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Editorial on the Research Topic

Quasi-normal modes, non-selfadjoint operators and pseudospectrum: 
an interdisciplinary approach

s

 In recent years, quasi-normal mode frequencies, namely, the complex numbers encoding 
the linear response of “damped” resonators to external perturbations have acquired major 
importance in different settings of physics, ranging from astrophysical and theoretical problems 
in gravitational physics to the study of the scattering properties of optical nanoresonators. 
Beyond physics, this subject is directly related to the study of the spectral and dynamical 
properties of non-selfadjoint operators, a very active area of research in applied and 
fundamental mathematics with direct applications in physics, ranging from hydrodynamics and 
turbulence to non-Hermitian quantum mechanics. Despite these complementary interests and 
converging “working knowledge”, research interactions among the involved subcommunities 
appear to be quite scarce. This Research Topic represents an effort to bring attention to 
the interdisciplinary nature of the research around the notion of quasi-normal modes and 
non-Hermitian -or non-selfadjoint- dynamics. As mentioned, this interdisciplinarity operates 
at multiple levels, extending from the dialogue between physics and mathematics to the 
interchanges among the different subcommunities within these two disciplines. 

The notion of normal mode pervades physics, providing a common conceptual and 
technical thread among different subfields of research and offering a basis for the study of 
(conservative) linear dynamics. The key mathematical property underlying normal modes 
is the diagonalizability of self-adjoint operators in terms of an orthonormal basis, which is 
guaranteed by the “spectral theorem”. Its validity extends to operators that commute with their 
adjoints, namely, “normal operators”. Normal modes and their associated spectrum (“normal 
frequencies”) stand as a cornerstone of the dynamics driven by such normal operators. 

A fundamental change occurs in non-conservative systems driven by non-selfadjoint 
operators or, more generally, non-normal operators. Familiar normal modes are then 
substituted by “quasi-normal modes” (QNMs), which encode in an invariant manner 
the characteristic linear response of a system to external perturbations and indeed 
share some of the features of normal modes. However, the loss of the spectral theorem
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critically impacts QNMs: their completeness is not guaranteed, 
their orthogonality is lost, and the corresponding eigenvalues in 
the spectrum are potentially unstable under small perturbations. 
“Non-normal dynamics” (Trefethen and Embree [1]) driven by 
these operators are then subject to characteristic non-normal effects 
that are absent in the normal case, such as spectral instabilities 
in QNM frequencies, growth transients, or pseudo-resonances [2]. 
These differences ultimately respond to a key contrast between the 
normal and non-normal operator theories: the respective structural 
status of the spectrum. Whereas the spectrum of normal (time-
generator) operators provides a tight control of the full dynamics, 
in the non-normal case such control is not guaranteed by the 
spectrum alone—except for late dynamics—and specific tools from 
non-selfadjoint spectral theory are required.

Non-modal analysis (e.g., Schmid [3]) provides a framework 
for the study of non-normal dynamics by crucially incorporating 
concepts and tools from the (spectral) theory of non-self-
adjoint operators. This Research Topic highlights the notion of 
pseudospectra and their relation to QNMs and their properties. 
Pseudospectra sets in the complex frequency plane contain, notably, 
the (QNM) spectrum set, but also encode more information crucial 
to seize all of the dynamics, in particular, the above-mentioned 
non-normal effects. However, whereas the spectrum concept is built 
only on the operator itself, the pseudospectra depend on the choice 
of scalar product and associated norm. The same applies to other 
key non-modal analysis tools, in particular the “growth function”, 
which is crucial in the study of non-modal growth transients and 
the assessment of optimal disturbances (see below). The question of 
the choice of the scalar product becomes a central theme in the non-
modal analysis of non-normal dynamics, and in particular in this 
Research Topic.

We will now present the articles in this Research Topic. Given the 
interrelation among the contributions, the arrangement by category 
is somewhat “ad hoc”, but we hope it illustrates the interdisciplinarity 
of the subject, both within the physics community and in its 
connection with ongoing mathematical developments. 

1. Quasi-normal modes as an eigenvalue problem.

A key prerequisite for the application of non-normal dynamical 
concepts to scattering and QNMs is casting the dynamics in terms 
of a non-selfadjoint (non-normal) time generator. Building on 
the spacetime geometric insights developed in general relativity, 
Panosso Macedo and Zenginoğlu review the so-called hyperboloidal 
approach to scattering on black hole (BH) spacetimes. This 
geometric scheme provides the required non-selfadjoint operator, 
with non-normality being associated with losses through spacetime 
boundaries. BH QNMs are then cast as the eigenvalues of a 
non-selfadjoint spectral problem. Applications to QNM excitation 
coefficients, spectral QNM instability, and quadratic QNMs are 
presented. An interesting extension of such a hyperboloidal scheme 
to problems with dispersion (e.g., some quantum gravity-motivated 
problems) is presented in Burgess and König.

Another approach to casting resonances (QNMs) as an 
eigenvalue problem is the so-called complex scaling method (see, for 
example, Simon [4] and references therein). Although such a method 
is referred to in Warnick and Vogel, it is not really discussed in this 
Research Topic. However, Richarte et al. discuss a spectral problem 
reminiscent of such complex scaling.They review the approach to 

QNMs as analytical continuations of bound states of an appropriate 
self-adjoint operator and, in particular, highlight a non-selfadjoint 
spectral issue: the failure of the method to recover QNMs whose 
analytic continuation is not in the domain where the operator defining 
the bound states is selfadjoint. 

2. Non-normal spectral and dynamical aspects in gravitational 
(black hole) physics.

The first indications of non-normal behavior of QNMs in gravity 
were implicit in the seminal results on BH QNM instabilities presented 
in Aguirregabiria and Vishveshwara [5]; Vishveshwara [6] and in 
Nollert [7]; Nollert and Price [8]. However, it was precisely the 
hyperboloidal approach, reviewed in Panosso Macedo and Zenginoğlu 
that allowed to establish transparently in Jaramillo et al. [9] the essential 
role of non-normal mechanisms. That was the starting point of 
the rapid development of non-normal dynamics in the gravitational 
context, one of the main subjects of this Research Topic. 

2.i. Black hole QNM spectral (in)stabilities.

Warnick presents the first mathematically rigorous account in 
the literature of the BH QNM instability phenomenon. Characterized 
as a “perturbative” spectral instability, an analytical discussion in 
terms of QNM “modes” and “co-modes” is presented. Sensitivity 
to perturbations is enhanced as damping increases, a feature that 
is explained in terms of the need to control higher derivatives to 
properly define increasing QNM overtones. This feature can be 
(dually) interpreted as a spectral stability in high-order Sobolev normsor, 
equivalently, as a spectral instability in the “energy norm”, the 
consequence of distributing energy over small scales. A generalization 
of pseudospectra is introduced, tailored to the non-normality of the 
operators appearing in the BH scattering problem. 

In a complementary work, Boyanov disentangles the confusion 
between the instability discussed in Warnick from another 
important BH QNM instability, referred to as the “flea on 
the elephant” (reminiscent of Simon [10]). These two spectral 
instabilities respond to distinct instability mechanisms; the first one 
corresponds to the “perturbation instability” of (already) existing 
QNMs, whereas the second one involves a “branch instability” with 
the appearance of a new family of QNMs.

Other aspects of pseudospectra and spectral instability are 
presented in the articles by Areán et al., Besson et al., Burgess and 
König, Drysdale and Johnson, Krejčiřík and Siegl, and Vogel. 

2.ii. Non-modal growth transients in black holes.

Besson et al. review the first studies on non-modal growth 
transients in the gravitational setting, namely, for fields scattered 
on BHs. The discussion covers both frequency (pseudospectrum) 
and time-domain approaches, crucially presenting the first studies 
of the time-domain growth function G(t) for BHs. The role of 
the norm choice for non-modal growth transients is highlighted, 
something that is further emphasized in Díaz Palencia, where the 
control of the dynamics of perturbations on BHs is discussed. 
These articles on growth transients pave the way for the systematic 
application of non-modal analysis to study non-normal dynamical 
effects in gravity. Forced systems—that in general relativity 
arise from second-order perturbation theory–leading to pseudo-
resonances, would be a natural next step. Non-modal growth 
transients are also discussed in the article by Drysdale and Johnson. 
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3. QNMs and non-normality in high-energy physics.

Areán et al. review holographic duality, also referred to as 
the AdS/CFT correspondence or gauge/gravity duality, namely, a 
strong/weak coupling duality between a boundary gauge field theory 
and a bulk gravitational one. Focus is placed on holographic QNMs 
controlling the return to thermal equilibrium in the boundary gauge 
theory, providing a link to “linear response theory” and the Schwinger-
Keldysh formalism. The spectral instability and pseudospectra of 
holographic QNMs are discussed. Non-modal transients in the 
holographic setting are also reviewed in Besson et al.

4. Quasi-normal modes in optics and plasmonics.

Wu and Lalanne review the remarkable development that 
QNM theory has recently experienced in optics and plasmonics. 
Focus is placed on the role of QNM theory in designing and 
understanding micro- and nano-resonators, which play a key role 
in current photonics, with an emphasis on the notions of “mode 
hybridization” and “mode perturbation”. As an instance of optics-
gravity interdisciplinarity, and motivated by the study of the fiber 
optical soliton, Burgess and König present an adaptation of the 
spacetime hyperboloidal approach to scattering and QNMs (see also 
Al Sheikh [11]) to settings with dispersion. This development is 
crucial in optics and in some dispersive modified gravity theories. 

5. Mathematical aspects of non-normality.

We collect here articles from the Research Topic that cover 
mathematical subjects and range from pseudospectra, spectral 
instability and random perturbations, oriented graphs and networks, 
and partial differential equation (PDE) hyperbolicity. They 
harmoniously complement the physical contributions: 

5.i. Krejčiřík and Siegl discuss the pseudospectrum from the 
perspective of “pseudomodes”, a notion of approximate 
eigenvector that is not to be confused with QNMs, although 
it is relevant to the study of the spectral instability of the 
latter. In particular, a construction of pseudomodes for large 
“pseudoeigenvalues” is discussed using tools that do not rely 
on semi-classical analysis. This construction may be relevant 
in the context of the spectral instability of highly damped 
BH QNMs, as discussed above.

5.ii. Vogel presents a mathematical account of the 
pseudospectrum, focusing on three important topics: 
pseudospectra of semi-classical pseudodifferential operators; 
pseudospectra of random matrices; and eigenvalue 
asymptotics of non-selfadjoint random operators; (cf. 
also Sjöstrand [12]). Particularly important for the BH 
QNM spectral (perturbative) instability presented above 
is the discussion of eigenvalue asymptotics and “regularity 
improvement” for non-selfadjoint random operators.

5.iii. Drysdale and Johnson discuss the directionality of a directed 
graph, from the non-normality of the associated adjacency 
matrix. Then, the relation to the “trophic coherence” of a 
network is studied, and following the analysis, it is suggested to 
extend the notion of trophic coherence to matrices beyond the 
network setting, in particular in the context of (non-normal) 
dynamics and non-modal transients.

 5.iv. Abalos et al. discuss the characterization of “strong 
hyperbolicity” in evolution PDE systems with constraints, 

in particular through “extensions” of the PDE system 
with additional variables. Strong hyperbolicity is then 
controlled by a condition involving the singular value 
decomposition of the (square matrix) principal symbol of 
the resulting PDE system. Studying the (non-)normality 
of the principal symbol may then be a good starting 
point for assessing the interplay of non-modal effects and
hyperbolicity.

In summary, the study of scattering and QNMs from a 
non-normal dynamics perspective, by adopting a non-modal 
analysis approach, offers a rich arena for interdisciplinary 
research at the interface between physics and mathematics, 
and, within the physics realm, among gravity, optics, and
hydrodynamics.
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Scalar field solutions and energy
bounds for modeling spatial
oscillations in Schwarzschild
black holes based on the
Regge–Wheeler equation

José Luis Díaz Palencia*

Department of Mathematics and Education, Universidad a Distancia de Madrid, Madrid, Spain

This text discusses the behavior of solutions and the energy stability within
Schwarzschild spacetimes, with a particular emphasis on the behavior of
massless scalar fields under the influence of a non-rotating and spherically
symmetric black hole. The stability of solutions in the proximity of the event
horizon of black holes in general relativity remains an open question, especially
given the difficulties introduced by minor perturbations that may resemble
Kerr solutions. To address this, this work explores a simplified model, including
massless scalar fields, to better understand perturbation behaviors around
black holes under the Schwarzschild approach. We depart from Richard Price’s
work in connection with how scalar, electromagnetic, and gravitational fields
behave. The tortoise coordinate transformation is considered to set the stage
for numerical solutions to the wave equations. Afterward, we explore energy
estimates, which are used to gauge stability and wave behavior over time. Our
analysis reveals that the time evolution of the energy does not exceed twice its
initial value. Further and under the assumption of initial conditions in L2−spaces,
we obtain an exponential decreasing behavior in the energy time evolution. A
question to continue exploring is how perturbations in L2 in the initial conditions
that introduce Kerr solutions as a second-order effect in the linearized equations
perturb this obtained exponential decay.

KEYWORDS

Schwarzschild spacetimes, Quasinormal modes, scalar fields, energy estimates, waves
solutions

1 Introduction and problem formulation

The study of the formation and evolution of black holes and the physical processes
occurring in their vicinity is an important area of contemporary research. As an example,
we can cite the importance of understanding the behavior of primordial black holes
(PBHs), which constitute a research area of notable impact for describing dark matter
interactions (De Luca et al., 2020). A major unresolved challenge in general relativity is the
nonlinear stability of Schwarzschild solutions, which is complicated by the fact that small
perturbations in the initial data can inadvertently include Kerr solution characteristics.
The presence of an ergosphere further complicates deriving meaningful energy estimates
for perturbed Schwarzschild solutions, particularly for rotating black holes or those that
are slightly rotating due to perturbations, for example. One relevant option to characterize
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black holes is based on the study of their quasinormal modes
(QNMs) (see (Kokkotas and Schmidt (1999) and Nollert (1999)
for detailed definitions), the damped oscillations of black hole
spacetimes, which can provide descriptions when spacetimes are
slightly deformed from the Kerr solution (Zimmerman et al., 2015).
For Schwarzschild black holes immersed in electromagnetic fields,
the perturbation equations can be transformed into confluentHeun’s
equations, enabling both analytical andnumerical analyses ofQNMs
(Övgün et al., 2018). Greybody factors (GFs) and QNMs are also
relevant in the understanding of the radiation spectra emitted by
black holes, particularly under the forms of gravitational waves
(Sakallı and Kanzi, 2022). Additionally, the relationship between
black hole entropy, spin, and QNMs, particularly when considering
non-extensive entropies, provides microstates and thermodynamic
properties of black holes, with significant modifications for micro
black holes (Martínez-Merino and Sabido, 2022).

It is prudent to consider a simplified problem, given the
complexities involved in proving the full stability of Schwarzschild
solutions. One approach is to investigate the linearized problem,
focusing on the stability of the zero solutions. Another simplification
can be achieved by considering a simpler linear field theory, such
as the linear scalar field. An additional simplification involves
restricting the analysis to spherically symmetric cases (Rendall,
2008). In the study of linear massless scalar fields within the context
of Schwarzschild spacetime, the Regge–Wheeler equation provides
a framework for analyzing perturbations around a Schwarzschild
black hole (Regge and Wheeler, 1957). Price (1972) used this
framework to derive the long-term behavior of these perturbations.
Price’s work is particularly relevant for understanding how scalar
fields, such as electromagnetic and gravitational fields, behave in the
vicinity of a black hole, which may lead to phenomena such as wave
scattering and the late-time tail behavior of these fields.

In a Schwarzschild spacetime describing the gravitational field
outside a spherically symmetric, non-rotating, uncharged mass, a
massless scalar field μ is well known to obey the Klein–Gordon
equation for a massless particle:

□μ = 0

Here, □ denotes the d’Alembertian operator in generally curved
spacetime.

Price’s investigations revealed that outside a black hole,
perturbations from a massless field decay over time, but
interestingly, they do so in a manner that leaves a “tail” of radiation
(Price, 1972; Rendall, 2008).This tail is not an immediate cutoff but a
slow, power-law decay of the field’s amplitude over time. Specifically,
Price showed that after the initial wavefront passes, the field decays
as t−(2l0+3), where t is time, and l0 is themultipolemoment (or angular
quantum number) of the perturbation. This result implies that the
gravitational influence of a black hole extends beyond its immediate
vicinity, affecting the propagation of scalar fields over long periods.

In this work, we will make use of the transformation to
the tortoise coordinate r∗ and the introduction of a scaled
wave function ψ = rϕ, where ϕ, the original wave function,
describes the scalar field. This framework simplifies the analysis
of wave equations in Schwarzschild spacetime by flattening the
potential barrier experienced by waves as they approach the
event horizon (Rendall, 2008).

Let us introduce some basic concepts to derive the main
equation to be discussed in this work, typically referred to as the
Regge–Wheeler Equation 3. Consider the scalar field ϕ in spherical
coordinates (t, r,θ,ϕ) and the spherical harmonics with indices
l and m, Ylm(θ,ϕ). Using the tortoise coordinate (as it will be
introduced later) along with a radial symmetry condition leads
to considering the problem’s rotational invariance (Rendall, 2008;
Zhao et al., 2022). Then, it holds that

μ (t, r,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l

ψlm (t, r)Ylm (θ,ϕ) .

Here, ψlm(t, r) are the radial and time-dependent components of the
field. For the Schwarzschild metric, the determinant g is −r2 sin θ,
and the inverse metric components gμν are

gtt = −(1− 2M
r )
−1
, grr = 1− 2M

r , gθθ = 1
r2
,

gϕϕ = 1
r2 sin2 θ
.

The massless Klein–Gordon equation, □μ = 0, in this
metric becomes

−(1− 2M
r )
−1
∂2
t μ+

1
r2
∂r (r

2 (1− 2M
r )∂rμ)

+ 1
r2

ΔΩμ = 0,

where ΔΩ is the angular part of the Laplacian in spherical
coordinates:

ΔΩμ =
1

sin θ
∂θ (sin θ∂θμ) +

1
sin2 θ

∂2
ϕμ.

Substituting the expansion of μ,

μ (t, r,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l

ψlm (t, r)Ylm (θ,ϕ) ,

we obtain

−(1− 2M
r )
−1
∑
l,m

ψ̈lm (t, r)Ylm

+ 1
r2
∂r(r

2 (1− 2M
r )∂r ∑l,m

ψlmYlm)

+ 1
r2
∑
l,m

ψlmΔΩYlm = 0.

Using the property of spherical harmonics,

ΔΩYlm = −l (l+ 1)Ylm,

we separate the angular and radial parts:

−(1− 2M
r )
−1
ψ̈lm +

1
r2
∂r (r

2 (1− 2M
r )∂rψlm)

− l (l+ 1)
r2

ψlm = 0.

Introducing the tortoise coordinate r∗ as

dr∗

dr
= (1− 2M

r
)
−1
, (1)

the radial part of the Klein–Gordon equation can be written as

( ∂
2

∂t2
− ∂2

∂(r∗ )2
− Fl (r

∗ ))ψlm (t, r
∗ ) = 0, (2)
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This decomposition leads to a radial wave equation where Fl(r
∗)

appears as the effective potential (this can be further observed in our
results given in Figure 2) and adopts the following expression:

Fl (r
∗ ) = (1− 2M

r
)(

l (l+ 1)
r2
+ 2M

r3
),

and the spherical harmonics Ylm(θ,ϕ) are given by

Ylm (θ,ϕ) = (−1)
m√(2l+ 1)

4π
(l−m)!
(l+m)!

Plm (cos θ)e
imϕ,

where Plm(cos θ) are the associated Legendre polynomials. The
indices l and m are integers with l ≥ 0 and −l ≤m ≤ l. The index l
determines the total angular momentum, while m determines the
projection of the angular momentum on the z-axis.

Upon integration in the Equation (1), the tortoise coordinate r∗

can be rewritten as

r∗ = r+ 2M log( r− 2M
2M
)

This coordinate stretches the region near the event horizon at r = 2M
for a Schwarzschild black hole of massM. The tortoise coordinate is
well known to facilitate the analysis of fields near and at the event
horizon. Here, r is the usual radial coordinate in Schwarzschild
spacetime.

We now introduce some relevant objectives of our work.We aim
to study the QNMs based on Equation 2 with the potential F l(r

∗ ),
in line with Zhao et al. (2022) and Balart et al. (2023) and, more
particularly, the behavior of such QNMs with respect to the tortoise
coordinate. The QNMs represent solutions to the wave equation
that behave like damped oscillations that decay over time, emitting
gravitational waves in the process. Hence, and to start our analysis
withmore familiar assessments, we assume that the QNMs are given
based on an expression of the form: ψ(r∗ , t) = e−iωtΨ(r∗ ) and this
expression can be written for all m, l so we omit the sub-index for
simplification in notation. In addition, we consider a description
of the field subjected to the potential F l(r

∗ ). Then, substituting
into the wave Equation 2 and dividing by e−iωt yields

−ω2Ψ (r∗ ) − ∂2Ψ
∂(r∗ )2
= Fl (r

∗ )Ψ (r∗ ) .

Rearranging terms,

∂2Ψ
∂(r∗ )2
+ [ω2 − Fl (r

∗ )]Ψ (r∗ ) = 0. (3)

This equation can be seen as analogous to the time-independent
Schrödinger equation,

− ℏ
2

2mp

∂2Ψ
∂x2 +V (x)Ψ = EΨ,

where the term [ω2 − Fl(r
∗ )] is analogous to the energy E (minus

the potential energy V(x)) in the Schrödinger equation. Hence,
we may consider the theory of potentials available to resolve the
Schrödinger-type equations. In the first step, we will provide some
numerical solutions for this last equation to describe the behavior
of waves with regard to the tortoise coordinate, and afterward, we
provide energy estimates to describe the time evolution.

2 Methodology

In the first step, we introduce a numerical implementation
to describe the behavior of the wave function described by the
radial wave in (Equation 3) along with the effective potential Fl(r

∗).
The transformation from the Schwarzschild radial coordinate r to
the tortoise coordinate r∗ is given by expression (5) and provides
the non-invertibility of this transformation. Analytically, numerical
methods are required to back-calculate r from r∗ .

We note that the numerical solutions were obtained
using well-established numerical methods, specifically Python’s
textttscipy.integrate.solve_ivp function with the solvers “BDF”
(Implicit multi-step method) and “LSODA” (that switches between
the Adams and BDF methods). The initial range for r∗ is selected to
ensure that the execution of the routines provides plausible solutions
within the requested global error tolerance fixed at 10−3. The
numerical process includes continuously validating the numerical
solution against expected behaviors and refining the integration
parameters to achieve convergence and accuracy.

In the second step, we combine analytical and numerical
methods to derive energy estimates for scalar field perturbations in
the context of a Schwarzschild non-rotating black hole. Such energy
estimates are formulated using the integral of the energy density
over the tortoise coordinate, and we employ Poincaré’s inequality to
control the energy estimates. In addition, we introduce numerical
simulations to confirm the theoretical predictions and to show that
the energy decays over time following an exponential law provided
that the initial conditions belong to L2 space.

3 Numerical solutions

The numerical solutions illustrated in the graphs in Figure 1
represent the solutions to Equation 2 in the vicinity of the horizon
r ∼ 2M. These solutions were assumed to have the form ψ(r∗ , t) =
e−iωtΨ(r∗ ) and to be far from the horizon for increased values of
r∗ . For our purposes, we consider a fixed time t = t0 = 1.0. Near the
horizon (r ∼ 2M), the potential V(r∗ ) becomes very small, and the
wave equation simplifies to a free wave equation. In addition and in
this particular region (given for the coordinate r∗ going to negative
values), Figure 1 allows us to observe the diverging behavior for a
black hole mass of 10 times the solar mass and for different values
of angular momentum number l. Indeed, the behavior of ψ(r∗ ) in
this region is dominated by oscillatorymodes (refer toMamani et al.
(2022) for additional discussions). Notably, the oscillatory nature
is consistent with the expected QNMs behavior, where the modes
oscillate but in the time domain (refer again to Keir (2020)). Note
that the number l has a significant impact on the transmission and
reflection coefficients for wave scattering by the black hole (refer
to Futterman et al. (1988) for additional insights), and this may
lead to potential avenues for extracting physical information from
observational data (Sathyaprakash and Schutz, 2009), a relevant
issue in observational astronomy (see Virtanen et al. (2020)).

Based on the provided Figure 1, we can observe an exponentially
diverging asymptotic behavior of the wave functions near the
horizon for different values of the angular momentum quantum
number l. As r∗ approaches large negative values, thewave functions
Ψ(r∗ ) in all three panels show an exponential divergence. This
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FIGURE 1
Real part of the wave functions ψ(r∗ ) as a function of the tortoise coordinate r∗ for a Schwarzschild black hole with mass M = 10 solar masses, for
different angular momentum quantum numbers l. The left panel shows l = 1, the middle panel shows l = 5, and the right panel shows l = 10. The
exponential divergence near the horizon (left negative values in r∗ ) increases oscillation complexity for higher l values.

behavior is more pronounced with oscillations superimposed
on the exponential growth. This exponential divergence is a
characteristic feature near the event horizon and aligns with
previous studies (see Zhao et al. (2022)). For small l values (left
panel), the exponential divergence starts relatively smoothly,
with clear oscillations. As l increases (middle and right panels),
the oscillations become more rapid, and the exponential growth
becomes more abrupt. Additionally, we observe a form of amplitude
modulation in the wave functions, which is considered to be a
result of the interference between different modes. As Berti et al.
(2009) explain, the QNMs of black holes are not single-frequency
oscillations but rather a spectrum of modes with different complex
frequencies. When these modes interfere, they can produce beat-
like patterns in the wave functions. This interference leads to the
observed amplitude modulation, where the envelope of the wave
function oscillations varies in a regular pattern. However, there
is a key point: throughout the numerical resolution, the value
of the frequency ω was fixed to a constant value in the term
e−iωt. Therefore, it is important to mention that the modulations
in Figure 1 are due to the spatial modulation effect, not the

temporal modulation attributed to temporal propagation. In this
regard, we highlight that in conducting numerical analyses to
understand the effect of oscillations with respect to the tortoise
coordinate, it has been necessary to consider certain values for the
frequencies of the QNMs that appear in the temporal phase of the
solution ψ(r∗ , t) = e−iωtΨ(r∗ ). For this purpose, different values
compatible with the conditions given in [Fig. 5 ref (Berti et al.,
2009)] have been considered. Furthermore, the observed
behavior shown in Figure 1 has been tested for a wide range of
ω values, exhibiting behaviors similar to the ones represented in the
mentioned figure.

In addition, we should note that Zhao et al. (2022) provided
graphical solutions in this direction, but certain other issues (like
additional wave behavior for different values of m, l) were not
contemplated, thus motivating us to include our analysis and to
discuss further the implications. In addition, Keir (2020) concluded
the existence of sublogarithmic time decay rates in the quasimodes
for two-charge geometries, but there is no direct result to consider
for the evolution with a radial coordinate and even further based on
the tortoise coordinate.
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FIGURE 2
Potential Fl(r) as a function of r for l = 0 and l = 1.

FIGURE 3
The energy E(t) decays over time from its initial value E(0). The horizontal dashed line represents E(0), showing that the initial energy is constant at its
initial value, while E(t) decays exponentially from this initial value.

4 Energy estimates

In the context of a Schwarzschild non-rotating black hole
(with no ergoregion, or, if experienced, the ergoregion is
considered as a second-order negligible term in our linear
equations), making energy estimates is feasible both near
the event horizon and far from it by utilizing the tortoise
coordinate r∗ . The Schwarzschild metric admits a static Killing
vector field ∂t that remains time-like everywhere outside the
event horizon. The effective potential Fl(r

∗ ) derived from the
Schwarzschild metric diminishes at large distances, simplifying
the wave equation to a free wave equation, which allows the

introduction of energy estimates. In addition, we shall note that
the integration of the energy density over a large volume provides
estimates of the total energy in the scalar field perturbation,
applicable both in the strong regime for r ∼ 2M+ ϵ (where ϵ is
a positive arbitrary perturbation to avoid convergence issue in
the energy integral because of the event horizon) and the weak
regime for r≫ 2M.

An energy estimate for Equation 2 can be constructed by
considering the integral of the energy density over all space in the
tortoise coordinate (the reader is referred to Section 8.9 of Rendall
(2008) for additional details on energy formulations in wave
equations under the frame of general relativity).This energy integral
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is given by

E = ∫(|
∂ψ
∂t
|
2
+ |

∂ψ
∂r∗
|
2
+ Fl (r

∗ ) |ψ|2)dr∗ ,

which includes the kinetic, gradient, and potential energies of the
function ψ.

This integral is conserved for time-symmetric perturbations and
can be used to study the stability of solutions to the wave equation
(refer to Section 6.3 in Wald (1984), where the energy formulation
with the static Killing field is a constant of motion in both the strong
and weak regimes).

To compute the energy E, one would typically take the initial
data of ψ and its derivatives and perform the integration over r∗

from −∞+ (where the super-index+ reflects the strong condition
near the horizon given by the radial coordinate r ∼ 2M+ ϵ) to +∞.
In practice, this involves calculating the wave function ψ and its
derivatives at all points in space at a given time and then integrating
these quantities. Assuming ψ vanishes sufficiently far from the black
hole, we can apply the Poincaré inequality to control the norm of ψ
by the norm of its derivative:

∫
∞

−∞+
|ψ|2 dr∗ ≤ CP∫

∞

−∞+
|
∂ψ
∂r∗
|
2
dr∗ ,

whereCP is a positive constant specific to the domain.This inequality
essentially implies that the overall size of ψ is bounded by howmuch
ψ changes, providing a way to estimate the function’s magnitude
through its gradient. In our case, the use of Poincaré’s inequality is of
interest, as the effect of the potential given by |ψ|2 is controlled by the
term | ∂ψ

∂r∗
|
2
that is the energy contribution of the spatial derivative

of the homogeneous wave equation. In other words, we can control
the energy of the wave function with potential via the energy of the
wave function formulated with a homogeneous equation without
potential.

Hence, using the Poincaré inequality, we express the energy
functional E(t) bounded as follows:

E (t) ≤ ∫∞−∞+(|
∂ψ
∂t |

2
)dr∗ +∫∞−∞+|

∂ψ
∂r∗ |

2
dr∗

+ max(Fl (r
∗ ))∫∞−∞+|ψ|

2dr∗ ,

≤ ∫∞−∞+(|
∂ψ
∂t |

2
+ | ∂ψ∂r∗ |

2
)dr∗

+CPmax(Fl (r
∗ ))∫∞−∞+|

∂ψ
∂r∗ |

2
dr∗ ,

and Fl(r
∗ ) is bounded. Indeed, near the horizon (r→ 2M), the term

(1− 2M
r
) vanishes as r approaches 2M, thus Fl(r

∗ ) approaches zero.
In addition, as r→∞, both terms 2M

r3
and l(l+1)

r2
in the potential decay

to zero. Hence, Fl(r
∗ ) asymptotically approaches zero, indicating

that the potential does not contribute significantly at far distances.
Finally, incorporating the control on Fl(r

∗ ) and adjusting
constants appropriately, the energy estimate is refined as

E (t) ≤ CE(∫
∞

−∞+
(|

∂ψ
∂t
|
2
+ |

∂ψ
∂r∗
|
2
)dr∗),

where CE is a new constant that encapsulates all previous
constants and the behavior of Fl(r

∗ ).

Now, consider the initial conditions for a wave function ψ
defined in the tortoise coordinate r∗ at time t = 0:

ψ (0, r∗ ) = ψ0 (r
∗ ) ,

∂ψ
∂t
(0, r∗ ) = ψ1 (r

∗ ) .

Then,

E (0) = ∫
∞

−∞+
(|ψ1 (r

∗ ) |2 + |
dψ0

dr∗
|
2
)dr∗ .

To link E(t) to E(0), we can consider a general relation of the form:

E (t) ≤ f (t)E (0) ,

where f(t) is a function that captures the growth or decay dynamics
of the energy depending on wave propagation. To obtain a precise
function f(t), we first consider the bound for E(t), and it is standard
to check that the associated wave equation is homogeneous. Hence,
let us consider the solution of the homogeneous wave equation by
d’Alembert’s formula:

ψ (t, r∗ ) = 1
2
[ψ0 (r
∗ + t) +ψ0 (r

∗ − t)] + 1
2
∫
r∗+t

r∗−t
ψ1 (s) ds.

Taking derivatives,

∂ψ
∂t
(t, r∗ ) = 1

2 [ψ
′
0 (r
∗ + t) −ψ′0 (r

∗ − t)]

+ 1
2 [ψ1 (r

∗ + t) −ψ1 (r
∗ − t)] ,

∂ψ
∂r∗
(t, r∗ ) = 1

2 [ψ
′
0 (r
∗ + t) +ψ′0 (r

∗ − t)]

+ 1
2 [ψ1 (r

∗ + t) +ψ1 (r
∗ − t)] .

The energy computation over time leads to

E (t) ≤ ∫
∞

−∞+
(| 1

2
(ψ′0 (r
∗ + t) −ψ′0 (r

∗ − t)) + 1
2
(ψ1 (r
∗ + t) −ψ1 (r

∗ − t))|
2

+ | 1
2
(ψ′0 (r
∗ + t) +ψ′0 (r

∗ − t)) + 1
2
(ψ1 (r
∗ + t) +ψ1 (r

∗ − t))|
2
) ⁢dr∗ .

Using the triangle inequality, we can estimate

|ψ′0 (r
∗ ± t)|2 + |ψ1 (r

∗ ± t)|2

as a sum over r∗ ± t.
Thus, E(t) could be bounded by twice the sum of the energy

norms of the initial conditions:

E (t) ≤ 2(∫∞−∞+|ψ
′
0 (r
∗ + t)|2dr∗)

+ 2(∫∞−∞+|ψ
′
0 (r
∗ − t)|2dr∗)

+ 2(∫∞−∞+|ψ1 (r
∗ + t)|2dr∗)

+ 2(∫∞−∞+|ψ1 (r
∗ − t)|2dr∗)

Now, let us assume that the initial data belong to the norm L2.
Mathematically, this is appropriate using the translation-invariance
properties of the L2 norm:

E (t) ≤ 2(‖ψ′0‖
2
L2 + ‖ψ1‖

2
L2)

where

‖ψ′0‖
2
L2 = ∫

∞

−∞+
|
dψ0

dr∗
|
2
dr∗ , ‖ψ1‖

2
L2 = ∫

∞

−∞+
|ψ1 (r
∗ )|2dr∗ .

Frontiers in Astronomy and Space Sciences 06 frontiersin.org13

https://doi.org/10.3389/fspas.2024.1426406
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Díaz Palencia 10.3389/fspas.2024.1426406

Therefore, E(t) is bounded by twice the initial energy E(0):

E (t) ≤ 2E (0)

This bound suggests the conservation and controlled growth of
energy. Nonetheless, the last expression does not consider any
dispersion on the field that may be given as the wave evolves.
Specifically, as t increases, the contributions from ψ0 and ψ1 spread
out over a larger region, effectively diluting the local energy density
(refer to Taylor (1996) and Trefethen and Embree (2005) for
additional insights).

To determine a new bound, we consider the L∞ norm instead
of the energy formulation and recover some basic aspects of wave
propagation. Note that considering a norm connected with the
amplitude, such as the L∞ norm, is relevant because gravitational
wave interferometers (unlike traditional electromagnetic
observatories) respond to the waves’ amplitude to characterize
events (refer to Section 9.5 of Berti et al. (2009)). The fundamental
solution for thewave equation for a point source located at the origin
is given by

Φ (t,x) =
δ (t− |x|)
4π|x|
.

The solution to the wave equation with initial conditions ψ0 and ψ1
is represented by

ψ (t,x) = ∫ℝ3
δ (t− |y|)
4π|y| ψ1 (y) dy

+∫ℝ3
∂
∂t (

δ (t− |y|)
4π|y| )ψ0 (y) dy.

This integrates over a spherical shell of radius t:

ψ (t,x) = 1
4πt
∫
|y|=t

ψ1 (y) dSy +
1

4πt
∫
|y|=t

∂t (δ (t− |y|))ψ0 (y) dSy.

Considering L∞ norms, the solution’s maximum amplitude at any
point decays as

‖ψ (t, ⋅)‖L∞ ≈
1
t ‖∫|y|=tψ1 (y) dSy‖L∞
+1t ‖∫|y|=t∂t (δ (t− |y|))ψ0 (y) dSy‖L∞

.

The surface area of the sphere of radius t is 4πt2. As the energy
spreads over a larger area, the maximum amplitude at any point
decreases. Given that the energy is conserved but distributed over an
increasing surface area A = 4πt2, the amplitude’s reduction follows:

‖ψ (t, ⋅)‖L∞ ∝
1
√t
.

This t−
1
2 decay rate in the L∞ norm is due to the inverse square root

of the increasing area over which the energy is spread and considers
the typical dispersion effect in three dimensions.

Now, the Strichartz estimates for the wave equation provide
bounds on the solution’s spacetime norms in terms of the norms
of the initial data and allow us to consider other functional spaces
compared with the L∞ in time. Specifically, the estimates state:

‖ψ‖L∞t L6
x(ℝ×ℝ3) ≤ C(‖ψ0‖Ḣ1(ℝ3) + ‖ψ1‖L2(ℝ3)) ,

whereC is a constant dependent on the dimension and the Strichartz
pair. This estimate is derived from the fundamental solution’s

dispersive properties and the conservation of energy (refer to Tao
(2006) for additional insights).

Using the Sobolev embedding theorem, which embeds Ḣ1(ℝ3)
into L6(ℝ3), we can relate the Strichartz norms to the L∞ norm:

‖ψ (t, ⋅)‖L∞(ℝ3) ≤ C
′t−

1
2 (‖ψ0‖Ḣ1(ℝ3) + ‖ψ1‖L2(ℝ3)) ,

where C′ includes constants from the Sobolev embedding and
the dimension-specific Strichartz estimates. The constant C′ is
determined by considering the spherical dispersion of energy and
the associated decrease in amplitude as the wave spreads over a
spherewith increasing radius r = t.The factor t−

1
2 , introduced ad hoc,

reflects the decrease in amplitude over the sphere’s surface area 4πt2.
Thus, C′ can be calculated as

C′ = C′′

√4π
,

with C″ being a constant derived from spectral analysis of the
wave operator and the embedding constants used in the Sobolev
and Strichartz inequalities. Such spectral analysis is normally a
difficult task with high mathematical content, but we can introduce
some principles to elucidate how to determine the constant.
Indeed, in Schwarzschild spacetime, the wave operator □ for a
scalar field ψ, defined in a curved background, is given by □ψ =

1
√−g

∂μ(√−gg
μν∂νψ), where gμν is the metric tensor of Schwarzschild

spacetime, and g is the determinant of this metric tensor. The
Laplacian in Schwarzschild coordinates is expressed as

ΔSchψ =
1
r2
(1− 2M

r )
−1 ∂
∂r (r

2 (1− 2M
r )

∂ψ
∂r )

+ 1
r2 sin θ

∂
∂θ (sin θ∂ψ∂θ )+

1
r2 sin2 θ

∂2ψ
∂ϕ2 .

The spectral properties of ΔSch in Schwarzschild spacetime differ
fundamentally from those inℝ3.The continuous spectrum is altered
by the potential well created by the black hole. If we hypothesize
a spectral density function ρSch(λ) (here we would need additional
physical observations), analogous to the flat space case but adjusted
for curvature effects, and integrate this over a bounded domain
reflecting the effective potential’s influence, we have

C′′Sch = ∫
∞

λ0

ρSch (λ) dλ,

where λ0 is a lower bound that accounts for significant gravitational
effects near the black hole. A value for such λ0 can be analytically
conceived, given the potential F l(r

∗ ). Indeed, the potential usually
features a peak that influences wave dynamics; this peak can act
as a barrier beyond which wave propagation diminishes. The value
of λ0 could be estimated by considering the minimum energy (or
corresponding λ) required for a wave to have a significant presence
beyond this peak. Mathematically, this is often taken to be the
maximum value of the effective potential:

λ0 =maxFl (r) .

Hence, we compute the derivative to find critical points where the
potential may have a maximum:

dFl
dr
= (1− 2M

r
)(−6M

r4
−

2l (l+ 1)
r3
)+(2M

r3
+
l (l+ 1)
r2
)(2M

r2
).
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After simplifying and setting to zero, we find rmax:

12M2

r6
−

2M (1− 2M− 2l (l+ 1))
r5

+
2Ml (l+ 1)

r4
= 0.

This equation is typically solved numerically given specific values of
M and l. Once rmax is determined, Fl(rmax) is calculated to estimate
λ0:

λ0 = Fl (rmax) = (1−
2M
rmax
)( 2M

r3max
+
l (l+ 1)
r2max
).

To provide some numerical orders of λ0, we provide the assessments
for the following cases:

A) M = 1, l = 0.
B) M = 1, l = 1.
For this, we have used Python and its libraries NumPy and

SciPy, which provide efficient numerical routines. The results of
λ0 for the cases A) and B) mentioned are:

• λ0 for M = 1, l = 0: 0.0264
• λ0 for M = 1, l = 1: 0.0993

The plot displayed in Figure 2 shows the potential Fl(r) as a
function of r for each value of l. Some relevant observations from
the graph indicate:

• Thepotential has a peak for each l, and these peaks are what we
use to estimate λ0.
• Thepotential increases as r increases, reaches a maximum, and

then decreases again, which is a typical behavior of effective
potentials and barriers.
• For l = 1, the potential reaches a higher peak than l = 0, which

aligns with the calculated λ0 values where λ0 for l = 1 is greater
than for l = 0.

4.1 Numerical assessments on the energy
formulation

The discussion to this point has yielded an energy estimate
expressed as

E (t) ≤ 2E (0) .

This estimate implies that the energy of the wave function at any
time t does not exceed twice its initial value E(0). However, this
bound alone does not definitively determine how the energy evolves
over time, but it does confirm that the evolution is controlled
by the initial energy value. Certainly, this expression leaves open
questions regarding potential energy dissipation, conservation, or
other complex dynamics that could be exhibited. Hence, we conduct
a numerical assessment to gain further details about whether the
energy decreases or exhibits other patterns through time. We have
carried out a simulation following numerical integration techniques
using Python libraries. In the simulation, Gaussian initial data and a
decaying sinusoidal initial time derivative were used:

ψ0 (r) = e
−r2 , ψ1 (r) =

sin (r)
1+ r2
,

both of which belong to L2 in the domain of integration. The
energy at t = 0, denoted E(0), was calculated based on these initial

conditions. The plot provided in Figure 3 provides the results of
the numerical analysis carried out, leading to a graph that depicts
the energy E(t) exponential decreasing evolution over time. This
result aligns with the classical form of solutions considered tomodel
QNMs and given by the temporal evolution e−iωt, and we shall recall
that our initial data were selected to belong to L2.

