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Editorial on the Research Topic
 Methods and applications of diffusion MRI tractometry




Advances in diffusion MRI (dMRI) have enabled increasingly precise reconstruction and quantification of white matter pathways, and tractometry has emerged as a powerful framework for examining microstructural and macrostructural properties along the length of specific tracts. The concept of tractometry arose from early efforts to quantify dMRI metrics along white matter pathways rather than across broad regions. Early implementations summarized each bundle with a single averaged dMRI measure (e.g., mean fractional anisotropy), representing a pioneering and foundational step in combining tractography with diffusion tensor imaging (DTI). While this approach laid important groundwork for tract-specific analyses, it inherently overlooked spatial heterogeneity along the tract. The field advanced with the introduction of the Pointwise Assessment of Streamline Tractography Attributes (PASTA) introduced by Jones et al. (2005), which enabled pointwise sampling of microstructural measures along the tract length and established the foundation for along-tract analyses. The term tractometry was first formally introduced by Bells et al. (2011), defining it as a multimodal framework for quantitative assessment of white matter microstructure along specific tracts. Modern tractometry approaches now integrate diffusion- and microstructure-based metrics such as DTI, neurite orientation dispersion and density imaging (NODDI), and diffusion kurtosis imaging (DKI) to generate spatially detailed along-tract profiles for statistical analysis across individuals and populations, or broadly, any quantitative analysis utilizing streamlines. Collectively, these developments have established tractometry as a powerful framework for mapping white matter alterations with high anatomical specificity.

This Research Topic brings together methodological innovations, translational applications, and large-scale analyses that showcase how tract-specific profiling can advance our understanding of development, disease mechanisms, individual variability, and structure–function relationships. Collectively, the contributions highlight growing advancements in tractometry workflows, the value of open and reproducible tools, and the expanding range of neuroscientific questions that can be addressed using tractometry approaches. This Research Topic features sixteen articles spanning clinical, developmental, computational, and translational domains, illustrating both the breadth and future promise of tractometry.

Bosticardo et al. examined myelin-weighted structural connectivity across the lifespan, demonstrating that tractography-derived myelin measures capture characteristic phases of maturation and degeneration that unfold along specific pathways. Their work illustrates how myelin-sensitive tractometry can complement dMRI-based metrics and enhance our understanding of age-related white-matter trajectories.

Weber et al. used fMRI-guided diffusion MRI tractography to map white matter changes in autism across development. They found early reductions in callosal and periventricular tracts in infants, expanding to widespread disruptions in adolescents and adults. The study highlights edge-density mapping as a sensitive tool for early detection and longitudinal tracking of ASD-related network alterations.

González Rodríguez et al. introduced an open and modular software platform designed to support reproducible tractography, bundle segmentation, clustering, and visualization. Their contribution lowers practical barriers to tractometry adoption and promotes standardized workflows for both research and clinical studies.

Poo et al. presented a simulation framework that generates realistic white-matter streamlines with known ground-truth labels, enabling objective benchmarking of clustering and segmentation methods. This resource directly addresses a major validation challenge in tractometry by providing a controlled environment for algorithm comparison.

Mendoza et al. focused on the superficial white matter and demonstrated that targeted filtering of short U-fibers can substantially improve test–retest reproducibility. By reducing anatomically implausible streamlines, their work shows how thoughtful preprocessing can sharpen effect sizes and enhance sensitivity to group differences.

Kruper et al. leveraged a large population dataset to extract along-tract diffusion profiles, quantify their heritability, and relate tract-specific features to individual traits. By releasing their processed outputs and tools to the community, the authors provide an important normative resource for future tractometry research.

Xue et al. introduced a supervised contrastive learning framework that improves the prediction of cognitive performance from harmonized multisite tractography data. Their findings highlight the synergy between tractometry and modern machine-learning approaches for modeling brain–behavior relationships at scale.

Guberman et al. investigated youth with traumatic brain injury and disruptive behavior, revealing tract-specific microstructural alterations and sex-dependent effects. Their results demonstrate the value of along-tract analyses for uncovering subtle developmental differences that global metrics may overlook.

Yang Z. et al. explored structural connectivity in insular glioma patients, showing that genetic subtype was associated with distinct patterns of white-matter disruption. Their findings illustrate how tract-focused network analysis can illuminate tumor-related reorganization and support more individualized characterization of lesion impact.

Meisler et al. provided a practical guide for integrating functional regions of interest with tractography-defined pathways, enabling the creation of functionally informed sub-bundles. This work facilitates multimodal tractometry pipelines that link white-matter architecture with functional specialization.

Persson and Moreno addressed streamline redundancy in tractography by proposing a framework to estimate and reduce excessive or overlapping streamlines. By improving anatomical specificity and computational efficiency, their method supports more stable and interpretable tract-level metrics.

Yang S. et al. reviewed diffusion-tensor methods in small-vessel disease and highlighted the limitations of traditional voxel-based and region-of-interest (ROI) approaches. They emphasized the need for tract-specific methods that better localize cerebrovascular injury along affected pathways.

Hernandez-Gutierrez et al. evaluated multi-tensor fixel-based metrics and demonstrated improved robustness in crossing-fiber regions, particularly in multiple sclerosis. Their tractometry pipeline showed enhanced sensitivity to lesion-related abnormalities and illustrates the advantages of richer microstructural modeling.

Quizhpilema et al. investigated amyotrophic lateral sclerosis and revealed asymmetric degeneration extending beyond classic motor pathways. Their along-tract analyses reinforce the concept of amyotrophic lateral sclerosis (ALS) as a network-level disorder rather than a purely motor disease.

Behroozi et al. highlighted the role of ex-vivo diffusion imaging in large-animal models as a translational bridge between histology and human research. By outlining how ex-vivo data can validate microstructural interpretations, their work supports the biological grounding of tractometry measures.

Witt et al. extended tractometry to the spinal cord and showed that profiling diffusion and macrostructural features across cervical levels increases sensitivity to localized pathology in multiple sclerosis. Their findings demonstrate that the along-tract concept can be meaningfully applied beyond the brain.

From this Research Topic, we see that tractometry has evolved into a broad and integrative framework encompassing connectome-wide analyses of both long-range and short association pathways, including functionally defined, non-human, and spinal cord applications. Across the lifespan and in diverse conditions, from cognition and multiple sclerosis to autism, small vessel disease and gliomas, tractometry enables precise mapping of white matter microstructure using diffusion-based, fixel-based, and connectomic measures. Recent advances extend beyond traditional DTI and tract-averaged analyses, to incorporating myelin-sensitive metrics, morphometry, and differential tractography. Together, these developments highlight a growing ecosystem of tractometry tools that bridge structure, function, and pathology across species and systems, advancing whole-brain, circuit-level understanding of the human and non-human connectome.
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Introduction: Autism spectrum disorder (ASD) is associated with both functional and microstructural connectome disruptions. We deployed a novel methodology using functionally defined nodes to guide white matter (WM) tractography and identify ASD-related microstructural connectome changes across the lifespan.
Methods: We used diffusion tensor imaging and clinical data from four studies in the national database for autism research (NDAR) including 155 infants, 102 toddlers, 230 adolescents, and 96 young adults – of whom 264 (45%) were diagnosed with ASD. We applied cortical nodes from a prior fMRI study identifying regions related to symptom severity scores and used these seeds to construct WM fiber tracts as connectome Edge Density (ED) maps. Resulting ED maps were assessed for between-group differences using voxel-wise and tract-based analysis. We then examined the association of ASD diagnosis with ED driven from functional nodes generated from different sensitivity thresholds.
Results: In ED derived from functionally guided tractography, we identified ASD-related changes in infants (pFDR ≤ 0.001–0.483). Overall, more wide-spread ASD-related differences were detectable in ED based on functional nodes with positive symptom correlation than negative correlation to ASD, and stricter thresholds for functional nodes resulted in stronger correlation with ASD among infants (z = −6.413 to 6.666, pFDR ≤ 0.001–0.968). Voxel-wise analysis revealed wide-spread ED reductions in central WM tracts of toddlers, adolescents, and adults.
Discussion: We detected early changes of aberrant WM development in infants developing ASD when generating microstructural connectome ED map with cortical nodes defined by functional imaging. These were not evident when applying structurally defined nodes, suggesting that functionally guided DTI-based tractography can help identify early ASD-related WM disruptions between cortical regions exhibiting abnormal connectivity patterns later in life. Furthermore, our results suggest a benefit of involving functionally informed nodes in diffusion imaging-based probabilistic tractography, and underline that different age cohorts can benefit from age- and brain development-adapted image processing protocols.

KEYWORDS
autism spectrum disorder, neurodevelopment, DTI, connectome, microstructure


1 Introduction

In the United States, one in thirty-six (2.8%) 8-year-old children have been diagnosed with autism spectrum disorder (ASD) (CDC, 2023). Intense efforts to study ASD etiology and pathophysiology have identified numerous etiological contributors, including genetic factors (Jacquemont et al., 2014; Grove et al., 2019) and morphological correlates (Li et al., 2017; Figueiredo et al., 2020), with converging evidence for connectome disruptions playing a central role in the pathogenesis of ASD (Assaf et al., 2010; Hong et al., 2019; Benkarim et al., 2021; Weber et al., 2022).

ASD typically manifests in difficulties in communication and social interaction, as well as through repetitive behavior patterns. These three core symptoms build the basis for the Autism diagnostic observation schedule (ADOS) (Lord et al., 2000), the gold-standard for diagnostic interviewing in ASD (Levy et al., 2009). Among individuals on the autism spectrum, symptom manifestation, onset and severity are largely heterogeneous. Timely diagnosis and therapeutic intervention are crucial for optimal support of autistic individuals, but high heterogeneity in symptom manifestation and severity can impede recognition of early symptoms and access to appropriate resources. While ASD is commonly first diagnosed in childhood and at school age, new diagnoses occur throughout the lifespan (Hume et al., 2021). Depending on a subject’s sex, socioeconomic resources, individual symptom profile and their ability to camouflage symptoms, diagnosis may be significantly delayed (Howlin et al., 2004; Huang et al., 2021; Hume et al., 2021), thus impeding early intervention. This underlines the demand for a better understanding of the underlying pathophysiology as well as for reliable non-invasive biomarkers for ASD.

Magnetic resonance imaging (MRI) offers a unique method to study the human brain in vivo. In the most recent efforts to investigate the brain’s connectome, i.e., as the sum of interconnected neuronal populations (Sporns et al., 2005), MRI offers different modalities to study both functional as well as microstructural connectivity between cortical nodes (Sporns et al., 2005; Finn et al., 2015). Functional MRI (fMRI) depicts connectivity as the time-course correlation between energy consumption rates of cortical nodes by leveraging the blood-oxygen-level-dependent signal as a proxy for metabolic activity (Logothetis et al., 2001; Gauthier and Fan, 2019). Microstructural connectivity can be depicted via four-dimensional diffusion-weighted imaging and the subsequent derivation of a diffusion tensor model (diffusion tensor imaging, DTI) (Lenglet, 2015; Tae et al., 2018). DTI enables the description of the microstructural properties of white matter (WM) tracts by reflecting water molecule mobility in their cellular components (Tae et al., 2018). Both techniques image the connection between cortical nodes: fMRI represent synaptic links between nodes (Raichle, 1998; Glover, 2011), while DTI reflects the WM fiber tracts responsible for signal transmission (Lenglet, 2015) (Figure 1).


[image: Illustration comparing microstructural and functional connectivity. Top: Microstructural connectivity features myelinated axons and diffusion tensor imaging indicating physical information transmission between cortical nodes. Bottom: Functional connectivity shows metabolic activity via BOLD signals from rs-fMRI, illustrating temporal correlation between cortical nodes. Grey and white matter are depicted to highlight computational units and physical connections.]

FIGURE 1
Simplified, conceptual depiction of microstructural and functional connectivity: For functional connectivity, cortical activity is approximated (e.g., as BOLD signals in rs-fMRI) and connectivity is derived as the correlation of activity between nodes. Microstructural connectivity reflects on the physical underpinnings of signal transmission (=WM tracts) by using water diffusivity in a tensor model as a proxy. The above, blue dotted microstructural connection is a conceptual representation of a WM link and does not accurately reflect neuroanatomy. Image sources: Servier Medical Art by Servier, licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/, neuron and axon graph), MNI-152 standard brain template (axial slice) (Mazziotta et al., 2001), standard brain surface mesh plotted via brainspace (https://github.com/MICA-MNI/brainspace/, surface in lower panel) (Fischl, 2012; Vos de Wael et al., 2020).


ASD-related functional connectivity alterations have been identified, pointing toward a mosaic pattern of functional underconnectivity in cortical networks as well as overconnectivity between the cortex and subcortical nuclei (Assaf et al., 2010; Müller et al., 2011; Benkarim et al., 2021). Similarly, microstructural connectivity disruptions have been identified, mostly impacting commissural tracts in the corpus callosum (Cheon et al., 2011; Ameis and Catani, 2015; Weber et al., 2022). The existing evidence of connectome alterations – both functional and microstructural – prompt the effort for multimodal imaging in ASD, to understand the underlying pathophysiological mechanisms and facilitate early recognition (Müller et al., 2011; Li et al., 2017). These connectivity changes show relation to age, specifically, there is evidence for inter-network hyperconnectivity and local hypoconnectivity in ASD children, whereas hypoconnectivity prevails among adults (Uddin et al., 2013a,b; Haghighat et al., 2021). Evidence suggests altered neurodevelopmental processes as potential biomolecular substrates of ASD-associated connectivity changes, including increased neuronal cell count (McFadden and Minshew, 2013; Kana et al., 2014) and columnar density (Buxhoeveden et al., 2006; Hutsler and Casanova, 2016) that impede cortical maturation processes in infancy (Uddin et al., 2013b; Kana et al., 2014; Haghighat et al., 2021). Typically, the first years of life are characterized by rapid cortical maturation and WM development (Deoni et al., 2012; Keehn et al., 2013; Sadeghi et al., 2013; Yu et al., 2020), transitioning into a period of slower growth in early childhood (Mukherjee et al., 2001; Lebel et al., 2008; Lebel and Beaulieu, 2011), and subsequently reaching steady growth levels in adolescence (Mukherjee et al., 2001; Westlye et al., 2010; Yu et al., 2020). Developmental processes and potential atypical deviations can be captured by different MRI modalities: Cortical connectivity alterations are usually studied using functional imaging (Supekar et al., 2013; Li et al., 2017; Morgan et al., 2019), whereas diffusion-weighted or structural imaging is used to detect microstructural changes (Ameis and Catani, 2015; Ismail et al., 2016; Li et al., 2017; Weber et al., 2022). Since ASD-related connectome alterations affect brain maturation differently throughout the lifespan (Ecker et al., 2015; Haghighat et al., 2021), we suggest that ASD-associated developmental abnormalities in certain age groups might benefit from multimodal imaging methods comprising both functional and microstructural information.

In the past years, new methods of MRI processing have emerged that seek to image connectome alterations in ASD, including probabilistic tractography, a method to remodel fibers based on DTI outcomes (Mazziotta et al., 2001; Behrens et al., 2007). From tractography, edge density maps (ED) can be derived that represent the number of WM microstructural connections (edges) between nodes. Traditional DTI-derived metrics such as fractional anisotropy and diffusivity measures reflect on water molecule mobility in single voxels and are therefore restricted in their ability to capture crossing fibers and full-length WM tracts (Seunarine and Alexander, 2014; Tae et al., 2018). ED offers the opportunity to remodel microstructural cortico-cortical connections, therefore allowing to study WM tracts in their full continuity (Behrens et al., 2003, 2007; Seunarine and Alexander, 2014; Owen et al., 2015). Changes in probabilistic ED have been reported in sensory processing and neurodevelopmental disorders, hinting toward potential benefits of including ED in addition to traditional DTI metrics in microstructural imaging studies (Payabvash et al., 2019a,b; Weber et al., 2022).

In a previous study (Weber et al., 2022), we leveraged DTI metrics and probabilistic ED to study the connectome alterations associated with ASD and found changes in adolescents and young adults; however, we were unable to find ASD-associated disruptions in younger cohorts (Weber et al., 2022). In the prior study, we used a generic anatomical atlas to define seed masks in tractography. Based on the increasing evidence for functional connectivity alterations in ASD, we here seek to integrate functional and WM microstructural connectome in our previous approach by using cortical nodes of ASD-related functional changes to guide WM tractography and generate fMRI-informed ED maps of the brain. We utilized multi-centric DTI datasets from four different study cohorts that include different age groups from infancy to adulthood. We employed probabilistic tractography that is, contrary to the preceding study, not based on anatomical cortical areas but rather representative of ASD symptom severity based on prior fMRI studies. We investigated ASD-related changes across different age cohorts using both voxel-wise analysis methods as well as tract-based comparisons.



2 Materials and methods


2.1 Datasets

In this study, we utilized a dataset of DTI and T1-weighted images from the national database of autism research (NDAR), consisting of four different study cohorts that each reflect a different age cohort: (i) Infants (A Longitudinal MRI Study of Infants at Risk for Autism (Piven, 2008), median age at imaging: 6 months), (ii) Toddlers (Biomarkers of Autism at 12 months (Courchesne, 2007), median age: 32 months), (iii) Adolescents (Multimodal Developmental Neurogenetics of Females with ASD (Pelphrey, 2012), median age: 13.1 years), (iv) Adults (Atypical late neurodevelopment in autism: A Longitudinal MRI and DTI study (Lainhart, 2007), median age: 19.1 years). For infants, ASD assessment followed at 24 months of age, while all other cohorts were evaluated at the time of imaging. Table 1 provides more detailed demographic information for each cohort. We excluded all subjects lacking ASD diagnosis status or any of the two imaging modalities, as well as subjects with genetic and psychiatric comorbidities. Furthermore, all images underwent visual quality control, and all subjects with failed linear coregistration to a standard brain template were excluded, resulting in a sample size of n = 583. A workflow of this process is shown in Supplementary Figure 1.


TABLE 1    Demographic information about the four study cohorts investigated.

[image: Table displaying data on autism studies by age cohort. It includes infants, toddlers, adolescents, and young adults. Columns detail the original study focus, sample size, mean age with standard deviation, number of ASD/TDC participants, and male percentage.]



2.2 Image acquisition

The acquisition protocols of study cohorts included:


(i)In the infant cohort, T1-weighted imaging was conducted with a repetition time (TR) of 2400 ms, time to echo (TE) of 3.16 ms, field of view (FOV) of 256, matrix size 224 × 256, and slice thickness 1 mm, diffusion weighted images were acquired in 26 variable b-values between 50 and 1000 s/mm2 increasing by 200 s/mm2 at each scan (25 gradient directions and one non-weighted image with b = 0 s/mm2) image on 3T Siemens Tim Trio, with TR = 12,800–13,300 ms, TE = 102 ms, FOV 190, matrix size 190 × 190, and slice thickness of 2 mm;

(ii)Toddlers’ T1-weighted imaging was acquired with TR = 6500 ms, TE = 2.8 ms, FOV = 240, matrix size 96 × 96, slice thickness 1.2 mm, DTI included 51 images with b = 1000 s/mm2 and one non-weighted b = 0 s/mm2 image acquired on 1.5 T GE Signa HDxt, TR = 13200 ms, TE = 80.6 ms, FOV 240, matrix size 96 × 96, and slice thickness 2.5 mm;

(iii)Adolescents’ T1-weighted imaging was acquired with TR = 5300 ms, TE = 3.3 ms, FOV 350, matrix size 192 × 192, slice thickness = 1 mm, DTI included 46 images with b = 1000 s/mm2 and one non-weighted b = 0 s/mm2 image acquired on 3T Siemens Magnetom TrioTim, TR = 13,000 ms, TE = 93 ms, FOV 250, matrix size 192 × 192, and slice thickness 2.5 mm;

(iv)Adults’ T1-weighted imaging was acquired with TR = 1800, TE = 1.93, FOV 256, matrix size 256 × 240, slice thickness 1 mm, DTI included 4 repetitions of 12 images with b = 1000 s/mm2 and followed by an image with b = 0 s/mm2 acquired on 3T Siemens Magnetom TrioTim, with TR = 7000 ms, TE = 91 ms, FOV = 256, matrix size 128 × 128, and slice thickness 2.5 mm.





2.3 Data preprocessing

DTI data and T1-weighted data were converted to Nifti format and preprocessed using FSL brain extraction in the FMRIB Software Library (FSL)1 (Smith, 2002; Smith et al., 2004; Li et al., 2016), which included eddy current correction and brain extraction. We then applied FSL’s diffusion tensor fitting tool (DTIFIT) (Smith et al., 2004) on all DTI data to retrieve mean (MD), axial (AD) and radial diffusivity (RD) as well as fractional anisotropy (FA) maps. These metrics correspond to overall water molecule diffusivity (MD), mobility along (AD) and perpendicular (RD) to a WM tract as well as to directional dependency (FA) and therefore can be appreciated as a proxy of WM integrity and maturation (Lenglet, 2015; Tae et al., 2018). We then corrected for crossing fibers using Bayesian estimation of crossing fibers (BEDPOSTX) in FSL (Behrens et al., 2007; Woolrich et al., 2009), which employs a ball- and stick model to depict water mobility in each voxel.



2.4 Seed identification and probabilistic tractography

Subsequently, we linearly coregistered regions of interest (ROIs) to each individual’s native FA space using FSL’s linear transformation tool (Smith et al., 2004). In a previous approach (Weber et al., 2022), we used the Harvard-Oxford subcortical and cortical structural atlases (Mazziotta et al., 2001; Frazier et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007) for identification of cortical nodes. A full list of all regions used is given in Supplementary Table 1. We used these masks as seeds in probabilistic tractography using FSL PROBTRACKX (Smith et al., 2004; Woolrich et al., 2009; Wu et al., 2018) to build each individual’s edge density (ED) maps (Figure 2A) (Owen et al., 2015; Payabvash et al., 2019a; Weber et al., 2022). We built ED maps from cortical nodes defined by functional imaging (CNFI). From previous work by Lake et al. (2019), we then identified cortical regions that correlate to ASD symptom severity as assessed using the Autism diagnostic observation schedule (ADOS) (Lord et al., 2000). Briefly, this work applied connectome-based predictive modeling (CPM) (Shen et al., 2017), which leverages rs-fMRI derived functional connectivity matrices to model individual connectomes in a leave-one-out framework. Then, the number of edges between cortical parcels were determined. These regions were outlined in the Shen atlas (Lee et al., 2014) and subset for different sensitivity thresholds (Figure 2B). In brief, composite networks, i.e., overarching networks comprising sub-scale interactions, correlating to ADOS scores have been identified using CPM, and thresholds are referring to a node’s contribution to composite networks, where most lenient thresholds include all edges appearing at least once in any network and strictest thresholds comprise edges that appear on all sub-scales (Shen et al., 2017; Lake et al., 2019). Here, we utilize four CNFI ROI-masks: two threshold levels (3, 5) per positively and negatively ADOS-correlated regions each. All four were transformed to each subject’s space using linear coregistration. We then employed these masks as seeds in four separate runs of probabilistic tractography, retrieving four new ED maps per individual that are derived from ASD-specific functional changes.


[image: Diagram illustrating a study on autism spectrum disorder (ASD). Panel A shows the processing workflow, including DTI and fractional anisotropy with edge density maps generation. Panel B presents brain regions correlating positively and negatively with ADOS scores at thresholds three and five. Panel C displays study cohort characteristics, grouped by age categories: infants, toddlers, adolescents, and young adults, with ASD and total population counts.]

FIGURE 2
(A) Workflow of ED computation for different threshold levels. Based on external data from Lake et al. (2019), which leveraged CPM to analyze brain nodes correlating to ASD symptom severity, we determined functionally informed masks (B) to guide tractography. (C) Study cohort compositions regarding case/control ratio and age distribution. ADOS, autism diagnostic observation schedule; ASD, autism spectrum disorder; CPM, connectome predictive modeling; DTI, diffusion tensor imaging; ED, edge density.


In the following, we will refer to each of these masks by their seed masks of origin, more specifically by direction of correlation to ADOS scores and threshold applied in CPM: ED+3 for positively correlated nodes at a threshold of 3, ED+5 for positively correlated nodes at a threshold of 5, and vice versa for negatively correlated nodes at thresholds 3 and 5, ED–3, and ED–5. A full overview of all processing steps is summarized in Figure 2A.



2.5 Voxel-wise tract based spatial statistics (TBSS)

For voxel-wise comparison, we applied the FSL’s tract based spatial statistics (TBSS) protocol (Smith et al., 2006). We assessed group level-difference after controlling for age and sex in a linear model using non-parametric permutation-based testing in n = 5000 permutations and threshold-free cluster enhancement (Smith and Nichols, 2009) to correct for multiple comparisons across brain space. Each study cohort was analyzed separately to address the confounding influence of differing image acquisition parameters and age group-specific morphological characteristics.



2.6 Statistical analysis

We extracted mean values within each of the major WM tracts specified in the John Hopkins University (JHU) atlas (van Zijl et al., 2005), a full list of which is given in Supplementary Table 1. We assessed group differences in tract-based mean ED values using two-sided unpaired t-tests between diagnosis groups. To ensure robustness of our results, we repeated all tract-wise analysis after shuffling diagnosis labels in 5000 permutations. In a confirmatory second approach, we determined Spearman’s correlation between ED values in every tract and ASD diagnosis status. Subsequently, we tested whether the threshold applied in CPM correlates with higher group differences, i.e., if tractography guided via stricter or less lenient defined functionally defined nodes leads to higher sensitivity for ASD, using Pearson’s 1898 method of comparing correlation (Pearson and Filon, 1898; Diedenhofen and Diedenhofen, 2016). Briefly, this method compares correlation coefficient between two samples using Fisher’s Z-scores. All p-values were corrected for multiple testing using Benjamini and Hochberg’s false discovery rate (FDR) correction (Benjamini and Hochberg, 1995). All statistical analysis were conducted using Python v3.9.7 (van Rossum, 1995) and R v4.3.1 (R Core Team, 2023).




3 Results


3.1 Study cohort characteristics

In total, we analyzed data from 583 individuals with an age range from 6 months to 50 years, subset into four age-specific cohorts: infants with a mean age of 7 months (median: 7 months), toddlers with a mean age of 20 months (median: 32 months), as well as adolescents and adults, who were on average 13 and 20 years old respectively [median: 13 years (adolescents), 19 years (adults)]. The case-to-control ratio varied between 0.28 and 2.31 (overall: 0.83) and is depicted in Figure 2C along with age distributions across the four study cohorts.



3.2 Tract-wise group differences

Group differences in tract-based comparison of ED+5 revealed wide-spread ASD-related reductions in infants, that reached statistical significance throughout the central and periventricular WM tracts (Figure 3). Toddlers’ t-statistics showed a mosaic pattern of negligible group differences, and adolescents leaned toward widespread reductions that were not statistically significant. Among adults, a mosaic pattern of both ASD-related increases and decreases in t-values could be observed, with increases being mainly localized in the left anterior tracts and decreases focused on the right posterior areas. In ED–5, mosaic patterns of slight increases and decreases could be found across all age-group cohorts, with toddlers and adolescents exhibiting negative t-statistics and patterns of positive group differences in central WM tracts of infants and adults. Notably, these changes did not reach statistical significance among infants and toddler cohorts (pFDR = 0.143–0.48 in infants and pFDR = in toddlers, detailed p-values for each tract are listed in Supplementary Tables 2A,B), whereas in adolescents, lower ED–5 were associated with ASD (t = −3.346, pFDR = 0.047) and in adults, ED–5 in the left hippocampal aspect of the cingulum showed positive association to ASD (t = 3.744, pFDR = 0.016) (Figure 3).


[image: Illustration showing brain scan comparisons of ASD (Autism Spectrum Disorder) and TDC (Typically Developing Children) groups in different age cohorts: infants, toddlers, adolescents, and adults. Top panel highlights significant group differences in ED+5, while the bottom panel showcases differences in ED-5. Color coding indicates areas of significant differences: red for significant group differences, blue for brain areas, and white for matter centers. Each row represents a different age group with corresponding significant brain differences.]

FIGURE 3
Tract-based results. The figure shows t-statistic in each of the tracts defined in the JHU atlas for each age cohort separately, overlayed on a sample mean FA map. Right panel shows areas of significant group differences (pFDR < 0.05). ASD, autism spectrum disorder; ED, edge density; FA, fractional anisotropy; FDR, false discovery rate; JHU, Johns Hopkins University.


In ED based on more lenient thresholds (i.e., ED–3 and ED+3), we observed a similar pattern, although most t-statistics were leaning toward decreases in ASD, with widespread significant reductions among the adolescent age-group (Supplementary Figure 2). In permutation tests, results showed consistency across shuffled labels (Supplementary Table 5). Confirmatory analysis using Spearman’s rank correlation test showed similar, but smaller effects. A full list of all statistics is given in Supplementary Tables 2A–D. In comparison to our current approach employing tractography based on functional defined nodes, Supplementary Figure 3 and Supplementary Table 4 show results from previous work where we used anatomical nodes to guide tractography (Weber et al., 2022).



3.3 Differential impact of different thresholds in seed masks

At a tract-level analysis, when we compared ED+3 and ED+5 in each group respectively, we found that higher threshold masks (i.e., more selective masks derived from functional imaging) used to guide tractography had stronger positive association with ASD diagnosis in the infant cohort in central callosal and periventricular WM tracts, as well as the brainstem (Figure 4). Similarly, when comparing ED–3 and ED–5, higher thresholds were associated with higher correlation to ASD diagnosis in infants (Figure 4). There was no significant difference in correlation strength between threshold levels in older age cohorts (Supplementary Tables 3A–D).


[image: Brain scans show comparison of correlation strength in two groups. The top set compares ED plus three versus ED plus five, while the bottom compares ED minus three versus ED minus five. Regions are color-coded for correlation strength and p-values, with blue to red indicating z-scores from negative three to positive three, and color intensity indicating p-values from zero to zero point zero five.]

FIGURE 4
Tract-based comparison of correlation strength between ED based on different threshold leniencies. The figure shows z- and pFDR values in each of the tracts defined in the JHU atlas in the infant cohort, overlayed on a sample mean FA map. Tract-based values are given in Supplementary Table 3A. ASD, autism spectrum disorder; ED, edge density; FA, fractional anisotropy; FDR, false discovery rate; JHU, Johns Hopkins University.




3.4 Voxel-wise group differences

In voxel-wise analysis using a general linear model controlling for age, we found ASD-related ED+5 reductions in adolescents and toddlers. Changes were widespread in adolescents, but less pronounced and more focused on posterior WM tracts in toddlers. In ED–5, we found changes in adolescents and adults that both revealed ubiquitous ED reductions (Figure 5). However, there were no significant differences related to ASD diagnosis in any of the age groups when using more lenient ED+3 and ED–3 thresholds.


[image: Brain scans showing edge density based on correlated nodes. The top row illustrates positively correlated nodes for toddlers and adolescents. The bottom row displays negatively correlated nodes for adolescents and adults. Yellow to red colors indicate varying levels of significance, with a color bar from zero to 0.05.]

FIGURE 5
Voxel-wise findings. The image depicts statistically significant values (p < 0.05) as determined in permutation testing from TBSS on the standard FA skeleton (blue) on a mean FA template. ASD, autism spectrum disorder; ED, edge density; FA, fractional anisotropy; FDR, false discovery rate; JHU, Johns Hopkins University.ct-based comparison of correlation strength between ED based on different threshold leniencies. The figure shows z- and pFDR values in each of the tracts defined in the JHU atlas in the infant cohort, overlayed on a sample mean FA map. Tract-based values are given in Supplementary Table 3A. ASD, autism spectrum disorder; ED, edge density; FA, fractional anisotropy; FDR, false discovery rate; JHU, Johns Hopkins University.





4 Discussion

Connectome alterations have been established as a key neuroimaging correlate of ASD. Both functional connectivity and microstructural disruptions have been predominantly identified among adolescent and adult ASD cohorts (Müller et al., 2011; Li et al., 2017; Figueiredo et al., 2020). In a previous study leveraging DTI-derived metrics, we could not find group differences in younger cohorts, more specifically in infants and toddlers (Weber et al., 2022). This raises the question if WM connectivity alterations in ASD appear later in life, or if they are not detectable in younger children. In this study, we advanced conventional tractography analyses by integrating findings from functional imaging studies and specifying regions that correlate to ADOS symptom severity to guide tractography. Using this approach, we found ASD-related reductions in edge density based on cortical nodes defined by functional imaging. Notably, we were able to identify changes in infants that were not detectable in our prior study that employed conventional ED based on anatomical nodes. These ED changes were appreciable in most central callosal and periventricular WM tracts. Comparing correlation coefficients between ED maps based on different thresholds, we found higher correlation to ASD diagnosis status in stricter thresholds, i.e., when guiding tractography through nodes with highest sensitivity for ASD. In contrast, in adolescent and adult cohorts, changes were appreciable in ED based on more lenient thresholds, consistent with prior findings where changes were found in ED derived from guiding tractography through generic anatomical nodes, therefore having very low sensitivity for cortical changes in ASD. While we were unable to reproduce infants’ group differences in voxel-wise analysis, we were able to identify changes in the toddler and adolescent cohort, revealing widespread ASD-associated reductions.

Cortical nodes for tractography were derived from a study employing CPM to find composite networks correlating with ASD symptom severity (Lake et al., 2019). First, we used regions correlating positively to ADOS scores, hence pointing out cortical areas that exhibit connectivity changes with increasing symptom severity. These nodes were localized in inferior temporal lobes bilaterally, as well as the right frontal lobe. Additionally, we used nodes that are inversely correlated to symptom severity, which were situated primarily in bilateral frontal and occipital cortical aspects. These nodes differ from our previous approach, where we used a generic anatomic atlas enclosing most of the cortex and subcortical nuclei, a full list of which is given in Supplementary Table 1 (Desikan et al., 2006). More lenient thresholds applied in CPM will result in inclusion of more cortical areas, hence, the overlap between our seed mask at threshold 3 overlaps more with the anatomical nodes from our previous approach than at a stricter threshold. Consequently, tractography will build more selective ED maps between regions of interest that were derived at a threshold of 5.

We found most changes when analyzing ED based on functional nodes that correlate positively to ADOS symptom severity scores, i.e., WM disruptions could be imaged by guiding tractography through cortical parcels that are associated with high symptom severity. These ED maps capture connections between cortical parcels that are functionally impacted by ASD, thus, ED disruptions here suggest WM disconnectivity as a microstructural underpinning of cortical changes. Of note, this effect is observed in pediatric cohorts, whereas cortical nodes were derived from an adolescent cohort (Di Martino et al., 2014; Martino et al., 2017; Lake et al., 2019): we guided tractography in younger children based on cortical alterations that were described later in life (Lake et al., 2019). We were able to detect WM disruptions between these parcels in infants, hence hinting toward shared network alterations across age groups. These changes are apparent as WM disruptions in infants, and potentially propagate to more wide-spread changes in adolescents and adults, as these age groups reveal wide-spread changes even in less selective tractography (Weber et al., 2022). Contrarily, ED based on cortical nodes that are inversely correlated to ADOS scores did not reveal significant changes in pediatric cohorts, but in adolescents and adults. Given the similarity of these results to previous findings from probabilistic tractography based on anatomical nodes, i.e., cortical regions that were not specific to ASD symptom severity, we suggest no further benefit of guiding tractography through nodes that are inversely correlated to ADOS scores.

ASD-related disruptions in adults and adolescents were detectable in our previous study using fractional anisotropy as a traditional DTI-derived metric, and ED based on anatomical nodes, whereas we could not detect changes using functionally guided ED. We hypothesize that ASD-associated microstructural disintegrity is higher in adolescents and adults, hence detectable with less specific methodology (Travers et al., 2012; Ameis and Catani, 2015). Potentially, these larger scale changes camouflage alterations in more ASD-specific, functionally guided tractography. Thus, connectivity alterations in adolescents and older subjects appear more pronounced, whereas ASD alterations in younger children are more likely to be masked by lenient, i.e., non-functionally guided tractography.

Our findings further underline the conceptual link between functional imaging of cortical parcels, and microstructural, diffusion-weighted imaging of the WM tracts connecting those nodes. Consistent with previous evidence for functional underconnectivity (Assaf et al., 2010; Müller et al., 2011), our findings highlight shared WM disruptions in ASD that are apparent in adolescents and adults, and can be appreciated in infants when combining functional and diffusion-weighted imaging.

While we found ASD-related ED decreases on a tract-based level in infants, we could find effects in toddlers using voxel-wise analysis, but not on a tract level. Infants’ and toddlers’ brains are in distinct developmental stages. Brains of infants and young children differ largely from adolescents and adults, as they are still in an earlier stage of development. These differences include higher number of neurons and lower number of axonal connections (Waller et al., 2017; Payabvash et al., 2019b; Yu et al., 2020). Within the first years of life, WM matures, i.e., axonal connections are formed and myelination increases (Barnea-Goraly et al., 2005; Swanson and Hazlett, 2019; Changeux et al., 2021). Altogether, these connections form the basis for fast and efficient signal transmission across the cortex and to subcortical nuclei (Oligschläger et al., 2017). In diffusion imaging, these processes correlate to an increase in fractional anisotropy and axial diffusivity, and a decrease in mean and radial diffusivity (Wakana et al., 2007; Lenglet, 2015). There is converging evidence for abnormal brain maturation in ASD, specifically impaired WM maturation in ASD (Ameis and Catani, 2015; Aoki et al., 2017; Payabvash et al., 2019b), as well as neocortical differentiation (Hutsler and Casanova, 2016; Haghighat et al., 2021) and atypical axonal growth (McFadden and Minshew, 2013; Zikopoulos and Barbas, 2013), In this study, we identified reduced WM integrity in bilateral central callosal and anterior periventricular fiber bundles on a tract-based level in infants, suggesting reduced connectivity especially between frontal lobes. These findings align with previous findings showing abnormal connectivity involving the frontal cortical nodes (Assaf et al., 2010; Kumar et al., 2010; Cheon et al., 2011; Poustka et al., 2012; Li et al., 2020). Of note, we observed a different pattern in toddlers, where significant reductions in posterior tracts were observable in voxel-wise, but not in tract-based analysis. Spatially, these changes overlap with findings from previous studies where microstructural integrity in adolescents and adults were identified in posterior callosal tracts (Noriuchi et al., 1362; Ouyang et al., 2016). While both pediatric cohorts exhibit reductions, it is remarkable that decreases are mostly localized in frontal tracts in infants, whereas they are mostly detectable in posterior tracts of toddlers. This discrepancy, combined with previous findings about frontal connectivity abruptions in infancy and posterior microstructural disintegrity in children and adults, suggests a differential impact of ASD on axonal maturation across age groups. Specifically, variable group differences between age groups indicate that the location and overall susceptibility of white matter development depends on a subject’s age.

Additionally, in infants and toddlers, we found changes at the tract- and voxel-wise level respectively. Due to the rapidly adapting brain maturation processes in early childhood, specifically, slower maturation in toddlerhood as compared to infancy (Uddin et al., 2013b; Yu et al., 2020; Haghighat et al., 2021), group differences are potentially present at different levels, appearing across tracts in infants, and being constricted to focal changes within the centers of WM tracts in toddlers. Additionally, microscale maturation processes, i.e., white-gray-matter boundary maturation, neuronal migration and columnar differentiation might be distorting imaging findings (Mukherjee et al., 2001; Lebel and Beaulieu, 2011; Hutsler and Casanova, 2016; Thompson et al., 2020). Potentially, the study cohort composition comprising different sample sizes might have influenced our findings, hence underlining the importance of ensuring the reproducibility of our results upon wider availability of pediatric imaging datasets.

The main strength of our study is the utilization of a large multimodal imaging dataset from four different studies retrieved from a data repository. We circumvented a site-related distortion of our results by analyzing each cohort on its own. Since all studies were acquired separately from each other, technical differences hinder the comparability between studies. Additionally, the case-to-control ratio varies between groups, with the lowest ratio of 0.28 (34 ASD/121 TDC) in infants and 2.31 (67 ASD/29 TDC) in the adult cohort, which we accounted for using a permutation analysis shuffling group labels and showing robustness of our results. While we aimed to include as many as data as available for this study, we acknowledge this limitation and aim to test reproducibility of our findings upon availability of respective imaging data. Similarly, functional nodes of ASD-related changes were retrieved from another study that did not incorporate pediatric subjects. These subjects were separate from our study cohorts; hence, functional alterations are potentially different between the groups. We seek to combine subject-specific functional connectivity changes with DTI-based tractography upon availability of such data on a larger scale. Additionally, we recognize the low percentage of female participants in the adult cohort. The clinical presentation of individuals on the autism spectrum differs remarkably between males and females (Jacquemont et al., 2014; Alaerts et al., 2016; Beggiato et al., 2017), and there is evidence for differential genetic impact between the sexes. We acknowledge that the generalizability of our results is limited for the adult cohort due to the low number of females involved. Upon availability of further, large-scale, high quality and balanced data sets, the reproducibility of our findings ought to be validated. These data can additionally be leveraged to build representative artificial intelligence algorithms focusing on diagnosis and prognosis prediction (Mofatteh, 2021).



5 Conclusion

In a large, multi-centric study involving individuals on the autism spectrum and neurotypical controls, we identified changes in ED that were detected by guiding probabilistic tractography through functionally defined nodes. In a previous study using ED based on anatomical nodes, no WM microstructural differences could be appreciated in pediatric cohorts. In infants, we found widespread reductions in bilateral central callosal and periventricular WM on a tract-based level, and toddlers showed significant reductions in voxel-wise analysis that were widespread across posterior tracts. Stricter thresholds for determining seeds for tractography were associated with higher correlation to ASD diagnosis status in infants. Our findings point toward common axes of microstructural disruptions across age groups that are present between cortical nodes correlating with ASD and can be captured using DTI-based tractography. Our results highlight the importance of multimodal imaging in investigating imaging correlates of ASD. Both cross-sectional and longitudinal data sets are required to ensure the generalizability of our results to a broader collective.
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Introduction: Recent studies showed that the myelin of the brain changes in the life span, and demyelination contributes to the loss of brain plasticity during normal aging. Diffusion-weighted magnetic resonance imaging (dMRI) allows studying brain connectivity in vivo by mapping axons in white matter with tractography algorithms. However, dMRI does not provide insight into myelin; thus, combining tractography with myelin-sensitive maps is necessary to investigate myelin-weighted brain connectivity. Tractometry is designated for this purpose, but it suffers from some serious limitations. Our study assessed the effectiveness of the recently proposed Myelin Streamlines Decomposition (MySD) method in estimating myelin-weighted connectomes and its capacity to detect changes in myelin network architecture during the process of normal aging. This approach opens up new possibilities compared to traditional Tractometry.
Methods: In a group of 85 healthy controls aged between 18 and 68 years, we estimated myelin-weighted connectomes using Tractometry and MySD, and compared their modulation with age by means of three well-known global network metrics.
Results: Following the literature, our results show that myelin development continues until brain maturation (40 years old), after which degeneration begins. In particular, mean connectivity strength and efficiency show an increasing trend up to 40 years, after which the process reverses. Both Tractometry and MySD are sensitive to these changes, but MySD turned out to be more accurate.
Conclusion: After regressing the known predictors, MySD results in lower residual error, indicating that MySD provides more accurate estimates of myelin-weighted connectivity than Tractometry.

KEYWORDS
 structural connectivity, myelin network architecture, myelin weighted connectome, brain aging, tractography, microstructure informed tractography


Introduction

The study of brain connectivity is pivotal to unraveling brain properties in healthy individuals as well as to facilitating early diagnosis of neurodegenerative diseases (Sporns, 2016). Diffusion-weighted magnetic resonance imaging (dMRI) has emerged as a powerful tool for the characterization of brain structural connectivity; dMRI is sensitive to the microscopic motion of water molecules within tissues and, exploiting this information, it allows inferring in vivo the macroscopic trajectories of major white-matter fiber bundles in the brain, called streamlines, using tractography algorithms (Basser et al., 2000; Jeurissen et al., 2019). The map of anatomical connections estimated with tractography can be conveniently summarized as a graph, called connectome (Sporns et al., 2005), in which nodes represent gray matter nuclei and edges correspond to the axonal fibers connecting them. The number of streamlines between anatomical regions has been extensively adopted as a proxy for the strength of connections in the connectome (Bullmore and Bassett, 2011; Jones et al., 2013; Shi and Toga, 2017; Sotiropoulos and Zalesky, 2019); however, recent studies have questioned the quantitative nature of this measure (Jones, 2010; Yeh et al., 2020; Smith et al., 2022; Zhang et al., 2022) and several alternatives have been proposed to address this limitation.

Tractometry is a very popular and widely used technique which attempts to infer microstructure properties of the underlying neuronal tissues by evaluating a given quantitative microstructural map in the voxels along streamline trajectories (Bells et al., 2011). This strategy has been applied also to myelin-sensitive maps, e.g., myelin water fraction (MWF), magnetization transfer ratio (MTR), myelin volume fraction (MVF), and longitudinal relaxation rate (R1), with the aim of estimating the myelin content of different bundles and thus providing a more complete characterization of brain connectivity (von Keyserlingk and Schramm, 1984; Bartzokis et al., 2010; Mohammadi et al., 2015; Cercignani et al., 2017; Mancini et al., 2018; Melie-Garcia et al., 2018; Boshkovski et al., 2021, 2022). However, despite their widespread use, Tractometry-based methods present serious drawbacks when multiple fiber bundles traverse the same voxels, since all of them would be associated with the very same scalar values estimated in those voxels. Extensions have been proposed to provide more detailed microstructure estimates along distinct directions inside each voxel, such as quantitative anisotropy (Yeh et al., 2010) and fixel-based analyses (Raffelt et al., 2017), but these approaches still cannot decouple different microstructural properties of distinct fiber bundles sharing the same direction inside a given voxel, e.g., corpus callosum. Hence, Tractometry-based methods do not offer truly bundle-specific estimates of the microstructural properties of distinct bundles (Schiavi et al., 2022), and this limitation is evident in the construction of the connectome.

Microstructure informed tractography (Daducci et al., 2016), was proposed as a possible solution to overcome these limitations and provide more veridical and biologically informative estimates of brain connectivity. The basic idea is to estimate microstructural features of white-matter fibers by fitting the whole set of streamlines reconstructed with tractography, called tractogram, to the measured MRI data and modulating their individual contributions such that they accurately explain the measurements. Different algorithms have been developed (Smith et al., 2013; Daducci et al., 2014; Pestilli et al., 2014; Smith et al., 2015; Schiavi et al., 2020; Ocampo-Pineda et al., 2021) but, despite differences between them, they are all based on dMRI; hence, they cannot provide any insight into the actual myelination of different bundles (Beaulieu, 2002; Tax et al., 2021). Recently, the Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) (Daducci et al., 2014) was extended to enable its use with myelin-sensitive maps and provide researchers with an effective means to study the myelination of individual bundles. However, this novel Myelin Streamline Decomposition (MySD) technique (Schiavi et al., 2022) has been tested only with few and selected anatomical bundles, and no evaluation was performed to assess its effectiveness in describing myelin-weighted global connectivity.

The study of myelination in the brain is essential due to its profound impact on neural function. Myelin acts as an insulator, significantly increasing the speed and efficiency of electrical signal transmission within the nervous system, facilitating information processing and precise neuron communication (Morell and Quarles, 1999; Sampaio-Baptista and Johansen-Berg, 2017). Myelination is crucial during early development and continues to influence learning, memory, and cognitive function throughout life (von Keyserlingk and Schramm, 1984; Bartzokis et al., 2010; Billiet et al., 2015; Cercignani et al., 2017; Faizy et al., 2020; Meissner et al., 2021; Lebel et al., 2022). Understanding myelination mechanisms and regulation provides insights into neurological conditions, including demyelinating diseases (Tozer et al., 2003; Horsfield, 2005; Cunniffe and Coles, 2019; Kamagata et al., 2019; Granziera et al., 2020; Hara et al., 2020; Boshkovski et al., 2022). Therefore, studying myelination is crucial for comprehending neural communication and its implications for human health.

The literature on the study of myelin network architecture across the lifespan is limited, and the existing methods have primarily relied on Tractometry to assess connections with myelin-sensitive maps (Lebel et al., 2012; Callaghan et al., 2014; Yeatman et al., 2014; Meissner et al., 2021). In this article, we leveraged the ability of MySD to provide bundle-specific estimates of myelination with the aim to accurately characterize changes in the myelin network architecture over the lifespan. In fact, existing studies on connectivity alterations during normal brain aging were mainly focused on dMRI and limited attention has been given to possible myelin-specific changes (Nomura et al., 1994; Sullivan et al., 2001; Salat et al., 2005; Westlye et al., 2010; Kochunov et al., 2011, 2012; Lebel et al., 2012, 2022; Yeatman et al., 2014; Ota et al., 2017; Slater et al., 2019; Buchanan et al., 2020). We evaluated the effectiveness of MySD by comparing its estimates to a classical Tractometry-based approach; we also performed our analysis on dMRI-based microstructural maps as a reference to corroborate previous findings and provide additional insights. With this study, we aim to test a viable alternative to Tractometry that overcomes its inherent limitations. Our approach combines global tractography with myelin-sensitive maps in a more robust and accurate manner, effectively addressing the shortcomings of both counting the number of streamlines and traditional Tractometry methods.



Methods


Subjects and MRI protocol

We performed the analysis on 85 healthy controls: 46 females (median age (IQR) [range] 32.12, (27.55; 43.77), [21.62–62.00]) and 39 males (median age (IQR) [range] 34.00, (27.39, 49.97, 18.15–69.00)). All subjects underwent MRI on a 3 T system (Prisma; Siemens Healthcare, Erlangen, Germany) with a 64-channel head and neck coil.

The acquisition protocol included: 3D FLAIR (repetition time [TR]/echo time [TE]/inversion time [TI] = 5000/386/1800 ms, 1 mm isotropic spatial resolution); 3D MP2RAGE (TR/TI1/TI2 = 5000/700/2500 ms, 1 mm isotropic spatial resolution); and multi-shell dMRI with b-values 700/1000/2000/3000 s/mm2 and 6/20/45/66 diffusion directions per shell, respectively, as well as 12 measurements at b-value 0 s/mm2 with both anterior-to-posterior and reversed phase encoding (TR/TE/pulse duration [δ]/time between pulses [Δ] = 4500/75/19/36 ms, 1.8 mm isotropic spatial resolution). Three variants of a 3D FLASH (RF spoiled GRE) sequence were used with 1.33 mm isotropic resolution, matrix size 192 × 186 × 120, PPF = 6/8; SPF = 6/8, GRAPPA_R = 2 in each phase encoding direction: T1-weighted (TR/TE = 11/4.92 ms, alpha = 15°), Proton Density weighted (TR/TE = 25/4.92 ms, alpha = 5°), MT-weighted [TR/TE = 25/4.92 ms, alpha = 5°, Gaussian MT pulse Delta_f = 2.2KHz as in Helms et al. (2008)]. B1 maps to correct for effects of radio frequency transmit inhomogeneities on the quantitative maps were acquired employing the steady state free precession based B1-TRAP approach (Ganter et al., 2013).



Anatomical images processing

We used MRtrix3 with FreeSurfer algorithm (Tournier et al., 2019) to segment the MP2RAGE images into five separate masks corresponding to the main tissue types in the brain (white matter, cortical gray matter, subcortical gray matter, cerebrospinal fluid, pathological tissue), which was used to guide tractography with anatomical information; using these masks, we also calculated the gray matter-white matter interface. In addition, to define the connectome nodes, we further segmented the cortical and subcortical tissues with FreeSurfer 6.0 (Fischl, 2012) into 85 regions of interest [42 per hemisphere + brainstem (Iglesias et al., 2015)], as defined in the Desikan–Killiany atlas (Desikan et al., 2006; Iglesias et al., 2015). Finally, we used the boundary-based linear registration tool implemented in FSL (Jenkinson et al., 2002) to register all previous masks to the diffusion space.



Myelin images processing

Myelin volume fraction (MVF) maps were estimated as [image: Equation showing "MVF equals alpha MT sat".], where MTsat is defined as the portion of free water saturated during a single MT pulse, and the calibration constant α was estimated based on the procedure described in Mohammadi et al. (2015). The splenium of the corpus callosum from 26 healthy subjects (mean age 27.9 ± 1.3 years) was used as region of interest and the value α = 0.2161 was obtained as the median normalization factor required to constrain the splenium g-ratio to 0.7 across subjects, as previously reported using the electron microscopy technique (von Keyserlingk and Schramm, 1984).



Diffusion images processing

dMRI data was pre-processed to reduce artifacts from noise (Veraart et al., 2016a,b), eddy currents (Andersson and Sotiropoulos, 2016), motion and EPI distortions (Andersson et al., 2003; Smith et al., 2004) using MRtrix3 (Tournier et al., 2019) and FSL (Woolrich et al., 2009; Jenkinson et al., 2012). Images were also corrected for B1 field inhomogeneity using the N4 algorithm implemented in ANTs (Tustison et al., 2010). The Spherical Mean Technique (Devan et al., 2020) was applied to data with b-value ≤ 2,000 s/mm2 to estimate the intra-neurite volume fraction (INVF) map.

To reconstruct the whole brain tractograms, we followed the procedure described in Bosticardo et al. (2021). Briefly, we generated 3 million streamlines using the iFOD2 algorithm with anatomical priors (Smith et al., 2012) on the fiber orientation distributions estimated with multi-shell multi-tissue constrained spherical deconvolution (Jeurissen et al., 2014), seeding from the gray matter-white matter interface and propagating the streamlines with the backtrack option using a cut-off value of 0.05 and a maximum angle of 30°. To reduce the incidence of false positives (Campbell and Pike, 2014; Zalesky et al., 2016; Maier-Hein et al., 2017; Buchanan et al., 2020), we set the power parameter of iFOD2 to 3, as in Bosticardo et al. (2021), and we filtered the tractograms with COMMIT2 (Schiavi et al., 2020) to remove spurious connections or those that are incompatible with the measured data.



Connectome estimation

We constructed the connectomes using the 85 regions of interest from the gray matter parcellation as nodes and the 3 million streamlines estimated with tractography as edges. To determine the edge weights, we applied Tractometry (Bells et al., 2011) and COMMIT (Daducci et al., 2014) to both diffusion (i.e., INVF) and myelin (i.e., MVF) scalar maps. It’s worth noting that the adaptation of COMMIT to handle MVF data is known as MySD. For calculating the edge weights with Tractometry, we employed MRtrix3 (Tournier et al., 2019) to sample the INVF and MVF maps along the streamlines. Subsequently, we computed the median of the values along the streamlines’ trajectories and calculated the mean of the weights for streamlines belonging to the same bundle, following the approach proposed by Boshkovski et al. (2021). In the case of COMMIT, we first fitted the streamlines to the INVF and MVF maps with the aim to estimate an individual weight for each streamline which corresponds to its overall contribution to the corresponding microstructural map. Then, the connectivity strength of each bundle was estimated aggregating the weights of those streamlines belonging to it, as described in Schiavi et al. (2020).

Figure 1 visually summarizes the main steps just described.

[image: Diagram illustrating the process of brain imaging analysis. It begins with extracting microstructural maps using MTsat and DWI, leading to MVF and INVF images. A tractography image represents global tractography computation. Two matrices on either side of a brain image show the decomposition and averaging of fiber bundles with values annotated, resulting in highlighted pathways.]

FIGURE 1
 Pipeline for the construction of myelin-weighted brain graphs. We combined the myelin-sensitive MVF map with streamlines reconstructed from the diffusion image using two methods. Tractometry, which samples each streamline at n points to which it assigns the voxel-wise value of the underlying microstructural map and computes the average, and MySD, which solves a linear system for each voxel of the microstructural map by assigning a contribution to each streamline relative to the scalar value measured in the map. We used the same procedures to reconstruct the diffusion-weighted brain graph using INVF scalar map. MTsat, Magnetization Transfer saturation; DWI, Diffusion Weighted Image; MVF, Myelin Volume Fraction; INVF, intra-neurite volume fraction.




Network metrics

We used the Brain Connectivity Toolbox1 to extract from each weighted connectome three network metrics that are widely used in the literature (Rubinov and Sporns, 2010; Fornito et al., 2016): mean strength, which corresponds to the strength of the connection between gray matter regions on average; global efficiency, which is the average of inverse shortest path length; modularity, which expresses how easily the brain connection segregates into different clusters.

Global network metrics offer a comprehensive perspective on the relationships between brain regions, surpassing what can be inferred from myelination within a white matter mask without the use of a connectome. Additionally, these network metrics highlight the delicate balance between information integration (connections between different regions) and information segregation (localized processing), which cannot be captured by white matter myelination at the voxel-wise level (Fornito et al., 2016).



Statistical analysis

To evaluate the sensitivity of the two methods concerning myelin-weighted network changes during brain aging, we used a robust regression model, available in R2 (Koller and Stahel, 2011). We know from the literature that the ratio of gray matter to white matter changes throughout life (Gunning-Dixon et al., 2009; Giorgio et al., 2010; Lebel et al., 2012, 2022); since we wanted to study white-matter microstructural changes due to age, we considered the white-matter volume as independent variable in our model. Considering that gender is significantly related to brain volume, we checked the collinearity of the model using collinearity diagnostic in R (Belsley et al., 2005). Then, we tested associations between age, age2, and network metrics with gender and white-matter volume as independent variables. To further compare the validity of the two methods (COMMIT and Tractometry), we tested the same model in predicting the age effect using internal k-fold cross-validation (Berrar, 2018). Specifically, we randomly split the dataset into k = 5 sub-groups. We estimated the statistical model on k-1 sub-groups (80% of the subjects). We tested this model on the remaining 20% of the subjects to estimate the mean square errors (MSE). The MSE indicates the mean quadratic discrepancy between the observed and the estimated data. We repeated the steps described above five times. Then, we averaged the MSEs as follows to get the cross-validation error:

[image: Equation for Cross Validation error, expressed as the mean of Mean Squared Errors (MSE) for a set of n iterations. The formula is one over n times the sum from i equals one to n of MSE sub i.]

where n is the number of folds (n = 5 in our case).




Results


Myelin-weighted connectomes

In Figure 2, the orange line in the plots displays the predicted network metrics in relation to age derived from the connectome obtained using the Tractometry-based approach, while the gray points depict the raw values of network metrics. On the other hand, the green line represents the predicted network metrics with respect to age extracted from connectomes generated using the MySD method, along with the raw values depicted as gray dots. The observations from these plots indicate that the global mean connectivity strength and efficiency (panel A and panel C, respectively), computed from the myelin-weighted connectomes produced by both modalities, exhibit a curve resembling an asymmetric inverted U-shape as a function of age. These curves reach their peak around the age 40 years, which aligns with previous experimental findings using different myelin sensitive values (Yeatman et al., 2014).

[image: Four-panel graph analyzing relationships between age and neural metrics, with separate plots for mean strength, modularity, and efficiency. Right-side bar graph compares adjusted R-squared values for Tractometry and MySD. Orange and green colors distinguish data sets.]

FIGURE 2
 The line in the plot shows the predicted values of network metrics [(A) Mean strength, (B) modularity, (C) efficiency] of interest in dependence of age, while raw network metrics values are reported as gray dots. Based on the model to assess the impact of age in the global network metrics considering sex and WM volume as covariates, we predicted the global network metrics for age in range 20–70. We fixed sex as males and WM volume as the average value found in our sample. In orange are reported the predicted network metrics from the model fitted on Tractometry weighted connectomes, while in green are reported the network metrics computed using MySD. In panel (D) we reported the plot of the adjusted R2 values for each model. High R2 indicates that a lot of variance in the data is explained by the model. As first observation we can say that myelin-weighted network metrics peak around forty in all the models. On the other hand, we see a bigger R2 in case of MySD indicating its capacity to offer more precise estimates of myelin-weighted connectivity in comparison to Tractometry. COMMIT, Convex Optimization Modeling for Microstructure Informed Tractography; MySD, Myelin Streamlines Decomposition; MVF, Myelin Volume Fraction.


The upper section of Table 1 presents the outcomes of statistical analyses conducted to compare the effectiveness of the methodologies in capturing myelin changes at different age stages. Consistent with the plots depicted in Figure 2, the results demonstrate that both Tractometry (top left of the table) and MySD (top right of the table) are sensitive to alterations in global efficiency and mean connectivity strength of myelin-weighted networks. However, MySD proves to be more precise in identifying myelin changes compared to Tractometry, as evidenced by the model’s superior goodness of fit. As depicted in Figure 2D, the estimated model based on MySD data exhibits goodness of fit at least twice as high as the one obtained with Tractometry (page-square = 0.031, R2 = 0.606; page-square = 0.035, R2 = 0.257, respectively for global efficiency and page = 0.023, page-square = 0.009, R2 = 0.781; page = 0.022, page-square = 0.015, R2 = 0.392, respectively for mean strength). Additionally, our findings highlight that white-matter volume is necessary for explaining the observed data (p < 0.05), and the collinearity with sex does not impact the results (variance inflation factor < 2). Furthermore, the mean squared errors (MSEs) obtained from the five-fold cross-validation test indicate that the Tractometry-based approach yields MSE values twice as high as those computed with MySD (MSE = 0.886, MSE = 0.441, respectively for efficiency and MSE = 0.822, MSE = 0.361, respectively for mean strength). Consequently, the discrepancy between the tested and predicted data using Tractometry-based approach is at least twice as large as the discrepancy when using MySD. Thus, after accounting for the known predictors through regression, MySD demonstrates a significantly lower residual error. This suggests that MySD potentially offers more precise estimations of myelin-weighted connectivity compared to Tractometry. As the age distribution in the dataset was not uniform, we repeated the analysis by splitting the sample to match the age distribution of the whole dataset in each subgroup; however, results do not change our conclusions, but for the sake of completeness we report them in the Supplementary Figure S1, Supplementary Tables S1, S2.



TABLE 1 In the upper part of the table are reported the results of the robust regression model applied to data from myelin-weighted connectomes using Tractometry (on the left) and MySD (on the right) between network metrics age and age2, accounting for sex and white-matter volume as covariates, while in the bottom part of the table are reported the results of the robust regression model applied to data from diffusion-weighted connectomes using Tractometry (on the left) and COMMIT (on the right) between network metrics age and age2, accounting for sex and white-matter volume as covariates.
[image: Table showing results for MVF Tractometry and MVF COMMIT across Efficiency, Modularity, and Mean Strength. Includes p-values, estimates for age and WM volume, R-squared, and MSE. Significant p-values are marked with asterisks. The table is divided into two sections: MVF and INVF methods.]



Diffusion-weighted connectomes

The lines in the plots depicted in Figure 3 show the predicted network metrics extracted from the microstructure-weighted connectomes of the INVF map using Tractometry (plots colored orange) and COMMIT (plots colored green). Raw network metric values are represented as gray points. Like the analysis using MVF map, the results show that the mean connectivity strength, and the global efficiency (panel A and panel C, respectively) extracted from the INVF-weighted connectomes calculated using both Tractometry and COMMIT, exhibit a curve resembling an inverted U-shape as a function of age that peaks around the age range of 40–50 years (Gunning-Dixon et al., 2009; Melie-Garcia et al., 2018; Slater et al., 2019; Lebel et al., 2022).

[image: Graphs showing the relationship between brain metrics and age. Panels A, B, and C display mean strength, modularity, and efficiency, respectively, with age on the x-axis and measurements on the y-axis. Each panel shows data for tractometry and COMMIT models. Panel D presents adjusted R-squared values for strength, modularity, and efficiency, comparing tractometry (orange) and COMMIT (green).]

FIGURE 3
 The line in the plot shows the predicted values of network metrics [(A) Mean strength, (B) modularity, (C) efficiency] while raw network metrics values are reported as gray dots. Based on the model to assess the impact of age in the global network metrics considering sex and WM volume as covariates, we predicted the global network metrics for age in range 20–70. We fixed sex as males and WM volume as the average value found in our sample. In orange are reported the predicted network metrics from the model fitted on Tractometry weighted connectomes, while in green are reported the network metrics computed using COMMIT. In panel (D) we reported the plot of the adjusted R2 values for each model. High R2 indicates that a lot of variance in the data is explained by the model. As first observation we can say that myelin-weighted network metrics peak around forty in all the models. On the other hand, we see a bigger R2 in case of COMMIT indicating its capacity to offer more precise estimates of diffusion-weighted connectivity in comparison to Tractometry. COMMIT, Convex Optimization Modeling for Microstructure Informed Tractography; INVF, intra-neurite volume fraction.


The outcomes of the statistical analysis conducted on the diffusion-weighted connectomes can be found at the bottom of Table 1. As seen above, the results show that both methods are sensitive to changes occurring in the diffusion-weighted network concerning global efficiency and mean connectivity strength. However, as depicted in Figure 3D, the values of the goodness of the fit of the model, are twice as high for analyses conducted on data calculated using COMMIT (bottom right table) as compared to data calculated using Tractometry-based approach (bottom left table) (page < 0.001, page-square < 0.001, R2 = 0.635; page < 0.001, page-square < 0.001, R2 = 0.264, respectively for efficiency and page < 0.001, page-square < 0.001, R2 = 0.741; page = 0.001, page-square = 0.001, R2 = 0.368, respectively for mean strength). Aligned to the previous analysis, this is reflected in the estimate of MSE (reported in Table 1), which is twice lower in the analysis conducted on connectomes using COMMIT compared to Tractometry (MSE = 0. 361, MSE = 0.822, respectively for efficiency and MSE = 0.255, MSE = 0.747, respectively for mean strength). By incorporating the known predictors through regression, COMMIT demonstrates a significantly reduced residual error, thereby affirming its capacity to offer more precise estimates of diffusion-weighted connectivity in comparison to Tractometry.

Lastly, it is important to note that when applying the statistical model to modularity computed from MySD connectomes, we observed the lowest R2, indicating a lot of variability not explained by the predictors used in the model. In contrast, the statistical model with modularity calculated on Tractometry connectomes is significant (R2 = 0.216 and R2 = 0.252, respectively, for MVF and INVF). In this case, the differences in the white-matter volume (p < 0.001) explain differences in network modularity, while age does not appear to have a significant impact on this network metric.




Discussion

In this work, we exploited the application of MySD, a new and promising COMMIT-based method, to study changes in global brain network properties across the age span. We compared MySD to Tractometry (Bells et al., 2011), a commonly used method that integrates axonal and myelin properties with diffusion-based tractography to investigate myelin-weighted connectomes.

Our results show that the changes occurring in myelin network architecture due to aging have critical effects on network connection strength and efficiency (Figures 2A,C; Table 1). Specifically, we found that efficiency and mean strength extracted from myelin-weighted connectomes reach their highest point of development around 40 years of age; after this peak, the natural degeneration of axonal microstructure begins.

The literature on myelin network architecture during brain aging is not extensive (Yeatman et al., 2014; Lebel et al., 2022). Moreover, studies investigating this issue have focused on analyzing myelin relative to specific bundles or ROIs rather than globally (Gunning-Dixon et al., 2009; Bartzokis et al., 2010; Callaghan et al., 2014; Yeatman et al., 2014; Billiet et al., 2015; Melie-Garcia et al., 2018; Lebel et al., 2022). These studies show that, as found in our results, myelin changes follow an asymmetrical inverted U-shaped curve with a peak around 40 years of age (Yeatman et al., 2014). Thus, late-maturing brain tissues, such as myelin, are subject to retrogenesis, i.e., they are particularly vulnerable to degeneration during brain aging (Yeatman et al., 2014). Moreover, these tissues follow the reverse sequence to maturation during degeneration (Yeatman et al., 2014).

The curves shown in the plots presented in Figures 2, 3 highlight the distinction in tissue maturation between myelin-weighted connectomes and diffusion. Myelin plays a crucial role during the developmental years, which, unfortunately, we have not included in our sample. In fact, for myelin, we can see that the peak of network metrics slightly precedes the peak of the network metrics extracted from diffusion-weighted connectomes. Although our results show that changes in myelin are less striking with respect to axonal density, we showed that the MySD method identifies and quantifies myelin degeneration besides providing more reliable estimates of connectivity estimates. The obtained results are promising. The ability to measure the actual myelin volume fraction for each bundle, at a global level, is of paramount importance, especially in neurodegenerative diseases. Applying this method to patient data will provide the opportunity to examine the effects of demyelination credibly and accurately on brain structure.

In the broader context of our study, which explores the overall architecture of the myelin-weighted connectome, MySD outperforms traditional Tractometry-based approaches in detecting myelin network changes during normal aging. This disparity may stem from differences in their inherent definitions. Tractometry, for instance, combines microstructural maps with the reconstructed tractogram by sampling the streamlines at n points, with each point assigned the voxel-wise value derived from the underlying microstructural map. Subsequently, the average of these values is calculated along the specific streamline’s pathway. While such methods offer valuable macroscopic insights, they present an issue when multiple fiber populations interdigitate within a voxel. In such cases, the same value is projected to all fibers passing through that voxel, potentially introducing bias into the results. To address this concern, Boshkovski et al. proposed using the median instead of the average. This approach is highly recommended for two primary reasons: (i) the median is less influenced by outliers, and (ii) it does not assume a normal distribution of values along the bundle. For a comprehensive perspective, we also present results of Tractometry using the mean instead of the median for INVF in Supplementary Table S3, showing consistent outcomes. In contrast, COMMIT addresses this issue by deconvolving specific microstructural features for each fiber, allowing the recovery of individual streamlines’ contributions to the measured signal.

In our diffusion-based analyses, we selected the INVF map from SMT due to its stability in handling crossing fibers, a common occurrence in neuronal structures. A previous study investigating the effects of aging on network metrics used the ICVF map from Neurite Orientation Dispersion and Density (NODDI) (Buchanan et al., 2020). Both INVF and ICVF maps are sensitive to axonal density, and their values within the white matter (WM) are highly correlated (r = 0.87). To bolster the robustness of our study, we conducted identical analyses using the ICVF map from NODDI, as presented in Supplementary Table S4.

One limitation of this study is the age range of the subjects (18–68 years), which may not capture typical myelin network changes (Lebel et al., 2022). While our results reveal changes during brain development and myelin degeneration, the full curve’s symmetry is unclear due to the dominance of older subjects. A broader age range could provide a better understanding. Additionally, we excluded sex*age interaction from our model due to unequal age distribution between males and females.

