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Editorial on the Research Topic 
Quasi-normal modes, non-selfadjoint operators and pseudospectrum: an interdisciplinary approach


In recent years, quasi-normal mode frequencies, namely, the complex numbers encoding the linear response of “damped” resonators to external perturbations have acquired major importance in different settings of physics, ranging from astrophysical and theoretical problems in gravitational physics to the study of the scattering properties of optical nanoresonators. Beyond physics, this subject is directly related to the study of the spectral and dynamical properties of non-selfadjoint operators, a very active area of research in applied and fundamental mathematics with direct applications in physics, ranging from hydrodynamics and turbulence to non-Hermitian quantum mechanics. Despite these complementary interests and converging “working knowledge”, research interactions among the involved subcommunities appear to be quite scarce. This Research Topic represents an effort to bring attention to the interdisciplinary nature of the research around the notion of quasi-normal modes and non-Hermitian -or non-selfadjoint- dynamics. As mentioned, this interdisciplinarity operates at multiple levels, extending from the dialogue between physics and mathematics to the interchanges among the different subcommunities within these two disciplines.
The notion of normal mode pervades physics, providing a common conceptual and technical thread among different subfields of research and offering a basis for the study of (conservative) linear dynamics. The key mathematical property underlying normal modes is the diagonalizability of self-adjoint operators in terms of an orthonormal basis, which is guaranteed by the “spectral theorem”. Its validity extends to operators that commute with their adjoints, namely, “normal operators”. Normal modes and their associated spectrum (“normal frequencies”) stand as a cornerstone of the dynamics driven by such normal operators.
A fundamental change occurs in non-conservative systems driven by non-selfadjoint operators or, more generally, non-normal operators. Familiar normal modes are then substituted by “quasi-normal modes” (QNMs), which encode in an invariant manner the characteristic linear response of a system to external perturbations and indeed share some of the features of normal modes. However, the loss of the spectral theorem critically impacts QNMs: their completeness is not guaranteed, their orthogonality is lost, and the corresponding eigenvalues in the spectrum are potentially unstable under small perturbations. “Non-normal dynamics” (Trefethen and Embree [1]) driven by these operators are then subject to characteristic non-normal effects that are absent in the normal case, such as spectral instabilities in QNM frequencies, growth transients, or pseudo-resonances [2]. These differences ultimately respond to a key contrast between the normal and non-normal operator theories: the respective structural status of the spectrum. Whereas the spectrum of normal (time-generator) operators provides a tight control of the full dynamics, in the non-normal case such control is not guaranteed by the spectrum alone—except for late dynamics—and specific tools from non-selfadjoint spectral theory are required.
Non-modal analysis (e.g., Schmid [3]) provides a framework for the study of non-normal dynamics by crucially incorporating concepts and tools from the (spectral) theory of non-self-adjoint operators. This Research Topic highlights the notion of pseudospectra and their relation to QNMs and their properties. Pseudospectra sets in the complex frequency plane contain, notably, the (QNM) spectrum set, but also encode more information crucial to seize all of the dynamics, in particular, the above-mentioned non-normal effects. However, whereas the spectrum concept is built only on the operator itself, the pseudospectra depend on the choice of scalar product and associated norm. The same applies to other key non-modal analysis tools, in particular the “growth function”, which is crucial in the study of non-modal growth transients and the assessment of optimal disturbances (see below). The question of the choice of the scalar product becomes a central theme in the non-modal analysis of non-normal dynamics, and in particular in this Research Topic.
We will now present the articles in this Research Topic. Given the interrelation among the contributions, the arrangement by category is somewhat “ad hoc”, but we hope it illustrates the interdisciplinarity of the subject, both within the physics community and in its connection with ongoing mathematical developments.
	Quasi-normal modes as an eigenvalue problem.

A key prerequisite for the application of non-normal dynamical concepts to scattering and QNMs is casting the dynamics in terms of a non-selfadjoint (non-normal) time generator. Building on the spacetime geometric insights developed in general relativity, Panosso Macedo and Zenginoğlu review the so-called hyperboloidal approach to scattering on black hole (BH) spacetimes. This geometric scheme provides the required non-selfadjoint operator, with non-normality being associated with losses through spacetime boundaries. BH QNMs are then cast as the eigenvalues of a non-selfadjoint spectral problem. Applications to QNM excitation coefficients, spectral QNM instability, and quadratic QNMs are presented. An interesting extension of such a hyperboloidal scheme to problems with dispersion (e.g., some quantum gravity-motivated problems) is presented in Burgess and König.
Another approach to casting resonances (QNMs) as an eigenvalue problem is the so-called complex scaling method (see, for example, Simon [4] and references therein). Although such a method is referred to in Warnick and Vogel, it is not really discussed in this Research Topic. However, Richarte et al. discuss a spectral problem reminiscent of such complex scaling.They review the approach to QNMs as analytical continuations of bound states of an appropriate self-adjoint operator and, in particular, highlight a non-selfadjoint spectral issue: the failure of the method to recover QNMs whose analytic continuation is not in the domain where the operator defining the bound states is selfadjoint.
	Non-normal spectral and dynamical aspects in gravitational (black hole) physics.

The first indications of non-normal behavior of QNMs in gravity were implicit in the seminal results on BH QNM instabilities presented in Aguirregabiria and Vishveshwara [5]; Vishveshwara [6] and in Nollert [7]; Nollert and Price [8]. However, it was precisely the hyperboloidal approach, reviewed in Panosso Macedo and Zenginoğlu that allowed to establish transparently in Jaramillo et al. [9] the essential role of non-normal mechanisms. That was the starting point of the rapid development of non-normal dynamics in the gravitational context, one of the main subjects of this Research Topic.
	Black hole QNM spectral (in)stabilities.

Warnick presents the first mathematically rigorous account in the literature of the BH QNM instability phenomenon. Characterized as a “perturbative” spectral instability, an analytical discussion in terms of QNM “modes” and “co-modes” is presented. Sensitivity to perturbations is enhanced as damping increases, a feature that is explained in terms of the need to control higher derivatives to properly define increasing QNM overtones. This feature can be (dually) interpreted as a spectral stability in high-order Sobolev normsor, equivalently, as a spectral instability in the “energy norm”, the consequence of distributing energy over small scales. A generalization of pseudospectra is introduced, tailored to the non-normality of the operators appearing in the BH scattering problem.
In a complementary work, Boyanov disentangles the confusion between the instability discussed in Warnick from another important BH QNM instability, referred to as the “flea on the elephant” (reminiscent of Simon [10]). These two spectral instabilities respond to distinct instability mechanisms; the first one corresponds to the “perturbation instability” of (already) existing QNMs, whereas the second one involves a “branch instability” with the appearance of a new family of QNMs.
Other aspects of pseudospectra and spectral instability are presented in the articles by Areán et al., Besson et al., Burgess and König, Drysdale and Johnson, Krejčiřík and Siegl, and Vogel.
	Non-modal growth transients in black holes.

Besson et al. review the first studies on non-modal growth transients in the gravitational setting, namely, for fields scattered on BHs. The discussion covers both frequency (pseudospectrum) and time-domain approaches, crucially presenting the first studies of the time-domain growth function G(t) for BHs. The role of the norm choice for non-modal growth transients is highlighted, something that is further emphasized in Díaz Palencia, where the control of the dynamics of perturbations on BHs is discussed. These articles on growth transients pave the way for the systematic application of non-modal analysis to study non-normal dynamical effects in gravity. Forced systems—that in general relativity arise from second-order perturbation theory–leading to pseudo-resonances, would be a natural next step. Non-modal growth transients are also discussed in the article by Drysdale and Johnson.
	QNMs and non-normality in high-energy physics.

Areán et al. review holographic duality, also referred to as the AdS/CFT correspondence or gauge/gravity duality, namely, a strong/weak coupling duality between a boundary gauge field theory and a bulk gravitational one. Focus is placed on holographic QNMs controlling the return to thermal equilibrium in the boundary gauge theory, providing a link to “linear response theory” and the Schwinger-Keldysh formalism. The spectral instability and pseudospectra of holographic QNMs are discussed. Non-modal transients in the holographic setting are also reviewed in Besson et al.
	Quasi-normal modes in optics and plasmonics.

Wu and Lalanne review the remarkable development that QNM theory has recently experienced in optics and plasmonics. Focus is placed on the role of QNM theory in designing and understanding micro- and nano-resonators, which play a key role in current photonics, with an emphasis on the notions of “mode hybridization” and “mode perturbation”. As an instance of optics-gravity interdisciplinarity, and motivated by the study of the fiber optical soliton, Burgess and König present an adaptation of the spacetime hyperboloidal approach to scattering and QNMs (see also Al Sheikh [11]) to settings with dispersion. This development is crucial in optics and in some dispersive modified gravity theories.
	Mathematical aspects of non-normality.

We collect here articles from the Research Topic that cover mathematical subjects and range from pseudospectra, spectral instability and random perturbations, oriented graphs and networks, and partial differential equation (PDE) hyperbolicity. They harmoniously complement the physical contributions:
	Krejčiřík and Siegl discuss the pseudospectrum from the perspective of “pseudomodes”, a notion of approximate eigenvector that is not to be confused with QNMs, although it is relevant to the study of the spectral instability of the latter. In particular, a construction of pseudomodes for large “pseudoeigenvalues” is discussed using tools that do not rely on semi-classical analysis. This construction may be relevant in the context of the spectral instability of highly damped BH QNMs, as discussed above.
	Vogel presents a mathematical account of the pseudospectrum, focusing on three important topics: pseudospectra of semi-classical pseudodifferential operators; pseudospectra of random matrices; and eigenvalue asymptotics of non-selfadjoint random operators; (cf. also Sjöstrand [12]). Particularly important for the BH QNM spectral (perturbative) instability presented above is the discussion of eigenvalue asymptotics and “regularity improvement” for non-selfadjoint random operators.
	Drysdale and Johnson discuss the directionality of a directed graph, from the non-normality of the associated adjacency matrix. Then, the relation to the “trophic coherence” of a network is studied, and following the analysis, it is suggested to extend the notion of trophic coherence to matrices beyond the network setting, in particular in the context of (non-normal) dynamics and non-modal transients.
	Abalos et al. discuss the characterization of “strong hyperbolicity” in evolution PDE systems with constraints, in particular through “extensions” of the PDE system with additional variables. Strong hyperbolicity is then controlled by a condition involving the singular value decomposition of the (square matrix) principal symbol of the resulting PDE system. Studying the (non-)normality of the principal symbol may then be a good starting point for assessing the interplay of non-modal effects and hyperbolicity.

In summary, the study of scattering and QNMs from a non-normal dynamics perspective, by adopting a non-modal analysis approach, offers a rich arena for interdisciplinary research at the interface between physics and mathematics, and, within the physics realm, among gravity, optics, and hydrodynamics.
AUTHOR CONTRIBUTIONS
PB: Writing – review and editing. EG: Writing – review and editing. JJ: Writing – review and editing, Writing – original draft.
FUNDING
The author(s) declared that financial support was received for this work and/or its publication. This work was supported by the European Commission Marie Skłodowska-Curie Grant No. 843152 (Horizon 2020 programme), the ANR “Quantum Fields interacting with Geometry” (QFG) project (ANR-20-CE40-0018- 02), the EIPHI Graduate School (contract ANR-17-EURE-0002) and Bourgogne-Franche-Comté Region, and the Narodowe Centrum Nauki, grant no. 2017/26/A/ST2/00530.
ACKNOWLEDGMENTS
We would like to thank all the contributors in this Research Topic for their committed work. We would like to thank specially Mauro Pirarba, whose extraordinary editorial engagement and professionalism has rendered this Research Topic possible.

CONFLICT OF INTEREST
The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
GENERATIVE AI STATEMENT
The author(s) declared that generative AI was not used in the creation of this manuscript.
Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.
REFERENCES
	Trefethen L, Embree M. Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton, NJ: Princeton University Press (2005).

	Trefethen LN, Trefethen AE, Reddy SC, Driscoll TA. Hydrodynamic stability without eigenvalues. Science (1993) 261:578–84. doi:10.1126/science.261.5121.578

	Schmid PJ. Nonmodal stability theory. Annu Rev Fluid Mech (2007) 39:129–62. doi:10.1146/annurev.fluid.38.050304.092139

	Simon B. Resonances and complex scaling: a rigorous overview. Int J Quan Chem (1978) 14:529–42. doi:10.1002/qua.560140415

	Aguirregabiria JM, Vishveshwara CV. Scattering by black holes: a simulated potential approach. Phys Lett A (1996) 210:251–4. doi:10.1016/0375-9601(95)00937-X

	Vishveshwara CV. On the black hole trail. In: 18th Conference of the Indian Association for General Relativity and Gravitation Madras . Madras, India: Institute of Mathematical Science Report, by Madras Univ. Inst. Math. Sci. (1996). p. 11–22.

	Nollert H-P. About the significance of quasinormal modes of black holes. Phys Rev D (1996) 53:4397–402. doi:10.1103/PhysRevD.53.4397

	Nollert H-P, Price RH. Quantifying excitations of quasinormal mode systems. J Math Phys (1999) 40:980–1010. doi:10.1063/1.532698

	Jaramillo JL, Panosso Macedo R, Al Sheikh L. Pseudospectrum and black hole quasinormal mode instability. Phys Rev X (2021) 11:031003. doi:10.1103/PhysRevX.11.031003

	Simon B. Semiclassical analysis of low lying eigenvalues. iv. the flea on the elephant. J Functional Analysis (1985) 63:123–36. doi:10.1016/0022-1236(85)90101-6

	Al Sheikh L. Scattering resonances and pseudospectrum: stability and completeness aspects in optical and gravitational systems. Theses. Université Bourgogne Franche-Comté (2022). . Available online from: https://theses.hal.science/tel-04116011

	Sjöstrand J. Non-self-adjoint differential operators, spectral asymptotics and random perturbationsPseudo-Differential Operators. New York: Springer International Publishing (2019). Available online from: https://www.springer.com/gp/book/9783030108182


Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2026 Bizoń, Gasperín and Jaramillo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		BRIEF RESEARCH REPORT
published: 20 August 2024
doi: 10.3389/fspas.2024.1426406


[image: image2]
Scalar field solutions and energy bounds for modeling spatial oscillations in Schwarzschild black holes based on the Regge–Wheeler equation
José Luis Díaz Palencia*
Department of Mathematics and Education, Universidad a Distancia de Madrid, Madrid, Spain
Edited by:
Jose Luis Jaramillo, Université de Bourgogne, France
Reviewed by:
Izzet Sakalli, Eastern Mediterranean University, Türkiye
Carlos Frajuca, Federal University of Rio Grande, Brazil
Juan A. Valiente Kroon, Queen Mary University of London, United Kingdom
* Correspondence: José Luis Díaz Palencia, joseluis.diaz.p@udima.es
Received: 01 May 2024
Accepted: 24 July 2024
Published: 20 August 2024
Citation: Díaz Palencia JL (2024) Scalar field solutions and energy bounds for modeling spatial oscillations in Schwarzschild black holes based on the Regge–Wheeler equation. Front. Astron. Space Sci. 11:1426406. doi: 10.3389/fspas.2024.1426406

This text discusses the behavior of solutions and the energy stability within Schwarzschild spacetimes, with a particular emphasis on the behavior of massless scalar fields under the influence of a non-rotating and spherically symmetric black hole. The stability of solutions in the proximity of the event horizon of black holes in general relativity remains an open question, especially given the difficulties introduced by minor perturbations that may resemble Kerr solutions. To address this, this work explores a simplified model, including massless scalar fields, to better understand perturbation behaviors around black holes under the Schwarzschild approach. We depart from Richard Price’s work in connection with how scalar, electromagnetic, and gravitational fields behave. The tortoise coordinate transformation is considered to set the stage for numerical solutions to the wave equations. Afterward, we explore energy estimates, which are used to gauge stability and wave behavior over time. Our analysis reveals that the time evolution of the energy does not exceed twice its initial value. Further and under the assumption of initial conditions in [image: Mathematical expression showing L superscript two followed by a minus sign.]spaces, we obtain an exponential decreasing behavior in the energy time evolution. A question to continue exploring is how perturbations in [image: Mathematical notation displaying an italic uppercase L followed by a superscript two, representing the L squared space commonly used in mathematical analysis.] in the initial conditions that introduce Kerr solutions as a second-order effect in the linearized equations perturb this obtained exponential decay.
Keywords: Schwarzschild spacetimes, Quasinormal modes, scalar fields, energy estimates, waves solutions

1 INTRODUCTION AND PROBLEM FORMULATION
The study of the formation and evolution of black holes and the physical processes occurring in their vicinity is an important area of contemporary research. As an example, we can cite the importance of understanding the behavior of primordial black holes (PBHs), which constitute a research area of notable impact for describing dark matter interactions (De Luca et al., 2020). A major unresolved challenge in general relativity is the nonlinear stability of Schwarzschild solutions, which is complicated by the fact that small perturbations in the initial data can inadvertently include Kerr solution characteristics. The presence of an ergosphere further complicates deriving meaningful energy estimates for perturbed Schwarzschild solutions, particularly for rotating black holes or those that are slightly rotating due to perturbations, for example. One relevant option to characterize black holes is based on the study of their quasinormal modes (QNMs) (see (Kokkotas and Schmidt (1999) and Nollert (1999) for detailed definitions), the damped oscillations of black hole spacetimes, which can provide descriptions when spacetimes are slightly deformed from the Kerr solution (Zimmerman et al., 2015). For Schwarzschild black holes immersed in electromagnetic fields, the perturbation equations can be transformed into confluent Heun’s equations, enabling both analytical and numerical analyses of QNMs (Övgün et al., 2018). Greybody factors (GFs) and QNMs are also relevant in the understanding of the radiation spectra emitted by black holes, particularly under the forms of gravitational waves (Sakallı and Kanzi, 2022). Additionally, the relationship between black hole entropy, spin, and QNMs, particularly when considering non-extensive entropies, provides microstates and thermodynamic properties of black holes, with significant modifications for micro black holes (Martínez-Merino and Sabido, 2022).
It is prudent to consider a simplified problem, given the complexities involved in proving the full stability of Schwarzschild solutions. One approach is to investigate the linearized problem, focusing on the stability of the zero solutions. Another simplification can be achieved by considering a simpler linear field theory, such as the linear scalar field. An additional simplification involves restricting the analysis to spherically symmetric cases (Rendall, 2008). In the study of linear massless scalar fields within the context of Schwarzschild spacetime, the Regge–Wheeler equation provides a framework for analyzing perturbations around a Schwarzschild black hole (Regge and Wheeler, 1957). Price (1972) used this framework to derive the long-term behavior of these perturbations. Price’s work is particularly relevant for understanding how scalar fields, such as electromagnetic and gravitational fields, behave in the vicinity of a black hole, which may lead to phenomena such as wave scattering and the late-time tail behavior of these fields.
In a Schwarzschild spacetime describing the gravitational field outside a spherically symmetric, non-rotating, uncharged mass, a massless scalar field [image: Lowercase Greek letter mu written in italicized mathematical font, often used to denote mean in statistics or micro prefix in scientific contexts.] is well known to obey the Klein–Gordon equation for a massless particle:
[image: Mathematical equation showing a box symbol followed by the Greek letter mu, an equals sign, and zero.]
Here, [image: Square with a blurry dark border surrounding a bright white center, forming a simple gradient effect with no discernible objects or details.] denotes the d’Alembertian operator in generally curved spacetime.
Price’s investigations revealed that outside a black hole, perturbations from a massless field decay over time, but interestingly, they do so in a manner that leaves a “tail” of radiation (Price, 1972; Rendall, 2008). This tail is not an immediate cutoff but a slow, power-law decay of the field’s amplitude over time. Specifically, Price showed that after the initial wavefront passes, the field decays as [image: Mathematical expression showing t raised to the power of negative quantity two l sub zero plus three, with the exponent written in parentheses.], where [image: Lowercase italic letter t in a serif font displayed in black against a white background.] is time, and [image: Mathematical notation showing a lowercase italic L with a subscript zero.] is the multipole moment (or angular quantum number) of the perturbation. This result implies that the gravitational influence of a black hole extends beyond its immediate vicinity, affecting the propagation of scalar fields over long periods.
In this work, we will make use of the transformation to the tortoise coordinate [image: Mathematical expression showing the lowercase letter r with an asterisk in superscript, commonly denoting r star or an optimal or special value of r.] and the introduction of a scaled wave function [image: Mathematical equation displaying psi equals r times phi, where psi and phi are represented by Greek letters.], where [image: Lowercase Greek letter phi, written in an italic serif font, with a vertical line crossing through an oval loop.], the original wave function, describes the scalar field. This framework simplifies the analysis of wave equations in Schwarzschild spacetime by flattening the potential barrier experienced by waves as they approach the event horizon (Rendall, 2008).
Let us introduce some basic concepts to derive the main equation to be discussed in this work, typically referred to as the Regge–Wheeler Equation 3. Consider the scalar field [image: Lowercase Greek letter phi, commonly used in mathematics, physics, and engineering to represent variables such as angles, fields, or functions.] in spherical coordinates [image: Mathematical expression showing four variables in parentheses: t, r, theta, and phi, typically representing the coordinates used in four-dimensional spacetime or spherical coordinate systems.] and the spherical harmonics with indices [image: Lowercase letter l in a serif font with a blurred shadow along the right edge, set against a white background.] and [image: Lowercase italicized letters r and n appear side by side in a serif font, creating a visual effect that can resemble the letter m when viewed quickly.], [image: Mathematical formula displaying Y sub l m of theta comma phi, representing a general form of spherical harmonics as a function of angular coordinates theta and phi.]. Using the tortoise coordinate (as it will be introduced later) along with a radial symmetry condition leads to considering the problem’s rotational invariance (Rendall, 2008; Zhao et al., 2022). Then, it holds that
[image: Mathematical formula showing that the function μ of t, r, theta, and phi equals a double summation over l from zero to infinity and m from negative l to l, of psi sub l m of t and r multiplied by Y sub l m of theta and phi.]
Here, [image: Mathematical expression displaying the Greek letter psi subscript l m, followed by the variables t and r in parentheses.] are the radial and time-dependent components of the field. For the Schwarzschild metric, the determinant [image: Lowercase italic letter g in a serif font, displayed in black on a white background.] is [image: Mathematical expression showing negative r squared times sine theta.], and the inverse metric components [image: Mathematical notation showing a lowercase italic letter g with superscript letters r and v, often used in equations related to tensors or metrics in physics or mathematics.] are
[image: Mathematical equations for components of the Schwarzschild metric are shown: g double superscript t t equals negative open parenthesis one minus two M over r close parenthesis to the power negative one, g double superscript r r equals one minus two M over r, g double superscript theta theta equals one over r squared, g double superscript phi phi equals one over r squared sine squared theta.]
The massless Klein–Gordon equation, [image: Mathematical expression showing a box operator acting on the Greek letter mu equals zero, commonly representing the wave equation or d'Alembertian operator applied to mu equals zero.], in this metric becomes
[image: Mathematical equation showing a partial differential equation with terms including one minus two M over r, partial derivatives with respect to t and r, Laplacian on a sphere, and functions involving mu, r, and M, all set to zero.]
where [image: Greek delta and uppercase omega symbols are shown side by side, commonly representing change in resistance or change in solid angle in physics and engineering contexts.] is the angular part of the Laplacian in spherical coordinates:
[image: Mathematical formula showing the operator delta sub theta phi mu equals one divided by sine theta times the second partial derivative with respect to theta of sine theta times the partial derivative with respect to theta of mu, plus one divided by sine squared theta times the second partial derivative with respect to phi squared of mu.]
Substituting the expansion of [image: Lowercase Greek letter mu symbol, commonly used in mathematics, physics, and engineering to represent micro, mean, or coefficient of friction, shown in a standard italicized serif font style.],
[image: Mathematical equation showing a function μ of variables t, r, theta, and phi, expressed as a double summation over l from zero to infinity and m from negative l to l, of terms psi sub l m of t and r times Y sub l m of theta and phi.]
we obtain
[image: Mathematical equation representing a partial differential equation involving radial and angular derivatives, with sums over l and m indices, variables ψ, r, t, and spherical harmonics Y sub l m.]
Using the property of spherical harmonics,
[image: Mathematical equation showing the Laplacian on the sphere: delta sub omega Y sub l m equals negative l times quantity l plus one times Y sub l m.]
we separate the angular and radial parts:
[image: Mathematical equation involving variables l, m, M, and r, with terms including derivatives of ψ sub l m, coefficients with fractions, and factors such as one minus two M over r, all set equal to zero.]
Introducing the tortoise coordinate [image: Mathematical expression showing a lowercase italic r followed by an asterisk symbol.] as
[image: Mathematical equation showing dr star over dr equals the reciprocal of the expression one minus two M divided by r, labeled as equation one.]
the radial part of the Klein–Gordon equation can be written as
[image: Mathematical equation showing partial derivatives and a function: open parenthesis, partial squared over partial t squared minus partial squared over partial r star squared minus capital F sub l of r star, close parenthesis, acting on psi sub l m of t and r star, equals zero, labeled as equation two.]
This decomposition leads to a radial wave equation where [image: Mathematical expression showing capital F with subscript l, followed by parentheses containing r with an asterisk superscript.] appears as the effective potential (this can be further observed in our results given in Figure 2) and adopts the following expression:
[image: Mathematical equation showing F sub l of r star equals open parenthesis one minus two M over r close parenthesis times open parenthesis l times l plus one over r squared plus two M over r cubed close parenthesis period]
and the spherical harmonics [image: Mathematical expression showing the spherical harmonics function Y subscript l m with variables theta and phi inside parentheses.] are given by
[image: Mathematical formula displaying the definition of spherical harmonics: Y sub l m of theta, phi equals negative one to the m multiplied by the square root of open bracket two l plus one times l minus m factorial divided by four pi times l plus m factorial close bracket, multiplied by P sub l m of cosine theta times e to the i m phi.]
where [image: Mathematical expression showing the associated Legendre polynomial Plm as a function of cosine theta, where l and m are subscripts and theta is the variable.] are the associated Legendre polynomials. The indices [image: Lowercase letter l in a simple sans-serif font appears in black on a white background. The image is vertically oriented and slightly blurred, with no additional elements or context present.] and [image: Blurry close-up of the lowercase letters "rn" in a serif font on a white background, creating an effect that closely resembles the single letter "m".] are integers with [image: Mathematical expression showing lowercase l is greater than or equal to zero.] and [image: Mathematical inequality showing negative l is less than or equal to m, and m is less than or equal to l, using italicized variables.]. The index [image: Lowercase letter “l” in a simple sans-serif font, displayed in black on a white background with a slight blur effect applied.] determines the total angular momentum, while [image: Blurry black serif-style text shows two lowercase letters, “r n”, spaced closely together with soft edges against a light background. Text is difficult to distinguish clearly.] determines the projection of the angular momentum on the z-axis.
Upon integration in the Equation (1), the tortoise coordinate [image: Lowercase italic letter r with an asterisk as a superscript, commonly denoting r star in mathematical or scientific notation.] can be rewritten as
[image: Mathematical equation showing r star equals r plus two M times the logarithm of the quantity r minus two M divided by two M.]
This coordinate stretches the region near the event horizon at [image: Mathematical expression showing r equals two times M.] for a Schwarzschild black hole of mass [image: Italic uppercase letter M in a serif font displayed in black on a white background.]. The tortoise coordinate is well known to facilitate the analysis of fields near and at the event horizon. Here, [image: Lowercase italic letter r in a grayscale, blurred style against a white background. No additional visible elements or context provided.] is the usual radial coordinate in Schwarzschild spacetime.
We now introduce some relevant objectives of our work. We aim to study the QNMs based on Equation 2 with the potential Fl(r*), in line with Zhao et al. (2022) and Balart et al. (2023) and, more particularly, the behavior of such QNMs with respect to the tortoise coordinate. The QNMs represent solutions to the wave equation that behave like damped oscillations that decay over time, emitting gravitational waves in the process. Hence, and to start our analysis with more familiar assessments, we assume that the QNMs are given based on an expression of the form: [image: Mathematical equation showing psi of r star and t equals e to the power of minus i omega t times psi of r star.] and this expression can be written for all [image: Italic lowercase letters m and l separated by a comma, presented in a mathematical or scientific context.] so we omit the sub-index for simplification in notation. In addition, we consider a description of the field subjected to the potential Fl(r*). Then, substituting into the wave Equation 2 and dividing by [image: Mathematical expression showing e to the power of negative i omega t, where i is the imaginary unit, omega represents angular frequency, and t represents time.] yields
[image: Mathematical equation in serif font showing negative omega squared times Psi of r-star minus the second partial derivative of Psi with respect to r-star squared equals F sub one of r-star times Psi of r-star.]
Rearranging terms,
[image: Mathematical equation showing a second-order derivative of psi with respect to r star plus a bracketed term omega squared minus F l of r star times psi of r star equals zero, labeled equation three.]
This equation can be seen as analogous to the time-independent Schrödinger equation,
[image: Mathematical equation shows the one-dimensional time-independent Schrödinger equation: negative h squared over two m p times the second partial derivative of psi with respect to x plus V of x times psi equals E psi.]
where the term [image: Mathematical expression showing open bracket, omega squared, minus F sub l of r asterisk, close bracket.] is analogous to the energy [image: A bold, uppercase, italic letter E is displayed in a serif font with slightly blurred edges against a white background.] (minus the potential energy [image: Mathematical expression showing an uppercase V followed by parentheses containing a lowercase x, commonly representing a function V of x in mathematics or physics.]) in the Schrödinger equation. Hence, we may consider the theory of potentials available to resolve the Schrödinger-type equations. In the first step, we will provide some numerical solutions for this last equation to describe the behavior of waves with regard to the tortoise coordinate, and afterward, we provide energy estimates to describe the time evolution.
2 METHODOLOGY
In the first step, we introduce a numerical implementation to describe the behavior of the wave function described by the radial wave in (Equation 3) along with the effective potential [image: Mathematical expression showing capital F subscript l of r with an asterisk indicating r star inside parentheses.]. The transformation from the Schwarzschild radial coordinate [image: Lowercase letter r in a serif font, displayed in grayscale with a blurred effect against a white background.] to the tortoise coordinate [image: Mathematical expression showing a lowercase italic letter r with an asterisk as a superscript.] is given by expression (5) and provides the non-invertibility of this transformation. Analytically, numerical methods are required to back-calculate [image: Lowercase letter r in a serif font appears enlarged and slightly blurred against a white background.] from [image: Mathematical symbol showing a lowercase italic r with an asterisk as a superscript.].
We note that the numerical solutions were obtained using well-established numerical methods, specifically Python’s textttscipy.integrate.solve_ivp function with the solvers “BDF” (Implicit multi-step method) and “LSODA” (that switches between the Adams and BDF methods). The initial range for [image: Italic lowercase letter r followed by an asterisk symbol in superscript, commonly used in mathematical or scientific notation.] is selected to ensure that the execution of the routines provides plausible solutions within the requested global error tolerance fixed at [image: Mathematical notation showing ten raised to the power of negative three, representing the value zero point zero zero one.]. The numerical process includes continuously validating the numerical solution against expected behaviors and refining the integration parameters to achieve convergence and accuracy.
In the second step, we combine analytical and numerical methods to derive energy estimates for scalar field perturbations in the context of a Schwarzschild non-rotating black hole. Such energy estimates are formulated using the integral of the energy density over the tortoise coordinate, and we employ Poincaré’s inequality to control the energy estimates. In addition, we introduce numerical simulations to confirm the theoretical predictions and to show that the energy decays over time following an exponential law provided that the initial conditions belong to [image: Mathematical expression showing the capital letter L with a superscript two, representing L squared.] space.
3 NUMERICAL SOLUTIONS
The numerical solutions illustrated in the graphs in Figure 1 represent the solutions to Equation 2 in the vicinity of the horizon [image: Mathematical expression showing r is approximately equal to two times M, followed by a period.] These solutions were assumed to have the form [image: Mathematical equation showing ψ of r star and t equals exponential of negative i omega t times capital psi of r star.] and to be far from the horizon for increased values of [image: Mathematical variable r with an asterisk as a superscript, commonly read as r star.]. For our purposes, we consider a fixed time [image: Mathematical expression showing t equals t sub zero equals one point zero.]. Near the horizon [image: Mathematical expression showing left parenthesis r tilde 2 M right parenthesis, indicating that r is approximately equal to two times M.], the potential [image: Mathematical expression showing V, parentheses, r superscript asterisk, and closing parenthesis, representing a function V evaluated at r star.] becomes very small, and the wave equation simplifies to a free wave equation. In addition and in this particular region (given for the coordinate [image: Mathematical notation showing the lowercase letter r with an asterisk positioned as a superscript, commonly representing an optimal value or specific reference in equations.] going to negative values), Figure 1 allows us to observe the diverging behavior for a black hole mass of 10 times the solar mass and for different values of angular momentum number [image: Lowercase letter l in a serif font, presented in grayscale with blurred edges against a white background.]. Indeed, the behavior of [image: Mathematical expression showing psi of r star, with psi represented by a Greek letter, r with an asterisk in parentheses, indicating a function or value evaluated at r star.] in this region is dominated by oscillatory modes (refer to Mamani et al. (2022) for additional discussions). Notably, the oscillatory nature is consistent with the expected QNMs behavior, where the modes oscillate but in the time domain (refer again to Keir (2020)). Note that the number [image: Lowercase letter l rendered in a serif font with a slight shadow effect and blurred edges against a white background.] has a significant impact on the transmission and reflection coefficients for wave scattering by the black hole (refer to Futterman et al. (1988) for additional insights), and this may lead to potential avenues for extracting physical information from observational data (Sathyaprakash and Schutz, 2009), a relevant issue in observational astronomy (see Virtanen et al. (2020)).
[image: Three vertically oriented line graphs compare oscillatory data patterns for masses of thirty solar masses with varying parameters s equal to three, five, and ten. Each graph uses orange lines, showing increasing amplitude and frequency as s increases from left to right.]FIGURE 1 | Real part of the wave functions [image: Mathematical expression showing the Greek letter psi followed by an open parenthesis, r with an asterisk superscript, and a closing parenthesis.] as a function of the tortoise coordinate [image: Mathematical expression showing a lowercase italic r with an asterisk superscript, commonly representing an optimal or specific value of r in mathematics or science.] for a Schwarzschild black hole with mass [image: Mathematical expression showing M equals ten, with the letter M in italic font and an equals sign followed by the number ten.] solar masses, for different angular momentum quantum numbers [image: Lowercase letter l in a sans-serif font displayed vertically on a white background. The letter appears in grayscale with slight blurring and shadow effects along the edges.]. The left panel shows [image: Mathematical expression showing a lowercase italic letter l followed by an equals sign and the number one.], the middle panel shows [image: Mathematical expression showing a lowercase italic l equals five.], and the right panel shows [image: Mathematical expression showing a lowercase italicized letter l followed by an equals sign and the number ten.]. The exponential divergence near the horizon (left negative values in [image: Mathematical notation showing the letter r with an asterisk as a superscript, often representing an optimal or special value in equations.]) increases oscillation complexity for higher [image: Lowercase letter “l” in a serif font, black with a gradient shadow effect on a white background.] values.
Based on the provided Figure 1, we can observe an exponentially diverging asymptotic behavior of the wave functions near the horizon for different values of the angular momentum quantum number [image: Lowercase letter l in a simple, sans-serif font, presented in grayscale with a blurred vertical shadow effect along the right side.]. As [image: Mathematical expression featuring a lowercase italic r with an asterisk as a superscript, commonly denoting an optimal or special value of the variable r.] approaches large negative values, the wave functions [image: Mathematical expression displaying the Greek letter psi, an open parenthesis, r with an asterisk superscript, and a closing parenthesis, commonly representing a wave function dependent on a position vector in quantum mechanics.] in all three panels show an exponential divergence. This behavior is more pronounced with oscillations superimposed on the exponential growth. This exponential divergence is a characteristic feature near the event horizon and aligns with previous studies (see Zhao et al. (2022)). For small [image: Lowercase letter l in a serif font style displayed in black on a white background.] values (left panel), the exponential divergence starts relatively smoothly, with clear oscillations. As [image: Lowercase letter l in a black serif font against a white background, slightly blurred along the edges, vertically oriented near the center of the image.] increases (middle and right panels), the oscillations become more rapid, and the exponential growth becomes more abrupt. Additionally, we observe a form of amplitude modulation in the wave functions, which is considered to be a result of the interference between different modes. As Berti et al. (2009) explain, the QNMs of black holes are not single-frequency oscillations but rather a spectrum of modes with different complex frequencies. When these modes interfere, they can produce beat-like patterns in the wave functions. This interference leads to the observed amplitude modulation, where the envelope of the wave function oscillations varies in a regular pattern. However, there is a key point: throughout the numerical resolution, the value of the frequency [image: Lowercase Greek letter omega, printed in a bold, black serif font on a white background.] was fixed to a constant value in the term [image: Mathematical expression showing e raised to the power of negative i omega t, representing a complex exponential with angular frequency omega and time variable t.]. Therefore, it is important to mention that the modulations in Figure 1 are due to the spatial modulation effect, not the temporal modulation attributed to temporal propagation. In this regard, we highlight that in conducting numerical analyses to understand the effect of oscillations with respect to the tortoise coordinate, it has been necessary to consider certain values for the frequencies of the QNMs that appear in the temporal phase of the solution [image: Mathematical equation showing the time-dependent wave function psi of r star and t equals exponential to the power of negative i omega t multiplied by capital psi of r star.]. For this purpose, different values compatible with the conditions given in [Fig. 5 ref (Berti et al., 2009)] have been considered. Furthermore, the observed behavior shown in Figure 1 has been tested for a wide range of [image: Lowercase Greek letter omega in a black serif font on a white background. The symbol appears slightly blurred, with soft edges and no additional markings.] values, exhibiting behaviors similar to the ones represented in the mentioned figure.
In addition, we should note that Zhao et al. (2022) provided graphical solutions in this direction, but certain other issues (like additional wave behavior for different values of [image: Italicized lowercase variables m comma l, written in a math font, indicating possible variables or indices in a mathematical expression.]) were not contemplated, thus motivating us to include our analysis and to discuss further the implications. In addition, Keir (2020) concluded the existence of sublogarithmic time decay rates in the quasimodes for two-charge geometries, but there is no direct result to consider for the evolution with a radial coordinate and even further based on the tortoise coordinate.
4 ENERGY ESTIMATES
In the context of a Schwarzschild non-rotating black hole (with no ergoregion, or, if experienced, the ergoregion is considered as a second-order negligible term in our linear equations), making energy estimates is feasible both near the event horizon and far from it by utilizing the tortoise coordinate [image: Mathematical variable r with a superscript asterisk, commonly used to denote an optimal or critical value in equations.]. The Schwarzschild metric admits a static Killing vector field [image: Mathematical notation showing the partial derivative symbol followed by a subscript t, commonly representing a partial derivative with respect to time.] that remains time-like everywhere outside the event horizon. The effective potential [image: Mathematical expression showing capital F subscript l of r star, where r has an asterisk as a superscript inside parentheses.] derived from the Schwarzschild metric diminishes at large distances, simplifying the wave equation to a free wave equation, which allows the introduction of energy estimates. In addition, we shall note that the integration of the energy density over a large volume provides estimates of the total energy in the scalar field perturbation, applicable both in the strong regime for [image: Mathematical expression shows r is approximately equal to two times M plus epsilon, using standard mathematical notation and symbols.] (where [image: Lowercase Greek letter epsilon, shown in a black serif font on a white background. The character appears slightly blurred or pixelated due to enlargement.] is a positive arbitrary perturbation to avoid convergence issue in the energy integral because of the event horizon) and the weak regime for [image: Mathematical expression showing r much greater than two M, using the double greater-than sign to indicate r is significantly larger than two times M.].
An energy estimate for Equation 2 can be constructed by considering the integral of the energy density over all space in the tortoise coordinate (the reader is referred to Section 8.9 of Rendall (2008) for additional details on energy formulations in wave equations under the frame of general relativity). This energy integral is given by
[image: Mathematical expression for energy, E, involving an integral of the sum of the squared time derivative and squared spatial derivative of psi, plus a function Fr times the squared magnitude of psi, integrated over dr star.]
which includes the kinetic, gradient, and potential energies of the function [image: Lowercase Greek letter psi, commonly used in mathematics, physics, and engineering, often representing wave functions in quantum mechanics or variables in scientific equations.].
This integral is conserved for time-symmetric perturbations and can be used to study the stability of solutions to the wave equation (refer to Section 6.3 in Wald (1984), where the energy formulation with the static Killing field is a constant of motion in both the strong and weak regimes).
To compute the energy [image: Capital letter E in a bold, italic serif font displayed in grayscale. The character appears slightly blurred, with smooth lines and subtle shadows.], one would typically take the initial data of [image: Lowercase Greek letter psi, commonly used in mathematics and physics to represent a wave function or variable.] and its derivatives and perform the integration over [image: Mathematical expression showing a lowercase italic r with an asterisk positioned as a superscript to its upper right.] from [image: Mathematical notation displaying negative infinity with a superscript plus sign, commonly used in calculus to indicate approaching negative infinity from the positive direction.] (where the super-index+ reflects the strong condition near the horizon given by the radial coordinate [image: Mathematical expression showing r is approximately equal to two times M plus epsilon.]) to [image: Mathematical symbol displaying a plus sign followed by the infinity symbol, representing positive infinity.]. In practice, this involves calculating the wave function [image: Lowercase Greek letter psi, represented in a serif font, commonly used in mathematics, physics, and engineering to denote a wave function or a specific variable.] and its derivatives at all points in space at a given time and then integrating these quantities. Assuming [image: Lowercase Greek letter psi in a bold, serif font, commonly used as a mathematical or scientific symbol, displayed in black on a white background.] vanishes sufficiently far from the black hole, we can apply the Poincaré inequality to control the norm of [image: Greek lowercase letter psi, commonly used in mathematics and physics, especially to represent a wave function in quantum mechanics, shown in bold italic style.] by the norm of its derivative:
[image: Mathematical inequality showing the integral from negative infinity to infinity of the absolute value squared of psi with respect to r star is less than or equal to a constant times the integral of the squared derivative of psi with respect to r star.]
where [image: Mathematical notation showing uppercase italic C with a lowercase italic p subscript, commonly representing specific heat at constant pressure in thermodynamics.] is a positive constant specific to the domain. This inequality essentially implies that the overall size of [image: Lowercase Greek letter psi, formatted in bold, commonly used in mathematics, physics, and quantum mechanics equations.] is bounded by how much [image: Lowercase Greek letter psi, commonly used in mathematics, physics, and engineering, often representing a wave function in quantum mechanics or a variable in equations.] changes, providing a way to estimate the function’s magnitude through its gradient. In our case, the use of Poincaré’s inequality is of interest, as the effect of the potential given by [image: Mathematical expression with vertical bars enclosing psi squared, representing the modulus squared of the wave function, commonly used in quantum mechanics to indicate probability density.] is controlled by the term [image: Mathematical expression showing the squared magnitude of the partial derivative of psi with respect to variable r, written as the absolute value of partial psi over partial r squared.] that is the energy contribution of the spatial derivative of the homogeneous wave equation. In other words, we can control the energy of the wave function with potential via the energy of the wave function formulated with a homogeneous equation without potential.
Hence, using the Poincaré inequality, we express the energy functional [image: Mathematical expression showing upper-case E followed by an open parenthesis, lower-case t, and a close parenthesis, representing a function E of variable t.] bounded as follows:
[image: Mathematical formula showing an inequality for E of t less than or equal to the sum of three integrals involving the function psi and its partial derivatives, and a maximum function of F sub r star.]
[image: Mathematical equation showing an integral from negative infinity to infinity of the sum of the squares of the partial derivatives of psi with respect to t and r star, plus a constant Cp times the maximum of a function Fi of r star, multiplied by the integral from negative infinity to infinity of the square of the partial derivative of psi with respect to r star.]
and [image: Mathematical expression showing F sub l of r star, with r marked by an asterisk as a superscript inside parentheses.] is bounded. Indeed, near the horizon [image: Mathematical expression showing open parenthesis, variable r, right arrow, the value two times capital M, and closed parenthesis, commonly indicating r approaches two M.], the term [image: Mathematical expression showing an open parenthesis, followed by one minus the fraction two M over r, and a close parenthesis.] vanishes as [image: Lowercase letter r in a bold, blurred, and grayscale style on a white background. Edges and shape are softened due to the significant blurring effect.] approaches [image: Black text displaying the characters two and uppercase M in a serif font against a white background.], thus [image: Mathematical expression showing capital F subscript l, left parenthesis, r with an asterisk superscript, right parenthesis.] approaches zero. In addition, as [image: Mathematical notation showing "r" with an arrow pointing right toward the infinity symbol, representing the limit as r approaches infinity.], both terms [image: Mathematical expression showing the fraction two times M divided by r cubed, with M and r represented as variables.] and [image: Mathematical expression showing the quantity l times open parenthesis l plus one close parenthesis divided by r squared.] in the potential decay to zero. Hence, [image: Mathematical expression showing F sub l of r star, where l is a subscript and r star denotes r with an asterisk exponent inside parentheses.] asymptotically approaches zero, indicating that the potential does not contribute significantly at far distances.
Finally, incorporating the control on [image: Mathematical expression showing capital F sub l of open parenthesis r asterisk close parenthesis, where r has an asterisk symbol above it.] and adjusting constants appropriately, the energy estimate is refined as
[image: Mathematical expression showing E of t is less than or equal to constant C sub E times the integral from negative infinity to infinity of the sum of the squares of the partial derivatives of psi with respect to t and with respect to r star, integrated over dr star.]
where [image: Mathematical notation showing an uppercase C with a subscript lowercase e, commonly used to denote a specific variable or constant in formulas or equations.] is a new constant that encapsulates all previous constants and the behavior of [image: Mathematical expression displaying F sub l evaluated at r asterisk, where l is a subscript and r is marked with an asterisk in the argument.].
Now, consider the initial conditions for a wave function [image: Lowercase Greek letter psi, commonly used as a mathematical or physics symbol, shown in a serif italic font with a distinct tail extending below the baseline.] defined in the tortoise coordinate [image: Mathematical notation showing the lowercase letter r with an asterisk as a superscript, commonly representing an optimal value or a special reference point in equations.] at time [image: Mathematical expression showing t equals zero.]:
[image: Mathematical expression showing initial conditions: psi of zero comma r star equals psi naught of r star, and the partial derivative of psi with respect to t at zero comma r star equals psi one of r star.]
Then,
[image: Mathematical equation expressing E of zero as the integral from negative infinity to infinity of the sum of the squared magnitude of psi one of r star and the squared magnitude of the derivative of psi zero with respect to r star, integrated over dr star.]
To link [image: Mathematical expression showing E open parenthesis t close parenthesis, indicating a function E of the variable t.] to [image: Mathematical notation showing the function E evaluated at zero, written as capital E, open parenthesis, zero, close parenthesis.], we can consider a general relation of the form:
[image: Mathematical expression showing E of t is less than or equal to f of t times E of zero, ending with a comma.]
where [image: Mathematical expression showing f of t, indicating a function named f with variable t in parentheses.] is a function that captures the growth or decay dynamics of the energy depending on wave propagation. To obtain a precise function [image: Mathematical notation displaying the function f of t, represented as f open parenthesis t close parenthesis.], we first consider the bound for [image: Mathematical expression showing a capital italic E followed by parentheses enclosing a lowercase italic t, representing a function E of t.], and it is standard to check that the associated wave equation is homogeneous. Hence, let us consider the solution of the homogeneous wave equation by d’Alembert’s formula:
[image: Mathematical equation showing psi of t comma r star equals one half times psi subzero of r star plus t plus psi subzero of r star minus t plus one half times the integral from r star minus t to r star plus t of psi sub one of s d s.]
Taking derivatives,
[image: Mathematical equation showing the partial derivative of psi with respect to t as a function of t and r star, equaling one half times the difference of psi zero evaluated at r star plus t and r star minus t, plus one half times the difference of psi one evaluated at r star plus t and r star minus t.]
[image: Mathematical equation showing the partial derivative of psi with respect to r-star, as a function of t and r-star, expressed as a sum involving psi zero prime and psi one, each evaluated at r-star plus or minus t, and multiplied by one half.]
The energy computation over time leads to
[image: Mathematical equation showing an inequality for E of t, involving an integral from negative infinity to infinity with squared terms containing psi zero and psi one functions of r star plus and minus t, all multiplied by one-half coefficients and integrated with respect to dr star.]
Using the triangle inequality, we can estimate
[image: Mathematical expression showing the sum of the squared magnitudes of two wavefunctions, psi naught of r star plus or minus t, and psi one of r star plus or minus t.]
as a sum over [image: Mathematical expression showing r with an asterisk superscript, followed by the plus-minus symbol, then t in italics.].
Thus, [image: Mathematical expression showing the function E of t, with E and t in italic font and t enclosed in parentheses.] could be bounded by twice the sum of the energy norms of the initial conditions:
[image: Mathematical expression showing an inequality for E of t, involving sums of integrals from negative infinity to positive infinity of squared magnitudes of psi n evaluated at shifted arguments, with each term multiplied by two.]
Now, let us assume that the initial data belong to the norm [image: Mathematical notation showing an italic uppercase letter L with a superscript two, representing L squared or L two.]. Mathematically, this is appropriate using the translation-invariance properties of the [image: Mathematical expression showing a capital L with a superscript two, representing L squared or L two, commonly used in mathematics to denote a specific function space.] norm:
[image: Mathematical expression shows E of t is less than or equal to two times the sum of the L2 squared norms of psi zero and psi one.]
where
[image: Mathematical expression showing two norms: the first is the L2 norm of the derivative of psi zero, integrated over all r star, and the second is the L2 norm of psi one, also integrated over all r star.]
Therefore, [image: Mathematical notation displaying uppercase italic E followed by the variable t in parentheses, indicating a function E of t.] is bounded by twice the initial energy [image: Mathematical variable E with the argument zero in parentheses, commonly read as E of zero, typeset in an italic serif font.]:
[image: Mathematical expression showing E of t is less than or equal to two times E of zero.]
This bound suggests the conservation and controlled growth of energy. Nonetheless, the last expression does not consider any dispersion on the field that may be given as the wave evolves. Specifically, as [image: Lowercase italic letter t in a serif font on a white background.] increases, the contributions from [image: Mathematical expression showing the Greek letter psi followed by a subscript zero, commonly used to denote the ground state wavefunction in quantum mechanics.] and [image: Mathematical expression psi subscript one, where psi is the Greek letter psi typically used to denote a wave function in physics or mathematics.] spread out over a larger region, effectively diluting the local energy density (refer to Taylor (1996) and Trefethen and Embree (2005) for additional insights).
To determine a new bound, we consider the [image: Mathematical expression showing L to the power of infinity, often denoted as L superscript infinity, representing the L-infinity space in mathematical analysis.] norm instead of the energy formulation and recover some basic aspects of wave propagation. Note that considering a norm connected with the amplitude, such as the [image: Mathematical expression showing the script letter L followed by a superscript infinity symbol, representing the L-infinity space in mathematics.] norm, is relevant because gravitational wave interferometers (unlike traditional electromagnetic observatories) respond to the waves’ amplitude to characterize events (refer to Section 9.5 of Berti et al. (2009)). The fundamental solution for the wave equation for a point source located at the origin is given by
[image: Mathematical equation showing Phi of t and x equals delta of t minus the absolute value of x, divided by four pi times the absolute value of x.]
The solution to the wave equation with initial conditions [image: Mathematical symbol psi subscript zero, commonly used in physics to denote the ground state wavefunction or initial state in quantum mechanics.] and [image: Mathematical symbol psi sub one, with the Greek letter psi followed by the subscript one, often used to represent a quantum state or wave function in physics equations.] is represented by
[image: Mathematical equation showing the solution to a wave equation: psi of t and x equals the integral over R cubed of delta of t minus absolute value of y divided by four pi absolute y times psi one of y dy, plus the integral over R cubed of partial derivative with respect to t of delta of t minus absolute value of y divided by four pi absolute y times psi zero of y dy.]
This integrates over a spherical shell of radius [image: Lowercase italic letter t in a serif font, shown in grayscale on a white background.]:
[image: Mathematical equation displaying psi of t and x equals one divided by four pi t times the integral of psi one of y over the sphere at time t, plus one divided by four pi t times the integral of the time derivative of the delta function of t minus the norm of y times psi naught of y over the sphere at time t.]
Considering [image: Mathematical notation showing the symbol L with a superscript infinity, commonly representing the L infinity norm or space in functional analysis.] norms, the solution’s maximum amplitude at any point decays as
[image: Mathematical formula expressing the infinity norm of psi at time t as approximately the sum of two terms involving integrals over the sphere, each weighted by one over t and bounded in the L-infinity norm.]
The surface area of the sphere of radius [image: Lowercase italic letter t in a simple serif typeface centered on a white background.] is [image: Mathematical expression showing four times pi times t squared, with t squared written as t raised to the power of two.]. As the energy spreads over a larger area, the maximum amplitude at any point decreases. Given that the energy is conserved but distributed over an increasing surface area [image: Mathematical equation showing A equals four times pi times t squared, where t is raised to the power of two.], the amplitude’s reduction follows:
[image: Mathematical expression showing the L infinity norm of psi at time t is proportional to one divided by the square root of t.]
This [image: Mathematical expression showing variable t raised to the power of negative one half.] decay rate in the [image: Mathematical expression featuring a bold italic uppercase L followed by a superscript infinity symbol, representing the L-infinity space or norm in mathematics.] norm is due to the inverse square root of the increasing area over which the energy is spread and considers the typical dispersion effect in three dimensions.
Now, the Strichartz estimates for the wave equation provide bounds on the solution’s spacetime norms in terms of the norms of the initial data and allow us to consider other functional spaces compared with the [image: Mathematical notation displaying L superscript infinity, commonly used to denote the space of essentially bounded measurable functions in mathematical analysis.] in time. Specifically, the estimates state:
[image: Mathematical equation showing that the L infinity in time, L two in space norm of psi is less than or equal to a constant times the sum of the L two norm of psi naught and the L two norm of psi one, all over the real numbers.]
where [image: Uppercase letter C in a serif font, displayed in black with a slight shadow and smooth edges against a white background.] is a constant dependent on the dimension and the Strichartz pair. This estimate is derived from the fundamental solution’s dispersive properties and the conservation of energy (refer to Tao (2006) for additional insights).
Using the Sobolev embedding theorem, which embeds [image: Mathematical expression showing H dot one of open parenthesis boldface script R to the third power close parenthesis, representing a homogeneous Sobolev space on three-dimensional real space.] into [image: Mathematical expression showing the function space L superscript six of open parenthesis script R cubed close parenthesis, representing the L six space over three-dimensional real numbers.], we can relate the Strichartz norms to the [image: Mathematical expression showing the L with a superscript infinity symbol, representing the L-infinity space or norm in mathematics.] norm:
[image: Mathematical inequality showing the L infinity norm of psi of t dot in R three is less than or equal to a constant times t to the negative three-halves times the sum of the H one norm of psi naught and the L two norm of psi one, both in R three.]
where [image: Mathematical notation showing an italic uppercase C with a superscript V.] includes constants from the Sobolev embedding and the dimension-specific Strichartz estimates. The constant [image: Mathematical notation showing the uppercase letter C with a superscript v, often used to represent a variable C raised to the power of v or C with exponent v.] is determined by considering the spherical dispersion of energy and the associated decrease in amplitude as the wave spreads over a sphere with increasing radius [image: Mathematical expression showing lowercase r is equal to lowercase t.]. The factor [image: Mathematical expression showing t raised to the power of negative one half.], introduced ad hoc, reflects the decrease in amplitude over the sphere’s surface area [image: Mathematical expression showing four times pi times t squared, with the exponent two applied to the variable t.]. Thus, [image: Mathematical notation showing an italic uppercase letter C with a superscript v placed at the upper right, often used to indicate a variable or exponent in equations.] can be calculated as
[image: Mathematical expression showing C superscript n equals C superscript double prime divided by the square root of four pi.]
with [image: Mathematical notation showing an italic uppercase C with a double prime symbol to its upper right.] being a constant derived from spectral analysis of the wave operator and the embedding constants used in the Sobolev and Strichartz inequalities. Such spectral analysis is normally a difficult task with high mathematical content, but we can introduce some principles to elucidate how to determine the constant. Indeed, in Schwarzschild spacetime, the wave operator [image: Abstract image featuring a white square at the center surrounded by a progressively darkening, blurred gray border, creating a vignette effect. No recognizable objects or text are depicted.] for a scalar field [image: Lowercase Greek letter psi, ψ, shown in a serif font with a bold, slightly italicized style, often used in mathematics and physics to represent wave functions or variables.], defined in a curved background, is given by [image: Mathematical equation showing the curved spacetime d’Alembertian operator applied to psi equals one over the square root of negative g times the derivative with respect to mu of the square root of negative g, g superscript mu nu, times the derivative with respect to nu of psi.], where [image: Mathematical expression showing the symbol g with two subscripts, mu and nu, often used to represent the metric tensor in general relativity.] is the metric tensor of Schwarzschild spacetime, and [image: Lowercase letter g in a serif typeface with a double-story design, featuring a closed upper loop and a larger, open lower loop.] is the determinant of this metric tensor. The Laplacian in Schwarzschild coordinates is expressed as
[image: Mathematical equation representing the Laplacian operator in Schwarzschild coordinates, showing partial derivatives with respect to r, theta, and phi, and including mass M, radial coordinate r, and trigonometric factors involving sine and squared terms.]
The spectral properties of [image: Mathematical notation showing an uppercase Greek letter delta followed by the lowercase letters s, c, and h, commonly representing a variable or change in a quantity labeled sch.] in Schwarzschild spacetime differ fundamentally from those in [image: Mathematical notation showing a bold capital R followed by a superscript three, representing three-dimensional real coordinate space, often used in mathematics and physics to denote 3D Euclidean space.]. The continuous spectrum is altered by the potential well created by the black hole. If we hypothesize a spectral density function [image: Mathematical notation showing the variable rho with subscript s c h, followed by parentheses containing the Greek letter lambda.] (here we would need additional physical observations), analogous to the flat space case but adjusted for curvature effects, and integrate this over a bounded domain reflecting the effective potential’s influence, we have
[image: Mathematical equation showing C sub Sch double prime equals the integral from lambda zero to infinity of rho sub Sch of lambda with respect to d lambda.]
where [image: Lowercase Greek letter lambda followed by a subscript zero.] is a lower bound that accounts for significant gravitational effects near the black hole. A value for such [image: Mathematical symbol lambda followed by subscript zero, representing a variable commonly used for initial value or reference wavelength in scientific equations.] can be analytically conceived, given the potential Fl(r*). Indeed, the potential usually features a peak that influences wave dynamics; this peak can act as a barrier beyond which wave propagation diminishes. The value of [image: Lowercase Greek letter lambda followed by a subscript zero.] could be estimated by considering the minimum energy (or corresponding [image: Lowercase Greek letter lambda, written in a serif font with a slightly curved and slanted vertical line.]) required for a wave to have a significant presence beyond this peak. Mathematically, this is often taken to be the maximum value of the effective potential:
[image: Mathematical expression showing lambda sub zero equals the maximum value of function F sub i of r, followed by a period.]
Hence, we compute the derivative to find critical points where the potential may have a maximum:
[image: Mathematical equation for the radial derivative of F_l: d squared F sub l over dr squared equals quantity one minus two M over r times open bracket negative six M over r to the fourth minus two l times l plus one over r cubed close bracket plus quantity two M over r cubed plus l times l plus one over r squared times quantity two M over r squared.]
After simplifying and setting to zero, we find [image: Mathematical expression showing the variable r with the subscript max, indicating r sub max or maximum value of r.]:
[image: Mathematical equation showing twelve times M squared divided by r to the sixth power, minus two M times one minus two M, minus two times l plus one, all divided by r to the fifth power, plus two M times l plus one over r to the fourth power, equals zero.]
This equation is typically solved numerically given specific values of [image: Italicized capital letter M in a serif typeface centered on a white background.] and [image: Lowercase letter “l” in a black serif font on a white background. The image is vertically oriented and slightly blurred, making the edges soft rather than sharply defined.]. Once [image: Mathematical expression showing the variable r with the subscript max, commonly representing r maximum in scientific or mathematical contexts.] is determined, [image: Mathematical expression showing F subscript l of r subscript max, indicating a function F with variable l evaluated at the maximum value of r, written as r subscript max, in italic font.] is calculated to estimate [image: Mathematical expression showing the lowercase Greek letter lambda followed by a subscript zero.]:
[image: Mathematical equation showing lambda sub zero equals F sub r of r max, expressed as one minus two M over r max, multiplied by the quantity two M over r max cubed plus l times l plus one over r max squared.]
To provide some numerical orders of [image: Mathematical symbol lambda followed by subscript zero, commonly used to represent an initial or reference value in equations.], we provide the assessments for the following cases:
A) [image: Mathematical expression showing M equals one and l equals zero.].
B) [image: Mathematical notation showing M equals one and l equals one, both in italic font, separated by a comma.].
For this, we have used Python and its libraries NumPy and SciPy, which provide efficient numerical routines. The results of [image: Mathematical expression showing the Greek letter lambda followed by a subscript zero.] for the cases A) and B) mentioned are:
	[image: Blurry circular object with indistinct edges and low contrast; the content is unclear and lacks identifiable details due to significant blurring.] [image: Mathematical symbol lambda with subscript zero, commonly representing an initial wavelength, starting value, or baseline parameter in scientific equations.] for [image: Mathematical notation showing uppercase M equals one, lowercase l equals zero.]: [image: Numerical value zero point zero two six four in black serif font on a white background.]
	[image: Blurred circular area with indistinct edges and no discernible details, creating an abstract pattern with a gradient from dark center to lighter outer edges.] [image: Mathematical expression showing the Greek letter lowercase lambda followed by a subscript zero.] for [image: Mathematical expression showing uppercase M equals one, comma, lowercase l equals one.]: [image: Black text displays the numerical value zero point zero nine nine three on a white background.]