5 Conclusion

This study provided an analysis of the behavior of scalar
fields in Schwarzschild spacetime using the tortoise coordinate
transformation and spherical harmonics decomposition. From the
numerical assessments, we established the behavior of scalar fields
considering the tortoise coordinate in Figure 1 for the simplified
version of the wave in (Equation 3). In addition, we have obtained
estimates for the energy under the L2 norm and for the evolution of
thewaves in the L∞ norm. Interestingly, we showed that a decreasing
exponential bound applies for the energy evolution provided that the
initial data belong to L2−space. We postulate that such an evolving
bound applies for any other L2 initial distribution beyond the ones
considered in Section 4.1. Another interesting question to explore
further is how L2 perturbations in the initial conditions, which
introduce Kerr solutions as a second-order effect in the linearized
equations, affect this obtained exponential decay. Certainly, this is
a relevant issue that requires additional theoretical and numerical
assessments. We will proceed with this in our future work.
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Designing electromagnetic
resonators with quasinormal
modes

Tong Wu* and Philippe Lalanne*

Laboratoire Photonique, Numérique et Nanosciences (LP2N), IOGS- Université de Bordeaux-CNRS,
Talence, France

Micro- and nanoresonators, which enable light trapping in small volumes for
extended durations, play a crucial role inmodern photonics. The optical response
of these resonators is determined by their fundamental resonances, known as
quasinormalmodes (QNMs). Over the past decade, the electromagnetic theory of
QNMs has undergone significant development and has now reached a level of
maturity that allows its reliable application to numerous contemporary
electromagnetic problems. In this review, we explore recent applications of
QNM theory for designing and understanding micro and nanoresonators. We
highlight why QNMs provide deep physical insights and enhance computational
efficiency in scenarios involving mode hybridization and perturbation.

KEYWORDS

quasinormal modes 1, microcavities 2, plasmonic nanocavities 3, perturbation theory 4,
inverse design 5

1 Introduction

Micro or nanoresonators play a crucial role in advancing modern photonics [1, 2]. The
interaction of light with optical resonators is fundamentally governed by the excitation of
intrinsic natural resonant modes. When excited by a pulse, these modes initially store
energy and subsequently release it through exponential decay. Known as quasinormal
modes (QNMs), they are source-free solutions, [~Em(r), ~Hm(r)] exp(−i~ωmt) to Maxwell’s
equations with complex frequencies ~ωm

∇ × ~Em � i~ωmμ0 ~Hm, ∇ × ~Hm � −i~ωmε r, ~ωm( ) ~Em, (1)
and satisfy the outgoing-wave condition for |r| → ∞. Hereafter, ~Em and ~Hm respectively
denote the normalized electric and magnetic fields [3, 4], ε denotes the possibly dispersive
permittivity tensors. Unlike the normal modes of Hermitian systems, which have real
frequencies, the imaginary part Im(~ωm) is non-zero, accounting for absorption or
radiation losses [3].

The QNMs of electromagnetic resonators are characterized by two main quantities:
their mode volume ( ~Vm) and quality factor (Qm) [4, 5]. The former is related to the spatial
extent of the electromagnetic field and the latter is proportional to the confinement time in
units of the optical period, Qm � −(1/2)Re(~ωm)/Im(~ωm) [3, 5, 6].

High-Q resonators trap light for long time, whereas small mode volume resonators
confine light in tiny volumes. Resonators with large Qm/ ~Vm ratios strongly enhance the
interaction between the trapped photons and the host materials, giving rise to significant
nonlinear, quantum and optomechanical effects [1–4].
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Photonic applications generally rely on two types of structures
which respectively offer high Qm and small ~Vm. High- Q resonators,
typically with Qm ~106, are usually fabricated using lossless dielectric
materials, such as the photonic crystal microcavities (Figure 1A). These
structures can confine light for extended periods of time (typically Qm

cycles) within volumes of about the resonant wavelength cube λ3R.
Resonators with mode volumes significantly smaller than λ3R are

engineered using metallic nanostructures that support localized
plasmons [7]. One notable example is the nanoparticle-on-mirror
(NPoM) construct (Figure 1B) [2, 8], which represents a current area
of research interest. NPoM trap light in nanometer-sized dielectric
gaps between two metal surfaces, achieving mode volumes as small
as ~ 10−7 λ3R. However, this exceptional spatial field confinement
comes with a drawback: the inherent absorption of the materials
restricts the quality factor to small values, Q ~ 10 − 100.

QNMs can be used to expand the electromagnetic field
Es(r,ω) exp(−iωt) scattered by resonators illuminated by
monochromatic waves at frequency ω [3, 9]

Es r,ω( ) � ∑
m
αm ω( )~Em r( ), (2)

where the αm’s are modal excitation coefficients. The latter are
known analytically and can be calculated as a spatial overlap
between the normalized QNM field and the incident wave. They
describe the contribution of the resonance modes to the optical
response. A time-domain QNM expansion formula can also be
derived from Equation 2 by performing a Fourier transformation
from the frequency domain to the temporal domain

Es r, t( ) � Re ∑
m
βm t( )~Em r( )[ ]. (3)

In the past decade, there have been significant advancements in
electromagnetic QNM theory. These include resolving the critical

issue of QNM normalization [10–15], testing completeness of the
QNM expansion across various systems [10, 16–23], and extending
the analysis to the temporal domain [20, 24–27].

Nowadays, QNM theory is extensively utilized in designing
optical resonators for various applications [28–30], including
second- and higher-harmonic generation [31–33], optical
parametric oscillators [34], Bell state generation [35], random
lasing [36, 37], cavity QED [38–40], chiral molecule sensing [41,
42], quantum plasmonics [43–45], structural color generation [46],
visual appearance generation [47], random medium [48], and
ultrafast optics [24, 27]. But why are QNMs essential for
nanoresonator design?

One explanation lies in the unique physical insights provided by
QNM theory, which are often unattainable from brute-force numerical
simulations. While the latter can be used to accurately compute the
resonant spectra of resonator responses [2, 49–52], the spectrum
interpretation can be indirect and sometimes incomplete. For
instance, far-field incident light might not efficiently excite all
modes, causing dark modes to be overshadowed by bright ones in
the spectra. Additionally, spectrally overlapping resonances are difficult
to distinguish, even with semi-analytical tools like the temporal-coupled
mode theory [53, 54]. These resonancesmightmerge to form a complex
Fano response that appears as a single bell-like response, potentially
leading to an incorrect interpretation with a single resonance [11, 55].

In contrast, QNMs are intrinsic to the system and independent
of the incident field. By computing QNMs, optical dark modes can
be identified unambiguously [56–60], and spectrally overlapping
modes can be distinguished [11, 55, 61]. QNM expansion methods
allow the reconstruction of optical scattering spectra [3, 9, 14, 20, 62,
63] with a weighted sum of QNMs. They may also provide explicit
formula for the local density of electromagnetic states [11, 62,
64–67], a quantity of prime interest to interpret the optical
response of resonators coupled with quantum emitters.

Another explanation is that electromagnetic QNM theory may
also offer a significant improvement in computational efficiency
over classical modeling tools that operate in the real-frequency or
temporal domains. In frequency-domain simulations, calculations
are repeated for each frequency, while in time-domain simulations,
they must be repeated for different excitation fields.

The QNM expansion formula in Equation 2, which includes
analytically-known αm coefficients, allows efficient computation of
the optical responses to arbitrary incident waves, once the dominant
QNMs are determined [3, 68]. This efficiency is particularly useful for
predicting the responses of resonant structures to various incident fields
[69]. Applications include calculating the bidirectional reflectance
distribution function (BRDF) of disordered metasurfaces [47], and
assessing optical forces [70, 71], for instance.

Recent advancements in QNM perturbation [72, 73] and coupled
QNM-theory [74–76] enable the prediction of the QNMs of altered
geometries based on the QNMs of the initial geometry. They enhance
computational efficiency not only for frequency sweeps but also for
varying parameters such as shape or permittivity. This is particularly
valuable for inverse design problems that require optical responses over
plenty of parameter spaces.

This review aims to highlight recent advancements in applying
QNMs to nanoresonator design, emphasizing the benefits of using
QNM theory. Special focus is placed on how QNMs provide deep
physical insights and enhance computational efficiency in mode

FIGURE 1
Examples of micro and nanocavities. (A) A photonic-crystal
microcavity with a 330 nm lattice constant in a 320 nm-thick dielectric
membrane has typical resonancewavelengths λR at 1.5 µm. (B) Ametal
NPoM structure consists of a faceted gold nanoparticle (radius
R = 20 nm) separated from a gold substrate by a 1 nm-thick dielectric
film. The maps depict the real part of the inverse mode volume,
Re(1/ ~Vm). The microcavity confines light within approximately λ3R,
whereas the NPoM achieves a minimum mode volume of about
10−7 λ3R . Note that the imaginary part, Im(1/~Vm), of the mode volume is
not shown. Adapted from [5].
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hybridization and perturbation scenarios. For readers interested in
the detailed physics and mathematical properties of electromagnetic
QNMs, references such as [3, 5, 9, 10] are recommended. This article
is structured as follows: a brief overview of key concepts on
electromagnetic QNMs, followed by a discussion of their
applications in resonator design.

2 QNM theory in a nutshell

2.1 Computation of electromagnetic QNMs

The computation of electromagnetic QNMs is now routinely
performed using mode solvers for Maxwell’s equations [77]. The
most common method involves calculating the poles of the
resonator response (either a scattering-matrix element or a
component of the scattered field at a specific spatial position) by
driving the system with a source emitting at complex frequencies
until the response diverges. Alternatively, one can directly solve the
eigenvalue problem defined by Equation 1.

A few open-source software packages dedicated to QNM
computation are available [77–79], including our comprehensive
released freeware, MAN [68], which implements the pole-searching
method or directly solves the eigenvalue problem.

2.2 The QNM divergence

QNM fields exponentially grow in space far away from the
resonators, typically taking the form of a leaky spherical wave,
r−1 exp[i~ωm(−t + r/c)] as r → ∞ in 3D open spaces. The spatial
divergence has significantly slowed down the development of the
electromagnetic QNM theory, just like in related areas, e.g.,
gravitational waves [80–84].

First, the spatial divergence raises difficulties in normalizing the
QNMs fields [10]. Second, the spatial divergence also raises the
question of whether the expansions of Equations 2, 3 are complete or
not and when completeness is achieved, for what subspace [3, 85].
Indeed, note that the scattered field at real frequency always vanishes
as r−1 for r → ∞; it seems unlikely that expansions relying on fields
that all divergence for r → ∞ may capture the special decay. In
addition to the issue of incompleteness, the divergence appears to
contradict our physical intuition, raising doubts about whether it
‘truly corresponds to any physical reality,’ as was noted
long ago [86].

These issues have been addressed through extensive efforts
notably over the past three decades.

Various frameworks for QNM normalization have been
developed [10–15, 87, 88], and the completeness of QNM
expansions (possibly augmented by numerical modes arising
from QNM regularization [16, 20]) has been verified analytically
and numerically in numerous examples [10, 16–23]. A recent review
[10] provides advanced details and traces historical errors.

One widely adopted normalization framework is the PML-
regularization method [11]. In this approach, the continuous
Maxwell operator from Equation 1 is replaced by a linear
operator within a finite physical domain bounded by perfectly
matched layers (PMLs). The latter maps infinite open spaces into

regularized Hilbert spaces, by converting the exponential growth of
QNM fields in open space to an exponential decay within the PMLs.
The regularized QNMs become square-integrable and are
normalized with a volume integral over the physical domain Ω
inside the PML and the PML domain ΩPML

∫∫∫
Ω∪ΩPML

~Em · ∂ωε
∂ω

~Em − ~Hm · ∂ωμ
∂ω

~Hmd
3r � 1. (4)

With Equation 4, analytical expressions for the modal expansion
coefficients can be derived from first-principle calculations [11, 20].
Moreover, the QNM expansion augmented by numerical modes is
complete for all r within the regularized space, including the PML
domain. For non-dispersive resonators, biorthogonality warranties
the uniqueness of the expansion coefficients αm. In the presence of
dispersion, formulas of αm depend on the choosing of the auxiliary
field used for linearization and different methods for splitting the
source term in Maxwell equation. Once these factors are defined αm
is also uniquely determined [10, 18, 20].

The PML regularization offers a framework tomimic theHermitian
system, by ensuring completeness and eliminating divergence.
However, it does not offer a clear physical interpretation of the
implications of the impact of QNM spatial divergence when
analyzing the interaction of resonance with remote bodies positioned
far away from resonators, where QNM fields largely diverge, as
demonstrated in a recent study [89]. This study confirms that
although QNM divergence leads to spectral instability, it does not
cause any inconsistencies. The optical response of resonators disturbed
by a distant body remains largely unchanged and can be accurately
predicted using first-order QNM perturbation theory. It is also
noteworthy that similar conclusions have been drawn in the context
of gravitational waves [90–92].

3 Applications of QNMs in the design of
optical resonators

The essence of resonance design involves perturbing and
hybridizing resonances to achieve specific optical responses.
Traditionally, this process involves performing repeated full-wave
simulations at real frequencies [2, 28, 49–52]. However, as
mentioned in the introduction, this conventional approach
encounters significant physical and computational limitations. In
this section, we explore several examples to demonstrate how QNM
methods overcome these challenges and facilitate the design of
modern optical resonators, focusing first on QNM hybridization
and then on QNM perturbation.

3.1 QNM hybridization

The motivations for mode hybridization are twofold.
First, hybridization allows us to combine the properties of

different resonant modes to create new modes with distinct
multifunctional properties [56–61, 93–95], e.g., modes with both
magnetic and electric responses [61, 93, 95–97], modes with both
high radiative efficiency and small mode volume [2, 56, 58–60, 98].
A well-known example is the hybridization of photonic
microcavities and plasmonic resonator modes [99–101]. This
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approach utilizes plasmonic components to achieve deep
subwavelength confinement (small mode volumes), while
preserving a relatively high Q factor, which is inherited from the
photonic cavity.

Second, hybridization induces a chemical-like “reaction”
between modes, creating new modes with unique properties that
go beyond a simple combination of the original modes. This serves
as the secondmotivation for mode hybridization. For instance, when
the eigenfrequencies of two QNMs cross each other as a parameter
varies, the Q factor of one mode can be significantly boosted
reaching exceptionally high values [33, 102, 103]. Additionally,
some studies have engineered interactions between modes to
achieve exceptional points [104–107], where both the eigenvalues
and eigenvectors of the interacting modes coalesce.

3.1.1 Mixing mode properties
A key feature of the QNM framework is its ability to compute

the intrinsic properties of resonators and understand how these
properties are affected by mode hybridization [56–60]. This
capability allows for the design and optimization of
nanoresonators, offering both computational efficiency and clear
physical insights. This aspect is illustrated in Figure 2, with a
structure known as a picocavity [2, 108–110]. The latter consists
of a NPoM, but additionally encompasses an individual atomic-scale
protuberance on one of the gap surfaces, as shown in Figure 2A. This
structure, which has recently garnered significant attention [2, 56,
57, 108–110], demonstrates an impressive capability to confine light.

Picocavities exhibit two types of QNMs [56, 57]. One type
features an electric field that is highly localized near the
protuberance, while the other exhibits electric field distributions
akin to QNMs found in NPoM structures. We classify these as
protuberance-like and NPoM-like QNMs, respectively. As depicted
in Figure 2C, the protuberance-like QNM (mode II) provides
extremely confined field characteristics, achieving a minimum
mode volume below one cubic nanometer. However, due to the
significant size disparity between the protuberance and the photon
wavelength, this mode exhibits very low radiative efficiency. It
cannot be efficiently excited by far-field sources (such as plane
waves); when excited by a near-field emitter, almost all energy is
converted into Ohmic losses in the metal, with minimal photon
radiation in the far-field.

The mode volume of the NPoM-like mode (mode I) is much
larger than that of the protuberance-like QNM. However, it offers
high radiative efficiency and can be excited from the far-field. Its
radiative efficiency, characterized by the intrinsic radiative diagram
in Figure 2C, is approximately 20 times greater than that of the
protuberance-like QNM.

A natural approach to achieve both high radiative efficiency and
small mode volume involves coupling these two types of modes. The
QNM framework facilitates monitoring the intrinsic properties as
the modes hybridize. Figure 2B illustrates the eigenfrequencies of the
hybridized QNMs as a function of the protuberance’s aspect ratio,
depicted by the red and blue solid curves. As the aspect ratio
increases, the protuberance-like mode undergoes a redshift, and
an anticrossing of resonant frequencies occurs when its
eigenfrequency approaches the energy of the NPoM mode. In
this region, the QNMs are significantly hybridized. As depicted
in Figure 2C, both modes achieve a mode volume of less than 1 nm³

and demonstrate high radiative efficiency, combining the
advantageous characteristics of both NPoM and
protuberance modes.

3.1.2 Engineering the mode interaction
Another significant application of QNM theory lies in

engineering mode interactions [102, 111–113] to create new
modes with properties distinct from a simple mixture of the
original modes.

To illustrate our purpose, let us consider a resonator and let us
deform it (Figure 3A). If we assume that two dominant QNMs are
driving the resonator response, the new eigenfrequencies, ~ωhyb, of
the deformed modes can be determined by solving a 2x2 eigenvalue
problem [72]

~ω1 0
0 ~ω2

( ) a1
a2

( ) � ~ωhyb
1 + V11 V12

V21 1 + V22
( ) a1

a2
( ) (5)

where ~ω1(2) are the QNM eigenfrequencies of the undeformed
structure, ~ωhyb is the unknown eigenfrequency of the deformed
structure, and a1 and a2 are the modal excitation coefficients of the
unperturbed QNMs. The terms Vij (with i, j = 1, 2) are evaluated
through an integral of the modal fields over the surface Sr of the
initial (undeformed) structure: Vij � ∫∫

Sr
h~E

+
i · Δε(~ωj)~E−

j d
2r, where

h is the deformation perpendicular to the surface boundary (it varies
with the curvilinear coordinate), and ~E

+
i and ~E

−
j the electric fields of

the initial (undeformed) normalized QNMs at the outer (+) or inner
(−) surface boundary. Outward deformations (h> 0) and inward
deformation (h< 0) deformations (see Figure 3A) correspond to
permittivity changes of Δε and −Δε, respectively, where Δε � εres − εb
is the difference in permittivity between the resonator and background.

The Vij are generally complex numbers, with their imaginary
parts arising from the non-Hermitian characteristics of the system.
Typically, V12 ≠ V21, however if Δε(~ω2) ≈Δε(~ω1), they are
approximately equal.

The formula is derived using first-order approximations,
ignoring contributions proportional to h2 or higher-order terms
for Vij. Higher-order contributions can be included with more
complex formulas. Nevertheless, except for specific cases where
the first-order contribution vanishes due to symmetry, for
instance, Equation 5 is accurate [72].

Using Equation 5, the new QNMs of the deformed structure are
directly computed, enabling effective exploration of the parameter
space to optimize the resonator shape. Figure 3B demonstrates the
application of Equation 5 in designing nanoresonators that support
exceptional points. This method significantly reduces the
computation time needed to find the optimal design and
provides insight into how geometric deformation influences
mode hybridization.

3.2 Mode perturbation

QNM perturbation theory of electromagnetic resonators is
particularly useful for cavity design and has been used in many
applications, including evaluating optical resonator sensitivity for
optical biosensing, inverse design of high-Q optical cavities [114],
and understanding or engineering the interplay of classical
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electromagnetism with other physical phenomena or nonlinear
processes, such as thermo-optics [115], Kerr [116, 117], or
electron spill-out effects [43].

3.2.1 Perturbation theory for understanding
refractive index changes

Traditionally, designing optical sensors involves calculating
numerous resonance spectrum variations for various

perturbation instances (such as position, shape, and material),
which is time-consuming when using a parametric frequency
scan approach. Furthermore, for very small perturbations,
simulations must achieve extremely high accuracy to ensure
that signal changes caused by the perturbation are not
obscured by numerical noise.

Small perturbations cause a small change of the complex
frequency of all the QNMs, as illustrated in Figure 4A. The

FIGURE 2
Mixing the properties of twoQNMs by hybridization. (A) Schematic representation of a picocavity comprising an atomic-scale protuberance on a flat
metal surface and a NPoM structure, each supporting a QNM. (B) Resonance frequencies as a function of the aspect ratio a/b of the protuberance. The
mode of the protuberance strongly hybridizes with the mode of the NPoM for a/b ≈ 2. (C) Energy level diagram illustrating the hybridization when the
frequencies of the NPoM and protuberance modes are similar for a/b � 2. Outside the hybridization region, the structure exhibits an NPoM-like
mode (QNM I in (b)) and a protuberance-like mode (QNM II in (b)). The NPoM-like mode has a relatively large mode volume and high radiative efficiency,
while the protuberance-like mode features an ultra-small mode volume and a low radiative efficiency. The near-field maps depict the real part of the
inverse mode volume 1/~Vm , while the far-field radiation diagrams illustrate how the normalized QNMs radiate in the far field. (A) and (B) are adapted
from [56].

FIGURE 3
QNM interaction by deformation. (A) A nanoresonator is deformed with both inward and outward boundary changes. (B) Eigenfrequencies can be
predicted with the analytical formula Equation 5 as we vary the shape. In (B), an exceptional point (denoted ‘EP’) is designed by deforming a
nanoresonator. Full numerical calculations (circles) are compared to predictions obtained with Equation 5 (solid curves). Adapted from [72].
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small variation is conveniently predicted using cavity
perturbation theory.

The correct QNM normalization allows for deriving an accurate
first-order perturbation formula for non-Hermitian systems [118].

Δ~ωm � −~ωm∫∫∫
Ωper

Δε~Em · ~Emd
3r + O Δε| |2( ), (6)

whereΩper is the finite volume of the perturber, and Δε � εper − εu is
the difference in permittivity between the perturbed and
unperturbed systems.

The predictive force of Equation 6 has been successfully
validated for high-Q cavities by comparison with experimental
data [121] and for low-Q plasmonic nanoresonators by
comparison with full-wave computational data for various
perturber shapes [118].

We may have noticed a difficulty also encountered in
gravitational wave theory [80–84]: as the separation distance
between the perturber and the resonator increases, the QNM
field experienced by the perturber diverges. According to
Equation 6, Δ~ωm should also diverge, contradicting our intuitive
expectations that remote perturbers should not affect resonator
characteristics. This apparent contradiction has been recently
studied in detail [89]. The conclusion is clear: Equation 6
remains valid regardless of how far away the perturbations are.

The issue of remote perturbations and divergent coupling
requires much care as it leads to spectral instabilities. The
complex frequency plane becomes increasingly populated with

numerous Fabry-Perot QNMs, and the optical response of the
perturbed system is dominated by these Fabry-Perot QNMs
instead of the initially perturbed one. Similar QNM instability
issues are encountered in the gravitational wave physics of black
holes [80–84, 90–92]. The instability, also called ‘the flea in the
elephant effect’, is caused by a small and remotely localized
perturbation added to the black hole environment.

Equation 6 allows for the analytical evaluation of a crucial figure-
of-merit (FoM) for optical resonators used in sensing applications,
given by FoM � S/Δλ. Here S represents the sensitivity, defined as
the wavelength shift per unit change of the embedding medium
refractive index, and Δλ is the bandwidth of the resonance. Since
1/Δλ is proportional to the Q factor and S is proportional to Δ~ωm,
from Equation 6, one can readily realize that FoM∝Qm/ ~Vm,
implying that an excellent candidate for an optical sensor should
either possess a large Q or a small mode volume.

The QNM perturbation toolbox for nanophotonic biosensor
design has significantly expanded in recent years [41, 119, 120, 122,
123]. Equation 6 is valid for finite resonators perturbed by
perturbers with finite size. This result has been extended to
perturbations that cover the entire open space surrounding finite
size resonators or periodic structures [119, 120, 123]. Equation 6 has
also been extended to study systems that are perturbed by magnetic
objects [122] or chiral molecules [41]. Refer to Figure 4 for more
pictural details.

More recently, QNM perturbation theory has been further
extended to predict the impact of perturbations on the optical
scattering matrix [9, 41]. This extension allows for the prediction
of variations in optical responses, such as changes in spectrum
intensity and lineshape, beyond just frequency shifts and linewidth
changes. The theory has proven crucial in the design of
nanophotonic sensors for chiral molecules [124, 125]. It
facilitates the rapid computation of the difference in circular
dichroism spectra (ΔCD) with and without a chiral molecule.
This is particularly important because, according to one of the
authors [126], if the Pasteur parameter κ of the chiral molecule is
extremely small, obtaining ΔCD can be computationally expensive
due to the need for fine meshing to ensure the signal is above
numerical noise.

3.2.2 Inverse design of optical resonators
QNM perturbation theory can be especially useful for inverse

design. Equation 6 is not accurate for this critical case, as
boundary variations cause abrupt field changes inside the
perturbation volume Ωper. This issue can be resolved using a
technique known as local-field correction [127], which accounts
for abrupt field changes by considering boundary conditions or
the continuity of the electric field. By using local-field correction
and assuming the perturbation does not cause hybridization
between different QNMs, the frequency shift caused by shape
deformation is given by Δ~ωm � −~ωm∫∫Sr

h~E
+
m · Δε(~ωm)~E−

md
2r [72,

118], where the variables are the same as those used in Equation
5. In fact, Equation 5 reduces to the present formula in the
absence of mode hybridization.

One recent application of the formula can be found in [114],
where QNM perturbation theory was used in combination with a
gradient-based algorithm to maximize the Q-factor of cavities
formed in dielectric slabs with disordered nanoholes.

FIGURE 4
QNM perturbation theory for optical biosensors. (A) The
introduction of a perturbation causes a resonant frequency shift ΔΩ
and a linewidth change ΔΓ in the spectral response (Equation 6) [118].
(B) The perturbation formula of Equation 6 has been extended for
refractive-index changes extending over the entire open space
surrounding the resonator [119]. (C) A perturbation formalism also
exists for periodic structures [120]. (D) Perturbation formula has been
developed for studying the index change caused by chiral mediums
[41]. (B) is adapted from [119]; (C) is adapted from [120]; (D) is adapted
from [41].
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3.2.3 Quantum effect
QNM perturbation theory has also been successfully applied to

understand the role of quantum effects in the response of
nanoresonators with ultrasmall volumes, such as NPoM structures
or picocavities. In these systems, strong confinement leads to non-
classical effects, such as nonlocality and electron spill-out, which
cannot be predicted by Maxwell’s equations alone [128]. To
accurately model these effects, numerical sampling must be
significantly smaller than the Fermi wavelength, which is typically
well below 1 nm [129]. This poses a significant challenge for
incorporating quantum effects into classical Maxwell solvers.

QNM perturbation theory can potentially address this issue
by treating non-classical effects as first-order perturbations of
classical QNM fields. This approach allows for the analytical
prediction of eigenfrequency changes due to non-classical
corrections [43]. Recent advancements have further
streamlined the computation of optical responses, such as
Purcell factors and field enhancement factors [45]. They offer
a quick method to evaluate how non-classical effects impact the
optical properties of nanoresonators, including field confinement
capability and scattering efficiency.

4 Perspectives and conclusion

Over the past decade, substantial advancements have been
made in electromagnetic QNM theory, effectively addressing
numerous critical challenges. The normalization of QNMs has
been resolved [10–14], the completeness of QNM expansions has
been confirmed for a variety of systems [10, 20, 21, 74], and the
physical implications and causes of QNM divergence are
beginning to be understood [89].

These developments have facilitated the creation of various
analytical QNM frameworks that significantly improve the design
and comprehension of micro and nanoresonators. In this review, we
have highlighted recent progress, showcasing their benefits in
offering greater numerical efficiency and physical insights
compared to traditional design approaches. We hope this will
encourage a wider adoption of QNMs and further innovation in
electromagnetism and other areas of physics.

Despite these successes, research on QNMs in electromagnetism
continues vigorously and several open questions remain.

One of the foremost issues is the convergence of QNM
reconstruction, as described in Equations 2, 3. Achieving robust
convergence is complex and influenced by numerous factors,
including the material properties of the resonators [68], the choice
of the formula for αm [17, 18], and the configuration of perfectly
matched layers (PML) used for regularization [19]. Currently, the
community lacks a definitive guideline on optimizing these
parameters to improve convergence.

Another unresolved issue is understanding the existence of
various QNM decomposition formulas. As discussed in Section
2.2, in dispersive systems, the formula for αm is sensitive to the
choice of auxiliary fields and source terms. Although all formulas
share a resonant pole term 1/(~ωm − ω), they differ in a non-resonant
term f(ω), which is a slow-varying function of ω. Recent studies
have shown that certain choice of f(ω) leads to βm in Equation 3,
derived from αm, exhibiting an instantaneous response term [27,

130]. It would be important to verify that f(ω) for all the formulas
offer a consistent physical interpretation.

From an application standpoint, there are numerous domains
where QNM theory has yet to be fully utilized. For instance, QNM
theory could potentially be applied to the analysis of spectra in
photoemission electron microscopy (PEEM) [24], electron energy-
loss spectroscopy (EELS), or high-order nonlinear optics [131],
offering new insights and computational methods in these fields.

Finally, the recent interest in time-varying nanoresonators [132,
133], whose optical properties can be modulated on time scales
comparable to the oscillation period of electromagnetic fields, has
opened up new avenues for QNM research. Extending the QNM
framework to model the optical response of these dynamic, non-
Hermitian systems could help discover a wide range of novel effects
and applications.
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Hyperboloidal method for
quasinormal modes of
non-relativistic operators

Christopher Burgess and Friedrich König*

School of Physics and Astronomy, SUPA, University of St. Andrews, St. Andrews, United Kingdom

The recently reported compactified hyperboloidal method has found wide use in
the numerical computation of quasinormal modes, with implications for fields as
diverse as gravitational physics and optics. We extend this intrinsically relativistic
method into the non-relativistic domain, demonstrating its use to calculate the
quasinormal modes of the Schrödinger equation and solve related bound-state
problems. We also describe how to further generalize this method, offering a
perspective on the importance of non-relativistic quasinormal modes for the
programme of black hole spectroscopy.

KEYWORDS

quasinormal modes (QNMs), optical soliton, numerical method, black hole
spectroscopy, spectral instability, Schrödinger equation

Introduction

Quasinormal modes (QNMs) are complex frequency modes which characterize the
resonant response of a system to linear perturbations. They are prevalent in the physics of
waves, with special prominence in optics and gravitational physics. In optics, QNMs are
useful for understanding the behaviour of resonant photonic structures, such as plasmonic
crystals, nanoparticle traps, metal gratings, and optical sensors [1–5]. In gravitational
physics, they are thought relevant to tests of black hole no-hair conjectures [6–8], and
central to the emerging project of black hole spectroscopy with gravitational waves [9, 10].
While the QNM literature in optics treats dispersion as a matter of necessity [11, 12], the
prevailing methods in gravitational physics are concerned with non-dispersive, relativistic
wave propagation [13–15]. We believe there are good reasons to go beyond relativistic wave
propagation in the gravitational context. A variety of quantum gravity models predict the
dispersive propagation of gravitational waves [16–19], for example, in models with a non-
zero graviton mass, violation of Lorentz invariance, and higher dimensions [20–22]. Indeed,
it has been proposed that QNMs may be used to probe gravity beyond general relativity,
through imprints on radiative emission from black holes [23–27]. More generally, we
anticipate that developments of QNM methods for non-relativistic operators will broaden
the scope of existing questions in QNM theory.

Numerical methods underpin much of the progress in QNMs over recent years. Indeed,
efficient schemes for computing the QNMs of potentials are likely indispensable for future
developments in both theory and the modelling of observations. Recently, the so-called
compactified hyperboloidal method [28–31] has proven to be a powerful tool, finding wide
use in the computation of black hole QNM spectra and bringing within reach the systematic
exploration of their connection to pseudospectra [32–39]. Beyond this, it is natural to ask
whether the method can also find use in optical systems. We believe it can, but it cannot be
widely applied in optics without modification. This is because optical media create non-
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relativistic and dispersive dynamics, while the present formulation
of the method treats only relativistic and non-dispersive dynamics,
as may be seen from its use of hyperbolic spatial slices penetrating
the black hole horizon and future null infinity.

A notable optical system that motivates the development of a
hyperboloidal method for optics is the fiber optical soliton, which
has recently been established as a black hole analogue with an exactly
known QNM spectrum [40]. As such, the soliton is the ideal system
with which to develop the method, as the resulting numerics can be
compared both to known analytical results and to the numerics of
the corresponding relativistic system. Moreover, perturbations to
the soliton realize the Schrödinger equation with a Pöschl-Teller
potential, making the soliton a promising experimental platform
with which to address questions in QNM theory, such as the physical
status of spectral instabilities observed in QNM numerics, where the
Pöschl-Teller potential is paradigmatic [30, 41–44].

In this article, we outline a new method for the numerical
computation of QNM spectra for operators with a non-
relativistic dispersion relation, by adapting the compactified
hyperboloidal method. We begin by showing how to compute
the QNMs of the Schrödinger equation for an arbitrary potential,
noting that the relativistic and non-relativistic spectra are related by
a simple endomorphism. We subsequently demonstrate the method
for the Pöschl-Teller potential, explicitly calculating the soliton
QNM spectrum numerically. Finally, we sketch how to develop
these ideas in order to treat generalized non-relativistic dispersion
relations, and discuss potential applications of the more general
method, with emphasis on its future use in black hole spectroscopy.

Compactified hyperboloidal method
for the Schrödinger equation

We begin by considering a scalar field ϕ which obeys a
Schrödinger equation of the form,

i∂t − ∂2r + V( )ϕ � 0, (1)
with V a potential that vanishes for r →± ∞. The boundary
conditions for QNMs describe solutions that transport energy
away from the potential, as discussed in more detail in [40]. It
can be shown, using the asymptotic dispersion relation of Equation
1, that QNM solutions must diverge for r →± ∞. That is, the
asymptotic form of the solution must be ϕ ~ exp(iKr − iΩt), with
the requirement that Im(K) is positive and negative on the left and
right, respectively. These spatial divergences are problematic for
numerical methods, but they can be removed by using a
hyperboloidal coordinate transformation. Following [30], we
adopt coordinates,

t � τ − h x( ), r � g x( ), (2)
where g(x), h(x) are yet to be given, and ∂τ � ∂t by construction. In
the relativistic context, these are used to compute QNMs of black
holes, with h(x) chosen so that contours of τ tend to null curves that
intersect the horizon and future null infinity. There, Equation 2 is
intended to respect the asymptotic hyperbolic geometry of the
spacetime, giving rise to bounded and well-behaved QNM
solutions. However, there is no preferred speed in our non-
relativistic system, meaning that no coordinate transformation

will consistently give rise to bounded solutions. This requires a
different approach.

In order to construct bounded QNM solutions, we first
parameterize h(x) by a new variable vg such that contours of τ
tend asymptotically to trajectories directed outwards with
|dr/dt| � vg. In particular, we write

g x( ) � arctanhx, h x( ) � 2vg( )−1 log 1 − x2( ), (3)

where g(x) compactifies the space such that the real line of r gives
x ∈ [−1, 1] if we close the set by including the boundaries. In the
Supplementary Appendix, we show that QNMs whose asymptotic
group velocity is vg in (r, t) coordinates are finite at the spatial
boundaries, x � ± 1. This enforces the boundary conditions for
these modes, but does not guarantee that any such modes exist.

In contrast to the relativistic case, dispersion in non-relativistic
systems means that group and phase velocities are not the same. As a
result, QNMs whose asymptotic phase velocity is vp ≠ vg in (r, t)
coordinates will undergo phase divergences at the boundaries. This
can be removed by a phase-rotation of the field,

ϕ̂ � e−Δ log 1−x2( )/2ϕ, (4)
where we introduce Δ � i(vg − vp)/2, so that the phase rotation is
parameterized by both vg and vp. The form of the required phase
rotation follows from the asymptotic dispersion relation of Equation
1 and the choice of height function, h(x). Intuitively, it depends on
the mismatch of the two velocities. The result is that the field ϕ̂ is
bounded and well-defined on the new space.

The cost of the above construction is that we introduce two
unknown real parameters, vg and vp, into the problem. In fact,
identifying velocity pairs that correspond to actual QNM solutions is
as difficult a problem as determining the QNM spectrum itself. This
may be seen by the relation,

Ω � −1
2
vg vp + i

�����������
vg vg − 2vp( )√( ), (5)

which we derive, in the Supplementary Appendix, from the
asymptotic dispersion relation of Equation 1. This holds true for
any mode whose asymptotic group and phase velocities are vg and
vp, respectively. The existence of a relation such as Equation 5 is a
direct consequence of dispersion. In a relativistic system, all
asymptotic speeds are the speed of light, so Ω cannot be
expressed in terms of asymptotic velocities. This difference
between the relativistic and non-relativistic methods is crucial.
Equations 3, 4 mean we obtain an equation of motion, and an
eigenvalue equation for the complex frequency Ω, both of which are
parameterized by vg and vp. The significance of Equation 5 is that
these additional parameters can ultimately be eliminated, leaving Ω
as the only unknown in the problem.

We proceed as in [30], by rewriting Equation 1 in the new
coordinates and performing a first-order reduction in time,
introducing the auxiliary field ψ̂. The equation of motion
becomes ∂τ ϕ̂ � ψ̂ with

x2∂τ ψ̂ � J1ϕ̂ + J2ψ̂, (6)
where J1 and J2, given in the Supplementary Appendix, are spatial
operators depending on the potential and the asymptotic velocities.
In contrast to the relativistic method, ∂τ ψ̂ cannot be isolated by
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division in Equation 6 because its pre-factor vanishes at x � 0. This
occurs because the contours of τ have to “turn around” in order to be
outgoing in the (r, t) coordinates. Our alternative approach is to
construct ∂τ ψ̂ using a Taylor series around x � 0, obtaining the
required derivatives by repeated differentiation of Equation 6. In
fact, this treatment is necessary only for terms indivisible by x2, and
we obtain a simpler result if we initially separate the terms in this
way. This separation is mostly trivial, but for the potential, where we
write V � V0 + xV1 + x2 ~V(x), with V0 and V1 Taylor series
coefficients about x � 0 and ~V accounting for the remaining
terms. We obtain

∂τ ψ̂ � L1ϕ̂ + L2ψ̂, (7)
where L1 and L2 are spatial operators that we derive in the
Supplementary Appendix. Equation 7 is formally identical to that
obtained in the relativistic method [30], but the operators are quite
different, containing arbitrarily high spatial derivatives and
depending on the asymptotic velocities.

In matrix form, we write i∂τu � Lu with

u ≡ ϕ̂
ψ̂

( ), L ≡ i
0 1
L1 L2

( ),
and obtain the mode equation

Lu � Ωu. (8)
The operator L is parameterized by vg and vp, giving rise to a family
of operators. For each operator, Equation 8 defines a unique
eigenvalue problem and a corresponding spectrum. However,
only a subset of the frequencies from these spectra obey
Equation 5, and it is this subset which comprises the QNM
spectrum of Equation 1. Using Equation 5 to eliminate vg and
vp, one obtains a problem in which the frequency Ω is the only
unknown and all solutions correspond to QNMs. In this
formulation, L is parameterized by Ω, which constitutes an
essential difference from the relativistic method, wherein the
corresponding operator does not depend on Ω [30]. Importantly,
Equation 8 unambiguously determines the QNM spectrum.

Equation 8 is discretized usingN-point Chebyshev nodes of the
second kind. In this way, fields are approximated byN-dimensional
vectors and spatial operators by N-dimensional matrices. It follows
that the vector u and the operator L are approximated by
2N-dimensional vectors and matrices, respectively. The result is

LNuN � ΩuN. (9)
The QNM spectrum may then be obtained from Equation 9 in the
usual way using det(LN −Ω Id) � 0. In the Supplementary
Appendix, we show that this determinant may be rewritten as
that of a smaller N-dimensional matrix, M. Its elements are
quadratic in the square root of the QNM frequency, giving rise
to a polynomial of degree 2N in

��
Ω

√
. For a given potential V, the

roots may be numerically determined in order to give 2N of the
QNM frequencies. The fact that the frequency enters via its square
root is a result of the Schrödinger equation having a first derivative
in time, rather than a second derivative in time like the wave
equation. Indeed, the exact QNM spectra of the Schrödinger and
wave equations are related to each other by i

��
Ω

√ � ω, as was
elaborated in [40]. This means we can relate the results of the

non-relativistic method to those of the relativistic method, allowing
us to better evaluate the accuracy of the new method.

Quasinormal modes of the Pöschl-
Teller potential

In this section, we use the above numerical method to calculate
the QNMs of the Schrödinger equation with the Pöschl-
Teller potential,

V � V0 sech
2 r( ) � V0 1 − x2( ), (10)

which serves as an exemplar for both the relativistic and non-
relativistic methods. The QNMs of Equation 10 are finite
polynomials in the compactified spatial coordinate, with the
result that an N-point discretization reproduces the first 2N
QNMs to arbitrary precision. The Pöschl-Teller potential is also
ideal because the corresponding QNM spectrum of the Schrödinger
equation is given analytically by

Ωn � n + 1
2
− i

������
V0 − 1

4

√
[ ]

2

, (11)

allowing us to verify our results [40]. In regards to the non-
relativistic method, we note that the Pöschl-Teller potential is
especially simple because all its QNMs have the same vg
parameter, which is a result of the fact that i

��
Ω

√
is aligned along

vertical lines in the complex plane for this potential. While this
simplicity does not influence the operation of the method, it does
allow us to more easily assess the spectrum. Lastly, we partition the
Pöschl-Teller potential with V1 � 0 and ~V � −V0, which reinforces
the simplicity of the potential.

Now, we make some comments on the specifics of our
implementation of the method. We find the calculation is
significantly more efficient for odd N. This is a consequence of
discretization. The Taylor series expansions of L1 and L2 involve
spatial derivatives at x � 0, which are obtained by integration with a
Dirac delta function in the continuous case, and by matrix
multiplications in the discretized case. For odd N, the relevant
matrix is zero everywhere but a central column whose entries are
unity. However, for evenN, the matrix is everywhere populated, and
this increases the computational cost of the calculation. We also find
that evaluating the determinant of the large symbolic matrix M is
inefficient, so we instead sample the determinant in the complex
plane and reconstruct the symbolic determinant using polynomial
interpolation. This uses that the method produces a polynomial of
degree 2N in

��
Ω

√
. Importantly, this is true no matter what potential

we consider.
In Figure 1A, we plot the exact QNM frequencies of the

unperturbed Pöschl-Teller potential, given in Equation 11 [40]
alongside those calculated by the new numerical method, with a
resolution of N � 201. We find excellent agreement for all
frequencies, with an error which may be made arbitrarily small
by increasing the working precision. These results are given in
Figure 2. We also calculate the QNM spectrum of a perturbed
Pöschl-Teller potential,

V � V0 1 − x2( ) + ϵΔV, (12)
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where ϵ � 10−30 and ΔV is a randomly chosen polynomial of degree
9, shown in the inset of Figure 1. We find that the spectrum for
Equation 12 closely resembles the unperturbed spectrum up to the
10th overtone index, beyond which the frequencies are significantly
displaced from their unperturbed values, as shown in Figure 2. These
numerical results are then indicative of spectral instabilities that
have been reported by previous authors [30, 45, 46].

The simple relationship between the QNMs of the Schrödinger
and wave equations becomes visible under the transformation
Ω → i

��
Ω

√
, which maps the spectrum of the former onto that of

the latter. In Figure 1B, we plot i
��
Ω

√
for the same spectra as above,

obtaining the recognizable vertical lines in the complex plane that
are characteristic of the wave equation with a Pöschl-Teller
potential. In this way, we illustrate how one can cross-verify the
results of the relativistic and non-relativistic methods against each
other, for arbitrary potentials.