We know from previous studies that the ratio of gray matter to white matter changes with aging (Westlye et al., 2010; Lebel et al., 2022). Global network metrics are closely dependent on white matter volume. Smaller volumes of white matter, regardless of the cause, lead to (1) tracking problems for tractography which likely reconstructs fewer streamlines and, consequently, to (2) lower values of global efficiency and mean connectivity strength of the final connectomes. For this reason, we used white matter volume as a possible confounder in the analyses.

The primary aim of this study was to evaluate the effectiveness and robustness of the MySD method in generating myelin-weighted global connectomes, an application not previously explored in clinical settings. To accomplish this, we chose a relatively straightforward context, namely aging, where previous research has well-demonstrated the sensitivity of diffusion methods. Therefore, our specific emphasis on myelin in this study adds a level of detail that might otherwise be overlooked.

Nonetheless, we firmly believe that highlighting MySD’s sensitivity to changes in the myelin structure of the network could significantly impact the study of demyelinating pathologies. In cases where diffusion alone may not be sufficient to detect this phenomenon, this emphasis on MySD could prove crucial. Furthermore, in future investigations, the incorporation of longitudinal data, along with the examination of local changes in myelin-weighted structural connectivity, has the potential to substantially enhance the study’s impact.

To conclude, this study underscores the importance of considering age’s role in brain connectivity research, emphasizing its non-linear nature. Different age groups exhibit unique connectivity patterns, necessitating non-linear age models and age-specific investigations for accurate connectivity estimates. Proper age adjustment in analyses ensures more reliable and meaningful interpretations of brain connectivity results.



Conclusion

In this study, we showcased MySD’s robustness and sensitivity to myelin network changes in normal brain aging, highlighting its accuracy and capability to overcome Tractometry limitations. Applying this approach to neurodegenerative diseases could offer valuable insights into demyelination effects.
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We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the pip library.
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1 Introduction

Structural brain connectivity can be studied using Diffusion Magnetic Resonance Imaging (dMRI), (Le Bihan and Breton, 1985). This is a non-invasive, in vivo technique that provides microscopic-scale information on brain white matter (WM) by measuring the movement of water molecules in brain tissues. Using diffusion local model reconstruction (Basser et al., 1994; Tuch, 2004; Wedeen et al., 2005; Tournier et al., 2007; Yeh et al., 2010; Fick et al., 2019) and tractography algorithms on dMRI data (Basser et al., 2000; Malcolm et al., 2010; Smith et al., 2012; Tournier et al., 2012; Wasserthal et al., 2019), it is possible to calculate the main trajectory of 3-dimensional (3D) WM fascicles as a set of 3D polylines. These sets of streamlines, for simplicity, are also known as “fibers” even though they do not represent single axons.

Over the years, the tools for analyzing tractography datasets have evolved along with improvements in MRI equipment and reconstruction, and tractography algorithms. Today, brain tractography data are quite complex, containing long and short fibers, as well as noise, and intricate geometrical configurations. In addition, these datasets can contain several million fibers for probabilistic tractography, yielding additional computational requirements, especially when performing multi-subject analysis. This is why there are numerous tractography data analysis algorithms that seek to cluster (O'Donnell et al., 2006; Garyfallidis et al., 2012; Siless et al., 2018; Vázquez et al., 2020; Chen et al., 2023), identify patterns (Guevara et al., 2012, 2017; Kumar and Desrosiers, 2016; Román et al., 2017), segment (Donnell and Westin, 2007; Wassermann et al., 2016; Labra et al., 2017; Garyfallidis et al., 2018; Wasserthal et al., 2018; Zhang et al., 2020a; Vindas et al., 2023), filter (Garyfallidis et al., 2014; Mendoza et al., 2021), visualize (Wang et al., 2007; Riviére et al., 2011; Garyfallidis et al., 2014; Chamberland et al., 2015; Norton et al., 2017; Tournier et al., 2019; Zhang et al., 2020b; Franke et al., 2021), and calculate measures on these data (Yeh et al., 2013; Garyfallidis et al., 2014). Due to the complexity of tractography data, the algorithms are usually difficult to use and require a deep understanding of the file formats, input parameters, and results. Hence, to simplify and promote its use, several groups have created and distributed software packages for the processing of dMRI images. Such tools include algorithms for different stages of the dMRI processing pipeline, from image distortion correction to tractography analysis. The final goal is to have methods for the processing of tractography data, for a better description of WM fibers based on high-quality data (Zhang et al., 2018; Radwan et al., 2022; Román et al., 2022) and the study of WM microstructure on healthy subjects (Lebel et al., 2019; Li et al., 2020; Schilling et al., 2021; Zekelman et al., 2022) and pathological brains (O'Donnell et al., 2017; Zhao et al., 2017; Goldsmith et al., 2018; Mito et al., 2018; Roy et al., 2020; Buyukturkoglu et al., 2022).

There are a wide variety of tools available for the processing of dMRI data. Tables 1, 2 summarize and describe the main software packages used by the medical imaging research community. The table lists the main features and functionalities of the tools, such as programming language, operating system (OS), distribution license, dMRI format, tractography format, diffusion-weighted (DW) model reconstruction, fiber tracking, fiber clustering, bundle segmentation, visualization, and calculation of fiber measures. The software considered are: BrainSUITE (Shattuck and Leahy, 2002), Camino (Cook et al., 2006), Diffusion toolkit (Wang et al., 2007), ExploreDTI (Leemans et al., 2009), FSL (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012), MRtrix (Tournier et al., 2019), Freesurfer (Fischl, 2012), DSI Studio (Yeh et al., 2013), Dipy (Garyfallidis et al., 2014), DiffusionKit (Xie et al., 2016), and SlicerDMRI (Norton et al., 2017; Zhang et al., 2020b).


TABLE 1 Summary of the main software used for the study of dMRIs.
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TABLE 2 Summary of the main software used for the study of dMRIs.

[image: Table comparing various neuroimaging software based on features: BrainSUITE, Camino, Diffusion toolkit, ExploreDTI, FSL, MRtrix, FreeSurfer, DSI Studio, Dipy, DiffusionKit, SlicerDMRI. Columns include DW Model Reconstruction, Fiber Tracking, Fiber Clustering, Bundle Segmentation, Visualization, and Fiber Measures. Different combinations of deterministic and probabilistic tracking, cluster functions, and visualization methods like slice/volume and meshes are noted. Each software offers specific capabilities in diffusion modeling and analysis according to user needs.]

As shown in Tables 1, 2, the tool packages have different functionalities. Some of them are more focused on dMRI pre-processing, model reconstruction, and tractography, and others include fiber tractography analysis methods. It is common for users to employ more than one software to implement their processing pipeline, where special attention should be paid to file formats, the reference coordinate system (Tournier et al., 2019), and the common 3D space, when required. Of course, no tool contains all the existing algorithms, although there are some fairly comprehensive ones.

There are fewer software packages dedicated to analyzing tractography data, such as fiber clustering and segmentation, as well as filtering fiber clusters. Hence, we present a toolkit for the analysis of brain tractography data. The package combines several tools for tractography analysis that are available in the literature, developed by our group. These include the optimized fiber bundle segmentation algorithm using a brain fiber atlas (Guevara et al., 2012; Labra et al., 2017; Vázquez et al., 2019), the hierarchical fiber clustering (Román et al., 2017, 2022) and Fast Fiber Clustering (FFClust) based on K-Means (Vázquez et al., 2020). These tools are difficult to apply for external users due to the lack of unified code, the multiplicity of programming languages, the plurality of library dependencies, and the lack of example code/data and documentation. To overcome these issues, we developed an open-source library, called Phybers, that integrates all these algorithms, along with other fiber cluster analysis and visualization tools.

The algorithms included in the library were implemented in C/C++ and Python 3.9. It was structured into four modules: Segmentation, Clustering, Utils, and Visualization. The library was implemented in Python to efficiently provide easy manipulation of data and input parameters, to users without computer science background. Also, Python allows better interoperability with software such as the Dipy package (Garyfallidis et al., 2014). The library includes several internal functions written in C/C++ to reduce the execution time of computationally intensive calculations, such as Euclidean distances between pairs of fibers, which are accessible through Cython. Phybers is freely available and provides the documentation and test data for its execution.



2 Materials and methods

Phybers contains four modules that include algorithms for different pre-processing stages. The suite of Utils contains tools for pre-processing the tractography data prior to fiber segmentation or clustering, such as the transformation of fibers (bundles format) to another space using a deformation field (NIfTI format). The analysis modules include a fiber bundle segmentation algorithm based on a brain fiber bundle atlas (Guevara et al., 2012; Labra et al., 2017; Vázquez et al., 2019), and two clustering algorithms, Fast Fiber Clustering (FFClust) (Vázquez et al., 2020) and Hierarchical Clustering (HClust) (Román et al., 2017, 2022). Also, a set of post-processing tools is provided for the analysis of the results of the fiber bundle segmentation and fiber clustering algorithms (bundles format). The Visualization module supports different types of data such as volume (NIfTI), mesh (mesh and GIfTI formats), and fibers (TRK, TCK, and bundles). In addition, it integrates an interactive graphical user interface (GUI) that allows the user to manipulate 3D objects in real-time. For example, manual segmentation of brain fibers can be performed by positioning two or more 3D regions.

Phybers was developed in Python to distribute and update in a PyPI repository. We implemented the algorithms in C/C++ and Python 3.9, which used Python dependencies such as numpy (Harris et al., 2020), nibabel, pandas, and subprocess. However, all dependencies are automatically installed with the package. Library installation can be performed using the command $ pip install phybers, and the software distribution includes sample data with code examples for all supported functionalities. Phybers is compatible with Python versions higher than Python 3.9 and supports Python platforms such as Jupyter Notebook and Spyder, providing greater flexibility to cater to the specific needs of each user. Additionally, it functions seamlessly on both Ubuntu and Windows systems and can also be utilized on macOS via a virtual machine. Finally, the library documentation was generated with Sphinx. Phybers library was structured into four modules (Figure 1) defined as Segmentation, Clustering, Utils, and Visualization. The following sections describe the library modules.


[image: Flowchart labeled "Phybers" outlining four categories: A. Segmentation with FiberSeg; B. Clustering with HClust and FFClust; C. Utils with Deform, Sampling, Intersection, and PostProcessing; D. Visualization with Tractography, MRI Slice/Volume, Mesh, and 3D ROI-based fiber segmentation.]
FIGURE 1
 The hierarchical library structure was separated into four modules: (A) Segmentation, (B) Clustering, (C) Utils, and (D) Visualization. (A) Segmentation contains the fiber bundle segmentation algorithm using a white matter fiber bundle atlas (A1. FiberSeg); refer to Section 2.2.1. (B) Clustering includes an average-link hierarchical clustering based on the Euclidean distance among fiber pairs (B1. HClust) and Fast Fiber Clustering (B2. FFClust), refer to Section 2.2.2. (C) Utils module includes several tools for analyzing brain fibers, such as C1. Deforms: transformation of fibers to another space using a deformation field, C2. Sampling: sampling of fibers with n equidistant points, C3. Intersection: intersection between two sets of fibers, and C4. PostProcessing: Calculates the size and length of a set of fibers and the maximum Euclidean distance between fibers of a set; refer to Section 2.2.3. (D) Visualization module is a tool for rendering multiple data types such as brain fibers, MRI slices/volumes, meshes, and fibers selection manually by ROI; refer to Section 2.2.4.


The data used to showcase the examples correspond to a random subject from the HCP database (Glasser et al., 2013). Specifically, preprocessed diffusion images (“data.nii.gz”) and deformations to the MNI (Montreal Neurological Institute) space (“acpc_dc2standard.nii”) were utilized. Deterministic tractography calculations were performed using DSI Studio software (Yeh et al., 2013) with GQI model reconstruction. Two datasets of brain tractography were calculated. The first dataset was generated using the following fiber tracking parameters: angular threshold = 60°, step size = 0.5 mm, smoothing = 0.5, minimum length = 30 mm, maximum length = 300 mm, and a tract count of 1.5 million fibers. The second brain tractography dataset was obtained by placing ROIs, in this case, using the postcentral region from the FreeSurfer Aseg Atlas (Fischl et al., 2002), with the same fiber tracking parameters, except for the minimum length = 90 mm, maximum length = 130 mm, and a tract count of 4,000 fibers.


2.1 Data structure and format
 
2.1.1 Tractography datasets

Brain tractography datasets are sets of 3D polylines, also called streamlines or fibers. A tractography file contains arrays with the coordinates of the fiber 3D points and may include other metadata, such as an affine transformation. These files can be read in Python through different libraries, depending on the file format, as a list of numpy arrays. The most commonly used formats are TRK, TCK and bundles. In the proposed library, we use the bundles format. Several functions are provided to read and write fibers in this format. The advantage of bundles format is the support of the labeling of bundles, i.e., a single file can contain several bundles or clusters, reducing the computational cost for reading/writing and visualization. This format uses two files: the text metadata file .bundles that contains the bundle labels, and the binary .bundlesdata file, which contains the 3D coordinates of the fiber points. Using available readers and writers of other formats, it is possible to convert fiber tractography datasets from different formats. Therefore, we included a source code in the Phybers documentation that enables the conversion of brain tractography dataset from the TRK format (used by TrackVis and DSI Studio, among others) to the bundles format. Additionally, this code facilitates the conversion of TCK format (used by MRtrix and others) to the bundles format. We also shared source code for converting from bundles format to TRK and TCK formats. More information and access to these codes can be found in the Phybers documentation.



2.1.2 MRI

MRI volumes are 3D arrays, which can be read in Python as a 3-dimensional numpy array. The most commonly used formats are NIfTI, Analyze, and DICOM. In the proposed library, the NIfTI format is used to read MRI images.



2.1.3 Mesh

Meshes are geometric surface objects, that can be read in Python as an array of vertices and an array of triangles (vertex indices). The most commonly used formats are GIfTI and mesh. The proposed library uses the GIfTI and mesh formats for the meshes.




2.2 Library hierarchy
 
2.2.1 Segmentation module

This module includes a white matter fiber bundle segmentation algorithm (Guevara et al., 2012; Labra et al., 2017; Vázquez et al., 2019) based on a multi-subject atlas (Figure 2). The method uses as a measure of similarity between pairs of fibers the maximum Euclidean distance between corresponding points (dME), defined as:

[image: The image shows a mathematical expression for the distance between two sets A and B, denoted as \( d_{AB}(A, B) = \min(\max_i |a_i - b_i|, \max_i |a_i - b_{y_0, i}|) \).]


[image: Diagram of a segmentation process labeled "A. Segmentation." Inputs include file_in, subj_name, atlas_dir, atlas_info, dir_out, feeding into a component labeled A1. FiberSeg. Outputs are final_bundles, centroids, and bundles_id.]
FIGURE 2
 Diagram representing the Segmentation module. On the left is represented the input data, which includes the brain fibers to be segmented (file_in), subject name (subj_name), the atlas of bundles (atlas_dir), the atlas threshold (atlas_info), and the result directory (dir_out). On the right are the output folders, which include the segmented brain fibers, the centroids of the segmented fibers, and the index of each fiber grouped by fasciculus.


Where ai and bi represent the 3D coordinates of the points in fibers A and B, respectively, both having an equal number of points (Np), listed in direct order. Here the points of fiber A are sequentially traversed as ai = [a1, a2, …, aNp], and those of B are similarly defined as bi = [b1, b2, …, bNp]. Therefore, the reverse order of fiber B is expressed as bNp−i = [bNp, bNp−1, …, b1].

The original version was written in Python and presented in Guevara et al. (2012). It aims at classifying the subject fibers according to a multi-subject bundle atlas. The bundle atlas consists of a set of representative bundles and additional information. The fibers of the atlas bundles are called centroids. We include one atlas of deep white matter (DWM) bundles (Guevara et al., 2012) and two atlases of superficial white matter (SWM) bundles (Román et al., 2017, 2022). These atlases are located in the MNI space (aligned with “ICBM 2009a Nonlinear Symmetric” template) and are available for download from the Phybers github repository. We have also tested the algorithm using the DWM and SWM bundle atlas of Zhang et al. (2018).

The fibers of each subject are classified using a maximum dME distance threshold for each bundle between the subject's fibers and the atlas centroids. The fibers are labeled with the closest atlas bundle, given that the distance is smaller than the distance threshold (in mm). The algorithm was progressively improved first by Labra et al. (2017) that developed a fast fiber discarding algorithm in C language. Then, it was optimized by Vázquez et al. (2019) using a C++ parallel implementation.

The white matter fiber bundle segmentation algorithm based on a multi-subject atlas included in Phybers is called FiberSeg (Figure 2A1) and is based on the implementation by Vázquez et al. (2019). Among the noteworthy enhancements is that this algorithm is compatible with both Ubuntu and Windows, unlike the previous version that only supported Ubuntu. New functionalities have been added, allowing for the extraction of bundle centroids and indices of original fibers per bundle. This addition proves beneficial for fiber bundle segmentation on the subject space and facilitates the calculation of diffusion tensor-derived measures (Basser et al., 1994) (FA, MD, AD, RD). In this version, the algorithm accepts fibers with a variable number of points, unlike the previous version that fixed the point count at 21 for input data. Furthermore, the data structure has been improved, enabling the loading of larger input tractography datasets and brain fiber atlases. Overall, enhanced data structures have been defined to optimize memory usage.

The implementation of FiberSeg in the Segmentation module of Phybers has the following inputs (Figure 2):

	1. file_in: the whole-brain tractography dataset file of a subject. The fibers must be in the same reference system as the used bundle atlas and be in bundles format.
	2. subj_name: subject name, used to label the results.
	3. atlas_dir: the bundle atlas folder, with bundles in separate files, sampled at 21 equidistant points.
	4. atlas_info: a text file associated to the used atlas, that stores information needed to apply the segmentation algorithm, i.e., a list of the atlas fascicles, containing the name, the segmentation threshold (in mm) and the size of each fascicle. Note that the segmentation threshold can be adjusted depending on the database to be used.
	5. dir_out: the directory name to store all the results generated by the algorithm.

FiberSeg outputs are:

1. final_bundles: the directory with the segmented fibers, i.e., the atlas fascicles extracted from the subject's tractography dataset, which are labeled and saved in separate files in bundles format.

2. centroids: a directory that contains the centroid of each segmented fascicle, saved in a single file in bundles format.

3. bundles_id: a text file containing, for each segmented bundle, the indexes of the fibers in the subject's tractography dataset file.

Figure 3 displays the results of the bundle segmentation using the DWM bundle atlas Guevara et al. (2012) for a subject from the HCP database. The segmented bundles shown are Thalamic radiations (B), Corpus callosum segments (C), Arcuate fasciculus (D), Cingulum fibers (E), Inferior longitudinal fasciculus, Inferior fronto-occipital fasciculus, Uncinate fasciculus, Corticospinal tract, and Fornix (F). Figure 4 shows the segmentation results using a SWM bundle atlas (Román et al., 2017). This atlas comprises 93 fascicles, labeled based on anatomical ROIs extracted from the Desikan-Killiany atlas (Desikan et al., 2006). Four groups of short association fiber bundles are presented in more detail: Caudal middle frontal (B), Rostral middle frontal (C), Lateral occipital (D), and Supramarginal (E) bundles.


[image: Colored brain tractography images labeled A through F, depicting different neural pathways. Each image highlights various tracts: A shows a full brain view with mixed tracts; B displays thalamic radiations; C highlights the corpus callosum; D shows the arcuate fasciculus; E focuses on the cingulum; F illustrates various other tracts. A legend below identifies tracts by color and type, including inferior longitudinal fasciculus and uncinate fasciculus.]
FIGURE 3
 Bundle segmentation results for a subject using the DWM bundle atlas (Guevara et al., 2012). (A) Sagittal view of the whole-brain segmentation. (B) Thalamic radiations, (C) Corpus callosum segments, (D) Arcuate fasciculus, (E) Cingulum fibers, and (F) Inferior longitudinal fasciculus, Inferior fronto-occipital fasciculus, Uncinate fasciculus, Corticospinal tract, and Fornix.



[image: Five brain images labeled A to E, showing different neural tractographies with various color-coded regions. Image A displays a complete brain with multiple colorful tracts. Images B to E highlight specific regions: B shows caudal middle frontal in brown tones, C displays rostral middle frontal in purple and blue, D presents lateral occipital in green shades, and E features supramarginal areas in teal and magenta. A legend explains the color coding for each region.]
FIGURE 4
 Bundle segmentation results for a subject using the SWM bundle atlas (Román et al., 2017). (A) Sagittal view of the whole-brain segmentation. (B) Caudal middle frontal (CMF) and CMF - Precentral (PreC) bundles (CMF-CMF, CMF-PreC), (C) Rostral middle frontal (RoMF) and RoMF - Superior frontal (SF) bundles (RoMF-RoMF 0, RoMF-SF 1), (D) Lateral occipital (LO) bundles (LO-LO 0, LO-LO 1), and (E) Supramarginal (SM) bundles (SM-SM 0, SM-SM 1).




2.2.2 Clustering module
 
2.2.2.1 HClust sub-module

HClust (Hierarchical Clustering) (Román et al., 2017, 2022), is an average-link hierarchical agglomerative clustering algorithm that creates bundles based on a pairwise fiber distance measure. It is implemented in Python and C++. The algorithm calculates a distance matrix between all fiber pairs for a bundles dataset (dij), by using the maximum Euclidean distance between fiber points (Equation 1). Then, it computes an affinity graph on the dij matrix for fiber pairs that have a Euclidean distance below a maximum distance threshold (fiber_thr) in mm. The affinity is given by Equation (2) (Donnell and Westin, 2007),

[image: The image shows a mathematical equation: \( a_{ij} = e^{\frac{-d_{ij}}{\sigma^2}} \) denoted as equation two. The expression involves an exponential function.]

Where dij is the distance between the elements i and j, and σ is a parameter that defines the similarity scale in mm.

From the affinity graph, the hierarchical tree is generated using an agglomerative average-link hierarchical clustering algorithm. The tree is adaptively partitioned using an intra-cluster distance threshold (partition_thr) in mm.

The version of the Hierarchical Clustering developed in Phybers is based on the work of Román et al. (2017), that was improved in Román et al. (2022), utilizing a C++ implementation of the agglomerative clustering algorithm proposed in the Python Sklearn library. Our implementation (HClust) allows for calculating centroids of obtained clusters and records indices of original fibers belonging to each detected cluster. Additionally, it is compatible with both Windows and Ubuntu, overcoming a limitation present in the previous version that was exclusively operational on Ubuntu.

The inputs of HClust are the following (Figure 5B1):

	1. file_in: the input tractography data file.
	2. dir_out: the directory to store all the results generated by the algorithm.
	3. fiber_thr: a maximum distance threshold (in mm), default 30mm.
	4. partition_thr: an adaptive partition threshold (in mm), default 40 mm.
	5. variance: a similarity scale (in mm), default 60 mm.


[image: Diagram of a clustering process showing two modules: B1. HClust and B2. FFClust. Both receive inputs like file_in and dir_out, and output final_bundles, centroids, bundles_id, and outputs. B1 inputs include fiber_thr, partition_thr, and variance, while B2 includes points, ks, assign_thr, and join_thr.]
FIGURE 5
 Diagram representing the Clustering module. (B1) Describes the HClust algorithm. On the left is represented the input data, which includes the brain fibers to be clustered (file_in), the result directory for saving the outputs (dir_out), the maximum distance threshold (fiber_thr, in mm), the threshold for dendrogram partitioning (partition_thr, in mm), and variance is measured on a similarity scale in mm. On the right are the output folders, which include the obtained fiber clusters, the centroids of the clusters, the index of the fibers of each cluster, and the temporal directory with intermediate results. (B2) Describes the FFClust algorithm. On the left is represented the input data, including the brain fibers to be clustered (file_in), the result directory for saving the outputs (dir_out), the numbers of fiber points to be used in the clustering (points), the number of clusters used by Minibatch K-Means for each chosen fiber point (ks), the threshold distance for reassigning points to a cluster (assign_thr, in mm), and the threshold distance for merging clusters (join_thr, in mm). On the right are the output folders, which include the obtained fiber clusters, the centroids of the clusters, the index of the fibers of each cluster, and the temporal directory with intermediate results.


HClust outputs are:

1. final_bundles: the directory that stores all the generated fiber clusters that are labeled with the cluster number and saved in separate files in bundles format.

2. centroids: a directory that contains the centroids for each created cluster, saved in a single file in bundles format.

3. bundles_id: a text file storing for each cluster the indexes of the fibers in the subject's tractography dataset file.

	4. outputs: a temporal directory with intermediate results.

Figure 6 illustrates the results of applying the HClust algorithm to a tractography dataset of 4,000 fibers. On the left, the tractography with 4,000 fibers is presented in blue before clustering, and on the right, eight detected fiber clusters are shown, manually chosen and using a palette of random colors. In this case, the size of the brain tractography dataset has been reduced due to the high computational cost associated with the HClust algorithm. This challenge is attributed to the distance matrix calculated at the start of the algorithm, serving as its primary limitation. We recommend using HClust on tractography datasets of a maximum of 40,000 fibers. If applying it to the entire brain with a larger dataset is desired, one can consider the strategy of first utilizing the intra-subject clustering of FFClust and then applying HClust to the centroids of FFClust (Román et al., 2022).


[image: Two brain fiber tractography images show complex neural pathways. The left image is in blue, while the right image displays multiple colors representing different neural tracts, highlighting the intricate connectivity.]
FIGURE 6
 Results of the HClust algorithm for the calculated tractography dataset of the postcentral region. (Left) In blue, the reconstructed fibers for the postcentral region are shown before applying clustering. (Right) Displays eight clusters manually chosen from the total detected fiber clusters with random colors.




2.2.2.2 FFClust sub-module

FFClust (Fast Fiber Clustering) (Vázquez et al., 2020) is an intra-subject clustering algorithm that aims to identify compact and homogeneous fiber clusters on a large tractography dataset. The algorithm consists of four stages. First, it applies the Minibatch K-Means clustering on five specific fiber points (Stage 1), and merges fibers sharing the same point clusters (map clustering) (Stage 2). Next, it reassigns small clusters to bigger ones (Stage 3), considering the distance of fibers in direct and reverse order. Finally, the algorithm groups clusters sharing the central point and merges close clusters represented by their centroids (Stage 4). The distance among fibers is defined as the maximum Euclidean distance between the corresponding fiber points. The algorithm supports sequential and parallel execution using OpenMP.

The implementation of FFClust in Phybers is based on the work of Vázquez et al. (2020). This version brings improvements, such as handling variable sizes of brain fibers. Previously, the number of points was fixed at 21 for input data. Additionally, FFClust is now compatible with both Windows and Ubuntu platforms, overcoming the previous limitation that restricted its exclusive use on Ubuntu platforms. Figure 5B2 shows the hierarchy of the module. The inputs are:

	1. file_in: the input tractography dataset file.
	2. dir_out: the directory to store all the results generated by the algorithm.
	3. points: the index of the points to be used in the point clustering (Stage 1), default: 0, 3, 10, 17, 20.
	4. ks: the number of clusters to be computed for each point using K-Means (Stage 1), default: 300, 200, 200, 200, 300.
	5. assing_thr: a maximum distance threshold for the cluster reassignment in mm (Stage 3), default: 6.0 mm.
	6. join_tht: a maximum distance threshold for the cluster merge in mm (Stage 4), default: 6.0 mm.

The structure of FFClust outputs is similar to HClust module.

Figure 7 shows the results of applying FFClust to the whole-brain tractography dataset with 1.5 million streamlines. The detected clusters were filtered using the PostProcessing sub-module of the Utils module (Section 2.2.3) to simplify result visualization. Clusters with a size greater than 150 and a length between 50 and 60 mm are shown on the left side of the figure, while clusters with a size greater than 100 and a length greater than 150 mm are shown on the right side of the figure.


[image: Brain connectome visualization showcasing neural pathways in vibrant colors. The image consists of two brain models highlighting intricate networks of fibers, illustrating the complexity of neural connections.]
FIGURE 7
 Results obtained with the FFClust algorithm. Fiber colors are randomly distributed, and all fibers within a cluster are assigned the same color. (Left) Clusters with a size greater than 150 and a length ranging from 50 to 60 mm. (Right) Clusters with a size greater than 100 and a length exceeding 150 mm.





2.2.3 Utils module

The Utils module is a set of tools used for tractography dataset pre-processing and the analysis of brain fiber clustering and segmentation results. The module includes tools for reading and writing brain fiber files in bundles format, transform the fibers to a reference coordinate system based on a deformation field, sampling of fibers at a defined number of equidistant points, calculation of intersection between sets of brain fibers, and tools for extracting measures and filtering fiber clusters or segmented bundles. We considered the extraction of measures such as size, mean length (in mm), and the distance between fibers of each cluster (or fascicle), in mm. The set of tools implemented in Utils is being introduced for the first time in Phybers, and the source code is mostly developed in C/C++.


2.2.3.1 Deform sub-module

The deformation sub-module (Figure 8C1) transforms a tractography dataset file to another space using a non-linear deformation file. The maps must be stored in NIfTI format, where the voxels contain the transformation to be applied to each voxel 3D space location. The Deform sub-module applies the deformation to the 3D coordinates of the fiber points. Deform needs as input data the deformation map, the file path of the fibers to be transformed, and the path of the output file, containing the tractography dataset file in the transformed space.


[image: Diagram titled "C. Utils" showing four processes: C1. Deform takes input files to output fibers in MNI space; C2. Sampling processes fibers with n points; C3. Intersection calculates the intersection percentage between fascicles with input files; C4. PostProcessing takes directory input to output computed metrics. Arrows indicate the flow of information.]
FIGURE 8
 Diagram representing the Utils module. (C1) Deform sub-module, which has the inputs: deform_file (image in NIfTI format containing the deformations), file_in (path of the input tractography dataset), and file_out (path to the transformed tractography dataset). The output consists of a tractography dataset transformed into the MNI space. (C2) Sampling sub-module, which has the file_in (path input tractography dataset), file_out (path to save the sub-sampled fibers), and npoint (number of sampling points). The output is a tractography dataset sampled at n equidistant points. (C3) Intersection sub-module, which has as input the file1_in (path of the first fiber bundle), file2_in (path of the second fiber bundle), and distance_thr (in mm) used to consider similar two fibers. The output is a tuple object of Python with the percentage of intersections between the bundles. (C4) PostProcessing sub-module that has as input the dir_in where the segmentation or clustering result is located. The algorithm output includes information about the fiber size, bundle length (in mm), and intra-bundle fiber distance (in mm), all of which can be accessed through a DataFrame (Pandas object of Python).


Figure 9 shows the result of applying the deformation function on a tractography dataset, using an anatomical image as visualization reference. The left side of the figure shows the tractography dataset before applying the transformation, and the right side shows the tractography dataset transformed to the MNI space. On the left side, there is a disalignment between the image and the tractography dataset, which is corrected on the right side.


[image: Two brain scans are displayed side by side, highlighting different levels of activity with an orange hue. The scans show structural details of the brain's frontal region.]
FIGURE 9
 Example of fiber transformation using Deform sub-module. The tractography dataset before (left) and after (right) applying the transformation to the MNI space of a subject.




2.2.3.2 Sampling sub-module

Tractography datasets are usually composed of a large number of 3D polylines with a variable number of points. The Sampling sub-module (Figure 8C2) performs a sampling of the fibers, recalculating their points using a defined number of equidistant points. The input data of the algorithm are the path of the tractography dataset file to be sampled, the output file with the fibers with n points, and the number of points (npoints). The Sampling sub-module is used in the pre-processing stage of the segmentation and clustering algorithms.



2.2.3.3 Intersection sub-module

The Intersection sub-module (Figure 8C3) calculates a similarity measure between two sets of brain fibers, that could be generated with other algorithms, such as fiber clustering (fiber clusters) and bundle segmentation (segmented bundles). It uses a maximum distance threshold (in mm) to consider two fibers as similar. Both sets of fibers must be in the same space. First, an Euclidean distance matrix is calculated between the fibers of the two sets. The number of fibers from one set that have a similar fiber in the other set are counted, for both sets. The similarity measure yields a value between 0 and 100%. The input data of the intersection algorithm are the two sets of fibers and the maximum distance threshold, while the output is the similarity percentage.



2.2.3.4 PostProcessing sub-module

The PostProcessing sub-module (Figure 8C4) contains a set of algorithms that can be applied to the results of clustering and segmentation algorithms. This algorithm constructs a Pandas library object (Dataframe), where each key corresponds to the name of the fiber set (cluster or segmented fascicle), followed by measures defined on the fiber set such as number of fibers (size), intra-fiber bundle distance (in mm) and mean length (in mm). It can be used to perform single or multiple feature filtering on the clustering or segmentation results. The input of the algorithm is the directory with the bundle sets to be analyzed, and the output is a Pandas Dataframe object with the calculated metrics (Figure 8C4).




2.2.4 Visualization module

The Visualization module can render multiple types of 3D objects, including tractography dataset, meshes, and MRI scans as slices or volumes. The module was designed with a focus on scalability, utilizing dictionaries to store the objects to be displayed, thus enabling the rendering of multiple objects simultaneously. For each object, a set of functionalities is defined that can be accessed through a graphical user interface (GUI). The GUI enables visualization of multiple objects at once, performing camera operations such as zooming, rotating, and panning, modifying object material properties such as color and transparency, and applying linear transformations to brain tractography dataset. Figure 10 illustrates the flow diagram of the visualization module. The input data is read into RAM and processed by the CPU. This data is then loaded into the VRAM and rendered using shaders. MRI volumes are loaded as VBOs (Vertex Buffer Objects), EBOs (Element Buffer Objects), and textures, which are accessed during the rendering process. Tractography dataset files are loaded according to the bundle dataset format (bundles, TRK, TCK). ROI inputs are created through the user interface. MRI volume inputs consist of 3D images in the NIfTI format. Mesh inputs are loaded from GIfTI and mesh files. The GPU renders the objects using geometric primitives such as points, lines, and triangles, and it can also accept buffer objects as input. The EBO contains geometrical information, specifying which vertices form which primitives. The OpenGL pipeline and shaders are employed to offload computational tasks from the CPU to the GPU.


[image: Diagram illustrating the architecture of a system with three main interfaces: User, CPU, and Visual Backend GPU. The User Interface manages files, interaction, and segmentation. The CPU Interface handles 3D ROI-based fiber segmentation and additional visual space tasks. The Visual Backend GPU includes memory management and OpenGL-Pipeline shaders. Arrows depict data flow between interfaces for tasks such as tractography, mesh rendering, and spherical ROI.]
FIGURE 10
 The flowchart illustrates the main components and interactions of the Visualization module: User Interface, CPU Interface, and Visualization Backend GPU. The graphical user interface defines the supported file formats for each object type (tractography datase, slice or volume images, and meshes), as well as the available interactions (including rotation, zoom, and panning) and segmentation (3D ROI-based fiber segmentation). The CPU interface facilitates the loading of objects and interactions into memory, which can be displayed through the Visualization Backend GPU using OpenGL pipeline shaders.



2.2.4.1 Algorithms for visualization

The tractography dataset files can be rendered with lines or cylinders. In the case of lines, the software loads the streamlines, defining a fixed normal per vertex, which corresponds to the normalized direction for the particular segment of the streamline. Furthermore, a Phong lighting algorithm (Osorio et al., 2021) is implemented in a vertex shader to compute the color of the streamline. The MRI data is rendered using specific shaders for slice visualization and volume rendering. Meshes can be displayed using points, wireframes, or shaded triangles. The visualization algorithm, along with all its functionalities, such as the Interactive 3D ROI-based fiber segmentation, has been implemented for the first time for personal computers in Phybers.



2.2.4.2 Interactive 3D ROI-based fiber segmentation

This function allows users to interactively extract fiber bundles using spherical ROIs. Internally, it creates a point-based data structure (Octree) for fast queries, based on storing points inside a bounding box with a capacity of N. When a node is filled, and a new point is added, the node subdivides its bounding box into eight new non-overlapping nodes, and the points are moved into the new nodes.

For the query, different 3D objects check whether the node collides with or is inside the bounding box. In the first case, the algorithm continues recursively through the branch nodes until it reaches a leaf node, where the points are tested and added to the validator buffer if selected. In the latter case, all the points contained in the subnodes are translated into the corresponding fiber and marked as selected in the fiber validator buffer. The resulting selected fibers for each object can be used in logical mathematical operations (AND, OR, XOR, NOT). This allows for the use of multiple ROIs to find fibers connecting specific areas while excluding those selected by other areas. Figure 11 displays a selection of fibers that intersect two ROIs (green and purple), while excluding fibers that intersect the blue ROI.


[image: Diagram showing a visualization tool for 3D segmentation analysis. Panel A displays the tool's interface with options for manipulation. Panels B and C illustrate two views of the segmentation, featuring colored spheres (green, purple, blue) connected by lines against a gray background, with extraction tools shown below each view.]
FIGURE 11
 Interactive 3D ROI-based fiber segmentation using the Visualization Module. (A) Within the Visualization Tool window, the first quadrant is utilized to interact with objects loaded by the software. It shows a loaded tractograohy file (“fiber_test.bundles”) containing 1.5 million fibers. This fiber bundle dataset has undergone ROI segmentation, highlighted in blue. The ROIs object consists of three spheres organized in order of creation (0: purple, 1: green, and 2: blue). In the second quadrant of the Visualization Tool, various spatial manipulations, such as rotation, translation, and scaling, can be applied manually or through a text file (Apply Transforms Matrix from File and Reset Transforms). The manipulation options displayed depend on the selected object. (B) This section illustrates the segmentation of brain fibers connecting the purple and green spheres. Within the Extraction Tool window, you have access to various tools for interacting with the segmentation process, including Always Detect (real-time segmentation), Add ROI, Remove ROI, Alpha for not colliding fibers (for adding transparency to unsegmented fibers), Logic (for logical operations between the ROIs), Detect (for a one-time segmentation execution), and Export (to save the segmented fibers). In this case of Logic option, the “0&1” operation is employed to identify fibers intersecting both sphere 0 (purple) and sphere 1 (green). (C) It shows the segmentation of the brain fibers that intersect the purple and green spheres while excluding those that pass through the blue sphere. In this case, we specified the logical operation (Logic) as “0&1&!2” within the Extraction Tool window.







3 Results

We executed the Phybers package on eight computers, each with different hardware and software configurations, as outlined in Table 3, listing features such as the CPU, graphics card, RAM, OpenGL version, OS, and Python version. The computers were sorted by CPU generation. To conduct the tests, we applied the following procedure: first, we installed Anaconda and created two virtual environments, one with Python 3.9 and another with Python 3.11. Subsequently, we installed the Phybers package from the repository using the command $ pip install phybers. Finally, we executed all the library commands to assess the different modules of the package (available as supplementary material). For each module execution, we randomly selected two subjects. One subject was sourced from the HCP database, while the second subject was derived from the ARCHI database. Additionally, a test was conducted in a Python 3.10 environment on the PC8 listed in Table 3.


TABLE 3 Provides an overview of the primary hardware and software characteristics evaluated while running the Phybers package, categorized by CPU generation.

[image: Table listing specifications for eight computers, including CPU, graphics card, RAM, OpenGL version, operating system, and Python version. PC1 to PC8 have varying configurations, with some running Ubuntu and others Windows. All use OpenGL 4.6.0 except PC7 with 3.0 and PC8 with 4.1.0. Python versions range from 3.9 to 3.11, with PC8 only using 3.10.]

The installation of Phybers is straightforward via the $ pip install phybers command. The Segmentation, Clustering, and Utils modules function optimally across all the tested hardware and software configurations. Nonetheless, for the Visualization module, it is required to use OpenGL versions equal to or greater than 4.1.0, as earlier versions, such as 3.0 (PC7 in Table 3), lack support for certain functions. This hardware limitation extends to the graphics card, necessitating compatibility with OpenGL versions equal to or exceeding 4.1.0. Fortunately, OpenGL version 4.1.0 has been available since 2010, ensuring compatibility with graphics cards released thereafter. Regarding software prerequisites, Phybers offers compatibility with both Windows and Ubuntu systems. Users opting for MacOS are recommended to install a virtual machine. The recommended Windows versions include Windows 10 and Windows 11. Ubuntu users are encouraged to select from the following Long Term Support (LTS) versions: Ubuntu 18.04.6, Ubuntu 20.04.2, Ubuntu 20.04.5, Ubuntu 22.04.1, and Ubuntu 22.04.2. Lastly, Phybers seamlessly supports Python versions 3.9 and higher. Phybers' source code is publicly available on the GitHub repository. Additionally, it features a website that offers extensive and detailed documentation, along with examples and test data.



4 Discussion

In this study, we conducted the testing of the Phybers package on real neuroimaging data on eight computers with different configurations (Table 3). By conducting tests on computers with varying hardware and software configurations, we could fix some compatibility errors and ensure a comprehensive coverage of scenarios. This approach allowed us to identify potential strengths and weaknesses of the Phybers package, shedding light on its versatility and adaptability to different computing environments.

The Segmentation module enables fast segmentation of white matter fiber bundles from tractography dataset using a multi-subject atlas. The algorithm has been implemented with multicore processors and graphics processing units (GPUs), which allows for the segmentation of massive tractography datasets, and it has been tested with datasets containing up to 5.2 million fibers. To achieve this, the algorithm rapidly discards noisy fibers, leading to improved execution time and reduced memory usage (Vázquez et al., 2019). The algorithm allows a configurable threshold for each bundle in the atlas. The library provides three multi-subject atlases: one for DWM fibers (Guevara et al., 2012) and two for SWM fibers (Román et al., 2017, 2022). Additionally, any atlas of fibers in the MNI space with the specified format can be used. For example, we have segmented subjects from the HCP dataset using the atlas of long and short fibers from (Zhang et al., 2018). Segmentation results from this algorithm have been utilized in various clinical studies (Ji et al., 2019; Buyukturkoglu et al., 2022).

The Clustering module contains two exploratory fiber clustering algorithms that have proven their utility for analyzing fiber tractography datasets. These methods can be used as an initial exploration procedure to identify the main groups of fibers in a tractography dataset. Since the algorithms do not rely on anatomical data, they can be applied to any fiber configuration, as in Guevara et al. (2011) where an intra-subject clustering algorithm was applied to the FiberCup data (Poupon et al., 2008). Our library includes two fiber clustering methods: HClust (Román et al., 2017, 2022) and FFClust (Vázquez et al., 2020).

HClust is an automatic hierarchical method that can be applied to individual or multi-subject tractography dataset analysis. It is based on a distance metric between fibers and a threshold for dividing the dendrogram. The dendrogram is adaptively partitioned to get clusters with a maximum intra-clustering distance, a procedure that has proven to have a high power for disentangling WM fibers (Guevara et al., 2017, 2022; Román et al., 2017, 2022). However, it has a limitation on the number of input fibers due to its computation complexity and the calculation of all the pairwise fiber distances. This is the reason why we developed an FFClust fiber clustering algorithm designed for intra-subject clustering of massive tractography datasets.

FFClust is capable of capturing regular and compact clusters on a tractography dataset (Vázquez et al., 2020), on a reduced computation time (Vázquez et al., 2020), while obtaining high quality clusters, which was measured using the DB index (Davies and Bouldin, 1979). To deal with large datasets it uses several steps, based on the clustering of fiber points, following the principle that similar fibers will share the same point clusters. This algorithm was conceived as a first pre-processing step, hence it prefers to oversegment clusters than fuse groups of fibers with different shapes. As a limitation, it has a big set of input parameters, but for whole-brain tractography dataset many of them can be set to default values, and only a single value for both distance thresholds could require to be modified.

Users should evaluate which clustering method is more convenient, depending on their goal. Of course, results depend on the quality of tractography dataset and the registration method for the case of multi-subject analysis.

The Utils module provides a set of tools for tractography dataset analysis. Some of these tools are used internally by the other modules of the library, e.g., the tools for reading and saving fibers are used in all modules. However, we consider it necessary to provide the possibility to use these tools individually for any purpose of the user. The Deform sub-module allows the user to transform a tractography dataset to another space of a database providing a deformation image, such as the HCP database that provides the transformation to MNI space calculated with FSL software. Respecting the Sampling sub-module, both the segmentation and the clustering algorithms require that all fibers have the same number of points, which can be achieved using this module. The number of points depends on the application, and various numbers have been used, including 21 points (Guevara et al., 2012; Román et al., 2022), 12 points (Garyfallidis et al., 2012), 51 points (Garyfallidis et al., 2018), among others. The Intersection sub-module provides a similarity percentage of similarity between two fascicles that can be used to compare clustering or segmentation results. The Postprocessing sub-module generates a dataframe containing measurements from fiber sets (clusters or segmented), such as fiber bundle size, mean fiber bundle length (in mm), and intra-fiber bundle distance (in mm). These measurements enable the evaluation of both segmentation and clustering algorithms and facilitate filtering based on these features.

The Visualization module allows for the visualization of multiple objects in a single scene. This module enables the visualization of MRI images in NIfTI format, mesh data in mesh format, and brain tractography dataset in bundles and TRK formats. Various operations can be performed on each object, such as rotation, zoom, and panning. This module features a simple and user-friendly graphical interface. Furthermore, it provides a tool for the interactive segmentation of a set of brain fibers by placing two or more spherical ROIs. This tool is quite useful when exploring brain tractography dataset quickly and in real-time. It was implemented with an optimal use of OpenGL features to perform well on personal computers, and even some simplified components can execute on Mobile devices (Osorio et al., 2021). Several libraries developed for diffusion MRI data analysis include tools for data visualization. However, none of the software programs mentioned in Table 2 (Visualization column) have the feature to segment brain tractography dataset using 3D ROIs in real-time. On the other hand, our visualization software has the disadvantage of not being able to visualize diffusion MRI model glyphs, while packages such as SlicerDMRI, MRtriX, and Dipy have incorporated this tool.

In neuroscience, there is a wide variety of formats for tractography dataset files, MRI volumes, and meshes. The presented library has the limitation of supporting only a few input and output formats. It currently supports just four formats: bundles for tractography dataset, NIfTI for MRI, and mesh and GIfTI for meshes. In the state-of-the-art there are libraries that support other formats, for example: ExploreDTI, SliceDMRI, DSI Studio, and MRtrix. Future updates to our library may incorporate flexibility to read more formats or provide tools in the Utils module to convert among formats.

Respecting the library documentation, the choice of Sphinx as the primary tool for creating our documentation was based on several factors. Firstly, Sphinx offers remarkable ease of use and configuration, since its reStructuredText markup language is intuitive, enabling an efficient focus on content. Another notable advantage of Sphinx is its ability to generate documentation in multiple output formats, being selected HTML for our library. The inclusion of Sphinx in our development workflow played a significant role. The tool effortlessly fits into our current tools and processes, guaranteeing that the documentation remains up-to-date alongside source code changes. This ensures that users will always have access to the most recent information.

Finally, we packaged the library using the Python Package Index (PyPI), a widely used repository for software related to the Python programming language. This repository hosts a vast collection of projects, and facilitates easy installation of the library through the Python package manager (pip).



5 Conclusion

We propose a software library (Phybers) with state-of-the-art tools for analyzing brain fibers aiming to facilitate their use by the scientific community. It integrates tools such as fiber bundle segmentation, fiber clustering, and visualization algorithms that have been used separately in different studies. In addition, we integrated utility tools for sampling and transforming tractography datasets, calculating the intersection between fiber bundles and post-process brain fiber sets. The library provides sample data and extensive documentation. Furthermore, the library was developed with scalability in mind, therefore it is possible to integrate other existing state-of-the-art algoritmhs.

We believe that the generated library will facilitate the use of the included algorithms, achieving better sharing of state-of-the-art tools. As future work, we plan to integrate other methods such as the intersection of fibers with cortical meshes and a diffusion-based parcellation (López-López et al., 2020).
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In recent years, there has been a growing interest in studying the Superficial White Matter (SWM). The SWM consists of short association fibers connecting near giry of the cortex, with a complex organization due to their close relationship with the cortical folding patterns. Therefore, their segmentation from dMRI tractography datasets requires dedicated methodologies to identify the main fiber bundle shape and deal with spurious fibers. This paper presents an enhanced short fiber bundle segmentation based on a SWM bundle atlas and the filtering of noisy fibers. The method was tuned and evaluated over HCP test-retest probabilistic tractography datasets (44 subjects). We propose four fiber bundle filters to remove spurious fibers. Furthermore, we include the identification of the main fiber fascicle to obtain well-defined fiber bundles. First, we identified four main bundle shapes in the SWM atlas, and performed a filter tuning in a subset of 28 subjects. The filter based on the Convex Hull provided the highest similarity between corresponding test-retest fiber bundles. Subsequently, we applied the best filter in the 16 remaining subjects for all atlas bundles, showing that filtered fiber bundles significantly improve test-retest reproducibility indices when removing between ten and twenty percent of the fibers. Additionally, we applied the bundle segmentation with and without filtering to the ABIDE-II database. The fiber bundle filtering allowed us to obtain a higher number of bundles with significant differences in fractional anisotropy, mean diffusivity, and radial diffusivity of Autism Spectrum Disorder patients relative to controls.
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) tractography (Basser et al., 2000) is the only available tool able to reconstruct the brain's White Matter (WM) pathways non-invasively. Tractography algorithms infer the WM anatomy as a set of 3D streamlines, which can be used for in vivo virtual dissection of anatomically meaningful tracts, also known as fiber bundle segmentation. The delineation of individual fiber bundles has enabled a quantitative comparison of the WM pathways across different subjects (Zhang et al., 2022).

Most methods for fiber bundle segmentation are designed for the commissural, projection, and long-range association connections within the Deep White Matter (DWM). These tracts are arranged in large and stable bundles with a well-known anatomy and description of their trajectory. Therefore, their automatic extraction has achieved remarkable results over the years (O'Donnell and Westin, 2007; Guevara et al., 2012; Wassermann et al., 2016; Garyfallidis et al., 2018; Wasserthal et al., 2018; Bertò et al., 2021). However, these methods have not been adapted to the Superficial White Matter (SWM); specifically, there is no deep study and performance evaluation on short association fiber bundles.

The SWM refers to the short association fibers just below the brain cortex, connecting close regions of the same brain hemisphere (Guevara et al., 2020). They can run along a gyrus, surround it, or skip one or more convolutions. Their clinical relevance has been assessed in multiple diseases such as Schizophrenia (Nazeri et al., 2013; Kai et al., 2023), Autism Spectrum Disorder (ASD) (d'Albis et al., 2018; Hong et al., 2018), Multiple Sclerosis (Buyukturkoglu et al., 2021), Alzheimer's disease (Reginold et al., 2016) and Parkinson's disease (Zhang et al., 2021). Recently, a study of changes in cognitively normal aging revealed a correlation between age and microstructural features of the SWM (Schilling et al., 2023).

Recent progress in dMRI acquisitions, using techniques such as High Angular Resolution Diffusion Imaging (HARDI), coupled with improved estimations of fiber orientations, has significantly enhanced the capabilities of tractography algorithms in reconstructing fiber bundles within the SWM. Hence, their research is gaining increasing importance in understanding of the WM structure and function (Guevara et al., 2020). In this context, new fiber bundle segmentation methods consider short bundles partially (Bertò et al., 2021) and in a dedicated manner (Vindas et al., 2023; Xue et al., 2023). Also, works based on fiber clustering have constructed several SWM fiber bundle atlases containing a high number of short bundles throughout the whole brain (Guevara et al., 2017; Zhang et al., 2018; Román et al., 2022), enabling the identification of short bundles in new subjects by, for example, labeling the fibers to the closest atlas bundle. Furthermore, methods employing Regions of Interest (ROIs) can extract short bundles connecting specific regions within a brain anatomical parcellation. However, such approaches may also segment a high proportion of spurious fibers (Guevara et al., 2020).

Despite technological and methodological advances, short fiber bundles are difficult to segment because of their smaller size and complex shape due to their proximity to the gyral crowns and sulcal walls. Other difficulties arise from the high inter-subject variability, artifacts produced near the cortex, and the ill-posed nature of the tractography, which implies that the tracking results could be affected by ambiguous voxels or minor changes in acquisition noise (Mangin et al., 2013). Consequently, most segmentation algorithms also label spurious fibers. Furthermore, segmentation of well-defined short bundles becomes more difficult considering that probabilistic tracking is needed to properly reconstruct SWM bundles, which also generates a high proportion of noisy fibers (Guevara et al., 2020).

Some methods remove noisy fibers by using tract probability maps (Yeatman et al., 2012; Sommer et al., 2016) or density maps (Aydogan and Shi, 2015; Yeh et al., 2018) to generate compact bundles. Others use the distance between the fiber points (Jordan et al., 2017; Wang et al., 2018; Xia and Shi, 2020), and fiber clustering to remove outliers (Cousineau et al., 2017; Wasserthal et al., 2018; Schilling et al., 2023). However, most of these methods are not specific for SWM bundles.

This work proposes several filters to improve a well-established segmentation method based on a multi-subject atlas, developed in Guevara et al. (2012), which provides a straightforward way to label subject's fibers to the closest atlas bundle. Thus, we can study many short bundles across the whole brain using new SWM bundle atlases with high cortical coverage (e.g., Román et al., 2022). Because this segmentation method was proposed for the main DWM bundles, it does not work well on SWM bundles. A visual inspection of the segmented SWM bundles suggests two main problems: spurious fibers and the segmentation of fibers whose shape differs from the main atlas bundle shape. Next, we describe our two main contributions.

i) We propose four different fiber bundle filters (see Figure 1A) to deal with the segmentation of spurious fibers. The filters consider the spatial characteristics of noisy fibers. The filter based on Connectivity Patterns quantifies the endpoint similarity between fibers. The filter based on the Symmetric Segment-Path Distance (SSPD) (Besse et al., 2016) computes the similarity between the fiber trajectories. The filter based on Fiber Consistency assigns a consistency measure to each fiber point (Xia and Shi, 2020), computed from the fiber's proximity to its K-nearest fibers. Finally, the filter based on the Convex Hull represents a fiber bundle as a point cloud. Then, the Convex Hull of the point cloud generates an envelope that enables the detection of fibers far away from the core.


[image: Two panels (A and B) depict fiber bundles. Panel A shows a segmented bundle and its filtered version, highlighting the removal of spurious fibers. Panel B compares a segmented bundle with an atlas bundle in red and its centroid in black, focusing on the main fiber fascicle.]
FIGURE 1
 Contributions of this work. (A) We designed four fiber bundle filters to remove spurious fibers. (B) We propose a method to identify the main fiber fascicle. On the right, an atlas bundle (red) and its centroid (black). The segmented bundle is shown on the left. It can be seen that fibers toward the middle of the segmented bundle deviate from the main atlas shape. Below is the main fiber fascicle, containing fibers following a similar trajectory to the atlas bundle centroid.


ii) We introduce the identification of the main fiber fascicle, aiming to discard the segmented fibers whose shape differs from the main atlas bundle shape (see Figure 1B). These fibers cannot be removed with the filters described above because they are not isolated and can be located at the core of the bundle. The identification of the main fiber fascicle solves this problem by removing segmented fibers that do not follow a trajectory similar to the centroid of the atlas bundle, that is, a single fiber that properly describes the shape of the main atlas bundle.

Test-retest reproducibility indices were calculated to evaluate the effectiveness of fiber bundle filters in removing spurious fibers. The analysis of repeated scans has been previously used to assess the reliability of segmentation methods (Zhang et al., 2019; Schilling et al., 2021a,b). More specifically, it provides insight into whether the same WM structure can be accurately reproduced from two repeated acquisitions of a subject. Nonetheless, results could be less consistent due to false positive connections or spurious fibers (Zhang et al., 2019). Additionally, the identification of the main fiber fascicle and the best fiber bundle filter were used to detect alterations in diffusion-based microstructural indices within subjects with Autism Spectrum Disorder (ASD) from the ABIDE-II database (Martino et al., 2017) relative to controls.



2 Materials and methods


2.1 Diffusion MRI and tractography datasets
 
2.1.1 HCP database

We used 44 subjects (13M, 31F; aged 22–35 years old) with retest acquisition from the HCP database (Human Connectome Project, 2017). The database contains two sequences of multi-shell HARDI data for each subject (test-retest interval: 4.6 ± 2 months). The dMRI data was collected for three shells at b-values of 1,000, 2,000, and 3,000 s/mm2 and a total of 270 directions, with an isotropic voxel of 1.25 mm. We used HCP preprocessed data (Glasser et al., 2013) with diffusion image distortion correction (Andersson et al., 2003; Andersson and Sotiropoulos, 2015). Furthermore, we used the MRtrix software (Tournier et al., 2019) to compute the whole-brain probabilistic tractography based on Constrained Spherical Deconvolution (CSD) (Tournier et al., 2007) and second order integration over the fiber orientation distribution (iFOD2), with default parameters. For each subject, tractography datasets were computed for the two test-retest dMRI scans with the following parameters: step size of 0.625 mm, angle threshold of 90°, maximum length of 250 mm, minimum length of 30 mm and FOD amplitude threshold of 0.06. We used Anatomically-Constrained Tractography (ACT) (Smith et al., 2012) to obtain 30 million streamlines and applied Spherical-deconvolution Informed Filtering of Tractograms (SIFT) (Smith et al., 2013) to maintain 10% of the fibers. Final tractograms with 3 million streamlines were transformed to MNI space using the non-linear transformation provided by the HCP data and resampled with 21 equidistant points (Guevara et al., 2012).



2.1.2 ABIDE-II database

We used 44 subjects with T1-weighted and single shell HARDI acquisitions from the ABIDE-II database (Martino et al., 2017). Subjects were selected from the NYU Langone Medical Center, comprising 22 controls (21 male, one female; 9.8 ± 3.6 years old) and 22 Autism Spectrum Disorder (ASD) (21 male, one female; 9.8 ± 5.6 years old). The single shell HARDI data were acquired on a scanner Siemens MAGNETOM Allegra syngo MR 2004A (64 directions, b-value of 1,000 s/mm2) with an isotropic voxel of 3 mm. Also, T1-weighted images with a voxel size of 1.3 × 1.0 × 1.3 mm were available. Each dMRI dataset was preprocessed using MRtrix software (Tournier et al., 2019), including denoising, motion, and distortion correction. Whole-brain probabilistic tractography based on CSD (Tournier et al., 2007) (with default parameters) and iFOD2 tracking were calculated using MRtrix. For each subject, tractography datasets were computed with the following parameters: step size of 1.5 mm, angle threshold of 90°, maximum length of 250 mm, minimum length of 30 mm and FOD amplitude threshold of 0.06. We used ACT (Smith et al., 2012) to obtain 30 million streamlines, applied SIFT (Smith et al., 2013) to maintain 10% of the fibers, and the final 3 million streamlines were transformed into MNI space. For this purpose, the T1 and dMRI images were coregistered using FSL software (Jenkinson et al., 2012). Then, the T1 images were normalized to MNI space using Advance Normalization Tools (ANTs) (Avants et al., 2011). Finally, tractograms were transformed into MNI space and resampled with 21 equidistant points for further analysis.




2.2 Automatic segmentation method and SWM bundle atlas used

The automatic segmentation method proposed in Guevara et al. (2012) labels each subject's fiber to the closest atlas bundle based on the DME distance and a length penalization term (NT). First, the DME between a subject's fiber S and an atlas bundle fiber A is computed in Equation (1):

[image: Mathematical equation representing a distance measure: \( D_{ME}(S, A) = \min(\max \|s_i - a_i\|, \max \|s_i - a_{N-i}\|) \).]

where si and ai are corresponding 3D points of fibers S and A, respectively. Also, N is the number of points of the fibers. Then, the NT term is calculated in Equation (2):

[image: Mathematical formula for NT is shown: NT equals open parenthesis absolute value of l sub S minus l sub A, divided by maximum of l sub S and l sub A, close parenthesis squared, plus one, minus one. Equation labeled as two.]

where lS and lA are the lengths of fibers S and A, respectively. Finally, the DNE distance is computed in Equation (3):

[image: Mathematical equation showing \( D_{NE}(S,A) = d_{ME}(S,A) + NT \) in parentheses with the number three.]

Each subject's fiber S is labeled with the atlas bundle j if the distance DNE to fiber A in bundle j is less than a threshold in millimeters. We used the latest version of the segmentation algorithm (Vázquez et al., 2019), which exploits thread-level parallelism on multiple CPUs. We leveraged a new SWM multi-subject bundle atlas (Román et al., 2022) constructed from 100 healthy subjects of the HCP database and probabilistic tractography. The atlas is composed of 525 short fiber bundles across the whole brain. Segmentation thresholds use the mean length of the fibers composing the atlas bundle and a linear mapping (between 6 and 8 mm).



2.3 SWM atlas processing

The main goal was to identify the main bundle shapes present in the SWM bundle atlas. For each atlas bundle, we calculated a single fiber representing the overall shape of the bundle (centroid), considering the fiber length, shape, and position. Then, we applied an alignment to overlap the fiber geometry of every pair of atlas bundle centroids. The alignment allowed us to disregard their spatial position and to focus only on shape differences based on the distance between centroid points. We also used a scaling factor to remove the differences caused by the centroid length. We computed the distance matrix between every pair of aligned centroids. Then, we applied an average-link hierarchical clustering, identifying that four clusters were optimal using the Within Clusters Sum of Squares (WCSS) criterion (Aggarwal and Reddy, 2018).

We identified and grouped the corresponding atlas bundles using the resulting clusters. Finally, for each atlas cluster, we selected a shape representative bundle (RBi). This step helped us to generalize the atlas information into a few bundles and mitigate the risk of overfitting the fiber bundle filters' parameters. We summarize the SWM atlas processing and show the selected RBi in Figure 2. See Supplementary material S1 for more details about each step performed. Additional results on the quality of the atlas bundle centroids are shown in Supplementary material S2.


[image: Flowchart illustrating the SWM atlas processing, showing steps like centroids calculation, clustering, and bundle labeling, leading to shape representative atlas bundles. Section A details processing steps; Section B displays selected shape representative bundles labeled RB1 to RB4, with visualizations of brain fiber tracts.]
FIGURE 2
 Illustration of the SWM bundle atlas processing. (A) Summary of the SWM atlas processing, where an adequate centroid was calculated for each atlas bundle and shape representative atlas bundles were identified. (B) We show each RBi and their position within the human brain.




2.4 Identification of the main fiber fascicle

The identification of the main fiber fascicle aims to remove segmented fibers that do not follow a trajectory similar to the shape of the main atlas bundle. First, for each atlas bundle i, we computed a centroid distance threshold (THi). The THi is the mean DNE distance of the atlas bundle fibers to the corresponding atlas bundle centroid (see Figure 3A). Then, given a segmented fiber bundle S using the atlas bundle i, the identification of the main fiber fascicle consists of computing the DNE distance between each segmented fiber sj∈S and the centroid of the atlas bundle i. Segmented fibers with a DNE distance higher than the THi are discarded (see Figure 3B). In practice, the average value of the THi for all atlas bundles was 15 ± 2 mm.


[image: Diagram illustrating two steps in fiber analysis. Section A shows a purple atlas bundle with a black centroid. Arrows indicate measuring centroid distances to determine the threshold (THA). Section B depicts segmented fibers compared against the atlas bundle. Fiber S1 is marked with an X, indicating it does not meet the threshold, while fiber S2 is marked with a check, indicating it does.]
FIGURE 3
 Identification of the main fiber fascicle. (A) An atlas bundle A with N fibers and its centroid CA. First, we compute the distance DNE between each fiber fi of A and CA. Next, we calculate the mean DNE distance as the centroid distance threshold for atlas bundle A (THA). (B) Illustration of the identification of the main fiber fascicle. We show a segmented fiber bundle using atlas bundle A. Next, we remove segmented fibers sj with a DNE(sj, CA) > THA. Here, fiber s1 is removed because its shape differs from the shape of centroid CA.




2.5 Fiber bundle filters

This section presents four fiber bundle filters based on different approaches to remove isolated or spurious fibers from segmented bundles. In Figure 4, we show a schematic of each fiber bundle filter and how their application can be used to obtain a short bundle with fewer outliers.


[image: Diagram illustrating four fiber bundle filtering methods: (A) Connectivity Patterns, showing calculation with paths D1 and D2 and a resulting filtered bundle. (B) SSPD method with distance calculations between points and a filtered bundle. (C) Fiber Consistency, demonstrating consistency calculations with fiber points and filtered bundle. (D) Convex Hull approach, depicting a convex hull around a fiber cloud and filtered bundle. Each section includes visuals, calculations, and results, highlighting improvements in fiber similarity, consistency, or abnormality degree.]
FIGURE 4
 The four fiber bundle filters. (A) The DEND distance removes fibers with noisy endpoint positions. (B) The DSSPD distance is used to remove fibers with noisy trajectories. (C) A schematic of the fiber point consistency calculation for the red fiber's point p (white sphere) using Kf = 5 (blue fibers). (D) An illustration of the segmented bundle's point cloud and its Convex Hull (10% of the fibers were discarded for all filters).



2.5.1 Fiber bundle filter based on Connectivity Patterns

The fiber bundle filter based on Connectivity Patterns (CP) uses the Euclidean distance between corresponding endpoints of two fibers as a criterion to remove spurious fibers. The idea is that fibers with nearby endpoints have a similar pattern of anatomical connectivity. We used the DEND distance (Bertò et al., 2021) to quantify the endpoint similarity between two fibers A and B with N points, which is defined in Equation (4):

[image: The formula describes the end-point distance \(D_{\text{END}}(A, B)\). It includes the expressions: one-half of the minimum norm of \(a_1 - b_1\) and \(a_1 - b_N\), plus the minimum norm of \(a_N - b_1\) and \(a_N - b_N\).]

where {a1, aN} and {b1, bN} are the endpoints of fiber A and B, respectively. Next, we describe how the filter works. First, we calculate each fiber's DEND distance to every other fiber in the bundle, and count the number of similar fibers as those with a DEND less than a threshold called θEND. Finally, we discard a percentage of fibers with the lowest number of similar fibers (see Figure 4A). This fiber bundle filter has two parameters: the Percentage of Discarded Fibers (PDF) and the θEND distance threshold.



2.5.2 Fiber bundle filter based on Symmetric Segment-Path Distance

This fiber bundle filter compares fiber trajectories using the Symmetric Segment-Path Distance (SSPD) (Besse et al., 2016). The SSPD considers length differences between trajectories and the possibility that they might be spatially close yet have a different shape. The computation of the SSPD between two fibers A and B is described next. First, the point-to-segment distance (Dps) is defined in Equation (5):

[image: The image shows a mathematical equation for \( D_{PS}(a_i, s_j^B) \). It defines two cases: 1) \( \left\| a_i - a_i^{proj} \right\| \) if \( a_i^{proj} \in s_j^{B} \); 2) \( \min(\left\| a_i - b_j \right\|, \left\| a_i - b_{j+1} \right\|) \) otherwise. The equation is labeled as equation (5).]

where, ai is a 3D point of fiber A and [image: Mathematical notation displaying "a sub i" with "proj" as a superscript.] is the orthogonal projection of ai on the segment [image: Mathematical notation showing \( S_j^B \) with "S" as the main letter, "j" as the subscript, and "B" as the superscript.] of fiber B. Also, bj and bj+1 are two 3D points composing the line segment [image: Mathematical notation displaying \( S_j^B \), where \( S \) is the base letter, \( j \) is a subscript, and \( B \) is a superscript.] of fiber B. Next, the point-to-trajectory distance (Dpt) is computed in Equation (6):

[image: Mathematical expression showing \( D_{pt}(a_i, B) = \min_{{j \in [1, N-1]}} D_{ps}\left(a_i, s_j^B\right) \), labeled as equation (6).]

where N is the number of points of the fibers. Then, the Segment-Path-Distance (SPD) from fiber A to fiber B is calculated in Equation (7):

[image: Mathematical formula depicting \( D_{\text{SPD}}(A, B) = \frac{1}{N} \sum_{i=1}^{N} D_{\text{pt}}(a_i, B) \), labeled equation (7).]

Finally, the SSPD distance is calculated in Equation (8):

[image: Equation for the symmetric SSPD distance: \(D_{\text{SSPD}}(A, B) = \frac{D_{\text{SPD}}(A, B) + D_{\text{SPD}}(B, A)}{2}\).]

The filter works in the same manner as described for the filter based on Connectivity Patterns. First, we calculate the distance DSSPD from each fiber to all other fibers in the bundle. Then, we count the number of similar fibers as those with a DSSPD distance less than a distance threshold called θSSPD. Finally, we discard a percentage of fibers with the lowest number of similar fibers (see Figure 4B). This fiber bundle filter has two parameters: the PDF and the θSSPD distance threshold.



2.5.3 Fiber bundle filter based on Fiber Consistency

This fiber bundle filter uses the concept of fiber point consistency (Xia and Shi, 2020) to remove spurious fibers. It uses the Minimum average Direct-Flip (MDF) distance (Garyfallidis et al., 2012) to quantify the spatial proximity between two fibers. The MDF distance between fibers A and B with N points computes the average distance between corresponding fiber points (Equation 9):

[image: Mathematical equation \( D_{\text{MDF}}(A, B) = \min \left( \frac{1}{N} \sum_{i=1}^{N} \| a_i - b_i \|, \frac{1}{N} \sum_{i=1}^{N} \| a_i - b_{N-i+1} \| \right) \).]

where ai and bi are corresponding fiber points. For each fiber fi in the bundle, we denote its set of K-nearest fibers by [image: Mathematical expression showing a set \( \mathcal{F}_i = \{ f_j \mid j = 1, \ldots, K \} \), where \( \mathcal{F}_i \) denotes a set comprised of elements \( f_j \) with \( j \) ranging from \( 1 \) to \( K \).]. These fibers are spatially closer to fi, calculated using the MDF distance. Then, given any fiber point p∈fi, we define its neighborhood point set as [image: Mathematical expression showing a set \( \mathcal{P} = \{ n_j \mid j = 1, \ldots, K \} \), indicating the elements \( n_j \) for \( j \) ranging from one to \( K \).] where nj is the closest point to p on fiber [image: Mathematical notation showing "f sub j is an element of script F sub i".]. Then, the consistency measure at the fiber point p is calculated in Equation (10) (Xia and Shi, 2020):

[image: Mathematical equation of a cost function \( C(p) \) as a sum involving exponentials. The sum from \( j = 1 \) to \( K \) includes an exponent of the negative squared distance between \( p \) and \( \eta_j \), divided by \( \sigma_j^2 \). The variable \( \eta_j \) belongs to the set \( \mathcal{P} \).]