The plot displayed in Figure 2 shows the potential [image: Mathematical expression showing capital F subscript l of parenthesis r, typically denoted as F sub l of r.] as a function of [image: Lowercase letter “r” in a bold, black serif font on a white background, appearing blurred and partially cut off at the left and top edges.] for each value of [image: Lowercase letter l in a thick, italic, black font with a blurred background.]. Some relevant observations from the graph indicate:
[image: Blurred circular shape with indistinguishable details, appearing gray and black with a gradient effect radiating from a dark center toward lighter edges. No identifiable objects or text are visible.] The potential has a peak for each [image: Lowercase letter l in a thin, sans-serif font, shown in black on a white background with a soft, blurred effect.], and these peaks are what we use to estimate [image: Mathematical symbol lambda subscript zero, commonly denoted as λ sub zero.].
	[image: A circular black shape with a faded, blurred gradient along the edges, centered on a white background, creating a soft transition between the dark center and the light surroundings.] The potential increases as [image: Lowercase letter r in a bold, blurred font style on a white background.] increases, reaches a maximum, and then decreases again, which is a typical behavior of effective potentials and barriers.
	[image: A heavily blurred circular shape with dark center and lighter edges, making details indistinguishable and preventing identification of any specific objects or features.] For [image: Mathematical expression showing the variable l is equal to one.], the potential reaches a higher peak than [image: Mathematical equation showing a lowercase italic letter l followed by an equals sign and the number zero.], which aligns with the calculated [image: Mathematical symbol lambda sub zero, depicting the Greek letter lambda followed by a subscript zero.] values where [image: Mathematical symbol lambda sub zero, representing the Greek letter lambda with a subscript zero.] for [image: Mathematical expression showing lowercase letter l equals one, written in standard italic math font.] is greater than for [image: Mathematical expression showing a lowercase italic l followed by an equals sign and the number zero, representing l equals zero.].

[image: Line graph comparing F(r) versus r for two values of l with m equal to one. Both lines peak and then decrease. The legend identifies l equals zero and l equals two.]FIGURE 2 | Potential [image: Mathematical expression showing an uppercase italic F subscript lowercase italic l, followed by parentheses containing lowercase italic r.] as a function of [image: Blurry, grayscale image showing a lowercase letter r against a white background, with the character partially faded at the top and left edge.] for [image: Mathematical expression showing a lowercase italic letter l followed by an equals sign and the number zero.] and [image: Mathematical expression displaying a lowercase italic l, an equals sign, and the number one.].
4.1 Numerical assessments on the energy formulation
The discussion to this point has yielded an energy estimate expressed as
[image: Mathematical expression showing E of t is less than or equal to two times E of zero, followed by a period.]
This estimate implies that the energy of the wave function at any time [image: Lowercase italic letter t in a serif typeface, rendered in black on a white background.] does not exceed twice its initial value [image: Mathematical expression showing E of zero in italics with parentheses, commonly representing a function or value E evaluated at zero.]. However, this bound alone does not definitively determine how the energy evolves over time, but it does confirm that the evolution is controlled by the initial energy value. Certainly, this expression leaves open questions regarding potential energy dissipation, conservation, or other complex dynamics that could be exhibited. Hence, we conduct a numerical assessment to gain further details about whether the energy decreases or exhibits other patterns through time. We have carried out a simulation following numerical integration techniques using Python libraries. In the simulation, Gaussian initial data and a decaying sinusoidal initial time derivative were used:
[image: Mathematical formulas showing psi zero of r equals e raised to the negative r squared, and psi one of r equals sine of r divided by one plus r squared.]
both of which belong to [image: Mathematical notation showing an uppercase italic L with a superscript two, representing L squared or the L two space in mathematics.] in the domain of integration. The energy at [image: Mathematical expression showing lowercase t equals zero.], denoted [image: Mathematical expression with capital E, followed by an open parenthesis, zero, and a close parenthesis, shown in italic serif font.], was calculated based on these initial conditions. The plot provided in Figure 3 provides the results of the numerical analysis carried out, leading to a graph that depicts the energy [image: Mathematical expression showing the variable E as a function of t, written as E open parenthesis t close parenthesis.] exponential decreasing evolution over time. This result aligns with the classical form of solutions considered to model QNMs and given by the temporal evolution [image: Mathematical expression showing e raised to the power of negative i omega t, where i is the imaginary unit and omega t represents angular frequency times time.], and we shall recall that our initial data were selected to belong to [image: Mathematical notation showing capital L with a superscript two, commonly used to represent the L squared space or L two space in functional analysis.].
[image: Line chart titled "Energy E(t) over Time" displays energy E(t) on the Y-axis and time t on the X-axis from zero to ten. A decreasing curve shows energy E(t) declining over time, while a horizontal dashed red line at approximately one point seven two represents the initial energy E(0). The chart includes a legend and grid lines.]FIGURE 3 | The energy [image: Mathematical expression showing E, uppercase and italicized, followed by parentheses containing the variable t in italics, representing a function of t.] decays over time from its initial value [image: Mathematical expression showing uppercase italic E followed by parentheses containing zero, representing E of zero, often indicating a function or value evaluated at zero.]. The horizontal dashed line represents [image: Mathematical notation showing the variable E with the input argument zero inside parentheses, both in italic font.], showing that the initial energy is constant at its initial value, while [image: Mathematical expression showing a capital italic E followed by a lowercase t in parentheses, representing a function E of t.] decays exponentially from this initial value.
5 CONCLUSION
This study provided an analysis of the behavior of scalar fields in Schwarzschild spacetime using the tortoise coordinate transformation and spherical harmonics decomposition. From the numerical assessments, we established the behavior of scalar fields considering the tortoise coordinate in Figure 1 for the simplified version of the wave in (Equation 3). In addition, we have obtained estimates for the energy under the [image: Mathematical notation showing an uppercase italic letter L with a superscript two, representing L squared or L two.] norm and for the evolution of the waves in the [image: Mathematical expression showing uppercase italic L followed by an infinity symbol in superscript, representing the L-infinity or maximum norm space in mathematics.] norm. Interestingly, we showed that a decreasing exponential bound applies for the energy evolution provided that the initial data belong to [image: Mathematical expression showing L superscript 2 followed by a minus sign, commonly representing the L two minus space in functional analysis or mathematics.]space. We postulate that such an evolving bound applies for any other [image: Mathematical notation displaying a capital italic L with a superscript two, representing L squared, commonly used to denote the L-two space in mathematics and functional analysis.] initial distribution beyond the ones considered in Section 4.1. Another interesting question to explore further is how [image: Mathematical notation showing the uppercase letter L followed by a superscript two, representing L squared or the function space L two.] perturbations in the initial conditions, which introduce Kerr solutions as a second-order effect in the linearized equations, affect this obtained exponential decay. Certainly, this is a relevant issue that requires additional theoretical and numerical assessments. We will proceed with this in our future work.
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Micro- and nanoresonators, which enable light trapping in small volumes for extended durations, play a crucial role in modern photonics. The optical response of these resonators is determined by their fundamental resonances, known as quasinormal modes (QNMs). Over the past decade, the electromagnetic theory of QNMs has undergone significant development and has now reached a level of maturity that allows its reliable application to numerous contemporary electromagnetic problems. In this review, we explore recent applications of QNM theory for designing and understanding micro and nanoresonators. We highlight why QNMs provide deep physical insights and enhance computational efficiency in scenarios involving mode hybridization and perturbation.
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1 INTRODUCTION
Micro or nanoresonators play a crucial role in advancing modern photonics [1, 2]. The interaction of light with optical resonators is fundamentally governed by the excitation of intrinsic natural resonant modes. When excited by a pulse, these modes initially store energy and subsequently release it through exponential decay. Known as quasinormal modes (QNMs), they are source-free solutions, [image: Mathematical expression showing a pair of vector fields, E sub m of r and H sub m of r in bold, multiplied by exponential of open parenthesis minus i omega sub m tilde t close parenthesis.] to Maxwell’s equations with complex frequencies [image: Mathematical symbol with a lowercase omega that has a tilde above it, followed by the subscripts m and n in italic font.]
[image: Mathematical formula showing two Maxwell’s equations in frequency domain: the curl of electric field E_m equals i omega_m mu_0 times magnetic field H_m, and the curl of H_m equals negative i omega_m epsilon of position r and frequency omega_m times E_m, labeled as equation one.]
and satisfy the outgoing-wave condition for [image: Mathematical notation showing the magnitude of vector r approaches infinity, represented as vertical bars around bold r, followed by a right arrow pointing to the infinity symbol.]. Hereafter, [image: Mathematical expression showing a bold capital E with a tilde above and a subscript m n, representing a vector quantity indexed by m and n.] and [image: Mathematical symbol displaying a bold, uppercase H with a tilde accent above it, followed by a subscript m and n.] respectively denote the normalized electric and magnetic fields [3, 4], [image: Lowercase Greek letter epsilon printed in black on a white background.] denotes the possibly dispersive permittivity tensors. Unlike the normal modes of Hermitian systems, which have real frequencies, the imaginary part [image: Mathematical expression showing the imaginary part of omega sub em, denoted as Im parenthesis omega sub em with a tilde above omega and subscript m.] is non-zero, accounting for absorption or radiation losses [3].
The QNMs of electromagnetic resonators are characterized by two main quantities: their mode volume ([image: Mathematical notation showing an uppercase italic letter V with a right-facing arrow above it, representing a vector, and a lowercase italic m as a subscript.]) and quality factor ([image: Mathematical expression showing an uppercase italicized letter Q followed by a subscript m and n.]) [4, 5]. The former is related to the spatial extent of the electromagnetic field and the latter is proportional to the confinement time in units of the optical period, [image: Mathematical equation showing Q sub m equals negative one half times the real part of omega sub m divided by the imaginary part of omega sub m.] [3, 5, 6].
High-[image: Uppercase serif letter Q in black on a white background.] resonators trap light for long time, whereas small mode volume resonators confine light in tiny volumes. Resonators with large [image: Mathematical expression showing uppercase bold Q sub m divided by uppercase V with a tilde above it sub m.] ratios strongly enhance the interaction between the trapped photons and the host materials, giving rise to significant nonlinear, quantum and optomechanical effects [1–4].
Photonic applications generally rely on two types of structures which respectively offer high [image: Mathematical expression displaying a bold, uppercase Q followed by two subscript variables, m and n, indicating a parameterized or indexed variable in mathematics or physics.] and small [image: Mathematical symbol showing an uppercase V with an arrow above it, representing a vector, and a subscript m.]. High- [image: Uppercase serif letter Q in bold black font centered on a white background.] resonators, typically with [image: Mathematical expression showing a bold uppercase letter Q followed by the subscript variables m and n in italic font.] ∼[image: Mathematical notation showing ten raised to the power of six, representing one million in exponential form.], are usually fabricated using lossless dielectric materials, such as the photonic crystal microcavities (Figure 1A). These structures can confine light for extended periods of time (typically [image: Mathematical notation showing an uppercase italic letter Q followed by a subscript m m, commonly used to represent a variable or quantity indexed by m m in equations.] cycles) within volumes of about the resonant wavelength cube [image: Mathematical expression showing lambda raised to the power of three over R.].
[image: Diagram comparing two nanophotonic structures: (a) dielectric membrane microcavity featuring a grid pattern and scale bar of five hundred nanometers; (b) nanoparticle-on-mirror (NPoM) with a sphere atop a thin slab, scale bar of one hundred nanometers. Below each structure is a heat map visualization indicating distinct spatial electromagnetic field distributions, with corresponding color bars quantifying real parts of normalized field values.]FIGURE 1 | Examples of micro and nanocavities. (A) A photonic-crystal microcavity with a 330 nm lattice constant in a 320 nm-thick dielectric membrane has typical resonance wavelengths [image: Lowercase Greek letter lambda followed by a subscript uppercase letter R, indicating a variable commonly used in mathematical or scientific notation.] at 1.5 µm. (B) A metal NPoM structure consists of a faceted gold nanoparticle (radius R = 20 nm) separated from a gold substrate by a 1 nm-thick dielectric film. The maps depict the real part of the inverse mode volume, [image: Mathematical expression showing the real part of the reciprocal of V sub m with a tilde over the V, written as Re of open parenthesis one divided by V sub m tilde close parenthesis.]. The microcavity confines light within approximately [image: Mathematical expression showing the Greek letter lambda with a superscript three and a subscript capital R.], whereas the NPoM achieves a minimum mode volume of about [image: Mathematical expression showing ten raised to the power of negative seven multiplied by lambda subscript R raised to the third power.]. Note that the imaginary part, [image: Mathematical expression showing Im of the inverse of V sub m, with V sub m including a tilde symbol above the V.], of the mode volume is not shown. Adapted from [5].
Resonators with mode volumes significantly smaller than [image: Mathematical expression showing the Greek letter lambda raised to the third power over the variable R.] are engineered using metallic nanostructures that support localized plasmons [7]. One notable example is the nanoparticle-on-mirror (NPoM) construct (Figure 1B) [2, 8], which represents a current area of research interest. NPoM trap light in nanometer-sized dielectric gaps between two metal surfaces, achieving mode volumes as small as [image: Mathematical expression showing approximately ten to the power of negative seven multiplied by lambda sub R raised to the third power.]. However, this exceptional spatial field confinement comes with a drawback: the inherent absorption of the materials restricts the quality factor to small values, [image: Mathematical expression showing Q is approximately in the range of ten to one hundred, with a tilde symbol indicating approximation.].
QNMs can be used to expand the electromagnetic field [image: Mathematical expression showing electric field E superscript s as a function of position vector r and angular frequency omega, multiplied by exponential of negative i omega t.] scattered by resonators illuminated by monochromatic waves at frequency [image: Lowercase Greek letter omega, which is commonly used in mathematics, physics, and engineering contexts to represent angular frequency or resistance. Black symbol on a white background.] [3, 9]
[image: Mathematical expression showing electric field E as a function of position r and frequency ω, represented as a sum over m of α sub m times E sub m of r, labeled equation two.]
where the [image: Greek letter alpha with subscript m.]’s are modal excitation coefficients. The latter are known analytically and can be calculated as a spatial overlap between the normalized QNM field and the incident wave. They describe the contribution of the resonance modes to the optical response. A time-domain QNM expansion formula can also be derived from Equation 2 by performing a Fourier transformation from the frequency domain to the temporal domain
[image: Mathematical equation expressing the electric field vector E as the real part of the sum over indices m and n of beta sub m n of t times E sub m n of r, labeled as equation three.]
In the past decade, there have been significant advancements in electromagnetic QNM theory. These include resolving the critical issue of QNM normalization [10–15], testing completeness of the QNM expansion across various systems [10, 16–23], and extending the analysis to the temporal domain [20, 24–27].
Nowadays, QNM theory is extensively utilized in designing optical resonators for various applications [28–30], including second- and higher-harmonic generation [31–33], optical parametric oscillators [34], Bell state generation [35], random lasing [36, 37], cavity QED [38–40], chiral molecule sensing [41, 42], quantum plasmonics [43–45], structural color generation [46], visual appearance generation [47], random medium [48], and ultrafast optics [24, 27]. But why are QNMs essential for nanoresonator design?
One explanation lies in the unique physical insights provided by QNM theory, which are often unattainable from brute-force numerical simulations. While the latter can be used to accurately compute the resonant spectra of resonator responses [2, 49–52], the spectrum interpretation can be indirect and sometimes incomplete. For instance, far-field incident light might not efficiently excite all modes, causing dark modes to be overshadowed by bright ones in the spectra. Additionally, spectrally overlapping resonances are difficult to distinguish, even with semi-analytical tools like the temporal-coupled mode theory [53, 54]. These resonances might merge to form a complex Fano response that appears as a single bell-like response, potentially leading to an incorrect interpretation with a single resonance [11, 55].
In contrast, QNMs are intrinsic to the system and independent of the incident field. By computing QNMs, optical dark modes can be identified unambiguously [56–60], and spectrally overlapping modes can be distinguished [11, 55, 61]. QNM expansion methods allow the reconstruction of optical scattering spectra [3, 9, 14, 20, 62, 63] with a weighted sum of QNMs. They may also provide explicit formula for the local density of electromagnetic states [11, 62, 64–67], a quantity of prime interest to interpret the optical response of resonators coupled with quantum emitters.
Another explanation is that electromagnetic QNM theory may also offer a significant improvement in computational efficiency over classical modeling tools that operate in the real-frequency or temporal domains. In frequency-domain simulations, calculations are repeated for each frequency, while in time-domain simulations, they must be repeated for different excitation fields.
The QNM expansion formula in Equation 2, which includes analytically-known [image: Lowercase Greek letter alpha followed by the subscript letters m and n, all in italic font.] coefficients, allows efficient computation of the optical responses to arbitrary incident waves, once the dominant QNMs are determined [3, 68]. This efficiency is particularly useful for predicting the responses of resonant structures to various incident fields [69]. Applications include calculating the bidirectional reflectance distribution function (BRDF) of disordered metasurfaces [47], and assessing optical forces [70, 71], for instance.
Recent advancements in QNM perturbation [72, 73] and coupled QNM-theory [74–76] enable the prediction of the QNMs of altered geometries based on the QNMs of the initial geometry. They enhance computational efficiency not only for frequency sweeps but also for varying parameters such as shape or permittivity. This is particularly valuable for inverse design problems that require optical responses over plenty of parameter spaces.
This review aims to highlight recent advancements in applying QNMs to nanoresonator design, emphasizing the benefits of using QNM theory. Special focus is placed on how QNMs provide deep physical insights and enhance computational efficiency in mode hybridization and perturbation scenarios. For readers interested in the detailed physics and mathematical properties of electromagnetic QNMs, references such as [3, 5, 9, 10] are recommended. This article is structured as follows: a brief overview of key concepts on electromagnetic QNMs, followed by a discussion of their applications in resonator design.
2 QNM THEORY IN A NUTSHELL
2.1 Computation of electromagnetic QNMs
The computation of electromagnetic QNMs is now routinely performed using mode solvers for Maxwell’s equations [77]. The most common method involves calculating the poles of the resonator response (either a scattering-matrix element or a component of the scattered field at a specific spatial position) by driving the system with a source emitting at complex frequencies until the response diverges. Alternatively, one can directly solve the eigenvalue problem defined by Equation 1.
A few open-source software packages dedicated to QNM computation are available [77–79], including our comprehensive released freeware, MAN [68], which implements the pole-searching method or directly solves the eigenvalue problem.
2.2 The QNM divergence
QNM fields exponentially grow in space far away from the resonators, typically taking the form of a leaky spherical wave, [image: Mathematical formula showing r to the power of negative one times the exponential of i omega m tilde times the quantity negative t plus r divided by c, all inside the exponent.] as [image: Mathematical notation showing variable r approaches infinity, often used to indicate a limit or behavior as r increases without bound.] in 3D open spaces. The spatial divergence has significantly slowed down the development of the electromagnetic QNM theory, just like in related areas, e.g., gravitational waves [80–84].
First, the spatial divergence raises difficulties in normalizing the QNMs fields [10]. Second, the spatial divergence also raises the question of whether the expansions of Equations 2, 3 are complete or not and when completeness is achieved, for what subspace [3, 85]. Indeed, note that the scattered field at real frequency always vanishes as [image: Mathematical expression showing r raised to the power of negative one, representing the reciprocal of r, or one divided by r.] for [image: Mathematical notation showing the variable r approaches infinity, using a rightward arrow followed by the infinity symbol.]; it seems unlikely that expansions relying on fields that all divergence for [image: Mathematical expression showing the variable r approaches infinity, featuring the letter r, a rightward arrow, and the infinity symbol.] may capture the special decay. In addition to the issue of incompleteness, the divergence appears to contradict our physical intuition, raising doubts about whether it ‘truly corresponds to any physical reality,’ as was noted long ago [86].
These issues have been addressed through extensive efforts notably over the past three decades.
Various frameworks for QNM normalization have been developed [10–15, 87, 88], and the completeness of QNM expansions (possibly augmented by numerical modes arising from QNM regularization [16, 20]) has been verified analytically and numerically in numerous examples [10, 16–23]. A recent review [10] provides advanced details and traces historical errors.
One widely adopted normalization framework is the PML-regularization method [11]. In this approach, the continuous Maxwell operator from Equation 1 is replaced by a linear operator within a finite physical domain bounded by perfectly matched layers (PMLs). The latter maps infinite open spaces into regularized Hilbert spaces, by converting the exponential growth of QNM fields in open space to an exponential decay within the PMLs. The regularized QNMs become square-integrable and are normalized with a volume integral over the physical domain [image: Uppercase Greek letter omega symbol, displayed in bold black font with curved lines meeting at the bottom center.] inside the PML and the PML domain [image: Mathematical expression showing the uppercase Greek letter omega followed by the subscript letters P, M, and L.]
[image: Mathematical equation showing a triple integral over a specified domain with electric and magnetic field terms, partial derivatives with respect to omega, and equated to one, labeled as equation four.]
With Equation 4, analytical expressions for the modal expansion coefficients can be derived from first-principle calculations [11, 20]. Moreover, the QNM expansion augmented by numerical modes is complete for all [image: Lowercase, bold black letter "r" on a white background, rendered with a slight blur or shadow effect around the edges.] within the regularized space, including the PML domain. For non-dispersive resonators, biorthogonality warranties the uniqueness of the expansion coefficients [image: Mathematical expression displaying the Greek letter alpha followed by the subscript m, typically used to represent a parameter or variable in scientific and mathematical contexts.]. In the presence of dispersion, formulas of [image: Greek lowercase alpha symbol with subscripts m and n in italic mathematical notation.] depend on the choosing of the auxiliary field used for linearization and different methods for splitting the source term in Maxwell equation. Once these factors are defined [image: Greek letter alpha followed by the subscript letters m and n, written in italic mathematical notation.] is also uniquely determined [10, 18, 20].
The PML regularization offers a framework to mimic the Hermitian system, by ensuring completeness and eliminating divergence. However, it does not offer a clear physical interpretation of the implications of the impact of QNM spatial divergence when analyzing the interaction of resonance with remote bodies positioned far away from resonators, where QNM fields largely diverge, as demonstrated in a recent study [89]. This study confirms that although QNM divergence leads to spectral instability, it does not cause any inconsistencies. The optical response of resonators disturbed by a distant body remains largely unchanged and can be accurately predicted using first-order QNM perturbation theory. It is also noteworthy that similar conclusions have been drawn in the context of gravitational waves [90–92].
3 APPLICATIONS OF QNMS IN THE DESIGN OF OPTICAL RESONATORS
The essence of resonance design involves perturbing and hybridizing resonances to achieve specific optical responses. Traditionally, this process involves performing repeated full-wave simulations at real frequencies [2, 28, 49–52]. However, as mentioned in the introduction, this conventional approach encounters significant physical and computational limitations. In this section, we explore several examples to demonstrate how QNM methods overcome these challenges and facilitate the design of modern optical resonators, focusing first on QNM hybridization and then on QNM perturbation.
3.1 QNM hybridization
The motivations for mode hybridization are twofold.
First, hybridization allows us to combine the properties of different resonant modes to create new modes with distinct multifunctional properties [56–61, 93–95], e.g., modes with both magnetic and electric responses [61, 93, 95–97], modes with both high radiative efficiency and small mode volume [2, 56, 58–60, 98]. A well-known example is the hybridization of photonic microcavities and plasmonic resonator modes [99–101]. This approach utilizes plasmonic components to achieve deep subwavelength confinement (small mode volumes), while preserving a relatively high [image: Black capital letter Q in a serif font on a white background.] factor, which is inherited from the photonic cavity.
Second, hybridization induces a chemical-like “reaction” between modes, creating new modes with unique properties that go beyond a simple combination of the original modes. This serves as the second motivation for mode hybridization. For instance, when the eigenfrequencies of two QNMs cross each other as a parameter varies, the [image: Uppercase serif letter Q in black on a white background.] factor of one mode can be significantly boosted reaching exceptionally high values [33, 102, 103]. Additionally, some studies have engineered interactions between modes to achieve exceptional points [104–107], where both the eigenvalues and eigenvectors of the interacting modes coalesce.
3.1.1 Mixing mode properties
A key feature of the QNM framework is its ability to compute the intrinsic properties of resonators and understand how these properties are affected by mode hybridization [56–60]. This capability allows for the design and optimization of nanoresonators, offering both computational efficiency and clear physical insights. This aspect is illustrated in Figure 2, with a structure known as a picocavity [2, 108–110]. The latter consists of a NPoM, but additionally encompasses an individual atomic-scale protuberance on one of the gap surfaces, as shown in Figure 2A. This structure, which has recently garnered significant attention [2, 56, 57, 108–110], demonstrates an impressive capability to confine light.
[image: Panel (a) shows a schematic diagram of a nanoparticle-on-mirror (NPoM) system with a silver nanosphere, protrusion, and labeled geometrical features. Panel (b) displays a line chart of resonance energy versus aspect ratio, plotting modes I, II, III, and IV. Panel (c) presents simulated plasmonic modes: NPoM-like mode (I), picocavity mode (III/IV), and protuberance-like mode (II), each with corresponding surface charge density distributions and colorbars.]FIGURE 2 | Mixing the properties of two QNMs by hybridization. (A) Schematic representation of a picocavity comprising an atomic-scale protuberance on a flat metal surface and a NPoM structure, each supporting a QNM. (B) Resonance frequencies as a function of the aspect ratio a/b of the protuberance. The mode of the protuberance strongly hybridizes with the mode of the NPoM for [image: Mathematical equation showing the ratio of a divided by b is approximately equal to 2.]. (C) Energy level diagram illustrating the hybridization when the frequencies of the NPoM and protuberance modes are similar for [image: Mathematical expression showing the variable a divided by variable b equals two.]. Outside the hybridization region, the structure exhibits an NPoM-like mode (QNM I in (b)) and a protuberance-like mode (QNM II in (b)). The NPoM-like mode has a relatively large mode volume and high radiative efficiency, while the protuberance-like mode features an ultra-small mode volume and a low radiative efficiency. The near-field maps depict the real part of the inverse mode volume [image: Mathematical expression showing one divided by v sub m with a tilde accent above the v to denote a specific variable or unit.], while the far-field radiation diagrams illustrate how the normalized QNMs radiate in the far field. (A) and (B) are adapted from [56].
Picocavities exhibit two types of QNMs [56, 57]. One type features an electric field that is highly localized near the protuberance, while the other exhibits electric field distributions akin to QNMs found in NPoM structures. We classify these as protuberance-like and NPoM-like QNMs, respectively. As depicted in Figure 2C, the protuberance-like QNM (mode II) provides extremely confined field characteristics, achieving a minimum mode volume below one cubic nanometer. However, due to the significant size disparity between the protuberance and the photon wavelength, this mode exhibits very low radiative efficiency. It cannot be efficiently excited by far-field sources (such as plane waves); when excited by a near-field emitter, almost all energy is converted into Ohmic losses in the metal, with minimal photon radiation in the far-field.
The mode volume of the NPoM-like mode (mode I) is much larger than that of the protuberance-like QNM. However, it offers high radiative efficiency and can be excited from the far-field. Its radiative efficiency, characterized by the intrinsic radiative diagram in Figure 2C, is approximately 20 times greater than that of the protuberance-like QNM.
A natural approach to achieve both high radiative efficiency and small mode volume involves coupling these two types of modes. The QNM framework facilitates monitoring the intrinsic properties as the modes hybridize. Figure 2B illustrates the eigenfrequencies of the hybridized QNMs as a function of the protuberance’s aspect ratio, depicted by the red and blue solid curves. As the aspect ratio increases, the protuberance-like mode undergoes a redshift, and an anticrossing of resonant frequencies occurs when its eigenfrequency approaches the energy of the NPoM mode. In this region, the QNMs are significantly hybridized. As depicted in Figure 2C, both modes achieve a mode volume of less than 1 nm³ and demonstrate high radiative efficiency, combining the advantageous characteristics of both NPoM and protuberance modes.
3.1.2 Engineering the mode interaction
Another significant application of QNM theory lies in engineering mode interactions [102, 111–113] to create new modes with properties distinct from a simple mixture of the original modes.
To illustrate our purpose, let us consider a resonator and let us deform it (Figure 3A). If we assume that two dominant QNMs are driving the resonator response, the new eigenfrequencies, [image: Mathematical expression showing a lowercase omega with a tilde accent above, followed by the subscript hyb in italics.], of the deformed modes can be determined by solving a 2x2 eigenvalue problem [72]
[image: Mathematical equation showing a product of a two-by-two diagonal matrix with entries w-hat one and w-hat two and a vector a one, a two, equals w-hat naught times a two-by-two matrix with entries one plus V eleven, V twelve, V twenty-one, one plus V twenty-two times the vector a one, a two. Equation is labeled as five.]
where [image: Mathematical expression showing omega sub one of two with a tilde over the omega, written as tilde omega sub one, open parenthesis two, close parenthesis.] are the QNM eigenfrequencies of the undeformed structure, [image: Mathematical expression featuring a lowercase omega with a tilde above, followed by the subscript h y b in italic font style.] is the unknown eigenfrequency of the deformed structure, and [image: Mathematical variable a with a subscript 1, commonly used to represent the first term in a sequence or series.] and [image: Mathematical expression showing the lowercase italic letter a with a subscript two, commonly used to denote the second term in a sequence or series.] are the modal excitation coefficients of the unperturbed QNMs. The terms [image: Mathematical notation showing an uppercase italic V with a subscript i and j.] (with [image: Italic lowercase letters i and j separated by a comma, commonly used as mathematical indices or variables in equations.] = 1, 2) are evaluated through an integral of the modal fields over the surface [image: Mathematical expression showing an uppercase italic S with a lowercase italic r as a subscript, commonly used to denote a specific subset or sequence term.] of the initial (undeformed) structure: [image: Mathematical equation showing V sub i j equals the double integral over region S sub r of h times E i tilde star dot delta epsilon evaluated at omega j tilde times E j tilde d squared r.], where [image: Lowercase italicized letter h in a serif font, displayed in black on a white background.] is the deformation perpendicular to the surface boundary (it varies with the curvilinear coordinate), and [image: Mathematical notation showing a bold vector E with a tilde above it, a plus sign as a superscript, and a subscript j.] and [image: Mathematical expression showing bold uppercase E with both a tilde and an arrow above it, subscript j.] the electric fields of the initial (undeformed) normalized QNMs at the outer (+) or inner ([image: Black and white icon depicting a hand holding a smartphone, with a circular arrow on the screen suggesting a refresh or reload action. Simple line drawing with no background details.]) surface boundary. Outward deformations ([image: Mathematical expression showing the variable h is greater than zero.]) and inward deformation ([image: Mathematical notation showing the variable h is less than zero.]) deformations (see Figure 3A) correspond to permittivity changes of [image: Mathematical expression displaying the uppercase Greek letter delta followed by a lowercase epsilon, typically representing a change in epsilon or strain in scientific and engineering contexts.] and [image: Mathematical expression showing negative delta epsilon, with a minus sign followed by a capital Greek letter delta, and a lowercase Greek letter epsilon.], respectively, where [image: Mathematical formula shows delta epsilon equals epsilon subscript r e s minus epsilon subscript b.] is the difference in permittivity between the resonator and background.
[image: Panel a shows a schematic of a resonator boundary with labeled normal vectors and materials, illustrating regions with different permittivities. Panel b presents a line chart comparing theoretical and numerical results for a resonator parameter as a function of a diameter-to-height ratio, alongside a diagram labeling geometric dimensions of a cylindrical resonator atop a substrate.]FIGURE 3 | QNM interaction by deformation. (A) A nanoresonator is deformed with both inward and outward boundary changes. (B) Eigenfrequencies can be predicted with the analytical formula Equation 5 as we vary the shape. In (B), an exceptional point (denoted ‘EP’) is designed by deforming a nanoresonator. Full numerical calculations (circles) are compared to predictions obtained with Equation 5 (solid curves). Adapted from [72].
The [image: Mathematical notation showing the uppercase letter V with subscripts i and j, commonly used to denote an element in a matrix or tensor.] are generally complex numbers, with their imaginary parts arising from the non-Hermitian characteristics of the system. Typically, [image: Mathematical expression showing V sub one two is not equal to V sub two one.], however if [image: Mathematical equation showing delta epsilon of omega two is approximately equal to delta epsilon of omega one.], they are approximately equal.
The formula is derived using first-order approximations, ignoring contributions proportional to [image: Mathematical expression showing a lowercase italic h with a superscript two, representing h squared.] or higher-order terms for [image: Mathematical expression showing the variable V with subscripts i and j, commonly used to represent a matrix element or indexed value.]. Higher-order contributions can be included with more complex formulas. Nevertheless, except for specific cases where the first-order contribution vanishes due to symmetry, for instance, Equation 5 is accurate [72].
Using Equation 5, the new QNMs of the deformed structure are directly computed, enabling effective exploration of the parameter space to optimize the resonator shape. Figure 3B demonstrates the application of Equation 5 in designing nanoresonators that support exceptional points. This method significantly reduces the computation time needed to find the optimal design and provides insight into how geometric deformation influences mode hybridization.
3.2 Mode perturbation
QNM perturbation theory of electromagnetic resonators is particularly useful for cavity design and has been used in many applications, including evaluating optical resonator sensitivity for optical biosensing, inverse design of high-Q optical cavities [114], and understanding or engineering the interplay of classical electromagnetism with other physical phenomena or nonlinear processes, such as thermo-optics [115], Kerr [116, 117], or electron spill-out effects [43].
3.2.1 Perturbation theory for understanding refractive index changes
Traditionally, designing optical sensors involves calculating numerous resonance spectrum variations for various perturbation instances (such as position, shape, and material), which is time-consuming when using a parametric frequency scan approach. Furthermore, for very small perturbations, simulations must achieve extremely high accuracy to ensure that signal changes caused by the perturbation are not obscured by numerical noise.
Small perturbations cause a small change of the complex frequency of all the QNMs, as illustrated in Figure 4A. The small variation is conveniently predicted using cavity perturbation theory.
[image: Figure containing four labeled panels: (a) shows a cube labeled ε_res with incident light, accompanied by two spectral line plots illustrating frequency shift and linewidth broadening; (b) presents a yellow sphere in a blue box labeled x, then in a green box labeled x minus Δx; (c) depicts a cross-section of a material with periodic grooves; (d) illustrates a gold nanostructure with a blue inset labeled “chiral medium.”]FIGURE 4 | QNM perturbation theory for optical biosensors. (A) The introduction of a perturbation causes a resonant frequency shift [image: Mathematical notation displaying the Greek uppercase delta symbol followed by the uppercase omega symbol, often used to represent change in solid angle or difference in angular frequency.] and a linewidth change [image: Mathematical expression containing the uppercase Greek letter delta followed by the uppercase Greek letter gamma, typically representing a change in a quantity denoted by gamma.] in the spectral response (Equation 6) [118]. (B) The perturbation formula of Equation 6 has been extended for refractive-index changes extending over the entire open space surrounding the resonator [119]. (C) A perturbation formalism also exists for periodic structures [120]. (D) Perturbation formula has been developed for studying the index change caused by chiral mediums [41]. (B) is adapted from [119]; (C) is adapted from [120]; (D) is adapted from [41].
The correct QNM normalization allows for deriving an accurate first-order perturbation formula for non-Hermitian systems [118].
[image: Mathematical equation showing the change in frequency Δω_m as a function of -ω̅_m, a triple integral over region Ω_pert involving Δε, electric fields Ē_m, and an order term O(|Δε|²), labeled equation six.]
where [image: Mathematical expression showing uppercase Greek letter Omega followed by the letters p, e, r in italic subscript font.] is the finite volume of the perturber, and [image: Mathematical equation showing delta epsilon equals epsilon subscript p e r minus epsilon subscript u, using Greek letters and subscripts.] is the difference in permittivity between the perturbed and unperturbed systems.
The predictive force of Equation 6 has been successfully validated for high-Q cavities by comparison with experimental data [121] and for low-Q plasmonic nanoresonators by comparison with full-wave computational data for various perturber shapes [118].
We may have noticed a difficulty also encountered in gravitational wave theory [80–84]: as the separation distance between the perturber and the resonator increases, the QNM field experienced by the perturber diverges. According to Equation 6, [image: Mathematical notation showing capital delta followed by omega with a tilde, subscripted by m, representing a change in frequency or angular speed, typically used in engineering or physics contexts.] should also diverge, contradicting our intuitive expectations that remote perturbers should not affect resonator characteristics. This apparent contradiction has been recently studied in detail [89]. The conclusion is clear: Equation 6 remains valid regardless of how far away the perturbations are.
The issue of remote perturbations and divergent coupling requires much care as it leads to spectral instabilities. The complex frequency plane becomes increasingly populated with numerous Fabry-Perot QNMs, and the optical response of the perturbed system is dominated by these Fabry-Perot QNMs instead of the initially perturbed one. Similar QNM instability issues are encountered in the gravitational wave physics of black holes [80–84, 90–92]. The instability, also called ‘the flea in the elephant effect’, is caused by a small and remotely localized perturbation added to the black hole environment.
Equation 6 allows for the analytical evaluation of a crucial figure-of-merit (FoM) for optical resonators used in sensing applications, given by [image: Mathematical expression showing FoM equals S divided by the product of delta and the Greek letter lambda.]. Here [image: Lowercase italic letter s in a serif font, presented in black on a white background.] represents the sensitivity, defined as the wavelength shift per unit change of the embedding medium refractive index, and Δλ is the bandwidth of the resonance. Since [image: Mathematical expression showing one divided by delta lambda, where delta is represented by the Greek capital letter Δ and lambda by the Greek letter λ.] is proportional to the Q factor and [image: Lowercase serif letter s in black font on a white background.] is proportional to [image: Mathematical expression showing capital delta, followed by omega with a tilde above it and subscript m.], from Equation 6, one can readily realize that [image: Mathematical equation showing figure of merit, FoM, is proportional to quality factor Q sub m divided by mode volume V sub m, with V sub m marked by a tilde above it.], implying that an excellent candidate for an optical sensor should either possess a large [image: Uppercase serif letter Q in black on a white background. The letter is bold and prominently displayed in the center of the image.] or a small mode volume.
The QNM perturbation toolbox for nanophotonic biosensor design has significantly expanded in recent years [41, 119, 120, 122, 123]. Equation 6 is valid for finite resonators perturbed by perturbers with finite size. This result has been extended to perturbations that cover the entire open space surrounding finite size resonators or periodic structures [119, 120, 123]. Equation 6 has also been extended to study systems that are perturbed by magnetic objects [122] or chiral molecules [41]. Refer to Figure 4 for more pictural details.
More recently, QNM perturbation theory has been further extended to predict the impact of perturbations on the optical scattering matrix [9, 41]. This extension allows for the prediction of variations in optical responses, such as changes in spectrum intensity and lineshape, beyond just frequency shifts and linewidth changes. The theory has proven crucial in the design of nanophotonic sensors for chiral molecules [124, 125]. It facilitates the rapid computation of the difference in circular dichroism spectra (ΔCD) with and without a chiral molecule. This is particularly important because, according to one of the authors [126], if the Pasteur parameter κ of the chiral molecule is extremely small, obtaining ΔCD can be computationally expensive due to the need for fine meshing to ensure the signal is above numerical noise.
3.2.2 Inverse design of optical resonators
QNM perturbation theory can be especially useful for inverse design. Equation 6 is not accurate for this critical case, as boundary variations cause abrupt field changes inside the perturbation volume [image: Mathematical expression showing the uppercase Greek letter omega followed by the subscript per, commonly used to represent a specific parameter or quantity related to omega.]. This issue can be resolved using a technique known as local-field correction [127], which accounts for abrupt field changes by considering boundary conditions or the continuity of the electric field. By using local-field correction and assuming the perturbation does not cause hybridization between different QNMs, the frequency shift caused by shape deformation is given by [image: Mathematical equation showing: Delta omega-m equals negative omega-m times a double integral over S sub r of h times E-m star dot Delta epsilon of omega-m times E-m bar, d squared r.] [72, 118], where the variables are the same as those used in Equation 5. In fact, Equation 5 reduces to the present formula in the absence of mode hybridization.
One recent application of the formula can be found in [114], where QNM perturbation theory was used in combination with a gradient-based algorithm to maximize the Q-factor of cavities formed in dielectric slabs with disordered nanoholes.
3.2.3 Quantum effect
QNM perturbation theory has also been successfully applied to understand the role of quantum effects in the response of nanoresonators with ultrasmall volumes, such as NPoM structures or picocavities. In these systems, strong confinement leads to non-classical effects, such as nonlocality and electron spill-out, which cannot be predicted by Maxwell’s equations alone [128]. To accurately model these effects, numerical sampling must be significantly smaller than the Fermi wavelength, which is typically well below 1 nm [129]. This poses a significant challenge for incorporating quantum effects into classical Maxwell solvers.
QNM perturbation theory can potentially address this issue by treating non-classical effects as first-order perturbations of classical QNM fields. This approach allows for the analytical prediction of eigenfrequency changes due to non-classical corrections [43]. Recent advancements have further streamlined the computation of optical responses, such as Purcell factors and field enhancement factors [45]. They offer a quick method to evaluate how non-classical effects impact the optical properties of nanoresonators, including field confinement capability and scattering efficiency.
4 PERSPECTIVES AND CONCLUSION
Over the past decade, substantial advancements have been made in electromagnetic QNM theory, effectively addressing numerous critical challenges. The normalization of QNMs has been resolved [10–14], the completeness of QNM expansions has been confirmed for a variety of systems [10, 20, 21, 74], and the physical implications and causes of QNM divergence are beginning to be understood [89].
These developments have facilitated the creation of various analytical QNM frameworks that significantly improve the design and comprehension of micro and nanoresonators. In this review, we have highlighted recent progress, showcasing their benefits in offering greater numerical efficiency and physical insights compared to traditional design approaches. We hope this will encourage a wider adoption of QNMs and further innovation in electromagnetism and other areas of physics.
Despite these successes, research on QNMs in electromagnetism continues vigorously and several open questions remain.
One of the foremost issues is the convergence of QNM reconstruction, as described in Equations 2, 3. Achieving robust convergence is complex and influenced by numerous factors, including the material properties of the resonators [68], the choice of the formula for [image: Mathematical notation showing the Greek letter alpha with a subscript m.] [17, 18], and the configuration of perfectly matched layers (PML) used for regularization [19]. Currently, the community lacks a definitive guideline on optimizing these parameters to improve convergence.
Another unresolved issue is understanding the existence of various QNM decomposition formulas. As discussed in Section 2.2, in dispersive systems, the formula for [image: Mathematical expression showing the Greek letter alpha with a subscript m.] is sensitive to the choice of auxiliary fields and source terms. Although all formulas share a resonant pole term [image: Mathematical expression showing the reciprocal of the difference between omega sub m with a tilde and lowercase omega in parentheses.], they differ in a non-resonant term [image: Mathematical expression showing the function f of omega, where f is a variable or function and omega is typically used to represent angular frequency or another variable.], which is a slow-varying function of [image: Lowercase Greek letter omega symbol, commonly used in mathematics, physics, and engineering to represent angular frequency or ohms, shown in a bold serif font on a white background.]. Recent studies have shown that certain choice of [image: Mathematical expression showing the function f with argument omega in parentheses, representing f of omega.] leads to [image: Mathematical variable shown as a lowercase Greek letter beta with a subscript "m", rendered in italic font.] in Equation 3, derived from [image: Greek lowercase alpha with the subscript m, representing alpha sub m in mathematical notation.], exhibiting an instantaneous response term [27, 130]. It would be important to verify that [image: Mathematical expression showing lowercase f as a function of lowercase omega in parentheses.] for all the formulas offer a consistent physical interpretation.
From an application standpoint, there are numerous domains where QNM theory has yet to be fully utilized. For instance, QNM theory could potentially be applied to the analysis of spectra in photoemission electron microscopy (PEEM) [24], electron energy-loss spectroscopy (EELS), or high-order nonlinear optics [131], offering new insights and computational methods in these fields.
Finally, the recent interest in time-varying nanoresonators [132, 133], whose optical properties can be modulated on time scales comparable to the oscillation period of electromagnetic fields, has opened up new avenues for QNM research. Extending the QNM framework to model the optical response of these dynamic, non-Hermitian systems could help discover a wide range of novel effects and applications.
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The recently reported compactified hyperboloidal method has found wide use in the numerical computation of quasinormal modes, with implications for fields as diverse as gravitational physics and optics. We extend this intrinsically relativistic method into the non-relativistic domain, demonstrating its use to calculate the quasinormal modes of the Schrödinger equation and solve related bound-state problems. We also describe how to further generalize this method, offering a perspective on the importance of non-relativistic quasinormal modes for the programme of black hole spectroscopy.
Keywords: quasinormal modes (QNMs), optical soliton, numerical method, black hole spectroscopy, spectral instability, Schrödinger equation

INTRODUCTION
Quasinormal modes (QNMs) are complex frequency modes which characterize the resonant response of a system to linear perturbations. They are prevalent in the physics of waves, with special prominence in optics and gravitational physics. In optics, QNMs are useful for understanding the behaviour of resonant photonic structures, such as plasmonic crystals, nanoparticle traps, metal gratings, and optical sensors [1–5]. In gravitational physics, they are thought relevant to tests of black hole no-hair conjectures [6–8], and central to the emerging project of black hole spectroscopy with gravitational waves [9, 10]. While the QNM literature in optics treats dispersion as a matter of necessity [11, 12], the prevailing methods in gravitational physics are concerned with non-dispersive, relativistic wave propagation [13–15]. We believe there are good reasons to go beyond relativistic wave propagation in the gravitational context. A variety of quantum gravity models predict the dispersive propagation of gravitational waves [16–19], for example, in models with a non-zero graviton mass, violation of Lorentz invariance, and higher dimensions [20–22]. Indeed, it has been proposed that QNMs may be used to probe gravity beyond general relativity, through imprints on radiative emission from black holes [23–27]. More generally, we anticipate that developments of QNM methods for non-relativistic operators will broaden the scope of existing questions in QNM theory.
Numerical methods underpin much of the progress in QNMs over recent years. Indeed, efficient schemes for computing the QNMs of potentials are likely indispensable for future developments in both theory and the modelling of observations. Recently, the so-called compactified hyperboloidal method [28–31] has proven to be a powerful tool, finding wide use in the computation of black hole QNM spectra and bringing within reach the systematic exploration of their connection to pseudospectra [32–39]. Beyond this, it is natural to ask whether the method can also find use in optical systems. We believe it can, but it cannot be widely applied in optics without modification. This is because optical media create non-relativistic and dispersive dynamics, while the present formulation of the method treats only relativistic and non-dispersive dynamics, as may be seen from its use of hyperbolic spatial slices penetrating the black hole horizon and future null infinity.
A notable optical system that motivates the development of a hyperboloidal method for optics is the fiber optical soliton, which has recently been established as a black hole analogue with an exactly known QNM spectrum [40]. As such, the soliton is the ideal system with which to develop the method, as the resulting numerics can be compared both to known analytical results and to the numerics of the corresponding relativistic system. Moreover, perturbations to the soliton realize the Schrödinger equation with a Pöschl-Teller potential, making the soliton a promising experimental platform with which to address questions in QNM theory, such as the physical status of spectral instabilities observed in QNM numerics, where the Pöschl-Teller potential is paradigmatic [30, 41–44].
In this article, we outline a new method for the numerical computation of QNM spectra for operators with a non-relativistic dispersion relation, by adapting the compactified hyperboloidal method. We begin by showing how to compute the QNMs of the Schrödinger equation for an arbitrary potential, noting that the relativistic and non-relativistic spectra are related by a simple endomorphism. We subsequently demonstrate the method for the Pöschl-Teller potential, explicitly calculating the soliton QNM spectrum numerically. Finally, we sketch how to develop these ideas in order to treat generalized non-relativistic dispersion relations, and discuss potential applications of the more general method, with emphasis on its future use in black hole spectroscopy.
COMPACTIFIED HYPERBOLOIDAL METHOD FOR THE SCHRÖDINGER EQUATION
We begin by considering a scalar field [image: Lowercase Greek letter phi, commonly used in mathematics and science to represent angles, functions, or the golden ratio. Black serif type, upright orientation, white background.] which obeys a Schrödinger equation of the form,
[image: Mathematical equation showing open parenthesis, i times partial derivative sub t, minus Laplacian operator, plus V, close parenthesis, phi, equals zero, labeled as equation one.]
with [image: Uppercase italic letter V in a serif font, centered on a white background representing a mathematical or scientific variable.] a potential that vanishes for [image: Mathematical expression showing r approaches plus or minus infinity, represented as r arrow right plus minus infinity symbol.]. The boundary conditions for QNMs describe solutions that transport energy away from the potential, as discussed in more detail in [40]. It can be shown, using the asymptotic dispersion relation of Equation 1, that QNM solutions must diverge for [image: Mathematical notation displaying r approaches positive or negative infinity.]. That is, the asymptotic form of the solution must be [image: Mathematical expression showing phi is proportional to the exponential of open parenthesis i K r minus i omega t close parenthesis.], with the requirement that [image: Mathematical expression showing Im, representing the imaginary part, followed by K in italics within parentheses.] is positive and negative on the left and right, respectively. These spatial divergences are problematic for numerical methods, but they can be removed by using a hyperboloidal coordinate transformation. Following [30], we adopt coordinates,
[image: Mathematical equations showing t equals r minus h of x, r equals g of x, followed by equation number two in parentheses.]
where [image: Mathematical notation showing the functions g of x and h of x, written in italics and separated by a comma.] are yet to be given, and [image: Mathematical expression showing the partial derivative with respect to tau is equal to the partial derivative with respect to t, using italicized variables.] by construction. In the relativistic context, these are used to compute QNMs of black holes, with [image: Mathematical expression in italic font displaying h of x, representing a function h with variable x enclosed in parentheses.] chosen so that contours of [image: Lowercase italic letter t in a serif font, centered on a white background.] tend to null curves that intersect the horizon and future null infinity. There, Equation 2 is intended to respect the asymptotic hyperbolic geometry of the spacetime, giving rise to bounded and well-behaved QNM solutions. However, there is no preferred speed in our non-relativistic system, meaning that no coordinate transformation will consistently give rise to bounded solutions. This requires a different approach.
In order to construct bounded QNM solutions, we first parameterize [image: Mathematical expression showing h of x, where h is a function and x is its variable, presented in italicized font.] by a new variable [image: Mathematical expression showing a lowercase italic v with a subscript italic g, commonly representing group velocity in physics or engineering contexts.] such that contours of [image: Lowercase italicized letter t in a serif font against a white background.] tend asymptotically to trajectories directed outwards with [image: Mathematical expression showing the magnitude of the derivative of r with respect to t equals v subscript g.]. In particular, we write
[image: Mathematical expression showing two functions: g of x equals hyperbolic arctangent of x and h of x equals the reciprocal of two v sub g times the logarithm of one minus x squared, followed by equation number three in parentheses.]
where [image: Mathematical expression showing the function g of x, written as g parenthesis x parenthesis.] compactifies the space such that the real line of [image: Lowercase italic letter r in a serif font, displayed in black on a white background.] gives [image: Mathematical expression indicating that the variable x belongs to the closed interval from negative one to one, inclusive.] if we close the set by including the boundaries. In the Supplementary Appendix, we show that QNMs whose asymptotic group velocity is [image: Mathematical notation displaying the variable v with a subscript g, commonly representing group velocity or a variable indexed by g in scientific contexts.] in [image: Mathematical expression showing the variables r and t enclosed in parentheses, indicating an ordered pair or coordinates written as left parenthesis r comma t right parenthesis.] coordinates are finite at the spatial boundaries, [image: Mathematical equation showing x equals plus or minus one.]. This enforces the boundary conditions for these modes, but does not guarantee that any such modes exist.
In contrast to the relativistic case, dispersion in non-relativistic systems means that group and phase velocities are not the same. As a result, QNMs whose asymptotic phase velocity is [image: Mathematical equation showing v sub p is not equal to v sub g.] in [image: Mathematical expression showing the variables r and t enclosed in parentheses, typically representing coordinates or parameter pairs.] coordinates will undergo phase divergences at the boundaries. This can be removed by a phase-rotation of the field,
[image: Mathematical equation with a hat symbol on phi equals e to the power of negative delta times log of the quantity one minus x squared over two, multiplied by phi subscript zero, labeled as equation four.]
where we introduce [image: Mathematical equation showing delta equals i times the difference between v sub g and v sub p, divided by two.], so that the phase rotation is parameterized by both [image: Mathematical variable v with a subscript g, commonly used to denote group velocity in physics or engineering contexts.] and [image: Mathematical expression showing the variable v with a subscript p, typically representing a parameter such as phase velocity or another physical quantity with subscript notation.]. The form of the required phase rotation follows from the asymptotic dispersion relation of Equation 1 and the choice of height function, [image: Mathematical expression in italics showing h of x, representing a function h with input variable x.]. Intuitively, it depends on the mismatch of the two velocities. The result is that the field [image: Mathematical symbol for phi with a hat and a right-pointing arrow above it, commonly used to represent a unit vector or a specific direction in physics or mathematics.] is bounded and well-defined on the new space.
The cost of the above construction is that we introduce two unknown real parameters, [image: Mathematical variable expression showing lowercase italic v followed by a lowercase italic g as a subscript, often representing group velocity in physics contexts.] and [image: Mathematical notation showing a lowercase italic v with a subscript lowercase italic p, commonly used to represent a variable such as phase velocity in scientific contexts.], into the problem. In fact, identifying velocity pairs that correspond to actual QNM solutions is as difficult a problem as determining the QNM spectrum itself. This may be seen by the relation,
[image: Mathematical expression showing Omega equals negative one half nu sub s times parenthesis nu sub p plus i times the square root of nu sub s times parenthesis nu sub s minus two nu sub p close parenthesis, equation labeled five.]
which we derive, in the Supplementary Appendix, from the asymptotic dispersion relation of Equation 1. This holds true for any mode whose asymptotic group and phase velocities are [image: Italicized lowercase letter v followed by a subscript italicized lowercase letter g, representing the variable v sub g.] and [image: Mathematical notation showing lowercase italic v with subscript italic p, commonly used to represent a variable such as phase velocity in physics equations.], respectively. The existence of a relation such as Equation 5 is a direct consequence of dispersion. In a relativistic system, all asymptotic speeds are the speed of light, so [image: Greek capital letter omega symbol in bold black, typically used in mathematics, science, and engineering to denote ohms, angular frequency, or the last item in a sequence.] cannot be expressed in terms of asymptotic velocities. This difference between the relativistic and non-relativistic methods is crucial. Equations 3, 4 mean we obtain an equation of motion, and an eigenvalue equation for the complex frequency [image: Uppercase Greek letter omega symbol, commonly used to represent electrical resistance in ohms or to denote concepts such as the last or end in various contexts.], both of which are parameterized by [image: Mathematical notation displaying the variable v with a subscript g, often used to represent group velocity in physics and engineering contexts.] and [image: Mathematical variable v, subscript p, presented in italic serif font.]. The significance of Equation 5 is that these additional parameters can ultimately be eliminated, leaving [image: Greek capital letter Omega symbol in bold black font, resembling an upside-down horseshoe or the last letter of the Greek alphabet, often used to denote resistance or the end in scientific contexts.] as the only unknown in the problem.
We proceed as in [30], by rewriting Equation 1 in the new coordinates and performing a first-order reduction in time, introducing the auxiliary field [image: Mathematical symbol psi with a caret above it, representing the quantum mechanical wavefunction operator or an estimated value in physics or mathematics.]. The equation of motion becomes [image: Mathematical equation showing partial derivative with respect to tau of the function phi with a hat symbol equals psi with a hat symbol.] with
[image: Mathematical equation showing x squared times the second derivative of psi equals J sub one phi plus J sub two psi hat, labeled as equation six.]
where [image: Mathematical notation showing an uppercase italic J with a subscript one, typically used to represent a Bessel function of the first kind or an indexed variable.] and [image: Italicized mathematical expression showing capital J with a subscript two.], given in the Supplementary Appendix, are spatial operators depending on the potential and the asymptotic velocities. In contrast to the relativistic method, [image: Mathematical expression showing the partial derivative with respect to tau of the psi function, where psi has a hat symbol above it.] cannot be isolated by division in Equation 6 because its pre-factor vanishes at [image: Mathematical equation showing x equals zero.]. This occurs because the contours of [image: Lowercase italic letter t in a serif typeface, centered on a white background.] have to “turn around” in order to be outgoing in the [image: Mathematical expression showing the ordered pair left parenthesis r comma t right parenthesis, with both variables in italic font.] coordinates. Our alternative approach is to construct [image: Mathematical expression showing the partial derivative with respect to tau of psi, where psi has both a hat and a tilde accent.] using a Taylor series around [image: Mathematical expression displaying x equals 0.], obtaining the required derivatives by repeated differentiation of Equation 6. In fact, this treatment is necessary only for terms indivisible by [image: Mathematical expression showing the variable x raised to the power of 2, representing x squared or x times x.], and we obtain a simpler result if we initially separate the terms in this way. This separation is mostly trivial, but for the potential, where we write [image: Mathematical equation showing V equals V sub zero plus x times V sub one plus x squared times V tilde of x.], with [image: Mathematical notation showing an uppercase italic V with a subscript zero, commonly representing an initial velocity or initial value in equations.] and [image: Mathematical variable V with a subscript 1, read as V one.] Taylor series coefficients about [image: Mathematical expression showing x equals zero.] and [image: Mathematical symbol showing a bold, italic uppercase V with a tilde above it, commonly used to represent a vector quantity in physics or engineering contexts.] accounting for the remaining terms. We obtain
[image: Mathematical equation showing partial derivative of psi hat with respect to t equals L one phi hat plus L two psi hat, labeled equation seven.]
where [image: Mathematical expression showing an uppercase italic letter L with a subscript one, commonly representing the L one norm in mathematics.] and [image: Mathematical notation displaying a capital letter L with a subscript two, commonly representing the L two norm or Euclidean norm in mathematics and machine learning contexts.] are spatial operators that we derive in the Supplementary Appendix. Equation 7 is formally identical to that obtained in the relativistic method [30], but the operators are quite different, containing arbitrarily high spatial derivatives and depending on the asymptotic velocities.
In matrix form, we write [image: Mathematical equation displaying i times partial derivative of u with respect to tau equals L times u.] with
[image: Mathematical notation showing vector u defined as a column with components phi-hat and psi-hat, and matrix L defined as i times a two-by-two matrix with entries zero, one, L1, and L2.]
and obtain the mode equation
[image: Mathematical expression showing Lu equals Omega times u, labeled as equation eight in parentheses.]
The operator [image: A bold, italicized capital letter L in a serif typeface, centered on a white background.] is parameterized by [image: Mathematical notation displaying the variable v with a subscript g, commonly used to represent group velocity in physics.] and [image: Mathematical notation displaying the variable "v" with a subscript "p".], giving rise to a family of operators. For each operator, Equation 8 defines a unique eigenvalue problem and a corresponding spectrum. However, only a subset of the frequencies from these spectra obey Equation 5, and it is this subset which comprises the QNM spectrum of Equation 1. Using Equation 5 to eliminate [image: Mathematical variable v with subscript g, typically representing group velocity in physics or engineering contexts.] and [image: Mathematical expression showing italic letter v subscript p.], one obtains a problem in which the frequency [image: Greek uppercase omega symbol in black with a bold, curved shape and pointed ends at the base, commonly used in physics to represent electrical resistance or angular velocity.] is the only unknown and all solutions correspond to QNMs. In this formulation, [image: Uppercase italicized letter L in a serif font displayed in black against a white background.] is parameterized by [image: Uppercase Greek letter omega symbol in bold black font on a white background, typically used to represent ohms in electrical contexts or as a mathematical or scientific symbol.], which constitutes an essential difference from the relativistic method, wherein the corresponding operator does not depend on [image: Greek capital letter omega symbol shown in bold, often used to represent electrical resistance in ohms or to signify the end or last in a series.] [30]. Importantly, Equation 8 unambiguously determines the QNM spectrum.
Equation 8 is discretized using [image: Uppercase serif letter N in black, presented against a white background. The letter features strong diagonal and vertical lines with subtle contrast between thick and thin strokes.]-point Chebyshev nodes of the second kind. In this way, fields are approximated by [image: Uppercase letter N in a serif font, displayed in black on a white background.]-dimensional vectors and spatial operators by [image: Uppercase serif letter N in black, centered on a white background. The typeface style is bold and the overall image is slightly blurred.]-dimensional matrices. It follows that the vector [image: Lowercase italic letter u in a serif font displayed on a white background.] and the operator [image: Italicized uppercase letter L in a serif font, shown in black on a white background.] are approximated by [image: Mathematical expression showing the term two N, with the numeral two and an uppercase italicized N, commonly used to represent a quantity in equations.]-dimensional vectors and matrices, respectively. The result is
[image: Mathematical equation showing L superscript N times u superscript N equals uppercase Omega times u superscript N, labeled with equation number nine in parentheses.]
The QNM spectrum may then be obtained from Equation 9 in the usual way using [image: Mathematical equation showing det left parenthesis L superscript N minus omega times identity right parenthesis equals zero.]. In the Supplementary Appendix, we show that this determinant may be rewritten as that of a smaller [image: Capital letter N in a serif typeface displayed in black on a white background.]-dimensional matrix, [image: Italic uppercase letter M in a serif font, displayed in black on a white background.]. Its elements are quadratic in the square root of the QNM frequency, giving rise to a polynomial of degree [image: Mathematical expression displaying two followed by an uppercase italicized letter N, commonly used in scientific or mathematical contexts to represent a diploid chromosome number or a doubled quantity.] in [image: Mathematical expression showing the square root symbol applied to the uppercase Greek letter omega, commonly interpreted as the square root of omega.]. For a given potential [image: Uppercase italic letter V in a serif font style, commonly used in mathematical notation or scientific contexts. Black letter appears on a white background.], the roots may be numerically determined in order to give [image: Text displaying the characters two and uppercase N in a serif font, often used in mathematics or biology to represent diploid chromosome number.] of the QNM frequencies. The fact that the frequency enters via its square root is a result of the Schrödinger equation having a first derivative in time, rather than a second derivative in time like the wave equation. Indeed, the exact QNM spectra of the Schrödinger and wave equations are related to each other by [image: Mathematical equation showing i times the square root of uppercase omega equals lowercase omega.], as was elaborated in [40]. This means we can relate the results of the non-relativistic method to those of the relativistic method, allowing us to better evaluate the accuracy of the new method.
QUASINORMAL MODES OF THE PÖSCHL-TELLER POTENTIAL
In this section, we use the above numerical method to calculate the QNMs of the Schrödinger equation with the Pöschl-Teller potential,
[image: Mathematical expression showing V equals V naught times the square of the hyperbolic secant of r, which equals V naught times the quantity one minus x squared, followed by equation number ten in parentheses.]
which serves as an exemplar for both the relativistic and non-relativistic methods. The QNMs of Equation 10 are finite polynomials in the compactified spatial coordinate, with the result that an [image: Uppercase letter N displayed in a bold, serif font against a white background.]-point discretization reproduces the first [image: Mathematical expression displaying the symbol two followed by a capital italic N.] QNMs to arbitrary precision. The Pöschl-Teller potential is also ideal because the corresponding QNM spectrum of the Schrödinger equation is given analytically by
[image: Mathematical equation showing Omega sub n equals the square of n plus one-half minus i times the square root of V naught minus one-fourth, enclosed in brackets, labeled as equation eleven.]
allowing us to verify our results [40]. In regards to the non-relativistic method, we note that the Pöschl-Teller potential is especially simple because all its QNMs have the same [image: Mathematical notation showing the variable v with a subscript g, commonly representing group velocity in physics or engineering contexts.] parameter, which is a result of the fact that [image: Mathematical expression showing the imaginary unit i multiplied by the square root of the Greek letter capital Omega, often used in advanced mathematics or physics contexts.] is aligned along vertical lines in the complex plane for this potential. While this simplicity does not influence the operation of the method, it does allow us to more easily assess the spectrum. Lastly, we partition the Pöschl-Teller potential with [image: Mathematical expression showing capital V subscript one equals zero.] and [image: Mathematical equation showing a vector V with a tilde above it equals negative V sub zero, with all variables in bold font.], which reinforces the simplicity of the potential.
Now, we make some comments on the specifics of our implementation of the method. We find the calculation is significantly more efficient for odd [image: Uppercase letter N in a serif font displayed in black on a white background.]. This is a consequence of discretization. The Taylor series expansions of [image: Mathematical expression showing a capital letter L with a subscript one, commonly representing the L1 norm or Manhattan norm in mathematics.] and [image: Mathematical expression showing a capital letter L with a subscript two, commonly representing the L two norm or Euclidean norm in mathematics and machine learning contexts.] involve spatial derivatives at [image: Mathematical expression showing x equals zero.], which are obtained by integration with a Dirac delta function in the continuous case, and by matrix multiplications in the discretized case. For odd [image: Uppercase letter N in a serif font, displayed in black on a white background. Character edges appear slightly blurred, suggesting low image resolution.], the relevant matrix is zero everywhere but a central column whose entries are unity. However, for even [image: Uppercase serif letter N in black on a white background, slightly blurred at the edges.], the matrix is everywhere populated, and this increases the computational cost of the calculation. We also find that evaluating the determinant of the large symbolic matrix [image: Italic uppercase letter M in a serif font, presented in black on a white background. Character appears centered and is clearly legible.] is inefficient, so we instead sample the determinant in the complex plane and reconstruct the symbolic determinant using polynomial interpolation. This uses that the method produces a polynomial of degree [image: Mathematical expression displaying the number two followed by an uppercase italic letter N, commonly representing two times the value of N in mathematical contexts.] in [image: Mathematical notation showing the square root symbol applied to the Greek capital letter omega.]. Importantly, this is true no matter what potential we consider.
In Figure 1A, we plot the exact QNM frequencies of the unperturbed Pöschl-Teller potential, given in Equation 11 [40] alongside those calculated by the new numerical method, with a resolution of [image: Mathematical notation displaying the variable N equals two hundred one.]. We find excellent agreement for all frequencies, with an error which may be made arbitrarily small by increasing the working precision. These results are given in Figure 2. We also calculate the QNM spectrum of a perturbed Pöschl-Teller potential,
[image: Mathematical equation showing V equals V sub zero times one minus x squared plus epsilon delta V, followed by a comma and the equation number twelve in parentheses.]
where [image: Mathematical expression showing epsilon equals ten raised to the power of negative thirty.] and [image: Mathematical notation displaying the Greek letter capital delta followed by the capital letter V, commonly used to represent a change in velocity or voltage in scientific contexts.] is a randomly chosen polynomial of degree 9, shown in the inset of Figure 1. We find that the spectrum for Equation 12 closely resembles the unperturbed spectrum up to the [image: Text displaying "10th" with "th" in superscript, shown in a serif font style.] overtone index, beyond which the frequencies are significantly displaced from their unperturbed values, as shown in Figure 2. These numerical results are then indicative of spectral instabilities that have been reported by previous authors [30, 45, 46].
[image: Figure containing two panels labeled A and B, each displaying scatter plots with markers in blue, green, and purple. Panel A shows data distributed along the real and imaginary axes labeled Re(Ω) and Im(Ω). Panel B presents a scatter plot labeled Re(ivΩ) and Im(ivΩ), with an inset plot showing two overlaid line graphs in blue and green.]FIGURE 1 | QNM spectra for the Schrödinger equation with a potential [image: Mathematical equation showing V equals V naught times hyperbolic secant squared of r plus epsilon times delta V.], where [image: Mathematical expression showing V subscript zero equals one.] and [image: Greek uppercase letter delta followed by uppercase letter V, commonly used in scientific and mathematical contexts to represent a change in velocity or a difference in a variable.] is the perturbation shown in green in the inset, alongside the unperturbed Pöschl-Teller potential in blue. The red dots and blue boxes correspond to the unperturbed Pöschl-Teller potential [image: Mathematical expression showing left parenthesis, epsilon equals zero, right parenthesis.], with red dots ([image: Bright red solid circle on a plain white background with no text, markings, or additional elements visible.]) given by the exact formula and blue boxes ([image: Abstract digital graphic showing a white square centered on a blue background with a soft, glowing gradient effect around the edges. No text or figurative elements are present.]) numerically determined by the new method. The green crosses ([image: Green X-shaped icon with slightly blurred edges on a white background, commonly used to indicate a close, cancel, or delete action in digital interfaces.]) correspond to a perturbed potential [image: Mathematical expression showing epsilon equals ten raised to the power of negative thirty, with epsilon represented by the Greek letter.] and are also numerically determined. (A) Displays the three QNM spectra, while (B) Displays the same spectra under the transformation [image: Mathematical expression showing the Greek letter Omega with a rightward arrow pointing to i times the square root of Omega.], which relates the spectra to those of a corresponding relativistic operator.
[image: Scatter plot shows log base ten of the difference between two values, labeled as Ωnum and Ωexact, versus overtone index n on the x-axis. Blue squares represent ϵ equals zero, and green X marks represent ϵ equals ten to the power of negative thirty. Green data points increase sharply from negative forty to zero, while blue points remain nearly constant close to negative forty. A legend identifies the symbols.]FIGURE 2 | Comparisons of exact and numerically determined QNM frequencies for the Schrödinger equation with a potential [image: Mathematical equation showing V equals V sub zero times hyperbolic secant squared of r, plus epsilon multiplied by delta V.], where [image: Mathematical equation showing V subscript zero equals one.] and [image: Uppercase Greek letter delta followed by an uppercase Latin letter V, commonly used to denote change in velocity or potential difference in scientific contexts.] is the perturbation shown in Figure 1. The first 21 QNM frequencies are displayed. The unperturbed [image: Mathematical expression showing left parenthesis, epsilon equals zero, right parenthesis.] spectrum is recovered well by the new numerical method, with errors smaller than [image: Mathematical expression showing ten raised to the power of negative thirty-seven, written as ten superscript minus thirty-seven.] for the chosen working precision. We also obtain the perturbed [image: Mathematical expression showing epsilon equals ten raised to the power of negative thirty, with negative thirty written as a superscript exponent.] spectrum and find the deviation from the exact spectrum grows rapidly with overtone index, [image: Lowercase italic letter n in a sans-serif typeface displayed in black on a white background.], as in previous works on spectral instability.
The simple relationship between the QNMs of the Schrödinger and wave equations becomes visible under the transformation [image: Mathematical equation showing Omega transforms into i times the square root of Omega, with an arrow indicating the transformation.], which maps the spectrum of the former onto that of the latter. In Figure 1B, we plot [image: Mathematical expression showing lowercase i multiplied by the square root of uppercase Greek letter Omega.] for the same spectra as above, obtaining the recognizable vertical lines in the complex plane that are characteristic of the wave equation with a Pöschl-Teller potential. In this way, we illustrate how one can cross-verify the results of the relativistic and non-relativistic methods against each other, for arbitrary potentials.
DISCUSSION
In this section, we discuss potential applications of the non-relativistic compactified hyperboloidal method that we developed in the preceding text, suggesting well-motivated directions in which to further develop the method and providing a sketch of how this can be achieved. The main motivations for this method were the modelling of QNMs of optical solitons, and the development of a framework within which one can treat QNMs in quantum gravity models with dispersive gravitational wave propagation. Beyond these, we note that this non-relativistic method may be employed equally well in any system governed by a Schrödinger equation equipped with a general potential. In this paper, we numerically calculated QNM spectra for the Pöschl-Teller potential and perturbations of that potential, finding agreement with earlier works [40, 47, 50]. For potentials with different long-range behaviour than the Pöschl-Teller potential, one typically requires different choices of height function [image: Mathematical expression displaying h of x in italic serif font, with h and x enclosed in parentheses.], but this requirement is shared by the relativistic method, and may be addressed by the same techniques [29, 48, 49]. In addition, we note that this method may also be used to numerically solve for the quantum mechanical bound-states of a general potential well, using the well-known connection between the QNMs of a potential barrier and the bound-states of the corresponding well [41, 51–53].
As described above, the non-relativistic method we have presented is closely related to the relativistic method, sharing many essential features with it. For instance, the classes of potentials that can be treated by the two methods are the same, and they have the same maximum achievable accuracy for a given resolution. As a result, the methods are comparable in their scope and power. They also share the same advantages and disadvantages when compared to other popular numerical methods, such as Leaver’s continued fraction method [54]. For example, in this case, both the relativistic and non-relativistic methods enjoy the advantage that they recover the entire spectrum simultaneously, and do not require initial seed values close to the QNM frequencies one wishes to compute [30, 54–56].
The non-relativistic method we have presented readily generalizes beyond the Schrödinger equation, allowing us to treat a large class of more general non-relativistic operators. Indeed, the method presented in this paper primarily serves a didactic purpose, as a demonstration of a general approach with which one may calculate QNMs of these more general operators. The primary motivation for this is to facilitate the efficient computation of QNMs of operators that deviate from the wave equation only by the presence of weak dispersion, as are known to arise in models of quantum gravity, where a thoroughgoing understanding of QNMs is of special interest. The modelling of dispersive gravitational wave propagation and its influence on the observable QNM spectrum will be essential if black hole spectroscopy is to be an effective probe into the domain of quantum gravity.
A further motivation for generalizing the non-relativistic method is to shed light on QNM spectral instabilities, and facilitate experimental tests of the recent ultraviolet universality conjecture, which posits that sufficiently high overtones converge to logarithmic Regge branches in the complex plane, in the high-frequency limit of potential perturbations [30, 36]. This effect is easily seen in numerical calculations of the Pöschl-Teller spectrum, on account of its simplicity, but has yet to be experimentally confirmed. Using the optical soliton, whose perturbations realize this potential, experimental tests become possible. The numerical method presented above is essential for the modelling of these experiments, as one cannot realize an exact soliton in practice, and must always work with near-soliton potentials. In addition, higher-order dispersive effects will also be present in any experiment, and these must be understood in order to interpret observations of QNM spectral migration with the soliton. In particular, the influence of weak third-order dispersion acting on the perturbative probe field should be incorporated into the analysis, in order to provide the best test of the above conjecture. This motivates the development of the non-relativistic method beyond the Schrödinger equation, to include higher-order dispersive terms.
In view of the above reasons to generalize the non-relativistic method, we present a sketch of the more general method, which we will elaborate in future work. Suppose we have a non-relativistic equation of the form
[image: Mathematical equation displaying open parenthesis alpha times i partial sub x plus beta times i partial sub y plus V close parenthesis phi equals zero, labeled as equation thirteen.]
with [image: Mathematical expression showing the Greek letter alpha followed by an open parenthesis, the letter z, and a closing parenthesis, representing the function alpha of z.] and [image: Mathematical expression showing the Greek letter beta followed by an open parenthesis, the variable z, and a close parenthesis.] finite polynomials in [image: Lowercase letter z rendered in a bold, black, sans-serif font on a white background.], and [image: Lowercase italic letter d in a serif font, commonly used in mathematical or scientific notation.] the larger degree among the two polynomials. In principle, we can apply a hyperboloidal coordinate transformation and a phase rotation of the fields, parameterised by the asymptotic velocities, [image: Mathematical notation showing the variable v with a subscript g, commonly representing group velocity in physics.] and [image: Mathematical notation showing the variable v with a subscript p, typically used to represent phase velocity in physics or engineering contexts.]. Then, we introduce auxiliary fields to effect a [image: Lowercase italic letter d in a serif font, shown in black against a white background.]th-order reduction in time, defining
[image: Mathematical formula showing phi sub i equals phi sub 0, and phi sub k plus one equals partial derivative with respect to sigma of phi sub k, labeled as equation fourteen.]
with [image: Mathematical expression showing the inequality one is less than or equal to k, and k is less than d.]. Equation 14 closely mirrors the treatment of resonator QNMs in optics [11]. The equations of motion of these fields are trivial for all fields but [image: Greek letter phi with a subscript lowercase d, commonly used to represent a variable or parameter such as phi sub d in mathematical or scientific notation.], whose equation of motion more closely resembles Equation 6. If we use a Taylor series expansion of [image: Mathematical expression showing partial derivative symbol followed by subscript tau alongside phi with subscript d.] around zero, we can write it in terms of spatial operators acting on the fields. The general form of the now [image: Lowercase italic letter a in a serif font, resembling a mathematical or scientific variable.]-dimensional operator [image: Uppercase italic letter L in a serif font, shown in black on a white background.] is
[image: Mathematical expression showing a matrix L equal to a block matrix with ones on the subdiagonal and zeros elsewhere, multiplied by a column vector with elements L sub one to L sub l, labeled as equation fifteen.]
which we discretize as before. Then, we use the asymptotic dispersion relation of Equation 13 to eliminate the asymptotic velocities, obtaining a vector equation for the QNM frequencies. From Equation 15, it can be shown that it is always possible to construct an [image: Uppercase serif letter N in black, presented on a white background with a slight blur around the edges.]-dimensional matrix [image: Italicized capital letter M in a serif font centered on a white background.] whose determinant is a finite polynomial for the QNM frequencies. This may then be solved numerically and the frequencies [image: Black uppercase Greek letter omega symbol with smooth, rounded lines on a white background, commonly used to represent electrical resistance measured in ohms or the end of a series.] determined. This generalization is largely straight-forward. However, the divergences in space are multi-exponential with higher derivatives, leading to non-polynomial modes in the compactified coordinates. This complicates the imposition of QNM boundary conditions, and further work is required to address this. For example, approaches that augment the function space to include additional non-polynomial functions can be investigated. Future work can investigate how this generalized method compares with other numerical schemes, as the connection to the relativistic method is less concrete in this case.
The method presented is primarily intended for the gravitational context and long-range potentials, but the authors note that extensions to optical cavities or plasmonic resonators may be possible. Beyond QNMs, the non-relativistic method can be applied to spectra of non-selfadjoint operators, connecting with a larger research effort. We believe an explicit formulation in this context is a promising research direction. In addition, future works can develop the method, along the lines of [30], in order to calculate the pseudospectra of non-relativistic operators. It is our view that the relationship between perturbed QNM spectra and the pseudospectrum is best understood from a broader perspective, not limited to relativistic wave operators. We expect that numerical methods will become increasingly important for addressing questions in the theory of QNMs, and anticipate that investigations into the QNMs of non-relativistic fields will provide new avenues to explore these questions.
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We consider how the quasinormal spectrum for the conformal wave operator on the static patch of de Sitter changes in response to the addition of a small potential. Since the quasinormal modes and co-modes are explicitly known, we are able to give explicit formulae for the instantaneous rate of change of each frequency in terms of the perturbing potential. We verify these exact computations numerically using a novel technique extending the spectral hyperboloidal approach of Jaramillo et al. (2021). We propose a definition for a family of pseudospectra that we show capture the instability properties of the quasinormal frequencies.
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1 Introduction