Discussion

In this section, we discuss potential applications of the non-
relativistic compactified hyperboloidal method that we developed in

the preceding text, suggesting well-motivated directions in which to
further develop the method and providing a sketch of how this can
be achieved. The main motivations for this method were the
modelling of QNMs of optical solitons, and the development of a
framework within which one can treat QNMs in quantum gravity
models with dispersive gravitational wave propagation. Beyond
these, we note that this non-relativistic method may be employed
equally well in any system governed by a Schrödinger equation
equipped with a general potential. In this paper, we numerically
calculated QNM spectra for the Pöschl-Teller potential and
perturbations of that potential, finding agreement with earlier
works [40, 47, 50]. For potentials with different long-range
behaviour than the Pöschl-Teller potential, one typically requires
different choices of height function h(x), but this requirement is
shared by the relativistic method, and may be addressed by the same
techniques [29, 48, 49]. In addition, we note that this method may
also be used to numerically solve for the quantum mechanical
bound-states of a general potential well, using the well-known
connection between the QNMs of a potential barrier and the
bound-states of the corresponding well [41, 51–53].

As described above, the non-relativistic method we have
presented is closely related to the relativistic method, sharing

FIGURE 1
QNM spectra for the Schrödinger equation with a potential V � V0 sech

2(r) + ϵΔV, where V0 � 1 and ΔV is the perturbation shown in green in the
inset, alongside the unperturbed Pöschl-Teller potential in blue. The red dots and blue boxes correspond to the unperturbed Pöschl-Teller potential
(ϵ � 0), with red dots ( ) given by the exact formula and blue boxes ( ) numerically determined by the newmethod. The green crosses ( ) correspond to a
perturbed potential (ϵ � 10−30) and are also numerically determined. (A) Displays the three QNM spectra, while (B) Displays the same spectra under
the transformation Ω → i

��
Ω

√
, which relates the spectra to those of a corresponding relativistic operator.
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many essential features with it. For instance, the classes of potentials
that can be treated by the two methods are the same, and they have
the same maximum achievable accuracy for a given resolution. As a
result, the methods are comparable in their scope and power. They
also share the same advantages and disadvantages when compared
to other popular numerical methods, such as Leaver’s continued
fraction method [54]. For example, in this case, both the relativistic
and non-relativistic methods enjoy the advantage that they recover
the entire spectrum simultaneously, and do not require initial seed
values close to the QNM frequencies one wishes to compute
[30, 54–56].

The non-relativistic method we have presented readily
generalizes beyond the Schrödinger equation, allowing us to treat
a large class of more general non-relativistic operators. Indeed, the
method presented in this paper primarily serves a didactic purpose,
as a demonstration of a general approach with which one may
calculate QNMs of these more general operators. The primary
motivation for this is to facilitate the efficient computation of
QNMs of operators that deviate from the wave equation only by
the presence of weak dispersion, as are known to arise in models of
quantum gravity, where a thoroughgoing understanding of QNMs is
of special interest. The modelling of dispersive gravitational wave
propagation and its influence on the observable QNM spectrum will
be essential if black hole spectroscopy is to be an effective probe into
the domain of quantum gravity.

A further motivation for generalizing the non-relativistic
method is to shed light on QNM spectral instabilities, and
facilitate experimental tests of the recent ultraviolet universality
conjecture, which posits that sufficiently high overtones converge to
logarithmic Regge branches in the complex plane, in the high-
frequency limit of potential perturbations [30, 36]. This effect is
easily seen in numerical calculations of the Pöschl-Teller spectrum,
on account of its simplicity, but has yet to be experimentally

confirmed. Using the optical soliton, whose perturbations realize
this potential, experimental tests become possible. The numerical
method presented above is essential for the modelling of these
experiments, as one cannot realize an exact soliton in practice,
and must always work with near-soliton potentials. In addition,
higher-order dispersive effects will also be present in any
experiment, and these must be understood in order to interpret
observations of QNM spectral migration with the soliton. In
particular, the influence of weak third-order dispersion acting on
the perturbative probe field should be incorporated into the analysis,
in order to provide the best test of the above conjecture. This
motivates the development of the non-relativistic method beyond
the Schrödinger equation, to include higher-order dispersive terms.

In view of the above reasons to generalize the non-relativistic
method, we present a sketch of the more general method, which we
will elaborate in future work. Suppose we have a non-relativistic
equation of the form

α i∂t( ) + β i∂r( ) + V( )ϕ � 0, (13)
with α(z) and β(z) finite polynomials in z, and d the larger degree
among the two polynomials. In principle, we can apply a
hyperboloidal coordinate transformation and a phase rotation of
the fields, parameterised by the asymptotic velocities, vg and vp.
Then, we introduce auxiliary fields to effect a dth-order reduction in
time, defining

ϕ1 � ϕ, ϕk+1 � ∂τϕk, (14)
with 1≤ k< d. Equation 14 closely mirrors the treatment of
resonator QNMs in optics [11]. The equations of motion of these
fields are trivial for all fields but ϕd, whose equation of motion more
closely resembles Equation 6. If we use a Taylor series expansion of
∂τϕd around zero, we can write it in terms of spatial operators acting

FIGURE 2
Comparisons of exact and numerically determined QNM frequencies for the Schrödinger equation with a potential V � V0 sech

2(r) + ϵΔV, where
V0 � 1 and ΔV is the perturbation shown in Figure 1. The first 21 QNM frequencies are displayed. The unperturbed (ϵ � 0) spectrum is recovered well by
the new numerical method, with errors smaller than 10−37 for the chosen working precision. We also obtain the perturbed (ϵ � 10−30) spectrum and find
the deviation from the exact spectrum grows rapidly with overtone index, n, as in previous works on spectral instability.
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on the fields. The general form of the now d-dimensional operator
L is

L �

0 1 0 / 0
0 0 1 / 0
0 0 0 / 0
..
. ..

. ..
.

1 1
L1 L2 L3 / Ld

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (15)

which we discretize as before. Then, we use the asymptotic
dispersion relation of Equation 13 to eliminate the asymptotic
velocities, obtaining a vector equation for the QNM frequencies.
From Equation 15, it can be shown that it is always possible to
construct anN-dimensional matrixM whose determinant is a finite
polynomial for the QNM frequencies. This may then be solved
numerically and the frequencies Ω determined. This generalization
is largely straight-forward. However, the divergences in space are
multi-exponential with higher derivatives, leading to non-
polynomial modes in the compactified coordinates. This
complicates the imposition of QNM boundary conditions, and
further work is required to address this. For example, approaches
that augment the function space to include additional non-
polynomial functions can be investigated. Future work can
investigate how this generalized method compares with other
numerical schemes, as the connection to the relativistic method
is less concrete in this case.

Themethod presented is primarily intended for the gravitational
context and long-range potentials, but the authors note that
extensions to optical cavities or plasmonic resonators may be
possible. Beyond QNMs, the non-relativistic method can be
applied to spectra of non-selfadjoint operators, connecting with a
larger research effort. We believe an explicit formulation in this
context is a promising research direction. In addition, future works
can develop the method, along the lines of [30], in order to calculate
the pseudospectra of non-relativistic operators. It is our view that the
relationship between perturbed QNM spectra and the
pseudospectrum is best understood from a broader perspective,
not limited to relativistic wave operators. We expect that numerical
methods will become increasingly important for addressing
questions in the theory of QNMs, and anticipate that
investigations into the QNMs of non-relativistic fields will
provide new avenues to explore these questions.
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(In)stability of de Sitter
quasinormal mode spectra

C. M. Warnick1,2*
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We consider how the quasinormal spectrum for the conformal wave operator

on the static patch of de Sitter changes in response to the addition of a

small potential. Since the quasinormal modes and co-modes are explicitly

known, we are able to give explicit formulae for the instantaneous rate of

change of each frequency in terms of the perturbing potential. We verify these

exact computations numerically using a novel technique extending the spectral

hyperboloidal approach of Jaramillo et al. (2021). We propose a definition for a

family of pseudospectra that we show capture the instability properties of the

quasinormal frequencies.

KEYWORDS

quasinomal modes of black holes, black holes, spectral instability, non-normal, wave

equation

1 Introduction

For asymptotically de Sitter and anti-de Sitter black hole spacetimes, the problem of

defining the quasinormal frequencies has been satisfactorily resolved based on making

use of a hyperboloidal foliation of the spacetime [1, 2].1 For asymptotically flat black

hole spacetimes, the situation is not as fully developed, but nevertheless in many cases

a suitably robust mathematical definition exists either through casting the problem in

terms of scattering resonances and making use of the method of complex scaling [3, 5]

or through using a hyperboloidal slicing [4, 6, 7]. In all cases, the quasinormal frequencies

can ultimately be understood as eigenvalues of some operator which is not self-adjoint.

A feature of operators which are not self-adjoint is that their spectra can be unstable to

“small” perturbations. For a simple example in finite dimensions, consider the matrices

A =

(

0 ǫ−3

0 0

)

, A′ =

(

0 ǫ−3

ǫ 0

)

.

Clearly for 0 < ǫ≪1,A′−A is “small” by any reasonable notion of smallness; however,

A has a repeated eigenvalue at 0, while A′ has eigenvalues ±ǫ−1, so the spectra diverge as

ǫ → 0.

In the context of black hole quasinormal spectra, it was noticed already by

Aguirregabiria–Vishveshwara Nollert–Price in the 90’s [8–11] that seemingly innocuous

changes to the operators used in defining quasinormal modes could have dramatic effects

on the spectrum. Motivated in part by mathematical [2, 4, 6, 12] and numerical [13–15]

studies which cast the problem of finding the quasinormal spectrum as an eigenvalue

problem for the time evolution operator on a hyperboloidal foliation, there has been a

resurgence of interest in the problem of quasinormal spectral stability, see [16, 17] in the

1 see [3, 4] and references therein for a historical overview of this problem
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specific context of instability arising from non-self-adjoint

operators as well as [18–23] and references therein for many

other studies.

In this short article, we shall consider the problem of the

conformal wave equation on the static patch of de Sitter space.

The high degree of symmetry enjoyed by the de Sitter spacetime

means that the problem of determining the quasinormal spectrum

is completely solvable, and the various objects involved can

be computed explicitly. This makes this a helpful test-bed for

understanding the effects on the spectrum of small perturbations.

The perturbations we consider consist of stationary modifications

to the potential. In a more physically motivated situation, we

should consider the linearized gravitational field (rather than a

conformal scalar field) and permit perturbations to the geometry

of the background rather than just a potential. Our methods can, in

principle, be applied in this situation, but for simplicity, we focus

on the toy model.2

We are able to compute exactly the first order correction to

each quasinormal frequency in terms of the perturbing potential.

We find that the answer to the question of whether an individual

quasinormal frequency is stable to “small” perturbations depends

sensitively on what is meant by “small” [cf [25, footnote 18]].

In particular, the relevant notion of smallness varies depending

on which modes we are considering, and those representing

more rapidly decaying modes require a more stringent notion

of smallness. One may alternatively view this by first fixing the

notion of smallness considered and then one observes that themore

rapidly decaying modes are more unstable to small perturbations,

consistent with expectations going back to [9].3

To confirm the analytic computations, we also perform some

numerics. For this, we make use of a spectral method on a

hyperboloidal (or null) slicing, similar to that used in [16], but

applied to an enlarged system obtained by differentiating the

equation by hand k-times motivated by the analysis of [2]. This

has a doubly beneficial effect—First, it stabilizes the numerical

computation of quasinormal frequencies; second, it permits us to

stably compute a family of pseudospectra that we define, associated

with the problem, which allow the stability properties to be directly

visualized. In this context, we should also mention the forthcoming

study [26] which also provides a numerically stable computation of

pseudospectra.

2 Set-up and defining the
quasinormal spectrum

We consider the static patch of the de Sitter spacetime, written

in coordinates that are regular at the future horizon. This is a metric

on R
4 = {(t, x) : t ∈ R, x ∈ R

3}

g = −
(

1− κ2δijx
ixj
)

dt2 − 2κδijx
idxjdt + δijdx

idxj (1)

2 A further complication can arise where the perturbations are presumed

to have a time dependence with a typical timescale much shorter than the

quasinormal frequencies, in which case one may hope to attempt some

averaging procedure (see [24, §3.5 d]).

3 “...we find that the fundamental mode is, in general, insensitive to small

changes in the potential, whereas the higher modes could alter drastically.”

with δij the usual Kronecker delta and κ > 0 a constant. The static

patch is the region R = Rt × B where B = {x ∈ R
3
: |x| < κ−1}

is the ball of radius κ−1, and the future cosmological horizon is

H+ = Rt × ∂B. This metric is Einstein with cosmological constant

3 = 3κ2. We will keep track of κ for later discussion, but nothing

is lost by setting κ = 1 throughout.

The wave operator in these coordinates takes the form

2gψ = −

(

∂

∂t
+ κxi

∂

∂xi

)2

ψ−3κ

(

∂

∂t
+ κxi

∂

∂xi

)

ψ+δij
∂2ψ

∂xi∂xj
.

We shall consider the following family of equations on this

background

L(h)ψ : = 2gψ − κ2Vhψ = 0. (2)

Here, Vh is a time-independent potential depending on some

small parameter |h| < ǫ, and we assume that the map (h, x) 7→

Vh(x) is smooth on (−ǫ, ǫ)×R
3. We are interested in particular in

the quasinormal ring-down behavior of solutions to this equation.

To discuss this, we introduce the Laplace transformed operator

which acts on functions u :B → C

L̂(s, h)u : = e−stL(h)(estu). (3)

We define the quasinormal frequencies through the solvability

properties of this operator. More precisely, for k = 0, 1, 2, . . . we

define an inner product and norm on functions u,w :B → C by

(u,w)k : =

k
∑

l=0

∫

B

(

∇(l)u · ∇(l)w
)

d3x, ||u||k : = (u, u)
1
2

k
.

(4)

Here, ∇(l)u is the rank l-tensor ∇i1 · · · ∇ilu, and · means

contraction on all indices.4 Notice that (u,w)0 is the usual L
2−inner

product. We define Hk, the Sobolev space of order k, to consist of

those functions u :B → C with ||u||k < ∞. This is a Hilbert space

with the corresponding inner product. We define the domain of Ls
to be

Dk = {u ∈ Hk
: L̂(1, 0)u ∈ Hk}.

It can be shown that Hk+2 ⊂ Dk ⊂ Hk+1, so that u ∈ Dk H⇒

L̂(s, h)u ∈ Hk for all s, h.

With this definition in hand, we can state the basic theorem we

shall require, which follows straightforwardly from Vasy, Warnick,

and Hintz and Xie [1, 2, 27, 28]:

Theorem 1. Fix |h| < ǫ, k ∈ N and let Uk = {z ∈ C :ℜ(z) >

−(k + 1
2 )κ}. Then, the operator L̂(s, h) :D

k → Hk is invertible for

s ∈ Uk, except at a discrete set 3k(h) ⊂ Uk. Moreover, for each

σ ∈ 3k(h) there is an integer d > 0 such that:

1. There exists a d-dimensional space of smooth functions w :B →

C which extend smoothly to ∂B and satisfy L̂(σ , h)w = 0.

2. There exists a d-dimensional space of distributions X ∈ D
′(R3)

which satisfy

X[L̂(σ , h)φ] = 0, |X[φ]| 6 c ||φ|B||k , (5)

for some c > 0 and all test functions φ ∈ C∞
c (R3).

4 Derivatives should be understood in the distributional sense.
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3. As s varies, the meromorphic family of operators

L̂(s, h)−1
:Hk → Dk has a pole at σ .

It follows from the characterization of points in 3k(h) that

3k+1(h) ∩ Uk = 3k(h). We call any σ ∈ 3k(h) for some k a

quasinormal frequency of L(h), with geometric multiplicity d. A

corresponding smooth solution to L̂(σ , h)w = 0 is a quasinormal

mode, and a distribution X satisfying ii) above we call a co-mode.

Notice that the condition on X implies that X is supported in B and

so can be uniquely extended to act on test functions in C∞(B).

The residue of L̂(s, h)−1 at s = σ is a finite rank operator, and

we identify the rank of this residue with the algebraic multiplicity

of σ . As in the familiar case of matrices, the algebraic multiplicity

is an upper bound for the geometric multiplicity. We say that a

quasinormal frequency σ ∈ 3k(h) is simple if it has algebraic

multiplicity one.

The result above holds for h fixed. The question we shall

consider in this study, that of quasinormal spectral instability,

amounts to trying to understand how the set 3k(h) changes as

h varies.

3 Stability of quasinormal frequencies

3.1 Simple quasinormal frequencies

Let us suppose that for the unperturbed operator, that is, at

h = 0, we can compute the quasinormal frequencies, modes,

and co-modes, and we consider some simple σ ∈ 3k(0) with

corresponding quasinormal mode w and co-mode X. It was shown

in Joykutty [29] that that as h varies, there is some smooth curve of

quasinormal frequencies σ (h) ∈ 3k(h), with σ (0) = σ , together

with an associated curve of quasinormal modes w(h) with w(0) =

w, depending smoothly on h such that

L̂(σ (h), h)w(h) = 0

holds for all |h| < ǫ. Moreover, in Joykutty [29] an explicit power

series expansion for σ (h) is given in terms of the trace of certain

operator valued contour integrals. We shall take a more elementary

approach to find a formula for σ ′(0).

Since L̂ depends smoothly on its arguments, we can differentiate

with respect to h at h = 0 to find:

σ ′(0)
∂ L̂

∂s
(σ , 0)w+

∂ L̂

∂h
(σ , 0)w+ L̂(σ , 0)w′(0) = 0. (6)

By assumption, we know ∂ L̂
∂s (σ , 0),

∂ L̂
∂h
(σ , 0) and w, but we do not

know anything about w′(0). If, however, we act on Equation 6 with

the co-mode X, the term involving w′(0) will be annihilated. We

find then:

σ ′(0)X

[

∂ L̂

∂s
(σ , 0)w

]

+ X

[

∂ L̂

∂h
(σ , 0)w

]

= 0

or, rearranging

σ ′(0) = −
X
[

∂ L̂
∂h
(σ , 0)w

]

X
[

∂ L̂
∂s (σ , 0)w

] . (7)

This formula gives us an exact expression for the velocity of the

curve of quasinormal frequencies σ (h) as it passes through σ .

We observe that only the numerator of Equation 7 depends

on the perturbation—the denominator can be computed from the

unperturbed operator alone. Recalling that the operator norm of a

linear map A :V → W between normed spaces is given by

‖A‖V→W = sup
u∈V ,‖u‖V=1

‖Au‖W ,

we can estimate σ ′(0) in terms of an operator norm of the linearized

perturbation as

|σ ′(0)| 6 γσ

∥

∥

∥

∥

∥

∂ L̂

∂h
(σ , 0)

∥

∥

∥

∥

∥

Hk→Hk

. (8)

Here, the sensitivity, or condition number, γσ depends only on the

unperturbed operator and is given by

γσ =
‖w‖k‖X‖k∗

∣

∣

∣
X
[

∂ L̂
∂s (σ , 0)w

]∣

∣

∣

where ‖X‖k∗ : = ‖X‖Hk→C
. We can think of the expression for

γ as a generalization of the formula for the sensitivity of a matrix

eigenvalue.

At this stage, it is worth commenting on the role of k in the

discussion. Increasing k increases the region of the complex plane

in which we can study the quasinormal frequencies; however, the

price we pay for this in Equation 8 is an increase in the control

that we require on the perturbation. We can mitigate this by

choosing k to be as small as possible, consistent with σ ∈ 3k(0).

Even doing this we see that to bound the rate of change of a

quasinormal frequency σ , we (roughly speaking) need control of

more than−κ−1(Re σ ) derivatives of the perturbation.We shall see

this more explicitly later on. We should note that ‘control of higher

derivatives’ may appear to be an unphysical condition, but one can

also view this condition as asking that the perturbations should not

have too much of their energy at high wavenumbers.5

The arguments above do not rely strongly on the particular

form of the metric, or the family of operators we consider. As long

as a result broadly analogous to the conclusions of Theorem 1 holds,

we can expect to be able to repeat this argument.

3.2 Non-simple quasinormal frequencies

In the discussion above, we made the assumption that the

quasinormal frequency σ was simple, which was needed to establish

that σ sits on a smooth curve of quasinormal frequencies. If σ is not

simple, then this need not be the case in general—see Figure 3 for

a situation where this arises in our numerics. It does follow from

[29] that the number of QNFs, counted with suitable multiplicity,

inside a small circle around σ is independent of h for small h, so

that QNFs in particular cannot be locally “created” or “destroyed”

5 Roughly speaking, for a perturbation inHk, the fraction of the total energy

carried by wavenumbers greater than µ is bounded by a constant multiple of

µ−2k for large µ.
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by small perturbations of the type we consider—QNFs can only

appear from infinity or by splitting off from a QNF with algebraic

multiplicity greater than one.

In general, it does not appear to be a straightforward question to

determine whether a particular non-simple quasinormal frequency

lies on a smooth curve. In some cases, however, it may be that

evolution under L(h) leaves invariant some subspace (such as an

angular momentum eigenspace) so we can consider the problem of

finding quasinormal frequencies restricted to this subspace. If σ is

a simple quasinormal frequency of the restricted problem, then the

results of the previous section will apply.

4 The generalized pseudospectrum

In Jaramillo et al. [16] and subsequently [see Boyanov et al. [23]

and references therein], the instability of the quasinormal spectrum

has been investigated using the notion of pseudospectrum,

comparing the results from this approach to computations with

explicit perturbations. Recall that for a matrix A we can define the

ǫ−pseudospectrum to be6

3ǫ = {s ∈ C :

∣

∣

∣

∣(A− sι)−1
∣

∣

∣

∣

Rn→Rn > ǫ−1}.

where we define
∣

∣

∣

∣(A− sι)−1
∣

∣

∣

∣

Rn→Rn = ∞ whenever A− sι is not

invertible. It can be shown [30–32] that 3ǫ corresponds to the set

of points which can appear in the spectrum of A+ δA, where δA is

a perturbation satisfying ||δA||Rn→Rn < ǫ.

This notion generalizes to operators on infinite dimensional

spaces in the obvious way. However, this definition cannot

immediately be applied to our problem above because L̂(s, h) is not

of the form A − sI for some operator A. There are two possible

approaches to resolve this. The approach taken by Jaramillo et

al. [16] is to follow [2, 13, 14] and recast the problem of finding

the quasinormal frequencies as a genuine eigenvalue problem by

writing

L̂(s, h) = L2(h)+ sL1(h)+ s2

where Lj(h) is a differential operator of order j. Then, we can verify

that L̂(s, h)w = 0 has a solution if and only if

(

−s 1

−L2(h) −L1(h)− s

)(

w

v

)

= 0

has a smooth solution. Thus, the set 3k(h) can be identified with

the part of the spectrum of

L(h) =

(

0 1

−L2(h) −L1(h)

)

in Uk, where L(h) is thought of as a closed unbounded operator

on Hk
: = Hk+1 × Hk. This motivates one definition of the

6 The pseudospectrum is usually defined as a closed set, with > in place

of >; however, the open condition generalizes more straightforwardly to the

infinite dimensional case.

ǫ−pseudospectrum7 as

3̃ǫk = {s ∈ C :

∣

∣

∣

∣(L(0)− sι)−1
∣

∣

∣

∣

Hk→Hk > ǫ−1}.

This has the advantage of being the standard definition applied to

L, but the disadvantage that in numerical computations one has to

double the dimension of the approximation space to account for

the two functions w, v. Moreover, since L does not have compact

resolvent, approximation by matrices can be more challenging.

An alternative approach is to generalize the notion of

ǫ−pseudospectrum by declaring

3ǫk = {s ∈ Uk :

∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
> ǫ−1}. (9)

This has the advantage that L̂(s, 0)−1
:Hk → Hk is compact,

but the disadvantage that since it is not the standard definition

of pseudospectrum, one cannot readily make use of existing

numerical libraries. We note as an aside that we could also consider

the Hk → Dk norm in place of the Hk → Hk norm in

Equation 9, but it will not make a significant difference for the type

of perturbations we consider.

We shall take Equation 9 as our definition of the

pseudospectrum for the rest of the study [see Besson et al. [26] for

an alternative approach]. Amodification of the usual arguments for

pseudospectra [31, 32] shows that 3ǫ
k
is precisely the set of points

in Uk which can occur as quasinormal frequencies of L(s, 0)+ E for

some operator E :Hk → Hk satisfying ||E||Hk→Hk < ǫ. One can

verify that the fact that s does not appear linearly in L(s, 0) does not

affect this argument. In particular, provided ||Vh||Ck < ǫ/κ2 we

have3k(h) ⊂ 3ǫ
k
.

We note that this definition agrees with that for the null slicing

in Cownden et al. and Boyanov et al. [22, 23]; however, we do not

assume that the slicing is everywhere null.

5 Explicit computations for
perturbations of the conformal wave
operator

To give a concrete demonstration of the ideas above, we will

work in a setting where the quasinormal frequencies, modes, and

co-modes of the operator are known explicitly at h = 0. In

particular, from now on we assume that we perturb about the

conformal wave operator on de Sitter, in our language:

V0(x) = 2.

Under this assumption, we have [27, 28]:

Lemma 2. Suppose V0(x) = 2. Then:

1. 3k(0) = {−κ ,−2κ ,−3κ , . . . ,−kκ}.

2. The quasinormal frequency σn : = −nκ ∈ 3k(0) has geometric

and algebraic multiplicity n2, and a basis for the corresponding

7 The pseudospectrum is a property of the unperturbed operator; hence,

we set h = 0.
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TABLE 1A Coe�cients Ai

n,l for the first six quasinormal frequencies with

in each of the angular sectors l = 0, 1, 2. (A) l = 0.

n

i
0 1 2 3 4 5

1 1

2 1 1

3 0 2 1

4 0 0 3 1

5 0 0 0 4 1

6 0 0 0 0 5 1

TABLE 1B l = 1.

n

i
0 1 2 3 4 5 6

2 2 1

3 0 3 1

4 0 0 4 1

5 0 0 0 5 1

6 0 0 0 0 6 1

7 0 0 0 0 0 7 1

space of quasinormal frequencies is given in terms of the

standard spherical polar coordinates (r, θ ,φ) on Bκ by

wn,l,m = (κr)lYl,m(θ ,φ)2F1

[

1+ l− n

2
,
2+ l− n

2
,
3+ 2l

2
; κ2r2

]

.

Here,Yl,m are the spherical harmonics, 2F1 is the hypergeometric

function and the integersm, l satisfy |m| 6 l 6 n.

3. For each σn ∈ 3k(0), the corresponding quasinormal co-modes

are supported on ∂B. A basis for the space of co-modes is given

in terms of the action on a smooth test function by

Xn,l,m[ϕ] =

n−1
∑

i=0

Ai
n,l

1

κ i

diϕl,m

dri

∣

∣

∣

∣

r=κ−1

(10)

where |m| 6 l 6 n, Ai
n,l

are constants, and ϕl,m(r) is the

projection of ϕ onto the (l,m)−spherical mode.

While it is possible to specify the constants Ai
n,l

explicitly, see

Hintz and Xie; Joykutty [27, 28, 33], for the purposes of our results

below it is more computationally efficient to find Xn,l,m for any

particular choice of n, l,m by simply using Equation 10 as an ansatz

in Equation 5 and solving the resulting linear system forAi
n,l
. Doing

so using Mathematica to perform the computations, we find the

results in Table 1.

Since for σ 6= −κ the quasinormal frequencies are not simple,

to make use of Equation 7 to estimate the change in the QNF,

we shall make the additional assumption that the potential Vh

is spherically symmetric. Under this assumption, the QNFs are

simple once we restrict our attention to a single fixed angular

mode. If we fix l,m with |m| 6 l, then for k > l, the

TABLE 1C l = 2.

n

i
0 1 2 3 4 5 6 7

3 3 5 1

4 −3 3 6 1

5 6 −6 3 7 1

6 −18 18 −9 3 8 1

7 72 −72 36 −12 3 9 1

8 −360 360 −180 60 −15 3 10 1

unperturbed quasinormal spectrum restricted to the l,m angular

mode is 3l,m
k

(0) = {−lκ , . . . ,−kκ} and all the QNFs are simple.

We can compute the rate of change of the QNF at−κn by

σ ′
n,l,m(0) = −

Xn,l,m

[

∂ L̂
∂h
(σ , 0)wn,l,m

]

Xn,l,m

[

∂ L̂
∂s (σ , 0)wn,l,m

] .

To use this formula, we also need ∂ L̂
∂s and

∂ L̂
∂h
. For the particular

case of interest, with L(h) given by Equation 2, we have

L̂(s, h)u = −

(

s+ κxi
∂

∂xi

)2

u− 3κ

(

s+ κxi
∂

∂xi

)

u+ δij
∂2u

∂xi∂xj

− κ2Vhu

so that

∂ L̂

∂s
(σ , 0)u = −2κxi

∂u

∂xi
− (2s+ 3κ)u = −2κr

∂u

∂r
− (2s+ 3κ)u.

and

∂ L̂

∂h
(σ , 0)u = −κ2Wu,

where we introduce W =
∂Vh
∂h

∣

∣

∣

h=0
, the first order perturbation to

the potential.

We now have all that is required to compute σ ′
n,l,m

(0). In view

of the structure of the operator Xn,l,m, we can write

σ ′
n,l,m(0) = κ

n−1
∑

i=0

Bin,l
1

κ i
W(i)(κ−1)

for some constants Bi
n,l
. Note that this is independent of m due to

the spherical symmetry of the perturbing potential. We can again

useMathematica to compute these constants and present the results

for the first few modes in the l = 0, 1, 2 angular sectors in Table 2.

Picking two cases as examples, we can read off from the tables

that

σ ′
1,0,0(0) = −κW(κ−1)

σ ′
3,1,1(0) = κW(κ−1)+

5

3
W′(κ−1)+

1

3κ
W′′(κ−1).

We see very explicitly here and from Table 8 that the rate of change

of the quasinormal frequency depends on higher derivatives of
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TABLE 2A Coe�cients Bi

n,l for the first six quasinormal frequencies within

each of the angular sectors l = 0, 1, 2. (A) l = 0.

n

i
0 1 2 3 4 5

1 −1

2 1 1

3 −1 −2 − 2
3

4 1 3 2 1
3

5 −1 −4 −4 − 4
3

− 2
15

6 1 5 20
3

10
3

2
3

2
45

TABLE 2B l = 1.

n

i
0 1 2 3 4 5 6

2 −1 − 1
3

3 1 5
3

1
3

4 −1 − 41
15

− 8
5

− 1
5

5 1 19
5

53
15

16
15

4
45

6 −1 − 169
35

− 216
35

− 102
35

− 34
63

− 2
63

7 1 41
7

199
21

128
21

110
63

23
105

1
105

TABLE 2C l = 2.

n

i
0 1 2 3 4 5 6 7

3 −1 − 3
5

− 1
15

4 1 11
5

4
5

1
15

5 −1 − 117
35

− 93
35

− 64
105

− 4
105

6 1 157
35

544
105

227
105

1
3

1
63

7 −1 − 583
105

− 887
105

− 316
63

− 82
63

− 1
7

− 1
189

8 1 139
21

260
21

601
63

52
15

194
315

34
675

1
675

the perturbing potential, and the larger n, that is, the deeper into

the stable plane we go, the more derivatives that are required.

Equivalently, the deeper into the stable plane, the more control we

require on the high wavenumber component of our perturbation.

The increasing order of the operator norm that appears on the

right-hand side of Equation 8 as we probe deeper into the plane is

not simply an artifact of our framework but is necessary.

To see why it is necessary to use higher order norms to

constrain the perturbations, let us consider the case κ = 1 and

consider a family of perturbationsW(r) = ǫ3 exp(− r2

ǫ2
). We clearly

have that

|W(r)| + |W′(r)| . ǫ

so in particular as ǫ → 0, we see that in the ‘energy norm’,

that is, the operator norm associated to the H1 norm we have

that the perturbation tends to zero. However, W′′(1) = (4ǫ−1 −

2ǫ) exp(−1/ǫ2) ∼ ǫ−1 as ǫ → 0, so that using the expression above

we see that the l = m = 1, n = 3 mode is displaced (to first order)

by a term proportional to ǫ−1. Hence, smallness of the perturbation

in the energy norm is no guarantee of stability of the quasinormal

modes lying sufficiently deep in the stable half-plane.

For the choice of potential Vh(r) = 2 + h exp(−r2), with

κ = 1, which we study numerically below, we have computed
∣

∣

∣
σ ′
n,l,m

(0)
∣

∣

∣
for n 6 20, l 6 2 and presented the results graphically in

Figure 1. Noting the logarithmic scale on the y−axis, we see that

for this choice of perturbing potential
∣

∣

∣
σ ′
n,l,m

(0)
∣

∣

∣
grows roughly

exponentially in n, consistent with our expectation that modes

deeper in the stable plane become more and more unstable.

6 Numerical calculation of QNFs and
comparison to analytic results

To test numerically the computations above, we have computed

the quasinormal frequencies for the choiceVh(r) = 2+h exp(−r2).

We first present the results and then comment on the methods

used below.

6.1 Results

Since the equation is real, as is the quasinormal spectrum of

L̂(s, 0), frequencies can only move off the real axis in complex

conjugate pairs. Restricted to each angular sector the QNFs are

simple, so each QNF must remain real for a range of h values near

0. Accordingly, in Figure 2 we show the directly computed real part

of the quasinormal frequencies as a function of h. Superposed on

this, we also plot the linear approximation to the QNFs given by

σn,l,m(h) ≈ σn,l,m(0)+ hσ ′
n,l,m(0),

with σ ′
n,l,m

(0) computed using the exact methods of §5 and we see

very good agreement with the full numerical computation.We have

experimented and this result is robust to changes to the potential,

provided it remains smooth. We have thus verified the results of

§5. We note that this is a non-trivial test of our numerical scheme

(described below) as it correctly predicts the values of the QNFs for

h = 0 and agrees with the analytical computations for the gradient

of the blue curves at these points.

Figure 2 shows that pairs of QNFs do eventually meet and

move off the real axis. In Figure 3, we show an example of one

such interaction in the complex plane, which occurs when the

quasinormal frequencies with l = 0, σ (0) = −2,−3 coalesce and

move into the complex plane at h ≈ 0.4645. We note that (within

the accuracy of the numerics) it appears that we cannot identify a

smooth curve σ (h) of QNFs passing through the point at which

the QNFs meet (and hence cease to be simple). Whichever branch

we pick, the curve will have to turn through an angle of π/2 as h

passes the critical value. The choices of h to plot were determined by

setting hi = 0.4645+ ǫi |ǫi|, and taking ǫi to be spaced uniformly in

[−1, 1]. This figure was computed with a depth k = 3 and N = 25

gridpoints, see §6.2.
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FIGURE 1

Magnitude of σ ′
n,l,m(0) for n 6 20, l 6 2 for the potential Vh(r) = 2+ h exp(−r2), with κ = 1.

6.2 The numerical scheme

The numerics in this section are performed using a null slicing,

rather than the spacelike slicing introduced above, but the scheme

can be readily adapted for a spacelike slicing. For convenience, we

will take κ = 1 from now on. Setting

τ = t − log(1+ r)

the metric takes the form

g = −
(

1− r2
)

dτ 2 − 2drdτ + r2(dθ2 + sin2 θdφ2). (11)

To find the quasinormal frequencies, we seek solutions to

L̂(s, h)u = 0 of the form

u(r, θ ,φ) =
R(r)

r
Yl,m(θ ,φ)

If we define

LR : =
d

dr

(

(1− r2)
dR

dr

)

−
l(l+ 1)

r2
R+ VhR

then

rL̂(s, h)u = LR− 2s
dR

dr

so that to find quasinormal frequencies, we are led to consider the

solvability of

LR− 2s
dR

dr
= f (12)

for given f , with f (0) = R(0) = 0 and R regular r = 1.

Rather than directly discretize Equation 12, we first expand to a

system of equations by differentiating the equation. We have the

commutation relation

[

r
d

dr
,L

]

= −2L− 2

(

r
d

dr

)2

− 2r
d

dr
+ 2Vh + r

dVh

dr
.

LetRp =
(

r d
dr

)p
R,V

p

h
=
(

r d
dr

)p
Vh, and f

i =
(

r d
dr

)i
f . Then using

the commutation relation, we can show that Equation 12 implies

LRp +

p+1
∑

i=1

α
p
i R

i +

p
∑

i,j=0

β
p
i,jV

i
hR

j − s

p
∑

i=0

γ
p
i

dRi

dr
=

p
∑

i=0

µ
p
i f

i

where α
p
i ,β

p
i,j, γ

p
i are numerical (indeed integer) constants

determined recursively by

α
p+1
i = α

p
i−1 + 2α

p
i (1 6 i 6 p), α

p+1
p+1 = α

p
p + 2α

p
p+1 − 2,

α
p+1
p+2 = α

p+1
p − 2

with α0i = 0 for all i. Next, we set β
p
i,j = 0 for all i, j and recursively

define

β
p+1
0,p = β

p
0,p−1+2β

p
0,p+2, β

p+1
1,p = β

p
0,p−1+β

p
1,p−1+2β

p
1,p+1.

with

β
p+1
i,j = β

p
i−1,j + β

p
i,j−1 + 2βi,j

otherwise. Finally, set γ 0
0 = 1 = µ0

0, γ
0
i = 0 = µ0

i for all i 6= 0 and

γ
p+1
i = γ

p
i+1 + γ

p
i , µ

p+1
i = µ

p
i−1 + 2µ

p
i .

We can verify that α
p
p+1 = −2p, which we expect as a

consequence of the enhanced redshift effect (see Warnick and

Dafermos–Rodninski [2, 34]).

To construct our numerical scheme, we fix an integer k > 0,

which we call the depth of the scheme. If Equation 12 holds, then

the system of equations:

[

L− 2kr d
dr

]

Rp + 2kRp+1 +
∑p+1

i=1 α
p
i R

i +
∑p

i,j=0 β
p
i,jV

i
h
Rj

−s
∑p

i=0 γ
p
i
dRi

dr
=
∑p

i=1 µ
p
i f

i (0 6 p < k)
[

L− 2kr d
dr

]

Rk +
∑k

i=1 α
k
i R

i +
∑k

i,j=0 β
k
i,jV

i
h
Rj − s

∑k
i=0 γ

k
i
dRi

dr

=
∑k

i=1 µ
k
i f

i (13)
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A B

C D

FIGURE 2

Re(σ (h)) plotted against h for numerically computed QNFs for Vh = h exp(−r2) (blue lines) together with the linear approximations (red lines) in the

l = 0, 1, 2 sector. The black dots mark the location of the analytically known QNFs for h = 0. (A) l = 0. (B) l = 1. (C) l = 2. (D) Logarithmic error against

N for k = 2, . . . , 9.

will also hold. Here, we have used the fact that

r d
dr
Rp = Rp+1 to arrange that we have the operator

[

L− 2kr d
dr

]

acting as the principle differential operator

on all components. This is the approach taken to

increase the working regularity in the analysis of

Warnick [2].

We now treat R0, . . . ,Rk as independent functions, and

we discretize on the interval [0, 1] using a pseudospectral

method, following Trefethen [35]. The constants α,β , γ

are found recursively, and the derivatives V i
h

are computed

exactly using Matlab’s Symbolic Math Toolbox before

discretization. We note that Rp(0) = 0 which gives a

Dirichlet boundary condition at one end of our interval,

and we do not need a boundary condition at r = 1 as

the pseudospectral discretization will impose smoothness

there automatically.

After discretizing on N points, Equation 13 becomes

(A− sB)V = CF (14)

for (kN) × (kN)-matrices A,B,C and column vectors V , F

which represent the discretization of (R0, . . . ,Rk), (f 0, . . . , f k),

respectively. We work throughout at standard machine precision.

6.2.1 The quasinormal spectrum
If σ is a quasinormal frequency, then we expect the generalized

eigenvalue problem

(A− sB)V = 0

to have an eigenvalue near σ . Thus, we can find the quasinormal

frequencies by applying Matlab’s generalized eigenvalue finder

to Equation 14. However, by enlarging the original problem to
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FIGURE 3

Numerically determined QNFs in a neighborhood of the transition point at h ≈ 0.4645, at which the two real QNFs with l = 0, σ (0) = −2,−3 meet and

branch into a conjugate pair of complex QNFs. Arrows indicate the direction of increasing h.

a system, we may have introduced spurious eigenvalues which

correspond to vectors V for which the condition

Rp+1 = r
dRp

dr
, 0 6 p < k (15)

does not hold. To enforce this condition, we select only those

eigenvalues of 14 for which (the discretized version of)

k−1
∑

p=0

∣

∣

∣

∣

∣

∣

∣

∣

Rp+1 − r
dRp

dr

∣

∣

∣

∣

∣

∣

∣

∣

2

< e

holds, where e is a sufficiently small threshold parameter, which we

take to be 10−1 for the computations in this study.

Plots 2a–c show the numerically computed quasinormal

spectrum in the l = 0, 1, 2 sector as h varies, computed using

k = 6,N = 25. Plot 2d shows the error in the scheme when

computing the eigenvalue at σ = −4 for various values of k. We

see (as has been observed in other situations [16]) that for a given

value of k, the pseudospectral method in fact can accurately find

quasinormal frequencies even outside the domain Uk in which we

expect the numerics to converge.

6.2.2 The pseudospectra
To compute pseudospectra for different k, we need to

numerically approximate
∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
. We can approximate

this by computing

∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
≈
∣

∣

∣

∣(A− sB)−1C5
∣

∣

∣

∣

ℓ2→ℓ2

where 5 is the L2−orthogonal projector onto the space of vectors

F of the form (f 0, . . . , f k), where f i =
(

r d
dr

)i
f . This projection

is necessary to account for the enlargement of our space by

considering the system of higher derivatives. Since for such an F

we have8 ||F||ℓ2 ≈
∣

∣

∣

∣f
∣

∣

∣

∣

Hk we can approximately compute the

Hk operator norm of L̂(s, 0)−1 by the ℓ2 operator norm of the

approximating matrix.

In Figure 4, we show the numerically computed pseudospectra

for k = 1, . . . , 6. We see that in all cases the pseudospectrum

is well-behaved in the region Uk, but that the contours open

out significantly once we leave this region. We expect that the

fact that the contour curves can leave Uk at all is a feature

of the finite truncation. We observe the phenomenon noted

above that the spectral method finds quasinormal frequencies

accurately, even in the region of the plane that we expect significant

numerical instability. For example, in Figure 4A we see the first

five frequencies accurately computed, even though only the first is

actually in U1.

To verify convergence of the numerical operator norm, in

Figure 5 we show the approximated values of
∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk

at s = −4 + i for k = 2 and k = 4 as N varies.

As expected, in the k = 2 case we see divergence, since

for this k our choice of s does not belong to Uk. For the

case k = 4, we are in the region Uk, and we see good

8 In fact this is the discretized version of a weighted Sobolev nor; however,

since the weights only degenerate near r = 0, this is adequate for our

purposes.
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A B

C D

E F

FIGURE 4

Numerically computed contour lines
∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
= ǫ−1 for 1 6 k 6 6. The black dashed line indicates the boundary of Uk. Black dots are the

QNFs of L̂(s, 0)−1 computed by the numerical algorithm with N = 35. (A) k = 1. (B) k = 2. (C) k = 3. (D) k = 4. (E) k = 5. (F) k = 6.
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A B

FIGURE 5

Convergence of
∣

∣

∣

∣

∣

∣
L̂−1(s0, 0)

∣

∣

∣

∣

∣

∣

Hk→Hk
at s0 = −4+ i for k = 2 and k = 4. (A) k = 2. (B) k = 4.

convergence. This can be compared to Figure 7 of [23]. We should

mention that the pseudospectrum for this operator according

to the standard definition has been computed for k = 1

in [36], which appeared slightly before this study—see their

Figure 11.