The parameter σc controls the quantitative conversion from point-wise distance to point-wise affinity. The authors in Xia and Shi (2020) found that a σc = 6 − 8 mm is an appropriate value; therefore, we used a σc = 8 mm. Then, we calculate the fiber consistency as the average consistency for the streamline points. Isolated fibers tend to have low consistency because the factor [image: Mathematical expression showing an exponential function: e raised to the negative fraction, where the numerator is the squared norm of the difference between y and x subscript i, and the denominator is twice the variance, sigma squared.] decays exponentially as the distance ||p−nj|| increases. Finally, we discard a percentage of fibers with the lowest consistency (see Figure 4C). This fiber bundle filter has two parameters: the PDF and the K-nearest fibers (Kf).



2.5.4 Fiber bundle filter based on the Convex Hull

This fiber bundle filter uses the Convex Hull (CH) (Kai et al., 2022) to remove spurious fibers. First, we represent a fiber bundle as a point cloud. Next, we calculate the CH of the point cloud using the Qhull algorithm from the Python Scipy package (Virtanen et al., 2020). The CH is the smallest convex set that contains all the points (see Figure 4D). We defined a fiber Degree of Abnormality (DA), calculated for fibers fi with at least one vertex belonging to the CH. For the DA calculation, we first compute the mean Euclidean distance from each fi point to its K-nearest points in the point cloud and calculate the average value for the streamline points. Fibers with a DA greater than one standard deviation from the mean DA are removed. The algorithm discards fibers until a defined percentage is reached. This fiber bundle filter has two parameters: the PDF and the number of K-nearest points (Kp).




2.6 Test-retest reproducibility indices

We computed reproducibility indices to quantify the similarity between the corresponding test-retest fiber bundles. We employed measurements widely used in the field. We used the Dice Volumetric Overlap (Bertò et al., 2021), Average Fractal Dimension (AFD) (Bertò et al., 2021), Average Minimum Distance (AMD) (Schilling et al., 2021a), and Average Distance (AD) (Guevara et al., 2012).


2.6.1 Indices based on the distance between fibers

Given two bundles, [image: \( B_1 = [f_1^1, \ldots, f_{M_1}^1] \)] with N1 fibers and [image: Mathematical expression of \( B_2 = [f_1^2, \ldots, f_{N_2}^2] \).] with N2 fibers, we calculate the Average Distance (AD) (Guevara et al., 2012) and Average Minimum Distance (AMD) (Schilling et al., 2021a) in Equations (11, 12), respectively:

[image: Equation representing average distance between two sets \(B_1\) and \(B_2\). The formula is \( \frac{1}{N_1 \times N_2} \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} D_{ME}(f_i^1, f_j^2) \).]

[image: Mathematical formula for asymmetric mean distance (AMD) between sets \( B_1 \) and \( B_2 \). It includes two terms, each involving a minimum distance calculation \( D_{ME} \) of elements \( f_i^1, f_i^2 \) across sums over indices \( i \) and \( j \), divided by counts \( N_1 \) and \( N_2 \), respectively. The result is averaged by two.]

The AD indicates the spatial proximity between two fiber bundles. Whereas, the AMD indicates the average distance of disagreement when two bundles have fibers with different geometries. Both the AMD and AD are in millimeters.



2.6.2 Indices based on bundle binary masks

Given two bundle binary masks M1 and M2, the Dice Volumetric Overlap (Bertò et al., 2021) and the Average Fractal Dimension (AFD) are calculated in Equations (13, 14), respectively:

[image: Dice Similarity Coefficient formula for \( M_1 \) and \( M_2 \), represented as \( DSC(M_1, M_2) = \frac{2 \times |v(M_1) \cap v(M_2)|}{|v(M_1)| + |v(M_2)|} \), labeled as equation 13.]

where, |v()| is the number of voxels in the bundle mask. A Dice Score Coefficient (DSC) of 1 indicates perfect overlap, whereas a DSC of 0 indicates that bundle masks do not overlap.

[image: Formula for Average Feature Distance: AFD(M1, M2) equals (FD of box(M1) plus FD of box(M2)) divided by 2. Labeled as equation 14.]

where FDbox is the Fractal Dimension (FD) (Bertò et al., 2021) of the bundle mask. The FD quantify the degree of regularity/smoothness of a 3D shape and it is computed using the box-counting dimension, which covers a shape with boxes of size δ and it quantifies how the number of boxes varies as δ changes, in double log scale (Equation 15):

[image: Formula for the box-counting dimension, expressed as \( FD_{\text{box}}(M) = -\lim_{\delta \to 0} \frac{\log(\text{count}(\delta))}{\log(\delta)} \). Labeled as equation (15).]

where count(δ) is the number of boxes required to cover the bundle mask M. A high FD indicates that bundles are smooth and rounded, whereas a low FD means that bundles are wrinkled and irregular (Bertò et al., 2021). Therefore, we propose Equation (14) to quantify the average degree of smoothness/regularity between two bundle masks. In Bertò et al. (2021) the authors calculated the FD of segmented fiber bundles, obtaining values between 1.7 and 2.5.




2.7 Enhanced fiber bundle segmentation in the HCP database

This section presents the methodology implemented to enhance the segmentation of the short fiber bundles based on the identification of the main fiber fascicle and the fiber bundle filters. The database was divided into two groups of randomly chosen subjects. In training (28 subjects), we used four segmented representative bundles, each one corresponding to a main bundle shape identified in the bundle atlas, to perform a filter parameter tuning and determine the best filter (see Figure 5A). The validation set comprises 16 subjects and was used to evaluate the best fiber bundle filter performance using all atlas bundles, with and without the identification of the main fiber fascicle (see Figure 5B).


[image: Flowchart illustrating the process of fiber bundle segmentation in the HCP database, divided into training set processing with 28 subjects and validation set processing with 16 subjects. Key steps include identification of the main fiber fascicle, filters application, test-retest reproducibility analysis, and evaluation of filters. Each section references related subsections.]
FIGURE 5
 Training and validation set processing. In training we performed a parameter tuning for each fiber bundle filter and each shape representative bundle identified. We determined the best fiber bundle filter based on test-retest reproducibility indices. The best filter performance is evaluated in the validation set considering all atlas bundles. (A) Training set processing (28 subjects). (B) Validation set processing (16 subjects).



2.7.1 Filter parameter tuning in the training set

The segmented bundles from the RBi (see Section 2.3) are denoted SRBi. Also, the SRBi processed with the identification of the main fiber fascicle (see Section 2.4) are denoted as MFF SRBi.

In the following, we describe the main concepts used to formulate a cost function, which is used to compute appropriate parameters for each fiber bundle filter. We considered two observations from the test-retest bundles. First, spurious fibers in the retest bundle are located distant from the core of the test bundle. Thus, these distant fibers have a high DME distance. Second, these fibers have a large difference in the number of neighboring fibers surrounding their trajectory. To estimate the number of neighboring fibers, we calculated a bundle density image and averaged the value of the underlying image along the fiber's path. The bundle density image calculation is described in Supplementary material S3. Next, we introduce the DT term in Equation (16), designed to penalize the difference in the number of neighboring fibers.

[image: Mathematical formula for DT as a function of f subscript i and f subscript j equals the square of the absolute value of NS subscript i minus NS subscript j divided by the maximum of NS subscript i and NS subscript j plus one, labeled equation sixteen.]

where NSi and NSj are the number of neighboring fibers of streamlines fi and fj, respectively. The term DT is 1.0 when NSi and NSj are equal and increases as the difference becomes larger.

Subsequently, we formulate a cost function to estimate the fit between the corresponding test-retest main fiber fascicles. Our cost function is denoted as Test-Retest Maximum Distance [TRMD, is inspired by the cost function developed in Garyfallidis et al. (2015)]. Given a test MFF SRBi with fibers [image: \( B_1 = [f_1^1, \ldots, f_{M_1}^1] \)] and its corresponding retest MFF SRBi with fibers [image: Equation depicting \( B_2 = [f_1^2, \ldots, f_{N_2}^2] \), where \( B_2 \) is a vector containing the squares of functions \( f_1 \) through \( f_{N_2} \).], the TRMD is calculated in Equation (17):

[image: Formula for TRMD \( (B_1, B_2) \) showing a mathematical expression involving sums and maximum functions over sets with indices \( i \) and \( j \). It includes terms \( D_{ME} \) and \( DT \) applied to different pairs \( f_i^1, f_j^2 \) and \( f_j^2, f_i^1 \), summed and averaged by \( N_1 \) and \( N_2 \), all squared. Equation labeled as \( (17) \).]

In the TRMD, we compute the maximum DME distance from each fiber in B1 to all fibers in B2 (and vice-versa for fibers in B2). Furthermore, these maximum distances are penalized by the term DT and averaged. The intuition is that the maximum distance DME of fibers in the core of B1 will correspond to distant and isolated fibers in B2 (and likewise for fibers in the core of B2). Consequently, the TRMD will be high due to the DT term. As we remove spurious streamlines using a fiber bundle filter, the TRMD will drop sharply and stabilize. See Figure 6 for an illustration of the TRMD computation.


[image: Diagram illustrating the comparison of test and retest fibers. Panel A shows matrices with maximum values highlighted in purple and red, indicating rows and columns. Panel B displays images of fibers labeled as test and retest, with a mathematical formula below calculating the test-retest measurement difference (TRMD). The average for test fibers \(a_i\) and retest fibers \(b_j\) is represented.]
FIGURE 6
 Illustration of the TRMD computation between a pair of test and retest bundles. (A) A rectangular matrix is computed that contains the DME distance between every pair of fibers of the test and retest bundles. Then, the maximum value of DME (max DME) is calculated for each row and column. (B) A pair of fibers with a max DME is identified (fibers a1 and b2) and their distance is penalized by the difference of density in their neighboring fibers (DT term). The TRMD is calculated by summing the average of these penalized distances for the test (rows) and retest (columns) fibers, and the final value is squared. Spurious fibers (e.g., b2) are located far away from the core fibers of the bundle (e.g., a1), resulting in a high DME distance. Also, these fibers are located in regions with low fiber density, leading to a high DT term. Therefore, test-retest bundles with spurious fibers have a high TRMD value. Bundle density images are shown with a gray background and color coded with red (low density)—yellow (high density).


Next, we describe the calculation of appropriate parameters for each fiber bundle filter based on the TRMD. First, we compute TRMD curves for each fiber bundle filter using different parameter values (see Table 1) at the individual level (see Figure 7A). For each TRMD curve, we used the Elbow point to choose the best trade-off between reducing the TRMD and increasing the PDF. Then, the curve providing the lowest TRMD on the Elbow point was selected.


TABLE 1 Values used for each parameter of the fiber bundle filters at the individual level.

[image: Table detailing fiber bundle filter parameters. It includes four filters: Connectivity Patterns, SSPD, Fiber Consistency, and Convex Hull. Parameter 1 is 0 to 60 percent with a 5 percent step, and Parameter 2 includes various numerical values.]


[image: Diagram showing TRMD calculations for a subject and averages for 28 subjects. Part A details TRMD curves for different parameters, highlighting the curve with the lowest elbow point. Part B shows average TRMD curves for 28 subjects using variables \(K_{f0}\), \(K_{f1}\), and \(K_{f2}\). Graphs display TRMD against PDF(%), with key points indicated.]
FIGURE 7
 Parameter tuning of the fiber bundle filters. (A) Computation of TRMD curves for the fiber bundle filter based on the Convex Hull using a single subject. A TRMD curve is generated for each value of Kp, using different PDF values. Then, we selected the TRMD curve with the lowest point at the Elbow point. We show the selected curve for the four MFF SRBi. (B) We averaged the selected curves for the 28 subjects to calculate the appropriate parameters for each fiber bundle filter. Each averaged TRMD curve shows the selected PDF (Elbow point shown as a red star) and the selected Kp (statistical mode from the 28 selected curves). The steps described in (A, B) were performed for each fiber bundle filter.


To perform a parameter tuning for each fiber bundle filter and MFF SRBi, we averaged the corresponding selected curves for the 28 subjects (see Figure 7B). Then, we identified the Elbow of the averaged curves to determine an appropriate PDF. The second parameter of each filter was set as the statistical mode of the selected curves. In Table 2, we show the parameters computed from the 28 subjects for each filter. The automatic detection of Elbow points is described in Supplementary material S4. Supplementary material S5 shows TRMD curves for an individual subject and the averaged TRMD curves.


TABLE 2 Parameters selected for each fiber bundle filter and main fiber fascicle of the segmented representative bundles (MFF SRBi).

[image: Table displaying four columns for different Fiber Bundle Filters (MFF SRB1 to MFF SRB4) with rows for Connectivity Patterns, SSPD, Fiber Consistency, and Convex Hull. Each cell contains percentage or numerical values for PDF, θ, Kf, and Kp.]



2.7.2 Test-retest reproducibility analysis in the training set

This section describes the methodology used to select the best fiber bundle filter. Over the subjects' test and retest main fiber fascicles, we applied each fiber bundle filter with parameters from Table 2. The selection of the best filter is based on the best scores in the reproducibility indices (described in Section 2.6).

We also calculated test-retest reproducibility metrics for every possible combination between the four fiber bundle filters. Combining two or more filters means that each fiber bundle filter was applied independently to the main fiber fascicle. Then, we obtained the intersection of shared fibers between every filtered fascicle to produce a final bundle. The results demonstrate an improvement in the test-retest reproducibility indices when combining two or more filters. Nonetheless, the improvement was minimal compared to only applying the filter based on the Convex Hull. Further details are available in Supplementary material S6.

Finally, the best fiber bundle filter was applied to the segmented representative bundles without the identification of the main fiber fascicle, and their test-retest reproducibility was assessed. The results show that filtering also improved the test-retest reproducibility indices in this case. See Supplementary material S7 for more details.

We used the Wilcoxon signed-rank test to determine the statistically significant improvement of the test-retest reproducibility indices after filtering (Wilcoxon, 1945), corrected for multiple comparisons using False Discovery Rate (FDR) (Benjamini and Hochberg, 1995).



2.7.3 Validation set processing

This section evaluates the performance of the best fiber bundle filter using all atlas bundles. The atlas bundles were grouped by shape in the SWM atlas processing, and the parameters of the fiber bundle filter were computed according to the shape of the bundle. Therefore, the parameters of the best filter were set according to the shape of the bundle (see Table 2).

We used the subjects from the validation set and bundles segmented in the 16 subjects with a minimum of 10 fibers. First, we applied the best filter over bundles with and without the identification of the main fiber fascicle. Then, we assessed the improvement of the test-retest reproducibility indices from the filtered fiber bundles.

Additionally, we applied a random filtering of fibers, using the same percentage of fiber discarding of the best fiber bundle filter. The results show that the test-retest reproducibility indices did not change by respect to the non-filtered bundles. This demonstrates that the improvement in reproducibility indices was due to the removal of spurious fibers rather than the decrease in the fiber count of the bundles. Refer to Supplementary material S9for further details.

Again, we used the Wilcoxon signed-rank test to assess the statistically significant improvement of the test-retest reproducibility indices after filtering (Wilcoxon, 1945), corrected for multiple comparisons using FDR (Benjamini and Hochberg, 1995).




2.8 Enhanced fiber bundle segmentation applied in the ABIDE-II database

In this section, we applied the enhanced short fiber bundle segmentation in lower-quality data from the ABIDE-II database. In this case, the enhanced segmentation was applied to detect alterations in diffusion-based microstructural indices.

We used bundles segmented in all subjects with a minimum of 10 fibers. Then we applied the best fiber bundle filter (with parameters from Table 2), with and without the identification of the main fiber fascicle. Next, a Fractional Anisotropy (FA) mask was calculated for each bundle, and the mean FA value was computed. Subsequently, a two-tailed independent t-test was used to assess the significant difference in the mean FA of the bundles between control and subjects with ASD. Finally, we compared the number of significant bundles found with the enhanced segmentation and the segmentation without processing (see Figure 8). We also present results for the Mean Diffusivity (MD) and the Radial Diffusivity (RD).


[image: Flowchart detailing the process of enhanced short fiber bundle segmentation in the ABIDE-II database. Starting with dMRI, it progresses through tractography and segmentation. Steps include MFF identification, outlier filtering, and computation of FA masks, concluding with mean FA computation for bundles and filtered MFFs. Images of brain tractograms and segmentations illustrate the process.]
FIGURE 8
 Application of the enhanced short fiber bundle segmentation in the clinical quality database ABIDE-II. We used the identification of the main fiber fascicle and the best fiber bundle filter to obtain well-defined bundles. Then, bundle FA masks were computed, and the bundles' mean FA values were calculated to assess statistically significant differences between control and ASD subjects. Finally, we compared the number of bundles with the significant difference found with the enhanced and without processing segmentation.


The normal distribution of the bundles' mean FA, MD and RD was tested using the Shapiro-Wilk test (Shapiro and Wilk, 1965). For non-normally distributed data, the Mann-Whitney test (Mann and Whitney, 1947) was employed. All statistical tests were conducted with a significance threshold set at a p-value < 0.05.




3 Results


3.1 Results for the test-retest reproducibility analysis

In this section, we present the test-retest reproducibility indices (described in Section 2.6) for the SRBi of subjects from the training set, processed with the identification of the main fiber fascicle and each fiber bundle filter. To ease the reading of the following sections, we use the notation MFF+Filterj, which refers to the bundle SRBi processed with the identification of the main fiber fascicle and further processed with fiber bundle filter j. For example, MFF+CH means we processed the segmented bundles with the identification of the main fiber fascicle, and then applied the Convex Hull filter. Supplementary Table S3 summarizes all notations.

Next, we present the mean score for each test-retest reproducibility index (see Table 3). The mean Dice Volumetric Overlap score for the main fiber fascicles shows moderate to relatively good agreement in the volume occupied. The MFF + CH processing had the highest improvement compared to the MFF scores. Also, a significant improvement was found between the MFF and MFF+CH scores for bundles SRB1, SRB2 and SRB4 (p-value < 0.05 for each comparison), which demonstrates that the filtering improved the agreement in the volume occupied between test-retest main fiber fascicles.


TABLE 3 Mean scores for each test-retest reproducibility index and SRBi (mean ± standard deviation), using the fiber bundle filters.

[image: A table comparing performance metrics across different configurations: MFF, MFF + CP, MFF + SSPD, MFF + FC, and MFF + CH. Rows represent metrics (DSC, AFD, AMD, AD) and sub-rows (SRB₁-₄) with corresponding values. Bold values highlight the best scores in each section, such as 0.73 ± 0.11 for DSC under MFF + CH.]

The shape of the filtered main fiber fascicles was smoother, as demonstrated by the higher values of the Average Fractal Dimension. Similarly, the MFF+CH processing had the highest improvement compared to MFF scores. In addition, a significant improvement was found between the MFF and MFF+CH scores for the four SRBi (p-value < 0.05 for each comparison), demonstrating the ability to remove spurious fibers, as they constitute one of the main sources of irregularity in the shape of the bundle.

The mean score for the Average Minimum Distance improved when applying the fiber bundle filters. The MFF + FC processing had the highest improvement in bundles SRB1, SRB3 and SRB4, when compared to MFF scores. Significant improvements were found between the MFF and MFF + FC scores for bundles SRB1 and SRB4 (p-value < 0.05 for each comparison). The MFF+CH processing had the highest improvement in bundle SRB2, compared to MFF scores (p-value < 0.05). The results of the AMD indicate that the application of the fiber bundle filters allowed us to obtain more geometrically similar and compact test-retest fascicles.

The mean score for the Average Distance shows that fibers from filtered test-retest fascicles were spatially closer. The MFF+FC processing had the best improvement in bundle SRB1, when compared to the MFF scores (p-value < 0.05). The MFF+CH processing had the highest improvement in bundles SRB2 and SRB3 when compared to MFF scores (p-value < 0.05 for each comparison). The MFF+CP processing had the highest improvement in bundle SRB4 when compared to MFF scores (p-value < 0.05). Results for the Average Distance demonstrate the ability of the fiber bundle filters to remove fibers far away from the fascicle's core and generate test-retest fascicles with fibers spatially close to each other.

The fiber bundle filter based on the Convex Hull was chosen as the best filter because it had the highest improvement in most test-retest reproducibility indices. In Figure 9, we show each SRBi of subject 143325, where the fiber bundle filter based on the Convex Hull removed most isolated fibers, providing well-defined fascicles and improving their test-retest similarity. Finally, the identification of the main fiber fascicle removed an average percentage of 51.6 ± 17.16% fibers from all SRBi.


[image: A grid of twelve abstract images in four rows and five columns, showcasing color variations and patterns. Each row represents a different set labeled "SFB1" to "SFB4", with each row containing similar patterns in different colors: orange, blue, pink, and green. The columns are labeled as "MFF", "MFF + CP", "MFF + SSPD", "MFF + FC", and "MFF + CH" to indicate different experimental conditions. Each set shows a consistent pattern with slight variations across columns.]
FIGURE 9
 Resulting test-retest main fiber fascicles for subject 143325 of the training set. We show each MFF SRBi processed with each fiber bundle filter. The filter based on the Convex Hull (fifth column) had the best results, generating rounded bundles with smooth shape and with most isolated fibers removed.


To analyze the configuration of rejected fibers, we applied the QuickBundles clustering (Garyfallidis et al., 2012) to segmented bundles of the training set from the HCP database (28 subjects). In Supplementary Figure S18 we show histogram plots of the mean cluster size (number of fibers) and frequency for segmented representative bundles, filtered bundles and the rejected fibers. The clustering of segmented bundles generates clusters with a frequency decreasing from 100 for the range [1–6] fibers, to around 20 for the range [91–96] clusters. Furthermore, filtered bundles present fewer small clusters, with < 50 clusters with an average size in the range [1–6]. On the other side, rejected fibers were clustered into a large number of small clusters, with a frequency ranging from 190 to 300 clusters for the same size range. These results show that in general, the filtering removes spurious fibers. However, it may exist some atlas bundles with one or more subpopulations of fibers.

Additionally, in the Supplementary material, we included two figures showing representative fibers of the rejected and accepted fibers of each filter and MFF, for the U-shaped (Supplementary Figure S19) and the open U-shape (Supplementary Figure S20) representative bundles. In general, rejected fibers are similar for the four filters, presenting an irregular shape and positioned far away from the core of the bundle. It can be observed that the FC and CH filters discard more complex-shaped fibers than the other two filters, generating cleaner bundles. This may be because these filters are not only based on a distance measure but also consider in some way the density of the bundles. Respecting the MFF, is it especially useful for bundles with an open U-shape, such as the one illustrated in Supplementary Figure S20, where noisy fibers in the middle of the bundle, differing from the main bundle shape, are removed more efficiently.



3.2 Results for the test-retest reproducibility evaluation

This section presents results for the test-retest reproducibility indices using all atlas bundles. We used fiber bundles segmented in the 16 subjects from the validation set (and in both test and retest acquisitions) with a minimum of 10 fibers. Using these criteria, we obtained 462 fiber bundles per subject and a total of 7,392 (16 × 462) bundles. We applied the identification of the main fiber fascicle and the fiber bundle filter based on the Convex Hull. For the resulting bundles of each processing, we computed the mean score of the test-retest reproducibility indices (see Table 4), which provides an overall view of the performance of the filter based on the Convex Hull.


TABLE 4 Mean scores for segmented bundles in the validation set, with and without processing.

[image: A table titled "Test-retest reproducibility indices" presents data for four metrics: Dice Volumetric Overlap, Average Fractal Dimension (AFD), Average Minimum Distance (AMD), and Average Distance (AD) across four groups: NP, CH, MFF, and MFF + CH. Values are given with standard deviations. Bold values indicate improvement with the Convex Hull filter over NP bundles and main fiber fascicles. The Dice Volumetric Overlap values range from 0.66 to 0.74, and dimensions are in millimeters.]

We use the label “No Processed” (NP) to refer to segmented fiber bundles with neither the identification of the main fiber fascicle nor the fiber bundle filter based on the Convex Hull processing. Also, the label CH refers to segmented fiber bundles processed only with the Convex Hull filter.

First, we present results for CH bundles compared to NP bundles. We obtained a higher score for the Dice Volumetric Overlap in filtered bundles. Therefore, filtered test-retest bundles had a higher agreement in the volume occupied. Also, CH bundles had a smoother and more regular shape than NP bundles, as demonstrated by the higher score of the AFD. Concerning the spatial positioning of the fibers, the results of the AMD score demonstrate that the filtered bundles had fewer isolated fibers than NP bundles. Finally, CH bundles had a lower AD score than NP bundles, which means that filtered test-retest bundles had fibers spatially closer to each other.

Next, we describe the results for the main fiber fascicles, with and without filtering. The reproducibility scores of the main fiber fascicles improved when applying the filtering (MFF+CH column of Table 4) for all indices. After filtering, we obtained a higher score for the Dice Volumetric Overlap and AFD. Therefore, filtered main fiber fascicles were in greater agreement in the volume occupied with smoother shapes than MFF bundles. Also, lower scores for the AD and AMD were found for the MFF+CH, which means that test and retest main fibers fascicles were more compact and with fewer isolated fibers after filtering. Finally, the identification of the main fiber fascicle removed an average percentage of 53.1 ± 19.5% fibers from segmented bundles.

Supplementary Table S5 shows the number of fiber bundles with a significant improvement over the reproducibility indices when applying the filter based on the Convex Hull. By solely applying the filtering, we improved the test-retest reproducibility indices in over 300 short fiber bundles. Likewise, by applying the filtering to the main fiber fascicles, we obtained improved test-retest reproducibility indices in over 300 bundles. In Supplementary material S12 we show figures of filtered fiber bundles.



3.3 Results for the ABIDE-II database

We used bundles segmented in all subjects with a minimum of 10 fibers, resulting in 422 bundles per subject. In Table 5, we show the number of bundles with statistically significant difference (uncorrected p-value < 0.05) in the mean FA, MD and RD, between control and ASD subjects. We found a higher number of bundles using the filter based on the Convex Hull.


TABLE 5 Number of bundles with significant differences in diffusion-based microstructural indices between control and ASD subjects (uncorrected p-value < 0.05).

[image: Table comparing the number of significant bundles found using different methods: NP, CH, and MFF + CH. FA has values 2, 4, and 8; MD has 15, 13, and 20; RD shows 7, 13, and 17.]

In Figure 10A, we show the eight bundles with significant differences in mean FA between controls and subjects with ASD. These bundles were processed with the identification of the main fiber fascicle and the filter based on the Convex Hull. Likewise, we show the twenty bundles with significant MD differences in Figure 10B and the seventeen bundles with significant differences in the RD in Figure 10C. Additionally, in Figure 10D, we show the segmented bundle of a control subject. It can be seen that the identification of the main fiber fascicle and the filter based on the Convex Hull obtained well-defined bundles with fewer spurious fibers than NP bundles, in a lower-quality database.


[image: Three brain models labeled A, B, and C show colored fiber pathways in lateral and medial views, highlighting different brain regions. D presents four fiber bundle representations labeled Atlas bundle, NP, CH, and MFF+CH, illustrating variations in pathway configurations.]
FIGURE 10
 (A–C) Show bundles with significant differences in FA, MD and RD mean values, between control and ASD subjects. The bundles were processed with the identification of the main fiber fascicle and the filter based on the Convex Hull. (A) Eight fascicles with significant difference in the mean FA. (B) Twenty fascicles with significant difference in the mean MD. (C) Seventeen fascicles with significant difference in the mean RD. (D) Atlas bundle connecting the superior temporal and supramarginal gyri (centroid is shown in black), and the segmented bundle in a control subject. The filter based on the Convex Hull allowed us to obtain well-defined bundles in a lower quality database.


Supplementary Tables S7–S15 provide the bundles' mean FA, MD, and RD values averaged across subjects. Also, the uncorrected p-value and the Cohen's d are shown for each bundle. Decreased FA, increased MD, and increased RD were found in subjects with ASD. Also, Supplementary Figures S27–S29 show more filtered bundles from control subjects. After applying the FDR correction for multiple comparisons, no significant differences were found in any of the segmentation results, regardless of whether fiber filtering was applied or not. This is due to the high number of comparisons performed, which potentially increases the likelihood of missing genuinely significant findings. Also, bundles found to be significant without FDR correction had a medium to large effect size (Cohen's d).

To evaluate whether the filter based on the CH is also the best performing for the ABIDE-II database we performed a test with a small subsample of 5 control subjects randomly chosen from the ABIDE-II database, with a second diffusion MRI image (acquired in the same session). We applied the four fiber filters to the MFF bundles and calculated test-retest reproducibility indices. In Supplementary Table S16, we list the mean score for each index. Similar to the HCP database results, the fiber bundle filter based on the Convex Hull had the best improvement in most indices.

Furthermore, in Supplementary Figure S30, we show bundles for one subject from each database (ABIDE-II and HCP). In general, bundle shapes and spurious fibers are similar for both databases. Nonetheless, we noticed that some bundles from the ABIDE-II database were more irregular than bundles from the HCP database, which could be explained by the lower quality of the data (see bundle SRB2 of Supplementary Figure S30). Furthermore, in Supplementary Figure S31, a whole-brain tractogram and 100 randomly selected bundles from a subject of the HCP database and a subject from the ABIDE-II database are shown. It can be seen that the filtering produced more compact short fiber bundles for both subjects. Also, the fiber bundles present in general similar shape, even though the fiber bundles are more noisy and dispersed for the ABIDE-II database subject.

Additionally, we performed a quick experiment to test the validity of using the filters' parameters tuned with the HCP database without any further filter optimization on the ABIDE-II database. For that, we analyzed the same small subsample of five control subjects from the ABIDE-II database employed in the previous test. Then, we applied the parameter tuning based on the Test-Retest Maximum Distance (TRMD), described in Section 2.7.1. Results show that the parameters obtained for the ABIDE-II subjects are very similar to those calculated using the HCP database for bundles SRB1 and SRB2, representing the shape of ~80% of the atlas bundles (see Supplementary Figure S32). Furthermore, we calculated the mean FA, MD, and RD values for the filtered bundles of the ABIDE-II database using the two sets of optimal parameters. Supplementary Tables S17, S18 list these values for the segmented representative bundles, where it can be seen that the results are quite similar, with slight differences in a few bundles.

Finally, Supplementary Tables S19–S21 show the mean and standard deviation of FA, MD, and RD metrics before and after filtering with CH and MFF + CH. Furthermore, the difference between the mean metrics between control and ASD subjects before and after filtering are also included. Results show that in general, the filtering increased the difference between control and ASD subjects.




4 Discussion

This paper proposes several tools to better study the SWM fiber bundles. Our work consisted of implementing and validating four fiber bundle filters to remove spurious fibers. Furthermore, we define a methodology to identify the main fiber fascicle, which allows us to disregard fibers whose shape differs from the main atlas bundle shape, enabling us to obtain well-defined bundles. Our results show an improvement in several test-retest reproducibility indices from short fiber bundles of the HCP database.

Also, the filter application allowed us to improve the quality of the short fiber bundles from a lower-quality database (ABIDE-II). We demonstrated the relevance of filtering by improving the sensitivity to alterations in diffusion-based microstructural indices (FA, MD, and RD) between control and ASD subjects. We found a large number of bundles with significant differences in microestructural indices using fiber bundle filtering. Furthermore, these bundles were predominantly located in the parietal and temporal lobes, consistent with the findings in the existing literature. We found a decrease in FA and an increase in MD and RD in subjects with ASD compared to controls. As discussed in Section 4.2, our results align with previous reports on the topic, where the same trend of microstructural alterations has been reported for the subjects with ASD.


4.1 Enhanced short fiber bundle segmentation in the HCP database

We enhanced the short fiber bundle segmentation in two ways. First, we used the atlas bundle centroids to identify the main fiber fascicle. Second, we designed and implemented four fiber bundle filters to remove spurious fibers. The identification of the main fiber fascicle allowed us to obtain well-defined bundles. However, this identification step may depend on the research objective. If the study focuses on performing a detailed mapping of the U-fiber shapes, then it could be beneficial to use main fiber fascicles. However, we suggest omitting this step if high cortical coverage is needed. Furthermore, future work could improve the identification process by employing several atlas bundle centroids, allowing the description of other shapes that may exist within the atlas bundle.

Fiber bundle filters were applied to remove spurious fibers. First, the HCP database was split into two groups of subjects: the training and validation set. Next, we describe the main findings of the training set. Table 2 presents the recommended values for the filter parameters according to the shape of the bundle. These parameters were used to filter segmented representative bundles. Our results show that the best filter is the Convex Hull, which provides the highest improvement in most of the test-retest reproducibility indices.

Test and retest bundles, processed with the filter based on the Convex Hull, had a higher agreement on the volume occupied, a smoother shape, and fewer isolated fibers than the unprocessed bundles. The test-retest reproducibility indices showed minimal improvement when two or more fiber bundle filters were combined. Furthermore, we showed that the filter based on the Convex Hull improved the test-retest reproducibility with or without the identification of the main fiber fascicle.

The superior performance of the fiber bundle filter based on the Convex Hull may be attributed to its topological properties. The Convex Hull's envelope offers a straightforward way of identifying spurious fibers with noisy trajectory, as they are likely to provide a vertex to the envelope. This inherent topological advantage allowed us to efficiently identify and isolate spurious fibers, contributing to the filter's effectiveness.

In the validation set, we evaluated the filter based on the Convex Hull using 462 bundles per subject. We found a significant improvement in the test-retest reproducibility indices in more than 300 short fiber bundles. The application of the main fiber fascicle and the filtered test-retest bundles had higher agreement in the occupied volume, a smoother shape, and fewer isolated fibers than the unprocessed bundles.

Although an alternative approach could be filtering out spurious fibers from the atlas bundles and then performing fiber bundle segmentation, we opted to apply the filtering process directly to the segmented bundles. This decision was based on our previous experience, where we observed that the proposed pipeline yielded better results.



4.2 Results from the ABIDE-II database

Few studies investigate SWM's structural connectivity in individuals with Autism Spectrum Disorder (ASD). In the following, we describe the most important findings of these studies and compare them with our results. Sundaram et al. (2008) reported a decrease in FA in short-range fibers of the frontal lobe, using subjects with ASD aged 4.8 ± 2.4 years old. Shukla et al. (2011) reported a decrease in FA and an increase in MD and RD in short association fibers of the frontal lobe from subjects with ASD between 9 and 18 years old. Additionally, they found an increase in MD and RD in short fibers of the parietal and temporal lobes. On the other hand, d'Albis et al. (2018) used adult subjects with ASD and reported a decrease in structural connectivity in 13 short fiber bundles from the temporal-parietal-frontal lobes.

Hong et al. (2018) used cortical surface and microstructural indices to quantify SWM alterations in 53 subjects with ASD. They reported a decrease in FA and an increase in MD and RD in the medial parietal and lateral temporo-parietal regions in subjects with ASD. Furthermore, reduced FA and increased MD were observed in the precuneus and posterior cingulate regions in subjects with ASD. Finally, Bletsch et al. (2020) used 92 adult subjects with ASD aged 18–52 years. Individuals with ASD showed reduced FA in the SWM of the right temporal lobe and the left lateral orbitofrontal cortex. In addition, they observed an increase in MD in the SWM of the orbitofrontal cortex, pars triangularis, left fusiform, and inferior temporal regions.

Comparison between studies is challenging due to the different methodologies, ages of the subjects, and criteria used to define the SWM. Nevertheless, our results are consistent with other works, where FA decreases and MD and RD increase in the SWM of individuals with ASD. See, for example, microstructural alterations (Supplementary Tables S7–S15). Overall, the brain regions most affected by ASD reported in the literature correspond to the frontal, parietal, and temporal lobes. Using our enhanced segmentation, our work identified bundles with decreased FA in the superior temporal, middle temporal, and supramarginal regions (see Supplementary Table S9). In contrast, the unprocessed segmentation only identified two bundles with a significant difference in FA (see Supplementary Table S7).

Unprocessed and enhanced segmentation allowed us to identify bundles with significant differences in MD. However, enhanced segmentation allowed us to obtain a greater number of significant bundles located in the inferior parietal (Supplementary Table S11) and the middle temporal gyri (Supplementary Table S12). Finally, the enhanced segmentation allowed us to identify a higher number of bundles with significant differences in the RD, located in the precuneus, superior temporal, inferior parietal, and supramarginal giry (Supplementary Tables S14, S15). Overall, the areas most affected in our study correspond to the parietal and temporal lobes, which is consistent with the literature reports. An increase in the number of significant short fiber bundles offers a broader scope for uncovering correlations with clinical manifestations of ASD, such as social awareness or executive functioning (d'Albis et al., 2018). This processing can facilitate a deeper understanding and more precise characterization of cognitive profiles and SWM integrity among individuals with ASD or other diseases.



4.3 Limitations and future work

Limitations and future work are summarized below. Our study used a limited sample of 44 subjects from the HCP database (Glasser et al., 2013), and 44 subjects from the ABIDE-II database (Martino et al., 2017), further validation of the developed tools could be performed using more subjects and databases of different quality, such as the Parkinson's progression markers initiative (PPMI) (Marek et al., 2011).

Due to the high inter-subject variability of the short bundles, other parameter tuning strategies could be employed for the filter based on the Convex Hull. For instance, the leverage of statistical analysis or machine learning to automatically fit the parameters of the filter based on the subject's unique bundle features. Another area of improvement in our work is the utilization of fixed segmentation thresholds. Modifying these thresholds could enhance the detection of short fiber bundles with the trade-off of segmenting a higher proportion of spurious fibers. Future work could include an analysis of the performance of the fiber bundle filter based on the Convex Hull when increasing the segmentation thresholds. Also, new tractography algorithms dedicated to the reconstruction of the short connections could be used (Shastin et al., 2022).

The proposed processing does not reassign rejected fibers to other SWM bundles. As it is shown in the Supplementary Figure S18, most of the rejected fibers constitute noisy fibers rather than different subpopulations of fibers. Nonetheless, a reassignment method could be integrated in future work to avoid removing valid streamlines. Also, a more detailed SWM bundle atlas could improve the representation of different fiber populations for high quality data.

This work aimed to evaluate the performance of different SWM fiber bundle filters and determine suggested parameters based on the HCP database, that could be used in other databases. Nevertheless, the two databases used differ vastly in male/female ratio as well as age and data quality. The sample employed from the HCP database is composed of subjects aged 22–25 years old (13 males, 31 females), with high-quality diffusion MRI data (270 total directions, three b-values, and 1.25 mm isotropic voxels). On the other hand, the sample from the ABIDE-II database is composed of control subjects (21 male, one female; 9.8 ± 3.6 years old) and Autism Spectrum Disorder (ASD) patients (21 male, one female; 9.8 ± 5.6 years old), with low-quality diffusion MRI data (64 directions, one b-value, and 3 mm isotropic voxels). Despite this asymmetry between databases, the parameter tuning in the ABIDE-II subsample (see Supplementary Figure S32) was quite similar to the HCP tuning in most bundles. However, future work could perform an analysis of the filtering using different data quality databases and tractography algorithms to evaluate the robustness of the filters and parameter tuning.

Finally, we limited our work to four test-retest reproducibility indices. Three of them have been previously used to quantify the similarity between fiber bundles: Dice Volumetric Overlap (Bertò et al., 2021; Schilling et al., 2021a), Average Distance (Guevara et al., 2012), and Average Minimum Distance (Schilling et al., 2021a). Furthermore, in our work, we proposed the Average Fractal Dimension (Bertò et al., 2021) as a measure of the average smoothness between the test and the retest bundles. We used indices that best fit our research objectives. Nonetheless, several other proposed indices in the literature, such as the relative difference of the mean FA (Zhang et al., 2019), the Intra-class correlation coefficient (Boukadi et al., 2019) or the volume overreach (Maier-Hein et al., 2017) can be used in future work.




5 Conclusion

In conclusion, the fiber bundle filter based on the Convex Hull significantly improved the test-retest reproducibility indices of the short fiber bundles. Our results show that we can identify well-defined short bundles with a regular shape. Our enhanced SWM segmentation could be beneficial in several research lines, such as the study of the regional organization of short fibers (Pron et al., 2020; Guevara et al., 2022), cortical parcellation (López-López et al., 2020), or the creation of SWM atlas (Zhang et al., 2018; Román et al., 2022). Our improvements are relevant to make the bundle segmentation method of Vázquez et al. (2019) or other segmentation algorithms more sensitive to alterations in the SWM diffusion-based microstructural indices. The results derived from the ABIDE-II database provide substantial support for this assertion. We have shown that the filter based on the Convex Hull increased the number of bundles with significant differences in the FA, MD, and RD between controls and subjects with ASD. Notably, the location of the bundles identified with significant differences is consistent with prior research in the field.
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Diffusion Magnetic Resonance Imaging tractography is a non-invasive technique that produces a collection of streamlines representing the main white matter bundle trajectories. Methods, such as fiber clustering algorithms, are important in computational neuroscience and have been the basis of several white matter analysis methods and studies. Nevertheless, these clustering methods face the challenge of the absence of ground truth of white matter fibers, making their evaluation difficult. As an alternative solution, we present an innovative brain fiber bundle simulator that uses spline curves for fiber representation. The methodology uses a tubular model for the bundle simulation based on a bundle centroid and five radii along the bundle. The algorithm was tested by simulating 28 Deep White Matter atlas bundles, leading to low inter-bundle distances and high intersection percentages between the original and simulated bundles. To prove the utility of the simulator, we created three whole-brain datasets containing different numbers of fiber bundles to assess the quality performance of QuickBundles and Fast Fiber Clustering algorithms using five clustering metrics. Our results indicate that QuickBundles tends to split less and Fast Fiber Clustering tends to merge less, which is consistent with their expected behavior. The performance of both algorithms decreases when the number of bundles is increased due to higher bundle crossings. Additionally, the two algorithms exhibit robust behavior with input data permutation. To our knowledge, this is the first whole-brain fiber bundle simulator capable of assessing fiber clustering algorithms with realistic data.
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1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive technique that measures the random motion of water molecules in tissues (Le Bihan and Iima, 2015). Fiber tractography based on dMRI reconstructs the main fiber pathways of brain white matter (WM), offering enormous potential for the study of structural brain connectivity along life span and different conditions (Dennis et al., 2013; Mimenza et al., 2020; Zhang et al., 2022). The tractography data are complex due to their large number of fibers, their high proportion of noisy fibers, and the complex morphology of brain connections, which presents significant challenges for their analysis (Maier-Hein et al., 2017; Yang et al., 2021).

There are several methods to analyze tractography data, including fiber clustering algorithms, which have made an important contribution due to their ability to identify similar fibers automatically and discard noisy fibers (O'Donnell et al., 2006; Guevara et al., 2011b; Garyfallidis et al., 2012; Reichenbach et al., 2015; Huerta et al., 2020; Vázquez et al., 2020; Legarreta et al., 2022). These methods analyze a collection of 3D tractography streamlines and group them into clusters or bundles that contain fibers with similar shapes and spatial positions. Although most exploratory clustering methods do not directly incorporate anatomical information, they are usually used as a step in a more extended processing pipeline with a specific goal, e.g., creating a WM bundle atlas, performing WM bundle segmentation, filtering WM fibers, or generating a diffusion-based parcellation.

Numerous fiber clustering techniques have been described in the literature. One of the most widely used methods in the state-of-the-art is QuickBundles (QB) (Garyfallidis et al., 2012). It measures the similarity between fibers based on a distance metric called the Minimum Average Direct Flip (MDF). The advantages of using the MDF distance are its speed in computation and the consideration of streamline directionality. Using the MDF distance requires that all fibers have the same number of points, so an initial step of the method interpolates the input fibers. By defining a distance threshold, the algorithm determines which streamlines belong to the same bundle or cluster without recomputing the clusters. QB has the benefit of being a simple and fast algorithm for identifying fiber bundles and reducing the dimensionality of large tractography datasets. This algorithm has been used in multiple applications, for example, WM bundle segmentation (Garyfallidis et al., 2018) and fiber filtering (Feng et al., 2023).

Another fiber clustering algorithm is Fast Fiber Clustering (FFClust) (Vázquez et al., 2020), which was designed mainly to identify compact clusters in massive tractography datasets with reduced computation time. This algorithm consists of four steps. It first reduces the dimensionality of the data by applying a MiniBatch K-Means (Sculley, 2010) on a subset of fiber points. The fibers whose points share the same point clusters are then grouped into preliminary fiber clusters. Then, it reassigns small groups of preliminary clusters to the nearest large clusters based on a maximum distance threshold. The last step uses a graph representation and a maximal clique algorithm to merge candidate clusters into final clusters. This algorithm has been used for the creation of a superficial WM bundle atlas (Román et al., 2022), a method for diffusion-based cortical parcellation (Molina et al., 2023), and outlier removal.

However, despite their usefulness, these algorithms are difficult to evaluate, compare, and improve due to the absence of ground truth. Different fiber clustering algorithms produce different fiber clusters from a tractography dataset. Furthermore, the same algorithm generates different clusters depending on the input parameters. Therefore, the development of robust evaluation strategies is imperative to provide users with reliable metrics in the clustering results. The existing literature offers limited tools for evaluating and comparing different fiber clustering results for whole-brain tractography datasets. In most cases, researchers employ alternative techniques and metrics to evaluate the performance of their clustering algorithms.

For example, the authors of QuickBundles used different whole-brain tractography datasets with initial conditions and four metrics to evaluate their algorithm. These metrics are the optimized matched agreement (OMA), coverage, overlap, and Bundle Adjacency (BA). The OMA was used to compare the different clusterings that arise when random permutations are applied to the input fiber dataset. Coverage and overlap metrics were calculated to evaluate how QB centroids are a better reduction than an equivalent number of random selections of streamlines. Finally, the BA was employed to compare the clustering results between subjects. The authors performed a simple fiber simulation that generated three distinct bundles of streamlines made from different combinations of sinusoidal and helicoidal functions, which illustrated the algorithm's behavior for low and high thresholds.

On the other hand, the authors of the FFClust algorithm (Vázquez et al., 2020) provided a performance evaluation with other state-of-the-art methods, such as a robust clustering proposal for intra-subject analysis (Guevara et al., 2011b), QuickBundles (Garyfallidis et al., 2012), and an improvement of QuickBundles called QuickBundlesX (Garyfallidis et al., 2016). The quality of the clusters obtained by each algorithm was evaluated using the intra-cluster and inter-cluster distances and the Davies–Bouldin (DB) index (Xu and Tian, 2015), defined as the average similarity between each cluster with its most similar cluster. In addition, they compared the execution times of the algorithms and found that their parallel implementation is about 8.6 times faster than QB using five threads.

Although the metrics and comparisons used have allowed a partial evaluation of the behavior of these algorithms, it would be desirable to have a simulation tool that allows validation with data that provide a ground truth at a whole-brain scale. However, the simulation of brain fibers is challenging due to their irregular and complex shape, making it difficult to create realistic data. Currently, most available simulation frameworks have been developed to validate tractography algorithms or local diffusion models.

Close et al. (2009) proposed an interesting tool that uses a collection of numerical constructs known as strands. This approach involves simulating bundles as coarse strands that are 3D linear splines with constant circular cross-sections. The simulation starts by initializing these strands along straight-line segments, connecting randomly generated points on the surface of a sphere until the entire sphere is covered. This tool has been proven helpful in validating fiber tracking algorithms by providing realistic bundle configurations for this purpose. Also, Neher et al. (2014) proposed an open-source framework called Fiberfox that allows for the intuitive definition of various fiber tract configurations, such as twisting, fanning, highly curved, kissing, and crossing. It was used to replicate the FiberCup physical phantom (Poupon et al., 2008) with different MRI artifacts and realistic microstructural parameters of white matter to compare different diffusion models and tractography algorithms.

Another idea is the analysis of fiber bundles using cross-sectional data to represent the bundle shapes. An example was proposed by Glozman et al. (2018), who developed a framework to evaluate age-dependent changes in bundle shape between subjects. To accomplish this, they used a geometric model to study the fascicle shapes, which divides a bundle into cross-sections and extracts a set of seed points, accurately capturing its shape.

Some fiber bundle simulators have been created to validate clustering algorithms. Guevara et al. (2011b) proposed a fiber fascicle simulation to validate their own fiber clustering algorithm. The simulated data were generated from a set of centroids, defined by randomly selected fibers from the whole-brain tractography dataset of a subject. The bundles were formed using a random translation of their centroids. The output was a set of cylindrical bundles across the whole brain, with a variable number of fibers added to simulate noise.

Following this idea, Poo et al. (2023) added exponential curves for a more realistic representation of the fiber bundle with dispersed ends. The simulator was validated by generating simulated bundles from a deep WM bundle atlas (Guevara et al., 2012). For this evaluation, to obtain more realistic simulations, the bundles were subdivided into five sub-bundles, each one created by the input simulation parameters: the centroid, the radii of each end, the central radius, the dispersion starting point for the exponential at each end, and the number of fibers. Furthermore, to show the applicability of this tool, four whole-brain fiber bundle datasets were created and used to evaluate the performance of a fiber clustering algorithm (QB) with 100 and 500 bundles and two end radii ranges (5–10 and 10–15 mm). These simulations used only one centroid per bundle.

This paper aims to create a more realistic simulation of brain fibers with intuitive and flexible parameters, to be used as a ground truth for evaluating different clustering algorithms. To achieve a realistic appearance, we used spline curves for fiber representation. A spline curve is defined by a set of control points and a set of mathematical functions that approximate the curve between these control points, enabling the representation of more complex shapes, such as brain fibers. These curves have previously been used to represent the fiber shape in fiber tracking algorithms (Wu et al., 2009, 2018; Losnegård et al., 2013).

For simulating a bundle, we propose a tubular model with variable radii, defined by a bundle centroid and the radii of five cross-sections across the bundle. Other parameters include the number of fibers and the mean and standard deviation of Gaussian noise at the bundle ends. To evaluate the simulator, we simulated bundles from a deep WM atlas (Guevara et al., 2012). We compared them with the original bundles, obtaining good similarity between the bundles, with a mean intersection percentage of 76.5%, which outperforms a previous, more straightforward, simulator based on exponential curves (Poo et al., 2023).

Furthermore, three simulated whole-brain datasets with different numbers of bundles were created to serve as ground truth for evaluating the performance of two clustering algorithms: QuickBundles (Garyfallidis et al., 2012) and FFClust (Vázquez et al., 2020). The evaluation was carried out by measuring five clustering metrics: Accuracy, Precision, Recall, F-measure and the Maximun matching ratio that provided insights into the quality of the clusters detected by the algorithms. Additionally, both algorithms were evaluated with permutations of the input data. The results show the applicability of the proposed simulator to perform an objective evaluation of the performance of fiber clustering algorithms with realistic data. Despite its limitations, to the best of our knowledge, this is the first whole-brain fiber bundle simulator capable of addressing the lack of ground truth for these types of algorithms. The code of the PhyberSIM is available at https://github.com/elidapoo/Brain_bundle_simulator.



2 Materials and methods


2.1 Materials
 
2.1.1 Tractography datasets

We used the HARDI ARCHI database (Schmitt et al., 2012) to evaluate the simulator and extract random fibers to generate whole-brain tractography datasets. Data were acquired using special acquisition sequences on a 3T magnetic resonance imaging scanner with a 12-channel head coil (Siemens, Erlangen). The diffusion MRI protocol included a B0 field map to correct artifacts and a single shell HARDI SS-EPI sequence along 60 optimized diffusion-weighted directions (b = 1,500 s/mm2, 70 slices, matrix = 128 × 128, voxel size = 1.71875 × 1.71875 × 1.7 mm).

The data were pre-processed using BrainVISA/Connectomist 2.0 software (Duclap et al., 2012), with parameters empirically adjusted to achieve a satisfactory reconstruction of all deep white matter bundles that compose the atlas proposed by Guevara et al. (2012). The main sources of artifacts were corrected, and defective slices were discarded. The analytical Q-ball model (Descoteaux et al., 2007) was computed to obtain ODF fields in each voxel. Finally, a whole-brain deterministic streamline tractography was performed, using a T1-based (Guevara et al., 2011a) propagation mask with one seed per voxel at T1 resolution, a maximum curvature angle of 30°, and a forward step of 0.2 mm. On average, the resulting datasets contain around one million fibers per subject. As a post-processing step, all the fibers were resampled using 21 equidistant points (Guevara et al., 2012).

To evaluate the simulator, we used bundles from a Deep White Matter (DWM) bundle atlas (Guevara et al., 2012). This atlas is based on multiple subjects, capturing the variability in shape and position of 36 DWM bundles.




2.2 Methods

This section explains the methodology used to develop the fiber bundle simulator, using spline curves and bundle shape parameters. To evaluate the robustness of the simulator, we implemented a validation process (Poo et al., 2023) by simulating bundles from a Deep White Matter (DWM) bundle atlas (Guevara et al., 2012).

To compare the simulated bundles with the reference atlas bundles, two similarity metrics were employed: an inter-bundle distance metric and the percentage of intersection between bundles. In contrast to Poo et al. (2023), where only three fascicles were simulated for the validation process, here we simulated 28 atlas bundles to test the simulator's behavior for a wider variety of bundle shapes.

Finally, we used our algorithm to generate simulated whole-brain tractography datasets, to serve as a ground truth for evaluating the performance of two state-of-the-art fiber clustering algorithms: Quickbundles and FFClust. The performance of both algorithms was evaluated for different distance thresholds, over three datasets with 100, 500, and 1,000 bundles, and different permutations of these simulated data.


2.2.1 Fiber bundle simulator using splines

The simulation of the bundles was performed considering a centroid and the division of the bundle into five cross-sectional regions: the two end regions, the central region, and two intermediate regions. These regions were selected since the radii of the external and central regions of a bundle are important characteristics to take into account when describing the shape of the bundle (Yeh, 2020). In our research, since we only have information from the centroid, we also considered the radii of two intermediate cross-sectional regions. The key parameters for the bundle simulation process were the centroid, which provides an approximate description of the trajectory of the bundle, the radii for each region, and the number of fibers to simulate.

The methodology consists of building a tubular model for the bundle simulation. We used circles at each selected cross-section, centered on their respective centroid points. For creating of a circle, an initial point is selected in its periphery and rotated seven times around its central point, with angles multiples of 45°.

The key to obtaining a realistic curve was to use points inside each circle as control points to build the splines. Fourth-order splines were used to ensure the smoothness and continuity of the final curves of the simulated bundle. Figure 1 displays the general outline of the process, and we describe each step next.


[image: Diagram illustrating three steps in a modeling process. Step A: Initial Parameters show dividing regions with labeled points and centroids. Step B: Building the Tubular Model depicts aligning planes and creating a mesh structure, highlighting region center points, peripheral points, and radii. Step C: Generation of Spline Curves features a completed model with control points and splines.]
FIGURE 1
 General outline of the bundle simulator based on spline curves, using as example the cortico-spinal tract (CST). Step (A) Initial Parameters: (A.1) Representation of five cross-sectional regions. Step (B) Building the cylindrical model: (B.1) Defining the first peripheral point of the circle (Pri), to be rotated around the central point (Pci), (B.2) Defining the circle peripheral points, which are the peripheral spline control points. Step (C) Generation of the splines curves: (C.1) Generation of the spline control points inside the cylindrical model, (C.2) Simulation of the bundle, with fibers defined by the splines. The subindex i represents the number of the region (from 1 to 5).



2.2.1.1 Step A: initial parameters

We considered five main cross-sectional regions for the bundle simulation: the end regions, the central region, and the intermediate regions, as can be seen in Figure 1A.1. The input parameters for each bundle of the simulation algorithm are the centroid of the bundle, the number of fibers, and the radii of the five cross-sectional regions ri, where the subindex i in each parameter represents the number of the region, from 1 to 5. Each radius represents the distance from the farthest fiber of the bundle to the corresponding point on the centroid. To ensure the real dispersion existing at the ends of the bundles, Gaussian noise is optionally added to the first five points of each end, defined by the Gaussian mean and variance as input parameters. To define the centers of the five cross-sectional bundle regions, the algorithm selects five specific points along the centroid (Pci). Since we work with fibers composed of 21 points, we used points with indexes 0, 3, 10, 17, and 20. These points were shown to be representative of the bundle shape in previous work (Labra et al., 2017; Vázquez et al., 2020).



2.2.1.2 Step B: building the tubular model

To construct the tubular model for the bundle shape, five circles are generated around the selected centroid points, to define the five cross-sectional regions. For the creation of a circle, an initial point is selected in its periphery (Pri) and rotated with seven different rotation angles θ, around each selected central point Pci. The rotation angles are multiples of 45°, and are defined in the interval 0–315°, delimiting eight circular sectors of 45°.

Figure 1B.1 illustrates how to obtain the initial peripheral point of each circle (Pri). First, we determine the direction of the bundle centroid at each central point Pci, by calculating the tangent vector ([image: Stylized mathematical notation showing a vector \( \vec{U}_n \), with an overscore arrow indicating vector notation and a subscript "n".]) to the curve at that point. Then, to define the initial peripheral point of each cross-sectional section Pri, we select a point at a distance ri from Pci, following the direction of the vector [image: Vector notation labeled as \( \overrightarrow{P_{ai}P_{ni}} \).] (perpendicular to the vector [image: Mathematical notation showing a vector U with a subscript n and an arrow above it, indicating it is a vector quantity.]), and belonging to the plane that contains Pci defined by [image: Vector notation with an uppercase letter "U" underlined by an arrow and subscript letter "n".]. To ensure that all points are in corresponding positions, they are aligned relative to the first circle point.

For the rotation of Pri around Pci, a 3 × 3 rotation matrix is constructed (Rodrigues, 1840; Taylor and Kriegman, 1994) based on the corresponding rotation axis [image: Vector \( \overrightarrow{U}_{h} = (u_{\bar{n}}, u_{\bar{r}}, u_{\bar{x}}) \), representing a three-dimensional coordinate with subscript and bar notation.] and the rotation angle θ, as shown in Equation (1). [image: Mathematical notation showing a vector \( \vec{U}_n \) with an arrow above the letter U, indicating a vector quantity, and a subscript n.] are selected as the axis of rotation for each Pri, which ensures that the rotation faithfully represents the direction of the bundle centroid in each region. Figure 1B.2 shows the tubular model obtained after the initial rotation of the peripheral points of each circle, obtaining a set of eight points defining the circles.

[image: Rotation matrix equation showing matrix R with terms involving \( u_x, u_y, u_z, \cos \theta, \) and \( \sin \theta \). Each element of the matrix includes expressions combining these variables and trigonometric functions.]



2.2.1.3 Step C: generation of the spline curves

The previous step generates a tubular model, divided into eight circular sectors along the five cross-sectional sections. For each circular sector, the algorithm generates points following a random uniform distribution, as shown in Figure 1C.1. This arrangement of points generates curves distributed over the entire tubular model. For the representation of brain fibers, fourth-order splines are used since this order is a good approximation to describe the complexity of the fiber shape. Note that for fiber tracking, third-order splines have been used (Wu et al., 2009; Losnegård et al., 2013), but we preferred to use a higher order to guarantee the smoothness of the curves.

To construct the fourth-order splines, it is necessary to have at least five control points. For creating the spline curves, we proceed by sectors. That is, for each spline, we take a point within the same sector for each circle. Figure 1C.1 illustrates the creation of a spline (in blue) and its corresponding control points (in cyan).

To add dispersion of the curve ends, Gaussian noise is optionally added to the points at both ends of the spline. For testing, at each bundle end, we added noise to the first five points of each curve, with a standard deviation, σ, varying in the range of 2.5–3.5 mm. As we use fibers with 21 points, the indexes of these points are 0, 1, 2, 3, 4 for the first end, and 16, 17, 18, 19, 20 for the other end. The addition of noise helps to obtain a more realistic curve with natural variability. The added noise can be modified depending on the desired degree of dispersion. In the example, a set of all the splines obtained using the tubular model is shown in Figure 1C.2.





2.2.2 Validating the bundle simulator using a Deep White Matter bundle atlas

The simulator was validated using a DWM bundle atlas (Guevara et al., 2012). As parameters for the simulation, we used the centroid, the radius of each section, and the number of fibers corresponding to each bundle of the original atlas. To determine the centroid of each atlas bundle, first the orientations of the fibers of the bundle were aligned with respect to a reference fiber. The alignment of the bundle fibers is required since when calculating the fibers, these can be stored in memory in any of the two possible orders respecting a reference fiber, direct or inverse order. To align the fibers of a bundle, we first analyze the orientation of each fiber with respect to the reference fiber, by comparing the Euclidean distance between their ending points. If the distance is higher for the opposite ends, the fiber is reoriented by inverting the order of all its points in memory. The reference fiber was identified by selecting fibers with a length >50 mm to remove the short fibers that in general are noisier than longer fibers, and then selecting the fiber with the minimum average distance from all other fibers. Next, the centroid was calculated as the mean of the fibers of the bundle. The radius of each circle was calculated as the mean of the Euclidean distances between the central point of the circle and all the corresponding fiber points of the bundle. The bundle orientation is defined based on the centroid of each atlas bundle. From the 21 points that define the centroid, a spline approximation of the centroid was determined, obtaining the coefficients of the curve equation. With them, to obtain the tangent vectors, we used the equation of the first derivative of the curve and calculated its value at each representative point of the centroid. Then, tangent vectors contain the centroid orientation at these points.

To measure how similar the simulated bundles were to the original atlas bundles, and also to compare the results with a previous simulator (Poo et al., 2023), we used two similarity metrics: the inter-bundle distance and the percentage of intersection between bundles. The inter-bundle distance represents the average distance between the closest fibers of two bundles. The intersection percentage between a pair of bundles is calculated as the percentage of similar fibers between the two bundles. Two fibers are considered similar if the distance between them is < 10 mm (Román et al., 2017; Poo et al., 2023). The calculation of these metrics is based on the use of a distance matrix, where the rows of the matrix represent the distance between the fibers of the simulated bundle and the atlas bundle. As a measure of the distance between the fibers, we used the maximum Euclidean distance between the corresponding points (Román et al., 2017). This measure considers the two possible directions of the fibers, as shown in Equation (2), where ai and bi are the indexes of the points in fibers A and B, respectively. Np corresponds to the number of points of the fiber.

[image: Mathematical equation describing a distance metric between two sets, A and B. It calculates the minimum of two values: the maximum difference between corresponding elements \(a_i\) and \(b_i\) of A and B, and the maximum difference between the element \(a_i\) and the reversed element \(b_{N-i}\) of B.]

To test the practicability of using a tubular model to represent the bundles, we conducted a short analysis of the shape of the regions of the atlas bundles, by modeling them with elliptical cross-sections (see Supplementary Figures S1, S2). Next, we calculated the ratio between the minor and major radii for the five cross-sectional regions of the analyzed atlas bundles, as well as the average radius ratio. A value closer to 1.0 indicates that both radii are very similar, and consequently the shape will be closer to a circle. As shown in Supplementary Table S1, the radius ratios are, in general, higher than 0.7, with a total average radius ratio of 0.82, which indicates that it is reasonable as a first approach to use a tubular model with circular cross-sections to represent tubular DWM bundles.

For the validation of the simulator, since the algorithm aims to simulate tubular bundles, eight out of the 36 bundles presenting a sheet-like shape were not considered in the analysis. These bundles correspond to the corpus callosum bundles and short cingulum bundles, which present completely different shapes and are usually subdivided into multiple clusters by exploratory clustering algorithms. Hence 28 bundles were simulated, including the left and right versions of the arcuate fasciculus bundles, long cingulum fibers, corticospinal tract, fornix, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, thalamic radiations, and uncinate fasciculus.



2.2.3 Validating fiber clustering algorithms using the bundle simulator

In this study, we generated simulated whole-brain bundle datasets to serve as ground truth for the validation of clustering algorithms. Our methodology involves the following parameters: the bundle centroids, the radii for the circle representing the cross-sectional regions, the number of fibers of each bundle, and the Gaussian noise parameters. The aim is to show the practicality of the proposed simulator in assessing the behavior of two clustering algorithms, QuickBundles (QB) (Garyfallidis et al., 2012) and Fast Fiber Clustering (FFClust) (Vázquez et al., 2020).

The bundle centroids were selected from the whole-brain tractography of a subject from the ARCHI database (Schmitt et al., 2012). This tractography comprises a collection of fibers, each with 21 points in ℝ3. First, we filtered out short and noisy fibers by selecting only centroids with a length >50 mm. Next, we chose centroids at a minimum of maximum Euclidean distance of 10 mm and a set of random fibers from the filtered fiber set to act as simulated bundle centroids. We worked with three sets of centroids consisting of 100, 500, and 1,000 centroids.

To select the range of simulation parameters for the circle radii and the number of fibers, we conducted a parameter study based on the bundles of the DWM bundle atlas (Guevara, 2011). As a result, the parameter configuration of the simulation consists of the following ranges for each radius: r1 and r5: 8–10 mm (end circles), r2 and r4: 6–8 mm (intermediate circles), r3: 5–7 mm (central circle). For defining the radii, the algorithm works as follows. First, the external radii are selected randomly and separately within their defined range. The intermediate radii are then selected randomly and separately within their corresponding range, but lower than their external radii. Finally, the central radius is randomly selected within its range, but inferior to the radii of the intermediate regions. This procedure aims to avoid irregular shapes when building the tubular model. Then, a Gaussian noise was added, with a σ varying in the range of 2.5–3.5 mm. The number of fibers was chosen from 50 to 300. All random selections are based on a normal distribution.

We generated three simulated ground truth datasets with 100, 500, and 1,000 fiber bundles. We used the bundles format, as it allows us to store all bundles in a single binary file (with the extension .bundlesdata) and the respective fiber bundle labels in a text file (with the extension .bundles). Then we applied QB and FFClust to the simulated tractography datasets using four different distance thresholds.

To apply the algorithms to a simulated dataset, QB only requires the distance threshold (θQB) for clustering. It typically utilizes the Minimum Average Direct-Flip (MDF) fiber distance, along with resampling the fibers to 12 points. This algorithm starts by selecting the first fiber in the tractography dataset and placing it in the first cluster. Then it constructs the clusters using the distance threshold (θQB) to determine whether a new fiber is assigned to the nearest cluster or initiates a new cluster. We applied QB using four values of θQB: 10, 12, 15, and 20 mm.

FFClust is based on four steps. The first step performs a clustering of MiniBatch K-Means over a subset of five points, the two ending points (0, 20), the central point (10), and two intermediate points (3, 17). The values of the number of clusters (Kp) for the different points (Kpend, Kpcent, and Kpinter) were obtained for the three datasets using the Elbow method, as proposed by Vázquez et al. (2020). In the second step, the method groups preliminary clusters composed of fibers that share the same point cluster labels computed in the previous step, that is, those sharing the same point clusters for the five points analyzed. In the third step, small clusters are reassigned to the nearest large cluster, considering a distance threshold (dRmax). If, at the end of the step, there are still groups consisting of only one or two fibers, these are deemed noisy and discarded. To reduce over-division, the final step merges candidate clusters sharing the central point label, based on a distance threshold (dMmax). Using a graph, the algorithm identifies and merges clusters within the distance threshold. In the FFClust implementation, the same values are used for both distance thresholds, as using different thresholds in these stages showed no difference in the results of the clusters. For testing, we applied FFClust using the same values as QB for the distance thresholds (dRmax, dMmax): 10, 12, 15, and 20 mm.

Another critical issue to consider when evaluating the performance of clustering algorithms is the impact of changing the order of the input elements on the algorithm. To address this consideration, we performed five input data permutations and analyzed the clustering metrics changes. In order to perform these permutations, we used the Fisher–Yates algorithm (Fisher and Yates, 1963), which randomly permutes a sequence of elements. It starts from the last element, randomly chooses an index, and swaps it with the current element. It repeats this process backward through the sequence. This approach guarantees uniformly random permutations and is efficient in terms of time.

Finally, we evaluated the quality of the clusters obtained by the algorithm by comparing them with the ground truth. We use standardized metrics, such as geometric accuracy, precision, recall, and F-measure, to assess the quality of the clusters obtained by clustering algorithms. Furthermore, many research studies have used the Overlap Score (OS) measure proposed by Nepusz et al. (2012). The goal of OS is to assess the degree of agreement between the clusters predicted by any method according to the ground truth clusters (Nepusz et al., 2012; Ji et al., 2014; Hernandez et al., 2017). Equation (3) defines the OS between Cp and Cg corresponding to the cluster predicted by the algorithm and the actual ground truth cluster, respectively.

[image: Equation for overlap score \( OS(C_p, C_g) \) is displayed. It is defined as the square of the size of the intersection of \( C_p \) and \( C_g \), divided by the product of the sizes of \( C_p \) and \( C_g \).]

Precision evaluates the proportion of clusters correctly identified and predicted by the algorithm among all predicted clusters. In contrast, Recall measures the fraction of ground truth clusters that are accurately predicted by the algorithm. F-Measure is the harmonic mean of Precision and Recall. Precision, Recall, and F-measure are defined as follows in Equations (4–6).

[image: Equation for precision calculation: Precision equals TP divided by the sum of TP and FP, where TP is true positives and FP is false positives. The equation is labeled as number four.]

[image: Formula for recall: Recall equals TP divided by the sum of TP and FN, labeled as equation 5.]

[image: Formula for F-measure displayed as: F-measure equals two times Precision times Recall divided by the sum of Precision and Recall. Equation number six.]

where TP is the number of True Positives, representing the number of clusters matching ground truth clusters with an OS equal to or greater than a threshold. This work uses an OS of 0.8, as suggested by Nepusz et al. (2012). FP represents the number of False Positives and is the difference between the number of clusters predicted by the algorithm and the number of TP. FN or False Negatives refers to the number of ground truth clusters that do not have a match in the clusters predicted by the algorithm. As observed, the TP, FP, and FN values are based on the overlap score.