For asymptotically de Sitter and anti-de Sitter black hole spacetimes, the problem of defining the quasinormal frequencies has been satisfactorily resolved based on making use of a hyperboloidal foliation of the spacetime [1, 2].1 For asymptotically flat black hole spacetimes, the situation is not as fully developed, but nevertheless in many cases a suitably robust mathematical definition exists either through casting the problem in terms of scattering resonances and making use of the method of complex scaling [3, 5] or through using a hyperboloidal slicing [4, 6, 7]. In all cases, the quasinormal frequencies can ultimately be understood as eigenvalues of some operator which is not self-adjoint.

A feature of operators which are not self-adjoint is that their spectra can be unstable to “small” perturbations. For a simple example in finite dimensions, consider the matrices

[image: Mathematical notation showing two matrices: matrix A is a two-by-two matrix with top row zero and epsilon to the power of negative three, and bottom row zero and zero; matrix A prime is a two-by-two matrix with top row zero and epsilon to the power of negative three, and bottom row epsilon and zero.]

Clearly for 0 < ϵ ≪1, A′−A is “small” by any reasonable notion of smallness; however, A has a repeated eigenvalue at 0, while A′ has eigenvalues ±ϵ−1, so the spectra diverge as ϵ → 0.

In the context of black hole quasinormal spectra, it was noticed already by Aguirregabiria–Vishveshwara Nollert–Price in the 90's [8–11] that seemingly innocuous changes to the operators used in defining quasinormal modes could have dramatic effects on the spectrum. Motivated in part by mathematical [2, 4, 6, 12] and numerical [13–15] studies which cast the problem of finding the quasinormal spectrum as an eigenvalue problem for the time evolution operator on a hyperboloidal foliation, there has been a resurgence of interest in the problem of quasinormal spectral stability, see [16, 17] in the specific context of instability arising from non-self-adjoint operators as well as [18–23] and references therein for many other studies.

In this short article, we shall consider the problem of the conformal wave equation on the static patch of de Sitter space. The high degree of symmetry enjoyed by the de Sitter spacetime means that the problem of determining the quasinormal spectrum is completely solvable, and the various objects involved can be computed explicitly. This makes this a helpful test-bed for understanding the effects on the spectrum of small perturbations. The perturbations we consider consist of stationary modifications to the potential. In a more physically motivated situation, we should consider the linearized gravitational field (rather than a conformal scalar field) and permit perturbations to the geometry of the background rather than just a potential. Our methods can, in principle, be applied in this situation, but for simplicity, we focus on the toy model.2

We are able to compute exactly the first order correction to each quasinormal frequency in terms of the perturbing potential. We find that the answer to the question of whether an individual quasinormal frequency is stable to “small” perturbations depends sensitively on what is meant by “small” [cf [25, footnote 18]]. In particular, the relevant notion of smallness varies depending on which modes we are considering, and those representing more rapidly decaying modes require a more stringent notion of smallness. One may alternatively view this by first fixing the notion of smallness considered and then one observes that the more rapidly decaying modes are more unstable to small perturbations, consistent with expectations going back to [9].3

To confirm the analytic computations, we also perform some numerics. For this, we make use of a spectral method on a hyperboloidal (or null) slicing, similar to that used in [16], but applied to an enlarged system obtained by differentiating the equation by hand k-times motivated by the analysis of [2]. This has a doubly beneficial effect—First, it stabilizes the numerical computation of quasinormal frequencies; second, it permits us to stably compute a family of pseudospectra that we define, associated with the problem, which allow the stability properties to be directly visualized. In this context, we should also mention the forthcoming study [26] which also provides a numerically stable computation of pseudospectra.



2 Set-up and defining the quasinormal spectrum

We consider the static patch of the de Sitter spacetime, written in coordinates that are regular at the future horizon. This is a metric on ℝ4 = {(t, x):t ∈ ℝ, x ∈ ℝ3}

[image: Mathematical equation showing a metric: g sub s equals negative open parenthesis one minus k squared delta sub i j x superscript i x superscript j close parenthesis d t squared minus two k delta sub i j x superscript i d x superscript j d t plus delta sub i j d x superscript i d x superscript j, labeled as equation one.]

with δij the usual Kronecker delta and κ > 0 a constant. The static patch is the region [image: Mathematical expression showing script R equals the Cartesian product of real numbers sub t with set B.] where B = {x ∈ ℝ3:|x| < κ−1} is the ball of radius κ−1, and the future cosmological horizon is [image: Mathematical expression showing script H sub plus equals the Cartesian product of boldface R sub t and partial derivative symbol B.]. This metric is Einstein with cosmological constant Λ = 3κ2. We will keep track of κ for later discussion, but nothing is lost by setting κ = 1 throughout.

The wave operator in these coordinates takes the form

[image: Mathematical equation showing the d'Alembert operator applied to psi equals the negative of a series involving time and space derivatives, constants kappa and delta superscript i j, and second derivatives of psi.]

We shall consider the following family of equations on this background

[image: Mathematical equation in serif font states: I of h applied to psi is defined as box operator sub g psi minus kappa squared V sub h psi equals zero, labeled as equation two.]

Here, Vh is a time-independent potential depending on some small parameter |h| < ϵ, and we assume that the map (h, x) ↦ Vh(x) is smooth on (−ϵ, ϵ) × ℝ3. We are interested in particular in the quasinormal ring-down behavior of solutions to this equation. To discuss this, we introduce the Laplace transformed operator which acts on functions u:B → ℂ

[image: Mathematical equation showing Îhat(L)(s, h)u equals e to the negative s t times L(h) of e to the s t u, labeled as equation three.]

We define the quasinormal frequencies through the solvability properties of this operator. More precisely, for k = 0, 1, 2, … we define an inner product and norm on functions u, w:B → ℂ by

[image: Mathematical expression defining an inner product and norm: (u, w) sub k equals the sum from l equals zero to k of the integral over B of the dot product of the lth gradients of u and w, with respect to the beta-dimensional x; the norm of u sub k is defined as the k-th root of the inner product of u with itself; equation labeled as four.]

Here, ∇(l)u is the rank l-tensor ∇i1⋯∇ilu, and · means contraction on all indices.4 Notice that (u, w)0 is the usual L2−inner product. We define Hk, the Sobolev space of order k, to consist of those functions u:B → ℂ with ||u||k < ∞. This is a Hilbert space with the corresponding inner product. We define the domain of Ls to be

[image: Mathematical expression showing D superscript k equals the set of u in H superscript k such that I hat of one comma zero times u is in H superscript k.]

It can be shown that Hk+2 ⊂ Dk ⊂ Hk+1, so that [image: Mathematical expression showing u belongs to D to the k if and only if L hat sub s comma h of u belongs to H to the k.] for all s, h.

With this definition in hand, we can state the basic theorem we shall require, which follows straightforwardly from Vasy, Warnick, and Hintz and Xie [1, 2, 27, 28]:

Theorem 1. Fix |h| < ϵ, k ∈ ℕ and let [image: Mathematical expression defining Uk as the set of complex numbers z such that the real part of z is greater than negative quantity k plus one half times k.]. Then, the operator [image: Mathematical notation showing L-hat of s and k mapping from D to the k to H to the k, where k is an exponent.] is invertible for s ∈ Uk, except at a discrete set Λk(h) ⊂ Uk. Moreover, for each σ ∈ Λk(h) there is an integer d>0 such that:

	1. There exists a d-dimensional space of smooth functions w:B → ℂ which extend smoothly to ∂B and satisfy [image: Mathematical equation displaying L hat of sigma and h, multiplied by w equals zero.].
	2. There exists a d-dimensional space of distributions X ∈ [image: Calligraphic capital letter D in a serif typeface, appearing in black on a white background.]′(ℝ3) which satisfy

[image: Mathematical equation showing X hat acting on phi of sigma and h equals zero, and the norm of X acting on phi is less than or equal to constant c times the norm of phi in the k sub h norm, equation five.]

 for some c > 0 and all test functions [image: Mathematical expression showing phi belongs to the space of infinitely differentiable functions with compact support on three-dimensional real space, denoted as C sub c superscript infinity of R cubed.].

	3. As s varies, the meromorphic family of operators [image: Mathematical expression showing L hat of s and h inverse maps from H superscript k to D superscript k.] has a pole at σ.

It follows from the characterization of points in Λk(h) that Λk+1(h) ∩ Uk = Λk(h). We call any σ ∈ Λk(h) for some k a quasinormal frequency of L(h), with geometric multiplicity d. A corresponding smooth solution to [image: Mathematical equation showing L hat of sigma comma h times w equals zero, representing a linear operator acting on a function w with parameters sigma and h.] is a quasinormal mode, and a distribution X satisfying ii) above we call a co-mode. Notice that the condition on X implies that X is supported in [image: Mathematical symbol showing an uppercase letter B with a horizontal bar above it, indicating the complement or negation of B, commonly used in set theory and logic.] and so can be uniquely extended to act on test functions in [image: Mathematical expression showing C superscript infinity of B, where B has a bar over it, representing the space of infinitely differentiable functions on the closure of B.].

The residue of [image: Mathematical expression featuring L hat of s comma h, quantity raised to the power of negative one.] at s = σ is a finite rank operator, and we identify the rank of this residue with the algebraic multiplicity of σ. As in the familiar case of matrices, the algebraic multiplicity is an upper bound for the geometric multiplicity. We say that a quasinormal frequency σ ∈ Λk(h) is simple if it has algebraic multiplicity one.

The result above holds for h fixed. The question we shall consider in this study, that of quasinormal spectral instability, amounts to trying to understand how the set Λk(h) changes as h varies.



3 Stability of quasinormal frequencies


3.1 Simple quasinormal frequencies

Let us suppose that for the unperturbed operator, that is, at h = 0, we can compute the quasinormal frequencies, modes, and co-modes, and we consider some simple σ ∈ Λk(0) with corresponding quasinormal mode w and co-mode X. It was shown in Joykutty [29] that that as h varies, there is some smooth curve of quasinormal frequencies σ(h) ∈ Λk(h), with σ(0) = σ, together with an associated curve of quasinormal modes w(h) with w(0) = w, depending smoothly on h such that

[image: Mathematical expression showing L-hat of sigma of h and h, multiplied by w of h, equals zero.]

holds for all |h| < ϵ. Moreover, in Joykutty [29] an explicit power series expansion for σ(h) is given in terms of the trace of certain operator valued contour integrals. We shall take a more elementary approach to find a formula for σ′(0).

Since [image: Mathematical symbol displaying a bold capital letter L with a circumflex accent above it, commonly used in statistics to denote an estimator, such as maximum likelihood estimator.] depends smoothly on its arguments, we can differentiate with respect to h at h = 0 to find:

[image: Mathematical equation showing sigma prime of zero times the partial derivative of L hat with respect to s, evaluated at sigma comma zero, times w, plus the partial derivative of L hat with respect to h, evaluated at sigma comma zero, times w, plus L hat of sigma comma zero times w prime of zero, equals zero. Equation labeled as six.]

By assumption, we know [image: Two partial derivatives are shown: the partial derivative of L-hat with respect to s evaluated at sigma comma zero, and the partial derivative of L-hat with respect to h evaluated at sigma comma zero.] and w, but we do not know anything about w′(0). If, however, we act on Equation 6 with the co-mode X, the term involving w′(0) will be annihilated. We find then:

[image: Mathematical equation displaying sigma prime of zero times X times the partial derivative of L hat with respect to s, evaluated at sigma comma zero and w, plus X times the partial derivative of L hat with respect to h, evaluated at sigma comma zero and w, equals zero.]

or, rearranging

[image: Mathematical equation showing sigma prime at zero equals negative X times the partial derivative of L hat with respect to h at sigma, zero, and w, divided by X times the partial derivative of L hat with respect to s at sigma, zero, and w. Equation number seven.]

This formula gives us an exact expression for the velocity of the curve of quasinormal frequencies σ(h) as it passes through σ.

We observe that only the numerator of Equation 7 depends on the perturbation—the denominator can be computed from the unperturbed operator alone. Recalling that the operator norm of a linear map A:V→W between normed spaces is given by

[image: Mathematical equation showing the operator norm: double vertical bars A double vertical bars subscript V to W equals the supremum over all u in V with norm u subscript V equal to one, of the norm of A u subscript W.]

we can estimate σ′(0) in terms of an operator norm of the linearized perturbation as

[image: Mathematical expression showing absolute value of sigma prime at zero is less than or equal to gamma sigma times the norm of the partial derivative of loss L with respect to h at sigma, zero, evaluated as H sub k approaches H star, labeled as equation eight.]

Here, the sensitivity, or condition number, γσ depends only on the unperturbed operator and is given by

[image: Mathematical equation showing gamma sub sigma equals the product of the norm of w and the k-star norm of X, divided by the absolute value of X times the derivative of I hat with respect to s at sigma and zero, applied to w.]

where [image: Mathematical formula displaying double norm of X with subscript k star defined as the operator norm of X from Hilbert space H to complex numbers C.]. We can think of the expression for γ as a generalization of the formula for the sensitivity of a matrix eigenvalue.

At this stage, it is worth commenting on the role of k in the discussion. Increasing k increases the region of the complex plane in which we can study the quasinormal frequencies; however, the price we pay for this in Equation 8 is an increase in the control that we require on the perturbation. We can mitigate this by choosing k to be as small as possible, consistent with σ ∈ Λk(0). Even doing this we see that to bound the rate of change of a quasinormal frequency σ, we (roughly speaking) need control of more than −κ−1(Reσ) derivatives of the perturbation. We shall see this more explicitly later on. We should note that ‘control of higher derivatives' may appear to be an unphysical condition, but one can also view this condition as asking that the perturbations should not have too much of their energy at high wavenumbers.5

The arguments above do not rely strongly on the particular form of the metric, or the family of operators we consider. As long as a result broadly analogous to the conclusions of Theorem 1 holds, we can expect to be able to repeat this argument.



3.2 Non-simple quasinormal frequencies

In the discussion above, we made the assumption that the quasinormal frequency σ was simple, which was needed to establish that σ sits on a smooth curve of quasinormal frequencies. If σ is not simple, then this need not be the case in general—see Figure 3 for a situation where this arises in our numerics. It does follow from [29] that the number of QNFs, counted with suitable multiplicity, inside a small circle around σ is independent of h for small h, so that QNFs in particular cannot be locally “created” or “destroyed” by small perturbations of the type we consider—QNFs can only appear from infinity or by splitting off from a QNF with algebraic multiplicity greater than one.

In general, it does not appear to be a straightforward question to determine whether a particular non-simple quasinormal frequency lies on a smooth curve. In some cases, however, it may be that evolution under L(h) leaves invariant some subspace (such as an angular momentum eigenspace) so we can consider the problem of finding quasinormal frequencies restricted to this subspace. If σ is a simple quasinormal frequency of the restricted problem, then the results of the previous section will apply.




4 The generalized pseudospectrum

In Jaramillo et al. [16] and subsequently [see Boyanov et al. [23] and references therein], the instability of the quasinormal spectrum has been investigated using the notion of pseudospectrum, comparing the results from this approach to computations with explicit perturbations. Recall that for a matrix A we can define the ϵ−pseudospectrum to be6

[image: Mathematical expression showing the set capital Lambda superscript epsilon equals left brace s in the set of complex numbers such that the norm of the inverse of A minus s times the identity, as an operator from R superscript n to R superscript n, is greater than epsilon to the negative one right brace.]

where we define [image: Mathematical expression showing the norm of the inverse of the matrix A minus s times the identity, with respect to the norm from R superscript n to R superscript n, equals infinity.] whenever A−sι is not invertible. It can be shown [30–32] that Λϵ corresponds to the set of points which can appear in the spectrum of A + δA, where δA is a perturbation satisfying [image: Mathematical expression showing the operator norm of delta A from R superscript n to R superscript n is less than epsilon.].

This notion generalizes to operators on infinite dimensional spaces in the obvious way. However, this definition cannot immediately be applied to our problem above because [image: Mathematical expression displaying L with a caret above it, subscripted by the variables s and h in parentheses.] is not of the form A−sI for some operator A. There are two possible approaches to resolve this. The approach taken by Jaramillo et al. [16] is to follow [2, 13, 14] and recast the problem of finding the quasinormal frequencies as a genuine eigenvalue problem by writing

[image: Mathematical equation showing I hat of s and h equals L two of h plus s times L one of h plus s squared.]

where Lj(h) is a differential operator of order j. Then, we can verify that [image: Mathematical equation showing L hat of s comma k times w equals zero, where L hat is denoted with a circumflex accent above the letter L.] has a solution if and only if

[image: Mathematical expression showing a two-by-two matrix with elements negative s, one, negative L sub two of h, and negative L sub one of h minus s, multiplied by a column vector w, v, equals zero.]

has a smooth solution. Thus, the set Λk(h) can be identified with the part of the spectrum of

[image: Mathematical expression defining calligraphic L of h as a two-by-two matrix with entries zero, one, negative L sub two of h, and negative L sub one of h.]

in Uk, where [image: Mathematical expression showing calligraphic uppercase L followed by h in parentheses, representing script L of h, often used for a loss function in mathematical or machine learning contexts.] is thought of as a closed unbounded operator on [image: Mathematical expression showing script H superscript k is defined as H superscript k plus one times H superscript k.]. This motivates one definition of the ϵ−pseudospectrum7 as

[image: Mathematical equation defining the set Lambda sub k superscript epsilon as the set of s in the complex numbers such that the operator norm of the inverse of script L of zero minus s I from Hilbert space H sub k to H exceeds epsilon to the negative first power.]

This has the advantage of being the standard definition applied to [image: Stylized cursive capital letter L displayed in black on a white background.], but the disadvantage that in numerical computations one has to double the dimension of the approximation space to account for the two functions w, v. Moreover, since [image: Calligraphic uppercase letter L in black on a white background.] does not have compact resolvent, approximation by matrices can be more challenging.

An alternative approach is to generalize the notion of ϵ−pseudospectrum by declaring

[image: Mathematical expression showing Λ sub k superscript ε equals the set of s in U sub k such that the norm of the inverse operator Ĥ of ζ, zero, from H sub k to H star k exceeds ε to the power of minus one. Equation labeled nine.]

This has the advantage that [image: Mathematical expression showing the inverse of operator L-hat with parameters s and zero, mapping the space H superscript k to itself.] is compact, but the disadvantage that since it is not the standard definition of pseudospectrum, one cannot readily make use of existing numerical libraries. We note as an aside that we could also consider the Hk → Dk norm in place of the Hk → Hk norm in Equation 9, but it will not make a significant difference for the type of perturbations we consider.

We shall take Equation 9 as our definition of the pseudospectrum for the rest of the study [see Besson et al. [26] for an alternative approach]. A modification of the usual arguments for pseudospectra [31, 32] shows that [image: Mathematical expression showing capital Greek letter Lambda with superscript epsilon and subscript k.] is precisely the set of points in Uk which can occur as quasinormal frequencies of L(s, 0)+E for some operator E:Hk → Hk satisfying [image: Mathematical expression showing the norm of E as a linear operator from script H to script H is less than epsilon.]. One can verify that the fact that s does not appear linearly in L(s, 0) does not affect this argument. In particular, provided [image: Mathematical expression showing the norm of Vk in Cd is less than epsilon divided by k squared.] we have [image: Mathematical expression showing Lambda sub k of h is a subset of Lambda sub k superscript epsilon.].

We note that this definition agrees with that for the null slicing in Cownden et al. and Boyanov et al. [22, 23]; however, we do not assume that the slicing is everywhere null.



5 Explicit computations for perturbations of the conformal wave operator

To give a concrete demonstration of the ideas above, we will work in a setting where the quasinormal frequencies, modes, and co-modes of the operator are known explicitly at h = 0. In particular, from now on we assume that we perturb about the conformal wave operator on de Sitter, in our language:

[image: Mathematical expression showing V naught of x equals two, where V naught is written as V with a subscript zero and x is in parentheses.]

Under this assumption, we have [27, 28]:

Lemma 2. Suppose V0(x) = 2. Then:

	1. Λk(0) = {−κ, −2κ, −3κ, …, −kκ}.
	2. The quasinormal frequency σn: = −nκ ∈ Λk(0) has geometric and algebraic multiplicity n2, and a basis for the corresponding space of quasinormal frequencies is given in terms of the standard spherical polar coordinates (r, θ, ϕ) on Bκ by

[image: Mathematical equation displaying \( w_{n,l,m} = (\kappa r)^l Y_{l,m}(\theta, \phi) {}_2F_1 \left[\frac{1 + l - n}{2}, \frac{2 + l - n}{2}, \frac{3 + 2l}{2}; \kappa^2 r^2\right] \), involving variables r, θ, φ, n, l, m, and κ with a hypergeometric function.]

 Here, Yl, m are the spherical harmonics, 2F1 is the hypergeometric function and the integers m, l satisfy |m| ≤ l ≤ n.

	3. For each σn ∈ Λk(0), the corresponding quasinormal co-modes are supported on ∂B. A basis for the space of co-modes is given in terms of the action on a smooth test function by

[image: Mathematical expression displaying X sub n, l, m of phi equals the sum from i equals zero to n minus one of A sub n, l superscript i times one over kappa to the i, times the i-th derivative of phi sub l, m with respect to r, evaluated at r equals kappa inverse. Equation numbered ten.]

	 where |m| ≤ l ≤ n, [image: Mathematical notation showing uppercase A with superscript i and subscripts n and l.] are constants, and φl, m(r) is the projection of φ onto the (l, m)−spherical mode.

While it is possible to specify the constants [image: Mathematical expression showing uppercase A with superscript i and subscripts k and l.] explicitly, see Hintz and Xie; Joykutty [27, 28, 33], for the purposes of our results below it is more computationally efficient to find Xn, l, m for any particular choice of n, l, m by simply using Equation 10 as an ansatz in Equation 5 and solving the resulting linear system for [image: Mathematical expression showing uppercase A with superscript i, and subscripts n and l, formatted as \(A_{n,l}^{i}\).]. Doing so using Mathematica to perform the computations, we find the results in Table 1.


Table 1A. Coefficients [image: Mathematical notation showing capital A with superscript i and subscripts n and l, representing a matrix or variable indexed by i, n, and l.] for the first six quasinormal frequencies with in each of the angular sectors l = 0, 1, 2. (A) l = 0.

[image: Table displaying values for n from one to six and i from zero to five. Each row contains integers, mainly zero except for the diagonal and right-adjacent entries, which increase consecutively by one from the top left to the bottom right.]


Table 1B. l = 1.

[image: Data table displaying values for variables n and i from two to seven (n) and zero to six (i). Non-zero values appear only on or near the diagonal, increasing from top left to bottom right.]


Table 1C. l = 2.

[image: Table displaying coefficients arranged by n from 3 to 8 and i from 0 to 7. Entries show values such as 3, 5, 1 for n equals 3; negative 3, 3, 6, 1 for n equals 4; up to n equals 8 with values like negative 360, 360, negative 180, 60, negative 15, 3, 10, 1.]

Since for σ ≠ −κ the quasinormal frequencies are not simple, to make use of Equation 7 to estimate the change in the QNF, we shall make the additional assumption that the potential Vh is spherically symmetric. Under this assumption, the QNFs are simple once we restrict our attention to a single fixed angular mode. If we fix l, m with |m| ≤ l, then for k ≥ l, the unperturbed quasinormal spectrum restricted to the l, m angular mode is [image: Mathematical expression showing capital Lambda sub k, superscript k times m, of zero equals the set of negative kappa, ellipsis, negative k times kappa.] and all the QNFs are simple. We can compute the rate of change of the QNF at −κ n by

[image: Mathematical equation showing sigma prime subscript n, l, m at zero equals negative X subscript n, l, m times the partial derivative of L hat with respect to h, evaluated at sigma comma zero, times w subscript n, l, m, all over X subscript n, l, m times the partial derivative of L hat with respect to s, evaluated at sigma comma zero, times w subscript n, l, m.]

To use this formula, we also need [image: Mathematical expression showing the partial derivative of uppercase script L with a hat symbol, with respect to lowercase s.] and [image: Mathematical notation showing the partial derivative of capital L with a hat symbol with respect to h.]. For the particular case of interest, with L(h) given by Equation 2, we have

[image: Mathematical expression showing the operator L-hat acting on function u, involving differential operators, constants s, kappa, and delta, as well as terms with first and second order spatial derivatives and a potential term.]

so that

[image: Mathematical expression showing a differential equation where the partial derivative of L with respect to s, applied to u at sigma equals zero, is given as negative two k x superscript i times the partial derivative of u with respect to x superscript i, minus the quantity two s plus three k times u, with a similar form written in terms of r.]

and

[image: Mathematical equation showing the partial derivative of L with respect to h at sigma comma zero, multiplied by u, equals minus kappa squared times W u, ending with a comma.]

where we introduce [image: Mathematical formula showing W equals the partial derivative of V sub k with respect to k, evaluated at k equals zero.], the first order perturbation to the potential.

We now have all that is required to compute [image: Mathematical expression with sigma sub n, j, m, evaluated at zero, and a dot symbol above the sigma.]. In view of the structure of the operator Xn, l, m, we can write

[image: Mathematical formula showing sigma prime sub n l m of zero equals kappa times the sum from i equals zero to n minus one of B sub n l to the power i times one over kappa to the i times W raised to the i of kappa to the minus one.]

for some constants [image: Mathematical notation showing an uppercase B with subscript n comma l and superscript i, representing a variable or indexed sequence in a formula.]. Note that this is independent of m due to the spherical symmetry of the perturbing potential. We can again use Mathematica to compute these constants and present the results for the first few modes in the l = 0, 1, 2 angular sectors in Table 2.


Table 2A. Coefficients [image: Mathematical expression showing an uppercase B with a superscript i and subscripts n and l.] for the first six quasinormal frequencies within each of the angular sectors l = 0, 1, 2. (A) l = 0.

[image: Mathematical table with rows labeled n from one to six and columns labeled i from zero to five, showing values at intersections. Values include positive and negative integers and fractions, with most lower triangle entries filled and upper triangle largely blank.]


Table 2B. l = 1.

[image: Table showing values for n from two to seven and i from zero to six, where each cell contains a fraction representing a coefficient. Diagonal symmetry and alternating signs are evident in the entries.]


Table 2C. l = 2.

[image: Mathematical table displaying coefficients with variables n ranging from 3 to 8 in rows and i ranging from 0 to 7 in columns; each cell contains a rational number or is left blank, arranged in a triangular pattern.]

Picking two cases as examples, we can read off from the tables that

[image: Mathematical expressions showing sigma sub one comma zero comma zero prime of zero equals negative kappa times W of kappa inverse, and sigma sub three comma one comma one prime of zero equals kappa times W of kappa inverse plus five thirds times W prime of kappa inverse plus one over three kappa times W double prime of kappa inverse.]

We see very explicitly here and from Table 8 that the rate of change of the quasinormal frequency depends on higher derivatives of the perturbing potential, and the larger n, that is, the deeper into the stable plane we go, the more derivatives that are required. Equivalently, the deeper into the stable plane, the more control we require on the high wavenumber component of our perturbation. The increasing order of the operator norm that appears on the right-hand side of Equation 8 as we probe deeper into the plane is not simply an artifact of our framework but is necessary.

To see why it is necessary to use higher order norms to constrain the perturbations, let us consider the case κ = 1 and consider a family of perturbations [image: Mathematical equation displaying W of r equals epsilon cubed multiplied by the exponential of negative r squared divided by two epsilon squared.]. We clearly have that

[image: Mathematical expression shows the absolute value of W of r plus the absolute value of the derivative of W of r is less than or equal to epsilon.]

so in particular as ϵ → 0, we see that in the ‘energy norm', that is, the operator norm associated to the H1 norm we have that the perturbation tends to zero. However, W″(1) = (4ϵ−1 − 2ϵ)exp(−1/ϵ2) ~ ϵ−1 as ϵ → 0, so that using the expression above we see that the l = m = 1, n = 3 mode is displaced (to first order) by a term proportional to ϵ−1. Hence, smallness of the perturbation in the energy norm is no guarantee of stability of the quasinormal modes lying sufficiently deep in the stable half-plane.

For the choice of potential [image: Mathematical equation showing Vk of r equals two plus k times the exponential of negative r squared.], with κ = 1, which we study numerically below, we have computed [image: Mathematical notation showing the absolute value of sigma sub n, j, m evaluated at zero, where sigma has a dot above it.] for n ≤ 20, l ≤ 2 and presented the results graphically in Figure 1. Noting the logarithmic scale on the y−axis, we see that for this choice of perturbing potential [image: Mathematical expression showing the absolute value of sigma subscript n, j, m, evaluated at zero, with a dot above the sigma indicating a derivative with respect to time.] grows roughly exponentially in n, consistent with our expectation that modes deeper in the stable plane become more and more unstable.


[image: Scatter plot displaying three data series labeled l=0, l=1, and l=2, with y-axis labeled vPDF on a logarithmic scale and x-axis ranging from -20 to 0. Data points generally decrease from left to right.]
FIGURE 1
 Magnitude of [image: Mathematical expression showing sigma sub n, j, m of zero, with a prime symbol above sigma.] for n ≤ 20, l ≤ 2 for the potential [image: Mathematical formula showing Vk of r equals two plus k times exponential of negative r squared.], with κ = 1.




6 Numerical calculation of QNFs and comparison to analytic results

To test numerically the computations above, we have computed the quasinormal frequencies for the choice [image: Mathematical equation showing V subscript k of r equals two plus k times the exponential of negative r squared.]. We first present the results and then comment on the methods used below.


6.1 Results

Since the equation is real, as is the quasinormal spectrum of [image: Mathematical expression showing L hat of s comma zero, where L hat is denoted by an uppercase L with a circumflex accent and the input variables are s and zero in parentheses.], frequencies can only move off the real axis in complex conjugate pairs. Restricted to each angular sector the QNFs are simple, so each QNF must remain real for a range of h values near 0. Accordingly, in Figure 2 we show the directly computed real part of the quasinormal frequencies as a function of h. Superposed on this, we also plot the linear approximation to the QNFs given by

[image: Mathematical expression showing sigma sub n, l, m of h is approximately equal to sigma sub n, l, m of zero plus h times sigma prime sub n, l, m of zero.]

with [image: Mathematical notation showing sigma with a dot above, subscript n, j, m, and argument zero in parentheses.] computed using the exact methods of §5 and we see very good agreement with the full numerical computation. We have experimented and this result is robust to changes to the potential, provided it remains smooth. We have thus verified the results of §5. We note that this is a non-trivial test of our numerical scheme (described below) as it correctly predicts the values of the QNFs for h = 0 and agrees with the analytical computations for the gradient of the blue curves at these points.


[image: Figure containing four panels labeled A, B, C, and D. Panels A, B, and C show bifurcation diagrams with axes labeled h and Re(λ), featuring multiple curves and intersection points. Panel D presents a line chart with axes labeled N and log10(-c), displaying several colored lines representing different variables as indicated by the legend.]
FIGURE 2
 Re(σ(h)) plotted against h for numerically computed QNFs for [image: Mathematical equation showing Vk equals h times the exponential of negative r squared.] (blue lines) together with the linear approximations (red lines) in the l = 0, 1, 2 sector. The black dots mark the location of the analytically known QNFs for h = 0. (A) l = 0. (B) l = 1. (C) l = 2. (D) Logarithmic error against N for k = 2, … ,9.


Figure 2 shows that pairs of QNFs do eventually meet and move off the real axis. In Figure 3, we show an example of one such interaction in the complex plane, which occurs when the quasinormal frequencies with l = 0, σ(0) = −2, −3 coalesce and move into the complex plane at h ≈ 0.4645. We note that (within the accuracy of the numerics) it appears that we cannot identify a smooth curve σ(h) of QNFs passing through the point at which the QNFs meet (and hence cease to be simple). Whichever branch we pick, the curve will have to turn through an angle of π/2 as h passes the critical value. The choices of h to plot were determined by setting hi = 0.4645+ϵi|ϵi|, and taking ϵi to be spaced uniformly in [−1, 1]. This figure was computed with a depth k = 3 and N = 25 gridpoints, see §6.2.


[image: Complex plane diagram illustrating two curves: one horizontal along the real axis and one vertical curving upward and downward near Re(σ) equals negative 2.4, both with arrows indicating direction and labeled axes Re(σ) and Im(σ).]
FIGURE 3
 Numerically determined QNFs in a neighborhood of the transition point at h ≈ 0.4645, at which the two real QNFs with l = 0, σ(0) = −2, −3 meet and branch into a conjugate pair of complex QNFs. Arrows indicate the direction of increasing h.




6.2 The numerical scheme

The numerics in this section are performed using a null slicing, rather than the spacelike slicing introduced above, but the scheme can be readily adapted for a spacelike slicing. For convenience, we will take κ = 1 from now on. Setting

[image: Mathematical equation showing tau equals t minus the base ten logarithm of one plus r.]

the metric takes the form

[image: Mathematical expression showing the Schwarzschild metric: g_s equals negative quantity one minus r squared times d t squared, minus two r d r d t, plus r squared times quantity d theta squared plus sine squared theta d phi squared, equation eleven.]

To find the quasinormal frequencies, we seek solutions to [image: Mathematical expression showing L hat of parentheses s comma h close parentheses u equals zero.] of the form

[image: Mathematical equation showing u of r, theta, phi equals R of r divided by r multiplied by Y sub l, m of theta, phi.]

If we define

[image: Mathematical equation defining a differential operator L applied to function R, involving derivatives with respect to r, coefficients with powers of r, the angular momentum term l times l plus one over r squared, and a potential term V sub h times R.]

then

[image: Mathematical equation showing r hat L of s comma h times u equals script L times R minus two s times the derivative of R with respect to r.]

so that to find quasinormal frequencies, we are led to consider the solvability of

[image: Mathematical equation showing L times R minus two times s times the derivative of R with respect to r equals f, labeled as equation twelve.]

for given f, with f(0) = R(0) = 0 and R regular r = 1. Rather than directly discretize Equation 12, we first expand to a system of equations by differentiating the equation. We have the commutation relation

[image: Mathematical equation showing a commutator involving r times the derivative with respect to r and script L, resulting in a sum of terms with L, derivatives of r, and V sub h with respect to r.]

Let [image: Mathematical equation displaying R superscript p equals the expression r times the derivative with respect to r, all raised to the power p, applied to R.], [image: Mathematical formula showing Vk superscript p equals the quantity r multiplied by d over dr, all raised to the power p, applied to Vk.], and [image: Mathematical formula reads f to the power of i equals the quantity r times the derivative with respect to r, all raised to the i-th power, applied to function f.]. Then using the commutation relation, we can show that Equation 12 implies

[image: Mathematical equation displaying a sum of polynomial and derivative terms with variables L, α sub i, β sub i,j, ν sub k, s, γ sub i, μ sub i, f sub i, and R raised to varying powers, set equal to another polynomial sum.]

where [image: Mathematical notation displaying alpha sub i superscript p, beta sub j superscript p, and gamma sub i superscript p, separated by commas.] are numerical (indeed integer) constants determined recursively by

[image: Mathematical equations display three formulas: α sub i to the power of p plus one equals α sub i minus one to the power of p plus two α sub i to the power of p for one less than or equal to i less than or equal to p; α sub p plus one to the power of p plus one equals α sub p to the power of p plus two α sub p plus one to the power of p plus one minus two; and α sub p plus two to the power of p plus one equals α sub p plus one to the power of p plus one minus two.]

with [image: Mathematical expression showing a subscripted variable a sub i raised to the power zero equals zero.] for all i. Next, we set [image: Mathematical expression showing beta sub j raised to the power p equals zero.] for all i, j and recursively define

[image: Mathematical equations showing two recurrence relations: beta sub zero p superscript p plus one equals beta sub zero p minus one superscript p plus two times beta sub zero p superscript p plus two; beta sub one p superscript p plus one equals beta sub zero p minus one superscript p plus beta sub one p minus one superscript p plus two times beta sub one p superscript p plus one.]

with

[image: Mathematical equation showing recursion: beta sub i j to the p plus one equals beta sub i minus one j to the p plus beta sub i j minus one to the p plus two times beta sub i j.]

otherwise. Finally, set [image: Mathematical equation showing gamma sub zero superscript zero equals one equals mu sub zero superscript zero, with all terms having zero in both subscript and superscript.], [image: Mathematical equation displaying γ sub i superscript zero equals zero equals μ sub i superscript zero.] for all i ≠ 0 and

[image: Mathematical equations showing two recurrence relations: gamma sub i to the p plus one equals gamma sub i plus one to the p plus gamma sub i to the p, and mu sub i to the p plus one equals mu sub i minus one to the p plus two times mu sub i to the p.]

We can verify that [image: Mathematical equation showing alpha subscript p plus one superscript p equals negative two p.], which we expect as a consequence of the enhanced redshift effect (see Warnick and Dafermos–Rodninski [2, 34]).

To construct our numerical scheme, we fix an integer k ≥ 0, which we call the depth of the scheme. If Equation 12 holds, then the system of equations:

[image: Mathematical equations in two lines showing operator L minus two k r times d by dr, acting on Rp and Rk terms, with sums involving coefficients α, β, V, and R, subtracted by terms with s and derivatives. Both lines equate to sums over μ times f for indices p and k, respectively, with an equation number thirteen at the end.]

will also hold. Here, we have used the fact that [image: Mathematical equation showing r times the derivative with respect to r of R to the power of p equals R to the power of p plus one.] to arrange that we have the operator [image: Mathematical expression showing open bracket, script L minus two k r, then the derivative operator d over d r, and close bracket.] acting as the principle differential operator on all components. This is the approach taken to increase the working regularity in the analysis of Warnick [2].

We now treat R0, …, Rk as independent functions, and we discretize on the interval [0, 1] using a pseudospectral method, following Trefethen [35]. The constants α, β, γ are found recursively, and the derivatives [image: Mathematical expression showing capital V with superscript i and subscript k, typically representing a variable indexed by k and exponentiated by i in equations.] are computed exactly using Matlab's Symbolic Math Toolbox before discretization. We note that Rp(0) = 0 which gives a Dirichlet boundary condition at one end of our interval, and we do not need a boundary condition at r = 1 as the pseudospectral discretization will impose smoothness there automatically.

After discretizing on N points, Equation 13 becomes

[image: Mathematical equation showing parenthesis A minus sB, end parenthesis, V equals C F, with the equation labeled as fourteen in parentheses.]

for (kN) × (kN)-matrices A, B, C and column vectors V, F which represent the discretization of (R0, …, Rk), (f0, …, fk), respectively. We work throughout at standard machine precision.


6.2.1 The quasinormal spectrum

If σ is a quasinormal frequency, then we expect the generalized eigenvalue problem

[image: Mathematical equation displaying open parenthesis A minus s times B close parenthesis times V equals zero.]

to have an eigenvalue near σ. Thus, we can find the quasinormal frequencies by applying Matlab's generalized eigenvalue finder to Equation 14. However, by enlarging the original problem to a system, we may have introduced spurious eigenvalues which correspond to vectors V for which the condition

[image: Mathematical equation showing R superscript p plus one equals r times the derivative of R superscript p with respect to r, for p between zero and k, labeled as equation fifteen.]

does not hold. To enforce this condition, we select only those eigenvalues of 14 for which (the discretized version of)

[image: Mathematical expression showing a summation from p equals zero to k minus one of the squared norm of R to the p plus one minus r times the derivative of R to the p with respect to r, compared to epsilon.]

holds, where e is a sufficiently small threshold parameter, which we take to be 10−1 for the computations in this study.

Plots 2a–c show the numerically computed quasinormal spectrum in the l = 0, 1, 2 sector as h varies, computed using k = 6, N = 25. Plot 2d shows the error in the scheme when computing the eigenvalue at σ = −4 for various values of k. We see (as has been observed in other situations [16]) that for a given value of k, the pseudospectral method in fact can accurately find quasinormal frequencies even outside the domain Uk in which we expect the numerics to converge.



6.2.2 The pseudospectra

To compute pseudospectra for different k, we need to numerically approximate [image: Mathematical expression showing the norm of the inverse operator L hat of s and zero, with the operator norm from Hilbert space H superscript A to H superscript A.]. We can approximate this by computing

[image: Mathematical equation showing the norm of the inverse operator L-hat of s and zero from Hilbert space H2 to Hk is approximately equal to the L2 to L2 norm of the inverse of A minus sB, multiplied by C and the projection operator Pi.]

where Π is the L2−orthogonal projector onto the space of vectors F of the form (f0, …, fk), where [image: Mathematical expression showing f superscript i equals the quantity r times d by d r, all to the power of i, applied to f.]. This projection is necessary to account for the enlargement of our space by considering the system of higher derivatives. Since for such an F we have8 [image: Mathematical expression showing the norm of F with subscript L superscript two is approximately equal to the norm of f with subscript H superscript s.] we can approximately compute the Hk operator norm of [image: Mathematical expression showing the inverse of L hat of s comma zero, with the inverse indicated by a superscript negative one.] by the ℓ2 operator norm of the approximating matrix.

In Figure 4, we show the numerically computed pseudospectra for k = 1, …, 6. We see that in all cases the pseudospectrum is well-behaved in the region Uk, but that the contours open out significantly once we leave this region. We expect that the fact that the contour curves can leave Uk at all is a feature of the finite truncation. We observe the phenomenon noted above that the spectral method finds quasinormal frequencies accurately, even in the region of the plane that we expect significant numerical instability. For example, in Figure 4A we see the first five frequencies accurately computed, even though only the first is actually in U1.


[image: Six-panel scientific figure labeled A through F, showing contour plots of complex-valued functions on axes labeled Re(z) and Im(z) with black points marking specific locations. Each subsequent panel introduces additional contours and black points, illustrating progressive changes or different conditions in the data.]
FIGURE 4
 Numerically computed contour lines [image: Mathematical expression showing the operator norm of L hat of s comma zero inverse from Hilbert space H superscript one to H superscript one equals epsilon to the power negative one.] for 1 ≤ k ≤ 6. The black dashed line indicates the boundary of Uk. Black dots are the QNFs of [image: Mathematical expression showing L hat of s comma zero, raised to the power of negative one, representing the inverse operator or function.] computed by the numerical algorithm with N = 35. (A) k = 1. (B) k = 2. (C) k = 3. (D) k = 4. (E) k = 5. (F) k = 6.


To verify convergence of the numerical operator norm, in Figure 5 we show the approximated values of [image: Mathematical expression showing the operator norm of the inverse of L hat of s comma zero from Hilbert space H superscript asterisk to Hilbert space H superscript asterisk.] at s = −4 + i for k = 2 and k = 4 as N varies. As expected, in the k = 2 case we see divergence, since for this k our choice of s does not belong to Uk. For the case k = 4, we are in the region Uk, and we see good convergence. This can be compared to Figure 7 of [23]. We should mention that the pseudospectrum for this operator according to the standard definition has been computed for k = 1 in [36], which appeared slightly before this study—see their Figure 11.


[image: Panel A shows a scatter plot with N values on the horizontal axis and average values of t on the vertical axis, displaying an upward, accelerating trend. Panel B presents a scatter plot with N on the horizontal axis and average values of L on the vertical axis, showing values increasing quickly then leveling off, forming a plateau around 3.6 as N increases.]
FIGURE 5
 Convergence of [image: Mathematical expression showing the norm of the inverse of operator L hat at point s sub zero comma zero, measured from Hilbert space H superscript m to H superscript m.] at s0 = −4+i for k = 2 and k = 4. (A) k = 2. (B) k = 4.






