin infection 0 (0)
Anemia 11 (47.8%)
Neutropenia 17 (73.9%)
Thrombocytopenia 17 (73.9%)
Elevated aminotransferase 0 (0)
Acute GVHD after treatment 3 (13.0%)
Grade III/TV aGvHD 1 (4.3%)
Intestine 1 (4.3%)
Stage 3-4 1 (4.3%)
Skin 3 (13.0%)
Stage 3-4 3 (13.0%)
Liver 0 (0)
Stage 3-4 0 (0)

IC (n=42), n (%) P value
42 (100.0%) 1.000
2 (4.8%) 0.588
21 (50.0%) 0.010
4 (9.5%) 0.793
1 (2.4%) 0.588
7 (16.7%) 0.293
5 (11.9%) 0.577
7 (16.7%) 0.978
7 (16.7%) 0.098
2 (4.8%) 0.536
2 (4.8%) 0.536
27 (64.3%) 0.198
38 (90.5%) 0.158
40 (95.2%) 0.035
8 (19.0%) 0.105
21 (50.0%) 0.003
5 (11.9%) 0.577
11 (26.2%) 0.066
6 (14.3%) 0.414
7 (16.7%) 0.978
0 (0) 0.075
19 (45.2%) <0.001
4 (9.5%) 0.323

VEN, venetoclax; HMA, hypomethylating agent; IC, intensive chemotherapy; CTCAE, Common Terminology Criteria for Adverse Events; GVHD, graft-versus-host disease; aGvHD, acute graft-

versus-host disease; cGvHD, chronic graft-versus-host disease.

demonstrate this speculation. Furthermore, multivariable analysis
revealed FLT3-ITD mutation significantly influence survival, which
is consistent with other research findings (22, 39). TP53 mutation
also showed such significance in univariate analysis, supporting
conclusion from other articles (40, 41).
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In conclusion, this retrospective study demonstrated that
compared to intensive chemotherapy, venetoclax plus
hypomethylating agents is an effective and safe regimen for
hematological relapse of myeloid malignancies after allo-HSTC.
Nevertheless, prospective researches and clinical trials are necessary
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to verify results, and more detailed exploration is required for
maintenance therapy in responders.
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Background: The efficacy of induction chemotherapy (IC) for acute myeloid
leukemia (AML) has improved significantly with the application of targeting drugs.
Our previous study showed that a 4-day IC regimen of cyclophosphamide (CTX) and
Ara-C [CA (4 + 3)] achieved similar complete remission (CR) rate (80%) compared
with the traditional 7-day regimen, and the survival rate appeared to be better.

Methods: In this pilot study, we further shortened the CA regimen to 3 days, added
low-dose venetoclax (VEN, 200 mg/day) (VCA), and reported the efficacy and
safety here.

Results: Twenty-five newly diagnosed adult AML patients were enrolled in this study
and evaluated for the remission rate after one cycle of the VCA regimen. The CR/Cri
was 92%, and all these patients had undetectable minimal residual disease (MRD").
The estimated overall survival at 12 months was 79.3%. The median time for both
platelet recovery and absolute neutrophil count recovery was 16 days, faster than
that of traditional IC. Compared with the previous CA (4 + 3) regimen, a higher CR
rate (92% vs. 80%, P < 0.01) and a deeper degree of remission (CRurp- rate, 92% vs.
45%, P < 0.01) were found in the VCA group.

Conclusions: This study showed that the 3-day CTX and Ara-C regimen is highly
effective in newly diagnosed AML patients, and the addition of VEN to the CA
regimen achieves higher and deeper one-course remission.

KEYWORDS

venetoclax, cyclophosphamide, acute myeloid leukemia, induction chemotherapy,
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Introduction

Acute myeloid leukemia (AML) is a malignant disorder of
hematopoietic stem cells. It accounts for approximately 80% of
adult acute leukemia. Optimization of induction chemotherapy
(IC), consolidation chemotherapy, or intensive chemotherapy to
enhance the clearance of leukemia cells has the potential to
improve survival. So far, anthracycline combined with
cytarabine (Ara-C) is the first-line IC regimen for AML, and the
complete remission (CR) rate after one or two courses of
treatment is up to 80% (1, 2). Venetoclax (VEN), a selective
BCL-2 inhibitor, may partly overcome the difficulty of treatment
caused by the genetic heterogeneity of AML and improve the CR
rate. The combination of VEN with hypomethylating agents or
low-dose Ara-C in older or unfit newly diagnosed AML has shown
significant improvement in overall survival (OS) (3-5).
Furthermore, VEN combined with cytotoxic drugs as IC showed
that CR rates could exceed 90% (6). These studies suggest that the
combined chemotherapy regimens with VEN have a
synergistic function.

We previously reported a 4-day IC regimen in AML that includes
4-day cyclophosphamide (CTX) and 3-day Ara-C [CA (4 + 3)] (7).
The CR rate was 80%. Among the patients who completed three
courses of consolidation chemotherapy, the actual 5-year disease-free
survival (DFS) rate was 64%. Since the addition of VEN to IC may
improve the CR rate, we further explored a 3-day CA regimen
combined with a 7-day VEN (VCA) to explore whether the CR
rate could be increased and preliminarily evaluated the survival rate.
Correspondingly, a comparison between VCA and historical CA
(4 + 3) was reported here.

Methods
Patients and study design

This study was carried out in the Institute of Hematology and
Blood Diseases Hospital, CAMS & PUMC, between April 2021 and
July 2022. Patients with newly diagnosed AML [defined by the
World Health Organization (8)] were enrolled and classified into
three risk groups according to the 2017 European Leukemia Net
(ELN) criteria (9). The primary endpoint was CR rate, including CR
and CR with incomplete blood count recovery (CRi) according to
the modified International Working Group criteria (10). The
secondary endpoints included overall survival (OS), minimal
residual disease (MRD), response rates, event-free survival (EFS),
disease-free survival (DFS), durable remissions, and adverse events.
The historical CA (4 + 3) set was used for control. This study was
approved by the Ethical Committee of the Institute of Hematology
and Blood Diseases Hospital. Informed consent was obtained from
the patients and their legal guardians in accordance with the
Declaration of Helsinki.

Frontiers in Oncology

10.3389/fonc.2023.1193874

Treatment

A combined regimen of VEN, CTX, and Ara-C was used as
induction chemotherapy. VEN was given orally at the dosage of 200
mg per day from day 1 to day 7. Ara-C (1 g/m>) was administered
intravenously every 12 h from day 1 to day 3. CTX was
administered at 20 mg/kg/day from day 1 to day 3. Posaconazole
was used concomitantly to prevent invasive fungal infections and
act synergistically with VEN. Patients with intermediate or poor
prognosis were recommended for allogeneic hematopoietic stem
cell transplantation (allo-HSCT) once the first CR was achieved.
Patients unable to perform allo-HSCT were given consolidation
therapy according to the NCCN guidelines. Patients remained on
study for OS assessment and follow-up even if they accepted other
kinds of treatment.

Safety assessment

Adverse events (AEs) were graded according to the National
Cancer Institute Common Terminology Criteria for Adverse Events
version 5.0 (https://ctep.cancer.gov/protocolDevelopment/
electronic_applications/ctc.htm#ctc_50). Treatment-emergent AEs,
including clinical tumor lysis syndrome (TLS), were defined as
those that occurred between the first dose of the study drug and 30
days after the last dose of the study drug. Clinical and laboratory TLS
was defined according to the criterion reported by Howard et al. (11).

Efficacy

Response assessment was performed between 28 and 35 days
after chemotherapy, including bone marrow morphology,
cytogenetics, and genetic detection. Flow cytometry was used to
quantify the MRD of the marrow. Responses were defined
according to the European Leukemia Net recommendations (9):
CR as <5% of bone marrow blasts with normal peripheral blood
counts (neutrophils > 1.0 x 10°/L, platelets > 100 x 10°/L) and CR
with incomplete hematologic recovery (CRi, neutrophils < 1.0 x
10°/L, and/or platelets < 100 x 10°/L). Neutrophil recovery was
defined as days from the start of induction therapy to neutrophil
count recovered to >0.5 x 10°/L. Platelet recovery was defined as
days from the start of chemotherapy to platelets recovered to >20 x
10°/L for twice evaluation without platelet transfusion.

Statistical analysis

SPSS (version 25.0, Chicago, IL, USA) was used for the
statistical analysis. Comparisons between categorical variables
were performed with the x* test or Fisher’s exact test. The
differences between continuous variables were compared using
the t-test or the Mann-Whitney U test. Overall survival was
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evaluated by the Kaplan-Meier method, and the statistical
differences between the two groups were evaluated using the log-
rank test. P <0.05 was defined as statistically significant.

Results
Patients’ characteristics

Twenty-five patients at a median age of 47.4 (range 27-68) years
were enrolled in this study, consisting of 16 men (64%) and 9
women (36%). The clinical characteristics of the patients are shown
in Table 1. All patients were diagnosed with de novo AML. Twenty-
three patients had complications at admission. Infections were the
most common, including six pulmonary infections (two
hemoptysis), three invasive fungal infections, four pharyngeal or
gingival infections, and three neutropenic fevers. Other
comorbidities included cardiac insufficiency, vomiting,
hypokalemia, and hypoproteinemia.

The ELN risk stratification showed favorable prognosis in 44%
of patients, intermediate prognosis in 32% of patients, and adverse
prognosis in 24% of patients. All patients had gene mutations
related to AML at diagnosis detected by next-generation
sequencing (NGS) (Figure 1). Recurrent mutations in RUNX1/
RUNXTI1, CBFB-MYHI11, NPM1, and CEBPA were found in 11
patients. Three of them also carried mutations in TP53, ASXLI,
and/or RUNX1. Another patient had mutations in TP53, ASXLI, or
KMT2A. Mutations in the class II gene WTI were found in 18
patients (76%).

Efficacy

Two patients were discharged shortly after chemotherapy due
to financial reasons although their hematopoiesis had not yet
recovered, and they were confirmed to have died at a later follow-
up. Therefore, these two patients were evaluated as having no
remission. The other 23 patients all achieved CR (including one
CRi) after one course of VCA regimen and the CR rate was 92%. All
those 23 patients showed MRD negativity, including the one with
CRi (Table 2).

Compared with the previous CA (4 + 3) regimen, patients who
received VCA achieved a higher CRyrp- rate (92% vs. 45%, P <
0.01). The time required for platelet recovery (>20 x 10°/L) and
neutrophil recovery (20.5 x 10°/L) was assessed among patients
who achieved CR/CRi. The median time for both platelet recovery
and neutrophil recovery was 16 (9-20) days, and it had no
difference compared with that of the CA (4 + 3) group. The
plasma concentration of VEN was detected in five patients and
the mean level was 1,880 ng/ml.

Survival

The last follow-up of the patients in the VCA group was in
December 2022, and the median time of follow-up was 18.6 (1-
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TABLE 1 Clinical characteristics of the patients.

o VCA CA@4+3 P-
Characteristic (n = 25) (n(= 20)) value
Age (years) 0.72

Median (range) (21;7-218) 50 (24-69)
Gender 0.94
Male (%) 16 (64) 13 (65)
Female (%) 9 (36) 7 (35)
AML type
De novo 25 (100) 20 (100)
Secondary 0(0) 0 (0)
ECOG performance status 0.14
0 5 6
1 13 11
2 4 3
3 2 0
4 1 0
Blast percentage 0.23
64.4 55.7
Median (range) (21-965) | (22.5-88.5)
Fever/infection (%) 13 (52) 12 (60) 0.12
Classification (%) 0.18
NOS 6 (24) 7 (35)
RUNX1-RUNXITI 4 (16) 2 (10)
CBFB-MYHI1 1(4) 1(5)
GATA2, MECOM (EVI1) 0 (0) 1(5)
NPM1 1(4) 5(25)
CEBPA 5 (20) 1(5)
MLLT3-KMT2A 2(8) 0 (0)
KMT2A rearranged 4 (16) 2 (10)
Myelodysplasia-related change 2 (8) 1(5)
Prior HMA treatment 0 (0) 0 (0)
European Leukemia Network risk (%) 0.59
Favorable 11 (44) 9 (45)
Intermediate 8 (32) 4 (20)
Adverse 6 (24) 7 (35)

20.3) months. Two patients died 1 month after IC. Three patients
with adverse prognosis stratification relapsed (12%, 3/25) and
finally died of the disease. Another patient died of infection
during consolidation therapy. Three patients accepted allo-HSCT.
By the end of follow-up, 19 patients were alive and remained CR.
The median duration of OS was not reached. The estimated OS at
12 months was 79.3%.
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The overall survival rate of VCA and CA (4 + 3) is shown in
Figure 2. We further combined the data of patients in the VCA
group and the CA (4 + 3) group to analyze the predictors for OS.
Multivariate analysis showed that VCA regimen use (odds ratio
0.08; 95% CI, 0.01 to 0.59, P = 0.013), younger age (odds ratio 1.08;
95% CI, 1.01 to 1.16, P = 0.025), and the ELN risk stratification of
favorable prognosis (odds ratio 0.05; 95% CI, 0 to 0.6, P = 0.018)

were associated with better survival.

TABLE 2 Efficacy and adverse events between VCA and CA (4 + 3) regimen.

Safety

A summary of treatment-related AEs in patients who received
the VCA regimen is shown in Table 2. Patients who received VCA
had a lower count of white blood cells compared with those who
received CA (4 + 3) (0.02 x 10°/L vs. 0.11 x 10°/L, P = 0.002).
However, the infection rate and infection severity were similar
between the two groups. The most common origins of infections

VCA CA (4 +3) P-value

Induction response (%) <0.01

Morphologic CR 23 (92%) 16 (80%)

MRD negative 23 (92%) 9 (45%)

Induction failure 2 (8%) 4 (20%)
Hematologic AEs [d, M (range)]
The nadir of WBC (x10°/L) 0.02 (0.01-0.51) 0.11 (0.01-1.05) 0.002
The day of ANC recovery (> 0.5 x 10°/L) 16 (9-20) 17 (10-20) 0.20
The day of PLT recovery (> 20 x 10°/L) 16 (9-20) 16 (12-34) 0.97
Non-hematologic AEs (%)
Angina 1(5.3) 1(5)
Upper respiratory tract infection 1(5.3) 3 (15)
Pulmonary infections 4 (21.1) 10 (50)
Intestinal infections 12 (63.2) 11 (55)
Rash 0 (0) 1(5)
Oral ulcer 1(5.3) 1(5)

WBC, white blood cell; PLT, platelet; ANC, absolute neutrophil count; AEs, adverse events.
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FIGURE 2

The overall survival rate between VCA and CA (4 + 3).

were the intestines and lungs. Laboratory-defined TLS was found in
one patient (elevations of potassium, phosphorus, and uric acid)
without clinical symptoms.

Discussion

Previous studies of VEN have shown significant improvement
in OS when combined with hypomethylating agents (HMAs). A
25% reduction in the risk of death was reported with the
combination of VEN, showing that VEN plus LDAC was
associated with improvement in median OS (7.2 vs. 4.1 months)
(12). Higher response rates and OS were reported using VEN and
azacitidine (AZA) than AZA alone (response rate, 66.4% vs. 28.3%;
OS, 14.7 vs. 9.6 months) (13). VEN combined with intensive
chemotherapy such as CLIA and FLAG-IDA for newly diagnosed
AML or high-risk myelodysplastic syndrome also showed
encouraging results (3, 14, 15). In our study, the median OS was
23.5 months in the CA (4 + 3) regimen, and it was not reached in
the VCA regimen (P = 0.089), demonstrating improved survival.
The estimated OS at 12 months of the VCA regimen is 79.3%. This
cohort of the study showed that the addition of VEN to the CA
regimen leads to a one-course CR rate of up to 92% in adult AML,
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higher than that of the previous CA (4 + 3) regimen, supporting the
role of VEN in improving the inducible remission rate.

A meta-analysis suggested that MRD negativity is associated
with better DFS and OS in AML patients (16). Patients who
achieved morphological remission but had detectable minimal
diseases (MRD") are at high risk of relapse (17). For patients
under 40 years old, consolidation therapy containing high-dose
Ara-C reduces relapse rate (18). In the current study, all the patients
with CR/CRi achieved MRD negativity (100%). Compared with the
one-course MRD-negative rate of 45% in the historical CA (4 + 3)
group, patients who received VCA achieved deeper remission
regardless of their prognostic stratification. Our results herald the
ability of VEN in clearing leukemic cells (19). However, the sample
size of this study is small, and further prospective study with a large
sample size is required to validate the results. Nevertheless, this
study showed that the combination of low-dose VEN with CA
achieved deeper remission in newly diagnosed AML.

The hematologic toxicity of IC is highly associated with the
duration of agranulocytosis which most likely causes life-
threatening infections. The median time to ANC recovery of the
VCA regimen was 16 days, much shorter than 29 days in traditional
induction chemotherapy (20, 21). This result may be attributed to
the short chemotherapy duration of CTX and Ara-C (3 days) and
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the low total dose but high blood concentration of VEN. VEN is a
substrate of cytochrome P450 (CYP) 3A enzyme (CYP3A4).
Posaconazole, which is used to prevent invasive fungal infections,
also functions as a potent inhibitor of CYP3A4. Hence, the
concomitant use of posaconazole and VEN can increase the blood
concentration of VEN. The total dosage of VEN in our study is
1,400 mg, much lower than that used in previous reports (4,800,
5,600, 2,800, and 2,700 mg, respectively) (3, 6, 14, 15), but the blood
concentration is high. Thus, the fast ANC recovery of VCA results
in a lower percentage of severe infection and death caused
by infections.

In conclusion, we demonstrate that the VCA regimen could
achieve a high CR and CRyrp- rate and long-term survival than
traditional IC regimens in newly diagnosed AML. Patients also
benefit from the shorter ANC recovery time. A prospective study
with a large sample size is required to validate the results.
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SET-CAN/NUP214 fusion is a recurrent event commonly observed in adult male
patients diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) and has
occasionally been reported in other diseases such as acute myeloid leukemia
(AML), myeloid sarcoma (MS), acute undifferentiated leukemia (AUL), chronic
myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). This
fusion gene is derived from chromosome del(9)(q34.11;934.13) or t(9;9)(q34;934)
and may have an inhibitory effect on primitive progenitor differentiation. The
prognosis of the reported patients is varied, with these patients often show
resistance to chemotherapy regimens that include high doses of glucocorticoids.
The optional treatment has not been determined, more cases need to be
accumulated and evaluated. The scope of this review is to summarize the
general features and prognostic significance in leukemia associated with the
SET-CAN/NUP214 fusion gene and to discuss the methods of detection and
treatment, aiming at providing some useful references for relevant researchers in
the field of blood tumor.

KEYWORDS

SET-CAN/NUP214 fusion gene, leukemia, T-cell acute lymphoblastic leukemia (T-ALL),
acute myeloid leukemia (AML), molecular anomaly, treatment, prognosis

1 Introduction

Leukemia is a malignant clonal disease originating from hematopoietic stem and
progenitor cells. Leukemia cells with proliferation and survival advantages proliferate
and accumulate uncontrollably in the body, gradually replacing normal hematopoiesis and
invading other organs and systems, resulting in a series of symptoms such as anemia,
hemorrhage, infection and immersion. According to the degree of differentiation and
maturation of leukemia cells and the natural course of disease, leukemia can be roughly
divided into two categories: acute leukemia and chronic leukemia, and then divided into
myelogenic/myeloid and lymphocytic/lymphoblastic according to the cell of origin.

SET-CAN/NUP214 fusion gene is formed by del(9)(q34.11;q34.13) or t(9;9)(q34;q34)
and has been identified in the LOUCY cell line of T -ALL and the MEGAL cell line of AML
(1, 2). In 1992, Von Lindern et al. first identified the SET-CAN/NUP214 fusion gene in a
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case of acute undifferentiated leukemia (AUL). Since then, with the
development of detection technology and the deepening
understanding of leukemia, subsequent cases of AML, MS, AUL,
CML, and B-ALL have also been found (3-6). Overall, the disease
experienced by most patients carrying SET-CAN/NUP214 is T-ALL.

The NUP214 protein, also known as CAN, is a nucleoporin with
FG repeats rich in phenylalanine-glycine. The NUP214 gene is located
on band 9q34.1 and it has a total of 36 exons numerically labeled from
1 to 36 (Figure 1). Chromosome abnormality involving NUP214 occur
repeatedly in leukemia, in addition to the SET-CAN/NUP214 reviewed
here, other chromosome abnormalities were found such as DEK-
NUP214, SQSTMI-NUP214 and NUP214-ABLI. DEK-NUP214 [t
(6;9)(p22;q34)] was associated with AML, NUP214-ABL1 was
identified in T-ALL patients, the rarest leukemia NUP214 fusion
protein is SQSTM1-NUP214: to date, only two cases have been
reported, one in ALL and the other in AML. The structure of the
SQSTMI-NUP214 fusion gene consists of five exons located at the N-
terminus of the SQSTM!1 gene fused to a portion of the C-terminus of
NUP214, including its last 14 FG repeats (7). In eukaryotic cells,
nucleo-cytoplasmic transport plays an important role in maintaining
the normal function and integrity of cells (8). Molecules with a
molecular mass greater than 40kDa cannot move across the nuclear
membrane by simple diffusion, but require to be facilitated by nuclear
transporter receptors (NTRs) with the help of nuclear pore complexes
(NPCs) embedded within the nuclear membrane (9-11). NUP214
interacts with NTRs via the FG repeat region in the cytoplasmic
filaments of the nuclear pore complexes (NPCs) to control
macromolecule trafficking (12). NUP214 has been shown to interact
with exportin-1 (XPO1) and nuclear RNA export factor 1 (NXF1) of
NTRs, which are highly mobile in cells (13) and play an important role
in the response to NUP214 by nuclear export sequences (NES) protein;
Furthermore, NUP214 fusion proteins such as SET-CAN/NUP214 and

10.3389/fonc.2023.1269531

DEK-NUP214, reduce the mobility of XPO1l and lead to the
accumulation of XPOI1 cargo within the nucleus, impair nuclear
output by sequestering XPOL1 in the nucleus, interfere with nuclear-
cytoplasmic transport of macromolecules, and potentially affect the
transcriptional regulatory function of the NF-xB pathway (14), leading
to various blood diseases (15). Moreover, genomic knockout of
NUP214 led to embryonic lethality in mice (1).

SET, also referred to as TATA box binding protein-associated
factor 1 (TAFI). SET is a component of the histone acetyltransferase
inhibitor (Inhat), which has been reported to be a putative oncogene
involved in transcription by regulating chromatin organization
(16). SET encodes a protein which can exert an inhibitory effect
on apoptosis induced by cytotoxic T lymphocytes (4). In eukaryotic
cells, the occurrence of selective splicing in the first two exons of the
TAFI gene results in the formation of two forms of SET expression:
the two heterodimeric forms, TAFI-oc and TAF1-J (1). Whereas in
SET-CAN/NUP214, only the TAF1-f isoform is present (17). The
structure of SET/TAF1-B consists of three parts: an N-terminal
dimerization domain, a central “Earmuff” domain named for its
headphone-like structure, and an acidic and negatively charged C-
terminal domain (Figure 1). SET/TAF-I has a variety of different
activities, such as inhibiting phosphatase 2A activity, inducing cell
transformation and differentiation, and transferring histones to
naked DNA. The structural and negative regulatory functions
may be related to glucocorticoid resistance (16, 18, 19).

SET-CAN/NUP214 fusion gene encodes a protein containing an
almost complete portion of SET fused to the carboxy-terminal two-
thirds of CAN, which is a rare gene rearrangement occurs primarily in
hematological malignancies (3). The appearance of the fusion gene may
be the result of prior cancer therapy, but it may also occur de novo.

SET-CAN/NUP214 positive patients often show resistance to
chemotherapy including glucocorticoids, but the mechanism is not
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SET —
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131009174 » 131309261
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— —)
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B
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SET-CAN/NUP214 | [ \
1
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FIGURE 1

90

(A) Partial structure of chromosome 9 long arm (9g34): SET at 9934.11 and CAN/NUP214 at 9g34.13. (B) Protein structures of SET/TAF-13, CAN/
NUP214 and SET-CAN/NUP214. SET/TAF-1B: 1-3: N-terminal dimerization domain; "Earmuff” domain; acidic and negatively charged C-terminal
domain. CAN/NUP214: 1-3: B-propeller; coiled-coil region; FG repeats C-terminal region.
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completely clear. The optional treatment has not been determined,
previous studies have adopted different treatment options with
varying prognoses for patients. Some previous studies have shown
that SET-CAN/NUP214 fusion gene positive patients have a worse
prognosis (3, 7, 20), while clinical studies have shown that there is
no significant difference in 3-year event-free survival (EFS) and
overall survival (OS) between patients with SET-CAN/NUP214
fusion gene positive and SET-CAN/NUP214 negative patients (21,
22). Conventional techniques such as chromosomal karyotype
analysis may have limitations in detecting patients with SET-
CAN/NUP214. Due to the emergence of more advanced detection
techniques such as fluorescence in situ hybridization (FISH),
previously challenging fusion genes like SET-CAN/NUP214 can
now be detected with increasing frequency. This necessitates
more precise disease classification and optimization of therapeutic
regimens. Research shows that HSCT can improve the prognosis,
the level of SET-CAN/NUP214 after transplantation can predict
recurrence to a certain extent (23), new methods such as CAR-T
may be effective for patients and further research is needed (24).

In this review, we summarized the general features and clinical
advances of SET-CAN/NUP214 fusion gene in leukemia.

2 Materials and methods
2.1 Literature search

The cases and literature cited and included in this review were
retrieved by Jingyu Song and his colleagues using PubMed, Web of
Science, Google Scholar, and metstr databases or websites.

The whole screening process is shown in Figure 2. First we
exhaustively searched the literature through the databases or
websites, and in this step of the search we disregarded the
country of publication and time constraints of the literature in
order to obtain more comprehensive results. After the search was
completed, we performed the exclusion of duplicates and initial
screening. Next, by scanning the full-text content, we screened the
literature based on its content and excluded incomplete and missing
information, leaving behind content that (1) contained complete
information and data (2) related to clinical cases, basic research, or
reviews of SET-CAN/NUP214.

After completing the screening, we proceeded to the integration
of viewpoints and statistics of cases.

2.2 Data analysis

We analyzed the statistical case data by SPSS software and
performed survival analysis using Kaplan-Meier survival curves.

3 General features of the patient

In the 2022 international consensus classification of acute
lymphoblastic leukemia/lymphoma, SET-CAN/NUP214 fusion
gene positive has been listed as a subtype of the HOXA gene
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family in the latest eight temporary entities (25). SET-CAN/
NUP214 fusion gene is rare in leukemia patients, and there is no
prospective clinical study for such patients. Relevant articles focus
on case reports and mechanism studies. This section provides an
overview of the general features of patients.

According to a statistic in 2016, a total of 42 SET-CAN/NUP214
positive patients were reported up to that year, including T-ALL(38/
42,90.5%), AUL(2/42,4.8%), AML(1/42;2.4%) and B-ALL(1/
42;2.4%) (4), another study involving 59 T-ALL patients showed
that about 10.3% of T-ALL patients carried SET-CAN/NUP214
fusion gene (20), Ben Abdelli et al. reported that the positive rate
of SET-CAN/NUP214 fusion gene in 196 patients with T-ALL was
about 5.6% (21), in 2022, Yan C and others first reported two CML
patients with positive SET-CAN/NUP214 fusion gene (7). The data
revealed that although SET-CAN/NUP214 fusion gene occurs in
various types of leukemia, it mainly occurs in T-ALL. This review
compiled relevant literature containing more complete patient
characteristics published since the emergence of the first SET-
CAN/NUP214 fusion gene positive case to date, some articles
were not included due to lack of patient information, a total of 81
patients’ information was collected, the overall statistical
characteristics of the patients are listed in Table 1, and detailed
information on the individual characteristics of the patients are
listed in Table 2. Among the 81 patients in Table 2, there are 57(57/
81, 70.4%) patients with T-ALL, which is much higher than other
types, consistent with the conclusion that the fusion gene is more
likely to occur in T-ALL.

Among the fusion gene positive patients counted in this review,
there are 59 male and 22 female patients, respectively, with the
proportion of male patients reaching more than 70%, suggesting
that the SET-CAN/NUP214 fusion gene is more likely to occur in
male patients. The number of fusion gene positive T-ALL patients
included 40 males and 17 females, with the proportion of males
reaching 70.2%. Although there were fewer cases of other types of
leukemia, there were still significantly more males than females,
which suggests that the type of leukemia in fusion gene positive
patients may not be an influencing factor in the proportion of males
and females in the disease (4, 7, 20, 21).

There is a large difference in the age of patients at initial
diagnosis, the youngest patient is only 8 years old (T-ALL), the
oldest patient is 58 years old (T-ALL), the average age is 30.2 years
old and the patients are distributed in all age groups (6, 17, 24, 26,
35, 41). Relatively speaking, the probability of fusion gene positive
in adult leukemia patients is higher (40). Two CML patients with
SET-CAN/NUP214 fusion gene positive were 37 and 42 years old,
far from the average age of fusion gene positive patients. However,
due to the small number of cases and the older age of CML patients,
the relationship between age and fusion gene could not
be established.

In previous cases, the patients with fusion gene positive leukemia
did not show symptoms different from those with fusion gene
negative leukemia, and most remained symptomatic with classic
anemia, fever, and lower sternal segment tenderness. However, liver
and spleen enlargement, lymph node enlargement, mediastinal
involvement, as well as tumor bulk and rapid growth were more
common than in fusion gene negative patients (5, 29, 34, 42).
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Some patients came to see doctors because of liver and spleen
enlargement and related symptoms caused by mediastinal mass.
Sang-Guk Lee et al. described a 28-year-old patient who
complained of dyspnea and chest pain. Physical examination found
that multiple lymph nodes in the neck were swollen. Chest CT
showed that mediastinal mass compressed the main pulmonary
artery with pleural effusion and splenomegaly. Finally, the patient
was diagnosed as SET-CAN/NUP214 positive T-ALL (34). Song Y
et al. (43) also confirmed that patients often have extramedullary
infiltration at the onset of the disease, including areas such as the skin,
liver and breast. According to the statistics, the median WBC count of
the patients was 18.0x10°/L. Based on the collected patient
information, the highest WBC count was 604.4 x 10°/L (T-ALL)
and this patient died 5 months after diagnosis. The median
percentage of leukemic blasts in the bone marrow was high (82.0-
97.0%), probably reflecting the high proliferation status of fusion gene
positive patients (4, 24).