7 Conclusion

We have investigated the stability of the quasinormal spectrum

of the conformal wave equation on the static patch of de

Sitter. We find that the quasinormal frequencies are stable,

provided the perturbing potential is small in a sufficiently high

regularity norm. Conversely, one could instead interpret this

as a spectral instability for perturbing potentials which are not

sufficiently regular at the cosmological horizon. We numerically

verify our computations using a spectral method and propose

a definition for a family of pseudospectra that demonstrate

good convergence properties and capture the (in)stability of the

quasinormal frequencies.
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We briefly review the analytical continuation method for determining
quasinormal modes (QNMs) and the associated frequencies in open systems.
We explore two exactly solvable cases based on the Pöschl–Teller potential to
show that the analytical continuation method cannot determine the full set of
QNMs and frequencies of a given problem starting from the associated bound
state problem in quantum mechanics. The root of the problem is that many
QNMs are the analytically continued counterparts of solutions that do not belong
to the domain where the associated Schrödinger operator is self-adjoint,
challenging the application of the method for determining full sets of QNMs.
We illustrate these problems through the physically relevant case of BTZ black
holes, where the natural domain of the problem is the negative real line.

KEYWORDS

self-adjoint extensions, Schrödinger operator, quasinormal modes, black hole, general
relativity (GR)

1 Introduction

Quasinormal mode (QNM) analysis is one of the main strategies used to inspect the
stability of many physical open systems, with many applications ranging from optics to
general relativity [1–3]. In their simplest formulation, QNMs are separable solutions

Ψ t, x( ) � e−iωtu x( )
of an (1 + 1)-dimensional wave equation. After a separation of variables procedure,

u(x) is typically expected to obey a Schrödinger-like second-order linear
differential equation,

− d2

dx2
+ V x( )( )u � ω2u (1)

on a certain domain ofR. For situations where themodes u are defined on the entire real
line R, and the potential V(x) vanishes sufficiently fast for x →± ∞, the QNM frequencies
are defined as the (typically complex) values of ω such that the solutions of (2) behave as
outgoing waves at x → ∞ and ingoing ones at x → −∞, corresponding intuitively to
solutions that disperse toward infinity. According to our definition for Ψ, these outgoing/
ingoing waves correspond, respectively, to solutions of (2) such that
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u∝ eiωx, for x → ∞,

and

u∝ e−iωx, for → −∞ .

Because (2) admits as solutions both ω and −ω, we need to
assume here R (ω)≥ 0; otherwise, the QNMs are not
unambiguously defined. According to our definition, the modes
will be exponentially suppressed in time if I (ω)< 0. Notice that, in
contrast with the usual spectral theory of Schrödinger operators in
quantum mechanics, the eigenvalues ω2 in (2) can be, and usually
are, complex, and the QNMs are not, in general, a complete set for
the problem [1].

In standard situations involving asymptotically flat black holes
in general relativity (see, for references, [2, 3]), the equivalent of
Equation (1) is obtained by introducing some sort of radial tortoise
coordinate x in the exterior region of the black hole. Typically, in
these cases, the effective potential V(x) is non-negative and has a
barrier shape. Moreover, conditions (3) and (4) have the usual
interpretation of wave solutions escaping to infinity and plunging
into the event horizon, respectively, implying that QNMs are always
associated with dispersive phenomena for these systems because
they imply a net transport of energy outside the system.

In the present article, we will review the analytical continuation
method for determining QNMs and frequencies for problems of
type (2), starting from an associated bound state problem in
quantum mechanics. Through two explicit examples based on
exactly solvable Pöschl–Teller potentials, we will show that the
analytical continuation method cannot determine the complete
set of QNMs and that the origin of the problem is that QNMs
are typically the analytically continued counterparts of solutions that
belong to domains where the associated Schrödinger operator fails
to be self-adjoint.

2 Analytical continuation of
Schrödinger operators

It is rather common to compute the QNMs and their associate
frequencies ω for Equation 1 with a given potential barrier V
through a formal analytical continuation performed in the bound
state problem of a Schrödinger operator H associated with the
potential well corresponding to the inverted potential ~V � −V. Such
an approach, introduced decades ago by Blome, Ferrari, and
Mashhoon [4–6], is one of the best options we have at hand to
obtain analytical answers and gain some physical insights into the
QNM problem. The approach consists basically of a formal map
between the QNM solutions of (2) and the bound states of the
quantum mechanical problem governed by the
Schrödinger operator

Hψ � − Z2

2m
d2

dx2
+ ~V x( )( )ψ � Eψ. (2)

We know that for ~V(x) vanishing sufficiently fast for x →± ∞, the
bound states of H will decay exponentially, that is,

ψ∝ e−
���
−2mE

Z2

√
x, for x → ∞,

and

ψ∝ e
���
−2mE

Z2

√
x, for → −∞ .

Because the literature on bound states of Schrödinger operators
is huge, with many studies exploring a vast range of different
potentials, this method is commonly beneficial for identifying
exact or approximate QNMs.

The original approach is based on the extension of the
solutions of (2) or (5) for the entire complex plane by means
of the formal substitution (Wick rotation) x → ix, which reduces
the QNM boundary conditions (3) and (4) to the bound state
ones (6) and (7). After some parameter redefinitions in the
potential V(x), one can effectively map the QNMs on the
bound states of (5) and, consequently, relate the QNM
frequencies ω of (2) with the energy spectrum E of H. More
explicitly, suppose we know a bound state ψ of (5). It should have
an associate eigenvalue (energy) E< 0 because ~V is assumed to be
a non-positive potential well. Suppose also that the potential ~V
depends on a set of real parameters αk, k � 1, 2, . . . , ~V � ~V(x, αk).
Clearly, both the eigenfunction ψ and the energy E may have a
similar dependence on the parameters, that is, ψ � ψ(x, αk) and
E � E(αk). After the formal substitution x → − ix, the
Schrödinger Equation (2) will read

− d2

dx2
− 2m

h2
~V −ix, αk( )( )ψ � −E αk( )ψ, (3)

and the asymptotic conditions (6) and (7) for ψ are formally
transformed in (3) and (4) for ψ(−ix). Suppose now we can
transform the parameter αk in such a way that the potential ~V
remains invariant under the Wick rotation; that is, let us introduce a
new set of parameters αk′ such that

~V x, αk( ) � ~V −ix, αk′( ).
With this transformation, Equation 3 will read

− d2

dx2
− ~V x, αk( )( )u � −E αk′( )u,

with u(x) � ψ(−ix, αk′). For the sake of simplicity, we have set
h2

2m � 1, without generality loss. Comparing (10) with (2), we see that
u(x) is a QNM of the barrier potential corresponding to the inverted
potential well ~V with QNM frequency ω such that

ω2 � −E αk′( ).
This method was sensibly simplified by the prescription

introduced recently by Hatsuda [7], which is based on the
following observation. Let us consider the Schrödinger operator

Hϵψ � −ϵ2 d
2

dx2
+ ~V x( )( )ψ � Eϵψ,

where ~V is a well-behaved potential well in the entire real lineR, and
ϵ> 0 is some typical scale of the problem. Suppose ψϵ(x) is a bound
state ofHϵ with energy Eϵ. Consider now the analytical continuation
of the Schrödinger operator given by Hiϵ. The function uϵ � ψiϵ
is a QNM of the inverted potential − ~V, with frequency given by
ω2
ϵ � −Eiϵ.

Frontiers in Physics frontiersin.org02

Richarte et al. 10.3389/fphy.2024.1490016

47

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1490016


Before we consider the physically relevant case of BTZ black
holes, let us consider a simple explicit example to illustrate better the
analytical continuation method.

2.1 The Pöschl–Teller potential well

The Pöschl–Teller potentials [8] were the first family of non-
elementary exactly soluble potentials in quantum mechanics. We
will illustrate the analytical continuation method with the
Pöschl–Teller potential corresponding to the potential well
defined for the entire real line R:

~V x( ) � − V0

cosh2 x
,

The Schrödinger Equation 3 with this potential admits
bound states with energy spectrum given by (see, for
instance, [9])

E n( )
ϵ � −

������
V0 + ϵ2

4

√
− ϵ n + 1

2
( )( )

2

,

with n integer such that 0≤ n≤ nmax, where

nmax � 1
2

1 +
�������
4V0

ϵ2 + 1

√
( )⌊ ⌋. (4)

It is important to stress that we have only a finite number of
bound states for the Pöschl–Teller potential well. This is a well-
known property in quantummechanics for potential wells vanishing
sufficiently fast for x →± ∞.

We can now apply the Hatsuda prescription, and we will have
the following set of QNM frequencies

ω n( )
ϵ �

������
V0 − ϵ2

4

√
− iϵ n + 1

2
( )

for the Pöschl–Teller potential barrier V � − ~V. However, one
could exactly solve the QNM problem for the inverted
Pöschl–Teller potential well V (see, for instance, [2]), and we
would get the QNM frequencies (16) without the restriction
0≤ n≤ nmax. In other words, the Pöschl–Teller potential barrier
has infinitely many QNM frequencies, and only a small set of
them can be obtained from the analytical continuation of the
Schrödinger operator. If one reverses the analytical continuation
procedure, we will have that the QNMs with n> nmax are mapped
in solutions of the Schrödinger equation that do not correspond
to bound states and, hence, do not belong the usual domain where
Hϵ is self-adjoint. This simple example shows that one cannot get
the full set of QNM frequencies starting from the bound states of
the associated quantum mechanics problem. Notwithstanding,
the Pöschl–Teller potential is effectively used to compute some
QNMs in the space-times of black holes as far as they can
mimetize the effective potential in the vicinity of the horizon.
The results using Pöschl–Teller potential can be compared with a
numerical analysis, and the agreement is generally very good. The
difference between both computations is less than 1% and
decreases as the effective potential becomes more localized;
see Ref. [10].

3 BTZ black holes

The BTZ black hole [11] is an appealing solution in three-
dimensional gravity with a negative cosmological constant,
Λ � −1/ℓ2. In the case of zero angular momentum (J � 0), its event
horizon is determined solely by its massM and the Anti-de Sitter (AdS)
space length scale, ℓ. To begin with, we note that the line element for the
exterior BTZ black hole with J � 0 can be expressed as follows:

ds2 � −r
2 − r2+
ℓ
2 dt2 + ℓ

2

r2 − r2+
dr2 + r2dθ2,

where t ∈ R, r> r+, and θ ∈ [0, 2π). In this context, the horizon can
be expressed in terms of ℓ and M as follows: r2+ � Mℓ

2 [11], as
previously noted.

We consider a massless Klein–Gordon scalar field on this
background,

□Φ � 0.

We express the scalar field by means of the parametrization
Φ � e−iωteiμθu(r)/ �

r
√

, where μ ∈ Z and ω ∈ C, the latter
representing the quasinormal mode frequencies according with
our definitions. The case of a massive scalar field propagating on
the rotating BTZ background can be found in [12].

Considering the definition of the tortoise coordinate, expressed
through the familiar relation dx � dr/f(r). We arrive at the
following expression:

x � −ℓ
2

r+
coth−1 r

r+
( ). (5)

Equation 5 tells us that the tortoise coordinate effectively maps
the interval (r+,+∞) onto (−∞, 0). Combining this result (19) with
the equation outlined in (18) leads to a Schrödinger-like second-
order linear differential equation:

− d2

dx2
+ V r x( )[ ]( )u � ω2 u, (6)

where f � r2−r2+
ℓ
2 , and the effective potential reads

V � V0

sinh2 αx( ) +
V1

cosh2 αx( ).

Here, we define α � r+/ℓ2, V0 � 3 r2+
4ℓ2

> 0, and
V1 � r2+

4ℓ2
(1 + 4μ2

r2+
)> 0. It is important to note that when μ � 0, we

return to the scenario examined in [13]. From this point onward, our
goal will be to identify the QNMs associated with the equations given in
(20) and (21). In this context, we will analyze the boundary conditions
pertinent to the half-real (negative) line. As is widely known, this
generalized Pöschl–Teller potential represents an exactly integrable
problem, as established in [10, 14]. Yet the physical contexts differ
significantly. The investigation of the QNMs for the pure de Sitter
spacetime is addressed in [14], whereas the scattering problem
associated with the generalized Pöschl–Teller potential is thoroughly
explored in [10]. The boundary conditions typically imposed at the
horizon must be a purely incoming wave, represented as eiωx, provided
that a BTZ black hole is present. Conversely, at spatial infinity, we
require an outgoing wave, e−iωx, in order to eliminate any incoming
radiation. However, the BTZ potential given in (21) approaches 0 at the
horizon while diverging as one moves toward infinity. For a solution to
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be well defined near infinity, it must decay to 0. The specific cases
wherein this decay condition is satisfied are what determine the QNMs
frequencies [10, 15].

After applying a new variable z � cosh−2(αx) ∈ [0, 1), which
compactifies the interval R−, the original master Equation 6 can be
recast as the Gaussian hypergeometric equation [4]:

z 1 − z( )u″ + c − a + b + 1( )z[ ]u′ − abu � 0,

where the parameters of the Gaussian hypergeometric are given by

a � 1
2
− i

ω

2α
+ 1
4

] + ζ( ),

b � 1
2
− i

ω

2α
+ 1
4

] − ζ( ),

c � 1 − i
ω

α
.

Here, ] �
������
1 + 4 V0

α2

√
and ζ �

������
1 − 4 V1

α2

√
.

We can derive various types of solutions depending on the value
of c. Specifically, when c ∉ Z, we find that the basis of linearly
independent solutions is

uI � z−i
ω
2α 1 − z( )14 1+]( )

2F1 a, b, c, z( ),
uII � z+i

ω
2α 1 − z( )14 1+]( )

2F1 a − c + 1, b − c + 1, 2 − c, z( ).

At this stage, several comments are in order. When we consider
the limit as x → −∞ and the fact that the hypergeometric function
is equal to 1 when evaluated at the origin, the boundary condition of
having an ingoing-wave at the horizon implies that the second
solution uII must be discarded. The other boundary condition
corresponds to imposing that at infinity (z → 1−), the solution
decays to 0, limx→0uI � 0. To do so, we employ Gursat’s
transformation to write2F1(a, b, c, z) in terms of a combination
of2F1(a, b, c, 1 − z) [16]. Expanding z � 1 − (αx)2 +O[(αx)2], the
local expansion of the solution reads,

uI ≃ A αx( )14 1+]( ) + B αx( )14 1−]( ),

with

A � Γ 1 − i ω
α( )Γ −]

α( )
Γ 1

2 − i ω
2α − 1

4 ] + ζ( )( )Γ 1
2 − i ω

2α − 1
4 ] − ζ( )( )

and

B � Γ 1 − i ωα( )Γ ]
α( )

Γ 1
2 − i ω

2α + 1
4 ] + ζ( )( )Γ 1

2 − i ω
2α + 1

4 ] − ζ( )( ).

For ]> 1, we notice that the power-law term (αx)14 (1−]) in (28)
diverges as one approaches infinity (which corresponds to
αx → 0−), while the other term decays toward 0. However, the
presence of poles in the Gamma function at negative integers may
effectively make this problematic term vanish. As a result, we
derive a discrete set of countable frequencies that characterize the
QNM solutions,

ω± � −iα 2n + 1 + 1
2

] ± ζ( )( ), (7)

with n ∈ Z≥0. These results, as shown in (7), are consistent with
those presented in [10, 14], and [15]. In addition, Equation 7 can be
derived by analyzing the singular points in the transfer matrix—or

transmission coefficient—where T(ω±) � ∞. This approach was
previously demonstrated in the context of the Pöschl–Teller
potential [17] and also in the case of a generalized Pöschl–Teller
potential [18]. It should be mentioned that other interesting
situations were analyzed in [15], such as:

i. QNMs with the usual exponentially suppressed oscillatory
behavior for V0 > 0 and V1 > α2/4,

ii. The so-called algebraically special QNMs for V1 ≤ α2/4, and
iii. Unstable modes for small V1/α2.

For more information on these possibilities, the reader may
consult Ref. [15].

The QNM solutions have the following effective boundary
condition at x � 0,

limx→0− αx( )−κ αx( )34u′I x( ) − 1

αx( )14 α
1
4
+ κ( )uI x( )[ ] � 0, (8)

where κ �
������
1
16 + V0

α2

√
> 0. Equation 8 resembles the condition

reported in [15]. Another interesting point is to examine whether
or not the functional energy remains bounded spatially for the
QNMs solution at infinity [15]. As long as κ> 7/4, the functional
energy converges to 0 as αx → 0−.

Now, we are in a position to discuss the role played by the
analytical continuation of the QNM problem in the case of the
BTZ black hole. We will give a proof of concept by analyzing one
case based on the ideas presented in Section 2. The outcome of
applying the analytical continuation, defined as x � iy, to the
QNMs of the BTZ black hole [7] is as follows. The solution uI(x)
associated with the potential V(x) will transform into quantum
eigenstates ψ � uI(V → − V(iy, α′),ω → − iω) of the inverted
potential barrier, ~V � −V. Thus, the Schrödinger
equation becomes

− d2

dy2
− V0

sinh2 α′y( ) −
V1

cosh2 α′y( )( )ψ � Eψ.

It is important to stress that α parameter must accommodate the
modification introduced by the analytic continuation in order to
keep the shape of potential unspoiled [6]. As result of that
procedure, the energy eigenvalue (E � −ω2) now reads

E � −α′2 2n + 1 + 1
2

] ± ζ( )( )2

.

Including these transformations in the definitions of ] and ζ , the
combination appearing in (34) becomes
] ± ζ �

������
1 − 4 V0

α′2

√
±

������
1 + 4 V1

α′2

√
. The latter fact pinpoints a potential

issue regarding the self-adjoint property of the Schrödinger operator
presented in (33), provided the energy can take complex value. The
reason for suspecting that something might have gone wrong around
y � 0 can be easily confirmed by expanding the inverted potential
around that point. The leading term is ~V � −V0/(α′y)2 < 0. This kind
of potential yields a non-self-adjoint operator on a Hilbert space
L2[(−∞, 0), dy] [19, 20].

From now on, we will focus on the properties of the Schrödinger
operator (33) and the effective boundary condition around y � 0. To
do so, we follow a well-established protocol based on Von
Neumann’s theorem [21, 22]. We begin by computing the
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subspace of solutions with purely imaginary eigenvalues denoted as
N± � ϕ ∈ D(H†), Hϕ � ± iϕ{ } [21], where H stands for the
Schrödinger operator presented in (33). In our case, near y � 0,
these solutions are given by

ϕ± � α′y( )1/4 A± α′y( )�κ + B± α′y( )−�κ( ). (9)

Here, �κ � κ(V0 → − V0, α → α′). Equation 9 indicates that,
locally, in each case ±, only one of the solutions is square-
integrable with respect to the measure dy. This fact shows
that the dimension of the subspaces N± is at least 1 in both
cases. Consequently, the operator admits a self-adjoint extension
parametrized by the U(1) group. In other words, there are an
infinite number of self-adjoint extensions which can be written as
ϕ � ϕ+ + sϕ− with s ∈ C such that |s| � 1. For any element
ψ ∈ D(H†), in order to ensure that the self-adjoint extensions
are well defined, they must fulfill the following
boundary condition,

〈ϕ,Hψ〉 − 〈Hϕ,ψ〉 � lim
y→0−

�ϕ y( )ψ′ y( ) − �ϕ′ y( )ψ y( )[ ] � 0,

where the bracket 〈, 〉 refers to the usual inner product in
L2([−∞, 0), dy). For the sake of simplicity, let us corroborate
whether the analytically continued eigenstates satisfy the same
effective boundary condition of the QNMs (32). We only
consider the situation associated with the QNMs, so from the
general combination, the A± terms must be omitted, while the
identification u � ψ is made explicit. To keep things simple, we
consider the case in which �κ ∈ R; thus, 0<V0/α′2 < 1/4 [15]. The
boundary condition (36) can be recast as

lim
y→0−

α′y( )−�κ α′y( )34u′ y( ) − 1

αy( )14α′
1
4
− �κ( )u y( )⎡⎢⎣ ⎤⎥⎦ � 0. (10)

The physical implications derived from Equation 10 can be
summarized as follows. Upon determining the self-adjointness of
the generalized (inverted) Pöschl–Teller operator as described in
(33) and imposing the necessary conditions for self-adjointness
at the boundary y � 0, we find that the effective boundary
conditions associated with the quasinormal modes differ from
the original conditions presented in (32). Specifically, for the
range 0< V0

α′2
< 1

4, the self-adjoint extensions do not fulfill to the
same boundary condition specified in (32). This indicates that the
analytically continued QNMs do not belong within the domain of
any self-adjoint extension [15]. This observation further supports
our conclusions regarding the analytical continuation method
and the (inverted) Pöschl–Teller potential, as presented
in Section 2.

4 Summary

We discussed the issues that emerge when employing the analytical
continuation method to obtain the complete set of quasinormal modes
in solvable scenarios, including the Pöschl–Teller potential and the BTZ
black hole case. The absence of (essentially) self-adjointness in the
Schrödinger operator with the inverted potential significantly restricts
the viability of this approach [15]. Nevertheless, it would be interesting
to revisit this BTZ case in light of the recent developments for the
pseudospectrum of the Pöschl–Teller operator [23, 24] and in the case
where the black hole is asymptotically AdS [25–28]. The latter point will
be addressed elsewhere.
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Pseudomodes of Schrödinger
operators

David Krejčiřík1* and Petr Siegl2
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University in Prague, Prague, Czechia, 2Institute of Applied Mathematics, Graz University of Technology,
Graz, Austria

Pseudomodes of non-self-adjoint Schrödinger operators corresponding to large
pseudoeigenvalues are constructed. The approach is non-semiclassical and
extendable to other types of models including the damped wave equation
and Dirac operators.

KEYWORDS

pseudospectrum, non-self-adjointness, Schrödinger operators, complex potentials,
WKB method

1 Introduction

The (ε-)pseudospectrum σε(H) (with positive ε) of an operator H in a Hilbert space is
the union of the spectrum σ(H) of H and all those complex numbers λ from the resolvent
set ρ(H) of H for which

‖ H − λ( )−1‖> 1
ε
.

Equivalently, σε(H) comprises the spectrum ofH and λ ∈ C (pseudoeigenvalues) for which
there exists a vector ψ (pseudomode) in the domain of H such that

‖ H − λ( )ψ‖< ε ‖ψ‖.
IfH is self-adjoint (or, more generally, normal), the ε-pseudospectrum is trivial in the sense
that it is just the ε-tubular neighbourhood of the spectrum of H. In general, however, the
pseudoeigenvalues can lie outside the ε-tubular neighbourhood and their location is
important to correctly seize various properties of H, see [1–3].

The goal of this brief research report is to explain in a succinct way the approach in
Krejčiřík and Siegl [4] to locate pseudoeigenvalues of (non-semiclassical)
Schrödinger operators

− d2

dx2
+ V x( ) in L2 R( ), (1)

whereV: R → C is at least locally square-integrable andRV≥ 0. In such a case, there exists
a unique m-accretive extensionHV of Equation 1 initially defined onC∞

0 (R), see ([5], Thm.
VII.2.6). Since our constructed pseudomodes are compactly supported and at least twice
weakly differentiable, they belong to the domain of HV.

The operator HV is self-adjoint (respectively, normal) if, and only if, V is real-valued
(respectively,IV is constant). To ensure non-trivial pseudospectra, we shall therefore adopt
the standing hypothesis

lim sup
x→−∞

IV x( )< 0< lim inf
x→+∞

IV x( ), (2)
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where the limits are allowed to be infinite. The assumption
(Equation 2) can be interpreted as a “global” version of the
Davies’ condition IV′ ≠ 0, see [6] and also [7].

To simplify the presentation, the potential V will be assumed to
be smooth and imaginary-valued. Typical examples to keep in mind
are as follows:

V1 x( ) ≔ i arctan x( ), V2 x( ) ≔ ixm with m odd,
V3 x( ) ≔ i sinh x( ), (3)

or their imaginary shifts. In particular, V2 with m � 3 is the
celebrated imaginary cubic (or Bender’s) oscillator (with purely
real and discrete spectrum, see Figure 1), which was made
popular in the context of the so-called PT -symmetric quantum
mechanics in [8].

The objective is to develop a systematic construction of
pseudomodes ensuring that, for any diminishing ε → 0, there
is a complex number λ with large magnitude |λ|→ ∞ such that
λ ∈ σε(HV). The results are particularly striking whenever this
set of pseudoeigenvalues lie outside (in fact, “very far” from) the
ε-tubular neighbourhood of σ(H). This is particularly the case of
the imaginary cubic oscillator, for which the analysis below show
that for an arbitrarily small ε there exists a pseudoeigenvalue λ
with an arbitrarily large imaginary part, despite the fact that the
spectrum is purely real (see Figure 1 for a numerical
quantification of the pseudospectrum level lines). This
property implies the lack of Riesz basis for the
eigenfunctions, challenging in the spirit of [9] the physical
relevance of the L2(R)-realisation of the Bender’s oscillator.
The follow-up [4] summarised in this report can be considered
as a methodical and more advanced study of not necessarily
polynomial potentials.

The feature of the approach of [4] is that it does not rely on
semiclassical methods developed in [6, 7, 10]. In fact, we are able to
construct large-energy pseudomodes for potentials (like of
exponential type, see V3 of Equation 3) which cannot be reduced
(by scaling) to a small Planck’s constant included in the kinetic
energy. On the contrary, the known claims in the semiclassical
setting follow immediately from our approach.

2 Methods

Our strategy of the construction of pseudomodes is based on the
Liouville–Green approximation, also known as the JWKBmethod in
mathematical physics. The key idea is that, if V were constant, exact
solutions of the differential equation associated with HVg � λg
would be the two non-integrable functions

g± x( ) ≔ exp ± i∫x

0

�������
λ − V t( )√

dt( ).
The starting point of the approximation scheme is to use the

same ansatz for variable V as well. More specifically, we choose
g0 ≔ g− for it is exponentially decaying under the hypothesis
(Equation 2), whenever Iλ is small with respect to the limits of
IV at ± ∞. A direct computation yields

HV − λ( )g0 � r0 g0 with r0 ≔ − i

2
V′�����
λ − V

√ . (4)

Recalling the simplifying hypothesis that RV � 0 and assuming in
addition thatIλ � 0 andRλ> 0 (typically large), one has the estimate

‖r0‖∞ ≤
1���

Rλ
√ 1−δ

|V′|
2|V|δ/2
��������

��������∞ (5)

for every δ ∈ [0, 1). It follows that large real energies always lie in the
pseudospectrum, namely, for every positive ε,

λ ∈ C:
���
Rλ

√
1−δ > 1

ε

|V′|
2|V|δ/2
��������

��������∞{ } ⊂ σε HV( ).

Of course, this result is interesting only if the supremum norm is
bounded. From examples (Equation 3), relevant potentials are thus V1

and V2 withm � 1, in which case we can take δ � 0 and obtain thus a
pseudomode satisfying the decay ‖(HV − λ)g0‖ � O((Rλ)−1/2) ‖g0‖
asRλ → ∞. The latter is particularly interesting because the spectrum
of the imaginary Airy operator is empty, see, e.g., ([3, 11], SectionVII.A)
or more generally [12], where the last reference includes also an
elementary proof of the optimal resolvent norm estimate for the
Airy operator.

FIGURE 1
Spectrum (red dots) and pseudospectra (enclosed by the green contour lines) of the imaginary cubic oscillator. (Courtesy of Miloš Tater.)
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It is not difficult to modify the exponentially decaying
pseudomode g0 to a compactly supported pseudomode f0, while
still keeping the same decay ‖(HV − λ)f0‖ � O((Rλ)−1/2) ‖f0‖ as
Rλ → ∞. Indeed, let ξ1: R → [0, 1] be a smooth function such that
ξ1 � 1 on [−1, 1] and ξ1 � 0 outside [−2, 2]. Given any positive
number l, let us define the rescaled cut-off function ξl(x) ≔ ξ1(x/l).
Then f0 ≔ ξl g0 is compactly supported and one has

HV − λ( )f0 � ξ l HVg0 + −ξ′′l + 2i
�����
λ − V

√
ξ l′( )g0.

Using that ξl → 1 pointwise as l → ∞, while one gains one l−1 by
each derivative, it is possible to verify the desired decay by the
λ-dependent choice l ≔ Rλ.

To cover a larger class of potentials, let us consider a modified
ansatz g1 ≔ g0 exp(−ψ0), where ψ0 is a function to be chosen later.
A direct computation yields

HV − λ( )g1 � r0 − 2i
�����
λ − V

√
ψ0′ + ψ0″ − ψ0′2( )g1.

Now we choose ψ0 to annihilate the error term r0 from Equation 4,
by solving the first-order linear differential equation
r0 − 2i

�����
λ − V

√
ψ0′ � 0, namely, ψ0 ≔ log

�����
λ − V4

√
. Thus we arrive at

the familiar expression

g1 x( ) � 1��������
λ − V x( )4

√ exp −i∫x

0

�������
λ − V t( )√

dt( ).
Then

HV − λ( )g1 � r1 g1 with r1 ≔ − 5
16

V′2

λ − V( )2 −
1
4

V′′

λ − V
,

where the new error term r1 can be estimated as follows:

‖r1‖∞ ≤
1���

Rλ
√ 2 1−δ( )

5 |V′|2
16 |V|1+δ +

|V′′|
4 |V|δ

��������
��������∞.

This result is an improvement upon (Equation 4) with (Equation 5)
in two respects. First, if the supremum norm is bounded for δ � 0,
we get a pseudomode with an improved decay ‖(HV − λ)g1‖ �
O((Rλ)−1) ‖g1‖ as Rλ → ∞. This is the case of V1 and V2 with
m � 1 from examples (Equation 3). Second, keeping the decay
O((Rλ)−1/2) by the choice δ � 1/2, we can now cover V2 with m �
3 from examples (Equation 3).

The above scheme can be continued by employing the general
ansatz in square-root powers of λ:

gk � exp −λ1/2 ψ−1 + λ−0/2 ψ0 + λ−1/2 ψ1 +/ + λ− k−1( )/2 ψk−1( ), (6)

where ψ−1(x) ≔ iλ−1/2 ∫x

0

�������
λ − V(t)√

dt and ψk−1 with k ∈ N is
iteratively chosen in such a way to annihilate the previous error term
rk−1. By enlarging k, more derivatives of V are required. On the other
hand, a better decay (in negative powers ofRλ → ∞) of the new error
term is achieved and a larger class of potentials can be covered. For
instance, all the examples (Equation 3) are already covered by the choice
k � 2, namely, ‖(HV − λ)g2‖ � O((Rλ)−1/2) ‖g2‖ as Rλ → ∞.

3 Results

To make the above procedure rigorous, it is important to ensure
that g0 in the expansion (Equation 6) is dominant, in order to

guarantee that gk(x) have appropriate decay properties at x � ± ∞.
One of the main achievements of [4] is the formulation of the robust
sufficient condition

|V n( ) x( )|
|V x( )| � O |x|n]( ) and |x|4 1+]( ) � O |V x( )|( ) (7)

to hold as |x|→ ∞ with some real number ]≤ 0 for every
n � 1, . . . , k + 1. Note that ] � −2, −1 and 0 for the potentials V1,
V2 and V3 of Equation 3, respectively. In fact, it is possible to allow
for ]> 0 (corresponding to superexponentially growing potentials).
Moreover, different behaviours at x →± ∞ may be allowed.
However, let us stick to Equation 7 to make the presentation
here as simple as possible.

To get a compactly supported pseudomode, it turns out that the
adequate λ-dependent cut-off function should be supported in the
interval [−l−, l+], where (denoting 〈l〉 ≔ (1 + l2)1/2)

l± ≔
inf l≥ 0 :

|V ± l( )|2
〈l〉4 1+]( ) � λ{ } if V is unbounded at ± ∞,

λ1−
]
4 if V is bounded at ± ∞ .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Recall that we assume Iλ � 0 and note that l± → ∞ as λ → ∞. In
particular, l± � λ3/2, λ1/(2m) and log λ as λ → ∞ for the potentialsV1,
V2 and V3 of Equation 3, respectively.

Under the present simplifying hypotheses (in particular,Iλ � 0,
RV � 0 and ]≤ 0), the general result of Krejčiřík and Siegl [4] (Thm.
3.7) can be formulated as follows.

Theorem 1. Let V: R → iR be smooth satisfying Equations 2, 7
with given k ∈ N. If

λ− k+1( )/2 sup
x∈ −l− ,l+( )

|V x( )| 〈x〉 k+1( )] �������→
λ→+∞

0, (8)

then there exists {ψλ}λ ⊂ C∞
0 (R) such that ‖ψλ‖ � 1 and

lim
λ→+∞

‖ HV − λ( )ψλ‖ � 0. (9)

The extra condition (Equation 8) with the choice k � 0 is clearly
satisfied for the potential V1 of Equation 3 (in fact, for any bounded
potential satisfying Equations 2, 7). To satisfy Equation 8 for all the
polynomial potentials V2 of Equation 3, it is sufficient to take k � 1.
Finally, Equation 8 is verified for the exponential potential V3 of
Equation 3 with k � 2.

In Krejčiřík and Siegl [4], the decay rate in Equation 9 is carefully
quantified in terms of the left-hand side of Equation 8 and other
quantities related to the behaviour of a general potential V
at infinity.

4 Discussion

4.1 Generality

The JWKB-type scheme sketched in Section 2 is made rigorous
in [4] for a fairly general class of potentials V, beyond the present
simplifying hypotheses. In particular, the potential V is allowed to
have a real part, however, its largeness must be suitably “small” with
respect to its imaginary part. This is quantified by natural
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modifications of Equations 2, 7. What is more, pseudoeigenvalues
along general curves (beyond the present simplifying hypothesis
Iλ � 0) diverging in the complex plane are located. In particular,
the rotated harmonic (or Davies’) oscillator V(x) � ix2 made
popular in the pioneering work [13] or shifted harmonic
oscillator V(x) � (x + i)2 studied in [3, 14] are covered. At the
same time, potentials decaying at infinity are included. Finally,
possibly discontinuous potentials (like V(x) � isgn(x)) are
comprised by a refined mollification argument.

4.2 Optimality

It turns out that the conditions on potentials identified in [4] as
well as the regions in the complex plane where the
pseudoeigenvalues are located are optimal. The latter can be
checked directly for the rotated harmonic (or Davies’) oscillator
V(x) � ix2 with help of the conjecture due to [15] solved by [16],
More generally, the optimality of the pseudospectral regions follows
by upper resolvent estimates performed in [17, 18].

4.3 Generalisations

Themethod of [4] is fairly robust and can be generalised to other
models. So far, this has been done for the damped wave equation in
[19], Dirac operators in [20] and biharmonic operators in [21].
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Pseudospectra of quasinormal
modes and holography

Daniel Areán1,2*, David Garcia-Fariña1,2 and Karl Landsteiner1

1Instituto de Física Teórica UAM-CSIC, Madrid, Spain, 2Departamento de Física Teórica, Universidad
Autónoma de Madrid, Madrid, Spain

The holographic duality (also known as AdS/CFT correspondence or gauge/
gravity duality) postulates that strongly coupled quantum field theories can be
described in a dual way in asymptotically anti-de Sitter space. One of the
cornerstones of this duality is the description of thermal states as black holes
with asymptotically anti-de Sitter boundary conditions. This idea has led to
valuable insights into fields such as transport theory and relativistic
hydrodynamics. In this context, the quasinormal modes of such black holes
play a decisive role, and therefore their stability properties are of utmost interest
for the holographic duality. We review recent results using the method of
pseudospectra.

KEYWORDS

quasinormal modes, gauge/gravity duality, black holes, anti-de Sitter space,
pseudospectra

1 Introduction

1.1 Blitz review of holographic duality

Before discussing the role of quasinormal modes, we first need to understand the basics
of the AdS/CFT correspondence. Gauge/gravity duality has its roots in Maldacena’s
conjecture that type IIB string theory on AdS5 × S5 is dual to N � 4 supersymmetric
gauge theory [1, 2].1 Let us quickly unpack this statement. N � 4 supersymmetric gauge
theory is a non-abelian, four-dimensional quantum field theory whose field content consists
of six scalars, four Majorana fermions, and a gauge field. They all transform under the
adjoint representation of the gauge group SU(N). It features four supersymmetries, and this
fixes all the couplings between the different fields. As it is a gauge theory, physical
observables are gauge-invariant operators such as tr(Fμ]Fμ]). The global symmetry
group SO(6) acts on the scalars and fermions (in the SU(4) spin representation of
SO(6)). In addition, the theory has conformal symmetry and 32 supercharges.

The dual theory is a theory of gravity (type IIB string theory) but exists in
10 dimensions. Five of these are a geometric realization of the internal SO(6)
symmetry as the isometry of the five-dimensional sphere S5. Supersymmetry is
generated by two ten-dimensional spinors of equal chirality, which also results in
32 supercharges. Conformal symmetry arises as the isometry group on AdS5.
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The field theory gauge coupling gYM and rank of the gauge
groupN are related to the dual string theory string coupling gs (the
amplitude for a string to split in two) and to the ratio of the AdS5
curvature scale R � −20/L and string scale ls in the following way:

g2
YMN∝

L4

l4s
,

1/N∝gs.

Gauge/gravity duality is therefore a strong–weak coupling duality;
for weak curvature, we have large L and therefore also large ’t-Hooft
coupling g2

YMN. In this regime of weak curvature, stringy effects are
negligible, and we can approximate the string theory by type IIB
supergravity. If we furthermore take the rank of the gauge group N
to be very large, we can also neglect quantum loop effects and end up
with classical supergravity. This is the form of the correspondence
most useful for the applications to many body physics. Classical
(super)gravity on (d + 1)-dimensional anti-de Sitter space is the
infinite coupling and infinite rank limit of a gauge theory in d
dimensions.

This is now promoted to a principle that (quantum-)gravity in
asymptotically (d + 1)-dimensional anti-de Sitter space can be
understood as a strong coupling version of a dual quantum field
theory in d dimensions [3, 4]. For applications to quantum field
theory, the most useful coordinate system is the so-called
Poincaré patch.

ds2 � r2

L2
−dt2 + d �x2( ) + L2

r2
dr2. (1)

The space on which the dual quantum field theory exists is recovered
by taking the limit ds2QFT � limr→∞r−2ds2.

Since the correspondence relates a (d + 1)-dimensional theory
to a d-dimensional theory, it is also called “holographic” duality. The
radial coordinate has a physical interpretation as energy scale. The
high-energy or UV limit in the field theory is identified with the
r → ∞ limit in the AdS geometry, whereas the low-energy IR limit
is r → 0.

On shell, the asymptotic behavior of the fields in AdS in a large r
expansion is

Φ r, x( ) � r−Δ− Φ0 x( ) + O r−2( )( ) + r−Δ+ Φ1 x( ) + O r−2( )( ). (2)
The exponents Δ± obey Δ− <Δ+ and depend on the nature of the
field, e.g., for a scalar field of mass m, they are
Δ± � 1

2 (d ±
����������
d2 + 4m2L2

√ ). We note that for the scalar field in
asymptotically AdS, masses in the range −d2/4<m2 < 0 are
perfectly regular and do not imply any acausality or instability [5].

It turns out that the leading solution given by Φ0(x) is non-
normalizable and thus non-dynamical. It is interpreted as a
boundary condition Φ0(x) � J(x) on the AdS field Φ(r, x). The
classical on-shell action becomes a functional of these boundary
conditions Scl[J]. In the (super)gravity limit, the on-shell action is
interpreted as the generating functional of (connected) Green’s
functions Zc[J] � Scl[J] in the dual field theory. The boundary
condition J is now interpreted as a source for an operator O in the
dual field theory whose correlation functions can be obtained from

〈O1 x1( ) . . .On xn( )〉 � δnScl
δJ1 x1( ) . . . δJn xn( ). (3)

More specifically, the expectation value of the operatorO is given by

〈O x( )〉∝Φ1 x( ).
In this way, the leading and subleading terms in the asymptotic
expansion Equation 2 have dual field theory interpretations. The
mass range −d2/4≤m2 ≤ 0 corresponds to renormalizable
operators.2

Generically, the equation of motion forΦ(r, x) is a second-order
partial differential equation. In order to solve it, one needs to supply
additional boundary conditions. The metric shown in Equation 1
has a (degenerate) horizon at r � 0, and it was argued in [7] that for
time-dependent solutions, retarded Green’s functions of the dual
quantum field theory

GR t, �x( ) � −iΘ t( )〈 O t, �x( ),O 0, 0( )[ ]〉, (4)
are obtained by imposing infalling boundary conditions.

The infalling boundary condition is, of course, the main
constituent for the existence of quasinormal modes. In anti-de
Sitter space, it does, however, not lead to quasinormal modes
because the horizon is degenerate. The corresponding
(holographic) retarded Green’s function does not have poles but
rather a branch cut along the positive real axis [7]. This changes as
soon as we consider a black hole with asymptotic AdS boundary
conditions and planar horizon topology (AdS black brane). Its line
element for d � 4 is

ds2/L2 � r2 −f r( )dt2 + d �x2( ) + dr2

r2f r( ), (5)

f r( ) � 1 − r4h
r4
.

This metric has a non-degenerate horizon at r � rh. The Hawking
temperature is πTL2 � rh. The holographic (or gauge/gravity)
interpretation is that the dual field theory is now in a thermal
state with the temperature given by the Hawking temperature [8, 9].

The field Φ is expanded in (boundary) plane waves as

Φ r, t, �x( ) � ∫ dωd3k

2π( )4
~Φ0 ω, �k( )e−iωt+i �k �x Fω, �k r( ).

For every fixed ω, �k, the linearized equation of motion for the
fluctuation boils down then to an ordinary second-order
differential equation for Fω, �k. The point at infinity is a regular
singular point with characteristic exponents Δ±. We impose
infalling boundary conditions by demanding that Fω, �k ~ e−iω(t+r*)

on the horizon (we use a tortoise coordinate here drp � dr/f(r)
such that the horizon sits at rp → −∞). The asymptotic expansion
of Fω, �k(r) is

Fω, �k � A ω, �k( ) r−Δ− 1 + O 1/r( )[ ] + B ω, �k( ) r−Δ+ 1 + O 1/r( )[ ],

2 We note that this is the so-called standard quantization scheme and allows

only for operators of dimensions larger than d/2. In order to describe

operators of smaller dimensions, one needs to exchange the role of the

source and operator (“alternative quantization”). For further details on

that, see [6].
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where A(ω, �k) and B(ω, �k) are the Fourier transforms of Φ0(x) and
Φ1(x), respectively. The Fourier transform of the retarded two-
point Green’s function Equation 4 can now be calculated as

~GR ω, �k( ) � K
B ω, �k( )
A ω, �k( ),

where K is some normalization constant [7].

1.2 Holographic quasinormal modes

The definition of the holographic retarded Green’s function
depends on a subtlety. It is impossible to calculate a retarded (or
advanced) Green’s function from an action, as is indicated in
Equation 3. In thermal field theory, one needs to use the
Schwinger–Keldysh formalism in which the time coordinate
exists on a (complex) contour [10]. It turns out that the
Schwinger–Keldysh contour is naturally implemented on the
maximally analytic extension of the AdS black brane metric. In
that case, one has a second boundary on which the direction of the
time-like Killing vector is reversed in comparison to the direction
covered by the coordinate patch Equation 5. Strictly speaking,
retarded holographic Green’s functions can only be defined on
this maximally analytically continued double-sided Kruskal-type
manifold [11]. Infalling boundary conditions then correspond to
the analytic continuation of the solution to the whole Kruskal
manifold. For all practical purposes, the retarded Green’s
function can however be computed on the patch Equation 5 by
the simple method. The quasinormal modes describe the return to
the thermal equilibrium [12]. Their frequencies are the poles of the
holographic Green’s function in the complexified ω plane [13, 14].