7 Conclusion

We have investigated the stability of the quasinormal spectrum of the conformal wave equation on the static patch of de Sitter. We find that the quasinormal frequencies are stable, provided the perturbing potential is small in a sufficiently high regularity norm. Conversely, one could instead interpret this as a spectral instability for perturbing potentials which are not sufficiently regular at the cosmological horizon. We numerically verify our computations using a spectral method and propose a definition for a family of pseudospectra that demonstrate good convergence properties and capture the (in)stability of the quasinormal frequencies.
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Footnotes

	1see [3, 4] and references therein for a historical overview of this problem
	2A further complication can arise where the perturbations are presumed to have a time dependence with a typical timescale much shorter than the quasinormal frequencies, in which case one may hope to attempt some averaging procedure (see [24, §3.5 d]).
	3“...we find that the fundamental mode is, in general, insensitive to small changes in the potential, whereas the higher modes could alter drastically.”
	4Derivatives should be understood in the distributional sense.
	5Roughly speaking, for a perturbation in Hk, the fraction of the total energy carried by wavenumbers greater than μ is bounded by a constant multiple of μ−2k for large μ.
	6The pseudospectrum is usually defined as a closed set, with ≥ in place of >; however, the open condition generalizes more straightforwardly to the infinite dimensional case.
	7The pseudospectrum is a property of the unperturbed operator; hence, we set h = 0.
	8In fact this is the discretized version of a weighted Sobolev nor; however, since the weights only degenerate near r = 0, this is adequate for our purposes.
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We briefly review the analytical continuation method for determining quasinormal modes (QNMs) and the associated frequencies in open systems. We explore two exactly solvable cases based on the Pöschl–Teller potential to show that the analytical continuation method cannot determine the full set of QNMs and frequencies of a given problem starting from the associated bound state problem in quantum mechanics. The root of the problem is that many QNMs are the analytically continued counterparts of solutions that do not belong to the domain where the associated Schrödinger operator is self-adjoint, challenging the application of the method for determining full sets of QNMs. We illustrate these problems through the physically relevant case of BTZ black holes, where the natural domain of the problem is the negative real line.
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1 INTRODUCTION
Quasinormal mode (QNM) analysis is one of the main strategies used to inspect the stability of many physical open systems, with many applications ranging from optics to general relativity [1–3]. In their simplest formulation, QNMs are separable solutions
[image: Mathematical equation showing psi of t and x equals the exponential of negative i omega t times u of x.]
of an [image: Mathematical expression showing an open parenthesis, the number one, a plus sign, the number one, and a closing parenthesis.]-dimensional wave equation. After a separation of variables procedure, [image: Mathematical expression showing the function u of x, written as u parenthesis x parenthesis.] is typically expected to obey a Schrödinger-like second-order linear differential equation,
[image: Mathematical equation showing an operator with the second derivative with respect to x plus V of x, all times u, equals omega squared times u, and labeled as equation one.]
on a certain domain of [image: Blackboard bold uppercase R symbol, commonly used in mathematics to represent the set of all real numbers.]. For situations where the modes [image: Lowercase italic letter u in a serif font, commonly used in mathematical notation or scientific labeling. Black text on a white background.] are defined on the entire real line [image: Bold blackboard-style uppercase letters R and R are joined together, commonly representing the set of all real numbers in mathematics using the double-struck font style.], and the potential [image: Mathematical expression showing an uppercase V followed by x enclosed in parentheses, commonly representing a function V of x.] vanishes sufficiently fast for [image: Mathematical expression showing x approaches positive or negative infinity, denoted by x arrow plus-minus infinity.], the QNM frequencies are defined as the (typically complex) values of [image: Lowercase Greek letter omega in a bold, black serif font on a white background, commonly used in mathematics, science, or engineering contexts.] such that the solutions of (2) behave as outgoing waves at [image: Mathematical notation showing x approaches infinity, represented by the variable x, a rightward arrow, and the infinity symbol.] and ingoing ones at [image: Mathematical expression showing x approaches negative infinity, represented as x arrow negative infinity.], corresponding intuitively to solutions that disperse toward infinity. According to our definition for [image: Greek uppercase letter psi, resembling a trident with three vertical arms, commonly used in mathematics, physics, and psychology contexts.], these outgoing/ingoing waves correspond, respectively, to solutions of (2) such that
[image: Mathematical expression showing u is proportional to e raised to the power of f of x as x approaches infinity, presented in a serif font on a white background.]
and
[image: Mathematical expression showing u is proportional to e to the power of negative lambda x, for x approaching negative infinity.]
Because (2) admits as solutions both [image: Lowercase Greek letter omega, displayed in a black serif font on a white background.] and [image: Mathematical expression showing a minus sign followed by the Greek lowercase letter omega.], we need to assume here [image: Mathematical expression showing real part of omega is greater than or equal to zero, written as script R of open parenthesis omega close parenthesis greater than or equal to zero.]; otherwise, the QNMs are not unambiguously defined. According to our definition, the modes will be exponentially suppressed in time if [image: Mathematical expression showing script capital I of open parenthesis omega close parenthesis is less than zero, indicating the imaginary part of omega is negative.]. Notice that, in contrast with the usual spectral theory of Schrödinger operators in quantum mechanics, the eigenvalues [image: Mathematical expression showing the lowercase Greek letter omega with a superscript two, representing omega squared.] in (2) can be, and usually are, complex, and the QNMs are not, in general, a complete set for the problem [1].
In standard situations involving asymptotically flat black holes in general relativity (see, for references, [2, 3]), the equivalent of Equation (1) is obtained by introducing some sort of radial tortoise coordinate [image: Lowercase italic letter x rendered in a serif font, appearing as a single mathematical variable or algebraic symbol on a plain white background.] in the exterior region of the black hole. Typically, in these cases, the effective potential [image: Mathematical expression showing an uppercase V followed by the variable x enclosed in parentheses, commonly representing a function V of x.] is non-negative and has a barrier shape. Moreover, conditions (3) and (4) have the usual interpretation of wave solutions escaping to infinity and plunging into the event horizon, respectively, implying that QNMs are always associated with dispersive phenomena for these systems because they imply a net transport of energy outside the system.
In the present article, we will review the analytical continuation method for determining QNMs and frequencies for problems of type (2), starting from an associated bound state problem in quantum mechanics. Through two explicit examples based on exactly solvable Pöschl–Teller potentials, we will show that the analytical continuation method cannot determine the complete set of QNMs and that the origin of the problem is that QNMs are typically the analytically continued counterparts of solutions that belong to domains where the associated Schrödinger operator fails to be self-adjoint.
2 ANALYTICAL CONTINUATION OF SCHRÖDINGER OPERATORS
It is rather common to compute the QNMs and their associate frequencies [image: Lowercase Greek letter omega in a bold, italicized style, commonly used in mathematical equations or scientific contexts.] for Equation 1 with a given potential barrier [image: Italic capital letter V in a serif font, commonly used in mathematical notation to represent variables or vectors. White background with no additional symbols or figures present.] through a formal analytical continuation performed in the bound state problem of a Schrödinger operator [image: Italic, bold lowercase letter h in a serif font, centered on a white background.] associated with the potential well corresponding to the inverted potential [image: Mathematical equation showing vector V with a tilde above it equals negative vector V, indicating the opposite or inverse of vector V.]. Such an approach, introduced decades ago by Blome, Ferrari, and Mashhoon [4–6], is one of the best options we have at hand to obtain analytical answers and gain some physical insights into the QNM problem. The approach consists basically of a formal map between the QNM solutions of (2) and the bound states of the quantum mechanical problem governed by the Schrödinger operator
[image: Mathematical equation displaying the time-independent Schrödinger equation: H psi equals negative h-bar squared over two m, second derivative with respect to x, plus V of x, times psi, equals E psi. Equation is labeled as number two.]
We know that for [image: Mathematical notation displaying a bold capital V with a tilde above it, followed by parentheses enclosing the variable x.] vanishing sufficiently fast for [image: Mathematical expression showing x approaches positive or negative infinity, written as x with a right arrow pointing to plus or minus infinity symbols.], the bound states of [image: Italicized uppercase letter H in a serif font displayed on a white background.] will decay exponentially, that is,
[image: Mathematical expression showing psi is proportional to the exponential of negative square root of two m V minus E over h-bar squared, multiplied by x, as x approaches infinity.]
and
[image: Mathematical expression showing psi is proportional to exponential of the square root of negative two m E over h-bar squared times x, for x approaching negative infinity.]
Because the literature on bound states of Schrödinger operators is huge, with many studies exploring a vast range of different potentials, this method is commonly beneficial for identifying exact or approximate QNMs.
The original approach is based on the extension of the solutions of (2) or (5) for the entire complex plane by means of the formal substitution (Wick rotation) [image: Mathematical notation showing the transformation x maps to i times x, where i represents the imaginary unit.], which reduces the QNM boundary conditions (3) and (4) to the bound state ones (6) and (7). After some parameter redefinitions in the potential [image: Mathematical expression showing an uppercase italic V followed by parentheses containing a lowercase italic x, representing the function V of x.], one can effectively map the QNMs on the bound states of (5) and, consequently, relate the QNM frequencies [image: Lowercase Greek letter omega in bold black font on a white background.] of (2) with the energy spectrum [image: Bold, italic uppercase letter E in a serif font appears sharply against a white background, likely used for mathematical or scientific notation in an equation or formula.] of [image: Italicized uppercase letter H in a serif font, presented in black on a white background.]. More explicitly, suppose we know a bound state [image: Lowercase Greek letter psi, commonly used in mathematics and physics to represent wave functions or variables.] of (5). It should have an associate eigenvalue (energy) [image: Mathematical notation showing an italicized uppercase E is less than zero.] because [image: Mathematical symbol showing an uppercase italic V with a tilde over it, typically representing a vector quantity in mathematics or physics.] is assumed to be a non-positive potential well. Suppose also that the potential [image: Mathematical symbol representing an uppercase letter V with a tilde above it, commonly used to denote a vector quantity or variable with a specific transformation.] depends on a set of real parameters [image: Mathematical expression showing the Greek letter alpha with a subscript k.], [image: Mathematical expression showing k equals 1, 2, and so on, indicating a sequence or range of integer values for the variable k.], [image: Mathematical expression showing V tilde equals V tilde of x and alpha sub k in parentheses.]. Clearly, both the eigenfunction [image: Lowercase Greek letter psi, commonly used in mathematics and physics equations.] and the energy [image: Uppercase letter E in a serif typeface, displayed in black with slight italicization on a white background.] may have a similar dependence on the parameters, that is, [image: Mathematical expression showing psi equals psi of open parenthesis x comma alpha subscript k close parenthesis.] and [image: Mathematical expression showing E equals E of alpha subscript k, where alpha is a Greek letter with k as its subscript enclosed in parentheses.]. After the formal substitution [image: Mathematical equation showing the variable x is mapped to negative i times x, where i represents the imaginary unit.], the Schrödinger Equation (2) will read
[image: Mathematical equation showing the operator d squared over d x squared minus two m over h bar squared times V of negative i x comma a sub k all acting on psi equals negative E of a sub k times psi, labeled as equation three.]
and the asymptotic conditions (6) and (7) for [image: Lowercase Greek letter psi, styled in a bold, italic serif font, commonly used in mathematics and physics contexts.] are formally transformed in (3) and (4) for [image: Mathematical expression psi of open parenthesis negative i x close parenthesis, where psi is a Greek letter and i represents the imaginary unit.]. Suppose now we can transform the parameter [image: Mathematical expression showing the lowercase Greek letter alpha with a subscript k.] in such a way that the potential [image: Bold uppercase letter V with a tilde symbol above, representing a mathematical notation commonly used to indicate a vector variable with tilde in scientific contexts.] remains invariant under the Wick rotation; that is, let us introduce a new set of parameters [image: Mathematical expression showing the Greek letter alpha with subscript k and superscript exclamation mark, typically denoting a sequence or parameter indexed by k with a factorial notation.] such that
[image: Mathematical equation expressing V with vector notation as a function of x and α sub k equals V of negative i x and α sub k prime, with all terms in standard mathematical notation.]
With this transformation, Equation 3 will read
[image: Mathematical equation showing the operator d squared over d x squared minus V tilde of x and alpha sub k, all applied to u, equals negative E of alpha sub k times u.]
with [image: Mathematical expression showing u of x equals psi of negative i times x comma alpha subscript k prime.]. For the sake of simplicity, we have set [image: Mathematical expression showing h squared divided by two m equals one, where h and m are variables often used in physics equations.], without generality loss. Comparing (10) with (2), we see that [image: Italicized mathematical notation u of x, with lowercase u followed by parentheses containing lowercase x, representing a function u in terms of variable x.] is a QNM of the barrier potential corresponding to the inverted potential well [image: Mathematical symbol for vector V with a tilde accent above the capital letter V, commonly used to denote a vector quantity in scientific and mathematical contexts.] with QNM frequency [image: Lowercase Greek letter omega, depicted in bold black typeface on a white background.] such that
[image: Mathematical formula showing omega squared equals negative E of alpha subscript k superscript l.]
This method was sensibly simplified by the prescription introduced recently by Hatsuda [7], which is based on the following observation. Let us consider the Schrödinger operator
[image: Mathematical equation showing the time-independent Schrödinger equation: script H sub epsilon psi equals negative epsilon squared d squared by dx squared plus V tilde of x, all acting on psi, equals E sub epsilon psi.]
where [image: Mathematical character V with a tilde symbol above it, commonly used in physics or mathematics to denote a vector quantity or a variable with special notation.] is a well-behaved potential well in the entire real line [image: Mathematical symbol representing the set of all real numbers, depicted as a bold, double-stroked capital letter R in black on a white background.], and [image: Mathematical expression showing the Greek letter epsilon is greater than zero.] is some typical scale of the problem. Suppose [image: Mathematical expression showing psi sub epsilon of x, with psi and epsilon in italic, contained within parentheses with x.] is a bound state of [image: Mathematical expression showing a script capital H with a subscript lowercase epsilon, typically representing a specific Hilbert space parameterized by epsilon.] with energy [image: Mathematical notation displaying a capital italic E with a subscript italic epsilon.]. Consider now the analytical continuation of the Schrödinger operator given by [image: Mathematical expression showing calligraphic uppercase H with subscript letters i and e.]. The function [image: Mathematical equation showing u sub epsilon equals psi sub i epsilon.] is a QNM of the inverted potential [image: Mathematical expression showing a minus sign followed by an uppercase V with a tilde above it.], with frequency given by [image: Mathematical equation showing omega sub epsilon squared equals minus E sub i epsilon.].
Before we consider the physically relevant case of BTZ black holes, let us consider a simple explicit example to illustrate better the analytical continuation method.
2.1 The Pöschl–Teller potential well
The Pöschl–Teller potentials [8] were the first family of non-elementary exactly soluble potentials in quantum mechanics. We will illustrate the analytical continuation method with the Pöschl–Teller potential corresponding to the potential well defined for the entire real line [image: Mathematical notation showing a bold or double-struck capital R followed by a colon, commonly representing the set of real numbers with a mapping or function definition.]
[image: Mathematical formula displaying potential as V tilde of x equals negative V naught divided by cosh squared x.]
The Schrödinger Equation 3 with this potential admits bound states with energy spectrum given by (see, for instance, [9])
[image: Mathematical equation expressing E sub e superscript n as the negative of the squared difference between the square root of V sub zero plus epsilon squared divided by four and epsilon times the sum of n and one half.]
with [image: Italic lowercase letter n in a serif font, commonly used in mathematical or scientific notation.] integer such that [image: Mathematical expression showing zero is less than or equal to n, and n is less than or equal to n subscript max, where n indicates a variable within a specified range.], where
[image: Mathematical equation showing ymax equals one half times the sum of one and the square root of four V sub zero divided by epsilon squared plus one, encapsulated in large brackets and labeled as equation four.]
It is important to stress that we have only a finite number of bound states for the Pöschl–Teller potential well. This is a well-known property in quantum mechanics for potential wells vanishing sufficiently fast for [image: Mathematical notation showing x approaches positive or negative infinity, represented as x right arrow plus minus infinity.].
We can now apply the Hatsuda prescription, and we will have the following set of QNM frequencies
[image: Mathematical equation showing omega sub epsilon superscript n equals the square root of V zero minus epsilon squared over four, minus i epsilon times the quantity n plus one half.]
for the Pöschl–Teller potential barrier [image: Mathematical expression showing bold capital V equals minus bold capital V with a tilde above it.]. However, one could exactly solve the QNM problem for the inverted Pöschl–Teller potential well [image: Uppercase italic letter V in a serif font, black on a white background. This character is commonly used in mathematical and scientific notation.] (see, for instance, [2]), and we would get the QNM frequencies (16) without the restriction [image: Mathematical expression showing zero is less than or equal to n, which is less than or equal to n sub max.]. In other words, the Pöschl–Teller potential barrier has infinitely many QNM frequencies, and only a small set of them can be obtained from the analytical continuation of the Schrödinger operator. If one reverses the analytical continuation procedure, we will have that the QNMs with [image: Mathematical expression showing n is greater than n subscript max.] are mapped in solutions of the Schrödinger equation that do not correspond to bound states and, hence, do not belong the usual domain where [image: Mathematical expression showing script capital H with a subscript lowercase italic e.] is self-adjoint. This simple example shows that one cannot get the full set of QNM frequencies starting from the bound states of the associated quantum mechanics problem. Notwithstanding, the Pöschl–Teller potential is effectively used to compute some QNMs in the space-times of black holes as far as they can mimetize the effective potential in the vicinity of the horizon. The results using Pöschl–Teller potential can be compared with a numerical analysis, and the agreement is generally very good. The difference between both computations is less than [image: Numeral one followed by a percent symbol, representing one percent.] and decreases as the effective potential becomes more localized; see Ref. [10].
3 BTZ BLACK HOLES
The BTZ black hole [11] is an appealing solution in three-dimensional gravity with a negative cosmological constant, [image: Mathematical equation displaying capital lambda equals negative one divided by script lowercase l squared.]. In the case of zero angular momentum [image: Mathematical expression with italic J equals zero enclosed in parentheses.], its event horizon is determined solely by its mass [image: Italic uppercase letter M in a serif font, centered on a white background.] and the Anti-de Sitter (AdS) space length scale, [image: Lowercase cursive italic letter l, commonly used as a mathematical symbol for length or norm in equations.]. To begin with, we note that the line element for the exterior BTZ black hole with [image: Mathematical equation displaying J equals zero.] can be expressed as follows:
[image: Mathematical equation representing a spacetime metric: ds squared equals fraction r squared minus r star squared over e squared dt squared plus fraction e squared over r squared minus r star squared dr squared plus r squared d theta squared.]
where [image: Mathematical expression showing lowercase t element of the set of real numbers, written as t ∈ ℝ.], [image: Mathematical expression showing r is greater than r subscript plus, written as r greater than r with a subscript plus sign.], and [image: Mathematical expression showing theta is an element of the interval from zero to two pi, where two pi is not included.]. In this context, the horizon can be expressed in terms of [image: Lowercase cursive letter l in a serif italic font, displayed in black against a white background.] and [image: Mathematical italic uppercase letter M in a serif font, centered on a white background.] as follows: [image: Mathematical equation displaying r sub plus squared equals M times lowercase script l squared.] [11], as previously noted.
We consider a massless Klein–Gordon scalar field on this background,
[image: Mathematical equation displaying a box operator followed by the Greek letter phi, an equals sign, and zero, representing the wave equation used in physics and mathematics.]
We express the scalar field by means of the parametrization [image: Mathematical equation showing capital phi equals exponential of negative i omega t times exponential of i mu theta times u of r divided by the square root of r.], where [image: Mathematical expression in italicized serif font showing the Greek letter mu followed by the element of symbol and the set of integers symbol, representing mu is an element of the integers.] and [image: Mathematical expression showing lowercase omega belongs to the set of complex numbers, using the element-of symbol and blackboard bold C.], the latter representing the quasinormal mode frequencies according with our definitions. The case of a massive scalar field propagating on the rotating BTZ background can be found in [12].
Considering the definition of the tortoise coordinate, expressed through the familiar relation [image: Mathematical equation displaying d x equals d r divided by f of r.]. We arrive at the following expression:
[image: Mathematical equation showing x equals negative e squared divided by r sub plus, multiplied by the inverse hyperbolic cotangent of r over r sub plus, labeled as equation five.]
Equation 5 tells us that the tortoise coordinate effectively maps the interval [image: Mathematical expression displaying the open interval from r sub plus to positive infinity within parentheses.] onto [image: Mathematical expression showing the interval from negative infinity to zero, with negative infinity as the lower bound and zero as the upper bound, both within parentheses indicating both are excluded.]. Combining this result (19) with the equation outlined in (18) leads to a Schrödinger-like second-order linear differential equation:
[image: Mathematical equation showing the sum of the second derivative with respect to x and a potential function V evaluated at r of x, applied to u, equals omega squared times u, labeled equation six.]
where [image: Mathematical equation showing f equals r squared minus r plus squared divided by e squared.], and the effective potential reads
[image: Mathematical equation showing V equals negative V sub zero divided by sinh squared of open parenthesis a x close parenthesis plus V sub one divided by cosh squared of open parenthesis a x close parenthesis.]
Here, we define [image: Mathematical expression showing alpha equals r sub plus divided by l squared.], [image: Mathematical equation showing V sub zero equals three times r squared divided by four l squared, greater than zero.], and [image: Mathematical equation showing V sub one equals r sub plus squared divided by four l squared times the quantity one plus four mu squared divided by r sub plus squared, greater than zero.]. It is important to note that when [image: Mathematical expression showing the Greek letter mu, followed by an equals sign and the numeral zero, representing mu equals zero.], we return to the scenario examined in [13]. From this point onward, our goal will be to identify the QNMs associated with the equations given in (20) and (21). In this context, we will analyze the boundary conditions pertinent to the half-real (negative) line. As is widely known, this generalized Pöschl–Teller potential represents an exactly integrable problem, as established in [10, 14]. Yet the physical contexts differ significantly. The investigation of the QNMs for the pure de Sitter spacetime is addressed in [14], whereas the scattering problem associated with the generalized Pöschl–Teller potential is thoroughly explored in [10]. The boundary conditions typically imposed at the horizon must be a purely incoming wave, represented as [image: Mathematical expression showing e raised to the power of j times omega times x, commonly used in signal processing and Fourier analysis.], provided that a BTZ black hole is present. Conversely, at spatial infinity, we require an outgoing wave, [image: Mathematical expression showing e raised to the negative i times omega times x, commonly written as e to the power of negative i omega x.], in order to eliminate any incoming radiation. However, the BTZ potential given in (21) approaches 0 at the horizon while diverging as one moves toward infinity. For a solution to be well defined near infinity, it must decay to 0. The specific cases wherein this decay condition is satisfied are what determine the QNMs frequencies [10, 15].
After applying a new variable [image: Mathematical formula showing z equals hyperbolic cosine to the power of negative two of alpha x, where z belongs to the closed interval from zero to one.] which compactifies the interval [image: Mathematical notation showing a blackboard bold uppercase R with a subscript minus, representing the set of all negative real numbers.], the original master Equation 6 can be recast as the Gaussian hypergeometric equation [4]:
[image: Mathematical equation showing z times one minus z times the second derivative of u plus c minus a plus b plus one times z times the first derivative of u minus a times b times u equals zero.]
where the parameters of the Gaussian hypergeometric are given by
[image: Mathematical equation showing lowercase a equals one half minus i times omega divided by two alpha plus one fourth times the sum of gamma and zeta.]
[image: Mathematical equation showing b equals one half minus i times omega divided by two alpha plus one fourth times the quantity nu minus zeta, with all variables presented in italics.]
[image: Mathematical expression showing c equals one minus i times omega divided by alpha.]
Here, [image: Mathematical equation showing v equals the square root of one plus four times V sub zero divided by alpha squared.] and [image: Mathematical formula showing zeta equals the square root of one minus four times capital V divided by alpha squared.].
We can derive various types of solutions depending on the value of [image: Lowercase black letter c in a serif font displayed on a white background with slight blurring around the edges.]. Specifically, when [image: Mathematical expression showing lowercase c is not an element of the set of integers, with c followed by the not-element-of symbol and the set of integers denoted by a bold Z.], we find that the basis of linearly independent solutions is
[image: Mathematical equation showing u sub i equals z raised to the power m star times one minus z raised to the power one plus n star, multiplied by two F one of a, b, c, z.]
[image: Mathematical expression showing u double subscript two one equals z raised to one minus c times open parenthesis one minus z close parenthesis raised to c minus a minus b times F subscript one, with parameters a minus c plus one, b minus c plus one, two minus c, and z.]
At this stage, several comments are in order. When we consider the limit as [image: Mathematical notation showing variable x approaching negative infinity.] and the fact that the hypergeometric function is equal to 1 when evaluated at the origin, the boundary condition of having an ingoing-wave at the horizon implies that the second solution [image: Italic lowercase letter u with subscript i and subscript j, representing a mathematical variable with two indices.] must be discarded. The other boundary condition corresponds to imposing that at infinity [image: Mathematical expression showing z approaching one from the left side, represented as z arrow one superscript minus, enclosed within parentheses.], the solution decays to 0, [image: Mathematical expression showing the limit as x approaches zero of u sub l equals zero.]. To do so, we employ Gursat’s transformation to [image: Mathematical expression showing write subscript two F subscript one with arguments a, b, c, and z in parentheses.] in terms of a combination [image: Mathematical expression showing the hypergeometric function sub two F sub one with parameters a, b, c, and one minus z.] [16]. Expanding [image: Mathematical formula showing z equals one minus open parenthesis alpha x close parenthesis squared plus big O of open parenthesis alpha x close parenthesis squared.], the local expansion of the solution reads,
[image: Mathematical equation showing u sub t is approximately equal to A times open parenthesis alpha x close parenthesis raised to the power of one plus nu, plus B times open parenthesis alpha x close parenthesis raised to the power of one minus nu.]
with
[image: Mathematical formula showing A equals the product of Gamma one minus i times omega over a and Gamma negative z over a, divided by the product of Gamma one half minus i times omega over two a minus one fourth times nu plus Q, and Gamma one half minus i times omega over two a minus one fourth times nu minus Q.]
and
[image: Mathematical equation showing B equals the product of gamma of one minus i omega over a and gamma of nu over a, divided by the product of gamma of one half minus i omega over two a plus one fourth times nu plus zeta, and gamma of one half minus i omega over two a plus one fourth times nu minus zeta.]
For [image: Mathematical expression showing a script letter v is greater than one.], we notice that the power-law term [image: Mathematical expression showing open parenthesis alpha x close parenthesis raised to the one fourth power, multiplied by open parenthesis one minus nu close parenthesis.] in (28) diverges as one approaches infinity (which corresponds to [image: Mathematical expression shows alpha x approaches zero from the left.]), while the other term decays toward 0. However, the presence of poles in the Gamma function at negative integers may effectively make this problematic term vanish. As a result, we derive a discrete set of countable frequencies that characterize the QNM solutions,
[image: Mathematical equation displayed as: omega subscript n equals negative i a times quantity two n plus one plus one half times quantity nu plus or minus capital Omega, enclosed in parentheses, followed by equation number seven in parenthesis.]
with [image: Mathematical expression showing n is an element of Z sub zero, indicating that n belongs to the set of non-negative integers.]. These results, as shown in (7), are consistent with those presented in [10, 14], and [15]. In addition, Equation 7 can be derived by analyzing the singular points in the transfer matrix—or transmission coefficient—where [image: Mathematical equation showing calligraphic T of omega sub plus or minus equals infinity.]. This approach was previously demonstrated in the context of the Pöschl–Teller potential [17] and also in the case of a generalized Pöschl–Teller potential [18]. It should be mentioned that other interesting situations were analyzed in [15], such as:
	i. QNMs with the usual exponentially suppressed oscillatory behavior for [image: Mathematical expression showing V sub zero is greater than zero.] and [image: Mathematical expression showing V one is greater than alpha squared divided by four.],
	ii. The so-called algebraically special QNMs for [image: Mathematical equation showing V sub one is less than or equal to alpha squared divided by four.], and
	iii. Unstable modes for small [image: Mathematical expression showing capital V subscript one divided by alpha squared.].