Patients with fusion gene positive may have normal
chromosome karyotype or complex karyotype, the existence of a
complex karyotype may mask the presence of the fusion gene (34,
44). As a molecular abnormality with low frequency, this is also the
reason why SET-CAN/NUP214 patients were not widely concerned
at first.

In terms of immunophenotype, the fusion gene positive
leukemia cells showed characteristics of extreme immaturity. Flow
cytometry showed that their most frequent immunophenotype was
CD7, except for the two CML cases mentioned previously (7), only
one T-ALL patient and one AML patient reported by Zhang H (6)
and Rosati R (29) did not detect CD7+. CD7 was highly frequent in
SET-CAN/NUP214 fusion gene positive leukemia, and the other

Frontiers in Oncology

immunophenotypes with higher frequency were cCD3, CD34,
CD33 and CD13. The immunophenotypic results suggest that the
transformation of fusion gene positive leukemia may occur in the
early stage of myeloid or T-lymphocyte differentiation, and it may
be related to the inhibition of differentiation of primitive progenitor
cells by the fusion gene (6, 7, 35, 45, 46).

Generally, myeloid markers such as CD13 and CD33 are only
expressed in about 19% of T-ALL cases. The reason why the fusion
gene induces myeloid marker expression remains to be
further investigated.

4 Molecular anomaly in
SET-CAN/NUP214

SET-CAN/NUP214 fusion gene impairs the process of
hematopoietic differentiation, but it alone is not sufficient to
induce leukemia. Additional chromosomal aberrations and
molecular events are required to mediate the development of
leukemia. Understanding the process is greatly helpful for
understanding the disease.

SET-CAN/NUP214 fusion gene may contribute to leukemia
through direct and indirect effects. Saito S et al. (47) developed
transgenic mice expressing SET-CAN/NUP214, which is active in
different groups of hematopoietic cell groups, and the transgenic
mice carrying SET-CAN/NUP214 gradually developed symptoms
such as anemia, thrombocytopenia and splenomegaly, so that
within 6 months, a considerable number of transgenic mice died
successively, the course and characteristics of the lesions are more
similar to those of leukemias, and the characterization of bone

frontiersin.org
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TABLE 1 Patient characteristic statistics. marrow cells in mice during the course of the disease showed that
= = ) the SET-CAN/NUP214 fusion gene increased the number of
immature cells and impaired the hematopoietic differentiation of
Age (year,range) erythroid, granulocytic, and megakaryocytic lineages (47).
average age 302 (8-58) Previous studies have shown that the fusion gene impairs the
process of hematopoietic differentiation, but cannot induce
median age 290 (8-58) the occurrence of leukemia alone. HOXA upregulation may be the
Sex (n,%) key mechanism and play an intermediary role. HOX genes is a kind of
ale 59/81 (72.6%) gene that specially regulates biological form in organisms. The
expression of HOX gene in various organisms is similar, and its
female 22/81 (27.2%) sequence is related to its action sequence and action position. Human
Average WBC (x10°/L) 65.6 HOX gene can be divided into four gene clusters: HOXA, HOXB,
Subtype (n,%) HOXC, and HOXD, which are located on different chromosomes
respectively. The DNA sequence of these gene family members is
T-ALL S7/81 (704%) similar to the protein sequence transcribed. Quantitative and
AML 12/81 (14.8%) comparative analysis of bone marrow samples from SET-CAN/
BALL /81 (4.9%) NUP214 positive patients during initial diagnosis and
morphological remission using RT-PCR and other detection
MPAL 3/81 (3.7%) methods showed that the expression level of HOXA9 and HOXAI0
AUL 2/81 (2.5%) at initial diagnosis was 3.53 and 4.15 times higher than that during
ML 2/81 (25%) morphological remission, while the expression level of HOXA5 was
similar (34). Sang-Guk Lee and others found that the up-regulation of
MS 181 (1.2%) HOXA gene was caused by the interaction of SET-CAN/NUP214
Treatment (n,%) fusion gene with XPOI, hDOTI1L and HOXA promoters. The fusion
Chemotherapy 20069 (29.0%) genes with similar mechanism include CALM-AF10 and MLL-AF10
(33), which can lead to the H3K79 hypermethylation of HOXA genes
Transplant 49/69 (71.0%) and mediate the occurrence of leukemia. Hypermethylation and
Clinical outcome (n,%) subsequent upregulation of HOXA genes play an important role in
R 52/69 (75.4%) the pathogenesis of leukemia with positive fusion gene (48). Gorello P
et al. detected the overexpression of HOXA7, HOXA9 and HOXA10
Relapse 28/69 (40.6%) in the fusion gene positive patients selected from 256 ALL patients (7,
Death 30/69 (43.5%) 42). 17 fusion gene positive patients were detected by FISH analysis,

TABLE 2 Characteristics of SET-CAN/NUP214 positive patients reported in the literature.

Case no. Diagnosis Year . Sex Age WBC(x10%/L) Immunophenotype/
(y) Flow cytometry
CD7 CD33 CD34 CD13 cCD3
1 AUL 1992 Von Lindern (17) Male 19.0 / + + - - -
2 AUL 2010 Kim.J (26) Male 40.0 53 + + - - +
3 MS 2020 Zhang.H (6) Female 32.0 4.15 + + - - -
4 MPAL 2020 Li MY (27) Male 29.0 0.56 + + + - +
5 MPAL 2021 Chen SM (28) Female 22.0 / / / / / /
6 MPAL 2021 Chen SM (28) Male 34.0 / / / / / /
7 AML 2007 Rosati R (29) Male | 350 40 - + + + -
8 AML 2019 Jeong IH (30) Male 46.0 17.1 + + + - -
9 AML 2020 ZhangH (6) Male = 240 11.41 + + + + -
10 AML 2021 Zheng YZ (31) Male 12,0 231.8 + + + + -
11 AML 2021 Zheng YZ (31) Male 10.0 3875 + + + + -
12 AML 2021 Chen SM (28) Male 20.0 / / / / / /

(Continued)
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TABLE 2 Continued

Case no.

Diagnosis

Year

10.3389/fonc.2023.1269531

Immunophenotype/
Flow cytometry

CD7 CD33 CD34 CD13 cCD3

13 AML 2021 Chen SM (28) Male 32.0 / / / / / /
14 AML 2021 Chen SM (28) Male 26.0 / / / / / /
15 AML 2021 Chen SM (28) Male 12.0 / / / / / /
16 AML 2021 Chen SM (28) Female 46.0 / / / / / /
17 AML 2021 Chen SM (28) Male 38.0 / / / / / /
18 AML 2021 Chen SM (28) Male 50.0 / / / / / /
19 CML 2022 Chen Y (5) Male 42.0 / - + + + -
20 CML 2022 Chen Y (5) Female 37.0 283.5 - + + + -
21 B-ALL 2010 Nowak NJ (32) Female 42.0 / / / / / /
22 B-ALL 2014 Hong HZ (4) Male 19.0 217.0 + + + + -
23 B-ALL 2021 Chen SM (28) Male 18.0 / / / / / /
24 B-ALL 2021 Chen SM (28) Male 22.0 / / / / / /
25 T-ALL 2008 Van Vlierberghe P (33) | Female 15.3 213.0 / / / / /
26 T-ALL 2008 Van Vlierberghe P (33) | Female 10.6 142.0 / / / / /
27 T-ALL 2008 Van Vlierberghe P (33) | Female 17.1 15 / / / / /
28 T-ALL 2010 Gorello P (7) Male 38.0 24 / / / / /
29 T-ALL 2010 Gorello P (7) Male 19.0 3.28 / / / / /
30 T-ALL 2010 Gorello P (7) Male 47.0 / / / / / /
31 T-ALL 2010 Gorello P (7) Female 27.0 / / / / / /
32 T-ALL 2010 Gorello P (7) Male 19.0 / / / / / /
33 T-ALL 2010 Gorello P (7) Male 18.0 / / / / / /
34 T-ALL 2010 Gorello P (7) Male 23.0 / / / / / /
35 T-ALL 2011 Lee SG (34) Male 28.0 37.3 + + + - -
36 T-ALL 2011 Chae H (35) Female 55.0 24.43 + + + + +
37 T-ALL 2011 Chae H (35) Female 32.0 18.04 + + + + +
38 T-ALL 2011 Chae H (35) Male 32.0 39.06 + + + - +
39 T-ALL 2011 Chae H (35) Male 20.0 5.07 + + + - +
40 T-ALL 2011 Li WJ (36) Female 12.0 1.5 + + + + +
41 T-ALL 2011 Li WJ (36) Male 11.0 6.4 + + - - +
42 T-ALL 2011 Li WJ (36) Male 8.0 99.6 + - + - +
43 T-ALL 2012 Dai HP (20) Male 20.0 34.1 + + + + +
44 T-ALL 2012 Dai HP (20) Female 56.0 6.8 + + + - +
45 T-ALL 2012 Dai HP (20) Female 23.0 2.6 + + + - +
46 T-ALL 2012 Dai HP (20) Male 27.0 / + + + + +
47 T-ALL 2012 Dai HP (20) Male 45.0 333 + + + - +
48 T-ALL 2012 Dai HP (20) Male 23.0 15.1 + + + - +
49 T-ALL 2012 Lee EY (37) Female 43.0 60.6 + + + + +
(Continued)
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TABLE 2 Continued

Case no. Diagnosis Year . Immunophenotype/
Flow cytometry

CD7 CD33 CD34 CD13 cCD3

50 T-ALL 2014 Ben (21) Male 34.0 30.4 + + + - +
51 T-ALL 2014 Ben (21) Female 37.0 8.6 + - + - +
52 T-ALL 2014 Ben (21) Male 29.0 10.1 + + + + +
53 T-ALL 2014 Ben (21) Male 41.0 18.4 + + + - +
54 T-ALL 2014 Ben (21) Male 23.0 604.4 + - - - +
55 T-ALL 2014 Ben (21) Male 30.0 249 + - - - +
56 T-ALL 2014 Ben (21) Male 36.0 181.8 + + + - +
57 T-ALL 2014 Ben (21) Male 45.0 50.8 + - - - +
58 T-ALL 2014 Ben (21) Male 38.0 2.8 + + + - +
59 T-ALL 2014 Ben (21) Male 28.0 41.8 + + + - +
60 T-ALL 2014 Ben (21) Male 20.0 309 + - - - +
61 T-ALL 2015 Prokopiou C (38) Female 48.0 / + - + - +
62 T-ALL 2015 Prokopiou C (38) Male 45.0 / + + + - -
63 T-ALL 2019 Yang Q (3) Male 26.0 12.3 + - - - -
64 T-ALL 2019 Yang Q (3) Male 51.0 109.1 + + - - -
65 T-ALL 2019 Yang Q (3) Male 37.0 131.5 + + + - -
66 T-ALL 2020 Zhang.H (6) Male 21.0 37.16 - - - - -
67 T-ALL 2021 Xianying Xu (39) Female 44.0 21.1 + - + - +
68 T-ALL 2021 Na Lin (40) Female 15.0 235 + - + - +
69 T-ALL 2021 Chen SM (28) Male 58.0 / / / / / /
70 T-ALL 2021 Chen SM (28) Female 27.0 / / / / / /
71 T-ALL 2021 Chen SM (28) Male 37.0 / / / / / /
72 T-ALL 2021 Chen SM (28) Male 27.0 / / / / / /
73 T-ALL 2021 Chen SM (28) Female 16.0 / / / / / /
74 T-ALL 2021 Chen SM (28) Male 36.0 / / / / / /
75 T-ALL 2021 Chen SM (28) Male 40.0 / / / / / /
76 T-ALL 2021 Chen SM (28) Male 41.0 / / / / / /
77 T-ALL 2021 Chen SM (28) Female 34.0 / / / / / /
78 T-ALL 2021 Chen SM (28) Male 15.0 / / / / / /
79 T-ALL 2021 Chen SM (28) Male 12.0 / / / / / /
80 T-ALL 2021 Chen SM (28) Male 42.0 / / / / / /
81 T-ALL 2021 Chen SM (28) Male 36.0 / / / / / /

AUL, Acute undifferentiated leukemia; ALL, Acute lymphoblastic leukemia; T-ALL, T-cell ALL; B-ALL, B-cell ALL; AML, Acute myeloid leukemia; MS, Myeloid sarcoma; MPAL, Mixed
phenotype acute leukemia; CML, Chronic myeloid leukemia; Immunophenotype positive: +; Immunophenotype negative: -; unknown:/

and all patients(17/17, 100%) had overexpression of HOXA gene. =~ HOXA3, HOXA5, HOXA7, HOXA9, HOXAI0 and HOXB in the
There were also studies that summarized the up-regulation of HOXA ~ HOX family (2, 33, 49, 50). These studies also confirmed the
gene with the positive expression of several NUP214 fusion gene  relationship between HOXA and SET-CAN/NUP214 fusion gene.

subtypes. SET-NUP214, DEK-NUP214 and SQSTMI1-NUP214 have Na Lin et al. (40) evaluated common recurrent mutations in
the same characteristics, which can lead to the up-regulation of = SET-CAN/NUP214 positive T-ALL patients through next-
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generation sequencing. The results showed that mutations were
more common in NOTCHI(23/31,74.2%), PHF6(11/21,52.38%),
KRAS(6/14,42.86%), JAK3(4/12,33.33%), CCND3(3/12,25%), JAKI
(3/15,20%), STAT5B(2/10,20%), DNM2(2/10,20%) and EED(2/
10,20%), these are common recurrent mutations in SET-CAN/
NUP214 positive patients in T-ALL and ETP-ALL. The patients
with fusion gene positive are accompanied by more molecular
events than those with fusion gene negative. These complex
molecular events may promote adverse reactions to induction
therapy, and may also be one of the factors of poor prognosis
(51). As the total number of cases remains low, these issues remain
to be explored.

The protein encoded by NOTCH gene is a highly conserved cell
surface receptor, which can regulate the development of a variety of
biological cells. NOTCH signaling can affect a series of normal life
processes of cells, including the differentiation of pluripotent
progenitor cells, cell apoptosis, proliferation and cell boundary
formation. The abnormality of NOTCH signaling is related to
esophageal cancer, gastric cancer, leukemia and other diseases,
Among them, abnormal NOTCHI is most often detected in
tumor diseases.

The activation mutation of NOTCHI or the inactivation
mutation of NOTCHI negative regulatory factor(FBXW7) can be
found in about 60% of T-ALL cases. However, the proportion of
NOTCHI mutation seems to be higher in SET-CAN/NUP214
positive leukemia patients. A gene sequencing of 6 SET-CAN/
NUP214 positive T-ALL patients by Dai HP et al.(Jiangsu
Institute of Hematology, China) showed most T-ALL patients
with positive fusion gene have NOTCHI mutations(5/6,83.3%)
and PHF6 mutations(4/6,66.7%) (20). The next-generation
sequencing of patients by Na Lin et al. (40) showed that the
proportion of NOTCHI mutations in 31 patients reached 74.2%,
similarly, the results of the test performed by Wang Q et al. (52) on
the association between 96 fusion gene positive patients and
mutations such as NOTCH, JAKI and others demonstrated a
possible positive correlation between NOTCHI mutations and
fusion gene positivity.

The mutations of NOTCH1, PHF6 and JAKI are closely linked
in the process of leukemia, which may be the secondary genetic
alterations of SET-CAN/NUP214 fusion gene. PHF6 is a tumor
suppressor gene with transcriptional regulation linked to the X sex
chromosome in the nucleus. Tumorigenic mutations have a higher
incidence rate in T-ALL and can also be seen in AML, most of them
occur in male patients. JAKI plays a key role in initiating reactions
related to a variety of major cytokine receptor families. It appears in
about 20% of adult T-ALL patients, generally indicating poor
prognosis. If the patients with positive fusion gene have co-
mutation of NOTCHI and PHF6, they are more likely to have
symptoms such as splenomegaly and lymph node enlargement (2,
22, 52-54). In addition, the existence of SET-CAN/NUP214 fusion
gene is related to the up-regulation of the expression level of
lymphoblastic leukemia-associated hematopoietic regulator 1
(LYLI) and myocyte enhancer 2C(MEF2C) genes (22). Contrary
to the common mutations such as NOTCHI, PHF6 and JAKI, the
overexpression of CALM-AF10, SIL-TAL, TLXI or TLX3 is
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mutually exclusive with the existence of SET-CAN/NUP214 fusion
gene. A gene test of 11 fusion gene positive T-ALL patients by Ben
et al (21). showed that none of the 11 patients expressed CALM-
AF10, SIL-TAL, TLX1 or TLX3(0/11,0%).

In the process of leukemogenesis mediated by SET-CAN/
NUP214 fusion gene, it is generally accepted that additional
chromosomal aberrations also play a role. Chae H et al. (35)
reported del (12)(p13)/ETV6 in 3 of 4 patients, while Ben et al.
(21) found this aberration numerous times in their cases. Similarly,
the patients in the reports also presented del (6) (q21q23) and del
(11) (q22q23) chromosomal aberrations (51, 55). The recurrent
chromosomal aberrations in the rare fusion gene positive patients
are intriguing and worth pondering.

5 Treatment and prognosis of patients

5.1 Prognosis of leukemia patients with
SET-CAN/NUP214 fusion gene

The prognosis of patients with positive SET-CAN/NUP214
fusion gene is different. Most studies consider that the prognosis
is poor. The prognosis of patients may vary due to leukemia
classification, concomitant molecular events, treatment plan and
the age stage. Patients generally showed delayed response and
drug resistance to chemotherapy including glucocorticoids, but
studies showed that this drug resistance might not have a
negative impact on clinical outcomes (21). Yang Q et al.
demonstrated that the prognosis of T-ALL patients with SET-
CAN/NUP214 was quite poor, their treatment of three patients
with fusion gene positive showed that none of the three patients
achieved complete remission(CR) during chemotherapy, and all
of them were infected by drug-resistant bacteria such as Candida
tropicalis and Pseudomonas aeruginosa. Because of the disease
progress and the inability to control the concurrent infection,
two patients died during chemotherapy (3). Gorello P et al. also
found that the prognosis of fusion gene positive patients was
poor. In this study, 6 of the 7 patients received treatment, of
which 4 patients died 12 to 24 months after treatment. The main
causes of death were refractory disease and leukemia recurrence
(7). The treatment results of 6 patients by Dai HP et al. showed
that 4 of the 6 patients had recurrence (the median recurrence
time was only 7.8 months), and 3 of them died (20). There are
also studies show that the positive fusion gene has no effect on
the clinical outcome of patients. In the study of Ben et al., the
difference between the 3-year total survival rate(3y OS) and
event-free survival rate(3y EFS) of fusion gene positive patients
and fusion gene negative patients is not statistically significant
(3y OS:73% vs 68%; 3y EFS:45% vs 59%) (21, 24), while in the
study of Chen B et al, the 3-year overall survival rate(3y OS) and
event-free survival rate(3y EFS) of 8 fusion gene positive patients
were 87.5% and 70% respectively (22). It can be seen that the
outcomes of patients in different clinical trials vary greatly, and
finding more effective treatment methods may be beneficial
to patients.
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5.2 Studies on the causes of
corticosteroid resistance

Patients with positive SET-CAN/NUP214 fusion gene usually
exhibit general resistance to chemotherapy regimens including
glucocorticoids in the early stages of induction therapy. Although
patients have a delayed response to chemotherapy, the overall CR
rate is not affected (40).

The relevant research evaluated patients based on in vitro drug
sensitivity screening, monitoring of blasts during induction and MRD
results after induction. Compared with the patients with negative
fusion gene, the rate of corticosteroid resistance in patients with
positive fusion gene(91% of patients had corticosteroid resistance,
while the data of patients with negative fusion gene was only 44%)
and the rate of early chemotherapy resistance (nearly 100% of patients
had early chemotherapy resistance, and only 44% of patients with
negative fusion gene) were significantly higher (3, 34, 39, 40).

The anti-inflammatory, immunosuppressive and proapoptotic
effects of glucocorticoids play an important role in the treatment of
various inflammatory, autoimmune and tumor diseases. In the treatment
of leukemia, glucocorticoids are involved in various chemotherapy
regimens, especially for ALL. Corticosteroid therapy induced GR target
gene transcription is also one of the reference treatment options for ALL
(56, 57). The powertul role of glucocorticoids is based on the ubiquitous
glucocorticoid receptors(GR) in human cells (58), ligands activate GR
and bind with glucocorticoid response elements(GREs) in the nucleus.
The transcription process starts under the mediation of “coactivators”
such as steroid receptor coactivator 1 (SRCI) and glucocorticoid receptor
interaction protein 1 (GRIPI). Under pathological conditions, SET is
fused with CAN/NUP214, and the SET subtype mainly exists in SET-
CAN/NUP214 is TAF1-f. TAF1-f3 serves as a component in the INHAT
complex, which interacts with a variety of trans-acting factors through
TAFI-f to inhibit the transcriptional activity of multiple transcription
factors and nuclear receptors. Due to this mechanism, Takamasa Ichijo
et al. reported that the potential cause of glucocorticoid resistance in
patients with positive SET-CAN/NUP214 fusion gene is the co-
precipitation of SET-CAN/NUP214 fusion protein and glucocorticoid
response element, which inhibits the transcription activity of
glucocorticoid receptor and histone acetylation (56, 59). The in vitro
experimental data reported by Yang Q and others also believe that the
lack of histone acetylation regulation mediated by SET-CAN/NUP214
may be the cause of glucocorticoid resistance in many patients (3).

Even though nearly 100% of SET-CAN/NUP214 fusion gene
positive patients exhibit resistance during the early stages of
chemotherapy, studies have shown a high complete response rate
(26 of 36 patients,72.22%) (40, 60). The CR rate of the 69 patients
counted in Table 1 is also relatively high, reaching 75.4% (52/69).
The drug resistance situation and mechanism of the patients still
need further research, which may be helpful for the selection of
chemotherapy regimen.

5.3 Chemotherapy and transplantation

The optional treatment method of SET-CAN/NUP214 fusion
gene positive leukemia has not been determined. We present
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patients with clear treatment methods and outcome information
reported so far in Table 3 for reference. Analyzing the treatment
methods and prognosis of previous cases may provide guidance for
the establishment of treatment strategies for such patients.

The SET-CAN/NUP214 fusion gene is mainly found in T-ALL
patients. Table 3 contains 49 T-ALL patients, of which 18 patients
received chemotherapy and 31 patients received transplantation.
Among the patients receiving chemotherapy, 7 patients survived, 11
patients died, and 9 patients relapsed; Among the patients receiving
transplantation, 18 patients survived, 13 patients died and 13
patients relapsed.

Most patients developed drug resistance at the initial stage of
chemotherapy, but 35 T-ALL patients finally achieved complete
remission (CR, 35/49, 71.4%), which was similar to the complete
remission rate suggested in previous studies (72.22%) (40, 60). Yang
Q et al. (3) reported that CLAG chemotherapy combined with
asparaginase might be a potential treatment option for adult
SET-CAN/NUP214 fusion gene positive T-ALL patients. They
implemented VICP chemotherapy for the first two patients
(No0.52-53) in the case, but the effect was not obvious. The patients
eventually died because of the disease progress and uncontrollable
infection of drug-resistant bacteria, for the third patient(No.54), the
CLAG chemotherapy regimen combined with asparaginase was used.
Surprisingly, the patient’s condition was quickly controlled. Na Lin
etal. (40) conducted a drug sensitivity screening tests on the leukemic
cells of a refractory fusion gene positive T-ALL patient (No.57) with
up to 165 drugs, suggesting that the DAE protocol of “AML like
treatment” (daunorubicin+cytarabine+etoposide) showed the highest
inhibition rate in vitro. At the same time, they suggested that the
induction treatment could adopt a 28-day course of chemotherapy
such as used in GRAALL 2003 or 2005. The reason why such “AML
like treatment” is effective for patients with fusion gene positive may
be related to the frequent occurrence of markers such as CD33 and
CD34. Carfilzomib may have a strong inhibitory effect on leukemic
cells with positive fusion gene. It can mediate the production of
reactive oxygen species as an inducer and synergistically enhance the
cytotoxicity of dexamethasone. It is worth noting that in the drug
sensitivity screening test, the inhibition rate of single drug treatment
of carfilzomib is 37.57%, which shows that carfilzomib may also have
potential benefits for patients with refractory SET-CAN/NUP214
fusion gene positive T-ALL (40, 61, 62). Unfortunately, carfilzomib
is not currently available in China.

In the treatment of fusion gene positive patients, transplantation
may benefit more. A literature based comparison of the treatment
methods of patients shows that the average survival time of the
chemotherapy group was 22.5 months, the average survival time of
the transplantation group was 50.1 months, the average survival
time of the chemotherapy group was less than half of that in the
transplantation group (24). The statistical analysis shows that
hematopoietic stem cell transplantation (HSCT) can significantly
improve the survival rate of patients, we can consider that only
chemotherapy for patients with fusion gene positive is not enough.
The total 3-year overall survival rate (3y OS) of the 9 patients with
fusion gene positive T-ALL who received allogeneic hematopoietic
stem cell transplantation was 73% (21), which is similar to the
outcome of the patients with fusion gene negative after allogeneic
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TABLE 3 Treatment and outcome of patients.

Case @ Diagnosis Year Ref./ Treatment Outcome
no. Year
1 AUL 40 Kim.] (26) cytosine arabinoside, idarubicin CR, alive 7 months and lost to follow-up
2010
2 MS 32 Zhang H idarubicin, cytarabine homoharringtonine Myelosoppression with a rapidly increased pericardial
(6) effusion
2020
3 MPAL 29 Li MY idarubicin, vincristine, dexamethasone, hyper- Chemotherapy achieved CR,
(27) CVAD-A regimen, HSCT,CAR-T,relapse
2020 hyper-CVAD-B regimen, alive>42 months
HSCT,CAR-T
4 MPAL 22 Chen SM CODLP or VPIA(vincristine + prednisone + CR,HSCT
(28) daunorubicin + cytarabine) alive>42 months
2021 HSCT
5 MPAL 34 Chen SM CODLP or VPIA(vincristine + prednisone + CR,HSCT
(28) daunorubicin + cytarabine) alive>24 months
2021 HSCT
6 AML 35 Rosati R daunorubicin, cytosine arabinoside CRHSCT
(29) HSCT still alive
2007
7 AML 46 Jeong TH idarubicin and cytosine arabinoside, HSCT CR,HSCT
(30) still alive
2019
8 AML 24 Zhang H daunorubicin,cytarabine CRHSCT
(6) HSCT alive>8 months
2020
9 AML 12 Zheng YZ Cytarabine,FLAG-IDA CR,HSCT
(31) allo-HSCT relapse,died +16.5months
2021
10 AML 10 Zheng YZ FLAG-IDA CR,HSCT
(31) allo-HSCT alive>27 months
2021
11 AML 20 Chen SM combination chemotherapy CRHSCT
(28) HSCT alive>34 months
2021
12 AML 32 Chen SM combination chemotherapy CRHSCT
(28) HSCT alive>40 months
2021
13 AML 26 Chen SM combination chemotherapy CRHSCT
(28) HSCT relapse
2021 alive>90 months
14 AML 12 Chen SM combination chemotherapy CRHSCT
(28) HSCT alive>32 months
2021
15 AML 46 Chen SM combination chemotherapy CRHSCT
(28) HSCT alive>41 months
2021
16 AML 38 Chen SM combination chemotherapy CRHSCT
(28) HSCT relapse, died +45months
2021
17 AML 50 Chen SM combination chemotherapy CR,HSCT
(28) HSCT relapse, died +25months
2021
18 CML 42 Chen Y Imatinib, dasatinib, decitabine, venetoclax, partial response, HSCT
(5) ponatinib alive>95.7 month
2022 HSCT
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TABLE 3 Continued

10.3389/fonc.2023.1269531

Case @ Diagnosis Year Treatment Outcome
19 CML 37 Chen Y Imatinib, dasatinib Increased after two years of treatment with Imatinib,
(5) Idarubicin, cytarabine change to dasatinib, idarubicin and cytarabine
2022 relapse,died+36 months
20 B-ALL 18 Chen SM combination chemotherapy HSCT
(28) HSCT died +9months
2023
21 B-ALL 22 Chen SM combination chemotherapy CR,HSCT
(28) HSCT relapse, died +15months
2023
22 T-ALL 38 Gorello P combination chemotherapy CR, ASCT
(7) ASCT alive>29 months
2010
23 T-ALL 19 Gorello P / CR, SCT
(7) relapse, died +23months
2010
24 T-ALL 27 Gorello P / drug resistance
(7) died +12months
2010
25 T-ALL 19 Gorello P / CR
7) alive>3 months
2010
26 T-ALL 18 Gorello P / CR
7) relapse, died +24months
2010
27 T-ALL 23 Gorello P combination chemotherapy CR, ASCT
(7) ASCT relapse, died +17 months
2010
28 T-ALL 55 Chae H / relapse
(35) alive>31 months
2011
29 T-ALL 32 Chae H / relapse
(35) died +42 months
2011
30 T-ALL 32 Chae H / relapse
(35) died +21 months
2011
31 T-ALL 20 Chae H HSCT HSCT
(35) alive>41 months
2011
32 T-ALL 12 Li WJ (36) allo-HSCT Allo-HSCT
2011 relapse, alive
33 T-ALL 11 Li WJ (36) combination chemotherapy died +10 months
2011
34 T-ALL 8 Li WJ (36) combination chemotherapy CR, alive
2011
35 T-ALL 20 Dai HP combination chemotherapy CR, relapse
(20) died +9months
2012
36 T-ALL 23 Dai HP combination chemotherapy CR
(20) relapse, alive>18months
2012
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TABLE 3 Continued

10.3389/fonc.2023.1269531

Case @ Diagnosis Year Treatment Outcome
no.
37 T-ALL 27 Dai HP combination chemotherapy CR
(20) relapse, died +15months
2012
38 T-ALL 45 Dai HP combination chemotherapy CR
(20) relapse, died +30months
2012
39 T-ALL 34 Ben (21) GRAALL trail CR, SCT
2014 relapse, died +49months
40 T-ALL 37 Ben (21) GRAALL trail CR, SCT
2014 alive>64months
41 T-ALL 29 Ben (21) GRAALL trail CR, SCT
2014 relapse, alive>44months
42 T-ALL 41 Ben (21) GRAALL trail CR, SCT
2014 alive>46months
43 T-ALL 23 Ben (21) GRAALL trail died +5months
2014
44 T-ALL 30 Ben (21) GRAALL trail CR, SCT
2014 relapse, alive>66months
45 T-ALL 36 Ben (21) GRAALL trail CR, SCT
2014 alive>24months
46 T-ALL 45 Ben (21) GRAALL trail CR
2014 alive>33months
47 T-ALL 38 Ben (21) GRAALL trail SCT
2014 died +9months
48 T-ALL 28 Ben (21) GRAALL trail CR, SCT
2014 alive>30months
49 T-ALL 20 Ben (21) GRAALL trail CR, SCT
2014 alive>28months
50 T-ALL 48 Prokopiou combination chemotherapy ASCT
C (38) died +12months
2015
51 T-ALL 45 Prokopiou combination chemotherapy ASCT
C(38) died +6months
2015
52 T-ALL 26 Yang Q VICP died of infection +15days
(3)
2019
53 T-ALL 51 Yang Q VICP, mitoxantroned, etoposide, cytarabine died of infection +37days
(3)
2019
54 T-ALL 37 Yang Q CALGB9111, CLAG, asparaginase alive>10months
(3)
2019
55 T-ALL 21 Zhang.H VICP, hyper-CVAD-B, MTX, cladribine,decitabine, CR, HSCT
(6) HSCT alive>14months
2020
56 T-ALL 44 Xianying VDCLP, CAM(cyclophosphamide, cytosine CR, but the disease progressed again within a month
Xu (39) arabinoside, 6-mercaptopurine), chidamide
2021
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TABLE 3 Continued

10.3389/fonc.2023.1269531

Case Diagnosis Year Ref./ Treatment Outcome
no. Year
57 T-ALL 15 Na Lin VICLP, methotrexate, pegaspargase, DAE, EAD, CR, HSCT
(40) Hypr-CVAD-A/B, HSCT alive>16months
2021
58 T-ALL 58 Chen SM combination chemotherapy CRHSCT
(28) HSCT alive>35 months
2021
59 T-ALL 27 Chen SM combination chemotherapy CRHSCT
(28) HSCT relapse, died +24months
2021
60 T-ALL 37 Chen SM combination chemotherapy CR,HSCT
(28) HSCT alive>59 months
2021
61 T-ALL 27 Chen SM combination chemotherapy CRHSCT
(28) HSCT relapse, died +26months
2021
62 T-ALL 16 Chen SM combination chemotherapy CRHSCT
(28) HSCT alive>41 months
2021
63 T-ALL 36 Chen SM combination chemotherapy CRHSCT
(28) HSCT relapse, died +15months
2021
64 T-ALL 40 Chen SM combination chemotherapy CR,HSCT
(28) HSCT relapse, died +18months
2021
65 T-ALL 41 Chen SM combination chemotherapy CRHSCT
(28) HSCT died +22months
2021
66 T-ALL 34 Chen SM combination chemotherapy CR,HSCT
(28) HSCT alive>51 months
2021
67 T-ALL 15 Chen SM combination chemotherapy CR,HSCT
(28) HSCT relapse, died +12months
2021
68 T-ALL 12 Chen SM combination chemotherapy CRHSCT
(28) HSCT relapse, died +12months
2021
69 T-ALL 42 Chen SM combination chemotherapy CRHSCT
(28) HSCT alive>29 months
2021
70 T-ALL 36 Chen SM combination chemotherapy CRHSCT
(28) HSCT relapse, alive>14 months
2021

hematopoietic stem cell transplantation. This suggests that
transplantation can significantly improve the prognosis of
patients. It may be a good choice to complete the transplantation
at the right time in the first CR.