Retarded two-point functions are the central objects in the linear
response theory. The response in the operator O under a
perturbation (source) J(t, x) with Fourier transform ~J(ω, �k) is

〈O t, �x( )〉 � ∫ dωd3k

2π( )4 e−iωt+i �k �xGR ω, �k( )~J ω, �k( )
� −iΘ t( )∫ d3k

2π( )3 ∑n Rn k( )~J ωn
�k( ), �k( )e−iωnt+i �k �x,

where Rn is the residue of GR at the pole ωn
3. As long as all the

quasinormal frequencies lie in the lower half of the complexω-plane,
the response decays exponentially fast. A mode in the upper half
indicates an instability, leading eventually to a phase transition.

A special role is played by linearized perturbations of gauge
fields and the metric. In this case, the dual operator corresponds to a
conserved current, and the quasinormal mode spectrum contains
the so-called hydrodynamic modes [15], i.e., those fulfilling

lim
k→0

ωH
�k( ) � 0.

For a gauge field, one finds in this way a diffusive mode that obeys in
the small | �k| limit ωdiffusive � −iD �k

2
, where the diffusion constant

D � 1
2πT. The metric fluctuations contain a shear-channel with a

similar diffusive law ωshear � −i η
ϵ+p �k

2
, where ϵ + p � sT are the

energy density ϵ, pressure p, and entropy density s of the dual
field theory. Famously, one finds η

s � 1
4π [16].

In some exceptional cases, exact solutions for the holographic
Green’s function can be found. If there are only three regular
singular points of the differential equation, it can then be
mapped to the hypergeometric differential equation. This
happens for the case of a gauge field in the five-dimensional AdS
black brane background at vanishing momentum �k � 0. The
holographic retarded Green’s function is [17]

GR ω( ) � K 2iω + ω2ψ
1 − i( )ω
4

( ) + ω2ψ − 1 + i( )ω
4

( )[ ],
where ψ(z) is the digamma function. The poles are at4

ωn � 2n (± 1 − i). More generally, the corresponding differential
equation has more than three regular singular points and cannot
be solved exactly. In these cases, one needs to resort to numerical
approximations.

2 Pseudospectra of holographic
quasinormal modes

The infalling boundary conditions on the horizon of the AdS
black brane have the consequence that the differential operator is a
non-Hermitian and non-normal operator. Its eigenvalues are
complex numbers, precisely the quasinormal frequencies. It is a
well-known fact that eigenvalues of non-normal operators suffer
from spectral instability. This means that a small perturbation of the
operator can change the value of the eigenvalues dramatically. In
fact, it is this spectral instability that makes the prediction and
calculation of quasinormal frequencies challenging. The method of
pseudospectra has emerged as an ideal tool to assess the spectral
instability of non-normal operators in a quantitative (and also
qualitative) way [18].

The calculation of the pseudospectra of quasinormal modes was
pioneered in [19] and further explored in [20–36] in various
astrophysical and cosmological contexts. We will concentrate
here on the simple case of pseudospectra for a gauge field in the
AdS black brane [33]. Pseudospectra answer the question of how far
a quasinormal frequency can be displaced by a given perturbation of
size ϵ. This means, of course, that we need a way to measure the size
of an operator that can be added as a perturbation. Consequently, we
need to define an appropriate measure on a function space that
contains the quasinormal modes. On physical grounds, it is
generally suggested to use a suitable norm based on the energy
functional. Only in certain coordinate systems the quasinormal
modes have “nice” or regular behavior on the horizon. It turns
out that in the coordinates shown in Equation 5, the energy
functional is not well-defined. There are two strategies to deal
with this problem. One is to use infalling Eddington–Finkelstein
coordinates. These are often used in the literature on holographic

3 We assume here that there are no contributions from the integral along the

large radius half circle in the lower complex ω half-plane.

4 We have rescaled the frequency such that the physical values are

ωphys � πTω. We further note that the surface gravity is κ � 2πT .
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quasinormal modes, and the energy functional is indeed well-
defined. Another approach is to use the so-called regular
coordinates that interpolate between the Schwarzschild-type
coordinates near the boundary and infalling
Eddington–Finkelstein coordinates near the horizon [37].
Figure 1 shows the Penrose diagram, which illustrates the
geometrical nature of this slicing.

In both infalling Eddington–Finkelstein and regular
coordinates, the infalling boundary condition is replaced by the
condition of regularity at the horizon. There is, however, a
difference between the coordinate systems concerning the
resulting eigenvalue problem. In infalling

Eddington–Finkelstein coordinates, one ends up with a
generalized eigenvalue problem, whereas regular coordinates
result in a standard eigenvalue problem. We chose the latter
approach and briefly review the findings of [33].

A particular choice of regular coordinates for the black brane is

τ � t − 1 − 1
r

( ) + ∫ dr

f r( )
1
r

( )2

, (6)

ρ � 1 − 1
r
,

in which the line element takes the form

ds2 � 1

1 − ρ( )2 −f ρ( )dτ2 + d �x( )2 + 2 1 − f ρ( )( )dτdρ(
+ 2 − f ρ( )( )dρ2). (7)

Here, we have set the AdS curvature scale L � 1 and re-scaled
coordinates such as to absorb the scale set by the horizon
(rh � πT). In these coordinates, the boundary is at ρ � 1 and the
horizon at ρ � 0.

It is instructive to concentrate on a case in which we have actually
exact analytic results about the spectrum of quasinormal frequencies,
and therefore we only consider the (transverse) gauge field at zero
momentum. This means that we consider a gauge field of the form
A1(ρ, τ, �x) � a(ρ) exp(−iωτ). The equation of motion for this gauge
field ansatz in the metric Equation 7 is second order in ∂τ . It can be
reduced to a first-order system by introducing the auxiliary field α and
the additional equation α � −iωa. The energy functional takes the form:

E a, α[ ] � ∫1

0

dρ

1 − ρ
f|∂ρa|2 + 2 − f( ) |α|2( ), (8)

where we have discarded an overall volume factor stemming from
the integration over the x coordinates. Furthermore, we have taken
into account that a(ρ) and α(ρ) are Fourier modes and therefore
complex valued. The equation of motion is given by

ωΨ � LΨ � i
0 1
L1 L2.

( )Ψ,

L1 � 1
f − 2

− 1 − ρ( ) f

1 − ρ
( )′ ∂ρ − f∂2ρ[ ], .

L2 � 1
f − 2

1 − ρ( ) f − 1
1 − ρ

( )′ + 2 f − 1( )∂ρ[ ],
where Ψ � (a, α)T.

Quasinormal modes can now be defined as the eigenvalues of the
operator L with Dirichlet boundary conditions at ρ � 1 and
regularity at the horizon ρ � 0. The energy can be promoted to
an inner product

〈Ψ1,Ψ2〉 � ∫1

0

dρ

1 − ρ
f ∂ρa2( )* ∂ρa1( ) + 2 − f( ) α2*α1[ ]. (9)

The operator L is self-adjoint up to a boundary term with respect to
this inner product:

L† � L + 0 0
0 −iδ ρ( )( ),

which nicely reflects the fact that dissipation stems from the
boundary condition at the horizon.

FIGURE 1
Penrose diagram of the exterior region of SAdS4+1. The AdS
boundary is denoted by J , H+ (H−) represents the future (past)
horizon, and i+ (i−) denotes the future (past) time-like infinity. The red
lines correspond to constant τ hypersurfaces (Equation 6), and
the blue lines represent constant t hypersurfaces (Equation 5).
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We note that the inner product Equation 9 induces a norm on
the space of linear operators acting onΨ. This operator norm can be
used to define the ϵ-pseudospectrum ofL as the set in the complex ω
plane where

σϵ � ω ∈ C: ‖ L − ω( )−1‖> 1
ϵ{ }.

We refer to [38] for comprehensive information about the
pseudospectrum. For our purpose, the most useful interpretation
is that for any operator δL of operator norm ‖δL‖< ϵ; the spectrum
of L + δL lies inside σϵ.

It is convenient and informative to present the pseudospectra as
a contour plot in which the contour lines correspond to different
values of ϵ. In the case of a normal operator, these contour lines are
concentric circles around the eigenvalues. In particular, for
sufficiently small ϵ, the radius of the circle is also given by ϵ.
This situation can be referred to as spectral stability. For non-
normal operators, however, the contour lines are not necessarily
circles. They can be much larger than circles of radius ϵ or even open
lines in the complex ω plane. This indicates that small perturbations
can displace the eigenvalues of the operator by large amounts.

Let us now consider the pseudospectrum shown in Figure 2. One
can see that the contour lines are open. The colors indicate the ϵ
values. Even tiny perturbations can completely destabilize the
spectrum of quasinormal modes. It is important to note that this
figure is obtained with a discretization of the differential operator L
using pseudospectral methods at a grid size of N � 120 points for
ρ ∈ [0, 1]. It turns out that the spectral instability gets stronger as the
grid size increases. In fact, one can argue that the resolvent does not

converge to a finite value for N → ∞ [35]. The reason is that the
energy norm cannot effectively exclude the modes which are
outgoing from the horizon. These behave like a∝ ρiω/2 near the
horizon. The energy norm, however, only demands integrability on
the horizon. In fact, all functions which behave like the outgoing
modes with I(ω)< 0 have an integrable energy Equation 8.
Furthermore, the domain on which the operator L is defined
contains the outgoing modes with I(ω)< − 1. Therefore, in the
continuum limit, all points withI(ω)< − 1 belong to the spectrum
of the operator L. For an in-depth mathematical discussion, see [37,
39]. We note that hydrodynamic modes for small enough
momentum k obey I(ω)≥ − 1, and thus they lie in the
convergent region of the pseudospectrum in the energy
norm [34, 35].

3 Discussion

This finding on the spectral instability of quasinormal modes is
somewhat puzzling. After all, we can construct the holographic
Green’s function exactly, and it does have a discrete set of poles in
the complex ω plane. In contrast, the spectrum of L is continuous if
it acts on functions with the finite energy norm.

We note that, as we have emphasized, the definition of the
holographic Green’s function implicitly relies on analytic
continuation across the horizon. This analyticity requirement is
much stronger than the requirement of the existence of the energy
norm. A way to circumvent this has been suggested in [37] and
consists in replacing the energy norm with a Sobolev norm. In

FIGURE 2
Pseudospectra of a vector field in the AdS black brane background. The color code indicates the values of log10ϵ.
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physicist terms, this corresponds to higher-order derivative terms in
the norm. Higher-order derivative terms up to |∂nρa|2 amount to
lowering the limit for integrability to I(ω)< 1 − 2n. In order to
recover the exact spectrum, one would, of course, have to take a limit
with infinitely many derivatives. From the physics point of view, the
significance of such higher-order derivative terms is not clear.

Another line of thought could be that one considers the
underlying theory (being it a scalar field, a Maxwell field, or the
metric itself) as an effective field theory valid down to a finite cutoff
length scaleΛ. Then, we would necessarily have some huge but finite
value for N determined, e.g., by the criterion that the minimal
distance between points of the discretization is larger than Λ.
Alternatively, one could also impose the boundary conditions not
directly at the horizon but slightly outside at a sort of
“stretched” horizon [40].

Let us now emphasize the importance of the pseudospectra in
the context of holography. From the gravitational side,
pseudospectra probe how much the quasinormal frequencies
change if the background is slightly modified in some way (e.g.,
by the change in the geometry and/or the background value of the
fields). Consequently, in the dual quantum field theory,
pseudospectra help us estimate how much the poles of the
retarded Green’s functions might change if the theory is slightly
perturbed. In both cases, these perturbations should be understood
as perturbations to the Lagrangian, leading to the change in the
spectrum of excitations. Then, spectral instability suggests that
holographic models might not be able to accurately capture the
actual spectra of real physical systems such as quark–gluon plasma.
However, valuable information, such as transient dynamics, can still
be obtained by studying pseudospectra [24, 38].

We shall now point to additional results on quasinormal modes
in anti-de Sitter space. The pseudospectrum in infalling
Eddingtion–Finkelstein coordinates has been investigated in [34].
One of the main findings was that in certain cases, the
pseudospectrum can significantly reach up into the upper half-
plane, giving rise to possible transient behavior. The structural
aspects of the pseudospectrum of quasinormal modes for AdS
black holes have been pointed out and further investigated in
[35]. In particular, the results in infalling Eddington–Finkelstein
and regular coordinates have been contrasted. The dependence of
pseudospectra on the choice of coordinates still needs further
investigation. The properties of the pseudospectrum of black hole
metrics have also been shown to give rise to transient behavior for
which a sum of M quasinormal modes can be long lived of order
log(M) in [41]. The stability of complex linear momenta (CLMs) in
anti-de Sitter space is studied in [42]. Remarkably, the
pseudospectrum of CLMs was observed to be convergent,
allowing for quantitative results.

In this paper, we have reviewed the holographic perspective on
the quasinormal modes and quasinormal frequencies of AdS black

holes. In this context, the pseudospectrum analysis offers an
invaluable tool for assessing the stability and investigating the
existence of transient dynamics. Numerically computed
pseudospectra do not converge in the energy norm because
outgoing modes can still have finite energy. We believe that the
lack of convergence is not a flaw of the construction but rather a
fundamental feature that needs to be addressed using a physics-
motivated regulator.
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1 Introduction

The spectral theory of non-selfadjoint operators acting on a Hilbert space is an

established and highly developed subject. Non-selfadjoint operators are prevalent naturally

in a wide range of modern problems. For instance, in the field of quantum mechanics, the

study of scattering systems naturally leads to the notion of quantum resonances. These can

be described as the complex values of the meromorphic. The continuation of the scattering

matrix or of the cut-off resolvent of the Hamiltonian to the non-physical sheet of the

complex plane. Alternatively, through a complex deformation of the initial Hamiltonian,

these resonances can be characterized as the genuine complex valued eigenvalues of a

non-selfadjoint operator [1, 3, 60]. We recommend the reader to reference [18] for an

in-depth discussion of the mathematics of scattering poles. Another aspect of quantum

mechanics is the examination of a small system that is linked to a larger environment. The

effective dynamics of the small systems are governed by a non-selfadjoint operator: the

Lindbladian [39].

A major obstacle to the spectral analysis of non-selfadjoint operators is the possible

strong spectral instability of their spectrum with respect to small perturbations. This

phenomenon, sometimes referred to as the pseudospectral effect, was initially considered

to be a drawback, as it could lead to the origin of immense numerical errors, see Embree

and Trefethen [19] and the references therein. However, a recent line of research has also

demonstrated that the pseudospectral effect can provide novel insights into the spectral

distribution of non-selfadjoint operators that are subjected to small generic perturbations.

2 Spectral instability of non-selfadjoint operators

We commence by recalling the definition of the pseudospectrum of a linear operator,

a crucial concept that which quantifies its spectral instability. This notion appears to have

originated in the second half of the 20th century in various contexts, see reference [65]

for a historic overview. It quickly became an important notion in numerical analysis, as

it allows us to quantify how much eigenvalues can spread out under the influence of small

perturbations, see references [64, 65] and the book [19].We follow here the latter reference.
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Let H be a complex Hilbert space (assumed separable for

simplicity) with norm ‖ · ‖ and scalar product (·|·). Let P :H → H

be a closed densely defined linear operator, with resolvent set ρ(P)

and spectrum Spec(P) = C\ρ(P).

Definition 1. For any ε > 0, we define the ε-pseudospectrum of P

by

Specε(P) := Spec(P) ∪ {z ∈ ρ(P); ‖(P − z)−1‖ > ε−1}. (1)

We note that some authors define the ε-pseudospectrum with

a > rather than a >. We, however, follow here reference [19]. It is

noteworthy that with this choice of non-strict inequality results in

the Specε(P) being an open set in C.

For P selfadjoint (or even normal), the spectral theorem implies

that

Specε(P) ⊂ Spec(P)+ D(0, ε), (2)

where D(0, ε) ⊂ C denotes the open disk with radius ε centered

at 0. For P non-selfadjoint, the pseudospectrum of P can be much

larger, as illustrated by the following example.

Example 1. For N ≫ 1, consider the Jordan block matrix

PN =





















0 1 0 . . . 0

0 0 1
. . .

...
...
. . .

. . .
. . . 0

... . . .
. . .

. . . 1

0 . . . . . . . . . 0





















:C
N → C

N . (3)

The spectrum of PN is given by {0}. Consider the vector e+ =

(1, z, . . . , zN−1), |z| 6 r < 1. Then,

‖(PN − z)e+‖ = |z|N = O

(

e−N| log r|
)

‖e+‖.

So, Theorem 2 shows that for any ε > 0 and any r ∈]0, 1[ we

have that for N > 1 sufficiently large

D(0, r) ⊂ Specε(PN).

An immediate consequence of Equation 1 is the property that

pseudospectra are nested. More precisely,

Specε2 (P) ⊂ Specε1 (P), ε1 > ε2 > 0. (4)

The set (Equation 1) describes a region of spectral instability of

the operator P, since any point in the ε-pseudospectrum of P lies

within the spectrum of a certain ε-perturbation of P [19].

Theorem 1. Let ε > 0. Then

Specε(P) =
⋃

Q∈B(H)
‖Q‖<1

Spec(P + εQ). (5)

Proof. See reference [19, p. 31].

A third, equivalent definition of the ε-pseudospectrum of

P is provided by the existence of approximate solutions to the

eigenvalue problem (P − z)u = 0.

Theorem 2. Let ε > 0 and z ∈ C. Then the following statements

are equivalent:

1. z ∈ Specε(P);

2. z ∈ Spec(P) or there exists a uz ∈ D(P) such that ‖(P− z)uz‖ <

ε‖uz‖, whereD(P) denotes the domain of P.

Proof. See reference [19, p. 31].

Such a state uz is referred to as an ε-quasimode, or simply a

quasimode of P − z.

3 Spectral instability of semiclassical
pseudo-di�erential operators

Although the notion of ε-pseudospectrum defined in

Definition 1 is valid in the context of semiclassical pseudo-

differential operators, we present here a somewhat different,

but still related notion, which is more suited to the semiclassical

setting. Here, the term “semiclassical” implies that our operators are

dependent on a parameter h ∈]0, 1] (often referred to as “Planck’s

parameter”), and that our focus we will be on the asymptotic

(semiclassical) regime h ց 0. This small parameter will provide

us with a natural threshold for defining the pseudospectrum, and

thereby measuring the spectral instability. The following discussion

is based on the studies of Davies [13] and Dencker et al. [16].

Let d > 1 and h ∈]0, 1]. An order function m ∈

C∞(R2d; [1,∞[), is a function satisfying the following growth

condition:

∃C0 > 1, ∃N0 > 0 : m(ρ) 6 C0〈ρ − µ〉N0m(µ), ∀ρ,µ ∈ R
2d,

(6)

where 〈ρ −µ〉 : =
√

1+ |ρ − µ|2 denotes the “Japanese brackets.”

We will also sometimes write (x, ξ ) = ρ ∈ R
2d, so that ξ ∈ R

d.

To such an order function m, we may associate a semiclassical

symbol class [17, 71]. We assert that a smooth function p ∈

C∞(R2d
ρ , ]0, 1]h) belongs to the symbol class S(m) if for any

multiindex α ∈ N
2d when there exists a constant Cα > 0 such

that

|∂α
ρ p(ρ; h)| 6 Cαm(ρ), ∀ρ ∈ R

2d, ∀h ∈]0, 1]. (7)

We recommend the reader for further reading on semiclassical

analysis to [17, 41, 71].

Let the symbol p ∈ S(m),m > 1, be a “classical” symbol, which

satisfies an asymptotic expansion in the limit h → 0:

p(ρ; h) ∼ p0(ρ)+ hp1(ρ)+ . . . in S(m), (8)

where each pj ∈ S(m) is independent of h. We assume that there

exists a z0 ∈ C and a C0 > 0 such that

|p0(ρ)− z0| > m(ρ)/C0, ρ ∈ T∗
R
d. (9)

Here, T∗
R
d ≃ R

2d denotes the cotangent space of Rd. In this

case, we call p0 the (semiclassical) principal symbol of p. We then

define two subsets of C associated with p0:

6 := 6(p0) := p0(T∗Rd),

6∞ := {z ∈ 6; ∃(ρj)j>1 s.t. |ρj| → ∞, p0(ρj) → z}. (10)

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org64

https://doi.org/10.3389/fams.2024.1508973
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Vogel 10.3389/fams.2024.1508973

Here, the p0(T∗Rd) denotes the closure of the set p0(T
∗
R
d), and

we will use this notation in the sequel. The set 6 is the classical

spectrum, and 6∞ can be called the classical spectrum at infinity of

the h-Weyl quantization of p was defined by

Phu(x) := pw(x, hDx)u(x)

=
1

(2πh)d

∫∫

e
i
h
(x−y)·ξp

(

x+ y

2
, ξ ; h

)

u(y)dydξ ,

u ∈ S(Rd), (11)

seen as an oscillatory integral in ξ . The operator Ph maps S → S,

and by duality S′ → S′, continuously.

3.1 Semiclassical pseudospectrum

Similar to Dencker et al. [16], we define for a symbol p ∈ S(m)

as in Equation 8 the sets

3±(p) :=

{

p(ρ); ±
1

2i
{p, p}(ρ) < 0

}

⊂ 6 ⊂ C, (12)

where {·, ·} denotes the Poisson bracket. It should be noted that the

condition 1
2i {p, p} 6= 0 is the classical analog of the [P∗

h
, Ph] 6= 0. As

in Dencker et al. [16], we call the set

3(p) : = 3− ∪ 3+ (13)

the semiclassical pseudospectrum.

Theorem 3 ([16]). Suppose that n > 2, C∞
b
(T∗

R
d) ∋ p ∼ p0 +

hp1 + . . . , and p−1
0 (z) is compact for a dense set of values z ∈ C. If

Ph = pw(x, hDx), then

3(p0)\6∞ ⊂ 3+(p0)

and for every z ∈ 3+(p0) and every ρ0 ∈ T∗
R
d with

p0(ρ0) = z,
1

2i
{p0, p0}(ρ0) < 0,

there exists 0 6= e+ ∈ L2(Rd) such that

‖(Ph − z)e+‖ = O(h∞)‖e+‖, WFh(e+)
1 = {ρ0}. (14)

If, in addition, p has a bounded holomorphic continuation to

to {ρ ∈ C
2d, |Im ρ| 6 1/C}, then Equation 14 holds with the h∞

replaced by exp(−1/(Ch)).

1 This implies that the semiclassical wavefront set of e+ is defined by ρ0. In

other words, the state e+ is concentrated in position and frequency near the

point ρ0. See, for instance, Zworski [71] for a definition. For u = (u(h))h∈(0,1) a

bounded family in L2(Rd), its semiclassical wavefront set WFh(u) denotes the

phase space region where u is h-microlocalized:

WFh(u)
def
= ∁

{

(x, ξ ) ∈ T∗
R

d; ∃a ∈ C
∞
c (T∗

R
d), a(x, ξ ) = 1,

‖aw(x, hDx)u(h)‖L2 = O(h∞),
}

where aw denotes the Weyl quantization of a, and ∁U denotes the

complement of a given set U.

If n = 1, then the same conclusion holds, provided that in

addition to the general assumptions, each component ofC\6∞ has

a nonempty intersection with ∁3(p).2

This result can be extended to unbounded symbols p ∈

S(T∗
R
d,m), as shown in Equation 8, and the corresponding

operators Ph with principal symbol p0, by applying Theorem 3

to ˜Ph = (Ph − z0)
−1(Ph − z), with principal symbol p̃0 ∈

C∞
b
(T∗

R
d) and z0 as in Equation 9 and z0 6= z. Indeed, note

that z ∈ 6(p0) if and only if 0 ∈ 6(̃p0), and that ρ ∈

p−1
0 (z) with ±{Re p0, Im p0}(ρ) < 0 is equivalent to ρ ∈ p̃−1

0 (0)

with ±{Re p̃0, Im p̃0}(ρ) < 0. Furthermore, a quasimode u as in

Theorem 3 for ˜Ph then provides, after a possible truncation, a

quasimode for Ph − z in the same sense.

By replacing Ph with its formal adjoint, P∗
h
, and thus p with p,

Theorem 3 yields that for every z ∈ 3−(p) and every ρ0 ∈ T∗
R
d

with

p0(ρ0) = z,
1

2i
{p0, p0}(ρ0) > 0,

there exists 0 6= e− ∈ L2(Rd) such that

‖(Ph − z)∗e−‖ = O(h∞)‖e−‖, WFh(e−) = {ρ0}.

The additional statements of Theorem 3 regarding symbols that

permit a holomorphic extension to a complex neighborhood of

R
2d, and the case where n = 1 hold as well.

Example 2. The case study to be considered is the case of the

non-selfadjoint Harmonic oscillator

Ph = (hDx)
2 + ix2

is seen as an unbounded operator L2(R) → L2(R). The principal

symbol for Ph is given by p(x, ξ ) = ξ 2 + ix2 ∈ S(T∗
R,m), with a

weight functionm(x, ξ ) = 1+ξ 2+x2.We equip Ph with the domain

H(m) := (Ph + 1)−1L2(R), where the operator on the right is the

pseudo-differential inverse of Ph+1. This choice of domain renders

Ph a closed and densely defined operator. Using, for instance, the

method of complex scaling, it can be observed that the spectrum of

Ph is determined by

Spec(Ph) = {eiπ/4(2n+ 1)h; n ∈ N}. (15)

Furthermore, 6 is the closed first quadrant in the complex

plane, whereas 6∞ = ∅. For ρ = (x, ξ ) ∈ T∗
R, we find that

1

2i
{p, p}(x, ξ ) = 2ξ · x. (16)

Thus, for every z ∈
◦
6

3 there exist points

ρ
j
+(z) = (−1)j(−

√

|Re z|,
√

|Im z|),

ρ
j
−(z) = (−1)j(−

√

|Re z|,−
√

|Im z||), j = 1, 2,

such that

±
1

2i
{p, p}(ρ

j
±(z)) < 0, j = 1, 2.

2 ∁3(p) denotes the complement of the set 3(p).

3
◦

6 denotes the interior of the set 6.
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Using the WKB method, it is possible to construct quasimodes

of the form e
j
+(x; h) = a

j
+(x; h)e

iφ
j
+(x)/h with a

j
+(x; h) ∈ C∞

c (R)

admitting an asymptotic expansion a
j
+(x; h) ∼ a

j
+,0(x)+ha

j
+,1(x)+

. . . with WFh(e
j
+) = {ρ

j
+(z)} and

‖(Ph − z)e
j
+‖ = O(e−1/Ch), (17)

see Davies [13, 14] for an explicit computation, and Dencker et al.

[16] for a more general construction.

In fact, the works of Davies [13, 14] provide an explicit

WKB construction for a quasimode u for one-dimensional non-

selfadjoint Schrödinger operators Ph − z = (hDx)
2 + V(x) − z

on L2(R) with V ∈ C∞(R) complex-valued and z = V(a) +

η2, for some a ∈ R, η > 0. Furthermore, one assumes that

ImV ′(a) 6= 0. These studies served as the foundation for the

quasimode construction of non-selfadjoint (pseudo-)differential

operators. Zworski [69] compared Davies’ quasimode construction

under the condition on the gradient of ImV to a quasimode

construction under a non-vanishing condition of the Poisson

bracket 1
2i {p, p}. Furthermore, Zworski [69] established the link

to the famous commutator condition of Hörmander [32, 33]. A

full generalization of the quasimode construction under a non-

vanishing condition of the poisson bracket, see Theorem 3, was

then achieved by Dencker et al. [16]. Finally, Pravda-Starov [46–

48] improved these results by modifying a quasimode construction

by Moyer and Hörmander, see reference [34, Lemma 26.4.14],

for adjoints of operators that do not satisfy the Nirenberg-Tréves

condition (9) for local solvability.

For a quasimode construction for non-selfadjoint boundary

value problems, we recommend the reader refer to the study of

Galkowski [20].

It is noteworthy, that Equation 14 (or Equation 17 in the

aforementioned example) implies that if the resolvent (Ph − z)−1

exists then its norm is larger than any power of h when h → 0, or

even larger than e1/Ch in the analytical case. Each family (e
j
+(z, h))

is an h∞-quasimode of Ph − z, or for short a quasimode of Ph − z.

From the quasimode Equation 14, it is easy to observe an

operator Q of unity norm and a parameter δ = O(h∞), such that

the perturbed operator Ph+δQ has an eigenvalue at z. For instance,

if we call the error r+ = (Ph−z)e+, wemay take the rank 1 operator

δQ = −r+ ⊗ (e+)
∗. According to Theorem 3, it can be observed

that the interior of the set 3(p), situated away from the set 6∞, is

a zone of strong spectral instability for Ph. For this reason, we may

refer to the semiclassical pseudospectrum 3(p) also as the (h∞-)

pseudospectrum of Ph. Finally, we recommend the reader also to

the refer studies of Pravda-Starov [46–48] for further refinement of

the notion of semiclassical pseudospectrum.

3.2 Outside the semiclassical
pseudospectrum

When

z ∈ C\6(p),

then by condition (Equation 9), we have (p0(ρ) − z) > m(ρ)/C

for some sufficiently large C > 0 and so we know that the inverse

(Ph − z)−1 is a pseudo-differential operator with principal symbol

(p0− z)−1 ∈ S(1/m) ⊂ S(1). Hence, (Ph− z)−1 maps L2 → L2 and

‖(Ph − z)−1‖ = O(1) (18)

uniformly in h > 0. Therefore, from the semiclassical point of view,

we may consider C\6 as a zone of spectral stability.

3.3 At the boundary of the semiclassical
pseudospectrum

At the boundary of the semiclassical pseudospectrum, a

transition occurs between the zone of strong spectral instability and

stability. Indeed, at the boundary we find an improvement over the

resolvent bounds, assuming some additional non-degeneracy:

Splitting a symbol p ∈ C∞
b
(T∗

R
d) into real and imaginary part,

p = p1 + ip2, we consider the iterated Poisson bracket

pI := {pi1 , {pi2 , {. . . , {pik−1
, pik}} . . . }}

where I ∈ {1, 2}k, and |I| = k is called the order of the Poisson

bracket. The order of p at ρ ∈ T∗
R
d is given by

k(ρ) := max{j ∈ N; pI(ρ) = 0, 1 < |I| 6 j}.

The order of z0 ∈ 6\6∞ is the maximum of k(ρ) for ρ ∈

p−1(z0).

Theorem 4. See Dencker et al. [16, 56] Assume that C∞
b
(T∗

R
d) ∋

p ∼ p0 + hp1 + . . . . Let Ph = pw(x, hDx) and let z0 ∈

∂6(p0)\6∞(p0). Assume that dp0 6= 0 at every point in p−1
0 (z0),

and that z0 has a finite order k > 1 for p. Then, k is equal and h > 0

is small enough for

‖(Ph − z)−1‖ 6 Ch−
k

k+1 .

In particular, there exists a c0 > 0, such that h > 0 is small

enough for

{z ∈ C; |z − z0| 6 c0h
k

k+1 } ∩ Spec(Ph) = ∅.

This result was proven in dimension 1 by Zworski [70], and

in certain cases by Boulton [8]. Further refinements have been

obtained from Sjöstrand [56]. Similar to the discussion after

Theorem 3, we can extend Theorem 4 to unbounded symbols p ∈

S(T∗
R
d,m) and their corresponding quantizations.

Example 3. Recall the non-selfadjoint Harmonic oscillator Ph =

(hDx)
2 + ix2 from Example 2. Here ∂6 = R+ ∪ iR+, so we see by

Equation 16 that for 0 6= z0 ∈ 6

1

2i
{p, p}(ρ) = {Re p, Im p}(ρ) = 0, ρ ∈ p−1(z0).

However,

either {Re p, {Re p, Im p}}(ρ) = 4ξ 2 6= 0,

or {Im p, {Re p, Im p}}(ρ) = −4x2 6= 0,
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indicating that z0 is of order 2 for p = ξ 2 + ix2, and Theorem 4

reveals that

‖(Ph − z0)
−1‖ 6 Ch−

2
3 .

In order for a the ε-pseudospectrum of Ph to reach the

boundary of 6, we require ε > h2/3/C.

3.4 Pseudospectra and random matrices

In this section, we present a brief discussion on pseudospectra

for largeN×N randommatrices. Onemay interpret the 1/N, where

N≫ 1, as an analog to the semiclassical parameter. By recalling the

example of the non-selfadjoint harmonic oscillator, as illustrated in

Example 2, we see that pseudospectra can be very large in general.

However, in a generic setting, they are typically much smaller.

Let M ∈ C
N×N be a complex N × N matrix and let

s1(M) > . . . > sN(M) > 0 denotes its singular values, which

are the eigenvalues of
√
M∗M ordered in a decreasing manner and

counting multiplicities. It should be noted that ifM − z is bijective

for some z ∈ C, then

‖(M − z)−1‖ = sN(M − z)−1.

In view of Equation 1, the ε-pseudospectrum of M is then

characterized by the condition that z ∈ Specε(M)

z ∈ Specε(M) ⇐⇒ sN(M − z) < ε.

A classical result from Sankar et al. [51, Lemma 3.2] (stated

there for real Gaussian random matrices) indicates that with a

high probability, the smallest singular value of a deformed random

matrix is not too small.

Theorem 5 ([51]). There exists a constant C > 0 such that the

following holds true. Let N > 2, let X0 be an arbitrary complex

N × N matrix, and let Q be an N × N complex Gaussian random

matrix, whose entries are all independent copies of a complex

Gaussian random variable q ∼ NC(0, 1). Subsequently, for any

δ > 0

P
(

sN(X0 + δQ) < δt
)

6 CNt2.

Proof. For real matrices the proof can be found in Sankar et al.

[51, Lemma 3.2], see also reference [63, Theorem 2.2]. For complex

matrices a proof is presented for instance in Vogel [66, Appendix

A].

Theorem 5 states us that any fixed z ∈ C is not included in the

ε-pseudospectrum of X + δQ with a probability > 1 − CNε2δ−2.

This result suggests that the pseudospectrum of randommatrices is

typically not too large. Theorem 5 has received many extensions.

For instance Rudelson and Vershynin [50] consider the case of

randommatrices with iid (independent and identically distributed)

sub-Gaussian entries. Tao and Vu [62] consider iid entries with a

nonzero variance. Cook [12] considers the case of randommatrices

whose of entries have an inhomogeneous variance profile under

appropriate assumptions. We conclude this section by noting the

following, quantitative outcome obtained by Tao and Vu.

Theorem 6 ([63]). Let q be a random variable with amean zero and

a bounded second moment, and let γ > 1/2, A > 0 be constants.

Then, there exists a constant C > 0, depending on q, γ , and A such

that the following holds true. LetQ be the randommatrix of sizeN,

whose entries are independent and identically distributed copies of

q, and let X0 be a deterministic matrix satisfying ‖X0‖ 6 Nγ . Then,

P

(

sn(X0 + Q) 6 n−γ (2A+2)+1/2
)

6 C
(

n−A+o(1) + P(‖Q‖ > nγ )
)

.

(19)

Example 4. Consider the case where q is a random variable

satisfying the moment conditions

E[q] = 0, E[|q|2] = 1, E[|q|4] < +∞. (20)

Form [37] reveals that Equation 20 implies that E[‖Q‖] 6

CN1/2, which, using Markov’s inequality, yields that for any ε > 0

P
[

‖Q‖ > CN1/2+ε
]

6 C−1N−1/2−ε
E[‖Q‖] 6 N−ε . (21)

In this case (Equation 19) becomes

P

(

sn(X0 + Q) 6 n−(ε+1/2)(2A+2)+1/2
)

6 C
(

n−A+o(1) + N−ε
)

.

(22)

4 Eigenvalue asymptotics for
non-selfadjoint (random) operators

Consider the operator Ph = pw(x, hDx) depicted in

Equations 8, 11, which is viewed as an unbounded operator

L2(Rd) → L2(Rd). We equip Ph with the domain H(m) := (Ph −

z0)
−1L2(Rd). It should be noted that (Ph − z0)

−1 exists for h > 0

that is sufficiently small by the elipticity condition (Equation 9).

We will denote by ‖u‖m := ‖(Ph − z0)u‖ the associated norm on

H(m). Although this norm depends on the selection of the symbol

p0 − z0, it is equivalent to the norm defined by any operator with

an elliptic principal symbol q ∈ S(m), so that the space H(m)

solely depends on the order function m. Since H(m) contains the

Schwartz functions §(Rd), it is dense in L2(Rd).

Let us verify that Ph equipped with domain H(m) is closed. Let

(Ph − z0)uj → v and uj → u in L2. Since (Ph − z0) :H(m) → L2 is

bijective, it follows that uj → (Ph − z0)
−1v in H(m) and also in L2.

So u = (Ph − z0)
−1v. In summary, Ph equipped with the domain

H(m) is a densely defined closed linear operator.

Recall Equation 10, and let

� ⋐ C\6∞ (23)

be open, relatively compact, not entirely contained in6 and so that

� ⊂ C\6∞. Using the ellipticity assumption (Equation 9), it was

proven in reference [25, Section 3] that

• Spec(Ph) ∩ � is discrete for h > 0 small enough,

• For all ε > 0 there exists an h(ε) > 0 such that

Spec(Ph) ∩ � ⊂ 6 + D(0, ε), 0 < h 6 h(ε),

where D(0, ε) denotes the disc in C of radius ε and centered

at 0.
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4.1 The selfadjoint setting

If Ph above is selfadjoint, which implies in particular that p is

real-valued, we have the classical Weyl asymptotics. We follow here

Dimassi and Sjöstrand [17] for a brief review.

Theorem 7. Let � be as in Equation 23. For every h-independent

interval I ⊂ � ∩ R with Vol
R2d (∂I) = 0,

#(Spec(Ph)∩ I) =
1

(2πh)d

(

∫

p−1
0 (I)

dxdξ + o(1)

)

, h → 0. (24)

This result is, in increasing generality, attributed to Chazarin

[10], Helffer and Robert [26, 27], Petkov and Robert [45] and

Ivrii [35]. See also Dimassi and Sjöstrand [17] for an overview.

We highlight two special cases: when I = [a, b], a < b, and

a, b are not critical points of p0, then the error term becomes

O(h), see Chazarin [10], Helffer-Robert [26], and Ivrii [35]. When

additionally the unions of periodic Hp0 trajectories
4 in the energy

shell p−1
0 (a) and p−1

0 (b) are of the Liouville measure 0, then the

error term is of the form

h

(

∫

p0=a
p1(ρ)La(dρ)−

∫

p0=b
p1(ρ)Lb(dρ)

)

+ o(h), (25)

where Lλ denotes the Liouville measure on p−1
0 (λ). See Petkov

and Robert [45] and Ivrii [35] and Dimassi and Sjöstrand [17]

for details. Let us also highlight that similar results obtained from

Theorem 7 are also valid for compact smooth manifolds, see, for

instance, Grigis and Sjöstrand [21, Chapter 12] and the references

therein.

The corresponding results in the setting of self-adjoint partial

differential operators in the high energy limit go back to the seminal

study of Weyl [68] and have a long and very rich history. These are,

however, beyond the scope of this review.

Example 5. The guiding example to keep inmind is the self-adjoint

Harmonic oscillator

Ph = (hDx)
2 + x2 : L2(R) → L2(R)

seen as an unbounded operator. The principal symbol of Ph is

represented by p(x, ξ ) = ξ 2 + x2 ∈ S(T∗
R,m), and the weight

function m(x, ξ ) = 1 + ξ 2 + x2. Ph is represented by the domain

H(m) : = (Ph + 1)−1L2(R), where the operator on the right is the

pseudo-differential inverse of Ph + 1. This choice of domain makes

Ph a densely defined closed operator. It is widely acknowledged (see,

for instance, reference [71, Theorem 6.2]) that the spectrum of Ph
is determined by

Spec(Ph) = {(2n+ 1)h; n ∈ N}.

Counting the points (2n + 1)h contained in an interval [a, b],

0 6 a < b < ∞, gives

#(Spec(Ph) ∩ [a, b]) =
b− a

2h
+O(1).

Since VolR2 ({a 6 ξ 2 + x2 6 b}) = π(b − a), we confirm

Theorem 7 for the Harmonic oscillator.

4 Hp0 denotes the Hamilton vector field induced by p0.

4.2 The non-self-adjoint setting

The natural counterpart of Theorem 7 for non-self-adjoint

operators would be eigenvalue asymptotics in a complex domain

� ⋐ C as in Equation 23. Recall the non-self-adjoint Harmonic

oscillator Ph from Example 2 with principal symbol p(x, ξ ) =

ξ 2 + ix2. In this case, 6 = {z ∈ C;Re z, Im z > 0} and 6∞ = ∅.

Any ∅ 6= � ⋐ 6 away from the line eiπ/4
R+, indicates the view of

Equation 15 that

#(Spec(Ph) ∩ �) = 0.

On the other hand,

1

2πh

∫

p−1(�)
dxdξ > 0.

This example suggests that a direct generalization of Theorem

7 to non-self-adjoint operators with a complex valued principal

symbol cannot hold.

Let us comment on two settings where a form of Weyl

asymptotics is known to hold: Upon assuming analyticity, one

may recover a sort of Weyl asymptotics. More precisely, as

shown in the studies of Melin and Sjöstrand [43], Sjöstrand

[53], Hitrik and Sjöstrand [28–30], Hitrik et al. [31], and Rouby

[49], the discrete spectrum of certain analytic non-self-adjoint

pseudo-differential operators is confined to curves in 6. Moreover,

one can recover eigenvalue asymptotics using Bohr-Sommerfeld

quantization conditions.

The second setting occurs when the non-self-adjointness of

the operator Ph arises not from the principal symbol p0 (assumed

to be real-valued), but from the subprincipal symbol p1. For

instance, when studying the damped wave equation on a compact

Riemannian manifold X, one is led to study the eigenvalues of the

corresponding stationary operator

Ph(z) = −h21 + 2ih
√

a(x)
√
z, a ∈ C∞(X;R).

Here, 1 denotes the Laplace-Beltrami operator on X, and we

call z ∈ C an eigenvalue of Ph(z) if there exists a corresponding L
2

function u is present in the kernel of Ph(z) − z. In fact, such a u is

smooth by elliptic regularity. Using Fredholm theory, one can show

that these eigenvalues form a discrete set in C.

The principal part of Ph = Ph(z) is given by −h21, and thus

is self-adjoint. The principal symbol is p0(x, ξ ) = |ξ |2x (the norm

here is with respect to the Riemannian metric on X). However, the

subprincipal part is complex valued and non-self-adjoint.

Lebeau [38] has established that there exists a± ∈ R, wherein

for every ε > 0 there exist a finite number of eigenvalues such that

Im z

h
/∈ [a− − ε, a+ + ε].

Remark 1. In fact Lebeau provided precise expressions for a± in

terms of the infimum and the supremum over the co-sphere bundle

S∗X of the long time average of the damping function a evolved

via the geodesic flow. Further refinements have been obtained by

Sjöstrand [52], and when X is negatively curved by Anantharaman

[2] and Jin [36].
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Additionally, Markus andMatsaev [40] and Sjöstrand [52] have

demonstrated the following analog of the Weyl law. For 0 < E1 <

E2 < ∞ and for C > 0 sufficiently large

#
(

Spec(Ph) ∩ ([E1,E2]+ i[−Ch,Ch])
)

=
1

(2πh)d

(

∫∫

p−1
0 ([E1 ,E2])

dxdξ +O(h)

)

. (26)

Finer results have been obtained by Anantharaman [2] and Jin

[36] when X is negatively curved.