For more information on these possibilities, the reader may consult Ref. [15].
The QNM solutions have the following effective boundary condition at [image: Mathematical expression showing x equals zero.],
[image: Mathematical equation showing the limit as x approaches negative infinity of open parenthesis alpha x close parenthesis to the power negative k, multiplied by an expression in brackets, equals zero. The bracketed expression contains two terms: open parenthesis alpha x close parenthesis squared times mu sub k prime of x, minus one divided by open parenthesis alpha x close parenthesis squared, times alpha times open parenthesis one-fourth plus k close parenthesis mu sub k of x. Equation is labeled as eight.]
where [image: Mathematical formula showing kappa equals the square root of one divided by sixteen plus V sub zero divided by alpha squared, greater than zero.]. Equation 8 resembles the condition reported in [15]. Another interesting point is to examine whether or not the functional energy remains bounded spatially for the QNMs solution at infinity [15]. As long as [image: Mathematical expression showing the Greek letter kappa is greater than seven divided by four.], the functional energy converges to 0 as [image: Mathematical expression showing alpha x approaches zero from the left.].
Now, we are in a position to discuss the role played by the analytical continuation of the QNM problem in the case of the BTZ black hole. We will give a proof of concept by analyzing one case based on the ideas presented in Section 2. The outcome of applying the analytical continuation, defined as [image: Mathematical equation displaying x equals i times y, where i represents the imaginary unit.], to the QNMs of the BTZ black hole [7] is as follows. The solution [image: Mathematical expression in italic font showing u subscript I of open parenthesis x close parenthesis.] associated with the potential [image: Mathematical expression showing an uppercase V followed by an open parenthesis, lowercase x, and a close parenthesis, representing a function V of x.] will transform into quantum eigenstates [image: Mathematical equation showing psi equals u sub t of V changes to negative V of i times y comma alpha prime, omega changes to negative i times omega.] of the inverted potential barrier, [image: Mathematical equation showing vector V with a tilde above equals negative vector V, indicating the negation or opposite direction of the vector.]. Thus, the Schrödinger equation becomes
[image: Mathematical equation showing a second-order differential operator minus two potential energy terms over squared hyperbolic sine and cosine functions, all multiplied by psi, equals energy times psi.]
It is important to stress that [image: Lowercase Greek letter alpha in a serif font, displayed in black against a white background.] parameter must accommodate the modification introduced by the analytic continuation in order to keep the shape of potential unspoiled [6]. As result of that procedure, the energy eigenvalue [image: Mathematical expression showing E equals negative omega squared in italics, with omega symbol raised to the power of two and enclosed within parentheses.] now reads
[image: Mathematical equation expressing energy as E equals negative alpha squared times the quantity two n plus one plus one half times nu plus or minus zeta, all squared.]
Including these transformations in the definitions of [image: Lowercase italicized letter v, appearing in a serif font style on a plain background.] and [image: Lowercase Greek letter zeta, written in an italicized mathematical font.], the combination appearing in (34) becomes [image: Mathematical equation showing nu plus or minus zeta equals the square root of one minus four times V sub a over alpha squared, plus or minus the square root of one plus four times V sub n over alpha squared.]. The latter fact pinpoints a potential issue regarding the self-adjoint property of the Schrödinger operator presented in (33), provided the energy can take complex value. The reason for suspecting that something might have gone wrong around [image: Mathematical equation displaying y equals zero.] can be easily confirmed by expanding the inverted potential around that point. The leading term is [image: Mathematical equation showing V tilde equals negative V sub zero divided by the quantity alpha prime times y squared is less than zero.]. This kind of potential yields a non-self-adjoint operator on a Hilbert space [image: Mathematical expression showing L two of the interval from negative infinity to zero with respect to the measure d y.] [19, 20].
From now on, we will focus on the properties of the Schrödinger operator (33) and the effective boundary condition around [image: Mathematical equation reading y equals zero.]. To do so, we follow a well-established protocol based on Von Neumann’s theorem [21, 22]. We begin by computing the subspace of solutions with purely imaginary eigenvalues denoted as [image: Mathematical expression defining N sub plus or minus as the set of phi in the domain of the adjoint of script H, such that script H phi equals plus or minus i phi.] [21], where [image: Italicized uppercase letter H in a serif font, commonly used as a mathematical symbol or variable in scientific and academic contexts.] stands for the Schrödinger operator presented in (33). In our case, near [image: Mathematical expression showing y equals zero, followed by a comma.] these solutions are given by
[image: Mathematical equation for phi sub x equals open parenthesis alpha y prime close parenthesis to the power one divided by four, multiplied by open parenthesis A sub x times open parenthesis alpha y prime close parenthesis to the power n plus B sub x times open parenthesis alpha y prime close parenthesis to the power negative n close parenthesis, labeled as equation nine.]
Here, [image: Mathematical equation showing k-bar equals kappa, with arguments V sub zero maps to negative V sub zero, and alpha maps to alpha prime, all inside parentheses.]. Equation 9 indicates that, locally, in each case [image: Black plus-minus symbol, consisting of a plus sign directly above a minus sign, centered on a white background. Represents a mathematical operation or value range.], only one of the solutions is square-integrable with respect to the measure [image: Mathematical expression showing the differential of y, written in italic font as d y.]. This fact shows that the dimension of the subspaces [image: Mathematical expression showing a bold, italicized capital letter N followed by a plus-minus symbol as a subscript.] is at least 1 in both cases. Consequently, the operator admits a self-adjoint extension parametrized by the [image: Mathematical expression representing the unitary group U left parenthesis 1 right parenthesis, commonly used in mathematics and physics to denote the group of one-by-one unitary matrices.] group. In other words, there are an infinite number of self-adjoint extensions which can be written as [image: Mathematical equation showing phi equals phi sub plus plus s times phi sub minus.] with [image: Mathematical expression showing s belongs to the set of complex numbers, using set notation with the element-of symbol and a stylized capital C for complexes.] such that [image: Mathematical expression showing the absolute value of s equals one, written as vertical bars around the letter s with an equals sign and the number one.]. For any element [image: Mathematical notation showing psi is an element of the domain of the adjoint of the operator H, written as psi belongs to D of H superscript dagger.], in order to ensure that the self-adjoint extensions are well defined, they must fulfill the following boundary condition,
[image: Mathematical equation showing an inner product relationship: left angle phi, H psi right angle minus left angle H phi, psi right angle equals the limit as y approaches zero of bracket phi of y times psi prime of y minus phi prime of y times psi of y, close bracket, equals zero.]
where the bracket [image: Angle brackets enclose a comma, creating a visual symbol with a left angle bracket, a comma in the center, and a right angle bracket, all in black on a white background.] refers to the usual inner product in [image: Mathematical expression showing the L squared space over the interval from negative infinity to zero with respect to the measure d y.]. For the sake of simplicity, let us corroborate whether the analytically continued eigenstates satisfy the same effective boundary condition of the QNMs (32). We only consider the situation associated with the QNMs, so from the general combination, the [image: Mathematical expression showing an uppercase italic letter A with a subscript plus-minus symbol, commonly used to indicate two related values in equations.] terms must be omitted, while the identification [image: Mathematical equation displaying the variable u is equal to the Greek letter psi, represented as u equals psi.] is made explicit. To keep things simple, we consider the case in which [image: Mathematical expression showing kappa with a bar over it, an element of the set of real numbers.]; thus, [image: Mathematical expression with zero less than V sub zero divided by alpha prime squared, which is less than one divided by four.] [15]. The boundary condition (36) can be recast as
[image: Mathematical expression showing the limit as y approaches zero of open parenthesis alpha prime y close parenthesis to the power minus kappa multiplied by the bracketed sum of open parenthesis alpha prime y close parenthesis squared times the first derivative of u with respect to y minus one over open parenthesis alpha prime y close parenthesis squared times alpha prime times one fourth minus kappa bar multiplied by u of y, equals zero. Equation is numbered ten.]
The physical implications derived from Equation 10 can be summarized as follows. Upon determining the self-adjointness of the generalized (inverted) Pöschl–Teller operator as described in (33) and imposing the necessary conditions for self-adjointness at the boundary [image: Mathematical expression showing y equals zero.], we find that the effective boundary conditions associated with the quasinormal modes differ from the original conditions presented in (32). Specifically, for the range [image: Mathematical inequality showing zero is less than V sub zero divided by alpha squared, which is less than one fourth.], the self-adjoint extensions do not fulfill to the same boundary condition specified in (32). This indicates that the analytically continued QNMs do not belong within the domain of any self-adjoint extension [15]. This observation further supports our conclusions regarding the analytical continuation method and the (inverted) Pöschl–Teller potential, as presented in Section 2.
4 SUMMARY
We discussed the issues that emerge when employing the analytical continuation method to obtain the complete set of quasinormal modes in solvable scenarios, including the Pöschl–Teller potential and the BTZ black hole case. The absence of (essentially) self-adjointness in the Schrödinger operator with the inverted potential significantly restricts the viability of this approach [15]. Nevertheless, it would be interesting to revisit this BTZ case in light of the recent developments for the pseudospectrum of the Pöschl–Teller operator [23, 24] and in the case where the black hole is asymptotically AdS [25–28]. The latter point will be addressed elsewhere.
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1 INTRODUCTION
The ([image: Lowercase Greek letter epsilon, commonly used in mathematics to represent a small positive quantity or error term in equations and scientific notations.]-)pseudospectrum [image: Mathematical expression showing the Greek letter sigma with a subscript epsilon, followed by the variable H in parentheses, representing a specialized form of a function or notation.] (with positive [image: Lowercase Greek letter epsilon, commonly used in mathematics and science to represent a small quantity or error term. Black serif font on a white background.]) of an operator [image: Uppercase italicized letter H in a serif font on a white background.] in a Hilbert space is the union of the spectrum [image: Mathematical expression showing the lowercase Greek letter sigma followed by the variable H in parentheses, representing the spectrum of H in mathematics or physics.] of [image: Uppercase italic letter H in a serif font, presented in black on a white background.] and all those complex numbers [image: Lowercase Greek letter lambda written in a serif font, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or various parameters.] from the resolvent set [image: Mathematical expression showing the Greek letter rho followed by parentheses containing the capital letter H, representing a function or value dependent on H.] of [image: Mathematical serif uppercase letter H shown in bold, commonly used to denote a matrix, Hamiltonian operator in physics, or other specialized mathematical entities.] for which
[image: Mathematical expression showing the norm of the inverse operator H minus lambda is greater than one divided by epsilon, written as double vertical bar open parenthesis H minus lambda close parenthesis to the power negative one double vertical bar is greater than one over epsilon.]
Equivalently, [image: Mathematical expression showing the Greek letter sigma subscript epsilon followed by an open parenthesis, a capital letter H, and a close parenthesis.] comprises the spectrum of [image: Italic capital letter H in a serif font, presented against a white background.] and [image: Mathematical notation showing lambda belongs to the set of complex numbers.] (pseudoeigenvalues) for which there exists a vector [image: Lowercase Greek letter psi, commonly used as a symbol in mathematics, physics, and engineering, particularly in quantum mechanics to represent the wave function.] (pseudomode) in the domain of [image: A bold, italicized uppercase Latin letter H is displayed in a serif font, centered on a white background.] such that
[image: Mathematical expression showing double vertical bars around H minus lambda applied to psi, less than epsilon times the double norm of psi.]
If [image: A bold, serif uppercase letter H is centered on a white background.] is self-adjoint (or, more generally, normal), the [image: Lowercase Greek letter epsilon in a serif font, commonly used in mathematics and science to represent a small quantity or variable.]-pseudospectrum is trivial in the sense that it is just the [image: Lowercase Greek letter epsilon in a bold, serif typeface, commonly used in mathematical and scientific notation. Black glyph on a white background.]-tubular neighbourhood of the spectrum of [image: Italic, uppercase letter H in a serif font, rendered in black on a white background. Suitable for mathematical or scientific notation.]. In general, however, the pseudoeigenvalues can lie outside the [image: Lowercase Greek letter epsilon presented in a bold, italicized serif font, commonly used in mathematical and scientific contexts. Character displays smooth curves and a slanted orientation.]-tubular neighbourhood and their location is important to correctly seize various properties of [image: Italicized uppercase letter H in serif font.], see [1–3].
The goal of this brief research report is to explain in a succinct way the approach in Krejčiřík and Siegl [4] to locate pseudoeigenvalues of (non-semiclassical) Schrödinger operators
[image: Mathematical expression showing the differential operator d squared over d x squared plus V of x, defined in L squared of R, labeled as equation one.]
where [image: Mathematical notation showing V as a function from the set of real numbers, represented by a double-struck R, to the set of complex numbers, represented by a double-struck C.] is at least locally square-integrable and [image: Mathematical expression showing the real part of variable V is greater than or equal to zero.]. In such a case, there exists a unique m-accretive extension [image: Mathematical notation showing an uppercase italic H with a subscript V, commonly representing Vickers hardness in material science contexts.] of Equation 1 initially defined on [image: Mathematical notation displaying C subscript zero superscript infinity of open parenthesis script R close parenthesis, representing the space of infinitely differentiable functions with compact support on the real numbers.], see ([5], Thm. VII.2.6). Since our constructed pseudomodes are compactly supported and at least twice weakly differentiable, they belong to the domain of [image: Mathematical expression showing an italic uppercase H followed by a subscript italic lowercase v.].
The operator [image: Mathematical notation showing uppercase italic H with a subscript lowercase v.] is self-adjoint (respectively, normal) if, and only if, [image: Italic uppercase letter V in a serif font, commonly used in mathematical or scientific notation.] is real-valued (respectively, [image: Mathematical expression consisting of a stylized script capital S followed by a capital V, both in bold italic font.] is constant). To ensure non-trivial pseudospectra, we shall therefore adopt the standing hypothesis
[image: Mathematical equation showing that the limit superior as x approaches infinity of script S V of x is less than zero, which is less than the limit inferior as x approaches infinity of script S V of x, followed by equation number two in parentheses.]
where the limits are allowed to be infinite. The assumption (Equation 2) can be interpreted as a “global” version of the Davies’ condition [image: Mathematical expression showing the real part of V prime is not equal to zero.], see [6] and also [7].
To simplify the presentation, the potential [image: Italic uppercase letter V, commonly used in mathematics or physics to represent variables such as velocity, potential, or voltage.] will be assumed to be smooth and imaginary-valued. Typical examples to keep in mind are as follows:
[image: Mathematical equations showing three functions: V sub one of x equals i times arctan of x, V sub two of x equals i times x to the power of m with m odd, and V sub three of x equals i times sinh of x. Equation number three is labeled on the right.]
or their imaginary shifts. In particular, [image: Mathematical notation displaying an uppercase italic letter V with a subscript two.] with [image: Mathematical expression showing m equals three.] is the celebrated imaginary cubic (or Bender’s) oscillator (with purely real and discrete spectrum, see Figure 1), which was made popular in the context of the so-called [image: Mathematical notation showing the italicized letters p and T side by side, commonly used in algebraic equations or scientific expressions.]-symmetric quantum mechanics in [8].
[image: Contour plot displaying a series of curved, green streamlines diverging outward from a horizontal row of evenly spaced red dots along the center, over an X axis labeled Re(z) and Y axis labeled Im(z).]FIGURE 1 | Spectrum (red dots) and pseudospectra (enclosed by the green contour lines) of the imaginary cubic oscillator. (Courtesy of Miloš Tater.)
The objective is to develop a systematic construction of pseudomodes ensuring that, for any diminishing [image: Greek letter epsilon approaches zero, represented by the equation epsilon right arrow zero.], there is a complex number [image: Lowercase Greek letter lambda, often used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or other variables depending on context.] with large magnitude [image: Mathematical expression showing the absolute value of lambda with a right arrow pointing toward infinity, indicating that the variable’s magnitude increases without bound.] such that [image: Mathematical expression showing the Greek letter lambda belongs to the spectrum sigma sub epsilon of the operator H sub V.]. The results are particularly striking whenever this set of pseudoeigenvalues lie outside (in fact, “very far” from) the [image: Lowercase Greek letter epsilon shown in a bold, serif font in black on a white background. Commonly used in mathematics, science, and engineering to represent small quantities or variables.]-tubular neighbourhood of [image: Mathematical expression displaying the Greek letter sigma, followed by an italic uppercase H enclosed in parentheses, representing sigma of H.]. This is particularly the case of the imaginary cubic oscillator, for which the analysis below show that for an arbitrarily small [image: Lowercase Greek letter epsilon in a serif font, commonly used in mathematics and science to denote a small quantity or error term.] there exists a pseudoeigenvalue [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent variables such as wavelength or eigenvalues.] with an arbitrarily large imaginary part, despite the fact that the spectrum is purely real (see Figure 1 for a numerical quantification of the pseudospectrum level lines). This property implies the lack of Riesz basis for the eigenfunctions, challenging in the spirit of [9] the physical relevance of the [image: Mathematical expression showing L superscript 2 of open parenthesis script capital R close parenthesis, which denotes the space of square-integrable functions over the real numbers.]-realisation of the Bender’s oscillator. The follow-up [4] summarised in this report can be considered as a methodical and more advanced study of not necessarily polynomial potentials.
The feature of the approach of [4] is that it does not rely on semiclassical methods developed in [6, 7, 10]. In fact, we are able to construct large-energy pseudomodes for potentials (like of exponential type, see [image: Mathematical expression showing uppercase italic letter V with a subscript three.] of Equation 3) which cannot be reduced (by scaling) to a small Planck’s constant included in the kinetic energy. On the contrary, the known claims in the semiclassical setting follow immediately from our approach.
2 METHODS
Our strategy of the construction of pseudomodes is based on the Liouville–Green approximation, also known as the JWKB method in mathematical physics. The key idea is that, if [image: Uppercase italic letter V in a serif font, appearing isolated against a plain white background.] were constant, exact solutions of the differential equation associated with [image: Mathematical equation showing H sub v g equals lambda g.] would be the two non-integrable functions
[image: Mathematical expression defining g sub plus or minus of x as the exponential of plus or minus i times the integral from zero to x of the square root of lambda minus V of t with respect to t.]
The starting point of the approximation scheme is to use the same ansatz for variable [image: Italic uppercase letter V in a serif font, presented in black against a white background.] as well. More specifically, we choose [image: Mathematical expression showing g sub zero is defined as g sub minus, using italicized variables and standard mathematical notation.] for it is exponentially decaying under the hypothesis (Equation 2), whenever [image: Mathematical expression featuring the script letter S followed by the lowercase Greek letter lambda, both presented in a bold, stylized serif font.] is small with respect to the limits of [image: Mathematical expression showing a stylized calligraphic letter "S" followed by an italic uppercase letter "V".] at [image: Mathematical symbols for plus-minus and infinity appear side by side, representing the concept of positive or negative infinity in mathematical notation.]. A direct computation yields
[image: Mathematical equation showing (H_V minus lambda) acting on g_0 equals r_0 times g_0, with r_0 defined as negative i over two times V prime divided by the square root of lambda minus V. Equation is labeled as number four.]
Recalling the simplifying hypothesis that [image: Mathematical expression displaying a script capital R followed by V equals zero, indicating the real part of variable V is zero.] and assuming in addition that [image: Mathematical expression showing the real part of lambda equals zero.] and [image: Mathematical expression stating that the real part of lambda is greater than zero.] (typically large), one has the estimate
[image: Mathematical equation showing the infinity norm of vector r sub zero is less than or equal to one divided by the square root of script R lambda to the power of one minus delta, times the infinity norm of the ratio magnitude of V prime to two times magnitude of V to the power of t over two prime, followed by equation number five.]
for every [image: Mathematical expression showing delta belongs to the interval from zero to one, including zero but excluding one.]. It follows that large real energies always lie in the pseudospectrum, namely, for every positive [image: Lowercase Greek letter epsilon in a bold, serif font, displayed in black against a white background.],
[image: Mathematical expression presenting a set of complex numbers lambda where the square root of the real part of lambda raised to one minus delta is greater than one over epsilon times the maximum of the absolute value of V prime over two times the infinity norm of V prime, which is a subset of the essential spectrum of H sub V.]
Of course, this result is interesting only if the supremum norm is bounded. From examples (Equation 3), relevant potentials are thus [image: Mathematical notation showing an uppercase italic V with a subscript one, indicating the variable V one, commonly used to represent voltage or value one in equations.] and [image: Mathematical notation showing an uppercase italic letter V with the number two in subscript.] with [image: Mathematical expression showing m equals one.], in which case we can take [image: Mathematical expression showing the Greek letter delta equals zero.] and obtain thus a pseudomode satisfying the decay [image: Mathematical expression showing that the norm of the difference between H subscript V minus lambda applied to g naught is asymptotically bounded by the norm of g naught times the order of the real part of lambda to the power negative one half.] as [image: Mathematical notation showing the real part of lambda approaches infinity, using the blackboard bold symbol for real part, the Greek letter lambda, a right arrow, and the infinity symbol.]. The latter is particularly interesting because the spectrum of the imaginary Airy operator is empty, see, e.g., ([3, 11], Section VII.A) or more generally [12], where the last reference includes also an elementary proof of the optimal resolvent norm estimate for the Airy operator.
It is not difficult to modify the exponentially decaying pseudomode [image: Mathematical expression showing the letter g in italic type with a subscript zero, commonly representing the acceleration due to gravity in physics.] to a compactly supported pseudomode [image: Mathematical notation showing the letter f with a superscript zero, commonly read as f naught or f sub zero.], while still keeping the same decay [image: Mathematical expression showing the norm of H sub V minus lambda applied to f sub zero is at most big O of the real part of lambda to the power negative one-half times the norm of f sub zero.] as [image: Mathematical expression showing the real part of lambda, denoted as Re lambda, tending to infinity with a rightward arrow leading to the infinity symbol.]. Indeed, let [image: Mathematical expression showing the function xi sub one maps from the set of real numbers to the closed interval zero to one.] be a smooth function such that [image: Mathematical expression showing the Greek letter xi subscript one equals one.] on [image: Mathematical interval notation showing the closed interval from negative one to one, represented as open bracket negative one comma one close bracket.] and [image: Mathematical equation displaying lowercase xi subscript one equals zero.] outside [image: Mathematical notation displaying a closed interval from negative two to two using square brackets and a comma.]. Given any positive number [image: Lowercase italic letter l in a serif font, black on a white background, with blurred edges suggesting low resolution or motion.], let us define the rescaled cut-off function [image: Mathematical expression showing xi sub one of x is defined as xi sub one of x divided by l, where l is a variable or parameter.]. Then [image: Mathematical expression showing f subscript zero is defined as xi subscript one multiplied by g subscript zero.] is compactly supported and one has
[image: Mathematical expression showing the equation: open parenthesis H sub V minus lambda close parenthesis f sub zero equals xi sub one H sub V g sub zero plus open parenthesis negative xi sub one prime plus two i square root open lambda minus V xi close parenthesis close parenthesis g sub zero.]
Using that [image: Mathematical expression showing the Greek letter xi subscript l approaches one, with a rightward arrow indicating the limit process.] pointwise as [image: Mathematical expression showing the variable l approaches infinity, indicated by an arrow pointing from l to the infinity symbol.], while one gains one [image: Mathematical notation showing a capital letter L with a superscript negative one, representing the inverse of operator L.] by each derivative, it is possible to verify the desired decay by the [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or rate parameters depending on the context.]-dependent choice [image: Mathematical expression showing the variable l is defined as the real part of lambda using Re in blackboard bold font.].
To cover a larger class of potentials, let us consider a modified ansatz [image: Mathematical equation showing g sub one is defined as g sub zero times the exponential function of negative psi sub zero.], where [image: Mathematical notation showing the Greek letter psi with a subscript zero, commonly used to represent a ground state wave function in quantum mechanics.] is a function to be chosen later. A direct computation yields
[image: Mathematical equation displaying: open parenthesis H sub V minus lambda close parenthesis g sub one equals open parenthesis r naught minus two i square root lambda minus V psi naught prime plus psi naught double prime minus psi naught squared close parenthesis g sub one.]
Now we choose [image: Mathematical symbol showing the Greek letter psi with a subscript zero, representing the ground state wave function commonly used in quantum mechanics.] to annihilate the error term [image: Mathematical expression showing the letter r in italics with a subscript zero.] from Equation 4, by solving the first-order linear differential equation [image: Mathematical equation showing r sub zero minus two i times the square root of lambda minus V times psi naught prime equals zero.], namely, [image: Mathematical expression showing psi naught equals the logarithm of the fourth root of lambda minus V.]. Thus we arrive at the familiar expression
[image: Mathematical equation showing g sub one of x equals one divided by the square root of lambda minus V of x, multiplied by the exponential of negative i integral from zero to x of the square root of lambda minus V of t with respect to t.]
Then
[image: Mathematical equation showing (H subscript V minus lambda) times g subscript 1 equals r subscript 1 times g subscript 1, with r subscript 1 equals negative five over sixteen times V squared over lambda minus V squared, minus one over four times lambda minus V double prime.]
where the new error term [image: Lowercase italic letter r followed by a subscript numeral one, commonly used in mathematical and scientific notation.] can be estimated as follows:
[image: Mathematical formula showing the infinity norm of r sub n is less than or equal to one over the square root of the real part of lambda to the power two times one minus delta, multiplied by the sum of five times the squared norm of V over sixteen times the norm of V to one plus delta and the norm of V to the power double prime over four times the norm of V to delta, all norms are infinity norms.]
This result is an improvement upon (Equation 4) with (Equation 5) in two respects. First, if the supremum norm is bounded for [image: Mathematical expression showing the Greek letter delta followed by an equals sign and the number zero, representing delta equals zero.], we get a pseudomode with an improved decay [image: Mathematical equation showing the norm of the operator H subscript V minus lambda acting on g subscript 1, bounded by a big O term involving the inverse real part of lambda, times the norm of g subscript 1.] as [image: Mathematical notation showing the real part of lambda approaches infinity, represented by the script R followed by lambda, an arrow, and the infinity symbol.]. This is the case of [image: Mathematical symbol V with subscript 1, commonly used to denote the first element or component in a sequence or a vector.] and [image: Mathematical notation displaying the letter V with the number two as a subscript.] with [image: Mathematical expression showing lowercase italic m equals one.] from examples (Equation 3). Second, keeping the decay [image: Mathematical expression showing big O of open parenthesis real part of lambda close parenthesis raised to the power of negative one half.] by the choice [image: Mathematical equation showing lowercase Greek letter delta equals one divided by two, representing delta equals one-half.], we can now cover [image: Mathematical variable V with the number two as a subscript, indicating the variable V sub two.] with [image: Mathematical expression displaying the variable m is equal to three, with m in italicized font.] from examples (Equation 3).
The above scheme can be continued by employing the general ansatz in square-root powers of [image: Lowercase Greek letter lambda, often used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or rate parameters depending on the context.]:
[image: Mathematical formula showing g sub k equals exponent of negative lambda to the one half times psi sub k minus one plus lambda to the zero over two times psi naught, plus terms up to lambda to the k minus one over two times psi sub k minus one. Equation labeled six.]
where [image: Mathematical expression for psi sub minus one of x equals i times lambda to the negative one half power, integral from zero to x of the square root of lambda minus V of t d t.] and [image: Mathematical expression showing the Greek letter psi with subscript k minus one, representing psi sub k minus one.] with [image: Mathematical expression showing lowercase k is an element of the set of natural numbers, represented by an upright bold capital N.] is iteratively chosen in such a way to annihilate the previous error term [image: Mathematical expression r subscript k minus one.]. By enlarging [image: Lowercase italic letter k in a serif font, commonly used to represent a variable in mathematical or scientific expressions.], more derivatives of [image: Uppercase italic letter V in a serif font displayed in black on a white background.] are required. On the other hand, a better decay (in negative powers of [image: Mathematical notation showing the real part of lambda, represented as script R lambda, approaches infinity with a rightward arrow followed by the infinity symbol.]) of the new error term is achieved and a larger class of potentials can be covered. For instance, all the examples (Equation 3) are already covered by the choice [image: Mathematical expression showing k equals 2.], namely, [image: Mathematical equation showing the norm of the operator H sub V minus lambda acting on g sub two is bounded by big O of the real part of lambda to the power negative one-half times the norm of g sub two.] as [image: Mathematical expression showing the real part of lambda with a rightward arrow approaching infinity.].
3 RESULTS
To make the above procedure rigorous, it is important to ensure that [image: Italicized lowercase letter g followed by a subscript zero, commonly used to denote a variable with an initial value or a specific constant in mathematical or scientific contexts.] in the expansion (Equation 6) is dominant, in order to guarantee that [image: Mathematical expression showing g subscript k and argument x in parentheses, representing the function g sub k of x.] have appropriate decay properties at [image: Mathematical expression showing x equals plus or minus infinity.]. One of the main achievements of [4] is the formulation of the robust sufficient condition
[image: Mathematical expression showing the ratio of the n-th derivative of V of x to V of x equals big O of the absolute value of x to the n-th power, and the absolute value of x to the one over n is big O of the absolute value of V of x, labeled as equation seven.]
to hold as [image: Mathematical notation showing the absolute value of x approaches infinity, represented as vertical bars around x followed by a right arrow pointing to the infinity symbol.] with some real number [image: Mathematical expression showing lowercase y is less than or equal to zero.] for every [image: Mathematical expression showing n equals one, comma, ellipsis, k plus one.]. Note that [image: Mathematical expression showing y equals negative two.], [image: Minus one symbol in a standard font on a white background.] and 0 for the potentials [image: Mathematical variable V with a subscript one, typically used to denote the first element in a sequence or set.], [image: Mathematical notation displaying an uppercase italic letter V with a subscript two.] and [image: Mathematical notation displaying an uppercase italic V with a subscript three.] of Equation 3, respectively. In fact, it is possible to allow for [image: Mathematical expression showing the Greek letter nu is greater than zero.] (corresponding to superexponentially growing potentials). Moreover, different behaviours at [image: Mathematical notation showing x approaches positive or negative infinity, represented as x with a right arrow pointing toward plus-minus infinity.] may be allowed. However, let us stick to Equation 7 to make the presentation here as simple as possible.
To get a compactly supported pseudomode, it turns out that the adequate [image: Lowercase Greek letter lambda in a serif font, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or decay constants.]-dependent cut-off function should be supported in the interval [image: Mathematical notation showing a closed interval from negative l subscript minus to l subscript plus, enclosed in square brackets.], where (denoting [image: Mathematical expression presenting the expectation value of l as the square root of the quantity one plus l squared, using angle brackets and exponent notation.])
[image: Mathematical expression defining I_lambda with two cases: the infimum expression involving V, lambda, and angle brackets for unbounded V at plus or minus infinity, and lambda to the power of negative one-half if V is bounded at plus or minus infinity.]
Recall that we assume [image: Mathematical expression displaying the real part of lambda equals zero, written as a calligraphic capital R, lambda, equals zero.] and note that [image: Mathematical notation showing l sub plus or minus approaches infinity, indicating a variable l with a plus-minus symbol tends to infinity.] as [image: Mathematical notation displaying the Greek letter lambda followed by a rightward arrow and the infinity symbol, indicating that lambda approaches infinity.]. In particular, [image: Mathematical formula showing L sub plus or minus equals lambda raised to the power of three halves.], [image: Mathematical expression showing the Greek letter lambda raised to the power of one divided by the quantity two times m, written as lambda to the one over two m.] and [image: Mathematical expression showing logarithm base ten of the Greek letter lambda.] as [image: Mathematical expression showing the Greek letter lambda with a right arrow pointing toward the infinity symbol, representing lambda approaches infinity.] for the potentials [image: Mathematical variable V with subscript one, indicating V sub one.], [image: Mathematical expression showing a capital letter V with a subscript two, commonly used to represent a variable or vector labeled V two.] and [image: Mathematical variable V with subscript three, commonly written as V sub three, representing a specific term or value in a sequence or set.] of Equation 3, respectively.
Under the present simplifying hypotheses (in particular, [image: Mathematical expression displaying a blackboard bold R, the Greek letter lambda, an equals sign, and the number zero, indicating the real part of lambda equals zero.], [image: Mathematical expression showing the real part of variable V is equal to zero, using the calligraphic uppercase R symbol for the real part.] and [image: Mathematical expression showing lowercase italic v is less than or equal to zero.]), the general result of Krejčiřík and Siegl [4] (Thm. 3.7) can be formulated as follows.
Theorem 1. Let [image: Mathematical expression showing a function V mapping the real numbers, denoted by script R, to the imaginary real numbers, represented as i times script R.] be smooth satisfying Equations 2, 7 with given [image: Mathematical expression showing k belongs to the set of natural numbers, represented as k element of script N.]. If
[image: Mathematical equation showing the limit as lambda approaches infinity of lambda to the power negative (k plus one) over two times the supremum over x in the interval negative t lambda to t lambda of the absolute value of V of x times x to the power k plus one equals zero, labeled equation eight.]
then there exists [image: Mathematical expression stating the set psi sub lambda is a subset of the space C zero infinity of the real numbers.] such that [image: Mathematical expression showing the norm of psi sub lambda is equal to one, indicating normalization.] and
[image: Mathematical expression showing the limit as n approaches infinity of the norm of the operator H sub v minus lambda acting on psi sub n equals zero, labeled equation nine.]
The extra condition (Equation 8) with the choice [image: Mathematical expression displaying the variable k set equal to zero, shown in italicized font.] is clearly satisfied for the potential [image: Mathematical notation showing an uppercase italic V with a subscript one, commonly used to represent the first element or vector in a sequence.] of Equation 3 (in fact, for any bounded potential satisfying Equations 2, 7). To satisfy Equation 8 for all the polynomial potentials [image: Mathematical notation showing an italic uppercase V with a subscript two, representing V sub two.] of Equation 3, it is sufficient to take [image: Mathematical expression showing the variable k is equal to one.]. Finally, Equation 8 is verified for the exponential potential [image: Mathematical expression showing the uppercase letter V with a subscript three.] of Equation 3 with [image: Mathematical expression showing a lowercase k is equal to two.].
In Krejčiřík and Siegl [4], the decay rate in Equation 9 is carefully quantified in terms of the left-hand side of Equation 8 and other quantities related to the behaviour of a general potential [image: Uppercase italic letter V in a serif font, displayed in black on a white background.] at infinity.
4 DISCUSSION
4.1 Generality
The JWKB-type scheme sketched in Section 2 is made rigorous in [4] for a fairly general class of potentials [image: Italic uppercase letter V in a serif font on a white background.], beyond the present simplifying hypotheses. In particular, the potential [image: Uppercase italic letter V in a serif font, appearing in sharp focus against a white background. Commonly used as a mathematical variable or symbol.] is allowed to have a real part, however, its largeness must be suitably “small” with respect to its imaginary part. This is quantified by natural modifications of Equations 2, 7. What is more, pseudoeigenvalues along general curves (beyond the present simplifying hypothesis [image: Mathematical expression showing the real part of lambda equals zero, using the blackboard bold symbol for the real part.]) diverging in the complex plane are located. In particular, the rotated harmonic (or Davies’) oscillator [image: Mathematical equation showing V of x equals i times x squared, where V is a function of x, i represents the imaginary unit, and x is a variable.] made popular in the pioneering work [13] or shifted harmonic oscillator [image: Mathematical equation displaying V of x equals the quantity x plus i squared, where x is a variable and i represents the imaginary unit.] studied in [3, 14] are covered. At the same time, potentials decaying at infinity are included. Finally, possibly discontinuous potentials (like [image: Mathematical equation showing V of x equals i times sgn of x, where sgn represents the sign function and i represents the imaginary unit.]) are comprised by a refined mollification argument.
4.2 Optimality
It turns out that the conditions on potentials identified in [4] as well as the regions in the complex plane where the pseudoeigenvalues are located are optimal. The latter can be checked directly for the rotated harmonic (or Davies’) oscillator [image: Mathematical expression showing V of x equals i times x squared, where i represents the imaginary unit.] with help of the conjecture due to [15] solved by [16], More generally, the optimality of the pseudospectral regions follows by upper resolvent estimates performed in [17, 18].
4.3 Generalisations
The method of [4] is fairly robust and can be generalised to other models. So far, this has been done for the damped wave equation in [19], Dirac operators in [20] and biharmonic operators in [21].
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The holographic duality (also known as AdS/CFT correspondence or gauge/gravity duality) postulates that strongly coupled quantum field theories can be described in a dual way in asymptotically anti-de Sitter space. One of the cornerstones of this duality is the description of thermal states as black holes with asymptotically anti-de Sitter boundary conditions. This idea has led to valuable insights into fields such as transport theory and relativistic hydrodynamics. In this context, the quasinormal modes of such black holes play a decisive role, and therefore their stability properties are of utmost interest for the holographic duality. We review recent results using the method of pseudospectra.
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1 INTRODUCTION
1.1 Blitz review of holographic duality
Before discussing the role of quasinormal modes, we first need to understand the basics of the AdS/CFT correspondence. Gauge/gravity duality has its roots in Maldacena’s conjecture that type IIB string theory on [image: Mathematical notation showing AdS sub five, followed by a multiplication symbol.] S5 is dual to [image: Mathematical expression showing a script-style capital N equals four.] supersymmetric gauge theory [1, 2].1 Let us quickly unpack this statement. [image: Mathematical expression showing a script capital letter N equals four.] supersymmetric gauge theory is a non-abelian, four-dimensional quantum field theory whose field content consists of six scalars, four Majorana fermions, and a gauge field. They all transform under the adjoint representation of the gauge group [image: Mathematical expression showing SU of N, where SU and N are set in bold italic font to denote a special unitary group in mathematics or physics.]. It features four supersymmetries, and this fixes all the couplings between the different fields. As it is a gauge theory, physical observables are gauge-invariant operators such as [image: Mathematical expression showing the trace of the product of F sub mu nu and F superscript mu nu, written as tr open parenthesis F sub mu nu F superscript mu nu close parenthesis.]. The global symmetry group [image: Mathematical text showing uppercase S and O followed by parentheses enclosing the number six, representing the special orthogonal group in six dimensions.] acts on the scalars and fermions (in the [image: Mathematical expression showing "SU" in italic followed by parentheses enclosing the number four, representing the special unitary group of degree four.] spin representation of [image: Mathematical expression showing SO parenthesis six close parenthesis, representing the special orthogonal group in six dimensions.]). In addition, the theory has conformal symmetry and 32 supercharges.
The dual theory is a theory of gravity (type IIB string theory) but exists in 10 dimensions. Five of these are a geometric realization of the internal [image: Mathematical expression displaying the special orthogonal group notation, SO parenthesis six, representing the group of six by six orthogonal matrices with determinant one.] symmetry as the isometry of the five-dimensional sphere S5. Supersymmetry is generated by two ten-dimensional spinors of equal chirality, which also results in 32 supercharges. Conformal symmetry arises as the isometry group on [image: Mathematical expression showing "AdS" with the subscript five, commonly used to denote five-dimensional anti-de Sitter space in theoretical physics.].
The field theory gauge coupling [image: Mathematical expression displaying the lowercase letter g followed by uppercase letters Y and M, all in italic serif font with regular kerning and slight blurring.] and rank of the gauge group [image: Uppercase serif letter N displayed in black on a white background.] are related to the dual string theory string coupling [image: Mathematical notation displaying a lowercase italic g with a subscript s.] (the amplitude for a string to split in two) and to the ratio of the [image: Mathematical notation reading AdS subscript five, commonly used to denote five-dimensional anti-de Sitter space in theoretical physics and mathematics.] curvature scale [image: Mathematical formula showing R equals negative twenty divided by L, with variables in italic font.] and string scale [image: Italic lowercase letter l followed by a subscript lowercase letter s in a mathematical or scientific context.] in the following way:
[image: Mathematical equation showing that the product of g subscript YM squared and N is proportional to L to the fourth power divided by l subscript s to the fourth power.]
[image: Mathematical expression showing one divided by N is proportional to g sub s.]
Gauge/gravity duality is therefore a strong–weak coupling duality; for weak curvature, we have large [image: Italic, uppercase letter L in a serif font on a white background.] and therefore also large ’t-Hooft coupling [image: Mathematical expression showing g subscript Y M squared capital N.]. In this regime of weak curvature, stringy effects are negligible, and we can approximate the string theory by type IIB supergravity. If we furthermore take the rank of the gauge group [image: Uppercase serif letter N in bold black font on a white background.] to be very large, we can also neglect quantum loop effects and end up with classical supergravity. This is the form of the correspondence most useful for the applications to many body physics. Classical (super)gravity on [image: Mathematical expression in parentheses: d plus one.]-dimensional anti-de Sitter space is the infinite coupling and infinite rank limit of a gauge theory in [image: Lowercase italic letter a in a serif font, rendered in black on a white background.] dimensions.
This is now promoted to a principle that (quantum-)gravity in asymptotically [image: Mathematical expression showing an open parenthesis, the variable d, a plus sign, the number one, and a closing parenthesis.]-dimensional anti-de Sitter space can be understood as a strong coupling version of a dual quantum field theory in [image: Lowercase italic letter d in a serif font, typically used in mathematical or scientific notation.] dimensions [3, 4]. For applications to quantum field theory, the most useful coordinate system is the so-called Poincaré patch.
[image: Mathematical equation displaying ds squared equals r squared divided by L squared multiplied by negative dt squared plus dx squared, plus L squared divided by r squared times dr squared, labeled as equation one.]
The space on which the dual quantum field theory exists is recovered by taking the limit [image: Mathematical equation showing ds squared subscript QFT equals the limit as r approaches infinity of r to the negative second power times ds squared.].
Since the correspondence relates a [image: Mathematical expression showing the variable d plus one, all enclosed within parentheses.]-dimensional theory to a [image: Lowercase italic letter d in a serif font, commonly used in mathematical or scientific notation.]-dimensional theory, it is also called “holographic” duality. The radial coordinate has a physical interpretation as energy scale. The high-energy or UV limit in the field theory is identified with the [image: Mathematical expression showing variable r approaches infinity, with r followed by a right-pointing arrow and the infinity symbol.] limit in the AdS geometry, whereas the low-energy IR limit is [image: Mathematical notation showing the variable r approaches zero, represented by the right arrow symbol between r and 0.].
On shell, the asymptotic behavior of the fields in AdS in a large [image: Lowercase italic letter r in black on a white background.] expansion is
[image: Mathematical equation showing Phi of r and x equals r to the negative Delta plus times Phi zero of x plus big O of r to the negative two plus, plus r to the negative Delta minus times Phi one of x plus big O of r to the negative two minus, equation two.]
The exponents [image: Mathematical symbol showing a capital Greek letter delta followed by a subscript containing a plus-minus sign.] obey [image: Mathematical expression showing delta subscript minus is less than delta subscript plus, using less than symbol between the two terms.] and depend on the nature of the field, e.g., for a scalar field of mass [image: Lowercase italic letter m in a serif font, typically used in mathematical or scientific notation.], they are [image: Mathematical formula showing delta sub plus or minus equals one half multiplied by the sum of d plus or minus the square root of d squared plus four m squared L squared.]. We note that for the scalar field in asymptotically AdS, masses in the range [image: Mathematical inequality displaying negative d squared divided by four is less than m squared, which is less than zero.] are perfectly regular and do not imply any acausality or instability [5].
It turns out that the leading solution given by [image: Mathematical expression displaying the Greek letter capital phi subscript zero, followed by open parenthesis, lowercase x, and close parenthesis.] is non-normalizable and thus non-dynamical. It is interpreted as a boundary condition [image: Mathematical equation showing capital phi sub zero of x equals J of x. Both functions use parentheses to denote x as the variable.] on the AdS field [image: Mathematical expression showing uppercase Greek letter Phi followed by parentheses containing variables r and x separated by a comma.]. The classical on-shell action becomes a functional of these boundary conditions [image: Mathematical notation showing S subscript c l, followed by square brackets containing the variable J.]. In the (super)gravity limit, the on-shell action is interpreted as the generating functional of (connected) Green’s functions [image: Mathematical expression showing Z sub c of J equals S sub c l of J.] in the dual field theory. The boundary condition [image: Lowercase italic letter j in a serif font on a white background.] is now interpreted as a source for an operator [image: Lowercase cursive or italicized letter o presented in a black font with a slight blur effect on a white background.] in the dual field theory whose correlation functions can be obtained from
[image: Mathematical equation showing the expectation value of observables O sub one of x one to O sub n of x n equals the n-th functional derivative of S sub d with respect to J sub one of x one through J sub n of x n, labeled as equation three.]
More specifically, the expectation value of the operator [image: Lowercase italic letter o in a serif font style displayed in black on a white background.] is given by
[image: Mathematical expression showing angle bracket O of x is proportional to phi subscript one of x, ended with a period.]
In this way, the leading and subleading terms in the asymptotic expansion Equation 2 have dual field theory interpretations. The mass range [image: Mathematical inequality showing negative d squared divided by four is less than or equal to m squared, which is less than or equal to zero.] corresponds to renormalizable operators.2
Generically, the equation of motion for [image: Mathematical expression showing uppercase phi with variables r and x in parentheses, representing a function or value dependent on r and x.] is a second-order partial differential equation. In order to solve it, one needs to supply additional boundary conditions. The metric shown in Equation 1 has a (degenerate) horizon at [image: Mathematical expression showing the variable r is equal to zero.], and it was argued in [7] that for time-dependent solutions, retarded Green’s functions of the dual quantum field theory
[image: Mathematical equation reads: G_R(t, x) equals negative i times theta of t multiplied by the expectation value of the commutator of O(t, x) and O(0, 0), labeled as equation 4.]
are obtained by imposing infalling boundary conditions.
The infalling boundary condition is, of course, the main constituent for the existence of quasinormal modes. In anti-de Sitter space, it does, however, not lead to quasinormal modes because the horizon is degenerate. The corresponding (holographic) retarded Green’s function does not have poles but rather a branch cut along the positive real axis [7]. This changes as soon as we consider a black hole with asymptotic AdS boundary conditions and planar horizon topology (AdS black brane). Its line element for [image: Mathematical expression showing d equals four.] is
[image: Mathematical equation showing the metric: ds squared divided by L squared equals r squared times negative f of r times dt squared plus dx squared, plus dr squared divided by r squared times f of r, labeled as equation five.]
[image: Mathematical formula showing f of r equals one minus r sub h to the fourth power divided by r to the fourth power.]
This metric has a non-degenerate horizon at [image: Mathematical expression showing r equals r subscript h.]. The Hawking temperature is [image: Mathematical equation in italics showing pi times T times L squared equals r subscript h.]. The holographic (or gauge/gravity) interpretation is that the dual field theory is now in a thermal state with the temperature given by the Hawking temperature [8, 9].
The field [image: Greek capital letter Phi symbol, consisting of a bold vertical line intersecting a circular shape, commonly used in mathematics and physics. Black symbol displayed on a white background.] is expanded in (boundary) plane waves as
[image: Mathematical equation displaying a function phi of r, t, and x, written as an integral over omega and k with an integrand that includes phi naught of omega and k, an exponential term with negative i omega t and positive i k dot x, and F omega, k of r, with the integration factor divided by two pi to the fourth.]
For every fixed [image: Mathematical notation showing the Greek letter omega followed by a comma and the letter k with a right-pointing arrow above it, indicating an angular frequency and a wave vector.], the linearized equation of motion for the fluctuation boils down then to an ordinary second-order differential equation for [image: Mathematical notation showing capital F with subscript omega and k, where k is also superscripted.]. The point at infinity is a regular singular point with characteristic exponents [image: Mathematical expression showing a capital Greek letter delta followed by a plus-minus symbol, commonly used to represent a variable with both positive and negative variations in scientific contexts.]. We impose infalling boundary conditions by demanding that [image: Mathematical equation showing F subscript omega, vector k, is proportional to e to the negative i omega times quantity t plus r sub star.] on the horizon (we use a tortoise coordinate here [image: Mathematical equation showing dr sub asterisk equals dr divided by f of r, with all variables in italics.] such that the horizon sits at [image: Mathematical expression showing r sub asterisk approaches negative infinity.]). The asymptotic expansion of [image: Mathematical expression showing F sub omega, k of bold r, with omega and k as subscripts and r in bold inside parentheses.] is
[image: Mathematical equation showing F sub omega comma k equals A of omega comma k times r to the negative lambda times bracket one plus capital O of one over r bracket plus B of omega comma k times r to the lambda minus one times bracket one plus capital O of one over r bracket.]
where [image: Mathematical expression displaying A, open parenthesis, omega, comma, vector k, close parenthesis. Omega is represented by the Greek letter and k has a right-pointing arrow to indicate it is a vector.] and [image: Mathematical expression showing B left parenthesis omega comma vector k right parenthesis, where omega is a Greek letter and k has a right-pointing arrow above it.] are the Fourier transforms of [image: Mathematical expression showing uppercase Greek letter phi subscript zero followed by an open parenthesis, lowercase x, and close parenthesis.] and [image: Mathematical expression displaying uppercase Phi subscript one, open parenthesis, lowercase x, close parenthesis.], respectively. The Fourier transform of the retarded two-point Green’s function Equation 4 can now be calculated as
[image: Mathematical expression showing G tilde sub R of omega and vector k equals K times the quotient of B of omega and vector k over A of omega and vector k.]
where [image: Uppercase letter K in a serif font, displayed in black on a white background.] is some normalization constant [7].
1.2 Holographic quasinormal modes
The definition of the holographic retarded Green’s function depends on a subtlety. It is impossible to calculate a retarded (or advanced) Green’s function from an action, as is indicated in Equation 3. In thermal field theory, one needs to use the Schwinger–Keldysh formalism in which the time coordinate exists on a (complex) contour [10]. It turns out that the Schwinger–Keldysh contour is naturally implemented on the maximally analytic extension of the AdS black brane metric. In that case, one has a second boundary on which the direction of the time-like Killing vector is reversed in comparison to the direction covered by the coordinate patch Equation 5. Strictly speaking, retarded holographic Green’s functions can only be defined on this maximally analytically continued double-sided Kruskal-type manifold [11]. Infalling boundary conditions then correspond to the analytic continuation of the solution to the whole Kruskal manifold. For all practical purposes, the retarded Green’s function can however be computed on the patch Equation 5 by the simple method. The quasinormal modes describe the return to the thermal equilibrium [12]. Their frequencies are the poles of the holographic Green’s function in the complexified [image: Lowercase Greek letter omega displayed in black against a white background.] plane [13, 14].
Retarded two-point functions are the central objects in the linear response theory. The response in the operator [image: Lowercase italic letter "o" in a serif typeface, presented in black on a white background. Letters like this are commonly used in mathematical or technical texts.] under a perturbation (source) [image: Mathematical expression showing uppercase J as a function of variables t and x in parentheses, with t and x in italic font.] with Fourier transform [image: Mathematical expression showing a tilde J as a function of omega and bold k, where k has an arrow above it indicating a vector.] is
[image: Mathematical equations display the expectation value of O as integrals involving momentum and frequency over e to the power minus i omega t plus i k dot x, Green's function G sub R, and related terms with a Heaviside theta function.]
where [image: Mathematical expression showing uppercase italic R followed by a lowercase italic n as a subscript.] is the residue of [image: Mathematical notation showing uppercase italic letter G with a smaller uppercase italic letter R as a subscript.] at the pole [image: Mathematical expression showing a lowercase Greek letter omega with a subscript n, commonly used to denote natural frequency in scientific and engineering contexts.]3. As long as all the quasinormal frequencies lie in the lower half of the complex [image: Lowercase Greek letter omega in a bold, serif font against a white background.]-plane, the response decays exponentially fast. A mode in the upper half indicates an instability, leading eventually to a phase transition.
A special role is played by linearized perturbations of gauge fields and the metric. In this case, the dual operator corresponds to a conserved current, and the quasinormal mode spectrum contains the so-called hydrodynamic modes [15], i.e., those fulfilling
[image: Mathematical expression showing the limit as vector k approaches zero of omega sub H of vector k equals zero.]
For a gauge field, one finds in this way a diffusive mode that obeys in the small [image: Mathematical expression showing the vector k, represented by a bold, italic lowercase k with an arrow above, enclosed between two vertical bars indicating its magnitude or absolute value.] limit [image: Mathematical equation showing omega sub diffusive equals negative i D k squared, where i represents the imaginary unit, D is a diffusion coefficient, and k is the wavevector.], where the diffusion constant [image: Mathematical equation showing D equals one divided by open parenthesis two pi T close parenthesis, where D and T are variables and pi is the mathematical constant.]. The metric fluctuations contain a shear-channel with a similar diffusive law [image: Mathematical expression showing the shear mode frequency as omega subscript shear equals negative i times eta over epsilon plus p, multiplied by k vector squared.], where [image: Mathematical equation displaying epsilon plus p equals s times T, where all variables are in italic font.] are the energy density [image: Lowercase mathematical symbol e in bold font, typically used to represent Euler’s number in mathematical equations, shown against a white background.], pressure [image: Lowercase italic letter p followed by a comma, likely representing a mathematical or scientific variable.] and entropy density [image: Lowercase letter s in a bold, sans-serif font displayed in black on a white background.] of the dual field theory. Famously, one finds [image: Mathematical equation showing the ratio eta over s equals one divided by four pi.] [16].
In some exceptional cases, exact solutions for the holographic Green’s function can be found. If there are only three regular singular points of the differential equation, it can then be mapped to the hypergeometric differential equation. This happens for the case of a gauge field in the five-dimensional AdS black brane background at vanishing momentum [image: Mathematical notation displays a bold vector k with an arrow above and an equals sign, indicating that vector k is equal to zero.]. The holographic retarded Green’s function is [17]
[image: Mathematical equation describing the function G sub R of omega equals K times an expression in brackets with terms two i omega plus omega squared psi evaluated at left parenthesis one minus i times omega over four right parenthesis and omega squared psi evaluated at left parenthesis one plus i times omega over four right parenthesis.]
where [image: Mathematical expression psi open parenthesis z close parenthesis, where psi is a Greek letter and z is a variable inside parentheses.] is the digamma function. The poles are at4 [image: Mathematical equation showing omega sub n equals two n times quantity plus or minus one minus i.]. More generally, the corresponding differential equation has more than three regular singular points and cannot be solved exactly. In these cases, one needs to resort to numerical approximations.
2 PSEUDOSPECTRA OF HOLOGRAPHIC QUASINORMAL MODES
The infalling boundary conditions on the horizon of the AdS black brane have the consequence that the differential operator is a non-Hermitian and non-normal operator. Its eigenvalues are complex numbers, precisely the quasinormal frequencies. It is a well-known fact that eigenvalues of non-normal operators suffer from spectral instability. This means that a small perturbation of the operator can change the value of the eigenvalues dramatically. In fact, it is this spectral instability that makes the prediction and calculation of quasinormal frequencies challenging. The method of pseudospectra has emerged as an ideal tool to assess the spectral instability of non-normal operators in a quantitative (and also qualitative) way [18].
The calculation of the pseudospectra of quasinormal modes was pioneered in [19] and further explored in [20–36] in various astrophysical and cosmological contexts. We will concentrate here on the simple case of pseudospectra for a gauge field in the AdS black brane [33]. Pseudospectra answer the question of how far a quasinormal frequency can be displaced by a given perturbation of size [image: Lowercase mathematical italic letter e, commonly used to represent the base of the natural logarithm in mathematics. Character appears centered on a plain white background.]. This means, of course, that we need a way to measure the size of an operator that can be added as a perturbation. Consequently, we need to define an appropriate measure on a function space that contains the quasinormal modes. On physical grounds, it is generally suggested to use a suitable norm based on the energy functional. Only in certain coordinate systems the quasinormal modes have “nice” or regular behavior on the horizon. It turns out that in the coordinates shown in Equation 5, the energy functional is not well-defined. There are two strategies to deal with this problem. One is to use infalling Eddington–Finkelstein coordinates. These are often used in the literature on holographic quasinormal modes, and the energy functional is indeed well-defined. Another approach is to use the so-called regular coordinates that interpolate between the Schwarzschild-type coordinates near the boundary and infalling Eddington–Finkelstein coordinates near the horizon [37]. Figure 1 shows the Penrose diagram, which illustrates the geometrical nature of this slicing.
[image: Penrose diagram illustrating a black hole spacetime with boundaries labeled script H plus, script H minus, script I, and points i plus and i minus; curved red and straight blue lines represent distinct sets of trajectories or hypersurfaces.]FIGURE 1 | Penrose diagram of the exterior region of [image: Text SAdS subscript four plus one in a serif font, representing a mathematical or physical notation.]. The AdS boundary is denoted by [image: Calligraphic capital letter J in a serif typeface, presented in black on a white background.], [image: Mathematical notation showing a script capital H with a superscript plus sign indicating a Hilbert space in quantum mechanics with a positive property or state.] [image: Mathematical expression showing an italicized uppercase script H with a minus sign superscript, enclosed in parentheses.] represents the future (past) horizon, and [image: Mathematical notation showing the letter r with a superscript plus sign, commonly representing the set of positive real numbers or a positive value of r.] [image: Mathematical expression showing the letter i with a bar above it, enclosed in parentheses.] denotes the future (past) time-like infinity. The red lines correspond to constant [image: Lowercase Greek letter tau, displayed in bold black font on a white background.] hypersurfaces (Equation 6), and the blue lines represent constant [image: Lowercase letter t in a bold, serif font centered on a white background.] hypersurfaces (Equation 5).
In both infalling Eddington–Finkelstein and regular coordinates, the infalling boundary condition is replaced by the condition of regularity at the horizon. There is, however, a difference between the coordinate systems concerning the resulting eigenvalue problem. In infalling Eddington–Finkelstein coordinates, one ends up with a generalized eigenvalue problem, whereas regular coordinates result in a standard eigenvalue problem. We chose the latter approach and briefly review the findings of [33].
A particular choice of regular coordinates for the black brane is
[image: Mathematical equation showing tau equals t minus open parenthesis one minus one divided by r close parenthesis plus the integral of d r over f of r multiplied by open parenthesis one divided by r close parenthesis squared. Equation labeled as six.]
[image: Mathematical equation showing rho equals one minus one divided by r.]
in which the line element takes the form
[image: Mathematical equation for ds squared equals one divided by one minus rho squared, multiplied by the sum of negative f of rho times dt squared plus dx squared plus two times one minus f of rho times dt d rho plus two minus f of rho times d rho squared, labeled as equation seven.]
Here, we have set the AdS curvature scale [image: Mathematical expression displaying an uppercase italic letter L followed by an equals sign and the number one.] and re-scaled coordinates such as to absorb the scale set by the horizon [image: Mathematical expression showing an equation: lowercase r subscript h equals pi times uppercase T, enclosed in parentheses.]. In these coordinates, the boundary is at [image: Mathematical expression showing the Greek letter rho followed by an equals sign and the number one, representing rho equals one.] and the horizon at [image: Mathematical equation displaying the Greek letter rho followed by an equals sign and the number zero, representing the expression rho equals zero.].
It is instructive to concentrate on a case in which we have actually exact analytic results about the spectrum of quasinormal frequencies, and therefore we only consider the (transverse) gauge field at zero momentum. This means that we consider a gauge field of the form [image: Mathematical equation showing A sub one as a function of rho, tau, and vector x equals a of rho multiplied by exponent of negative i omega tau.]. The equation of motion for this gauge field ansatz in the metric Equation 7 is second order in [image: Mathematical symbol for the partial derivative with respect to the variable tau, displaying the partial derivative operator followed by the subscript tau.]. It can be reduced to a first-order system by introducing the auxiliary field [image: Lowercase Greek letter alpha, printed in a serif font, black on a white background. Symbol commonly used in mathematics, physics, and science for variables or coefficients.] and the additional equation [image: Mathematical equation displaying alpha equals negative i omega a, where i represents the imaginary unit and omega and a are variables.]. The energy functional takes the form:
[image: Mathematical expression for E of a and alpha given as the integral from zero to one minus rho of d phi times f times the modulus squared of alpha squared plus two minus f times the modulus squared of alpha, labeled as equation eight.]
where we have discarded an overall volume factor stemming from the integration over the [image: Lowercase italic letter x in a serif font displayed in black on a white background.] coordinates. Furthermore, we have taken into account that [image: Mathematical expression showing the function a of rho, with a in italic font followed by the variable rho inside parentheses.] and [image: Mathematical notation displaying the Greek letter alpha followed by an open parenthesis, the Greek letter rho, and a closing parenthesis.] are Fourier modes and therefore complex valued. The equation of motion is given by
[image: Mathematical equation showing omega times Psi equals script L applied to Psi, equals i times a two-by-two matrix with the top row zero, one, and bottom row L sub one, L sub two, multiplied by Psi.]
[image: Mathematical expression showing L sub 1 equals one divided by f minus two, multiplied by the quantity negative one minus rho multiplied by f over one minus rho, all times partial derivative with respect to rho, minus f times the second partial derivative with respect to rho, enclosed in brackets.]
[image: Mathematical expression for L sub two equals one divided by the product of f and two, multiplied by the sum of the derivative with respect to rho of the product of quantity one minus rho and the quantity f minus one divided by one minus rho and two times the quantity f minus one times the partial derivative with respect to rho.]
where [image: Mathematical expression showing psi equals a column vector with elements a and alpha, written as a two-element column and denoted with a superscript capital T for transpose.].
Quasinormal modes can now be defined as the eigenvalues of the operator [image: Calligraphic uppercase letter L in black font on a white background, commonly used in mathematics to represent a loss function or Lagrangian.] with Dirichlet boundary conditions at [image: Mathematical expression showing the Greek letter rho followed by an equals sign and the number one, representing rho equals one.] and regularity at the horizon [image: Mathematical expression showing the Greek letter rho followed by an equals sign and the number zero, representing rho equals zero.]. The energy can be promoted to an inner product
[image: Mathematical equation showing an inner product Ψᵣ, Ψ_z, equal to the integral from zero to one minus rho of d rho divided by one minus rho, multiplied by a sum involving partial derivatives of alpha sub two, alpha sub one, and terms with alpha sub two and alpha sub one, labeled as equation nine.]
The operator [image: Mathematical symbol representing a script or calligraphic capital letter L, commonly used in equations to denote Lagrangian or loss functions.] is self-adjoint up to a boundary term with respect to this inner product:
[image: Mathematical equation showing script L dagger equals script L plus a two by two matrix with top row zero zero and bottom row zero negative i delta of rho.]
which nicely reflects the fact that dissipation stems from the boundary condition at the horizon.
We note that the inner product Equation 9 induces a norm on the space of linear operators acting on [image: Uppercase Greek letter psi, commonly used in mathematics, physics, and psychology. Character appears in a bold serif typeface in black on a white background.]. This operator norm can be used to define the [image: Lowercase italic letter e in a serif font, displayed in black on a white background.]-pseudospectrum of [image: Italicized script letter L, commonly used in mathematical notation to denote a loss function or other specialized term.] as the set in the complex [image: Lowercase Greek letter omega, written in a bold, serif font against a white background.] plane where
[image: Mathematical expression defining the pseudospectrum of an operator, where sigma epsilon equals the set of complex numbers omega such that the norm of the inverse of script L minus omega is greater than one over epsilon.]
We refer to [38] for comprehensive information about the pseudospectrum. For our purpose, the most useful interpretation is that for any operator [image: Mathematical expression showing the lowercase Greek letter delta followed by a cursive uppercase L, commonly used to represent a variation or change in a Lagrangian function in physics.] of operator norm [image: Mathematical expression showing the norm of delta script L is less than epsilon, using double vertical bars, delta, script L, less than sign, and epsilon.]; the spectrum of [image: Mathematical expression showing script capital L plus delta script capital L.] lies inside σϵ.
It is convenient and informative to present the pseudospectra as a contour plot in which the contour lines correspond to different values of [image: Lowercase mathematical italic letter e presented in black on a white background, shown with slightly blurred edges.]. In the case of a normal operator, these contour lines are concentric circles around the eigenvalues. In particular, for sufficiently small [image: Lowercase letter e in a sans-serif font rendered in black on a white background. The image is slightly blurred, creating soft edges around the character.], the radius of the circle is also given by [image: Lowercase Greek letter epsilon in bold black font on a white background.]. This situation can be referred to as spectral stability. For non-normal operators, however, the contour lines are not necessarily circles. They can be much larger than circles of radius [image: Lowercase letter e in a standard sans-serif font, black on a white background, with slight blurring around the edges.] or even open lines in the complex [image: Lowercase Greek letter omega, commonly used to represent angular frequency in physics and engineering equations. Black character on a white background.] plane. This indicates that small perturbations can displace the eigenvalues of the operator by large amounts.
Let us now consider the pseudospectrum shown in Figure 2. One can see that the contour lines are open. The colors indicate the [image: Lowercase italic letter e in a bold serif font, displayed in black on a white background. Edges appear slightly blurred, suggesting the image is enlarged or low resolution.] values. Even tiny perturbations can completely destabilize the spectrum of quasinormal modes. It is important to note that this figure is obtained with a discretization of the differential operator [image: Calligraphic uppercase letter L, commonly used in mathematical expressions to denote a loss function or operator. Black text on a white background.] using pseudospectral methods at a grid size of [image: Mathematical notation displaying an uppercase N followed by an equals sign and the number one hundred twenty, indicating a quantity or sample size.] points for [image: Mathematical notation showing the Greek letter rho is an element of the closed interval from zero to one.]. It turns out that the spectral instability gets stronger as the grid size increases. In fact, one can argue that the resolvent does not converge to a finite value for [image: Mathematical expression showing uppercase N followed by a right arrow pointing to the infinity symbol, indicating that N approaches infinity.] [35]. The reason is that the energy norm cannot effectively exclude the modes which are outgoing from the horizon. These behave like [image: Mathematical equation showing a is proportional to rho raised to the power of i omega divided by 2.] near the horizon. The energy norm, however, only demands integrability on the horizon. In fact, all functions which behave like the outgoing modes with [image: Mathematical expression showing the imaginary part of omega, denoted as script I of open parenthesis omega close parenthesis, is less than zero.] have an integrable energy Equation 8. Furthermore, the domain on which the operator [image: Handwritten or serif-style uppercase script letter L in black, depicted with a thick and curving stroke on a white background.] is defined contains the outgoing modes with [image: Mathematical expression showing the imaginary part of omega is less than negative one.]. Therefore, in the continuum limit, all points with [image: Mathematical expression showing the imaginary part of omega is less than negative one, using the calligraphic script I for the imaginary part function.] belong to the spectrum of the operator [image: Calligraphic capital letter L shown in italic, commonly used in mathematical notation or as a symbol in equations. Black text on a white background.]. For an in-depth mathematical discussion, see [37, 39]. We note that hydrodynamic modes for small enough momentum [image: Lowercase italic letter k in a serif font, commonly used as a variable in mathematical or scientific notation.] obey [image: Mathematical expression stating that the imaginary part of omega is greater than or equal to negative one.], and thus they lie in the convergent region of the pseudospectrum in the energy norm [34, 35].
[image: Contour plot illustrating a mathematical function in the complex plane with real and imaginary axes labeled Re(ω) and Im(ω), respectively. The contour colors represent function values from approximately negative thirteen to zero. Red points highlight six specific locations of interest.]FIGURE 2 | Pseudospectra of a vector field in the AdS black brane background. The color code indicates the values of [image: Mathematical notation showing the logarithm of e to the base ten, written as log base one zero of e.].
3 DISCUSSION
This finding on the spectral instability of quasinormal modes is somewhat puzzling. After all, we can construct the holographic Green’s function exactly, and it does have a discrete set of poles in the complex [image: Lowercase Greek letter omega, typically used in mathematics, physics, and engineering to represent angular frequency or other variables. Black character on a white background.] plane. In contrast, the spectrum of [image: Calligraphic uppercase letter L rendered in black on a white background.] is continuous if it acts on functions with the finite energy norm.
We note that, as we have emphasized, the definition of the holographic Green’s function implicitly relies on analytic continuation across the horizon. This analyticity requirement is much stronger than the requirement of the existence of the energy norm. A way to circumvent this has been suggested in [37] and consists in replacing the energy norm with a Sobolev norm. In physicist terms, this corresponds to higher-order derivative terms in the norm. Higher-order derivative terms up to [image: Mathematical expression showing the absolute value of the nth partial derivative of a squared variable a with respect to ρ, written as vertical bars around partial derivative symbol with superscript n, subscript ρ, a squared.] amount to lowering the limit for integrability to [image: Mathematical expression showing script capital F of open parenthesis omega close parenthesis is less than one minus two n, with n in italic bold.]. In order to recover the exact spectrum, one would, of course, have to take a limit with infinitely many derivatives. From the physics point of view, the significance of such higher-order derivative terms is not clear.
Another line of thought could be that one considers the underlying theory (being it a scalar field, a Maxwell field, or the metric itself) as an effective field theory valid down to a finite cutoff length scale [image: Uppercase Greek letter lambda symbol with bold, dark lines forming an inverted V shape on a white background, commonly used in mathematics, physics, and engineering contexts.]. Then, we would necessarily have some huge but finite value for [image: Uppercase serif letter N in black on a white background. The character has thick, elegant lines and is centered within the square image.] determined, e.g., by the criterion that the minimal distance between points of the discretization is larger than [image: Uppercase Greek letter lambda symbol with bold black strokes against a white background.]. Alternatively, one could also impose the boundary conditions not directly at the horizon but slightly outside at a sort of “stretched” horizon [40].
Let us now emphasize the importance of the pseudospectra in the context of holography. From the gravitational side, pseudospectra probe how much the quasinormal frequencies change if the background is slightly modified in some way (e.g., by the change in the geometry and/or the background value of the fields). Consequently, in the dual quantum field theory, pseudospectra help us estimate how much the poles of the retarded Green’s functions might change if the theory is slightly perturbed. In both cases, these perturbations should be understood as perturbations to the Lagrangian, leading to the change in the spectrum of excitations. Then, spectral instability suggests that holographic models might not be able to accurately capture the actual spectra of real physical systems such as quark–gluon plasma. However, valuable information, such as transient dynamics, can still be obtained by studying pseudospectra [24, 38].
We shall now point to additional results on quasinormal modes in anti-de Sitter space. The pseudospectrum in infalling Eddingtion–Finkelstein coordinates has been investigated in [34]. One of the main findings was that in certain cases, the pseudospectrum can significantly reach up into the upper half-plane, giving rise to possible transient behavior. The structural aspects of the pseudospectrum of quasinormal modes for AdS black holes have been pointed out and further investigated in [35]. In particular, the results in infalling Eddington–Finkelstein and regular coordinates have been contrasted. The dependence of pseudospectra on the choice of coordinates still needs further investigation. The properties of the pseudospectrum of black hole metrics have also been shown to give rise to transient behavior for which a sum of [image: Italicized uppercase letter M in a serif font centered on a white background.] quasinormal modes can be long lived of order [image: Mathematical expression displaying the logarithm of an uppercase italic M inside parentheses.] in [41]. The stability of complex linear momenta ([image: Uppercase black letter C in a serif font presented on a white background with overall pixelation causing some blurriness at the edges.]LMs) in anti-de Sitter space is studied in [42]. Remarkably, the pseudospectrum of [image: Uppercase letter C in a serif font, shown in black with sharp edges and distinct contrast between thin and thick strokes. The letter stands alone on a white background.]LMs was observed to be convergent, allowing for quantitative results.
In this paper, we have reviewed the holographic perspective on the quasinormal modes and quasinormal frequencies of AdS black holes. In this context, the pseudospectrum analysis offers an invaluable tool for assessing the stability and investigating the existence of transient dynamics. Numerically computed pseudospectra do not converge in the energy norm because outgoing modes can still have finite energy. We believe that the lack of convergence is not a flaw of the construction but rather a fundamental feature that needs to be addressed using a physics-motivated regulator.
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FOOTNOTES
1Both descriptions arise from the low energy limit of a stack of [image: Uppercase serif letter N in black on a white background, shown in a bold and slightly italicized font style.] D3-branes in string theory in flat 10-dimensional spacetime [2].
2We note that this is the so-called standard quantization scheme and allows only for operators of dimensions larger than [image: Mathematical expression in italic serif font displaying d divided by 2.]. In order to describe operators of smaller dimensions, one needs to exchange the role of the source and operator (“alternative quantization”). For further details on that, see [6].
3We assume here that there are no contributions from the integral along the large radius half circle in the lower complex [image: Lowercase Greek letter omega, displayed in a serif font style against a white background.] half-plane.
4We have rescaled the frequency such that the physical values are [image: Mathematical equation showing omega subscript phys equals pi times T times omega.]. We further note that the surface gravity is [image: Mathematical formula showing kappa equals two times pi times uppercase T.].
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The purpose of this note is to review certain recent results concerning the pseudospectra and the eigenvalues asymptotics of non-selfadjoint semiclassical pseudo-differential operators subject to small random perturbations.
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1 Introduction

The spectral theory of non-selfadjoint operators acting on a Hilbert space is an established and highly developed subject. Non-selfadjoint operators are prevalent naturally in a wide range of modern problems. For instance, in the field of quantum mechanics, the study of scattering systems naturally leads to the notion of quantum resonances. These can be described as the complex values of the meromorphic. The continuation of the scattering matrix or of the cut-off resolvent of the Hamiltonian to the non-physical sheet of the complex plane. Alternatively, through a complex deformation of the initial Hamiltonian, these resonances can be characterized as the genuine complex valued eigenvalues of a non-selfadjoint operator [1, 3, 60]. We recommend the reader to reference [18] for an in-depth discussion of the mathematics of scattering poles. Another aspect of quantum mechanics is the examination of a small system that is linked to a larger environment. The effective dynamics of the small systems are governed by a non-selfadjoint operator: the Lindbladian [39].

A major obstacle to the spectral analysis of non-selfadjoint operators is the possible strong spectral instability of their spectrum with respect to small perturbations. This phenomenon, sometimes referred to as the pseudospectral effect, was initially considered to be a drawback, as it could lead to the origin of immense numerical errors, see Embree and Trefethen [19] and the references therein. However, a recent line of research has also demonstrated that the pseudospectral effect can provide novel insights into the spectral distribution of non-selfadjoint operators that are subjected to small generic perturbations.



2 Spectral instability of non-selfadjoint operators

We commence by recalling the definition of the pseudospectrum of a linear operator, a crucial concept that which quantifies its spectral instability. This notion appears to have originated in the second half of the 20th century in various contexts, see reference [65] for a historic overview. It quickly became an important notion in numerical analysis, as it allows us to quantify how much eigenvalues can spread out under the influence of small perturbations, see references [64, 65] and the book [19]. We follow here the latter reference.

Let [image: Mathematical symbol representing a bold, lowercase letter h in a serif font, commonly used in mathematical or scientific notation.] be a complex Hilbert space (assumed separable for simplicity) with norm ||·|| and scalar product (·|·). Let [image: Mathematical notation showing P mapping script H to script H, indicating a function or operator from Hilbert space H to itself.] be a closed densely defined linear operator, with resolvent set ρ(P) and spectrum Spec(P) = ℂ\ρ(P).

Definition 1. For any ε > 0, we define the ε-pseudospectrum of P by

[image: Mathematical formula defining Spec sub epsilon of P as the union of Spec of P and the set of z in the resolvent rho of P where the norm of the inverse of P minus z exceeds epsilon to the power of minus one. Equation labeled as one.]

We note that some authors define the ε-pseudospectrum with a ⩾ rather than a >. We, however, follow here reference [19]. It is noteworthy that with this choice of non-strict inequality results in the Specε(P) being an open set in ℂ.

For P selfadjoint (or even normal), the spectral theorem implies that

[image: Mathematical expression showing Spec sub epsilon of P is a subset of Spec of P plus D of zero comma epsilon, followed by equation number two in parentheses.]

where D(0, ε) ⊂ ℂ denotes the open disk with radius ε centered at 0. For P non-selfadjoint, the pseudospectrum of P can be much larger, as illustrated by the following example.

Example 1. For N ≫ 1, consider the Jordan block matrix

[image: Mathematical expression showing p sub N equals a matrix with ones on the first superdiagonal and zeros elsewhere, mapping from C superscript N to C superscript N, labeled as equation three.]

The spectrum of PN is given by {0}. Consider the vector [image: Mathematical expression showing e sub plus equals the ordered set one, z, up to z to the power of N minus one.], |z| ⩽ r < 1. Then,

[image: Mathematical expression showing the norm of (P sub N minus z) acting on e plus equals the modulus of z to the power N, which is of order exponential of negative N times log r, times the norm of e plus.]

So, Theorem 2 shows that for any ε > 0 and any r ∈ ]0, 1[ we have that for N > 1 sufficiently large

[image: Mathematical expression showing D open parenthesis zero comma r close parenthesis is a subset of Spec sub g of P sub N, followed by a period.]

An immediate consequence of Equation 1 is the property that pseudospectra are nested. More precisely,

[image: Mathematical expression showing Spec sub epsilon two of P is a subset of Spec sub epsilon one of P, with epsilon one greater than epsilon two greater than zero, followed by equation number four in parentheses.]

The set (Equation 1) describes a region of spectral instability of the operator P, since any point in the ε-pseudospectrum of P lies within the spectrum of a certain ε-perturbation of P [19].

Theorem 1. Let ε > 0. Then

[image: Mathematical formula showing that the epsilon spectrum of operator P equals the union over all bounded operators Q on Hilbert space H with norm less than one of the spectrum of P plus epsilon times Q. Equation number five appears on the right.]

Proof. See reference [19, p. 31].

A third, equivalent definition of the ε-pseudospectrum of P is provided by the existence of approximate solutions to the eigenvalue problem (P − z)u = 0.

Theorem 2. Let ε > 0 and z ∈ ℂ. Then the following statements are equivalent:

	1. z ∈ Specε(P);
	2. z ∈ Spec(P) or there exists a [image: Mathematical expression showing u subscript x is an element of script D of P.] such that ||(P − z)uz|| < ε||uz||, where [image: Mathematical expression showing calligraphic D followed by parenthesis containing a capital P, representing D of P.] denotes the domain of P.

Proof. See reference [19, p. 31].

Such a state uz is referred to as an ε-quasimode, or simply a quasimode of P − z.



Spectral instability of semiclassical pseudo-differential operators

Although the notion of ε-pseudospectrum defined in Definition 1 is valid in the context of semiclassical pseudo-differential operators, we present here a somewhat different, but still related notion, which is more suited to the semiclassical setting. Here, the term “semiclassical” implies that our operators are dependent on a parameter h ∈ ]0, 1] (often referred to as “Planck's parameter”), and that our focus we will be on the asymptotic (semiclassical) regime h ↘ 0. This small parameter will provide us with a natural threshold for defining the pseudospectrum, and thereby measuring the spectral instability. The following discussion is based on the studies of Davies [13] and Dencker et al. [16].

Let d ⩾ 1 and h ∈ ]0, 1]. An order function [image: Mathematical expression stating m is an element of the set of infinitely differentiable functions from R to the power of 2d into the interval from one to infinity.], is a function satisfying the following growth condition:

[image: Mathematical expression stating: For some constant C zero greater than or equal to one and some integer N zero greater than zero, m of rho is less than or equal to C zero times the norm of rho minus mu to the N zero times m of mu, for all rho and mu in the real space of dimension two d. Equation labeled as six.]

where [image: Mathematical expression showing angle brackets around the term rho minus mu, defined as the square root of one plus the modulus of rho minus mu squared.] denotes the “Japanese brackets.” We will also sometimes write (x, ξ) = ρ ∈ ℝ2d, so that ξ ∈ ℝd. To such an order function m, we may associate a semiclassical symbol class [17, 71]. We assert that a smooth function [image: Mathematical notation showing p belongs to the space of infinitely differentiable functions from R to the power two d with subscript rho to the interval zero one with subscript k.] belongs to the symbol class S(m) if for any multiindex α ∈ ℕ2d when there exists a constant Cα > 0 such that

[image: Mathematical expression showing a bound: the absolute value of the α-th derivative of ρ with respect to h is less than a constant times m of ρ, for all ρ in R two d and h in the interval zero to one. Equation label is seven.]

We recommend the reader for further reading on semiclassical analysis to [17, 41, 71].

Let the symbol p ∈ S(m), m ⩾ 1, be a “classical” symbol, which satisfies an asymptotic expansion in the limit h → 0:

[image: Mathematical equation displaying φ of ρ and h is asymptotic to p sub zero of ρ plus h bar times p sub one of ρ plus ellipsis in S of m, labeled as equation eight.]

where each pj ∈ S(m) is independent of h. We assume that there exists a z0 ∈ ℂ and a C0 > 0 such that

[image: Mathematical expression showing absolute value of p sub zero of rho minus z sub zero is greater than or equal to m of rho divided by C sub zero, for rho in T star R to the fourth. Equation labeled nine.]

Here, T*ℝd ≃ ℝ2d denotes the cotangent space of ℝd. In this case, we call p0 the (semiclassical) principal symbol of p. We then define two subsets of ℂ associated with p0:

[image: Mathematical notation defines Sigma as the image of p zero applied to the cotangent bundle of Euclidean d-space, and describes Sigma infinity as the set of limit points of sequences mapped by p zero. Equation numbered ten.]

Here, the [image: Mathematical expression showing p sub zero of T star R superscript d, with a horizontal bar over the entire expression.] denotes the closure of the set [image: Mathematical formula showing p sub zero of open parenthesis T star upper R superscript d close parenthesis.], and we will use this notation in the sequel. The set Σ is the classical spectrum, and Σ∞ can be called the classical spectrum at infinity of the h-Weyl quantization of p was defined by

[image: Mathematical expression defining the action of a pseudo-differential operator \( p_h^w(x, hD_x) \) on \( u(x) \), shown as an integral over \( y \) and \( \xi \), with exponential and symbol \( p \) functions, for functions \( u \) in Schwartz space \( S(\mathbb{R}^d) \). Equation labeled as eleven.]

seen as an oscillatory integral in ξ. The operator Ph maps S → S, and by duality S′ → S′, continuously.


3.1 Semiclassical pseudospectrum

Similar to Dencker et al. [16], we define for a symbol p ∈ S(m) as in Equation 8 the sets

[image: Mathematical expression showing the set Λ sub plus or minus of p equal to the set of ρ of p such that plus or minus one over two i times the commutator of p bar and p, evaluated at ρ, is less than zero, which is a subset of Σ that is a subset of the complex plane, labeled as equation twelve.]

where {·, ·} denotes the Poisson bracket. It should be noted that the condition [image: Mathematical equation showing one divided by two i times the quantity bracket p bar comma p bracket is not equal to zero.] is the classical analog of the [image: Mathematical expression showing the commutator of P sub k star and P sub k is not equal to zero.]. As in Dencker et al. [16], we call the set

[image: Mathematical expression showing Lambda of p equals the union of Lambda sub minus and Lambda sub plus, labeled as equation thirteen.]

the semiclassical pseudospectrum.

Theorem 3 ([16]). Suppose that n ⩾ 2, [image: Mathematical expression showing C sub b superscript infinity of T star R to the d, element p is asymptotic to p naught plus h bar p one plus ellipsis.], and [image: Mathematical expression showing p sub zero raised to the power of negative one, evaluated at z, written as p sub zero to the negative one of z.] is compact for a dense set of values z ∈ ℂ. If [image: Mathematical equation showing P sub k equals p superscript w of x comma h D sub x, all enclosed in parentheses.], then

[image: Mathematical expression showing Lambda of p naught without Sigma infinity is a subset of Lambda plus of p naught, with Lambda plus indicated by an overline.]

and for every z ∈ Λ+(p0) and every [image: Mathematical expression showing rho subscript zero belongs to the cotangent bundle of d-dimensional real space, written as ρ₀ ∈ T*ℝᵈ.] with

[image: Mathematical equation showing p sub zero of rho sub zero equals z, and one divided by two i times the commutator of p sub v and p sub zero at rho sub zero is less than zero.]

there exists [image: Mathematical expression stating that e sub plus is nonzero and belongs to the space L squared of R to the d, where R is the set of real numbers and d is a dimension.] such that

[image: Mathematical expression shows double vertical bars around P sub h minus z applied to e sub x plus, denoting a norm, equal to big O of h to the infinity norm of e sub x plus one norm, with WF h of e sub x plus equal to the set containing rho naught and labeled equation fourteen.]

1

If, in addition, p has a bounded holomorphic continuation to to {ρ ∈ ℂ2d, |Imρ| ⩽ 1/C}, then Equation 14 holds with the h∞ replaced by exp(−1/(Ch)).

If n = 1, then the same conclusion holds, provided that in addition to the general assumptions, each component of ℂ\Σ∞ has a nonempty intersection with ∁Λ(p).2

This result can be extended to unbounded symbols p ∈ S(T*ℝd, m), as shown in Equation 8, and the corresponding operators Ph with principal symbol p0, by applying Theorem 3 to [image: Mathematical expression showing P tilde sub k equals the inverse of the quantity P sub k minus z naught, multiplied by the quantity P sub k minus z.], with principal symbol [image: Mathematical expression shows p zero with a tilde belongs to C subscript zero superscript infinity, a space of smooth functions with compact support, over the cotangent bundle of Euclidean space R superscript d.] and z0 as in Equation 9 and z0 ≠ z. Indeed, note that z ∈ Σ(p0) if and only if [image: Mathematical expression stating zero is an element of the set Sigma of p zero, where p zero is denoted with a tilde indicating modification or approximation.], and that [image: Mathematical equation showing rho belongs to the inverse image under the function p sub zero of z.] with ±{Rep0, Imp0}(ρ) < 0 is equivalent to [image: Mathematical expression showing the Greek letter rho belonging to the inverse image under the mapping p zero tilde of the set containing zero.] with [image: Mathematical expression showing plus-minus, open parenthesis, real part of p tilde sub zero, comma, imaginary part of p tilde sub zero, close parenthesis, function of rho, less than zero.]. Furthermore, a quasimode u as in Theorem 3 for [image: Mathematical expression showing an uppercase italic letter P with a tilde above it and a lowercase italic k as a subscript.] then provides, after a possible truncation, a quasimode for Ph − z in the same sense.

By replacing Ph with its formal adjoint, [image: Mathematical expression showing an uppercase italic letter P with a subscript k and a superscript asterisk.], and thus p with [image: Mathematical symbol representing the variable p with a horizontal line above it, indicating the mean value of p or a complex conjugate, depending on context.], Theorem 3 yields that for every z ∈ Λ−(p) and every [image: Mathematical expression showing rho sub zero is an element of the cotangent bundle of d-dimensional real space, written as ρ sub zero belongs to T star R to the power d.] with

[image: Mathematical equation showing p nought of rho nought equals z, and one over two i times the commutator of p v bar and p nought acting on rho nought is greater than zero.]

there exists [image: Mathematical expression stating zero is not equal to e underscore, which belongs to the space L squared of R superscript d.] such that

[image: Mathematical expression in LaTeX showing norm estimates and wavefront set: double vertical bar norm of operator P sub h minus z applied to e sub z bounded by big O of h to the infinity norm of e sub z; wavefront set WF sub h of e sub z equals the set containing rho zero.]

The additional statements of Theorem 3 regarding symbols that permit a holomorphic extension to a complex neighborhood of ℝ2d, and the case where n = 1 hold as well.

Example 2. The case study to be considered is the case of the non-selfadjoint Harmonic oscillator

[image: Mathematical equation showing P sub h equals the quantity h D sub x squared plus i x squared.]

is seen as an unbounded operator L2(ℝ) → L2(ℝ). The principal symbol for Ph is given by p(x, ξ) = ξ2 + ix2 ∈ S(T*ℝ, m), with a weight function m(x, ξ) = 1 + ξ2 + x2. We equip Ph with the domain [image: Mathematical expression defining H of m as the space obtained by applying the inverse of P sub k plus one to the L squared space of real numbers.], where the operator on the right is the pseudo-differential inverse of Ph + 1. This choice of domain renders Ph a closed and densely defined operator. Using, for instance, the method of complex scaling, it can be observed that the spectrum of Ph is determined by

[image: Mathematical expression showing the spectrum of P sub h as the set of values e to the power of pi i divided by four times two n plus one h, for n in the natural numbers, labeled equation fifteen.]

Furthermore, Σ is the closed first quadrant in the complex plane, whereas Σ∞ = ∅. For ρ = (x, ξ) ∈ T*ℝ, we find that

[image: Mathematical expression showing one over two i times the function p bar p in variables x and xi equals two times xi times x, labeled as equation sixteen.]

Thus, for every z ∈ [image: Mathematical symbol for summation, represented by a capital sigma with a dot above it, commonly denoting time derivative or differentiation with respect to time of a summation operation.]3 there exist points

[image: Mathematical formula showing two expressions: ρ plus superscript j of z equals negative one to the power j times the ordered pair with negative square root of real part of z and square root of imaginary part of z; ρ superscript j of z equals negative one to the power j times the ordered pair with negative square root of real part of z and negative square root of imaginary part of z, where j equals one or two.]

such that

[image: Mathematical expression showing plus or minus one divided by two i times the inner product of vector p with itself, multiplied by the derivative of ρ sub j with respect to z, less than zero, for j equals one and two.]

Using the WKB method, it is possible to construct quasimodes of the form [image: Mathematical equation showing e sub plus superscript i of x and h equals alpha sub plus superscript i of x and h, multiplied by e raised to the power i k four of x and y k.] with [image: Mathematical expression showing a subscript plus superscript i function a of x and h is an element of C sub c superscript infinity of the real numbers.] admitting an asymptotic expansion [image: Mathematical expression showing a series expansion: alpha sub plus superscript i of x comma h is approximately equal to alpha sub plus zero superscript i of x plus h times alpha sub plus one superscript i of x plus ellipsis.] with [image: Mathematical formula with blackboard bold W F sub k of e superscript j equals the set of ordered pairs alpha sub plus superscript j of z in parentheses.] and

[image: Mathematical equation expressing that the L two norm of the difference between P sub h and z sub epsilon is order of e to the power negative one over C h, labeled as equation seventeen.]

see Davies [13, 14] for an explicit computation, and Dencker et al. [16] for a more general construction.

In fact, the works of Davies [13, 14] provide an explicit WKB construction for a quasimode u for one-dimensional non-selfadjoint Schrödinger operators [image: Mathematical expression showing P sub k minus z equals the quantity h D sub x squared plus V of x, then minus z.] on L2(ℝ) with V ∈ C∞(ℝ) complex-valued and z = V(a)+η2, for some a ∈ ℝ, η > 0. Furthermore, one assumes that ImV′(a) ≠ 0. These studies served as the foundation for the quasimode construction of non-selfadjoint (pseudo-)differential operators. Zworski [69] compared Davies' quasimode construction under the condition on the gradient of ImV to a quasimode construction under a non-vanishing condition of the Poisson bracket [image: Mathematical expression showing one divided by two i multiplied by the inner product of vector p bar and p in parentheses.]. Furthermore, Zworski [69] established the link to the famous commutator condition of Hörmander [32, 33]. A full generalization of the quasimode construction under a non-vanishing condition of the poisson bracket, see Theorem 3, was then achieved by Dencker et al. [16]. Finally, Pravda-Starov [46–48] improved these results by modifying a quasimode construction by Moyer and Hörmander, see reference [34, Lemma 26.4.14], for adjoints of operators that do not satisfy the Nirenberg-Tréves condition (Ψ) for local solvability.

For a quasimode construction for non-selfadjoint boundary value problems, we recommend the reader refer to the study of Galkowski [20].

It is noteworthy, that Equation 14 (or Equation 17 in the aforementioned example) implies that if the resolvent [image: Mathematical expression showing the inverse of the difference between P sub k and z, written as open parenthesis P subscript k minus z close parenthesis to the power of negative one.] exists then its norm is larger than any power of h when h → 0, or even larger than e1/Ch in the analytical case. Each family [image: Mathematical expression showing a pair of parentheses with e sub plus superscript j as a function of z and h inside.] is an h∞-quasimode of Ph − z, or for short a quasimode of Ph − z.

From the quasimode Equation 14, it is easy to observe an operator Q of unity norm and a parameter [image: Mathematical expression showing delta equals big O of h to the power of p.], such that the perturbed operator Ph + δQ has an eigenvalue at z. For instance, if we call the error r+ = (Ph − z)e+, we may take the rank 1 operator [image: Mathematical equation displaying delta Q equals negative r sub plus tensor product with the conjugate transpose of e sub plus in parentheses.]. According to Theorem 3, it can be observed that the interior of the set Λ(p), situated away from the set Σ∞, is a zone of strong spectral instability for Ph. For this reason, we may refer to the semiclassical pseudospectrum Λ(p) also as the (h∞-) pseudospectrum of Ph. Finally, we recommend the reader also to the refer studies of Pravda-Starov [46–48] for further refinement of the notion of semiclassical pseudospectrum.



3.2 Outside the semiclassical pseudospectrum

When

[image: Mathematical expression showing z is an element of the set of complex numbers excluding the set sigma of p, written as z ∈ ℂ \ Σ(p), comma at the end.]

then by condition (Equation 9), we have (p0(ρ) − z) ⩾ m(ρ)/C for some sufficiently large C > 0 and so we know that the inverse [image: Mathematical expression showing the inverse of the quantity P sub k minus z, written as open parenthesis P sub k minus z close parenthesis raised to the power of negative one.] is a pseudo-differential operator with principal symbol [image: Mathematical expression showing that the inverse of the quantity p sub zero minus z belongs to S of one over m, which is a subset of S of one.]. Hence, [image: Mathematical expression showing the inverse of the quantity P sub k minus z, written as parenthesis P sub k minus z, all raised to the power of negative one.] maps L2 → L2 and

[image: Mathematical expression showing the norm of the inverse operator P sub n minus z is big O of one, followed by the equation number eighteen in parentheses.]

uniformly in h > 0. Therefore, from the semiclassical point of view, we may consider ℂ\Σ as a zone of spectral stability.



3.3 At the boundary of the semiclassical pseudospectrum

At the boundary of the semiclassical pseudospectrum, a transition occurs between the zone of strong spectral instability and stability. Indeed, at the boundary we find an improvement over the resolvent bounds, assuming some additional non-degeneracy:

Splitting a symbol [image: Mathematical expression showing p is an element of the smooth compactly supported functions on the cotangent bundle of d-dimensional real space, written as p is in C sub zero superscript infinity of T star R to the d.] into real and imaginary part, p = p1 + ip2, we consider the iterated Poisson bracket

[image: Mathematical expression showing a recursive definition for variable p sub i as a function of multiple nested variables, each indicated by p with different subscripts and curly brackets.]

where I ∈ {1, 2}k, and |I| = k is called the order of the Poisson bracket. The order of p at ρ ∈ T*ℝd is given by

[image: Mathematical equation stating k of rho equals the maximum j in natural numbers such that p sub i of rho equals zero and one is less than the absolute value of i less than or equal to j.]

The order of z0 ∈ Σ\Σ∞ is the maximum of k(ρ) for [image: Mathematical expression showing the Greek letter rho is an element of the inverse image of the function p evaluated at z sub zero.].

Theorem 4. See Dencker et al. [16, 56] Assume that [image: Mathematical expression showing smooth compactly supported functions over the cotangent bundle of d-dimensional real space, with p equivalent to a series expansion p zero plus h bar multiplied by p one and so on.]. Let [image: Mathematical expression showing P sub k equals p superscript w of x comma h D sub x, with each element clearly written in standard mathematical notation.] and let z0 ∈ ∂Σ(p0)\Σ∞(p0). Assume that dp0 ≠ 0 at every point in [image: Mathematical expression p sub zero to the power of negative one of open parenthesis z sub zero close parenthesis, indicating the inverse function p zero evaluated at z zero.], and that z0 has a finite order k ⩾ 1 for p. Then, k is equal and h > 0 is small enough for

[image: Mathematical expression showing an operator norm bound: the norm of the inverse of P sub h minus z is less than or approximately equal to C times h to the power negative k divided by k plus one.]

In particular, there exists a c0 > 0, such that h > 0 is small enough for

[image: Mathematical expression stating that the set of complex numbers z such that the modulus of z minus z sub zero is less than or equal to c sub zero times h to the k divided by k plus one, intersected with the spectrum of P sub h, is empty.]

This result was proven in dimension 1 by Zworski [70], and in certain cases by Boulton [8]. Further refinements have been obtained from Sjöstrand [56]. Similar to the discussion after Theorem 3, we can extend Theorem 4 to unbounded symbols p ∈ S(T*ℝd, m) and their corresponding quantizations.

Example 3. Recall the non-selfadjoint Harmonic oscillator [image: Mathematical equation showing P sub k equals the square of h D sub x plus i x squared.] from Example 2. Here ∂Σ = ℝ+ ∪ iℝ+, so we see by Equation 16 that for 0 ≠ z0 ∈ Σ

[image: Mathematical expression showing one over two i times the Poisson bracket of p bar and p at rho equals the pair of real and imaginary parts of p at rho equals zero, where rho is in the preimage of z zero under p.]

However,

[image: Mathematical expression stating that either the commutator of the real part of p with itself acting on rho equals four xi squared not equal to zero, or the commutator of the imaginary part of p with itself acting on rho equals negative four xi squared not equal to zero.]

indicating that z0 is of order 2 for p = ξ2 + ix2, and Theorem 4 reveals that

[image: Mathematical expression showing the norm of the inverse operator Ph minus z zero is less than or equal to constant C times h to the negative two-thirds power.]

In order for a the ε-pseudospectrum of Ph to reach the boundary of Σ, we require ε > h2/3/C.



3.4 Pseudospectra and random matrices

In this section, we present a brief discussion on pseudospectra for large N × N random matrices. One may interpret the 1/N, where N ≫ 1, as an analog to the semiclassical parameter. By recalling the example of the non-selfadjoint harmonic oscillator, as illustrated in Example 2, we see that pseudospectra can be very large in general. However, in a generic setting, they are typically much smaller.