In this review, we screened 46 effective cases from 49 T-ALL
patients in Table 3 (excluding No. 32, No. 34 and No. 56), 30
patients received transplantation, of which 13 died with a median
survival of 49 months, 16 patients received chemotherapy, of which
11 died with a median survival of 20 months. The difference
between the two groups was tested to be statistically significant
(P=0.012). We listed the Kaplan-Meier survival curves of the
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patients in Figure 3, and it is clear that for T-ALL patients,
transplantation can significantly improve the survival status and
prolong the overall survival.

CAR-T may play a role in acute leukemia patients with
positive fusion gene. The expression frequency of CD7 in
previous cases is close to 100%. Research shows that CD7 may
play a role in promoting chemoresistance and accelerating
disease progression in leukemia (63, 64). Gomes-silva et al.
(65) demonstrated that CAR-T targeting CD7 can delay
disease progression and prolong patient survival in the mouse
model. In the MPAL case reported by Li MY et al. (27) (no. 3),

frontiersin.org


https://doi.org/10.3389/fonc.2023.1269531
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Song et al. 10.3389/fonc.2023.1269531

1.0
;E‘ 0.81
=
3
) 0.6
o
.g 0.4
g 0.2 Treatment
® ’ =+ Transplant

=+ Chemotherapy
0.0
0 20 40 60
Time(months)
Number at risk
g Transplant{ 30 19 9 2
g Chemotherapyq{ 16 6 1 0
i.__
0 20 40 60
Time(months)
FIGURE 3

Survival analysis of SET-CAN/NUP214 fusion gene positive T-ALL patients.

they performed two times of CAR-T cell infusion treatment on
the patients who had relapsed after HSCT, which significantly
improved the patient’s condition. By the end of follow-up, the
patients had survived for more than 42 months. It suggests the
application prospect of CAR-T technology in the treatment of
fusion gene positive leukemia, which is worthy of further
exploration and research.

In this review, 12 patients(12/70) with fusion gene positive
AML were included, and the number was second only to T-ALL.
Although the chemotherapy regimen of 12 patients was not the
same, they all achieved complete remission(CR, 12/12, 100%), all
patients received HSCT. Finally, 9 patients survived, 3 patients died
and 4 patients relapsed. Chen SM et al. (28) showed that the survival
data of SET-CAN/NUP214 fusion gene positive AML patients were
similar to those of fusion gene negative patients.

To date, only four patients with fusion gene positive B-ALL
have been reported. Similarly, their treatment process was very
difficult. The two patients reported by Nowak NJ et al. (32) and
Hong HZ et al. (4) were resistant to chemotherapy, and have not
achieved complete remission. Unfortunately, the report didn’t
mentioned the follow-up of the two patients. One of the two
patients(No.20-21) reported by Chen SM et al. (28) achieved
complete remission, and both patients received HSCT, but they
died of graft-versus-host disease (GVHD) and relapse respectively 9
and 15 months after transplantation. Although the sample of related
B-ALL cases is small, we can still speculate that the patients with
SET-CAN/NUP214 fusion gene positive B-ALL may have
poor prognosis.

Chen Y et al. (5) first reported two rare cases of SET-CAN/
NUP214 fusion gene positive CML in 2022 (No.18-19), the two
patients detected BCR-ABLI and SET-CAN/NUP214 fusion
transcripts after 7 and 2 years of treatment with tyrosine kinase
inhibitor (TKI), one patient (no.18) received chemotherapy and

Frontiers in Oncology

74

HSCT, and still survived up to the end of follow-up (95.7 months
after initial diagnosis, 6.5 months after transplantation), the other
patient (No.19) gave up treatment and died 36 months after the
initial diagnosis. Retrospective analysis of samples from two
patients showed that SET-CAN/NUP214 fusion transcript was
present at the initial diagnosis, but not during TKI treatment. The
disease progression of CML is slow and typically categorized into
three phases. The chronic phase (CP) is often asymptomatic but
may include mild fatigue, emaciation, and splenomegaly on
physical examination. The accelerated phase (AP) is characterized
by fever, progressive splenomegaly, and the appearance of
additional chromosomal abnormalities. The acute transformation
stage (BP) is marked by the continued deterioration of symptoms
and signs. Additional chromosome abnormalities play an important
role in the deterioration of CML in chronic phase (CP) and
accelerated phase (AP), SET-CAN/NUP214 fusion gene may be
used as the main clone in CML to promote disease transformation,
and its combination with BCR-ABLI accelerates disease
progression. Similar to the treatment of other fusion genes in
CML cases, high intensity TKI chemotherapy and HSCT may be
more effective for these patients (5, 66).

SET-CAN/NUP214 fusion gene has also been found in AUL,
MS and MPAL. The incidence of AUL is relatively rare. It is
considered to be the result of clone expansion and maturation
stagnation of undifferentiated hematopoietic cells, and does not
express myeloid or lymphoid specific antigen. MS is a limited
tumor formed by the proliferation and infiltration of myeloid
primitive cells or immature myeloid cells outside the marrow. It
may occur in association with various myeloproliferative
disorders or in isolation. The lesions are mostly located in a
single site, and sometimes multifocal or multiorgan involvement is
present (67, 68). In this review, a case of SET-CAN/NUP214 fusion
gene positive MS patient (No.2) was included. During the
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treatment, the patient also suffered from bone marrow
compression and pericardial effusion. The incidence of MPAL in
acute leukemia is relatively low, accounting for only 2-5% of acute
leukemia cases. At present, MPAL lacks a unified treatment
option, and the prognosis of patients is usually worse than AML
or ALL (69). Li MY et al. (27) treated a 29-year-old SET-CAN/
NUP214 fusion gene positive MPAL patient identified by them
(Table 3, No.3) with induction and consolidation therapy leading
to CR and transplanted the patient, but the patient relapsed
six months later, followed by a lymphocyte consumption
program based on fludarabine (30 mg/m? 1-3days) and
cyclophosphamide (300 mg/m? 1-3days) and CAR-T cell
therapy. The patient ultimately survived greater than 42 months.
Chen SM et al. (28) used the treatment regimen CODLP or VPIA
(vincristine+prednisone+daunorubicin+cytarabine) and
transplantation for two patients(Table 3, No.4-5) with positive
SET-CAN/NUP214 fusion gene positive MPAL who were 22 years
old and 34 years old. Both patients ultimately survived to the end
of the follow-up period(survival>42 months and>24 months).

5.4 Prognosis prediction based on the
expression level of SET-CAN/NUP214
fusion gene

Among the 70 patients counted in Table 3, 28 patients relapsed
and 30 patients died. Relapse and death are common clinical
outcomes in SET-CAN/NUP214 fusion gene positive leukemia.
We need to monitor the prognosis of patients with some
indicators and detection methods, so as to better evaluate the
condition of patients and timely intervene.

Current research shows that the detection of SET-CAN/NUP214
fusion gene may be a minor residual disease (MRD) with early
recurrence, or an early indicator of poor prognosis (24). Chen SM
et al. carried out a long-term continuous monitoring of SET-CAN/
NUP214 gene transcript level in 24 patients, and learned that the
expression level of fusion gene was lower than 0.001% continuously,
which was a sign of good prognosis. The median time of
morphological relapse in patients with expression level higher
than 0.001% was only 5 months. Gao MG et al. (41) studied the
prognostic significance of fusion gene expression level before and
after allogeneic hematopoietic stem cell transplantation for patients.
The expression level of fusion gene after transplantation is higher
than 0.02%, which is an effective indicator of patients’ relapse.
Monitoring the expression level of SET-CAN/NUP214 fusion gene
through RQ-PCR is more sensitive than flow cytometry (FCM), its
sensitivity for detection of various genetic abnormalities and
mutation types can reach 107, whereas the sensitivity of FCM is
usually at 10* (70). 4 of the 5 patients with relapse after
transplantation have SET-CAN/NUP214+ before relapse, and their
FCM detection results are negative. Previous studies also
emphasized the significance of MRD monitoring in
transplantation. Positive MRD before transplantation may
indicate poor prognosis after transplantation (70, 71).
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6 Conclusion

In summary, SET-CAN/NUP214 fusion gene is relatively rare in
leukemia and mainly occurs in adult male T-ALL patients. It has
also been reported in AUL, MS, MPAL, AML, CML and B-ALL.
Patients are generally resistant to chemotherapy, and the prognosis
in different diseases may be different. The clinical symptoms of
positive and negative fusion gene patients are relatively similar, and
the common immunephenotypes are CD7, cCD3, CD34, CD33 and
CD13. The karyotypes may be normal or complex, the concomitant
molecular events can become the influencing factors of disease
progression and prognosis. HSCT can significantly improve the
survival rate of patients, CAR-T is also a potential treatment
method. RQ-PCR is an effective monitoring method, and the
monitoring of fusion gene may be more sensitive than FCM.
Prognosis prediction and recurrence intervention based on the
expression level of SET-CAN/NUP214 fusion gene can improve
the treatment effect. Further research is needed to evaluate the role
of SET-CAN/NUP214 fusion gene in leukemia.
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Background: Acute myeloid leukemia (AML) is a malignant disease originating from
myeloid hematopoietic stem cells. Recent studies have shown that certain gene
mutations promote tumor cell survival and affect the prognosis of patients by
affecting metabolic mechanisms in tumor cells. RAS gene mutations are prevalent
in AML, and the RAS signaling pathway is closely related to many metabolic
pathways. However, the effects of different RAS gene mutations on AML cell
metabolism are unclear.

Objectives: The main purpose of this study was to explore the effect of RAS gene
mutation on the metabolic pathway of tumor cells.

Methods: In this study, we first used a retrovirus carrying a mutant gene to
prepare Ba/F3 cell lines with RAS gene mutations, and then compared full-
transcriptome data of Ba/F3 cells before and after RAS gene mutation and found
that differentially expressed genes after NRAS®®* and KRASS'?Y mutation.

Results: We found a total of 1899 differentially expressed genes after NRAS®61K
and KRAS®'2Y mutation. 1089 of these genes were involved in metabolic
processes, of which 167 genes were enriched in metabolism-related pathways.
In metabolism-related pathways, differential genes were associated with the lipid
metabolism pathway. Moreover, by comparing groups, we found that the
expression of the DGKzeta and PLA2G4A genes in the glycerophospholipid
metabolism pathway was significantly upregulated.

Conclusion: In conclusion, our study revealed that RAS gene mutation is closely
related to the glycerophospholipid metabolism pathway in Ba/F3 cells, which
may contribute to new precision therapy strategies and the development and
application of new therapeutic drugs for AML.

KEYWORDS

acute myeloid leukemia, NRAS Q61K, KRAS G12V, glycerophospholipid metabolism,
DGKzeta, PLA2G4A
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1 Introduction

Acute myeloid leukemia (AML) is a heterogeneous
hematologic malignancy originating from hematopoietic stem
cells and is characterized by clonal proliferation and abnormal
differentiation of myeloid cells in bone marrow and peripheral
blood (1). AML is the most common leukemia in adults and the
second most common acute leukemia in children, with high
mortality and low overall survival in both adults and children
(2). AML is accompanied by many kinds of cytogenetic
abnormalities, and different cytogenetic abnormalities can
significantly affect prognosis in AML (3). During AML
pathogenesis, metabolic mechanisms are altered to meet the
high demands of metabolic models established by cloning
malignant tumor cells (4). By using different sources of
nutrients for energy and biomass supply, AML cells exhibit
metabolic plasticity and rapidly outcompete normal
hematopoietic cells, leading to their high involvement in disease
progression and resistance to treatment (5). The RAS oncogene
has been identified as a key factor in the regulation of cell
proliferation induced by retroviruses (6). The RAS protein
encoded by this gene is a specialized guanine nucleotide-binding
and hydrolyzing molecule that belongs to the small G-protein
superfamily (7). Mutant Ras proteins differentially activate the
RAF/MEK/ERK kinase cascade and other noncanonical
downstream signaling molecules, which are closely related to
tumorigenesis (8). In addition, studies have shown that the RAS
protein family can significantly affect the metabolism of tumor
cells and exert a significant impact on the metabolism of various
organic compounds in tumor cells (9). Statistical analyses revealed
a high incidence of RAS gene mutations in AML, especially in
children (10). However, whether RAS gene mutations affect the
metabolism of AML cells remains unclear.

In our study, by comparing changes in the transcriptome before
and after RAS gene mutation, we identified key pathways and genes
related to cell metabolism that are affected by RAS gene mutation,
which may lead to the identification of new targets and strategies for
the treatment of AML.

2 Materials and methods

2.1 Cell culture

Ba/F3 is an IL-3 dependent mouse pre B-cell line. Because it can
survive independently of IL-3 after the introduction of a driving
mutant gene, it has been used as a common tool to study the role of
secondary mutant genes (11). In the published literature, Ba/F3 cell
line was also used as a model cell to study AML (12-14). In our
study, Ba/F3 cells were maintained in RPMI (Gibco, Thermo Fisher
Scientific, USA) supplemented with 10% fetal bovine serum (FBS,
FBS-5500), 100 U/ml penicillin, 100 pg/ml streptomycin (Gibco,
Thermo Fisher Scientific, USA) and 1 ng/ml IL-3 (PeproTech, USA)
at 37°C in a humidified atmosphere containing 5% CO,.
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2.2 Generation of RAS gene-mutated
Ba/F3 cells

Following the experimental method described by Chen et al
(15), we used a retrovirus carrying a mutant gene to prepare Ba/F3
cell lines with RAS gene mutations. Retroviruses carrying the
pPMSCV-IRES-GFP plasmid vector harboring full-length KRAS-
G12V and NRAS-Q61K were used, along with the pVSV-G
plasmid, to transfect GP2-293 cells (16, 17). Recombinant
retroviruses were isolated by centrifugation at 20000xg for 2 h,
and these viruses were used to infect Ba/F3 cells in the presence of 5
pg/ml polybrene (Sigma-ldrich, USA) under centrifugation at
1800xg for 2 h at room temperature. Infected Ba/F3 cells were
cultured in RPMI with 10% FBS in the presence of IL-3 for 24 h and
then seeded in semisolid medium containing RPMI, 10% FBS, and
1% methylcellulose but not IL-3. Single colonies were selected after
8-10 days in culture and expanded in IL-3-free liquid medium. Ba/
F3 cells successfully producing RAS gene mutations can grow
independently of IL3.

2.3 Transcriptome analysis

After cultivation and further amplification, stable Ba/F3
parental, KRAS®'?Y and NRAS®®'® cell lines were obtained. The
cells were collected in lyophilization tubes and frozen in liquid
nitrogen for 10 minutes. Raw data and normalized gene expression
data are deposited in the sequence read archive database under
accession numbers PRINA1006527. The isolation of RNA and next-
generation sequencing were performed by Beijing Genomics
Institute (Beijing, China). Gene Ontology (GO),
Encyclopedia of Genes and Genomes (KEGG) pathway, Venn

Kyoto

diagram and heatmap analyses were performed with OmicShare
tools, a free online platform used for data analysis (https://
www.omicshare.com/tools/).

2.4 Statistical analysis

Data visualization and statistical analysis were carried out using
GraphPad Prism 8.0 software (GraphPad Software Inc., CA, USA).
Differences between experimental groups were analyzed for
significance by unpaired Student’s t test. A P value <0.05 was
considered significant.

3 Results

3.1 Mutations in the RAS gene significantly
affect metabolic pathways in Ba/F3 cells

We performed transcriptome analysis in 3 strains of cell lines,
including the Ba/F3 parental strain, Ba/F3 KRAS®'?" strain and Ba/
F3 NRAS?'X strain. Flow cytometry showed that KRASS?Y and
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variability before and after RAS gene mutation

NRASQ'® mutant cell lines were successfully prepared.
(Figure 1A). Heatmap analysis and principal component analysis
revealed large intergroup variability and small intragroup variability
before and after RAS gene mutation (Figures 1B, C). These data
indicate an ideal cell line model for our transcriptome analysis. To
explore the effect of RAS gene mutation, we analyzed whole-genome
and full-transcriptome sequencing data of the Ba/F3 parental,
KRAS®'?Y and NRAS?®'® cell lines. A volcano map shows that
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Differentially expressed genes after RAS gene mutation. (A) Differentially expressed genes after KRA

many genes were differentially expressed before and after the
induction of the KRAS®'?Y and NRAS?®'® mutants. After
KRAS®'?Y induction, 963 genes were upregulated, and 1216 genes
were downregulated. In addition, after NRAS?®'™ induction, 979
genes were upregulated, and 1310 genes were downregulated
(Figures 2A-C; Supplementary Tables S1-54). According to a
Venn analysis, there were 1899 common differentially expressed
genes (Figure 2D; Supplementary Table S5).
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SC12Y mutation. (B) Differentially expressed genes

after NRAS®®™ mutation. (C) Bar charts showing the number of significantly different genes between the two groups (FDR < 0.05, multiple
differences greater than or equal to 2). (D) Venn diagram showing common differentially expressed genes.
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3.2 Genes after KRASS'?Y and NRAS@6¢
induction mainly affect the metabolism-
related pathways of Ba/F3 cells

We analyzed the differentially expressed genes after induction
of KRAS'?Y and NRAS¥'® via Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.
Finally, we found that a total of 1089 genes were involved in
metabolic processes (Supplementary Table S6), of which 167
genes were enriched in metabolism-related pathways (P<0.05)
(Figures 3A, B) (Supplementary Table S7).

3.3 Metabolism-related genes mainly
affected gl¥cerophospholipid metabolism
after KRAS®'?Y and NRAS®®*¥ induction

A total of 167 genes related to metabolic pathways were identified
in Ba/F3 cells with RAS gene mutations. The GO analysis showed that
these genes mainly affected the small molecule metabolic process in
cells. To identify a specific metabolic pathway, we carried out a KEGG
analysis. The results showed that these genes were enriched in
multiple metabolic pathways, of which 12 genes were enriched in
the glycerophospholipid metabolism pathway (P<0.05) (Figures 4A,
B; Supplementary Table S8).

3.4 DGKzeta and PLA2G4A were key genes
in the glycerophospholipid metabolism of
Ba/F3 cells with RAS mutations

There are 12 genes involved in the regulation of
glycerophospholipid metabolism, and the heatmap shows the
differences in their expression among the Ba/F3 parental group,
KRAS®"*Y group and NRAS?®' group (Figure 5A). Through Venn
analysis, 2 of the 12 genes involved in glycerophospholipid
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metabolism were found to be significantly upregulated and
coexpressed in the KRASS'?Y and NRAS®'® mutant cell lines
(FPKM>100) (Figure 5B). Gene expression analysis showed that the
DGKzeta and PLA2G4A genes were increased significantly in both
the KRASS"?Y and NRAS?®'™ mutant cell lines, and a significant
difference was found between the Ba/F3 parental groups (P<0.05)
(Figures 5C, D).

4 Discussion

Studies have shown that the original metabolic patterns in
tumor cells change to meet the increased bioenergetic and
biosynthetic demand during tumorigenesis and progression and
to mitigate oxidative stress during the proliferation and survival of
tumor cells (18). Studies on the metabolic mechanisms of tumor
cells are helpful to explore the occurrence, progression, diagnosis
and treatment of tumors. It has been proven that the fatty acids
produced by lipid decomposition enter the tricarboxylic acid (TCA)
cycle and oxidative phosphorylation (OXPHOS) metabolic pathway
after oxidation by mitochondrial B-oxidation, thus producing ATP
and NADPH to provide energy (5). More importantly, some special
lipids produced by lipid metabolism can be used as essential lipid
signaling molecules to regulate the biological processes of tumor
cells. Meanwhile, the two upregulated genes DGKzeta and
PLA2G4A found in our study are involved in lipid signal
regulation, suggesting that RAS gene mutations in AML may
have biological effects by affecting lipid signals.

Diacylglycerol (DAG) is a key secondary lipid messenger in
signal transduction downstream of many receptors and plays an
important role in driving adaptive and innate immune cell
activation, proliferation, migration and effector functions (19).
Diacylglycerol kinases (DGKs) can regulate the DAG signaling
pathway by phosphorylating DAG and converting it into
phosphatidic acid (PA) (20). DGK has 10 different isoforms,
which are composed of five different classes of DGKs, each of

Differentially expressed genes were associated with metabolic processes and pathways. (A) Biological process significantly affected metabolic
process. (B) Differentially expressed genes after RAS mutation were found to mainly affect metabolic pathways.
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which regulates different cellular functions according to its different
structure and location in different cells. Studies have confirmed that
DGKao is highly expressed in several refractory cancer cells, such as
melanoma, hepatocellular carcinoma and glioblastoma. It can slow
tumor cell apoptosis and promote cell proliferation (21). As an
isoform of DGKa., DGKzeta is highly expressed in lymphoid tissues
(22), which affects tumor cell apoptosis and cell cycle arrest. In
human AML HL-60 cells, knockout of DGKzeta can induce
apoptosis and G2/M phase arrest through the MAPK/survivin/
caspase pathway (23). Our study found that the expression of
DGKzeta was significantly upregulated after RAS gene mutation,
indicating that DGKzeta may be the key factor affecting the
regulation of AML cell proliferation after RAS gene mutation.
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DGKzeta has a negative regulatory effect on T cells (19), which
can suppress the development of natural regulatory T cells and
predominantly mediates Ras and Akt signaling downstream of the
TCR (24). Interestingly, DGKzeta expression was also significantly
upregulated after RAS gene mutation in our study, and whether it
affects the immune escape of tumor cells needs to be further studied.

Phospholipase A2 enzymes (PLA2s) are the key enzymes of
phospholipase metabolism. According to their location in the body,
substrate specificity and differences in physiologic function, PLA2s
can be divided into six subfamilies. Its function is to hydrolyze the
sn-2 acyl bond of glycerol phospholipids (GPLs), release
lysophospholipids (LPLs) and generate free fatty acids (25). These
fatty acids are important energy sources for AML cells. PLA2G4A

Ba/F3 KRAS Ba/F3 NRAS

Gene Expression ( fpkm)
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DGKzeta and PLA2G4A were candidate genes in glycerophospholipid metabolism. (A) The heatmap shows the expression of genes in different
strains of cell lines. (B) The shared key genes were found by Venn analysis (FPKM>100). (C, D) Expression of key genes related to

glycerophospholipid metabolism was detected by RNA-seq.
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(cPLA2-IVA) belongs to a kind of cPLA2. In tumor cells, its
activation is mainly regulated by the MAPK signaling pathway,
and it is a key enzyme in AA metabolism (26). Overexpression of
PLA2 can increase the release of AA and enhance the protumoral
effects mediated by eicosanoids in promoting tumor survival,
proliferation, antiapoptosis, transformation and metastasis (27).
Studies have shown that cPLA2 plays a carcinogenic role in most
cancers except colon cancer (28). Downregulation or deletion of
cPLA2 can significantly inhibit the formation of small intestinal
tumors induced by Apc(Min) and lung tumors induced by urethane
(29, 30). Moreover, the inactivation of cPLA2 inhibits the
occurrence of liver cancer (31) and the formation of prostate
tumors (32). Using weighted gene coexpression network analysis
to analyze the RNA sequencing data and clinicopathological
characteristics of large samples of AML patients, it was found
that the high expression of PLA2G4A was related to adverse
overall survival (33). It was also found that PLA2G4A can be
used as an independent prognostic marker in some specific types
of AML. For example, in non-M3/nucleophosmin (NPM1) wild-
type AML, patients with high expression of PLA2G4A had a
significantly shorter overall survival rate. Moreover, some
proteins with well-characterized oncogenic properties in AML,
such as RUVBL2, CAP1, STAT3 and MYCBP, can physically
interact with PLA2G4A (34). It has also been found that the high
expression of PLA2G4A in FLT3-mutated AML is not only an
indicator of poor prognosis but also related to drug resistance to
tyrosine kinase inhibitors and changes in the tumor
microenvironment of AML (35). Our study found that the
expression of PLA2G4A was significantly upregulated after RAS
gene mutation, which may be a potential therapeutic target for the
treatment of AML with RAS gene mutation.

In conclusion, our study revealed that RAS gene mutations may
affect cell metabolism. This effect may be achieved by altering the
glycerophospholipid metabolism pathway. Among these candidate
genes, DGKzeta and PLA2G4A were identified as key to cell
metabolism. These results may provide a new strategy and
therapeutic target for AML therapy with RAS gene mutations.
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CPX-351 and allogeneic stem
cell transplant for a therapy-
related acute myeloid leukemia
that developed after treatment
of acute promyelocytic
leukemia: a case report and
review of the literature
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?Hematology and Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere
Scientifico (IRCCS) San Raffaele Scientific Institute, Milano, Italy

Therapy-related myeloid neoplasms (t-MNs), which develop after cytotoxic,
radiation, or immunosuppressive therapy for an unrelated disease, account for
7%—-8% of acute myeloid leukemia (AML). Worse outcomes and consequently
shortened survival are associated with t-MNs as compared with de novo AML.
Therapy-related MNs are being reported with increasing frequency in
successfully treated acute promyelocytic leukemia (APL), in particular, before
the introduction of all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO).
Considering the high curability of APL, t-MNs represent one of the prognosis-
limiting factors in this setting of leukemia. We report our experience with a
patient who developed t-AML 15 years after treatment for APL. Treatment
included three cycles of chemotherapy with CPX-351 (Vyxeos, Jazz
Pharmaceuticals) followed, as in remission, by an allogeneic hematopoietic
stem cell transplant. A review of available literature was also included.

KEYWORDS

acute promyelocytic leukemia, therapy-related myeloid neoplasm, allogeneic
hematopoietic stem cell transplantation, CPX-351, acute myeloid leukemia
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Introduction

Therapy-related myeloid neoplasms (t-MNs), including
therapy-related myelodysplasia (t-MDS) and acute myeloid
leukemia (t-AML), have been extensively reported after cytotoxic
therapy or immunosuppressive treatment for solid tumors,
lymphomas, or autoimmune disorders, more rarely after
treatment for acute myeloid leukemia (1).

Traditionally subgrouped according to the previous exposure to
alkylating agents, topoisomerase II inhibitors, or radiotherapy (RT),
more recently, t-MN development has been associated with new
agents belonging to different classes of chemotherapy (CHT) drugs,
such as poly(ADP-ribose) polymerase inhibitors or purine analogs
(2, 3).

Moreover, recent advances in deep sequencing techniques have
significantly improved the knowledge of t-MNs over the last years,
changing some of the classical views.

Acute promyelocytic leukemia (APL) is characterized by the
translocations that fuse the PML gene on chromosome 15 to the
RARalpha gene on chromosome 17 [t(15;17)], leading to a PML-
RARalpha fusion gene; other peculiarities are the morphology of
blast cells and a specific coagulopathy. Thanks to the advent of all-
trans retinoic acid (ATRA) combined with anthracycline-based
chemotherapy (4, 5) and/or arsenic trioxide (ATO), a cure rate
higher than 70% has been achieved, even in relapsed patients (6-8).
Thereby, the number of long-term survivors of this disease has
increased over time. Consequently, more patients will be at risk of
late complications related to antileukemic treatment.