We also use another two measures: Geometric Accuracy (Acc) and Maximum Matching Ratio (MMR) (Brohée and van Helden, 2006; Nepusz et al., 2012; Hernandez et al., 2017). First, Acc represents the geometric mean of Clustering Wise Sensitivity (Sn) and Positive Predictive Value (PPV). Sn indicates the algorithm's proficiency in identifying fibers within the ground truth, specifically regarding coverage. In contrast, PPV denotes the probability of TP in the cluster predicted by the algorithm. Then Sn, PPV, and Acc can be defined as shown in Equations (7–9).

[image: Mathematical formula representing Sn, calculated as the sum from i equals one to n of the maximum of t sub i j, divided by the sum from i equals one to n of N sub i, labeled as equation seven.]

[image: Equation for Positive Predictive Value (PPV) shown: PPV equals the sum from j equals one to m of maximum t_i_j over the sum from j equals one to m of T_j. Equation labeled as eight.]

[image: Mathematical formula for accuracy, Acc, equals the square root of Sn multiplied by PPV, denoted as equation nine.]

where tij is the number of fibers in common between the ith cluster of the ground truth and the jth cluster predicted by the algorithm. The number of clusters in the ground truth is n and m is the number of clusters predicted by the algorithm. Ni is the number of fibers present in the ith cluster, and [image: Mathematical expression showing T sub j equals the sum from n equals zero to i minus one of the maximum value of t sub v with respect to j.].

Second, the Maximum Matching Ratio (MMR) (Nepusz et al., 2012; Hernandez et al., 2017) measures the matching proportion of the predicted clusters of the algorithm with the clusters of the ground truth. The MMR penalizes cases where a ground truth cluster is divided into multiple parts in the predicted set. It uses a bipartite graph with weighted edges to measure the quality of the predicted set relative to the ground truth set. The MMR score reflects the sum of edge weights divided by the number of clusters in the ground truth. Edges are weighted on the basis of the overlap score between the clusters. The MMR is computed by summing all OS values of TP-predicted clusters divided by the number of ground truth clusters.




3 Results

All experiments were performed on a machine equipped with a 3.0 GHz Intel(R) Core(TM) i7-9700 CPU and 32 GB of RAM, using Windows 10 Pro (64-bits). We describe the results for the bundle simulator using 28 DWM bundles, followed by the experiments for the validation of fiber clustering algorithms using the bundle simulator.



3.1 Validating the bundle simulator using the DWM bundle atlas

In order to validate the proposed simulator, we generated 28 bundles of the DWM bundle atlas with different shapes and number of fibers.

We used two metrics to compare the simulator results with the atlas bundles: the inter-bundle distance and the percentage of intersection between bundles. These metrics, based on the maximum Euclidean distance between fibers (Equation 2), allow us to evaluate the accuracy of the representation of the bundle shape. Table 1 presents detailed results for both metrics.


TABLE 1 Metrics results between the simulated bundles and the bundles of the atlas for the proposed simulator and the previous simulator, based on exponential curves (Poo et al., 2023): previous simulator I (simulation using five centroids), previous simulator II (simulation using one centroid), inter-bundle distance ± standard deviation (mm) (ID ± STD) and intersection percentage between bundles (%) (IP).

[image: Table comparing three simulators for atlas bundles with ID ± STD ((Mm) and IP (%)). Includes data for left and right arcuate, corticospinal tracts, thalamic radiations, and more. Proposed simulator shows higher mean values for IP (%), denoting improved performance. Mean values are highlighted in bold.]

Figure 2 shows three simulation results corresponding to bundles of the atlas with different shapes: the left uncinate fasciculus, the left inferior longitudinal fasciculus, and the inferior fronto-occipital fasciculus. The first simulated bundle, shown in Figure 2A, achieved a good representation quality with a bundle intersection percentage of 90.5% and an inter-bundle distance of 8.4 ± 1.2 mm. Figure 2B shows a medium-quality result, with an intersection percentage of 48.2% and an inter-bundle distance of 10.3 ± 1.8 mm. Figure 2C shows an example of low-quality result, with an intersection percentage of 13.2% and an inter-bundle distance of 11.9 ± 1.7 mm. The result of medium or low quality is due to bundles whose ends are very dispersed having variable radii. Therefore, a representation using a single centroid and a mean radius of the fibers to the centroid may only partially capture the bundle's shape. Supplementary Figures S3, S4 show the remaining simulated bundles of the atlas.


[image: Three pairs of brain images compare atlas and simulated nerve bundles. Each row shows a different bundle: A, B, C. Atlas bundles are in blue on the left; simulated bundles are in red on the right with overlap indices (IP and ID) displayed alongside.]
FIGURE 2
 Examples of bundle simulation based on the DWM bundle atlas (Guevara et al., 2012). Original bundles of the atlas are displayed at the left (blue), and their corresponding simulated bundles are shown at the right (red). (A) The left uncinate fasciculus, (B) the left inferior longitudinal and (C) the inferior fronto-occipital. IP, intersection percentage between bundles (%); ID, inter-bundle distance (mm).


We also performed simulations using our previous simulator based on exponential curves. As in Poo et al. (2023), we simulated the atlas bundles by decomposing them into five sub-bundles. However, this strategy utilizes five centroids; hence, to have a more fair comparison of bundle models, we also simulated bundles with exponential curves using only one centroid. Table 1 presents the comparison results.

The results show a good performance of the proposed simulator, with a mean inter-bundle distance (ID) (and standard deviation) of 8.5 ± 1.5 mm and a mean intersection percentage (IP) of 76.5%. The method outperforms the previous simulator based on five centroids, with average metrics of 9.7 ± 3.8 mm and 64.8%, respectively, and based on only one centroid, with average metrics of 11.9 ± 5.7 mm and 46.5%, respectively. These results show that the simulator can successfully reproduce most bundles. Specifically, 20 of the 28 simulated bundles had a percentage of intersection >85% with the corresponding atlas bundle. Nonetheless, some bundles, such as the left and right inferior fronto-occipital fasciculus, were poorly simulated. These bundles have complex shapes with spread ends, which makes it difficult to simulate them using the information given by only one centroid. Table 1 shows that the previous simulator using five sub-bundles obtained better intersection percentages for these specific fascicles, but when using only one centroid, it presented a lower performance. It is important to note that the calculation of the bundle centroid also affects the simulation results. Here, we used the most common centroid formula, based on the mean of the bundle corresponding points, which naturally creates centroids that do not extend over the entire length of the bundles.

Additionally, Supplementary Table S1 shows the simulation results obtained using the preliminary model based on elliptical cross-sections, compared to the proposed tubular model. Supplementary Figure S5 the three fascicles displayed in Figure 2 for the two models. In Supplementary Table S1 we can observe that improvements in IP and ID were found only in eight bundles (left and right cortical spinal tracts, left and right fornices, left and right occipital thalamic radiations, and left and right uncinate fasciculus), with comparable or inferior results for the remaining bundles. Hence, future work could improve this model, by finding better strategies to define the radii of the ellipses.



3.2 Validating fiber clustering algorithms using the bundle simulator

Using our tubular model, we simulated three whole-brain datasets with 100, 500, and 1,000 bundles, which served as ground truth to evaluate the performance of two fiber clustering algorithms. Table 2 shows the main characteristics of the ground truth for the different number of bundles, including the number of centroids used for the simulation and the minimum and mean distance between them. Supplementary Figure S6 shows the centroid sets. Table 2 also lists the minimum and maximum number of fibers per bundle, the total number of fibers of the ground truth, and the number of crossing bundles. A more detailed view of the simulated bundle datasets is shown in the Supplementary Figures S7–S9.


TABLE 2 Ground truth characterization: the number of centroids used for the simulation, the minimum and mean distance between centroids, the minimum and maximum number of fibers in the bundles, the total number of fibers in the ground truth, and the number of fascicles with crossing.

[image: Table titled "Ground truth characterization" showing data for 100, 500, and 1,000 centroids. Minimum distance between centroids: 13.23, 10.16, 10.01 mm. Mean distance: 90.03, 91.69, 90.81 mm. Minimum fibers per bundle: 50. Maximum fibers: 300. Total fibers: 19,052, 87,728, 176,300. Number of crossed bundles: 15, 274, 619.]

Given that simulated bundles contain the generated fibers around their centroids, some bundles can contain fibers that become very close to the fibers of other bundles. We denote these bundles as crossing bundles. Thus, we define crossing bundles as those bundles that contain fibers that are at a distance below 10 mm from the fibers of other bundles. Figure 3 displays different types of crossing bundles in the ground truth.


[image: Visualization of nerve fiber bundles in the brain, showing three clusters in red and blue. The fibers are arranged in curved, dense formations, indicating neural connectivity patterns.]
FIGURE 3
 Examples of different types of crossings existing between two bundles in the ground truth datasets. The red and the blue bundle represents two different bundles in the ground truth. The black line represents a 10 mm distance marker.


We applied the QB and FFClust algorithms with different distance thresholds of 10, 12, 15, and 20 mm to these simulated datasets. As mentioned in the previous section, for the FFClust algorithm, we also use the Elbow method to set the number of clusters per fiber point. Supplementary Figure S10 shows the Elbow curves corresponding to the three ground truth datasets.

Figure 4 shows the clusters obtained by both algorithms for the different distance thresholds. As observed, there is a higher crossing between the bundles of datasets II and III (500 and 1,000 fascicles), corresponding to the information shown in Table 2, due to the higher number of bundles used. Also, the behavior of both algorithms is quite similar, increasing the size of the clusters as the distance threshold increases.


[image: Matrix of brain images displaying colorful patterns representing cluster analyses. Columns I, II, and III each contain sections labeled A to E, subdivided into QB and FFclust categories. Each brain image is vibrantly colored, indicating different data clusters.]
FIGURE 4
 QB and FFClust fiber clustering results obtained for simulated tractography datasets with 100 bundles (I), 500 bundles (II) and 1,000 bundles (III): (A) Original simulated bundles. Clusters obtained by QB and FFClust for different thresholds: (B) 10 mm, (C) 12 mm, (D) 15 mm, (E) 20 mm.


To evaluate the quality of the clusters obtained by the algorithms, we calculated the five measures described earlier: Accuracy (Acc), Precision, Recall, F-measure, and Maximum Matching Ratio (MMR). The results of the different measures for both algorithms can be seen in Tables 3, 4 for the simulated tractography datasets with 100, 500, and 1,000 bundles, respectively.


TABLE 3 Metrics values to evaluate the performance of QB algorithm for the three simulated tractography datasets (100, 500, and 1,000 bundles).

[image: Table comparing various metrics across different thresholds and original cluster sizes. Metrics include Algorithm clusters, Accuracy, Precision, Recall, F-Measure, and Maximum Matching Ratio. Values are presented for thresholds of ten, twelve, fifteen, and twenty millimeters, and cluster sizes of one hundred, five hundred, and one thousand. Best performance metrics for each threshold are highlighted in blue.]


TABLE 4 Metrics values to evaluate the performance of FFClust algorithm for the three simulated tractography datasets (100, 500, and 1,000 bundles).

[image: Table displaying performance metrics for algorithm clusters at various thresholds and original cluster sizes of 100, 500, and 1,000. Metrics include algorithm clusters, accuracy, precision, recall, F-measure, and maximum matching ratio. The table highlights the best performance metrics in blue for each cluster size and threshold combination.]

Tables 3, 4 list the number of clusters predicted by the algorithms. Supplementary Tables S2, S3 show the values of TP, FP, FN, PPV, and Sn. In general, both algorithms performed well as distance thresholds increased. While QB tends to split less, FFClust tends to merge less, behaviors that are expected for both algorithms, and consistent for the different number of clusters. As QB has as a unique input parameter, the distance threshold (θQB), its behavior only depends on this value. As the threshold increases, fewer clusters are created and fibers located more distant to the cluster centroids are added to the clusters. If θQB is too big, groups of fibers with different shapes will be clustered together forming bigger and thicker clusters. On the other hand, FFClust has more parameters that have an impact on the final results. The values of the number of clusters (Kp) for the different points in the first step (Kpend, Kpinter, and Kpcent) are the most important, since they impact the size of the point clusters. A higher number of point clusters will produce smaller preliminary fiber clusters. The two distance thresholds also impact the clustering results, by reassigning small clusters to big clusters (dRmax) and merging clusters sharing the central point cluster (dMmax). Therefore, higher distance thresholds will also produce larger and thicker clusters, but to a lesser extent than QB, so that it is less likely to merge fibers with different shapes, but conversely, more likely to over-subdivide clusters.

As seen in Tables 3, 4 and Figure 4, QB had its best performance for a threshold of 12 mm for all the ground truth datasets, while FFClust performed best for a threshold of 15 mm. As the number of bundles increases, quality measures decrease, which is expected due to the increase in bundle crossings. These crossings might confuse the clustering algorithms.

The maximum value of the measures was obtained for the ground truth of 100 fascicles for both algorithms, reaching an Accuracy of 0.95 in both cases. Furthermore, QB achieves higher Accuracy than FFClust in the larger datasets. The Accuracy values decrease with larger datasets for both algorithms, and QB is more sensitive to the distance threshold than FFClust in all datasets. These values are achieved because both algorithms present a good proportion of true positives (TP), as seen in Supplementary Tables S2, S3. Similarly, the precision reaches close values for both algorithms, with 0.72 for QB and 0.66 for FFClust for the smaller dataset. However, the precision values are more affected in FFClust with the increasing number of bundles, mainly due to an increase in the false positives (see Supplementary Table S3). In contrast, FFClust presents a higher Recall than QB in the smallest dataset and lower than in the largest datasets.

In the last experiment, we assessed the algorithm's ability to detect crossing bundles accurately. We computed the total count of TP clusters (those with OS≥0.8) of each algorithm output corresponding to a crossing bundle in the ground truth for each ground truth dataset and threshold. Then, we computed the percentage of crossing bundle recovery per algorithm by dividing such total count by the total number of crossings in the bundle of the ground truth. The results presented in Table 5 illustrate that the algorithms' optimal performance in terms of crossing recovery aligns with the thresholds identified as the best performers in Tables 3, 4 (12 mm for QB and 15 mm for FFClust). Additionally, across most ground truth datasets and thresholds, FFClust outperforms QB, consistent with expectations stemming from differing grouping methodologies.


TABLE 5 Performance of the QB and FFClust algorithms in retrieving crossing bundles for different thresholds (10, 12, 15, and 20 mm) and three ground truth datasets (100, 500, and 1,000 bundles): percentage of clusters recovered by the algorithm (% crossing clusters recov).

[image: Table displaying percentages of crossing clusters recovered by QB and FFClust methods for original clusters of 100, 500, and 1,000, with crossing clusters of 15, 274, and 619, at thresholds of 10, 12, 15, and 20. Values vary by method and threshold, showing trends in cluster recovery effectiveness.]

The values of the F-measure, which represent a trade-off between precision and recall metrics, are affected by the increase in the number of fascicles. In the case of MMR, which provides a measure of the degree of similarity between the clusters predicted by the algorithm and the ground truth, it also shows similar behavior in both algorithms, with FFClust exceeding the MMR values only for the smaller dataset.

Figures 5–8 illustrate examples of the performance of the algorithms in retrieving specific ground truth clusters. At the top of each figure, the original bundle of the ground truth dataset is presented along with its location in the brain. The middle section shows the bundle retrieved by QB for different thresholds, while in the bottom part the same is presented but for the FFClust algorithm. In each figure are included the OS values obtained by the algorithm bundle compared to the ground truth considering different thresholds.


[image: Visualization of fiber bundles with threshold variations. The top left shows a colorful bundle location map. The top right displays the original red fiber bundle. Below, two rows show blue fiber bundles processed by different algorithms (QB and FFClust) at thresholds of ten, twelve, fifteen, and twenty, each with objective scores (OS) ranging from zero point eighty-one to one point zero.]
FIGURE 5
 An example of a good performance of QB and FFClust clustering algorithms when retrieving a cluster from the ground truth. The upper part of the figure shows the original bundle and its location in the brain. In the middle and bottom parts, it can be observed the bundle predicted by QB and FFClust for the different thresholds and their corresponding OS values.


Figure 5 displays a successfully recovered bundle by both algorithms, with OS values >0.8. In contrast, Figure 6 shows a poor performance of the algorithms in retrieving the bundle. QB tends to merge the bundle with others as the threshold increases, while FFClust splits the bundle into several bundles, recovering only a small percentage of fibers of the original bundle. Figure 7 shows an example where FFClust obtains higher OS values than QB. This is because FFClust can preserve the fascicle for different distance thresholds, unlike QB, which tends to merge clusters as the threshold increases. The explanation is that FFClust does not only depends on the distance thresholds, but also on the number of point clusters in its first step. Figure 8 presents the prediction of a ground truth fascicle where QB outperforms FFClust in recovery, with a similar behavior for all thresholds. This is due to the tendency of FFClust to split fascicles, especially when they are large. Finally, Supplementary Figure S11 and Supplementary Table S4 show the results for a newer version of the QB algorithm called QBX (Garyfallidis et al., 2016). This algorithm is 95% faster than QB and the values of the metrics for the highest threshold are the same for both algorithms. However, for the remaining distance thresholds there is a degradation in the quality of the results with respect to those obtained by QB, due to their tendency to subdivide the fascicles along the smaller thresholds and to create clusters of fewer fibers.


[image: Neuroimaging chart displaying tractography results. Top-left shows a colored brain with a highlighted red tract labeled "Bundle Location." The top-center shows the "Original Bundle" in red. Below, six blue bundles are shown: "QB Bundle" with overlap scores (OS) of 0.36, 0.53, 0.28, 0.21, and "FFClust Bundle" with OS of 0.22, 0.35, 0.38, 0.38.]
FIGURE 6
 An example of a bad performance of the QB and FFClust clustering algorithms when retrieving a cluster from the ground truth. The upper part of the figure shows the original bundle and its location in the brain. In the middle and bottom parts, it can be observed the bundle predicted by QB and FFClust for the different thresholds and their corresponding OS values.



[image: Illustration showing tractography bundles. Top left displays the bundle location in a brain map. The "Original Bundle" is red. The "QB Bundle" and "FFClust Bundle" rows show blue tractography bundles at thresholds 10, 12, 15, 20, with overlap scores (OS) ranging from 0.40 to 1.00.]
FIGURE 7
 An example of the performance of the QB and FFClust clustering algorithms when retrieving a cluster from the ground truth, where FFClust has better performance than QB. The upper part of the figure shows the original bundle and its location in the brain. In the middle and bottom parts, it can be observed the bundle predicted by QB and FFClust for the different thresholds and their corresponding OS values.



[image: Fiber tractography visualization comparing different threshold levels (Thr) for QB and FFClust bundles. At thresholds 10, 12, 15, and 20, QB bundles show overlap scores (OS) of 0.95, 1.00, 1.00, and 1.00. FFClust bundles have OS of 0.50 at all thresholds. A small brain illustration is shown in the top-left corner.]
FIGURE 8
 An example of the performance of the QB and FFClust clustering algorithms when retrieving a cluster from the ground truth, where QB has better performance than FFClust. The upper part of the figure shows the original bundle and its location in the brain. In the middle and bottom part, it can be observed the bundle predicted by QB and FFClust for the different thresholds and its corresponding OS values.


Another important condition to consider when evaluating the performance of clustering algorithms is to determine the sensitivity of the algorithms regarding the order of the input data elements. To evaluate this, we performed five random permutations of the input data for each dataset. We computed the metrics averages for the algorithms against the permutations. Table 6 presents the results for QB and Table 7 for FFClust. Supplementary Tables S5, S6 report the variations of the TP, FP, FN, PPV, and Sn measures, used to calculate the other metrics. In general, the measure values are similar to those obtained in the original data without permutation, with low standard deviations. Note that the mean measures for all the permuted datasets presented the best performance for the same thresholds as for the original input data, that is, 12 mm threshold for QB and 15 mm for FFClust. This shows that the algorithms are stable at different permutations of the input data.


TABLE 6 Performance of QB algorithm for five random permutations of the three original simulated tractography datasets.

[image: Table comparing performance metrics across different thresholds and original clusters. Columns represent thresholds of 10, 12, 15, and 20 for original clusters of 100, 500, and 1,000. Metrics include algorithm clusters, accuracy, precision, recall, F-measure, and maximum matching ratio. Best performance metrics for each column are highlighted in blue. Standard deviations accompany each mean value.]


TABLE 7 Performance of FFClust algorithm for five random permutations of the original simulated tractography dataset.

[image: Table comparing performance metrics across threshold values for original clusters of sizes one hundred, five hundred, and one thousand. Metrics include algorithm clusters, accuracy, precision, recall, F-measure, and maximum matching ratio. Best performance metrics are highlighted in blue for identification.]



3.3 Execution time and computation complexity

The simulator has three steps to simulate a bundle, its time complexity is based on the final steps. The first step is the initialization of the model parameters, which include the centroid of the bundle, the number of fibers, and the radii of the five cross-sectional regions. The algorithm takes a random selection of the radii and number of fibers, from a range of input values. The second step builds the tubular model, which requires the generation of the five circular cross-sectional regions. For each cross-sectional region, the algorithm computes peripheral points within each circle. To establish the eight circular sectors, it employs principles of 3D geometry, including the definition of a plane, the calculation of a vector cross product, and a rotation matrix. This step is independent of the number of fibers and takes constant time. In the third step, for each sector of each region, the algorithm generates uniform random points according to the number of fibers of the bundle. To compute each spline, we take a point within the same sector for each circle as a control point. This step is linear in the number of fibers. Hence, the time complexity for simulating a bundle is [image: Mathematical symbol representing the empty set, depicted as a circle with a diagonal line through it.](N), where N is the number of fibers of the bundle. Therefore, for simulating a dataset consisting of M bundles the total time complexity is [image: A lowercase "o" with an acute accent in a serif typeface.](MN). To experimentally show the time complexity for simulating a bundle, Figure 9 displays the execution time in seconds to simulate a bundle containing an increasing number of fibers between 100 and 1,000 fibers using different radii configurations. As observed, the figure shows a linear-time algorithm to simulate a bundle. In this work, we simulated three datasets with 100, 500, and 1,000 bundles, which were executed in 12.20, 59.84, and 122.68 s, respectively.


[image: Line graph showing execution time over the number of fibers ranging from 100 to 1000. Four lines represent different radii configurations labeled as [8, 6, 4, 6, 8], [10, 8, 6, 8, 10], [12, 10, 8, 10, 12], and [14, 12, 10, 12, 14]. All lines closely follow a diagonal trend, indicating a nearly linear relationship between execution time and the number of fibers. Execution time ranges from 0.1 to 1 second.]
FIGURE 9
 Execution time for the simulation of a bundle containing an increasing number of fibers between 100 and 1,000 fibers using different radii configurations. We used four radii configurations, with higher radii for the external cross-sectional regions (r1 and r5), a lower radius for the central region (r3), and intermediate radii for the regions r2 and r4.




4 Discussion

We propose a novel bundle simulator algorithm that uses spline curves for fiber representation. Our main purpose is to address the challenge of limited ground truth data for fiber clustering methods. The simulator uses a bundle centroid and the radii of five cross-sectional regions along the centroid to build a tubular model that contains the splines of the simulated bundle. With this approach, we can simulate more realistic bundle shapes than those of the state-of-the-art.

The simulator was tested through the generation of 28 bundles from a DWM bundle atlas. As a result, our method can generate bundles reasonably similar to the atlas bundles, with in general low inter-bundle distances and high intersection percentages between the original and the simulated bundles. As expected, our algorithm performs better for bundles with tubular shapes. It can successfully represent variations in the radii along the bundles. However, sheet-like bundles cannot be represented by our method. This limitation is not as detrimental to the evaluation performed, as the applied fiber clustering algorithms generate tubular clusters. However, it would be very useful to extend the simulator in the future to other bundle shapes, such as sheet-like shapes.

The applicability of the simulator was proven by generating three simulated whole-brain fiber bundle datasets with different numbers of bundles (and fibers) to evaluate the performance of two state-of-the-art fiber clustering algorithms, QuickBundles (QB) and Fast Fiber Clustering (FFClust), for different distance thresholds. We used five metrics to evaluate the quality of the clusters obtained by the algorithms. Thanks to the different metrics used, it was possible to evaluate different aspects of the performance of the algorithms, showing the complexity of evaluating this kind of algorithm. With permutations of the input datasets, it was also possible to evaluate the behavior of the fiber clustering algorithms against permutations of the input data. This yielded interesting results, where both algorithms proved to be robust to the permutations, with a low standard deviation for the five tests. However, the experiment showed that there is no negligible impact of the order of the input data on the results of the two algorithms evaluated. Surprisingly, we found very similar behaviors in both algorithms for the tests and the metrics used, despite the fact that they are very different.

In future work, an important set of existing shapes found in real bundles could be modeled using an extension of the developed framework by delineating non-circular cross-sectional regions. An exception is the corpus callosum if we want to simulate it in a single bundle, since it has a totally different shape that cannot be represented by a linear centroid. However, it should be noted that exploratory algorithms, in general, do not identify it as a single tract.

In any case, we believe that the proposed simulator is an important advance in the state of the art, in order to improve the evaluation of fiber clustering algorithms, since there is no other method with the PhyberSIM features. The method more similar is the proposed by Close et al. (2009), which generates a dataset of numerical phantoms to assess dMRI fiber tracking. This tool uses a collection of numerical constructs known as strands. A strand is defined by a centroid using 3D linear splines, with constant circular cross-sections, meant to represent a collection of axons. The bundles are constructed by a set of strands, fitting scenarios that can be presented during tracking algorithms, such as kissing or crossing bundles. These bundles present almost constant cross-sections and are arranged on a sphere. Also, the bundles and strands do not overlap at their endpoints. On the other hand, our bundle simulator uses a tubular model with different cross-sectional radii, that can represent thickness changes along the bundle. Furthermore, the bundles can overlap at any point and are distributed following a brain shape, leading to more realistic simulated datasets for fiber clustering validation.

Moreover, our simulator can not only be used to validate fiber clustering algorithms, but could also be used to generate other types of simulations. For example, to generate more complex datasets, such as sets of labeled cortical regions and connecting bundles, that would serve as ground truth for the validation of diffusion-based cortical parcellation methods.



5 Conclusions

We propose a framework for the simulation of tubular fiber bundles that is easy to use, with a reasonable number of parameters, that can be employed to evaluate fiber clustering algorithms. The experiments performed demonstrated the applicability of the simulator and the metrics used. Despite its limitations, the proposed simulator bridges a gap in the lack of ground truth for the validation of these algorithms. We believe that this tool could be used by the scientific community to test and improve their fiber clustering algorithms. Furthermore, it could be used to generate other types of simulated data, to validate different tractography analysis methods, such as diffusion-based cortical parcellation algorithms. For that, we will make available the codes to generate the simulated data and the whole-brain simulated datasets. Finally, it is important to note that, as future work, we plan to generate other forms of fascicles, and also to add different fiber bundle configurations such as kissing and fanning bundles, as well as other parameters such as fiber density.
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Introduction: The Human Connectome Project (HCP) has become a keystone dataset in human neuroscience, with a plethora of important applications in advancing brain imaging methods and an understanding of the human brain. We focused on tractometry of HCP diffusion-weighted MRI (dMRI) data.
Methods: We used an open-source software library (pyAFQ; https://yeatmanlab.github.io/pyAFQ) to perform probabilistic tractography and delineate the major white matter pathways in the HCP subjects that have a complete dMRI acquisition (n = 1,041). We used diffusion kurtosis imaging (DKI) to model white matter microstructure in each voxel of the white matter, and extracted tract profiles of DKI-derived tissue properties along the length of the tracts. We explored the empirical properties of the data: first, we assessed the heritability of DKI tissue properties using the known genetic linkage of the large number of twin pairs sampled in HCP. Second, we tested the ability of tractometry to serve as the basis for predictive models of individual characteristics (e.g., age, crystallized/fluid intelligence, reading ability, etc.), compared to local connectome features. To facilitate the exploration of the dataset we created a new web-based visualization tool and use this tool to visualize the data in the HCP tractometry dataset. Finally, we used the HCP dataset as a test-bed for a new technological innovation: the TRX file-format for representation of dMRI-based streamlines.
Results: We released the processing outputs and tract profiles as a publicly available data resource through the AWS Open Data program's Open Neurodata repository. We found heritability as high as 0.9 for DKI-based metrics in some brain pathways. We also found that tractometry extracts as much useful information about individual differences as the local connectome method. We released a new web-based visualization tool for tractometry—“Tractoscope” (https://nrdg.github.io/tractoscope). We found that the TRX files require considerably less disk space-a crucial attribute for large datasets like HCP. In addition, TRX incorporates a specification for grouping streamlines, further simplifying tractometry analysis.
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1 Introduction

The long-range connections between different brain areas that form the human macro-scale connectome are essential to the distribution and integration of information in the brain (Bassett and Sporns, 2017). Healthy brain connections are also important for mental and neurological health (Bassett and Bullmore, 2009). The Human Connectome Project (HCP) is a pioneering effort to study the structure and function of the brain macro-scale connectome. The WU-Minn-Ox consortium of the HCP pursued this effort by collecting a large dataset of 1,200 young adult twin and non-twin siblings that included extensive measurements of structural (T1-weighted and T2-weighted), functional (both with a task and without one—i.e., at “rest”) and diffusion-weighted MRI (dMRI), in addition to genotype information and behavioral testing. Some of the subjects also underwent additional electrophysiological measurements and additional MRI measurements at 7T.1 Rather than relying on the state of the art of MRI measurements at the time that the project was initiated, the HCP advanced the field forward, developing a large number of novel techniques for data acquisition, data processing and analysis, and created novel ways to organize and disseminate the data. This effort has generated a dataset that even now, more than a decade after the project started, stands out in its high quality and uniformity of measurement, and in the large value that the research community has drawn from it. Thus, the HCP has become a keystone dataset in human neuroscience, with more than 1,500 papers that acknowledge using the data, as of 2021 (Elam et al., 2021). Its approach serves as a source of inspiration to a large number of HCP-style follow-up studies (Glasser et al., 2016), including studies targeting life-span development (Bookheimer et al., 2019; Howell et al., 2019), and several different projects targeting specific clinical populations (e.g., Demro et al., 2021).

Measurements of dMRI in the HCP dataset leveraged several technical innovations. These included use of specialized hardware, and particularly of a strong and fast set of gradients, with a maximal gradient strength of 100 mT/m, and effective slew rate of 91 mT/m/s. Parallel imaging techniques that use multi-slice and multi-band excitation were used to accelerate the acquisition of each volume (Setsompop et al., 2012). This enabled measurements in a large number of different directions, with multiple different non-zero b-values (distributed in three shells of b≈1, 000s/mm2, b≈2, 000s/mm2, b≈3, 000s/mm2), and with a high spatial resolution of 1.25 × 1.25 × 1.25mm3. In addition to these advanced acquisition techniques, HCP developed novel processing methods to address artifacts due to motion and eddy currents, and to address geometric distortions due to susceptibility. Thus, the HCP produced data that far exceeds, in terms of spatial and angular resolution, what is possible in most clinical settings, even a decade later. Therefore, these dMRI data provide unique views of the human white matter connectome.

Tractometry analysis of dMRI data focuses on the physical properties of major white matter pathways. It uses computational tractography and anatomical constraints to delineate the locations of known anatomical tracts in dMRI data, and extracts brain white matter tissue properties along the length of each tract (Yeatman et al., 2012). Tractometry provides important information about brain tissue properties and individual differences, but for large and important datasets, such as the HCP, applying cutting-edge tractometry methods requires specialized expertise, and is also very computationally demanding. The present work enables the study of brain connections in the HCP dataset by providing tractometry results in 1,041 subjects in HCP that have completed a full set of dMRI measurements and by building a set of insights and resources based on this data. In each subject in the dataset, 24 major white matter pathways were identified using the pyAFQ software (https://yeatmanlab.github.io/pyAFQ) (Table 1). We used probabilistic tractography to delineate the tracts and diffusion kurtosis imaging (DKI) (Jensen et al., 2005) as implemented in the open-source software DIPY (https://dipy.org) (Garyfallidis et al., 2014; Henriques et al., 2021) to describe white matter tissue properties along their lengths. DKI was used because it extends diffusion tensor imaging (DTI) (Basser et al., 1994), providing a more complete assessment of diffusion by measuring the deviation of the diffusion patterns from a Gaussian distribution. In addition, in previous work, we have also shown that DKI describes the HCP dMRI data more accurately and more reliably than DTI (Henriques et al., 2021). Here, we also used an extension of DKI that models biophysical white matter tissue properties (Fieremans et al., 2011) to provide additional information about the axonal white matter fraction along the length of the major white matter pathways. The results of this processing are all provided openly through the AWS Open Data program in the Open Neurodata repository (Vogelstein et al., 2018), and we provide an example of how to access this data.


TABLE 1 Abbreviations used for the tracts saved in both the TRK and TRX format.

[image: Table listing tract abbreviations and their corresponding formal names, including left and right anterior thalamic, corticospinal, cingulum cingulate, inferior fronto-occipital, inferior longitudinal, superior longitudinal tracts, and various corpus callosum sections such as orbital, anterior frontal, motor, and occipital.]

We used this open dataset as a platform to examine several different aspects of the data. First, we characterized the overall distribution of tissue properties along the length of the white matter pathways that we delineated. We also used the presence of a large number of monozygotic and dizygotic twins in the sample to characterize the heritability of DKI tissue properties along the length of the tracts. Finally, we compared the predictive ability of tract profiles to other diffusion processing methods. Tract profiles of tissue properties can be used to compare different subject groups or in order to understand individual differences (Jones et al., 2005; Colby et al., 2012; Yeatman et al., 2012; Dayan et al., 2016; Richie-Halford et al., 2021). However, high-dimensional data with limited observations can challenge the accuracy of out-of-sample predictions, providing motivation to understand if there is any loss of predictive information with the dimensionality reduction provided by tract profiles. In a previous study (Rasero et al., 2021), brain-behavior correlations were assessed using the local connectome (LC) method (Yeh et al., 2016), which calculates a q-space normalized map of the density of spins between neighboring locations along tracts. The resulting feature sets from each method differ in their dimensionality—tract profiles for every standard tract results in several thousand features, while LC results in hundreds of thousands of features. In the present study, we compared the information provided by LC to the much more concise information provided in tractometry tract profiles. Open access to a standard HCP tractometry dataset will facilitate future research aimed at comparing additional methods for analysis of brain behavior correlations.

Following the long-standing tradition of the HCP, our development of HCP tractometry results provides a platform for developing and advancing new technologies. We used HCP tractometry as a platform to test TRX, a recently-proposed community-based file format that incorporates the benefits of several previously-developed file formats for tractography, and that advances several new innovative features (Rheault et al., 2022). In the present work, we used HCP tractometry to test the computational efficiency of TRX and its potential to conserve storage space, while retaining important information about tract profile features. Finally, interactive web-based visualization tools for exploring large datasets lower the barrier for fruitful interaction with these datasets, and serve as a point of entry for researchers who are considering how to use the data (Keshavan and Poline, 2019). In previous work, we developed AFQ-Browser (https://yeatmanlab.github.io/AFQ-Browser), an application that enables exploration of tractometry datasets (Yeatman et al., 2018), but the previously presented tool was limited in terms of its ability to explore the anatomical structure of each individual subject in the dataset. The recent development of the NiiVue software library enables much more facile visualization of anatomical data (Hanayik et al., 2024), including both volumetric and tractography datasets and their combination. Here, we present Tractoscope (https://nrdg.github.io/tractoscope), as the next generation of web-based tools for sharing and exploring tractometry results.



2 Methods


2.1 Data

Diffusion MRI data was collected by the Human Connectome Project (HCP), as previously described in detail (Sotiropoulos et al., 2013). Briefly, data was acquired on a 3T Siemens Skyra MRI system equipped with a 32-channel coil that was modified to accommodate gradients with Gmax = 100mT/m (ultimately, acquisition was conducted with a Gmax = 97.4mT/m after optimization for gradient duty cycle). Multislice echo planar imaging with mulitband excitation was acquired with a TR of 5.5 s and TE of 89 ms. Three diffusion-weighted shells were acquired: b≈1, 000s/mm2, b≈2, 000s/mm2, b≈3, 000s/mm2 and the same TR/TE was used in each. In each shell, 90 non-colinear directions were selected, to optimize coverage within and across shells (Caruyer et al., 2013), resulting in the acquisition of 190 data points in each shell, corresponding to measurements in inverse phase encoding direction (LR and LR directions) and five non-diffusion weighted acquisitions. The spatial resolution of the data was 1.25 × 1.25 × 1.25mm3.

We used data provided by HCP that had already been processed using the HCP minimal preprocessing pipelines, as previously described (Glasser et al., 2013). Briefly, intensity normalization was performed across the six acquisition series based on the non diffusion-weighted images (b0). These b0 images were also used to estimate and correct EPI distortions using the FSL “topup” tool (Andersson et al., 2003). The FSL “eddy” tool was used to correct artifacts due to eddy currents and motion (Andersson and Sotiropoulos, 2016). Gradient spatial non-linearities were computed (Bammer et al., 2003). A spatial transform was calculated between the average b0 image and the T1-weighted data using FreeSurfer's “BBRegister” algorithm (Greve and Fischl, 2009). The eddy-corrected data were transformed according to both the gradient nonlinearity correction and T1w registration into 1.25 mm structural volume space in a single step.

We analyzed data from 1,041 subjects from the HCP who had complete measurements of dMRI (i.e., where these measurements passed the HCP quality control process, and also included all 270 diffusion MRI volumes). Among these subjects, the average age was 28.7 years ± 3.7 years (standard deviation); 479/562 were male/female.



2.2 Tractometry analysis

We applied the pyAFQ pipeline to perform advanced tractometry analysis (Kruper et al., 2021). We used data provided by HCP that had already been pre-processed (Glasser et al., 2013; Sotiropoulos et al., 2013). Using pyAFQ, we fit constrained spherical deconvolution (CSD) and used it as the fiber orientation distribution function for probabilistic tractography implemented in DIPY (Tournier et al., 2008; Garyfallidis et al., 2014). We used symmetric normalization (SyN) (Avants et al., 2008) diffeomorphic non-linear registration to register subjects to the Montreal Neurological Institute (MNI) template (Fonov et al., 2011). We calculated the non-linear registration because the linear registration to the T1w volume that was already applied in preprocessing does not take into account more subtle local differences in brain anatomy that need to be taken into account in defining the trajectory of major white matter pathways. Twenty-four different white matter tracts were defined in template space based on a combination of inclusion and exclusion regions of interest (ROI). Sixteen are from the original AFQ templates (Wakana et al., 2007; Yeatman et al., 2012), and eight are callosal tracts (Dougherty et al., 2007). The tracts are enumerated in Table 1. The ROIs are primarily planar “inclusion” ROIs, where streamlines transecting the ROIs are assigned to be part of the bundle. However, some of the ROIs are “endpoint” ROIs, where streamlines must either start or end in the ROI, and some are “exclusion” ROIs, where streamlines cannot transect the ROI, to be assigned. The ROIs for each tract were transformed into the individual subject anatomical coordinates using the inverse of the transformation defined by SyN from the subject to the template space. Streamlines were selected from the whole-brain tractography based on whether they passed through inclusion ROIs and did not pass through exclusion ROIs for each tract. After initial selection was conducted, individual streamlines may additionally have been excluded based on whether they were extreme outliers. Streamlines were considered outliers if their Mahalanobis distance to other streamlines is greater than three standard deviations or if their length was more than five standard deviations from the mean length. This outlier exclusion was conducted over five rounds, similar to the original AFQ procedure (Yeatman et al., 2012). The diffusion kurtosis imaging (DKI) model was fit using the DIPY implementation to create the following maps of microstructural tissue properties: fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) (Henriques et al., 2021), as well as axonal water fraction (AWF) from the White Matter Tract Integrity (WMTI) model (Fieremans et al., 2011). In each tract, every streamline was resampled to 100 nodes, and tract profiles were generated by sampling the FA, MD, MK, AWF maps using these positions. The contributions of each streamline to the tract profile at each position was inversely weighted by the distance of that node from the median of the streamline positions for that node (Yeatman et al., 2012).



2.3 Evaluating heritability of tract profiles

The collection of data from both monozygotic (MZ) and dizygotic (DZ) twins in the HCP dataset enables an assessment of the genetic linkage, or heritability, of traits measured in the data with Haseman-Elston regression (Haseman and Elston, 1972). In this method, identity by descent in each twin pair is regressed against the square of the difference between twins in the tissue property tract profiles at every position along each tract (Equation 1):

[image: Mathematical equation illustrating the relationship \((Y_{ij1k} - Y_{ij2k})^2 = \alpha + \beta \pi_i\), with indices and parameters denoted by subscript and Greek letters within a mathematical context.]

where i is an index of the twin pair, Yij1−Yij2 is the difference between the two members of this twin pair in the tissue property value at position j (1-100) along tract k (1-24; Table 1). The genetic linkage πi is assessed through the degree of identity by descent (i.e., πi = 1.0 for MZ and πi = 0.5 for DZ twins). Heritability of the tissue properties for position/tract jk, [image: Mathematical expression displaying \( h \) squared with a subscript of \( jk \).] is then estimated as (Equation 2):

[image: The equation shows h subscript j k squared equals negative beta divided by two times sigma j k squared, with reference number two in parentheses.]

where [image: σ squared subscript j k, representing a variance term in mathematical notation.] is the variance of the squared difference [image: The expression \((Y_{pkl1} - Y_{pkl2})^2\), representing the square of the difference between two variables \(Y_{pkl1}\) and \(Y_{pkl2}\).] across i.



2.4 Evaluating brain-behavior correlations in tractometry data

We used tractometry-generated tract profiles for every tract as input features to a regularized predictive model to investigate the brain-behavior correlations of tractometry and a variety of cognitive and non-cognitive phenotypes. Each phenotype was predicted individually using a LASSO regularized linear model where the input features were the 100 node-level FA, MD, MK and AWF measurements from each of 24 tracts. LASSO regularized linear models remove unimportant features by shrinking the model weights of coefficients to zero (Tibshirani, 1996). In addition to the LASSO regularized models, the inherent grouping of tract profiles into tracts and tissue properties provides an opportunity to use models that exploit such groupings, such as Sparse Group LASSO (SGL) (Simon et al., 2013; Richie-Halford et al., 2021). In addition to the shrinking of individual features, SGL shrinks entire groups toward zero, eliminating both uninformative features and groups. As a comparison, we also created LASSO models using a different tissue property description, the local connectome (Yeh et al., 2016). This approach calculates a q-space normalized map of the density of spins between neighboring locations along tracts, producing a much larger number of features (128,894 features for each subject in LC, compared to 9,600 tract profile features). These features were also used as input features to a LASSO regularized model. A nested 5-fold cross-validation procedure was used to determine the level of regularization that was used, for fitting and for evaluation. To evaluate the reliability of our models, each model was ran 100 times, using different splits for cross validation (CV). Because the dataset contains familial relationships, cross-validation was done with respect to family, such that individuals within the same family were always assigned to the same fold. Models were evaluated on their predictive ability using the out-of-sample coefficient of determination R2 and on reliability using 95% confidence intervals of their model weights across the different CV splits.



2.5 TRX and TRK comparison

By default, pyAFQ generates outputs using the popular TrackVis file format (TRK) (Wang et al., 2007). However, this format does have limitations for our application. First of all, the format can not represent multiple tracts in a single file, requiring many files to represent all tracts. Second, TRK files are large and slow to read, both of which impact online data visualization and analyses. Therefore, to test the new TRX format and compare it to TRK performance, the full and segmented tractograms generated during processing by pyAFQ were converted from TRK format to TRX format (Rheault et al., 2022). The data for both formats have been made available on the Open NeuroData AWS bucket. The TRX format allows users to set the data type of tractogram coordinates/vertices, and we chose to save the tractograms as half floats. We also used TRX's built-in zip compression option. We re-calculated tract profiles from the TRK and TRX files while profiling for time and memory usage, in order to compare their performance.



2.6 Tractoscope

We developed a web-based application to visualize individual subject data from the HCP. The application was built using the Vue JavaScript framework and the NiiVue package (Hanayik et al., 2024). The application connects directly to the AWS bucket and uses the REST API provided by AWS buckets to query for the presence of expected files and to render the files into the browser window. The application leverages the Pinia datastore library (https://pinia.vuejs.org/) to encapsulate and manage the large amounts of data that the application needs to operate. The source code is managed on an open-source GitHub repository (https://github.com/nrdg/tractoscope) and the application is deployed using npm running on the netlify continuous delivery platform to the GitHub Pages web service.




3 Results


3.1 Openly available pyAFQ HCP derivatives

All of the derivatives generated by pyAFQ to perform each of the steps in processing have been made available through the AWS Open Data programs' Open Neurodata bucket (Vogelstein et al., 2018). The results of tract recognition on a single randomly selected subject (subject ID: 550439) is shown in Figure 1. The average tract profiles from all subjects for all tracts and tissue properties are shown in Figures 2, 3.


[image: Four brain scan images display fiber tractography in different views. Image A shows an axial view with colorful tracts. Image B displays a sagittal view from the left, highlighting distinct fiber bundles. Image C shows another axial view with different tract patterns. Image D presents a right sagittal view with highlighted tracts. Each view emphasizes various neural pathways using different colors.]
FIGURE 1
 Some of the tracts recognized in a randomly chosen HCP subject (subject ID: 550439). On the left, in (A, B), we see the 8 callosal tracts visualized. In (C), we see the left inferior frontal occipital fasciculus in brown, and the right arcuate and superior longitudinal fasciculus in blue and white, respectively. In (D), the cortiscopinal tract is shown in orange, the cingulum is shown in green, the uncinate is shown in yellow, and the inferior longitudinal fasciculus is shown in pink. For this panel, all shown tracts are from the left hemisphere. In all panels, the subject T1 is used as the background.



[image: Graphs show diffusion kurtosis imaging metrics across different brain regions, comparing left and right hemispheres. Metrics include DKI AWF, FA, MD, and MK, depicted in orange and blue lines. Each row represents different brain regions, illustrating variations in these metrics across positions.]
FIGURE 2
 Average profiles from the 16 standard non-callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the given bundle, discretized into 100 positions per bundle. The thin lines that tightly hug the average profile indicate the 95% confidence interval, and they are often hard to see as they closely follow the mean, due to the large sample size. The thinner lines indicate the interquartile range. Different rows correspond to different tracts, with color showing the hemisphere. The different columns show different tissue properties, from left to right: axonal water fraction, fractional anisotropy, mean diffusivity, and mean kurtosis.



[image: A graph displaying fiber bundle tract profiles organized in four columns: DKI AWF, DKI FA, DKI MD, and DKI MK. Eight rows represent different brain regions: Orbital, AntFrontal, SupFrontal, Motor, SupParietal, PostParietal, Temporal, and Occipital, each with a unique color. Lines indicate measurements across the position percentage. A legend on the right maps colors to brain bundle names.]
FIGURE 3
 Average tract profiles from the eight absence of any commercial or financial relationships callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the given bundle, discretized into 100 positions per bundle. The thin lines that tightly hug the average profile indicate the 95% confidence interval, and they are often hard to see as they closely follow the mean, due to the large sample size. The thinner lines indicate the interquartile range. Different rows and colors correspond to different subdivisions of the callosal tracts. The different columns show different tissue properties, from left to right: axonal water fraction, fractional anisotropy, mean diffusivity, and mean kurtosis.


The results can be accessed using the Amazon Web Services Command Line Interface (AWS CLI; https://aws.amazon.com/cli/) at the following S3 address: s3://open-neurodata/rokem/hcp1200/. The dataset is organized using principles adapted from the Brain Imaging Data Structure (BIDS), a standard for organizing and describing neuroimaging data (Gorgolewski et al., 2016), to facilitate easy access and exploration of the data, and interoperability with other datasets. Detailed examples of data access using the AWS CLI and the boto3 Python library are provided in the Supplementary material.



3.2 Heritability of tract profiles of tissue properties

The heritability of tract profiles varies between tissue properties, tracts, and within each tract (Figures 4, 5). Averaging across all tracts and positions along the tracts, the heritability of the different tissue properties is: FA: h2 = 0.33 ± 0.17, MD: h2 = 0.29 ± 0.15, MK: h2 = 0.42 ± 0.25, AWF: h2 = 0.47 ± 0.2 (standard deviations across tracts and positions are reported). In most cases, we observe some symmetry across the midline, mirroring the laterality of tissue properties observed in Figures 2, 3, although this symmetry is less clear than with the tissue properties themselves. A notable exception to this symmetry is in the heritability of MK in the arcuate fasciculus, which is substantially lower in the left hemisphere than in the right hemisphere.


[image: Multiple line graphs show diffusion kurtosis imaging (DKI) metrics such as AWF, FA, MD, and MK across various brain regions. Each graph compares left (blue) and right (orange) hemispheres, displaying trends in brain measurements relevant to the study. The graphs are organized in rows corresponding to specific brain axes and regions, illustrating bilateral differences.]
FIGURE 4
 Heritability profiles from the 16 standard non-callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the bundle. Thin lines indicate 95% confidence interval. Different rows correspond to different tracts, with color showing the hemisphere. The different columns show different tissue properties, from left to right: axonal water fraction, fractional anisotropy, mean diffusivity, mean kurtosis.



[image: Graphs showing diffusion kurtosis imaging (DKI) metrics: AWF, FA, MD, and MK across different brain regions labeled by color. Each row represents a specific brain bundle, such as Orbital and Temporal, with a corresponding color-coded line chart in each column illustrating variations over a range.]
FIGURE 5
 Heritability profiles from the eight callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the bundle. Thin lines show the 95% confidence interval. Different rows and colors correspond to different subdivisions of the callosal tracts. The different columns show different tissue properties, from left to right: axonal water fraction, fractional anisotropy, mean diffusivity, mean kurtosis.




3.3 Accuracy and reliability of brain-phenotype models based on tract profile features

Regularized regression models were used to assess brain-phenotype correlations (Figure 6). Variance explained (R2) was assessed as a measure of the accuracy of the correlations, using cross-validation to mitigate the potential for overfitting within the data used for fitting. Variablility of this estimate was assessed using bootstrapping. For both tractometry and LC features, accuracy across a range of phenotypes varies between almost no predictive accuracy for all models (e.g., Attention - LC: R2 = 0.0064 95% CI [0.00010, 0.030], SGL: 0.0044 [0.00011, 0.013], LASSO: R2 = 0.0033 [0.00012, 0.010]) and moderate predictive accuracy (e.g., Age - LC: R2 = 0.18 [0.10, 0.26], SGL: R2 = 0.31 [0.21, 0.42], LASSO: R2 = 0.30 [0.19, 0.39]). Though there are nominal differences between LC and tract profile predictions in some phenotypes (e.g., Age and Reading Ability), we found no significant differences in accuracy or reliability of models that used the two methods to derive features for predictive modeling.


[image: Dot plot showing predictive accuracy (R-squared) for various behavioral phenotypes like age, attention, and intelligence. Three methods are compared: Local Connectivity (red), TP-SGL (green), and TP-Lasso (blue). Most phenotypes cluster around low R-squared values.]
FIGURE 6
 Predictive model performance by phenotype. Box and whisker plots show the distribution model accuracies by model type and input feature. Boxes show the middle 50% of accuracy values (quantified by using out of sample R2), and each point is one model run.


While model accuracy did not vary significantly by model choice (Table 2, the reliability of the model weights for LASSO and SGL models did) (Table 3). Across phenotypes, LASSO tended to assign high model weights to individual nodes, with large variances across bootstraps. In contrast, SGL assigned smaller model weights to adjacent nodes within tracts, with much smaller variances in model weights across bootstraps (Figure 7). This pattern occurs across all phenotypes (Supplementary Figures S1–S4).


TABLE 2 Variances of SGL and LASSO model weights for each phenotype across tracts.

[image: Table comparing SGL and LASSO performance across various cognitive and behavioral metrics. Values include Age (SGL: 5.7e-03, LASSO: 1.5e-02), Crystalized intelligence (8.5e-03, 3.0e-02), Fluid intelligence (7.4e-03, 2.4e-02), Global intelligence (1.2e-02, 3.6e-02), Impulsivity (5.4e-05, 1.8e-04), Endurance (7.4e-03, 2.8e-02), Verbal memory (8.1e-04, 3.4e-03), Reading ability (9.1e-03, 2.6e-02), Attention (3.5e-06, 2.6e-05), and Spatial orientation (3.4e-03, 1.1e-02).]


TABLE 3 Average accuracy for each phenotype and model.

[image: A table comparing three methods: LASSO, LC, and SGL, with various cognitive attributes and their respective values. Attributes include age, crystallized intelligence, fluid intelligence, global intelligence, impulsivity, endurance, verbal memory, reading ability, attention, and spatial orientation. Each attribute has a scientific notation value for LASSO, LC, and SGL, with notable variations in each method's scores. For example, age scores are 3e-01 for LASSO, 1.8e-01 for LC, and 3.1e-01 for SGL.]


[image: Line graphs comparing SGL and LASSO model outputs across four metrics: DKI AWF, DKI FA, DKI MD, and DKI MK. Each graph shows multiple lines for different brain bundles, such as Left Anterior Thalamic and Right Corticospinal, with values fluctuating over time.]
FIGURE 7
 Model weights across nodes for tract profile models predicting age. The x-axis encodes position along the bundles, discretized into 100 positions per bundle. Solid lines show the mean model weight across bootstraps for every tract, across every node, and the shaded area show the 95% confidence intervals of the model weights. Comparing LASSO and SGL models, the model weights assigned to each node are more consistent for SGL models and model weights are spread between adjacent nodes in a tract rather than to individual nodes in each tract. The y-axis differs between SGL and LASSO panels to show the patterns of node-by-node model weights in SGL better.




3.4 TRX provides a storage-efficient file format for tractometry data

To assess the performance of the TRX file format, we calculated tract profiles from each of the tracts using the data that was stored in the TRX file format, and calculated the ratio of the elapsed time for TRX/TRK. Performance did not susbstantially differ between the file formats (Figure 8A), except in some cases where calculation of profiles from TRX was substantially faster than with TRK. Similarly, memory usage of TRK and TRX are very similar (Figure 8B). A similar ratio was computed for the FA along the length of the tracts (Figure 8C). Despite the decreased numerical precision, and the large substantial decrease in the file sizes on disk, which often exceed a factor of 0.5X (Figure 8D), all differences in the tract profiles were smaller than 0.1%.


[image: Four plots visualize data on TRX/TRK ratios. Plots A, B, and C present vertical bar graphs labeled Time, Memory, and FA respectively, with colored bars representing different neural pathways. Plot D is a scatter plot showing TRK size against TRX/TRK ratio, with a legend indicating color-coded neural bundles like Left Anterior Thalamic and Right Corticospinal.]
FIGURE 8
 Comparing the TRK and TRX file formats. (A) Box and whisker plots for visualizing the distribution of the ratio of times taken to calculate tract profiles, per subject. Here, higher values would indicate it took longer to calculate tract profiles using TRX than TRK. There is a vertical red line at ratio = 1. The color/row corresponds to the tract. (B) Similar plot showing the memory taken to calculate tract profiles, and (C) the mean FA calculated. Note that in (A–C), the median tightly hugs the ratio = 1 line. (D) The ratio of the TRX and TRK disk space size is shown for each subject in green. There is again a red line at ratio = 1, but here there is also a blue line at ratio = 0.5. Notice that the TRX/TRK size per subject in green is always near or below the blue ratio = 0.5 line.




3.5 A browser-based application for exploring the HCP tractometry results

Evaluating tractometry results and viewing them without downloading any data is possible using the Tractoscope web app. Tractoscope was implemented to work with both TRK and TRX file formats, allowing users to easily explore and visualize tractography files in the HCP dataset, as well as other datasets that comply with a similar BIDS-inspired data layout. The tool is available publicly (https://github.com/nrdg/tractoscope). Any pyAFQ-compliant dataset hosted on AWS S3 buckets can be connected to the existing application with minimal configuration changes, by adding an entry to a datasets.json file. Once the AWS S3 bucket is configured to be publicly available and has HTTPS enabled, Tractoscope will be able to connect to it and visualize the dataset. The application currently enables visualizations of both the HCP dataset described here (Figure 9), as well as another dataset: the HBN-POD2 dataset, previously described in Richie-Halford et al. (2022).


[image: Brain imaging software interface displaying multiple brain scans with colored regions indicating different anatomical areas. Red crosshairs highlight selected points for detailed analysis. A graph labeled "MOTOR" shows corresponding brain activity data.]
FIGURE 9
 Interactive visualization of tractometry results with Tractoscope. Tractoscope is a web application designed to enable interactive exploration of results of pyAFQ processing. The application uses the NiiVue library to load data from the TRX file format. The implementation of streamline groups within TRX allows selection of different tracts. Here, we show the arcuate fasciculus, corticospinal tract, cingulum cingulate all in the left hemisphere of subject 550,436, also shown in Figure 1.





4 Discussion

The open availability of datasets like HCP promotes collaborative studies and enhances methodological approaches. This tractometry analysis of HCP diffusion MRI data using pyAFQ and its visualization through Tractoscope exemplifies the practical benefits of accessible data. This approach facilitates a broad range of research possibilities, where different groups can use the tissue properties we share to get a more detailed understanding of white matter pathways, which are crucial for studies on neurological disorders, brain development, and cognitive functions. Some of the potential uses of the resources that we have created include: (i) as a normative sample, to be compared to various patient populations, (ii) integration with the other data that was collected by HCP in the same subjects (e.g., functional MRI measurements), (iii) further exploration of the relationships between white matter tissue properties and other phenotypic measurements, and (iv) as an educational resource for learning about the structure of human brain white matter.

The granular approach of tractometry potentially enables a more nuanced understanding of white matter variation. Additionally, by focusing on known tracts, the results of tractometry have been shown to be reliable across scans and robust to choice of model (Kruper et al., 2021). To improve interoperability between this dataset and others, we used the BIDS standard as inspiration for organizing and describing the data (Gorgolewski et al., 2016). BIDS is structured to improve the accessibility, organization, and ease of sharing complex brain imaging datasets. It employs a consistent naming scheme and directory structure, making it easier for researchers to store, analyze, and share their data with others in the field.

Analysis methods focus on various aspects of dMRI data. For example, many analysis approaches focus on generating connectivity matrices, or graphs. Connectivity results from the HCP dataset have already been published (Kiar et al., 2018). We provide a complement here, using tractometry, which allows for the evaluation of diffusion characteristics along the lengths of known tracts. Similar, tractometry-based analysis results for a subset of HCP subjects have been published as a part of larger data releases containing subjects from multiple datasets (Avesani et al., 2019; Lerma-Usabiaga et al., 2020; Hayashi et al., 2023). Here, we provide tractometry results for all subjects in HCP that have a complete dMRI acquisition. We also provide an initial characterization of population-level tract profiles in Figure 2. This characterization replicates previously known properties of human brain tract profiles. For example, there is a substantial lateralization of tissue properties in the arcuate fasciculus compared to other tracts, which is known feature of this tract (Bain et al., 2019).


4.1 The heritability of tract profiles

Brain structure and function has a substantial genetic component. Heritability assesses the amount of variance within a studied trait that can be explained by genetic differences. Because of their known shared genetic background, twin pairs are often studied to assess heritability. The HCP was designed with this in mind, recruiting 149 MZ and 94 DZ twin pairs (138 MZ pairs and 75 DZ pairs were included in our heritability analysis, because of missingness of DWI data in some participants). Previous research has already demonstrated that DTI-derived tissue properties are heritable at the level of tract averages both in the HCP (Kochunov et al., 2015; Gao et al., 2021), as well as in other datasets (Gustavson et al., 2019). In a few cases, heritability of DTI metrics was also assessed along the length of tracts (Lee et al., 2015). In line with these previous findings, we also found that DKI metrics can have substantial heritability up to approximately h2 = 0.9 for the DKI-specific metrics (MK and AWF) and slightly lower for metrics that are estimated in both DTI and DKI (FA and MD, which both do not exceed h2 = 0.8). Higher heritability seems to correspond to smaller error bars in the tract profiles, suggesting that heritability of a white matter tissue property is easier to discern when the signal is more reliably measured. The spatial variability of heritability across the length of the tracts is notable and mirrors to some extent the spatial variability of tract profiles of tissue properties. Variability in the heritability of tissue properties themselves may reflect interactions with other parts of the tissue, or different sensitivity of portions of the tracts to environmental or genetic factors.



4.2 Comparing tract profiles and local connectome

One of the promises of the large-scale data collection of the HCP was that the data would illuminate individual variability in a variety of behavioral measures and differences in cognitive abilities. There are a variety of different ways to assess brain-behavior correlations that are at the foundation of establishing the brain basis of individual differences. Here, we assessed the information that is available in white matter tract profiles using regularized regression approaches. As a baseline for comparison, we used features of the white matter extracted using the local connectome (LC) approach (Yeh et al., 2016). We found that both tract profiles and local connectome had small predictive skill for most phenotypes, with nominal but insignificant differences in predictive accuracy of models using tract profiles or LC as their input features (Figure 6). In line with previous literature, we found that phenotypes varied by their ability to be predicted regardless of input features, with some phenotypes like attention, verbal memory, and impulsivity having predictive accuracies near zero (Rasero et al., 2021; Roy et al., 2024). Other phenotypes, like age, had average R2 values around 0.30 for all models. Though SGL and LASSO did not differ in terms of their average accuracy, they differ substantially in terms of the variability in their feature selection properties. SGL provides much smoother and less variable selection of features.

Taken together this set of results suggests that tractometry of the human white matter extracts much of the useful information about individual differences that is present in the LC method, but the number of features is smaller by approximately an order of magnitude. This indicates that tractometry dramatically reduces the dimensionality of dMRI data, while preserving many of the features that are relevant to individual differences, to the extent that those are reflected in brain white matter tissue properties.



4.3 Comparing TRK and TRX

The availability of comprehensive and accessible data resources is instrumental in driving forward research in understanding brain function in health and disease. File formats and standards for storing scientific data are an important key component of the cyberinfrastructure used to disseminate and reuse scientific results, as intended here. The TRX format is a recent proposal to improve storage and access to datasets of computational tractography results (Rheault et al., 2022). The use of the TRX file format should help address the challenges of efficiently managing large neuroimaging datasets that contain such results.

Our study includes a performance comparison between TRK and TRX formats in profiling the tracts that we delineated in HCP. From Figures 8A, B, we see that the means are centered on the vertical red line, indicating that the time and memory required for calculation of tract profiles using TRX are comparable to those using TRK. From Figure 8C, we see that the differences in the resulting profiles are typically much smaller than 0.01%, with one outlier having a difference of approximately 0.01%. Additionally, TRX's integrated zip functionality and flexible data saving options enable more efficient use of disk space for storing tractograms, providing a potential for more than 2X improvement in storage, with almost no loss in information. Furthermore, the use of TRX's built-in grouping feature for segmented tractograms offers a more convenient approach compared to TRK to manage results of tractometry analysis. In TRK, segmented tracts typically necessitate additional files for storing tract identification metadata, whereas TRX simplifies this process, enhancing the efficiency of data management in neuroimaging studies.



4.4 Visualizing the data with Tractoscope

We developed Tractoscope, a NiiVue-based web-viewer for neuroimaging data that allows users to visualize large datasets hosted on the cloud. Tractoscope enables visualization and exploration of cloud-hosted pyAFQ-processed datasets. Tractoscope is built to work with the Amazon Web Services API, which allows it to interact dynamically with datasets that comply with the structure expected for outputs of the pyAFQ software. This significantly decreases the amount of work developers would have to do to connect the tool to future datasets. The tool is also highly configurable, allowing developers to select which scans and tracts should be made available to the user for selection through the application graphical user interface. The tool also has the ability to display tract profiles, such as those generated by pyAFQ, so long as those are stored in the graphical output format that pyAFQ generates per default. The result is a user-friendly, configurable website that can display any and all structural and diffusion imaging for datasets in the pyAFQ output format. If available, Tractoscope uses TRX files due to their increased efficiency, but it is still compatible with datasets that use TRK files.

Tractoscope demonstrates that the development of standard ways to represent large datasets facilitates the development of a wide range of standards-compliant applications, which can be universally applied to any dataset formatted according to the standard (Pestilli et al., 2021). By doing so, we ensure compatibility and interoperability across various research tools and datasets, significantly enhancing the efficiency and scope of neuroimaging research. pyAFQ operates according to these principles, as does Tractoscope. For example, Tractoscope already also visualizes subjects from the Healthy Brain Network (Alexander et al., 2017; Richie-Halford et al., 2022), in addition to HCP tractometry.
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Footnotes

	1This consortium was based on a collaboration between groups at Washington University, the University of Minnesota, and Oxford University; for brevity, we will refer to this consortium as “HCP” henceforth, acknowledging that another important consortium, the MGH-UCLA consortium, pursued a different and also important approach (McNab et al., 2013).
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Diffusion-weighted Imaging (DWI) is an effective and state-of-the-art neuroimaging method that non-invasively reveals the microstructure and connectivity of tissues. Recently, novel applications of the DWI technique in studying large brains through ex-vivo imaging enabled researchers to gain insights into the complex neural architecture in different species such as those of Perissodactyla (e.g., horses and rhinos), Artiodactyla (e.g., bovids, swines, and cetaceans), and Carnivora (e.g., felids, canids, and pinnipeds). Classical in-vivo tract-tracing methods are usually considered unsuitable for ethical and practical reasons, in large animals or protected species. Ex-vivo DWI-based tractography offers the chance to examine the microstructure and connectivity of formalin-fixed tissues with scan times and precision that is not feasible in-vivo. This paper explores DWI’s application to ex-vivo brains of large animals, highlighting the unique insights it offers into the structure of sometimes phylogenetically different neural networks, the connectivity of white matter tracts, and comparative evolutionary adaptations. Here, we also summarize the challenges, concerns, and perspectives of ex-vivo DWI that will shape the future of the field in large brains.
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Introduction

Recent advances in magnetic resonance imaging (MRI) have made it a powerful tool for studying brain anatomy and function in different animals ranging from humans (Pfefferbaum et al., 2004; Dawe et al., 2009; McNab et al., 2009), non-human primates (D’Arceuil et al., 2007), rodents (Zhang J. et al., 2012; Russo et al., 2021), birds (Behroozi et al., 2020; Hamaide et al., 2020; Orije et al., 2021), reptiles (Behroozi et al., 2018; Billings et al., 2020), and even marine mammals (Berns et al., 2015; Gerussi et al., 2023, 2024). Diffusion-weighted imaging (DWI) distinguishes out from other approaches because it can non-invasively analyze neuroanatomical connectivity and white matter microstructure via measuring the restricted diffusion of water molecules in tissue (Le Bihan, 1996; Assaf et al., 2019). Given that water makes up around 60–70% of the body, understanding diffusion is critical. Diffusion refers to the random, thermally-driven, Brownian motion of molecules (Mukherjee et al., 2008). Water diffusivity in a homogeneous medium occurs randomly and isotropically with equal probability in all directions. On the other hand, water diffusivity in restricted environments surrounded by walls or membranes is anisotropic, and thus the probability of diffusion is higher along one direction over the others. It is therefore the case in brain tissue where water in the extracellular space or inside the somata diffuses isotropically, while water molecules inside neuronal axons are narrowly limited by axonal membranes, and thus the probability of diffusion parallel to the major axes is higher than the perpendicular (Moseley et al., 1991; Baliyan et al., 2016).

This random Brownian motion can be accurately estimated through DWI-MR sequences, employing gradients at different high amplitudes and combinations, i.e., directions. These sequences basically measure the anisotropic characteristics of water molecules which can reflect either the normal condition of the brain parenchyma or alterations directly from the raw data (anisotropy) in case of some pathologies (Benjamin et al., 2017; Mallon et al., 2020; Makada and Matang, 2023). The development of the algorithms encoding DWI sequences can then offer insights into the micro-architectural details of white matter at each voxel. Consequently, fiber tractography enables the elucidation of white matter integrity and the delineation of axonal tracts throughout the brain.

While in-vivo DWI has revolutionized the study of brain connectivity, ex-vivo DWI approaches offer distinct advantages, particularly in: (i) enhanced resolution: ex-vivo imaging allows for significantly higher voxel resolutions with enhanced signal-to-noise ratios (SNR), often reaching scales of hundreds of micrometers (Roebroeck et al., 2019). This level of resolution surpasses the constraints of in-vivo scans, typically limited to a range of 1–3 millimeters. The finer granularity of ex-vivo imaging facilitates an accurate mapping of intricate neural pathways and structures. Recent advances in DWI approaches have focused on optimizing SNR, voxel resolution, MR sequence, and the capacity to image big whole brains. These developments include the use of stronger gradients, higher magnetic field strengths, and customized pulse sequences that improve the contrast and resolution of DWI images, allowing the observation of previously undetectable microstructural features. (ii) Exploring rare and extinct species: ex-vivo DWI provides an invaluable tool to study the brains of rare, endangered, and “extinct in the wild” animals. Specimens preserved in brain banks, museums, or available from veterinary services after the natural death of zoological park specimens offer researchers a unique opportunity to delve into the neural architecture of species outside of current neuroanatomical models. (iii) Investigating large brains: some animals possess brains and bodies that often exceed the dimensions accommodated by current in-vivo imaging technology. One of the main challenges lies in the absence of coils large enough to adequately capture these dimensions from the animal’s head. Ex-vivo approaches bypass this limitation by allowing the study of large-brain species without spatial constraints, through extraction of the brain or section of the head. This capability is particularly advantageous to investigate the neural basis of complex cognitive abilities and behavioral repertoires in species with expansive brain sizes or extreme habitats, such as cetaceans (Gerussi et al., 2023) and elephants (Hakeem et al., 2005).

This review aims to highlight the indispensable role of ex-vivo DWI in studying the structural architecture of the brain. By employing this technique, researchers can uncover patterns of brain organization and connectivity, shedding light on evolutionary adaptations, behavioral complexities, and ecological dynamics. Ex-vivo DWI thus emerges as an essential tool integrating advanced imaging methodologies to potentiate ambitious comparative neuroanatomy, furthering our understanding of brain connectivity.