Let M ∈ ℂN×N be a complex N × N matrix and let s1(M) ⩾ … ⩾ sN(M) ⩾ 0 denotes its singular values, which are the eigenvalues of [image: Mathematical expression showing the square root of M multiplied by M.] ordered in a decreasing manner and counting multiplicities. It should be noted that if M − z is bijective for some z ∈ ℂ, then

[image: Mathematical formula showing the norm of the inverse of M minus z equals the reciprocal of the smallest singular value of M minus z, with N as a subscript to s.]

In view of Equation 1, the ε-pseudospectrum of M is then characterized by the condition that z ∈ Specε(M)

[image: Mathematical equation showing that z belongs to the epsilon-pseudospectrum of matrix M if and only if the smallest singular value of M minus z is less than epsilon.]

A classical result from Sankar et al. [51, Lemma 3.2] (stated there for real Gaussian random matrices) indicates that with a high probability, the smallest singular value of a deformed random matrix is not too small.

Theorem 5 ([51]). There exists a constant C > 0 such that the following holds true. Let N ⩾ 2, let X0 be an arbitrary complex N × N matrix, and let Q be an N × N complex Gaussian random matrix, whose entries are all independent copies of a complex Gaussian random variable [image: Mathematical notation expressing that variable q is drawn from a complex normal distribution with mean zero and variance one.]. Subsequently, for any δ > 0

[image: Mathematical formula showing probability that s sub N of X zero plus delta Q is less than delta t is at most C times N to the power of negative two.]

Proof. For real matrices the proof can be found in Sankar et al. [51, Lemma 3.2], see also reference [63, Theorem 2.2]. For complex matrices a proof is presented for instance in Vogel [66, Appendix A].

Theorem 5 states us that any fixed z ∈ ℂ is not included in the ε-pseudospectrum of X + δQ with a probability ⩾ 1 − CNε2δ−2. This result suggests that the pseudospectrum of random matrices is typically not too large. Theorem 5 has received many extensions. For instance Rudelson and Vershynin [50] consider the case of random matrices with iid (independent and identically distributed) sub-Gaussian entries. Tao and Vu [62] consider iid entries with a nonzero variance. Cook [12] considers the case of random matrices whose of entries have an inhomogeneous variance profile under appropriate assumptions. We conclude this section by noting the following, quantitative outcome obtained by Tao and Vu.

Theorem 6 ([63]). Let q be a random variable with a mean zero and a bounded second moment, and let γ ⩾ 1/2, A ⩾ 0 be constants. Then, there exists a constant C > 0, depending on q, γ, and A such that the following holds true. Let Q be the random matrix of size N, whose entries are independent and identically distributed copies of q, and let X0 be a deterministic matrix satisfying [image: Mathematical expression showing the norm of X sub zero is less than or equal to N to the power of p.]. Then,

[image: Mathematical expression showing a probability inequality: probability that s sub n of X zero plus Q is less than or equal to n to the power of negative gamma times two A plus two plus one half is less than or equal to constant c times the sum of n to the power of negative A plus o one and the probability that the norm of Q is at least n to the power of gamma, equation nineteen.]

Example 4. Consider the case where q is a random variable satisfying the moment conditions

[image: Mathematical expression states that the expected value of g is zero, its variance is one, and its fourth moment is finite, followed by equation number twenty in parentheses.]

Form [37] reveals that Equation 20 implies that 𝔼[||Q||] ⩽ CN1/2, which, using Markov's inequality, yields that for any ε > 0

[image: Mathematical expression showing probability that the norm of Q exceeds a constant times N to the power one half plus epsilon is less than a constant inverse times N to the negative one half minus epsilon times the expected norm of Q, which is less than or equal to N to the negative epsilon, labeled equation twenty-one.]

In this case (Equation 19) becomes

[image: Mathematical equation showing that the probability of s sub n of X sub zero plus Q being less than or equal to n raised to the power of epsilon plus one half divided by two A plus two plus one half is less than or equal to C times n to the power negative A plus o of one plus N to the power negative epsilon. Equation number twenty-two.]




4 Eigenvalue asymptotics for non-selfadjoint (random) operators

Consider the operator [image: Mathematical equation showing P sub k equals p superscript w of x comma h D sub x in parentheses.] depicted in Equations 8, 11, which is viewed as an unbounded operator L2(ℝd) → L2(ℝd). We equip Ph with the domain [image: Mathematical expression defining H of m as the inverse of P sub k minus z naught, applied to L squared of R to the d.]. It should be noted that [image: Mathematical expression showing the inverse of the quantity P sub k minus z sub zero, represented as open parenthesis P sub k minus z sub zero close parenthesis to the power of negative one.] exists for h > 0 that is sufficiently small by the elipticity condition (Equation 9). We will denote by ||u||m: = ||(Ph − z0)u|| the associated norm on H(m). Although this norm depends on the selection of the symbol p0 − z0, it is equivalent to the norm defined by any operator with an elliptic principal symbol q ∈ S(m), so that the space H(m) solely depends on the order function m. Since H(m) contains the Schwartz functions [image: Mathematical expression displaying script capital S of the space of rapidly decreasing functions over R superscript d, written as S open parenthesis double-struck R to the power of d close parenthesis.], it is dense in L2(ℝd).

Let us verify that Ph equipped with domain H(m) is closed. Let (Ph − z0)uj → v and uj → u in L2. Since [image: Mathematical expression showing the operator P sub k minus z sub zero maps from the Hilbert space H of m to the space L squared.] is bijective, it follows that [image: Mathematical expression showing u sub j maps to the inverse of the quantity P sub k minus z naught, multiplied by v.] in H(m) and also in L2. So [image: Mathematical equation showing u equals the inverse of the quantity P sub k minus z sub zero, multiplied by v.]. In summary, Ph equipped with the domain H(m) is a densely defined closed linear operator.

Recall Equation 10, and let

[image: Mathematical expression showing omega is a subset of the complex plane excluding sigma sub infinity, with equation number twenty-three in parentheses on the right.]

be open, relatively compact, not entirely contained in Σ and so that [image: Mathematical expression stating that the closure of omega is a subset of the complex plane excluding the set sigma sub infinity.]. Using the ellipticity assumption (Equation 9), it was proven in reference [25, Section 3] that

	• Spec(Ph) ∩ Ω is discrete for h > 0 small enough,
	• For all ε > 0 there exists an h(ε) > 0 such that

[image: Mathematical expression showing Spec(P_h) intersect Omega is a subset of Sigma plus D(0, epsilon), with zero less than h less than or equal to h(epsilon).]

	where D(0, ε) denotes the disc in ℂ of radius ε and centered at 0.


4.1 The selfadjoint setting

If Ph above is selfadjoint, which implies in particular that p is real-valued, we have the classical Weyl asymptotics. We follow here Dimassi and Sjöstrand [17] for a brief review.

Theorem 7. Let Ω be as in Equation 23. For every h-independent interval I ⊂ Ω ∩ ℝ with [image: Mathematical equation displaying that the d-dimensional volume of the boundary of set I, denoted as Vol subscript ℝ to the d of ∂I, equals zero.],

[image: Mathematical equation showing the asymptotic count of eigenvalues: the number of elements in the spectrum of P sub h intersected with I equals one over open parenthesis two pi h bar close parenthesis to the power d, times the integral over P sub zero inverse of I of dx dxi plus little o of one, as h approaches zero, equation twenty-four.]

This result is, in increasing generality, attributed to Chazarin [10], Helffer and Robert [26, 27], Petkov and Robert [45] and Ivrii [35]. See also Dimassi and Sjöstrand [17] for an overview. We highlight two special cases: when I = [a, b], a < b, and a, b are not critical points of p0, then the error term becomes [image: Mathematical expression showing big O notation: uppercase O followed by an opening parenthesis, lowercase h, and a closing parenthesis. This represents asymptotic complexity O of h.], see Chazarin [10], Helffer-Robert [26], and Ivrii [35]. When additionally the unions of periodic Hp0 trajectories4 in the energy shell [image: Mathematical expression showing p sub zero inverse, evaluated at a, with the inverse indicated by a negative one exponent.] and [image: Mathematical expression showing p sub zero inverse of b, with p having a subscript zero and an exponent of negative one, enclosed in parentheses with b inside.] are of the Liouville measure 0, then the error term is of the form

[image: Mathematical equation expressing h times the difference between two integrals involving p1 of rho and L sub a or L sub b, plus a small order term o of h, labeled as equation twenty-five.]

where Lλ denotes the Liouville measure on [image: Mathematical expression showing p sub zero raised to the power of negative one, applied to lambda in parentheses.]. See Petkov and Robert [45] and Ivrii [35] and Dimassi and Sjöstrand [17] for details. Let us also highlight that similar results obtained from Theorem 7 are also valid for compact smooth manifolds, see, for instance, Grigis and Sjöstrand [21, Chapter 12] and the references therein.

The corresponding results in the setting of self-adjoint partial differential operators in the high energy limit go back to the seminal study of Weyl [68] and have a long and very rich history. These are, however, beyond the scope of this review.

Example 5. The guiding example to keep in mind is the self-adjoint Harmonic oscillator

[image: Mathematical expression showing P sub h equals the sum of quantity h D sub x squared and x squared, mapping from L squared of open parenthesis R close parenthesis to L squared of open parenthesis R close parenthesis.]

seen as an unbounded operator. The principal symbol of Ph is represented by p(x, ξ) = ξ2 + x2 ∈ S(T*ℝ, m), and the weight function m(x, ξ) = 1 + ξ2 + x2. Ph is represented by the domain [image: Mathematical equation showing H of m equals the inverse of P sub k plus one, applied to the L squared space of real numbers.], where the operator on the right is the pseudo-differential inverse of Ph + 1. This choice of domain makes Ph a densely defined closed operator. It is widely acknowledged (see, for instance, reference [71, Theorem 6.2]) that the spectrum of Ph is determined by

[image: Mathematical expression showing Spec of P sub h equals the set of (2n plus 1) times h, where n belongs to the set of natural numbers.]

Counting the points (2n + 1)h contained in an interval [a, b], 0 ⩽ a < b < ∞, gives

[image: Mathematical equation showing the cardinality of the intersection of Spec of P sub h with the interval [a, b] equals the fraction b minus a over two h plus big O of one.]

Since [image: Mathematical equation showing the volume of a set in R squared: Vol subscript R squared of the set where a is less than or equal to xi squared plus x squared is less than or equal to b equals pi times the quantity b minus a.], we confirm Theorem 7 for the Harmonic oscillator.



4.2 The non-self-adjoint setting

The natural counterpart of Theorem 7 for non-self-adjoint operators would be eigenvalue asymptotics in a complex domain Ω ⋐ ℂ as in Equation 23. Recall the non-self-adjoint Harmonic oscillator Ph from Example 2 with principal symbol p(x, ξ) = ξ2 + ix2. In this case, Σ = {z ∈ ℂ; Rez, Imz ⩾ 0} and Σ∞ = ∅. Any ∅ ≠ Ω ⋐ Σ away from the line [image: Mathematical expression showing e to the power of i x pi divided by four multiplied by the set of positive real numbers, denoted by a double-struck R with a subscript plus sign.], indicates the view of Equation 15 that

[image: Mathematical expression showing hash of Spec of P sub h intersect Omega equals zero.]

On the other hand,

[image: Mathematical expression showing the quantity one divided by two pi h, multiplied by the integral over p inverse of omega of d x d xi, is greater than zero.]

This example suggests that a direct generalization of Theorem 7 to non-self-adjoint operators with a complex valued principal symbol cannot hold.

Let us comment on two settings where a form of Weyl asymptotics is known to hold: Upon assuming analyticity, one may recover a sort of Weyl asymptotics. More precisely, as shown in the studies of Melin and Sjöstrand [43], Sjöstrand [53], Hitrik and Sjöstrand [28–30], Hitrik et al. [31], and Rouby [49], the discrete spectrum of certain analytic non-self-adjoint pseudo-differential operators is confined to curves in Σ. Moreover, one can recover eigenvalue asymptotics using Bohr-Sommerfeld quantization conditions.

The second setting occurs when the non-self-adjointness of the operator Ph arises not from the principal symbol p0 (assumed to be real-valued), but from the subprincipal symbol p1. For instance, when studying the damped wave equation on a compact Riemannian manifold X, one is led to study the eigenvalues of the corresponding stationary operator

[image: Mathematical expression showing p sub h of z equals negative h bar squared times Laplacian plus two i h bar times square root of a of x times square root of z, where a is an element of C infinity of X comma R.]

Here, Δ denotes the Laplace-Beltrami operator on X, and we call z ∈ ℂ an eigenvalue of Ph(z) if there exists a corresponding L2 function u is present in the kernel of Ph(z)−z. In fact, such a u is smooth by elliptic regularity. Using Fredholm theory, one can show that these eigenvalues form a discrete set in ℂ.

The principal part of Ph = Ph(z) is given by −h2Δ, and thus is self-adjoint. The principal symbol is [image: Mathematical formula showing p sub zero of x and xi equals the norm of xi with respect to x squared.] (the norm here is with respect to the Riemannian metric on X). However, the subprincipal part is complex valued and non-self-adjoint.

Lebeau [38] has established that there exists a± ∈ ℝ, wherein for every ε > 0 there exist a finite number of eigenvalues such that

[image: Mathematical expression showing the imaginary part of z divided by h not belonging to the interval from a sub minus minus epsilon to a sub plus plus epsilon, presented within brackets.]

Remark 1. In fact Lebeau provided precise expressions for a± in terms of the infimum and the supremum over the co-sphere bundle S*X of the long time average of the damping function a evolved via the geodesic flow. Further refinements have been obtained by Sjöstrand [52], and when X is negatively curved by Anantharaman [2] and Jin [36].

Additionally, Markus and Matsaev [40] and Sjöstrand [52] have demonstrated the following analog of the Weyl law. For 0 < E1 < E2 < ∞ and for C > 0 sufficiently large

[image: Mathematical equation showing the number of spectral points for operator P sub h in a rectangular region equals one over open parenthesis two pi h close parenthesis to the d times an integral over set V sub zero inverse of open bracket E one, E two close bracket of d x d xi, plus a term of order h, labeled as equation twenty six.]

Finer results have been obtained by Anantharaman [2] and Jin [36] when X is negatively curved.



4.3 Probabilistic Weyl asymptotics

In a series of studies by Hager [23–25] and Sjöstrand [54, 55], the authors proved a Weyl law, with overwhelming probability, for the eigenvalues in a compact set Ω ⋐ ℂ as in Equation 23 for randomly perturbed operators

[image: Mathematical expression showing Pd equals Ph plus delta times Qn, with delta as a function of h, satisfying zero less than delta much less than one, equation numbered twenty-seven.]

where Ph is as per in Section 3, and the random perturbation Qω is one of the following two types.


4.3.1 Random matrix

Let N(h) → ∞ sufficiently fast as h → 0. Let qj,k, 0 ⩽ j, k < N(h) be independent copies of a complex Gaussian random variable [image: Mathematical expression showing alpha distributed according to a complex normal distribution with mean zero and variance one.]. We consider the random matrix

[image: Mathematical equation showing Q sub w as a sum from zero less than or equal to j, k less than N of h, with each term q sub j k, e sub j tensor product with conjugate of e sub k, labeled as equation twenty-eight.]

where [image: Mathematical notation showing that the indexed set e sub j for j in natural numbers is a subset of L squared of R to the d, indicating a sequence of functions within a Hilbert space.] is an orthonormal basis and [image: Mathematical formula showing e sub j tensor product with e sub k star u equals inner product of u and e sub k, all multiplied by e sub j.] for u ∈ L2(ℝ). The condition on N(h) is determined by the requirement that the microsupport of the vectors in the orthonormal system {ej}j < N(h), “covers” the compact set [image: Mathematical expression showing the inverse image under p sub zero of set omega is a subset of the cotangent bundle of d-dimensional Euclidean space.], where p0 is the principal symbol of Ph. For instance, we could consider the first N(h) eigenfunctions (ordered according to increasing eigenvalues) of the Harmonic oscillator [image: Mathematical equation showing P sub k equals negative h bar squared times Laplacian plus x squared.] on ℝd. The number N(h) is then determined by the condition that the semiclassical wavefront sets of ej, j ⩾ N(h), are disjoint from [image: Mathematical expression showing p sub zero inverse of omega in parentheses, with the negative one as a superscript on p and zero as a subscript.]. Alternatively, as in Hager and Sjöstrand [25], one may also take N(h) = ∞; however, then one must conjugate Qω by suitable elliptic Hilbert–Schmidt operators. We recommend the reader to Hager and Sjöstrand [25] for further information.



4.3.2 Random potential

We take N(h) and an orthonormal family (ek)k ∈ ℕ as above. Let v be real or complex random vector in ℝN(h) or ℂN(h), respectively, with joint probability law

[image: Mathematical equation showing ν sub h of dP equals Z sub h to the power of negative one, indicator function on the ball of radius R at v, times e to the theta superscript v, times L of d v, labeled as equation twenty-nine.]

where Zh > 0 is a normalization constant, B(0, R) is either the real ball ⋐ℝN(h) or the complex ball ⋐ℂN(h) of radius R = R(h) ≫ 1, and centered at 0, L(dv) denotes the Lebesgue measure on either ℝN(h) or ℂN(h) and ϕ ∈ C1 with

[image: Mathematical expression showing the norm of the gradient of phi is asymptotically bounded by the order of h to the power of negative k, labeled as equation thirty.]

uniformly, for an arbitrary but fixed value of κ4 ⩾ 0. In Hager [24] the case of non-compactly supported probability law was considered. More precisely, the entries of the random vector v were supposed to be independent and identically distributed (iid) complex Gaussian random variables [image: Mathematical notation indicating a variable is distributed according to a complex normal distribution with mean zero and variance one, written as tilde, script N sub c, open parenthesis zero, comma one, close parenthesis.]. In Sjöstrand [54, 55], the law Equation 29 was considered. For the sake of simplicity, we will not elaborate here the precise conditions on the ek, R(h), and N(h), in this case, but refer the reader to Sjöstrand [54, 55]. However, one example of a random vector v with law (Equation 30) is a truncated complex or real Gaussian random variables with expectation 0, and uniformly bounded covariances. In fact, the methods in Sjöstrand [54, 55] can be extended to non-compactly supported probability distributions, provided sufficient decay conditions at infinity are assumed. For instance, iid complex Gaussian random variables, as in the one dimensional case [24], are permissable. Finally, we conclude that the methods in Sjöstrand [54, 55] can probably also be modified to allow for the case of more general independent and identically distributed random variables. We define the random function as

[image: Mathematical expression showing V sub omega equals the sum from i equals zero to N of h of gamma sub i times epsilon sub i, labeled as equation thirty-one.]

We call this perturbation a “random potential,” even though Vω is complex valued. When we consider this type of perturbation, we will make the additional symmetry assumption:

[image: Mathematical equation showing p of x, xi, h equals p of x, negative xi, h, labeled as equation thirty-two.]

Let Ω ⋐ ℂ be an open simply connected set as in Equation 23. For z ∈ Ω and 0 ⩽ t ≪ 1 we set

[image: Mathematical equation showing V sub z of t equals the volume of all rho in the d-dimensional torus times real d, where the squared norm of rho zero of rho minus z is less than or equal to t, labeled as equation 33.]

Let Γ ⋐ Ω be open with [image: Mathematical notation showing the lowercase letter c with the number two as a superscript, representing c squared.] boundary and make the following non-flatness assumption

[image: Mathematical expression states there exists k in the interval open zero to one such that V sub z of t equals big O of t to the k, uniformly for z in neighborhood of partial Gamma, with zero less than t much less than one. Equation labeled thirty-four.]

The above mentioned works have yielded the following result.

Theorem 8 (Probabilistic Weyl's law). Let Ω be as in Equation 23. Let Γ ⋐ Ω be open with [image: Mathematical expression showing the letter c with a superscript two, representing c squared.] boundary. Let [image: Mathematical expression showing P with subscript k and superscript delta.] be a randomly perturbed operators as in Equation 27 with e−1/Ch ≪ δ ⩽ hθ with θ > 0 sufficiently large. Then, in the limit h → 0,

[image: Mathematical equation showing the asymptotic estimate for the number of eigenvalues of a perturbed operator in a region, involving integrals over phase space and an error term, with high probability.]

for some fixed η > 0.

The studies [23–25, 54, 55] also provide an explicit control over θ, the error term in Weyl's law, and the error term in the probability estimate. Theorem 8 is remarkable because such Weyl laws are typically a feature of self-adjoint operator, whereas in the non-selfadjoint case they generally fail. Indeed, as laid out in Section 4.2, the discrete spectrum of the (unperturbed) non-selfadjoint operator Ph is usually localized to curves in the pseudospectrum Σ, see Melin and Sjöstrand [43], Hitrik and Sjöstrand [28–31], and Rouby [49]. In contrast, Theorem 8 shows that a “generic” perturbation of size [image: Mathematical notation displaying script O of h raised to the infinity symbol, representing big O of h to the power of infinity.] is sufficient for the spectrum to “fill out” Σ.

To illustrate this phenomenon, recall the non-selfadjoint harmonic oscillator [image: Mathematical expression showing P sub k equals negative h bar squared times the second derivative with respect to x, plus i times x squared.] on ℝ from Example 2. Its spectrum is given by {eiπ/4(2n + 1)h; n ∈ ℕ} [14] on the line [image: Mathematical expression showing exponential function e to the i times pi over four multiplied by the set of positive real numbers is a subset of the complex numbers.]. The Theorem 8 shows that a “generic” perturbation of arbitrarily small size is sufficient to produce spectrum roughly equidistributed in any fixed compact set in its classical spectrum Σ, which is in this case the upper right quadrant of ℂ.

As observed in Christiansen and Zworski [11], the real analytic p condition (Equation 34) consistently holds for some κ > 0. Similarly, when p is truly analytical and such that Σ ⊂ ℂ has non-empty interior, then

[image: Mathematical expression stating: for all z in the boundary of Omega such that d phi at the inverse map of t evaluated at z is not equal to zero, equation 4.12 holds with kappa greater than one-half. Equation is numbered thirty-six.]

For smooth p, we have that when for every z ∈ ∂Ω

[image: Mathematical text states that dp and d p̄ are linearly independent at every point of p inverse of z, followed by equation label thirty-seven, and then asserts that equation 4.12 holds with kappa equal to one.]

Observe that dp and [image: Mathematical expression showing the lowercase letters d and p together with a horizontal bar over both letters, commonly used to denote a vector quantity.] are linearly independent at ρ when [image: Mathematical expression showing open parentheses p comma p bar close parentheses, open parentheses rho close parentheses, not equal to zero.], where {a, b} = ∂ξa·∂xb − ∂xa·∂ξb denotes the Poisson bracket. Moreover, in dimension d = 1, the condition [image: Mathematical expression showing the inner product of p and its conjugate is not equal to zero.] on p−1(z) is equivalent to dp, with [image: Mathematical expression showing the lowercase letters d and p, both italicized, with a horizontal bar over the letter p.] being linearly independent at every point of p−1(z). However, in dimensions d > 1, this cannot in hold general, as the integral of [image: Mathematical expression showing a set containing two elements: the variable p and p with a bar over it, typically denoting the conjugate or complement of p.] with respect to the Liouville measure on p−1(z) vanishes on every compact connected component of p−1(z), see reference [42, Lemma 8.1]. Furthermore, condition (Equation 37) cannot hold when z ∈ ∂Σ. However, some iterated Poisson brackets may not have zero there. For example, it has been observed in [25, Example 12.1] that if

[image: Mathematical expression states that for every rho in the preimage of the boundary of Omega under P, if either the commutator of p and p-bar evaluated at rho is not zero or the commutator of p-bar and p evaluated at rho is not zero, then equation four point one two holds with kappa equal to negative three fourths. Equation reference thirty-eight.]



4.3.3 Related results

Theorem 8 has also been extended to the case of elliptic semiclassical differential operators on compact manifolds by Sjöstrand [55], to the Toeplitz quantization of the torus by Christiansen and Zworski [11] and Vogel [66], and to general Berezin-Toeplitz quantizations on compact Kähler manifolds by Oltman [44] in the context of complex Gaussian noise. A further extension of Theorem 8 has been achieved by Becker, Oltman and the author in Becker et al. [6]. There we prove a probabilistic Weyl law for the non-selfadjoint off-diagonal operators of the Bistritzer-MacDonald Hamiltonian [7] for twisted bilayer graphene, see also Cancés et al. [9] and Watson et al. [67], subject to random tunneling potentials. This probabilistic Weyl has an interesting physical consequence as it demonstrates the instability of the so-called magic angels for this model of twisted bilayer graphene. Similar results have been achieved in random matrix theory. The case of Toeplitz matrices is represented by symbols on T2 of the form [image: Mathematical expression showing a summation over all integers n of a sub n times e raised to the i n xi, commonly used in Fourier analysis.], (x, ξ) ∈ T2, has been conducted in a series of recent studies by Śniady [61], Davies and Hager [15], Guionnet et al. [22], Basak et al. [4, 5], Sjöstrand and the author of this text [57–59]. Such symbols amount to the case of symbols which are constant in the x variable. In these studies the non-selfadjointness of the problem, however, does not come from the symbol itself, but from the boundary conditions destroying it. The periodicity of the symbol in x is achieved by allowing for a discontinuity. Nevertheless, these studies demonstrate that by adding a small random matrix, the limit of the empirical eigenvalues counting measure μN of the perturbed operator converges in probability (or even almost surely in some cases) to p*(dρ).
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Footnotes

	1 This implies that the semiclassical wavefront set of e+ is defined by ρ0. In other words, the state e+ is concentrated in position and frequency near the point ρ0. See, for instance, Zworski [71] for a definition. For u = (u(h))h ∈ (0, 1) a bounded family in L2(ℝd), its semiclassical wavefront set WFh(u) denotes the phase space region where u is h-microlocalized:

[image: Mathematical expression defining the semiclassical wavefront set WF_h(u), which consists of pairs (x, ξ) in the cotangent bundle excluding the zero section, with conditions on test functions a and operator norms.]

	where aw denotes the Weyl quantization of a, and ∁U denotes the complement of a given set U.
	2 ∁Λ(p) denotes the complement of the set Λ(p).
	3 [image: Mathematical symbol showing a capital Greek letter sigma with a dot above it, commonly representing the time derivative of a summation operator in calculus or physics contexts.] denotes the interior of the set Σ.
	4 Hp0 denotes the Hamilton vector field induced by p0.
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Trophic coherence and non-normality are both ways of describing the overall directionality of directed graphs or networks. Trophic coherence can be regarded as a measure of how neatly a graph can be divided into distinct layers, whereas non-normality is a measure of how unlike a matrix is with its transpose. We explore the relationship between trophic coherence and non-normality by first considering the connections that exist in literature and calculating the trophic coherence and non-normality for some toy networks. We then explore how persistence of an epidemic in an SIS model depends on coherence and how this relates to the non-normality. A similar effect on dynamics governed by a linear operator suggests that it may be useful to extend the concept of trophic coherence to matrices, which do not necessarily represent graphs.
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1 Introduction

In this perspective article, we aimed to explore the relationship between trophic coherence and non-normality, which are both qualities used to describe directed graphs. Non-normality refers to the overall asymmetry of an adjacency matrix. Trophic coherence is defined as how neatly the network can be divided into distinct layers, but it can also be interpreted as a tendency of edges to align with a global direction. These two notions come together in directed graphs. A directed graph can be represented with an N × N adjacency matrix A. If the graph is unweighted then A is binary: Aij = 1 if there is an edge from node vi to node vj, else Aij = 0. When there is an edge from vi to vj, we will say that vi “sees” vj. A weighted directed graph can be represented with a matrix whose entries are real numbers. For our purposes here, we will always assume that A is non-negative. Each node has an in-degree and an out-degree: [image: Mathematical expression showing the in-degree ki-in of node i equals the sum over j of the matrix element Aji, where j is the index for summation.] and [image: Mathematical equation showing k sub i superscript out equals the sum over j of A sub i j, expressing an out-degree calculation for node i in a network adjacency matrix.]. These are sometimes referred to as “strengths” if the directed graph is weighted.

 Definition 1.1. (Non-normality.) Given a real matrix A and its transpose AT, we say that the matrix A is normal if AAT − ATA = 0. It is non-normal otherwise.

 Definition 1.2. (Trophic Coherence) A directed graph is said to be maximally coherent if it is possible to assign to each node a natural number such that nodes assigned to n only see others assigned to n + 1. The greater the deviation from such a configuration, the more incoherent the graph.

The need to understand non-normal matrices and operators arises in the fields of fluid dynamics [1–4], PT-symmetry [5–12], and mathematical biology [13] among other disciplines. In particular, non-normal systems are often characterized by eigenvalues that are sensitive to perturbation. It is for this non-normality is considered an asset in information transfer and communication as it can amplify small environmental changes [14, 15]. Additionally, non-normal linear operators are difficult to capture numerically as small discrepancies arising from machine precision can manifest as large perturbations in the eigenvalues. This has given rise to the study of pseudospectra; the ϵ-pseudospectrum of a matrix A is defined as the set {z ∈ ℂ:||(A − zI)−1|| < ϵ−1}). The definition of pseudospectra corresponds to a measure of sensitivity to perturbations of size ϵ; an equivalent definition of pseudospectra is the set {z ∈ Sp(A + B):||B|| ≤ ϵ} [16]. Despite this being one of the most useful tools for understanding how eigenvalues respond to perturbation, it is not necessarily the best way of understanding the sensitivity of directed graphs to operators such as changing the weights of edges or edge deletion. This is equivalent to putting a structure on the matrix B, which thus breaks the correspondence between the “perturbation view of pseudospectra” and the “transient phenomena” view of pseudospectra. The latter is particularly relevant when the adjacency matrix represents a discrete dynamical system.

Ecologists define the “trophic level” of a species as the average level of its prey, plus one [17]. Trophic coherence was first proposed as a solution to May's paradox: the fact that large ecosystems are stable [18]. If the trophic difference of each edge in a graph is the difference between the trophic levels of the in- and out-neighbors, then the broader the distribution of differences (i.e., the larger the standard deviation of this distribution), the more incoherent the network. It was found that ecosystem models based on sufficiently coherent graphs became more stable, rather than less so, with increasing size. It was subsequently shown, by means of graph ensembles and numerical simulations, that trophic coherence could be related to several aspects of directed networks more generally, including the spectral radius and distribution of cycles [19]; motif profiles [20]; non-normality and strong connectivity [21, 22]; pseudospectra [23]; and various dynamical processes [24–26]. However, relying on the ecological definition of trophic levels restricted the application of trophic coherence to networks with at least one node with in-degree zero. Hence, a new measure of trophic levels was proposed that can be applied to any directed graph [27]. This is the method we use here.

In this article, we wish to emphasize the connection between trophic coherence and non-normality and to suggest that this may be relevant not only for directed graphs but for other systems described by matrices. In the first section, “Measuring Trophic Coherence and Non-normality,” we take a deeper look into literature and present results that connect the two ideas. We also calculate the non-normality and trophic coherence of some toy networks in order to help the reader build an intuition. In the second section, we study an SIS model and a simple linear dynamics, both of which are affected by the coherence of an underlying matrix. We see how non-normality, strong connectivity, and the spectral radius also change with the trophic coherence. We then conclude by discussing potential further avenues of research to establish stronger bonds between these topics.



2 Measuring trophic coherence and non-normality

 Definition 2.1. The vector of trophic levels h of a directed graph with adjacency matrix A is the solution to the equation

[image: Mathematical equation showing uppercase Lambda multiplied by h equals v comma, labeled as equation one in parentheses.]

where

[image: Mathematical equation showing lambda equals diag of u minus A minus the transpose of A, with the equation numbered two in parentheses.]

and the vectors of total degree and degree imbalance are, respectively, u = kin + kout and v = kin − kout [27]. As the solution to Equation 1 is defined only up to an additive constant, the convention that min(hi) = 0 is used (i.e., all the elements of h are positive except for the smallest value which is set to zero.)

While Equation 1 always has a solution, which is unique given the convention stated at the end of the definition, we should note that one cannot obtain this solution by inverting Λ, as this matrix is always singular. One must therefore use some other method to find the solution, such as LU decomposition, the Moore-Penrose pseudo-inverse or an iterative method.

We can measure the trophic coherence of a directed graph with the incoherence parameter F, given by:

 Definition 2.2. The trophic incoherence of a directed graph with adjacency matrix A and trophic levels h given by Equation 1 is as follows:

[image: Mathematical formula showing F equals the sum over i and j of A sub i j times the square of the quantity h sub j minus h sub i minus one, divided by the sum over i and j of A sub i j, labeled as equation three.]

The incoherence F would coincide with the square of the parameter q proposed by Johnson et al. [18] if trophic levels were calculated as in ecology (F = q2) [18]. Using the trophic levels given by Equation 1, F is bounded between zero and one: F = 0 implies a perfectly coherent directed graph in which vertices fit into integer trophic levels; and F = 1 corresponds to maximum incoherence, which occurs if and only if the directed graph is balanced (v = 0) [27].

Definitions 2.1 and 2.2 were originally derived by first writing down (Equation 3) for generic levels, and then finding the solution h that minimized F—which leads to Equation 1. In other words, the trophic levels, under this definition, are those which minimize the trophic incoherence.

The average trophic difference is z = 1 − F, so one interpretation of trophic coherence is as the “directedness” of the graph, and z can be referred to as the trophic coherence [27]. Another interpretation is given by SpringRank [28], which likens each edge to a spring with natural length l = 1. F is then the energy, which is minimized at the solution h. However, another interpretation of the same equation is Helmholtz-Hodge decomposition, whereby a vector field can be decomposed into a gradient part and a zero divergence part [29]. When applied to graphs, F is then its “circularity.” The fact the same equation has appeared independently at least three times testifies to its wide applicability [27]. We note also that if the “−1” in Equation 3 were replaced with a constant “−a,” this would simply multiply the trophic levels by a: h′ = ah. Hence, a = 1 is a natural choice that does not reduce generality.

Λ is twice the Laplacian of the undirected version of the graph (A + AT)/2, which can be considered an undirected graph as all edges now have an opposite edge of the same weight. In particular, an interpretation is that Λh = v is the corresponding inhomogenous equation to the homogenous equation (L(A) + L(AT))x = 0. The multiplicity of the eigenvalue 0 corresponds to the number of connected components in the undirected case, hence can be seen as when we “force” (L(A) + L(AT))x = 0, by unbalancing the in and out degrees on each node.

Whereas the trophic coherence can be captured by a single number, it is not so easy to have a single number which captures non-normality. Various measures have been proposed to quantify the non-normality of matrices, the most obvious being ||AAT − ATA|| for some suitable norm (here and in the paper we use the Frobenius norm). Another method is Henrici's deviation from normality: [image: Mathematical formula for Hen of A equals the square root of the Frobenius norm of A squared minus the sum from n to i minus 1 of the modulus of lambda sub i squared.], where ||·||F is the Frobenius norm and {λi} are the eigenvalues of A. This can be normalized by dividing through by the [image: Mathematical expression showing the squared Frobenius norm of matrix A, represented as double vertical bars around A with a squared exponent and subscript F.] giving the parameter

[image: Mathematical formula showing d sub F equals the square root of one minus nu, where nu equals the sum from i equals one to n of the squared magnitude of lambda sub i divided by the squared Frobenius norm of matrix A, with equation number four.]

is known as the “normality” [27]. Note that a directed graph with normal adjacency matrix A would have [image: Mathematical equation showing the sum from N to j minus one of the squared magnitudes of lambda sub j equals the squared Frobenius norm of matrix A.] and hence ν = 1 (dF = 0), but a “very non-normal” network would have |λj| = 0 for all j and in this case ν = 0 (dF = 1). However, we stress that the idea of “very non-normal” is also subjective with respect to which measure. The norm ||AAT − ATA|| can be considered more sensitive to structural features such as skewness or asymmetry, whereas Henrici's measure aggregates deviations related to eigenvalue magnitudes, potentially smoothing out localized anomalies. In particular, for matrices close to being symmetric, but not normal, the two measures might diverge significantly. The measure ||AAT − ATA|| could show a large deviation, while Henrici's measure may remain small if the eigenvalues are unaffected.

In Table 1, we compute the trophic coherence and non-normality measures for two graphs (the loop on five vertices and the so-called vortex graph on five vertices). We consider these measures for both the adjacency matrix and the non-symmetric Laplacian L(A). We also add an edge to the cycle and delete an edge. We see that trophic coherence increases (trophic incoherence F decreases) in both settings. In addition, we can relate back to our previous discussion regarding pseudospectra. where deletion and addition of an edge can be considered a norm of the same size; hence, a more nuanced approach is needed. In addition, we have that the two measures of non-normality behave differently as the Henrici norm perceives the graph with edge deletion as more non-normal regarding the adjacency matrix and the Laplacian, whereas the converse is true for the other measure. Further analysis is needed to establish if there is a physical meaning to this in certain scenarios, i.e., the graph represents a dynamical system. Although, in both cases, the orientation of each edge can be reversed resulting in the same graph, the fact that flow is not conserved on the “loop under edge addition” may make this graph more asymmetric. Further study must be done in this direction to establish this.


TABLE 1 Comparison of various properties for different types of networks (vortex graph on five vertices, loop on five vertices, loop under edge addition, loop under edge deletion).

[image: Comparison table showing four directed graph structures on five vertices, each with a corresponding adjacency matrix, Laplacian matrix, trophic incoherence, trophic levels, and measures of adjacency and Laplacian non-normality, including both general and Henrici values. Each column represents a specific graph transformation: vortex graph, loop, loop under edge deletion (chain), and loop under edge addition.]

Asllani et al. [30] have recently studied the effects of non-normality in directed graphs, where it was shown that dF correlates strongly with a measure of structural asymmetry. Furthermore, the structures of graphs with different degree distributions were calculated. The approach of the Henrici norm has also been used recently in work looking at non-normality in the context of trophic coherence [21, 27].

It is possible to estimate the expected value of various magnitudes given that a network has a specified trophic coherence, by means of graph ensembles [19, 21, 27]. The “coherence ensemble” is the set of all possible directed graphs with a given degree sequence and trophic coherence. Thus, the expected value of the spectral radius is as follows:

[image: Mathematical equation showing p bar equals e to the power of tau, where tau equals natural logarithm of alpha plus L sub B divided by two times quantity L minus L sub B, minus quantity one minus F divided by two F. Equation labeled as number five.]

and the bar denotes expectation [19]. L is the number of edges, LB is the number of edges connected to the source or sink nodes (those with no incoming or outgoing edges), and the “branching factor” is α = 〈kinkout〉/〈k〉 where the brackets are averages over vertices. τ is referred to as the “loop exponent.” Because τ is positive for F ≃ 1 but becomes negative when F ≃ 0, directed graphs fall into one of two regimes, referred to as “loopful” (τ > 0) and “loopless” (τ < 0) [19]. In the former the number of circuits of length l increases exponentially with l, whereas in the latter they decay exponentially. This can have a crucial bearing on many other topological and dynamical features of complex systems, as we illustrate below with the example of an SIS model: an epidemic perdures indefinitely when τ > 0 but quickly goes extinct when τ < 0.

This approach has been used to show that the expected non-normality is bounded, [image: Mathematical expression showing d sub F with a bar over it is greater than or equal to the square root of one minus e to the power of two x divided by average k.] [21], and approximated by [image: Mathematical equation showing d subscript F with a bar equals the square root of one minus the exponential of quantity one minus one divided by F.] [27]. Hence, trophically coherent graphs (F → 0 or τ → −∞) are non-normal (dF → 1). The fact that the expected value of the non-normality is bounded below by the expected spectral radius [21] is natural when considering the transient wave-packet phenomena that can happen with non-normal matrices [16].



3 Spreading processes with graphs and operators

It is known that the trophic coherence of directed graphs can exert an important influence on the dynamics of various complex systems [21]. Similarly, in dynamical systems governed by linear operators, the non-normality thereof will fundamentally affect system behavior [16]. We go on to show, using two simple examples of spreading processes, that there are close similarities between these two kinds of phenomena. First we look at the SIS model on coherent directed graphs and then we compare this to the action of a non-normal linear operator. These examples also show that the methods which have been proposed to generate directed graphs with tunable trophic coherence might also be useful for studying other matrices numerically [24, 31].

The SIS (susceptible-infectious-susceptible) model is perhaps the simplest which can be used to study the spread through a population of an infectious disease—typically one which confers little or no immunity [32]. We will use this paradigm to demonstrate the influence of trophic coherence or non-normality on even the simplest of dynamical processes.

Consider an unweighted, directed network given by the N × N adjacency matrix A. To each node i is associated with a dynamical variable si(t) which can take, at each discrete time t, either the value 0 or 1, representing susceptible or infectious states, respectively. Let [image: Mathematical equation showing g sub i of t equals the sum over j of A sub i j times s sub j of t.]. The system then evolves according to:

[image: Mathematical equation stating that s sub i at time t plus one equals one if s sub i at time t equals zero and g sub i at time t is greater than zero, or, followed by equation number six.]

[image: Mathematical expression showing s sub i of t plus one equals zero, otherwise, followed by the equation number seven in parentheses.]

with all nodes updated in parallel. In other words, a susceptible node becomes infectious for one time step if at least one of its in-neighbors is infectious.

Will an epidemic die out naturally or go on indefinitely? We study this by beginning with all nodes being susceptible except for %5 which are chosen at random to be made infectious. We generate networks using the generalized preferential preying model [24]. This model has a parameter, T, which allows one to set the trophic coherence of the network: T = 0 produces maximally coherent structures, and incoherence increases with positive T.

Not that in this scheme the only randomness is in the generation of the network and the choice of initial conditions; the dynamics thereafter are deterministic. Figure 1 top left shows the stationary proportion of nodes which remain infectious indefinitely against T. At low values of T the epidemic dies out, but for higher values, there is a continuous transition to a regime in which a significant proportion of the nodes remain infectious. This can be understood by considering that the epidemic requires a strongly connected component of nodes to sustain itself, which only exists in sufficiently incoherent networks [22]. Or, more formally, it is known that the critical rate of infection required for an epidemic to survive is lower bounded by the inverse of the spectral radius of the adjacency matrix [33], which depends on trophic coherence [19].


[image: Six-panel figure with scatter plots showing relationships between parameter T and various network metrics. Top left: Stationary Infected Proportion increases with T, inset shows time series for three T values. Top right: Linear operator values for c=2.0, c=1.0, and c=0.5 increase with T. Middle left: Topple resistance P increases with T. Middle right: Non-normality αf decreases with T. Bottom left: Second radius ρ increases with T. Bottom right: Size of SCCs increases with T. Error bars are displayed throughout.]
FIGURE 1
 Top left: Stationary proportion of infected nodes against parameter T for networks generated with the generalized preferential preying model [24]. Number of nodes and edges: N = 100 and L = 500. Averages over 100 networks; error bars are standard deviations. Stationary values computed as the average from t = 90 to t = 100. Inset: Time series of the proportion of infected nodes for three networks, generated with T = 1, 0.5, and 0.2. Top right: Mean activity m(t) at t = 100 according to Equations 8, 9, where A is the adjacency matrix of the networks used in the top left panel. Initially, all elements have x(0) = 0, except for a randomly chosen 5% which are set to x(0) = 1. The extent of activity is measured as ln[1 + m(100)], for c = 0.5, 1, and 2. Middle left: Trophic incoherence F against T for the same directed graphs as in the panels above. Middle right: Non-normality dF against T for the same directed graphs. Bottom left: Spectral radius ρ against T for the same directed graphs. Bottom right: Size of the strongly connected component Φ against T for the same directed graphs.


As we have seen, non-normality also varies with trophic coherence. Hence, in the inset we see a “bump” in the time series for lower values of T (which produces small F and high dF), which corresponds to transient phenomena. In a future study, we will consider the average difference between the pseudospectral abscissa and the spectral radius at early times to establish transient phenomena [16]. In our SIS model computations, we see that as trophic coherence increases, the size of the strongly-connected component increases. Unlike in undirected graphs, the multiplicity of the λ = 0 eigenvalue of the Laplacian L(A) does not equal the number of components, but rather the number of reaches [34] (a reach is the maximal unilaterally connected set). Whereas dynamical processes such as these have been related to the existence and size of strongly connected components, we have yet to investigate the effect of different reach structures.

Consider now the following dynamical system with N elements. Every element i is characterized by a continuous dynamical variable xi(t) at discrete time t. The system evolves according to

[image: Mathematical equation showing x of t plus one equals c A x of t, followed by a comma and equation number eight in parentheses.]

where c is a constant parameter and A is a non-negative, N × N real matrix. We might consider A as a linear operator or as a directed graph on which the process is taking place. In particular, we can take A to be infinite dimensional in which case we could be giving a graphical interpretation to such linear operators. We begin with a small number of randomly chosen agents in state x(0) = 1 and all others x(0) = 0, and track the average value of the activity,

[image: Mathematical equation showing m of t equals one divided by N times the sum from i equals one to N of x subscript i of t, followed by equation number nine in parentheses.]

This will either decay to zero or diverge according to the spectral radius of A and the parameter c, as shown in Figure 1 top right. However, for significantly non-normal networks (low T) there may be transient behavior that eventually dies out, as in the SIS case on a trophically coherent graph. This might correspond to an epidemic, rumor or other spreading process, which reaches most of the system but goes on to disappear, whereas in the more normal or incoherent case, even a process that only reaches some of the system might continue to fuel itself indefinitely thanks to feedback.

Figure 1 middle left, middle right shows how the trophic incoherence F and the non-normality dF also vary in this network model with the parameter T. A comparison with Figure 1 top left reveals that some nodes begin to sustain the epidemic once F > 0 or dF < 1; and a similar effect is evident in the linear operator case (Figure 1 top right). Figure 1 bottom left, bottom right shows how the two topological features we can relate to both the SIS dynamic and the linear operator – namely, the spectral radius ρ and the size of the strongly connected component Φ—undergo a similar transition with increasing T as the stationary proportion of infected nodes or the logarithm of m(t). Just as degree heterogeneity can drastically reduce the size of epidemic waves [35], trophic coherence can affect their extinction. Moreover, whereas trophic coherence has to date been thought of only as a property of directed graphs, this example suggests that it can be studied in the case of operators and square matrices more broadly.



4 Discussion

In this article, we have discussed the relationship between trophic coherence and non-normality. We have mentioned some existing connections in the literature and studied some small graphs for illustration. We have also presented numerical experiments in the form of an SIS model and a linear dynamics, which show how trophic coherence and non-normality are related and have significant effects on dynamical systems governed by matrices.

There are many relationships still to be discovered, particularly regarding the connection between non-normality and trophic coherence in matrices in general. Also of interest is the relationship with strongly connected components, and how edge deletion and edge addition may be considered in a way that is amenable to the calculation of pseudospectra. In future work, we aim to explore which kind of edge perturbations can create the largest change in non-normality, trophic coherence, or even other measures such as algebraic connectivity (which is non-trivial to compute in a directed graph and is so far yet to profit from the advances in the computations of non-self-adjoint problems). By studying how such edge perturbations change the non-normality, trophic coherence, and algebraic connectivity, we may improve our understanding of how such magnitudes are related and their effects on dynamical systems. This is the subject of upcoming study.
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In this work we explore some aspects of the spectral instability of back hole quasi-normal modes, using a specific model as an example. The model is that of a small bump perturbation to the effective potential of linear axial gravitational waves on a Schwarzschild background, and our focus is on three different aspects of the instability: identifying and distinguishing between the two different types of instabilities studied previously in the literature, quantifying the size of the perturbations applied to the system and testing the validity of the pseudospectral numerical method in providing a convergent result for this measure, and finally, relating the size and other features of the perturbation to the degree of destabilisation of the spectrum.
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1 INTRODUCTION
The quasi-normal modes (QNMs) of black holes (BHs) have been shown to suffer from a spectral instability, which shifts these characteristic frequencies by disproportionately large distances in the complex plane when the system is subjected to seemingly small environmental perturbations. This has been shown through calculations of the QNM spectrum after a variety of generic perturbations are added to the system [1–16], and quantitatively explored through the full pseudospectrum of the linear perturbation problem [1, 3, 8–13, 17, 18], generally in a physically motivated norm [19]. On the other hand, a seemingly qualitatively different instability has been observed when the perturbation involved is specifically the addition of a single small “bump” to the effective potential of the propagating waves at different distances from the black hole horizon, intended to mimic some radially concentrated distribution of matter [20–22], or, more generally, the addition of a second length scale in the problem [22, 23]. The former of these approaches stands out through its consistent attempt to precisely quantify the magnitude of the perturbations applied to the system, and thus the amount by which the QNM migration exceeds the threshold of stability. The latter approach, on the other hand, has found a rich phenomenology which includes the appearance of new branches of QNMs which can contain modes with a longer lifetime than the BH fundamental mode, akin to the “shape resonances” discussed in, e.g., [24, 25].
However, in spite of the varied nature of these results, the endeavour to obtain a complete physical picture of this instability has not yet come to fruition. On the one hand, not all results have been put in the context of the quantitative scheme devised in [1] involving the energy norm. On the other hand, this scheme itself may not be the most adequate for precise quantitative conclusions. As discussed already in [1], two perturbations of the same energy norm can have vastly different destabilisation effects depending on their high-wave-number content (i.e., on the magnitude of derivatives in [image: Lowercase sans-serif letter r displayed in black, with the character appearing slightly blurred against a white background. No additional visual elements are present.] of the perturbation function). Additionally, as shown in [13] for one particular model, some of the numerically computed quantities involved in pseudospectrum calculations may not be well behaved in the continuum limit.
The present work is intended as a short review of the subject, particularly highlighting some of the above mentioned issues, using a specific example to further clarify them and progress towards their resolution. The example system chosen is that of axial gravitational perturbations on a Schwarzschild BH, with a gaussian bump added to the effective potential of their governing wave equation, akin to the one used in [20].
Section 2 provides a brief overview of the QNM instability and the tools used to capture and quantify it. Section 3 uses the gaussian bump setup for: 3.1 providing a simple example of the instability, 3.2 bringing the results of the analysis in [20] to the context of the energy norm, quantifying the “smallness” of the bumps added to the potential, as well as discussing the emergence of new mode branches due to a qualitative change in the phase space of the evolution operator [24, 25] (see in particular footnote nine of [26] and footnote 13 of [19]), 3.3 exploring the dependence of the degree of destabilisation on the “high-wave-number” content [1], or sharpness, of the added bump, as well as presenting an analysis regarding the numerical convergence of the results. Finally, Section 4 presents a summary of the conclusions which can be drawn from this analysis and used as guidance for future work in this field.
2 LINEAR PERTURBATIONS AND NORM
The background spacetime we will work with is the Schwarzschild geometry,
[image: Mathematical equation showing the metric ds squared equals negative f of r times dt squared plus one over f of r times dr squared plus r squared times d omega squared.]
where the redshift function reads [image: Mathematical equation reading f of r equals one minus two M divided by r, with variables presented in italic style.], and [image: Mathematical expression showing the differential solid angle, represented as d capital omega squared, with the two written as a superscript.] is the line element of the unit sphere. The maximal extension of this spacetime has a bifurcate Killing horizon at [image: Mathematical equation displaying r equals 2M, with both variables in italic font and the number two in standard font.], though for QNMs the important part is the outgoing horizon which in the future is equivalent to the event horizon of a dynamically formed (non-evaporating) black hole.
The dynamics of linear perturbations around this background is given by a wave equation,
[image: Mathematical equation: negative partial derivative squared by x of phi plus partial derivative squared by r of phi minus potential V as a function of r times phi equals zero.]
where [image: Mathematical notation showing a lowercase italic r with an asterisk in superscript position, commonly representing an optimal value or special case of the variable r.] is the tortoise coordinate, [image: Mathematical expression showing dr star equals dr divided by f of r, where dr star has an asterisk and f of r is a function of r.], and the potential [image: Uppercase italic letter V in a serif font, displayed in black on a white background.] depends on the nature of the perturbation and on its angular multipole number [image: Lowercase cursive letter l, styled in a serif font, displayed in black with a blurred effect on a white background.]. In the example below we will analyse the case of axial gravitational perturbations,
[image: Mathematical equation showing V equals f divided by r squared multiplied by the quantity l times l plus one minus six M over r, all inside brackets.]
Quasi-normal modes are a discrete set of analytic solutions to (2) which behave as ingoing waves,
[image: Mathematical expression showing phi is proportional to e raised to the power of j omega times the sum of t and r squared.]
at the horizon, and as outgoing waves,
[image: Mathematical expression showing phi is proportional to e to the power of j omega times the quantity t minus r squared.]
at infinity. These conditions can be imposed geometrically in the wave equation by expressing it in a hyperboloidal coordinate system [27, 28], with the transformation [image: Mathematical expression showing a mapping from set curly bracket t, r with an asterisk to set curly bracket tau, chi.] given by
[image: Mathematical equations showing t divided by two M equals tau minus h of chi and r star divided by two M equals g of chi, both variables written as fractions.]
where [image: Mathematical equation showing h of x is asymptotically equivalent to g of x, represented as h open parenthesis x close parenthesis tilde g open parenthesis x close parenthesis.] when approaching the horizon, and [image: Mathematical expression showing h of chi is asymptotically equivalent to negative g of chi.] when approaching infinity. A standard choice is the so-called minimal gauge [29], which for the Schwarzschild case is given by
[image: Mathematical formulas showing h of chi equals natural log of one minus chi minus one over chi minus natural log chi, and g of chi equals natural log of one minus chi plus one over chi plus natural log chi.]
The compactified radial coordinate [image: Mathematical equation showing chi equals two times uppercase M divided by lowercase r.] spans the range [image: Mathematical equation showing the Greek letter chi belongs to the open interval from zero to one, indicating chi is greater than zero and less than one.] between (future null) infinity and the (future) horizon. The QNM boundary conditions now amount to simply requiring regularity of the solutions at the boundaries.
Following ref. [1], we perform this coordinate transformation along with an order reduction in time through the introduction of the auxiliary variable [image: Mathematical equation showing psi equals the partial derivative of phi with respect to tau.], recasting the problem in the form
[image: Mathematical equation showing i L subscript u equals partial derivative with respect to r of u subscript r.]
where
[image: Mathematical equations with two symbols: u equals a column vector containing phi and psi; L equals one over i multiplied by a square matrix with entries zero, capital Pi, L sub one, and L sub two.]
with
[image: Mathematical expressions show L sub one equals p over w times partial squared sub chi plus p prime over w times partial sub chi minus q over w, and L sub two equals two times gamma over w times partial sub chi plus gamma prime over w.]
and we have defined the functions
[image: Mathematical formula showing w equals the absolute value of g prime divided by g prime squared minus h prime squared; p equals one over the absolute value of g prime; gamma equals h prime over the absolute value of g prime; and q equals the absolute value of g prime times V.]
a prime denoting differentiation with respect to [image: Lowercase Greek letter chi, shown in italic typeface.]. The QNM frequency spectrum can be defined [30, 31] as the eigenvalues of the evolution operator [image: Italicized uppercase letter L in a serif font, displayed in black against a white background.], or equivalently as the poles of the resolvent operator
[image: Mathematical formula showing R sub L of lambda equals the inverse of L minus lambda times the identity matrix.]
Since [image: Uppercase italic letter L in a serif typeface on a white background.] is non-self-adjoint (due to the dissipative boundaries of the problem), solutions to the wave equation cannot be expressed simply as convergent series of the eigenvalues, i.e., of QNMs. Additionally, and crucially, the QNM frequencies can be unstable to “small” perturbations of the system. Perturbations can come in many shapes and sizes, and the effect they can have on the spectrum is just as varied. The instability originally studied in ref. [1] consists in the displacement of modes in the complex plane by distances much larger than the size (energy norm) of the perturbations would allow for a spectrally stable operator.
However, one interesting conclusion in ref. [1] is the apparent stability of the fundamental mode, and the absence of any displaced overtones which would have a slower decay rate (smaller imaginary part) than this fundamental one after a perturbation. In contrast to this result, ref. [20] found that perturbing the effective potential with a seemingly very small bump placed sufficiently far from the horizon can easily destabilise the fundamental mode, leaving a mode with a much smaller imaginary part as the new fundamental one. The apparent contradiction between these conclusions is mainly due to a qualitative difference in the type of perturbations and instability considered. We will now present a summary of some aspects of these two analyses, and highlight the differences between them. Then, in the following section, we will proceed to analyse an example, originally treated in ref. [20], which turns out to lead to a combination of both destabilising effects.
2.1 Mode displacement and pseudospectrum
The case of QNM instability analysed in [1] and related works is one in which (at least part of) the already existing BH QNM spectrum is displaced by a disproportionately large amount due to a small perturbation to the operator [image: Italicized uppercase letter L in a serif font, shown in gray with a slight shadow effect on a white background.]. The smallness of this perturbation is defined quantitatively through the energy norm [19], which has a natural physical interpretation. The overall instability to any perturbation of [image: Uppercase italic letter L in a serif font, rendered in black with a blurred effect on a white background.] is captured by the pseudospectrum in this norm, which is defined as
[image: Mathematical expression defining a set σ′(L) as all complex numbers λ such that the norm of R_L(λ) with respect to E is greater than one over epsilon.]
where [image: Mathematical expression displaying a pair of double vertical bars, a centered dot, and a capital italic E, indicating a norm or magnitude operation in the context of E.] indicates the energy norm of the operator, defined from the product
[image: Mathematical expression defining the inner product of two vector functions in terms of their components, including complex conjugates and weighted integrals over the interval from zero to one, with weight functions w(x), p(x), and q(x).]
An equivalent definition is the one which directly relates the level sets of the pseudospectrum to the space of possible new eigenvalue positions after a perturbation,
[image: Mathematical expression showing script capital C of L equals the intersection over lambda in script C, absolute value delta less than delta, of sets where epsilon lambda belongs to sigma of L plus delta. Equation labeled as one.]
Note that this second definition involves any perturbation to [image: Uppercase italic letter L in a bold serif font, displayed in grayscale on a plain background.] which has a small energy norm, including ones which can potentially be related to a physical modification of the environment of the black hole, but also ones which completely change the nature of the operator (e.g., changing the structure of the derivatives). That said, it was shown in [1] that the instability is in fact triggered by physical perturbations, encoded in the addition of a perturbation function [image: Mathematical expression shows the lowercase Greek letter delta followed by an uppercase V, commonly representing a variation in the variable V.] to the effective potential, without disturbing the structure of the differential part of the operator. Additionally, it was shown that the degree to which the spectrum is destabilised depends strongly on the “high wave-number” content of the perturbation, that is, the sharpness of the variation of [image: Mathematical expression showing the lowercase Greek letter delta followed by an uppercase Latin letter V, representing the symbol delta V.] in [image: Lowercase letter r in a serif font appears blurred in grayscale against a white background. The character is centrally positioned, and the edges are soft and indistinct.].
While the particular choices for the perturbations [image: Greek lowercase delta followed by an uppercase italic V, commonly representing a change or variation in a variable V in scientific or mathematical notation.] used in ref. [1] may not correspond to the addition of classically reasonable matter content to the system [22], they are a proof of principle which shows that whatever the perturbation may be, as long as it has a large enough gradient in [image: Lowercase letter r in a bold, blurred, and grayscale style on a white background. No additional objects or context are present.], it will trigger the instability. Ref. [10] in fact explicitly shows the relation between the magnitude of the derivatives of [image: Mathematical expression showing the Greek letter delta followed by an uppercase letter V, often representing a change in the variable V.] and the rate of displacement of the QNMs in a specific example, further solidifying this result.
The above-mentioned stability of the fundamental mode was also one of the key results, which can directly be related to the fact that gravitational wave observations of compact object collisions which result in a black hole as an end state appear to contain a part which matches well with a fundamental-mode-dominated ringdown [32].
2.2 Emergence of new long-lived modes
The second type of “instability” is due to the emergence of new mode branches. It is important to understand that the characteristics of the spectrum depend strongly on the shape of the potential [image: Italic uppercase letter V in a bold serif font, centered on a plain white background.]. For the axial gravitational case, the potential has a single barrier with a peak close to the photon sphere, from which it decreases to zero exponentially (in [image: Mathematical variable r in italic font with an asterisk symbol positioned as a superscript, typically representing a special or optimal value in an equation.]) towards the horizon and polynomially towards infinity. The corresponding “barrier top” modes are not very long-lived (in terms of the characteristic scale of the problem). However, seemingly small perturbations can lead to a qualitative change in the shape of the potential, such as the addition of a well which goes below the asymptotic values, or of a second barrier (or bump). The former can lead to the presence of bound states, while the latter to slowly decaying “shape resonances” [25].
Some examples of such qualitative modifications to the potential in the context of QNMs are the double barrier model in [33], or some of the models explored in [22], such as the addition of a perturbatively small mass parameter. As the new families of modes that these modifications introduce can have a slower decay than the fundamental “barrier top” QNM, the new fundamental mode and first overtones can be said to have been displaced disproportionately to the size of the perturbation, even if the original modes (which are no longer the fundamental and first overtones) happen to still be present in the new spectrum with only a slight displacement. In other words, what can occur is that the label of “fundamental” and of the overtone numbers may jump to modes in the new branch (according to the usual assignment of these labels), rather than the old modes being displaced. This can also happen by changing the parameters of a problem such that QNMs in two different branches which are already present can switch roles as the fundamental mode, such as in the overtaking of the fundamental oscillatory mode by a de Sitter mode discussed in [12].
It is important to note that this by itself is distinct from the usual definition of (perturbative) spectral instability discussed above, in which already existing modes are displaced by large distances in the complex plane. It is also interesting that for a spectrally unstable system such as the case of QNMs, adding, say, a bump to the effective potential, can lead to a combination of both of the above effects: the emergence of new long-lived modes, as well as the large displacement of (some of) the already existing modes. This is precisely the case in the example below, for which the perturbed potential goes from having a single barrier to a double barrier, the latter being akin to the case dubbed a “well on an island” in ref. [25].
3 POTENTIAL WITH A BUMP
This section presents an analysis of the above-mentioned perturbation [image: Lowercase Greek letter delta followed by uppercase Latin letter V, commonly representing a small change or variation in a variable labeled V in scientific and mathematical contexts.] in the form of a gaussian bump (see Figure 1),
[image: Mathematical formula showing δV equals f of r multiplied by a times the exponential of negative quantity r minus r sub b squared divided by two s squared.]
where [image: Lowercase italic letter "a" in black on a white background, rendered with a soft, slightly blurred effect.], [image: Mathematical variable rb shown in italics, with r as the main variable and b as a subscript.] and [image: Lowercase letter s in a bold, black font displayed against a white background.] are positive constants, and the multiplication by [image: Mathematical expression showing the function f of r, where f is a function and r is its variable, written in italicized font.] is to ensure that the total potential [image: Mathematical expression showing V plus delta V, where delta represents a small change or variation in the variable V.] still has the appropriate tendency to zero when the horizon is approached. Ref. [20] analysed in detail the position of the new long-lived fundamental mode in the presence of such a perturbation. Here we will rather focus on some qualitative features of the modified spectrum as a function of the free parameters in [image: Mathematical expression showing the Greek letter delta followed by the uppercase letter V, often used to represent a change or variation in the variable V.], as well as on quantifying the magnitude of this perturbation using the energy norm. We will use the computational tools employed in ref. [1], namely, a Chebyshev-Lobatto grid in [image: Lowercase Greek letter chi, represented in a serif font with smooth, slightly slanted lines and rounded terminals, centered on a plain white background.] and a pseudospectral approximation to the differential operator [image: Uppercase italic letter L in a serif font presented in black on a white background.] and to the integration operator involved in the energy product.
[image: Line graph with x-axis labeled chi ranging from one to zero and y-axis labeled V plus delta V, ranging from zero to approximately zero point seven. Main curve peaks at about chi equals zero point seven before declining and forming a small bump near chi equals zero point one.]FIGURE 1 | Potential for the [image: Mathematical expression showing lowercase cursive l equals two.] axial gravitational perturbation on Schwarzschild, with an added Gaussian bump at [image: Mathematical expression showing r subscript b equals thirty M.]. The horizontal axis is the compactified radial coordinate [image: Lowercase Greek letter chi, depicted in a serif font with dark gray color on a white background. Often used in mathematics, statistics, and science contexts.], and for illustrative purposes an amplitude [image: Mathematical expression showing the variable a is equal to zero point two.] has been used, which is 40 times larger than the one used for computation.
3.1 Fundamental mode (in)stability
Let us begin with a particularly illustrative example of a perturbation of this type, which will be the centre-point of this analysis. We set the units to the characteristic scale of the problem by taking [image: Mathematical equation showing two times italicized capital M equals one.], and we set a (seemingly) small amplitude for the bump [image: Mathematical expression showing the variable a is equal to zero point zero zero five.], a position for the peak at [image: Mathematical notation showing r sub b equals twenty-five.] and a width [image: Mathematical expression showing the variable s is equal to four.]. The spectrum of axial [image: Mathematical expression showing lowercase script letter l equals two.] modes with this perturbation is shown in Figure 2. We see that there is indeed a new branch of modes, some of which decay more slowly than the unperturbed BH fundamental mode. In this sense, the distance between the old and new fundamental mode does indeed seem quite large compared to the size of the perturbation, as discussed in ref. [20]. However, it is also clear form Figure 2 that the spectrum after the perturbation contains a mode which coincides with the unperturbed fundamental one (in fact it is only [image: Mathematical expression showing approximately ten raised to the power of negative three.] away), implying that this mode was actually stable under the perturbation.
[image: Scatter plot showing imaginary versus real parts of a quantity labeled 2Mω, with red circles representing "BH" and blue triangles representing "BH+bump". Data points form a 'V' shape. Legend appears in the lower left.]FIGURE 2 | QNMs of an axial gravitational [image: Mathematical expression displaying a lowercase cursive letter l equals two.] perturbation of Schwarzschild, with and without a gaussian perturbation. The units are set to [image: Mathematical equation displaying two times variable M equals one.]. The gaussian bump has parameters [image: Mathematical expression showing variable a equals zero point zero zero five.], [image: Mathematical expression showing r subscript b equals twenty-five.], [image: Mathematical expression showing s equals four.], and the spectrum is calculated with [image: Mathematical expression showing uppercase N equals four hundred, written in italic serif font.] grid points. The unperturbed BH fundamental mode is located at [image: Mathematical expression showing plus zero point seven four seven three four plus zero point one seven seven nine two i, representing a complex number with real and imaginary parts.], the mode which seemingly overlaps with it after the perturbation is at [image: Mathematical expression showing plus zero point seven four two nine plus zero point one seven seven eight i, where i refers to the imaginary unit.], and the new fundamental mode is at [image: Mathematical expression displaying plus zero point one seven two eight seven plus zero point zero four eight two eight seven.]. The non-convergent “branch-cut” modes have been removed from the plot (see [1]).
This is therefore a case in which it is the qualitative change in the shape of the potential has lead to the appearance of new long-lived modes, while part of the old spectrum has remained stable, in this case only the BH fundamental mode. From the first overtone onwards, the BH spectrum is in fact destabilised, much like it is in some of the cases studied in ref. [1].
The behaviour of the new fundamental mode depends strongly on the parameters of the gaussian bump [image: Lowercase italic letter ‘a’ in a serif typeface, displayed in grayscale at low resolution with significant pixelation and blur, making fine details difficult to distinguish.], [image: Mathematical notation showing the lowercase italic letter r followed by a subscript lowercase italic letter b.] and [image: Lowercase letter “s” in a bold, black serif font on a white background. The character appears large and centrally positioned with clear, smooth edges.], and while a detailed analysis of this dependence is not within the scope of this work (see [20, 22] for a quantitative analysis of part of the parameter space), we will make some general remarks regarding the behaviour we have observed from a few spectra.
	• Increasing the amplitude [image: Lowercase italic letter "a" in black, centered on a blurred white background.] tends to decrease the imaginary part of the fundamental mode, as the modes trapped between the two peaks (the bump and the light-ring peak) need to tunnel out of a larger barrier to decay. Conversely, if [image: Lowercase italic letter "a" in a serif font rendered in black on a white background with moderate blur, limiting readability and fine detail.] is made smaller, the imaginary part increases. At around [image: Mathematical expression showing lowercase a equals ten raised to the negative fifth power.] the longest-lived of these new modes is no longer the fundamental one, as its imaginary part is larger than that of the BH mode.
	• Increasing the radial position of the bump [image: Mathematical expression showing the lowercase italic letter r with a subscript lowercase italic b.] decreases the imaginary part of the new modes, as well as destabilising the old BH spectrum more strongly. We will make some remarks regarding the reason for this in the next section.
	• Increasing the width of the bump [image: Lowercase black letter “s” in a sans-serif font against a white background, shown in extreme close-up to emphasize its curved shape and bold line.] also makes the mode longer-lived, since this increases the tunnelling (Agmon) distance [25]. On the other hand, a larger [image: A blurry, close-up black letter “s” on a white background, with no additional context or discernible features, appearing pixelated and unclear.] (at a fixed energy norm) makes the old BH spectrum more stable, since then the perturbation has a lesser “high-wavenumber” content, as discussed in [1].