Regarding t-MNs occurring after treatment for APL, sporadic
cases have been reported in the literature, while only three major
studies have assessed the incidence of t-MNs, ranging from 0.97% to
6.5% (4, 5). Moreover, only one of those studies calculated the
cumulative incidence of a competing risk at a given time, resulting
in approximately 2.2% at 6 years (9).

Survival in t-MNs is poor. In addition to the biology of t-MNs,
the patient’s previous disease history and remission status at t-MN
diagnosis are significant factors contributing to unfavorable
outcomes. Also, t-MNs secondary to APL are usually difficult to
treat, representing one of the prognosis-limiting factors for the
curable APL disease.

We report a patient who developed t-AML 15 years after
completion of maintenance therapy according to the GIMEMA
AIDA2000 protocol for a previous APL still in molecular remission.
A comprehensive review of the literature of previously published
cases is also included.

Case report

A 46-year-old man presented in January 2005 with fatigue,
dyspnea, and a history of bleeding tendency. Coagulation tests
showed disseminated intravascular coagulation, and peripheral
blood cell count was as follows: hemoglobin 90 g/L, white cells
66.000 x 10°/L (with 60% hypergranular promyelocytes), and
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platelets 12.000 x 10°/L. Bone marrow revealed 70%
hypergranular promyelocytes, with the characteristics t(15;17)
(922;q21) in all metaphases examined; molecular biology studies
(performed by reverse transcription-polymerase chain reaction
(RT-PCR)) confirmed the presence of PML/RARc gene
rearrangement type bcr3. A diagnosis of high-risk hypergranular
APL was made. Next-generation sequencing (NGS) analysis was not
performed at diagnosis of APL.

The patient was treated according to the GIMEMA AIDA2000
protocol, receiving induction treatment with oral ATRA (45 mg/m>
per day for a total of 45 days) and four doses of intravenous
idarubicin (12 mg/m2 on days 2, 4, 6, and 8): a complete molecular
remission was achieved on day 38. Consolidation (according to a
risk-adapted strategy) consisted of three courses, as follows: one
course with intravenous cytosine arabinoside (Ara-C) (1 g/m2 on
days 1, 2, 3, and 4) plus idarubicin (15 mg/m? on days 1, 2, 3, and 4)
plus oral ATRA (45 mg/m?” per day for 15 days); then, intravenous
mitoxantrone (10 mg/m” on days 1, 2, 3, 4, and 5) plus etoposide
(100 mg/m* on days 1, 2, 3, 4, and 5) plus oral ATRA (45 mg/m? per
day for 15 days); finally, intravenous idarubicin (12 mg/m? on days
1) plus Ara-C (150 mg/m2 every 8 hours on days 1, 2, 3, 4, and 5)
plus 6-thioguanine (70 mg/m? every 8 hours on days 1, 2, 3, 4, and
5) plus oral ATRA (45 mg/m” per day for 15 days).

Then, as in molecular remission, maintenance therapy was
started, consisting of intramuscular methotrexate (15 mg/m?) plus
oral 6-mercaptopurine (50 mg/mz) alternating with oral ATRA (45
mg/m” per day for 15 days) every 3 months for a total of 2 years.

Annual cytogenetic and molecular analyses were performed
until December 2015, confirming molecular remission. From
January 2018 to February 2020, the patient stopped his annual
follow-ups. In March 2020, blood cell count revealed mild anemia
(hemoglobin 120 g/L) and thrombocytopenia (platelets 111.000 x
10°/L). Bone marrow analysis, performed in May 2020, confirmed
molecular remission with initial cytological signs of dysplasia. Blood
cell count remained stable until May 2022, when a morphological
analysis of peripheral blood detected almost 10% blast cells. Bone
marrow aspiration was hypercellular, showing 60% blast cells and
red-cell line hyperplasia with multiple dyserythropoietic changes in
erythroblasts (megaloblastic features, abnormal mitosis, and
lobulated nuclei). Cytogenetic analysis revealed a complex
karyotype (47, XY, +8, -2, -5, ins(mar;9)(?;q)?, del(12)
(pl3), +mar, inc), without t(15;17)(q22;q21). The molecular
biology study was negative for PML/RARo gene rearrangement
and positive for WT1 gene hyperexpression and KIT-D816V exon
17 mutation.

NGS analysis, performed using second-generation sequencing
technology on an Illumina MiSeq System (Illumina, San Diego, CA,
USA) high-throughput sequencing platform, showed TP53
positivity with a variant allele frequency (VAF) of 78.0%.

Treatment with CPX-351 (Vyxeos, Jazz Pharmaceuticals,
Dublin, Ireland; a liposomal encapsulation of cytarabine and
daunorubicin in a synergistic 5:1 drug ratio) was started on June
2022—when the patient was 63 years old. CPX-351 has a specific
indication for newly diagnosed s-AML, including t-AML, and the
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choice of CPX-351 was also linked to the age of the patient, good
performance status, and time to previous treatment.

Before starting treatment, the patient had a normal
echocardiogram [left ventricular ejection fraction (LVEF) 68%]
and spirometry (diffusing capacity of the lungs for carbon
monoxide (DLCO) 85%) and was considered fit for an intensive
chemotherapy program. A total of three cycles of CPX-351 were
administered (first and second induction and then consolidation),
all well tolerated.

Cytofluorimetric remission but not a complete clearance of
WTI gene hyperexpression (Figure 1) was obtained after the first
CPX-351 cycle and then maintained during the other two cycles.

In October 2022, as still in cytofluorimetric remission but with
WTI over conventional threshold limits (Figure 1), an allogeneic
hematopoietic stem cell transplant from an unrelated donor was
performed. The patient was 64 years old at transplant with a
hematopoietic cell transplant-specific comorbidity index (HCT-
CI) score of 3 (previous leukemia) (10).

The conditioning regimen consisted of treosulfan iv. plus
fludarabine i.v.; graft versus host disease (GVHD) prophylaxis
consisted of sirolimus, mycophenolate, and post-transplant
cyclophosphamide. Allogeneic peripheral blood stem cells were
infused on October 15, 2022.

The patient developed acute and then chronic skin GVHD,
treated and resolved by steroid and extracorporeal photopheresis.
Immunosuppressive treatment was completely withdrawn in March
2023. At the last follow-up—August 31, 2023—the patient was alive,
with a mild chronic GVHD (mouth and skin), and in molecular
remission with a full donor chimerism.

Review of the literature

A total of 57 t-MN cases secondary to APL treatment were
reported in the literature from 1992 to 2010: 44 (77.0%) patients
were diagnosed with t-MDS and 13 (23.0%) with t-AML. After
2010, no other t-MN cases secondary to APL treatment were
reported in the literature.
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The main characteristics of the 57 patients are listed in Table 1
(t-MDS) and Table 2 (t-AML); the median age at diagnosis of APL
was 51.5 years (8-73).

Table 3 summarizes the clinical and treatment characteristics of
the whole population.

In all 57 patients, RT-PCR monitoring and/or cytogenetic
analysis indicated molecular remission of APL at diagnosis of t-
MNs. Overall, the median time from the achievement of remission
to diagnosis of t-MN was 42.5 months (4-168).

No significant statistical difference between t-MDS and t-AML
was observed in the time from the first complete response (CR) to
the development of t-MNs (t-MDS: 39.5 months (4-168) vs. t-AML:
43 months (17-54), p = 0.07).

Using conventional karyotyping or fluorescent in situ
hybridization, cytogenetic characterization was successful in 52
(91.0%) of 57 patients and was abnormal in all except three cases,
with complex karyotypes (>three independent abnormalities)
observed in 24 (42.0%) patients (Table 3).

Treatment and clinical course of t-MN

Except for three patients for whom treatment was not included
in the report, in all the other 54 patients, therapy for t-MN consisted
of only supportive therapy in 16 patients (29.5%) (15 MDS and one
AML); all of them died after a median of 9 months from t-MN
diagnosis (range, 1 to 39 months). The majority of patients (33%-
61.0%) were treated with conventional chemotherapy (in one
patient, an autologous stem cell transplant was performed after
induction treatment): for two patients, follow-up was not available,
and all the others died of progressive disease.

Allogeneic stem cell transplant (alloHSCT) was performed in 15
(29.5%) patients (three patients up-front and 11 patients after
induction chemotherapy): four transplanted patients lived more
than 12 months from transplant, but follow-up was not
subsequently updated, while all the others died due to transplant-
related mortality (five patients) or progressive disease (six patients)
within 12 months from reinfusion (Table 3).
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FIGURE 1
WT1 clearance during the whole program.
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TABLE 1 Main characteristics and clinical course of patients developing t-MDS after APL therapy.
Therapy for APL Time to PML- Time to
Therapy
Karyotype at . . . t- RARo: at K t t t-MDS di . t- f
APL diagnosis ~ ATRA  Anthracycline Etoposide  Alkylating MDS t-MDS Ajegfus e ElgJiesE AML . Aof\r/tL
agent (months)  (RT-PCR) (months)
(11) t (15;17) (q22;q21) # 33 Negative t (7;21) (q31;922) 11 ATRA
+CHT
(12) t (15:17) (q22;q21) # 24 Negative 45,XX,dic (517) (q11;p11/43,idem, —7, —20 2 NA
(13) t (1517) (q22;q21) 34 NA 45, XX, =7, der (7)del (7) (p10), del (7) (q21) No t-AML CHT
(14) t (15517) (q225921) # 25 Negative 47, XY, +8 10 CHT
+autoHSCT
(15) t (15:17) (q22:q21) # 84 NA 43, XX, del (5) (q15), -7, add (9) (q34), —18, —21 No t-AML NA
(16) t (1517) (q22;q21) # 26 Negative -5, add (6)/ (p23-25), +8, add (17) (p23) 4 CHT
(17) t (1517) (q22;q21) 32 Negative 45, XX, -5, add (17) (p11.2), del3 (p23p25), -5, der (6), t No t-AML AlloHSCT
(6;15) (p21;q15), —15, add17 (p13) upfront
(18) t (1517) (q22;q21) 35 Negative 45, XX, del (4) (q31), -5, add (5) (q35), =7, der (17)t (17);2 No t-AML CHT
(p11);?,-18, +marl, +marX2[cp21]/46,XX (4) +alloHSCT
(4) t (1517) (q22;q921) 43 Negative 45, XX, -7 18 Supportive
therapy
(4) t (1517) (q22;q921) 46 Negative Failure 1 Supportive
therapy
(5) 46, XX, del (3) (q24,q26), 32 Negative 45, XX, del (5) (q21q34), -7 7 CHT
del (5) (q23q32), t (7;11)
(p11;p12), t (1517)
(q22;q21)
(5) 46, XY, del (9) (q21q31), 111 Negative 45, XY, =5, der (7)t (7;20) (q11;p?orq)?,der (10)t (7;10;20) No t-AML Supportive
t (1517) (2259210 (93%q2%p?orq)?,-13, der (17)t (10;17) (q2%p11),-20,del (20) therapy
(q11),+marl,+mar3/47,idem,del (X) (q26), der (1) (1);?
(p36);?,+8,+mar2
(5) failure 74 Negative 45, XY, -8, t (8;11) (q32;q21) 18 Supportive
therapy
(5) t (1517) (q22;q921) 47 Negative 45, XY, t (3;17) (pl1;q11),del (5) (q13q33), del (6) (p22),-17 No t-AML CHT
(19) t (1517) (q22;q21), inv 4 Negative 44, X, =Y, -7 6 Supportive
(6) (p24q13) therapy
(19) t (1517) (q22;q921) 20 Negative 46, XX, del (5) (q13,933) No t-AML Supportive
therapy
(Continued)

88

‘Je 3@ onoJadsg

LSYT62T'£2020U04/6822 0T


https://doi.org/10.3389/fonc.2023.1291457
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

A60j0dUQ Ul SI213U0I4

[SSIRVFETMIIT]

TABLE 1 Continued

Therapy for APL Time to PML- Time to
Karyotype at t- RARa at . . =
APL diagnosis ~ ATRA  Anthracycline Etoposide  Alkylating MDS t-MDS Karyotype at t-MDS diagnosis AML
agent (months) = (RT-PCR) (months)
(20) t (1517) (q22;q21) # # 168 Negative 47, XY, +1,1 (1) (q10) (21)/46,XY (4) No t-AML Supportive
therapy
(22) t (15;17) (q22;q21) # # 18 Negative 46, X, del (X) (q22q28),t (2;11) (q37;q23),del (7) (q22q36) No t-AML alloHSCT
upfront
9) 48, XY, t (15;17) (q22; # # 52 Negative 45, XY, -7 19 Azacytidine
q21), +21,+mar than CHT
) Failure # # 62 Negative 45, XX, del (5) (q13;932), add (10) (p15),der (11) (q)?,add 6 CHT
(12) (p13),add (12) (q)?,-13,-18,+mar +alloHSCT
) Failure # # 23 Negative Failure No t-AML CHT
+alloHSCT
) t (1517) (q22;q21) # # 48 Negative 46, XX, del (7) (q23), del (5), iso (17q) 6 Supportive
therapy
) t (1517) (q22;q21) # # 23 Negative 46, XX, del (7q) (q23), t (2;11) (g37;q923),del (X) (q22) 9 CHT
+alloHSCT
9) t (1517) (q22;q921) # # 44 Negative 44,XY,del (5) (q13q33),-7,-18,add (20) (q13.3), add 4 CHT
(11) (p11.2)
) t (1517) (q22;q21) # # 33 Negative 44, YX, -5,add (12) (p13),add (7) (g32),-19 6 Supportive
therapy
(9) t (15;17) (q225q21), # # 45 Negative 45, XX, -7, t (12;18) (p12;q21) 18 CHT
add (7q) +alloHSCT
) t (15;17) (q22;q21) # # 56 Negative Failure No t-AML Supportive
therapy
9) Failure # # 41 Negative 46, XX, -7 13 CHT
+alloHSCT
(23) t (1517) (q22;q21) # # # # 38 Negative 45, XY, -7 NA NA
(24) 47, XX, +8, t (15;17) # # 29 NA 45, XX, -5, -7, +11 No t-AML ATRA
(q22;q21)
(4) t (1517) (q22;q21) # # # # 48 Negative del (5) (q)? 2 Supportive
therapy
(4) t (1517) (q22;q921), # # # # 24 Negative 46, XX 5 AlloHSCT
add (7q) upfront
(Continued)
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TABLE 1 Continued

Therapy for APL Time to PML- Time to
Ref. Karyotype at t- RARa at . . =
APL diagnosis ~ ATRA  Anthracycline Etoposide  Alkylating MDS t-MDS Karyotype at t-MDS diagnosis AML
agent (months)  (RT-PCR) (months)
(5) t (1517) (q22;q21) # # 13 Negative 46, XX, del (5) (q22q34), t (15;21) (p11;q21), =17, +mar No t-AML Supportive
therapy
(5) t (15;17) (q22;q21) # # # 46 NA 46, XY, del (5) (q12q35), add (11) (q23), dup (12) (q12q22), 1 Supportive
-17, -18, -22 therapy
(25) 46, XX # # # NA Negative 45, XX, —7/46,idem,+21 t-AML CHT
RUNX1D171N; NRASG12V
(25) t (15;17) (q223q21) # # # NA Negative 45, XY, -7/46, XY t-AML CHT
RUNXI1D171G
(25) t (1517) (q22;q21) # # # NA Negative 46,XY, t (7;15) (q11;q11), der (12)t (12;17) (p11;q21), t t-AML CHT
(16;21) (q24;q22), add (17) (q11), add (19) (p13), del (21)
(q21), 46,idem,der (18)t (15,18) (q11;p11)/46,XY
RUNXIMTGI16
(25) t (1517) (q22;q21) # # # NA Negative 46, XX, t (6;11) (q21;q23) t-AML CHT
MLL-FOX03
(25) t (15;17) (q22;q21) # # # NA Negative 46, XY, aad (2) (p23), inv (5) (p11q23),add (11) (q23)/46, t-AML CHT
idem,inv (2) (p23q11)/47,idem,+13
RUNX1S8295£sX571
(25) t (15;17) (q225q21) # # # NA Negative 45, XY,-7, RUNX1G172W =AML CHT
(25) t (15;17) (q223q21) # # # NA Negative 46,XY,t (11516) (q23;p13.3) t-AML CHT
MLL-CBP; FLT3ITD +alloHSCT
(25) t (1517) (q22;q21), # # # NA Negative 46, XY t-AML CHT
CEBPAQ305P
(25) t (1517) (q22;q21) # # # NA Negative 46, XX, del (20) (q11) No t-AML Supportive
therapy
(25) t (1517) (q22;q921) # # # NA Negative 46, XX, del (20) (q1)? No t-AML Supportive
therapy

APL, acute promyelocytic leukemia; ATRA, all-trans retinoic acid; autoHSCT, autologous hematopoietic stem cell transplant; alloHSCT, allogeneic hematopoietic stem cell transplant; CHT, chemotherapy; NA, not available; t-AML, therapy-related acute myeloid leukemia;

t-MDS, therapy-related myelodysplastic syndrome.
#=yes; ?= symbols of cytogenetic.
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TABLE 2 Main characteristics and clinical course of patients developing t-AML after APL therapy.

Therapy for APL
Karyotype Time to Karyotype at
at ATRA | Anthracycline Etoposide Alkylating t- t- Th?rapy
r
APL agent AML AML v
. . . . t-AML
diagnosis (months) diagnosis
(26) NA # # 43 NA (3;21)(q263922), ATRA
der(4)t(4);2(q27);?,
der(7)t(4;7)(q27;
q22), der(16)t
(16);2(p11)?
(27) t(15;17) # # # 43 NA t(10;11)(q23;p15) CHT
(922;q21)
(28) t(15;17) # # # # 34 NA 45, XY, -7 CHT
(922;921)
(29) t(15;17) # # # 49 Negative t(10;11)(p14;q21) CHT
(q22;921) +alloHSCT
(30) Failure # # 12 Negative 46,XX,t(8;16)(p11.2; CHT
p13.3), inv(11)
(p15q22-q23)
(31);47,idem, +i(8)
(q10) (9)
9) Failure # # 39 Negative 46, XX Supportive
therapy
9) t(15;17) # # 43 Negative 45, XX, -5, add(17) CHT
(922;921)
9) t(15;17) # # 54 Negative 55, X, der(Y), t CHT
(q22;q21) (Y;10)(p11;q11),add +alloHSCT
(1p),+4,+9,+11,
+17,-18,+20,+21,
add(22q),+3mar
) t(15;17) # # 24 Negative 46, XY, t(9;11) CHT
(922;921) (p22;q23) +alloHSCT
) Failure # # 42 Negative failure CHT
+alloHSCT
(©)] t(15;17) # # 52 Negative 46, X, -Y, +8 CHT
(q22;q21) +alloHSCT
9) Failure # # 17 Negative Failure CHT
(25) t(15;17) # # # 80.4 Negative 46, XY, add(13) CHT
(q22;q21) (q32)

APL, acute promyelocytic leukemia; ATRA, all-trans retinoic acid; autoHSCT, autologous hematopoietic stem cell transplant; alloHSCT, allogeneic hematopoietic stem cell transplant; CHT,
chemotherapy; NA, not available; t-AML, therapy-related acute myeloid leukemia; t-MDS, therapy-related myelodysplastic syndrome.

#=yes; ?= symbols of cytogenetic.

Discussion

Therapy-related AML after APL treatment is a relatively
infrequent (<7.0%) and late complication bearing a poor
prognosis (4, 5).

Incidences reported in the largest studies ranged between 0.97%
(European APL study: a series of 617 patients with a median follow-
up of 51 months) and 6.5% (Italian study of 46 patients: follow-up
not reported) (4, 5). Because the risk of developing t-AML
continues for many years after the end of treatment, the
PETHEMA group evaluated the cumulative incidence of t-AML

Frontiers in Oncology

in patients enrolled in three consecutive trials (LPA96, LPA99, and
LPA2005): 918 patients were observed for a median of 77 months
with a cumulative incidence of t-AML of 2.2% at 6 years, not
comparable with the crude incidence of the other two studies (9).

The introduction of ATO in combination with ATRA had
further reduced the incidence of t-AML in the APL setting, as
reported by the Italian-German APL0406 study, where, with a
follow-up of 6 years; no t-MN cases were observed in ATRA/
ATO group patients vs. 1.5% in those treated with the AIDA
regimen (10). Similar results have been reported from the AML17
trial (National Cancer Research Institute): with a follow-up of 5.7
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TABLE 3 Main characteristics: treatment and outcome of the
whole population.

« t-MDS 44 (77.0%)

« t-AML 12 (23.0%)
Sex

« Male 28 (49.0%)

« Female 29 (51.0%)

Median age, years (range) at diagnosis of APL
Median age, years (range) at diagnosis of t-MNs

51.5 (8.0-73.0)
55.2 (26.0-78.0)

39.5 (4.0-168.0)
6.5 (1.0-19.0)
43.0 (17.0-54.0)

Median time to t-MDS, months (range)—44 patients
Median time from t-MDS to t-AML, months (range)—28
patients

Median time to t-AML, months (range)—13 patents

Cytogenetic at diagnosis of t-MNs 52
(91.0%) patients

Normal 3 (5.5%)
-5/del(5q) 18 (31.5%)
—7/del(7) 21 (37.0%)
Complex 24 (42.0%)
21922 9 (15.5%)
11923 8 (14.0%)

Treatment for APL

57 (100%)
22 (38.5%)
42 (73.5%)
8 (14.0%)
7 (12.0%)

Anthracycline

Etoposide

6-Mercaptopurine plus mitoxantrone
6-thioguanine

Alkylating agent (autoHSCT)

Treatment for t-MNs

Supportive therapy 16 (29.5%)

ATRA alone 2 (3.5%)
Conventional CHT 33 (61.0%)
AlloHSCT 15 (29.5%)
NA 3 (5.0%)

APL, acute promyelocytic leukemia; ATRA, all-trans retinoic acid; autoHSCT, autologous
hematopoietic stem cell transplant; alloHSCT, allogeneic hematopoietic stem cell transplant;
CHT, chemotherapy; NA, not available; t-AML, therapy-related acute myeloid leukemia; t-
MDS, therapy-related myelodysplastic syndrome.

years, no t-AMLs were observed in the ATRA/ATO group vs. 1.0%
in the AIDA group (32).

Cytogenetic abnormalities have been largely described in patients
with t-AML: a decreased prevalence of normal karyotype (<30.0%)
and a prevalence of complex or unbalanced karyotypes with
chromosomal deletions as compared with the de novo AML were
reported (2, 21, 33-35). The combination of multiple chemo-
immunotherapy agents with different mechanisms of action makes
it difficult to ascribe the mutagenic potential to a single drug.
Traditionally, recurrent translocations as t(15;17), t(8;21), inv(16), t
(15;17), and 11q23 abnormalities were associated with topoisomerase
II inhibitors, and t-AML usually developed after a latency time of 1 to
3 years (36-38). Very complex karyotypes (>5 simultaneous
chromosomal abnormalities) and deletions of chromosomes 5 and
7 were usually associated with alkylating agents or radiotherapy,
occurring after a latency of 5 to 7 years (2, 39, 40).

Therapy-related MDS is usually characterized by very complex
karyotypes and consequently by a poor and very poor cytogenetic
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risk (40). Therefore, according to the Revised International
Prognostic Scoring System (IPSS-R), a high prevalence of high-
and very-high-risk subgroups was expected in the t-MDS setting.
The IPSS-R is applicable to t-MDS and de novo MDS and reliably
predicts AML transformation. As reported in the literature, 28 of
the 44 (63.5%) t-MDS cases that developed after APL treatment
subsequently progressed to t-AML at a median time of 6.5 months
(1-19) (Tables 1, 3).

The molecular characteristics of MNs have been extensively
analyzed in recent years: in more than 95% of AML and MDS,
somatic mutations have been detected, without significant
difference in the overall number of mutations in secondary vs. de
novo subtypes. Moreover, none of the genes were exclusively
mutated in t-AML. Mutations in RNA-splicing genes, epigenetic
regulators genes, or cohesin complex genes were more than 90.0%
specific for the diagnosis of s-AML (39, 41) and were present in only
30.0% of t-AML.

In the 57 t-MN cases that developed after APL treatment
reported in the literature, in addition to an anthracycline (all the
57 patients), 22 (38.5%) patients also received etoposide, 42 (73.5%)
received 6-mercaptopurine plus mitoxantrone as maintenance
treatment, and eight (14.0%) received 6-thioguanine. Only seven
patients (12.0%) received an alkylating agent as a part of the
conditioning regimen for autologous stem cell transplantation.

Concerning cytogenetic analysis, in the 57 cases reported in the
literature (Table 3), balanced translocations that involved 21922
and 11923 (typical breakpoints observed in t-AML occurring after
administration of topoisomerase II inhibitors) were detected in nine
(15.5%) and eight (14.0%) patients, respectively (Table 3).
Moreover, 18 (31.5%) patients had —5/del(5q), and 21 (37.0%)
had -7/del(7) abnormalities. Complex karyotypes (=three
independent abnormalities) were revealed in 24 (42.0%)
patients (Table 3).

No NGS analysis was performed in the 57 t-MN cases reported
in the literature, while in 11 patients (19.5%), molecular analysis by
RT-PCR was reported (ref (25), Tables 1, 2).

Our patient was extensively studied by RT-PCR and NGS at
diagnosis of t-AML, confirming the absence of PML/RARc: gene
rearrangement and presence of KIT-D816V exon —17 mutation and
TP53 gene mutation, with a VAF of 78.0%.

In an independent series, mutations of TP53 were reported in
30.0% to 47.0% of cases of t-MNs, resulting in the single most
frequent molecular abnormality in this setting associated with
complex karyotype in almost 80.0% of cases (39, 42-44). Lindsley
et al. showed that TP53 mutations define a specific subgroup of t-
AML, which differs from other AMLs like s-AML, in terms of
younger age, lower recurrent driver mutations, more cytogenetic
abnormalities, and poor prognosis with a reduced probability of
achieving response after conventional treatment (39).

KIT mutations are detected in approximately 4%-6% of adult
patients with de novo AML (45, 46) and 20%-40% of adult patients
with de novo core-binding factor (CBF) leukemia (47-51). Three
mutational hot spots (exon 8, exon 10-11, and exon 17) have been
identified in the KIT gene (37, 52-54). Of these, exon 17 (detected in
our patient) represents the site of KIT mutations most strongly
associated with poor prognosis.
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As KIT mutations have been reported mostly in CBF-AML,
most studies on KIT mutations have been limited to CBF-AML,
with few studies investigating KIT mutations in t-MNs. Schnittger
et al. performed a large-scale study involving almost 2,000
unselected patients with AML: among 125 t-AML patients of the
series, KIT mutation was detected in only one patient, who also
presented t(8;21) translocation (54). Another study on 140 patients
with t-MNs reported two cases with KIT-D816V mutation, one of
which had t(8;21) (55).

KIT and TP53 mutations were not detected together in any of
the cases reported in the literature. Survival in t-MNs is poor when
compared with that in other leukemia subtypes: until recent years,
patients with t-MNs have been conventionally excluded from many
clinical trials. This is particularly relevant in patients with previous
APL, which is now considered a curable disease in many patients.
New drugs with specific activity on secondary leukemia (including
t-AML), targeting pathogenic mutations or interfering with
immune mechanisms, are or will be available in the future. Our
patient was treated with CPX-351 (Vyxeos, Jazz Pharmaceuticals):
up to now, no other cases treated with CPX-351 and allogeneic stem
cell transplant for a t-AML that developed after treatment according
to GIMEMA AIDA2000 protocol have been reported in
the literature.

The risk of anthracycline-induced heart failure increases as the
cumulative dose administered increases: 3%-5% at 400 mg/m? and
as high as 18%-48% at 700 mg/m” (56). However, there is a different
level of risk for each patient scheduled for anthracycline therapy:
patients younger than 5 years or older than 65 years, with prior or
concurrent chest irradiation, pre-existing heart disease, or already
known cardiovascular risk factors, have an increased risk
of cardiotoxicity.

Our patient was 46 years old when he was treated according to
GIMEMA AIDA2000 protocol: the anthracycline cumulative dose
administered (as by protocol) was 600 mg/m?, and no concomitant
cardiovascular risk factors were present at diagnosis, but
unfortunately, LVEF before treatment was not available.

Before starting treatment for t-AML, our patient was 63 years
old, without cardiac dysfunction (LVEF 68%), hypertension, or
other cardiovascular risk factors.

As mentioned, CPX-351 is a liposomal encapsulation of
cytarabine and daunorubicin: in the heart, liposomes cannot get
out of the vascular space because capillaries have tight junctions. As
the tendency to accumulate in the heart cells is limited, this may
reduce the risk of cardiotoxicity. On the contrary, the liposomes
reach high concentrations in the tumor site, leaving the circulatory
system where tumor growth damages the capillaries (56).

In our patient, no cardiac dysfunction or other cardiovascular
diseases were developed during the treatment for t-AML (from
induction to transplant).

Of the 57 t-MN patients reported in the literature (Table 3), 15
underwent allogeneic stem cell transplant; no details about disease
status at transplant and at last follow-up were reported, particularly
about the molecular response. In our patient, with a high-risk
genetic profile (TP53 and KIT-D816V exon —17 mutation), a
molecular response was achieved with a transplant procedure and
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confirmed at the last follow-up. Of course, a longer follow-up would
be needed for overall response and chronic GVHD assessment.

Considering the high curability of APL with excellent complete
remission and long-term survival rates, it is necessary to try to
reduce the incidence of t-MNs with a risk-adapted strategy and use
chemotherapy-free regimens like ATO/ATRA.
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Acute myeloid leukemia (AML) is a complex and heterogeneous group of
aggressive hematopoietic stem cell disease. The presence of diverse and
functionally distinct populations of leukemia cells within the same patient’s
bone marrow or blood poses a significant challenge in diagnosing and treating
AML. A substantial proportion of AML patients demonstrate resistance to
induction chemotherapy and a grim prognosis upon relapse. The rapid
advance in next generation sequencing technologies, such as single-cell RNA-
sequencing (scRNA-seq), has revolutionized our understanding of AML
pathogenesis by enabling high-resolution interrogation of the cellular
heterogeneity in the AML ecosystem, and their transcriptional signatures at a
single-cell level. New studies have successfully characterized the inextricably
intertwined interactions among AML cells, immune cells and bone marrow
microenvironment and their contributions to the AML development,
therapeutic resistance and relapse. These findings have deepened and
broadened our understanding the complexity and heterogeneity of AML, which
are difficult to detect with bulk RNA-seq. This review encapsulates the
burgeoning body of knowledge generated through scRNA-seq, providing the
novel insights and discoveries it has unveiled in AML biology. Furthermore, we
discuss the potential implications of scRNA-seq in therapeutic opportunities,
focusing on immunotherapy. Finally, we highlight the current limitations and
future direction of scRNA-seq in the field.