Assessing white matter connectivity

Fiber tractography algorithms use data from DWI scans to predict the pathways of white matter tracts based on the directional diffusion of water molecules. This method gives crucial insights into the brain’s structural connectivity, allowing researchers to investigate the structure and integrity of neuronal circuits. At the moment, there are two main physics-based approaches to modeling white matter diffusion anisotropy (i) diffusion tensor imaging (DTI) (Basser et al., 1994), and (ii) constrained spherical deconvolution (CSD) (Tournier et al., 2007). DTI analyses fiber orientation through voxel-wise evaluations (voxel refers to the smallest analytic unit), generating a singular tensor model that estimates a single three-dimensional orientation per voxel (Basser et al., 1994; Basser, 1995). This method demands minimal data points (a minimum of six independent measurements in different directions) for estimation, making it computationally efficient. While this approach is robust when there is a clear dominating diffusion direction within a voxel, it loses sensitivity when faced with multiple fiber pathways, such as crossing or branching fibers (Basser et al., 2000). In contrast, CSD as a tensor-free modeling approach, estimates the fiber orientation distribution (FOD) response function (Tournier et al., 2007, 2012) within each voxel, revealing the orientations and contributions of different fiber populations to observed diffusion behavior, and therefore does not assume isotropic diffusion (Farquharson et al., 2013). FOD does not lose information by averaging to obtain a single tensor, allowing for multiple fiber orientations to be identified. In contrast to the CSD, the simplified version of the Ball-and-Stick model proposed by Yang et al. (2019) offers notable advantages in terms of computing efficiency and implementation simplicity. While it is less intricate compared to CSD, this model operates effectively by splitting the diffusion-weighted MR signal within each voxel into multiple anisotropic components, representing different fiber orientations, along with a single isotropic component. This simplicity not only decreases processing needs but also allows for quicker implementation, making it especially helpful in cases where computational resources are restricted or swift analysis is necessary. The choice of method is determined by the individual research needs, the complexity of the fiber topologies under consideration, and the computational resources (Figure 1).
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FIGURE 1
Whole-brain tractography in different species using CSD and DTI methods. (a) Human brain: This image represents the classical in-vivo T1-weighted structural image and the whole-brain tractography of a human brain shown here as a comparison with the other animals. The tractogram was created using CSD. (b) Bottlenose dolphin brain: Depicted here is an ex-vivo T2-weighted brain of a bottlenose dolphin along with its whole-brain tractogram, generated using the CSD method. (c) Sheep brain: The top image shows a T2-weighted anatomical view of an ex-vivo sheep brain, while the bottom image presents its corresponding whole-brain tractogram employing DTI. For more details, refer to Gerussi et al. (2022, 2023, 2024) and Graïc et al. (2023).


In this mini-review, we focused on physical-based diffusion models, specifically DTI and CSD, due to their established clinical use, computational efficiency, and robustness to noise (Tournier et al., 2007). These models require less stringent data acquisition parameters, making them suitable for studies with limited scanning time or lower magnetic field strengths. However, other algorithms have been developed to overcome the drawbacks of DTI (or CSD) such as Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2012), Ball-and-Stick model (Yang et al., 2019), and Q-ball imaging (QBI) (Tuch, 2004). As the community seeks to gain a deeper knowledge of neuronal connections, it must look beyond DTI and tensor-free methods such as CSD to accurately model diffusion behavior furthering our understanding of brain anatomy and function. To this aim, we emphasize the potential of biophysical models like Neurite Orientation Dispersion and Density Imaging (NODDI) (Zhang H. et al., 2012) and Composite Hindered and Restricted Model of Diffusion (CHARMED) (Assaf and Basser, 2005) to provide more nuanced insights into tissue composition. However, their application is often constrained by the need for high-quality, multi-shell diffusion data, greater computational resources, and acquisition protocols that must support the model’s assumptions (Jelescu et al., 2020). We believe that future studies with access to advanced imaging modalities may benefit from incorporating biophysical models to further elucidate the complexities of neural tissue.

From DWI data, fiber pathways can be reconstructed using various models tailored to the research requirements and objectives, such as probabilistic vs. deterministic models or ROI analysis vs. whole-brain tractography [for details, see (Jeurissen et al., 2019; Zhang et al., 2022)]. Once fiber pathways have been reconstructed, quantitative assessment of specific tracts can reveal important insights into brain anatomy and function. This assessment requires examining several metrics generated from tractography data to evaluate parameters such as total tract volume, total length of reconstructed fiber tract, curvature, and connectivity strength. However, quantitative assessment of selected tracks using diffusion tensor metrics can provide information about white matter microstructural integrity. Fractional Anisotropy (FA) is a widely used parameter that measures the degree of directionality of water diffusion within a voxel and is sensitive to changes in white matter microstructure, such as myelination, crossing fiber orientation, and axonal density (Beaulieu, 2002). Furthermore, axial (AD) and radial (RD) diffusivities are the water diffusion coefficients parallel and perpendicular to the axons indicating axonal integrity and fiber myelination, respectively (Tournier et al., 2012). Furthermore, recent studies have demonstrated the potential of relaxometry parameters, such as effective transverse relaxation rate (R2*) and longitudinal relaxation rate (R1), as they provide additional information regarding tissue microstructure and composition. R2* is sensitive to iron concentration and myelin integrity (Straub et al., 2020), which are critical to the proper functioning of neural fibers. R1 values provide information on the longitudinal relaxation properties of tissue, which can indicate water content and macromolecule presence (Weiskopf et al., 2013). Understanding the fiber-specific relaxometry properties can offer enhanced specificity and sensitivity in differentiating the white matter architecture, especially in regions with crossing fibers (De Santis et al., 2016). Overall, a quantitative evaluation of selected tracts enables the characterization of white matter pathways in terms of size, shape, symmetry, and microstructural features, which is essential to understanding brain connections.



Tissue properties and preparation

Fixed samples are frequently employed in ex-vivo tissue imaging because they provide the longitudinal stability necessary for longer scanning sessions. There are significant factors and trade-offs to consider when scanning ex-vivo tissues compared to in-vivo.

While fixed tissue samples present certain challenges (see below), they offer the distinct advantage of temporal stability, facilitating time-dependent enhancements in image resolution that enable meticulous analysis of structures at the micron scale. Such precision would be nearly impossible to reach in current scanning times in-vivo. The absence of rhythmic blood flow, and virtually any movement allows for any sequence length to be performed to ideal standards, in as many diffusion directions as desired, optimizing results while reducing artifacts. This also implies that nearly identical scans can be made repeatedly over long periods of time, on more modern machines, in bores that would not fit a whole head, or after transport from a remote location. Once the sample has been extracted and fixed, it can be kept safely available in a bank for years without significant deterioration, thus providing any researcher with brains from species they would have no access to otherwise. To be also considered is the absence of a medical or veterinary care team to monitor anesthetized in-vivo subjects, or trained animals in rare cases (Andics and Miklósi, 2018), and therefore the absence of risk for them, the subject, or the machine. Even in the best case, most large species are very challenging to scan because of physical, medical, and time constraints. In practical terms, an ex-vivo specimen is brought to room temperature, scanned, and removed at will, depending on the scanning procedure, and not the other way around.

The main issues usually reported with ex-vivo scanning regard the post-mortem interval (PMI, the time elapsed between death and tissue fixation) and the correct fixation of the brain. Given that tissue fixation processes either halt or significantly slow down metabolic decay, it is crucial to consider the PMI. A fundamental difference between large brains and those of small animals lies in the methods of brain tissue fixation and preservation. In small, laboratory animals, perfusion fixation via pre-mortem intracardiac injection of fixative, in addition to immersion fixation post-tissue extraction, reduces PMI to essentially zero. Conversely, in large animals, usually not kept in laboratory conditions, post-mortem perfusion fixation via mechanical pumping of fixative through the cadaver, often utilizing the femoral artery in humans or the carotid arteries and jugular veins in animals, results in a poorer diffusion of the fixative due to post-mortem blood clotting, amounting to a longer PMI (McFadden et al., 2019). In most studies on human brains, a “good” PMI is considered < 24 h (Maranzano et al., 2020). Moreover, mechanical perfusion fixation is not commonly used in larger brains due to the difficulty in washing blood clots and the possibility of microscopic damage from pumping pressure. Consequently, large brains are typically fixed via immersion. However, immersion fixation proves less effective for large brains compared to small animals due to the prolonged duration required for passive diffusion of fixative over greater distances (Dawe et al., 2009), resulting in lower-quality fixation (Werner et al., 2000; Kasukurthi et al., 2009; Gage et al., 2012). An optimized fixation protocol, taking into account all scenarios, would require the shortest PMI possible, refrigeration (but absolutely no freezing), vascular clearing using iso-osmotic solutions, then fixative perfusion and immersion. The fixative volume should be 10 times the brain volume and changed 24 to 48 h after immersion. There should be clarity on the facts that paraformaldehyde is a solid, which forms formaldehyde (a gas) in solution, and that a 4% formaldehyde solution is equal to a 10% formalin solution, with the exception that formalin contains methanol (about 1% in a 10% formalin solution) to prevent precipitation into paraformaldehyde, but which can alter immunohistochemical properties of the tissue in the long term.

Nonetheless, the use of fixatives such as formalin or other formaldehyde solutions is known to alter tissue diffusion characteristics by promoting intermolecular cross-linking (Pfefferbaum et al., 2004; Shepherd et al., 2009). Furthermore, fixed samples frequently have lower proton density and shorter T1 and T2 relaxation times than living subjects, which can be attributed to the combined effects of tissue fixation, post-mortem changes, and a lower temperature (typically room temperature, approximately 23°C) than the body’s normal temperature (Roebroeck et al., 2019). The shortened T2 relaxation time and diffusivity of fixed tissue have a considerable impact on the contrast-to-noise ratio in DWI, which is critical for high-quality ex-vivo DWI. To provide appropriate contrast with reduced diffusivity, higher diffusion weighting is required. Increased diffusion weighting often necessitates longer echo times, making signal loss from T2 relaxation time a limiting issue, especially when short T2 causes the unweighted-diffusion signal to decay quickly. To keep a good SNR, a possible solution could be the use of optimized sequences with shorter echo times while still keeping long diffusion times such as stimulated echo-acquisition mode [STEAM, (Merboldt et al., 1991; Rane et al., 2010)] or sequences which accumulate magnetization over multiple repetition times still keeping strong diffusion weighting such as steady-state free precession [SSFP, (McNab and Miller, 2010)]. Fixation by immersion revealed a notable decrease in T1, T2 relaxation times, and diffusivity within post-mortem brain tissue. For instance, Shepherd et al. (2009) discovered that rat cortical slices immersion-fixed in 4% paraformaldehyde had a 21% decrease in T1 and an 81% decrease in T2 compared to fresh, unfixed post-mortem values (Shepherd et al., 2009). Similar results were seen in ex vivo human white matter, where T1 and T2 relaxation times were measured at 340 ms and 45 ms, respectively, at 3 Tesla. These findings suggest reductions of approximately 35% in T1 and 60% in T2 (McNab et al., 2009; Miller et al., 2012). These studies show that a significant percentage of T2 drop may be attributable simply to the fixation process, which is likely caused by a combination of dehydration and the presence of unbound fixative. The decrease in T1 is integral to tissue fixation as it is predominantly influenced by the size of molecules within the tissue environment and cannot be reversed during rehydration. This reduction is likely attributed to the cross-linking of proteins, which is irreversible (Tovi and Ericsson, 1992; Shepherd et al., 2009). However, prolonged washing in saline or phosphate-buffered saline (PBS) to remove fixative and rehydrate the specimen has been shown to fully recover T2 decreases to levels equivalent to fresh, unfixed post-mortem samples [but not to in-vivo levels (Shepherd et al., 2009)].

In terms of the reduction in diffusivity observed in fixed samples, animal studies have shown a significant decrease, with a 50% reduction in apparent diffusion coefficients (ADC) observed in unfixed ex vivo white matter (WM) and an 80% reduction in fixed WM compared to in-vivo values (D’Arceuil et al., 2007). Additionally, washing fixed tissue in PBS has been demonstrated to partially reverse these effects, with reported increases in WM ADC by approximately 30%. Similar findings were observed in ex-vivo human brains, with WM diffusivity reduced by approximately 85% compared to in-vivo values (McNab et al., 2009; Foxley et al., 2014). The decreased temperature of ex-vivo tissues during scanning is a crucial factor contributing to the overall reduction in diffusivity. Le Bihan (1996) previously illustrated that a drop in tissue temperature by 1°C corresponds to an expected 2.4% decrease in water diffusivity. However, recent research has indicated that even when temperature adjustments are made in a manner akin to Le Bihan’s technique, differences in diffusivity persist (Dyrby et al., 2011; Walker et al., 2019). Controlling these factors using for example 40°C PBS could help alleviate part of the issue.

It should be noted that all existing challenges do not invalidate the utility and need of fixed tissue samples for studies concerning precise tissue cytoarchitecture or white matter connectivity. On the contrary, we aim to highlight the potential translational significance of fixed tissue as diffusion imaging gains prominence in examining neural microstructure and connectivity. However, when ex-vivo DWI-MR studies are validated against histology or compared to in-vivo DWI, it is necessary to consider all the challenges mentioned earlier.



Application of ex-vivo large brain DWI

DWI is a neuroimaging tool with very high potential and yet little used in large brains, from domestic to wild animals. In the field of Veterinary Medicine, DWI has emerged as a valuable tool for neuropathological diagnosis in domestic animals, especially dogs and cats. It facilitates the identification of brain injuries after hypoxic lesions (Davis et al., 1994; McConnell et al., 2005; Garosi et al., 2006; Kang et al., 2009; Crawford et al., 2023), brain oedema (Zhao et al., 2006) and epileptic seizures (Hasegawa et al., 2003). Furthermore, it has been also used to investigate the normal brain anatomy and neural connectivity patterns in live cats and dogs, as well as postmortem examinations of their brains (Hasegawa et al., 2003; Ronen et al., 2003; Shaibani et al., 2006; Takahashi et al., 2010, 2011; Jacqmot et al., 2013, 2017, 2020; Gray-Edwards et al., 2014; Anaya García et al., 2015; Dai et al., 2016; Robinson et al., 2016; Das and Takahashi, 2018; Johnson et al., 2020; Andrews et al., 2022), pig (Conrad et al., 2012; Schmidt et al., 2012), bovine (Schmidt et al., 2009), and horses (Schmidt et al., 2019; Boucher et al., 2020).

In other domestic species, which emerged recently as models for translational medicine, DWI has also been adopted. It is the case of the sheep (Ovis aries) (Förschler et al., 2007; Lee et al., 2015; Peruffo et al., 2019; O’Connell et al., 2021; Pirone et al., 2021; Banstola and Reynolds, 2022; Gerussi et al., 2022; Graïc et al., 2023), the Göttingen (Knösche et al., 2015) and Yucatan (Wang et al., 2023) minipigs (Sus scrofa). It is worth noting that in these cases, most of the analyses were conducted using fixed brains. When compared to other laboratory animals, the brains of large ungulates such as horses, pigs, and domestic ruminants have received relatively little attention, despite their high availability following slaughter (Cozzi et al., 2020). In fact, these brains could potentially serve as a non-invasive source for the study of comparative and evolutionary neuroscience.

In the context of wild and exotic species, DWI analysis involves the study of both pathological conditions (Cook et al., 2018) and anatomical features (Cook et al., 2021; Cook and Berns, 2022) in pinnipeds but there are also investigations in one-humped camel (Camelus dromedarius) (Cartiaux et al., 2023) and dolphin brains (Berns et al., 2015; Wright et al., 2018; Orekhova et al., 2022; Gerussi et al., 2023, 2024). Table 1 summarizes the most important publications concerning the use of DWI in large brains.


TABLE 1 Bibliographic references on DWI scans of large brains with correspondent MRI sequences and DWI algorithms used.

[image: Chart comparing MRI studies across various animal models including pinnipeds, horses, sheep, pigs, camels, and dolphins. Details include type of scan (ex-vivo/in-vivo), MRI machine used, and the sequence and tractography technique. References highlight findings such as natural models for epilepsy in California sea lions and auditory studies in dolphins.]



Discussion

MRI has established itself as an essential non-invasive technique in both neuroscientific research and clinical treatment (Assaf et al., 2019). The following development of DWI has expanded our understanding by digging into the microscopic characteristics of the white matter, allowing for the analysis of brain connections in both pathological and purely anatomico-physiological contexts using sophisticated tractography methods (Le Bihan, 1996). Clinical applications of DWI have not only transformed human medicine but have also proven beneficial in veterinary medicine, offering critical insights for neuropathological diagnoses in domestic animals (Hasegawa et al., 2003; Salma, 2015; Crawford et al., 2023). Furthermore, DWI has been effectively applied to domestic species often used in translational medicine, such as sheep and pigs, mostly demonstrating feasibility and setting standards for these species (Lee et al., 2015; Ella et al., 2019).

DWI, and consequently tractography, have merged as critical techniques for studying brain connections in large animals, including domestic and “wild” mammals such as dolphins or camels. Notably, DWI’s capacity to work in formalin-fixed tissues has broadened its application (D’Arceuil et al., 2007; Berns et al., 2015; Cook et al., 2018; Wright et al., 2018; Cartiaux et al., 2023; Gerussi et al., 2023, 2024; Graïc et al., 2023). Conducting invasive experiments and consequent euthanasia on these large, wild species are ethically nearly infeasible today. Furthermore, for the same reasons along with practical restrictions, potential in-vivo MRI in large species are extremely rare, and so far have not been published. As a result, ex-vivo imaging has emerged as the principal method for investigating the basis of complex cognitive abilities and behaviors in these species, providing outstanding neuroanatomical knowledge. Ex-vivo DWI also allows for significantly higher voxel resolutions maintaining a good SNR through adequate sequences such as STEM or SSFP, or re-hydration of the tissue with PBS, reaching scales of hundreds of micrometers. This level of resolution notably overcomes the limits of time-constrained in-vivo scans, allowing for an accurate mapping of brain structures and neural pathways.

This MRI technique has great potential for studying not only rare and endangered species but also extinct species whose unique specimens are currently fixed and preserved in museums or banks. Leveraging this option might allow the neuroscientific and broader scientific communities to investigate the evolution and development of brains across a wider range of taxa.

However, for DWI to give valid results, some factors must be considered. The first, and most important, is tissue fixation. There is no doubt that white matter integrity is central to any tract tracing algorithm (Beaulieu, 2002). In fact, the process of tissue fixation must happen as soon and swiftly as possible in order to block the autolytic mechanisms of the tissues which leads to the loss of integrity of the white matter. Fixation is a challenge and may not always be optimal in large animals for several factors such as the time between the death of the animal and awareness of park personnel (depending on the park, from minutes to several hours), the complexity of the vascular system supplying the brain (e.g., in cetaceans), the complex anatomy of the skull (such as that of rhinoceroses, elephants or giraffes) or ambient temperature (fast cooling of tissue seems to play a critical role in nervous tissue autolysis). All these factors are usually understood as a whole under the umbrella term of PMI, although wide variations can occur (e.g., a 24 h at 35°C ambient temperature is different in outcome from 24 h at 5°C), although a recent study seems to indicate minimal immunohistochemical effects (Koehler et al., 2024), and in details, PMI explains only part of the problems encountered in large brain fixation. For all these reasons, fixation by immersion seems to remain the most used alternative, as is the case in human brain preservation (Nardi et al., 2023). The fixative should be changed after the first 24 h, and a large volume is necessary (ideally 10 times the volume to be fixed). A topic still often discussed with confusion regards the type of fixative used. Finally, even after extraction, the size of some brains reaches ∼30 cm in diameter, and adapted coils may not exist.

The second main aspect to consider is the choice of DWI parameters. DTI, CSD, and other algorithms offer different approaches to analyze white matter diffusion anisotropy. Sequences used for DTI are fast, and do not require a high b-value or a high number of directions; however, DTI provides only a single 3D orientation per voxel and is, by definition, limited in the detection of multiple fiber populations within a voxel. On the other hand, sequences used for CSD require a long scan time with higher, multishelled b-values in a high number of directions. Comparatively, the CSD algorithm is able to identify multiple fiber orientations within a voxel without losing information, making it more robust for mapping complex fiber tracts. However, the DWI methods used for analysis must align with the research aims and objectives, fulfilling the specific requirements and questions posed by researchers, whether from a physics-based perspective or a biophysical-based perspective.

In conclusion, DWI and tractography have emerged as highly promising non-invasive MRI techniques for studying large animal brains. They offer remarkable insights into their complex and relatively understudied neuroanatomy and connectivity. Despite the challenges, drawbacks, and constraints, these tools represent a valuable addition to the limited toolbox available for enhancing our understanding of comparative brain anatomy, connections, and evolution.
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Neuroimaging-based prediction of neurocognitive measures is valuable for studying how the brain's structure relates to cognitive function. However, the accuracy of prediction using popular linear regression models is relatively low. We propose a novel deep regression method, namely TractoSCR, that allows full supervision for contrastive learning in regression tasks using diffusion MRI tractography. TractoSCR performs supervised contrastive learning by using the absolute difference between continuous regression labels (i.e., neurocognitive scores) to determine positive and negative pairs. We apply TractoSCR to analyze a large-scale dataset including multi-site harmonized diffusion MRI and neurocognitive data from 8,735 participants in the Adolescent Brain Cognitive Development (ABCD) Study. We extract white matter microstructural measures using a fine parcellation of white matter tractography into fiber clusters. Using these measures, we predict three scores related to domains of higher-order cognition (general cognitive ability, executive function, and learning/memory). To identify important fiber clusters for prediction of these neurocognitive scores, we propose a permutation feature importance method for high-dimensional data. We find that TractoSCR obtains significantly higher accuracy of neurocognitive score prediction compared to other state-of-the-art methods. We find that the most predictive fiber clusters are predominantly located within the superficial white matter and projection tracts, particularly the superficial frontal white matter and striato-frontal connections. Overall, our results demonstrate the utility of contrastive representation learning methods for regression, and in particular for improving neuroimaging-based prediction of higher-order cognitive abilities. Our code will be available at: https://github.com/SlicerDMRI/TractoSCR.
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1 Introduction

The brain's white matter (WM) connections, which can be quantitatively mapped using diffusion MRI (dMRI) tractography (Zhang et al., 2022a), play an important role in brain networks that enable human cognition (Wang et al., 2018; Zekelman et al., 2022). Investigating the predictive relationship between WM microstructure and cognition can therefore improve our understanding of the brain in health and disease. Regression analysis, which can predict values of a dependent variable (label) given a set of input independent variables (features), enables the prediction of neurocognitive measures given input features from neuroimaging. This strategy is recently of high interest (Reddy Raamana and Strother, 2017; Sripada et al., 2020; Chamberland et al., 2021; Kim et al., 2021; Richie-Halford et al., 2021; Feng et al., 2022; Radhakrishnan et al., 2022; Wu et al., 2022). While many studies perform prediction using high-dimensional neuroimaging features from T1-weighted MRI (Aracil-Bolaños et al., 2019; Merz et al., 2022; Weerasekera et al., 2023) or functional MRI (fMRI; Cui and Gong, 2018; Dubois et al., 2018; Sripada et al., 2020; Wu et al., 2022) or multimodal data (Gong et al., 2021, 2022; Kim et al., 2021; Mansour et al., 2021; Radhakrishnan et al., 2022; Sun et al., 2022), a unimodal focus on dMRI tractography (e.g., Jeong et al., 2021; Chen et al., 2022b; Feng et al., 2022; Mansour et al., 2022) can improve our understanding of the role of the WM connections in cognition. While a number of studies have pursued prediction of neurocognitive measures based on information from dMRI tractography, current approaches (Chen et al., 2020a; Jeong et al., 2021; Berger et al., 2022; Zekelman et al., 2022) are limited in terms of study cohorts and regression methodology.

Linear regression models such as ElasticNet (Zou and Hastie, 2005) have been widely used for prediction of neurocognitive performance (Cui and Gong, 2018; Jollans et al., 2019; Li et al., 2020b; Seguin et al., 2020; Sripada et al., 2020; Gong et al., 2021; Madole et al., 2021; Brown et al., 2022; Feng et al., 2022; Jandric et al., 2022; Zekelman et al., 2022), while some studies (Jeong et al., 2021; Chen et al., 2022b; Feng et al., 2022) have explored deep-learning-based regression using multilayer perceptrons (MLP) and convolutional neural networks (CNN). However, the prediction accuracy of linear regression models is relatively low (Sripada et al., 2020), and non-linear regression models may suffer from overfitting, especially on high-dimensional datasets (Cui and Gong, 2018). Developing more advanced methods has the potential to improve prediction accuracy of neurocognitive performance metrics and to provide novel information about specific brain structures that may be important for their prediction.

One avenue for improving the prediction of neurocognitive performance metrics is to investigate recent machine learning algorithms for the analysis of tabular (row and column) data (Borisov et al., 2021). Many quantitative features derived from neuroimaging can be represented as tabular data. The most popular machine learning algorithm for tabular data is the gradient boosting decision tree (GBDT) method (Chen and Guestrin, 2016; Prokhorenkova et al., 2018). In recent years, deep-learning-based methods (Yoon et al., 2020; Arik and Pfister, 2021; Gorishniy et al., 2021; Bahri et al., 2022) have been developed for tabular data, which is the last “unconquered castle” for deep learning (Borisov et al., 2021; Kadra et al., 2021). One important research direction for deep learning on tabular data is representation learning, which can discover beneficial data representations for downstream tasks. For example, the value imputation and mask estimation (VIME; Yoon et al., 2020) and self-supervised contrastive learning using random feature corruption (SCARF; Bahri et al., 2022) methods enable representation learning on tabular data. However, these representation learning methods were developed for classification tasks, and cannot utilize regression label information during representation learning.

Another avenue for improving prediction of neurocognitive measures is to investigate recently proposed algorithms for contrastive learning (Chen et al., 2020b; Khosla et al., 2020; Chen and He, 2021; Sheng et al., 2022). In medical image computing, supervised contrastive learning improves classification accuracy by using labels during representation learning (Dufumier et al., 2021; Schiffer et al., 2021; Zhang et al., 2021; Seyfioğlu et al., 2022; Xue et al., 2023). It is usually designed for classification tasks, where samples with the same categorical label are positive pairs, and samples with different categorical labels are negative pairs. During representation learning, embeddings of positive pairs are pulled together, and embeddings of negative pairs are pushed apart. However, regression tasks require continuous labels (e.g., neurocognitive scores) that cannot directly be used for pair determination. Two recent works have shown that contrastive learning can be useful in the context of regression based on medical images as input (Lei et al., 2021; Dai et al., 2022). For example, RPR-Loc proposed a learning strategy to predict the distance between a pair of image patches (Lei et al., 2021). Recently, the AdaCon method used a contrastive learning strategy that leveraged distances between labels (e.g., bone mineral densities) to benefit downstream computer-aided disease assessment. These recent regression methods did not use labels for pair determination for contrastive learning. How to best use label information to enhance regression is still an open question.

In this study, we propose a novel deep regression method for tractography analysis with supervised contrastive regression, referred to as TractoSCR. TractoSCR is a novel contrastive representation learning framework to predict measures of neurocognition using white matter microstructure derived from dMRI tractography, as illustrated in Figure 1. Our proposed TractoSCR method extends the supervised contrastive learning method (Khosla et al., 2020), which is designed for categorical data in classification tasks, to perform regression analysis where the predicted labels are continuous values. We propose a novel pair-determination strategy that uses the absolute difference between continuous regression labels to determine positive and negative sample pairs for contrastive learning. To our knowledge, this is the first method that leverages deep representation learning techniques for the prediction of neurocognitive performance. Our method uses a tractography fiber clustering method that enables consistent white matter parcellation across populations. The parcellation allows representation of microstructure features from whole brain tractography as tabular data, which enables the use of a recently proposed random feature corruption technique (Bahri et al., 2022) for data augmentation to further improve prediction performance. In addition, for interpreting prediction results, we propose a novel permutation feature importance algorithm to identify tractography fiber clusters and their corresponding anatomical tracts that are important for prediction of neurocognitive measures. We demonstrate our method in a large-scale dMRI dataset including data from 8735 children, where we explore the relationship between white matter microstructure and prediction of neurocognitive performance (including general ability, executive function, and learning/memory).


[image: Diagram illustrating the TractoSCR framework. It starts with tractography, followed by parcellation into clusters. White matter measures are extracted, producing tabular data with fields like FA, MD, and NoS. This data is inputted into the TractoSCR framework, leading to a neurocognitive score output.]
FIGURE 1
 Overview of our proposed TractoSCR framework for neurocognitive score prediction using dMRI tractography. Parcellation of tractography into fiber clusters enables the extraction of cluster-specific white matter measures. These measures are represented as tabular data and input to the TractoSCR framework, which outputs a neurocognitive score. FA, fractional anisotropy; MD, mean diffusivity; NoS, number of streamlines.


The remaining structure of this paper is as follows. Section 2 describes the dataset and data processing, the proposed regression and interpretation methods, and the model training and testing details. Section 3 describes the evaluation metric, experimental results, and interpretation of results. Finally, the discussion and conclusion are given in Sections 4 and 5, respectively.



2 Materials and methods


2.1 ABCD dataset, tractography parcellation, and microstructural measures

This study includes dMRI data and neurocognitive component scores from the Adolescent Brain Cognitive Development (ABCD) dataset for 8,735 American children (4,560 males and 4,175 females) between the ages of 9–11 (9.9 ± 0.6) across 21 data collection sites (Casey et al., 2018; Volkow et al., 2018; Download at: https://nda.nih.gov/abcd). Three neurocognitive principal component scores from ABCD were studied, representing three major domains of higher-order cognition, namely General Ability (PC1), Executive Function (PC2), and Learning/Memory (PC3; Thompson et al., 2019). These component scores are lower dimensional representations of nine assessment measures from the ABCD neurocognitive battery (Luciana et al., 2018) [including seven measures from the NIH toolbox (Casaletto et al., 2015)]. These component scores statistically summarize nine neurocognitive assessment measures and reveal latent variables which have been theorized to be a more pure reflection of the cognitive domains of interest (Snyder et al., 2015; Thompson et al., 2019). Furthermore, these component scores have been associated with measures of psychopathological behavior (i.e., stress reactivity and/or externalizing behaviors), perhaps suggesting their clinical utility (Thompson et al., 2019).

The ABCD dMRI data was harmonized (Cetin Karayumak et al., 2019; Cetin-Karayumak et al., 2021, 2022; Zhang et al., 2022b) to remove scanner-specific biases, allowing for a large-scale data-driven way to study relationships between brain microstructure and neurocognition. The dMRI harmonization method (Cetin Karayumak et al., 2019) retrospectively removes scanner-specific differences from raw dMRI signals across disparate sites and acquisition parameters, while preserving inter-subject biological variability (e.g., fractional anisotropy (FA) values; Zhang et al., 2022b).

A two-tensor Unscented Kalman Filter (UKF) tractography method (Malcolm et al., 2010; Reddy and Rathi, 2016) was conducted on harmonized dMRI data of all subjects to obtain whole-brain tractography (https://github.com/pnlbwh/ukftractography). The UKF method fitted a mixture model of two tensors to the diffusion data while tracking streamlines. This enabled the estimation of fiber-specific microstructural measures from the first tensor, which models the tract being traced (Reddy and Rathi, 2016). Next, automated parcellation of tractography was performed based on an anatomically curated cluster atlas (Zhang et al., 2018; https://github.com/SlicerDMRI/ORG-Atlases), which was provided by the O'Donnell Research Group (ORG). Compared to traditional tractography parcellation based on cortical atlases, this clustering method was shown to be more reproducible and consistent across the lifespan (Zhang et al., 2018, 2019). For each subject, the ORG atlas (Zhang et al., 2018) enabled extraction of 953 expert-curated fiber clusters. These finely parcellated fiber clusters are grouped and categorized into 58 deep white matter tracts including major long range association and projection tracts, commissural tracts, and tracts related to the brainstem and cerebellar connections, as well as 198 short and medium range superficial fiber clusters. We performed tractography quality control and white matter parcellation using open-source WhiteMatterAnalysis software (https://github.com/SlicerDMRI/whitematteranalysis). Tractography visualization was performed using SlicerDMRI software (dmri.slicer.org; Norton et al., 2017; Zhang et al., 2020).

For all subjects, cluster-specific microstructural measures of fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) were computed. These measures have been previously shown to be associated with neurocognitive scores (Madole et al., 2021; Chen et al., 2022c; Zekelman et al., 2022). Here, FA and MD are measures of fiber-specific tissue microstructure, while NoS is widely used to quantify the connectivity strength (Zhang et al., 2022a). These cluster-specific measures can be considered as tabular data, allowing algorithms from the field of tabular data to be employed. For any empty cluster (due to variability of tractography or the underlying anatomy), each measure was set to zero, as in He et al. (2022).



2.2 Supervised contrastive regression

We propose a novel contrastive representation learning method for regression, TractoSCR. Our overall strategy is to use the absolute difference between two continuous regression labels to determine positive and negative pairs for contrastive learning. An overview of the TractoSCR framework is shown in Figure 2. The regression framework (Figure 2A) has two phases: contrastive representation learning and fine-tuning. In representation learning, random feature corruption (Figure 2B) and proposed pair determination (Figure 2C) are utilized with a supervised contrastive loss. The network trained in representation learning is then fine-tuned to output neurocognitive scores. These steps are described in the following sections.


[image: A diagram in three sections, labeled A, B, and C, representing a supervised contrastive learning process. Section A shows a flowchart with labeled data undergoing random feature corruption and pair determination, then processed by an encoder, and split into a projector and regression head. Section B illustrates original data compared to corrupted data with numerical values. Section C displays an anchor with current sample values connecting to positive and negative samples, highlighting the embedding space. Each section includes labels and color-coded elements to visualize the procedure and outcomes.]
FIGURE 2
 TractoSCR framework: (A) overview of contrastive representation learning and fine-tuning, (B) random feature corruption for data augmentation with a measure of interest (e.g., FA; rows are randomly selected samples, and columns are cluster-specific microstructural measures), (C) positive and negative pairs determination with regression labels (e.g., PC1).



2.2.1 Random feature corruption for data augmentation

To avoid potential model overfitting and increase the discriminative ability of the learned global features in contrastive learning, we performed a data augmentation process to create more training samples. We applied the recently proposed random feature corruption technique that was designed specifically for tabular data (Yoon et al., 2020; Bahri et al., 2022). In brief, in each mini-batch of training with input samples X, we created a corrupted batch copy [image: Mathematical notation of an uppercase X with a circumflex accent on top, indicating it might represent an estimated or transformed variable in statistics or mathematics.]. To do so, we chose a proportion of the input cluster-specific measures (features) uniformly at random and replaced each of those measures by a random draw from the corresponding measure dimension of other samples (as shown in Figure 2B). The ratio of replaced measures to all measures is defined as the corruption rate c. Corrupted samples [image: Mathematical symbol of the letter X with both a circumflex accent and a tilde above it.] retain the same regression labels Y as original samples X.



2.2.2 Positive and negative pairs determination

From the generated augmented data in each training mini-batch, we construct positive and negative sample pairs to enable supervised contrastive learning (SCL). Unlike existing studies (Khosla et al., 2020) using SCL to perform a classification task, where positive and negative pairs are defined based on the class labels, determination of positive and negative sample pairs is not straightforward in regression because the regression labels are continuous values. To handle this, we propose a new strategy that uses the absolute difference between two continuous regression labels to determine pairs (Figure 2C). Given xi, xj∈X with labels yi and yj, if |yi−yj| < θ, xi and xj are defined as positive pairs. Otherwise, xi and xj are considered to be negative pairs. The label difference threshold θ, a threshold on the absolute difference of two regression labels, is the key parameter for positive and negative pair determination. For our dataset with regression labels ranging from ~–3 to 3, the optimal θ is 0.35 based on experimental results. Note that our TractoSCR method is robust to changes in this threshold (from 0.1 to 0.5) as described in Section 3.2.4.



2.2.3 Supervised contrastive loss

After positive and negative pairs are determined using regression labels, the supervised contrastive loss as shown below becomes applicable:

[image: Mathematical equation depicting a loss function: L equals the sum over classes r in R of L subscript r, which equals the sum over r in K of negative one over P of r times the sum over y in X of r of the log of the fraction. The numerator is the exponential of the dot product of vectors z subscript y and z subscript y prime, divided by τ. The denominator is the sum over a in the set X without y of the exponential of the dot product of vectors z subscript y and z subscript a, divided by τ.]

where r is the anchor (current) sample, and R is the set of all samples (X and [image: Mathematical symbol of an uppercase X with a circumflex accent above it, representing a vector or variable in statistics or algebra.]) in a training batch (r ∈ R); P(r) is the set of samples that are positive pairs with anchor sample r (p ∈ P(r)); A(r) is the set of all samples in R except for anchor sample r (a ∈ A(r) ≡ R\{r}); zr, zp and za are contrastive features obtained from Proj(·) for samples r, p and a; and τ (temperature) is a tuneable hyperparameter for the contrastive loss.



2.2.4 Contrastive learning and fine-tuning

The overall process of contrastive learning and fine-tuning (Figure 2A) is as follows. In contrastive representation learning, training samples (from X and [image: A mathematical symbol depicting the letter "X" with both a tilde and a hat accent above it, often used in statistics or mathematics to denote specific variables or estimates.]) are input into the encoder Enc(·) and projector Proj(·) to get embeddings (Z and [image: The symbol "Z" with a tilde accent above it.]). The supervised contrastive loss is computed using normalized embeddings (Z and [image: Mathematical symbol of a capital letter Z with a tilde accent above it.]), where positive and negative pairs are determined by absolute differences between regression labels Y. After the contrastive representation learning, the parameters of Enc(·) are frozen and the Proj(·) is untouched, as in Chen et al. (2020b), Khosla et al. (2020), Bahri et al. (2022), and Xue et al. (2022). The usage of Proj(·) may retain useful information for downstream regression tasks in Enc(·) (Chen et al., 2020b). A predictor head for regression Reg(·) is added on top of the trained Enc(·). Reg(·) takes the output of Enc(·) as the input and is fine-tuned with MSE loss to obtain the final prediction.




2.3 Ensemble learning

We use ensemble learning (Hastie et al., 2009) to combine prediction results from three predictors that are trained on three microstructural measures (FA, MD, and NoS) independently, as in He et al. (2022). The ensemble prediction is obtained as the average prediction across the three predictors. Therefore, ensemble learning is beneficial in our application to study the relationship between three microstructural measures and neurocognitive performance metrics. Ensemble learning can also potentially improve the performance of the regression, because different microstructural measures may provide complementary information for prediction of neurocognitive performance (Note that ensemble learning is used not only for our method but also for all compared methods in experiments).



2.4 Permutation feature importance

We propose a permutation feature importance algorithm to assess the contribution of each cluster to the prediction of a neurocognitive score. Our proposed interpretation method is based on the permutation feature importance (Breiman, 2001), which is a popular model-agnostic technique for estimating how important a feature is for a particular model. The traditional permutation feature importance is defined as the decrease in a model score (e.g., prediction accuracy) when a single feature value is randomly shuffled (permuted) across samples. This enables identification of highly important features that have a large effect on the model's prediction accuracy. This traditional permutation feature importance method is not directly applicable to our high-dimensional data because the decrease of prediction accuracy is negligible when only permuting a single feature value (our input includes 953 cluster-specific white matter features per subject). Therefore, we propose a new strategy to permute multiple feature values simultaneously (e.g., a random sample of 10% of features). By repeating this strategy a very large number of times (e.g., 50,000), we can estimate the importance of all high-dimensional input features.



2.5 Implementation details

For model training and performance evaluation, datasets are split into train/validation/test with the rate 70/10/20%, and we repeat each experiment 10 times with different train/validation/test splits to report the average performance. Regarding the network structure, as suggested in Bahri et al. (2022), Enc(·), Proj(·), and Reg(·) all have hidden dimension 256 with the ReLU activation in each layer. Enc(·) has four layers, whereas Proj(·) and Reg(·) both consist of two layers. For training hyperparameters, all deep learning methods are trained with the Adam optimizer with the learning rate 0.001 and use early stopping with patience 3 on the validation loss as in Bahri et al. (2022). We conduct a grid search for parameter selection with b∈{256, 512, 1, 024, 2, 048, 4, 096}, c∈{0.3, 0.4, 0.5, 0.6, 0.7}, and τ∈{0.5, 1, 5, 10} for our method and all compared representation learning methods. For AdaCon, we also tune the temperature scaling factor (s∈{10, 50, 100, 150}) based on their paper and code. Weight ratios of two losses in AdaCon are tuned with the rule that two losses should have similar values (Dai et al., 2022). Then we choose batch size b of 2,048, corruption rate c of 0.5, and temperature τ of 1 for our contrastive representation learning. Note that our method is not sensitive to hyperparameter changes and has good performance overall. Results with other parameter settings are presented in Section 3.2.4 to demonstrate the robustness. A typical batch size of 128 is chosen in fine-tuning for all deep learning methods. Experiments are performed with Pytorch [16] (v1.8) on a NVIDIA GeForce RTX 2080 Ti GPU machine. For TractoSCR, each experiment (including training, validating, and testing) takes about 30 s with 1.67 GB GPU memory usage.

For the interpretation of prediction results, we implement our proposed feature permutation algorithm for prediction of three neurocognitive measures (PC1, General Ability; PC2, Executive Function; PC3, Learning/ Memory) independently. For each permutation, we shuffle 95 out of 953 feature values across samples in the training dataset. Then we train using TractoSCR. The prediction accuracy is evaluated on the testing dataset, and the decrease of prediction accuracy (compared to the original prediction accuracy) is recorded along with the indices of the 95 shuffled features. For each of the 10 train/validation/test data distributions, we repeat this experiment 50,000 times (50,000 permutations). We obtain final overall importance scores for each feature (cluster) by averaging all recorded decreases of prediction accuracy from all permutations of that feature. Finally, three importance scores are obtained for each cluster, corresponding to the three prediction tasks.




3 Results


3.1 Evaluation metric

We computed Pearson correlation coefficients (Pearson's r) between the ground truth scores and predicted scores to quantify the prediction accuracy. The Pearson correlation coefficient is widely used for evaluation of cognitive prediction from neuroimaging data (Cui and Gong, 2018; Jollans et al., 2019; Sripada et al., 2020; Gong et al., 2021; Mansour et al., 2021; Chen et al., 2022c; Feng et al., 2022; Jandric et al., 2022). It measures the linear correlation (normalized cosine similarity) between two sets of data. A higher value of r indicates a better prediction accuracy. We repeated each experiment 10 times with different train/validation/test splits (all methods use the same split). The mean and standard deviation of Pearson correlation coefficients across 10 splits are reported. To evaluate if differences of Pearson's r values (10 splits) between our method and compared methods are significant, we implemented a repeated measure ANOVA test for all methods, and then we performed multiple paired Student's t-tests between our method and each compared method.



3.2 Evaluation results
 
3.2.1 Comparison of representation learning methods

We compared our proposed TractoSCR with one classical method (AutoEncoder; Rumelhart et al., 1986), two recently proposed methods (VIME; Yoon et al., 2020, and SCARF; Bahri et al., 2022) for representation learning using tabular data, and one recent contrastive learning method (AdaCon; Dai et al., 2022) for medical image-based regression. The autoencoder method is widely used for learning efficient representations. Here, the autoencoder has the same input as TractoSCR and the output has the same dimensionality as the input, and the MSE loss is applied. VIME uses a novel pretext task and data augmentation method for representation learning, and SCARF uses contrastive learning with random feature corruption. AdaCon utilizes its proposed contrastive loss together with an MSE loss for training, and for fair comparison to our method, we apply random corruption for data augmentation for AdaCon. In our study, we train these methods using the suggested settings in their papers and released codes.

Table 1 shows that our proposed method outperforms all compared representation learning methods on the three prediction tasks. The improvements between our method and compared methods (except AdaCon on PC2) are shown to be significant by paired Student's t-tests. In addition, our method and AdaCon perform better than other representation learning methods. This result demonstrates the effectiveness of utilizing the relationship between regression labels during contrastive learning. Furthermore, compared to AdaCon, the prediction accuracy of our method achieves relative improvements of 2.4, 2.6, and 6.7% on the prediction of three neurocognitive measures. This illustrates that using regression labels to enable positive and negative pair determination in contrastive learning can improve results on prediction of neurocognitive measures.


TABLE 1 Comparison results (mean and standard deviation of Pearson's r across splits) for prediction of three neurocognitive component scores, PC1 (general ability), PC2 (executive function), and PC3 (learning/memory).

[image: Comparison table showing performance of various methods across PC1, PC2, and PC3 metrics. Methods include Autoencoder, VIME, SCARF, AdaCon, ElasticNet, GBDT, MLP, TractoSCR variants, and TractoSCR (ours). TractoSCR outperforms others in PC1 (0.424 ± 0.014) and PC3 (0.270 ± 0.015). Significance is marked with asterisks, explained in a note on ANOVA test results.]



3.2.2 Comparison of state-of-the-art methods for regression

We also compared our proposed method with two SOTA machine learning methods for regression (ElasticNet; Zou and Hastie, 2005 and GBDT; Chen and Guestrin, 2016; Prokhorenkova et al., 2018). ElasticNet is popularly used in cognitive prediction (Cui and Gong, 2018; Gong et al., 2021). It performs linear regression with L1 and L2 regularization. We used the implementation in the sklearn package (Pedregosa et al., 2011). GBDT is a strong non-deep competitor for deep learning methods in tabular data (Gorishniy et al., 2021). It iteratively constructs an ensemble of weak decision tree learners through boosting. We selected XGBoost (Chen and Guestrin, 2016), one of the most popular implementations of GBDT, for comparison. Parameters were tuned based on suggestions in Gorishniy et al. (2021). In addition to the above SOTA methods, we also included a multilayer perceptron (MLP) that has the same network structure as ours for a baseline comparison. As shown in Table 1, MLP (our baseline) outperforms ElasticNet and is competitive with GBDT. These results illustrate the power of deep learning methods for neurocognitive score prediction. In addition, compared to the MLP baseline, our proposed method obtains relative improvements in prediction accuracy of 3.7, 15.3, and 14.4% on all three prediction tasks. The improvement between our method and the MLP baseline is very significant (p < 0.001) by paired Student's t-tests. This demonstrates the effectiveness of our proposed TractoSCR method.



3.2.3 Comparison of ablated versions

An ablation study was conducted with two ablated versions (TractoSCRno-pd-fc and TractoSCRno-fc) of our proposed approach. TractoSCRno-pd-fc performs contrastive learning without using regression labels for pair determination and without using random feature corruption. TractoSCRno-fc uses regression labels for pair determination but does not perform random feature corruption. As shown in Table 1, the comparison between TractoSCRno-pd-fc and TractoSCRno-fc illustrates a large improvement when using regression labels for pair determination in contrastive learning. In addition, by applying random feature corruption for data augmentation, the performance improves on all tasks.



3.2.4 Experiments under different hyperparameter settings

Figure 3 shows the accuracy of prediction of three neurocognitive component scores across four important hyperparameters in TractoSCR. Overall, TractoSCR achieves consistently high prediction accuracy (Pearson's r) on all three tasks, which demonstrates TractoSCR is robust to hyperparameter change. Batch sizes and temperatures are important to contrastive learning frameworks in general (Chen et al., 2020b; Khosla et al., 2020). Figures 3A, C show that TractoSCR obtains similar results when the batch size changes from 256 to 4,096 and the temperature changes from 0.5 to 10. Corruption rates control how heavy the data augmentation is in contrastive learning (Yoon et al., 2020; Bahri et al., 2022). As shown in Figure 3B, a negligible change of the result occurs when corruption rates are varied from 0.3 to 0.7. The label difference threshold θ is the key parameter for positive and negative pair determination in TractoSCR. As shown in Figure 3D, TractoSCR performs well under different θ thresholds ranging from 0.1 to 0.5.


[image: Four line graphs labeled A, B, C, and D represent different datasets, all showing PC1, PC2, and PC3 with red dashed, blue solid, and green dashed lines, respectively. The y-axis is consistently labeled “$ \varphi \text{ score } $” ranging between 0.225 and 0.425. Graph A’s x-axis ranges from 256 to 4096, B from 0.3 to 0.7, C from 0.5 to 10, and D from 0.1 to 0.5. All graphs show lines primarily stable across their respective axes.]
FIGURE 3
 Hyperparameter sensitivity experiments for TractoSCR. Results (Pearson's r) on predicting three neurocognitive component scores (PC1, PC2, and PC3) across different hyperparameters: (A) batch size b, (B) corruption rate c, (C) temperature τ, and (D) label difference threshold θ. Results demonstrate that TractoSCR is hyperparameter-insensitive.





3.3 Interpretation results

Figure 4 provides a visualization of the most predictive fiber clusters (defined as the fiber clusters with the top 50 highest importance scores for each prediction task). Together, these fiber clusters may form part of the putative structural networks relating to general cognitive ability (PC1), executive function (PC2), and learning/memory (PC3). The predictive fiber clusters span across all five anatomical tract categories (association, cerebellar, commissural, projection, and superficial tracts; Zhang et al., 2018) and are found in both the left and right hemispheres. This finding is in line with neurocognitive research demonstrating that higher order cognitive functions, such as the ones presently under investigation, are broadly distributed across the brain (Goddings et al., 2021). When this result is examined in detail, we find that the predictive fiber clusters are predominantly located within the superficial and projection white matter (Table 2). This finding contrasts with the relative plethora of white matter and cognition studies that have focused on the role of the association connections (e.g., language in arcuate fasciculus, memory in the uncinate fasciculus, etc.; Forkel et al., 2022). Details about the location of all predictive fiber clusters (Figure 4) within specific tracts (as defined in the anatomically curated ORG atlas, Zhang et al., 2018) are provided in Supplementary Table 1. In addition, we also ran our proposed feature permutation algorithm across the five representation methods (Autoencoder, VIME, SCARF, AdaCon, and TractoSCR) shown in Table 1. These methods' most predictive fiber clusters have a 28–34% overlap for PC1, PC2, and PC3 neurocognition prediction tasks (28% for PC1, 30% for PC2, and 34% for PC3). This result demonstrates the robustness of interpretation in terms of which fiber clusters are most predictive. Overall, the most predictive tracts are the superficial frontal white matter and striato-frontal connections, which have the highest number of clusters found to be important across the three prediction tasks.


[image: Brain imaging collage showing different colored tracts across three columns labeled A, B, and C. Each column includes sagittal views of five tract types: association, projection, commissural, cerebellar, and superficial tracts. Tracts are distinguished by various colors and overlay gray brain images.]
FIGURE 4
 Visual presentation of most predictive fiber clusters (with the 50 highest importance scores) for each individual prediction task. Different fiber clusters are depicted in different colors and organized according to five anatomical tract categories. (A) PC1 (general ability). (B) PC2 (executive function). (C) PC3 (learning/memory).



TABLE 2 Number of predictive fiber clusters within each anatomical category.

[image: Table showing predictive clusters across three categories: PC1, PC2, and PC3. Rows include Association, Projection, Commissural, Cerebellar, Superficial, and Total. Bold numbers highlight categories with the highest predictive clusters: Projection in PC1 (15, 30.0%), Superficial in PC2 (27, 54.0%), and both Projection and Superficial in PC3 (14, 28.0%). Total for each column is 50 (100.0%).]




4 Discussion

In this study, we proposed a novel deep-learning-based regression method that enables improved prediction accuracy of neurocognitive measures. To our knowledge, we are the first to focus on deep representation learning for neuroimage-based prediction of neurocognitive measures. Unlike commonly used regression methods (Li et al., 2020b; Madole et al., 2021; Brown et al., 2022; Feng et al., 2022), the proposed TractoSCR method allows us to effectively leverage information from regression labels during contrastive learning. A new strategy was proposed to use the absolute difference between two continuous regression labels to determine positive and negative pairs. We also employed random feature corruption, a data augmentation method for tabular data, in contrastive learning. By applying random feature corruption, the performance improved on all prediction tasks (e.g., a relative improvement of 5.5% on PC3).

Our proposed method achieved significantly better prediction performance on a large-scale ABCD dataset in comparison with existing methods, including SOTA regression methods and representation learning methods. For example, on PC3, our method outperformed the SOTA contrastive learning method (AdaCon) with a relative improvement of 6.7% in Pearson's r, and our method outperformed the baseline method (MLP) with a relative improvement of 14.4% in Pearson's r. We also illustrated that TractoSCR is robust to changes of hyperparameters (batch size b, corruption rate c, temperature τ, and label difference threshold θ). These results demonstrate the utility of contrastive representation learning methods for the neuroimaging-based prediction of higher-order cognitive abilities. In this study, we obtained Pearson's r values ranging from 0.24 to 0.43, indicating a moderate correlation between investigated white matter microstructural measures and neurocognitive scores. Our moderate correlation finding is in general in line with a body of recent work that uses neuroimaging measures to predict cognition (Sripada et al., 2020; Gong et al., 2021; Kim et al., 2021; Feng et al., 2022).

Predicting neurocognitive measures from the ABCD dataset is an interesting but challenging task that has been undertaken using various MRI modalities (Pohl et al., 2019; Sripada et al., 2020; Ooi et al., 2022). For example, T1-weighted MRI was used to predict fluid intelligence scores (Pohl et al., 2019), while a comparison across modalities suggested that information from fMRI could best predict a summary cognition score derived from 36 behavioral scores (Ooi et al., 2022). One recent study by Sripada et al. (2020) used resting-state fMRI to predict the same neurocognitive component scores (PC1, PC2, and PC3) that we have investigated in the current study. Their method obtained Pearson's r values of 0.33, 0.09, and 0.15 for the prediction of PC1, PC2, and PC3, respectively (Sripada et al., 2020). These results were based on a smaller dataset (2,013 subjects from the first ABCD data release) and are not directly comparable to our results. However, we note that using tractography fiber cluster microstructure features as input and our novel TractoSCR regression framework for prediction, we obtained higher Pearson's r coefficients of 0.42, 0.24, and 0.27 for the prediction of PC1, PC2, and PC3, respectively. As an additional experiment, we also included an additional two measures (tensor 2 FA and MD), which improved the performance by 2.1, 9.1, and 3.7% to give Pearson's r coefficients of 0.43, 0.26, and 0.28 for PC1, PC2, and PC3 prediction tasks, respectively. Tensor 2 FA and MD are diffusion measures derived from the second diffusion tensor (representing crossing fibers) using the UKF tractography method. This additional experiment shows that adding more diffusion measures can further improve the performance of neurocognition prediction. Overall, this suggests that fiber cluster measures can potentially provide highly informative features, in combination with TractoSCR that achieves higher prediction accuracy than commonly used linear regression methods.

In our data-driven analysis of imaging and neurocognitive data from 8,735 participants of the ABCD study, we found that fiber clusters within the projection and superficial white matter were the most important for predicting neurocognitive scores related to general cognitive ability, executive function, and learning/memory. This result was enabled by the proposed permutation feature importance algorithm for identifying predictive features from high-dimensional input. This finding may highlight the need for more investigations of the superficial and projection pathways in the context of cognition.

Potential limitations and future work of the present study are as follows. First, in the present study, we explored the relationships between neurocognitive scores and fiber cluster microstructural measures from a single imaging modality, dMRI. Future work may investigate TractoSCR for predicting neurocognitive scores based on features from multiple MRI modalities. Second, we focused on prediction of neurocognitive scores in healthy children. Future work may investigate the proposed TractoSCR framework to predict cognition in the context of aging or disease (e.g., Alzheimer's Disease; Fisher et al., 2019). Third, we employed a relatively simple MLP network. Future developments can include the incorporation of more advanced deep learning networks (e.g., transformer; Vaswani et al., 2017) and recently proposed regression losses (Engilberge et al., 2019; Li et al., 2020a; Chen et al., 2022a). Finally, our results demonstrate the utility of contrastive representation learning for neuroimaging-based prediction of cognition. However, our proposed TractoSCR and permutation feature importance methods can be applied to other regression tasks.



5 Conclusion

In this work, we have proposed TractoSCR, a simple yet effective contrastive representation learning method for regression. We applied our TractoSCR method on multi-site harmonized dMRI tractography measures from the large-scale ABCD dataset (8,735 participants) to predict neurocognitive scores relating to general cognitive ability, executive function and learning/memory. We compared TractoSCR with several SOTA methods, and TractoSCR obtained significantly better prediction performance. Overall, we found that fiber clusters within the projection and superficial white matter were the most important for predicting neurocognitive scores.
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Introduction: Girls and boys presenting disruptive behavior disorders (DBDs) display differences in white matter microstructure (WMM) relative to typically developing (TD) sex-matched peers. Boys with DBDs are at increased risk for traumatic brain injuries (TBIs), which are also known to impact WMM. This study aimed to disentangle associations of WMM with DBDs and TBIs.
Methods: The sample included 673 children with DBDs and 836 TD children, aged 9–10, from the Adolescent Brain Cognitive Development Study. Thirteen white matter bundles previously associated with DBDs were the focus of study. Analyses were undertaken separately by sex, adjusting for callous-unemotional traits (CU), attention-deficit hyperactivity disorder (ADHD), age, pubertal stage, IQ, ethnicity, and family income.
Results: Among children without TBIs, those with DBDs showed sex-specific differences in WMM of several tracts relative to TD. Most differences were associated with ADHD, CU, or both. Greater proportions of girls and boys with DBDs than sex-matched TD children had sustained TBIs. Among girls and boys with DBDs, those who had sustained TBIs compared to those not injured, displayed WMM alterations that were robust to adjustment for all covariates. Across most DBD/TD comparisons, axonal density scores were higher among children presenting DBDs.
Discussion: In conclusion, in this community sample of children, those with DBDs were more likely to have sustained TBIs that were associated with additional, sex-specific, alterations of WMM. These additional alterations further compromise the future development of children with DBDs.
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1 Introduction

Disruptive behavior disorders (DBDs) that include mainly conduct disorder and oppositional defiant disorder, are diagnosed in children who display persistent rule breaking and aggressive behavior, who constitute the primary risk factor for adult antisocial behavior and criminality (Rivenbark et al., 2018). DBDs are estimated to affect 3% to 12% of children, more boys than girls (Nock et al., 2007). The population presenting DBDs is heterogeneous with respect to callous-unemotional traits (CU) presented by ~40% of girls and boys (Nock et al., 2007), and Attention Deficit Hyperactivity Disorder (ADHD) presented by 24% of the boys and 36% of the girls (Waschbusch, 2002). CU is associated with more severe conduct problems, aggressive behavior, and outcomes (Frick et al., 2014).

DBDs are disorders of atypical development of gray and white matter (Blair et al., 2014). Two meta-analyses of magnetic resonance imaging (MRI) studies of DBDs reported that most alterations were observed in gray matter structures of the limbic region (Aoki et al., 2014; Rogers and De Brito, 2016). A meta-analysis of fMRI studies, showed deficits in emotion processing, during tasks of both hot and cool executive functions (Alegria et al., 2016). A recent review concluded that alterations of white matter microstructure (WMM) were associated with antisocial behavior, noting however that results in children were inconclusive as to the implicated tracts and the direction of effects (Waller et al., 2017). Among children with DBDs, the most frequently reported alterations of WMM are found in the uncinate fasciculus (UF) (Waller et al., 2017; Bolhuis et al., 2019) and the corpus callosum (CC) (Puzzo et al., 2018; Rogers et al., 2019), consistent with findings among adults with Antisocial Personality Disorder who by definition presented DBDs in childhood (Association, 2013). One study of teenage boys and girls with CD reported lower FA and hindrance-modulated orientational anisotropy in the right retrosplenial cingulum relative to typically developing (TD) peers with sex differences such that males with CD displayed significantly lower FA compared to TD males while females with and without CD did not differ (González-Madruga et al., 2020).

The combination of DBDs and CU has been associated with differences in the UF (Puzzo et al., 2018; Bolhuis et al., 2019) and the CC (Rogers et al., 2019) among girls with conduct disorder (Menks et al., 2017). When controlling for CU, the same bundles (tracts) have been found to be associated with DBDs (Rogers et al., 2019). A study of a large birth cohort from The Netherlands reported that CU, not accounting for DBDs, was associated with differences in global mean diffusivity driven by the UF, cingulum and CC in girls not boys (Bolhuis et al., 2019).

The few studies of the association of DBDs and WMM focused almost exclusively on teenage boys, and did not account for several factors known to affect WMM such as maltreatment (Jaffee et al., 2005) and substance misuse (Armstrong and Costello, 2002) that are more common among children with DBDs than those who are typically developing (TD). Further, almost all studies employed the diffusion tensor model, which, in the presence of underlying fiber heterogeneity, cannot disentangle the contributions of different neuropathologies to WMM. Thus, the extant literature on WMM associated with DBDs is limited and inconsistent, but suggestive of alterations of tracts connecting limbic regions, and sex-specific differences.

Importantly, previous studies of children with DBDs did not take account of traumatic brain injuries (TBIs). Yet, boys with DBDs are at increased risk of accidents (Rivara, 1995) and of TBIs (Guberman et al., 2020b) as compared to their peers. In a sample of 628 males, age 10 teacher ratings of inattention-hyperactivity predicted TBIs up to age 34, and ratings of a composite score for externalizing problems predicted TBIs from age 18 to 34, after accounting for previous TBIs and family social status (Guberman et al., 2020b). Decades of research have shown that TBIs impact WMM in children (Hulkower et al., 2013; Dodd et al., 2014). Could TBIs play a role in altering WMM of children with DBDs thereby adding to, or compounding, the existing atypical neurodevelopment?

There are few studies of WMM in children who have sustained TBIs (Dodd et al., 2014) and none to our knowledge that accounted for DBDs. In small samples of children/adolescents who had sustained TBIs, alterations have been observed in WMM maturation rates (Ewing-Cobbs et al., 2008) including in the CC (Beauchamp et al., 2011). Few studies have investigated sex differences in WMM alterations following a concussion. One study of 244 children and adolescents who had sustained mild-to-severe TBIs and 263 matched non-injured peers reported that girls, not boys, exhibited lower fractional anisotropy in the UF (Dennis et al., 2021).

Children with DBDs present high risks for antisocial and/or criminal behavior in adolescence and adulthood, and evidence of deficits in emotion processing (Sully et al., 2015) and executive functions (Hobson et al., 2011) from childhood onwards. The key tracts subserving these functions have been reported to be altered relative to TD individuals, in a sex-specific manner. In the same sample as studied in the present report, WMM across the brain was inversely associated with executive functions, and via executive functions it was indirectly associated with conduct problems and ADHD (Cardenas-Iniguez et al., 2022). It is therefore possible that WMM differences reported in comparisons between DBD and TD youth may be attributable to a greater incidence of TBIs in children with DBDs. It is also possible that differences reported in comparisons between children with TBIs and those without may be confounded by the more likely presence of DBDs in the injured children. Our study aimed to tease apart the influence of these two conditions on WMM.


1.1 The present study

We used data collected on 11,875 children aged 9 to 10 years old from the Adolescent Brain Cognitive Development (ABCD) Study (Casey et al., 2018). We aimed to determine, for the first time, whether children with DBDs who had not experienced a TBI display differences in WMM relative to non-injured TD children. Next, we examined children who had sustained TBIs, and determined whether those with DBDs, relative to TD children, showed alterations in WMM. Finally, we determined whether TBIs were associated with the same differences in WMM among children with DBDs and among TD children. We expected that given the distinctive neural development characterizing DBD children, TBIs would be associated with alterations to structures distinct from those in the TD children.

Girls, as compared to boys, are less likely to present DBDs, obtain lower scores for CU (Frick et al., 2014), display faster white matter development (Schmied et al., 2020), mature more quickly, and have a higher risk of TBIs and of serious negative outcomes (Baker et al., 2016). Among children with DBDs, much less is known about girls than boys, including differences in WMM as compared to healthy peers. Therefore, we examined boys and girls separately, hoping to maximize knowledge gained from this rare large sample of girls presenting DBDs. Within each sex, we controlled for pubertal stage and age.

Since previous studies suggested that among children with DBDs, CU was associated with differences in WMM, perhaps in a sex-specific manner, analyses controlled for CU. Because comorbid inattention-hyperactivity has been found to be associated with distinct alterations of WMM, analyses also controlled for Attention Deficit Hyperactivity Disorder (ADHD).

In addressing these questions, the present study employed novel modeling and tractography techniques that are robust to the biases of diffusion tensor imaging (DTI) and novel statistical approaches (described in Supplementary material) that leverage the information contained within diffusion measures to more exhaustively probe WMM.




2 Methods and materials


2.1 Participants

Data were obtained from the ABCD study (https://abcdstudy.org/) 2.0 data release (https://data-archive.nimh.nih.gov/abcd) that recruited 11,875 healthy children, aged 9 to 10 years from across the United States (48% girls). The sample, procedures, and ethics approval have been described previously (Garavan et al., 2018), and exclusion criteria can be found in Karcher et al. (2018).



2.2 Measures
 
2.2.1 Disruptive behavior disorders

As previously described (Waller et al., 2020), children's behaviors were rated by one parent using self-administered computerized versions of the Child Behavior Checklist (CBCL) and the Schedule for Affective Disorders and Schizophrenia for school-age children (KSADS). A KSADS past or current diagnosis of conduct disorder and/or oppositional defiant disorder and/or CBCL scores on these scales of 66 or higher were coded as DBDs. Psychometric properties of this measure are described elsewhere and are considered to be strong (Waller et al., 2020).



2.2.2 CU traits

We quantified CU traits using a measure derived and validated on ABCD Study participants and an independent sample of children that showed good psychometric properties, measurement invariance across sex, race, and age, and differences from conduct problems, oppositional defiant disorder, and ADHD, and meaningful associations with outcomes (Hawes et al., 2020). The measure of CU includes one item from the parent-rated CBCL (“lack of guilt after misbehaving”) and three items from the parent rated Strengths and Difficulties Questionnaire (“is considerate of others' feelings”; “is helpful if someone is hurt or upset”; “offers to help others”) (all three reverse-coded) rated on a three-point scale (0–1–2). Following the procedures described in two prior studies (Hawes et al., 2020; Waller et al., 2020), we obtained two CU measures from these items, the sum of responses, and a maximum a posteriori (MAP) scores that accounts for which items are endorsed by whom, providing person-specific factor scores for CU traits. We then dichotomized these scores defining the presence of high CU traits as a summed score of 4 or above and a CU traits MAP score at or above the 90th percentile.



2.2.3 Attention-deficit hyperactivity disorder

Attention-deficit hyperactivity disorder was indexed using T-scores from the DSM-oriented Attention Problems scale from the CBCL.



2.2.4 Pubertal stage

Parents completed the Pubertal Development Scale and Menstrual Cycle Survey History questionnaire (Cheng et al., 2021). Responses were tallied by the ABCD Study team into three stages of pubertal development.



2.2.5 Intelligence Quotient (IQ)

Children completed a computerized version of the National Institutes of Health Toolbox Cognitive function Battery (Akshoomoff et al., 2013) that assessed seven cognitive abilities. The ABCD Study team computed fully corrected T-Scores, comparing the score of the participant to those in the NIH Toolbox nationally representative normative sample, adjusted for age, gender, race/ethnicity, and parental educational attainment. We used this fully-corrected score as a measure of IQ.



2.2.6 Traumatic brain injuries

Parents completed a modified version of the Ohio State University TBI Identification Method (Corrigan and Bogner, 2007). We defined a mild TBI as a head injury without loss of consciousness but with memory loss and/or a head injury with loss of consciousness for < 30 minutes. In the present study, all TBIs met this definition of mild TBI. Although history of a severe TBI was part of the exclusion criteria (Karcher et al., 2018), in the whole ABCD sample (n = 11,875), seven children had sustained TBIs of moderate or high severity. None of them met criteria for either the DBD or the TD group.



2.2.7 Sociodemographic measures

Parents completed the Parent Demographics Survey to report on their child's ethnicity, family income, their own education, and marital status.



2.2.8 Parent substance use

Parents completed the Family History Assessment to report on substance use.




2.3 Group classification

Figure 1 presents the selection and exclusion criteria that led to a final sample of 751 girls and 749 boys. From the full baseline sample (n = 11,875), within each sex, a DBD (“DBD raw”) and a TD group were created. The DBD group was defined to include children with Child Behavior Checklist T-scores of 66 or higher on either the conduct problems or oppositional defiant problems scales or a diagnosis of present or past Conduct Disorder or Oppositional Defiant Disorder on the KSADS. As previous studies have indicated that WMM differences may be associated with CU rather than directly with DBDs (Puzzo et al., 2018), within this group we included participants with and without CU. We identified participants without CU, defined as CU sum scores of 0, and participants with high CU, defined as CU sum scores of four or more and CU MAP scores at or above the 90th percentile. These two sub-groups were combined to create a DBD group in which approximately half of the members had high CU and half no CU. The TD group was defined as individuals with no DBDs and no CU traits, and T scores of 50 on all Child Behavior Checklist scales. From the TD group, we excluded 16 participants who had missing diagnostic data, and seven who had other diagnoses.


[image: Flowchart of a study sample starting with 11,875 participants. The sample divides into modified TBI and those progressing further. Two branches lead to DBD Raw and TD categories with sub-criteria filtering based on scores. DBD Raw (1,229 participants) and TD (9,334 participants) face further exclusions due to missing data or extra diagnoses. The DBD and TD groups are refined into final samples, DBD Final (1,023 participants) and TD Final (6,320 participants). These are further categorized into DBD/TBI and TD/TBI subgroups for analysis.]
FIGURE 1
 Flowchart describing participant selection. From the full baseline sample (n = 11,875), after excluding participants with moderate or severe TBI (“mod/sev TBI”), a disruptive behavior disorders (DBD raw) and a typically developing (TD) group were created. The DBD raw group was defined as Child Behavior Checklist (CBCL) T-scores of 66 or higher on either the conduct problems (CP) or oppositional defiant problems (ODP) scales or a diagnosis of present or past Conduct Disorder (CD) or Oppositional Defiant Disorder (ODD) on the Schedule for Affective Disorders and Schizophrenia for school-age children (KSADS). The “TD” group was defined as individuals with no DBDs and no callous-unemotional traits (CU), and T scores of 50 on all CBCL scales. From the TD group, we excluded 16 participants who had missing diagnostic data, and 7 who had other diagnoses. We identified participants without CU, defined as CU Sum Scores of 0, and participants with high CU, defined as CU sum scores of 4 or more and a maximum a posteriori (MAP) CU scale score scores at or above the 90th percentile. These two groups were combined to create a DBD group with approximately half of the members with high CU, and half with no CU. Scans underwent pre-processing, processing, and post-processing, leading to the exclusion of 240 DBD participants and 248 TD participants due to missing or corrupt data files, poor image quality, and failures during image processing and post-processing. The final groups of DBD and TD participants were then divided according to history of traumatic brain injury (TBI).