4.3 Probabilistic Weyl asymptotics

In a series of studies by Hager [23–25] and Sjöstrand [54, 55],

the authors proved a Weyl law, with overwhelming probability, for

the eigenvalues in a compact set � ⋐ C as in Equation 23 for

randomly perturbed operators

Pδ = Ph + δQω , 0 < δ = δ(h)≪ 1, (27)

where Ph is as per in Section 3, and the random perturbation Qω is

one of the following two types.

4.3.1 Random matrix
Let N(h) → ∞ sufficiently fast as h → 0. Let qj,k, 0 6 j, k <

N(h) be independent copies of a complex Gaussian random variable

α ∼ NC(0, 1). We consider the random matrix

Qω =
∑

06j,k<N(h)

qj,k ej ⊗ e∗k , (28)

where {ej}j∈N ⊂ L2(Rd) is an orthonormal basis and ej ⊗ e∗
k
u =

(u|ek)ej for u ∈ L2(R). The condition on N(h) is determined

by the requirement that the microsupport of the vectors in the

orthonormal system {ej}j<N(h), “covers” the compact set p−1
0 (�) ⊂

T∗
R
d, where p0 is the principal symbol of Ph. For instance, we

could consider the first N(h) eigenfunctions (ordered according to

increasing eigenvalues) of the Harmonic oscillator Ph = −h21+x2

on R
d. The number N(h) is then determined by the condition that

the semiclassical wavefront sets of ej, j > N(h), are disjoint from

p−1
0 (�). Alternatively, as in Hager and Sjöstrand [25], one may also

take N(h) = ∞; however, then one must conjugate Qω by suitable

elliptic Hilbert–Schmidt operators. We recommend the reader to

Hager and Sjöstrand [25] for further information.

4.3.2 Random potential
We take N(h) and an orthonormal family (ek)k∈N as above. Let

v be real or complex random vector in R
N(h) or CN(h), respectively,

with joint probability law

v∗(dP) = Z−1
h

1B(0,R)(v) e
φ(v)L(dv), (29)

where Zh > 0 is a normalization constant, B(0,R) is either the real

ball ⋐ R
N(h) or the complex ball ⋐ C

N(h) of radius R = R(h)≫ 1,

and centered at 0, L(dv) denotes the Lebesgue measure on either

R
N(h) or CN(h) and φ ∈ C1 with

‖∇vφ‖ = O(h−κ4 ) (30)

uniformly, for an arbitrary but fixed value of κ4 > 0. In Hager

[24] the case of non-compactly supported probability law was

considered. More precisely, the entries of the random vector v

were supposed to be independent and identically distributed (iid)

complex Gaussian random variables ∼ NC(0, 1). In Sjöstrand

[54, 55], the law Equation 29 was considered. For the sake of

simplicity, we will not elaborate here the precise conditions on the

ek, R(h), and N(h), in this case, but refer the reader to Sjöstrand

[54, 55]. However, one example of a random vector v with law

(Equation 30) is a truncated complex or real Gaussian random

variables with expectation 0, and uniformly bounded covariances.

In fact, the methods in Sjöstrand [54, 55] can be extended to non-

compactly supported probability distributions, provided sufficient

decay conditions at infinity are assumed. For instance, iid complex

Gaussian random variables, as in the one dimensional case [24],

are permissable. Finally, we conclude that the methods in Sjöstrand

[54, 55] can probably also be modified to allow for the case of more

general independent and identically distributed random variables.

We define the random function as

Vω =
∑

06j<N(h)

vj ej. (31)

We call this perturbation a “random potential,” even thoughVω

is complex valued. When we consider this type of perturbation, we

will make the additional symmetry assumption:

p(x, ξ ; h) = p(x,−ξ ; h). (32)

Let � ⋐ C be an open simply connected set as in Equation 23.

For z ∈ � and 0 6 t ≪ 1 we set

Vz(t) = Vol{ρ ∈ T∗
R
d; |p0(ρ)− z|2 6 t}. (33)

Let Ŵ ⋐ � be open with C2 boundary and make the following

non-flatness assumption

∃κ ∈]0, 1], such that Vz(t) = O(tκ ),

uniformly for z ∈ neigh(∂Ŵ), 0 6 t ≪ 1. (34)

The above mentioned works have yielded the following result.

Theorem 8 (Probabilistic Weyl’s law). Let � be as in Equation 23.

Let Ŵ ⋐ � be open with C2 boundary. Let Pδ
h
be a randomly

perturbed operators as in Equation 27 with e−1/Ch ≪ δ 6 hθ with

θ > 0 sufficiently large. Then, in the limit h → 0,

#
(

Spec(Pδ
h) ∩ Ŵ

)

=
1

(2πh)d

(

∫∫

p−1
0 (Ŵ)

dxdξ + o(1)

)

with probability> 1− Chη , (35)

for some fixed η > 0.

The studies [23–25, 54, 55] also provide an explicit control over

θ , the error term inWeyl’s law, and the error term in the probability

estimate. Theorem 8 is remarkable because such Weyl laws are

typically a feature of self-adjoint operator, whereas in the non-

selfadjoint case they generally fail. Indeed, as laid out in Section

4.2, the discrete spectrum of the (unperturbed) non-selfadjoint

operator Ph is usually localized to curves in the pseudospectrum
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6, see Melin and Sjöstrand [43], Hitrik and Sjöstrand [28–31],

and Rouby [49]. In contrast, Theorem 8 shows that a “generic”

perturbation of size O(h∞) is sufficient for the spectrum to “fill

out” 6.

To illustrate this phenomenon, recall the non-selfadjoint

harmonic oscillator Ph = −h2∂2x + ix2 on R from Example

2. Its spectrum is given by {eiπ/4(2n + 1)h; n ∈ N} [14] on

the line eiπ/4
R+ ⊂ C. The Theorem 8 shows that a “generic”

perturbation of arbitrarily small size is sufficient to produce

spectrum roughly equidistributed in any fixed compact set in its

classical spectrum 6, which is in this case the upper right quadrant

of C.

As observed in Christiansen and Zworski [11], the real analytic

p condition (Equation 34) consistently holds for some κ > 0.

Similarly, when p is truly analytical and such that 6 ⊂ C has

non-empty interior, then

∀z ∈ ∂� : dp↾p−1(z) 6= 0 H⇒ (4.12) holds with κ > 1/2.

(36)

For smooth p, we have that when for every z ∈ ∂�

dp, dp are linearly independent at every point of p−1(z),

then (4.12) holds with κ = 1.
(37)

Observe that dp and dp are linearly independent at ρ when

{p, p}(ρ) 6= 0, where {a, b} = ∂ξa·∂xb−∂xa·∂ξb denotes the Poisson

bracket. Moreover, in dimension d = 1, the condition {p, p} 6= 0

on p−1(z) is equivalent to dp, with dp being linearly independent

at every point of p−1(z). However, in dimensions d > 1, this

cannot in hold general, as the integral of {p, p} with respect to the

Liouville measure on p−1(z) vanishes on every compact connected

component of p−1(z), see reference [42, Lemma 8.1]. Furthermore,

condition (Equation 37) cannot hold when z ∈ ∂6. However, some

iterated Poisson brackets may not have zero there. For example, it

has been observed in [25, Example 12.1] that if

∀ρ ∈ p−1(∂�) : {p, p}(ρ) 6= 0 or {p, {p, p}}(ρ) 6= 0,

then (4.12) holds with κ =
3

4
. (38)

4.3.3 Related results
Theorem 8 has also been extended to the case of elliptic

semiclassical differential operators on compact manifolds by

Sjöstrand [55], to the Toeplitz quantization of the torus by

Christiansen and Zworski [11] and Vogel [66], and to general

Berezin-Toeplitz quantizations on compact Kähler manifolds by

Oltman [44] in the context of complex Gaussian noise. A further

extension of Theorem 8 has been achieved by Becker, Oltman and

the author in Becker et al. [6]. There we prove a probabilistic Weyl

law for the non-selfadjoint off-diagonal operators of the Bistritzer-

MacDonald Hamiltonian [7] for twisted bilayer graphene, see also

Cancés et al. [9] andWatson et al. [67], subject to random tunneling

potentials. This probabilistic Weyl has an interesting physical

consequence as it demonstrates the instability of the so-calledmagic

angels for this model of twisted bilayer graphene. Similar results

have been achieved in random matrix theory. The case of Toeplitz

matrices is represented by symbols on T
2 of the form

∑

n∈Z ane
inξ ,

(x, ξ ) ∈ T
2, has been conducted in a series of recent studies by

Śniady [61], Davies and Hager [15], Guionnet et al. [22], Basak et

al. [4, 5], Sjöstrand and the author of this text [57–59]. Such symbols

amount to the case of symbols which are constant in the x variable.

In these studies the non-selfadjointness of the problem, however,

does not come from the symbol itself, but from the boundary

conditions destroying it. The periodicity of the symbol in x is

achieved by allowing for a discontinuity. Nevertheless, these studies

demonstrate that by adding a small random matrix, the limit of

the empirical eigenvalues counting measure µN of the perturbed

operator converges in probability (or even almost surely in some

cases) to p∗(dρ).
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The connection between
non-normality and trophic
coherence in directed graphs
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Trophic coherence and non-normality are both ways of describing the overall

directionality of directed graphs or networks. Trophic coherence can be regarded

as a measure of how neatly a graph can be divided into distinct layers, whereas

non-normality is a measure of how unlike a matrix is with its transpose. We

explore the relationship between trophic coherence and non-normality by first

considering the connections that exist in literature and calculating the trophic

coherence and non-normality for some toy networks. We then explore how

persistence of an epidemic in an SIS model depends on coherence and how

this relates to the non-normality. A similar e�ect on dynamics governed by a

linear operator suggests that it may be useful to extend the concept of trophic

coherence to matrices, which do not necessarily represent graphs.

KEYWORDS

directed graphs, trophic coherence, non-normality, pseudospectra, trophic levels,

epidemic modeling

1 Introduction

In this perspective article, we aimed to explore the relationship between trophic

coherence and non-normality, which are both qualities used to describe directed graphs.

Non-normality refers to the overall asymmetry of an adjacency matrix. Trophic coherence

is defined as how neatly the network can be divided into distinct layers, but it can also be

interpreted as a tendency of edges to align with a global direction. These two notions come

together in directed graphs. A directed graph can be represented with an N ×N adjacency

matrix A. If the graph is unweighted then A is binary: Aij = 1 if there is an edge from node

vi to node vj, else Aij = 0. When there is an edge from vi to vj, we will say that vi “sees” vj. A

weighted directed graph can be represented with a matrix whose entries are real numbers.

For our purposes here, we will always assume that A is non-negative. Each node has an in-

degree and an out-degree: kini =
∑

j Aji and kouti =
∑

j Aij. These are sometimes referred

to as “strengths” if the directed graph is weighted.

Definition 1.1. (Non-normality.) Given a real matrix A and its transpose AT , we say that

the matrix A is normal if AAT − ATA = 0. It is non-normal otherwise.

Definition 1.2. (Trophic Coherence) A directed graph is said to be maximally coherent if it is

possible to assign to each node a natural number such that nodes assigned to n only see others

assigned to n + 1. The greater the deviation from such a configuration, the more incoherent

the graph.
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The need to understand non-normal matrices and operators

arises in the fields of fluid dynamics [1–4], PT-symmetry [5–

12], and mathematical biology [13] among other disciplines.

In particular, non-normal systems are often characterized by

eigenvalues that are sensitive to perturbation. It is for this non-

normality is considered an asset in information transfer and

communication as it can amplify small environmental changes

[14, 15]. Additionally, non-normal linear operators are difficult to

capture numerically as small discrepancies arising from machine

precision can manifest as large perturbations in the eigenvalues.

This has given rise to the study of pseudospectra; the ǫ-

pseudospectrum of a matrix A is defined as the set {z ∈ C : ||(A −

zI)−1|| < ǫ−1}). The definition of pseudospectra corresponds to

a measure of sensitivity to perturbations of size ǫ; an equivalent

definition of pseudospectra is the set {z ∈ Sp(A + B) : ||B|| ≤

ǫ} [16]. Despite this being one of the most useful tools for

understanding how eigenvalues respond to perturbation, it is not

necessarily the best way of understanding the sensitivity of directed

graphs to operators such as changing the weights of edges or edge

deletion. This is equivalent to putting a structure on the matrix B,

which thus breaks the correspondence between the “perturbation

view of pseudospectra” and the “transient phenomena” view

of pseudospectra. The latter is particularly relevant when the

adjacency matrix represents a discrete dynamical system.

Ecologists define the “trophic level” of a species as the average

level of its prey, plus one [17]. Trophic coherence was first proposed

as a solution to May’s paradox: the fact that large ecosystems are

stable [18]. If the trophic difference of each edge in a graph is the

difference between the trophic levels of the in- and out-neighbors,

then the broader the distribution of differences (i.e., the larger the

standard deviation of this distribution), the more incoherent the

network. It was found that ecosystem models based on sufficiently

coherent graphs became more stable, rather than less so, with

increasing size. It was subsequently shown, by means of graph

ensembles and numerical simulations, that trophic coherence

could be related to several aspects of directed networks more

generally, including the spectral radius and distribution of cycles

[19]; motif profiles [20]; non-normality and strong connectivity

[21, 22]; pseudospectra [23]; and various dynamical processes [24–

26]. However, relying on the ecological definition of trophic levels

restricted the application of trophic coherence to networks with

at least one node with in-degree zero. Hence, a new measure of

trophic levels was proposed that can be applied to any directed

graph [27]. This is the method we use here.

In this article, we wish to emphasize the connection between

trophic coherence and non-normality and to suggest that this

may be relevant not only for directed graphs but for other

systems described by matrices. In the first section, “Measuring

Trophic Coherence and Non-normality,” we take a deeper look

into literature and present results that connect the two ideas.

We also calculate the non-normality and trophic coherence

of some toy networks in order to help the reader build an

intuition. In the second section, we study an SIS model and

a simple linear dynamics, both of which are affected by the

coherence of an underlying matrix. We see how non-normality,

strong connectivity, and the spectral radius also change with

the trophic coherence. We then conclude by discussing potential

further avenues of research to establish stronger bonds between

these topics.

2 Measuring trophic coherence and
non-normality

Definition 2.1. The vector of trophic levels h of a directed graph with

adjacency matrix A is the solution to the equation

3h = v, (1)

where

3 = diag(u)− A− AT , (2)

and the vectors of total degree and degree imbalance are, respectively,

u = k
in + k

out and v = k
in − k

out [27]. As the solution to

Equation 1 is defined only up to an additive constant, the convention

that min(hi) = 0 is used (i.e., all the elements of h are positive except

for the smallest value which is set to zero.)

While Equation 1 always has a solution, which is unique given

the convention stated at the end of the definition, we should note

that one cannot obtain this solution by inverting 3, as this matrix

is always singular. One must therefore use some other method to

find the solution, such as LU decomposition, the Moore-Penrose

pseudo-inverse or an iterative method.

We can measure the trophic coherence of a directed graph with

the incoherence parameter F, given by:

Definition 2.2. The trophic incoherence of a directed graph with

adjacency matrix A and trophic levels h given by Equation 1 is

as follows:

F =

∑

ij Aij(hj − hi − 1)2

∑

ij Aij
. (3)

The incoherence F would coincide with the square of the

parameter q proposed by Johnson et al. [18] if trophic levels were

calculated as in ecology (F = q2) [18]. Using the trophic levels given

by Equation 1, F is bounded between zero and one: F = 0 implies

a perfectly coherent directed graph in which vertices fit into integer

trophic levels; and F = 1 corresponds to maximum incoherence,

which occurs if and only if the directed graph is balanced (v = 0)

[27].

Definitions 2.1 and 2.2 were originally derived by first writing

down (Equation 3) for generic levels, and then finding the solution

h that minimized F—which leads to Equation 1. In other words, the

trophic levels, under this definition, are those which minimize the

trophic incoherence.

The average trophic difference is z = 1 − F, so one

interpretation of trophic coherence is as the “directedness” of

the graph, and z can be referred to as the trophic coherence

[27]. Another interpretation is given by SpringRank [28], which

likens each edge to a spring with natural length l = 1. F is

then the energy, which is minimized at the solution h. However,

another interpretation of the same equation is Helmholtz-Hodge
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decomposition, whereby a vector field can be decomposed into a

gradient part and a zero divergence part [29]. When applied to

graphs, F is then its “circularity.” The fact the same equation has

appeared independently at least three times testifies to its wide

applicability [27]. We note also that if the “−1” in Equation 3

were replaced with a constant “−a,” this would simply multiply the

trophic levels by a: h′ = ah. Hence, a = 1 is a natural choice that

does not reduce generality.

3 is twice the Laplacian of the undirected version of the

graph (A + AT)/2, which can be considered an undirected graph

as all edges now have an opposite edge of the same weight. In

particular, an interpretation is that 3h = v is the corresponding

inhomogenous equation to the homogenous equation (L(A) +

L(AT))x = 0. The multiplicity of the eigenvalue 0 corresponds

to the number of connected components in the undirected case,

hence can be seen as when we “force” (L(A) + L(AT))x = 0, by

unbalancing the in and out degrees on each node.

Whereas the trophic coherence can be captured by a single

number, it is not so easy to have a single number which captures

non-normality. Various measures have been proposed to quantify

the non-normality of matrices, the most obvious being ||AAT −

ATA|| for some suitable norm (here and in the paper we use

the Frobenius norm). Another method is Henrici’s deviation from

normality: Hen(A) =

√

||A||2F −
∑n

i=1 |λi|
2, where || · ||F is the

Frobenius norm and {λi} are the eigenvalues of A. This can be

normalized by dividing through by the ||A||2F giving the parameter

dF =
√
1− ν, where ν =

∑n
i=1 |λi|

2

||A||2F
(4)

is known as the “normality” [27]. Note that a directed graph

with normal adjacency matrix A would have
∑N

j=1 |λj|
2 = ||A||2F

and hence ν = 1 (dF = 0), but a “very non-normal” network

would have |λj| = 0 for all j and in this case ν = 0

(dF = 1). However, we stress that the idea of “very non-

normal” is also subjective with respect to which measure. The

norm ||AAT−ATA|| can be considered more sensitive to structural

features such as skewness or asymmetry, whereas Henrici’s measure

aggregates deviations related to eigenvalue magnitudes, potentially

smoothing out localized anomalies. In particular, for matrices close

to being symmetric, but not normal, the two measures might

diverge significantly. The measure ||AAT − ATA|| could show a

large deviation, while Henrici’s measure may remain small if the

eigenvalues are unaffected.

In Table 1, we compute the trophic coherence and non-

normalitymeasures for two graphs (the loop on five vertices and the

so-called vortex graph on five vertices).We consider thesemeasures

for both the adjacency matrix and the non-symmetric Laplacian

L(A). We also add an edge to the cycle and delete an edge. We see

that trophic coherence increases (trophic incoherence F decreases)

in both settings. In addition, we can relate back to our previous

discussion regarding pseudospectra. where deletion and addition

of an edge can be considered a norm of the same size; hence, a

more nuanced approach is needed. In addition, we have that the

two measures of non-normality behave differently as the Henrici

norm perceives the graph with edge deletion as more non-normal

regarding the adjacency matrix and the Laplacian, whereas the

converse is true for the other measure. Further analysis is needed to

establish if there is a physical meaning to this in certain scenarios,

i.e., the graph represents a dynamical system. Although, in both

cases, the orientation of each edge can be reversed resulting in the

same graph, the fact that flow is not conserved on the “loop under

edge addition” may make this graph more asymmetric. Further

study must be done in this direction to establish this.

Asllani et al. [30] have recently studied the effects of non-

normality in directed graphs, where it was shown that dF correlates

strongly with a measure of structural asymmetry. Furthermore,

the structures of graphs with different degree distributions were

calculated. The approach of the Henrici norm has also been used

recently in work looking at non-normality in the context of trophic

coherence [21, 27].

It is possible to estimate the expected value of various

magnitudes given that a network has a specified trophic coherence,

by means of graph ensembles [19, 21, 27]. The “coherence

ensemble” is the set of all possible directed graphs with a given

degree sequence and trophic coherence. Thus, the expected value

of the spectral radius is as follows:

ρ = eτ , where τ = lnα+
LB

2(L− LB)
−

1− F

2F
, (5)

and the bar denotes expectation [19]. L is the number of edges, LB
is the number of edges connected to the source or sink nodes (those

with no incoming or outgoing edges), and the “branching factor” is

α = 〈kinkout〉/〈k〉 where the brackets are averages over vertices. τ is

referred to as the “loop exponent.” Because τ is positive for F ≃ 1

but becomes negative when F ≃ 0, directed graphs fall into one of

two regimes, referred to as “loopful” (τ > 0) and “loopless” (τ < 0)

[19]. In the former the number of circuits of length l increases

exponentially with l, whereas in the latter they decay exponentially.

This can have a crucial bearing on many other topological and

dynamical features of complex systems, as we illustrate below with

the example of an SIS model: an epidemic perdures indefinitely

when τ > 0 but quickly goes extinct when τ < 0.

This approach has been used to show that the expected non-

normality is bounded, dF ≥
√

1− e2τ /〈k〉 [21], and approximated

by dF ≃
√

1− exp(1− 1/F) [27]. Hence, trophically coherent

graphs (F → 0 or τ → −∞) are non-normal (dF → 1). The

fact that the expected value of the non-normality is bounded below

by the expected spectral radius [21] is natural when considering

the transient wave-packet phenomena that can happen with non-

normal matrices [16].

3 Spreading processes with graphs
and operators

It is known that the trophic coherence of directed graphs can

exert an important influence on the dynamics of various complex

systems [21]. Similarly, in dynamical systems governed by linear

operators, the non-normality thereof will fundamentally affect

system behavior [16].We go on to show, using two simple examples

of spreading processes, that there are close similarities between

these two kinds of phenomena. First we look at the SIS model on

coherent directed graphs and then we compare this to the action

of a non-normal linear operator. These examples also show that
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TABLE 1 Comparison of various properties for di�erent types of networks (vortex graph on five vertices, loop on five vertices, loop under edge addition,

loop under edge deletion).

Vortex graph on
five vertices V5

Loop on five
vertices P5

Loop under edge
deletion (chain)

Loop under edge
addition

Property

Adjacency Matrix





























0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

























































0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

























































0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
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the methods which have been proposed to generate directed graphs

with tunable trophic coherence might also be useful for studying

other matrices numerically [24, 31].

The SIS (susceptible-infectious-susceptible) model is perhaps

the simplest which can be used to study the spread through a

population of an infectious disease—typically one which confers

little or no immunity [32]. We will use this paradigm to

demonstrate the influence of trophic coherence or non-normality

on even the simplest of dynamical processes.

Consider an unweighted, directed network given by the N × N

adjacency matrix A. To each node i is associated with a dynamical

variable si(t) which can take, at each discrete time t, either the value

0 or 1, representing susceptible or infectious states, respectively. Let

gi(t) =
∑

j Ajisj(t). The system then evolves according to:

si(t + 1) = 1 if si(t) = 0 and gi(t) > 0, or (6)

si(t + 1) = 0 otherwise, (7)

with all nodes updated in parallel. In other words, a susceptible

node becomes infectious for one time step if at least one of its

in-neighbors is infectious.

Will an epidemic die out naturally or go on indefinitely? We

study this by beginning with all nodes being susceptible except

for %5 which are chosen at random to be made infectious.

We generate networks using the generalized preferential preying

model [24]. This model has a parameter, T, which allows

one to set the trophic coherence of the network: T = 0

producesmaximally coherent structures, and incoherence increases

with positive T.

Not that in this scheme the only randomness is in the

generation of the network and the choice of initial conditions; the

dynamics thereafter are deterministic. Figure 1 top left shows the

stationary proportion of nodes which remain infectious indefinitely

against T. At low values of T the epidemic dies out, but for

higher values, there is a continuous transition to a regime in

which a significant proportion of the nodes remain infectious. This

can be understood by considering that the epidemic requires a

strongly connected component of nodes to sustain itself, which only

exists in sufficiently incoherent networks [22]. Or, more formally,

it is known that the critical rate of infection required for an

epidemic to survive is lower bounded by the inverse of the spectral

radius of the adjacency matrix [33], which depends on trophic

coherence [19].
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FIGURE 1

Top left: Stationary proportion of infected nodes against parameter T for networks generated with the generalized preferential preying model [24].

Number of nodes and edges: N = 100 and L = 500. Averages over 100 networks; error bars are standard deviations. Stationary values computed as

the average from t = 90 to t = 100. Inset: Time series of the proportion of infected nodes for three networks, generated with T = 1, 0.5, and 0.2. Top

right: Mean activity m(t) at t = 100 according to Equations 8, 9, where A is the adjacency matrix of the networks used in the top left panel. Initially, all

elements have x(0) = 0, except for a randomly chosen 5% which are set to x(0) = 1. The extent of activity is measured as ln[1+m(100)], for c = 0.5, 1,

and 2. Middle left: Trophic incoherence F against T for the same directed graphs as in the panels above. Middle right: Non-normality dF against T for

the same directed graphs. Bottom left: Spectral radius ρ against T for the same directed graphs. Bottom right: Size of the strongly connected

component 8 against T for the same directed graphs.

As we have seen, non-normality also varies with trophic

coherence. Hence, in the inset we see a “bump” in the time series

for lower values of T (which produces small F and high dF),

which corresponds to transient phenomena. In a future study, we

will consider the average difference between the pseudospectral

abscissa and the spectral radius at early times to establish

transient phenomena [16]. In our SIS model computations, we

see that as trophic coherence increases, the size of the strongly-

connected component increases. Unlike in undirected graphs,

the multiplicity of the λ = 0 eigenvalue of the Laplacian

L(A) does not equal the number of components, but rather the

number of reaches [34] (a reach is the maximal unilaterally

connected set). Whereas dynamical processes such as these have

been related to the existence and size of strongly connected

components, we have yet to investigate the effect of different

reach structures.

Consider now the following dynamical systemwithN elements.

Every element i is characterized by a continuous dynamical variable

xi(t) at discrete time t. The system evolves according to

x(t + 1) = cAx(t), (8)

where c is a constant parameter and A is a non-negative,N×N real

matrix. We might consider A as a linear operator or as a directed

graph on which the process is taking place. In particular, we can

take A to be infinite dimensional in which case we could be giving

a graphical interpretation to such linear operators. We begin with a

small number of randomly chosen agents in state x(0) = 1 and all

others x(0) = 0, and track the average value of the activity,

m(t) =
1

N

N
∑

i=1

xi(t). (9)
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This will either decay to zero or diverge according to the spectral

radius of A and the parameter c, as shown in Figure 1 top right.

However, for significantly non-normal networks (low T) there

may be transient behavior that eventually dies out, as in the SIS

case on a trophically coherent graph. This might correspond to

an epidemic, rumor or other spreading process, which reaches

most of the system but goes on to disappear, whereas in the more

normal or incoherent case, even a process that only reaches some

of the system might continue to fuel itself indefinitely thanks

to feedback.

Figure 1 middle left, middle right shows how the trophic

incoherence F and the non-normality dF also vary in this network

model with the parameter T. A comparison with Figure 1 top

left reveals that some nodes begin to sustain the epidemic once

F > 0 or dF < 1; and a similar effect is evident in the linear

operator case (Figure 1 top right). Figure 1 bottom left, bottom

right shows how the two topological features we can relate to both

the SIS dynamic and the linear operator – namely, the spectral

radius ρ and the size of the strongly connected component 8—

undergo a similar transition with increasing T as the stationary

proportion of infected nodes or the logarithm of m(t). Just as

degree heterogeneity can drastically reduce the size of epidemic

waves [35], trophic coherence can affect their extinction. Moreover,

whereas trophic coherence has to date been thought of only

as a property of directed graphs, this example suggests that it

can be studied in the case of operators and square matrices

more broadly.

4 Discussion

In this article, we have discussed the relationship between

trophic coherence and non-normality. We have mentioned some

existing connections in the literature and studied some small graphs

for illustration. We have also presented numerical experiments in

the form of an SIS model and a linear dynamics, which show

how trophic coherence and non-normality are related and have

significant effects on dynamical systems governed by matrices.

There are many relationships still to be discovered, particularly

regarding the connection between non-normality and trophic

coherence in matrices in general. Also of interest is the relationship

with strongly connected components, and how edge deletion and

edge addition may be considered in a way that is amenable to the

calculation of pseudospectra. In future work, we aim to explore

which kind of edge perturbations can create the largest change in

non-normality, trophic coherence, or even other measures such

as algebraic connectivity (which is non-trivial to compute in a

directed graph and is so far yet to profit from the advances in the

computations of non-self-adjoint problems). By studying how such

edge perturbations change the non-normality, trophic coherence,

and algebraic connectivity, we may improve our understanding of

how such magnitudes are related and their effects on dynamical

systems. This is the subject of upcoming study.
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31. Rodgers N, Tiňo P, Johnson S. Fitness-based growth of directed networks with
hierarchy. J Phys. (2024) 5:035013. doi: 10.1088/2632-072X/ad744e

32. Hethcote HW. Three basic epidemiological models. In: Applied Mathematical
Ecology. Springer (1989). p. 119–144. doi: 10.1007/978-3-642-61317-3_5

33. Van Mieghem P, Van de Bovenkamp R. Non-Markovian infection spread
dramatically alters the susceptible-infected-susceptible epidemic threshold in
networks. Phys Rev Lett. (2013) 110:108701. doi: 10.1103/PhysRevLett.110.108701

34. Veerman J, Lyons R, A. primer on Laplacian dynamics in
directed graphs. Nonlinear Phenom Compl Syst. (2020) 23:196–206.
doi: 10.33581/1561-4085-2020-23-2-196-206

35. Johnson S. Epidemic modelling requires knowledge of the social network. J Phys.
(2024) 5:01LT01. doi: 10.1088/2632-072X/ad19e0

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org79

https://doi.org/10.3389/fams.2024.1512865
https://doi.org/10.1177/1756827716651571
https://doi.org/10.1115/1.1470687
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1119/1.1574043
https://doi.org/10.1088/0305-4470/36/7/312
https://doi.org/10.1088/0305-4470/39/32/S18
https://doi.org/10.1103/PhysRevD.86.121702
https://doi.org/10.1112/S0024609300007050
https://doi.org/10.1109/TCNS.2021.3088795
https://doi.org/10.1126/sciadv.aba2282
https://doi.org/10.1515/9780691213101
https://doi.org/10.1016/0022-5193(80)90288-X
https://doi.org/10.1073/pnas.1409077111
https://doi.org/10.1073/pnas.1613786114
https://doi.org/10.1038/s41598-017-15496-1
https://doi.org/10.1088/2632-072X/ab8e2f
https://doi.org/10.1073/pnas.2215752120
https://doi.org/10.1098/rsos.221380
https://doi.org/10.1063/1.4953160
https://doi.org/10.1038/s41598-020-61196-8
https://doi.org/10.1103/PhysRevE.105.064304
https://doi.org/10.1098/rsos.201138
https://doi.org/10.1126/sciadv.aar8260
https://doi.org/10.1007/s41109-019-0202-8
https://doi.org/10.1126/sciadv.aau9403
https://doi.org/10.1088/2632-072X/ad744e
https://doi.org/10.1007/978-3-642-61317-3_5
https://doi.org/10.1103/PhysRevLett.110.108701
https://doi.org/10.33581/1561-4085-2020-23-2-196-206
https://doi.org/10.1088/2632-072X/ad19e0
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


TYPE Brief Research Report
PUBLISHED 07 January 2025
DOI 10.3389/fphy.2024.1511757

OPEN ACCESS

EDITED BY

Piotr Bizon,
Jagiellonian University, Poland

REVIEWED BY

Izzet Sakalli,
Eastern Mediterranean University, Türkiye
José Luis Díaz,
Universidad a Distancia de Madrid, Spain

*CORRESPONDENCE

Valentin Boyanov,
valentinboyanov@tecnico.ulisboa.pt

RECEIVED 15 October 2024
ACCEPTED 10 December 2024
PUBLISHED 07 January 2025

CITATION

Boyanov V (2025) On destabilising
quasi-normal modes with a radially
concentrated perturbation.
Front. Phys. 12:1511757.
doi: 10.3389/fphy.2024.1511757

COPYRIGHT

© 2025 Boyanov. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

On destabilising quasi-normal
modes with a radially
concentrated perturbation

Valentin Boyanov*

CENTRA, Departamento de Física, Instituto Superior Técnico – IST, Universidade de Lisboa – UL,
Lisboa, Portugal

In this work we explore some aspects of the spectral instability of back hole
quasi-normal modes, using a specific model as an example. The model is
that of a small bump perturbation to the effective potential of linear axial
gravitational waves on a Schwarzschild background, and our focus is on three
different aspects of the instability: identifying and distinguishing between the
two different types of instabilities studied previously in the literature, quantifying
the size of the perturbations applied to the system and testing the validity of
the pseudospectral numerical method in providing a convergent result for this
measure, and finally, relating the size and other features of the perturbation to
the degree of destabilisation of the spectrum.

KEYWORDS

black hole, quasinormal modes, pseudospectrum, energy norm, spectral stability

1 Introduction

The quasi-normal modes (QNMs) of black holes (BHs) have been shown to suffer from
a spectral instability, which shifts these characteristic frequencies by disproportionately
large distances in the complex plane when the system is subjected to seemingly small
environmental perturbations. This has been shown through calculations of the QNM
spectrum after a variety of generic perturbations are added to the system [1–16], and
quantitatively explored through the full pseudospectrum of the linear perturbation problem
[1, 3, 8–13, 17, 18], generally in a physically motivated norm [19]. On the other hand,
a seemingly qualitatively different instability has been observed when the perturbation
involved is specifically the addition of a single small “bump” to the effective potential
of the propagating waves at different distances from the black hole horizon, intended to
mimic some radially concentrated distribution of matter [20–22], or, more generally, the
addition of a second length scale in the problem [22, 23]. The former of these approaches
stands out through its consistent attempt to precisely quantify the magnitude of the
perturbations applied to the system, and thus the amount by which the QNM migration
exceeds the threshold of stability. The latter approach, on the other hand, has found a
rich phenomenology which includes the appearance of new branches of QNMs which can
contain modes with a longer lifetime than the BH fundamental mode, akin to the “shape
resonances” discussed in, e.g., [24, 25].

However, in spite of the varied nature of these results, the endeavour to obtain a complete
physical picture of this instability has not yet come to fruition. On the one hand, not all
results have been put in the context of the quantitative scheme devised in [1] involving the
energy norm. On the other hand, this scheme itself may not be themost adequate for precise
quantitative conclusions. As discussed already in [1], two perturbations of the same energy
norm can have vastly different destabilisation effects depending on their high-wave-number
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content (i.e., on themagnitude of derivatives in r of the perturbation
function). Additionally, as shown in [13] for one particular
model, some of the numerically computed quantities involved
in pseudospectrum calculations may not be well behaved in the
continuum limit.

The present work is intended as a short review of the subject,
particularly highlighting some of the above mentioned issues, using
a specific example to further clarify them and progress towards their
resolution. The example system chosen is that of axial gravitational
perturbations on a Schwarzschild BH, with a gaussian bump added
to the effective potential of their governing wave equation, akin to
the one used in [20].

Section 2 provides a brief overview of the QNM instability and
the tools used to capture and quantify it. Section 3 uses the gaussian
bump setup for: 3.1 providing a simple example of the instability,
3.2 bringing the results of the analysis in [20] to the context of
the energy norm, quantifying the “smallness” of the bumps added
to the potential, as well as discussing the emergence of new mode
branches due to a qualitative change in the phase space of the
evolution operator [24, 25] (see in particular footnote nine of [26]
and footnote 13 of [19]), 3.3 exploring the dependence of the
degree of destabilisation on the “high-wave-number” content [1],
or sharpness, of the added bump, as well as presenting an analysis
regarding the numerical convergence of the results. Finally, Section 4
presents a summary of the conclusionswhich can be drawn from this
analysis and used as guidance for future work in this field.

2 Linear perturbations and norm

The background spacetime we will work with is the
Schwarzschild geometry,

ds2 = − f (r)dt2 + 1
f (r)

dr2 + r2dΩ2,

where the redshift function reads f(r) = 1− 2M/r, and dΩ2 is the
line element of the unit sphere. The maximal extension of this
spacetime has a bifurcate Killing horizon at r = 2M, though for
QNMs the important part is the outgoing horizon which in the
future is equivalent to the event horizon of a dynamically formed
(non-evaporating) black hole.

The dynamics of linear perturbations around this background is
given by a wave equation,

−∂2
tϕ+ ∂

2
r∗ϕ−V (r)ϕ = 0,

where r
∗
is the tortoise coordinate, dr

∗
= dr/ f(r), and the potential

V depends on the nature of the perturbation and on its angular
multipole number ℓ. In the example below we will analyse the case
of axial gravitational perturbations,

V =
f
r2
[ℓ (ℓ+ 1) − 6M

r
] .

Quasi-normal modes are a discrete set of analytic solutions to
(2) which behave as ingoing waves,

ϕ ∼ eiω(t+r
∗)

at the horizon, and as outgoing waves,

ϕ ∼ eiω(t−r
∗)

at infinity. These conditions can be imposed geometrically in the
wave equation by expressing it in a hyperboloidal coordinate system
[27, 28], with the transformation {t, r

∗
} → {τ,χ} given by

t
2M
= τ− h(χ) ,

r∗

2M
= g(χ) ,

where h(χ) ∼ g(χ) when approaching the horizon, and h(χ) ∼ −g(χ)
when approaching infinity. A standard choice is the so-called
minimal gauge [29], which for the Schwarzschild case is given by

h(χ) = log(1− χ) − 1
χ
− log χ,

g(χ) = log(1− χ) + 1
χ
+ log χ.

The compactified radial coordinate χ = 2M/r spans the range
χ ∈ (0,1) between (future null) infinity and the (future) horizon.
The QNM boundary conditions now amount to simply requiring
regularity of the solutions at the boundaries.

Following ref. [1], we perform this coordinate transformation
along with an order reduction in time through the introduction of
the auxiliary variable ψ = ∂τϕ, recasting the problem in the form

iL u = ∂τu,

where

u = (
ϕ
ψ
), L = 1

i
(

0 𝕀
L1 L2
),

with

L1 =
p
w
∂2
χ +

p′

w
∂χ −

q
w
,

L2 = 2
γ
w
∂χ +

γ′

w
,

and we have defined the functions

w =
|g′|

g′2 − h′2
, p = 1
|g′|
, γ = h′

|g′|
, q = |g′|V,

a prime denoting differentiation with respect to χ. The QNM
frequency spectrum can be defined [30, 31] as the eigenvalues
of the evolution operator L, or equivalently as the poles of the
resolvent operator

RL (λ) = (L− λ𝕀)
−1.

Since L is non-self-adjoint (due to the dissipative boundaries of
the problem), solutions to the wave equation cannot be expressed
simply as convergent series of the eigenvalues, i.e., of QNMs.
Additionally, and crucially, the QNM frequencies can be unstable to
“small” perturbations of the system. Perturbations can come inmany
shapes and sizes, and the effect they can have on the spectrum is
just as varied. The instability originally studied in ref. [1] consists in
the displacement of modes in the complex plane by distances much
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larger than the size (energy norm) of the perturbations would allow
for a spectrally stable operator.

However, one interesting conclusion in ref. [1] is the apparent
stability of the fundamental mode, and the absence of any displaced
overtones which would have a slower decay rate (smaller imaginary
part) than this fundamental one after a perturbation. In contrast
to this result, ref. [20] found that perturbing the effective potential
with a seemingly very small bump placed sufficiently far from the
horizon can easily destabilise the fundamentalmode, leaving amode
with a much smaller imaginary part as the new fundamental one.
The apparent contradiction between these conclusions is mainly
due to a qualitative difference in the type of perturbations and
instability considered. We will now present a summary of some
aspects of these two analyses, and highlight the differences between
them. Then, in the following section, we will proceed to analyse an
example, originally treated in ref. [20], which turns out to lead to a
combination of both destabilising effects.

2.1 Mode displacement and
pseudospectrum

The case of QNM instability analysed in [1] and related works
is one in which (at least part of) the already existing BH QNM
spectrum is displaced by a disproportionately large amount due
to a small perturbation to the operator L. The smallness of this
perturbation is defined quantitatively through the energy norm [19],
which has a natural physical interpretation. The overall instability
to any perturbation of L is captured by the pseudospectrum in this
norm, which is defined as

σϵ (L) = {λ ∈ ℂ:‖RL (λ)‖E > 1/ϵ} ,

where ‖ ⋅ ‖E indicates the energy norm of the operator, defined from
the product

⟨u1,u2⟩E=⟨(
ϕ1

ψ1
),(

ϕ2

ψ2
)⟩

E

= 1
2
∫

1

0
(w(χ) ψ̄1ψ2 + p(χ)∂χϕ̄1∂χϕ2 + q(χ) ϕ̄1ϕ2)dχ,

Anequivalent definition is the onewhich directly relates the level
sets of the pseudospectrum to the space of possible new eigenvalue
positions after a perturbation,

σϵ (L) = {λ ∈ ℂ,∃δL,‖δL‖ < ϵ:λ ∈ σ (L+ δL)} . (1)

Note that this second definition involves any perturbation to L
which has a small energy norm, including oneswhich can potentially
be related to a physical modification of the environment of the
black hole, but also ones which completely change the nature of the
operator (e.g., changing the structure of the derivatives). That said,
it was shown in [1] that the instability is in fact triggered by physical
perturbations, encoded in the addition of a perturbation function
δV to the effective potential, without disturbing the structure of the
differential part of the operator. Additionally, it was shown that the
degree to which the spectrum is destabilised depends strongly on
the “high wave-number” content of the perturbation, that is, the
sharpness of the variation of δV in r.

While the particular choices for the perturbations δV used in
ref. [1] may not correspond to the addition of classically reasonable
matter content to the system [22], they are a proof of principle which
shows that whatever the perturbation may be, as long as it has a
large enough gradient in r, it will trigger the instability. Ref. [10]
in fact explicitly shows the relation between the magnitude of the
derivatives of δV and the rate of displacement of the QNMs in a
specific example, further solidifying this result.

The above-mentioned stability of the fundamental mode was
also one of the key results, which can directly be related to
the fact that gravitational wave observations of compact object
collisions which result in a black hole as an end state appear
to contain a part which matches well with a fundamental-mode-
dominated ringdown [32].

2.2 Emergence of new long-lived modes

The second type of “instability” is due to the emergence of new
mode branches. It is important to understand that the characteristics
of the spectrum depend strongly on the shape of the potentialV. For
the axial gravitational case, the potential has a single barrier with
a peak close to the photon sphere, from which it decreases to zero
exponentially (in r

∗
) towards the horizon and polynomially towards

infinity. The corresponding “barrier top” modes are not very long-
lived (in terms of the characteristic scale of the problem). However,
seemingly small perturbations can lead to a qualitative change in the
shape of the potential, such as the addition of awell which goes below
the asymptotic values, or of a second barrier (or bump). The former
can lead to the presence of bound states, while the latter to slowly
decaying “shape resonances” [25].

Some examples of such qualitativemodifications to the potential
in the context of QNMs are the double barrier model in [33], or
some of the models explored in [22], such as the addition of a
perturbatively small mass parameter. As the new families of modes
that these modifications introduce can have a slower decay than the
fundamental “barrier top” QNM, the new fundamental mode and
first overtones can be said to have been displaced disproportionately
to the size of the perturbation, even if the original modes (which
are no longer the fundamental and first overtones) happen to still be
present in the new spectrumwith only a slight displacement. In other
words, what can occur is that the label of “fundamental” and of the
overtone numbersmay jump tomodes in the new branch (according
to the usual assignment of these labels), rather than the old modes
being displaced. This can also happen by changing the parameters
of a problem such that QNMs in two different branches which are
already present can switch roles as the fundamental mode, such as
in the overtaking of the fundamental oscillatory mode by a de Sitter
mode discussed in [12].