KEYWORDS

acute myeloid leukemia (AML), single cell RNA-sequencing (scRNA-seq), intratumoral
heterogeneity, leukemia stem cell (LSC), bone marrow microenvironment,
immunotherapy, novel therapy

%6 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2024.1365330/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1365330/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1365330/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1365330&domain=pdf&date_stamp=2024-04-22
mailto:csizjb@nus.edu.sg
https://doi.org/10.3389/fonc.2024.1365330
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1365330
https://www.frontiersin.org/journals/oncology

Zhou and Chng

Background

Acute myeloid leukemia (AML) is a complex and aggressive
group of hematopoietic stem cell disorders. It is characterized with
excessive accumulation of immature myeloid blasts in the bone
marrow (BM) and peripheral blood (PB) (1-3). The uncontrolled
proliferation is driven by genetic mutations that affect signaling
pathways regulating cell cycle progression and apoptosis. Mutations
in genes such as FMS-like tyrosine kinase 3 (FLT3), Nucleophosmin
(NPM1I), and other regulators of cell growth contribute to the
dysregulation of these processes. In AML, there is a disruption in
the normal process of hematopoietic cell differentiation. Immature
myeloid blasts, which are the precursor cells to mature blood cells,
fail to undergo proper maturation (4, 5). Instead, they become
arrested at an early stage of development. This differentiation block
is often associated with specific genetic mutations, such as those in
transcription factors like CEBPA, RUNXI or genetic alterations
affecting epigenetic regulation, including mutations in TET2,
DNMTS3A or isocitrate dehydrogenase 1 (IDHI)/IDH2 (4, 6, 7).

The standard therapy for AML consists of induction with 7 days
of cytarabine plus 3 days of an anthracycline (e.g., daunorubicin or
idarubicin), followed by consolidation with additional
chemotherapy or stem-cell transplantation (8, 9). This “7 + 3”
regimen has yielded a 5-year survival of 20% to 35% in young
patients and 10% in older patients (10-12). During the last 10 years,
progress in the field has resulted in the creation of targeted agents
tailored for specific mutations (1, 13). Many of these agents have
obtained approval from the Food and Drug Administration and are
under investigation in ongoing clinical trials (13-15). However, the
effectiveness of these targeted drugs as monotherapies has been
hindered by the development of drug resistance over time (16, 17).
There are still subsets of patients with limited therapeutic options
(18). Finding effective treatments for these groups remains a
challenge. The presence of diverse and functionally distinct
populations of leukemia cells within the same patient’s BM or PB
poses a significant challenge in diagnosing and treating AML (19,
20). A significant portion of patients with AML exhibit resistance to
chemotherapy or targeted therapies, leading to refractory or
relapsed disease with a worse prognosis (14, 21, 22).

Since the emergence of next-generation Sequencing (NGS) in
2005, a multitude of comprehensive bulk RNA-seq studies have
provided further insight into the pathogenesis, molecular
classification, characterization of recurrent mutations, and
detection of minimal residual disease in AML (7, 23, 24).
However, bulk RNA-seq measures the average gene expression
from all cells in the sample, but fails to distinguish between
individual cells within a population and lacks the ability to
distinguish individual cell variations (25, 26). In contrast, single
cell (sc) RNA-sequencing (scRNA-seq) allows the analysis of gene
expression at the resolution of individual cells, providing insights
into cell-to-cell variability (27, 28). scRNA-seq also facilitates the
exploration of individual cell dynamics, including cell
differentiation trajectories, a crucial aspect of both normal
hematopoiesis and leukemogenesis research (29-31). The
application of scRNA-seq has revolutionized our understanding
of AML by enabling the dissection of cellular hierarchies,
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identification of rare cell populations, as well as novel cell types.
scRNA-seq empowers researchers to uncover the dynamic
transcriptional profiles of individual leukemic cells (32). The
characterization of subpopulations with distinct molecular profiles
and cellular functions has not only broadened our understanding of
disease heterogeneity but has also provided potential targets for
more precise therapeutic interventions (33).

Adult AML has a genomic and epigenetic profile distinct from
that of pediatric AML. Adult AML often exhibits a higher frequency
of some DNA mutations mentioned above. However, mutations of
FLT3-ITD, NPM1 are less commonly found and mutations of TP53
and DNMT3A are almost absent in pediatric AML (34). On other
side, somatic structural variants are approximate 10 times higher in
pediatric AML as compared to adult AML (34). Therefore, they
could be considered as two different disease entities. Here, we
summarize findings from various RNA-seq studies in adult AML
that dissected the cellular and molecular heterogeneity of the AML
ecosystem, including leukemia stem cells (LSCs), immune cells and
their interactions with AML bone marrow microenvironment. This
review delves into the recent advancements in understanding the
novel mechanisms of drug resistance and relapse in AML. We also
highlight the transformative potential of single-cell analysis in the
development of novel and personalized treatment strategies with
the focus on immunotherapy for fighting AML.

Unmasking heterogeneity

van Galen and colleagues integrated single cell mutation
detection and transcriptomes for 16 AML patients (35). Six types
of AML cells resembled normal cell types along the differentiation
axis from hematopoietic stem cell (HSC) to myeloid (HSC-like,
progenitor-like, granulocyte-monocyte progenitor (GMP)-like,
promonocyte-like, monocyte-like, and conventional dendritic cell
(cDC)-like malignant cells) were classified (Figure 1A).
Importantly, the relative abundances of these cell types were
strikingly heterogeneous among tumors. Some AMLs consisted of
major one or two cell types, while others contained a range of
malignant cell types. Wu et al. used Microwell-seq and SMART-seq
to analyze samples from 40 AML patients and identified a “cloud
cluster” with no functional marker genes after compared with
normal BM samples (36). Genetic network and correlation
analysis showed that this “cloud cluster” resembles hematopoietic
stem and progenitor cells (HSPCs). Gene expression profiling
revealed upregulation of a spectrum of ribosomal protein (RP)
genes in these AML progenitors. Despite of common features, AML
progenitors could be divided into 16 sub-clusters and summarized
into 4 main groups, including RP gene-High, neutrophil-like,
monocyte-like, and myeloid cell-like. The number of cycling cells
and activation of pathways were markedly different in some
clusters, even within the same main group. Refractory-specific
cluster cells overexpressed MYC, SRC, RELA, MTOR compared to
non-refractory cluster cells in AML-M5 subtype (Figure 2A) (36).

Intratumoral heterogeneity has been dissected not only in same
subtype based on AML morphology, but also in AML with same
driving genetic lesion. NPM1 is the most common mutated gene in
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Schematic illustrations depict the leukemic spectrum at different stages of differentiation trajectory revealed by RNA-seq studies. (A) Unbiased single
cell transcriptomic classifier identifies six types of AML cells mirroring the normal myeloid differentiation axis from hematopoietic stem cell (HSC) to
myeloid (HSC-like, progenitor-like, granulocyte-monocyte progenitor (GMP)-like, promonocyte-like, monocyte-like, or conventional dendritic cell
(cDC)-like malignant cells. The abundances of these 6 different stages of malignant cells vary significantly among AML patients. These abundances
correlate closely with cell morphology and surface phenotypes. The scRNA-seq data reveal greater malignant cell diversity compared to flow
cytometry-based estimates, highlighting the potential of scRNA-seq to provide more detailed information on AML cell types and differentiation
states. (B) In NPM1™* AML, at the peak of differentiation trajectory, malignant early progenitors differentiate into malignant myeloid progenitor (MP).
These MP cells give rise to various malignant progeny cells, including differentiating myelo-/monoblasts, actively cycling blasts, erythroid-like
precursors, and a microcluster with NK-like characteristics. (C) In AML with t(8;21), by integrating clinical immunophenotypic characterization, the
scRNA-seq analysis delineates five distinct intrapatient leukemic cell clusters. At the top of the hierarchy are CD34*CD1179™ cells, representing the
earliest differentiation trajectory, followed by CD34*CD117°" blasts and abnormal myeloid cells with partial maturation (AM) at the end of
differentiation axis. The CD34*CD117°" blasts can be further divided into CD34*CD117°"-S blasts and CD34*CD117°"-G2M blasts based on their cell
cycle status inferred from their single cell transcriptomic profiles. This figure was created with BioRender.com.

AML, occurring in approximately 30% of adult AML. NPMI
mutations result in the cytoplasmic localization of NPM1
(NPMIc) protein. In NPMI™" AML progenitors, 15 distinct
clusters in 6 major group were identified distributed across the
AML landscape, including early progenitors, myeloid progenitors,
erythroid-like precursors, actively cycling blasts, differentiating
myelo-/monoblasts and a microcluster with NK-like
characteristics (Figure 1B). These early progenitors expressed
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CD34, CD99, HOPX and EGFL7, the host gene for miR-126
(Figure 2B) (37). The distribution of these clusters evidently

mut

varied among NPMI™" patients. Some predominantly mapped to
one or two groups, and others showed an extensive presentation
across the whole landscape. Intrapatient cellular heterogeneity in
t(8;21) AML has been explored at single cell level too (38).
Combined with clinical immunophenotypic characterization,

scRNA-seq analysis identified 5 distinct intrapatient leukemic cell
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clusters: CD34*CD117%™ blasts, CD34*CD117°" blasts,
CD34"CD117°"-S blasts, CD34"CD117°"-G2M blasts, and
abnormal myeloid cells with partial maturation (AM)
(Figure 1C). Transcriptomic profiling revealed well-defined gene
signatures in these clusters, for example, cell migration and
adhesion genes in CD34"CD117%™ blasts and cell cycle and DNA
replication genes in CD34"CD117°"-S and CD34"CD117*"-G2M
blasts (38). Similarly, combined whole-exome sequencing (WES)
with scRNA-seq in longitudinal analysis of t(8;21) AML and FLT3-
ITD AML revealed substantial heterogeneity both within and
between blast cells of each patient and more heterogeneity among
diagnosis-relapsed pairs (39). The most pronounced transcriptional
variances were linked to large-scale copy number variations specific
to each patient. Additionally, somatic variants, such as single
nucleotide polymorphisms and small insertions and deletions
contributed to further heterogeneity, highlighting distinct
abundance and dynamics of AML clones unique to each patient
(39). The key findings of some of these studies were summarized
in Table 1.

Taken together, scRNA-seq technology has significantly
advanced our understanding of AML by uncovering a spectrum
of distinct clusters of leukemic cells at different stage of
differentiation trajectory. The representation of these clusters is
markedly varied among AML patients.

Characterizing leukemia stem cells

Differentiation block or maturation arrest is a key characteristic
of AML disease, allowing AML blasts to proliferate continuously
without undergoing the terminal differentiation and apoptosis
process (44, 45). At the core of the blocked differentiation in
AML are LSCs (46, 47). LSCs represent a subset of AML cells
with a unique capability of initiating and maintaining a cellular
hierarchy in AML (48). A large literature suggests that LSCs are
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responsible for the persistence of the disease and can be refractory
to standard chemotherapy, resulting in relapse (47-50).
Chemoresistance and relapse are the leading cause of AML-
related deaths (51-53). scRNA-seq technology has added value in
LSC biology by unveiling novel surface makers, and
distinct transcriptomics.

The primitive AML cell types identified in the study of van
Galen et al. expressed established LSC markers, such as CD96,
CD47, ILIRAP and CD36, and the additional candidate CD74
(Figures 2C, 3A) (35). CD96, a member of the Ig gene
superfamily, is an LSC-specific marker in AML and is associated
with dismal survival (54-57). CD74, also known as MHC HLA-DR
gamma chain, plays an important role in AML cell survival in a
network with LGALS3 (58). AML with more primitive LSCs
inferring from higher HSC/Prog-like gene signature had
significantly worse outcomes (35).

Integrated single cell transcriptomic data from all four patients
described by Velten and colleagues (59), along with data from
CD34" BM cells of a healthy individual, revealed a subpopulation of
quiescent immature HSC-like leukemic cells. These LSCs have
increased expression of API transcription factors (FOS, JUN,
FOSB, JUNB, JUND) and decreased MHC class II expression
(Figure 2D) (59). Interestingly, CD96, a known LSC marker
mentioned earlier, was upregulated in only one patient,
suggesting that LSC might be patient-specific too. In normal
karyotype AML (FAB AML-M4/5), a presumable LSC cluster
highly expressing CD34, CD38, CD96, CD46, CD47, CD82, CD44
and CDI133 was uncovered (Figure 2E) (40). However, due to the
small sample size in these two studies (40, 59), further validation of
these findings in a larger cohort of AML patients is necessary to
determine their general applicability. In NPMI™" AML, scRNA-
seq provided a higher resolution and further anatomized the miR-
126" 1LSCs into dormant and cycling sub-compartment.
Exhibiting overexpression in AML, miR-126 restrains cell cycle
progression, inhibits differentiation, and enhances self-renewal of
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TABLE 1 Summary of some studies of scRNA-seq in AML.

10.3389/fonc.2024.1365330

scRNA- Suppl.
Key finding Sample size seq techniques Reference

platform
1. identify 15 distinct cell types in healthy bone marrow 16 AML (35 BM Seq-well 1. Targeted DNA seq (35)
2. Reveal six types of AML malignant cell along the hierarchy of myeloid cell samples) 2. Sc genotyping by
differentiation 5 HDs short- read seq
3. High HSC/Prog-like signals had worse outcome than those with GMP-like 3. Sc genotyping by
signals nanopore seq
4. Monocyte-like cells potently inhibited T-cell activation (immunosuppressive)
1. Normal cell type: lymphoid, erythroid, and myeloid lineages (6 types of 40 AML Micro-well Seq | Long-read single-cell (36)
neutrophils) 3 HDs targeted SMRT seq
2. Identify 20 cell clusters in AML and Type I (short survival) and Type II AML
3. Patients with ribosomal protein (RP) high progenitor cells had a low
remission rate
1. A generalized inflammatory and senescence-associated response induced by 20 AML 10X Genomics | 1. Immunophenotyping | (37)
chemotherapy 2. NPMI Mutation
2. Heterogeneity within progenitor AML cells: OxPhos™#" vs miR- Finder, NPM1-MF
126"€"OxPhos'™™
3. miR-126"8"OxPhos'®™ LSCs are more quiescent with stemness, associated
with refractory and relapse in NPM1 mutant AML.
1. Three distinct leukemic cell populations identified: CD34*CD117%™ blasts, 9 t(8;21)-AML 10X Genomics | Immunophenotyping (38)
CD34"CD117°" blasts, and abnormal myeloid cells with partial maturation
(AM).
2.CD34"CD117%™ cells overexpress ell migration and adhesion genes, while
CD34"CD117" cells overexpress cell cycle and DNA replication genes.
3. CD34"CD117%™ cells show higher LSC17 score compared to CD34"CD117"
cells
4. A high proportion of CD34*CD117%"™ cells in t(8;21) AML patients predicts
inferior outcomes.
1. Pathway switch from AP1-regulated clone at diagnosis to mTOR-driven clone = 6 AML (diagnosis- Single cell 1. WES (39)
at relapse in DNMT3A/FLT3-ITD AML relapse pair) SORT-seq 2. Fusion genes
2. Shared LSC signature between diagnosis and relapse in two ETO-AML cases detection by RNA-seq
3. Tumor heterogeneity among patients with similar initiating mutations, also
between each diagnosis-relapse pair
1. Identify18 clusters into 8 main cell populations 5 normal karyotype 10X Genomics | None (40)
2. One LSC-like cluster with known LSC marker (CD34, CD96, CD133) and (NK) AML (M4/
nontraditional LSC markers (CD38, CD46) M5)

1 HD
1. The fraction of progenitors is significantly higher in non-CR AML than CR 13 AML (8 CR; 5 10X Genomics | None (41)
AML, suggesting early hematopoiesis arrest in non-CR AML. non-CR)
2. Distinct LSC markers uncovered in HSC-like cells from non-CR (CD9, CD82,
CD123, ILIRAP)
1. CD99"CD49d" Galectin-1"CD52" quiescent stem-like cells (QSCs) are 10 AML (refractory 10X Genomics | None (42)
involved in the chemoresistance and relapse of AML. and early relapsed)
2. Interaction between QSCs and monocytes mediated by CD52-SIGLECI10 leads
to immune suppression and poor outcomes.
3. LGALSI is a promising target for refractory and relapsed AML.
1. Inflammatory BM niche inhibits normal hematopoiesis, but not LT-HSCs and | 6 NPMI-mutant 10X Genomics | 1. Immunophenotyping | (43)
NPM1 mutant leukemic cells. AML 2. Bulk RNA-seq
2. Niche remodeling provides the competitive advantage of mutated cells over 4 HDs 3. NPMI mutation
their normal and preleukemic counterparts, promoting leukemogenesis. identification by
scRNA-seq

HDs: health donors; Suppl., Supplementary; WES, Whole exon sequencing; Sc, Single cell.

LSCs in vivo (60). The dormant miR-126"#" LSCs had low
expression of oxidative-phosphorylation (OxPhos) signatures and
this miR-126"¢"OxPhos'" population was enriched after

predicts poor survival in patients with NPMI™" (37). A
subpopulation of CD34"CD117%™ cells were located at the
earliest stage of differentiation as shown by single cell trajectory
analysis of t(8;21) AML (Figure 3C). Longitudinal scRNA-seq at
different disease stages revealed CD34"CD1174™ blasts expanded at
post-relapse refractory stage after several cycles of chemotherapy
(38). Importantly, higher percentage of CD34*CD117%™ cells in

chemotherapy in AML patient-derived xenografts (PDX) model
(Figure 3B). A miR-126"" gene signature derived from these AML
xenografts could identify a subset of chemotherapy-resilient LSCs
enriched in refractory and relapsed AML. This signature also
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Leukemia stem cells (LSCs) identified by scRNA-seq studies in (A) de novo AML; (B) NPM1™* AML; (C) t(8;21) AML; (D) refractory and early relapsed

(R/eR) AML. This figure was created with BioRender.com.

AML patent with t(8;21) was an indicator of poor prognosis (38).
Chemoresistant HSC-like cells in non-CR AML were found to
express more LSC markers, including CD9, CD82, CD123 (IL3RA),
and ILIRAP than those from CR AML (Figure 2F) (41). CD9,
enriched in the CD34"CD38" fraction of AML cells, is associated
with chemoresistance (61, 62). However, the prognostic value of
CD9 in AML remains elusive as contradictory results have been
reported (62-64). CD82, also known as tetraspanin-27, is a member
of the tetraspanin superfamily of cell surface proteins. CD82 plays
multiple roles in promoting AML cell survival, adhesion, migration,
resistance to Ara-C via activation of STAT5 pathway, PKCo. and 1
integrin, N-cadherin (65, 66). CD123 has been well-studied in LSC
biology, contributing to poor prognosis, high-risk, resistance to
apoptosis and drug resistance of AML (67-69). CD123 serves a
promising target for novel immunotherapies against AML and
numerous clinical trials are currently ongoing (70-74).

Longitudinal scRNA-seq analyses of refractory and early relapsed
AML (R/eR-AML) uncovered that, unlike proliferating stem/
progenitor-like cells (PSPs), a distinct subpopulation identified as
quiescent stem-like cells (QSCs) played a pivotal role in AML
chemoresistance and led to adverse clinical outcomes. The QSCs
had increased expression of CD52 and LGALSI mRNA and a
combination of cell surface markers: CD99*CD49d"CD52 " Galectin-
1" (Figure 3D). Chemotherapy induced reprogram of PSPs to obtain a
QSC-like expression pattern in refractory AML, leading to
accumulation of QSCs. The presence of QSCs at diagnosis could be
associated with chemoresistance, and these cells were further enriched
in the residual AML cells of refractory patients (42).

In summary, scRNA-seq has unveiled significant heterogeneity
within the AML LSC population. There isn’t a single uniform
profile but rather distinct subpopulations of LSCs with varying
gene expression patterns and functionalities. The identification of
multiple LSC markers and diverse LSC gene expression patterns/
signatures underscores the complexity and heterogeneity within
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these cell populations. Such diversity significantly influences their
response to therapy and their refractory/relapse mechanisms.

Scrutinizing bone
marrow microenvironment

The BM microenvironment (niche) is a highly complex
network, consisting of a cellular compartment, an extracellular
matrix, and a liquid compartment (75). Various cell types
including hematopoietic and nonhematopoietic cells such as BM
mesenchymal stromal cells (BMSC), osteoblasts, osteoclasts,
adipocytes, fibroblasts, BM endothelial cells (BMEC), and effector
immune cells, inhabit and interact within the cellular compartment
alongside the extracellular environment. The liquid compartment
contains a mixture of growth factors, cytokines and chemokines
(76, 77). Mounting evidence suggests that BM microenvironment
can influence and regulate functions of HSCs, orchestrating
hematopoiesis. The role of the BM microenvironment in
supporting AML cell survival, fostering resistance to conventional
chemotherapy and targeted treatments, and ultimately contributing
to disease relapse has garnered growing interest (77-79). SCRNA-
seq allows the identification and characterization of individual cell
types within this BM microenvironment, offering a detailed
understanding of the BM atlas and its interactions with AML cells.

scRNA-seq studies have been performed to define a cellular
taxonomy of the mouse BM microenvironment and its perturbation
by malignancy and stress (80-82). The initial comprehensive atlas
of the mouse BM microenvironment identified 17 distinct cellular
subsets, including BMSCs, osteolineage cells (OLCs), pericytes,
BMECs, chondrocytes, and fibroblasts (80). Their putative
functions and developmental relationships have been annotated
too. Several scRNA-seq studies revealed novel insights into the
interactions between AML cells and BM niche.

frontiersin.org


https://www.BioRender.com
https://doi.org/10.3389/fonc.2024.1365330
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhou and Chng

Leptin receptor (LepR) is a transmembrane receptor protein
involved in responding to the hormone leptin. LepR™ cells are key
components of the BM hematopoietic microenvironment, and
involved in regulating hematopoiesis, bone formation and
remodeling (83, 84). In the MLL-AF9 knockin leukemic model,
LepR" BMSCs were found to exhibit downregulation of key HSC
niche factors like ANGPTI, which acts as an agonist for TEK
receptors present on BMECs and HSCs. Additionally, factors
promoting lymphoid or myeloid differentiation, as well as HSC
homing to the bone marrow, were also observed to be
downregulated (80). SPP1, an osteoblastic maturation marker that
acts as an inhibitor of HSC pool size and proliferation, was noted to
be upregulated in AML. In addition, osteogenic differentiation
blockage in LepR"™ BMSCs and OLCs could also be induced by
leukemic cells, leading to remodeling and changes in bone
composition. WNTI-inducible-signaling pathway protein 2
(WISP2), known to inhibit MSCs ability to differentiate, was
observed to be upregulated in all LepR+ BMSCs subsets as well as
OLC progenitors, suggesting a compromised differentiation of
LepR"™ BMSCs and OLCs in AML (80). Under stress conditions
such as chemotherapy, significant alterations in niche components
occur, including the adipocytic skewing of perivascular cells
regulated by the activation of adipogenesis-related pathways, as
well as a widespread reduction in gene expression linked to the
osteolineage (81). Consequently, the transcriptional remodeling of
nice altered the normal hematopoiesis process. For example,
downregulation of vascular Notch delta-like ligands (encoded by
DLL1 and DLL4 genes) prematurely turned on a myeloid
transcriptional program in hematopoietic stem cells (81).

Results from scRNA-seq in AML patients and healthy donors
are consistent with these findings in mouse (43). In human BM
from healthy donors, LepR" BMSCs were identified as a key
“communication hub”, playing central roles in in the homeostatic
regulation of HSC and BM niche cells (43). Subclustering analysis
identified 4 types of BMSC, ie, BMSC-0-3, with different level of
LepR expression. The BMSC-0 population expressed highest level of
LepR gene and CXCLI12, KITLG, ANGPTI, and IL7. These genes
encode critical HSPC regulatory factors. Accordingly, BMSC-0 are
predicted to have the strongest interactions across HSPC subsets,
particularly long-term (LT)-HSCs (43). In NPMI™"* AML, BMSCs
undergo inflammatory remodeling in which gene signatures
reflecting inflammatory signaling, such as “INFa signaling via
NFkB”, “IL2-STAT signaling”, and “inflammatory response”, are
among the most upregulated. The inflammatory remodeling
disrupted the homeostasis of BMSC subclusters, resulting in a
significant decrease in the BMSC-0 cluster, which was expected to
have the strongest interaction with HSPCs, alongside a concurrent
nearly seven-fold increase in BMSC-2. In all cases of NPMI™"
AML, the BMSC-2 cluster consistently displayed a transcriptional
profile characterized by the upregulation of genes associated with
inflammation, as well as genes and signatures related to cell-
extracellular matrix (ECM) remodeling. This indicates a
significant expansion of an inflammatory subset, accompanied by
a concurrent decline in the BMSC subset expected to sustain the
normal maintenance of HSPCs (43). Collectively, LepR™ BMSCs in
AML undergo remodeling due to inflammatory activation. This
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results in a significant expansion of an inflammatory subset (BMSC-
2) alongside a simultaneous reduction in the BMSC subset expected
to sustain the maintenance of normal HSPCs (BMSC-0).

A profound shift in cell-cell interaction between hematopoietic
BM niche and HSPCs has been found in AML patients when
compared to healthy donors (85). At the time of diagnosis, there
was a notable increase in the abundance of the most primitive
myeloid progenitor population, HSC/multipotent progenitor cell
(MPP). Following treatment and achieving remission, these
proportions reverted to levels comparable to those observed in a
healthy state (85). However, during relapse, there was a resurgence
in the enrichment of myeloid progenitors. Predictive analyses
unveiled interactions between HSPCs and other BM cell types,
revealing a notable expansion of interactions in AML that promote
HSPC-cell adhesion, immunosuppression, and cytokine signaling.
Specifically in AML, integrin 31 (ITGB1, CD29) was predicted to
form interactions with a broader spectrum of ligands, which
promoted adhesion and survival of HSC and MPP (85). The
transforming growth factor-f (TGF-f) signaling pathway plays a
crucial role in regulating various cellular processes, including
normal hematopoiesis, and its dysregulation has been implicated
in AML (86, 87). The interaction between TGFB1 and TGFBR2 was
predicted to be widespread in AML when compared to healthy
controls (85). Increased expression or secretion of TGFB1 inhibits
normal HSC proliferation and is linked to the quiescence state of
LSC in AML (85-87). Additionally, ECM and cytokine production
have been observed in AML too (85). However, caution should be
exercised regarding these predicted interaction changes due to the
lack of rigorously experimental validation in this study (85).

Taken together, these findings from scRNA-seq in the context
of AML suggest that malignant cells can affect normal
hematopoiesis by remodeling in BM microenvironment
composition and alter the regulation of HSC niche factors in the
stroma. This compromises the BM microenvironment to be less
conducive towards normal hematopoietic cell production, but
confers competitive advantage to AML cells, such as adhesion,
survival, quiescence for the AML cells.

Divulging the immune system

Immune surveillance mechanisms, comprising adaptive and
innate immune systems, are natural protectors in preventing
hematological malignancies (88). A large body of pre-clinical and
clinical studies indicates the substantial contribution of
compromised immune surveillance mechanisms to the
establishment of preleukemic states and their progression toward
AML (89-92). Recent studies using scRNA-seq provide
comprehensive view of immune escape strategies employed by
AML cells to evade immune recognition, as well as AML cell-
induced modifications of various immune cell populations,
including T cells, natural killer (NK) cells, dendritic cells, and
myeloid-derived suppressor cells (93-97).

The development of AML leads to profound alterations in the
lymphoid lineage, including a significant reduction in the
proportion of common lymphoid progenitors (CLPs) and their
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offspring, such as pre-B cells, mature B cells, as well as, to a lesser
extent, CD4" and CD8" naive T cells and CD4" memory T cells
(35). Although both AML and healthy control samples have the
same two T cell subsets, naive T cells and cytotoxic T cells (CTLs),
and a related population of NK cells, their proportion and function
differ. AML samples have comparatively fewer T cells and CTLs but
relatively more regulatory T cells (T-regs) compared to healthy
controls. Overall, these findings underscore long-term damage to
the adaptive immune system and an immunosuppressive BM niche
of AML (35). It has been recently showed that differentiated
monocyte-like AML cells exhibit features of classical and non-
classical monocytes, but lack cytotoxic signature genes (35). These
differentiated monocyte-like AML cells can inhibit T cell activity,
contributing compromised immune tumor surveillance in AML
(35). Another observation that aligns with the immune suppressive
state of AML disease is the enrichment of CD8+ memory T cells at
relapse compared to diagnosis (94) (Figure 4A). This suggests that
while cytotoxic cell numbers recover during remission, they are
functionally ineffective to execute anti-AML immune responses,
potentially contributing to relapse.

Several scRNA-seq studies, paired with single-cell T cell
receptor (TCR) sequencing on T cell, have defined high-
resolution atlas of different T cell populations with distinct
functions in AML. In general, the clonotype size, denoted by the
count of cells expressing identical TCR sequences, is highest in
refractory/relapsed AML, followed by newly diagnosed AML and
healthy donors, revealing that T cells are more clonal in the AML
microenvironment (93, 94, 97). Five T cell phenotypes, including 2
conventional (CD4", CD8") and 3 unconventional, such as gamma-
delta (y8) cells, mucosal associated invariant T-cells (MAIT) cells,
and all other (unconv T) cells were identified in AML BM samples.
AML had lower CD4:CD8 ratio in BMs than that in healthy BMs

CD8 Tm cells R
cn4:cns¢

Cc

KLRG1*.
senescer;i

D T\cel! 7 ,/

Effector function

Mono-|

@L cells

— &

like

AML cells

FIGURE 4

10.3389/fonc.2024.1365330

(93) (Figure 4A). CD8+ T cells in AML could be further divided
into 16 clusters, forming 6 major types, including naive, memory,
effector memory, CTL, MAIT, and exhausted (94). The percentage
of exhausted population was lowest in AML compared to other 20
types of tumors using the same exhaustion definition (98), which
involves coexpression of PDCDI1, TOX, CXCL13, TIGIT, CTLA4,
TNFRSF9, HAVCR2, and LAG3 (94) (Figure 4B). This finding of a
lower abundance of CD8" T cells expressing canonical immune
inhibitory-related markers in AML has important clinical
significance, partially explaining the limited efficacy of immune
checkpoint inhibitors observed in AML patients, in contrast to
remarkable responses seen in some solid tumors. The CD8" effector
T cells are markedly different between newly diagnosed and
refractory/relapsed AML (Figures 4C, D). Refractory/relapsed
AML shows relatively higher abundance of clusters enriched with
expression of the inhibitory receptor KLRGI, a marker of antigen-
experienced and senescent cells (99, 100), while newly diagnosed
AML displays relative higher percentage of clusters expressing cell-
migratory receptor CXCR4 and AP-1 transcription factor FOSB
(94). Thus, these heterogeneous clusters of CD8" effector T cells
with different cellular states might contribute to refractory/
relapsed disease.