Scans underwent pre-processing, processing, and post-processing, leading to the exclusion of 240 DBD participants and 248 TD participants due to missing or corrupted data files, poor image quality, and failures during image processing and post-processing. The final groups of DBD (boys n = 557; girls n = 352) and TD (boys n = 451; girls n = 628) participants were then divided according to presence or absence of at least one TBI.



2.4 Magnetic resonance imaging

We used multi-shell diffusion MRI (dMRI) and T1-weighted scans. Only scans rated “high quality” by the ABCD Study team were retained. In pre-processing, we verified that all participants had the necessary image requirements. We processed dMRI and T1-weighted scans using Tractoflow (Theaud et al., 2020), following steps outlined in Theaud et al. (2020). Deviations from the default parameters were the use of white matter seeding and using 12 seeds-per-voxel for tractography.

We used RBX-flow (Rheault, 2020) to extract 13 major white matter bundles previously found to differ in children with DBDs (Waller et al., 2017; Puzzo et al., 2018; Bolhuis et al., 2019; Rogers et al., 2019): bilateral UF, inferior fronto-occipital fasciculus (IFOF), cingulum, inferior longitudinal fasciculus (ILF), corticospinal tract (CST), and three portions of the CC, genu, body, and splenium (Figure 2). We then obtained six scalar measures averaged across bundles: fractional anisotropy, mean, radial, and axial diffusivity, number of fiber orientations (Dell'Acqua et al., 2013), and apparent fiber density along fixels (Raffelt et al., 2012).


[image: Illustration of brain sectional views with various regions highlighted in different colors. A legend on the left labels regions as Genu, Body, Splenium, CG, ILF, IFOF, UF, and CST, each with corresponding colors for differentiation.]
FIGURE 2
 Illustration of the investigated white matter bundles. Genu, Genu of corpus callosum; Body, Body of corpus callosum; Splenium, Splenium of corpus callosum; CG, Cingulum; ILF, Inferior Longitudinal Fasciculus; IFOF, Inferior Fronto-Occipital Fasciculus; UF, Uncinate Fasciculus; CST, Corticospinal Tract.


Partial volume effects, subtle imperfections in brain tissue classification, and other potential errors introduced during tractography can prevent automatic bundling algorithms from extracting bundles (Rheault et al., 2020). Out of 1500 participants with complete data, 386 had at least one bundle that could not be extracted. The lowest number of bundles a participant had was six. Out of all 19500 bundles to extract (1500 participants x 13 bundles/participant), 765 (3.92%) were missing. We imputed missing connectivity data using a non-parametric simple random imputation approach, by randomly selecting data from other participants separately for each bundle and each diffusion measure. We selected this technique because of its simplicity and ease of implementation.


2.4.1 Multidimensional microstructural features

Measures from dMRI provide partly overlapping information about underlying microstructure. Used in combination, these measures can provide more information than in parallel (Guberman et al., 2020a, 2022). To extract this shared information, we used principal component analysis (PCA) on the concatenated set of standardized measures across subjects and bundles (Supplementary Figure S1). This approach generated new biologically-interpretable indices of WMM (Chamberland et al., 2019). We applied this technique on the TD group, separately for boys and girls, to obtain measures representative of neurotypical WMM. In both sexes, we obtained three principal components (PCs) that together accounted for 93%−94% of the total variance (Figure 3). Each corresponding PC was highly similar between the two sexes. We interpreted the first PC as reflecting an index of absolute diffusivity (Acosta-Cabronero et al., 2010), the second as an index of axonal density, and the third as a measure of the number of fiber orientations in a voxel. We then projected data from all other participants onto these three PCs (Figure 3).


[image: Chart comparing boys and girls, showing differences in five measures: AFQ1, RD, AD, NuFo, and MD. Colored circles indicate levels, with red and blue representing higher and lower values, respectively. Graph on the left shows percentage differences: 44 percent, 33 percent, and 33 percent. On the right, three diagrams represent changes in Absolute Diffusivity (PC1), Axonal Density (PC2), and Fiber Orientations (PC3), with arrows indicating direction of increase or decrease.]
FIGURE 3
 Illustration of the results from the principal components analyses. (A) Plot illustrating the loadings of each diffusion measure onto each principal component (PC). Red colors represent negative loadings, blue colors represent positive loadings. The size of the circles also illustrate the magnitude of the loadings. Bar graphs underneath illustrate the variance explained by each PC, with the variance explained by the first three PCs indicated numerically on the graphs. (B) Schematic illustration of the interpretation of the first three PCs. PC1 appears to capture measures of absolute diffusivity. The loadings in girls were multiplied by −1 to ensure consistency with the boys' loadings. PC2 appears to capture measures related to axonal density. The loadings in both boys and girls were multiplied by -1 so that increasing PC2 scores could be interpreted as increasing axonal density. PC3 appears to capture selectively the number of fiber orientations. AFDf, Apparent Fiber Density along fixels; RD, Radial diffusivity; AD, Axial diffusivity; NuFO, Number of fiber orientations; MD, Mean diffusivity; FA, Fractional Anisotropy.


Further details for the MRI acquisition, processing, and post-processing are presented in Supplementary material.




2.5 Statistical analyses

We performed all analyses separately by sex. We compared four groups (TD/TBI+, TD/TBI-, DBD/TBI+, DBD/TBI-) as to individual and family characteristics using two-sample t-tests for continuous variables and chi-squared tests for categorical variables with 2000 Monte Carlo simulations to calculate p-values. We conducted three sets of comparisons of WMM: (1) among children without a prior TBI, comparing DBD and TD groups; (2) among children with a prior TBI, comparing DBD and TD groups; (3) within DBD and TD groups, comparing children with and without a prior TBI. After having regressed out scanner, we used multivariate regression analyses to identify WMM differences, separately by bundle, non-adjusted and then adjusted separately for each covariate (CU MAP, ADHD, IQ, age, pubertal stage, ethnicity (0 = non-Hispanic White, 1 = other), and family income (0 = above $50,000, 1 = below $50,000). For bundles displaying significant group differences, we ran post hoc analyses comparing each WMM component.




3 Results


3.1 Sample characteristics

Sample characteristics of boys and girls are summarized in Tables 1, 2. Among the 749 boys, TBIs had been sustained by 7.75% of the DBD group and 2.59% of the TD group (χ 2= 9.859, p = 0.005). Among the 751 girls, TBIs had been sustained by 4.83% of DBD group and 2.07% of the TD group (χ2= 4.424, p = 0.048). Given that the TD group was defined not to include psychopathology, we reasoned that the excluded children who presented some psychopathology might have a higher risk of TBIs. To determine whether the elevations in risk of TBIs was specific to children presenting DBDs we compared them to all the other children in the ABCD sample. Among the boys who did not present DBDs (n = 5,631) 4.14% had sustained a TBI as compared to 7.36% among the full (i.e., before quality control, pre- and post-processing) boys DBD group (X2 = 12.442, p = 0.002). Among the girls who did not present DBDs (5,329), 3.0% sustained a TBI as compared to 4.26% among the full girls DBD group (X2 = 1.357, p = 0.206).


TABLE 1 Comparisons of boys presenting disruptive behavior disorders and their typically developing peers with and without traumatic brain injuries.

[image: A data table compares characteristics of boys with Disruptive Behavior Disorder (DBD) and typically developing (TD) boys, with and without Traumatic Brain Injury (TBI). It includes details on pubertal stage, race/ethnicity, household income, parent education and marital status, parent substance use, and various problem scores. Statistical values, including chi-squared and p-values, indicate significance levels for differences between groups, with some entries showing significant differences highlighted in bold. Footnotes clarify specific data conditions, and statistical significance is noted for certain comparisons.]


TABLE 2 Comparisons of girls presenting disruptive behavior disorders and their typically developing peers with and without traumatic brain injuries.

[image: A statistical table comparing various demographic and behavioral characteristics between groups: DBD with and without traumatic brain injury (TBI), and TD with and without TBI. Categories include pubertal stage, race/ethnicity, household income, parent education, marital status, and substance use. Significant values are highlighted.]

Children presenting DBDs, their parents and families, differed from TD children, parents and families, obtaining higher scores for conduct problems, oppositional defiant problems, CU, ADHD, lower IQ, lower family income, fewer living with two parents, and more had a family member presenting substance misuse. Among the DBD boys, there was only one difference between those with and without TBIs; previously injured boys obtained higher ADHD scores. Among the TD boys, only family income distinguished those with and without TBIs. Among the DBD girls, those who had sustained a TBI differed from those who had not by having parents with a lower level of education, higher scores for conduct problems and for ADHD. Among TD girls, those with TBIs differed from those without by coming from families with higher income and by obtaining higher CU scores.



3.2 Among children without TBIs, are there WMM differences between those presenting DBDs and TD children?

As presented in Table 3, among boys who had not experienced TBIs, those with DBDs as compared to TD boys displayed a multivariate difference of WMM in the left CST, robust to adjustment for age, ethnicity, and family income, but not for CU, ADHD, IQ, or pubertal stage, and in the CC genu, robust to adjustment for IQ, age, pubertal stage, ethnicity, and family income, but not CU and ADHD. In post hoc analyses, no differences were detected in the three components of WMM of the CST. In the CC genu, absolute diffusivity was lower and axonal density was higher in DBD boys compared to TD boys.


TABLE 3 Among children who have not experienced a traumatic brain injury, comparisons of white matter microstructure between boys and girls with disruptive behavior disorders and typically developing boys and girls, with adjustment for callous-unemotional traits, attention deficit hyperactivity disorder, IQ, age, pubertal stage, ethnicity, and family income.

[image: Table displaying multivariate model p-values for different brain bundles in boys (n=709) and girls (n=728), adjusted for factors like CU MAP, ADHD, IQ, age, pubertal stage, ethnicity, and family income. Significant p-values are bolded. Left and right brain bundles, including UF, IFOF, CG, ILF, CST, and CC sections Genu, Body, and Splenium, are presented. Notable differences in absolute diffusivity and axonal density between typically developing (TD) and Disruptive Behavior Disorders (DBD) are noted.]

Among girls without TBIs, those presenting DBDs, as compared to TD girls, displayed a multivariate difference of WMM in the left IFOF, robust to adjustment for all covariates except CU, in the right IFOF, robust to adjustment for all covariates except CU and ADHD, in the right ILF, robust to adjustment only for age and family income, and in the body of the CC, robust to adjustment for CU, age, pubertal stage, and ethnicity. Post hoc analyses revealed that DBD girls showed higher axonal density in the left and right IFOF, lower axonal density in the right ILF, and lower absolute diffusivity in the CC body.



3.3 Among children with TBIs, are there WMM differences between those presenting DBDs and TD children?

As presented in Table 4, among boys with TBIs, those with DBDs as compared to TD boys displayed a multivariate difference of WMM in the left CST, robust to adjustment for CU, IQ, pubertal stage, and ethnicity. In post hoc analyses, no differences in the three components of WMM were detected.


TABLE 4 Among children who have experienced a traumatic brain injury, comparisons of white matter microstructure between boys and girls with disruptive behavior disorders and typically developing boys and girls, with adjustment for callous-unemotional traits, attention deficit hyperactivity disorder, IQ, age, pubertal stage, ethnicity, and family income.

[image: Table showing multivariate model p-values for different brain bundles in boys (n=40) and girls (n=23). Adjustments are made for CU MAP, ADHD, IQ, Age, Pubertal Stage, Ethnicity, and Family Income. Statistically significant p-values are highlighted in bold. For boys, CST p-values are significant when adjusted for CU MAP, Age, Pubertal Stage, and Ethnicity. For girls, the right UF p-values show significance across several adjustments, including CU MAP and ADHD. Differences in components indicate axonal density variances related to typical development and disruptive behavior disorders.]

Among girls with TBIs, those presenting DBDs, as compared to the TD, showed a multivariate difference in WMM in the right UF, robust to adjustment for all covariates except family income. In post hoc analyses, the UF of DBD girls showed higher axonal density.



3.4 Among TD boys and girls, do those who have sustained TBIs show WMM differences from those with no TBIs?

Among both TD boys and girls, there were no significant differences in WMM between those with and without TBIs in any of the 13 bundles studied.



3.5 Among boys and girls presenting DBDs, do those who have sustained TBIs differ from those with no TBIs?

As presented in Table 5, among boys presenting DBDs, those with prior TBIs compared to those without displayed a multivariate difference of WMM in the left CST, robust to adjustment for CU, ADHD, age, ethnicity, and family income, and in the right ILF, robust to adjustment for all covariates except ADHD and family income. Post hoc analyses revealed that DBD boys who had sustained TBIs showed higher axonal density in the left CST and higher absolute diffusivity in the right ILF, compared to DBD boys without TBIs.


TABLE 5 Among boys and girls presenting disruptive behavior disorders, comparisons of white matter microstructure between those who had and had not sustained a traumatic brain injury, with adjustment for callous-unemotional traits, attention deficit hyperactivity disorder, IQ, age, and pubertal stage, ethnicity, and family income.

[image: Multivariate model p-values table comparing boys (n = 400) and girls (n = 269) across different brain bundles: Left/Right UF, IFOF, CG, ILF, CST, and CC (Genu, Body, Splenium). Adjustments are made for factors like CU MAP, ADHD, IQ, age, pubertal stage, ethnicity, and family income. Statistically significant p-values are highlighted in bold. Notable differences include axonal density and absolute diffusivity between TBI+ and TBI− groups. Key findings indicate significant results in the boys' CST and girls' CC Genu sections.]

Among girls presenting DBDs, there was only one significant difference between those who had and who had not sustained TBIs that was observed in the genu of the CC, robust to adjustment for all covariates except family income. Post hoc analyses revealed that DBD girls who had sustained TBIs showed higher absolute diffusivity in the CC genu compared to DBD girls without TBIs.



3.6 Adjusting for multiple comparisons

Given the large number of statistical comparisons, we performed a Benjamini–Hochberg correction for each set of analyses (i.e., a separate one for the analyses presented in Tables 3–5). No comparisons survived corrections for statistical comparisons.




4 Discussion

In the present study, we found that greater proportions of boys and girls with DBDs than TD boys and girls had sustained at least one TBI by age 10, consistent with previous findings (Guberman et al., 2020b). Factors associated with increased risk of TBIs may differ in the two groups. Children with DBDs are more likely than TD children to have experienced harsh parenting and/or maltreatment (Jaffee et al., 2005) and to engage in risky behaviors, such as physical fighting. By contrast, TD children may be more likely to participate in organized sports involving heightened risk of TBIs. The prevalence of TBIs was higher among boys than girls with DBDs, and similar in TD boys and girls. There is a paucity of research on girls with DBDs, although existing studies identify few sex differences in developmental trajectories (Freitag et al., 2018). While CU traits are lower in girls with DBDs they have similar brain correlates (Pardini et al., 2012). However, some characteristics that could be associated with TBIs have been reported to be elevated in boys such as risky decision making (Sidlauskaite et al., 2018), impulsivity (Hartung et al., 2002), and risky behaviors leading to premature death (Kratzer and Hodgins, 1997).

Among children with DBDs, those without TBIs showed alterations in WMM relative to sex-matched TD children. Within the DBD group, those who had sustained TBIs also showed differences in WMM relative to the non-injured. Disentangling alterations of WMM associated with TBIs from those associated with DBDs, CU, and ADHD provides information useful to the treatment of each comorbid condition and will further understanding of the etiology of these common childhood disorders that often have negative life-long consequences.


4.1 Children who had not sustained a TBI

In the present study, among children who had not sustained TBIs, alterations of WMM were observed among those with DBDs relative to those who were TD. Analyses performed within sex showed different alterations, all of which were related to ADHD, CU or both. Among boys without TBIs, those with DBDs relative to the TD group showed differences in the left CST and the genu of the CC. Previous studies that did not exclude participants who had sustained TBIs identified differences in the CST and the CC genu among those with DBDs comorbid with ADHD relative to those with DBDs alone and higher fractional anisotropy and lower mean/radial diffusivity among boys with conduct disorder and CU, but not among those with conduct disorder alone (Puzzo et al., 2018). Further, a systematic review and meta-analysis reported that children/adolescents with ADHD showed alterations in the CST believed to be related to motor disinhibition or dysregulation of dopamine in downstream pathways (Hamilton et al., 2008).

Among girls who had not experienced TBIs, those presenting DBDs displayed differences in the left and right IFOF, the right ILF, and the body of the CC. Only the difference in the CC was robust to adjustment for CU. These results are consistent with previous studies of females with current or past conduct disorder, that reported alterations in the CC and lower fractional anisotropy and axial diffusivity in the anterior/superior corona radiata, ILF and IFOF (Budhiraja et al., 2017).

Both girls and boys presenting with DBDs without TBIs showed differences relative to TD children in the CC, which has long been associated with antisocial behavior among adult males (Raine et al., 2003). Alterations of the CC are believed to underlie problems in emotional regulation, motor coordination, motor planning, executive functions, and impulsivity (Schutter and Harmon-Jones, 2013). Corpus callosum axial diffusivity has been shown to mediate the association between CU and impulsive responses to emotional faces (Rogers et al., 2019). In the present study, among girls who had not sustained TBIs, those with DBDs displayed differences in the right ILF and bilateral IFOF that connect the posterior temporal and occipital lobes, including visual and auditory association areas, to the prefrontal cortex (Catani et al., 2013), and the ILF to the amygdala (Fox et al., 2008). Alterations of these tracts are believed to be related to impairments in emotion processing (Herbet et al., 2018) and goal-oriented behavior (Conner et al., 2018). Among children/adolescents with DBDs, these regions show alterations of gray matter and functioning. A recent study of the ABCD sample reported that children with DBDs with and without CU, compared to TD children, displayed smaller amygdala volumes bilaterally (Waller et al., 2020). A European multi-center study of 118 children presenting DBDs and 89 healthy children found proactive aggression was related to increased functional coupling between the amygdala and precuneus, reactive aggression to amygdala-left lateral cortex hyperconnectivity, and callousness to right prefrontal cortex-right precentral gyrus hyperconnectivity (Werhahn et al., 2021).



4.2 Children who had sustained a prior TBI

Among boys with prior TBIs, those with DBDs showed only one difference relative to TD boys that was in the left CST, as was the case for boys without prior TBIs. This difference did not survive adjustment for ADHD. This finding is consistent with a prior report of differences in WMM in the CST among male TBI patients with ADHD compared to healthy children (Hamilton et al., 2008). Among girls with prior TBIs, those presenting DBDs displayed only one difference relative to TD girls that was in the right UF, robust to adjustment for all covariates except family income. The UF has been previously associated with DBDs (Waller et al., 2017; Bolhuis et al., 2019; Rogers et al., 2019), as it connects neural regions involved in behavioral control, such as the orbitofrontal cortex, with areas involved in threat perception, such as the amygdala (Fox et al., 2015).



4.3 Children presenting DBDs or TD with and without a history of TBIs

We observed striking differences when examining WMM of children with and without TBIs within the DBD and TD groups. Among TD children, no significant differences were detected in any WMM bundles between those with and without prior TBIs. Given the variability in pre-injury factors and post-TBI consequences, group comparisons may only detect shared abnormalities (Guberman et al., 2022), such that alterations in WMM may only be detected within a group displaying a common underlying structural abnormality, such as children with DBDs. Consistent with this idea, a prior study found that in the Philadelphia Neurodevelopmental Cohort, children who had sustained a TBI, relative to healthy children, displayed differences in deep white matter, but when compared to children who were matched for levels of psychopathology, no differences were detected (Stojanovski et al., 2019).



4.4 Development of WMM

The use of our multidimensional approach to measure WMM provided information regarding the nature of the abnormalities not available from previous studies. Across most DBD/TD comparisons (except right ILF in DBD girls without TBIs), axonal density scores were higher among children presenting DBDs. These results could be interpreted as suggesting accelerated development of WMM. This hypothesis is consistent with a recent study reporting increases in apparent fiber density across development among healthy children (Genc et al., 2020). In these same comparisons, other bundles consistently displayed lower absolute diffusivity in the DBD group. If WMM development is accelerated among children with DBDs, lower absolute diffusivity may reflect other processes, such as the increased presence of neurofibrils, microglia, and myelin from oligodendrocytes (Acosta-Cabronero et al., 2010), perhaps to support the higher number of axons. Longitudinal studies of healthy children have shown concurrent decreases in axial and radial diffusivity across development (Lebel and Beaulieu, 2011). The observation of these concurrent microstructural processes, occasionally present simultaneously in the same bundle (for example boys' CC genu, Table 3), reveals a particular strength of the measures of WMM used in the present study. The principal components analyses yielded three orthogonal (non-correlated) components of WMM, a distinct advantage over the highly-correlated tensor-based measures.

Unlike the findings from comparisons of DBD and TD groups, within the DBD group, absolute diffusivity scores were higher among children who had sustained TBIs relative to the non-injured. This finding may reflect injury-related loss of myelin and other supporting structures, although this conclusion requires histological validation. Among boys with DBDs, those with TBIs displayed higher axonal density scores than those without. This result is surprising, and runs counter to prior research (Guberman et al., 2020a). However, this effect was lost when adjusting for pubertal stage and IQ, suggesting possibly that differences in WMM maturation may be partly responsible, even if pubertal stage and IQ were similar in the two groups.



4.5 Ethnicity and family income

Ethnicity differed little in DBD and TD boys and girls, with and without TBIs. In comparisons of WMM, ethnicity modified the significance of only one result. Among girls who had not experienced TBIs, the difference between the DBD and TD groups in the right ILF did not survive adjustment for ethnicity. The TD boys and girls came from families reporting slightly higher income than the DBD children. Family income played no role in comparisons of DBD and TD children who did not sustain TBIs. By contrast, in comparisons of DBD children who had sustained TBIs to both TD children with TBIs and to DBD children without TBIs, several differences lost significance when models were adjusted for family income. Low family income may index a number of factors that directly or indirectly impact the child's neural development and their risk of sustaining TBIs, such as harsh parenting, neglect, and monitoring of child behavior.



4.6 Clinical implications

Children at risk for TBIs include those presenting conduct problems and/or inattention-hyperactivity, some of whom engage in aggressive behavior, those who have experienced a prior TBI, and those experiencing maltreatment and/or neglect and/or age-inappropriate parental monitoring. Nurse visitation programs in the years following birth could be modified to include assessments of toddlers' impulsivity, risk taking, obedience, and aggressive behavior and parents' harsh and inappropriate punishment, neglect, and age-appropriate monitoring of the child's behavior. These same child and parent characteristics could be assessed by pre-school staff and elementary school teachers. Ideally, interventions could be provided to children and/or parents presenting characteristics that elevate the risk of TBIs. Adding components to treatment programs for conduct problems and ADHD that focus on impulsivity and risk taking has the potential to prevent TBIs. Effectively eliminating maltreatment and neglect could also prevent TBIs. The effectiveness of treatments for childhood TBIs would be improved by taking account of the child's and the family's pre-injury characteristics and by implementing strategies to prevent further TBIs. Consistent with the current findings, previous research has found that after taking account of either inattention-hyperactivity or conduct problems, children who sustained a TBI by age 10, were three times more likely than children who had not sustained a TBI to experience at least one more TBI before age 18 years (Guberman et al., 2020b).



4.7 Limitations and strengths

The present conclusions must be considered in light of some methodological limitations. By design, the ABCD Study excluded severe TBIs. Although information about the number of TBIs sustained by participants and ages when the injuries occurred was not available, the commitment of parents and children required by the ABCD Study is considerable, possibly discouraging families whose children had sustained more severe and symptomatic head injuries from participating. This likely underrepresentation of more severe and/or symptomatic TBIs is a limitation of our study. Even among those with DBDs, the prevalence of TBIs was lower than that of 12% in the general population (Frost et al., 2013). The number of TD participants who had sustained a TBI was particularly low. In the within sex comparisons of DBD and TD groups with a history of TBIs, this low number of TBI cases could have led to issues with homogeneity of variance due to unequal sample sizes. Further, in these comparisons, effect sizes, as measured by the Generalized η2 statistic were found to be larger than in other analyses. This statistic is believed to overestimate the true effect size, and this bias decreases with increasing sample size (Mordkoff, 2019). Hence, it is possible that the differences in effect size observed in this set of analyses appeared larger as a consequence of their smaller sample size.

The decision to adjust for several covariates while taking into account the relatively low number of participants in some of the subgroups that were compared led us to favor simpler models without interaction terms. Opting for simpler models also meant running more of them, a limitation that was compounded in part by our liberal bundle selection procedure. We focused on any bundles that were previously reported to be associated with DBDs, even if they had only been reported on only once. This decision was deliberate: given that our project is the first to study white matter structure in boys and girls with DBDs with prior TBIs, our approach to bundle selection, although partly hypothesis driven, was mostly exploratory. As a result of these methodological choices, a large number of statistical comparisons were performed. Several efforts were taken to reduce the number of potential comparisons, such as our PCA and our multivariate regression approaches which reduced the number of comparisons by a factor of 2 and 3 respectively, and the fact that we only adjusted for covariates in models with significant main effects of group. Nonetheless, to remedy the expected increase in Type 1 error, we decided to be conservative in our adjustment for multiple comparisons. Future work with larger numbers of DBD and TD children with TBIs will need to consider running fewer, more complex models of WMM in a targeted set of tracts, adjusting for all relevant covariates together and incorporating interaction terms.

Another potential limitation is the possibility that controlling for conditions that are likely to be highly comorbid with DBDs and/or TBIs may have introduced multicollinearity into our models, and could have led to adjusted effects that are difficult to interpret and unnaturalistic (Miller and Chapman, 2001). Finally, information on maltreatment – which is more common among children with than without DBDs (Jaffee et al., 2005) and a cause of TBIs especially in young children (Duhaime and Christian, 2019) – was not available.

Strengths of the study include the relatively large sample, especially of females, who presented DBDs. Another strength was the age of participants that likely precluded substance use. The study employed novel modeling, tractography, tractometry, and statistical approaches to measure WMM that are robust to the limitations of more conventional analyses and that extract more exhaustive information. Utilizing tractography robust to partial volume effects and a highly reproducible automatic bundle clustering algorithm increases the accuracy of bundle reconstructions and hence the localization of the reported effects. The use of a modeling technique robust to crossing fibers and a data recombination approach to create more biologically-interpretable measures of WMM allowed us to make more fine-grained interpretations of the obtained effects.



4.8 Conclusion

Children with DBDs are at increased risk relative to healthy children to sustain TBIs. Those who have not sustained TBIs show alterations of WMM relative to TD children, while those who have sustained such injuries show additional alterations. Furthering understanding of the etiology and improving treatment of DBDs will require disentangling alterations of WMM that are specific to girls and boys, with and without CU, ADHD, and TBIs. Additionally, it is critical to determine the temporal associations of DBD onset and persistence with TBIs. Assessing pre-injury characteristics of children who have sustained TBIs could contribute to personalizing treatment.
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Introduction: In tractography, redundancy poses a significant challenge, often resulting in tractograms that include anatomically implausible streamlines or those that fail to represent the brain's white matter architecture accurately. Current filtering methods aim to refine tractograms by addressing these issues, but they lack a unified measure of redundancy and can be computationally demanding.
Methods: We propose a novel framework to quantify tractogram redundancy based on filtering tractogram subsets without endorsing a specific filtering algorithm. Our approach defines redundancy based on the anatomical plausibility and diffusion signal representation of streamlines, establishing both lower and upper bounds for the number of false-positive streamlines and the tractogram redundancy.
Results: We applied this framework to tractograms from the Human Connectome Project, using geometrical plausibility and statistical methods informed by the streamlined attributes and ensemble consensus. Our results establish bounds for the tractogram redundancy and the false-discovery rate of the tractograms.
Conclusion: This study advances the understanding of tractogram redundancy and supports the refinement of tractography methods. Future research will focus on further validating the proposed framework and exploring tractogram compression possibilities.
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1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) has emerged as a revolutionary tool for non-invasively probing the complex architecture of white matter tracts in the living brain. The technique captures the diffusion of water molecules, which preferentially occurs along the length of axonal fibers, thereby providing insights into the orientation and integrity of neural pathways. Tractography algorithms leverage this information to reconstruct the three-dimensional trajectories of white matter tracts, known as streamlines, resulting in a tractogram which is a comprehensive map of neural connections within the brain (De Benedictis et al., 2016; Hau et al., 2017; Maffei et al., 2018; Jeurissen et al., 2019; Henderson et al., 2020). Applications range from connectivity network studies (Yeh et al., 2021; Zhang et al., 2022), segmentation (Wasserthal et al., 2018; Rheault et al., 2020, 2022; Warrington et al., 2020; Bertò et al., 2021; Maffei et al., 2021; Schilling et al., 2021; Siegbahn et al., 2022), to the identification of neural pathways for surgery planning (Henderson et al., 2020; Yang et al., 2021).

Many tractography algorithms have been proposed in the last two decades using diverse methodologies (Mori et al., 1999; Basser et al., 2000; Smith et al., 2012; Christiaens et al., 2015; Neher et al., 2017; Poulin et al., 2017, 2019; Konopleva et al., 2018; Jeurissen et al., 2019; Théberge et al., 2021; Sinzinger and Moreno, 2022; Legarreta et al., 2023). This large number of available methods has made it difficult for end users to choose the most appropriate tractography algorithm for their applications. Furthermore, there is little consensus on which parameters to use, such as the most appropriate number of streamlines. In order to address this issue, one of the goals of the International Society for Magnetic Resonance in Medicine (ISMRM) 2015 Tractography Challenge (Maier-Hein et al., 2017) was to help end users by quantitatively assessing the performance of tractography pipelines in a realistic phantom. This challenge used the Tractometer (Côté et al., 2013) for this aim. The Tractometer uses regions of interest (ROIs) to define six different measurements. While using ROIs gives insights into the quality of the tractogram, such a methodology is unable to assess the quality of individual streamlines. For example, anatomically implausible streamlines that do not go outside of a bundle segmentation mask connecting two brain regions will not penalize Tractometer measurements. This restriction can potentially affect connectivity and tractometry analyses (Chandio et al., 2020). Thus, there is currently an unmet need to create new measurements that can address the limitations of the Tractometer. This study contributes to this goal by leveraging tractogram filtering methods.

Despite its widespread application in neuroscience research and clinical settings, tractography faces significant challenges (Daducci et al., 2016; Maier-Hein et al., 2017; Schilling et al., 2019). One of the most critical issues is the presence of false-positive streamlines within tractograms (Daducci et al., 2016; Jörgens et al., 2021). False-positive streamlines manifest as either anatomically implausible streamlines that do not correspond to true neural pathways or as overlapping with other streamlines (duplicates) that result in redundancy in the representation of the diffusion signal. We refer to the duplicated streamlines as redundant. These erroneous streamlines can obscure the true structural connectivity, leading to misinterpretations in both research and clinical applications (Garyfallidis et al., 2012; Durantel et al., 2022).

This study aims to create a statistical framework to estimate the lower and upper bounds of tractogram redundancy from per-streamline estimates obtained with tractogram filtering. These estimates can potentially be used to rank tractography pipelines by their inefficiency, with the ambition of fostering research for improved tractography methods. Although the proposed framework is generic, we use three specific tractogram filtering methods: ExTractor (Petit et al., 2023), randomized spherical-deconvolution-informed filtering of tractograms (rSIFT) (Hain et al., 2023), and randomized convex optimization modeling for microstructure informed tractography (rCOMMIT) (Wan, 2023).1



2 Background


2.1 Redundancy in tractograms

A false-positive streamline in a tractogram does not contribute to, or may even detract from, the accurate representation of the brain's white matter architecture as inferred from diffusion MRI data. False positives can manifest either through streamlines that do not correspond to anatomically plausible structures or redundant streamlines that do not enhance the fidelity of the tractogram to the diffusion signal (duplicates), thereby failing to improve or clarify the depiction of the brain's structural connectivity. The fraction of duplicated streamlines is also referred to as the redundancy in the tractogram and constitutes an important distinction from the total number of false-positive streamlines. An anatomically implausible streamline would not be seen in a brain and is likely the result of an error produced during tractography. The identification and removal of these streamlines aim to refine the tractogram, ensuring that it more faithfully reflects the underlying neural pathways and microstructural characteristics.



2.2 Tractogram filtering methods

Tractography filtering is the process of refining a tractogram by identifying and removing streamlines that are considered false positives. This process is essential to enhance the quality and usability of tractograms for both research and clinical applications. Filtering methods vary in their approach, with some focusing on the anatomical plausibility of streamlines, while others aim to ensure that the streamline distribution corresponds to the underlying diffusion signal (Jörgens et al., 2021).

The concept of tractography filtering is rooted in the understanding that not all streamlines in a tractogram contribute equally to the representation of the white matter structure. Some streamlines may be artifacts of the tractography process, while others may represent genuine neural pathways but are overrepresented due to biases in the algorithm. Filtering methods aim to identify these discrepancies and adjust the tractogram accordingly to produce a more accurate and reliable representation of the brain's white matter. Specifically, in this study, we used three different tractogram filtering methods: ExTractor, rSIFT, and rCOMMIT.


2.2.1 ExTractor: filtering for anatomical plausibility

ExTractor (Petit et al., 2023) is a rule-based automatic pipeline designed to enhance the anatomical plausibility of tractograms by filtering streamlines inconsistent with known neuroanatomical principles. ExTractor operates on the premise that every cortical area is interconnected with other cortical and subcortical regions via association, commissural, and projection fibers, which adhere to a certain anatomical organization. The method is grounded in the neuroanatomical categorization established by previous research (Meynert, 1885; Ludwig and Klingler, 1956; Crosby, 1963; Schmahmann and Pandya, 2006; Nieuwenhuys et al., 2008).

In the process of automatic filtering, ExTractorFlow (Cousineau et al., 2017; Di Tommaso et al., 2017; Kurtzer et al., 2017), an implementation of the ExTractor method, employs anatomical rules derived from the structural organization of white matter fibers. The filtering method uses ROIs from established brain templates (Oishi et al., 2009) to enforce sequential filtering conditions that discard streamlines unlikely to represent true anatomical pathways. For instance, streamlines are considered implausible if they are shorter than a specified length, make excessive loops, terminate along ventricular surfaces, or end within deep white matter structures inconsistent with expected tract trajectories.



2.2.2 SIFT: spherical-deconvolution-informed filtering of tractograms

SIFT (Smith et al., 2013) refines tractograms by selectively discarding streamlines that poorly fit the fiber orientation distributions (FODs) derived from constrained spherical deconvolution (Tournier et al., 2007). It operates under the premise that the streamline density within a voxel should be proportional to the FOD amplitude, which reflects the volume of white matter fibers in that orientation. Streamlines are assessed based on their contribution to the FODs, and those that over-represent or under-represent the FOD-derived fiber volume are filtered out. This targeted removal reduces reconstruction biases, such as overemphasis on longer pathways or straighter courses in branching tracts, leading to tractograms that more plausibly represent the structural connectivity. SIFT works independently of the tractography method.

In SIFT, each streamline is evaluated for its alignment with the FODs, which provide a probabilistic estimate of the direction and density of fibers within each voxel. SIFT employs a cost function that quantifies the discrepancy between the streamline density and the FOD amplitude across the tractogram. Streamlines contributing to an excess of density in comparison to the FODs are deemed false-positive and are preferentially removed, while those in deficit areas are retained, ensuring a balance that mirrors the estimated fiber volumes. SIFT does not distinguish between redundant streamlines and anatomically implausible ones.

The filtering process is iterative, with a gradient descent approach guiding the selection of streamlines for removal. The algorithm calculates a proportionality coefficient, which scales the streamline density to the FOD amplitude, and it adjusts this coefficient dynamically as streamlines are removed. This ensures that the remaining streamline distribution continues to provide the best possible fit to the FODs throughout the filtering process.



2.2.3 COMMIT: convex optimization modeling for microstructure-informed tractography

COMMIT (Daducci et al., 2015) is a filtering algorithm that refines tractograms by leveraging a convex optimization framework to incorporate microstructural tissue properties, discerning between anatomically plausible tracts and artifacts. It adjusts the weight of each candidate fiber derived from standard tractography to best fit the diffusion signal to ensure the quantitative integrity of the tractogram. COMMIT models the diffusion signal within each voxel as a linear combination of the diffusion responses from these tracts. The method applies convex optimization to solve for the global weights of these tracts, effectively pruning the tractogram by removing or down-weighting contributions that do not align with the observed diffusion signal. This results in a filtered tractogram that more accurately reflects the underlying structural connectivity with reduced redundancy and improved anatomical plausibility.



2.2.4 Randomized SIFT and COMMIT filtering algorithms

One issue with both SIFT and COMMIT is that they cannot be used for estimating the anatomical plausibility of individual streamlines. Indeed, the very same streamline can be accepted or rejected depending on the composition of the tractogram. This is because both methods aim to reject both anatomically implausible and redundant streamlines. Thus, an anatomically plausible streamline can be rejected if it is deemed a duplicate. This issue has been addressed by randomized SIFT (rSIFT) and COMMIT (rCOMMIT). rSIFT (Hain et al., 2023) introduces a sampling method offering a statistical framework for the evaluation of each streamline's inherent importance to the tractogram. By employing random sub-sampling, rSIFT iteratively applies the SIFT algorithm across numerous tractogram subsets, effectively creating a distribution of filtering outcomes for each streamline. This process enables the quantification of streamline acceptance rates, which serve as a probabilistic measure of the streamline's fidelity to the underlying diffusion signal.

rSIFT uses the collective behavior of streamlined subsets to infer the likelihood of anatomical plausibility. The method uses the variability introduced by the randomization process to discern between duplicates and outliers that are inconsistent with the diffusion data. This distinction is critical, as it addresses the intrinsic limitations of global optimization strategies in conventional SIFT, which may penalize both types of streamlines. rCOMMIT (Wan, 2023) (see text footnote 1) uses the same sampling and voting method as rSIFT but implements COMMIT as the filtering method of the tractograms. That is, each subset is filtered by weights that are larger than zero.

The unavoidable result of both randomized algorithms is that the aggregation over many tractogram subsets is prohibitively computationally expensive. Efforts have been made to imitate the filtering algorithm with deep learning using streamline-by-streamline classification. The current accuracy of those methods is in the range of 80%. In order to obtain an accurate measurement of redundancy, we used the standard rSIFT and rCOMMIT in the experiments.





3 Methods


3.1 Quantifying tractogram redundancy

In Section 2.1, we propose a definition of redundancy that distinguishes between the total number of false-positive streamlines and the number of duplicates. We now attempt to formalize this notion of redundancy further in a tractogram. Assume there is a tractogram T*, which is the optimal representation of the underlying structural connectivity. In line with previous research, we assume for the sake of simplicity that the unfiltered tractogram T is redundant, i.e., T*⊆T. In particular, we assume that

[image: Mathematical formula displaying "T equals T star plus the absolute value of D plus the absolute value of I".]

where |D| and |I| are the number of redundant (duplicated) and anatomically implausible streamlines, respectively. We aim to propose a framework for bounding the fraction of false-positive and redundant streamlines in tractograms:

[image: Inequality showing the ratio of the difference between absolute values of T and T star over the absolute value of T is bounded between l and u.]

where l and u are the lower and upper bounds of the fraction of false-positive streamlines, given by

[image: Equation showing \( l = \frac{|I|}{|T|} \), where \( l \), \( I \), and \( T \) are variables and absolute value bars are used.]

[image: The formula shows \( u \equiv \frac{|I| + |D|}{|T|} \).]

The fraction of false-positive streamlines can also be referred to as the false discovery rate (FDR), which is the fraction of streamlines in the tractogram that are falsely discovered

[image: Formula for False Discovery Rate (FDR) shown as the ratio of false positives (FP) to the sum of false positives and true positives (TP), with variables labeled as false positive streamlines over false positive streamlines filtered plus true positive streamlines.]

It should be noted that, depending on the application, one of the bounds is more relevant. For example, duplicates are not an issue for bundle segmentation. Thus, l can be used as a measure of the FDR. In turn, structural connectivity analyses and bundle-wise tractometry can be affected by redundancy, so u can be used instead. That is, we bound the redundancy R as 0 ≤ R ≤ u−l.

As described in Jörgens et al. (2023), some tractogram filtering methods restrictively filter only the anatomically implausible streamlines, while others filter both implausible and redundant ones. The former can be used to estimate the lower bound l, while the latter is useful for u. In our case, ExTractor is appropriate for l and rSIFT and rCOMMIT for u, as described in the following subsections. Both rSIFT and rCOMMIT use streamline attributes and the consensus of filtering different subsets to assess streamline plausibility.



3.2 Estimating the lower bound with ExTractor

The lower bound of the FDR requires a filtering method focused on the anatomical plausibility of streamlines. It should be noted that the definition of anatomical plausibility is not unambiguous, therefore we consider the notion of geometrical plausibility as a surrogate that allows us to quantify the lower bound l. ExTractor is a method that can be used for this aim since it does not discard redundant streamlines, which is necessary to estimate the lower bound. In particular, we estimated the FDR lower bound as the percentage of rejected streamlines with ExTractor.

It is important to note that, unlike SIFT and COMMIT, the filtering decision of ExTractor on every streamline does not depend on the composition of the tractogram. The main implication of this is that ExTractor will not benefit from randomized approaches to estimate acceptance rates, as is the case with SIFT and COMMIT. Thus, ExTractor is applied only once per tractogram.



3.3 Estimating the upper bound

SIFT and COMMIT, and consequently, rSIFT and rCOMMIT, target both anatomically implausible and redundant streamlines. Thus, combinations of rSIFT and rCOMMIT are good candidates for estimating the upper bound of the streamline FDR. We estimated the upper bound using two methodologies, as described below.


3.3.1 Upper bound by sub-sampling with Hoeffding's bound

In the methods of rSIFT and rCOMMIT, tractogram filtering is repeated over randomized samples from the original tractogram without replacement. This property allows us to compute a probabilistic bound for the deviation of the average FDR from the expected value.

Assume that the tractogram filtering method has been applied to m subsets. Let Xi be the random variable representing the number of false-positive streamlines in the i-th subset, Ai of size ni. Since each streamline in a subset can either be classified as false-positive or not, we have that Xi is bounded. Specifically, 0 ≤ Xi ≤ ni, where ni is the total number of streamlines in subset Ai.

Let Sm = X1 + ⋯ + Xm be the total number of false-positive streamlines across all subsets. The expected value of Sm is given by

[image: Expected value of \( S_m \) equals the sum from \( i = 1 \) to \( m \) of the expected value of \( X_i \).]

Applying Hoeffding (1963)'s theorem to the sum Sm, we can bound the probability that the observed total number of false-positive streamlines deviates from its expected value by at least a certain amount t > 0. Specifically, for all t > 0,

[image: Probability inequality formula showing the probability that the absolute difference between \( S_m \) and its expected value is greater than or equal to \( t \). It is bounded by \( 2 \exp\left(\frac{-2t^2}{\sum_{i=1}^{m} r_i^2}\right) \), equaling \( p \), labeled as equation (1).]

where p = 0.05 provides a t that gives a 95% confidence interval around Sm, that is given by

[image: Equation depicting a statistical formula: t equals the square root of negative one-half times the sum from i equals one to m of n sub i squared, multiplied by the logarithm of p over two.]

This inequality provides a probabilistic upper bound on the deviation of the observed number of false-positives from the expected value given by Sm+t. For ease of interpretation, we present this bound normalized as

[image: Mathematical formula showing uₕₒₑff equals the fraction of S sub m plus t over the summation from i equals one to m of n sub i, labeled as equation two.]

If the subsets are of equal size, i.e., ni = n for all i, then the bound simplifies to

[image: Probability inequality equation: the probability that the absolute difference between \( S_m \) and \( m r n \) is greater than or equal to \( t \) is less than or equal to \( 2 \) times the exponential of \(-2 t^2\) divided by \( m n^2 \).]

This setting is useful for estimating upper bounds for specific sampling sizes, as done in rSIFT and rCOMMIT.

By choosing an appropriate value of t, we can make statements about the confidence with which the observed FDR does not exceed the expected streamlined FDR by more than the specified amount. For example, setting t = ϵmn, where ϵ represents the acceptable deviation from the expected proportion of falsely discovered streamlines on a per-streamline basis, we obtain

[image: The probability expression is shown as follows: the probability that the absolute value of \( \frac{S_m}{mn} - r \) is greater than or equal to \( \epsilon \) is less than or equal to \( 2 \exp(-2m\epsilon^2) \).]

where r is the expected FDR in a subset. This result can be used to determine the number of subsets m necessary to achieve the desired confidence level for bounding the FDR.

For the upper bound of the FDR, we use the one-sided bound of Equation 1 given by:

[image: Probability inequality formula involving random variables and expectations. It shows that the probability of the deviation of a sum, \( S_m \), from its expected value is less than or equal to the exponential of negative two times \( t^2 \) over the sum of \( n_i^2 \) from one to \( m \).]

where t is any real number.



3.3.2 Upper bound with an empirical Bayesian approach

Using an empirical Bayesian approach, we can also bound the streamlined FDR in tractograms by considering the acceptance rates obtained through randomized tractography filtering algorithms. We first establish an empirical prior based on the observed data, then compute the likelihood for each streamline, update to form the posterior probability, and aggregate the results to provide an upper bound for the FDR.

Given N streamlines and m subsets, let ai denote the acceptance rate of the i-th streamline, which is the proportion of subsets where the streamline is classified as a true positive. We model the prior distribution of acceptance rates using a Beta distribution, whose parameters α and β are estimated by:

[image: The image contains the mathematical expressions: alpha equals pi times the fraction a times one minus a over s squared minus one; beta equals one minus pi times the same fraction, a times one minus a over s squared minus one.]

where [image: Lowercase letter "a" with an overline symbol.] and s2 are the sample mean and variance of the acceptance rates, respectively. The likelihood of observing the acceptance rate ai for the i-th streamline, assuming a binomial model, is given by:

[image: The image shows a mathematical formula related to probabilities or likelihoods: \( L(a_i; k_i, v_i) = \binom{v_i}{k_i} a_i^{k_i} (1-a_i)^{v_i-k_i} \).]

where ki is the number of accepted classifications and vi is the total number of subsets in which streamline i appears. The posterior distribution for each streamline is under the Beta-binomial conjugacy, also a Beta distribution

[image: Mathematical equation: \(P_i = \text{Beta}(\alpha + k_i, \beta + v_i - k_i)\).]

To aggregate the posteriors, we compute the mean and variance of the posterior probabilities of the FDR across all streamlines:

[image: Equation for false discovery rate (FDR) calculation. FDR equals one minus the average of a sum for i equals one to N, where each term is the fraction of alpha plus k sub i over alpha plus k sub i plus beta plus nu sub i minus k sub i.]

where N is the total number of streamlines.

To describe the variance of the posterior probabilities for the FDR across all streamlines, we must consider not only the individual variances of each posterior but also the covariance among them. The total variance of the mean of the posterior probabilities can be expressed as:

[image: The image shows a mathematical formula for the variance of portfolio returns, represented as sigma squared sub p equals one over N squared, times the sum from i equals one to N of sigma squared sub p sub i, plus the sum of covariance, cov, of P sub i and P sub j, for all i not equal to j.]

Given the high dimensionality of most tractograms, calculating the full covariance matrix between all pairs of streamlines is computationally prohibitive. To address this challenge, we can estimate an upper bound on the variance of the mean posterior probability by assuming the maximum possible variance from the individual posteriors. This approach circumvents the need for explicit covariance terms, instead employing the aggregate effect of the maximum variance among the individual probabilities. Consequently, we define our conservative upper bound on the variance as:

[image: The formula shows the upper bound variance of a weighted sum. It is represented as sigma squared sub p, upper equals one over N squared times the square of the summation from i equals one to N of the square root of sigma squared sub p sub i.]

This upper bound effectively assumes perfect positive correlation among streamlines, thereby reflecting the maximal potential covariance and providing a conservative estimate of variability. Due to the high dimensionality of tractograms, often in the order of millions of streamlines, the central limit theorem ascertains that the distribution of the entire tractogram FDR will be normally distributed. Subsequently, the upper 95% confidence bound on the mean posterior probability of the FDR is computed as:

[image: Mathematical equation representing mu subscript Bayes equals FDR plus Z subscript 0.95 times the square root of sigma squared subscript P, upper.]

where Z0.95 represents the 95th percentile of the standard normal distribution. This Bayesian approach provides a conservative estimate of the FDR in the tractogram even when the covariance is not directly computable.




3.4 Estimators of streamline probabilities

The presented methods to estimate upper bounds require estimates of streamline FDR in different subsets. For this, we measure FDR as 1—the acceptance rate of rSIFT or rCOMMIT. A streamline that has a high acceptance rate can also be considered non-redundant. In addition, an alternative is combining rSIFT and rCOMMIT acceptance scores to estimate FDR.


3.4.1 Intersection between rSIFT and rCOMMIT

In this estimator, we compute a filtering result based on the computed acceptance probabilities for both rSIFT and rCOMMIT. We obtain the corresponding filtering result by setting a threshold θ, such that a streamline is considered non-redundant if its acceptance probability exceeds this threshold in both methods. Formally, for a given streamline i, let airSIFT and airCOMMIT denote its acceptance probabilities according to rSIFT and rCOMMIT, respectively. The streamline is included in the filtered tractogram if airSIFT>θ and airCOMMIT>θ. The estimator is then defined as:

[image: Mathematical equation showing \(\hat{p}_{i}^{\text{int}}(\theta) = \mathbb{I}(a_{i,\text{INSPT}} > \theta) \cdot \mathbb{I}(a_{i,\text{COMMIT}} > \theta)\).]

where [image: Equation showing P with a circumflex accent above it and a subscript of "i", with "int" in superscript.] is the acceptance probability of the intersection of rSIFT and rCOMMIT for a specific threshold θ and I is the indicator function. The choice of θ can be based on the desired specificity and sensitivity trade-off, and it can be adjusted according to the distribution of acceptance probabilities. This method provides a straightforward way to combine information from both methods and requires less data in the different subset constitutions than the following methods.



3.4.2 Minimal acceptance rate on a streamlined basis

One issue with considering the intersection of rSIFT and rCOMMIT is that we need to set a specific threshold θ, which can be difficult to choose. An alternative to this is to estimate the streamline's probability of being non-redundant by considering the minimum of the normalized acceptance counts across different methods. Specifically, for each streamline, we look at the number of times it has been accepted by both the rSIFT and rCOMMIT algorithms, normalized by the number of occurrences of that streamline in the respective method's subsets. This method creates a “pseudo-subset” where the streamline's acceptance is evaluated based on its most conservative acceptance rate across the methods for each subset size.

For a given streamline i, let kirSIFT be the number of times streamline i is accepted by rSIFT, and virSIFT be the number of subsets in which streamline i appears according to rSIFT. Similarly, let kirCOMMIT and virCOMMIT denote the corresponding counts for rCOMMIT. The maximal valid filtering estimator is then defined as the minimum of the normalized acceptance rates across the methods for each subset size

[image: \( k_{ij}, v_{ij} = \arg\min_j \left( \frac{k_{i, \text{rSIFT}}}{v_{i, \text{rSIFT}}}, \frac{k_{i, \text{rCOMMIT}}}{v_{i, \text{rCOMMIT}}} \right) \).]

with

[image: Mathematical expression depicting p-hat sub-i superscript min equals the minimum of two fractions: k sub-i, r sub-SIFT over v sub-i, r sub-SIFT and k sub-i, r sub-COMMIT over v sub-i, r sub-COMMIT.]

where [image: Mathematical expression showing the variable \( \hat{P}_{i}^{\text{min}} \).] is the minimum acceptance probability of i, and j is the tractography filtering method (rSIFT or rCOMMIT). This estimator considers each streamline's relative acceptance rate, providing a conservative estimate of its probability of being non-redundant. It is particularly useful when one wishes to ensure that a streamline is consistently accepted across multiple filtering methods before considering it non-redundant.



3.4.3 Pooled acceptance rate

In this approach, we pool the subsets from both rSIFT and rCOMMIT to create a set of meta-subsets. The pooling process involves combining the subsets from each method, thereby increasing each streamline's total number of observations. Given that both methods are assumed to provide valid filtering results, their combination is expected to enhance the stability of the acceptance rate estimation due to the increased number of samples while reducing bias toward any specific tractography filtering method.

For each streamline i, the pooled acceptance probability [image: \(\hat{P}_{i}^{\text{pooled}}\)] is calculated based on its acceptance across all meta-subsets. If ki, rSIFT and ki, rCOMMIT represent the number of times streamline i is accepted in rSIFT and rCOMMIT subsets, respectively, and nrSIFT and nrCOMMIT are the total numbers of subsets for each method, the pooled estimator is then:

[image: The formula represents p-hat pooled sub i, calculated as the sum of k sub i r SIFT and k sub i r COMMIT divided by the sum of n sub r SIFT and n sub r COMMIT.]

This estimator reflects the overall acceptance of a streamline across the combined evidence from both filtering methods.




3.5 Data

We use a subset of the Human Connectome Project that consists of seven subjects from a dataset pre-processed by Glasser et al. (2013) with tractograms generated by Wasserthal et al. (2018) using the iFOD2 method as developed by Tournier et al. (2010). Each tractogram consists of 10 million streamlines with a range of 40–250 mm in length, was generated with anatomically constrained tractography with a step size of 0.625 mm, and covers the entire white matter volume. The subset of HCP subjects was also used by rSIFT (Hain et al., 2023) and rCOMMIT (Wan, 2023). The streamlines have been compressed to their most significant points with the method developed by Presseau et al. (2015) using a tolerance level of 0.35mm. The rSIFT parameters are the same as in Hain et al. (2023). For the method of rCOMMIT, we randomly sample tractogram subsets without replacement and run the COMMIT algorithm with the Stick-Zeppelin-Ball model. The parameters used were: axial diffusivity of 1.7 × 10−3, perpendicular diffusivity of 0.51 × 10−3, isotropic diffusivities of 1.7 × 10−3 and 3 × 10−3 with a tolerance of 1 × 10−3, and maximum iterations of 1,000. Table 1 reports the subset sizes and number of subsets used in the experiments.


TABLE 1 Subset sizes (in thousands) and number of subsets per subset size used for computing rSIFT and rCOMMIT.

[image: Table showing subset sizes and corresponding number of subsets. Subset sizes: 250, 500, 1,250, 2,500, 5,000, 10,000. Number of subsets: 200, 100, 40, 20, 10, 5.]




4 Experimental results


4.1 Lower bound estimation with ExTractor

The lower bound of the FDR was computed with the ExTractor algorithm (Petit et al., 2023) with implementation in Singularity and NextFlow (Cousineau et al., 2017; Di Tommaso et al., 2017; Kurtzer et al., 2017), obtaining a fraction of removed streamlines of 0.890 (0.857, 0.926) for the data.

To disentangle the effects of the number of streamlines from the tractography method, a comparison using the same number of streamlines and subjects would be necessary.



4.2 Agreement between rSIFT and rCOMMIT

It is interesting to assess the agreement between rCOMMIT and rSIFT for further estimations of redundancy. Figure 1 shows the distribution of rSIFT and rCOMMIT acceptance rates of streamlines that are accepted by the other method for all subjects in the HCP 10M dataset. As shown, the two methods have a large number of streamlines where both have an acceptance rate of 1.0, but there are many other streamlines where the two methods disagree. Figure 2 shows the distribution of acceptance rates and the Venn diagram between the two sets of accepted streamlines per method. As shown, the distributions have high concentrations around 0/1. Further, it should be noted that rSIFT disregards more streamlines than rCOMMIT, and the intersection of the two sets is 0.7% of the whole dataset. That means that only around 70,000 streamlines out of 10 million are always accepted by rSIFT and rCOMMIT. This observation has also been reported by Wan (2023). This suggests that using intersection or minimal acceptance rates may be too tight to estimate the upper bounds of redundancy compared to a single run of the corresponding method.


[image: Two histograms compare acceptance rates. The left graph shows the rSIFT acceptance rate peaking at 0.0 and 1.0, with other values near zero. The right graph shows the rCOMMIT acceptance rate similarly peaking at 0.0 and 1.0, with most other values near zero. Both use the percentage as the y-axis.]
FIGURE 1
 Distribution of rSIFT acceptance rates (Left) for accepted streamlines by rCOMMIT (acceptance rate = 1) and distribution of rCOMMIT rates for accepted streamlines by rSIFT (Right). The percentages are given for the total number of streamlines from all subjects in the dataset.



[image: Two-panel image showing a density plot and a Venn diagram. The density plot on the left shows acceptance rates for rSFIPT and rCOMMIT, with a high density near zero. The Venn diagram on the right illustrates the overlap between rSFIPT and rCOMMIT, with rSFIPT at 0.9%, rCOMMIT at 2.0%, and an overlap of 0.7%.]
FIGURE 2
 Distribution of the acceptance rate (Left) for rSIFT and rCOMMIT acceptance rates and the proportion of overlapping streamlines with a threshold of 1 (Right).




4.3 Upper bounds

We implement the upper bounds by sub-sampling in Section 3.3.1 using Hoeffding's inequality and the empirical Bayesian approach in Section 3.3.2 for our dataset, for which we have the rCOMMIT and rSIFT results. The bounds are computed for different estimates of the streamlines FDR given by rCOMMIT, rSIFT, maximal valid filtering and pooled filtering. We do not include the intersection of rSIFT and rCOMMIT in these experiments because it requires a threshold that is difficult to set. As discussed previously, the minimal acceptance rate is similar to the intersection and has the advantage of not needing thresholding.

Figures 3, 4 show the results for a specific subject from our dataset. As shown, the maximal filtering approach provides the most strict upper bound of the FDR, followed by rSIFT. As was previously seen, rCOMMIT generally filters fewer streamlines than rSIFT, and we also note that the variance of rCOMMIT results is wider for the data, especially for the Bayesian approach, suggesting that COMMIT may be a less stable filtering method. The pooled estimate is approximately in the middle between rSIFT and rCOMMIT and has the lowest variance due to the combined subsets.


[image: Two probability density plots compare different estimate methods. The left plot shows deviation from expected redundancy, with curves for COMMIT, FSPFT, and significance. The right plot presents redundancy, highlighting variations between COMMIT and FSPFT against significance. Both plots include dashed red lines indicating significance thresholds.]
FIGURE 3
 FDR estimation for subject ID 877168 in the HCP dataset using Hoeffding's inequality using different estimators of FDR. (Left) Deviation of the sampled FDR from its expected value. (Right) Hoeffding's upper-bound estimation of the FDR.



[image: Two density plots illustrate redundancy. The left plot shows curves for IF-PET, periodic IF-PET, minimal IF-PET, and a prior mixture estimate, each using a distinct color. The right plot displays redundancy histograms and includes a maximum redundancy near-minimal estimate and minimal IF-PET at KCONCAT. Both plots have redundancy on the x-axis and density on the y-axis, with legends explaining the colors.]
FIGURE 4
 FDR upper-bound estimation using a Bayesian approach for subject ID 877168 in the HCP dataset. (Left) The estimate is determined by the width and the center of the distribution. (Right) In this example, the posterior and FDR histogram approximately coincide due to the extensive subsets for rSIFT and rCOMMIT, but generally, the posterior will be shifted in the direction of the prior for the model.


Table 2 shows Hoeffding's bound aggregated over all subjects in the dataset. These results are consistent with the ones in Figures 3, 4. It should be noted that the minimal estimate gives an upper bound of 1.0, suggesting that (almost) all streamlines are classified as false positives. As discussed before, the number of streamlines that are accepted by both rSIFT and rCOMMIT is very low, which makes the minimal estimate too strict. It should also be noted that Hoeffding's bound is relatively wider than the Bayesian one (compare the difference between the mean FDR and Hoeffding's bound in Table 2 to the mean posterior and upper bound in Table 3).


TABLE 2 Table of aggregated results for subjects for Hoeffding's bound ≤ 0.05 computed by Equation 2.

[image: Table displaying false discovery rate (FDR) estimates for different methods: rSIFT, rCOMMIT, pooled estimate, and minimal estimate. Each method lists values for mean FDR, mean Hoeffding’s bound, and ninety-five percent confidence interval (CI). Values are as follows: rSIFT—0.868, 0.978, (0.971, 0.985); rCOMMIT—0.772, 0.869, (0.852, 0.886); pooled estimate—0.817, 0.890, (0.880, 0.901); minimal estimate—0.899, 1.000, (1.000, 1.000).]


TABLE 3 Table of aggregated results for all subjects for empirical Bayesian upper bound.

[image: Table displaying false discovery rate estimates with columns: FDR estimate, mean posterior, mean upper bound, and 95% confidence interval. Rows show rSIFT: 0.873, 0.934, (0.929, 0.939); rCOMMIT: 0.755, 0.850, (0.815, 0.885); Pooled estimate: 0.818, 0.880, (0.869, 0.892); Minimal estimate: 0.890, 0.948, (0.936, 0.960).]

The empirical Bayesian upper bound gives a tighter upper bound with estimates and confidence intervals reported in Table 3. The Bayesian approach is less strict than Hoeffding's bound. Still, both methods show a similar trend between the probability estimators. Table 4 shows the FDR estimated with the different methods and we observed that the posterior Bayesian distribution of Table 3 approximately matches the mean FDR from Table 4. This is expected since the number of subsets of rSIFT and rCOMMIT in the dataset is significant enough to dominate the posterior probabilities, i.e., the confidence in the empirical estimate increases with the number of subsets. Figure 5 shows the relation between the subset size and the FDR for both Hoeffding's and Bayesian upper bounds.


TABLE 4 Table of aggregated results for all subjects for the average number of filtered streamlines, that is [image: The mathematical expression "one minus a-bar," where "a-bar" represents the average or mean of a variable.], which is the mean acceptance rate for all subjects.

[image: Table showing FDR estimates with mean FDR and 95% confidence intervals. For rSIFT: mean 0.873, CI (0.866, 0.880). For rCOMMIT: mean 0.754, CI (0.703, 0.805). Pooled estimate: mean 0.817, CI (0.801, 0.834). Minimal estimate: mean 0.896, CI (0.886, 0.907).]


[image: Two line graphs compare the mean redundancy upper bound against subset size for different methods: Minimal, Foiled, rCOMMIT, and rSPRT. Both graphs show a general upward trend, with Minimal and Foiled reaching a higher upper bound more quickly. The graphs are plotted on a logarithmic scale for subset size, ranging from ten to the power of two to ten to the power of four. Each graph includes a legend indicating which color corresponds to each method.]
FIGURE 5
 FDR upper bounds per subset size for different estimates of the streamline probabilities. (Left) Hoeffding's upper bound for log-normalized subset sizes for rSIFT and rCOMMIT. (Right) Bayesian upper bound for log-normalized subset sizes for rSIFT and rCOMMIT.





5 Discussion


5.1 Effectiveness of bounds

The effectiveness of our bounds is underscored by their capacity to accommodate the inherent variability of tractography data. In our dataset, we predict an FDR that is bounded between 85.7% [the lower confidence of interval (CI) of the ExTractor method] and 96% as given by the upper bound of the confidence interval of the minimal estimate for the empirical Bayesian method in Table 3. This interval includes all estimated upper bounds by our proposed methods except for the minimal estimate with Hoeffding's bound, which we conclude gives a too-strict upper bound. These results suggest that the redundancy consists of at least 10% of streamlines (1 million), excluding those that are also anatomically implausible, i.e., the difference between the lower and upper bounds.

Our lower bound, derived from the ExTractor algorithm, confirms the presence of anatomically implausible streamlines, providing a foundation upon which redundancy can be objectively assessed. The upper bounds, constrained by Hoeffding's inequality and the empirical Bayesian approach, provide different lenses through which the tractography-filtering outcomes can be evaluated. These statistical methods offer both means to assess the redundancy and also serve as means to understand the differences between different tractography filtering approaches. The variation in the results between these upper-bound methods reveals the trade-offs between non-parametric results and the incorporation of prior knowledge into streamlines' FDR estimation. We suggest three methods for combining the tractography filtering results from rSIFT and rCOMMIT for the upper-bound computations. The intersection between rSIFT and rCOMMIT determines the streamline's acceptance by thresholding the results from both tractography filtering algorithms. The strategy of pooling combines the streamlined acceptance of both methods to decrease the uncertainty and bias toward any particular method. The minimum acceptance rate strategy uses a subset-level approach to determine the intersectional streamline acceptance rate as the minimum of each method.



5.2 Difference between upper-bound methods

The two different statistical approaches for bounding the redundancy of the tractogram give similar results but are based on different assumptions based on the data. Hoeffding's inequality, as a non-parametric method, does not make assumptions about the distribution of the streamline false discovery rate. Its bounds are generally less tight than those of the Bayesian method but cover a broader range of potential tractography scenarios. Meanwhile, the empirical Bayesian approach offers a different perspective by introducing prior knowledge into the analysis, narrowing down the potential variance in tractogram redundancy. The results of this method rely on the prior chosen to represent the initial distribution of the data, and in cases of limited data, the effect of the prior will be enhanced, and a poorly chosen prior could lead to misleading conclusions.

When comparing Hoeffding's inequality and the empirical Bayesian approach, the perspective from which they view the data is different. Hoeffding's inequality assesses the redundancy of tractograms at the subset level. It treats each subset as an independent event, and the focus is on the resulting aggregate of these subsets. It does not delve into the individual characteristics of streamlines but instead evaluates the larger pattern of redundancy across the entire collection of subsets. This approach is particularly useful in providing a high-level, macroscopic understanding of the redundancy.

In contrast, the empirical Bayesian approach considers the evidence for each streamline on an individual basis. This perspective allows it to incorporate prior knowledge specific to each streamline's behavior across different subsets. By looking at the streamline acceptance rates, the empirical Bayesian approach effectively combines evidence from multiple iterations to update the prior beliefs into a posterior distribution reflective of each streamline's probability of being redundant. This approach values the individual contribution of streamlines within the tractogram. Figure 5 further shows the difference between the upper-bounding methods on different subsets, visualizing the interplay between the Bayesian empirical model and the data for each subset. The reduction in the Bayesian estimate (Figure 5, right) for the entire tractogram is due to the low variance of SIFT and COMMIT when run on a single fixed tractogram.



5.3 Efficiency of redundancy estimation methods

Many tractogram filtering methods are based on the exact composition of the tractogram (Smith et al., 2013, 2015; Daducci et al., 2015; Schiavi et al., 2020) and fail to take into account the uncertainty inherent to not only probabilistic tractography methods but the DW-MRI signal. Randomized SIFT and COMMIT (Hain et al., 2023; Wan, 2023) are methods that aim to assess the stability of their underlying filtering method, but due to computational time, these have challenges with widespread utilization. It should be noted that ExTractor (Petit et al., 2023) is also very expensive.

Machine learning approaches are promising to reduce the burden of computations. For example, Astolfi et al. (2023), Hain et al. (2023), Wan (2023), and (see text footnote 1) used deep learning for approximate ExTractor, rSIFT and rCOMMIT, respectively. We decided not to use the method by Astolfi et al. (2023) to obtain more accurate estimations of the lower bound of the tractogram FDR. As for rSIFT and rCOMMIT, the deep learning methods aim to classify individual streamlines from the streamline coordinates. Thus, duplicates will inexorably be accepted by the neural networks, making them inappropriate for estimating the upper bound, although they could potentially be used for estimating the lower bound provided that their accuracy is good enough.

We chose ExTractor to estimate the lower bound since it is based on neuroanatomical knowledge, making it more closely related to assessing anatomical plausibility. As discussed by Petit et al. (2023), ExTractor still can have problems with false negatives, which can affect the estimation of the lower bound of the FDR. That might imply that the lower bound estimated with ExTractor might become too strict. While FINTA (Legarreta et al., 2021) might be a good alternative to ExTractor for estimating the lower bound of redundancy because of its speed, it lacks explainability. Moreover, FINTA requires setting thresholds per bundle that are difficult to generalize for whole-brain tractogram filtering. Indeed, more research is needed to address the current issues with these methods.



5.4 Weight-based tractogram filtering methods

Some tractogram filtering methods produce a weight for each streamline that reflects its contribution to the diffusion signal. Examples of these methods are COMMIT (Daducci et al., 2015), SIFT2 (Smith et al., 2015), and COMMIT2 (Schiavi et al., 2020). Effectively, this means that streamlines with a weight of 0 are removed from the tractogram. SIFT2 (Smith et al., 2015) is motivated by the computational inefficiency of generating highly redundant tractograms and proposes to estimate an effective area of each streamline. The result is a weight for each streamline that can be used to compute a post-filtering weighted tractogram without removing streamlines unless the weight is zero. A limitation to this approach is that there is no explicit removal of anatomically implausible streamlines unless the weight is zero, leading to a greater emphasis on an accurate original tractogram.

Building upon the efforts to increase the anatomical accuracy of tractography, Schiavi et al. (2020) introduced COMMIT2, a refinement of the original COMMIT framework. COMMIT2 enhances the specificity of reconstructing brain networks by considering their organization into anatomically plausible bundles. By balancing the local axon density derived from the diffusion-weighted MR signals against the sparsity of bundles used to explain that density, COMMIT2 suppresses the number of false positive connections more effectively compared to COMMIT, SIFT, and SIFT2, possibly at the cost of sensitivity.

As discussed in Jörgens et al. (2021), the scores of SIFT2 as compared to SIFT are not directly related to redundancy. That is, in a sample of a tractogram, a streamline can be disproportionately highly weighted compared to its significance in another sample of the same tractogram since individual streamline weights are determined by the other streamlines.

Since the inputs of the upper-bound estimations are estimations of redundancy (acceptance rates) per streamline, weights from such tractography filtering methods cannot be used directly for our purposes. That problem can be solved by a method that can estimate the probability of acceptance from those scores. Proposing such a method is part of our current research.