It is important to note that this by itself is distinct from the usual
definition of (perturbative) spectral instability discussed above, in
which already existing modes are displaced by large distances in the
complex plane. It is also interesting that for a spectrally unstable
system such as the case of QNMs, adding, say, a bump to the
effective potential, can lead to a combination of both of the above
effects: the emergence of new long-lived modes, as well as the
large displacement of (some of) the already existing modes. This
is precisely the case in the example below, for which the perturbed
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FIGURE 1
Potential for the ℓ = 2 axial gravitational perturbation on
Schwarzschild, with an added Gaussian bump at rb = 30M. The
horizontal axis is the compactified radial coordinate χ, and for
illustrative purposes an amplitude a = 0.2 has been used, which is 40
times larger than the one used for computation.

potential goes from having a single barrier to a double barrier, the
latter being akin to the case dubbed a “well on an island” in ref. [25].

3 Potential with a bump

This section presents an analysis of the above-mentioned
perturbation δV in the form of a gaussian bump (see Figure 1),

δV = f (r) a exp(−
(r− rb)

2

2s2
),

where a, rb and s are positive constants, and themultiplication by f(r)
is to ensure that the total potential V+ δV still has the appropriate
tendency to zero when the horizon is approached. Ref. [20] analysed
in detail the position of the new long-lived fundamental mode in the
presence of such a perturbation. Here we will rather focus on some
qualitative features of themodified spectrum as a function of the free
parameters in δV, as well as on quantifying the magnitude of this
perturbation using the energy norm. We will use the computational
tools employed in ref. [1], namely, a Chebyshev-Lobatto grid in χ and
a pseudospectral approximation to the differential operator L and to
the integration operator involved in the energy product.

3.1 Fundamental mode (in)stability

Let us begin with a particularly illustrative example of a
perturbation of this type, which will be the centre-point of this
analysis. We set the units to the characteristic scale of the problem
by taking 2M = 1, and we set a (seemingly) small amplitude for
the bump a = 0.005, a position for the peak at rb = 25 and a width
s = 4. The spectrum of axial ℓ = 2 modes with this perturbation is
shown in Figure 2. We see that there is indeed a new branch of
modes, some of which decay more slowly than the unperturbed BH
fundamental mode. In this sense, the distance between the old and
new fundamental mode does indeed seem quite large compared to
the size of the perturbation, as discussed in ref. [20]. However, it

FIGURE 2
QNMs of an axial gravitational ℓ = 2 perturbation of Schwarzschild,
with and without a gaussian perturbation. The units are set to 2M = 1.
The gaussian bump has parameters a = 0.005, rb = 25, s = 4, and the
spectrum is calculated with N = 400 grid points. The unperturbed BH
fundamental mode is located at ±0.74734+0.17792i, the mode which
seemingly overlaps with it after the perturbation is at
±0.74729+0.17780i, and the new fundamental mode is at
±0.17287+0.048828i. The non-convergent “branch-cut” modes have
been removed from the plot (see [1]).

is also clear form Figure 2 that the spectrum after the perturbation
contains amodewhich coincides with the unperturbed fundamental
one (in fact it is only ∼10−3 away), implying that this mode was
actually stable under the perturbation.

This is therefore a case in which it is the qualitative change in
the shape of the potential has lead to the appearance of new long-
lived modes, while part of the old spectrum has remained stable, in
this case only the BH fundamental mode. From the first overtone
onwards, the BH spectrum is in fact destabilised, much like it is in
some of the cases studied in ref. [1].

The behaviour of the new fundamental mode depends strongly
on the parameters of the gaussian bump a, rb and s, and while a
detailed analysis of this dependence is not within the scope of this
work (see [20, 22] for a quantitative analysis of part of the parameter
space), we will make some general remarks regarding the behaviour
we have observed from a few spectra.

• Increasing the amplitude a tends to decrease the imaginary part
of the fundamental mode, as the modes trapped between the
two peaks (the bump and the light-ring peak) need to tunnel
out of a larger barrier to decay. Conversely, if a is made smaller,
the imaginary part increases. At around a = 10−5 the longest-
lived of these new modes is no longer the fundamental one, as
its imaginary part is larger than that of the BH mode.

• Increasing the radial position of the bump rb decreases the
imaginary part of the new modes, as well as destabilising the
old BH spectrum more strongly. We will make some remarks
regarding the reason for this in the next section.

• Increasing the width of the bump s alsomakes themode longer-
lived, since this increases the tunnelling (Agmon) distance [25].
On the other hand, a larger s (at a fixed energy norm)makes the
old BH spectrum more stable, since then the perturbation has a
lesser “high-wavenumber” content, as discussed in [1].
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FIGURE 3
Left: energy norm of δL as function of rb, for s = 4 and a = 0.005, in units 2M = 1. The quadratic fit is −0.024+0.0079rb +0.00025r2b (the variance is ∼10−6,
though at smaller radii this relation can be expected to start breaking down, since the norm must be positive). Right: energy norm of δL calculated with
N points, dubbed ‖δL‖(N), subtracted from a reference value ‖δL‖(400), for the same case with rb = 25. The vertical axis is log scaled to showcase the
exponential convergence (the slight discrepancy from the linear fit is due to the finite N reference value).

It is also worth noting that while we identify these longer-
lived modes as a new branch due to the qualitative change in the
potential and the stability of the BH fundamental mode, from the
numerical results alone it is not clear where exactly this new branch
becomes entwined with the perturbed BH overtones. To identify
which modes go to infinity and which to BH overtones in the zero
perturbation limit, a more detailed study which traces the migration
of individual overtones would be required.

3.2 Flea or elephant?

The perturbation operator being added to L can be
written as

δL = (
0 0
δq
w
𝕀 0
),

where δq = |g′|δV. In order to give a physical measure of the size
of this perturbation, the energy norm of δL can be computed.
Contrary to what might be expected from the small a parameter,
the energy norm of the example case used for Figure 2 is actually
quite significant: in units of the horizon scale, it is approximately
0.33, on the very high end of what can reasonably be considered
a “perturbation”. The reason for this apparent discrepancy between
the intended smallness in the choice of a and the large energetic
contribution of this perturbation lies in the simple fact that the
energy measure comes from an integral related to the full three
dimensional space of constant time slices [19], rather than just the
one dimension of thewave problem (although in the end it simplifies
to the latter). It therefore encodes the fact that a perturbation at a
large radius would require a thick shell of this same radius, the size
and matter content of which would scale with r2. This is indeed the
scaling we can observe in the left plot of Figure 3, where the energy
norm is calculated as a function of rb (with all other parameters
remaining the same), and fitted to a parabola.

Therefore, the increased destabilisation of the BH QNMs
(effectively, the lowering of the mode branches seen in Figure 2) for
a larger rb which was commented above can be related to precisely

this increase of the energy norm. The dependence of this energy on
the parameters a and s is just as predictable: an increase in both
these parameters leads to a proportional (linear) increase in the
energy norm.

3.3 Size vs. instability

This example has shown the importance of quantifying the
size of perturbations added to the problem, since, for instance, the
increase of the energy contained in perturbations at larger radii
is something that could easily have been overlooked otherwise.
However, using the energy norm in particular, while having many
advantages [19], may not be the most adequate choice in some
respects. One particular issue, raised in [13], is the fact that
the energy norm of the resolvent operator, used to calculate the
pseudospectrum, is not well behaved in a large part of the complex
plane, which includes the vicinity of most (if not all) QNMs.
Numerically, this norm tends to a divergence in the limit of infinite
grid point numberN in most of the upper half of the complex plane.
Since the issue in that case stems from the presence of additional
eigenmodes of a lower regularity class [30], and not simply from
a numerical problem, it is likely to be a generic property of other
setups as well.

One may then ask whether this issue extends to calculating
the energy norm of other operators as well, particularly that of
δL, since the pseudospectrum can equivalently be defined from
its norm (albeit for a very large set of perturbations). Fortunately,
it appears that the norm of this operator actually does have a
good convergent behaviour. The second plot in Figure 3 shows a
convergence test in a representative example. The result is clear: the
convergence is in fact exponential. Such convergence was previously
observed for other quantities computed with this discretisation
scheme, such as the spectrum itself (see fig. 8 of [1]), but had thus
far not been tested for energy norms of operators, except for the case
of the non-convergent resolvent norm in [13].

The convergence of ‖δL‖ in fact confirms that the issue with the
resolvent norm studied in [13] goes beyond the particular numerical
implementation. It also gives an appealing potential alternative
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approach to calculating the pseudospectrum by exploring a
sufficiently large space of perturbation operators and applying
Equation 1; [9, 34]. However, there would be two issues with such
an approach. First, it would be computationally very expensive to
attempt to span a “full” space of perturbation operators δL. This
would not be a critical impediment, at least for a small numerical
resolution N. However, the second and most crucial issue is the fact
that the result would differ depending on the resolution, as a higher
N could capture perturbations with a higher wave-number content,
which would destabilise the spectrum ever more strongly. It is not
clear that the limit of operators δL with the same energy norm but
with ever higher gradients in r (whichwould need a correspondingly
higher N to be resolved) would lead to a convergent definition
of the pseudospectrum, or if this issue would turn out to be
equivalent to the non-convergence observed in the
resolvent approach.

Testing whether this claim is true, while absolutely crucial,
goes beyond the scope of the present work. If it were indeed
proven true, then a consistent definition of a QNMpseudospectrum
would require a modification of the scheme summarised above.
One example of such a modification would be the use of
norms with higher order spatial derivatives, as introduced in
[30], and applied to the pseudospectral calculation in [13]
(see also [35]). However, a reasonable physical interpretation of such
norms and their associated stability analyses would need to be
devised.

4 Discussion

The spectral instability of BHQNMs is by now a well established
result in the field of black hole spectroscopy. As we have seen
here, QNMs are susceptible to (al least) two different types of
instability: either the direct migration of the already existing QNMs
by a large distance in the complex plane (“perturbative” instability),
or the appearance of new branches of modes to which the new
label of fundamental or overtone number are assigned, and which
are far away from their unperturbed counterparts (“branch”
instability).

One important aspect in analysing both perturbative and
branch instabilities is quantifying the size of the perturbations
introduced into system. A physically reasonable measure of this
size is given by the energy norm [19], which comes from an inner
product space associated to the energy of the linear field. As we
have seen in the above examples, a seemingly small perturbation
to the effective potential can in fact have a large energy norm,
and have a correspondingly large destabilising effect on
the spectrum.

Keeping track of this norm is therefore crucial. Indeed, in the
example of a gaussian bump studied in the present work, there
is a clear correlation between the energy norm of δL and the
distance between the old and new fundamental modes. However,
there are two issues with establishing a direct one-to-one relation
between this norm and the expected degree of destabilisation of the
spectrum. First, the fact remains that (some of) the original BH
modes can in fact remain stable in spite of the appearance of the
new branches of longer-lived modes. Second, the degree to which
these original modes are actually destabilised does not depend only

on the energy norm, but also on the high-wave-number content of
the perturbation involved, as observed in [1]. For the gaussian bump
perturbation used here, decreasing the width of the bump decreases
its associated energy norm, but the resulting sharper variation in
r can in fact lead to an increase in the instability of the original
spectrum. Exploring this issue in detail is particularly difficult
because of the numerics involved, since a sharper bump requires
a higher resolution to be captured, making the degree to which a
bump of any given energy norm can destabilise the spectrum hard
to establish.

This difficulty can in fact be seen as a potential issue with
providing a convergent result for the pseudospectrum in the energy
norm, since if there were such a result, a bound on the possible
migration of modes could be easily placed through Equation 1.
However, obtaining such a convergent pseudospectrum has been
an elusive task, as discussed in [13]. Finding a solution to this
issue would likely require changing parts of the above-described
prescription to this calculation, as is currently being explored by the
present author and collaborators [35].

Regarding the observability of these instabilities in
gravitational wave signals, the results of Refs. [2, 36] suggest
that while environmental perturbations are detectable in time-
domain evolution, their effect on ringdown signals is not as
disproportionately large as it is on the QNM spectrum itself.
However, a systematic study of the effect of different types of
perturbations, particularly involving the branch instability analysed
here, is lacking.

Overall, the study of the QNM spectral instability has led to a
myriad of different results in many different spacetime setups, but
there are just as many open questions left to be addressed in the
coming years.
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Oscillations of black hole spacetimes exhibit divergent behavior near
the bifurcation sphere and spatial infinity. In contrast, these oscillations
remain regular when evaluated near the event horizon and null infinity.
The hyperboloidal approach provides a natural framework to bridge these
regions smoothly, resulting in a geometric regularization of time-harmonic
oscillations, known as quasinormal modes (QNMs). This review traces the
development of the hyperboloidal approach to QNMs in asymptotically
flat spacetimes, emphasizing both the physical motivation and recent
advancements in the field. By providing a geometric perspective, the
hyperboloidal approach offers an elegant framework for understanding
black hole oscillations, with implications for improving numerical
simulations, stability analysis, and the interpretation of gravitational wave
signals.

KEYWORDS

hyperboloidal, frequency domain, quasinormal modes, black holes, non-selfadjoint
operators

1 Introduction

When a black hole (BH) spacetime is perturbed, gravitational waves (GW) carry the
energy of the perturbation towards the BH horizon and to infinity. These perturbations
show oscillations that decay exponentially at characteristic frequencies and are called
quasinormal modes (QNM) [1–4]. Studying these QNMs is central to the black hole
spectroscopy program [5–7], which aims to measure the oscillation frequencies from
GW detections and thereby probe the BH geometry and its surrounding environment
[1, 3, 4, 8]. The dominant quadrupole QNMs have already been measured in
gravitational wave signals [9–11], while the detection of higher modes remains under
debate [12–25].

Mathematically, the QNM problem is often formulated as an eigenvalue problem,
where QNM frequencies appear as the eigenvalues of a second-order differential operator.
However, in their traditional representation, the corresponding QNM eigenfunctions grow
exponentially near the black hole and at spatial infinity, which does not seem physically
acceptable for small perturbations of a background spacetime [26]. Reformulating the
problem using hyperboloidal surfaces—regular spacelike surfaces that extend smoothly
from the black hole event horizon to null infinity—reveals that QNMs are globally regular
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[27, 28].This geometric regularization1 of time-harmonic black hole
perturbations has found many recent applications, which we review
in this paper.

2 The traditional approach to QNMs

The Schwarzschild solution, the simplest black-hole (BH)
solution to Einstein’s equations, is given by

ds2 = − f (r)dt2 + 1
f (r)

dr2 + r2dϖ2, with f (r) = 1− 2M
r
,

where dϖ2 = dθ2 + sin2 θdϕ2 is the metric on the unit sphere, and M
the black-hole’s mass. Perturbations of this solution are described by
the Regge-Wheeler-Zerilli type wave equation:

(−∂2
t + ∂

2
r∗ −V (r∗))u (t, r∗) = 0, (1)

where r∗ ∈ (−∞,∞) is the tortoise coordinate and V(r∗) is the
effective potential that behaves as V ∼ f(r) near the black-hole
horizon and as V ∼ 1/r2 toward spatial infinity.

Solutions to (Equation 1) evolve through a transient phase,
followed by a ringdown characterized by exponentially damped
vibrations (QNMs) [34], and eventually a polynomial, non-
oscillatory decay known as the tail [35, 36].

To analyze the QNM phase, one typically considers time-
harmonic solutions

u (t, r∗) = e
−iωtR (r∗) , (2)

that reduce the wave equation to a Helmholtz equation,

( d2

dr2∗
+ω2 −V (r∗))R (r∗) = 0. (3)

Sommerfeld recognized in 1912 that the Helmholtz equation, in
stark contrast to the elliptic case, does not admit unique solutions
even when we require that the solution vanishes at infinity [37, 38].
To ensure uniqueness, an outgoing radiation condition must be
imposed. In the BH context, a Sommerfeld condition applies also
near the BH. We therefore impose

lim
r∗→±∞
( d
dr∗
∓ iω)R (r∗) = 0 ⇔ R (r∗) ∼ e

±iωr∗ as r∗→±∞. (4)

It turns out, however, that the boundary conditions (Equation 4)
are not sufficient [2, 39] and amore precise notion of purely outgoing
solution is needed to uniquely define the QNMs [40]. The formal
definition of QNMs followed a different route than the intuitive
notion of QNMs as the eigenvalues of a given differential operator.

The time-harmonic Ansatz (Equation 2), closely related to a
Fourier transformation, provides a general formalism oblivious to

1 Note that we focus here on the geometric developments around the

hyperboloidal framework in asymptotically flat spacetimes. The analytic

aspects of QNM regularity beyond the mere coordinate singularity

of standard time slices were clarified in a series of papers [29–33],

discussed in Section 3.3.

the specific form of initial data causing the perturbation. To define
QNMs formally, one considers an initial value problem. Then, a
Laplace transformation [2, 39, 41, 42] leads to a inhomogeneous
spatial differential equation, with a source term accounting for the
initial data.Onemust then ensure that the spacetime solutionu(t, r∗)
remains bounded as t→∞ [43]. In the Laplace formalism, the
solution u(t, r∗) results from the convolution of theGreen’s functions
with the source term carrying information from the initial data.
The inverse Laplace transformation requires an integration along
a frequency values ωI > 0, and there is only one possible choice
of homogenous solutions R±(r∗ ;ω) to construct the correct Green’s
function: they must satisfy the boundary conditions (Equation 4)
at both ends r∗ →±∞. Once the Green’s functions are fixed in the
complex half-plane ωI > 0, one analytically extends them into the
region ωI < 0. The QNMs are then uniquely defined as the poles of
Green’s functions, or equivalently in the one-dimensional case, the
roots of the Wronskian.

The Laplace approach uniquely defines QNMs via Green’s
functions, bypassing the notions of eigenvalues and eigenfunctions.
Such definition via this Green’s functions is also understood under
the Lax-Phillips approach [44, 45]. However, this definition still
allows QNM functions to blow up asymptotically, creating a puzzle:
while black hole stability demands that linearized perturbations
decay over time, the associated time-harmonic perturbations remain
singular in the asymptotic regions.

The resolution lies in the global structure of spacetime. The
QNM behavior at asymptotic boundaries results from the singular
properties of the coordinates used in Equation 3. In Schwarzschild
coordinates, as r∗ →±∞, the limits correspond to spatial infinity
i0 and the bifurcation sphere B. These loci connect to future and
past null infinity at i0 and white and black hole horizon at B, and
the blow-up of QNM eigenfunctions is a coordinate effect due to the
accumulation of infinitely many time surfaces thereon.

When QNMs are represented on regular, hyperboloidal time
slices, they do not exhibit this unbounded growth1 [27, 28, 33], as
we discuss in the next section.

3 The hyperboloidal approach to
QNMs

The singularity of Schwarzschild time slices at the bifurcation
sphere is well-known today, but understanding its causal structure
took over four decades [46–49]. Given this singularity, it is not
surprising thatQNMsblowupnear the black hole, but they also blow
up near spatial infinity. Thus, switching to regular coordinates at the
bifurcation sphere does not resolve the issue.

Part of the historical confusion about BHs was that it takes
infinite Schwarzschild time for radiation to fall into a BH. The
same statement is true concerning spatial infinity: it takes infinite
Schwarzschild time for outgoing radiation to reach spatial infinity.
Because this is “reasonable” from a physical point of view, it has been
widely accepted that QNMs have a singular representation at both
asymptotic regions.

The first suggestion that outgoing perturbations are regular in
the frequency domain toward null infinity was made by Friedman
and Schutz in a 1975 paper on the stability of relativistic stars [50].
Friedman and Schutz recognize the problem with standard time
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slices where outgoing modes behave asymptotically like rkeiω(t−r)

implying that stable modes with ωI < 0 grow exponentially as r→
∞. To make the representation finite, they recommend to use null
hypersurfaces. In a footnote, they comment that the representation
is regular also “if one uses a spacelike hypersurface that is only
asymptotically null.”

Schmidt picked up this idea in a 1993-essay for the Gravity
Research Foundation on relativistic stellar oscillations [26] arguing
that QNMs on hyperboloids “are represented by proper eigenvalues
and eigenfunctions.” However, the presentation includes no details
beyond the 1975 paper.

To understand why it took almost 20 years from Schmidt’s
essay [26] to the construction of a regular geometric framework
to describe QNMs in asymptotically flat spacetimes1 [27,
28, 33], we provide a short historical review of hyperboloidal
coordinates.

3.1 A brief history of hyperboloidal
coordinates

The central role of spacetime hyperbolas in relativity was
recognized already by Minkowski in 1908 [51]. The Milne model
from 1933 [52] or Dirac’s point-form of quantum field theory
from 1949 are hyperboloidal [53]. In the 1970s, hyperboloidal
studies were performed for the analysis of wave equations [54–56]
and quantum field theory [57–60]. However, these early studies
use a time-dependent formulation in which time freezes at
null infinity.

The first hyperboloidal coordinates foliating null infinity are
implicit in Penrose’s work on the global causal structure of
spacetimes via conformal compactification [61, 62]. Indeed, one
can obtain a hyperboloidal surface from any textbook discussing
the Penrose diagram simply by looking at the level sets of Penrose
time [63]. In the context of numerical relativity, it was recognized
that hyperboloidal time functions that asymptotically approach
the retarded time should be beneficial for the computation of
gravitational waves [64, 65]. Explicit hyperboloidal coordinates
in black-hole spacetimes were constructed in the context of the
analysis of constant mean curvature foliations [66]. A remarkable
but largely ignored paper by Gowdy in 1981 includes many key
elements of the hyperboloidal approach used today in black-hole
perturbation theory [67], including the height function approach
to preserve time-translation symmetry, compactification fixing
null infinity (scri-fixing), hyperboloidal solutions to the wave
equation, and the structure of time-harmonic solutions relevant
for the frequency domain. These ideas were not picked up by the
community at the time.

The first systematic study of the hyperboloidal initial value
problem for Einstein equations was initiated by Friedrich in 1983
[68]. Friedrich devised a reformulation of the Einstein equations
with respect to a conformally rescaled metric that is regular across
null infinity. The conformal field equations are well-suited for the
analysis of the asymptotic behavior of Einstein’s equations and have
led to seminal results such as the nonlinear, semi-global stability
of de Sitter-type and Minkowski-type spacetimes [69, 70]. The
developments around conformal field equations and attempts to use
them numerically are reviewed in [71, 72].

Twenty years after Gowdy’s paper, Moncrief presented the
hyperboloidal compactification ofMinkowski spacetimeusing time-
shifted hyperboloids in an unpublished talk [73] leading to the
first numerical studies using hyperboloidal foliations in Minkowski
spacetime [74–77]. Around this time, various suggestions for
hyperboloidal coordinates and numerical simulations in black-hole
spacetimes were made [78–83].

The construction widely used today in black-hole perturbation
theory is based on scri-fixing coordinates with time-shifted
hyperboloids presented in 2008 [84]. The idea is to combine the
height function technique that preserves the time-symmetry of
the underlying spacetime with an explicit radial compactification
whose singular Jacobian at infinity is proportional to a prescribed
conformal factor. In the following years, this method was used
primarily in the time domain for solving wave-propagation
problems [85–97].

The translation of the hyperboloidal method to the frequency
domain was presented in [27], where it was demonstrated that
hyperboloidal time functions regularize the QNM eigenfunctions
in the asymptotic domains. Warnick used a related idea in [31] for
AdS spacetimes in which spatial slices are naturally hyperbolic (see
also [29, 30]). The first detailed analysis of QNMs in asymptotically
flat black-hole spacetimes using the hyperboloidal approach was
presented in [28].We summarize the basic ideas of the hyperboloidal
approach below.

3.2 A geometric framework

The construction of globally regular coordinates consists of
a time transformation respecting the time symmetry of the
background, a suitable spatial compactification, and conformal
rescaling [84].We first introduce the time function τ via [67, 82, 84].

τ = t+ h (r) . (5)

The time transformation implies an exponential scaling
in frequency domain [27]. Writing the time-harmonic
ansatz in Equation 2 with respect to the new time
coordinate in Equation 5, we get

u (t, r∗) = e
−iωtR (r∗) = e

−iωτeiωhR (r∗) = e
−iωτR̄ (r∗) .

The rescaled radial function R̄(r∗) = eiωhR(r∗) is regular both
near the event horizon and toward null infinity. To see this in
an explicit example, consider the height function for the so-called
minimal gauge [98–100]

hMG (r) = −r+ 2M log | r
2M
− 1| − 4M log( r

2M
) = −r∗ − 4M log( r

2M
).

The minimal gauge height function has the following
asymptotic behavior

hMG ∼ −r∗ for r→∞, hMG ∼ +r∗ for r→ 2M.

The height function regularizes the QNM eigenfunctions in the
asymptotic domains. The regularity of the QNM eigenfunctions
is directly related to the regularity of the minimal gauge at the
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FIGURE 1
Penrose diagrams of the exterior domain in Schwarzschild spacetime contrasts the level sets of the standard Schwarzschild time (left panel) and the
hyperboloidal minimal gauge (right panel). Schwarzschild time slices intersect at the bifurcation sphere, B, and spatial infinity, i0. Minimal gauge slices
provide a smooth foliation of the future event horizon, H^+, and future null infinity, I+.

asymptotic boundaries near the horizon and near infinity (see
Figure 1). The minimal gauge is unique in its simplicity and appears
in different setups as a natural construction [101, 102]. Surprisingly,
the minimal gauge was implicitly used by Leaver in his papers
on QNMs in BH spacetime [103, 104]. Related hyperboloidal
regularization procedures have been suggested over the years by
various authors without an explicit recognition of the geometric
background of their construction [105–111].

In [27], it was shown that the time translationmust be combined
with a suitable rescaling to arrive at a regular representation of
QNMs. The rescaling takes into account the asymptotic fall-off
behavior of the QNM eigenfunctions toward the BH and toward
infinity. The resulting equations have short-range potentials suitable
for compactification of the exterior black region from the radial
coordinate r ∈ [ rh,∞) — or equivalently, r∗ ∈ (−∞,+∞) — into
a compact domain σ ∈ [σh,σI+]. This rescaling is related to the
conformal compactification of black-hole spacetimes.

The external boundary conditions (Equation 4) are
automatically satisfied in terms of a radially compact hyperboloidal
coordinates (τ,σ)[27, 100], when the underlying function R(σ)
is regular at the black-hole horizon (σh) and future null infinity
(σI+). Thus, we no longer need to impose boundary conditions to
the wave equation by hand. The boundary condition is replaced
by a regularity condition on the underlying solution R(σ) in the
entire domain σ ∈ [σh,σI+]. In practical terms, one derives the
regularity condition at the boundary directly from the hyperboloidal
differential equation. When formulating the frequency-domain
problem in coordinates (τ,σ), the resulting differential equation
equivalent to Helmoltz Equation 3 assumes a generic form [28, 99,
100].

(α2 (σ)
d2

dσ2 + α1 (σ)
d
dσ
+ α0 (σ))R (σ) = 0, (6)

with coefficients α2, α1 and α0 depending on the particular choice
for the hyperboloidal height function. The most important property
of the above equation is that it is a singular ordinary differential
equation, i. e., its principal part behaves as α2 ∼ (σ− σI+)

2(σ− σh)
and therefore α2(σh) = α2(σI+) = 0. Hence, at the boundaries,

Equation 6 provides us directly with the relation between the field
and its first σ-derivatives serving as boundary data ensuring a
bounded solution. From the spacetime perspective, and the resulting
wave equation, the same conditionα2(σh) = α2(σI+) = 0 ensures that,
at the boundaries, the light cones point outwards the numerical
domain, or equivalently, that the characteristic speeds of incoming
modes vanish [27, 100].

The finite behaviour of the function R(σ) is one of the most
important aspects in the hyperboloidal approach. As we discuss
below, this feature allows us to unveil new properties of the QNM
eigenfunctions, develop novel numerical algorithms and attack new
problems relevant to black-hole physics and gravitational wave
astronomy.

3.3 From geometry to analysis

The hyperboloidal framework regularizes solutions to the
Helmholtz problem Equation 3. In fact, any bounded solution
satisfying the singular ordinary differential Equation 6 automatically
fulfills the Sommerfeld conditions (Equation 4). One would naively
think that bounded solutions exist only at the QNMs frequencies.
However, we saw in Section 2 that the conditions (Equation 4)
are necessary, but not sufficient to specify the QNM problem
uniquely. In the traditional formulation, the QNM eigenfunctions
grow asymptotically. The complex plane spanned by the frequency
ω might contain regions with solution satisfying (Equation 4),
but contaminated by unwanted solutions that decrease at the
boundaries. Removing the asymptotic blow-up allows us to peek
directly into these unphysical solutions, which exist in the entire
half-plane Im(ω) < 0 [28, 31].

The left panel of Figure 2 shows two solutions to Equation 6
which are bounded in the entire exterior BH domain, from σ =
0 representing future null infinity and σ = 1 the BH horizon: the
solution in blue is obtained at a given QNM frequency ωQNM,
whereas the solution in red corresponds to a given frequency
in the half-plane Im(ω) < 0, but with ω ≠ ωQNM. These solutions
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FIGURE 2
Solutions to hyperboloidal radial equation (left panel). Bounded solutions exist in the entire half-plane for Im(ω) < 0, regardless whether ω is a QNM or
not. The continuous lines were obtained with a spectral method code based on a Chebyshev representation of the solution. Independently, the dots
result from a Taylor representation of the solution as power series around the horizon (Leaver’s strategy). The QNM eigenfunctions are characterised by
the solutions with a higher degree of regularity, heuristically verified via the faster decay of the corresponding Chebyshev coefficients |ck| (middle
panel) or the asymptotic decay of the Taylor coefficients |ak|.

are obtained with two different numerical approaches: the solid
line results from solving the ODE with a Chebyshev collocation
point spectral method [112], whereas the dotted points arise when
using Leaver’s Taylor expansion, which corresponds to a frequency
domain hyperboloidal formulation in the minimal gauge [28, 99,
113]. Both strategies yield the same results. At first glance, there
is nothing special in the behavior of the solutions that allows us
to distinguish a QNM from a non-QNM eigenfunction. Indeed, it
is even possible to specify a hyperboloidal initial data such that
the corresponding time evolution has an arbitrary exponentially
damped oscillation [28].

What distinguishes a QNM from a non-QNM solution is
their regularity class. By studying the convergence rate of their
discrete numerical representation, one can infer that these functions
belong to different regularity classes. The middle panel of Figure 2
shows the Chebyshev coefficients from the Chebyshev collocation
point spectral method. These coefficients decay exponentially for
CΩ analytic functions or algebraically for Ck singular functions.
We observe an intermediary decay, suggesting the regularity
class of these functions is between Ck and CΩ. The Chebyshev
coefficients for QNM eigenfunctions decay faster than for non-
QNM eigenfunctions, indicating QNM eigenfunctions belong to a
better regularity class. A similar conclusion arises from the Taylor
expansion coefficients (right panel 2). For QNM eigenfunctions,
|ak| decays asymptotically. For non-QNM functions, |ak| grows
asymptotically. Even though the series does not converge absolutely,
it converges conditionally due to oscillations in Im(ak) (left panel
of Figure 2). These conclusions are formalized by interpreting QNM
as a formal eigenvalue problem of the generator of time translations
for a null foliation, acting on an appropriate Hilbert space [29–33,
114–116], where QNM eigenfunctions belong to the Gevrey-2
regularity class.

4 Applications

The QNM problem plays a fundamental role in the era of
gravitational wave astronomy. The BH spectroscopy program
faces three main challenges: (i) the measurability of the QNMs

frequencies, limited by the GW detection signal-to-noise
ratios; (ii) the relevance of nonlinear effects to the ringdown
dynamics; and (iii) the QNMs spectral instability. As discussed
in the previous sections, hyperboloidal formalism provides
crucial theoretical tools to tackle different aspects of these
challenges.

4.1 QNM excitation factors and tail decay

Even though challenge (i) mainly concerns the GW detection’s
signal-to-noise ratio, it heavily relies on accurate predictions
for the expected QNM excitations [117]. The excitation of each
QNM depends on the particular initial perturbation triggering
the dynamics. This perturbation also excites the late-time
power-law tail decay. Determining these excitation factors has
always been challenging due to the blow-up of the underlying
modes at the bifurcation sphere and spatial infinity [118]. A
common approach to avoid the infinities at the bifurcation
sphere when calculating integrals along the physical coordinate
r∗ ∈ (−∞,∞) is to deform the integration path into the complex
plane [119–121].

The hyperboloidal formalism offers an alternative strategy
to determine such excitation factors due to the globally regular
behavior of the QNM eigenfunctions. The direct identification
of Leaver’s continued fraction strategy with spacetime solutions
defined on hyperboloidal hypersurfaces allows the further
development of the Leaver method to calculate QNMs (and
tail decay) excitation factors for problems formulated on
hyperboloidal slices [28, 99]. While Leaver’s method relies on
a Taylor expansion around the horizon for the underlying
hyperboloidal functions, the strategy can be adapted to directly
solve a linear partial differential equation having the QNM
excitation amplitude as an unknown parameter in the equation
[122], or alternatively via the so-called Keldysh scheme [123].
The hyperboloidal formalism is also essential for recent advances
in the understanding of the role played by the tail decay in BH
spectroscopy [124–126].
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4.2 Quadratic QNMs

Since GR is a nonlinear theory, challenge (ii) emphasizes that
BH spectroscopy must also account for second-order, quadratic
perturbations [21, 127–136]. The quadratic coupling of first-order
solutions dictates the dynamics at second order in perturbation
theory [137–139]. When formulated in the standard t slices,
the blow-up of QNM eigenfunctions at the bifurcation sphere
and spatial infinity imposes severe restrictions for second-order
studies, both at theoretical and numerical levels. The hyperboloidal
framework for black-hole perturbations beyond the linear order
becomes indispensable for regular evolutions [23, 132, 140], as well
as for studies in the frequency domain [134, 141].

4.3 QNM instability and the
pseudospectrum

Apart from his groundbreaking work in QNM [34],
Vishveshwara also highlighted that the QNM spectra is very
sensitive to small modifications in the black-hole potential [142,
143]. At the same time, the QNM spectra destabilisation was also
observed by Nollter and Price [144, 145], but the phenomenon’s
impact in the BH spectroscopy programme has been largely
overlooked over the past decades. Only recently has the challenge
(iii) gained a greater attention [112, 146–155].

Small modifications in oscillatory frequencies for wave
equations result in minor spectral responses only if the wave
operators are self-adjoint. However, the flow of GWs into the
BH and out into the wave zone places BH perturbation theory
within the framework of non-self-adjoint operators. The successful
application of non-self-adjoint operator theory to gravitational
systems was only made possible by the hyperboloidal approach to
black-hole perturbations [112] (see also Ref. [156] for an alternative
approach akin to “complex scaling”). In this approach, one can use
the mathematical formalism of pseudospectra [157] to study the
QNM spectral instability [112] and perform a non-modal analysis
[151] that a traditional mode analysis might overlook. Since the
breakthrough offered by the hyperboloidal framework, the analysis
of QNM pseudospectra has been performed in several different
contexts, from astrophysically relevant scenarios to applications in
the gauge-gravity duality [158–167].

5 Discussion

The hyperboloidal approach to QNMs offers a geometric
regularization of black-hole perturbations. By connecting the
regular oscillations near BHs with those observed far away, this
method bypasses the problematic divergences inherent in the
traditional approach at the bifurcation sphere and spatial infinity.

With hindsight, the hyperboloidal approach relies on a simple
coordinate transformation that resolves the asymptotic singularity
of the standard time [84]. It is astonishing that it took decades
for relativists to adopt regular coordinates to describe black-
hole perturbations. We suspect that part of the confusion arose
from the asymptotic behavior of time functions. It is not widely
appreciated that the standard time coordinate in flat spacetime

is singular at infinity with respect to the causal structure. Large-
scale wave phenomena demand coordinates tailored to wave
propagation—characteristic or hyperboloidal. This approach is
critical not only for gravitational waves but also for addressing
general wave propagation problems.

In recent years, the hyperboloidal approach has led to
significant breakthroughs in the study of black-hole perturbations.
As discussed, the regularity of the QNM eigenfunctions in the
frequency domain enables a direct identification of the QNM
excitation factors and tail decay 4.1, facilitates the efficient
computation of second-order perturbations 4.2, and supports the
analysis of the QNM pseudospectrum 4.3. Moreover, recent work
has demonstrated that the hyperboloidal method can be extended
to non-relativistic operators [168], further broadening its scope and
applicability.

From a numerical perspective, finding the optimal choices
among the many ways to construct hyperboloidal coordinates,
particularly for high-precision and large-scale simulations, remains
a challenge. Exploring gauge conditions and optimizing numerical
algorithms to leverage advanced computational resources will
be essential for practical applications, going beyond linear
perturbations and including the numerical solution of the full
Einstein equations along hyperboloidal surfaces [169, 170].

Much of the current work has focused on asymptotically flat,
vacuum spacetimes. The formalism for black hole perturbation
theory is fully developed for spherically symmetric spacetimes, but
the same concepts are also valid for the Kerr solution [102, 113].The
hyperboloidal approach is versatile and extendable to more general
settings, including those with different asymptotic structures, and
nonvaccum spacetimes. Developing these extensions will be crucial
for applying this framework to a broader range of physical scenarios.
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Systems of partial differential equations (PDEs) comprising a combination
of constraints and evolution equations are ubiquitous in physics. For both
theoretical and practical reasons, such as numerical integration, it is desirable to
have a systematic understanding of the well-posedness of the Cauchy problem
for these systems. In this article, we first review the use of hyperbolic reductions,
where the evolution equations are singled out for consideration. We then
examine in greater detail the extensions, namely, systems in which constraints
are evolved as auxiliary variables alongside the original variables, resulting in
evolution systems with no constraints. Assuming a particular structure of the
original system, we provide sufficient conditions for the strong hyperbolicity of
an extension. Finally, this theory is applied to the examples of electromagnetism
and a toy model of magnetohydrodynamics.

KEYWORDS

well-posed initial value problem, constraint equations, evolution equations, extensions,
singular value decomposition (SVD), Kronecker decomposition, electromagnetism,
magnetohydrodynamics

1 Introduction

In this work, we continue [1–4] the study of first-order systems of equations in
which there are more equations than unknowns, but with a structure that permits, in
principle, splitting suitable linear combinations of them into “evolution” and “constraint”
equations. We restrict to the case of consistent systems, in which the number of equations
is equal to the number of constraints plus the number of independent variables, and
furthermore to the special case in which the number of independent variables matches
the number of evolution equations. The latter means that we do not consider systems with
gauge freedom remaining, which would imply the existence of variables with unspecified
equations of motion. In this case, one can attempt a solution by carefully restricting
the initial data and then directly solving the evolution equations. For an introductory
review, see Hilditch [5]. One must then check that the constraint equations are satisfied
in the time development. For this, integrability identities among the whole system of
equations must be satisfied. These conditions will be assumed and spelled out in detail
below. This “free evolution approach” requires us to establish the well-posedness of the
Cauchy problem Gustafsson et al. [6]; Kreiss and Ortiz [7] (for a review of well-posedness
applied to general relativity, see Sarbach and Tiglio [8]). We restrict ourselves to the
concepts arising from the theory of strongly hyperbolic systems, in which well-posedness
is determined by algebraic properties of the principal symbol of the equation system.
For first-order systems, the principal symbol is simply the set of matrices multiplying
the derivatives of the variables. The algebraic properties leading to well-posedness have
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several equivalent characterizations summarized in the Kreiss
matrix theorem Kreiss [9]. To assert well-posedness for the systems
under consideration, we need to find a suitable square system, that
is, a system where the number of variables equals the number of
equations. This can be achieved by taking a subset of the equation
system, called a reduction, resulting in a pure evolution system.
The use of reductions is customary, but another possibility, which
is often employed in numerical schemes, consists of making an
extension, that is, extending the system by adding more variables.
These extensions are commonly referred to as divergence cleaning
[10]; Munz et al. [11, 12], from their use inmagnetohydrodynamics,
or as λ [13] or Z-systems [14] from their use in general relativity.

A paradigmatic example is given by the Maxwell equations,

∇aF
ab = Jb, εdabc∇aFbc = 0, ∇aJ

a = 0,

where the unknowns are the components of the Faraday tensor Fab,
an anti-symmetric tensor (so there are a total of six independent
variables). Ja, the current vector, is a given vector fixed in space-
time, which has vanishing divergence. This is necessary due to
the integrability identity ∇b(∇aF

ab) = 0. We work here in four-
dimensional space-time (M,gab) with the Levi–Civita derivative ∇a
associated with gab. There are thus a total of 8 = 4+ 4 equations for
Fab, so six of them should be evolution equations, and the remaining
two should be constraints. Introducing a time-like covector na,
one finds that contraction with that vector on both equations
gives constraint, that is, equations which have derivatives only
in directions perpendicular to na; while projection on the space
perpendicular to na gives equations that have derivatives along
na for each of the independent components of Fab. Thus, in the
terminology introduced above, a reduction is obtained by taking
only these projections as the evolution equations. The integrability
identity anddivergence property of Ja together imply that constraints
are satisfied in the time development if they are at an initial surface.

On the other hand, an extension is given by adding two auxiliary
constraint variables (Z1,Z2), one for each Maxwell constraint, and
making a choice for their equations of motion. To accomplish this
in a covariant fashion, we need to define two tensor fields (g1,g2).
The proposed extended system is

∇aF
ab + gba1 ∇aZ1 = J

b, εdabc∇aFbc + g
ba
2 ∇aZ2 = 0, ∇aJ

a = 0,
(1)

It turns out that if the symmetric parts of (g1,g2) are Lorentzian
metrics whose cones have non-zero intersections among each other
and with the cone of g, then the extended system is well-posed.
(We use the mathematical notion of a cone; when needed, we use
the term light cone to refer to their boundaries). The equations
that were constraints are now evolution equations for (Z1,Z2), and
the others acquire spatial derivatives of these fields. As mentioned
above, such extensions have been employed with enormous success
in numerical relativity [15–20] and computational astrophysics, with
works introducing this approach for magnetohydrodynamics [11,
12]; Dedner et al. [10] is particularly influential. Here, we investigate
the space of possible extensions that lead to well-posed Cauchy
problems and how to construct them in a natural, covariant fashion.

The article is organized as follows. In Section 2, we define
the type of systems to be considered, including the necessary
conditions they must satisfy in order to have a well-posed Cauchy

problem. In Section 3, we introduce the Kronecker decomposition
ofmatrix pencils and explain its implications to the study of strongly
hyperbolic systems. In Section 4, we formalize the framework for
extensions. Given the considerable freedom in choosing them, we
use the Kronecker decomposition as a guide for making these
choices. In Section 5, we demonstrate how this framework applies
to two concrete examples: Maxwell’s electrodynamics and a toy
model of magnetohydrodynamics (MHD). Finally, in Section 6, we
conclude with discussions and provide comments on how this line
of research is being further developed.

2 Preliminaries and notation

To fix notation, we specify the systems we consider, following
the notation of Geroch [1]; Abalos and Reula [3]; Abalos [4]. We
consider a manifold M of dimension n, and the following system
of the quasi-linear first-order partial differential equations on the
fields ϕ,

EA ≔NAa
α (x,ϕ)∇aϕ

α − JA (x,ϕ) = 0, (2)

where the indices A, a, α are abstract, grouping several tensorial
indices into one and merely indicating where the contractions are.
We use lower-case Latin indices to denote single vector indices,
lower-case Greek indices to indicate variable fields, and upper-
case Latin to label the equations space. The | ⋅ | function on indices
indicates their total dimension.