In a study of analyzing normal karyotype AML (M4/M5), seven
T cell clusters were discovered, including 4 clusters of CD8", 2
clusters of CD4" cells NFE2 cluster, CD4 CD8 cluster, based on
their gene expression characteristics. MAIT cells express a semi-
invariant TCR called the TCRa7.2, which recognizes microbial-
derived metabolites presented by the MHC-related protein 1 (MR1)
(101, 102). The cluster, predominantly composed of MAIT cells
(97), showed a higher proportion in refractory and relapsed cases
compared to the other samples, implying a potential role of MAIT
cells in the pathogenesis and disease progression of normal
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Schematic illustration summarizing the compromised T cell functions mechanisms exerted by AML cells revealed by scRNA-seq studies. (A) AML
cells can reduce CD4:CD8 ratio as compared to healthy controls. In relapsed AML, there is an increase in CD8* memory T cells (Tm) when
compared to newly diagnosed AML. (B) AML cells induce T-cell exhaustion by increasing expression of inhibitory T-cell receptors (PD-1, LAG3,
HAVCR2, TGIT, CTLA4. (C) In relapsed AML, the expansion of KLRG1" senescent T cell and CD8*KLRB1* T cells contribute to chemoresistance.
(D) Differentiated monocyte-like AML cells hamper effector T cell function. This figure was created with BioRender.com.
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karyotype AML (97). Another study of PB mononuclear cell
(PBMC) samples in AML patients also found predominant MAIT
cells in one of the CD8" T cell clusters (95). However, the clinical
significance of MAIT cells was not explored in this study (95). Five
subclusters of CD4" T cells and four subclusters of CD8" T cells
were also defined based on transcriptomic signatures. While the
proportion of cytotoxic CD4" effector T cells varied among AML
patients, it was generally lower compared to healthy donors. This
suggests that the reduced presence of these immune cells
contributes to the progression of AML (95).

NK cells are a type of cytotoxic innate immune cells that
produce inflammatory cytokines and chemokines (103). They
play a crucial role in the immune response by lysing infected and
cancer cells, including AML (104). NK cells are generally divided
into 2 classic subsets, cytokine-producing CD56“" and cytolytic
CD56"8" NK cells (105). Recent single-cell transcriptomics study
analyzing NK cells in PB from healthy donors revealed six subtypes
of NK cells, including 3 well-defined subsets (CD56™"'CD16",
CD56Y™CD16"CD57, and CD56""CD16"CD57") and 3 novel
subsets (type I interferon-responding NK cells, cytokine-induced

dim

memory-like NK cells, and population with low-ribosomal
expression) (96).

Comparative scRNA-seq studies have been performed on NK
cells from healthy donors and AML BM samples to better
understand NK cell dysfunction in AML. Crinier et al. identified
three NK cell populations common in 8 healthy donors based on
gene signature analysis. Among them, two populations resembled
CD56"™CD16 and CD56”*#"CD16 NK cells, while the third

6°18ht tissue-resident NK cell

cluster was constituted of a CD5
population that resides in the spleen and is absent from the blood
(106). In contrast, NK cells in AML patients were profoundly
heterogeneous and exhibited patient-specific features. There was
no distinct NK cell subset shared among AML patients, suggesting
that the NK cells were impacted by AML cells in an individual
fashion (106). Transcriptomic profiling demonstrated that NK cells
from AML patients had higher expression of interferon-induced
genes, while NK cells from healthy donors expressed higher level of
NK cell effector molecules. CD160 is an important human NK cell
activating receptor and its decreased expression is associated
impaired NK cell function. AML patients with lower expression
of CD160 have poorer survival than those with higher level of
CD160 (106). In PBMC samples, the number of NK cells was lower
in AML patients than that in healthy donors, indicating the AML-
induced suppressive circumstance (95). However, they shared same
NK cell expression makers and formed a single functional subtype.
Differential gene expression analysis revealed downregulation of 10
transcription factors involved in homeostatic NK cell proliferation
and survival, such as CEBPD, KLF3, KLF2, USF2, and FOXPI, in
AML patients (95). A unique subset of NK cells characterized by the
CD56"¢MCD16" phenotype, particularly in the hypomaturation
stage, is prevalent in AML. The hypomaturation stage of these NK
cells has been linked to decreased overall survival (OS) and event-
free survival (EFS) in AML patients (107). In contrast to other NK
cell populations, the CD56""€"CD16" cells displayed distinct shifts
in both phenotype and function, marked by remarkably low scores
for activating and inhibitory receptors (108). Current NK cell-based
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therapies primarily aim to enhance NK cell activation and longevity,
often overlooking the heterogeneity among cancer types and the
suppressive influence of the tumor cells and tumor
microenvironment on NK cell cytotoxic functions. The new
knowledge of NK cell dysfunction gained from extensive scRNA-
seq research is crucial for shaping future therapeutic strategies for
AML and other cancers in general.

Expanding therapeutic opportunities

With a deeper understanding of the genetic and transcriptomic
landscape of AML at the single-cell level, new cell type-specific
targets can be identified and more tailored and effective treatments,
such as targeted therapies or immunotherapies, can be developed.

As mentioned earlier, CD52, LGALS1 and CD47 are
significantly elevated in QSCs cells compared to other cellular
states (42). Additionally, LGALS1 expression is also found to be
significantly increased in chemo-residual QSCs in refractory AML
patients and in daunorubicin-resistant leukemia cell lines compared
to sensitive cells (109). Furthermore, scRNA-seq comparison of
CD34" BM cells at diagnosis from CR vs non-CR AML patients
revealed that a cluster of GMP cells characterized by
CRIP1ME"LGALS1ME"S100As" 8" was significantly enriched in
non-CR samples and associated with poor prognosis of AML
(110). AML patients with higher expression of LGALSI had a
worse OS and EFS that those with lower LGALS1 expression in
the TCGA cohort (42). Overall, these data demonstrate that
LGALSI may mediate the chemoresistance and represent a novel
therapeutic target for resensitizing QSC LSCs to chemotherapy. The
LGALS1 inhibitor, OTX008, has been shown to enhance the
chemotherapy in AML cell lines, primary AML cells, cell lines,
and to eliminate the chemoresistant QSCs in AML PDX models
(42). Other markers specifically expressed on QSCs, such as CD52
and CD47 are potential targets for the development of small
molecule inhibitors or immunotherapies.

Chimeric Antigen Receptor T-cell (CAR-T) therapy, involves
genetically engineering T cells to express chimeric antigen
receptors, enabling them to recognize and eliminate tumor cells
(111). However, only limited efficacy of CAR-T therapy targeting
CD33, CD123 in AML have been observed in clinical trials (112).
The widespread occurrence of adverse events resulted from CAR-T
therapies is the “on-target, off-tumor toxicity”, which arises in
patients who have target antigen expressed on both tumors and
healthy tissues (113). Unfortunately, frequently targeted antigens in
AML CAR-T therapy, such as CD33 and CD123, found in around
80-90% and 70-80% of AML patients, respectively, are also
detected on HSCs and normal myeloid progenitor cells (114).
This lack of target specificity can lead to unintended toxicity,
prolonged severe myelosuppression, and dependence on
transfusions. scRNA-seq is a powerful tool for comparing the
expression levels of antigens in malignant cells and non-
malignant cells from a broad range of healthy tissues.

The expression patterns of common AML-related target antigens,
including CD33, CD123, and CLECI2A (CLL-1, CD371), were
investigated in normal tissues and organs (115). Targeting CD33,
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CD123, and CLEC12A primarily affected CD14" monocytes, CD16"
monocytes, and DC populations, with minimal impact on other
hematopoietic lineages, such as B lineages, T lymphocytes, and NK
cells. Notably, all these genes exhibited expression at the mRNA level
in partial on HSPCs. A major concern arises from the higher
frequency of CLECI2A in platelets at the mRNA level, and the
abundant presence of CDI123 in multiple pancreatic cell types, as
well as ECs across various organs, including cardiac, lung, skin, liver,
and urinary bladder (115). CDI123 was also expressed in a small
number of cardiac fibroblasts, aortic fibroblasts/smooth muscle cells/
mesenchymal stem cells (MSCs), and lung epithelial cells (115). Thus,
CD123 CAR-T can inadvertently injure these healthy cells, causing
damage to endothelial cell and hematopoietic toxicity, including
prolonged myelosuppression. Meanwhile, CD33 CAR-T treatment
could eradicate skin Langerhans cells, potentially compromising the
skin’s defense against pathogenic microorganisms (115). Therefore,
the widespread of “on-target, off-tumor toxicity” associated with
these CAR-T therapies poses major limitations to their application
in treating AML. The selection of the right target antigens for CAR-T
immunotherapy in AML remains a significant challenge.

In attempt to search for novel CAR-T targets with minimal or
none of “on-target, off-tumor toxicity” in AML, Gottschlich and
colleagues utilized a comprehensive RNA-sequencing dataset
comprising over 500,000 single cells from 15 AML patients and 9
healthy individuals (116). After a serial of stepwise filtering, colony-
stimulating factor 1 receptor (CSF1R) and CD86 were identified as
novel target antigens for CAR-T cell therapy in AML. The
expressions of CSFIR and CD86 were higher on malignant HSC-
like and HSPC-like cells than on healthy controls. Furthermore,
CSFIR and CD86 were lack on T cells and had minimal expression
on nine organs in healthy controls (116). Functional validation of
these CAR-T cells demonstrated robust efficacy in both in vitro and
in vivo AML models, with minimal off-target toxicity to relevant
healthy tissues (116). These findings provide a compelling basis for
advancing these CAR-T cells into further clinical development. The
high-resolution, single-cell expression analysis offers an innovative
strategy for identifying new CAR-T targets in AML. The ongoing
clinical trials of these new CAR-T therapies give an opportunity for
combating AML and improved outcomes for patients, especial for
refractory and relapsed cases in the future.

Conclusion and perspective

The past few years have witnessed substantial progress in
scRNA-seq study of AML. These advances signify the cellular
heterogeneity within the AML ecosystem, a complexity previously
overlooked in bulk RNA-seq analyses. The insights gained from
scRNA-seq greatly enhance our understanding of LSC,
compromised immune cells, altered BM microenvironment, and
mechanisms of resistance to chemotherapy and relapse.
Furthermore, they pave the way for new therapeutic avenues,
such as the development of truly AML-specific immunotherapies
and small molecular inhibitors for unique LSC subpopulation.

Despite these advancements, certain challenges and unresolved
issues persist in the application of scRNA-seq in AML. Spatial
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transcriptomics technologies have emerged as powerful instruments
in cancer research, providing valuable insights into the spatial
organization of gene expression within intact tissue sections in
the original physiological context (117, 118). However, current
scRNA-seq methods cannot provide spatial information, leading
to a loss of spatial dimension regarding how different cell types and
subpopulations interact directly within the BM microenvironment.
While this is not a concern in solid tumor samples, it is not
applicable to formalin fixed paraffin embedded (FFPE) BM
samples because the harsh decalcification procedure can result in
severe degradation of RNA (119). A technical breakthrough is
required to enable the utilization of FFPE BM samples in
conjunction with spatial transcriptomics and single-cell
technologies. This advancement would facilitate the construction
of 3D spatial maps of gene expression, providing a visual depiction
of interactions among AML cells, including LSCs, immune cells,
and stromal components, within their natural BM environments.
Another major challenge is the reproducibility and comparability of
results across studies due to the different scRNA-seq platforms,
variations in sequence depth and bioinformatic pipelines applied
(120). Hence, future scRNA-seq studies could be enhanced through
the standardization of protocols and methodologies, alongside the
creation of robust computational tools and analytical frameworks,
complemented by artificial intelligence technology.

Furthermore, there is a need for scRNA-seq in combination
with other omics technologies, such as genomics, epigenomics,
proteomics and metabolomics to provide a more holistic view of
gene mutations, methylation, acetylation, chromatin remodeling,
protein abundance and substrates and products of metabolism
(121-126). For example, AML is known for its cellular
heterogeneity, with different subpopulations of AML cells
exhibiting diverse gene expression profiles and epigenetic states.
Single-cell ATAC-seq (Assay for Transposase-Accessible
Chromatin with high-throughput sequencing) enable the genome-
wide mapping of accessible chromatin regions at the single-cell level
(127). scRNA-seq combined with single-cell epigenomics
techniques, such as scATAC-seq, can provide simultaneous
profiling of gene expression and chromatin accessibility in rare
AML populations like LSC, delineating epigenetic dysregulation
and transcriptional regulatory networks. Single-cell proteomics
techniques, such as mass cytometry (CyTOF) (128-130) or
single-cell proteomic assays (131, 132), complement scRNA-seq
by profiling the expression levels of proteins at the single-cell level.
Likewise, integrating scRNA-seq with single-cell proteomics enables
comprehensive assessment on how a single gene’s protein levels
track with its mRNA levels across individual AML cells, given the
fact that genome-wide correlation between expression levels of
mRNA and protein on bulk RNA-seq and proteomic studies are
around 40% (133). Single-cell metabolomics using mass
spectrometry allows for the simultaneous detection of a wide
range of metabolites from individual cells (134, 135), Integration
of scRNA-seq with single-cell metabolomics facilitates
measurement of metabolite levels associated with key metabolic
pathways, such as glycolysis, tricarboxylic acid cycle, and amino
acid metabolism (136, 137), capturing both transcriptional
signatures and metabolic profiles, within individual AML cells.
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CRISPR/Cas9 technology enables the targeted manipulation of
specific genes in a controlled manner (138). By combining
scRNA-seq with CRISPR/Cas9, like Perturb-seq (139) and Casl3
RNA Perturb-seq (CaRPool-seq) (140), researchers can
systematically perturb potentially important oncogenes and assess
the effects on the transcriptome on single cell level (141). This
approach aids in pinpointing crucial oncogenic drivers involved in
both the onset and advancement of AML, thereby streamlining the
development of targeted therapeutic approaches designed to
eliminate LSC populations responsible for disease recurrence.

The established prognosis factors used in clinic decision are age,
cytogenetic abnormalities, molecular mutations (e.g., FLT3, NPM1,
CEBPA, DNMT3A, IDHI, IDH2, TP53), and the new 2022 edition
of European LeukemiaNet (ELN) risk classification (Favorable
prognosis, Intermediate prognosis and Adverse prognosis) based
on the genetic alterations (8). One major limitation of current risk
stratification is primarily derived from clinical studies comprising
younger, fit patients with de novo AML who received intensive
chemotherapy. However, the average age at diagnosis for adult
AML is 68 years. Older adult AML patients often receive lower-
intensity therapy instead of intensive therapy (142). Therefore, this
limitation significantly restricts the applicability of these guidelines.
scRNA-seq has the capability to capture rare cell subsets, such as
AML LSC or therapy-resistant clones, which may have prognostic
implications. Importantly, the application of scRNA-seq in
prognosis is applicable to both young and old patients, as well as
to patients who have received either intensive or low-intensity
chemotherapy, targeted therapies, or immunotherapies. Hence,
incorporating scRNA-seq data with established risk factors, such
as age, cytogenetic abnormalities, and mutation status, could
improve prognostic accuracy.

Furthermore, scRNA-seq can be leveraged to monitor the
dynamic changes in the AML cell and immune cell populations
during treatment, enabling real-time tracking of treatment response
and the emergence of resistant clones. These data derived from
scRNA-seq can be used to identify transcriptional signatures
associated with drug sensitivity or resistance in AML cells. The
signatures may serve as predictive biomarkers for treatment
response, which can guide personalized treatment adjustments,
potentially minimizing the risk of relapse and improving patient
survival. However, the clinical implementation of scRNA-seq in
AML faces several limitations and challenges. One of the primary
concerns is the cost of scRNA-seq, which can be prohibitively
expensive for routine clinical use, particularly with high volume of
samples. Secondly, the bioinformatic analysis of scRNA-seq data is
complex and requires fair amount of computational resources and
dedicated bioinformaticians, which may not be readily available in
some resource-limited hospitals.

Despite these limitations, the potential advantages of scRNA-
seq in improving AML diagnosis, prognosis, and treatment are
indisputable. Moving forward, we provide our view on the
trajectory towards clinical application of scRNA-seq. As a
relatively young, but fast-evolving field of single-cell field,
ongoing advancements in sequencing technologies, bioinformatics
tools, and protocol optimization are driving down the cost of
scRNA-seq and improving its scalability. We foresee the
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sequencing costs continue to decrease and technologies become
more user-friendly, the implementation of scRNA-seq in clinical
settings is expected to increase. Clinical validation studies are
essential for establishing the clinical utility of scRNA-seq in AML
diagnosis, prognosis, and treatment. Larger cohorts of AML
patients and prospective, longitudinal studies are needed to
determine the clinical utility of scRNA-seq in prognosis
assessment and personalized medicine for AML patients.
Regulatory approval and standardization of scRNA-seq protocols
are critical steps towards its widespread adoption in clinical
practice. With continued innovation, cost reduction, and
validation in clinical trials, we expect scRNA-seq holds great
promise for clinic use in management of AML patients in the
near future.

Collectively, the perspective for integrating scRNA-seq into
basic and translational research in AML is optimistic. The new
insights uncovered by the widespread use of scRNA-seq are crucial
for the development of novel therapies, especially for refractory/
relapsed AML and significantly improve the survival rate of
AML patients.
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Glossary

AML

Acute myeloid leukemia

ATAC-seq | Assay for Transposase-Accessible Chromatin with high-
throughput sequencing

B-ALL B cell acute lymphoblastic leukemia

BM Bone marrow

BMEC BM endothelial cells

BMSCs bone marrow mesenchymal stromal cells

CaRPool- Cas13 RNA Perturb-seq

seq

CAR-T Chimeric antigen receptor T cell

cDC Conventional dendritic cell

CSFIR colony-stimulating factor 1 receptor

CLPs common lymphoid progenitors

CTLs cytotoxic T cells

DLBCL Diffuse large B cell lymphoma

FACS Fluorescence-activated cell sorting

FFPE Formalin-fixed paraffin-embedded

FLT3 FMS-like tyrosine kinase 3

GMP Granulocyte macrophage progenitors

HSC hematopoietic stem cell

HSPC hematopoietic stem and progenitor cell

IDHI isocitrate dehydrogenase 1

LepR Leptin receptor

LSCs Leukemia stem cells

LT-HSCs long-term hematopoietic stem cells

MM multiple myeloma

MPP Multipotent progenitor cell

MSCs Mesenchymal stem cells

NGS Next-generation sequencing

NK cells Natural killer cells

NPM1 Nucleophosmin 1

OLC Osteolineage cells

OxPhos Oxidative-phosphorylation

[0 Overall survival

PBMC Peripheral blood mononuclear cell

PD-1 Programmed cell death protein 1

PDX Patient-derived xenografts

PFS Progression-free survival

QSCs Quiescent stem-like cells

Frontiers in Oncology

(Continued)

110

10.3389/fonc.2024.1365330

Continued
RNA-seq RNA sequencing
RP Ribosomal protein
sc Single-cell
ScRNA- Single-cell RNA sequencing
Seq
SMART- Switching mechanism at the 5’
seq
SORT-seq FACS sorting and robot-assisted transcriptome sequencing
TCR T-cell receptor
Tm Memory T cells
T-regs Regulatory T cells
WES Whole exome sequencing
WGS Whole genome sequencing.
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Background: Acute myeloid leukemia (AML) is a highly aggressive and
pathogenic hematologic malignancy with consistently high mortality.
Lysosomes are organelles involved in cell growth and metabolism that fuse to
form specialized Auer rods in AML, and their role in AML has not been elucidated.
This study aimed to identify AML subtypes centered on lysosome-related genes
and to construct a prognostic model to guide individualized treatment of AML.

Methods: Gene expression data and clinical data from AML patients were
downloaded from two high-throughput sequencing platforms. The 191
lysosomal signature genes were obtained from the database MsigDB.
Lysosomal clusters were identified by unsupervised consensus clustering. The
differences in molecular expression, biological processes, and the immune
microenvironment among lysosomal clusters were subsequently analyzed.
Based on the molecular expression differences between lysosomal clusters,
lysosomal-related genes affecting AML prognosis were screened by univariate
cox regression and multivariate cox regression analyses. Algorithms for LASSO
regression analyses were employed to construct prognostic models. The risk
factor distribution, KM survival curve, was applied to evaluate the survival
distribution of the model. Time-dependent ROC curves, nomograms and
calibration curves were used to evaluate the predictive performance of the
prognostic models. TIDE scores and drug sensitivity analyses were used to
explore the implication of the model for AML treatment.

Results: Our study identified two lysosomal clusters, clusterl has longer survival time
and stronger immune infiltration compared to cluster2. The differences in biological
processes between the two lysosomal clusters are mainly manifested in the
lysosomes, vesicles, immune cell function, and apoptosis. The prognostic model
consisting of six prognosis-related genes was constructed. The prognostic model
showed good predictive performance in all three data sets. Patients in the low-risk
group survived significantly longer than those in the high-risk group and had higher
immune infiltration and stronger response to immunotherapy. Patients in the high-
risk group showed greater sensitivity to cytarabine, imatinib, and bortezomib, but
lower sensitivity to ATRA compared to low -risk patients.
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Conclusion: Our prognostic model based on lysosome-related genes can
effectively predict the prognosis of AML patients and provide reference
evidence for individualized immunotherapy and pharmacological
chemotherapy for AML.

KEYWORDS

acute myeloid leukemia, lysosome, prognostic model, immune infiltration, chemotherapy

1 Introduction

Acute myeloid leukemia (AML) is a highly invasive and destructive
hematological malignancy and characterized by abnormal proliferation
of hematopoietic cells and early blockage of myeloid differentiation,
which impairs normal hematopoiesis with fatal consequences (1). For
the past 40 years, the treatment regimen for AML has remained the
standard induction chemotherapy regimen based on anthracyclines.
Although the majority of patients experience complete remission after
initial treatment, the presence of relapses and refractory events results
in a 5-year survival rate below 30% (2). Advances in sequencing
technology have helped us to gain insights into the pathogenesis of
AML and accordingly develop new drug targets and formulate risk
stratification, such as Fms-like tyrosine kinase 3 - internal tandem
duplication (FLT3-ITD), Isocitrate dehydrogenase(IDH) mutations
(3-5). The crosstalk between multiple genetic variants and the lack
of clarity on the specific mechanisms of AML development ultimately
leads to a mismatch between risk stratification and clinical outcomes,
which in turn affects the quality of survival of AML patients (6).
Therefore, it is urgent and necessary to further study the pathogenesis
of AML, develop appropriate risk assessment methods and improve
risk stratification.

Lysosomes are organelles produced by the Golgi apparatus that
contain a variety of hydrolytic enzymes and have a unique ph value
(7). Previous studies generally regarded lysosomes as organelles that
break down substances, but in recent years, studies have pointed out
that they not only break down substances and replenish nutrient
metabolism, but also influence cell growth, disease generation,
tumor progression, and other biological processes by mediating
cellular signaling and participating in autophagy (8, 9). During
tumor progression, lysosomal function undergoes a significant up-
regulation to meet the energy demands necessary for the excessive
proliferation and invasion of cancer cells (10). In contrast to normal
cells, cancer cells exhibit a greater abundance and larger size of
lysosomes, along with elevated lysosomal enzyme activities. Several
lysosomal enzymes, such as cathepsin B and cathepsin D, besides
their known role in mediating programmed cell death, are strongly
implicated in poor patient prognosis (11-15). Additionally, the
lysosomal fusion derivative known as Auer rods is predominantly
observed in hematologic tumors, with current research focusing on
their utility as diagnostic markers (16). However, the functional
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significance of this lysosomal derivative in acute myeloid leukemia
remains poorly understood. Based on the aforementioned evidence,
we hypothesize that the expression levels of lysosome-related genes
could be utilized to categorize AML patients into distinct molecular
subtypes, thereby guiding AML risk stratification and prognosis.

In our research, we collected lysosomal genes, constructed a
prognostic model based on lysosome-related genes through
systematic analysis, and conducted a preliminary validation of the
model’s accuracy and usefulness. The aim is to improve the
prognosis of AML and provide new reference evidence for
individualized treatment of AML.

2 Methods
2.1 Data download and pre-processing

All data used in this study were obtained from two high-throughput
sequencing platforms, TCGA (https://portal.gdc.cancer.gov/) and GEO
(https://www.ncbinlm.nih.gov/geo/), which contained 984 samples
from GSE37642 (17), 151 samples from TCGA-LAML, and 304
samples from GSE10358 (18). We then adopted the following criteria
to further screen the samples: 1, The tumor primary site of all samples
should be bone marrow or peripheral blood. 2, All samples should have
complete RNA-seq data and clinical information. 3, All samples shall
have complete survival information. After screening, we included 367
samples from GSE37642-GPL96 as our training set, 132 TCGA-LAML
samples and 91 GSE10358-GPL570 samples as test set, totaling 590
samples. In addition, the GSE114868 (19) and GSE149237 datasets were
downloaded from the GEO database for screening genes that were
statistically different (|logFC>1| and p<0.05) between healthy donors and
AML patients for subsequent screening. Preprocessing of the data is
shown in Supplementary Figure S1A.

2.2 Lysosome-related gene sets

A total of 191 lysosome-associated genes from five gene sets
were obtained by searching the MsigDB database(https://www.gsea-
msigdb.org/gsea/msigdb) with the keyword lysosome, 169 genes
were extracted from the expression matrix of the training set
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GSE37642-GPL96 for subsequent analysis, and the specific gene sets
and genes are provided in Supplementary Table 1.

2.3 Consensus unsupervised clustering

We extracted the expression of 169 lysosome genes from the
training set GSE37642-GPL96, and obtained the sample clustering
information by repeating the calculation 1000 times using the R
package “ConsensusClusterPlus”. The differences were initially
evaluated by principal component analysis (PCA) and Kaplan-Meier
(KM) survival curves, and the expression of genes in different clusters
was represented by heatmaps. For secondary clustering, we obtained 87
genes that differed between the two lysosomal clusters and between
healthy donors and AML patients by taking the intersection of DEGs
from between the two clusters and differential genes from GSE114868
and GSE149237 respectively, and subsequently obtained the results of
the secondary clustering of the samples using the same method.

2.4 Differential analysis of gene expression,
PPl and enrichment analysis

According to the unsupervised consensus clustering, we divided
the test set into different clusters, and analyzed the differential genes
between the two clusters using the R package “limma” (|logFC>0|
p<0.05) (20), and represented them as volcano plot. We obtained
646 differential genes, exported the network through the string
(https://cn.string-db.org/), imported it into Cytoscape_v3.8.0, and
selected the top30 nodes to obtain the protein-protein interaction
(PPI) network after calculating the degree by cytohubba. Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes functional enrichment analysis of differentially
expressed genes using the R package “clusterProfiler” (21).

2.5 Immunoinfiltration analysis

The ESTIMATE and CIBERSORT scores were computed using
the R package “IOBR” (22). The marker genes of immune cells were
sourced from the TISIDB database(http://cis.hku.hk/TISIDB/), and
the immune cell enrichment scores were obtained by single-sample
gene enrichment score estimation (ssGSEA) analysis with the R
package “GSVA” before comparing immune cell infiltration
between clusters (23). Immune checkpoint gene set from ref (24).

2.6 Construction and validation of a
prognostic model

For the 87 DEGs screened, 26 genes were obtained by univariate
cox regression (p<0.05), 6 genes were screened by stepwise
multivariable cox regression (p<0.05), lasso regression was performed
to prevent overfitting, and finally, lysosome-related gene scoring
models were constructed according to the following formulae,
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Risk Score = i(Genex X coefy)
X1

Gene, is the gene expression, coef, is the coefficient of this gene.
In accordance with the median value, the dataset is stratified into
High-risk and Low-risk groups. The receiver operating
characteristic (ROC) curve for the first, third, and fifth year
between the High-risk and Low-risk groups were analyzed using
the R package “timeROC”. The R packages “regplot” and “rms”
were used to produce nomogram and calibration curves. TCGA-
LAML, GSE10358-GPL570 were used as test sets and the same
calculations were performed.

2.7 Prognostic modeling and
immunotherapy response

Tumor Immune Dysfunction and Exclusion(TIDE) score was
calculated from the website (http://tide.dfci.harvard.edu/), then
group comparisons are made by R. The immune infiltration score
and the abundance of immune cells were calculated using the R
package “IOBR” before group comparisons were made.

2.8 Drug sensitivity

The drug sensitivity of the expression matrix of the training set
was calculated using the R package “pRRophetic” (25), compared in
R according to the grouping information, and finally presented in a
box plot.

2.9 Cell culture

Cell lines HS-5, KG-1a, HL-60, NB4, U937, and PBMC were
obtained from American Type Culture Collection (ATCC), and OCI-
AML2 was obtained from the German Collection of Microorganisms
and Cell Cultures. KG-1a, HL-60, NB4, and U937 cells were cultured in
RPMI-1640 medium (Gibco, USA), while HS-5 was cultured in
DMEM (Gibco, USA). OCI-AML2 was cultured in MEM-or medium
(Gibco, USA). The media used above contained 10% fetal bovine
serum (FBS, USA) and 1% penicillin-streptomycin (Beyotime,
Shanghai, China). The PBMC was not cultured after obtaining but
was used directly for RNA extraction.

2.10 Real-time quantitative reverse
transcription PCR

Total cellular RNA was extracted with TRIzol reagent (Takara,
Japan) and then reverse transcribed into cDNA using PrimeScriptTM RT
Master Mix (Takara, Japan). RT-qPCR was performed in a CFX
Connect' RT-qPCR System (Bio-Rad, USA) using Hieff® qPCR
SYBR Green Master Mix (Yeasen, Shanghai, China). Pre-denaturation
was conducted for 5 min at 95°C, followed by cycling with denaturation
at 95°C for 10 s, annealing at 58°C for 30 s, and extension at 72°C for 30's,
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repeated for a total of 40 cycles. Up to 40 cycles without results were
counted as the maximum of 50 cycles. The relative expression values of
six genes in different cell lines were calculated using the method of
2AAAC with GAPDH and PBMC used as reference, respectively. The
experiments were repeated three times to obtain the data. All primer
sequences, synthesized by Sangon Biotech (Shanghai, China), are shown
in Supplementary Table 2.