5.5 Application area

The proposed methods for bounding tractogram redundancy have implications for selecting tractography methods, optimizing the number of streamlines, and choosing filtering algorithms. The capability to quantify redundancy makes it possible to systematically compare the efficacy of different tractography approaches, understand how each method contributes to redundancy in the tractograms they produce, and possibly improve the methods. This quantification can guide the selection of tractography algorithms that balance the requirements of completeness and efficiency.

Additionally, measuring the effect of the number of streamlines on the overall redundancy is a potential application for the established bounds. Streamline counts can be adjusted based on empirical evidence of redundancy, facilitating the configuration of tractography pipelines to produce tractograms that are both informative and resource-efficient. The methods for bounding redundancy could also assist in evaluating the performance of various tractography filtering algorithms with a quantitative metric. Such evaluations can determine how different filtering methods reduce redundancy and enhance the anatomical plausibility of tractograms. These measurements can be used to complement the traditional tractometer measurements (Côté et al., 2013). Tractometry methods are also highly dependent on a high-quality tractogram, and our study contributes to the area of being able to measure tractogram quality and fidelity, starting with redundancy.

The introduced method can be further developed to benchmark both tractograms and filtering algorithms to assess the stability of their results as well as the underlying tractogram redundancy.



5.6 Limitations

Both Hoeffding's inequality and the empirical Bayesian approach offer valuable frameworks for estimating the FDR; however, they do not account for the variable topographical complexity of brain regions. The current methods treat the tractogram as a homogeneous entity and apply a uniform standard across all regions, potentially overlooking these variations.

Furthermore, our approach does not incorporate region-specific biological knowledge about white matter pathways that could significantly inform the process of identifying redundancy. Instead, it relies on the underlying tractogram filtering methods—ExTractor, rSIFT, and rCOMMIT—to give appropriate estimates of streamline-level redundancy.

ExTractor provides a rule-based approach to filter anatomically implausible streamlines, but the definition of anatomical plausibility is not unequivocal; therefore, any rule-based approach may filter connections that are truly positive and miss erroneous streamlines. We recognize this limitation and use the ExTractor as a method to estimate the proportion of geometrically plausible streamlines. It is, however, an approximation for a lower bound that excludes implausible streamlines but does not optimize the representation of the underlying diffusion signal.

The computational load of establishing these bounds is currently significant; for example, processing each subject with rCOMMIT takes ~2 weeks on a high-performance workstation with a 16-core Intel Xeon processor and 64 GB of RAM. We, however, note that the acceptance probabilities for each streamline, as given by rSIFT and rCOMMIT in Table 4, are indicative of the posterior distribution of each streamline. We, therefore, argue that approximating the streamline acceptance rate with a noise-injected deep learning model could be an interesting alternative to explore to establish the confidence interval over sampled outputs from the models. This approach would provide a practical estimate of the redundancy, and previous research has shown this to be a feasible route (Legarreta et al., 2021; Astolfi et al., 2023; Hain et al., 2023; Wan, 2023) (see text footnote 1). While this is true for estimating the lower bound of the false discovery rate, training a model that can be used for estimating the upper bound of the FDR is more challenging and deserves additional research.



5.7 Future studies

The proposed method for statistically bounding redundancy in a tractogram offers several potential future areas of research. Our study is based on computational methods for filtering tractograms, and comparing our results to histological data could provide a prior for the expected redundancy, similar to what has been done for the tractogram fidelity (Seehaus et al., 2013; Delettre et al., 2019).

In the intersection of rCOMMIT and rSIFT, we find that there are certain streamlines that build the overarching structure of the tractogram that appear uniformly over the entire tractogram (see Figure 6). We denote them foundational streamlines, and these may be suggested to form the basis for the tractogram. In this study, we do not investigate whether these streamlines retain individual characteristics or whether tractography filtering can compress a tractogram.


[image: Three colorful images with symmetrical patterns resembling neural structures against a black background. Each pattern is similar, featuring complex, vibrant designs with shades of red, green, and blue, highlighting intricate details.]
FIGURE 6
 Visualization of the tractogram of Subject 877168 in HCP 10M. (Left) Tractogram filtering by rCOMMIT. (Middle) Tractogram filtering by rSIFT. (Right) Foundational streamlines at the intersection of filtering by rCOMMIT and rSIFT with acceptance probability = 1.


Furthermore, in our study, we apply our methods with rSIFT and rCOMMIT, but there have been studies extending these methods, such as SIFT2 (Smith et al., 2015), COMMIT2 (Schiavi et al., 2020), and the blurred streamlines representation in combination with COMMIT proposed by Gabusi et al. (2024). Extending our proposed redundancy metric to these methods is an important avenue for our future research. Regarding SIFT2, the weights estimated by the method are always positive, according to Jörgens et al. (2021), which makes it impossible to use the same randomization procedure we use for SIFT and COMMIT to SIFT2. In turn, COMMIT, and consequently COMMIT2, encourages sparsity on the weights. As a consequence, COMMIT2 can give zero weight to many streamlines, making it suitable for our randomization procedure. The same is true for other approaches based on COMMIT (e.g., COMMIT-tree Ocampo-Pineda et al., 2021 or COMMIT-T2 Barakovic et al., 2021). Similarly, assessing the redundancy of clinical datasets could provide further insights into the variation depending on the diffusion MRI quality. For this, it is relevant to study randomized methods that can run on single-shell diffusion data.




6 Conclusion

We have presented two statistical approaches for bounding the redundancy with minimal assumptions that can be applied to different tractography filtering methods, with examples given for the randomized SIFT and COMMIT. Our approaches are designed to be applicable across a variety of filtering methods and offer reliability in heterogeneous datasets. While there remain areas for further validation, the methods developed comprise a step forward toward quantifying the lower and upper bounds of the false discovery rates of streamlines in tractograms and the redundancy rate and can provide a viable metric for the quality of tractography methods. Future research includes evaluating the proposed bounds on different tractography methods and aims toward ranking tractography methods by their redundancy to give an application-dependent recommendation of the number of streamlines that are necessary for a good representation of brain neural tracts.
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Objectives: This study aimed to elucidate the influences of 1p/19q co-deletion on structural connectivity alterations in patients with dominant hemisphere insular diffuse gliomas.



Methods: We incorporated 32 cases of left insular gliomas and 20 healthy controls for this study. Using diffusion MRI, we applied correlational tractography, differential tractography, and graph theoretical analysis to explore the potential connectivity associated with 1p/19q co-deletion.
Results: The study revealed that the quantitative anisotropy (QA) of key deep medial fiber tracts, including the anterior thalamic radiation, superior thalamic radiation, fornix, and cingulum, had significant negative associations with 1p/19q co-deletion (FDR = 4.72 × 10–5). These tracts are crucial in maintaining the integrity of brain networks. Differential analysis further supported these findings (FWER-corrected p < 0.05). The 1p/19q non-co-deletion group exhibited significantly higher clustering coefficients (FDR-corrected p < 0.05) and reduced betweenness centrality (FDR-corrected p < 0.05) in regions around the tumor compared to HC group. Graph theoretical analysis indicated that non-co-deletion patients had increased local clustering and decreased betweenness centrality in peritumoral brain regions compared to co-deletion patients and healthy controls (FDR-corrected p < 0.05). Additionally, despite not being significant through correction, patients with 1p/19q co-deletion exhibited lower trends in weighted average clustering coefficient, transitivity, small worldness, and global efficiency, while showing higher tendencies in weighted path length compared to patients without the co-deletion.
Conclusion: The findings of this study underline the significant role of 1p/19q co-deletion in altering structural connectivity in insular glioma patients. These alterations in brain networks could have profound implications for the neural functionality in patients with dominant hemisphere insular gliomas.
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Introduction

Diffuse gliomas, prevalent malignant tumors within the central nervous system, are intricately linked to alterations in the brain’s connectome (Osswald et al., 2015; Ostrom et al., 2019; Stoecklein et al., 2020). Their widespread infiltration, particularly in pivotal regions like the insula, highlights the profound impact of gliomas on neural connectivity patterns. As the field of connectomics delves deeper into the brain’s complex network structures, understanding the molecular intricacies of gliomas becomes paramount (Hart et al., 2019; Douw et al., 2023). A standout marker in this context is the co-deletion of 1p/19q, frequently identified in oligodendrogliomas (Griffin et al., 2006; Nicholson and Fine, 2021). This genetic alteration, frequently identified in oligodendrogliomas, is associated with improved prognosis in WHO grade 2–3 gliomas and serves as a distinguishing hallmark from other gliomas like astrocytomas (Jenkins et al., 2006; Antonelli and Poliani, 2022). Furthermore, this co-deletion plays a significant role in molding the brain’s connectivity, with unique invasion patterns and connectivity alterations (Wesseling et al., 2015; Latini et al., 2020). These nuances set the stage for employing advanced imaging techniques to intricately explore the structural connectivity implications of the 1p/19q co-deletion in insular gliomas.

Diffusion MRI (dMRI) has become instrumental in exploring white matter connectivity in connectomics studies. This importance is underscored by research showing how specific molecular changes in gliomas can affect white matter connections in various ways (Latini et al., 2020, 2021). Generalized q-sampling imaging (GQI) serves as an advanced form of dMRI. It excels at identifying the direction of fiber tracts and measuring how water diffuses within them, even when faced with challenges like tumor-induced swelling. Cutting-edge methods such as correlational and differential tractography have also been introduced to improve the study of fiber tracts (Yeh et al., 2016a,2019). Correlational tractography (Yeh et al., 2021), measures the degree of connectivity among neighboring voxels within a white matter fiber tract, as defined by diffusion spin density. This method diverges from traditional techniques by accurately tracking only those fiber tract segments that demonstrate substantial correlations with the research variable, thereby enhancing precision in representing the structure and density of white matter fiber tracts. On the other hand, differential tractography represents an upgrade over traditional techniques (Yeh et al., 2019). It pinpoints specific tract segments by comparing their properties on a voxel-by-voxel basis, focusing particularly on changes that cause significant damage. The volume of these tracts can then be used to assess the extent of early neural damage. Another promising avenue is the application of graph theory to analyze the structural brain networks associated with gliomas (Aerts et al., 2018; Dadario et al., 2023). Graph theory allows for the mapping of nodes (key points in the brain) and edges (the connections between them), providing a holistic view of brain connectivity (Bullmore and Bassett, 2011). Properties like the clustering coefficient, betweenness centrality, and small-worldness are calculated to describe both global and local features of these networks. The clustering coefficient reveals how interconnected a node’s neighbors are, while betweenness centrality indicates how often a node acts as a bridge in the shortest paths across the network. Small-worldness characterizes networks that have both high local clustering and short overall path lengths. These measures describe the network’s features on both global and local scales, the thereby providing an encompassing perspective of the network’s structural and functional dynamics associated with glioma pathophysiology (Bullmore and Sporns, 2009; Bullmore and Bassett, 2011). A prior study demonstrated the link between fiber tract disconnection and motor deficits in glioma patients, informing presurgical risk evaluation (Tuncer et al., 2022). Network analysis showed that glioma patients have lower global and local efficiency in the ipsilesional hemisphere than in the contralesional hemisphere (Fekonja et al., 2022). Additionally, a DTI structural graph network study examined variations in graph theory networks based on different IDH1 statuses (Kesler et al., 2017). While these methods have been predominantly used to investigate structural connectivity in gliomas, their application to study the effects of the 1p/19q co-deletion status on brain structural connectivity in gliomas remains an unexplored territory. This uncharted terrain underscores the necessity for further research to deepen our understanding of the link between genetic alterations and their impact on brain connection and function in glioma patients.

In this study, our primary objective was to investigate the differences in brain connectivity among patients with insular gliomas, with a particular emphasis on those harboring and lacking the 1p/19q co-deletion. By leveraging advanced methods, we were able to explore these variations in structural connectivity in detail. Our study demonstrated a notable association between the values of quantitative anisotropy (QA) in specific tracts and the occurrence of 1p/19q co-deletion, as determined through correlation tractography. QA is a sophisticated MRI metric that quantifies the degree of directional organization within white matter tracts, offering critical insights into the microstructural integrity of neural pathways and their alterations in gliomas (Yeh et al., 2013; Celtikci et al., 2018). We used differential tractography to discern the differences in fiber tract segments associated with varying 1p/19q statuses. These two tractography approaches, closely aligned with the concept of “along-tract statistics,” may offer a more precise framework for segment-wise analysis in gliomas (Yeh et al., 2016a,2019; Fekonja et al., 2020). Further, when we compared graph theoretical properties among the groups, we discerned remarkable disparities in local and global properties between patients with the 1p/19q co-deletion and those without it. These findings carry profound implications for the management of insular gliomas. They underscore the possibility of developing more individualized management strategies, tailored to the unique genetic and structural brain characteristics of insular glioma patients.



Materials and methods


Participants

In this study, we analyzed 93 insular glioma patients from our institution who underwent preoperative dMRI examinations from July 2019 to May 2023. We excluded patients with a midline shift of more than 1 cm (15 patients), those who had not undergone next-generation sequencing (NGS) testing for 1p/19q status (12 patients), and glioblastomas (17 patients) due to their distinct characteristics per the 2016 WHO glioma classification criteria (Louis et al., 2016). Additionally, we excluded right hemisphere insular gliomas (24 patients) due to the extreme imbalance in the ratio of 1p/19q co-deletion to non-co-deletion, which could bias our results. Ultimately, we included thirty-two cases of WHO grade 2–3 left hemisphere insular diffuse gliomas: 13 with 1p/19q co-deletion and 19 without. For comparison, we recruited 20 age- and gender-matched healthy controls (HC). Both the patient and control groups completed the Edinburgh Handedness Questionnaire to determine right-handedness, either before or after the MRI scan.

Two experts manually delineated the tumor boundaries on T1 or T2-weighted images and determined the tumor volume using DSI-Studio software. We observed no significant differences among these groups in terms of age (p = 0.076), sex (p = 0.787), tumor volume (p = 0.203), and grades (p = 0.835). However, there was a significant difference in age (p = 0.021) between the tumor groups, while sex did not present a significant difference (p = 0.837). Detailed demographic information is presented in Table 1. Before being included in the research, all individuals gave their informed consent in writing. The study has received evaluation and approval from the ethics committee of our hospital (KY 2020-146-02).


TABLE 1 Demographics.

[image: Demographic and clinical data comparing healthy controls, 1p/19q co-deletion patients, and 1p/19q non-co-deletion patients. Age, sex, tumor volume, pathological grades, and IDH status are detailed with means and percentages. Comparisons are shown with p-values, indicating statistical significance for each characteristic.]



Data acquisition and preprocessing

The MRI scans were preoperatively performed using a Sie mens Prisma 3.0 T scanner in all subjects. We utilized an echo planar imaging (EPI) technique specifically optimized for diffusion MRI, facilitating the subsequent voxel-level modeling necessary for advanced diffusion MRI preprocessing. The EPI parameters consisted of a field of view measuring 1,760 mm × 1,760 mm, a flip angle (FA) of 90°, and b-values of 1,000 and 2,000 s/mm2, each with 30 diffusion directions. The echo time (TE) was 64 ms, the repetition time (TR) was 2,900 ms, with each image slice having a thickness of 2.5 mm and an in-plane spatial resolution of 2.5 mm × 2.5 mm, indicating isotropic voxels of 2.5 mm3. Preoperative T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) sequence was utilized with the following parameters: FA of 9°, TR of 1,600 ms, TE of 2.98 ms, inversion time of 900 ms, a matrix size of 256 × 248, slice thickness of 1 mm, and field of view (FOV) of 220 mm2 × 220 mm2. Additionally, the T2-weighted space dark-fluid sequence was used, with parameters including a FA of 120°, TR of 5,000 ms, TE of 581 ms, inversion time of 1,600 ms, a matrix size of 256 × 256, slice thickness of 1 mm, and FOV of 220 mm2 × 220 mm2. The eddy tool from FSL (FMRIB Software Library, version 6.0.4)1 was used to correct both eddy current distortions and participant movements in diffusion MRI data (Andersson and Sotiropoulos, 2016). Additionally, the diffusion imaging data underwent normalization through q-space diffeomorphic reconstruction (QSDR). The dispersion data from each participant was reassembled in a universal stereotaxic space, which maintains the conservation of diffusion spins after a non-linear spatial transformation as outlined by Yeh and Tseng (2011). Concurrently, the spin distribution function (SDF) measures the concentration or volume of diffused water in every direction inside a specific voxel (Yeh et al., 2016b).



Differential tractography

The flowchart of differential tractography analysis was demonstrated in Figure 1A. Group-average templates were created by computing the mean SDF values for the 1p/19q co-deletion patients, 1p/19q non-co-deletion patients, and HC using DSI Studio for comparison. These average templates were then utilized to investigate the characteristic brain connections and their variations between the groups. The differential tractogram was generated by positioning a total of 5,000,000 seed points within the white matter. The angular threshold was chosen randomly between 15 and 90 degrees. A step size of 0.5 to 1.5 voxel was set, and the anisotropy threshold was determined automatically by DSI Studio, based on the quality assessment during whole brain fiber tracking. To assess possible alterations in the fiber tracts, differential tractography was executed using various QA change thresholds (20, 30, and 40%) and fiber length thresholds (20, 30, and 40 mm). Any tracks shorter than the set length thresholds and tracks with changes less than the defined QA change thresholds were omitted. A similar method has been detailed thoroughly in a previous study (Yeh et al., 2019). To control the family-wise error rate (FWER) of our p-values, we applied the Bonferroni procedure, which adjusts the p-values to account for multiple comparisons.


[image: Flowchart illustrating three panels (A, B, C) of data processing for dMRI studies. Panel A shows QSDR reconstruction and template creation to track fiber tracts, differentiating between HC, 1p/19q co-deletion, and non-co-deletion PT, with notable anisotropy changes. Panel B details correlation of SDF with 1p/19q status, utilizing local connectome tracking. Panel C demonstrates fiber tracking to derive whole brain connectivity matrices for calculating graph theoretical properties. Each panel displays a sequence from dMRI data to detailed brain analysis.]

FIGURE 1
Flowchart of differential, correlational tractography, and graph theoretical analysis. In all three analyses, a consistent step is the transformation of dMRI data, whether from patients or healthy controls (HC), into a standardized format using q-space diffeomorphic reconstruction (QSDR). Additionally, the spin distribution function (SDF) is employed to determine the quantity or concentration of water diffusion in different orientations within a particular voxel. (A) Differential tractography: dMRI data are aggregated to form group averages, which then facilitates pairwise comparisons among the 1p/19q co-deleted, non-co-deleted, and HC groups. This process culminates in displaying results with significant differences. (B) Correlational tractography: The SDF are sampled and structured into a local connectome matrix. The term “local connectome” refers to the degree of connectivity between adjacent voxels within a white matter fascicle, defined by the density of diffusing spins. The association of this matrix with the 1p/19q status is adjusted for factors like age, gender, tumor volume, and grades, ultimately leading to the identification of fiber components with significant correlations. (C) Graph theoretical analysis: Using deterministic fiber tracking and brain segmentation, a connectivity matrix was constructed. Subsequently, both global and local properties derived from graph theory were calculated. These properties were then used for comparative analysis among the 1p/19q co-deleted, non-co-deleted, and HC groups.




Correlational tractography

As shown in the flowchart Figure 1B, the diffusion data from all patients was reconstructed in a standardized space. Subsequently, the density of the diffusing spins was sampled according to local fiber directions from a common atlas, facilitating the creation of a local connectome matrix and the estimation of the local connectome. 2.5 T thresholds was employed to map different levels of correlation between the fiber tracts and the 1p/19q co-deletion while controlling for age, sex, tumor volume, and grades through a deterministic fiber tracking algorithm. The QA-values were normalized, and the tracts were refined using topology-informed pruning with 16 iterations. To estimate the false discovery rate, a total of 4,000 randomized permutations were applied to the group label to generate the null distribution of the tract length. Permutation testing allows for estimating and correcting the false discovery rate (FDR) of Type-I error inflation due to multiple comparisons. The FDR, directly estimated from the ratio between total findings and false positive findings, is used to reject the null hypotheses and identify tracks with significant FDR (Yeh et al., 2016a). This approach directly estimates the FDR value, providing a more intuitive measure of significance, which is why we report the FDR value rather than FDR-corrected p-values.



Graph theoretical analysis

We contrasted the local and global properties among patients with 1p/19q co-deletion, those without 1p/19q co-deletion, and HCs. Figure 1C displayed the flowchart of the graph theoretical analysis, whole-brain deterministic tractography was carried out in DSI Studio following the reconstruction process, which is in line with the procedure described above. Restricted diffusion was quantified using restricted diffusion imaging (Yeh et al., 2017). We used a deterministic fiber tracking algorithm enhanced with augmented tracking strategies for better reproducibility (Yeh et al., 2013; Yeh, 2020). Spatial normalization was performed to align the built-in FreeSurfer’s Desikan-Killiany-Tourville (DKT) cortical atlas, encompassing 62 cortical regions of interest, with the subject’s diffusion data. The software includes a specialized nonlinear registration tool designed to align diffusion MRI data with structural MRI data. We built a structural connectome for each participant using a connectivity threshold of 0.001. This involved creating a connectivity matrix by counting the intersecting tracks, leading to a distinct matrix for each individual that represented their brain’s structural connectome. Structural connectivity was then evaluated using graph properties in DSI-Studio software. For each global and local graph variable, we employed analysis of covariance (ANCOVA) to evaluate differences between three groups: the 1p/19q co-deletion group, the 1p/19q non-co-deletion group, and a HC group. This analysis allowed us to discern any significant differences across the three groups, after controlling for potential confounding effects of age and sex. In a separate analysis focused on tumor groups, we examined the differences between the 1p/19q co-deletion and 1p/19q non-co-deletion groups while controlling for age, sex, tumor volume, and grades. We adjusted the resulting FDR-corrected p-values using the Benjamini-Hochberg correction method. Importantly, this correction process involved collectively adjusting all p-values derived from the comprehensive comparison among the three groups, while p-values obtained from the analyses focusing specifically on tumor group comparisons were adjusted separately.



Statistics

Chi-square test was employed to analyze categorical variables among the patients and HC. After correction, p-values that fell below 0.05 were deemed statistically significant. P-values represent uncorrected p-values. In this study, effect sizes for partial correlations or ANCOVA statistical methods were calculated using Cohen’s f2. Effect sizes for t-tests in differential tractography were calculated using Cohen’s d, and for Wilcoxon tests, Cliff’s Delta was used. Effect sizes are reported in the range 0.0 to 1.0. For our statistical analysis, we used R version 4.2.2 for visualization and statistical calculation, alongside Python 3.11.3, employing “pandas” and “statsmodels” for statistical testing.




Results


Differential tractography

Figure 2 showcased the results of a differential analysis on QA between the HC group, the group with 1p/19q co-deletion, and the group without this co-deletion. The fibers’ tracts in the figure were color-coded, each color signifying a different direction of the tracts. The analysis results were derived with certain conditions in place: a length threshold of 30 mm, and a change threshold within a 30–40% decrease of anisotropy.
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FIGURE 2
Differential tractography analysis. Color-coded fibers illustrate different tract directions. (A) The highlighted panel shows fiber tracts in the healthy control (HC) group with higher quantitative anisotropy (QA) values compared to patients with 1p/19q co-deletion. Notable tracts include the left frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), superior corticostriatal tract (SCT), superior thalamic radiation (STR), superior longitudinal fasciculus 3 (SLF 3), superior longitudinal fasciculus 2 (SLF 2), anterior corticostriatal tract (ACT), corticobulbar tract (CT), and uncinate fasciculus (UF). The total volume of these tracts is 4,783.20 mm3 (FWER-corrected p = 1.827 × 10–5, Cohen’s d = –1.938), with a threshold set at 30%. (B) This panel displays fiber tracts in patients without 1p/19q co-deletion, revealing lower QA values compared to the HC group. Notable tracts include sections of the left IFOF, UF, and SCT, with a total volume of 1,664.06 mm3 (FWER-corrected p = 1.878 × 10–5, Cohen’s d = –1.686). The threshold for depiction is set at 40%. (C) The contrast between patients with 1p/19q co-deletion and those without highlights substantially lower QA values in specific tracts, including the left ATR, STR, fornix, ACT, dentatorubrothalamic tract, cingulum parahippocampal, and reticular tract. These tracts account for a total volume of 18,484.40 mm3 (uncorrected p = 0.037, FWER-corrected p = 0.111, Cliff’s Delta = –0.441), and the threshold for visualization is set at 40%.


Figure 2A illustrated the fiber tracts in the HC group that had higher QA values compared to the patients with 1p/19q co-deletion. These tracts included the left frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), superior corticostriatal tract (SCT), superior thalamic radiation (STR), superior longitudinal fasciculus 3 (SLF 3), superior longitudinal fasciculus 2 (SLF 2), anterior corticostriatal tract (ACT), corticobulbar tract (CT), and uncinate fasciculus (UF). The total volume of these tracts was 4,783.20 mm3 (FWER-corrected p = 1.827 × 10–5, Cohen’s d = −1.938). Figure 2B depicted fiber tracts in patients without 1p/19q co-deletion having lower QA values compared to the HC group. These tracts included sections of the left IFOF, UF, and SCT, amounting to a total volume of 1,664.06 mm3 (FWER-corrected p = 1.878 × 10–5, Cohen’s d = −1.686). The threshold indicated below the figure revealed that the disparity in these three types of fiber tracts between the two groups surpassed 40%. In a similar vein, when compared to patients without 1p/19q co-deletion in part c, patients with 1p/19q co-deletion exhibited considerably lower QA values in the left anterior thalamic radiation (ATR), STR, fornix, ACT, dentatorubrothalamic tract, cingulum parahippocampal, and reticular tract. These tracts had a total volume of 18,484.40 mm3 (uncorrected p = 0.037, FWER-corrected p = 0.111, Cliff’s Delta = −0.441), with the corresponding threshold set at 40%. The detailed results were shown in Supplementary Table 1.



Correlational tractography

Figure 3 displayed the correlational analysis outcomes of the 1p/19q co-deletion molecular marker for left insular gliomas, with variables such as age, sex, tumor volume, and grades taken into account. Parts A and B of the figure, respectively, depicted sections with significant positive and negative correlation results. In the left section of both parts, the fiber segments showcasing significant differences were shown axially and were represented by different colors. On the right, the significant sections of the fiber tracts were portrayed in their respective locations within the tracts, with corresponding color codes.


[image: Diagram of the human brain's white matter tracts, divided into two sections labeled A and B. Section A shows tracts labeled FM&AC, CST, ILF, and IFOF&UF, with corresponding visualizations on the right. Section B displays tracts labeled Cingulum, Fonix, ATR, and STR, also with corresponding visualizations. Each tract is color-coded and illustrated in various brain orientations.]

FIGURE 3
Correlational tractography of left insular gliomas with the 1p/19q co-deletion. (A) This section depicts fiber segments that display a significant positive correlation with the 1p/19q co-deletion in patients with left insular gliomas (FDR = 4.29 × 10–4, Cohen’s f2 = 0.103). (B) The segment of the figure showcases fiber components that exhibit a significant negative correlation with the 1p/19q co-deletion in patients with left insular gliomas (FDR = 4.72 × 10–5, Cohen’s f2 = 1.13 × 10–3).


In patients with insular gliomas, the QA values of the forceps minor were found to have a positive correlation with the 1p/19q co-deletion (FDR = 4.29 × 10–4, Cohen’s f2 = 0.103). Remarkable segments, as seen in Figure 3A, were located in the anterior part of the IFOF, the junction of the UF, the anterior-middle part of the ILF, the middle-upper section of the CST, and the middle-lower segment of the forceps minor (FDR = 4.29 × 10–4, Cohen’s f2 = 0.103). On the contrary, Figure 3B demonstrated that the QA values of the ipsilateral ATR, STR, and bilateral fornix and cingulum were inversely related to the 1p/19q co-deletion in patients with left insular gliomas (FDR = 4.72 × 10–5, Cohen’s f2 = 1.13 × 10–3). Of these significant fiber tract segments, the fornix constituted the majority, followed by the lower sections of the ATR and STR. The smallest proportion was attributed to the cingulum, which incorporated bilateral parolfactory, parietal, and parahippocampal components, predominantly on the left side. Detailed effect sizes, statistical power, and p-values can be found in Supplementary Table 2.



Graph theoretical analysis

Figure 4 illustrated the variations in local properties among the HC, 1p/19q co-deletion, and 1p/19q non-co-deletion groups. The nodes, displayed from top to bottom, corresponded to the left sagittal, right sagittal, anterior coronal, and superior axial views. Every node in the figure symbolized a statistically significant node. Node colors indicated variations in local properties, with red and purple signifying increases and blue showing decreases in pairwise comparisons. There were no significant findings between the HC and 1p/19q co-deletion groups (Figure 4A). Figure 4B showed that patients with 1p/19q non-co-deletion had a significantly higher binary clustering coefficient in the left anterior caudal cingulate (FDR-corrected p = 0.026, Cohen’s f2 = 0.174), parahippocampal (FDR-corrected p = 0.041, Cohen’s f2 = 0.134), left superior frontal (FDR-corrected p = 0.002, Cohen’s f2 = 0.212), superior temporal (FDR-corrected p = 0.034, Cohen’s f2 = 0.160) compared to the HC group, and the corresponding nodes are colored in red or purple in the figure. In terms of binary betweenness centrality, the left superior frontal (FDR-corrected p = 0.001, Cohen’s f2 = 0.429) had significantly lower values in the 1p/19q non-co-deletion group (shown as red or purple nodes in the figure) than HC. Figure 4C showed, after controlling for age, sex, tumor volume, and grades covariates, that compared to patients with 1p/19q co-deletion, the non-1p/19q codeletion group had no significant results in binary clustering coefficient and betweenness centrality, as detailed in Supplementary Tables 3, 4, respectively.


[image: Three panels labeled A, B, and C compare brain scans. Panel A shows 1p/19q co-deletion versus healthy control (HC) with no marked regions. Panel B compares non-1p/19q co-deletion versus HC, highlighting differences with purple and blue dots in the left caudal anterior cingulate, superior frontal, superior temporal, and parahippocampal regions. Panel C contrasts non-1p/19q versus 1p/19q co-deletion, showing no marked regions. Each panel is divided into clustering coefficient and betweenness centrality, displaying both sagittal and axial views.]

FIGURE 4
Visual representation of local connectivity variations among different groups. (A) There were no significant findings among patients with 1p/19q co-deletion and the HC group, while taking into consideration age and sex factors. (B) The diagram emphasizes the substantial discrepancies in local structural connectivity among patients without 1p/19q co-deletion and the HC group (FDR-corrected p < 0.05), when accounting for age and sex influences. The blue and red orbs in this context represent nodes with a decrease and increase in local properties, respectively, when compared to the HC group, for patients without 1p/19q co-deletion. (C) The illustrated figure brings into focus the variations on binary clustering coefficient and betweenness centrality between patients with and without 1p/19q co-deletion.


As shown in Table 2, after accounting for sex and age variables, we found no significant disparities in the global properties among the HC, 1p/19q co-deletion, and 1p/19q non-co-deletion groups. When we controlled for sex, age, tumor volume, and grade variables and compared the 1p/19q co-deletion and 1p/19q non-co-deletion groups, we discovered some significant differences before collective correction. The 1p/19q non-co-deletion group showed significant increases in the weighted average clustering coefficient (uncorrected p = 0.047, FDR-corrected p = 0.640, Cohen’s f2 = 0.107), weighted transitivity (uncorrected p = 0.030, FDR-corrected p = 0.640, Cohen’s f2 = 0.125), weighted path length (p = 0.048, FDR-corrected p = 0.640, Cohen’s f2 = 0.133), weighted small worldness (uncorrected p = 0.018, FDR-corrected p = 0.640, Cohen’s f2 = 0.132), and weighted global efficiency (uncorrected p = 0.017, FDR-corrected p = 0.640, Cohen’s f2 = 0.177). However, these results did not pass the correction. In the binary average clustering coefficient, small worldness, rich club k10, k15, and k20, as well as in weighted rich club k10, k20, and k25, the 1p/19q non-co-deletion group had relatively higher values (Table 2). Furthermore, statistical power for both global and local metrics derived from graph theoretical analysis were calculated using ANCOVA and are documented in Supplementary Table 5.


TABLE 2 Comparison of global properties among 1p/19q co-deletion, 1p/19q non-co-deletion, and healthy control groups.

[image: A data table compares various network properties for three groups: Healthy Controls (HC), 1p/19q co-deleted (CD) patients, and non-co-deleted (NCD) patients. It includes density, clustering coefficient, transitivity, path length, small-worldness, global efficiency, and graph diameter. Values are presented for both binary (B) and weighted (W) measurements. The table shows uncorrected and false discovery rate (FDR)-corrected p-values, as well as Cohen's f-squared values, accounting for variables like age, sex, tumor volume, and grades. Statistically significant p-values are marked with asterisks.]

[image: A table comparing different graph metrics for binary and weighted networks across various conditions. Metrics include radius, assortativity coefficient, and rich club coefficients at multiple thresholds (K5, K10, K15, K20, K25). Significant values are bolded. The table distinguishes between healthy controls, one p and nineteen q co-deletion, and one p and nineteen q non-co-deletion comparisons. A footnote explains the significance level and conditions.]





Discussion

Our study revealed that diffuse gliomas located in the insula of the dominant hemisphere, and featuring a 1p/19q co-deletion (typical of oligodendrogliomas), exhibit pronounced alterations in both structural connectivity and graph-theoretic brain network metrics. The correlational tractography has revealed both positive and negative associations between the 1p/19q co-deletion and the QA values of specific fiber tracts. This correlation deepens understanding of the selective invasion driven by 1p/19q co-deletion. It’s important to highlight that the group without 1p/19q co-deletion shows some peritumoral brain regions, characterized by an increased clustering coefficient and a decrease in betweenness centrality, compared to the group with co-deletion. Moreover, the graph network suggests higher transitivity within the non-co-deletion group, indicative of more efficient information exchange within their neural networks. These observations may have significant implications for our understanding of how the 1p/19q status could affect the architecture of brain networks and, as a result, the cognitive functions in these patients. The results of our study emphasize the complex impacts of gliomas and the inherent genetic makeup on the structural neural network.

A crucial finding of this study was that patients with insular gliomas exhibiting the 1p/19q co-deletion tend to selectively infiltrate and disrupt the deep and medial white matter fiber tracts. Prior studies have proposed that diffuse gliomas with different molecular phenotypes may exhibit preferences for distinct locations (Laigle-Donadey et al., 2004; Metellus et al., 2010; Latini et al., 2020). For instance, Laigle-Donadey et al. (2004) have demonstrated that oligodendrogliomas with a chr 1p loss are more likely to be located in the frontal lobes. Another study categorizing 102 low-grade patients found that oligodendrogliomas extensively infiltrate white matter networks, such as association, commissural, and projection pathways, with a notable presence between the basal ganglia and deep and mesial regions of both frontal lobes (Latini et al., 2020). This study’s correlational tractography of insular gliomas corroborated these findings, with alterations in QA values indicating changes in the integrity of fibers surrounding the glioma, potentially serving as objective imaging markers (Celtikci et al., 2018). QA values of ipsilateral ATR, STR, and primarily left-sided fornix and cingulum were found to be inversely related to the co-deletion status, suggesting a decrease in QA values for these fiber tracts. Conversely, the 1p/19q co-deletion positively correlated with the QA values of ipsilateral association fibers IFOF, UF, and ILF, along with bilateral projection fibers CST and the commissural fiber AC. The integrity of these tracts of insular gliomas in the 1p/19q co-deletion group was relatively high, indicating less impact from tumor infiltration and disruption. The negative affects relatively limited magnitude highlights that such adaptations are far less effective and extensive compared to the pervasive positive effects caused by of 1p/19q co-deletion. Compared to the healthy control group, the QA values of SCT, STR, and CT, which are nearer to the medial side, demonstrated a decrease in 1p/19q co-deletion patients. However, in the 1p/19q non-co-deletion patients, only the QA value of the medial SCT was found to decrease. A comparison of the QA values of deep medial fibers such as ATR, STR, fornix, ACT, dentatorubrothalamic tract, cingulum, and reticular tract showed lower values in the 1p/19q co-deletion group as compared to the 1p/19q non-co-deletion group. The specific mechanisms and reasons for oligodendrogliomas selectively compromising the integrity of certain white matter tracts remain elusive. One hypothesis is that this phenomenon may be driven by the unique growth and migratory characteristics of oligodendroglioma cells. Research indicates that the infiltration patterns of gliomas mirror cellular migration processes seen during brain development, favoring the navigation of white matter tracts from the globus pallidus internus toward the cortical regions (Marin and Rubenstein, 2003; Tripathi et al., 2011; Zhan et al., 2017; Skjulsvik et al., 2020). As tumor cells infiltrate the deep subcortical white matter, they tend to follow paths akin to their original locations, demonstrating a consistent invasion pattern directed toward the central core and basal ganglia (Painter and Hillen, 2013; Fathallah-Shaykh et al., 2019). Our findings elucidate the characteristic invasion patterns of insular oligodendrogliomas. In addition, a recent study has shown that AF and IFOF connecting the anterior and posterior parts of the perisylvian areas, which are relevant for language function (Fekonja et al., 2021). Moreover, research by Shams et al. (2022) using diffusion MRI and machine learning suggests that microstructural changes in white matter effectively predict glioma-induced functional deficits. Therefore, our findings might suggest that patients with 1p/19q co-deletion could potentially have a lesser impact on language functions. The insights gained from our research into the invasion pattern of insular oligodendrogliomas could be particularly beneficial in monitoring management and guiding surgical planning to minimize potential damage to critical white matter tracts and their functions.

It is known that oligodendrogliomas demonstrate less aggressive traits compared to astrocytomas (Donovan and Lassman, 2019). Additionally, compared to oligodendrogliomas, astrocytoma could utilize ultra-long membrane protrusions called tumor microtubes to facilitate invasion, proliferation, and intercellular communication (Osswald et al., 2015). Our investigation revealed that only the 1p/19q non-co-deletion group (astrocytoma) had peritumoral brain regions with an increased clustering coefficient and decreased betweenness centrality compared to the HC group. The corresponding substantial effect sizes underscore the strong and potentially clinically relevant relationships between the local metrics and 1p/19q non-co-deletion status. Although differences between the 1p/19q co-deletion group and HCs were not significant after FDR correction, the clustering coefficient was higher in the 1p/19q co-deletion group compared to HCs, yet lower than in the 1p/19q non-co-deletion group. Astrocytomas, known for their extensive impact and destructiveness, may exploit the intrinsic neuroplasticity near the tumor site. The superior frontal gyrus is a crucial component of the dorsolateral prefrontal cortex (DLPFC), which is intricately connected to almost every cortical and subcortical structure (Szczepanski and Knight, 2014). The comprehensive reductions in betweenness centrality in superior frontal may signify a decrement in the pathways for information transmission within the network. On the other hand, an escalation in the binary clustering coefficient may be indicative of an increased density of neuronal connections within these regions. These changes, potentially indicative of astrocytomas, could be a compensatory mechanism to mitigate deficiencies in long-distance communication, achieved by prioritizing and amplifying local communication within clusters (Watts and Strogatz, 1998; Park et al., 2016; Semmel et al., 2022). In addition, although there is no significant difference in tumor volume between the 1p/19q co-deletion and non-co-deletion groups, we cannot completely rule out the possibility that the larger tumors in the non-co-deletion group extensively invade surrounding brain regions, leading to increased clustering coefficient and decreased betweenness centrality in these areas.

This study indicates that glioma patients with co-deletion tend to have lower global transmission efficiency. Although these findings did not withstand correction for multiple comparisons, they were supported by a high statistical power. Localized shifts in brain network operations can induce significant ripple effects across the entire global network. This study undertook an analysis of a multitude of global properties. Among these, the average clustering coefficient, in contrast to the clustering coefficient, serves as a global property that evaluates the level of network segregation. It does so by quantifying the extent of clustered connections that surround individual nodes. Transitivity is determined based on the ratio of triangles to triplets of nodes, serving as an alternative to the clustering coefficient (Semmel et al., 2022). Without controlling for additional variables like tumor volume and grades, our study found no significant differences in the average weight clustering coefficient and weighted transitivity among the 1p/19q co-deletion, non-co-deletion, and the HC groups. It’s worth noting that the volume and proliferation rate of gliomas can also influence the graph theoretical network and should be considered during comparative analysis (Semmel et al., 2022). Changes in global integration properties, such as global efficiency, small-worldness, and characteristic path length, remain contested when comparing tumor patients among themselves or against HC (van Dellen et al., 2012; Park et al., 2016; De Baene et al., 2017; Aerts et al., 2018). Small-world patterns merge “high levels of local clustering among nodes of a network (forming families or cliques) and short paths that globally connect all nodes of the network,” implying that nodes are “linked through relatively few intermediary steps.” Characteristic path length is the average count of path segments required to link one node to another, with fewer steps indicating higher efficiency. Global efficiency is computed as the harmonic inverse of the characteristic path length (Bullmore and Sporns, 2009). Research by Kesler and colleagues found that less invasive IDH1 mutant gliomas had significantly higher global efficiency in brain networks than wild-type tumors (Kesler et al., 2017). This study found that 1p/19q non-co-deletion patients showed increases in weighted small worldness and global efficiency, and a decrease in path length compared to 1p/19q co-deletion patients, although these findings did not withstand correction. Similarly, two studies showed that, when using magnetoencephalography (MEG), LGG patients exhibited lower intermodular connectivity compared to HGG patients (van Dellen et al., 2012). Thus, we theorize that gliomas, particularly those 1p/19q co-deletion, significantly damage essential deep commissural fibers, such as the cingulum, an important hub in the structural network (Li et al., 2013; van den Heuvel and Sporns, 2013). This disruption may result in a decrease in the overall transmission efficiency and local connectivity of the brain network. Moreover, the presence of an insular astrocytoma may catalyze a “network economy” strategy, tactfully maintaining a balance between wiring cost constraints, spatial and metabolic resources, and the imperatives to optimize network performance. The escalation in weighted small-worldness might enhance low-cost specialization and integration, both associated with improved efficiency. There is conjecture that the incursion of aggressive astrocytomas might exacerbate disruptions to the brain’s connectome, prompting compensatory improvements in transmission efficiency and local connectivity. These adjustments can be interpreted as the brain’s strategic response to maintain functional coherence and performance despite the pathological disturbances instigated by the tumor. The “network economy” strategy, which enhances local and integrative connectivity to preserve network functionality and adapt to disease effects, may inadvertently make these regions more susceptible to glioma. Furthermore, this strategy could potentially stimulate tumor growth and spread by cultivating a hyperconnected environment, thus amplifying resource availability for the glioma (Mandal et al., 2020; Douw et al., 2023). This possible setback underscores the need for a personalized approach when comprehending and addressing gliomas.

Conversely, when examining binary network metrics, we didn’t identify significant differences between the 1p/19q co-deletion and non-co-deletion groups in clustering coefficient, transitivity, path length, small-worldness, and global efficiency. This suggests that the impact of glioma on brain networks may be more pronounced when considering the strength and quality of neuronal connections, rather than their mere presence or absence. The observed significant differences prior to global correction point to a differential impact of 1p/19q co-deletion status on the nuanced aspects of network topology, potentially reflecting underlying biological differences in tumor pathology and its effects on brain connectivity. However, the absence of significant differences in both unweighted and weighted network parameters after global correction, along with the non-significant variations in other global network characteristics like the graph’s diameter, radius, and assortativity across all groups, prompts a cautious interpretation of these findings. This highlights the complexity of brain network adaptation to glioma and suggests that the brain may employ robust mechanisms to preserve network functionality, even in the face of pathological changes. The consistent lack of significant differences in several key network metrics across patient and control groups, regardless of 1p/19q deletion status, emphasizes the need for further research to unravel the compensatory and adaptive strategies employed by brain networks in response to glioma.

The significant differences observed in weighted network metrics between 1p/19q co-deletion and non-co-deletion groups, although not surviving global correction, alongside the general lack of significant differences in other network metrics, reflect the complex interplay between glioma pathology and brain network dynamics. This complexity calls for a deeper exploration of how gliomas, with varying molecular characteristics, affect the brain’s structural and functional connectivity, furthering our understanding of the neurobiological implications of these tumors.


Limitations

This study faces several limitations. Our retrospective design could lead to selection bias, affecting the generalizability of our findings. The cross-sectional nature also limits our ability to observe glioma progression or treatment response over time. Particularly, the small sample size reduces our ability to detect subtle differences, a concern amplified by the variability and complexity of dMRI and tractography techniques. Our diffusion MRI protocol lacked reverse phase-encoding, which might impact data quality and tractography accuracy. Despite the sophistication of the tractography algorithm used, it may not fully capture the complexities of white matter structures. Additionally, we excluded right hemisphere insular gliomas (24 patients) due to the extreme imbalance. This significant disparity could bias our results and potentially lead to inaccurate conclusions. Therefore, we focused solely on left insular gliomas to maintain the integrity of our findings. This exclusion is a specific limitation, highlighting a potential bias in our study and indicating that our results may be more representative of left insular gliomas. Future research should address these issues with larger, longitudinal designs, diverse tractography algorithms, reverse phase-encoding, multi-modal imaging, and more comprehensive patient data. Ensuring the inclusion of effect sizes and conducting thorough power analyses will be crucial for a clearer and more informative presentation of outcomes.




Conclusion

This study revealed that in patients with insular glioma, the presence of 1p/19q co-deletion significantly impacts structural connectivity. Tumors with this co-deletion penetrate and disrupt midline white matter hubs more than those without it. Patients with non-1p/19q co-deletion showed more significant effects on their brain networks than those with 1p/19q co-deletion. This research enhances our understanding of how tumor molecular markers affect brain networks and informs strategies for tumor monitoring and function preservation in clinical practice.
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Diffusion-weighted imaging (DWI) is the primary method to investigate macro- and microstructure of neural white matter in vivo. DWI can be used to identify and characterize individual-specific white matter bundles, enabling precise analyses on hypothesis-driven connections in the brain and bridging the relationships between brain structure, function, and behavior. However, cortical endpoints of bundles may span larger areas than what a researcher is interested in, challenging presumptions that bundles are specifically tied to certain brain functions. Functional MRI (fMRI) can be integrated to further refine bundles such that they are restricted to functionally-defined cortical regions. Analyzing properties of these Functional Sub-Bundles (FSuB) increases precision and interpretability of results when studying neural connections supporting specific tasks. Several parameters of DWI and fMRI analyses, ranging from data acquisition to processing, can impact the efficacy of integrating functional and diffusion MRI. Here, we discuss the applications of the FSuB approach, suggest best practices for acquiring and processing neuroimaging data towards this end, and introduce the FSuB-Extractor, a flexible open-source software for creating FSuBs. We demonstrate our processing code and the FSuB-Extractor on an openly-available dataset, the Natural Scenes Dataset.
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1 Introduction

White matter pathways are essential for communication among brain regions that orchestrate perception, cognition, and action (Fields, 2008; Filley and Fields, 2016). Functional relevance of white matter has been established since Carl Wernicke’s descriptions of aphasia in 1874 (Wernicke, 1874), in which lesions of the arcuate fasciculus led to impairments in speech production due to severed communication between inferior frontal and superior temporal regions. Beyond such clinical cases, often termed “disconnection syndromes” (Geschwind, 1965), variations in white matter microstructure are also reflected in individual differences in typical cognitive functions (Johansen-Berg, 2010; Roberts et al., 2013). Plasticity in white matter, which is central to learning, memory, and development (Sampaio-Baptista and Johansen-Berg, 2017; Fandakova and Hartley, 2020; Xin and Chan, 2020), is thought to be regulated by neural activity (Fields, 2015; de Faria et al., 2021). This collectively suggests there is a dynamic and causal interplay between white matter structure and brain function underlying typical and clinical cognition.

Diffusion-weighted imaging (DWI) is the primary method for investigating white matter in vivo (Basser et al., 1994), and can be used to infer structural properties of white matter more nuanced than gross volumetric estimates derived from standard anatomical imaging. White matter is organized into short-range association fibers and long-range bundles or tracts (Bullock et al., 2022). Conventional DWI can be used to resolve long-range bundles based on the strength and directionality of the underlying diffusion-weighted signal, often coupled with bundle-specific criteria such as atlas-based inclusion/exclusion areas or model-based clustering (Zhang et al., 2022). When done properly, bundle reconstruction is reliable and corresponds well with ground-truth white matter dissection (Schilling et al., 2020) and simulated phantom connectivity (Girard et al., 2023). These bundles connect gray matter regions and hence form the structural connectivity foundation for large-scale distributed neural networks that are associated with many cognitive functions (Bressler and Menon, 2010; Wang et al., 2015). By running analyses on the bundle-level instead of the voxel-level, investigators can examine specific connections in participant’s native brain space to precisely study the role of specific connections in the brain, mitigating concerns of multiple-comparisons across voxels and neuroanatomical dissimilarities across participants that often compromise whole-brain analyses (Van Hecke and Emsell, 2016). Such bundle-level analyses are implemented in various different software packages—such as AFQ (Yeatman et al., 2012; Kruper et al., 2021), TRACULA (Yendiki et al., 2011; Maffei et al., 2021), and the BUAN framework (Chandio et al., 2020)—and have been used in numerous studies.

However, an outstanding concern for linking white matter bundle properties to neural function or behavior is that the areas of cortex that bundles connect to are often larger than the fine-grained functional organization of the brain. As such, only a small sub-component of each bundle may be associated with the specific function or behavior being studied. For example, the superior longitudinal fasciculus is composed of several sub-bundles (Schurr et al., 2020). Similarly, separate sub-bundles within the arcuate fasciculus connect regions in the brain supporting reading and math, and, moreover, these sub-bundles have distinct microstructural profiles (Grotheer et al., 2019) (Figure 1). That these sub-bundles exist not only provides valuable insight into functional neuroanatomy, but also introduces an important methodological consideration, in that properties of these sub-bundles may serve as more theoretically-motivated metrics for gauging brain-behavior relationships. To resolve Functional Sub-Bundles (FSuB), one can integrate functional MRI (fMRI) in the bundle extraction process, identifying only those streamlines of a bundle that connect to the task-relevant functional regions of interest. This strategy has been used to improve the precision and interpretability of structure–function-behavior relationships in cognitive, perceptual, and clinical domains (Dougherty et al., 2005; Saygin et al., 2011, 2016; Reid et al., 2016; Lerma-Usabiaga et al., 2018; Yoshimine et al., 2018; Grotheer et al., 2019, 2022; Finzi et al., 2021; Kubota et al., 2023). However, it has historically been challenging to precisely link gray matter cortical regions with white matter bundles because they are comprised of separate tissue types that are qualified using different methods (fMRI and DWI respectively). Early studies that sought to link white matter bundles to function used approaches create spherically dilated regions of interest (ROIs) (Yeatman et al., 2013; Gomez et al., 2015) to extend functional regions into the white matter. However, these approaches can come at a cost to anatomical precision, especially when ROIs are small and close together. In recent years, advances in surface brain mapping and tractography have been used to maintain the spatial precision of the white matter associated with ROIs by projecting ROIs along the surface normal and restricting ROIs to the gray-matter-white-matter interface, putting ROIs in close proximity with the underlying white matter (Grotheer et al., 2019; Finzi et al., 2021; Kubota et al., 2023). These methods were developed and employed in the context of specific empirical studies, therefore, there is a need for an open-source software implementation for high throughput FSuB analysis. In addition, as detailed in this paper, several methodological factors relating to fMRI and DWI acquisition and processing are pertinent to the reliability, validity, and interpretation of the FSuB approach.

[image: Diagram titled "A" shows brain sections from lateral to medial, highlighting areas in blue. Diagram "B" is a brain scan with blue and green pathways labeled as math and reading, respectively.]

FIGURE 1
 (A) Cortical endpoints (red) of the left arcuate fasciculus (light blue), overlaid on a T1-weighted image. Data come from the first subject of the Natural Scenes Dataset. (B) Functional sub-bundles of the left arcuate fasciculus that are specific to math (blue) and reading (green) in a representative adult. Adapted with permission from Grotheer et al. (2019) (under the Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0/).


In the present article, we facilitate the adoption of the FSuB approach in four critical ways: (1) We provide suggestions and practical guidance for data acquisition and processing for extracting and analyzing FSuBs, with accompanying code. (2) We introduce the FSuB-Extractor, a flexible open-source software toolbox for producing and analyzing FSuBs. (3) We showcase a comprehensive FSuB workflow (beginning with raw data) and the FSuB-Extractor on a high-quality, publicly-available dataset, the Natural Scenes Dataset (Allen et al., 2022). (4) We validate the FSuB-Extractor against previously reported findings (Kubota et al., 2023). We hope this guide will allow for more accessible, user-friendly, and high-throughput FSuB analyses in future research, and hence contribute to a finer-grained understanding of the link between brain structure, brain function, and behavior.



2 MRI acquisition and processing suggestions for FSuB purposes

We note that the following guidelines may change as MRI acquisition and processing techniques evolve. These suggestions are derived from prior empirical work on MRI methods development and evaluation (e.g., Glasser et al., 2013; Daducci et al., 2014; Canales-Rodríguez et al., 2019; Esteban et al., 2019; Yeh et al., 2019; Grisot et al., 2021; Maffei et al., 2022). As detailed later in the text, the FSuB approach involves analyzing streamlines whose endpoints are proximal to functional ROIs in the gray matter. The following suggestions will help create well-made cortical surface reconstructions, white matter tractograms/bundles, and functional ROIs, which are needed to achieve optimal FSuB specificity.


2.1 Anatomical MRI acquisition

Anatomical images, such as T1- and T2-weighted images (T1w/T2w), should cover the whole brain and have a voxel size of no more than 1 mm isotropic, and preferably smaller if time allows (Glasser et al., 2014). At the minimum, a T1w anatomical image of the entire brain is usually required (although studies of some special populations, such as infants, may instead rely primarily on T2w images). Additionally collecting a T2w anatomical image enables one to better refine cortical surfaces in software packages such as FreeSurfer (Dale et al., 1999). Fat-suppressed T2w images can also be useful in correcting for echo-planar imaging (EPI) distortions (Wu et al., 2008; Irfanoglu et al., 2017; Montez et al., 2023). Thus, it is recommended to collect both T1w and T2w images, as long as it is practical to do so. Sequences with built-in motion correction, such as volumetric navigators (Tisdall et al., 2012) can reduce motion-related artifacts, leading to more reliable brain surface reconstructions, particularly in hyperkinetic populations such as children (Tisdall et al., 2016).



2.2 Anatomical MRI processing

FSuB extraction works best when both functional regions of interest (fROI) and streamline endpoints can be defined nearest to the gray matter white matter interface (GMWMI). This allows one to minimize the search distance between fROI and streamline endpoints, mitigating concerns of false positive streamline inclusion. Information from brain surface reconstruction will lead to a more accurate GMWMI than relying on volumetric segmentation alone. FreeSurfer (Fischl, 2012), through the recon-all workflow, is the most common software solution for reconstructing the cortical surface. Although this is an automatic workflow, it is recommended to visualize outputs and manually correct defects (e.g., holes and handles) if it is practical to do so. A GMWMI can then be created using MRtrix3’s (Tournier et al., 2019) commands 5ttgen and 5tt2gmwmi (Figure 2). We recommend using the Hybrid Surface and Volume Segmentation (hsvs) algorithm, which leverages both surface and volumetric information from FreeSurfer (Smith et al., 2020).
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FIGURE 2
 Simplified DWI (top) and anatomical (bottom) processing workflows implemented by the code in this article (Code Blocks 1 and 2). The result of these workflows is a set of bundle segmentations with streamlines reaching the gray matter white matter interface (GMWMI). Text in consolas font represents commands used in processing.




2.3 DWI acquisition

DWI acquisitions should be chosen based on the planned fiber tracking algorithm and microstructural measures of interest. While both shelled schemes (e.g., high angular resolution diffusion imaging—HARDI) and cartesian grid schemes (e.g., diffusion spectrum imaging—DSI) may be used for tractography, some processing techniques, software, and microstructural measures may be uniquely suited for specific acquisition schemes. For example, a workflow based on constrained spherical deconvolution (Tournier et al., 2008; Jeurissen et al., 2014) will need data collected in spherical shells. Conversely, diffusion spectrum imaging (Wedeen et al., 2000) requires a cartesian grid sampling scheme. However, many models used to infer white matter microstructure, including those for diffusion tensor imaging (Basser et al., 1994), diffusion kurtosis imaging (DKI; Steven et al., 2014), generalized q-sampling imaging (GQI; Yeh et al., 2010), and neurite orientation dispersion and density indices (NODDI; Zhang et al., 2012), can be fit on either shelled or gridded schemes.

Regardless of one’s choice of sampling scheme, it is recommended to use DWI acquisitions that include both low (≤ 1,200 s/mm2) and high (≥ 2,000 s/mm2) b-values, which collectively yield fiber orientation distributions that better reflect more complex non-gaussian and hindered diffusion patterns (Assaf et al., 2004). This type of acquisition enables multi-compartmental signal modeling of fiber orientation distribution functions, which ultimately leads to better differentiation between tissue classes and more reliable white matter signal at tissue boundaries (Jeurissen et al., 2014). This type of acquisition also allows for using nuanced microstructural models, such as NODDI and DKI, and has benefits for tractography (Maffei et al., 2022). Stronger diffusion weighting emphasizes intra-axonal signal while attenuating extra-axonal signal (Huang et al., 2020). Thus, orientation distribution functions become more sharply tuned to better resolve crossing fibers. This leads to lower directional uncertainty in probabilistic tracking, and presumably better estimates of the primary diffusion direction in deterministic tracking (Setsompop et al., 2013). Additionally, acquiring a large number of DWI directions will yield a higher angular resolution scan for improved tractography, and we refer the reader to a set of recommendations for minimal number of diffusion directions (Schilling et al., 2022). A typical minimal DTI acquisition, with a single low b-value shell at few (≤ 32) directions, is not recommended, since it has low angular resolution, is unable to take advantage of multiple b-value DWI signal modeling, does not have high b-valued shells, and restricts microstructural measures primarily to DTI metrics such as fractional anisotropy and mean diffusivity.

Additionally, susceptibility distortion correction (SDC) should be applied to DWI images to correct for geometric distortion artifacts present in fast EPI acquisitions (Andersson et al., 2003). SDC leads to better anatomical correspondence not only between T1w and DWI images, but also between DWI and fMRI images, assuming both images have undergone SDC. There are multiple ways to enable SDC in DWI. One method is to collect a pair of DWI acquisitions that have opposing phase encoding directions (Andersson et al., 2003; Irfanoglu et al., 2015). This option has the largest time cost, but has the advantage of gathering multiple data points per direction, which can mitigate the impact of noise. Another is to collect a dedicated field map before DWI scans to quantify magnetic susceptibility distortions. Additionally, if one is using a dataset that has missing or low-quality field maps, one can use field map-less distortion correction methods such as Synb0-DisCo (Schilling et al., 2019a).



2.4 DWI processing


2.4.1 DWI preprocessing

We recommend using automated, flexible, and robust preprocessing softwares, such as QSIPrep1 (Cieslak et al., 2021), for ease of operation and reproducibility. Regardless of what software is used, the following preprocessing steps are suggested as a minimum:

	1. Denoising. For example, the MRtrix3 software package (Tournier et al., 2019) implements Marchenko-Pastur principal component analysis (Veraart et al., 2016b) via dwidenoise, and the DIPY software package (Garyfallidis et al., 2014) can perform the self-supervised patch2self method (Fadnavis et al., 2020).
	2. Susceptibility distortion correction, such as FSL’s (Jenkinson et al., 2012) topup functionality (Andersson et al., 2003). If using Synb0-DisCo, please refer to their GitHub repository for usage instructions.2
	3. Eddy current and motion correction (often done simultaneously). For example, FSL implements this with the eddy command (Andersson and Sotiropoulos, 2016), and the TORTOISE toolbox (Irfanoglu et al., 2017) includes this in their DIFFPREP module.
	4. Gibbs deringing (Veraart et al., 2016a), which will mitigate DWI artifacts at the interfaces between white matter and other neural compartments. This can be implemented in MRtrix3 with mrdegibbs, which is based on a local sub-voxel shift approach (Kellner et al., 2016) and is well-suited for full Fourier acquisitions. TORTOISE includes a Gibbs deringing method that is better suited for partial Fourier acquisitions (Lee et al., 2021).

Additionally, the DWI image and T1w image need to be aligned to one another. While reorienting DWI images should be minimized and done in a single step due to concerns of data interpolation and the need to correct the gradient table (Leemans and Jones, 2009), we note that it is common in image preprocessing pipelines to rotate derivatives such that the anterior and posterior commissures are at the same level (commonly referred to as ACPC alignment). This reorientation enforces common image orientations and origins across subjects, which benefits downstream quality control and image registration if needed. In ACPC-aligned DWI images for example, a directionally-colored FA map should always indicate left-to-right orientation (typically bright red) in the corpus callosum, and visualizing these maps is a quick quality assurance check that the gradient table is valid. The same map in an image with rotational bias not ACPC aligned might not have as distinctive of a color in the corpus callosum, which could confound quality control. As long as SDC is applied to the DWI image, only linear warping should be necessary to make this alignment (Chen et al., 2019).

Upsampling the DWI image to 1.25 mm isotropic voxels, if needed, e.g., with MRtrix3’s mrresize, can be useful creating a more resolvable border between gray and white matter (Dyrby et al., 2014). However, this may only provide meaningful benefits if the images were acquired with only slightly larger voxels (e.g., 1.5 mm), and may otherwise increase computational burden with trivial benefits. For FSuB purposes, in which regions of interest may be defined on anatomical surfaces, upsampling beyond the resolution of the T1w image will provide diminishing returns.



2.4.2 DWI postprocessing

After preprocessing, steps should be taken towards producing a whole-brain tractogram and/or bundle segmentations. Some bundle segmentation algorithms will operate on a whole-brain tractogram based on streamline clustering, such as Recobundles (Garyfallidis et al., 2018), or anatomical waypoint criteria, such as PyAFQ (Yeatman et al., 2012; Kruper et al., 2021). Other segmentation algorithms, including TractSeg (Wasserthal et al., 2018) and DSI-Studio’s AutoTrack (Yeh et al., 2018), can directly segment bundles using the DWI signal or modeled signal without starting from a whole-brain tractogram. The precise steps one may take to identify bundles may vary based on one’s software preference and acquisition scheme. For example, TractSeg and many of MRtrix3’s tractography implementations require derivatives from constrained spherical deconvolution, which necessitates a shelled acquisition.

Regardless of which method is chosen, it is important that the resulting streamlines reach the GMWMI to minimize the distance between streamline endpoints and gray matter ROIs. Minimizing the search distance between streamline endpoints and fROIs mitigates concerns of false positive streamline inclusion when defining FSuBs. To this end, MRtrix3 can implement anatomically constrained whole-brain tractography (Smith et al., 2012), which enables precise streamline cropping at the GMWMI, seeding on the GMWMI, as well as backtracking which removes streamlines with anatomically implausible ends (i.e., within non-superficial white matter). A similar technique that can be run in DIPY is imposing a Continuous Map Criterion (CMC) based on tissue probability maps (Girard et al., 2014). Surface tractography, or seeding directly on the surface meshes, can also be achieved through DIPY through surface-enhanced tragography (St-Onge et al., 2018) and FSL (Jenkinson et al., 2012; Warrington et al., 2020). Visualizing the streamlines over the T1w image is recommended for quality assurance.

Since cortical regions of interest may be small, we recommend that tractograms and bundles be sufficiently dense, e.g., 5-10 million streamlines for whole-brain coverage. Although such dense whole-brain tractograms are prone to false positives (Maier-Hein et al., 2017), strategies exist to mitigate this. These mechanisms use the underlying DWI signal or fiber orientation distributions to make judgements about streamline validity. This can result in streamlines being removed if they are redundant or biologically implausible (Smith et al., 2013), or alternatively given weights corresponding to their estimated contributions to the DWI signal (Pestilli et al., 2014; Daducci et al., 2015; Smith et al., 2015). Both of these strategies have their own advantages and use cases. Removing streamlines can increase computational efficiency and be a valid approach if one’s downstream analyses cannot incorporate streamline weights. Using streamline weights can allow one to analyze a sufficiently dense tractogram while biasing against implausible streamlines, and summation of these weights in bundles can be an informative measure of structural connectivity (Smith et al., 2022). Note that these strategies are only valid when applied to a whole-brain tractogram.

An alternative strategy is to create FSuBs by only seeding and terminating streamlines between a pair of ROIs. Advantages of this approach are that it can be less computationally intensive compared to generating a whole-brain tractogram, and it allows one to explicitly control the number of final streamlines in the FSuB (which we note is not the same as tract volume). However, we do not recommend this approach, as this method does not ensure that the resulting FSuB are derived from a canonical bundle (additional waypoints or exclusion masks could help in this regard, however). Additionally, streamline algorithms that detect false positives require a whole-brain tractogram to reliably estimate streamline contributions to the underlying DWI signal (Smith et al., 2022). So, FSuBs created by directly seeding between fROIs cannot take advantage of these mechanisms.




2.5 fMRI acquisition

Although the FSuB-Extractor can accept gray matter ROIs defined by any criteria, we anticipate the most common use case will be to input fROIs that are defined from task-based fMRI analyses (e.g., areas of high activation from a statistical parametric map). Due to the variable nature of fMRI tasks, it is difficult to prescribe best guidelines for fMRI acquisitions, as these could vary based on the task and the effect one is trying to resolve. However, in general for FSuB purposes it is best to strive for the smallest voxel resolution one can achieve while maintaining an acceptable signal-to-noise ratio (SNR), which will increase the anatomical precision of functional clusters. Since higher voxel resolutions and shorter TRs come at the expense of lower SNR, number of TRs and acquisition parameters should ultimately be decided based on the SNR, the size of fROIs, and the expected task effect size (Murphy et al., 2007). Similar to DWI acquisitions, field maps should be collected before fMRI scans to perform SDC, and field map-less distortion methods are available as well (for example, SynBOLD-DisCo; Yu et al., 2023).

To ensure that the FSuBs are specific to the function being studied, a well-designed localizer task should be used. Localizers typically aim to identify regions of the brain that are active during a target condition/task compared to control conditions/tasks. For example, a language localizer focused on semantic processing may contrast perceiving intact vs. degraded speech (Scott et al., 2017), and a localizer identifying high-level visual areas might contrast responses to one category of stimuli (e.g., faces) compared to many others (e.g., words, places, bodies, objects) (Stigliani et al., 2015). Note that in both cases, low-level features of the stimuli (speech sounds and visually-presented images) are held constant, so that it is possible to identify neural responses that are specific to the manipulation of interest (in this case, language comprehension or face perception). Regardless of the task being studied, it is important to consider both the target and control conditions. A localizer that contrasts responses to faces compared to checkerboards, for example, may result in a broader and less functionally precise region than a localizer that contrasts responses to faces with a variety of other visual categories. It is also important to consider the limitations of interpreting localizer results. Just because a region responds more to faces compared to other stimuli included in the localizer does not mean that the region is not responsive to other categories or conditions that were not included in the experiment.



2.6 fMRI processing


2.6.1 fMRI preprocessing

We similarly recommend using automated, flexible and robust preprocessing software, such as fMRIPrep3 (Esteban et al., 2019) for ease of operation and reproducibility. Regardless of what software is used, the following preprocessing steps are suggested as a minimum:

	1. Motion correction
	2. Susceptibility Distortion Correction (SDC)
	3. Alignment to T1w image

There are several reasons to prefer conducting fROI analyses on the cortical surface of the brain, as opposed to volumetric analysis. Surface-based analysis has the advantage of producing statistical maps that are specifically conformed to the brain’s geometry. In volumetric analysis, there is often a temptation to dilate fROIs to project them into white matter, which sacrifices anatomical specificity. For example, dilating a fROI may extend the fROI to include a sulcus that is nearby in volumetric, but not surface space. Therefore, for FSuB analysis, we strongly recommend using surface-based methods. Surface-based methods are not as ubiquitous or as standardized as volumetric analyses though, further warranting increased documentation. For these reasons, the code examples below are particularly tailored towards working with surface data. However, we include volumetric analysis code in Supplementary material S4, and the FSuB-Extractor is compatible with both volumetric and surface-based fROIs. Many of the methodological considerations discussed below also apply to volumetric analysis.



2.6.2 The decision to smooth

After preprocessing, steps should be taken towards running general linear models (GLM) to produce statistical maps that highlight where the brain is specialized for the task (Friston et al., 1994). A user must decide whether to smooth their data. Smoothing data increases SNR at the expense of anatomical specificity. We advise against smoothing data in volumetric space for FSuB analysis, as neighboring voxels can include relatively distant regions on the cortical surface due to complexities of cortical folding patterns (Weiner and Grill-Spector, 2013; Brodoehl et al., 2020). Whether one should smooth data for surface-based analysis is dependent on a few factors of the analysis. If one is interested in small fROIs, smoothing may overly blur statistical maps, confounding localization of fROIs. Another important consideration in the decision to smooth is if fROIs will be identified automatically or manually, as described in more detail in the following sections. Smoothing data may be more appropriate when using automated statistical thresholding to define fROIs. The smoothed statistical maps will tend to have higher more-distributed effect sizes so the resulting masks could be more continuous, leading to a more contiguous FSuB bundle core. However, smoothing is not necessary, and is more likely detrimental, when manually drawing fROIs due to blurring of precise functional boundaries. Most of the extant FSuB literature does not smooth fMRI images (Grotheer et al., 2019; Kubota et al., 2023).



2.6.3 Running a surface-based GLM

GLMs can be used to produce statistical maps for one’s functional contrast of interest, as well as denoise data (by including nuisance regressors). There is no standard recommendation on what regressors to choose for denoising the data (Mayer et al., 2019). An example regression basis may include head-motion parameters (rotation and translation in the X, Y, and Z directions), some physiological noise regressor [e.g., mean signal outside of gray matter or ACompCor components (Behzadi et al., 2007)], and frame censoring for non-steady state volumes. Regressors should be chosen based on factors such as the quality of the data, as well as the temporal degrees of freedom one is comfortable with sacrificing (Mayer et al., 2019).