We impose the following conditions on NAa
α (x,ϕ):

Condition 1: the generalized Kreiss condition.
We assume that the matrixNAa

α (x,ϕ) is smooth in all arguments
and that there exists a hypersurface orthogonal covector na such that
for all values of ka, not proportional to na, the matrix pencil

NAa
α la (λ) =N

Aa
α (λna + ka) ,

has a kernel only for a finite set of real values {λi(k)} of λ (the term
matrix pencil refers here to the uni-parametric combination λN+B,
whereN andB arematrices that do not depend on the parameter λ).

In addition, the corresponding singular values of NAa
α la(λ)

approach zero in a linear way, that is, σ(λ) ≥ ci|(λ− λi)|, with ci > 0
in a neighborhood of λi. We recall that the singular values are the
square roots of the eigenvalues of (NAa

α la)
T(NAb

β lb). Because this is
an |α| × |α| matrix, there are |α| singular values (see Abalos [2] for
more details and for a more general definition).

These conditions imply two things: i) the rank of NAa
α (x,ϕ)na

is maximal. Therefore, by defining any vector ta transversal to the
surface flat defined by na (i.e., tana ≠ 0), we can obtain all field
derivatives along ta from their values and their derivatives at that
surface. This means that we have enough evolution equations for
each field ϕα. Observe that once we have a choice of na satisfying
Condition 1, then there is an open set of covectors satisfying
the same condition. Thus, we can always form hypersurfaces in a
neighborhood of any point, leading to a local initial value problem;
ii) In the case that the number of equations equals the number
of variables, these conditions imply there is a well-posed Cauchy
problem, in the usual sense for strongly hyperbolic systems, off of
the mentioned surface. This is the classic Kreiss condition.
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In case there aremore equations than variables, we need tomake
sure that there are no more linearly independent equations having
derivatives along the transversal vector ta; otherwise, we would have
an inconsistency because two equations could give different values
for the same transversal derivative. To accomplish that, we impose:

Condition 2: the Geroch constraint condition.
If the number of equations is larger than the number of variables
|A| > |α|, then we assume there exists a set of matricesCΓa

A , which are
labeled by upper-case Greek indices, with

CΓ(a
A N|A|b)α = 0,

and that rank(CΓa
A na) = |A| − |α| = |Γ|. This condition ensures that

the rest of the equations do not have derivatives off of the surface
defined by na, so that the system is consistent. Indeed, the following
linear combination of equations, called constraints,

ψΓ ≔ CΓa
A na (N

Ab
α ∇bϕ

α − JA) ,

have only derivatives on the flat defined by na.
There is a further consistency condition that would guarantee

that if the initial data are such that constraint quantities vanish at
the initial surface, then they would also vanish along evolution [4].
We require the following:

Condition 3: integrability.

∇d (C
Γd
A EA) = LΓ

1A (x,ϕ,∇ϕ)E
A (x,ϕ,∇ϕ) ,

In other words, there is a particular on-shell identity among
derivatives of our equation system. In most cases of physical
interest, this identity is a consequence of gauge or diffeomorphism
invariance.

3 Kronecker decomposition

When studying the well-posedness of the Cauchy problem, the
relevant aspect is the behavior of the system in the limit of high
frequencies. We can thus restrict our attention to a neighborhood
of each point and work in the frequency domain, employing
the Fourier–Laplace transform in space and time, respectively.
Explicitly, we consider a time function t and a foliation given by its
level surfaces. We define na = (dt)a and take a vector ta transversal
to the foliation and adjust it such that tana = 1. We choose covectors
ka such that taka = 0 and define la = λna + ka. We perform Fourier
in ka, and Laplace in λ. Thus, we replace space derivatives by ika
and time derivatives by iλ. Furthermore, in what follows, once any
particular ka is chosen, we take a coordinate base so that na = (dx

0)a,
and ka = (dx

1)a, and so la = (λna + ka) = (λdx
0 + dx1)a. Finally, in the

high frequency limit, we obtain NAa
α la ̃ϕ

α = 0.
The Kronecker decomposition of a matrix pencil is a canonical

transformation that generalizes the Jordan decomposition of a
squarematrix pencil. Considering the (square or non-square) pencil
Nλ+B, the Kronecker decomposition is achieved by multiplying
this pencil by specific matrices W and Q, which are independent of
λ (as in the square Jordan decomposition case). This transformation
results in a new pencil (WNQ)λ+ (WBQ) that has a block structure
with particular canonical blocks (see Gantmakher [21, 22], for a
detailed description and Equation 3 for an example).

It turns out that the Kronecker decomposition can be
used naturally in the analysis of systems with constraints
or gauge freedom. With the first two conditions assumed
above, the Kronecker decomposition of the pencil NAa

α la(λ)
is given by

NAa
α la =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

λ− λ1 0 0 0 … 0
0 … 0 0
0 0 λ− λd 0 … 0
0 … 0 λ 0 … 0
0 … 0 1 0 … 0
0 … 0 0 λ … 0
0 … 0 0 1 … 0
0 … … … 0
0 … … … 0
0 … … 0 λ
0 … … 0 1
0 0 0 … 0 0 0
… … … … … …
0 0 0 … 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

(3)

Ultimately, this represents a change of basis of both the
variable and equation spaces, which depends on ka but not
on λ. The first block is a diagonal d× d block, this diagonal
represents the true degrees of freedom of the entire system. It
contains as many elements as the “zeros” of the singular value
decomposition, counting their multiplicity. The 2× 1 blocks, called
LT1 in the literature, are due to the constraints; there are a total
of r = |α| − d blocks. Because each block occupies two rows, we
see that the number of zero rows is s = |A| − d− 2r. The zero
rows are present in many systems; they represent differential
constraints among the constraints themselves. The numbers defined
above also satisfy:

d: = dim(right_ker(CΓa
A naN

Ai
α ki)) ,

r: = rank(CΓa
A naN

Ai
α ki) ,

s = :dim(left_ker(CΓa
A naN

Ai
α ki)) .

With this decomposition at hand, it is easy to see how to choose
among them linear combinations that give evolution equations for
all ϕα. Observe that the equations (rows) with a λ are certain
to contain derivatives transversal to the na flats. So, we must
include them, but we can add any combination of the other rows
to them. It turns out that, by simply adding to each of these
rows the immediate row below, multiplied by any number πi, i =
1,…, r, and discarding all the remaining rows, we obtain the
evolution equations.

hβAN
Aa
α la: =

[[[[[[[[[[[[[

[

λ− λ1 0 0
0 ... 0
0 0 λ− λd

λ− π1 0 0
...

0 0 λ− πr

]]]]]]]]]]]]]

]

.
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Thus, we have constructed a map from the equation space to
the variable space, which we refer to as a reduction and denote
by hβA. Thus, hβAN

Aa
α la is a map from the variable space into

itself consisting of a set of diagonal matrices satisfying the classic
Kreiss conditions (see point ii. within Condition 1). Notice that
we can choose the extra roots of λ (i.e., the {πi}) as we please.
They are the propagation speed of extra constraint modes. This
simple observation is the principle behind the results in Reula
[23]; Abalos [4].

Thus, there is a reduction (a linear combination of the equations)
such that the Cauchy problem of the system is well-posed.
Furthermore, Condition 3 asserts that if the initial data satisfy all
equations (including the vanishing of the constraints), then all the
equations are satisfied for all times as long as the solution exists.
See Abalos [4] for details.

4 Extensions

A generic extension would imply the addition of an
extra matrix, ̃NΔAa (x,ϕ) (and extra variables ZΓ), to obtain
a square system

NAa
α (x,ϕ)∇aϕ

α + ̃NΓAa (x,ϕ)∇aZΓ − J
A (x,ϕ) +BA (x,ϕ,Z) = 0. (4)

Here, BA (x,ϕ,Z) is a term we can also freely choose that does
not include derivatives of ϕ or Z and that goes to 0 when Z goes
to 0. In general, BA represents damping terms [13]; [10]; [24],
which are important in numerical applications. For simplicity in our
discussion, however, we omit it.

Because we are interested in solving Equation 2 for ϕ, our
extension proposal only makes sense if we can show that for
suitable initial data (for (ϕ,Z)), the solution of Equation 4 has
Z = 0 throughout the development, thereby ensuring that ϕ is a
solution of Equation 2.

As we explained before, if we assume Conditions 1, 2, and 3
and take any initial data for ϕ satisfying the constraints, we know
that the initial value problem for Equation 2 is “well-posed” and
has a unique solution ϕsol. (Here, by well-posed, we mean that the
map from Cauchy data to solutions is continuous. To establish this,
one finds a hyperbolic reduction from which we may assert that
the reduced system is well-posed for arbitrary initial data. Then,
one shows that if the initial data satisfy the constraints, then the
solutions of the reduced system also satisfy them. Thus, they are
solutions to the whole system, and we call the whole system well-
posed). Therefore, if we choose ̃NΓAa such that the extended system,
Equation 4, is well-posed, then for any initial data, there will be
a unique solution. If we choose as initial data (ϕsol|t=0, Z|t=0 = 0),
then (ϕsol,Z = 0) will be a solution, and by uniqueness is the
solution. Therefore, we only need to show that system Equation 4
satisfies Kreiss’s condition.

4.1 Strong hyperbolicity of the extensions

A particularly interesting set of extensions is obtained
by noticing the symmetry between the Kronecker

decomposition of NAa
α la(λ) and (CΔa

B la(λ))
T. So, we start by

computing it:

(CΓb
A lb)

T =

[[[[[[[[[[[[[[[[[[[[[[[[

[

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1
λ
…
−1
λ

λ− ρ1

…
λ− ρs

]]]]]]]]]]]]]]]]]]]]]]]]

]

Recalling that the matrices CΔa
B la can be thought of as a basis,

labeled by Δ, for the kernel of NAa
α la, it is easy to understand its

structure. Here, the rows with zeros are d in number. This is so
because the diagonal part of NAa

α la cannot contribute to the kernel.
We then have r blocks [−1 λ]T, observing that they have a minus
sign on them. This is because they are kernels for the corresponding
LT1 blocks of NAa

α la. Finally, there is a block that is a kernel of the
zero rows ofNAa

α la.This part is completely undetermined, sowe have
simply added a diagonal matrix.

To make more apparent the extension we proposed, we
reorganize the rows of NAa

α la and (CΓb
A lb)

T such that

NAa
α la =
[[[[[

[

J 0
0 λIr
0 Ir
0 0

]]]]]

]

, (CΓb
A lb)

T =
[[[[[

[

0 0
−Ir 0
λIr 0
0 Jc

]]]]]

]

. (5)

Here, all the matrices are blocks matrices where J =
(λ− λ1,…,λ− λd) of size d× d, Jc = (λ− ρ1,…,λ− ρs) of size s× s,
and Ir is the identity matrix of size r× r. The zero rows of NAa

α la are
of size s× |α|, and the zero rows of (CΓb

A lb)
T are of d× |Γ|.

From this reorganization, it is apparent that a natural choice of
̃NΓAa is given by

̃NΓAa = GABCΓa
B ,

where GAB now must be chosen to render the system
diagonalizable. This is, of course, not the most general extension
but is a natural and fully covariant proposal for ̃NΓAa. The
principal symbol of Equation 4 becomes then

MAa
D la = [NAa

α GABCΔa
B ] la,

a |A| × |A| square matrix.
We now propose a particular expression for GAB, namely,

GAB =
[[[[[

[

Id 0 0 0
0 −D2 0 0
0 0 Ir 0
0 0 0 Is

]]]]]

]

, (6)

whereD = diag(π1,…,πr) is of size r× r, and Is is the identity matrix
of size s× s.
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Using expressions Equations 5, 6, we conclude

MAa
D la =
[[[[[

[

J 0 0 0
0 λI D2 0
0 I λI 0
0 0 0 Jc

]]]]]

]

,

It is easy to verify that this matrix is pencil-similar to the following
diagonal matrix:

MAa
D la ∼ diag(…,λ− λi,…,λ+ πj,λ− πj,…,λ− ρk,…)

and so it satisfies Kreiss’s condition. The extra 2r eigenvalues
{πi,−πi}, introduced by GAB, come in pairs, which means that there
are r new null cones as characteristic. We shall see this in the
examples below, where Lorentzian metrics are used to realize these
null cones.

5 Examples

In this section, we present two implementation examples of
our proposal, showing that they produce well-posed systems while
largely preserving the covariance of the original theories. In all
cases, extra Lorentzian metrics are introduced to avoid light cone
intersections.

5.1 Maxwell’s equations

We start with the example given in the introduction Equation 1.
For them, we have a space of variables Fab (anti-symmetric tensors),
which is |α| = 6 dimensional in a four-dimensional space-time of
metric gab. The space of equations is |A| = 8, namely, two space-time
vectors. We have (see Geroch [1])

NAa
α = (

δa[c δ
q
d]

εpabc
) CbΓ

A = (
δbq
δbp
) CbΓ

A lb = (
lq
lp
)

Given a time-like na, we have

NAa
α na = (

n[c δ
q
d]

εpabcna
).

So, it is the map Fab→ (Ea,Ba), which is of the maximal rank.
This system satisfies Condition 1; see Abalos and Reula [3] for
more details.

The tensor CbΓ
A lb is also of maximal rank for any lb1. Since the

dimension of the image is 2-dimensional, we have |A| = |α| + |Γ|, and
the system is consistent, satisfying Condition 2.

We also have

∇b(C
bΓ
A NAa

α ∇aϕ
α) = ∇b(

δa[c δ
b
d]∇aF

cd

εbacd∇aF
cd ) = (

∇bJ
b

0
) = 0

and so Condition 3 is also satisfied.

1 Here the target space is two copies of R4, and the image is 1-dimensional

on each one of them.

A suitable reduction is

hβB = (gq[r t s],−
3
2 εparst

a).

This renders the evolution equations symmetric hyperbolic. As we
saw above, a simple extension is obtained introducing two tensors
(gpq1 ,g

pq
2 ) and defining

GAB = (
gpq1 0
0 gpq2
)

If we take their symmetric parts to be any two Lorentzian
metrics, each one of them sharing a common time-like covector na
with gab, but not touching their null cones (for brevity, we do not
consider here such degenerate cases), then the system is strongly
hyperbolic and so has a well-posed Cauchy problem. To check this,
we compute the characteristics of the system and the corresponding
eigenvectors and see when we get a complete set, that is, a total of
eight eigenvectors.

The characteristic equations are

lbδF
ab + gab1 lbδZ1 = 0

εabcdlbδFcd + g
ab
2 lbδZ2 = 0,

where we need to solve these equations for λ with la = λna + ka and
na,ka given and for the eigenvectors δFab and δZ1,2. The solutions
split into three cases: first, when la is null with respect to gab (physical
case), then when it is null with respect to gab1 or gab2 (extended cases),
as we explain below.

We already know four of the eigenvectors, namely, the physical
ones arising from the original system. To recover these, we set δZ1 =
δZ2 = 0 and search for the value of δFab. The second equation then
implies that δFcd = 2l[cAd] for some vectorAd, while the first implies
that (lal

a)Ab − (laA
a)lb = 0 where indices are raised with the space-

timemetric. BecauseAa cannot be proportional to la (otherwise δFcd
would vanish), both terms must vanish and so we conclude

gablalb = 0,

which admits two real solutions for λ. Hence, Aa is orthogonal to la,
which leaves two options remaining forAa for each of the two values
of λ.

Now, we want to find the rest of the eigenvectors. For that, we
first choose δZ1 = 1, δZ2 = 0. Contracting the first equation with lb,
and using the anti-symmetry of δF, we get a condition for la,

gab1 lalb = 0, (7)

which again admits two real values of λ. Repeating the argument
above, the first equation becomes

(lal
a)Ab − (laA

a) lb + gab1 lb = 0 (8)

Because the null cones of gab and gab1 are by assumption not
touching, we have gablalb ≠ 0. It follows that Aa = − gab1 lb/(lcl

c)
satisfies Equation 8 provided that Equation 7 holds. Observe
furthermore that Aa + αla satisfies the same equations and results in
the same Faraday tensor δFab for any α. Thus, Equation 7 gives two
additional eigenvectors.
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If we drop the assumption that the null cones of gab and gab1
are non-touching and assume that they touch at la, then to have a
solution, we need that gablb must be proportional to gab1 lb.

The final case is similar to the second. We choose δZ1 = 0, δZ2 =
1 and obtain

gab2 lalb = 0

and the same equations for the dual of δFab, so we need not discuss
it separately.

In summary, we have obtained the eight eigenvectors we require
to satisfy the Kreiss condition and conclude that the system is
strongly hyperbolic.

5.2 Toy MHD

Here we look at the evolution of a magnetic field ba driven by a
given velocity field ua in a space-time (M,gab). The system is

∇a(b[
a u b]) = 0 (9)

Here, we take ua to be time-like and of norm one, uaubgab = − 1.
We also take uabbgab = 0. This last is a gauge condition to make
the solutions unique for the whole system because otherwise, if
(ua,ba) is a solution, then (ua,ba + ηua) also is a solution, with η an
arbitrary function.

We observe that there are four equations for three variables.
Three of them are evolution equations for the three components of
bc. We shall see below that the other is a constraint. Thus, Condition
2 is also satisfied.

The principal part of system Equation 9 is

Nba
c ∇ab

c = u[a∇ab
b] = δ[ac u b]∇ab

c.

It is easy to check that Condition 1 is satisfied. The Geroch
matrices are also easy to obtain as Cd

bld ≔ δ
d
bld. They form a

basis of the left kernel of Nba
c la and, as we explained before,

this means that when Equation 9 is contracted with Cd
bud = ub, a

constraint is generated; this is

∇ab
a − baaa = 0,

where aa ≡ ub∇bu
a. We notice that this is the spatial divergence of ba

in disguise.
On the other hand, the following integrability condition

Cd
b∇d∇a(b

[a u b]) = ∇b∇a(b[
a u b]) = 0 holds trivially; thus, the system

satisfies Condition 3.
The extended system consists of adding a term

gba1 ∇aZ to Equation 9, with gba1 as in the previous example and with
the extra variable Z. Its principal part is u[a∇ab

b] + gbc1 C
d
c∇dZ = 0,

with Ca
b = δ

a
b. The characteristic equation is

1
2
(ualaδb

b − ublaδb
a) + gbd1 ldδZ = 0 (10)

where we need to solve this equation for la = − λua + ka with ka
given, and for the eigenvectors δZ and δba (with uaδb

a = 0).
Without loss of generality, we choose ka such that uaka = 0,

and we rewrite the characteristic equations projecting on to ua and
perpendicular to it (with the projector hab ≡ gab + uaub). We obtain

1
2
kaδb

a + uag
ab
1 lbδZ = 0

1
2
λδba + hacg

cb
1 lbδZ = 0

The physical solution comes from choosing λ = 0, and the
eigenvectors δZ = 0 and δba orthogonal to ka. Because δba has two
possible directions, we obtain two eigenvectors.

The remaining eigenvectors come from choosing λ such that

lag
ab
1 lb = 0, (11)

and δZ = 1
2
λ, δba = hacg

cb
1 lb. This expression satisfies the second

characteristic equation trivially, and it is easy to verify that the first
one reduces to

1
2
kaδb

a + uag
ab
1 lbδZ =

1
2
lag

ab
1 lb = 0.

Because, as before, there are two solutions for λ from
Equation 11, we obtain two more eigenvectors. In summary, we
have obtained the four eigenvectors we require to satisfy the
Kreiss condition and conclude that the extended system is strongly
hyperbolic. Finally, we notice that Equation 11 can also be rederived
from the integrability condition, i.e., by multiplying Equation 10 by
Cd
bld = lb.

6 Conclusion

Similar extensions to those proposed here were previously
known, starting with the divergence cleaning used in
magnetohydrodynamics and later generalized as λ-systems for
generic symmetric hyperbolic systems. To implement them, it
was necessary to break the covariance of the system in the
usual sense of performing a 3+ 1 decomposition. For symmetric
hyperbolic systems, such extensions can be obtained in our
framework by committing to a frame and a reduction and
adding an extra term that annihilates the time component of
the constraint basis. This results in an extended symmetric
hyperbolic system.

In this article, we have presented an extension scheme for first-
order PDEs.With appropriate adaptation, however, these results can
be applied to systems of two or even more orders. We will show
in future articles how to apply these ideas to gravity theories to
extend the system and to fix the gauge, allowing us to reinterpret and
generalize known results such as those of Bona et al. [25]; Hilditch
and Richter [26]; Kovács and Reall [27].

Although the existence of a strongly hyperbolic extension
is performed in Fourier space and results in a system of
pseudodifferential equations, our examples show that in cases of
physical interest, one may obtain differential extensions. These
extensions furthermore retain covariance of the theory in the
sense that, contrary to earlier λ-system extensions, at least in the
principal part, they do not rely on a preferred time direction but
instead the addition of other Lorentzian metric tensors. Further
details and a complete proof will be provided in a longer version
of this work.

In our analysis, we resorted to previous work to argue that
the constraints, if initially satisfied, are satisfied at later times. This
helped us conclude that ZΓ remains zero throughout the evolution.
There are, however, more elegant ways to show this when the
constraints do not have any kernel from the left, that is, no set
of zero rows in their Kronecker decomposition (see Equation 3).
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In such cases, it can be shown that the ZΓ fields satisfy a second-
order evolution system that is decoupled from ϕα and has a well-
posed initial value problem. Choosing these fields to vanish at the
initial surface and the ϕα fields satisfy the original constraints of
the system, all derivatives of ZΓ vanish on the initial surface, in
particular any transversal derivative, so the unique solution to the
second-order system is 0, and the constraints are satisfied for all
times. Unfortunately, the presence of zeros may prevent the second-
order system from being well-posed, so more care is needed. This
will be further considered in the aforementioned longer article.
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Black hole quasinormal modes arise as eigenmodes of a non-normal
Hamiltonian and consequently they do not obey orthogonality relations
with respect to commonly used inner products, for example, the energy
inner product. A direct consequence of this is the appearance of
transient phenomena. This review summarises current developments on
the topic, both in frequency- and time-domain. In particular, we discuss
the appearance of i) transient plateaus: arbitrarily long-lived sums of
quasinormal modes, corresponding to localised energy packets near the
future horizon; ii) transient growth, with the latter either appearing in the
vicinity of black hole phase transitions or in the context of higher-derivative
Sobolev norms.

KEYWORDS

non-modal, quasinormal modes (QNMs), black holes, transients, pseudospectra, black
hole spectroscopy, non-normal, ringdown

1 Introduction

An indispensable tool in the study and characterisation of the dynamics of black
holes is their spectrum of quasinormal modes (QNMs) – for recent reviews see [1, 2].
QNMs are solutions to the wave equation arising when general relativity is considered
perturbatively at linear order, and they determine how small perturbations evolve over
time, capturing their ‘ringdown’ behaviour.1 As such, QNMs have received a lot of
attention in the literature. Within holography, they determine the near-equilibrium
properties of strongly coupled quantum field theories, in particular some transport
coefficients, such as viscosity, conductivity and diffusion constants [5, 6]. In astrophysics, the
detection of QNMs in gravitational wave experiments would allow precise measurements
of the mass and spin of black holes–through the so-called black hole spectroscopy
programme [7] – as well as new tests of general relativity. Similarly, QNMs also serve
as indicators of black hole instabilities: a single unstable mode signals exponentially
growing perturbations leading to a new equilibrium configuration, which is particularly
important in higher dimensions as well as in the holographic context. In addition, QNMs
also play an instrumental role in semiclassical gravity, e.g., in the context of Hawking

1 Second order QNMs, usually referred to as QQNMs, have also been constructed recently [3, 4].
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radiation [8], as well as in Mathematical Relativity, e.g., in
understanding properties of Cauchy horizons [9].

The defining property of a black hole is its event horizon,
through which energy dissipates. This dissipative nature of black
holes has a direct imprint on the operator that gives rise to
QNMs: the operator is non-normal. This absence of normality
leads to the QNM eigenfunctions being neither orthogonal2

nor complete, while the QNM frequencies are highly sensitive
to small perturbations, resulting in spectral instability. These
features substantially complicate the interpretation of QNMs
and, in fact, in certain contexts question the validity of their
use. Note that non-normality is a generic feature of dissipative
systems and as such, has been observed and investigated in
both (i) quantum mechanics, where the introduction of non-
selfadjoint operators in PT-symmetric quantum mechanics entails
that the associated spectrum is insufficient to draw full, quantum-
mechanically relevant conclusions [14], and in (ii) fluid dynamics
in relation to the transition between laminar and turbulent
flows [15].

In essence, to-date, we have only explored the ‘tip of the iceberg’
in terms of non-normality in black hole physics, especially in
dynamical settings, where the non-orthogonality of QNMs can give
rise to short-term, transient phenomena. Here we review progress in
this direction.

In order to set the stage, in what follows we foliate spacetime
with hyperboloidal slices, Στ – spacelike slices that pierce the future
event horizon. These slices are labeled by time τ and are traversed
by a radial coordinate z with the future event horizon reached at z =
1. For brevity we suppress dependence in the transverse directions.
In the spacetimes we consider here, the equation of motion for a
perturbation ψ(τ,z) (scalar, electromagnetic, or spin-2), will obey a
first-order-reduced equation of motion,

i∂τu =Hu, (1)

where H is a 2× 2 matrix and a second-order differential operator
in z and u = (ψ,∂τψ)

T. For initial data u(0,z), the time-dependent
solution of the system is given formally as u(τ,z) = e−iHτu(0,z),
in terms of the evolution operator e−iHτ. Given a harmonic
decomposition u(τ,z) ∼ χ(z)e−iωτ, QNMs are defined as solutions to
the eigenvalue problem

ωnχn =Hχn,

subject to ingoing behaviour at the future event horizon and
appropriate boundary conditions at infinity. Then, the spectrum of
the theory is given by σ(H) = {ωn,n ≥ 0}. We can define an energy
associated to matter on a hyperboloidal slice by

E ≡ ∫
Στ

Tμ
τnμdΣτ, (2)

where n = −1
√−gττ

dτ is the unit, future-directed normal to Στ. T
μν

is the matter stress-energy tensor, and is at least quadratic in the
perturbation ψ. Note that Tμν can contain contributions from other

2 With respect to standard choices of inner product. See [10–13] for the

construction of QNM orthogonality relations in other products.

fields. Due to local conservation of the currents Tμν, the total energy
E is conserved up to boundary terms. The energy of ψ on Στ is
then given by Equation 2 with Tμν = T

ψ
μν, from which the energy

inner product ⟨⋅, ⋅⟩E (see [16] for an extended discussion) is defined
such that

E [u] = ⟨u,u⟩E = ‖u‖
2
E. (3)

2 Insights from the pseudospectrum

One can extract various insights about the time domain
problem from spectral features. In particular, a useful object is the
pseudospectrum,

σϵ (H) = {ω ∈ ℂ| ω ∈ σ (H+ δH) ,‖δH‖ ≤ ϵ} , (4)

which, along with many of the definitions in this section, can
be found in [15]. In the black hole context, Equation 4 has
received much attention as a way to assess the stability of QNM
frequencies under environmental perturbations [17], building upon
the seminal observations of [18, 19]. Heuristically, σϵ at fixed ϵ
provides the contours of a useful topographic map of the complex
frequency plane. Peaks are infinitely high and correspond to the
point spectrum, while the width of the peaks have something
to say about the associated spectral stability properties and
transient effects.

In particular, for our purposes, a significant protrusion of
pseudospectral contour lines into the unstable-half ω-plane points
towards transient phenomena (in our conventions this is the upper-
half ω-plane). A lower bound on the peak growth of the evolution
operator is given as follows,

sup
τ≥0
‖e−iHτ‖ ≥

αϵ (H)
ϵ
, ∀ϵ > 0,

where we have introduced the pseudospectral abscissa, αϵ(H) =
sup Imσϵ(H). The strongest lower bound is given by the Kreiss
constant, K(H) = supϵ>0αϵ(H)/ϵ. Relatedly, an upper bound on
growth follows from

‖e−iHτ‖ ≤ e−iw(H)τ, ∀τ ≥ 0,

where we have introduced the numerical abscissa w(H) =
supϵ>0 (αϵ(H) − ϵ).

In the black hole context, these quantities were first studied in
[20] in the context of binary black hole mergers in the close-limit
approximation.3 Specifically, in the case of a Schwarzschild black
hole in the energy norm (Equation 3) [20], computed the numerical
abscissa to be w(H) = 0, which implies K(H) = 1. This implies
there is no growth of energy of a perturbation in the exterior of

3 See also [21] for a related study of extreme compact objects, where a

Kreiss constant consistent with K(H) = 1 was obtained numerically by

computing the ratio of the pseudospectral abscissa αϵ(H)/ϵ in the limit

ϵ→∞.
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Schwarzschild spacetime, which is simply a consequence of energy
conservation [22].4

Going further, one may ask if the pseudospectrum can be used
to identify scenarios in which perturbations of black holes can grow.
However, a critical issue arises when Equation 4 is considered more
generally in the black hole context. This is most easily stated using
the following equivalent definition of Equation 4, which utilises the
norm of the resolvent,

σϵ (H) = {ω ∈ ℂ| ‖RH (ω)‖ = ‖(H−ωI)−1‖ ≥ 1/ϵ} .

when the resolvent operator is approximated as a matrix for the
purposes of numerical evaluation it does not always converge with
increasing resolution [24]. See [25, 26] for further discussions.
However, it is proven in [27] for asymptotically AdS and dS black
holes that the norm of the resolvent exists in a band structure in
the complex ω plane provided one uses a particular class of higher-
derivative norms. There, higher-derivative norms were introduced
in order to impose a higher degree of regularity for the purposes of
defining QNMs. This motivates the use of higher-derivative norms
both in the evaluation of pseudospectra and for assessing transient
phenomena, as in [26]. In [26] the following higher-derivative norms
are defined5

〈u1,u2〉Hp =
p

∑
j=0
〈∂jxu1,∂

j
xu2〉E, (5)

referred to as the SobolevHp-inner product, where here (τ,x) refer to
the Bizoń-Mach hyperboloidal coordinates [28] for the Pöschl-Teller
model. Note p = 0 corresponds to the energy-norm.

The Kreiss constant was also discussed in [29], where it was
extracted from the pseudospectrum of a truncated Hamiltonian,
HW, where the functional spacewas restricted to a subspaceW of the
firstM quasinormalmodes [29]. found thatK(HW) > 1, for a system
describing charged scalar perturbations in a Reissner-Nordström
(RN) -AdS4 black brane.This indicates that there exist perturbations
that exhibit transient energy growth in the scalar field when all the
modes are stable.

3 Time domain

In the last section, we presented quantities computed from the
pseudospectrum (and its respective limits) that provide insights into
the time evolution of linear perturbations. In particular, a non-
zero numerical abscissa,w(H) > 0, and thusK(H) > 1, immediately
implies that there exist perturbations whose time evolution exhibit
transient growth in the observable defined by the chosen norm ‖ ⋅ ‖.
The pseudospectral analysis is however incomplete, since it does not
capture important transient effects that arise even in the absence

4 Note that [23] reports transient growth in the context of Kaluza-Klein

black holes in Gauss-Bonnet gravity. However, the system studied in [23]

is conservative up to boundary terms and (3.19) there can be written

as a total derivative. As such, the reported result on transient growth is

incorrect.

5 Note that this is different to the corresponding inner product used in [24].

of growth [22], and should be complementedwith a full time domain
evolution of perturbations.

Consider a black hole coupled to a scalar field. A natural choice
of observable is the energy of the scalar field ψ on hyperboloidal
slices as given by the energy norm ‖ ⋅ ‖E (Equation 3). A key feature
now is that energy dissipation through the horizon and toI+ renders
a non-normal H in Equation 1 under ⟨⋅, ⋅⟩E, and thus its regular
normalisable eigenfunctions (the QNMs) are not orthogonal under
this product. Consequently, the energy of a perturbation formed
from a sum of QNMs, u(τ,z) = ∑Mn=1cne

−iωnτχn(z), is not just the sum
of the energies of each individual QNM, but rather

E [u] =
M

∑
n=1
|cn|

2e2ImωnτE[χn] + cross− terms. (6)

there are cross-terms arising from the non-orthogonality of
QNMs under Equation 3 that allow for non-trivial transient
dynamics. Note that without the cross-terms, the slowest possible
energy decay is set by the fundamental mode ω0.

In this context, the first systematic time domain study of
transients in black hole perturbations was introduced in [22]
using the energy growth curve, G(τ) ≡ ‖e−iHτ‖2E, and optimal
perturbations–tools inherited from hydrodynamics [30–35].
Considering a subspace of solutions W to Equation 1 spanned by
the firstM = dim (W)QNMs, {χn}

M
n=1 (ordered by decreasing Imω),

GW(τ) ≡ ‖e
−iHWτ‖2E determines the maximum possible energy at a

specific time τ, relative to the energy at a fiducial initial time τ =
0, over all solutions in W. Optimal perturbations, uopt. ∈W, are
then those that maximise the energy at a target time τ∗ such that
E[uopt.(τ∗,z)] = GW(τ∗). Both the value of GW(τ∗) and the set of
coefficients ⃗c in the initial data expansion.

uopt. (0,z) =
M

∑
n=1

cnχn (z) (7)

where QNMs are normalised ⟨χn(z),χn(z)⟩E = 1, are obtained
from the singular value decomposition of e−iHWτ∗ – HW is the
representation of HW in an orthonormal basis of functions for W,
anM×Mmatrix encoding the information of the spectrum (see [22,
29] for more details). Finally, uopt. evolves simply according to the
time evolution of each QNM in Equation 7, i.e.,

uopt. (τ,z) =
M

∑
n=1

cne
−iωnτχn (z) .

Using this methodology, the main result of [22] consisted in
demonstrating the existence and constructing (both analytically and
numerically) arbitrarily long-lived linear black hole perturbations
in a variety of spacetimes, due to transient effects, despite a lack
of energy growth. An example of such perturbations for s = 2, l =
2 (spin and angular momentum) Regge-Wheeler QNMs of the
Schwazschild black hole is presented in Figure 1. The top panel
showsGW for different values ofM indicating the absence of growth
in the energy of perturbations, in accordance with the ω(H) = 0
and K(H) = 1 results discussed in section 2. Note that the total
(quadratic in perturbations) energy of the system E can only stay
constant or decay, and its only contribution is the energy of the
gravitational perturbation. However,GW exhibits an initial transient
plateau with duration ∼ log M that demonstrates the existence of
optimal perturbations with lifetimes scaling as log M, followed by

Frontiers in Physics 03 frontiersin.org107

https://doi.org/10.3389/fphy.2025.1638583
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Besson et al. 10.3389/fphy.2025.1638583

FIGURE 1
Energy growth curves and optimal perturbation for Schwarzschild s = 2, l = 2 Regge-Wheeler perturbations (figure taken from [22]). Top: GW for
various M = dim (W) (solid curves), and the energy of an optimal perturbation of M = 39 QNMs with τ∗ = 8.5 (red-dash). Bottom: Modulus (left) and
energy density (right) of the optimal perturbation in the conformal diagram of Schwarzschild. The energy is initially localised at H+ and I+, and then
propagates along them until it starts dispersing and decaying at τ ≃ τ∗ (indicated by the white slice near i+). The dash-dotted red line represents the
curvature singularity.

an exponential decay with the fundamental mode ω0 decay rate. The
energy of such a perturbation, E[uopt.(τ,z)], is displayed in red-dash.
In the bottom panels, |uopt.| (left) and its energy density (right) are
plotted in the conformal diagram. From the energy density, it is clear
that uopt. is physically realised as localised energy packets travelling
alongH+ and I+ that do not either fall into the black hole or escape
to infinity, respectively, until τ ≃ τ∗. Mathematically, this is a direct
consequence of the non-orthogonality of QNMs under the energy
norm (Equation 3), ultimately due to non-normality of HW, which
leads to the cross-terms in Equation 6 allowing for cancellations in
the sum that keep the energy constant.

Building on [22, 29] established the first case of transient energy
growth in linear black hole perturbations considering RN-AdS4
black branes at chemical potential μ linearly perturbed by a complex
scalar ψ with charge q. The key difference here is that the total
energy of the system does not correspond to the energy of ψ alone.
In particular, in the q→∞ limit suppressing backreaction to the
metric, E receives contributions from both the scalar, ψ, and the
gauge field, A,

E = Eψ +EF, (8)

where F = dA, which are coupled to each other through q.
Then, choosing ‖ ⋅ ‖Eψ to construct optimal perturbations in the
same fashion as before, Eψ was shown to exhibit significant
transient growth before asymptotic decay via a transient form
of superradiance–borrowing from the energy bath EF – in the
modally stable regime.6 This is shown in the left panel of Figure 2,
which displays GW and Eψ for an optimal perturbation with M =
10 QNMs exhibiting transient growth. The first correction to the
background gauge field energy, which appears at quadratic order in
perturbations, E(2)F , takes negative values implying transfer of energy
from A to ψ, while the total energy E = Eψ +E

(2)
F can only decrease

due to losses to the horizon. Empirically, it was observed that the
peak of the growth curve increases withMwithin the range of values
considered. Note that this is not a special feature of the q→∞ limit,
the finite q case is also examined in [29]with same qualitative results.

6 In AdS/CFT, this model is known as the holographic superconductor

[36–38], and it is linearly unstable for T < Tc (or equivalently μ > μc)

corresponding to the superconducting phase.
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FIGURE 2
Left: optimal perturbation and energy growth curve GW(τ) (black dash) for complex charged scalar QNMs of the RN-AdS4 black brane with M = 10. Eψ
(solid black curve) is shown to transiently grow before modally decaying at asymptotic time. The additional energy is borrowed from the energy bath EF
via a transient form of superradiance, as can be seen from the first correction to EF, E

(2)
F (solid blue curve). The example shown corresponds to the

probe limit q→∞ with μq = 3.9, spatial momentum k⃗ = 0, with target time τ∗ = 2.7. Figure taken from [29]. Right: growth curve G and the norm of
umax(τ,x) obtained by time-evolving the optimal perturbation uopt.(τ∗ = τmax,x) in the Sobolev H25 norm. A transient growth is observed and yields a peak
at τmax ≈

1

25
= 0.04, before a modal oscillatory decay. The growth curve G is computed for two different resolutions N = 60 (dashed gray curve) and N =

100 (solid black curve), thus illustrating the convergence of the profile we observe on this panel. Figure taken from [26].

Transient behaviour has also been seen in Sobolev Hp norms
Equation 5 in [26] in the Pöschl-Teller toy model, corresponding
to the Klein-Gordon equation in the static patch of de Sitter
spacetime. Following a similar approach to [22, 29], optimal
perturbations uopt.(0,x) were obtained using a ‘generalised’ singular
value decomposition of the finite rank approximant of the
evolution operator e−iHτ, but this time without relying on a
subspace of solutions W. For a target time τ∗, these optimal
perturbations maximise the Sobolev Hp inner product such that
⟨uopt.(τ∗,x),uopt.(τ∗,x)⟩Hp = G(τ∗).

In the case of H0 norm (corresponding to the energy norm), no
transient growth is observed. Similar to [22], non-modal behaviour
manifests itself as an initial transient plateau in G, followed by the
expected modal decay, with a scalar field profile localised near the
boundaries. However, unlike [22], the results are not convergent as
the duration of the plateau scales as log Nwith the number of points
N used in the numerical approximation, further motivating the use
of Hp norms with p > 0.

In the case of Hp Sobolev norm with p > 0, transient growth is
observed. Specifically, one obtains an initial ‘peak’, which is followed
bymodal decay according to the lowest-lying QNMat late times; the
right panel of Figure 2 exemplifies this behaviour for p = 25, showing
G and ⟨uopt.(τ∗,x),uopt.(τ∗,x)⟩H25 for τ∗ = τmax corresponding to the
time of the peak. Note that uopt.(τ∗,x) is an order-p polynomial.
The profile of the optimal perturbation uopt.(τ,x) is found to be
numerically convergent and, importantly, it resides in the bulk of
the geometry; this is different to the energy-norm case where the
optimal perturbations was peaked near the boundaries. Applying
the ‘Keldysh’ spectral decomposition scheme to uopt.(0,x) shows that
most of the transient peak originates from the (p+ 1)-th pair of
QNMs, ordered by decreasing Imω; note that the decay rate of these
modes is 1

p
.

As the order p of the Hp Sobolev norm is increased, the peak in
the growth curve increase as G(τmax) = maxτ≥0G(τ) ∼ p and moves

to shorter timescales, τmax ∼ 1/p. The scaling of τmax is a result of the
decay rate of the QNM giving rise to the majority of the transient
peak mentioned above.

Lastly, it is illuminating to understand the existence of Hp-
transient growth in the context of energy conservation. Specifically,
the Hp-norm satisfies

E [u] = ⟨u,u⟩Hp −
p

∑
j=1
‖∂jxu‖

2

E
, (9)

where E[u] is conserved up to boundary terms. In a way analogous
to Equation 8, Hp-transient growth is permitted as a result of
transfer of weight between the two terms in the right hand side of
Equation 9.

Let us conclude this section with a comparison of the
two methods discussed above: truncating the set of QNMs
or using higher-derivative norms. Both approaches provide a
way of regulating the UV and are equally easy to implement.
The motivations for using them are different: in the former
case the motivation was a physical truncation of the theory
to low energy modes inspired by analogous constructions in
hydrodynamics, while in the latter case the motivation was a
consideration of regularity. The truncation method results in a
finite dimensional Hilbert space which can be convenient to
work with. The physical interpretation of the Hp-norm remains an
open question.

4 Discussion

This short review summarises recent work on transient
phenomena in black hole dynamics. The lack of normality of the
evolution operator, emerging as a consequence of the dissipative
nature of black hole spacetimes, results in the non-orthogonality of
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QNMs. This, in turn, allows for linear perturbations to exhibit non-
modal behaviour (either in the form of transient growth or lack of
decay) before eventually conforming to modal decay.

The existence of transients can be inferred from frequency-
domain computations involving the pseudospectrum: the
protrusion of pseudospectral contour lines in the unstable half plane
indicates an unstable perturbed spectrum, and hence non-modal
behaviour. In order to observe transient growth, the protrusion
needs to be larger than the size of the external perturbation
ϵ, giving rise to a Kreiss constant K > 1. This raises again the
issue of the numerical convergence of the pseudospectrum as
discussed in section 2, and motivates the exploration of the
truncated-Hamiltonian pseudospectrum of [29].

Time-domain results exhibit striking qualitative similarities to
the prototypical example of transient effects in the transition to
turbulence inNavier-Stokes shear flows. Twoparticularly interesting
questions that currently remain open relate to the non-linear
evolution sourced by such initial data and the potential connection
with the Aretakis instability.

Black hole QNMs have been a central focus of gravitational
physics for over half a century, yet it remains striking that we still
lack a full understanding of the consequences stemming from the
absence of a spectral theorem in this context. This gap points to an
exciting new direction in the field, suggesting that much remains to
be uncovered. Particularly compelling questions include how much
of the gravitational wave signal emanating from a binary merger
can be attributed to linear transient dynamics, as well as the role
of transients in strongly coupled systems, such as the quark-gluon
plasma and high-temperature superconductors, via the AdS/CFT
correspondence. Other arenas include analogue gravity systems,
where fluid or optical setupsmimic aspects of black hole spacetimes.
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