2.11 Research flowchart

The flow chart for this research is placed in Supplementary
Figure S1B.
2.12 Statistical analysis

Statistical analysis of all data was performed through R (R-
4.3.1).t test and Kruskal-Wallis test were used for comparison of

two and more groups, respectively. log-rank test was used to
evaluate the significance of statistical differences. Where p< 0.05
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was considered statistically significant. * p< 0.05; ** p< 0.01;
% pe 0.001.

3 Results
3.1 Lysosomal subcluster

To investigate whether lysosomal genes exhibit specific
expression patterns in AML, we employed unsupervised
consensus clustering to categorize 367 AML samples. The most
obvious expression variations were detected when k=2, resulting in
the split of the training set AML samples into two subclusters.
Clusterl (n=185) and Cluster2 (n=182) (Figures 1A, B,
Supplementary Figure S2A). The results of PCA indicated a
significant differentiation in gene expression between the two
subclusters (Supplementary Figure S2B). Based on this, the KM
curve suggested a noteworthy survival difference between the
distinct subclusters, with the overall survival (OS) time of patients
in Clusterl significantly prolonged compared to Cluster2
(Figure 1C). Moreover, patients with the runxl-mutation had a
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significantly higher representation in Cluster 2, and most lysosomal
genes exhibited lower expression in Cluster2 (Figure 1D).

3.2 Molecular expression and biological
processes among lysosomal subclusters

To delve further into the distinctions between these two
subclusters, We utilized the R package “limma” to analyze the
genes responsible for these differences, resulting in the identification
of 672 differentially expressed genes (DEGs) (|logFC| > 0.5 and p<
0.05), with 166 up-regulated and 480 down-regulated (Figure 2A).
To identify the core genes among these DEGs, we computed the top
30-degree core genes by Cytoscape, revealing two modules centered
on spleen tyrosine kinase (SYK) and toll-like receptor 4 (TLR4),
both tightly linked to the regulation of immune function
(Figure 2B). These DEGs were enriched into lysosomes, cellular
vesicles, immune cell functions, apoptosis, and some signaling
pathways analyzed by KEGG enrichment (Figure 2C). GO
enrichment analysis demonstrated the involvement of DEGs in
cytoskeletal regulation, vesicle membrane composition, and
other aspects (Figure 2D). Similar results were obtained by
enrichment analysis of up- and down-regulated genes separately

10.3389/fimmu.2024.1384633

(Supplementary Figures S3A-D). These findings tentatively
corroborated the subcluster results of our study.

3.3 Immune infiltration between
lysosomal subclusters

The results from the previous PPI core gene and enrichment
analyses revealed significant differences in immunomodulatory
pathways between the two lysosomal subclusters. To gain a
deeper understanding of the immune microenvironmental
distinctions between the subclusters, we computed ESTIMATE
scores for both subclusters using the R package “IOBR”. The
ESTIMATE scores indicated that in clusterl, there was greater
immune cell infiltration and lower tumor purity compared to
cluster2 (Figure 3A). The infiltration of these immune cells may
play an anti-tumor role. The relative abundance of selected immune
cells was further estimated for all training set samples using
CIBERSORT and ssGSEA (Figures 3B, C). The results
demonstrated predominant enrichment of monocytes,
macrophages, and neutrophils in clusterl, while T cell subsets
such as CD8 and CD4+ T cells were enriched in cluster2. The
tumor immune response is influenced by the crosstalk between
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Tumor microenvironmental analysis of lysosomal clusters Estimate analysis comparing (A) estimate score, (B) CIBERSORT calculated the relative
compositional abundance of 22 immune cells. (C) ssGSEA calculated the relative abundance of immune cells in 28. ns, non-significant; * p< 0.05;

*** pn< 0.001.

tumor cells, immune cells, and immune molecules. According to the
expression of immune checkpoint genes (Supplementary Figure
S4), partial immune checkpoint genes were significantly different
between the two groups.CD86, whose expression was significantly
lower in cluster2 than in clusterl, exerts anti-tumor effects by
binding to CD28, inducing T cells to continue proliferating and
differentiating into effector T cells (26). The above results indicate
significant differences in the immune microenvironment of the two
lysosomal subclusters, with clusterl exhibiting stronger immune
cell infiltration and a more robust immune response than cluster2.
These differences offer potential therapeutic targets for achieving
individualized treatment.
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3.4 Secondary clustering

To enhance integration with clinical diagnosis, we initially
identified genes exhibiting expression disparities (JlogFC| > 1 and
p< 0.05) between AML patients and healthy donors from datasets
GSE114868 and GSE149237, respectively. We then intersected this
selection with genes from the training set GSE37642-gpl96, which
had expression differences (|logFC| > 0.5 and p< 0.05) between the
two molecular subtypes, to obtain 84 DEGs (Figure 4A). We
employed these 87 differentially expressed genes for unsupervised
consensus clustering. The clustering results indicated optimal
typing at K=2 (Figure 4B, Supplementary Figures S5A-C), and
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KM curve revealed that Gene_cluster]l had significantly higher
overall survival time than Gene_cluster2 (Figure 4C).The
heatmap illustrates the expression patterns of the 87 DEGs
between the two gene subtypes and their correlation with clinical
features (Figure 4D).

3.5 Construction of a prognostic model for
lysosome-related genes

To identify genes influencing prognosis between the two
lysosomal subclusters, we conducted univariate cox regression
(p< 0.05) on the 87 DEGs obtained from the intersection
(Supplementary Figure S6). We identified 26 DEGs significantly
impacting prognosis. Further screening was performed using
multivariate cox regression (p< 0.05) (Figure 5A). To prevent
overfitting, we employed lasso regression and constructed a
prognostic model comprising 6 genes (Figures 5B, C). The
sample’s risk score was computed based on the formula:

Frontiers in Immunology

Risk Score = expression(PILRA) x
% coef(0.221)

+ expression(MYO1F) x coef(0.214) + expression(NCF1)
x coef (0.110)

+ expression(HPGDS) X coef (- 0.137) + expression(MPO)

coef (- 0.370) + expression(LILRA2)

x coef (—0.095)

The samples from the dataset GSE37642-GPL96 were divided into
two groups based on the median values of the risk scores. The sankey
diagram illustrates the association between several subtypes and
patient survival outcomes(Figure 5D). Cluster2 and Gene_cluster2,
associated with worse prognosis, exhibited significantly higher risk
scores than Cluster] and Gene_cluster1(Figures 5E, F).

3.6 Validation of the lysosome related-
genes prognostic model

To test the predictive effect of lysosomal related-genes
prognostic model on the prognosis of AML patients, we first
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Gene Sample number Hazard ratio (95% CI)
PILRA (N=367) 0.74 (0.59 —0.93)
LILRA2 (N=367) 1.41 (1.08 —1.84)
MYOIF (N=367) 1.33 (1.02 —1.74)
FCGRT (N=367) 0.85 (0.69 — 1.04)
GRN (N=367) 1.20 (0.94 —1.53)
NCF1 (N=367) 0.86 (0.74 —0.99)
TYROBP (N=367) 0.87 (0.73 — 1.03)
STAR (N=367) 0.89 (0.78 —1.02)
HOMER3 (N=367) 0.86 (0.71 —1.03)
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examined the distribution of risk scores of patients in the training
set by ggrisk (Figure 6A), and the patients with greater risk scores
had higher risk of death. The results of the KM curves hinted to the
fact that patients in the high-risk group had a much lower OS than
those in the low-risk group (Figure 6B), and the 1-, 3-,and 5-year
AUC of ROC were 0.659,0.706,0.709 respectively (Figure 6C). These
results demonstrated the good performance of the lysosomal risk
score model in predicting the survival of AML patients. Further, we
observed similar results in the test set data TCGA-LAML
(Figures 6D-F) and GSE10358-GPL570 (Figures 6G-I). As the
risk score increases, the risk of patient death increases, which
provides an important basis for identifying high-risk patients.
These results suggest that our lysosomal prognostic model can be
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used as a reliable survival predictor, which can help to more
accurately stratify patients and assess prognosis.

3.7 Nomogram

We plotted the nomogram in conjunction with other clinical
characteristics such as age, FAB typing for the purpose of further
evaluating the model, patients with lower risk scores and younger
age had better prognosis (Supplementary Figure S7A). The
calibration curve showed the agreement between our prognostic
model and real events (Supplementary Figure S7B). Similar results
were observed in the test set data TCGA-LAML (Supplementary
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Figures S7C, D) and GSE10358-GPL570 (Supplementary Figures
S7E, F). In addition, expanding the sample size and wider data
validation are more helpful to strengthen the predictive power and
clinical application value of risk lysosomal risk score in

different populations.

3.8 Lysosomal scores predict
immunotherapy effects

TIDE scores were calculated for the purpose of evaluating the

role of risk scores in immunotherapy, and the TIDE scores of the
high-risk group were significantly higher than those of the low-risk
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group (Figures 7A-D), suggesting that the high-risk group may be
more susceptible to immune escape. Some immune checkpoints
associated with MHC-II molecules were significantly less expressed
in the high-risk group compared to the low-risk group(Figure 7E).
The results of the ESTIMATE scores showed that immune
infiltration was significantly stronger in the low-risk group than
in the high-risk group (Supplementary Figures S8A-D), and the
infiltration abundance of most immune cells was significantly with
the high-risk group (Supplementary Figure S8E). These results
suggest that there is a significant difference between the high-risk
and low-risk groups in terms of response to immunotherapy in the
training set data, and that the scoring model can effectively

guide immunotherapy.
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3.9 Drug sensitivity

We analyzed the sensitivity of the training set samples to several
drugs by using the R package “pRRophetic”. As compared with the
low-risk group, the high-risk group was more sensitive to cytarabine
(Figure 8A), ATRA (Figure 8C), imatinib (Figure 8E), and
bortezomib (Figure 8F). There was no significant difference
between the two groups in sensitivity to doxorubicin (Figure 8B)
and midostaurin (Figure 8D). The above results provide important
reference evidence for clinical treatment.

3.10 Validation of gene expression

To validate the expression of the six genes utilized in model
construction, we initially selected dataset GSE114868 to compare
gene expression between healthy donors and AML patients. The
results revealed significant downregulation of PILRA, LILRA2,
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MYOI1F, and NCF1 in AML, while HPGDS and MPO exhibited
heightened expression levels (Supplementary Figure S9).
Subsequently, we corroborated these findings using cell lines.
Consistent with dataset GSE114868, we observed notable
reductions in PILRA, LILRA2, MYOIF, and NCFI expression,
alongside significant elevations in HPGDS and MPO expression
in AML cell lines compared to normal cells (Figures 9A-D).
Notably, HPGDS was predominantly overexpressed in KG-1la
cells, with relatively low expression in other AML cell lines
(Figure 9E), while MPO expression in NB4 and U937 cells
surpassed that of normal cells by more than 50-fold (Figure 9F).

4 Discussion

The current risk assessment for AML relies predominantly on
the identification of genetic traits through gene sequencing and
other methods for risk classification. However, this approach is
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hindered by issues such as prolonged duration, reliance on a single
method, and low accuracy (27, 28). In contemporary cancer
research, molecular classification and prognostic modeling are
increasingly turning their focus toward the intricate roles played
by subcellular entities, or organelles. While existing risk models
have predominantly centered on mitochondria, particularly in the
context of cancer cells undergoing metabolic reprogramming, the
lysosome, despite its equally pivotal role in cancer cell metabolism,
has been relatively neglected (29-32).

Our study has developed molecular subtype and prognosis-related
risk models in AML centered on lysosomal-related genes. This is the
first model constructed based on lysosomal genes in AML. In this
study, disparities in lysosomal gene expression were instrumental in
classifying AML patients into distinct molecular subtypes, which
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differed significantly in terms of patient prognosis, molecular
expression, and immune infiltration. However, unlike other similar
studies (33), we refrained from conducting prognostic screening of the
gene set prior to molecular subtyping. While this approach may
diminish the model’s prognostic predictive capacity, it facilitates the
identification of other essential biological features beyond prognosis.

Our PPI results reveal that the pivotal differential genes
distinguishing between the two lysosomal isoforms are SYK and
TLR4. SYK, a non-receptor tyrosine kinase, has garnered significant
attention in numerous studies as a promising target for hematologic
malignancies and inflammation-related diseases (34). In prior
research, SYK’s pro-carcinogenic mechanism has been proposed
to regulate the activation of associated pathways through signal
transduction, thereby promoting AML cell survival and drug
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Expression of the six genes modeled Expression values of the six genes used to construct the model in normal and AML cell lines are depicted,
including (A) LILRA2, (B) PILRA, (C) MYO1F, (D) NCF1, (E) HPGDS, and (F) MPO. ns, non-significant; * p< 0.05; *** p< 0.001.

resistance (34, 35). Our study suggests, for the first time, a
connection between SYK and lysosomes in AML, a proposition
supported by several studies in non-tumor cells (36, 37). Exploring
this connection may bring new insights into SYK inhibitor
resistance. Toll-like receptor 4 (TLR4) belongs to the Toll-like
receptor (TLR) family, plays a pivotal role in pathogen
recognition and innate immune activation (38). TLR4 responds to
stimulation to activate signaling pathways, such as AMPK, and also

regulates the tumor microenvironment, thereby influencing tumor
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progression (39, 40). A connection between lysosomes and TLR4
has been unveiled, with lysosomes serving as a site for TLR4
degradation (41). However, whether TLR4 modulates lysosomal
function remains elusive, and our findings offer additional reference
evidence for this avenue of investigation, more extensive studies are
warranted to delve into the TLR4-lysosomal connection and its
precise mechanism.

We constructed prognostic model comprising 6 genes (PILRA,
LILRA2, MYOI1F, NCF1, HPGDS, MPO) and categorized patients
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into high- and low-risk groups. The distribution of risk scores
between clusters and Gene_clusters provided a preliminary
indication of the accuracy of the scoring model. The results from
risk factor distribution plots, KM curves, and TimeROC
demonstrated that the high-risk group had worse prognostic
outcomes. Nomograms and calibration curves further illustrated
the reliability of our model, and these results were validated in two
other distinct datasets. Among these genes, MPO, HPGDS, and
PILRA were considered favorable prognostic factors.
Myeloperoxidase (MPO) regulates inflammatory responses and
participates in the regulation of oxidative stress homeostasis (42).
It is a common diagnostic marker in hematological neoplasms and
aids in differentiating between myeloid and lymphoid lineages in
acute leukemias (43). High expression of MPO is correlated with a
favorable prognosis in AML patients (44). Hematopoietic
prostaglandin d synthase (HPGDS) is an enzyme that catalyzes
the isomerization of prostaglandin h2 (PGH2) to prostaglandin d2
(PGD2) (45). It exerts antitumor effects by catalyzing the
production of PGD2 (46). Paired immunoglobulin-like type 2
receptor alpha (PILRA) is predominantly expressed on monocytes
and macrophages (47) and is involved in the regulation of
neutrophil infiltration (48). High expression of PILRA enhances
the effect of antitumor immunotherapy (49), but its effects vary in
different cancers (50).0On the other hand, MYOIF, ILRA2, and
NCF1 are considered prognostically unfavorable factors. Studies
have demonstrated that MYOIF enhances the adhesion and
migration of immune cells (51), promotes M1 polarization of
macrophages (52), and in some tumor patients, MYOIF is
mutated to form fusion proteins (53, 54), promoting
tumorigenesis and progression (55). Activation of LILRA2
inhibits monocyte function and antigen presentation by dendritic
cells (56, 57), and high expression of LILRA2 has been associated
with a poor tumor prognosis (58). NCF1 encodes a protein that is
one of the subunits of NADPH oxidase, and inhibition of NCF1
induces differentiation of APL cells as well as inhibits melanoma cell
growth (59, 60). These pieces of evidence strongly support the
reliability of our model. However, with the exception of MPO, the
above genes have been rarely reported in AML, and follow-up
studies are needed to delve deeper into their functions and
mechanisms in AML.

Immunotherapy serves as a pivotal therapeutic approach in
which lysosomes assume a significant role. Lysosomes facilitate
immune evasion by cancer cells through the degradation of crucial
proteins, including PD-L1 and MHC- I (61, 62). Only a minute
fraction of current AML studies have delved into the influence of
lysosomes on immunotherapy (63). Our findings reveal distinct
immune responses and variations in the expression of immune
checkpoint molecules between high and low-risk groups.
Remarkably, multiple immune checkpoint molecules exhibited
significant downregulation in the high-risk group, potentially
contributing to the observed differences in immunotherapeutic
responses (64). Notably, heightened expression of MHC-II class
molecules has been consistently linked to favorable prognoses
across various tumor types. This link has been confirmed by some
studies in AML (65-68). While considerable attention has been
devoted to exploring the impact of MHC-II molecules on
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antitumor immunotherapy, there appears to be a dearth of research
investigating the relationship between MHC-II molecules and
lysosomes in AML, despite such associations being reported in
other disease models (69, 70). Our study might shed light on
subsequent lysosome-mediated immunotherapy for AML.
Furthermore, our study uncovered lysosome-associated differences
in drug sensitivity between high- and low-risk groups, Consistent
with this finding, lysosomes have been implicated in conferring drug
resistance in cancer cells through mechanisms involving the
segregation of drugs within the lysosomal compartment (71).

In conclusion, we have constructed a prognostic model centered
on lysosome-related genes for the first time in AML. Our model can
effectively assess the prognosis of patients and guide their clinical
treatment, which provides new reference evidence for individualized
treatment of AML. However, our study also has many limitations.
One limitation is that, the study only focused on the association
between lysosome-associated mRNAs and AML prognosis, lacking
research on non-coding RNAs such as IncRNAs, circRNAs, and
tRNAs. Second, external validation of clinical samples is required to
ensure the accuracy of the scoring model.
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Introduction: Mixed-phenotype acute leukemia (MPAL) is a rare disease with
poor prognosis. So far, no standard approach has been established as the "know-
how" of MPAL is based only on retrospective analyses performed on small groups
of patients.

Materials and methods: In this study, a retrospective analysis of the outcomes of
adult MPAL patients included in the PALG registry between 2005 and 2024 who
received the CLAG-M hybrid protocol as induction or salvage therapy
was performed.

Results: Sixteen of 98 MPAL patients received CLAG-M: eight as first-line and
eight as salvage therapy. In the first line, two patients achieved partial response
(PR), and six achieved complete remission (CR), of whom four successfully
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underwent allogeneic hematopoietic stem cell transplantation (alloHSCT). Two
patients who did not undergo alloHSCT promptly relapsed. Within the whole
group, the overall response rate (ORR) was 75% (n = 12/16). With the median
follow-up of 13 months, six out of eight patients remain in CR, however, two of
them died due to acute graft versus host disease. Out of eight patients who
received CLAG-M in the second line, four patients (50%) obtained CR. AloHSCT
was conducted in seven cases, six of which were in CR. Only two patients
remained in CR at the time of the last follow-up. Tolerance to treatment was
good. The median times for severe neutropenia and thrombocytopenia were 22
days (range, 16—24) and 17 days (range, 12-24), respectively. Overall, grade 3-4
infections were observed in 12 cases, and all infections presented
successful outcomes.

Conclusions: CLAG-M is an effective first-line salvage regimen for MPAL with an
acceptable safety profile. Early achievement of CR with prompt alloHSCT allows

for satisfactory disease control.

KEYWORDS

mixed phenotype acute leukemia, ambiguous leukemia, induction treatment, MPAL,
hybrid regimen, methylome targeted therapy

Introduction

Mixed phenotype acute leukemia (MPAL) is a rare disease,
representing 2%-5% of acute leukemias (1-3). Contrary to the
established lineage-specific antigen expression in acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML), MPAL is characterized by blast cells co-expressing
lymphoid and myeloid lineage antigens. Due to the heterogeneity
of this rare disease and the fact that patients with MPAL are usually
excluded from acute leukemia clinical trials, no unified treatment
protocol has been established. According to retrospective studies
and case reports, the outcomes of therapy based on an ALL-like
regimen seem to prevail over those of therapy with an AML-like or
hybrid regimen combining both approaches (1, 2, 4-8).
Furthermore, the united front is maintained for allogeneic stem
cell transplantation (alloHSCT), as outcomes in patients who
underwent the procedure are superior to those who received only
chemotherapy (3, 4, 9-11).

However, in light of reports implying the possibility of lineage
switch (12) and favorable response if treatment matching the DNA
methylation patterns of blast cells (13) is applied, the discussion about
the most appropriate induction regimen remains doubtful. Uncertainty
about introducing therapy based on immunophenotype, cytogenetic,
or molecular biology has led to the consideration of a hybrid protocol
combining both AML-like and ALL-like regimens. Notwithstanding
the studies strongly contradicting that approach (2, 7), some other
reports present the benefits of the hybrid regimen (3, 14-16). In
accordance with these findings, we retrospectively analyzed MPAL
patients who received the hybrid protocol based on cladribine,

Frontiers in Oncology

cytarabine, granulocyte colony-stimulating factor (G-CSF), and
mitoxantrone (CLAG-M). Based on the significant research of the
Polish Adult Leukemia Group (PALG), which revealed that CLAG-M
is a well-tolerated and effective salvage regimen in refractory or relapsed
AML (17), we assessed the advantages and safety profile of this
treatment protocol in poor-risk MPAL. Furthermore, the prominent
effect of cladribine included in treatment protocols for AML, especially
in patients with unfavorable cytogenetics and FLT3-ITD mutations,
has been proven in previous PALG studies (18-20), which enhanced
the advantage of CLAG-M.

Finally, we present a comprehensive analysis of the treatment
course and its outcome in MPAL patients treated with the CLAG-M
protocol as the first line of induction and salvage therapy.

Materials and methods

The present study is the outcome of the close cooperation of
hematological centers associated with the Polish Adult Leukemia
Group, which reported MPAL patients diagnosed and treated with
regimens according to the centers” individual experiences between
2005 and 2024. Of all reported cases, we selected and retrospectively
analyzed the group of patients treated with the CLAG-M regimen in
the first-line (Group A) of induction and as the salvage protocol
(Group B) in case of refractoriness or relapse after the first-line
of therapy.

The comprehensive database included information about the
patients’ state characterized by age, sex, Eastern Cooperative
Oncology Group (ECOG) Performance Status Scale, and presence
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of hepatosplenomegaly, lymphadenopathy, or central nervous
system (CNS) infiltration by leukemia cells. In addition, precise
data regarding diagnosis and treatment were collected. The
diagnosis was based on blast immunophenotyping according to
The European Group for the Immunological Characterization of
Leukemias (EGIL) (21)and criteria included in the World Health
Organization (WHO) classification and verified according to the
WHO 2022 classification (22).

All patients were administered the standard CLAG-M regimen
in both induction and salvage protocols, including cladribine at a
dose of 5 mg/m? intravenously (iv.) on days 1-5; cytarabine (Ara-C)
at a dose of 2,000 mg/m2 iv; on days 1, 2, 3, and 5; granulocyte-
colony stimulating factor (G-CSF) 30 MU subcutaneously (sc.) on
days 0, 1, 2, 3, 4, and 5, and mitoxantrone at a dose of 10 mg/m2 on
days 1, 2, and 3 (17). Furthermore, consolidation treatment with a
high dose of cytarabine (3,000 mg/m? iv. Every 12 h on days 1, 3,
and 5) and intrathecal prophylaxis or treatment with methotrexate
(15 mg), cytarabine (40 mg), and dexamethasone(4 mg) were
considered. For consolidation treatment, Ara-C was administered
at a dosage adjusted for patient age. Patients under 60 years old
received high-dose Ara-C (2 g/m>-3 g/m* every 12 h i.v. on days 1,
3, and 5), whereas patients above 60 years old received
intermediate-dose Ara-C (1 g/m>~1.5 g/m> every 12 h i.v. on days
1, 3, and 5). Eventually, all eligible patients were scheduled to
undergo alloHSCT. Furthermore, according to the results of
cytogenetic analysis, imatinib was included in the treatment of
two cases with BCR::ABL rearrangement.

Regarding the high risk of infectious complications associated
with intensive treatment, prophylaxis was implemented on the last
day of the protocol. The patients were administered levofloxacin
(500 mg orally every 24 h), acyclovir (800 orally mg every 12 h), and
posaconazole (200 mg orally every 8 h).

Treatment response was assessed according to the ELN criteria
(23). To evaluate minimal residual disease (MRD) multiparameter
flow cytometry was performed, and quantitative RT-PCR was
employed for the t (9, 22) MPAL type.

Furthermore, we analyzed the safety profile of the CLAG-M
regimen in first-line of treatment by examining the time to
neutrophil and platelet recovery and infectious and non-
infectious complications at the time of therapy. Considering the
reported prolonged hematological recovery following CLAG-M
administration and the consequent heightened risk of infectious
complications, two distinct time frames were evaluated for
hematological recovery (24). First, the durations of severe
neutropenia and thrombocytopenia were evaluated. It was defined
as the time from the date of induction implementation to the date of
the first stable absolute neutrophil count (ANC) above 500/uL and
platelet count above 50,000/pL. Second, the criteria for complete
hematological recovery time to ANC >1,000 pL and platelet
count >1,000,000 UL were calculated.

Overall survival (OS) was assessed from the date of diagnosis in
group A and from CLAG-M administration in group B to the
patient’s death or the last follow-up. Eventually, we incorporated
the overall response ratio (ORR), defined as the percentage of
patients who responded to a CLAG-M regimen with a partial or
better response.
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Event rate analysis

First, to evaluate survival, we incorporated Kaplan-Meier
analysis. However, due to the small group size and short follow-
up time, a specific parametric Weibull model was used
to determine whether the risk ratio for each endpoint was
constant over time. In this model, the survival function is given
as S(t) = e'“/”)ﬁ, t>0; 1, B >0; therefore, the mortality rate is
thepower function h(t) = nPBtP~!. These parameters were
estimated using the Maximum Likelihood Method (MLE). The
Weibull plot was used to determine whether the dataset followed
the Weibull distribution. If 0 < < 1, we are in the infant
mortality phase; i.e., the mortality rate is decreasing. For 3 =1,
we deal with random causes of mortality (constant rate), while for
B > 1, we deal with aging and increasing rates. The Weibull shape
parameter was estimated using 90% confidence intervals (CIs).
Due to the small sample size in both groups, we developed a model
based on Bayesian methods combined with profile likelihood to
increase the statistical power (see Appendix). Using Monte Carlo
Markov Chain methods, the estimator values and 90% credibility
intervals (Crls) of the shape parameter were determined. To check
the similarity between two posterior distributions of beta, we
calculated the overlapping index (OI) (25). All calculations were
made using R version 4.2.1 in RStudio 2023.06.0. To estimate the
parameters, we used the packages WeibullR, surv, survival,
flexsurv, and overlapping.

Results
The characteristics of patients

Within the presented period, 16 of 98 MPAL patients were
treated with the CLAG-M protocol. In eight cases, the CLAG-M
regimen was used as the first induction (group A) and also in eight
cases as salvage treatment (group B). In group B, CLAG-M was
administered after ALL-like or AML-like induction therapy, in
three and five cases, respectively. In all cases, there was no
response to first-line treatment and all patients were diagnosed
with refractory disease.

Half of the patients (n = 8/16, 50%) were diagnosed with B/
myeloid type MPAL, six patients in group A and two patients in
group B. T/myeloid type MPAL was more frequent in group B, as
diagnosed in four patients. One case of MPAL t (9, 22) was reported
in groups A and B. Additionally, in group B, B/T/myeloid type
MPAL was reported in one case. The median age at diagnosis was
44 years (range, 21-64 years). Nevertheless, the patients in group B
were younger, with a median age of 34. The entire research group
was characterized by equal numbers of women and men and good
performance status in all patients, with a median ECOG score of 1
(range, 0-2). Lymphadenopathy occurred in 43,75% (n = 7/16) of
patients and was the most common extramedullary involvement. At
the time of diagnosis, each patient underwent lumbar puncture and
optional magnetic resonance imaging (MRI) for signs of a cerebral
mass. Eventually, one patient was diagnosed with blast cells in the
cerebrospinal fluid (CSF) as the only case of central nervous system
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involvement. Intrathecal chemotherapy was administered twice a
week until no blast cells were detected in the CSF, and then twice
per consolidation cycle. As for the diagnosis of recurrence, each
patient also underwent lumbar puncture and optional MRI, but no
CNS involvement was diagnosed.

Half of the patients (n = 8/16, 50%) presented with cytogenetic
aberrations; however, karyotype data were missing in three cases in
Group B. Complex karyotypes were detected in four cases (n = 4/16,
25%), whereas the other four had single chromosomal aberrations.
One case of BCR-ABL rearrangement was detected in each group.
As far as gene mutations are considered, RUNXI and FLT3-ITD
mutations were most frequent. However, FLT3-ITD mutations were
only found in Group B. A detailed characterization of the patients is
presented in Table 1.

The safety of treatment

The patients presented with severe neutropenia for a median of
22 days (range, 16-24 days) in Group A and 24 days (range, 18-27
days) in Group B, and severe thrombocytopenia for a median of 17
days (range, 12-24 days) in Group A and 20 days (range, 18-25 days)
in Group. B. Regarding complete hematological recovery, half of the

TABLE 1 The characteristics of patients.
MPAL type Blasts in

(WHO BM
2022) smear (%)

Number  Sex

Age

10.3389/fonc.2024.1395992

patients in Group A met the criteria. Of the eight patients in this
group, seven (87.5%) had platelet counts > 100,000/puL, with a median
thrombocytopenia duration of 25 days (range, 19-44). Additionally,
four patients (50%) had ANC levels >1,000/uL, with a median time to
neutrophil recovery of 25.5 days (range, 23-28 days).

Regarding infectious complications, the incidence and
classification according to the Common Terminology Criteria for
Adverse Events (CTCAE version 5.0) were similar in both groups:
six (75%) cases of grade 3—4 infection in each group. In all cases, the
epidemiological factor was the bacterium, and all had successful
outcomes. All infections were reported within an ANC >500/uL. No
noninfectious complications were observed. Finally, neither
admission to the intensive care unit nor death during induction
treatment was observed in either group.