It is also worth noting that while we identify these longer-lived modes as a new branch due to the qualitative change in the potential and the stability of the BH fundamental mode, from the numerical results alone it is not clear where exactly this new branch becomes entwined with the perturbed BH overtones. To identify which modes go to infinity and which to BH overtones in the zero perturbation limit, a more detailed study which traces the migration of individual overtones would be required.
3.2 Flea or elephant?
The perturbation operator being added to [image: Italic, lowercase letter “l” in a serif font, displayed in black on a white background. Letter appears bold and slightly slanted to the right.] can be written as
[image: Mathematical expression showing delta L equals a column matrix with elements: zero, fraction delta q subscript capital I divided by w, and zero.]
where [image: Mathematical formula showing delta q equals the absolute value of g prime times the absolute value of delta V.]. In order to give a physical measure of the size of this perturbation, the energy norm of [image: Mathematical notation showing the Greek letter delta followed by a capital letter L, commonly representing a small change or variation in L in scientific contexts.] can be computed. Contrary to what might be expected from the small [image: Lowercase italic letter "a" in a serif font, shown in close-up with a blurred or pixelated effect making edges appear soft.] parameter, the energy norm of the example case used for Figure 2 is actually quite significant: in units of the horizon scale, it is approximately 0.33, on the very high end of what can reasonably be considered a “perturbation”. The reason for this apparent discrepancy between the intended smallness in the choice of [image: Lowercase letter “a” in a serif typeface with a blurred or low-resolution appearance.] and the large energetic contribution of this perturbation lies in the simple fact that the energy measure comes from an integral related to the full three dimensional space of constant time slices [19], rather than just the one dimension of the wave problem (although in the end it simplifies to the latter). It therefore encodes the fact that a perturbation at a large radius would require a thick shell of this same radius, the size and matter content of which would scale with [image: Italicized lowercase letter r followed by a superscript two, representing r squared, commonly used as the coefficient of determination in statistical analysis.]. This is indeed the scaling we can observe in the left plot of Figure 3, where the energy norm is calculated as a function of [image: Mathematical expression showing a lowercase italic letter r with a subscript b, commonly used to denote a specific variable or parameter in equations.] (with all other parameters remaining the same), and fitted to a parabola.
[image: Two scientific graphs with data points marked by red dots and trend lines. Left graph plots |δr̃| on the vertical axis against r₀/2M on the horizontal axis, showing an increasing trend. Right graph plots the logarithm of the error difference on the vertical axis against N on the horizontal axis, showing a decreasing trend.]FIGURE 3 | Left: energy norm of [image: Mathematical notation displaying the lowercase Greek letter delta followed by an uppercase italicized letter L, commonly used to represent a change or variation in the variable L.] as function of [image: Mathematical notation showing a lowercase italic r with a subscript lowercase b, often used to represent a variable r indexed by b in equations or scientific contexts.], for [image: Mathematical expression showing a lowercase s is equal to four.] and [image: Mathematical expression showing lowercase italic letter a followed by an equals sign and the numerical value zero point zero zero five.], in units [image: Mathematical equation displaying two times the variable M equals one.]. The quadratic fit is [image: Mathematical formula showing negative zero point zero two four plus zero point zero zero seven nine r sub b plus zero point zero zero zero two five r sub b squared.] (the variance is [image: Mathematical expression showing approximately ten to the power of negative six.], though at smaller radii this relation can be expected to start breaking down, since the norm must be positive). Right: energy norm of [image: Mathematical expression displaying the lowercase Greek letter delta followed by an uppercase Latin letter L, typically representing a small change in quantity L.] calculated with [image: Uppercase letter N in a serif font, presented in black with a subtle blur or shadow effect on a white background.] points, dubbed [image: Mathematical expression showing the norm of delta capital L with a superscript uppercase N in parentheses.], subtracted from a reference value [image: Mathematical expression showing the norm of delta L, denoted as double vertical bars around delta L, with a superscript of four hundred in parentheses.], for the same case with [image: Mathematical expression showing r subscript b equals 25.]. The vertical axis is log scaled to showcase the exponential convergence (the slight discrepancy from the linear fit is due to the finite [image: Uppercase letter N in a bold serif font with slight shadowing, centered on a plain white background.] reference value).
Therefore, the increased destabilisation of the BH QNMs (effectively, the lowering of the mode branches seen in Figure 2) for a larger [image: Mathematical variable r with a subscript b, typically indicating a specific type or category distinguished by b.] which was commented above can be related to precisely this increase of the energy norm. The dependence of this energy on the parameters [image: Lowercase letter "a" in a serif font, rendered in black with soft, slightly blurry edges against a white background.] and [image: Lowercase black letter "s" in a bold serif typeface displayed on a white background.] is just as predictable: an increase in both these parameters leads to a proportional (linear) increase in the energy norm.
3.3 Size vs. instability
This example has shown the importance of quantifying the size of perturbations added to the problem, since, for instance, the increase of the energy contained in perturbations at larger radii is something that could easily have been overlooked otherwise. However, using the energy norm in particular, while having many advantages [19], may not be the most adequate choice in some respects. One particular issue, raised in [13], is the fact that the energy norm of the resolvent operator, used to calculate the pseudospectrum, is not well behaved in a large part of the complex plane, which includes the vicinity of most (if not all) QNMs. Numerically, this norm tends to a divergence in the limit of infinite grid point number [image: Uppercase black letter N in a serif font on a white background.] in most of the upper half of the complex plane. Since the issue in that case stems from the presence of additional eigenmodes of a lower regularity class [30], and not simply from a numerical problem, it is likely to be a generic property of other setups as well.
One may then ask whether this issue extends to calculating the energy norm of other operators as well, particularly that of [image: Mathematical expression showing the Greek letter delta followed by the uppercase letter L, commonly representing a change or variation in the variable L.], since the pseudospectrum can equivalently be defined from its norm (albeit for a very large set of perturbations). Fortunately, it appears that the norm of this operator actually does have a good convergent behaviour. The second plot in Figure 3 shows a convergence test in a representative example. The result is clear: the convergence is in fact exponential. Such convergence was previously observed for other quantities computed with this discretisation scheme, such as the spectrum itself (see fig. 8 of [1]), but had thus far not been tested for energy norms of operators, except for the case of the non-convergent resolvent norm in [13].
The convergence of [image: Mathematical expression with double vertical bars around the symbols delta, uppercase L, representing the norm or magnitude of a variation in L.] in fact confirms that the issue with the resolvent norm studied in [13] goes beyond the particular numerical implementation. It also gives an appealing potential alternative approach to calculating the pseudospectrum by exploring a sufficiently large space of perturbation operators and applying Equation 1; [9, 34]. However, there would be two issues with such an approach. First, it would be computationally very expensive to attempt to span a “full” space of perturbation operators [image: Mathematical notation displaying the lowercase Greek letter delta followed by an uppercase italic L, commonly used to represent a change or variation in a quantity labeled L.]. This would not be a critical impediment, at least for a small numerical resolution [image: Uppercase serif letter N in bold and italicized style, rendered in black on a white background.]. However, the second and most crucial issue is the fact that the result would differ depending on the resolution, as a higher [image: Uppercase letter N in a serif font, displayed in black against a white background.] could capture perturbations with a higher wave-number content, which would destabilise the spectrum ever more strongly. It is not clear that the limit of operators [image: Mathematical expression showing the lowercase Greek letter delta followed by an uppercase italic L, commonly used to represent a change in length or a variation in variable L.] with the same energy norm but with ever higher gradients in [image: Lowercase italic letter r in black on a white background, shown in close-up with blurred edges, resembling a portion of a printed or digital text character.] (which would need a correspondingly higher [image: Uppercase letter N in a serif font, rendered in medium gray with a slight blur effect.] to be resolved) would lead to a convergent definition of the pseudospectrum, or if this issue would turn out to be equivalent to the non-convergence observed in the resolvent approach.
Testing whether this claim is true, while absolutely crucial, goes beyond the scope of the present work. If it were indeed proven true, then a consistent definition of a QNM pseudospectrum would require a modification of the scheme summarised above. One example of such a modification would be the use of norms with higher order spatial derivatives, as introduced in [30], and applied to the pseudospectral calculation in [13] (see also [35]). However, a reasonable physical interpretation of such norms and their associated stability analyses would need to be devised.
4 DISCUSSION
The spectral instability of BH QNMs is by now a well established result in the field of black hole spectroscopy. As we have seen here, QNMs are susceptible to (al least) two different types of instability: either the direct migration of the already existing QNMs by a large distance in the complex plane (“perturbative” instability), or the appearance of new branches of modes to which the new label of fundamental or overtone number are assigned, and which are far away from their unperturbed counterparts (“branch” instability).
One important aspect in analysing both perturbative and branch instabilities is quantifying the size of the perturbations introduced into system. A physically reasonable measure of this size is given by the energy norm [19], which comes from an inner product space associated to the energy of the linear field. As we have seen in the above examples, a seemingly small perturbation to the effective potential can in fact have a large energy norm, and have a correspondingly large destabilising effect on the spectrum.
Keeping track of this norm is therefore crucial. Indeed, in the example of a gaussian bump studied in the present work, there is a clear correlation between the energy norm of [image: Mathematical notation displaying the lowercase Greek letter delta followed by an uppercase Latin letter L, both in italic font style.] and the distance between the old and new fundamental modes. However, there are two issues with establishing a direct one-to-one relation between this norm and the expected degree of destabilisation of the spectrum. First, the fact remains that (some of) the original BH modes can in fact remain stable in spite of the appearance of the new branches of longer-lived modes. Second, the degree to which these original modes are actually destabilised does not depend only on the energy norm, but also on the high-wave-number content of the perturbation involved, as observed in [1]. For the gaussian bump perturbation used here, decreasing the width of the bump decreases its associated energy norm, but the resulting sharper variation in [image: Lowercase letter r in a bold, black serif font on a white background with significant blurring obscuring sharp edges.] can in fact lead to an increase in the instability of the original spectrum. Exploring this issue in detail is particularly difficult because of the numerics involved, since a sharper bump requires a higher resolution to be captured, making the degree to which a bump of any given energy norm can destabilise the spectrum hard to establish.
This difficulty can in fact be seen as a potential issue with providing a convergent result for the pseudospectrum in the energy norm, since if there were such a result, a bound on the possible migration of modes could be easily placed through Equation 1. However, obtaining such a convergent pseudospectrum has been an elusive task, as discussed in [13]. Finding a solution to this issue would likely require changing parts of the above-described prescription to this calculation, as is currently being explored by the present author and collaborators [35].
Regarding the observability of these instabilities in gravitational wave signals, the results of Refs. [2, 36] suggest that while environmental perturbations are detectable in time-domain evolution, their effect on ringdown signals is not as disproportionately large as it is on the QNM spectrum itself. However, a systematic study of the effect of different types of perturbations, particularly involving the branch instability analysed here, is lacking.
Overall, the study of the QNM spectral instability has led to a myriad of different results in many different spacetime setups, but there are just as many open questions left to be addressed in the coming years.
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Oscillations of black hole spacetimes exhibit divergent behavior near the bifurcation sphere and spatial infinity. In contrast, these oscillations remain regular when evaluated near the event horizon and null infinity. The hyperboloidal approach provides a natural framework to bridge these regions smoothly, resulting in a geometric regularization of time-harmonic oscillations, known as quasinormal modes (QNMs). This review traces the development of the hyperboloidal approach to QNMs in asymptotically flat spacetimes, emphasizing both the physical motivation and recent advancements in the field. By providing a geometric perspective, the hyperboloidal approach offers an elegant framework for understanding black hole oscillations, with implications for improving numerical simulations, stability analysis, and the interpretation of gravitational wave signals.
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1 INTRODUCTION
When a black hole (BH) spacetime is perturbed, gravitational waves (GW) carry the energy of the perturbation towards the BH horizon and to infinity. These perturbations show oscillations that decay exponentially at characteristic frequencies and are called quasinormal modes (QNM) [1–4]. Studying these QNMs is central to the black hole spectroscopy program [5–7], which aims to measure the oscillation frequencies from GW detections and thereby probe the BH geometry and its surrounding environment [1, 3, 4, 8]. The dominant quadrupole QNMs have already been measured in gravitational wave signals [9–11], while the detection of higher modes remains under debate [12–25].
Mathematically, the QNM problem is often formulated as an eigenvalue problem, where QNM frequencies appear as the eigenvalues of a second-order differential operator. However, in their traditional representation, the corresponding QNM eigenfunctions grow exponentially near the black hole and at spatial infinity, which does not seem physically acceptable for small perturbations of a background spacetime [26]. Reformulating the problem using hyperboloidal surfaces—regular spacelike surfaces that extend smoothly from the black hole event horizon to null infinity—reveals that QNMs are globally regular [27, 28]. This geometric regularization1 of time-harmonic black hole perturbations has found many recent applications, which we review in this paper.
2 THE TRADITIONAL APPROACH TO QNMS
The Schwarzschild solution, the simplest black-hole (BH) solution to Einstein’s equations, is given by
[image: Mathematical equation representing a spacetime metric: ds squared equals minus f of r d t squared plus one over f of r d r squared plus r squared d omega squared, where f of r equals one minus two M over r.]
where [image: Mathematical equation displaying d omega squared equals d theta squared plus sine squared theta times d phi squared.] is the metric on the unit sphere, and [image: Uppercase serif letter M in italicized, gray font centered on a plain white background.] the black-hole’s mass. Perturbations of this solution are described by the Regge-Wheeler-Zerilli type wave equation:
[image: Mathematical equation showing negative partial derivatives with respect to t and x squared, minus potential function V of x, all applied to function u of t and x, set equal to zero, labeled as equation one.]
where [image: Mathematical expression showing r sub asterisk is an element of the interval from negative infinity to positive infinity.] is the tortoise coordinate and [image: Mathematical expression showing capital V as a function of r with an asterisk, all enclosed in parentheses.] is the effective potential that behaves as [image: Mathematical expression showing V is distributed according to the function f of r, using a tilde symbol to indicate distribution.] near the black-hole horizon and as [image: Mathematical expression showing V is proportional to one divided by r squared, representing an inverse square law relationship.] toward spatial infinity.
Solutions to (Equation 1) evolve through a transient phase, followed by a ringdown characterized by exponentially damped vibrations (QNMs) [34], and eventually a polynomial, non-oscillatory decay known as the tail [35, 36].
To analyze the QNM phase, one typically considers time-harmonic solutions
[image: Mathematical equation displaying psi of r and t equals exponential e to the power of negative i omega t times R of r sub j, labeled as equation two.]
that reduce the wave equation to a Helmholtz equation,
[image: Mathematical equation showing the operator d squared over d r star squared plus omega squared minus V of r star in parentheses, all acting on R of r star, equals zero, labeled as equation three.]
Sommerfeld recognized in 1912 that the Helmholtz equation, in stark contrast to the elliptic case, does not admit unique solutions even when we require that the solution vanishes at infinity [37, 38]. To ensure uniqueness, an outgoing radiation condition must be imposed. In the BH context, a Sommerfeld condition applies also near the BH. We therefore impose
[image: Mathematical equation showing the limit as r sub star approaches infinity of the derivative with respect to r sub star minus i omega, applied to R of r sub star, equals zero, implying R of r sub star is proportional to e to the i omega r sub star as r sub star approaches infinity. Equation number four.]
It turns out, however, that the boundary conditions (Equation 4) are not sufficient [2, 39] and a more precise notion of purely outgoing solution is needed to uniquely define the QNMs [40]. The formal definition of QNMs followed a different route than the intuitive notion of QNMs as the eigenvalues of a given differential operator.
The time-harmonic Ansatz (Equation 2), closely related to a Fourier transformation, provides a general formalism oblivious to the specific form of initial data causing the perturbation. To define QNMs formally, one considers an initial value problem. Then, a Laplace transformation [2, 39, 41, 42] leads to a inhomogeneous spatial differential equation, with a source term accounting for the initial data. One must then ensure that the spacetime solution [image: Mathematical expression showing u as a function of two variables, t and r with an asterisk, written as u open parenthesis t comma r sub asterisk close parenthesis.] remains bounded as [image: Mathematical notation showing t approaches infinity, with a rightward arrow from t to the infinity symbol, commonly used in limits or asymptotic analysis.] [43]. In the Laplace formalism, the solution [image: Mathematical expression showing u as a function of variables t and r with an asterisk, written as u open parenthesis t comma r asterisk close parenthesis.] results from the convolution of the Green’s functions with the source term carrying information from the initial data. The inverse Laplace transformation requires an integration along a frequency values [image: Mathematical expression showing lowercase omega subscript I is greater than zero.], and there is only one possible choice of homogenous solutions [image: Mathematical expression showing capital R subscript plus or minus, with arguments r asterisk and omega in parentheses separated by a semicolon.] to construct the correct Green’s function: they must satisfy the boundary conditions (Equation 4) at both ends [image: Mathematical expression showing r sub asterisk approaches positive or negative infinity.]. Once the Green’s functions are fixed in the complex half-plane [image: Mathematical expression showing a lowercase omega subscript I is greater than zero.], one analytically extends them into the region [image: Mathematical expression showing lowercase Greek letter omega subscript I is less than zero.]. The QNMs are then uniquely defined as the poles of Green’s functions, or equivalently in the one-dimensional case, the roots of the Wronskian.
The Laplace approach uniquely defines QNMs via Green’s functions, bypassing the notions of eigenvalues and eigenfunctions. Such definition via this Green’s functions is also understood under the Lax-Phillips approach [44, 45]. However, this definition still allows QNM functions to blow up asymptotically, creating a puzzle: while black hole stability demands that linearized perturbations decay over time, the associated time-harmonic perturbations remain singular in the asymptotic regions.
The resolution lies in the global structure of spacetime. The QNM behavior at asymptotic boundaries results from the singular properties of the coordinates used in Equation 3. In Schwarzschild coordinates, as [image: Mathematical notation showing r subscript asterisk approaches plus or minus infinity.], the limits correspond to spatial infinity [image: Mathematical expression showing the lowercase letter i in italics raised to the power of zero.] and the bifurcation sphere [image: Italic uppercase letter B in a serif font, displayed in black on a white background.]. These loci connect to future and past null infinity at [image: Mathematical expression showing a lowercase italic letter i with a superscript zero, representing i raised to the power of zero.] and white and black hole horizon at [image: Italic uppercase letter B in a serif font, displayed in black on a white background.], and the blow-up of QNM eigenfunctions is a coordinate effect due to the accumulation of infinitely many time surfaces thereon.
When QNMs are represented on regular, hyperboloidal time slices, they do not exhibit this unbounded growth1 [27, 28, 33], as we discuss in the next section.
3 THE HYPERBOLOIDAL APPROACH TO QNMS
The singularity of Schwarzschild time slices at the bifurcation sphere is well-known today, but understanding its causal structure took over four decades [46–49]. Given this singularity, it is not surprising that QNMs blow up near the black hole, but they also blow up near spatial infinity. Thus, switching to regular coordinates at the bifurcation sphere does not resolve the issue.
Part of the historical confusion about BHs was that it takes infinite Schwarzschild time for radiation to fall into a BH. The same statement is true concerning spatial infinity: it takes infinite Schwarzschild time for outgoing radiation to reach spatial infinity. Because this is “reasonable” from a physical point of view, it has been widely accepted that QNMs have a singular representation at both asymptotic regions.
The first suggestion that outgoing perturbations are regular in the frequency domain toward null infinity was made by Friedman and Schutz in a 1975 paper on the stability of relativistic stars [50]. Friedman and Schutz recognize the problem with standard time slices where outgoing modes behave asymptotically like [image: Mathematical expression showing r to the power of k multiplied by e raised to the power of i omega times the quantity t minus r.] implying that stable modes with [image: Mathematical expression showing lowercase omega subscript I is less than zero.] grow exponentially as [image: Mathematical notation showing “r” followed by a rightward arrow pointing toward the infinity symbol, representing r approaches infinity.]. To make the representation finite, they recommend to use null hypersurfaces. In a footnote, they comment that the representation is regular also “if one uses a spacelike hypersurface that is only asymptotically null.”
Schmidt picked up this idea in a 1993-essay for the Gravity Research Foundation on relativistic stellar oscillations [26] arguing that QNMs on hyperboloids “are represented by proper eigenvalues and eigenfunctions.” However, the presentation includes no details beyond the 1975 paper.
To understand why it took almost 20 years from Schmidt’s essay [26] to the construction of a regular geometric framework to describe QNMs in asymptotically flat spacetimes1 [27, 28, 33], we provide a short historical review of hyperboloidal coordinates.
3.1 A brief history of hyperboloidal coordinates
The central role of spacetime hyperbolas in relativity was recognized already by Minkowski in 1908 [51]. The Milne model from 1933 [52] or Dirac’s point-form of quantum field theory from 1949 are hyperboloidal [53]. In the 1970s, hyperboloidal studies were performed for the analysis of wave equations [54–56] and quantum field theory [57–60]. However, these early studies use a time-dependent formulation in which time freezes at null infinity.
The first hyperboloidal coordinates foliating null infinity are implicit in Penrose’s work on the global causal structure of spacetimes via conformal compactification [61, 62]. Indeed, one can obtain a hyperboloidal surface from any textbook discussing the Penrose diagram simply by looking at the level sets of Penrose time [63]. In the context of numerical relativity, it was recognized that hyperboloidal time functions that asymptotically approach the retarded time should be beneficial for the computation of gravitational waves [64, 65]. Explicit hyperboloidal coordinates in black-hole spacetimes were constructed in the context of the analysis of constant mean curvature foliations [66]. A remarkable but largely ignored paper by Gowdy in 1981 includes many key elements of the hyperboloidal approach used today in black-hole perturbation theory [67], including the height function approach to preserve time-translation symmetry, compactification fixing null infinity (scri-fixing), hyperboloidal solutions to the wave equation, and the structure of time-harmonic solutions relevant for the frequency domain. These ideas were not picked up by the community at the time.
The first systematic study of the hyperboloidal initial value problem for Einstein equations was initiated by Friedrich in 1983 [68]. Friedrich devised a reformulation of the Einstein equations with respect to a conformally rescaled metric that is regular across null infinity. The conformal field equations are well-suited for the analysis of the asymptotic behavior of Einstein’s equations and have led to seminal results such as the nonlinear, semi-global stability of de Sitter-type and Minkowski-type spacetimes [69, 70]. The developments around conformal field equations and attempts to use them numerically are reviewed in [71, 72].
Twenty years after Gowdy’s paper, Moncrief presented the hyperboloidal compactification of Minkowski spacetime using time-shifted hyperboloids in an unpublished talk [73] leading to the first numerical studies using hyperboloidal foliations in Minkowski spacetime [74–77]. Around this time, various suggestions for hyperboloidal coordinates and numerical simulations in black-hole spacetimes were made [78–83].
The construction widely used today in black-hole perturbation theory is based on scri-fixing coordinates with time-shifted hyperboloids presented in 2008 [84]. The idea is to combine the height function technique that preserves the time-symmetry of the underlying spacetime with an explicit radial compactification whose singular Jacobian at infinity is proportional to a prescribed conformal factor. In the following years, this method was used primarily in the time domain for solving wave-propagation problems [85–97].
The translation of the hyperboloidal method to the frequency domain was presented in [27], where it was demonstrated that hyperboloidal time functions regularize the QNM eigenfunctions in the asymptotic domains. Warnick used a related idea in [31] for AdS spacetimes in which spatial slices are naturally hyperbolic (see also [29, 30]). The first detailed analysis of QNMs in asymptotically flat black-hole spacetimes using the hyperboloidal approach was presented in [28]. We summarize the basic ideas of the hyperboloidal approach below.
3.2 A geometric framework
The construction of globally regular coordinates consists of a time transformation respecting the time symmetry of the background, a suitable spatial compactification, and conformal rescaling [84]. We first introduce the time function [image: Lowercase italic letter t in a serif font on a white background.] via [67, 82, 84].
[image: Mathematical equation showing tau equals t plus h of t, labeled as equation five in parentheses.]
The time transformation implies an exponential scaling in frequency domain [27]. Writing the time-harmonic ansatz in Equation 2 with respect to the new time coordinate in Equation 5, we get
[image: Mathematical equation showing u(t, r_star) equals e to the power of negative i omega t times R of r_star, which is also written as e to the power of negative i omega t_sub_old times R of r_star, and further as e to the power of negative i omega t_R times R of r_star.]
The rescaled radial function [image: Mathematical equation showing script R of r sub asterisk equals e to the power of i omega h times R of r sub asterisk.] is regular both near the event horizon and toward null infinity. To see this in an explicit example, consider the height function for the so-called minimal gauge [98–100]
[image: Mathematical equation showing \( v_{\text{MG}}(r) = -r + 2M \log{\left| \frac{r}{2M} - 1 \right|} - 4M \log{\left( \frac{r}{2M} \right)} = -r - 4M \log{\left( \frac{r}{2M} \right)} \).]
The minimal gauge height function has the following asymptotic behavior
[image: Mathematical notation stating h subscript MG is approximately negative r as r approaches infinity, and h subscript MG is approximately positive r as r approaches two M.]
The height function regularizes the QNM eigenfunctions in the asymptotic domains. The regularity of the QNM eigenfunctions is directly related to the regularity of the minimal gauge at the asymptotic boundaries near the horizon and near infinity (see Figure 1). The minimal gauge is unique in its simplicity and appears in different setups as a natural construction [101, 102]. Surprisingly, the minimal gauge was implicitly used by Leaver in his papers on QNMs in BH spacetime [103, 104]. Related hyperboloidal regularization procedures have been suggested over the years by various authors without an explicit recognition of the geometric background of their construction [105–111].
[image: Two Penrose diagrams are shown side by side, each featuring a diamond-shaped structure with boundary markers, labeled regions, and contour lines. Both diagrams include points labeled B and future infinity, with the left diagram illustrating uniform spacetime regions and the right diagram displaying additional contour lines labeled with increasing values, indicating different spacetime features or coordinates.]FIGURE 1 | Penrose diagrams of the exterior domain in Schwarzschild spacetime contrasts the level sets of the standard Schwarzschild time (left panel) and the hyperboloidal minimal gauge (right panel). Schwarzschild time slices intersect at the bifurcation sphere, [image: Uppercase letter B in a serif italic font, appearing bold and slightly slanted to the right against a white background.], and spatial infinity, [image: Mathematical expression showing the letter i in italic font with a superscript zero.]. Minimal gauge slices provide a smooth foliation of the future event horizon, [image: Mathematical expression showing script capital H with a caret symbol above and a superscript plus sign.], and future null infinity, [image: Mathematical expression showing a calligraphic uppercase T with a superscript plus sign, representing T plus or the positive set associated with T.].
In [27], it was shown that the time translation must be combined with a suitable rescaling to arrive at a regular representation of QNMs. The rescaling takes into account the asymptotic fall-off behavior of the QNM eigenfunctions toward the BH and toward infinity. The resulting equations have short-range potentials suitable for compactification of the exterior black region from the radial coordinate [image: Mathematical expression showing r belongs to the interval from r subscript h to infinity, including r subscript h and excluding infinity, represented as r is an element of left bracket r sub h comma infinity right parenthesis.] — or equivalently, [image: Mathematical expression showing r sub asterisk is an element of the interval open parenthesis negative infinity comma positive infinity close parenthesis.] — into a compact domain [image: Mathematical expression showing lowercase sigma belonging to the closed interval from sigma sub h to sigma sub script capital I with a plus sign.]. This rescaling is related to the conformal compactification of black-hole spacetimes.
The external boundary conditions (Equation 4) are automatically satisfied in terms of a radially compact hyperboloidal coordinates [image: Mathematical expression showing an ordered pair with lowercase Greek letters tau and sigma inside parentheses, separated by a comma.][27, 100], when the underlying function [image: Mathematical expression showing a bold, italic uppercase R followed by an open parenthesis, a lowercase italic Greek letter sigma, and a close parenthesis.] is regular at the black-hole horizon [image: Mathematical expression displaying lowercase Greek letter sigma subscript h enclosed within parentheses.] and future null infinity [image: Mathematical expression showing the Greek letter sigma subscript tau with a superscript plus sign, all enclosed in parentheses.]. Thus, we no longer need to impose boundary conditions to the wave equation by hand. The boundary condition is replaced by a regularity condition on the underlying solution [image: Mathematical expression displaying the letter R followed by parentheses enclosing the lowercase Greek letter sigma.] in the entire domain [image: Mathematical expression showing the Greek letter sigma belonging to the closed interval from sigma sub h to sigma sub I plus.]. In practical terms, one derives the regularity condition at the boundary directly from the hyperboloidal differential equation. When formulating the frequency-domain problem in coordinates [image: Mathematical notation showing a pair of Greek letters tau and sigma separated by a comma within parentheses.], the resulting differential equation equivalent to Helmoltz Equation 3 assumes a generic form [28, 99, 100].
[image: Mathematical equation displaying alpha two of sigma multiplied by the second derivative with respect to sigma, plus alpha one of sigma multiplied by the first derivative with respect to sigma, plus alpha zero of sigma, all applied to R bar of sigma equals zero. Equation is labeled as six.]
with coefficients [image: Lowercase Greek letter alpha followed by a subscript two, commonly used to represent a specific variable or parameter in mathematical or scientific notation.], [image: Lowercase Greek letter alpha followed by subscript one representing alpha sub one, commonly used to denote a specific parameter or variable in mathematical or scientific contexts.] and [image: Greek letter alpha with a subscript zero, representing the mathematical symbol α sub zero.] depending on the particular choice for the hyperboloidal height function. The most important property of the above equation is that it is a singular ordinary differential equation, i. e., its principal part behaves as [image: Mathematical expression showing alpha sub two is proportional to the product of sigma minus sigma subscript I plus squared and sigma minus sigma subscript H.] and therefore [image: Mathematical expression showing alpha sub two of sigma h equals alpha sub two of sigma I plus equals zero.]. Hence, at the boundaries, Equation 6 provides us directly with the relation between the field and its first [image: Lowercase Greek letter sigma, represented as a slanted character with a small upper curve and a long, rounded main stroke, typically used in mathematics and statistics.]-derivatives serving as boundary data ensuring a bounded solution. From the spacetime perspective, and the resulting wave equation, the same condition [image: Mathematical equation showing alpha sub two of sigma h equals alpha sub two of sigma script I plus, both equal zero.] ensures that, at the boundaries, the light cones point outwards the numerical domain, or equivalently, that the characteristic speeds of incoming modes vanish [27, 100].
The finite behaviour of the function [image: Mathematical notation displaying the letter R followed by the Greek letter sigma enclosed in parentheses, commonly representing a function R of sigma.] is one of the most important aspects in the hyperboloidal approach. As we discuss below, this feature allows us to unveil new properties of the QNM eigenfunctions, develop novel numerical algorithms and attack new problems relevant to black-hole physics and gravitational wave astronomy.
3.3 From geometry to analysis
The hyperboloidal framework regularizes solutions to the Helmholtz problem Equation 3. In fact, any bounded solution satisfying the singular ordinary differential Equation 6 automatically fulfills the Sommerfeld conditions (Equation 4). One would naively think that bounded solutions exist only at the QNMs frequencies. However, we saw in Section 2 that the conditions (Equation 4) are necessary, but not sufficient to specify the QNM problem uniquely. In the traditional formulation, the QNM eigenfunctions grow asymptotically. The complex plane spanned by the frequency [image: Lowercase Greek letter omega, written in a black serif font on a white background.] might contain regions with solution satisfying (Equation 4), but contaminated by unwanted solutions that decrease at the boundaries. Removing the asymptotic blow-up allows us to peek directly into these unphysical solutions, which exist in the entire half-plane [image: Mathematical expression showing the imaginary part of omega is less than zero, written as Im left parenthesis omega right parenthesis less than zero.] [28, 31].
The left panel of Figure 2 shows two solutions to Equation 6 which are bounded in the entire exterior BH domain, from [image: Mathematical expression showing the Greek letter sigma followed by an equals sign and the number zero, representing sigma equals zero.] representing future null infinity and [image: Mathematical notation displaying the standard deviation symbol sigma followed by an equals sign and the number one, indicating that sigma is equal to one.] the BH horizon: the solution in blue is obtained at a given QNM frequency [image: Mathematical expression displaying the lowercase Greek letter omega followed by the uppercase letters Q, N, and M, likely representing a variable or quantity labeled omega subscript QNM.], whereas the solution in red corresponds to a given frequency in the half-plane [image: Mathematical expression displaying Im of omega is less than zero, indicating the imaginary part of the variable omega is negative.], but with [image: Mathematical expression showing omega is not equal to omega subscript QNM.]. These solutions are obtained with two different numerical approaches: the solid line results from solving the ODE with a Chebyshev collocation point spectral method [112], whereas the dotted points arise when using Leaver’s Taylor expansion, which corresponds to a frequency domain hyperboloidal formulation in the minimal gauge [28, 99, 113]. Both strategies yield the same results. At first glance, there is nothing special in the behavior of the solutions that allows us to distinguish a QNM from a non-QNM eigenfunction. Indeed, it is even possible to specify a hyperboloidal initial data such that the corresponding time evolution has an arbitrary exponentially damped oscillation [28].
[image: Three scientific line plots compare regular radial functions. The first and second plots use logarithmic axes showing red and purple curves labeled by multipole coefficients, with y-values spanning several orders of magnitude. The third plot uses a linear scale, displaying blue and red dashed curves labeled as quadrupole resonance and Taylor approximation, with the blue curve showing a minimum near the center.]FIGURE 2 | Solutions to hyperboloidal radial equation (left panel). Bounded solutions exist in the entire half-plane for [image: Mathematical expression showing the imaginary part of omega, written as Im open parenthesis omega close parenthesis, is less than zero.], regardless whether [image: Lowercase Greek letter omega in a bold, serif typeface, depicted in black on a white background.] is a QNM or not. The continuous lines were obtained with a spectral method code based on a Chebyshev representation of the solution. Independently, the dots result from a Taylor representation of the solution as power series around the horizon (Leaver’s strategy). The QNM eigenfunctions are characterised by the solutions with a higher degree of regularity, heuristically verified via the faster decay of the corresponding Chebyshev coefficients [image: Mathematical expression showing the absolute value of c sub k, where c is in italic and k is a subscript.] (middle panel) or the asymptotic decay of the Taylor coefficients [image: Mathematical expression showing the absolute value of lowercase a subscript k, represented as vertical bars around italic a with subscript k.].
What distinguishes a QNM from a non-QNM solution is their regularity class. By studying the convergence rate of their discrete numerical representation, one can infer that these functions belong to different regularity classes. The middle panel of Figure 2 shows the Chebyshev coefficients from the Chebyshev collocation point spectral method. These coefficients decay exponentially for [image: Mathematical notation showing an uppercase italic letter C followed by a superscript uppercase Greek letter Omega.] analytic functions or algebraically for [image: Mathematical notation showing an uppercase letter C with a lowercase k in superscript, commonly representing the class of k times continuously differentiable functions.] singular functions. We observe an intermediary decay, suggesting the regularity class of these functions is between [image: Mathematical notation showing an uppercase italic C with a superscript k, commonly used to denote a function space exhibiting k levels of continuous differentiability.] and [image: Mathematical notation showing an uppercase letter C with a superscript uppercase Greek letter Omega.]. The Chebyshev coefficients for QNM eigenfunctions decay faster than for non-QNM eigenfunctions, indicating QNM eigenfunctions belong to a better regularity class. A similar conclusion arises from the Taylor expansion coefficients (right panel 2). For QNM eigenfunctions, [image: Mathematical expression showing the absolute value of a subscripted variable, a sub k, enclosed between two vertical bars.] decays asymptotically. For non-QNM functions, [image: Mathematical expression showing the absolute value of a subscripted variable a sub k, with both a and k in italics between vertical bars.] grows asymptotically. Even though the series does not converge absolutely, it converges conditionally due to oscillations in [image: Mathematical expression showing the imaginary part of a subscripted variable a sub k enclosed in parentheses.] (left panel of Figure 2). These conclusions are formalized by interpreting QNM as a formal eigenvalue problem of the generator of time translations for a null foliation, acting on an appropriate Hilbert space [29–33, 114–116], where QNM eigenfunctions belong to the Gevrey-2 regularity class.
4 APPLICATIONS
The QNM problem plays a fundamental role in the era of gravitational wave astronomy. The BH spectroscopy program faces three main challenges: (i) the measurability of the QNMs frequencies, limited by the GW detection signal-to-noise ratios; (ii) the relevance of nonlinear effects to the ringdown dynamics; and (iii) the QNMs spectral instability. As discussed in the previous sections, hyperboloidal formalism provides crucial theoretical tools to tackle different aspects of these challenges.
4.1 QNM excitation factors and tail decay
Even though challenge (i) mainly concerns the GW detection’s signal-to-noise ratio, it heavily relies on accurate predictions for the expected QNM excitations [117]. The excitation of each QNM depends on the particular initial perturbation triggering the dynamics. This perturbation also excites the late-time power-law tail decay. Determining these excitation factors has always been challenging due to the blow-up of the underlying modes at the bifurcation sphere and spatial infinity [118]. A common approach to avoid the infinities at the bifurcation sphere when calculating integrals along the physical coordinate [image: Mathematical expression showing r sub asterisk is an element of the interval from negative infinity to positive infinity, indicating r star can take any real value.] is to deform the integration path into the complex plane [119–121].
The hyperboloidal formalism offers an alternative strategy to determine such excitation factors due to the globally regular behavior of the QNM eigenfunctions. The direct identification of Leaver’s continued fraction strategy with spacetime solutions defined on hyperboloidal hypersurfaces allows the further development of the Leaver method to calculate QNMs (and tail decay) excitation factors for problems formulated on hyperboloidal slices [28, 99]. While Leaver’s method relies on a Taylor expansion around the horizon for the underlying hyperboloidal functions, the strategy can be adapted to directly solve a linear partial differential equation having the QNM excitation amplitude as an unknown parameter in the equation [122], or alternatively via the so-called Keldysh scheme [123]. The hyperboloidal formalism is also essential for recent advances in the understanding of the role played by the tail decay in BH spectroscopy [124–126].
4.2 Quadratic QNMs
Since GR is a nonlinear theory, challenge (ii) emphasizes that BH spectroscopy must also account for second-order, quadratic perturbations [21, 127–136]. The quadratic coupling of first-order solutions dictates the dynamics at second order in perturbation theory [137–139]. When formulated in the standard [image: Lowercase italic letter t in a serif font, displayed in black on a white background. No additional symbols, colors, or decorative elements are present.] slices, the blow-up of QNM eigenfunctions at the bifurcation sphere and spatial infinity imposes severe restrictions for second-order studies, both at theoretical and numerical levels. The hyperboloidal framework for black-hole perturbations beyond the linear order becomes indispensable for regular evolutions [23, 132, 140], as well as for studies in the frequency domain [134, 141].
4.3 QNM instability and the pseudospectrum
Apart from his groundbreaking work in QNM [34], Vishveshwara also highlighted that the QNM spectra is very sensitive to small modifications in the black-hole potential [142, 143]. At the same time, the QNM spectra destabilisation was also observed by Nollter and Price [144, 145], but the phenomenon’s impact in the BH spectroscopy programme has been largely overlooked over the past decades. Only recently has the challenge (iii) gained a greater attention [112, 146–155].
Small modifications in oscillatory frequencies for wave equations result in minor spectral responses only if the wave operators are self-adjoint. However, the flow of GWs into the BH and out into the wave zone places BH perturbation theory within the framework of non-self-adjoint operators. The successful application of non-self-adjoint operator theory to gravitational systems was only made possible by the hyperboloidal approach to black-hole perturbations [112] (see also Ref. [156] for an alternative approach akin to “complex scaling”). In this approach, one can use the mathematical formalism of pseudospectra [157] to study the QNM spectral instability [112] and perform a non-modal analysis [151] that a traditional mode analysis might overlook. Since the breakthrough offered by the hyperboloidal framework, the analysis of QNM pseudospectra has been performed in several different contexts, from astrophysically relevant scenarios to applications in the gauge-gravity duality [158–167].
5 DISCUSSION
The hyperboloidal approach to QNMs offers a geometric regularization of black-hole perturbations. By connecting the regular oscillations near BHs with those observed far away, this method bypasses the problematic divergences inherent in the traditional approach at the bifurcation sphere and spatial infinity.
With hindsight, the hyperboloidal approach relies on a simple coordinate transformation that resolves the asymptotic singularity of the standard time [84]. It is astonishing that it took decades for relativists to adopt regular coordinates to describe black-hole perturbations. We suspect that part of the confusion arose from the asymptotic behavior of time functions. It is not widely appreciated that the standard time coordinate in flat spacetime is singular at infinity with respect to the causal structure. Large-scale wave phenomena demand coordinates tailored to wave propagation—characteristic or hyperboloidal. This approach is critical not only for gravitational waves but also for addressing general wave propagation problems.
In recent years, the hyperboloidal approach has led to significant breakthroughs in the study of black-hole perturbations. As discussed, the regularity of the QNM eigenfunctions in the frequency domain enables a direct identification of the QNM excitation factors and tail decay 4.1, facilitates the efficient computation of second-order perturbations 4.2, and supports the analysis of the QNM pseudospectrum 4.3. Moreover, recent work has demonstrated that the hyperboloidal method can be extended to non-relativistic operators [168], further broadening its scope and applicability.
From a numerical perspective, finding the optimal choices among the many ways to construct hyperboloidal coordinates, particularly for high-precision and large-scale simulations, remains a challenge. Exploring gauge conditions and optimizing numerical algorithms to leverage advanced computational resources will be essential for practical applications, going beyond linear perturbations and including the numerical solution of the full Einstein equations along hyperboloidal surfaces [169, 170].
Much of the current work has focused on asymptotically flat, vacuum spacetimes. The formalism for black hole perturbation theory is fully developed for spherically symmetric spacetimes, but the same concepts are also valid for the Kerr solution [102, 113]. The hyperboloidal approach is versatile and extendable to more general settings, including those with different asymptotic structures, and nonvaccum spacetimes. Developing these extensions will be crucial for applying this framework to a broader range of physical scenarios.
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FOOTNOTES
1Note that we focus here on the geometric developments around the hyperboloidal framework in asymptotically flat spacetimes. The analytic aspects of QNM regularity beyond the mere coordinate singularity of standard time slices were clarified in a series of papers [29–33], discussed in Section 3.3.
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Systems of partial differential equations (PDEs) comprising a combination of constraints and evolution equations are ubiquitous in physics. For both theoretical and practical reasons, such as numerical integration, it is desirable to have a systematic understanding of the well-posedness of the Cauchy problem for these systems. In this article, we first review the use of hyperbolic reductions, where the evolution equations are singled out for consideration. We then examine in greater detail the extensions, namely, systems in which constraints are evolved as auxiliary variables alongside the original variables, resulting in evolution systems with no constraints. Assuming a particular structure of the original system, we provide sufficient conditions for the strong hyperbolicity of an extension. Finally, this theory is applied to the examples of electromagnetism and a toy model of magnetohydrodynamics.
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1 INTRODUCTION
In this work, we continue [1–4] the study of first-order systems of equations in which there are more equations than unknowns, but with a structure that permits, in principle, splitting suitable linear combinations of them into “evolution” and “constraint” equations. We restrict to the case of consistent systems, in which the number of equations is equal to the number of constraints plus the number of independent variables, and furthermore to the special case in which the number of independent variables matches the number of evolution equations. The latter means that we do not consider systems with gauge freedom remaining, which would imply the existence of variables with unspecified equations of motion. In this case, one can attempt a solution by carefully restricting the initial data and then directly solving the evolution equations. For an introductory review, see Hilditch [5]. One must then check that the constraint equations are satisfied in the time development. For this, integrability identities among the whole system of equations must be satisfied. These conditions will be assumed and spelled out in detail below. This “free evolution approach” requires us to establish the well-posedness of the Cauchy problem Gustafsson et al. [6]; Kreiss and Ortiz [7] (for a review of well-posedness applied to general relativity, see Sarbach and Tiglio [8]). We restrict ourselves to the concepts arising from the theory of strongly hyperbolic systems, in which well-posedness is determined by algebraic properties of the principal symbol of the equation system. For first-order systems, the principal symbol is simply the set of matrices multiplying the derivatives of the variables. The algebraic properties leading to well-posedness have several equivalent characterizations summarized in the Kreiss matrix theorem Kreiss [9]. To assert well-posedness for the systems under consideration, we need to find a suitable square system, that is, a system where the number of variables equals the number of equations. This can be achieved by taking a subset of the equation system, called a reduction, resulting in a pure evolution system. The use of reductions is customary, but another possibility, which is often employed in numerical schemes, consists of making an extension, that is, extending the system by adding more variables. These extensions are commonly referred to as divergence cleaning [10]; Munz et al. [11, 12], from their use in magnetohydrodynamics, or as [image: Lowercase Greek letter lambda in a serif font, typically used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or other variables depending on the context.] [13] or Z-systems [14] from their use in general relativity.
A paradigmatic example is given by the Maxwell equations,
[image: Mathematical equations display three expressions: the divergence of F sub nu superscript b equals J superscript b, epsilon delta i k v times the divergence of F sub k equals zero, and the divergence of J superscript n equals zero.]
where the unknowns are the components of the Faraday tensor [image: Mathematical expression showing an uppercase italic F with subscripts a and b in italics.], an anti-symmetric tensor (so there are a total of six independent variables). [image: Mathematical expression showing the letter j in italic font with a superscript letter a, indicating an exponent or power.], the current vector, is a given vector fixed in space-time, which has vanishing divergence. This is necessary due to the integrability identity [image: Mathematical equation displaying the covariant derivative with respect to b of the covariant derivative with respect to a of F superscript a b equals zero.]. We work here in four-dimensional space-time [image: Mathematical notation showing an ordered pair with capital M comma lowercase g subscript a b, enclosed in parentheses.] with the Levi–Civita derivative [image: Mathematical symbol showing a nabla operator followed by a subscript lowercase italic a, typically denoting a covariant derivative with respect to index a.] associated with [image: Mathematical expression displaying a lowercase italicized letter g with subscript a and b, commonly used to represent a metric tensor component in physics or mathematics.]. There are thus a total of [image: Mathematical equation showing eight equals four plus four.] equations for [image: Mathematical expression showing uppercase italic F with superscript lowercase italic letters a and b.], so six of them should be evolution equations, and the remaining two should be constraints. Introducing a time-like covector [image: Mathematical notation showing a lowercase italic n with a subscript italic a, commonly used to denote a variable indexed by a in mathematical or scientific contexts.], one finds that contraction with that vector on both equations gives constraint, that is, equations which have derivatives only in directions perpendicular to [image: Mathematical variable n with a subscript a in italic serif font, commonly used to denote a specific term or value indexed by a in mathematical or scientific notation.]; while projection on the space perpendicular to [image: Mathematical notation displaying a lowercase italic n with a subscript lowercase italic a.] gives equations that have derivatives along [image: Mathematical expression showing the variable n raised to the power of a, with both characters in italic font, representing exponentiation.] for each of the independent components of [image: Mathematical notation displaying an uppercase italic F with superscript lowercase italic letters a and b.]. Thus, in the terminology introduced above, a reduction is obtained by taking only these projections as the evolution equations. The integrability identity and divergence property of [image: Mathematical notation displaying a lowercase italic letter j with a superscript lowercase italic letter a.] together imply that constraints are satisfied in the time development if they are at an initial surface.
On the other hand, an extension is given by adding two auxiliary constraint variables [image: Mathematical notation showing an ordered pair with two variables, left parenthesis Z subscript one comma Z subscript two right parenthesis.], one for each Maxwell constraint, and making a choice for their equations of motion. To accomplish this in a covariant fashion, we need to define two tensor fields [image: Mathematical expression showing a pair of variables: left parenthesis, g one, comma, g two, right parenthesis.]. The proposed extended system is
[image: Mathematical expression containing three equations: nabla sub i F superscript i b plus xi superscript N nabla sub i Z sub 1 equals J superscript b; epsilon superscript d b c xi sub b superscript N nabla sub i F sub i c plus xi superscript N nabla sub i Z sub 2 equals zero; nabla sub i J superscript i equals zero. Equation labeled as 1.]
It turns out that if the symmetric parts of [image: Mathematical expression showing an ordered pair with variables g one and g two enclosed in parentheses and separated by a comma.] are Lorentzian metrics whose cones have non-zero intersections among each other and with the cone of [image: Lowercase italic letter g in a serif font, shown in grayscale on a white background.], then the extended system is well-posed. (We use the mathematical notion of a cone; when needed, we use the term light cone to refer to their boundaries). The equations that were constraints are now evolution equations for [image: Mathematical expression showing an ordered pair consisting of variables Z sub one and Z sub two within parentheses.], and the others acquire spatial derivatives of these fields. As mentioned above, such extensions have been employed with enormous success in numerical relativity [15–20] and computational astrophysics, with works introducing this approach for magnetohydrodynamics [11, 12]; Dedner et al. [10] is particularly influential. Here, we investigate the space of possible extensions that lead to well-posed Cauchy problems and how to construct them in a natural, covariant fashion.
The article is organized as follows. In Section 2, we define the type of systems to be considered, including the necessary conditions they must satisfy in order to have a well-posed Cauchy problem. In Section 3, we introduce the Kronecker decomposition of matrix pencils and explain its implications to the study of strongly hyperbolic systems. In Section 4, we formalize the framework for extensions. Given the considerable freedom in choosing them, we use the Kronecker decomposition as a guide for making these choices. In Section 5, we demonstrate how this framework applies to two concrete examples: Maxwell’s electrodynamics and a toy model of magnetohydrodynamics (MHD). Finally, in Section 6, we conclude with discussions and provide comments on how this line of research is being further developed.
2 PRELIMINARIES AND NOTATION
To fix notation, we specify the systems we consider, following the notation of Geroch [1]; Abalos and Reula [3]; Abalos [4]. We consider a manifold [image: Italic capital letter M in a serif font, displayed in high contrast against a white background. Text is clear and legible, centered within the frame.] of dimension [image: Lowercase italic letter n in a serif font on a white background, shown in grayscale with soft edges and moderate blurring.], and the following system of the quasi-linear first-order partial differential equations on the fields [image: Lowercase Greek letter phi, commonly used in mathematics and physics to represent an angle, a variable, or the golden ratio depending on context.],
[image: Mathematical equation labeled as equation two shows E superscript A equals the partial derivative with respect to x mu of F superscript mu A of x and phi times the gradient with respect to phi of F mu A of x and phi, minus F superscript A of x and phi equals zero.]
where the indices [image: Uppercase letter A in a serif typeface, displayed in black with a slight blur effect against a white background.], [image: Lowercase italic letter “a” in a serif font, set against a blurred gray background. The letter is bold and occupies most of the image area.], [image: Lowercase Greek letter alpha, italicized in a serif font, shown in black on a white background. Represents the mathematical or scientific variable alpha.] are abstract, grouping several tensorial indices into one and merely indicating where the contractions are. We use lower-case Latin indices to denote single vector indices, lower-case Greek indices to indicate variable fields, and upper-case Latin to label the equations space. The [image: White square displaying a single black dot centered horizontally and vertically, framed by two thick vertical black bars along the left and right edges on a plain background.] function on indices indicates their total dimension.
We impose the following conditions on [image: Mathematical expression featuring script capital M with superscripts uppercase A and lowercase a, subscript lowercase alpha, followed by parentheses enclosing x and lowercase phi.]:
Condition 1: the generalized Kreiss condition.
We assume that the matrix [image: Mathematical expression featuring script capital M sub alpha superscript capital A a, followed by parentheses enclosing variables x and phi.] is smooth in all arguments and that there exists a hypersurface orthogonal covector [image: Italic lowercase letter n followed by a subscript lowercase letter a, commonly used in mathematics and scientific notations.] such that for all values of [image: Mathematical variable k with a subscript lowercase a, typically representing a specific constant or parameter in an equation.], not proportional to [image: Italic lowercase letter n with a subscript lowercase a, representing a mathematical or scientific variable, shown in a serif font on a white background.], the matrix pencil
[image: Mathematical equation showing script P sub n sub a superscript d sub a l sub n sub a of lambda equals script P sub n sub a superscript d sub a of open parenthesis lambda n sub a plus k sub a close parenthesis.]
has a kernel only for a finite set of real values [image: Mathematical notation showing a set with the elements lambda sub i of k, enclosed in curly braces.] of [image: Lowercase Greek letter lambda, commonly used to represent wavelength in physics or an eigenvalue in mathematics.] (the term matrix pencil refers here to the uni-parametric combination [image: Mathematical expression containing the Greek letter lambda, followed by a blackboard bold uppercase R, a plus sign, and a blackboard bold uppercase B.], where [image: Blackletter-style capital "N" character in a serif font against a white background.] and [image: Black and white illustration showing the astrological symbol for Capricorn, featuring a stylized glyph that combines elements resembling the numbers two and six with curved and looping lines.] are matrices that do not depend on the parameter [image: Lowercase Greek letter lambda, commonly used in mathematics and science to represent wavelength or eigenvalues. Black character on a white background.]).
In addition, the corresponding singular values of [image: Mathematical expression featuring curly capital M with subscript alpha and superscript Aa, followed by l subscript a, all evaluated at lambda within parentheses.] approach zero in a linear way, that is, [image: Mathematical expression showing sigma of lambda is greater than or equal to c sub i times the absolute value of lambda minus lambda sub i.], with [image: Mathematical expression showing c subscript i is greater than zero.] in a neighborhood of [image: Lowercase Greek letter lambda followed by a subscript lowercase italic i, commonly used in mathematics to denote an indexed variable or parameter.]. We recall that the singular values are the square roots of the eigenvalues of [image: Mathematical expression showing the transpose of the product of script capital M sub alpha superscript Aa with l sub a and script capital M sub beta superscript Ab with l sub b.]. Because this is an [image: Mathematical expression showing absolute value of alpha multiplied by itself, written as vertical bars around alpha, multiplication sign, and vertical bars around alpha.] matrix, there are [image: Mathematical expression showing the lowercase Greek letter alpha enclosed within two vertical bars, indicating the absolute value or modulus of alpha.] singular values (see Abalos [2] for more details and for a more general definition).
These conditions imply two things: i) the rank of [image: Mathematical expression showing script capital R subscript alpha superscript capital A a of x and phi, multiplied by n sub a.] is maximal. Therefore, by defining any vector [image: Lowercase letter t with a superscript lowercase letter a, commonly used in mathematical or scientific notation.] transversal to the surface flat defined by [image: Italic lowercase letter n with a lowercase letter a as a subscript, often representing a variable with an indexed value in mathematical or scientific notation.] (i.e., [image: Mathematical expression showing t superscript a multiplied by n subscript a is not equal to zero.]), we can obtain all field derivatives along [image: Mathematical notation showing a lowercase italic letter t raised to the power of a lowercase italic letter a, indicating t to the power of a.] from their values and their derivatives at that surface. This means that we have enough evolution equations for each field [image: Mathematical expression showing the Greek letter phi followed by a superscript alpha.]. Observe that once we have a choice of [image: Mathematical notation showing the variable n with a subscript a, set in italic font.] satisfying Condition 1, then there is an open set of covectors satisfying the same condition. Thus, we can always form hypersurfaces in a neighborhood of any point, leading to a local initial value problem; ii) In the case that the number of equations equals the number of variables, these conditions imply there is a well-posed Cauchy problem, in the usual sense for strongly hyperbolic systems, off of the mentioned surface. This is the classic Kreiss condition.
In case there are more equations than variables, we need to make sure that there are no more linearly independent equations having derivatives along the transversal vector [image: Mathematical expression showing the variable t raised to the power of a, written in italic font.]; otherwise, we would have an inconsistency because two equations could give different values for the same transversal derivative. To accomplish that, we impose:
Condition 2: the Geroch constraint condition.
If the number of equations is larger than the number of variables [image: Mathematical expression showing the absolute value of A is greater than the absolute value of alpha.], then we assume there exists a set of matrices [image: Mathematical notation showing C subscript A superscript Gamma, with the subscript and superscript both positioned to the right of the letter C.], which are labeled by upper-case Greek indices, with
[image: Mathematical expression showing a subscripted calligraphic letter C with superscripts Gamma of a parenthetical a and a script M superscripted with modulus A given b, subscript alpha, equals zero.]
and that [image: Mathematical equation showing rank of C subscript A superscript Gamma n subscript a equals absolute value of A minus absolute value of alpha, which equals absolute value of Gamma.]. This condition ensures that the rest of the equations do not have derivatives off of the surface defined by [image: Italic lowercase letter n with a subscript italic lowercase letter a, representing a variable with a specific index or identifier.], so that the system is consistent. Indeed, the following linear combination of equations, called constraints,
[image: Mathematical expression showing psi superscript gamma defined as C subscript capital lambda superscript gamma n subscript a times in parentheses Y subscript a superscript lambda b superscript gamma nabla subscript b phi superscript a lambda minus j superscript a lambda.]
have only derivatives on the flat defined by [image: Mathematical notation showing a lowercase italic n with a subscript a.].
There is a further consistency condition that would guarantee that if the initial data are such that constraint quantities vanish at the initial surface, then they would also vanish along evolution [4]. We require the following:
Condition 3: integrability.