The results of treatment with CLAG-M

Six of eight patients (75%) treated with CLAG-M as the first line of
induction achieved complete remission (CR); however, three of them
had partial hematologic recovery (CRy). The remaining two patients
were evaluated for partial response (PR). Additionally, 67% (n = 4/6) of
CR patients had negative MRD. The outcome of CLAG-M as salvage

Genetic

Karyotype mutations

Patients who received CLAG-M in the first line of induction

1. Female 51 MPAL t(9;22) 92.5 46 XX, t(9;22) [85%] None
2. Male 64 B/Myeloid 83 46, XY, t(8;21) del(9)/ 45, XY-, t(8;21), del(9) RUNX1
3. Male 37 B/Myeloid 73 46, XY None
4. Male 56 B/Myeloid 56 47, XY +8, t(8;21), del 11 RUNX1
5 Male 59 T/Myeloid 18 42~48, XY,del(9)(p21)[5],+l3{:;,;:]1;12{5;,[;?1ar1x2[2] ,+mar2(8],+mar3[5] CEBPA
6. Female 43 B/Myeloid 50.7 46, XY None
46,XX,del(1)(p22p11),del(2)(g33)[10],add(3)(q23)[10],der(9)del(9)(p22)add
7. Female 35 B/Myeloid 78 (9)(q22),add(16)(p13.3)[5],-17,der(18)t(17;18)(q11.1;q12.2),+22[4],+mar None
[51[20]
8. Female 63 B/Myeloid 76 46, XX, t (3;8)/46, XX None
Patients who received CLAG-M as salvage treatment

1. Female 28 B/T/Myeloid 81 46, XY, del13(q12.31-33) RUNX1
2. Female 33 T/Myeloid 90 No data No data
3. Male 63 T/Myeloid 86.5 No data No data
4. Male 21 B/Myeloid 68 46, XX None

5. Female 36 T/Myeloid 76 No data FLT3-ITD
6. Male 45 MPAL t(9;22) 89 No metaphases None
7. Female 31 T/Myeloid 90 47, XY+5, t(6;14)(p21,q32)[9] FLT3-ITD
8. Male 63 B/Myeloid 56.4 46, XX [20] FLT3-ITD

BM, bone marrow.
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treatment was less prominent, as only 50% (n = 4/8) of the patients
achieved CR. Unfortunately, data on MRD in Group B are lacking.
Finally, regarding CLAG-M administration, the ORR were 75% (n =
12/16), 100% in Group A and 50% in Group B (n = 4/8).

Regarding further treatment, in Group A, patients in CR and CR,
were prioritized for alloHSCT after a consolidation cycle with a high
or intermediate dose of cytarabine, depending on whether the patient
was under or over 60 years old, respectively. Two patients in PR
received the therapy based on the best physician experience; in one
case, another cycle of CLAG-M and hyperCVAD in another case. At
the observation endpoint, both were evaluated for CR2 with complete
hematological recovery, MRD negative and positive, respectively.

In Group A all patients were considered eligible for alloHSCT,
and successful qualification was performed in seven cases (87.5%)
(five in CR1 and two in CR2), as one patient did not consent to the
procedure. When the study endpoint was reached, the procedure
was performed in four patients who remained in CR1 before
allotransplantation. In all cases, the conditioning regimen before
alloHSCT was preferably based on a combination of chemotherapy
and radiotherapy. One patient in CR1 eventually did not undergo
alloHSCT due to the lack of a matching donor. Two patients in CR2
awaited allo-HSCT, as the matching donor was confirmed. Two
patients, who did not receive allografts promptly after
consolidation, relapsed. They qualified for salvage treatment with
azacytidine and venetoclax, with no response. Eventually, both
patients died due to relapse and refractory disease. Two more
deaths were reported in Group A, both due to complications of
acute graft versus host disease (aGvHD).

In Group B, allo-HSCT was performed in seven cases (87.5%),
including five with CR and two with refractory disease. The
conditioning regimen prior to alloHSCT was similar to that
Group A and was based on a combination of chemotherapy and
radiotherapy. In Group B, six patients (75%) died at the time of
follow-up. In four of them, the cause was the underlying disease:
primary resistance and relapse after alloHSCT, each in two cases.
The other two patients died of infections.

After a median follow-up time of 13 months (3-131), 10 of 16
(63%) patients died, six due to relapse or refractory disease, four
from infection or complications after alloHSCT. In Group A,
regardless of deaths due to GvHD complications, six out of eight
(75%) patients remained in CR. The median OS was 9 months
(range, 3-131 months). In Group B, two patients remained in CR
after alloHSCT, with an OS of 11 and 23 months. The median OS
was 21.5 months (range, 3-28 months). Details about the treatment
outcomes in Groups A and B are presented in Tables 2, 3.

Survival analysis

Survival assessment using the Kaplan-Meier plot is presented in
Figure 1. Regarding the outcomes of the individually created
statistical model, we compared the shape factor, . Probability
plots with 90% Cis are presented in Figures 2, 3 for Groups A
and B. Note that all the points are within the confidence bounds.
The numerical results are listed in Table 4.
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In both groups, the null hypothesis cannot be rejected. The
following results were obtained.

In Group A: B = 0.7078, Crl = (0.3182; 1.1756), while in Group
B: B = 1.2103, CI = (0.5703; 1.9913).

In Group B, B indicates that we deal with an increasing death
rate (since B >1). However, in Group A estimation of j} indicates
that the death rate is decreasing (since 3<1). The overlapping index
(OI) is also calculated. Overlapping can be used to assess the
posterior distribution of a Bayesian model. In our case OI = 0.55.
This results in a 45% difference between the posterior distributions
of the shape parameters.

Discussion

The presented overview analyses of a homogenous group of
adults, whose age is predominantly over their 40s. Regardless of age,
sex, and MPAL type (B/mielo, T/mielo, or others), 75% of CR was
accomplished with CLAG-M in the first-line of induction
accompanied by low non-hematological toxicity and no
prolongation of severe neutropenia or severe thrombocytopenia.
As far as meta-analysis and most treatment guidelines preferably
recommend ALL regimens for MPAL treatment (1, 2, 4-8), selective
treatment may lead to clonal expansion of blasts resistant to initial
lineage-based chemotherapy. The substantiation of these doubts
could be found in the recommendations for administering an AML-
based regimen if no response to ALL-based treatment was observed
(4, 26). Furthermore, MPAL-like phenomena of lineage switches
cannot be neglected. The hypothesis presented by Hu et al. implies
that leukemic clones involved in lineage switching may be derived
from multipotent hematopoietic cells (27). Moreover, the pressure
of ALL-like treatment has been reported to be a potential cause of
lineage switching. According to published data, CD19 targeted
therapy of B-ALL with blinatumomab or oCD19 CAR-T cells
may lead to myeloid switch (28-30), and B-cell precursor ALL is
prone to myeloid switch under standard intensive ALL-like
treatment (31, 32). These phenomena were additionally associated
with alternations in transcription factors, such as Pul and Pax5,
which have also been described as potential causes of lineage switch
(33). Considering these findings, hybrid protocols may be a solution
to prevent lineage switching.

Nevertheless, previously reported hybrid protocols combining
regimens from both ALL and AML protocols are too toxic (2, 7).
Therefore, we opted for a CLAG-M regimen characterized by less
toxicity and a more multidirectional profile of effectiveness
that may overcome the challenges arising from the complex
pathogenesis of MPAL without the potential selection of any
subclones. To date, the CLAG-M protocol has been widely
reported to be beneficial in AML with poor prognosis, but has
also proven to be well-tolerated (17, 34-36).

In terms of multidirectional activity, agents in the CLAG-M
regimen have significant cytotoxic effects on both myeloid and
lymphoid lineages. Their administration is an effective approach in
high-risk AML (37) and relapsed or refractory ALL (38), whereas
cladribine is commonly administered for the treatment of
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TABLE 2 The treatment outcome in patients treated with CLAG-M in the first line of induction.

Patient = Induction Treatment MRD  Consolidation CNS pro- AlloHSCT Relapse Relapse or Response oS
number response phylaxis refractoriness state at the (months)
with i.th.ch. therapy time of FU
CLAG-M CR
1. i . CR Negative HD-AraC Yes Yes No No No 131
+ imatinib
2. CLAG-M CRy, Positive ID-AraC Yes Yes No No No CR 15
Yes, due to CR
3. CLAG-M CR, Negative HD-AraC Yes Yes No No bleeding in 8
course of GVHD
Yes, due to sepsis CR
4. CLAG-M CRy, Negative HD-AraC Yes Yes No No in course 9
of GVHD
Not done due to the Yes, d Relapsed disease
5. CLAG-M CR Negative HD-AraC No lack of Yes AZA+VEN toe:e’la “:e 10
patient’s consent P
6. CLAG-M CR Positive HD-AraC No Not done due to Yes AZA+VEN Yes, due Relapsed discase 6
donor-matching failure to relapse
PR Not Will be performed after CR, MRD (-)
7. CLAG-M (from 78% to applicable Not applicable Yes reinduction with No CLAG-M No 3
6% of blasts) PP CLAG-M
PR Not Will be performed after CR, MRD (+)
8. CLAG-M (from 76% to . Not applicable Yes reinduction No HyperCVAD No 5
applicable .
23% of blasts) with hyperCVAD

CLAG-M, cladribine, cytarabine, granulocyte colony-stimulating factor; CR, complete response; MRD, minimal residual disease; CNS, central nervous system; i.th.ch, intrathecal chemotherapy; alloHSCT, allogeneic hematopoietic stem cell transplantation; OS, overall
survival; CR, complete response; HD-AraC, high dose cytarabine; AZA + VEN, azacytidine + venetoclax; GvHD, graft versus host disease.
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TABLE 3 The treatment outcome of patients treated with CLAG-M in refractory/relapsed MPAL.

Patient
number

1st
line regimen

PALG ALL7 Ph

Response to
1st

line treatment

2nd
line
regimen

Response to
2nd

line treatment

3rd
line
regimen

Response to
3rd

line treatment

alloHSCT

Relapse
after
alloHSCT

Yes, due

Response state

at the time
of FU

CR after

oS
(months)

1. Refractori CLAG-M CR N - Y Y 28
(-)<55 y.o. elractoriness ° e e to infection second alloHSC
- Yes, di Relapsed di
2. DAC Refractoriness CLAG-M CR No Yes Yes e due elapsed disease 23
to relapse
- Yes, d PR after FLAG-
3. mini FLAM Refractoriness CLAG-M CR No Yes Yes 'es 1%e ater 23
to infection IDA therapy
- Yes, due to Refractory disease
4. DA (2+5) Refractoriness CLAG-M Refractoriness No No refractory 2
Not applied disease
5. DA + midostaurin Refractoriness CLAG-M Refractoriness HyperCVAD CR Yes No No CR 11
PALG ALL7 Ph -
CLAG-M CR
6. (-)< 55 y.o. Relapse . CR No Yes No No 23
L + dasatinib
+ imatinib
- Yes Yes, due to Refractory disease
7. DA Refractoriness CLAG-M Refractoriness No in Progression refractory 9
active disease disease
Yes, di Relapsed di
8. DA + midostaurin Refractoriness CLAG-M Refractoriness VEN+AZA CR Yes Yes y esl ue elapsed disease 20
o relapse

PALG ALL7 Ph (-)<55 y.o. - treatment protocol by Polish Adult Leukemia Group in acute lymphoblastic leukemia chromosome Philadelphia negative: dexamethasone, vincristine, daunorubicin, pegaspargase; DAC, treatment protocol by Polish Adult Leukemia Group:
daunorubicin, cytarabine, cladribine; miniFLAM, fludarabine, cytarabine, mitoxantrone (reduced intensity); DA, daunorubicin, cytarabine; CLAG-M, cladribine, cytarabine, granulocyte colony-stimulating factor, mitoxantrone; hyperCVAD, cyclophosphamide,

vincristine, doxorubicin, dexamethasone; VEN + AZA, venetoclax, azacytidine; alloHSCT, allogeneic hematopoietic stem cell transplantation; CR, complete response; OS, overall survival.
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FIGURE 1
Comparison of survival in Groups (A, B). Kaplan—Meier plot.

lymphoma. Another compound in the CLAG-M regimen,
mitoxantrone, may be used in both AML and ALL treatment
protocols. Mitoxantrone is a DNA-damaging agent whose
association with Ara-C and cladribine results in the synergistic
inhibition of DNA repair mechanisms (17, 39). The addition of G-
CSF potentiates Ara-C sensitivity, especially in cells with low
proliferative activity, thereby enhancing treatment response (40).
Cladribine increases the cellular uptake of Ara-C and potentiates its
intracellular metabolism, thereby intensifying the cytostatic effect
(41-43). Furthermore, cladribine actively inhibits DNA synthesis by
incorporating it into DNA strands and directly damaging the
mitochondrial membrane, leading to cell apoptosis (44).
Cladribine has also been reported to have hypomethylating
activity (45), which was proven in previous studies by Libura et al.
(46). Patients diagnosed with AML and coexisting IDHI/2 mutations
leading to DNA hypermethylation and epigenetic dysregulation had

more successful outcomes when cladribine was applied in the
induction protocol. Based on the favorable results of the
aforementioned study, cladribine may be characterized as a crucial
agent of the regimen, especially since the investigation by Alexander
et al. (47) reported a significant contribution of the methylation
profile in MPAL pathogenesis. Furthermore, according to Takahashi
et al,, achieving a complete response in MPAL is more likely if AML-
like or ALL-like regimens are administrated according to the
methylation profile presented by blasts (13). Since methylome
examination is not a standard diagnostic procedure, it could be
challenging to use it as an eligibility criterion for treatment. Thus,
applying the general hypomethylating agent, cladribine, may restrict
methylation changes in lineage-defining transcription factor genes
responsible for mixed immunophenotype presentation (13).
Eventually, its general effects may limit lineage-specific clone
selection and resistance to therapy.
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Weibull plot with 90% Cls for Group (A)
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Nevertheless, decisions regarding further treatment in patients
who achieve PR remain a challenging clinical problem. So far, the
literature and physicians’ experiences suggest that the next line of
treatment should be switched to a regimen specified for another
lineage than the previous one (48-50). Such a procedure can be
justified if lineage-specific treatment is administered; however, in the
first-line treatment, we recommend a hybrid regimen with a broader
cytotoxic effect involving both lineages. Thus, in light of insufficient
literature data on the management of PR patients who have received
hybrid protocols, we advocate CLAG-M as a reinduction.

TABLE 4 The numerical results of Weibull model for group A and B.

Notwithstanding the broad cytostatic effect of CLAG-M on
leukemia cells, the impact of some mutations on the course of the
disease, and thus treatment, cannot be neglected. Interestingly,
cladribine was reported to overcome the negative effect of FLT3-
ITD mutation and improve treatment response in patients
diagnosed with AML FLT3-ITD positive (18). A similar effect is
believed to be observed in patients with MPAL FLT3-ITD positivity,
which implies an additional advantage of the CLAG-M protocol.
Nevertheless, the administration of tyrosine kinase inhibitors (TKI)
such as imatinib and dasatinib in cases of MPAL with BCR-ABL

Estimates:
Est L90% U90% se

shape 0.743 0.416 1326 0.262
scale 1467.49 482.02 4472.71 994.33
N =8 Events: 4 Censored: 4
Total time at risk: AIC = 69.49478
5877 (days)
Log-likelihood = -32.7474 df =2
Estimates: Group B

Est L90% U90% se
shape 1.196 0.653 2.194 0.629
scale 663.84 378.69 1164.32 226.70
N=28 Events: 6 Censored: 2

Total time at risk:
4028 (days)

AIC = 93.88921

Log-likelihood = -44.9446

df=2
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rearrangement, has a significant impact on improving the prognosis
of patients’ lifespans (4, 51).

In this analysis, we proved that no prolongation of severe
cytopenia was observed in either research group. Although partial
hematological recovery was reported in half of the CR patients in
Group A, all infectious complications occurred during the period of
severe cytopenia and were successfully treated with empirical and
targeted antibiotic therapy; thus, no admission to the intensive care
unit was needed. All patients were able to continue further
treatment safely without significant interruptions due to
significant hematological toxicity of the protocol or prolonged
serious infections. The tolerance of CLAG-M in the second-line
treatment in patients who already received intensive regimens was
similar to that in the first-line treatment. However, infectious
prophylaxis and strict clinical supervision are necessary because
most patients suffer from infectious complications. Targeted
infectious therapy is likely to result in a successful outcome, even
in elderly patients, as proven in our study.

Discussions about MPAL treatment, including alloHSCT, must
be addressed. The outcomes of retrospective studies have
demonstrated the beneficial role of alloHSCT. In a report by
Heesch et al., the 5-year survival rate of patients with MPAL who
underwent the transplant procedure was 70% compared to 19% for
those who received only chemotherapy (11). Favorable results of
alloHSCT in MPAL were also demonstrated by Munker et al. (3-years
0S8 56.3%) (9), Shimizu et al. (5-years OS 48%) (51), and Liu et al. (3-
years OS 45%) (10). It is worth mentioning that MRD-negative CR
achieved by CLAG-M treatment significantly increased the chances
of success of the procedure and preserved reasonable disease control.
CR obtained with CLAG-M in the first line of induction in most
patients allowed four of them to receive allograft quickly and
consolidate the treatment response. Nevertheless, deferring
alloHSCT for a disease with such a high risk and unfavorable
prognosis as MPAL can lead to rapid relapse, as revealed by the
case of two patients in Group A. Nowadays, improvements in
alloHSCT methodologies and post-transplant care broads patients
eligible for allotransplantation, and age and comorbidities no longer
present strict limitations (52). Taking this advantage, MPAL patients
should be widely qualified for alloHSCT as the greatest change for
good disease control and prolonged survival.

On the other hand, regarding alloHSCT outcomes in patients
who received CLAG-M as salvage therapy, complete response was
maintained in two cases. It is clear that, although statistically
irrelevant in clinical practice, patients who undergo alloHSCT in
CR1 are more likely to remain in remission. These data contradict the
report of Munker et al., who demonstrated no difference in outcomes
of alloHSCT between MPAL patients who underwent the procedure
in CR1 or CR2. However, these results were not statistically relevant
(9). However, further studies are required. Nevertheless, our study is
illustrated comparatively to the general analysis of OS after alloHSCT
in CR1, CR2, and no response by Bolo et al. (53).

The limitation of this small research group required the
development of an individual mathematical model to assess the
significance of the impact of CLAG-M on MAPL patient survival. In
Group B, the mortality increasing tendency remained unaffected,
whereas the death rate was reduced in Group A, which received
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CLAG-M as the first line, thereby achieving mostly CR. Thus, the
differential factor between the two groups can be indicated as an
effective intensive regimen with a broad cytotoxic action in
induction therapy, which allows for a good response and prompt
alloHSCT. Ultimately, the CLAG-M regimen as the first-line
treatment may offer a significant opportunity for consolidation
treatment and lifespan prolongation. Considering the limitations of
this research, we hope for international multicenter cooperation to
revise the prepared mathematical model and establish an opportune
therapeutic protocol for patients with this rare disease with an
adverse prognosis.

Conclusions

Following our findings, we opted for intensive yet acceptable
safety profile induction with the hybrid protocol of CLAG-M,
which, with prompt alloHSCT, allows for reasonable disease
control. All patients included in the study were able to receive CR
in the first line of induction and proceeded to alloHSCT with no
deaths or serious complications. The protocol is intensive but still
well-tolerated, and in the case of a disease with such complex
pathogenesis as MPAL, treatment with a broad profile of cytostatic
action such as the CLAG-M regimen can improve the chances of
achieving CR. Undoubtedly, our study is limited by the group size,
comparability, well-documented nature, and short follow-up time.
Nevertheless, this study sheds light on possible approaches to
MAPL treatment. Further studies on the mechanisms underlying
MPAL transformation and ambiguous phenotypes are crucial for a
better understanding of the course of the disease and possible
targeted therapy. However, until then, CLAG-M protocols will be
a promising treatment scheme for MPAL patients to improve their
therapy results.
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The treatment of elderly patients diagnosed with acute myeloid leukemia (AML)
poses significant challenges. Currently, one promising strategy in therapeutic
interventions for geriatric individuals revolves around the utilization of small
molecule targeted drugs either independently or in conjunction with
demethylating agents. In this report, we present the successful attainment of
complete remission in an elderly female patient with relapsed AML, the patient
underwent treatment with a combination of Selinexor, decitabine, and a half-
dose CAG regimen for two cycles. Subsequently, the patient has sustained this
remission through consolidation therapy involving a medium dose of Ara-c. This
therapeutic regimen has demonstrated favorable outcomes in the management
of relapsed AML in elderly individuals. Furthermore, the adverse reactions were
manageable. In order to devise an efficacious treatment regimen for elderly
patients suffering from relapsed and refractory acute myeloid leukemia, it is
imperative to incorporate a larger cohort of cases for clinical investigation.

KEYWORDS
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Introduction

The treatment of elderly patients diagnosed with acute myeloid leukemia (AML) poses
significant challenges for hematologists due to the presence of strong heterogeneity, poor
performance status, multiple comorbidities, and adverse prognostic factors (1). However,
in recent years, the introduction and utilization of diverse novel drugs have led to
substantial advancements in the management of AML in the elderly population.
According to data analysis conducted by the MD Anderson Cancer Center (2), the
response rate to intensive chemotherapy in elderly patients with AML is estimated to be
between 40% and 50%. However, these patients face a high early mortality rate of 26% to
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36% within 1 to 2 months, and their median survival is limited to
only 4 to 6 months. Furthermore, the overall one-year survival rate
for elderly AML patients is less than 30%, which is significantly
lower compared to the response rate of 70% to 80% and the long-
term survival rate of 40% to 50% observed in younger patients.
Currently, one promising strategy in therapeutic interventions for
geriatric individuals revolves around the utilization of small molecule
targeted drugs either independently or in conjunction with
demethylating agents. In the case of elderly patients experiencing
relapsed and refractory AML, it is advisable to consider participation
in clinical trials, explore novel drug therapies, and implement optimal
supportive treatment approaches (1, 2). In this report, we present the
successful attainment of complete remission in an elderly female
patient with relapsed AML, achieved through the administration of a
half-dose CAG regimen in combination with selinexor and decitabine.

Case presentation

On December 16, 2022, a 71-year-old female patient was
admitted to our hospital presenting with abdominal distension
lasting for a duration of one week. The patient’s medical history
did not reveal any other concurrent illnesses. The complete blood
count analysis revealed a white blood cell count (WBC) of 1.7 x 10°/L,
a hemoglobin level of 94 g/L, and a platelet count of 43 x 10°/L.
Subsequent bone marrow aspiration revealed AML with 58.5%
myeloblasts. Flow cytometry analysis demonstrated that blast cells
accounted for 48.1% of the sample, exhibiting positive expression of
CD13, CD33, CD34, CD38dim, CD105, CD117, HLA-DR, CD45,
and MPO. Additionally, the next-generation sequencing results
indicated the presence of IDH2 (c.419G>A p.R140Q), SH2B3
(c.527_528del p.V176Afs*6), ABL1 (c.1826_1828del p.K609del),
DDX41 (c.1574G>A p.R525H), KMT2C (c.1173C>A p.C391*), and
GNAS (c.608T>C p.L203P) gene mutations. The conventional
cytogenetic analysis revealed a karyotype of 46, XX (20). A
treatment regimen consisting of azacitidine (AZA: 119mg on days
1-5) and venetoclax (VEN: 20mg on day 1, 40mg on day 2, 80mg on
day 3, and 100mg on days 4-28) and voriconazole prophylaxis was
given with one cycle. Subsequent bone marrow analysis indicated a
5% of residual blast cells, suggesting complete remission with
incomplete hematological recovery (CRi). On April 14, 2023, bone
marrow aspiration revealed that approximately 4% of the cells were
blasts, while immature monocytes accounted for approximately 1%.
Additionally, flow cytometry immunophenotyping identified 3.6% of
myeloid progenitor cells with abnormal phenotypes. Following this,
on April 14, 2023, AZA+VEN targeted therapy was administered,
consisting of AZA 120mg subcutaneous injection on days 1-5 and
VEN 100mg oral administration on days 1-28, in combination with
antifungal prophylaxis with voriconazole 200mg oral administration
every 12 hours. A subsequent review of bone marrow aspiration on
May 25, 2023, indicated that blast cells accounted for 8.5% of the total
cell population. Flow cytometry analysis revealed the presence of
5.1% abnormal myeloid progenitor cells, indicating an early
recurrence after achieving CRi. Consequently, the patient was
initiated on the CAG regimen chemotherapy on June 8, 2023.
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This regimen included the administration of 20mg intravenous
bolus injection daily for four days of aclarubicin, 16mg
subcutaneous injection every 12 hours for 14 days of cytarabine,
and 300ug subcutaneous injection for 14 days of granulocyte colony-
stimulating factor (G-CSF). A subsequent review of the bone marrow
on July 7, 2023, revealed the presence of 8% blast cells. Considering
the patient’s unsatisfactory response to first line chemotherapy, we
decided to adopt the XPO1 inhibitor selinexor given its promising
activity (see Discussion) in combination with decitabine and half dose
CAG regimen on July 11, 2023. This consisted of decitabine 25mg
administered on days 1 to 5, cytarabine 16mg every 12 hours on days
3 to 10, aclarubicin 20mg on days 3 and 4, G-CSF 300ug on days 3 to
10, and selinexor 60mg once a week for four weeks. On August 25,
2023, a re-examination of the bone marrow revealed a presence of 2%
of the original cells and measurable residual disease (MRD) 2.9% by
flow cytometry. Commencing from August 27, 2023, the patient was
administered selinexor at a dosage of 60mg once a week for four
weeks, along with decitabine (25mg d1-5) and a half dose of CAG
(aclarubicin 20mg d3-4, cytarabine 16mg q12h d3-9, G-CSF 300ug
d3-9). On September 19, 2023, another bone marrow re-examination
was conducted, indicating a persistence of 2% cells and MRD of 1%.
A subsequent review of the bone marrow on November 9, 2023,
confirmed complete remission (CR) with MRD 1%. The patient then
underwent a regimen of consolidation chemotherapy consisting of a
intermediate dose of cytarabine (Ara-c) (1.5g/d q12h) for three days
in one cycle, starting on November 11, 2023. Up to date, the patient
was treated with maintenance selinexor + AZA after Ara-c and her
bone marrow examination reflects a state of CR (Figures 1, 2). Last
date of follow up was July 20, 2024 and overall survival of the patient
so far reached 20 months.

Discussion

The efficacy of intensive chemotherapy in elderly patients with
acute myeloid leukemia (AML) is frequently suboptimal due to
factors such as drug resistance, compromised performance status,
multiple organ dysfunction, and significant treatment-related
toxicities, resulting in elevated early mortality rates (1).
Consequently, there is a growing need to explore alternative
therapeutic approaches for this patient population. One such
approach involves the utilization of novel agents and treatment
regimens. Notably, the combination of venetoclax (VEN) and
azacitidine (AZA) has emerged as a standard regimen for AML
patients aged > 75 years or those deemed unsuitable for intensive
chemotherapy (3, 4). Despite showing initial promise, the issue of
resistance to combination therapy poses a significant challenge,
leading to disappointing outcomes for patients with relapsed/
refractory acute myeloid leukemia (R/R AML).

A patient’s Eastern Cooperative Oncology Group performance
status greater than 2 rendered our patient unsuitable for intensive
chemotherapy. Consequently, she was administered induction
chemotherapy utilizing the AZA and VEN regimen. Due to the
intricate biological nature of this disease and the variations in initial
treatment approaches, it is imperative to prioritize approved therapies
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A schematic figure illustrating the treatment course from diagnosis to remission.

that specifically target the R/R AML subgroup. Consequently,
conducting clinical trials to treat this subgroup of patients is one of
the effective strategies For the majority of patients, allogeneic
hematopoietic cell transplantation (HCT) stands as the sole potential
curative treatment strategy. Prior to HCT, a common practice involves
administering a combination of chemotherapy and targeted therapy as
a rescue treatment to alleviate the burden of leukemia (1, 2).

The CAG regimen, which consists of cytarabine, aclarubicin,
and granulocyte colony-stimulating factor, has been extensively
utilized in China and Japan for treating both newly diagnosed and
R/R AML. It has shown good tolerance and minimal cardiotoxicity
(5). A meta-analysis of CAG revealed a complete remission rate of
60.1% in R/R AML patients, indicating its potential to overcome
AML resistance (6). A previous study reported a complete
remission rate of 46.5% in R/R AML patients treated with the
CAG regimen. Furthermore, the efficacy and safety of CAG in the
treatment of AML patients who did not respond to initial induction
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chemotherapy was demonstrated (7). These findings suggest that
the CAG regimen holds promise as a potential therapeutic option
for both newly diagnosed and R/R AML cases.

Selinexor, an inhibitor of exportin-1 (XPO-1), effectively
promotes nuclear retention and functional activation of tumor
suppressor proteins, thereby inducing apoptosis in cancer cells
(8). The prevalent overexpression of XPO-1 in various tumors,
including AML, underscores the significance of developing novel
therapeutic approaches, especially for relapsed AML cases (9).
Given the poor prognosis associated with relapse in 10-60% of
AML patients, the demand for new treatment strategies is
particularly pressing. After a promising phase I trial (10), A phase
IT study was conducted using a combination of selinexor,
cytarabine, and idarubicin in patients diagnosed with R/R AML
(11). A total of forty-two patients, with a median age of 59.5 years,
were enrolled in the study. However, due to the occurrence of
prolonged aplasia and a high incidence of febrile neutropenia (85%)
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Results of bone marrow primitive cell count and flow cytometry immunophenotyping for measurable residual disease.
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and grade 3/4 diarrhea (56%), the initial selinexor dosage of 40 mg/
m® administered twice weekly for a duration of 4 weeks was
subsequently reduced to 60 mg twice weekly for a period of 3
weeks. This adjustment resulted in a notable decrease in the
occurrence of febrile neutropenia (33%) and severe diarrhea
(40%). The overall response rate observed in this study was 50% (8).
Based on above studies and given her frailty, the patient
underwent treatment with a combination of Selinexor, decitabine,
and a half-dose CAG regimen for two cycles, resulting in complete
remission. Subsequently, the patient has sustained this remission
through consolidation therapy involving a medium dose of Ara-c.
This therapeutic regimen has demonstrated favorable outcomes in
the management of relapsed AML in elderly individuals. As side
effect, the patient exhibited bone marrow suppression and
pancytopenia, which subsequently resolved through symptomatic
intervention, leading to a restoration of normal hematopoiesis
within two weeks. Furthermore, the adverse reactions were
manageable. In order to devise an efficacious treatment regimen
for elderly patients suffering from R/R AML, it is imperative to
incorporate a larger cohort of cases for clinical investigation.
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