[image: Mathematical equation showing the divergence of C superscript K lambda E superscript alpha equals L sub I, lambda, superscript Gamma, dependent on x, phi, and gradient of phi, multiplied by E superscript alpha with the same arguments.]
In other words, there is a particular on-shell identity among derivatives of our equation system. In most cases of physical interest, this identity is a consequence of gauge or diffeomorphism invariance.
3 KRONECKER DECOMPOSITION
When studying the well-posedness of the Cauchy problem, the relevant aspect is the behavior of the system in the limit of high frequencies. We can thus restrict our attention to a neighborhood of each point and work in the frequency domain, employing the Fourier–Laplace transform in space and time, respectively. Explicitly, we consider a time function [image: Lowercase letter t in a serif font, black on a white background.] and a foliation given by its level surfaces. We define [image: Mathematical equation showing n sub a equals open parenthesis d t close parenthesis sub a.] and take a vector [image: Lowercase italic letter t with a small superscript a, resembling the mathematical notation t to the power of a.] transversal to the foliation and adjust it such that [image: Mathematical expression showing t to the power of a multiplied by n sub a equals one.]. We choose covectors [image: Mathematical notation showing the lowercase letter k with the subscript a, often used to represent the acid dissociation constant in chemistry.] such that [image: Mathematical expression showing t superscript a times k subscript a equals zero.] and define [image: Mathematical equation showing l sub a equals lambda times n sub a plus k sub a, where all variables include subscript a.]. We perform Fourier in [image: Italicized mathematical variable k with a subscript lowercase italic a.], and Laplace in [image: Lowercase Greek letter lambda written in a serif font, commonly used in mathematics, physics, and computer science to represent wavelength or eigenvalues.]. Thus, we replace space derivatives by [image: Mathematical expression showing the variables i and k in italics, with subscript a on the letter k.] and time derivatives by [image: Mathematical expression displaying the variables i and lambda, both in italicized serif font, commonly used to represent imaginary unit and wavelength respectively in scientific contexts.]. Furthermore, in what follows, once any particular [image: Mathematical notation showing the variable k with a subscript a.] is chosen, we take a coordinate base so that [image: Mathematical equation showing n subscript a equals the differential of x superscript zero, all with subscript a.], and [image: Mathematical expression showing k sub a equals the differential operator d x superscript one, enclosed in parentheses, with the entire quantity subscripted by a.], and so [image: Mathematical equation showing l subscript a equals lambda n subscript a plus k subscript a, also written as lambda d x superscript zero plus d x superscript one, all with subscript a.]. Finally, in the high frequency limit, we obtain [image: Mathematical equation showing a summation over alpha with script X superscript Aa subscript alpha, followed by l subscript a, phi with a tilde and superscript alpha, set equal to zero.].
The Kronecker decomposition of a matrix pencil is a canonical transformation that generalizes the Jordan decomposition of a square matrix pencil. Considering the (square or non-square) pencil [image: Mathematical expression showing the blackboard bold real part symbol Re, followed by a plus sign and the blackboard bold imaginary part symbol Im.], the Kronecker decomposition is achieved by multiplying this pencil by specific matrices [image: Uppercase letter W in a serif font, displayed in black with a blurred or slightly out-of-focus effect on a white background.] and [image: Uppercase letter Q in a bold, serif font with slightly blurred edges on a white background.], which are independent of [image: Lowercase Greek letter lambda in black font on a white background.] (as in the square Jordan decomposition case). This transformation results in a new pencil [image: Mathematical expression showing open parenthesis W N Q close parenthesis lambda plus open parenthesis W B Q close parenthesis, written in italicized mathematical font.] that has a block structure with particular canonical blocks (see Gantmakher [21, 22], for a detailed description and Equation 3 for an example).
It turns out that the Kronecker decomposition can be used naturally in the analysis of systems with constraints or gauge freedom. With the first two conditions assumed above, the Kronecker decomposition of the pencil [image: Mathematical expression showing a script capital M indexed by Greek letter alpha, superscripted by capital A sub a, multiplied by l sub a of lambda in parentheses.] is given by
[image: Matrix equation showing a block diagonal matrix with each diagonal block in the form of a Jordan matrix. Each block has entries λ minus λ sub d on the diagonal, ones on the superdiagonal, and zeros elsewhere.]
Ultimately, this represents a change of basis of both the variable and equation spaces, which depends on [image: Mathematical expression showing the variable k with a subscript a.] but not on [image: Lowercase Greek letter lambda in a serif font, appearing in black on a white background.]. The first block is a diagonal [image: Mathematical notation showing d times d, commonly used to represent the dimensions of a square matrix or array of size d by d.] block, this diagonal represents the true degrees of freedom of the entire system. It contains as many elements as the “zeros” of the singular value decomposition, counting their multiplicity. The [image: Mathematical expression showing two times one, written as the numeral two, multiplication sign, and numeral one.] blocks, called [image: Mathematical expression showing the uppercase letter L with a subscript one and a superscript T, indicating L one transpose.] in the literature, are due to the constraints; there are a total of [image: Mathematical formula showing r equals the absolute value of alpha minus d.] blocks. Because each block occupies two rows, we see that the number of zero rows is [image: Mathematical equation showing s equals the absolute value of A, minus d, minus two times r.]. The zero rows are present in many systems; they represent differential constraints among the constraints themselves. The numbers defined above also satisfy:
[image: Mathematical notation defining variables: d as the dimension of the right kernel of C superscript ra subscript A subscript n subscript a, script M superscript Ai subscript a subscript k subscript i; r as the rank of the same C and M expression; s as the dimension of the left kernel of that expression.]
With this decomposition at hand, it is easy to see how to choose among them linear combinations that give evolution equations for all [image: Mathematical expression showing the Greek letter phi with a superscript lowercase alpha.]. Observe that the equations (rows) with a [image: Lowercase Greek letter lambda in a serif font, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or rates of exponential processes.] are certain to contain derivatives transversal to the [image: Italic lowercase letter n followed by a subscript lowercase letter a, representing a variable with subscript notation, commonly used in mathematical or scientific contexts.] flats. So, we must include them, but we can add any combination of the other rows to them. It turns out that, by simply adding to each of these rows the immediate row below, multiplied by any number [image: Mathematical expression showing pi subscript i, where i equals one to r.], and discarding all the remaining rows, we obtain the evolution equations.
[image: Mathematical expression displaying a block diagonal matrix with two main sections: the upper left block contains entries of the form lambda minus lambda sub i, and the lower right block contains entries of the form lambda minus pi sub j; all off-diagonal entries are zero.]
Thus, we have constructed a map from the equation space to the variable space, which we refer to as a reduction and denote by [image: Mathematical notation showing h subscript A and superscript beta.]. Thus, [image: Mathematical expression h subscript A superscript beta, calligraphic M subscript alpha superscript capital A lowercase a, l subscript a.] is a map from the variable space into itself consisting of a set of diagonal matrices satisfying the classic Kreiss conditions (see point ii. within Condition 1). Notice that we can choose the extra roots of [image: Lowercase Greek letter lambda in a serif font, shown in black on a white background.] (i.e., the [image: Mathematical expression showing curly braces enclosing pi sub i, indicating a set of elements where each element is denoted as pi with index i.]) as we please. They are the propagation speed of extra constraint modes. This simple observation is the principle behind the results in Reula [23]; Abalos [4].
Thus, there is a reduction (a linear combination of the equations) such that the Cauchy problem of the system is well-posed. Furthermore, Condition 3 asserts that if the initial data satisfy all equations (including the vanishing of the constraints), then all the equations are satisfied for all times as long as the solution exists. See Abalos [4] for details.
4 EXTENSIONS
A generic extension would imply the addition of an extra matrix, [image: Mathematical expression showing a stylized capital N with a tilde, superscript Delta Aa, followed by open parenthesis, x comma lowercase phi, close parenthesis.] (and extra variables [image: Mathematical symbol Z subscript T, typically used to denote total impedance in electrical engineering equations.]), to obtain a square system
[image: Mathematical equation showing a partial differential form with terms involving products of functions and their gradients, ending with plus B superscript lambda of x, phi, Z equals zero, labeled as equation four.]
Here, [image: Mathematical expression displaying B superscript A, followed by parentheses containing x, Greek letter phi, and uppercase Z separated by commas.] is a term we can also freely choose that does not include derivatives of [image: Lowercase Greek letter phi, depicted in a serif font with a slight rightward tilt and bold outline against a white background.] or [image: A bold, uppercase letter Z in a serif font appears against a white background. The lines have subtle shading, giving a three-dimensional effect. ] and that goes to 0 when Z goes to 0. In general, [image: Mathematical expression showing capital letter B with capital letter A as a superscript, representing B raised to the power of A.] represents damping terms [13]; [10]; [24], which are important in numerical applications. For simplicity in our discussion, however, we omit it.
Because we are interested in solving Equation 2 for [image: Lowercase Greek letter phi, commonly used in mathematics, physics, and engineering to represent a variable, angle, or function. Black symbol on a white background.], our extension proposal only makes sense if we can show that for suitable initial data (for [image: Mathematical expression showing an open parenthesis, Greek letter phi, comma, bold uppercase Z, and a close parenthesis.]), the solution of Equation 4 has [image: Mathematical expression showing a capital letter Z followed by an equals sign and the number zero.] throughout the development, thereby ensuring that [image: Greek lowercase letter phi, presented in a serif font, tilted slightly to the right in black on a white background.] is a solution of Equation 2.
As we explained before, if we assume Conditions 1, 2, and 3 and take any initial data for [image: Lowercase Greek letter phi written in a slanted, bold serif font, commonly used in mathematics or physics formulas.] satisfying the constraints, we know that the initial value problem for Equation 2 is “well-posed” and has a unique solution [image: Mathematical expression showing the Greek letter phi with a subscript "sol".]. (Here, by well-posed, we mean that the map from Cauchy data to solutions is continuous. To establish this, one finds a hyperbolic reduction from which we may assert that the reduced system is well-posed for arbitrary initial data. Then, one shows that if the initial data satisfy the constraints, then the solutions of the reduced system also satisfy them. Thus, they are solutions to the whole system, and we call the whole system well-posed). Therefore, if we choose [image: Mathematical expression containing the symbols: a script capital R, a lowercase n with a tilde and subscript n, an uppercase Greek Gamma, an uppercase A, and a lowercase italic a.] such that the extended system, Equation 4, is well-posed, then for any initial data, there will be a unique solution. If we choose as initial data [image: Mathematical expression in parentheses showing phi subscript sol evaluated at t equals zero and Z evaluated at t equals zero both equal to zero.], then [image: Mathematical expression showing open parenthesis, phi sub sol comma, Z equals zero, closed parenthesis.] will be a solution, and by uniqueness is the solution. Therefore, we only need to show that system Equation 4 satisfies Kreiss’s condition.
4.1 Strong hyperbolicity of the extensions
A particularly interesting set of extensions is obtained by noticing the symmetry between the Kronecker decomposition of [image: Mathematical expression showing script capital M sub alpha superscript A a, I sub a of lambda in parentheses.] and [image: Mathematical expression showing an element-wise transformation: open parenthesis, bold capital C subscript B superscript delta a, l subscript a of lambda, close parenthesis, all raised to the power of T.]. So, we start by computing it:
[image: Matrix equation showing (C subscript A superscript b vertical bar subscript b superscript l superscript T) equals a block matrix. The top block is a four-by-seven zero matrix. The lower diagonal block contains entries of negative one, lambda, lambda minus rho sub one, and continues with similar structure, ending with lambda minus rho sub s.]
Recalling that the matrices [image: Mathematical expression showing C subscript B to the power of a1 and D superscript a1, with L subscript a.] can be thought of as a basis, labeled by [image: Black and white blurry image of a Greek uppercase delta symbol, resembling an equilateral triangle with a thick outline and a hollow center.], for the kernel of [image: Mathematical expression showing a script capital M with subscripts alpha and a, and superscript Aa1, followed by a lowercase letter l.], it is easy to understand its structure. Here, the rows with zeros are [image: Lowercase italic letter d in a serif font against a white background.] in number. This is so because the diagonal part of [image: Mathematical expression showing script capital M with superscript Aa and subscript alpha, followed by l with superscript a and subscript a.] cannot contribute to the kernel. We then have [image: Lowercase letter "r" in a bold, black serif font on a white background with a slight blur effect. Only the left portion of the character is visible due to cropping.] blocks [image: Mathematical expression showing a column vector with entries negative one and lambda, enclosed in square brackets and transposed, denoted by a superscript T.], observing that they have a minus sign on them. This is because they are kernels for the corresponding [image: Mathematical expression showing the uppercase letter L with subscript one and superscript T, representing L one transpose.] blocks of [image: Mathematical expression featuring a script capital M with upper index Aa and lower index αa followed by a lowercase l with lower index a.]. Finally, there is a block that is a kernel of the zero rows of [image: Mathematical expression featuring a script capital M with subscript alpha and a, and superscript Aa, l to the power of a, and l.]. This part is completely undetermined, so we have simply added a diagonal matrix.
To make more apparent the extension we proposed, we reorganize the rows of [image: Mathematical expression displaying a script capital R with subscript alpha over a, followed by A superscript a one l subscript a.] and [image: Mathematical expression showing the transpose of the product of matrix C subscript A superscript Gamma sub b and vector l subscript b, all within parentheses.] such that
[image: Mathematical equation showing block matrices, where a four-by-four matrix with zero and identity submatrices, as well as a lambda scalar, multiplies a vector of length four. Another equation shows the transpose of a vector multiplied by a vertical matrix containing zero submatrices, negative and positive identity matrices, and lambda scalar multiplied by an identity matrix. Equation number five is placed on the right.]
Here, all the matrices are blocks matrices where [image: Mathematical expression showing J equals an ordered tuple where each entry is lambda minus lambda subscript one through lambda minus lambda subscript d.] of size [image: Mathematical expression showing the variable d multiplied by itself, represented as d times d.], [image: Mathematical expression showing J sub c equals the tuple open parenthesis lambda minus rho sub one, comma, ellipsis, comma, lambda minus rho sub script s close parenthesis.] of size [image: Mathematical expression showing the variable s, a multiplication sign, and the variable s.], and [image: Italic capital letter I followed by a lowercase italic r as a subscript, typically representing a variable or symbol in mathematical notation.] is the identity matrix of size [image: Mathematical expression showing the variable r multiplied by itself, denoted as r times r.]. The zero rows of [image: Mathematical formula showing a script capital M with superscript Aa1 and subscript αa1.] are of size [image: Mathematical formula displaying the variable s multiplied by the absolute value of alpha, where alpha is represented by the Greek letter α.], and the zero rows of [image: Mathematical expression showing the transpose of a product, with a matrix C subscript A superscript b, multiplied by a vector l subscript b, all enclosed in parentheses and raised to the power of T.] are of [image: Mathematical expression displaying lowercase d multiplied by the absolute value or cardinality of uppercase Greek letter Gamma.].
From this reorganization, it is apparent that a natural choice of [image: Mathematical expression containing a fraktur capital R with a tilde, a fraktur lowercase t with a tilde, an uppercase Greek letter Gamma, capital letter A, and lowercase italic letter a.] is given by
[image: Mathematical equation showing script N with superscript Gamma sub Aa equals G with superscripts AB multiplied by C with superscript Gamma and subscript Ba.]
where [image: Mathematical expression showing the letter G with superscript letters A and B, commonly used to denote a group or variable with indices or exponents.] now must be chosen to render the system diagonalizable. This is, of course, not the most general extension but is a natural and fully covariant proposal for [image: Mathematical expression showing a script capital R, a lowercase r with a tilde, an uppercase Gamma, uppercase A, and lowercase a, each styled in a serif font.]. The principal symbol of Equation 4 becomes then
[image: Mathematical equation with subscript and superscript notation showing M sub D superscript d a times l sub a equals bracket Omega superscript d a sub alpha, G superscript A B C superscript b a sub B, then l sub alpha, with all variables in italics.]
a [image: Mathematical expression showing the absolute value of A multiplied by the absolute value of A, written as vertical bars around A, a multiplication symbol, and vertical bars around A.] square matrix.
We now propose a particular expression for [image: Mathematical notation showing capital letter G with superscript capital letters A and B, typically representing a parameterized variable or function in mathematics or science.], namely,
[image: Mathematical expression showing G superscript AB equals a four-by-four block diagonal matrix with blocks I sub d, negative D squared, I sub r, and I sub s along the diagonal, labeled as equation 6.]
where [image: Mathematical expression showing D equals diag open parenthesis pi sub one comma ellipsis comma pi sub r close parenthesis, indicating D is a diagonal matrix with entries pi one through pi r.] is of size [image: Mathematical expression showing the letter r followed by multiplication sign and another r, indicating r by r or r times r.], and [image: Mathematical variable represented as an italic uppercase letter I with a lowercase subscript s, commonly used to denote a specific current or indexed value in equations.] is the identity matrix of size [image: Mathematical expression showing lowercase s multiplied by lowercase s, written as s times s.].
Using expressions Equations 5, 6, we conclude
[image: Matrix equation showing M superscript Aa sub D times I sub a equals a four-by-four block matrix. The matrix consists of blocks: first row J, zero, zero, zero; second row zero, lambda I, D squared, zero; third row zero, I, lambda I, zero; fourth row zero, zero, zero, J sub c.]
It is easy to verify that this matrix is pencil-similar to the following diagonal matrix:
[image: Mathematical expression showing M subscript Du superscript MH as approximately distributed according to a diagonal matrix with entries including lambda minus lambda sub k, lambda plus pi j, lambda minus eta j, and lambda minus rho k, among others.]
and so it satisfies Kreiss’s condition. The extra [image: Mathematical notation displaying the characters two and italic lowercase r, commonly used to represent twice the variable r in algebraic expressions.] eigenvalues [image: Mathematical expression showing a set containing two elements: pi subscript i and negative pi subscript i, both enclosed in curly braces.], introduced by [image: Mathematical expression displaying an italic capital G with superscript A and B, indicating a variable or function with parameters A and B often used in scientific or mathematical contexts.], come in pairs, which means that there are [image: Lowercase black letter "r" in a serif typeface shown on a white background, displayed with a blurred effect that makes the character edges appear soft and out of focus.] new null cones as characteristic. We shall see this in the examples below, where Lorentzian metrics are used to realize these null cones.
5 EXAMPLES
In this section, we present two implementation examples of our proposal, showing that they produce well-posed systems while largely preserving the covariance of the original theories. In all cases, extra Lorentzian metrics are introduced to avoid light cone intersections.
5.1 Maxwell’s equations
We start with the example given in the introduction Equation 1. For them, we have a space of variables [image: Mathematical expression showing the letter F in italics with superscript letters a and b.] (anti-symmetric tensors), which is [image: Mathematical expression showing the absolute value of alpha is equal to six.] dimensional in a four-dimensional space-time of metric [image: Mathematical expression showing the letter g with subscripts a and b, commonly denoting a tensor component in mathematics or physics.]. The space of equations is [image: Mathematical notation displaying the absolute value or determinant of A is equal to eight.], namely, two space-time vectors. We have (see Geroch [1])
[image: Mathematical expressions showing tensors and vectors: boldface p superscript 4a subscript a equals a three-by-three matrix with entries delta superscript t subscript c, delta superscript t subscript d, delta superscript t subscript b, delta superscript q subscript c, delta superscript q subscript d, delta superscript q subscript b, epsilon superscript pa subscript bc; C superscript bt subscript A equals a column vector with entries delta superscript b subscript q, delta superscript b subscript p; C superscript bt subscript A times l subscript b equals a column vector with entries l subscript q, l subscript p.]
Given a time-like [image: Mathematical notation displaying the lowercase italic letter n with a subscript lowercase italic letter a.], we have
[image: Mathematical expression showing a tensor equation: script capital R superscript capital Lambda, subscript alpha, superscript a, times n sub a equals a column matrix with n sub left bracket c, delta superscript q, sub d, and epsilon superscript p alpha, sub b c, times n sub a, right bracket.]
So, it is the map [image: Mathematical expression showing F sub a b maps to the ordered pair E sub a comma B sub a, with all variables in italics.], which is of the maximal rank. This system satisfies Condition 1; see Abalos and Reula [3] for more details.
The tensor [image: Mathematical expression showing the Christoffel symbol with a superscript l and subscript b, preceded by a capital C with superscript b and subscript capital A.] is also of maximal rank for any [image: Lowercase letter l in a simple black sans-serif font on a white background. The character appears upright with no additional visual elements or decorations.]b1. Since the dimension of the image is 2-dimensional, we have [image: Mathematical equation showing absolute value of capital A equals absolute value of lowercase alpha plus absolute value of uppercase Gamma.], and the system is consistent, satisfying Condition 2.
We also have
[image: Mathematical equation in tensor notation showing the divergence of the product of components equals a block matrix with partial derivatives and terms, ultimately equating to a column vector with the gradient of a component and zero, which is set to zero.]
and so Condition 3 is also satisfied.
A suitable reduction is
[image: Mathematical expression showing h sub beta beta equals the quantity g sub q of r and t sub s i minus three halves epsilon sub par s times r to the n power, in parentheses.]
This renders the evolution equations symmetric hyperbolic. As we saw above, a simple extension is obtained introducing two tensors [image: Mathematical expression showing an ordered pair, g one to the power p q and g two to the power p q, enclosed in parentheses.] and defining
[image: Mathematical expression showing tensor G superscript A B equals a diagonal matrix with g one superscript beta gamma in the top-left and g two superscript beta gamma in the bottom-right, with zeros elsewhere.]
If we take their symmetric parts to be any two Lorentzian metrics, each one of them sharing a common time-like covector [image: Mathematical notation displaying a lowercase italic letter n with a subscript lowercase italic letter a.] with [image: Mathematical expression showing the lowercase letter g with subscripts a and b, commonly used to denote a metric tensor component in mathematical physics or general relativity.], but not touching their null cones (for brevity, we do not consider here such degenerate cases), then the system is strongly hyperbolic and so has a well-posed Cauchy problem. To check this, we compute the characteristics of the system and the corresponding eigenvectors and see when we get a complete set, that is, a total of eight eigenvectors.
The characteristic equations are
[image: Mathematical equation featuring L sub b delta F superscript a b plus g sub 1 superscript a b L sub b delta Z sub 1 equals zero.]
[image: Mathematical equation showing epsilon superscript abcd, l sub b, delta F sub cd plus g sub two superscript ab, l sub b, delta Z sub two equals zero.]
where we need to solve these equations for [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent variables such as wavelength or eigenvalues. Black character on a white background.] with [image: Mathematical equation showing l sub a equals lambda times n sub a plus k sub a.] and [image: Mathematical expression showing n sub a comma k sub a, with all letters in italic font style.] given and for the eigenvectors [image: Mathematical expression showing the Greek letter delta followed by an uppercase F with superscript letters a and b.] and [image: Mathematical expression displaying the Greek letter delta followed by the variable Z with a subscript of one comma two.]. The solutions split into three cases: first, when [image: Mathematical expression showing the lowercase letter l with a subscript a, often used to denote a specific variable or parameter with an index.] is null with respect to [image: Mathematical expression showing a lowercase g raised to the power of parentheses with variables a times b, written as g to the power of a b.] (physical case), then when it is null with respect to [image: Mathematical expression showing g sub one raised to the power of a times b, with g as the base and a and b as exponents.] or [image: Mathematical expression showing g subscript 2 raised to the power of a superscript b.] (extended cases), as we explain below.
We already know four of the eigenvectors, namely, the physical ones arising from the original system. To recover these, we set [image: Mathematical expression showing delta Z sub one equals delta Z sub two equals zero.] and search for the value of [image: Mathematical notation showing the Greek letter delta followed by the letter F, with a subscript a and b.]. The second equation then implies that [image: Mathematical expression displaying delta F sub c d equals two l bracket c A sub d bracket.] for some vector [image: Mathematical notation showing an uppercase italicized A with a lowercase italicized d as a subscript, commonly used to denote a variable with a specific descriptor.], while the first implies that [image: Mathematical expression showing left parenthesis l subscript a to the power of n right parenthesis A to the power of b minus left parenthesis l subscript a A to the power of a right parenthesis to the power of b equals zero.] where indices are raised with the space-time metric. Because [image: Mathematical notation showing an uppercase italicized letter A with a lowercase italicized letter a as its subscript.] cannot be proportional to [image: Mathematical expression showing a lowercase italic l with the subscript a.] (otherwise [image: Mathematical expression showing delta symbol followed by F with a subscript c d.] would vanish), both terms must vanish and so we conclude
[image: Mathematical equation showing g superscript ab l subscript a l subscript b equals zero.]
which admits two real solutions for [image: Lowercase Greek letter lambda depicted in a serif font, shown in black on a white background.]. Hence, [image: Uppercase italic letter A with a lowercase italic letter a positioned as a superscript, representing the mathematical expression A to the power of a.] is orthogonal to [image: Mathematical expression displaying a lowercase italic letter l with a subscript a.], which leaves two options remaining for [image: Mathematical expression showing a capital letter A raised to the lowercase letter a as an exponent, representing A to the power of a.] for each of the two values of [image: Lowercase Greek letter lambda, often used in mathematics, physics, and computer science to represent wavelength, eigenvalues, or lambda calculus functions, displayed in a serif font style.].
Now, we want to find the rest of the eigenvectors. For that, we first choose [image: Mathematical equation showing delta Z sub one equals one.], [image: Mathematical expression showing delta Z subscript two equals zero.]. Contracting the first equation with [image: Mathematical expression showing a lowercase italic l with a subscript b, likely representing a specific labeled variable.], and using the anti-symmetry of [image: Mathematical expression showing the Greek letter delta followed by a capital F, typically representing a variation or change in the quantity F.], we get a condition for [image: Mathematical notation displaying a lowercase italic letter l with a subscript a.],
[image: Mathematical equation showing S subscript b superscript p times I subscript l superscript l b equals zero, with the equation number seven in parentheses on the far right.]
which again admits two real values of [image: Lowercase Greek letter lambda, depicted in a standard serif font with a smooth, curved shape and a slightly slanted orientation on a white background.]. Repeating the argument above, the first equation becomes
[image: Mathematical equation in LaTeX reads: open parenthesis capital L subscript mu close parenthesis capital A superscript mu minus open parenthesis partial subscript mu capital A superscript mu close parenthesis superscript p plus e superscript 4 phi over l subscript B squared times g superscript 44 equals zero, labeled as equation eight.]
Because the null cones of [image: Mathematical expression displaying g raised to the power of a times b, with g as the base and ab as the exponent.] and [image: Mathematical expression showing lowercase g subscript one raised to the power of a times b.] are by assumption not touching, we have [image: Mathematical expression showing g superscript a b multiplied by l subscript a and l subscript b is not equal to zero.]. It follows that [image: Mathematical equation showing capital A superscript a equals minus g subscript one superscript a b times l subscript b, all divided by open parenthesis l subscript c l superscript c close parenthesis.] satisfies Equation 8 provided that Equation 7 holds. Observe furthermore that [image: Mathematical expression showing capital A raised to the power of lowercase a plus lowercase Greek alpha multiplied by the natural logarithm of lowercase a.] satisfies the same equations and results in the same Faraday tensor [image: Mathematical expression showing delta F with a subscript a b, where delta is the lowercase Greek letter and F is an uppercase italic letter.] for any [image: Greek lowercase letter alpha, depicted in a serif font with smooth curves and a distinct left-facing tail, shown in grayscale.]. Thus, Equation 7 gives two additional eigenvectors.
If we drop the assumption that the null cones of [image: Mathematical expression showing the variable g raised to the exponent a b, with both a and b written as superscripts above the letter g.] and [image: Mathematical notation showing g subscript one raised to the power of a times b, where a and b are both in superscript.] are non-touching and assume that they touch at [image: Italic letter l with subscript lowercase a, representing the variable l sub a in mathematical notation.], then to have a solution, we need that [image: Mathematical expression showing g subscript a b superscript 1 multiplied by l subscript b.] must be proportional to [image: Mathematical formula in italic font showing g sub one superscript a b l, multiplied by l sub b.].
The final case is similar to the second. We choose [image: Mathematical expression showing lowercase delta times Z sub one equals zero.], [image: Mathematical expression showing lowercase delta times Z subscript two equals one.] and obtain
[image: Mathematical equation showing g sub two superscript a b multiplied by l sub a and l sub b equals zero.]
and the same equations for the dual of [image: Mathematical expression consisting of the Greek letter delta followed by F with a subscript a and b.], so we need not discuss it separately.
In summary, we have obtained the eight eigenvectors we require to satisfy the Kreiss condition and conclude that the system is strongly hyperbolic.
5.2 Toy MHD
Here we look at the evolution of a magnetic field [image: Mathematical expression showing the variable b raised to the power of a, with b as the base and a as the exponent.] driven by a given velocity field [image: Mathematical notation showing the variable u with an exponent a, indicating u raised to the power of a.] in a space-time [image: Mathematical notation showing an ordered pair with elements M and g subscript a b enclosed in parentheses.]. The system is
[image: Mathematical expression showing the divergence of tensor T with upper index b and lower indices a, μ, and ν equals zero, labeled as equation nine on the right.]
Here, we take [image: Mathematical expression showing the variable u in italic lowercase, raised to the power of a in italic superscript.] to be time-like and of norm one, [image: Mathematical equation showing u superscript a multiplied by u superscript b times g subscript a b equals negative one.]. We also take [image: Mathematical equation showing u raised to the power a, b raised to the power b, g subscript a b, equals zero.]. This last is a gauge condition to make the solutions unique for the whole system because otherwise, if [image: Mathematical expression showing a pair of variables u raised to the power of a and b raised to the power of a, enclosed in parentheses and separated by a comma.] is a solution, then [image: Mathematical expression showing an ordered pair with components u superscript a and b superscript a plus eta multiplied by u superscript a, all enclosed in parentheses.] also is a solution, with [image: Lowercase italic Greek letter eta, commonly used in mathematical and scientific notation.] an arbitrary function.
We observe that there are four equations for three variables. Three of them are evolution equations for the three components of [image: Mathematical expression with lowercase letter b as the base and lowercase letter c as the exponent, indicating b raised to the power of c.]. We shall see below that the other is a constraint. Thus, Condition 2 is also satisfied.
The principal part of system Equation 9 is
[image: Mathematical equation showing a contraction of covariant derivatives: script capital R, sub c, superscript b1 a1, applied to ∇, sub d, b superscript c, equals u, superscript a1, times ∇, sub d, b superscript b1, equals δ, sub c superscript a1, u, superscript b1, ∇, sub d, b superscript c.]
It is easy to check that Condition 1 is satisfied. The Geroch matrices are also easy to obtain as [image: Mathematical equation showing tensor contraction: C superscript d subscript b times l subscript d is defined as delta superscript d subscript b times l subscript d.]. They form a basis of the left kernel of [image: Mathematical expression showing a calligraphic R symbol with subscript c a and superscript b a, followed by the letter l with subscript a.] and, as we explained before, this means that when Equation 9 is contracted with [image: Mathematical equation showing C sub b superscript d multiplied by u sub d equals u sub b.], a constraint is generated; this is
[image: Mathematical expression displaying del sub a b superscript a minus b superscript a a sub a equals zero.]
where [image: Mathematical equation showing a superscript a on both sides, with a superscript b and a nabla symbol indicating a covariant derivative; expresses acceleration as a covariant derivative along a vector field.]. We notice that this is the spatial divergence of [image: Mathematical expression showing the variable b raised to the power of a, representing exponentiation with base b and exponent a.] in disguise.
On the other hand, the following integrability condition [image: Mathematical equation showing C superscript d subscript b times the covariant derivative with respect to d and a of the product b superscript la times u superscript bl, equal to the covariant derivative with respect to b and a of b superscript la times u superscript bl, which equals zero.] holds trivially; thus, the system satisfies Condition 3.
The extended system consists of adding a term [image: Mathematical expression showing g sub one superscript b a, nabla sub a, capital Z.] to Equation 9, with [image: Mathematical expression showing g sub one raised to the power of b a, with b a written as a single superscript above g sub one.] as in the previous example and with the extra variable [image: Capital letter Z in a bold, italic, serif font against a white background.]. Its principal part is [image: Mathematical equation featuring tensor notation: u raised to the power of open bracket a, followed by nabla sub a, b superscript b closed bracket, plus g sub l superscript b c, C sub c superscript d, nabla sub d Z equals zero.], with [image: Mathematical equation showing C subscript b, superscript a equals delta subscript b, superscript a, representing the Kronecker delta.]. The characteristic equation is
[image: Mathematical equation showing one half times the sum of u superscript 1 minus g eight b b star minus u superscript 1 minus g eight b b plus e superscript g eight t times u superscript 1 minus g eight t delta Z equals zero, labeled as equation ten.]
where we need to solve this equation for [image: Mathematical equation showing lowercase l subscript a equals negative lambda times lowercase u subscript a plus lowercase k subscript a.] with [image: Italicized mathematical notation displaying the lowercase letter k with a lowercase letter a as a subscript, commonly used to represent an equilibrium constant, such as the acid dissociation constant.] given, and for the eigenvectors [image: Mathematical expression displaying the Greek letter delta followed by a capital Z, commonly used to represent a change in the variable Z.] and [image: Mathematical expression showing the Greek letter delta followed by b with a superscript a, typically representing a variable b raised to the power a and varied by delta.] (with [image: Mathematical equation showing u sub a times delta b superscript a equals zero.]).
Without loss of generality, we choose [image: Mathematical expression showing the variable k with a raised superscript a, indicating k raised to the power of a.] such that [image: Mathematical expression showing u raised to the power a multiplied by k subscript a equals zero.], and we rewrite the characteristic equations projecting on to [image: Italicized mathematical expression showing the variable u with subscript a.] and perpendicular to it (with the projector [image: Mathematical expression showing h subscript a b is equivalent to g subscript a b plus u subscript a multiplied by u subscript b.]). We obtain
[image: Mathematical equations with two lines. First line: one half times k sub a times delta b superscript a plus u sub a times g sub one superscript ab times l sub b times delta Z equals zero. Second line: one half times lambda times delta b superscript a plus h sub epsilon superscript a times g sub one superscript epsilon b times l sub b times delta Z equals zero.]
The physical solution comes from choosing [image: Mathematical expression showing the lowercase Greek letter lambda followed by an equals sign and the number zero.], and the eigenvectors [image: Mathematical expression displaying the Greek letter delta followed by the letter Z equals zero.] and [image: Mathematical expression showing the lowercase Greek letter delta, followed by the letter b with superscript a.] orthogonal to [image: Italic lowercase letter k with a subscript lowercase a.]. Because [image: Mathematical expression showing Greek letter delta, followed by italic lowercase b with an italic superscript a.] has two possible directions, we obtain two eigenvectors.
The remaining eigenvectors come from choosing [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or a parameter in various formulas.] such that
[image: Mathematical expression showing the partial derivative of S subscript b superscript r with respect to t, evaluated at t equals b, equals zero, labeled as equation eleven.]
and [image: Mathematical equation showing delta Z equals one half times lambda, where delta Z is represented by the Greek letter delta followed by Z and lambda is represented by the Greek letter lambda.], [image: Mathematical equation showing delta b superscript a equals h superscript a sub c times g subscript one superscript c b times l subscript b.]. This expression satisfies the second characteristic equation trivially, and it is easy to verify that the first one reduces to
[image: Mathematical equation displaying one half times k sub a delta b delta a superscript x plus u sub a s superscript b one l sub b delta z equals one half l sub a s superscript b one l sub b equals zero.]
Because, as before, there are two solutions for [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or other variables depending on context.] from Equation 11, we obtain two more eigenvectors. In summary, we have obtained the four eigenvectors we require to satisfy the Kreiss condition and conclude that the extended system is strongly hyperbolic. Finally, we notice that Equation 11 can also be rederived from the integrability condition, i.e., by multiplying Equation 10 by [image: Mathematical expression showing C subscript b superscript d times l subscript d equals l subscript b.].
6 CONCLUSION
Similar extensions to those proposed here were previously known, starting with the divergence cleaning used in magnetohydrodynamics and later generalized as [image: Lowercase Greek letter lambda, written in a slanted, serif typeface, displayed in black on a white background.]-systems for generic symmetric hyperbolic systems. To implement them, it was necessary to break the covariance of the system in the usual sense of performing a [image: Mathematical expression showing three plus one.] decomposition. For symmetric hyperbolic systems, such extensions can be obtained in our framework by committing to a frame and a reduction and adding an extra term that annihilates the time component of the constraint basis. This results in an extended symmetric hyperbolic system.
In this article, we have presented an extension scheme for first-order PDEs. With appropriate adaptation, however, these results can be applied to systems of two or even more orders. We will show in future articles how to apply these ideas to gravity theories to extend the system and to fix the gauge, allowing us to reinterpret and generalize known results such as those of Bona et al. [25]; Hilditch and Richter [26]; Kovács and Reall [27].
Although the existence of a strongly hyperbolic extension is performed in Fourier space and results in a system of pseudodifferential equations, our examples show that in cases of physical interest, one may obtain differential extensions. These extensions furthermore retain covariance of the theory in the sense that, contrary to earlier [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or decay constants depending on context.]-system extensions, at least in the principal part, they do not rely on a preferred time direction but instead the addition of other Lorentzian metric tensors. Further details and a complete proof will be provided in a longer version of this work.
In our analysis, we resorted to previous work to argue that the constraints, if initially satisfied, are satisfied at later times. This helped us conclude that [image: Mathematical notation displaying the letter Z with a subscript T.] remains zero throughout the evolution. There are, however, more elegant ways to show this when the constraints do not have any kernel from the left, that is, no set of zero rows in their Kronecker decomposition (see Equation 3). In such cases, it can be shown that the [image: Mathematical notation showing an uppercase Z with a subscript T, typically representing a variable such as impedance or value labeled T in equations.] fields satisfy a second-order evolution system that is decoupled from [image: Mathematical expression showing lowercase Greek letter phi with a superscript lowercase Greek letter alpha.] and has a well-posed initial value problem. Choosing these fields to vanish at the initial surface and the [image: Mathematical expression showing the Greek letter phi with the Greek letter alpha as a superscript, commonly used to denote variables or parameters in scientific formulas.] fields satisfy the original constraints of the system, all derivatives of [image: Mathematical notation showing an uppercase letter Z with a subscript uppercase letter T, commonly used to represent a variable or parameter in equations.] vanish on the initial surface, in particular any transversal derivative, so the unique solution to the second-order system is 0, and the constraints are satisfied for all times. Unfortunately, the presence of zeros may prevent the second-order system from being well-posed, so more care is needed. This will be further considered in the aforementioned longer article.
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FOOTNOTES
1Here the target space is two copies of [image: Mathematical expression showing an uppercase italic R followed by a superscript four, representing the four-dimensional Euclidean space, commonly denoted as R to the power of four.], and the image is 1-dimensional on each one of them.
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Transients in black hole perturbation theory
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Second order QNMs, usually referred to as QQNMs, have also been constructed recently [3, 4].
With respect to standard choices of inner product. See [10–13] for the construction of QNM orthogonality relations in other products.
See also [21] for a related study of extreme compact objects, where a Kreiss constant consistent with K(H)=1 was obtained numerically by computing the ratio of the pseudospectral abscissa αϵ(H)/ϵ in the limit ϵ→∞.
Note that [23] reports transient growth in the context of Kaluza-Klein black holes in Gauss-Bonnet gravity. However, the system studied in [23] is conservative up to boundary terms and (3.19) there can be written as a total derivative. As such, the reported result on transient growth is incorrect.
Note that this is different to the corresponding inner product used in [24].
In AdS/CFT, this model is known as the holographic superconductor [36–38], and it is linearly unstable for T<Tc (or equivalently μ>μc) corresponding to the superconducting phase.
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Black hole quasinormal modes arise as eigenmodes of a non-normal Hamiltonian and consequently they do not obey orthogonality relations with respect to commonly used inner products, for example, the energy inner product. A direct consequence of this is the appearance of transient phenomena. This review summarises current developments on the topic, both in frequency- and time-domain. In particular, we discuss the appearance of i) transient plateaus: arbitrarily long-lived sums of quasinormal modes, corresponding to localised energy packets near the future horizon; ii) transient growth, with the latter either appearing in the vicinity of black hole phase transitions or in the context of higher-derivative Sobolev norms.
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1 INTRODUCTION
An indispensable tool in the study and characterisation of the dynamics of black holes is their spectrum of quasinormal modes (QNMs) – for recent reviews see [1, 2]. QNMs are solutions to the wave equation arising when general relativity is considered perturbatively at linear order, and they determine how small perturbations evolve over time, capturing their ‘ringdown’ behaviour.1 As such, QNMs have received a lot of attention in the literature. Within holography, they determine the near-equilibrium properties of strongly coupled quantum field theories, in particular some transport coefficients, such as viscosity, conductivity and diffusion constants [5, 6]. In astrophysics, the detection of QNMs in gravitational wave experiments would allow precise measurements of the mass and spin of black holes–through the so-called black hole spectroscopy programme [7] – as well as new tests of general relativity. Similarly, QNMs also serve as indicators of black hole instabilities: a single unstable mode signals exponentially growing perturbations leading to a new equilibrium configuration, which is particularly important in higher dimensions as well as in the holographic context. In addition, QNMs also play an instrumental role in semiclassical gravity, e.g., in the context of Hawking radiation [8], as well as in Mathematical Relativity, e.g., in understanding properties of Cauchy horizons [9].
The defining property of a black hole is its event horizon, through which energy dissipates. This dissipative nature of black holes has a direct imprint on the operator that gives rise to QNMs: the operator is non-normal. This absence of normality leads to the QNM eigenfunctions being neither orthogonal2 nor complete, while the QNM frequencies are highly sensitive to small perturbations, resulting in spectral instability. These features substantially complicate the interpretation of QNMs and, in fact, in certain contexts question the validity of their use. Note that non-normality is a generic feature of dissipative systems and as such, has been observed and investigated in both (i) quantum mechanics, where the introduction of non-selfadjoint operators in PT-symmetric quantum mechanics entails that the associated spectrum is insufficient to draw full, quantum-mechanically relevant conclusions [14], and in (ii) fluid dynamics in relation to the transition between laminar and turbulent flows [15].
In essence, to-date, we have only explored the ‘tip of the iceberg’ in terms of non-normality in black hole physics, especially in dynamical settings, where the non-orthogonality of QNMs can give rise to short-term, transient phenomena. Here we review progress in this direction.
In order to set the stage, in what follows we foliate spacetime with hyperboloidal slices, Στ – spacelike slices that pierce the future event horizon. These slices are labeled by time τ and are traversed by a radial coordinate z with the future event horizon reached at z=1. For brevity we suppress dependence in the transverse directions. In the spacetimes we consider here, the equation of motion for a perturbation ψ(τ,z) (scalar, electromagnetic, or spin-2), will obey a first-order-reduced equation of motion,
i∂τu=Hu,(1)
where H is a 2×2 matrix and a second-order differential operator in z and u=(ψ,∂τψ)T. For initial data u(0,z), the time-dependent solution of the system is given formally as u(τ,z)=e−iHτu(0,z), in terms of the evolution operator e−iHτ. Given a harmonic decomposition u(τ,z)∼χ(z)e−iωτ, QNMs are defined as solutions to the eigenvalue problem
ωnχn=Hχn,
subject to ingoing behaviour at the future event horizon and appropriate boundary conditions at infinity. Then, the spectrum of the theory is given by σ(H)={ωn,n≥0}. We can define an energy associated to matter on a hyperboloidal slice by
E≡∫ΣτTτμnμ dΣτ,(2)
where n=−1−gττdτ is the unit, future-directed normal to Στ. Tμν is the matter stress-energy tensor, and is at least quadratic in the perturbation ψ. Note that Tμν can contain contributions from other fields. Due to local conservation of the currents Tμν, the total energy E is conserved up to boundary terms. The energy of ψ on Στ is then given by Equation 2 with Tμν=Tμνψ, from which the energy inner product ⟨⋅,⋅⟩E (see [16] for an extended discussion) is defined such that
Eu=⟨u,u⟩E=‖u‖E2.(3)
2 INSIGHTS FROM THE PSEUDOSPECTRUM
One can extract various insights about the time domain problem from spectral features. In particular, a useful object is the pseudospectrum,
σϵH=ω∈C  ω∈σH+δH,‖δH‖≤ϵ,(4)
which, along with many of the definitions in this section, can be found in [15]. In the black hole context, Equation 4 has received much attention as a way to assess the stability of QNM frequencies under environmental perturbations [17], building upon the seminal observations of [18, 19]. Heuristically, σϵ at fixed ϵ provides the contours of a useful topographic map of the complex frequency plane. Peaks are infinitely high and correspond to the point spectrum, while the width of the peaks have something to say about the associated spectral stability properties and transient effects.
In particular, for our purposes, a significant protrusion of pseudospectral contour lines into the unstable-half ω-plane points towards transient phenomena (in our conventions this is the upper-half ω-plane). A lower bound on the peak growth of the evolution operator is given as follows,
supτ≥0‖e−iHτ‖≥αϵHϵ,∀ϵ>0,
where we have introduced the pseudospectral abscissa, αϵ(H)=sup Im σϵ(H). The strongest lower bound is given by the Kreiss constant, K(H)=supϵ>0αϵ(H)/ϵ. Relatedly, an upper bound on growth follows from
‖e−iHτ‖≤e−iwHτ,∀τ≥0,
where we have introduced the numerical abscissa w(H)=supϵ>0(αϵ(H)−ϵ).
In the black hole context, these quantities were first studied in [20] in the context of binary black hole mergers in the close-limit approximation.3 Specifically, in the case of a Schwarzschild black hole in the energy norm (Equation 3) [20], computed the numerical abscissa to be w(H)=0, which implies K(H)=1. This implies there is no growth of energy of a perturbation in the exterior of Schwarzschild spacetime, which is simply a consequence of energy conservation [22].4
Going further, one may ask if the pseudospectrum can be used to identify scenarios in which perturbations of black holes can grow. However, a critical issue arises when Equation 4 is considered more generally in the black hole context. This is most easily stated using the following equivalent definition of Equation 4, which utilises the norm of the resolvent,
σϵH=ω∈C  ‖RHω‖=‖H−ωI−1‖≥1/ϵ.
when the resolvent operator is approximated as a matrix for the purposes of numerical evaluation it does not always converge with increasing resolution [24]. See [25, 26] for further discussions. However, it is proven in [27] for asymptotically AdS and dS black holes that the norm of the resolvent exists in a band structure in the complex ω plane provided one uses a particular class of higher-derivative norms. There, higher-derivative norms were introduced in order to impose a higher degree of regularity for the purposes of defining QNMs. This motivates the use of higher-derivative norms both in the evaluation of pseudospectra and for assessing transient phenomena, as in [26]. In [26] the following higher-derivative norms are defined5
〈u1,u2〉Hp=∑j=0p〈∂xju1,∂xju2〉E,(5)
referred to as the Sobolev Hp-inner product, where here (τ,x) refer to the Bizoń-Mach hyperboloidal coordinates [28] for the Pöschl-Teller model. Note p=0 corresponds to the energy-norm.
The Kreiss constant was also discussed in [29], where it was extracted from the pseudospectrum of a truncated Hamiltonian, HW, where the functional space was restricted to a subspace W of the first M quasinormal modes [29]. found that K(HW)>1, for a system describing charged scalar perturbations in a Reissner-Nordström (RN) - AdS4 black brane. This indicates that there exist perturbations that exhibit transient energy growth in the scalar field when all the modes are stable.
3 TIME DOMAIN
In the last section, we presented quantities computed from the pseudospectrum (and its respective limits) that provide insights into the time evolution of linear perturbations. In particular, a non-zero numerical abscissa, w(H)>0, and thus K(H)>1, immediately implies that there exist perturbations whose time evolution exhibit transient growth in the observable defined by the chosen norm ‖⋅‖. The pseudospectral analysis is however incomplete, since it does not capture important transient effects that arise even in the absence of growth [22], and should be complemented with a full time domain evolution of perturbations.
Consider a black hole coupled to a scalar field. A natural choice of observable is the energy of the scalar field ψ on hyperboloidal slices as given by the energy norm ‖⋅‖E (Equation 3). A key feature now is that energy dissipation through the horizon and to I+ renders a non-normal H in Equation 1 under ⟨⋅,⋅⟩E, and thus its regular normalisable eigenfunctions (the QNMs) are not orthogonal under this product. Consequently, the energy of a perturbation formed from a sum of QNMs, u(τ,z)=∑n=1Mcne−iωnτχn(z), is not just the sum of the energies of each individual QNM, but rather
Eu=∑n=1M|cn|2e2Im ωnτEχn+cross-terms.(6)
there are cross-terms arising from the non-orthogonality of QNMs under Equation 3 that allow for non-trivial transient dynamics. Note that without the cross-terms, the slowest possible energy decay is set by the fundamental mode ω0.
In this context, the first systematic time domain study of transients in black hole perturbations was introduced in [22] using the energy growth curve, G(τ)≡‖e−iHτ‖E2, and optimal perturbations–tools inherited from hydrodynamics [30–35]. Considering a subspace of solutions W to Equation 1 spanned by the first M=dim(W) QNMs, {χn}n=1M (ordered by decreasing Im ω), GW(τ)≡‖e−iHWτ‖E2 determines the maximum possible energy at a specific time τ, relative to the energy at a fiducial initial time τ=0, over all solutions in W. Optimal perturbations, uopt.∈W, are then those that maximise the energy at a target time τ∗ such that E[uopt.(τ∗,z)]=GW(τ∗). Both the value of GW(τ∗) and the set of coefficients c⃗ in the initial data expansion.
uopt.0,z=∑n=1Mcnχnz(7)
where QNMs are normalised ⟨χn(z),χn(z)⟩E=1, are obtained from the singular value decomposition of e−iHWτ* – HW is the representation of HW in an orthonormal basis of functions for W, an M×M matrix encoding the information of the spectrum (see [22, 29] for more details). Finally, uopt. evolves simply according to the time evolution of each QNM in Equation 7, i.e.,
uopt.τ,z=∑n=1Mcne−iωnτχnz.
Using this methodology, the main result of [22] consisted in demonstrating the existence and constructing (both analytically and numerically) arbitrarily long-lived linear black hole perturbations in a variety of spacetimes, due to transient effects, despite a lack of energy growth. An example of such perturbations for s=2,l=2 (spin and angular momentum) Regge-Wheeler QNMs of the Schwazschild black hole is presented in Figure 1. The top panel shows GW for different values of M indicating the absence of growth in the energy of perturbations, in accordance with the ω(H)=0 and K(H)=1 results discussed in section 2. Note that the total (quadratic in perturbations) energy of the system E can only stay constant or decay, and its only contribution is the energy of the gravitational perturbation. However, GW exhibits an initial transient plateau with duration ∼log⁡M that demonstrates the existence of optimal perturbations with lifetimes scaling as log⁡M, followed by an exponential decay with the fundamental mode ω0 decay rate. The energy of such a perturbation, E[uopt.(τ,z)], is displayed in red-dash. In the bottom panels, |uopt.| (left) and its energy density (right) are plotted in the conformal diagram. From the energy density, it is clear that uopt. is physically realised as localised energy packets travelling along H+ and I+ that do not either fall into the black hole or escape to infinity, respectively, until τ≃τ∗. Mathematically, this is a direct consequence of the non-orthogonality of QNMs under the energy norm (Equation 3), ultimately due to non-normality of HW, which leads to the cross-terms in Equation 6 allowing for cancellations in the sum that keep the energy constant.
[image: Line graph at the top plots GW(τ) versus τ, with three curves labeled M equals 39, 19, and 10 showing decreasing trends as τ increases; a red dashed curve with a red dot overlays the black curve. Below, two color density spacetime diagrams with labeled axes H-plus and I-plus represent different data distributions, both featuring a red dashed line at the top boundary.]FIGURE 1 | Energy growth curves and optimal perturbation for Schwarzschild s=2,l=2 Regge-Wheeler perturbations (figure taken from [22]). Top: GW for various M=dim(W) (solid curves), and the energy of an optimal perturbation of M=39 QNMs with τ∗=8.5 (red-dash). Bottom: Modulus (left) and energy density (right) of the optimal perturbation in the conformal diagram of Schwarzschild. The energy is initially localised at H+ and I+, and then propagates along them until it starts dispersing and decaying at τ≃τ∗ (indicated by the white slice near i+). The dash-dotted red line represents the curvature singularity.Building on [22, 29] established the first case of transient energy growth in linear black hole perturbations considering RN-AdS4 black branes at chemical potential μ linearly perturbed by a complex scalar ψ with charge q. The key difference here is that the total energy of the system does not correspond to the energy of ψ alone. In particular, in the q→∞ limit suppressing backreaction to the metric, E receives contributions from both the scalar, ψ, and the gauge field, A,
E=Eψ+EF,(8)
where F=dA, which are coupled to each other through q. Then, choosing ‖⋅‖Eψ to construct optimal perturbations in the same fashion as before, Eψ was shown to exhibit significant transient growth before asymptotic decay via a transient form of superradiance–borrowing from the energy bath EF – in the modally stable regime.6 This is shown in the left panel of Figure 2, which displays GW and Eψ for an optimal perturbation with M=10 QNMs exhibiting transient growth. The first correction to the background gauge field energy, which appears at quadratic order in perturbations, EF(2), takes negative values implying transfer of energy from A to ψ, while the total energy E=Eψ+EF(2) can only decrease due to losses to the horizon. Empirically, it was observed that the peak of the growth curve increases with M within the range of values considered. Note that this is not a special feature of the q→∞ limit, the finite q case is also examined in [29] with same qualitative results.
[image: Side-by-side scientific graphs show energy and stability evolution over time τ. Left panel: a line graph with four curves (black, red, blue, black dotted) representing energy contributions and their transitions through transient and modal decay phases, with a legend for GW, Eψ, Eψ + EF(2), and EF(2). Right panel: a semilogarithmic plot compares maximum norm growth (red dashed) and function G(τ) for two grid sizes (black solid for N=100, gray dashed for N=60) with convergence of curves after an initial spike; legend notes relevant lines and grid sizes.]FIGURE 2 | Left: optimal perturbation and energy growth curve GW(τ) (black dash) for complex charged scalar QNMs of the RN-AdS4 black brane with M=10. Eψ (solid black curve) is shown to transiently grow before modally decaying at asymptotic time. The additional energy is borrowed from the energy bath EF via a transient form of superradiance, as can be seen from the first correction to EF, EF(2) (solid blue curve). The example shown corresponds to the probe limit q→∞ with μq=3.9, spatial momentum k⃗=0, with target time τ∗=2.7. Figure taken from [29]. Right: growth curve G and the norm of umax(τ,x) obtained by time-evolving the optimal perturbation uopt.(τ∗=τmax,x) in the Sobolev H25 norm. A transient growth is observed and yields a peak at τmax≈125=0.04, before a modal oscillatory decay. The growth curve G is computed for two different resolutions N=60 (dashed gray curve) and N=100 (solid black curve), thus illustrating the convergence of the profile we observe on this panel. Figure taken from [26].Transient behaviour has also been seen in Sobolev Hp norms Equation 5 in [26] in the Pöschl-Teller toy model, corresponding to the Klein-Gordon equation in the static patch of de Sitter spacetime. Following a similar approach to [22, 29], optimal perturbations uopt.(0,x) were obtained using a ‘generalised’ singular value decomposition of the finite rank approximant of the evolution operator e−iHτ, but this time without relying on a subspace of solutions W. For a target time τ∗, these optimal perturbations maximise the Sobolev Hp inner product such that ⟨uopt.(τ∗,x),uopt.(τ∗,x)⟩Hp=G(τ∗).
In the case of H0 norm (corresponding to the energy norm), no transient growth is observed. Similar to [22], non-modal behaviour manifests itself as an initial transient plateau in G, followed by the expected modal decay, with a scalar field profile localised near the boundaries. However, unlike [22], the results are not convergent as the duration of the plateau scales as log⁡N with the number of points N used in the numerical approximation, further motivating the use of Hp norms with p>0.
In the case of Hp Sobolev norm with p>0, transient growth is observed. Specifically, one obtains an initial ‘peak’, which is followed by modal decay according to the lowest-lying QNM at late times; the right panel of Figure 2 exemplifies this behaviour for p=25, showing G and ⟨uopt.(τ∗,x),uopt.(τ∗,x)⟩H25 for τ∗=τmax corresponding to the time of the peak. Note that uopt.(τ∗,x) is an order-p polynomial. The profile of the optimal perturbation uopt.(τ,x) is found to be numerically convergent and, importantly, it resides in the bulk of the geometry; this is different to the energy-norm case where the optimal perturbations was peaked near the boundaries. Applying the ‘Keldysh’ spectral decomposition scheme to uopt.(0,x) shows that most of the transient peak originates from the (p+1)-th pair of QNMs, ordered by decreasing Im ω; note that the decay rate of these modes is 1p.
As the order p of the Hp Sobolev norm is increased, the peak in the growth curve increase as G(τmax)=maxτ≥0G(τ)∼p and moves to shorter timescales, τmax∼1/p. The scaling of τmax is a result of the decay rate of the QNM giving rise to the majority of the transient peak mentioned above.
Lastly, it is illuminating to understand the existence of Hp-transient growth in the context of energy conservation. Specifically, the Hp-norm satisfies
Eu=⟨u,u⟩Hp−∑j=1p∂xjuE2,(9)
where E[u] is conserved up to boundary terms. In a way analogous to Equation 8, Hp-transient growth is permitted as a result of transfer of weight between the two terms in the right hand side of Equation 9.
Let us conclude this section with a comparison of the two methods discussed above: truncating the set of QNMs or using higher-derivative norms. Both approaches provide a way of regulating the UV and are equally easy to implement. The motivations for using them are different: in the former case the motivation was a physical truncation of the theory to low energy modes inspired by analogous constructions in hydrodynamics, while in the latter case the motivation was a consideration of regularity. The truncation method results in a finite dimensional Hilbert space which can be convenient to work with. The physical interpretation of the Hp-norm remains an open question.
4 DISCUSSION
This short review summarises recent work on transient phenomena in black hole dynamics. The lack of normality of the evolution operator, emerging as a consequence of the dissipative nature of black hole spacetimes, results in the non-orthogonality of QNMs. This, in turn, allows for linear perturbations to exhibit non-modal behaviour (either in the form of transient growth or lack of decay) before eventually conforming to modal decay.
The existence of transients can be inferred from frequency-domain computations involving the pseudospectrum: the protrusion of pseudospectral contour lines in the unstable half plane indicates an unstable perturbed spectrum, and hence non-modal behaviour. In order to observe transient growth, the protrusion needs to be larger than the size of the external perturbation ϵ, giving rise to a Kreiss constant K>1. This raises again the issue of the numerical convergence of the pseudospectrum as discussed in section 2, and motivates the exploration of the truncated-Hamiltonian pseudospectrum of [29].
Time-domain results exhibit striking qualitative similarities to the prototypical example of transient effects in the transition to turbulence in Navier-Stokes shear flows. Two particularly interesting questions that currently remain open relate to the non-linear evolution sourced by such initial data and the potential connection with the Aretakis instability.
Black hole QNMs have been a central focus of gravitational physics for over half a century, yet it remains striking that we still lack a full understanding of the consequences stemming from the absence of a spectral theorem in this context. This gap points to an exciting new direction in the field, suggesting that much remains to be uncovered. Particularly compelling questions include how much of the gravitational wave signal emanating from a binary merger can be attributed to linear transient dynamics, as well as the role of transients in strongly coupled systems, such as the quark-gluon plasma and high-temperature superconductors, via the AdS/CFT correspondence. Other arenas include analogue gravity systems, where fluid or optical setups mimic aspects of black hole spacetimes.
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