2.6.4 Identifying functional regions of interest (fROI)

Manually drawing masks involves having a user outline fROIs on the brain based on visualizing statistical maps, while automated statistical methods will create fROIs based on thresholding statistical maps. In either case, fROIs should come from a pre-defined search space that is consistent across subjects (Figure 3). This may be defined anatomically, for example by a given landmark such as a specific sulcus (Weiner et al., 2014). A functionally-specific alternative (albeit not mutually exclusive) is to define search spaces based on group-level contrast maps (Nieto-Castañón and Fedorenko, 2012). This approach requires two runs of a localizer task (one that is used on the group-level to define the search space, and one to find each subject’s fROI within that search space). This approach also necessitates data first being warped to a standard space, after which the resulting search space should be brought back to subject space. In surface-based analyses, this space could be FreeSurfer’s fsaverage space, or the fsLR space that is used by projects such as the Human Connectome Project (Glasser et al., 2013), while MNI space is the most common standard space for volumetric data. We note that one should only move to a common space if necessary, and all pertinent transformations should be combined and applied in a single step to minimize data interpolation (Wang et al., 2022). Otherwise, fROI determination should remain in subject-space to minimize data interpolation and ensure better anatomical correspondence to DWI derivatives.

[image: Flowchart depicting the process of analyzing brain imaging data. Raw BOLD scans are preprocessed using fMRIPrep, resulting in preprocessed BOLD images. Surface GLM analysis is conducted with Nilearn, integrating event timings. This produces statistical parametric maps. Regions of interest (ROIs) are drawn using Freeview, and final fROIs are established with a defined search space. The process is visually represented with corresponding images for each step, including scans, parametric maps, and event timing examples like a face and vehicles.]

FIGURE 3
 Simplified functional MRI processing workflow implemented by the code in this article (Code Block 3). The result of this workflow is a set of functional ROIs (fROIs) that are used in the FSuB extraction process. The statistical parametric map and fROIs in this figure are derived from a contrast comparing responses to character vs. all other stimuli categories. Two fROIs are drawn for character-selective regions in the mid-occipitotemporal sulcus (red) and posterior occipitotemporal sulcus (yellow), within the larger occipitotemporal sulcus (light blue).


It is important that criteria for defining neural selectivity is consistent across subjects. This may be defined as everywhere in a search-space where a contrast test statistic is greater than some value [e.g., t-value >3 (Nordt et al., 2021), or p-value less than 0.001 (Kanwisher et al., 1997)], or the top X% area with the highest effect sizes [e.g., top 10% of t-values (Scott et al., 2017)]. One should be cognizant of the biases these thresholding methods can introduce (Nieto-Castañón and Fedorenko, 2012). For example, if one defines an fROI as all voxels or vertices in a given space that exceed a particular t-statistic, subjects will likely have different sized masks, regardless of whether you are automating fROI definition, or drawing ROIs. Thus, an FSuB summary metric such as streamline count or volume would be affected by size biases, as a larger ROI inherently has more connected streamlines. One could control for this post-hoc by normalizing metrics by fROI volume, although consideration should be given as to how this changes the interpretation of the results. While the alternative automated strategy of selecting the top X% area controls for fROI size, it introduces the possibility of including areas that are not particularly active for the contrast if the threshold is defined too liberally. Careful exploration should be used to determine the best fROI determination strategies for addressing the given hypothesis. In general, if it is practical to do so and does not create critical biases, we recommend identifying fROIs by manually drawing over unsmoothed statistical maps for the highest degree of functional and anatomical precision. We present a guide to drawing fROIs in Freeview (the image viewer included with FreeSurfer) in Supplementary material S5.





3 FSuB workflow tutorial and software

For succinctness and generalizability, our processing code examples are based primarily on the Brain Imaging Data Structure (BIDS) standard and BIDS applications (Gorgolewski et al., 2016, 2017), though other software and pipelines may be suitable as well. After minimal changes to the code examples below, processing should work on most BIDS-valid neuroimaging datasets. The FSuB-Extractor is not limited to working with preprocessed derivatives from BIDS applications, and as the BIDS standard changes and software are updated, the following code may need to be modified accordingly. Arguments in the code may have to be added or altered for specific use cases, so we encourage readers to explore the documentation of the software we discuss here. Our examples use Unix-like syntax, which is standard on Linux and Macintosh machines as some dependencies of the software used are not officially supported by Windows. Paths to files or directories will have to be changed to match the user’s filesystem. Many workflows described below are executed in software containers. We present the syntax for Singularity/Apptainer (Kurtzer et al., 2017), since it is standard for research-grade high-performance computer clusters, but Docker (Merkel, 2014) can also be used after making minimal adjustments to the syntax (see Supplementary material S1). Singularity/Apptainer containers can be built using this example command: singularity build fmriprep_23.2.0a2.img docker://nipreps/fmriprep:23.2.0a2, where repository, software, and version names are derived from the software’s DockerHub web page.

Below, we use data from the Natural Scenes Dataset (NSD) (Allen et al., 2022), which is openly accessible through http://naturalscenesdataset.org/ and has a BIDS-valid distribution. This dataset includes high quality anatomical scans, high angular resolution DWI, field maps, and high-resolution fMRI data in eight participants. The functional visual category localizer task (“floc”) presents participants with different visual stimulus categories including characters, bodies, faces, places, and objects (Stigliani et al., 2015), and is widely used to identify functional regions selective to different categories in individual subjects’ brains (Stigliani et al., 2015; Margalit et al., 2020; Finzi et al., 2021). More detailed acquisition parameters may be found in the dataset descriptor publication (Allen et al., 2022). We share a minimal BIDS-valid dataset which contains one subject’s data. This, along with code and derivatives for the processes below, may be found at https://osf.io/zf5q7/. We note that the NSD dataset includes preprocessed derivatives, which may be otherwise preferred if analyzing NSD data for consistency with other studies. From the preprocessed data, we only use their precomputed cortical surface reconstructions, since they have been manually corrected by experts. All figures within this manuscript, unless otherwise noted, depict derivatives from the first subject of the NSD dataset (“sub-01”) as processed by the code presented in this guide.


3.1 MRI processing example


3.1.1 Anatomical preprocessing

The code in Code Block 1 invoke sMRIPrep (Esteban et al., 2023)4, a structural MRI preprocessing BIDS application which includes recon-all in the pipeline. The proceeding code will also create the GMWMI from the FreeSurfer outputs. However, we note that these processes can also be performed as part of the fMRI and DWI workflows described later (as well as part of FSuB-Extractor), so it is not necessary to run this separately.


Code Block 1: Code for preprocessing structural MRI data with FreeSurfer and MRtrix3.

	#!/bin/bash -l
	## Define important paths and names
	bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
	workdir="/path/to/scratch/space/" # e.g., /tmp
	smriprep_IMG="/path/to/smriprep_container.img" # Software container
	fs_license="/path/to/freesurfer/license.txt" # FreeSurfer license
	subject="sub-01" # Or replace with your own subject ID
	## Run sMRIPrep
	singularity run --containall -e \
	 # Can also use Docker
	  -B ${bids},${workdir},${fs_license} \
	  ${smriprep_IMG} ${bids} ${bids}/derivatives participant \
	  -w ${workdir} \ # Scratch directory
	 --participant-label ${subject} \ # Remove argument to process everyone in data set
	  --fs-license-file ${fs_license} # FreeSurfer license file
	## Make the GMWMI using MRtrix3
	export SUBJECTS_DIR="${bids}/derivatives/freesurfer/" # Where to find FS outputs
	gmwmi_outdir="${bids}/derivatives/gmwmi_example/${subject}/"
	mkdir -p ${gmwmi_outdir}
	5ttgen hsvs ${SUBJECTS_DIR}/${subject}/ ${gmwmi_outdir}/${subject}_desc-5tt.nii.gz \
	   -scratch ${workdir} # Generate a 5-tissue-type segmentation image
	5tt2gmwmi ${gmwmi_outdir}/${subject}_desc-5tt.nii.gz \
	   ${gmwmi_outdir}/${subject}_desc-5tt.nii.gz # Make GMWMI





3.1.2 DWI processing

After installation, the QSIPrep (Cieslak et al., 2021) command Code Block 2 (based off of version 0.19.1) will perform all of the recommended DWI preprocessing steps, presuming one is working with a BIDS-valid dataset with files needed to run SDC as described earlier. It then creates an anatomically-constrained tractogram with 10 million streamlines which is subsequently segmented into bundles with PyAFQ (Yeatman et al., 2012; Kruper et al., 2021) (Figure 2). Metrics from NODDI and diffusion kurtosis imaging are also calculated. The post-processing reconstruction specification can be found in the associated OSF repository. Additional pre-defined post-processing pipelines are available in QSIPrep as well.5 We refer the reader to item S6 in Supplementary materials for a full description of processing steps performed by QSIPrep.


Code Block 2: Code for pre- and postprocessing DWI data with QSIPrep.

#!/bin/bash -l

## Define important paths

bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset

workdir="/path/to/scratch/space/" # e.g., /tmp

qsiprep_IMG="/path/to/qsiprep_container.img" # Software container

subject="sub-01" # Or replace with your own subject ID

recon_spec="${bids}/code/qsiprep/recon_spec.json" # Post-processing pipeline json specification

## Run QSIPrep

singularity run --containall -e \ # Can also use Docker

   -B ${bids},${workdir} \

    ${qsiprep_IMG} ${bids} ${bids}/derivatives participant \

   --participant-label ${subject} \ # Remove argument to process everyone in data set

    -w ${workdir} --output_resolution 1.25 \ # Upsample data to 1.25mm

    --unringing-method mrdegibbs \ # Can also choose rpg from TORTOISE

   --pepolar-method DRBUDDI \ # Can also choose TOPUP from FSL

   --denoise_method patch2self \ # Can also choose dwidenoise from MRtrix3

   --freesurfer-input ${bids}/derivatives/freesurfer \ # FreeSurfer outputs

   --fs-license-file ${fs_license} \ # FreeSurfer license file

   --recon-spec ${recon_spec} # Reconstruction pipeline name/JSON file
 

While this software is comprehensive and convenient, we note that QSIPrep will rotate its derivatives such that the anterior and posterior commissures are at the same level (commonly referred to as ACPC aligned). Therefore, an fROI derived from a different anatomical space (e.g., FreeSurfer surface or native T1w space) will need to be aligned to the DWI image. The transformation from volumetric native-to-ACPC space is saved by QSIPrep by default. Additionally, in Supplementary materials we share code to calculate the registration between FreeSurfer and QSIPrep-derived anatomical images (Supplementary material S2). The FSuB-Extractor also has the functionality to perform this registration, when provided with a T1w image and brain mask aligned to the DWI derivatives.



3.1.3 fMRI processing

After installation, the example fMRIPrep (Esteban et al., 2019) command in Code Block 3 based off of version 23.2.0a2, will perform recommended fMRI preprocessing steps, presuming one is working with a BIDS-valid dataset with files needed to run SDC as described earlier. We refer the reader to item S6 in Supplementary materials for a full description of processing steps performed by fMRIPrep.


Code Block 3: Code for fMRI preprocessing with fMRIPrep.

	#!/bin/bash -l
	## Define important paths
	bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
	workdir="/path/to/scratch/space/" # e.g., /tmp
	fs_license="/path/to/freesurfer/license.txt" # FreeSurfer license
	fmriprep_IMG="/path/to/fmriprep_container.img" # Software container
	subject="sub-01" # Or replace with your own subject ID
	singularity run --containall -e \ # Can also use Docker
	   -B ${bids},${workdir},${fs_license} \
	   ${fmriprep_IMG} ${bids} ${bids}/derivatives participant \
	   --participant-label ${subject} \ # Remove argument to process everyone in data set
	   -w ${workdir} \ # Scratch / working directory
	   --fs-license-file ${fs_license} \ # FreeSurfer license file
	   --fs-subjects-dir ${bids}/derivatives/freesurfer \ # Where to look for and store FreeSurfer recon-all outputs
	   --output-spaces T1w fsnative MNI152NLin2009cAsym \ # Native space volumetric and surface outputs, but MNI can be useful for quality assurance and visualization
	   --slice-time-ref 0 \ # Some software assume slice time is corrected to TR start
	   --cifti-output 91k \ # If you want common-space surface outputs
	   --project-goodvoxels \ # Don’t project high-variance voxels to surface



If one chooses to smooth the data, the code in Code Block 4 will smooth the BOLD surface outputs at a specified gaussian kernel size.


Code Block 4: Code for smoothing surface fMRI data.

#!/bin/bash -l

bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset

subject="sub-01" # Or replace with your own subject ID

task="floc" # Which task to process

declare -a hemis=("L" "R") # Which hemispheres to process

declare -a runs=("1" "2" "3" "4" "5" "6") # Which runs to process

space="fsnative" # Using native space surface outputs

fwhm="4" # Desired smoothing kernel size (mm FWHM)

# Where to find data

fmriprep_dir=${bids}/derivatives/fmriprep/

freesurfer_dir=${bids}/derivatives/freesurfer/

export SUBJECTS_DIR=${freesurfer_dir} # Tell FreeSurfer where subjects live

# Loop over hemispheres

for hemi in ${hemis[@]}; do

  if ["$hemi" == "L" ];

       then hemi_fs="lh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"

	  elif [ "$hemi" == "R" ];
	       then hemi_fs="rh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"
	  fi;
	   # Loop over runs
	   for run in ${runs[@]}; do
	      # Define input and output names
	gii_in="${fmriprep_dir}/${subject}/func/${subject}_task-${task}_run-${run}_hemi-${hemi}_space-${space}_bold.func.gii" # Input file name
	      gii_out=${gii_in/_bold/_desc-smoothed_bold} # Add smoothed label for output name
	    # Perform the smoothing
	    mris_fwhm --i ${gii_in} --o ${gii_out} --so \
	       --fwhm ${fwhm} --subject ${subject} --hemi ${hemi_fs}
	  done
	done



We present a code example that uses Nilearn (Abraham et al., 2014) to run GLMs on multiple runs of surface data, producing run-specific and session-averaged statistical maps. Due to its length, this function is not presented in the main text but can be found in Supplementary material S3 and the associated OSF repository.

As an example of an automated thresholding workflow, which numerically thresholds a statistical map to determine fROIs, the code in Code Block 5 extracts the 10% of vertices with the highest character-selective contrast z-score in the left mid-occipitotemporal sulcus (mOTS). This can be adapted for other search spaces and threshold values. This code requires FreeSurfer and Connectome Workbench6 to be installed.


Code Block 5: Workflow for statistically thresholding functional ROIs.

#!/bin/bash -l

## Define important paths and parameters

bids="/path/to/nsd_bids/" # Replace with your BIDS directory

freesurfer_dir=${bids}/derivatives/freesurfer/ # FreeSurfer outputs

export SUBJECTS_DIR=${freesurfer_dir} # Tell FreeSurfer where subjects live

l1_gifti=${bids}/derivatives/l1_gifti/ # Where statmaps from surface GLM code are

subject="sub-01" # Subject name

hemi="L" # Hemisphere name in fMRIPrep naming convention

space="fsnative" # Space of statmaps

contrast="chratactersGTother" # GLM contrast name

	stat="z" # Which stat to threshold
	smoothed_label="desc-smoothed_" # (leave blank if not smoothing)
	outdir=${bids}/derivatives/threshold_fROIs/${subject} # Where outputs will go
	mkdir -p ${outdir} # Make the output directory
	region_label="/path/to/lh.ots.label" # A FS label file that defines the searchspace
	label_name="ots" # A descriptive name for the label
	value_percentile="90" # Percentile to threshold statistic
	# Locate the statistical map
	statmap=${l1_gifti}/${subject}/${subject}_hemi-${hemi}_space-${space}_contrast-${contrast}_stat-${stat}_${smoothed_label}
	statmap.func.gii # Path to statmap
	## Get hemisphere name in FreeSurfer naming convention
	if [ "$hemi" == "L" ];
	  then hemi_fs="lh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"
	  elif [ "$hemi" == "R" ];
	  then hemi_fs="rh"; # Hemi name in FreeSurfer conventions; "lh" or "rh"
	fi;
	## Convert FS label to GIFTI
	region_gii=${outdir}/${subject}_hemi-${hemi}_space-${space}_desc-${label_name}_roi.func.gii
	mris_convert --label ${region_label} ${label_name} \
	    ${freesurfer_dir}/${subject}/surf/${hemi_fs}.white ${region_gii}
	## Mask statmap by label
	masked_statmap=${outdir}/${subject}_hemi-${hemi}_space-${space}_contrast-${contrast}_stat-${stat}_desc-${label_name}_desc-masked_roi.func.gii
	 # Output variable for next command
	wb_command -metric-mask ${statmap} ${region_gii} ${masked_statmap}
	## Find threshold corresponding to top X% of values in ROI, save value as "thresh"
	wb_command -metric-stats ${statmap} -roi ${region_gii} -percentile ${value_percentile} | read thresh
	echo "${value_percentile} percentile of ${stat} statistic within ${hemi} ${label_name} is ${thresh}"
	## Make a binary mask of values above that threshold
	# Output variable for next command
	thresholded_statmap=${outdir}/${subject}_hemi-${hemi}_space-${space}_contrast-${contrast}_stat-${stat}_desc-${label_name}_desc-masked_desc-thresholded_roi.func.gii
	# Binarize and threshold the statmap
	wb_command -metric-math "(statmap > ${thresh})" ${thresholded_statmap} \
	    -var statmap ${masked_statmap}






3.2 The FSuB-Extractor

The FSuB-Extractor7 is a flexible open-source toolbox for extracting and analyzing FSuBs. By the time one is ready to run the software, one should have at least the following data, which can be produced following the instructions above:

1. FreeSurfer recon-all outputs derived from the subject’s anatomical image(s).

2. A tractogram object (either a specific bundle or whole-brain) in .tck or .trk format.

3. One or two fROIs in .nii.gz or FreeSurfer .gii/.label/.annot formats.

The software provides a general framework to identify the white matter connections of a given gray matter region, while also providing flexibility for different analysis paths. For example, users can decide how to define their fROIs and also which software to use when segmenting bundles [e.g., AFQ, TractSeg, XTRACT, DSI-Studio (Wasserthal et al., 2018; Warrington et al., 2020; Kruper et al., 2021)]. By default, all inputs are presumed to be aligned to one another, but one can optionally supply a registration between the FreeSurfer outputs and DWI outputs if they have different alignments (QSIPrep aligns outputs to the ACPC line, for example).

Full installation, usage instructions, and documentation of inputs and outputs can be found on the wiki in the GitHub repository.8 Any bugs or questions can be addressed by posting an issue in the software repository.9 Below, we outline the primary workflow of the FSuB-Extractor and provide example code (Code Block 6) to work with outputs of the processes detailed above. Additionally, in Supplementary materials, we validate our software by showing how it achieves comparable results to custom in-house FSuB code used in Kubota et al. (2023) (Supplementary material S5).

The FSuB-Extractor automates the following steps (Figure 4):

1. Gray Matter White Matter Interface (GMWMI) Creation: The GMWMI represents the border between white and gray matter. To make a GMWMI, a 5 tissue-type (5tt) image is first created with MRtrix3’s 5ttgen using the Hybrid Surface Volume Segmentation algorithm (Smith et al., 2020), which incorporates FreeSurfer surface reconstructions. From this image, a probabilistic GMWMI is extracted with 5tt2gmwmi, which is binarized at an adjustable threshold. A separately made 5tt image may also be passed into the function to expedite this process.

2. fROI Projection: In order to intersect fROIs in the gray matter and white matter endpoints, fROIs are projected onto the GMWMI. While one could simply dilate fROIs until they reach the GMWMI, such radial expansion will overestimate the size of the fROI. Projection to the cortical surface is done with FreeSurfer’s mri_vol2surf (this is only applied for volumetric fROIs and is skipped for surface-based fROIs). The resulting mask is projected into the GMWMI and converted back to a NIFTI file for streamline matching with mri_surf2vol. Parameters of projection can be set in the command line.

3. fROI-GMWMI Intersection. The streamline search space is defined as the intersection of the projected fROIs and GMWMI. This process is performed by MRtrix3’s mrcalc by multiplying the two masks together.

4. Converting .trk Streamlines to .tck (as needed): For compatibility with MRtrix3 tools, input streamlines are converted to .tck.

5. Streamline-fROI matching: A combination of MRtrix3 commands, tck2connectome and connectome2tck, are used for streamline filtering and creating the FSuB. All of the streamline matching criteria options that MRtrix3 provides (e.g., a radial search from the streamline endpoint or a forward search) can be used, with parameters that can be defined in the command line. Considerations for these options are discussed in (Yeh et al., 2019), and our default value of a 2 mm radial search is adopted from that article. The streamlines matched to the fROI(s) are saved out as the FSuB. If two fROIs are input to the FSuB-Extractor, streamlines that connect the two fROIs are saved out as the FSuB.

6. Visualization: A visualization of the fROI(s), original bundle, and FSuB, can be saved out, with image parameters (e.g., fROI and bundle colors) adjustable at the command line. This visualization can also be interactive, enabling the user to examine the results from all angles.

[image: Diagram illustrating a three-step neuroimaging process. Step 1: "Bundle" involves a segmented tractogram. Step 2: "fROIs" depicts volumetric and surface functional regions of interest with processing steps using FreeSurfer tools. Step 3: "FreeSurfer recon-all" shows cortical surface reconstruction and gray/white matter interfaces using MRtrix3. The final output, labeled "FSuB," highlights processed brain regions in red and yellow.]

FIGURE 4
 FSuB-Extractor workflow (Code Block 6). The left, middle, and right columns track how DWI, fMRI, and anatomical data are used in the workflow, respectively. The depicted workflow showcases the most basic functionality of the software. The final FSuB is denoted by the white streamlines, within the larger original bundle in red.


All primary outputs and intermediate files are saved out in a BIDS-like style, which will evolve as connectivity derivatives naming conventions are codified.

The following code will run the FSuB-Extractor on data produced by code in this manuscript. Here, we use FSuB-Extractor to identify the sub-bundle of the arcuate fasciculus that connects to mOTS-words, a region that responds more to words compared to other categories of stimuli (defined in Section 2.7.4).


Code Block 6: Example FSuB-Extractor command.

#!/bin/bash -l

## Define important paths and parameters

bids="/path/to/nsd_bids/" # Replace with your BIDS directory

subject="sub-01" # Subject name as found in FreeSurfer subjects directory

freesurfer_dir=${bids}/derivatives/freesurfer/ # FreeSurfer outputs

qsirecon_dir=${bids}/derivatives/qsirecon/ # DWI post-processing outputs

tract="${qsirecon_dir}/${subject}/dwi/${subject}_space-T1w_desc-preproc/clean_bundles/${subject}_space-T1w_desc-preproc_dwi_space-RASMM_model-probCSD_algo-AFQ_desc-ARCL_tractography.trk"# PyAFQ Left Arcuate Fasciculus, in this example

tract_name="LeftArcuate" # Descriptive tract name for file output names

drawn_fROIs_dir=${bids}/derivatives/drawn_fROIs/

roi1="${drawn_fROIs_dir}/${subject}/${subject}_hemi-L_space-fsnative_contrast-charactersGTother_desc-mOTSwords_roi.func.gii"

# A binary fROI on the FreeSurfer surface

roi1_name="mOTS-words" # A descriptive ROI name for file output names

hemi="lh" # FreeSurfer hemi name corresponding to the ROI

out_dir=${bids}/derivatives/fsub_extractor/

xform_file="/path/to/sub-01_from-FS_to-T1wACPC_mode-image_xfm.txt" # Transformation matrix from Freesurfer to DWI data (from script in supplementary materials S2)

### Run the FSuB-Extractor

	extractor \
	  --subject $subject \
	  --tract $tract \
	  --tract-name $tract_name \
	  --roi1 $roi1 \
	  --roi1-name $roi1_name \
	  --hemi $hemi \
	  --out-dir $out_dir \
	  --fs-dir $freesurfer_dir \
	  --fs2dwi $xform_file





3.3 Validation

To validate the FSuB-Extractor, we reproduced the analysis pipeline from a previous study (Kubota et al., 2023), that used the FSuB approach with a custom MATLAB-based implementation that was originally presented in Grotheer et al. (2019). The study identified word and face-selective fROIs in individual children (n = 27) and adult (n = 28) participants and identified connections of each of these regions. To validate the software package, we used the same bundles, functional ROIs, and streamline-to-ROI association parameters (radial search with a search distance of 3 mm) that were defined in the original paper, and then used FSuB-Extractor to identify the connections of each of the functional ROIs.

We used FSuB-Extractor to identify the connections of each functional ROI and then defined the connections of each functional ROI as a “connectivity profile” or the percentage of streamlines associated with five bundles (the left arcuate, posterior arcuate, ventral occipital, inferior longitudinal, and inferior fronto-occipital fasciuli), as was done in the original paper. The original paper tested whether white matter connections of high-level visual areas were organized by stimulus-selective category or anatomical cytoarchitecture. In high-level visual cortex, there is not a one-to-one mapping between cytoarchitecture and category-selectivity (Weiner et al., 2017). mFus-faces and pFus-faces are both selective for faces, but located in different cytoarchitectonic areas (fusiform gyrus 4 (FG4) and fusiform gyrus 2 (FG2) respectively). Similarly, mOTS-words and pOTS-words are both selective for words and are located in different cytoarchitectonic areas (FG4 and FG2 respectively). Cytoarchitectonic area FG4 contains both a face- and a word-selective region (mFus-faces and mOTS-words), and cytoarchitectonic area FG2 contains both a face- and a word-selective region (pFus-faces and pOTS-words). In the original paper, it was found that white matter connections are more similar for regions located in the same cytoarchitectonic area, compared to regions with the same category selectivity. The connectivity profiles generated with FSuB-Extractor (Figure 5, left) reproduce these results (Figure 5, right). To quantify the similarity between connectivity profiles, we then calculated the correlation between the original connectivity profile and that generated using FSuB-Extractor for each fROI and each participant. We found that connectivity profiles were highly correlated using the two methods (mean correlation r = 0.99, standard deviation = 0.003). These results suggest that FSuB-Extractor is able to reproduce previous findings using the FSuB approach, and provides improvements as the code is open source, flexible, and easy to use.

[image: Brain scans and bar graphs compare pathway percentages in children and adults using FSuB-Extractor and Original methods. Four pathways (mFus-faces, mOTS-words, pFus-faces, pOTS-words) are shown with color-coded bars representing IFOF, ILF, AF, pAF, and VOF. Different numbers of subjects (n) are noted for each group.]

FIGURE 5
 Validation of FSuB-Extractor. The FSuB-Extractor was used to reproduce findings from Kubota et al. (2023), looking at connectivity profiles of functionally defined sub-bundles in the human ventral visual stream among children and adults. The left half shows the results of the FSub-Extractor automated pipeline. The right half shows the original published data from Kubota et al. (2023). The brains depict FSuBs in a representative 6-year-old child participant for four functional fROIs (face selective: mFus-faces and pFus-faces; Word-selective: mOTS-words and pOTS-words). Acronyms: AF, Arcuate fasciculus; pAF, Posterior arcuate fasciculus; IFOF, Inferior fronto-occipital fasciculus; ILF, Inferior longitudinal fasciculus; VOF, ventral occipital fasciculus; mFus-faces, Mid-fusiform face-selective region; mOTS-words, mid-occipitotemporal sulcus word-selective region; pFus-faces, posterior fusiform face-selective region; pOTS-words, posterior occipitotemporal sulcus word-selective region.





4 Discussion

The present article suggests best practices for collecting and processing neuroimaging data for FSuB extraction, as well as provides a walkthrough of how to use a dedicated FSuB extraction software toolbox. Our toolbox is flexible, accepting multiple file types for gray matter fROIs and white matter tractograms. By not presuming any explicit organization for inputs, the user is not restricted to certain processing tools and can feasibly use their own data or publicly available preprocessed data. Over the past two decades, fMRI studies have identified regions in the cortex specialized for various cognitive functions (Kanwisher, 2010). Individual fascicles of the brain, on the other hand, are large and likely span multiple functional networks. The FSuB method will enable researchers to gain increased spatial precision in identifying the white matter involved in particular functional tasks (for a review see Grotheer et al., 2022). We hope our guide and software will facilitate the adoption of this approach, leading to new advances in precision neuroscience.

Aside from the inherent limitations of tractography (Bastiani et al., 2012; Thomas et al., 2014; Reveley et al., 2015; Maier-Hein et al., 2017) and fMRI (Logothetis, 2008), the practice of identifying FSuBs requires additional consideration because it relies on good registration between functional and diffusion data, sufficiently dense tractograms, and spatial proximity between functional regions and streamline endpoints. The suggestions in the present article will help optimize the approach. However, it is still essential that users have checks for quality assurance at each stage in their pipeline. In addition, users must take caution in their interpretation of results. For example, it is unlikely that very small FSuBs (e.g., a single streamline) should be interpreted as meaningful. Currently, the FSuB approach and the code in the present guide are best suited to cases where participants have high-quality diffusion and task-based functional MRI and a good surface reconstruction using FreeSurfer. This means that the software is suitable to use in typical, developmental, and clinical cohorts. However, in cases of lesions or atypical tissue, automatic segmentation methods may fail, which can hinder the validity of results. Due to the current state of the art of surface-based approaches in fMRI and DWI, the FSuB-Extractor is primarily limited to cortical applications. We hope to provide support for cerebellar and subcortical regions in the future. As the BIDS standards for derivatives change, we also plan to adapt our output naming conventions accordingly. We encourage any interested practitioners to contribute bug reports, feature requests, and code to help the FSuB-Extractor become more robust.

We note that our suggestions for handling data are summarized from prior empirical work that rigorously examined the impact of analysis parameters on processing outcomes (Glasser et al., 2013; Daducci et al., 2014; Canales-Rodríguez et al., 2019; Esteban et al., 2019; Yeh et al., 2019; Grisot et al., 2021; Maffei et al., 2022). Future work should examine the specific impacts of MRI acquisition and processing choices on FSuB outcomes. We hope that high-throughput analyses enabled by the FSuB-Extractor, coupled with future large datasets with sufficiently high-quality multimodal data and specific functional localization, will enable this kind of comprehensive parameter analysis.

Throughout the present article, fMRI has been the method to probe function in the brain. While fMRI is a ubiquitous tool in cognitive and perceptual neuroscience, other tools, such as positron emission tomography (PET), magnetoencephalography (MEG), and electroencephalography (EEG) are also commonly used. Although it has not been used for a FSuB purposes yet, an fROI derived from PET should work as long as the PET image can be successfully coregistered to a T1w image. MEG and EEG would not be recommended, as an fROI is hard to anatomically define due to ambiguous source localization.

An interesting potential application of the FSuB approach is in clinical practice. Functional neuroanatomy is an important consideration in surgical planning (that is, to target or preserve specific connections) and deep brain stimulation (modulating a behavior by stimulating a relevant bundle) (Essayed et al., 2017). However, functional MRI is rarely collected in pre-surgical patients, and DWI protocols often fall below the standards suggested in the present manuscript, which limits tractography’s utility (Essayed et al., 2017). Future work should evaluate the effectiveness of the FSuB approach on routine clinical data, with the ultimate goal of increasing the precision of surgical or stimulation targets or informing standards of clinical MRI collection.

One may also want to use the FSuB approach to identify the functional sub-bundles longitudinally. Importantly, FSuBs can be affected by both changes in a fROI location and changes in the white matter architecture. Therefore, it may be difficult to ascribe precise causes to observed changes in a FSuB over time. One remedy is to align longitudinal data to a within-subject template (Reuter et al., 2012). Using the functional data alone, it is possible to see whether the fROI is changing in size or location across timepoints. If the fROI is changing over time, it may result in differences in the underlying FSuB (and such developmental changes may be of interest by themselves without considering white matter). In order to identify changes in the white matter alone, it may be useful to hold the fROI constant, using a fROI from a single time point and combining it with diffusion data across sessions. For example, using a fROI from the final acquisition it is possible to “look back in time” and see how the white matter connections of this given region change across the study.

We clarify that our software is not the first or only way to combine DWI and fMRI images. Other approaches, such as track-weighted functional connectivity (Calamante et al., 2013) and the Functionnectome (Nozais et al., 2021, 2023), integrate fMRI derivatives with the underlying white matter architecture to draw valuable statistical inferences about functional neuroanatomy. Since these tools are primarily used for voxel- or region-wise between-subject inferences, these approaches necessitate data being in a common space or using a single normative set of white matter anatomical priors for inter-subject validity. What makes the FSuB approach unique in this respect is that each individual’s output is informed by participant-specific functional and anatomical patterns. The FSuB approach is particularly well suited for investigating functionally-targeted white matter micro- and macrostructural properties at the bundle level, while the aforementioned alternatives could be more appropriate for voxel-by-voxel inferences.

A topic that has been garnering increasing attention in the field of functional neuroanatomy is the white matter BOLD signal (for reviews, see Gawryluk et al., 2014; Gore et al., 2019). Despite this signal often being considered noise and regressed out during fMRI modeling, studies have suggested that the white matter BOLD signal is similarly time-locked to stimulus within task-relevant white matter pathways (Wu et al., 2017; Ding et al., 2018). Additionally, similar to DWI signal, white matter BOLD correlation patterns are anisotropic, in that a voxel’s BOLD time series will correlate more with an adjacent voxel in the same white matter pathway compare to an adjacent voxel in a different pathway (Ding et al., 2013). This pattern has been used to create BOLD directionality tensors (Ding et al., 2013), analogous to the diffusion tensor, and has even been extended to more complex models (Schilling et al., 2019b), analogous to how fiber orientation distributions are derived. These anisotropic representations of white matter BOLD have been used to recreate white matter pathways, with modest validity compared to conventional DWI tractography (Schilling et al., 2019b). Further methodological exploration into the white matter BOLD signal is warranted to characterize functional and anatomical specificity, and widespread adoption of white matter BOLD as a tool may be predicated on technological advances to effectively resolve the noisy signal. However, this approach has the potential to directly define FSuBs in white matter using fMRI, obviating the assumption that white matter pathways connecting to fROIs on the cortical surface must support the given task.



5 Conclusion

A better understanding of functional neuroanatomy can shed insights into large-scale neural networks and fine-grained cortical specialization that collectively orchestrate cognitive and perceptual processes in the brain. Multimodal neuroimaging can be used to resolve white matter at the level of functional sub-components, improving the anatomical and conceptual precision of brain structure–function-behavior studies. Researchers should be aware of methodological choices that impact the feasibility of this approach. We hope our guide, tutorial, and software will facilitate adoption of FSuB analyses.



Data availability statement

The Natural Scenes Dataset (Allen et al., 2022) may be downloaded following directions at https://naturalscenesdataset.org/. Code displayed in this guide and a subset of data to run the analyses are available at https://osf.io/zf5q7/. Source code and installation instructions for the FSuB-Extractor may be found at https://github.com/smeisler/fsub_extractor.



Ethics statement

The studies involving humans were approved by University of Minnesota Institutional Review Board. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.



Author contributions

SM: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. EK: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. MG: Conceptualization, Methodology, Supervision, Writing – review & editing. JG: Supervision, Writing – review & editing. KG-S: Conceptualization, Methodology, Supervision, Writing – review & editing.



Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. SM was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant number 1F31HD111139) and National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders (grant number T32DC000038, awarded to G. Géléoc); EK was supported by the National Science Foundation Graduate Research Fellowship (grant number DGE-1656518); MG was supported by “The Adaptive Mind,” funded by the Excellence Program of the Hessian Ministry of Higher Education, Science, Research and Art; KGS was supported by the National Eye Institute (grant number R01EY022318).



Acknowledgments

The FSuB-Extractor was conceived of at Neurohackademy 2022. The authors thank Brian Wandell for helpful discussions on the manuscript.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnins.2024.1385847/full#supplementary-material



Footnotes

1   
https://github.com/PennLINC/qsiprep


2   
https://github.com/MASILab/Synb0-DISCO


3   
https://github.com/nipreps/fmriprep


4   
https://www.nipreps.org/smriprep/


5   
https://qsiprep.readthedocs.io/en/latest/reconstruction.html


6   
https://www.humanconnectome.org/software/connectome-workbench


7   
https://github.com/smeisler/fsub_extractor


8   
https://github.com/smeisler/fsub_extractor/wiki


9   
https://github.com/smeisler/fsub_extractor/issues




References
	 Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., et al. (2014). Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8:71792. doi: 10.3389/fninf.2014.00014 
	 Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Prince, J. S., Dowdle, L. T., et al. (2022). A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat. Neurosci. 25, 116–126. doi: 10.1038/s41593-021-00962-x 
	 Andersson, J. L. R., Skare, S., and Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888. doi: 10.1016/S1053-8119(03)00336-7 
	 Andersson, J. L. R., and Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078. doi: 10.1016/j.neuroimage.2015.10.019 
	 Assaf, Y., Freidlin, R. Z., Rohde, G. K., and Basser, P. J. (2004). New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52, 965–978. doi: 10.1002/mrm.20274

	 Basser, P. J., Mattiello, J., and LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267. doi: 10.1016/S0006-3495(94)80775-1 
	 Bastiani, M., Shah, N. J., Goebel, R., and Roebroeck, A. (2012). Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage 62, 1732–1749. doi: 10.1016/j.neuroimage.2012.06.002

	 Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042 
	 Bressler, S. L., and Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290. doi: 10.1016/j.tics.2010.04.004

	 Brodoehl, S., Gaser, C., Dahnke, R., Witte, O. W., and Klingner, C. M. (2020). Surface-based analysis increases the specificity of cortical activation patterns and connectivity results. Sci. Rep. 10:5737. doi: 10.1038/s41598-020-62832-z 
	 Bullock, D. N., Hayday, E. A., Grier, M. D., Tang, W., Pestilli, F., and Heilbronner, S. R. (2022). A taxonomy of the brain’s white matter: twenty-one major tracts for the 21st century. Cereb. Cortex 32, 4524–4548. doi: 10.1093/cercor/bhab500 
	 Calamante, F., Masterton, R. A. J., Tournier, J.-D., Smith, R. E., Willats, L., Raffelt, D., et al. (2013). Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural–functional connections in the brain. NeuroImage 70, 199–210. doi: 10.1016/j.neuroimage.2012.12.054

	 Canales-Rodríguez, E. J., Legarreta, J. H., Pizzolato, M., Rensonnet, G., Girard, G., Patino, J. R., et al. (2019). Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion MRI. NeuroImage 184, 140–160. doi: 10.1016/j.neuroimage.2018.08.071 
	 Chandio, B. Q., Risacher, S. L., Pestilli, F., Bullock, D., Yeh, F.-C., Koudoro, S., et al. (2020). Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Sci. Rep. 10:17149. doi: 10.1038/s41598-020-74054-4 
	 Chen, D. Q., Dell’Acqua, F., Rokem, A., Garyfallidis, E., Hayes, D. J., Zhong, J., et al. (2019). Diffusion weighted image co-registration: investigation of best practices. BioRxiv. :864108. doi: 10.1101/864108

	 Cieslak, M., Cook, P. A., He, X., Yeh, F.-C., Dhollander, T., Adebimpe, A., et al. (2021). QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nat. Methods 18, 775–778. doi: 10.1038/s41592-021-01185-5 
	 Daducci, A., Canales-Rodriguez, E. J., Descoteaux, M., Garyfallidis, E., Gur, Y., Lin, Y. C., et al. (2014). Quantitative comparison of reconstruction methods for intra-voxel Fiber recovery from diffusion MRI. IEEE Trans. Med. Imaging 33, 384–399. doi: 10.1109/TMI.2013.2285500 
	 Daducci, A., Dal Palù, A., Lemkaddem, A., and Thiran, J.-P. (2015). COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34, 246–257. doi: 10.1109/TMI.2014.2352414 
	 Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9, 179–194. doi: 10.1006/nimg.1998.0395

	 de Faria, O., Pivonkova, H., Varga, B., Timmler, S., Evans, K. A., and Káradóttir, R. T. (2021). Periods of synchronized myelin changes shape brain function and plasticity. Nat. Neurosci. 24, 1508–1521. doi: 10.1038/s41593-021-00917-2

	 Ding, Z., Huang, Y., Bailey, S. K., Gao, Y., Cutting, L. E., Rogers, B. P., et al. (2018). Detection of synchronous brain activity in white matter tracts at rest and under functional loading. Proc. Natl. Acad. Sci. 115, 595–600. doi: 10.1073/pnas.1711567115 
	 Ding, Z., Newton, A. T., Xu, R., Anderson, A. W., Morgan, V. L., and Gore, J. C. (2013). Spatio-temporal correlation tensors reveal functional structure in human brain. PLoS One 8:e82107. doi: 10.1371/journal.pone.0082107 
	 Dougherty, R. F., Ben-Shachar, M., Bammer, R., Brewer, A. A., and Wandell, B. A. (2005). Functional organization of human occipital-callosal fiber tracts. Proc. Natl. Acad. Sci. 102, 7350–7355. doi: 10.1073/pnas.0500003102 
	 Dyrby, T. B., Lundell, H., Burke, M. W., Reislev, N. L., Paulson, O. B., Ptito, M., et al. (2014). Interpolation of diffusion weighted imaging datasets. NeuroImage 103, 202–213. doi: 10.1016/j.neuroimage.2014.09.005 
	 Essayed, W. I., Zhang, F., Unadkat, P., Cosgrove, G. R., Golby, A. J., and O’Donnell, L. J. (2017). White matter tractography for neurosurgical planning: a topography-based review of the current state of the art. NeuroImage: Clin. 15, 659–672. doi: 10.1016/j.nicl.2017.06.011

	 Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4 
	 Esteban, O., Markiewicz, C. J., Blair, R., Poldrack, R. A., and Gorgolewski, K. J. (2023) sMRIPrep: Structural MRI PREProcessing workflows. doi: 10.5281/zenodo.8253909

	 Fadnavis, S., Batson, J., and Garyfallidis, E. (2020). “Patch2Self: Denoising diffusion MRI with self-supervised learning” in Advances in neural information processing systems (Curran Associates, Inc), 16293–16303. Available at: https://papers.nips.cc/paper/2020/hash/bc047286b224b7bfa73d4cb02de1238d-Abstract.html

	 Fandakova, Y., and Hartley, C. A. (2020). Mechanisms of learning and plasticity in childhood and adolescence. Dev. Cogn. Neurosci. 42:100764. doi: 10.1016/j.dcn.2020.100764 
	 Fields, R. D. (2008). White matter matters. Sci. Am. 298, 54–61. doi: 10.1038/scientificamerican0308-54

	 Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767. doi: 10.1038/nrn4023 
	 Filley, C. M., and Fields, R. D. (2016). White matter and cognition: making the connection. J. Neurophysiol. 116, 2093–2104. doi: 10.1152/jn.00221.2016 
	 Finzi, D., Gomez, J., Nordt, M., Rezai, A. A., Poltoratski, S., and Grill-Spector, K. (2021). Differential spatial computations in ventral and lateral face-selective regions are scaffolded by structural connections. Nat. Commun. 12:2278. doi: 10.1038/s41467-021-22524-2 
	 Fischl, B. (2012). FreeSurfer. NeuroImage 62, 774–781. doi: 10.1016/j.neuroimage.2012.01.021 
	 Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., and Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210. doi: 10.1002/hbm.460020402

	 Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., et al. (2014). Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8:8. doi: 10.3389/fninf.2014.00008 
	 Garyfallidis, E., Côté, M.-A., Rheault, F., Sidhu, J., Hau, J., Petit, L., et al. (2018). Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage 170, 283–295. doi: 10.1016/j.neuroimage.2017.07.015 
	 Gawryluk, J. R., Mazerolle, E. L., and D’Arcy, R. C. N. (2014). Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front. Neurosci. 8:239. doi: 10.3389/fnins.2014.00239 
	 Geschwind, N. (1965). Disconnexion syndromes in animals and man. Brain 88, 585–644. doi: 10.1093/brain/88.3.585 
	 Girard, G., Rafael-Patiño, J., Truffet, R., Aydogan, D. B., Adluru, N., Nair, V. A., et al. (2023). Tractography passes the test: results from the diffusion-simulated connectivity (disco) challenge. NeuroImage 277:120231. doi: 10.1016/j.neuroimage.2023.120231

	 Girard, G., Whittingstall, K., Deriche, R., and Descoteaux, M. (2014). Towards quantitative connectivity analysis: reducing tractography biases. NeuroImage 98, 266–278. doi: 10.1016/j.neuroimage.2014.04.074 
	 Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E., and Van Essen, D. C. (2014). Trends and properties of human cerebral cortex: correlations with cortical myelin content. NeuroImage 93, 165–175. doi: 10.1016/j.neuroimage.2013.03.060 
	 Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124. doi: 10.1016/j.neuroimage.2013.04.127 
	 Gomez, J., Pestilli, F., Witthoft, N., Golarai, G., Liberman, A., Poltoratski, S., et al. (2015). Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85, 216–227. doi: 10.1016/j.neuron.2014.12.027

	 Gore, J. C., Li, M., Gao, Y., Wu, T.-L., Schilling, K. G., Huang, Y., et al. (2019). Functional MRI and resting state connectivity in white matter – a mini-review. Magn. Reson. Imaging 63, 1–11. doi: 10.1016/j.mri.2019.07.017

	 Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M., Chakravarty, M. M., et al. (2017). BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput. Biol. 13:e1005209. doi: 10.1371/journal.pcbi.1005209 
	 Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data. 3:160044. doi: 10.1038/sdata.2016.44 
	 Grisot, G., Haber, S. N., and Yendiki, A. (2021). Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. NeuroImage 239:118300. doi: 10.1016/j.neuroimage.2021.118300 
	 Grotheer, M., Kubota, E., and Grill-Spector, K. (2022). Establishing the functional relevancy of white matter connections in the visual system and beyond. Brain Struct. Funct. 227, 1347–1356. doi: 10.1007/s00429-021-02423-4

	 Grotheer, M., Zhen, Z., Lerma-Usabiaga, G., and Grill-Spector, K. (2019). Separate lanes for adding and reading in the white matter highways of the human brain. Nat. Commun. 10:3675. doi: 10.1038/s41467-019-11424-1 
	 Huang, S. Y., Tian, Q., Fan, Q., Witzel, T., Wichtmann, B., McNab, J. A., et al. (2020). High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain. Brain Struct. Funct. 225, 1277–1291. doi: 10.1007/s00429-019-01961-2 
	 Irfanoglu, M. O., Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J., and Pierpaoli, C. (2015). DR-BUDDI (diffeomorphic registration for blip-up blip-down diffusion imaging) method for correcting echo planar imaging distortions. NeuroImage 106, 284–299. doi: 10.1016/j.neuroimage.2014.11.042 
	 Irfanoglu, M. O., Nayak, A., Jenkins, J., and Pierpaoli, C. (2017) TORTOISE v3: improvements and new features of the NIH diffusion MRI processing pipeline. In: Program and proceedings of the ISMRM 25th annual meeting and exhibition, Honolulu, HI, USA, 2017 p.

	 Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith, S. M. (2012). FSL. NeuroImage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

	 Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., and Sijbers, J. (2014). Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426. doi: 10.1016/j.neuroimage.2014.07.061 
	 Johansen-Berg, H. (2010). Behavioural relevance of variation in white matter microstructure. Curr. Opin. Neurol. 23, 351–358. doi: 10.1097/WCO.0b013e32833b7631

	 Kanwisher, N. (2010). Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. 107, 11163–11170. doi: 10.1073/pnas.1005062107 
	 Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: a module in human Extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311. doi: 10.1523/JNEUROSCI.17-11-04302.1997 
	 Kellner, E., Dhital, B., Kiselev, V. G., and Reisert, M. (2016). Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581. doi: 10.1002/mrm.26054

	 Kruper, J., Yeatman, J. D., Richie-Halford, A., Bloom, D., Grotheer, M., Caffarra, S., et al. (2021). Evaluating the reliability of human brain white matter Tractometry. Apert. Neuro. 2021:10.52294/e6198273-b8e3-4b63-babb-6e6b0da10669. doi: 10.52294/e6198273-b8e3-4b63-babb-6e6b0da10669 
	 Kubota, E., Grotheer, M., Finzi, D., Natu, V. S., Gomez, J., and Grill-Spector, K. (2023). White matter connections of high-level visual areas predict cytoarchitecture better than category-selectivity in childhood, but not adulthood. Cereb. Cortex 33, 2485–2506. doi: 10.1093/cercor/bhac221

	 Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: scientific containers for mobility of compute. PLoS One 12:e0177459. doi: 10.1371/journal.pone.0177459 
	 Lee, H.-H., Novikov, D. S., and Fieremans, E. (2021). Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI. Magn. Reson. Med. 86, 2733–2750. doi: 10.1002/mrm.28830

	 Leemans, A., and Jones, D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349. doi: 10.1002/mrm.21890 
	 Lerma-Usabiaga, G., Carreiras, M., and Paz-Alonso, P. M. (2018). Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc. Natl. Acad. Sci. 115, E9981–E9990. doi: 10.1073/pnas.1803003115

	 Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature 453, 869–878. doi: 10.1038/nature06976 
	 Maffei, C., Girard, G., Schilling, K. G., Aydogan, D. B., Adluru, N., Zhylka, A., et al. (2022). Insights from the IronTract challenge: optimal methods for mapping brain pathways from multi-shell diffusion MRI. NeuroImage 257:119327. doi: 10.1016/j.neuroimage.2022.119327 
	 Maffei, C., Lee, C., Planich, M., Ramprasad, M., Ravi, N., Trainor, D., et al. (2021). Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data. NeuroImage 245:118706. doi: 10.1016/j.neuroimage.2021.118706 
	 Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong, J., et al. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8:1349. doi: 10.1038/s41467-017-01285-x 
	 Margalit, E., Jamison, K. W., Weiner, K. S., Vizioli, L., Zhang, R.-Y., Kay, K. N., et al. (2020). Ultra-high-resolution fMRI of human ventral temporal cortex reveals differential representation of categories and domains. J. Neurosci. 40, 3008–3024. doi: 10.1523/JNEUROSCI.2106-19.2020 
	 Mayer, A. R., Ling, J. M., Dodd, A. B., Shaff, N. A., Wertz, C. J., and Hanlon, F. M. (2019). A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data. Hum. Brain Mapp. 40, 3843–3859. doi: 10.1002/hbm.24635 
	 Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux J. 239:2.

	 Montez, D. F., Van, A. N., Miller, R. L., Seider, N. A., Marek, S., et al. (2023). Using synthetic MR images for distortion correction. Dev. Cogn. Neurosci. 60:101234. doi: 10.1016/j.dcn.2023.101234 
	 Murphy, K., Bodurka, J., and Bandettini, P. A. (2007). How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. NeuroImage 34, 565–574. doi: 10.1016/j.neuroimage.2006.09.032 
	 Nieto-Castañón, A., and Fedorenko, E. (2012). Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. NeuroImage 63, 1646–1669. doi: 10.1016/j.neuroimage.2012.06.065 
	 Nordt, M., Gomez, J., Natu, V. S., Rezai, A. A., Finzi, D., Kular, H., Zheng, A., et al. (2021). Cortical recycling in high-level visual cortex during childhood development. Nat. Hum. Behav. 5, 1686–1697. doi: 10.1038/s41562-021-01141-5 
	 Nozais, V., Forkel, S. J., Foulon, C., Petit, L., and Thiebaut de Schotten, M. (2021). Functionnectome as a framework to analyse the contribution of brain circuits to fMRI. Commun. Biol. 4, 1035–1012. doi: 10.1038/s42003-021-02530-2 
	 Nozais, V., Theaud, G., Descoteaux, M., Thiebaut de Schotten, M., and Petit, L. (2023). Improved functionnectome by dissociating the contributions of white matter fiber classes to functional activation. Brain Struct. Funct. 228, 2165–2177. doi: 10.1007/s00429-023-02714-y 
	 Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N., and Wandell, B. A. (2014). Evaluation and statistical inference for human connectomes. Nat. Methods 11, 1058–1063. doi: 10.1038/nmeth.3098 
	 Reid, L. B., Cunnington, R., Boyd, R. N., and Rose, S. E. (2016). Surface-based fMRI-driven diffusion Tractography in the presence of significant brain pathology: a study linking structure and function in cerebral palsy. PLoS One 11:e0159540. doi: 10.1371/journal.pone.0159540 
	 Reuter, M., Schmansky, N. J., Rosas, H. D., and Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61, 1402–1418. doi: 10.1016/j.neuroimage.2012.02.084 
	 Reveley, C., Seth, A. K., Pierpaoli, C., Silva, A. C., Yu, D., Saunders, R. C., et al. (2015). Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl. Acad. Sci. 112, E2820–E2828. doi: 10.1073/pnas.1418198112 
	 Roberts, R. E., Anderson, E. J., and Husain, M. (2013). White matter microstructure and cognitive function. Neuroscientist 19, 8–15. doi: 10.1177/1073858411421218 
	 Sampaio-Baptista, C., and Johansen-Berg, H. (2017). White matter plasticity in the adult brain. Neuron 96, 1239–1251. doi: 10.1016/j.neuron.2017.11.026 
	 Saygin, Z. M., Osher, D. E., Koldewyn, K., Reynolds, G., Gabrieli, J. D. E., and Saxe, R. R. (2011). Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327. doi: 10.1038/nn.3001 
	 Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J., et al. (2016). Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19, 1250–1255. doi: 10.1038/nn.4354 
	 Schilling, K. G., Blaber, J., Huo, Y., Newton, A., Hansen, C., Nath, V., et al. (2019a). Synthesized b0 for diffusion distortion correction (Synb0-DisCo). Magn. Reson. Imaging 64, 62–70. doi: 10.1016/j.mri.2019.05.008 
	 Schilling, K. G., Gao, Y., Li, M., Wu, T.-L., Blaber, J., Landman, B. A., et al. (2019b). Functional Tractography of white matter by high angular resolution functional-correlation imaging (HARFI). Magn. Reson. Med. 81, 2011–2024. doi: 10.1002/mrm.27512

	 Schilling, K. G., Palombo, M., O’Grady, K. P., Combes, A. J. E., Anderson, A. W., Landman, B. A., et al. (2022). Minimal number of sampling directions for robust measures of the spherical mean diffusion weighted signal: effects of sampling directions, b-value, signal-to-noise ratio, hardware, and fitting strategy. Magn. Reson. Imaging 94, 25–35. doi: 10.1016/j.mri.2022.07.015 
	 Schilling, K. G., Petit, L., Rheault, F., Remedios, S., Pierpaoli, C., Anderson, A. W., et al. (2020). Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go. Brain Struct. Funct. 225, 2387–2402. doi: 10.1007/s00429-020-02129-z 
	 Schurr, R., Zelman, A., and Mezer, A. A. (2020). Subdividing the superior longitudinal fasciculus using local quantitative MRI. NeuroImage 208:116439. doi: 10.1016/j.neuroimage.2019.116439 
	 Scott, T. L., Gallée, J., and Fedorenko, E. (2017). A new fun and robust version of an fMRI localizer for the frontotemporal language system. Cogn. Neurosci. 8, 167–176. doi: 10.1080/17588928.2016.1201466

	 Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J. A., et al. (2013). Pushing the limits of in vivo diffusion MRI for the human connectome project. NeuroImage 80, 220–233. doi: 10.1016/j.neuroimage.2013.05.078 
	 Smith, R., Raffelt, D., Tournier, J.-D., and Connelly, A. (2022). Quantitative streamlines tractography: methods and inter-subject normalisation. Apert. Neuro. 2, 1–25. doi: 10.52294/apertureneuro.2022.2.neod9565

	 Smith, R., Skoch, A., Bajada, C. J., Caspers, S., and Connelly, A. (2020) Hybrid surface-volume segmentation for improved anatomically-constrained tractography. Available at: https://www.um.edu.mt/library/oar/handle/123456789/59839.

	 Smith, R. E., Tournier, J.-D., Calamante, F., and Connelly, A. (2012). Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 62, 1924–1938. doi: 10.1016/j.neuroimage.2012.06.005 
	 Smith, R. E., Tournier, J.-D., Calamante, F., and Connelly, A. (2013). SIFT: spherical-deconvolution informed filtering of tractograms. NeuroImage 67, 298–312. doi: 10.1016/j.neuroimage.2012.11.049 
	 Smith, R. E., Tournier, J.-D., Calamante, F., and Connelly, A. (2015). SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage 119, 338–351. doi: 10.1016/j.neuroimage.2015.06.092 
	 Steven, A. J., Zhuo, J., and Melhem, E. R. (2014). Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am. J. Roentgenol. 202, W26–W33. doi: 10.2214/AJR.13.11365

	 Stigliani, A., Weiner, K. S., and Grill-Spector, K. (2015). Temporal processing capacity in high-level visual cortex is domain specific. J. Neurosci. 35, 12412–12424. doi: 10.1523/JNEUROSCI.4822-14.2015 
	 St-Onge, E., Daducci, A., Girard, G., and Descoteaux, M. (2018). Surface-enhanced tractography (SET). NeuroImage 169, 524–539. doi: 10.1016/j.neuroimage.2017.12.036 
	 Thomas, C., Ye, F. Q., Irfanoglu, M. O., Modi, P., Saleem, K. S., Leopold, D. A., et al. (2014). Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. USA 111, 16574–16579. doi: 10.1073/pnas.1405672111 
	 Tisdall, M. D., Hess, A. T., Reuter, M., Meintjes, E. M., Fischl, B., and van der Kouwe, A. J. W. (2012). Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson. Med. 68, 389–399. doi: 10.1002/mrm.23228 
	 Tisdall, M. D., Reuter, M., Qureshi, A., Buckner, R. L., Fischl, B., and van der Kouwe, A. J. W. (2016). Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion. NeuroImage 127, 11–22. doi: 10.1016/j.neuroimage.2015.11.054 
	 Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., et al. (2019). MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202:116137. doi: 10.1016/j.neuroimage.2019.116137 
	 Tournier, J.-D., Yeh, C.-H., Calamante, F., Cho, K.-H., Connelly, A., and Lin, C.-P. (2008). Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage 42, 617–625. doi: 10.1016/j.neuroimage.2008.05.002 
	 Van Hecke, W., and Emsell, L. (2016) Strategies and challenges in DTI analysis. In: W. HeckeVan, L. Emsell, and S. Sunaert (eds.). Diffusion tensor imaging: A practical handbook. New York, NY, Springer. pp. 153–173

	 Veraart, J., Fieremans, E., Jelescu, I. O., Knoll, F., and Novikov, D. S. (2016a). Gibbs ringing in diffusion MRI. Magn. Reson. Med. 76, 301–314. doi: 10.1002/mrm.25866 
	 Veraart, J., Novikov, D. S., Christiaens, D., Ades-aron, B., Sijbers, J., and Fieremans, E. (2016b). Denoising of diffusion MRI using random matrix theory. NeuroImage 142, 394–406. doi: 10.1016/j.neuroimage.2016.08.016

	 Wang, Z., Dai, Z., Gong, G., Zhou, C., and He, Y. (2015). Understanding structural-functional relationships in the human brain: a large-scale network perspective. Neuroscientist 21, 290–305. doi: 10.1177/1073858414537560

	 Wang, J., Nasr, S., Roe, A. W., and Polimeni, J. R. (2022). Critical factors in achieving fine-scale functional MRI: removing sources of inadvertent spatial smoothing. Hum. Brain Mapp. 43, 3311–3331. doi: 10.1002/hbm.25867 
	 Warrington, S., Bryant, K. L., Khrapitchev, A. A., Sallet, J., Charquero-Ballester, M., Douaud, G., et al. (2020). XTRACT-standardised protocols for automated tractography in the human and macaque brain. NeuroImage 217:116923. doi: 10.1016/j.neuroimage.2020.116923 
	 Wasserthal, J., Neher, P., and Maier-Hein, K. H. (2018). TractSeg-fast and accurate white matter tract segmentation. NeuroImage 183, 239–253. doi: 10.1016/j.neuroimage.2018.07.070

	 Wedeen, V. J., Reese, T. G., Tuch, D. S., Weigel, M. R., Dou, J. G., Weiskoff, R. M., et al. (2000) Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. In: Proceedings of the 8th Annual Meeting of ISMRM, Denver. p. 82.

	 Weiner, K. S., Barnett, M. A., Lorenz, S., Caspers, J., Stigliani, A., Amunts, K., et al. (2017). The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex. 27, 146–161. doi: 10.1093/cercor/bhw361

	 Weiner, K. S., Golarai, G., Caspers, J., Chuapoco, M. R., Mohlberg, H., Zilles, K., et al. (2014). The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. NeuroImage 84, 453–465. doi: 10.1016/j.neuroimage.2013.08.068

	 Weiner, K. S., and Grill-Spector, K. (2013). Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol. Res. 77, 74–97. doi: 10.1007/s00426-011-0392-x 
	 Wernicke, C. (1874). Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis : Cohn Google-Books-ID: pe9AAAAAYAAJ.

	 Wu, M., Chang, L.-C., Walker, L., Lemaitre, H., Barnett, A. S., Marenco, S., et al. (2008) Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework. Medical image computing and computer-assisted intervention: MICCAI … International Conference on Medical Image Computing and Computer-Assisted Intervention. 11 (Pt 2), 321–329, Springer Berlin Heidelberg.

	 Wu, X., Yang, Z., Bailey, S. K., Zhou, J., Cutting, L. E., Gore, J. C., et al. (2017). Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations. NeuroImage 152, 371–380. doi: 10.1016/j.neuroimage.2017.02.074 
	 Xin, W., and Chan, J. R. (2020). Myelin plasticity: sculpting circuits in learning and memory. Nat. Rev. Neurosci. 21, 682–694. doi: 10.1038/s41583-020-00379-8

	 Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A., and Feldman, H. M. (2012). Tract profiles of white matter properties: automating Fiber-tract quantification. PLoS One 7:e49790. doi: 10.1371/journal.pone.0049790 
	 Yeatman, J. D., Rauschecker, A. M., and Wandell, B. A. (2013). Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections. Brain Lang. 125, 146–155. doi: 10.1016/j.bandl.2012.04.010 
	 Yeh, F.-C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J. C., et al. (2018). Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178, 57–68. doi: 10.1016/j.neuroimage.2018.05.027

	 Yeh, C.-H., Smith, R. E., Dhollander, T., Calamante, F., and Connelly, A. (2019). Connectomes from streamlines tractography: assigning streamlines to brain parcellations is not trivial but highly consequential. NeuroImage 199, 160–171. doi: 10.1016/j.neuroimage.2019.05.005

	 Yeh, F.-C., Wedeen, V. J., and Tseng, W.-Y. I. (2010). Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29, 1626–1635. doi: 10.1109/TMI.2010.2045126

	 Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., et al. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front. Neuroinform. 5:23. doi: 10.3389/fninf.2011.00023 
	 Yoshimine, S., Ogawa, S., Horiguchi, H., Terao, M., Miyazaki, A., Matsumoto, K., et al. (2018). Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage. Brain Struct. Funct. 223, 3889–3900. doi: 10.1007/s00429-018-1702-5

	 Yu, T., Cai, L. Y., Torrisi, S., Vu, A. T., Morgan, V. L., Goodale, S. E., et al. (2023). Distortion correction of functional MRI without reverse phase encoding scans or field maps. Magn. Reson. Imaging 103, 18–27. doi: 10.1016/j.mri.2023.06.016 
	 Zhang, F., Daducci, A., He, Y., Schiavi, S., Seguin, C., Smith, R. E., et al. (2022). Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. NeuroImage 249:118870. doi: 10.1016/j.neuroimage.2021.118870 
	 Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., and Alexander, D. C. (2012). NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016. doi: 10.1016/j.neuroimage.2012.03.072 


Copyright
 © 2024 Meisler, Kubota, Grotheer, Gabrieli and Grill-Spector. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.







 


	
	
REVIEW
published: 16 October 2024
doi: 10.3389/fnins.2024.1473462








[image: image2]

Diffusion tensor imaging in cerebral small vessel disease applications: opportunities and challenges

Siyu Yang1, Yihao Zhou1, Feng Wang2, Xuesong He3, Xuan Cui4, Shaojie Cai5, Xingyan Zhu1 and Dongyan Wang6*


1Department of Acupuncture and Moxibustion, Heilongjiang University of Chinese Medicine, Harbin, China

2Department of CT and Magnetic Resonance, The First Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China

3Department of CT and Magnetic Resonance, The Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China

4Department of Peripheral Vascular, The First Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China

5Department of Geriatrics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China

6Department of Acupuncture and Moxibustion, The Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China

Edited by
 Bramsh Qamar Chandio, University of Southern California, United States

Reviewed by
 Nakul Ravi Raval, Yale University, United States
 Jessica Barrios-Martinez, University of Pittsburgh, United States

*Correspondence
 Dongyan Wang, doctwdy@163.com 

Received 31 July 2024
 Accepted 07 October 2024
 Published 16 October 2024

Citation
 Yang S, Zhou Y, Wang F, He X, Cui X, Cai S, Zhu X and Wang D (2024) Diffusion tensor imaging in cerebral small vessel disease applications: opportunities and challenges. Front. Neurosci. 18:1473462. doi: 10.3389/fnins.2024.1473462
 

Cerebral small vessel disease (CSVD) is a syndrome of pathology, imaging, and clinical manifestations caused primarily by a variety of functional or structural lesions in the small blood vessels of the brain. CSVD contributes to approximately 45% of dementia and 25% of ischemic strokes worldwide and is one of the most important causes of disability. The disease progresses insidiously, and patients often have no typical symptoms in the early stages, but have an increased risk of stroke, death, and poor long-term prognosis. Therefore, early diagnosis of CSVD is particularly important. Neuroimaging is the most important diagnostic tool used for CSVD. Therefore, it is important to explore the imaging mechanisms of CSVD for its early diagnosis and precise treatment. In this article, we review the principles and analysis methods of DTI, analyze the latest DTI studies on CSVD, clarify the disease-lesion mapping relationships between cerebral white matter (WM) microstructural damage and CSVD, explore the pathogenic mechanisms and preclinical imaging features of CSVD, and summarize the latest research directions of CSVD and research methods to provide a comprehensive and objective imaging basis for the diagnosis and treatment of CSVD.
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1 Introduction

Cerebral small vessel disease (CSVD) is a syndrome of pathology, imaging, and clinical manifestations caused primarily by various functional or structural lesions of the small blood vessels of the brain (Wardlaw et al., 2019). CSVD contributes to approximately 45% of dementia and 25% of ischemic strokes worldwide and is one of the most important causes of disability (Pasi et al., 2016). CSVD is a highly age-related chronic disease and is considered a major vascular factor in stroke, dementia, cognitive decline, gait impairment, and mood disorders (Ter Telgte et al., 2018). The detection rate of asymptomatic cerebral infarction in healthy older adults is as high as 20–50%, most of which are lacunar infarcts (LI) (Dey et al., 2016). The disease progresses insidiously, and patients often have no typical symptoms in the early stages. However, the risk of stroke and death is increased, and the long-term prognosis is poor. Vascular factors may act synergistically with pathological changes in neurodegeneration to increase the risk of cognitive decline and dementia (Zhang et al., 2017). Despite the enormous global burden of CSVD in causing stroke, dementia, and disability, there are few effective treatments for this disease (Smith and Markus, 2020). Therefore, it is important to explore the pathogenesis and diagnostic markers of CSVD.

Neuroimaging is the most important modality for the diagnosis of CSVD. According to the International Neuroimaging Standards, the total CSVD score consists of four components: lacunar infarcts, white matter hyperintensities (WMH), cerebral microbleeds (CMBs), and enlarged perivascular spaces (PVS) (Duering et al., 2023). These CSVD markers are usually observed on brain imaging in normal elderly subjects, with a prevalence of 8–28% for lacunae, 5–23% for CMBs, and 50–98% for WMH (Hilal et al., 2017). Diffusion tensor imaging (DTI) can infer the structural features of the brain based on the diffusion properties of water molecules and assess the integrity of the WM tracts (Pasquini et al., 2022). The main markers used by DTI to assess WM damage include fractional anisotropy (FA), mean diffusivity (MD), etc. The main DTI analysis methods include ROI-based analysis, white matter tract-based analysis, voxel-based analysis, and brain structure network-based analysis. Innovations in the DTI analysis method have made it more accurate for the assessment of WM injury while providing a more effective method for the assessment of patients with CSVD (Finsterwalder et al., 2020). Therefore, the application of DTI to explore the imaging mechanism of CSVD is important for its early diagnosis and precise treatment. This article reviews the principles and analytical methods of DTI, describes the limitations and improvement methods of the DTI technique, analyzes the latest DTI studies on CSVD, clarifies the disease-lesion mapping relationships between WM microstructural damage and CSVD, explores the pathogenic mechanisms and preclinical imaging features of CSVD, and summarizes the latest research directions of CSVD. This review aims to provide a comprehensive and objective imaging basis for the diagnosis and treatment of CSVD.



2 DTI principles

DTI was first proposed by Basser et al. (1994) and was developed and optimized using diffusion-weighted imaging(DWI). Traditional DWI is an imaging technique that is based on the Brownian motion of water molecules. However, because of the barrier of anisotropic diffusion in biological tissues, Gaussian motion does not match the actual motion of water molecules. Therefore, a second-order diffusion tensor was introduced, resulting in DTI. The emergence of DTI allows us to observe the orientation and microstructural integrity of nerve fiber bundles in three dimensions (Mascalchi et al., 2019). Both DWI and DTI are MRI techniques used to characterize the diffusion directions of water molecules. The diffusion of water molecules within a voxel in various directions is measured by varying the direction of the diffusion-sensitive gradient. DWI describes the diffusion of water molecules in one or more specific directions, whereas DTI usually involves the diffusion of water molecules in 12 to 30 directions, which provides a more accurate description of the diffusion movement of water molecules (Magdoom et al., 2023). In each voxel, DTI represents anisotropic diffusion through an ellipsoid that can be mathematically modeled using a 3 × 3 matrix (called a tensor). The model allows the representation of the diffusion of water molecules in three dimensions, describing the different directions and “intensities” of the motion (Pasquini et al., 2022). DTI is regarded as a promising alternative biomarker for monitoring the progression of WM injury in patients with CSVD because of its noninvasive nature and high sensitivity (van den Brink et al., 2023). Although DTI is significantly better than conventional MRI in determining nerve fiber myelin lesions. However, due to its limitations, it is not effective in determining the integrity of nerve myelin in brain regions with low anisotropy or a bias toward isotropy (Guo et al., 2016; Guo et al., 2016). When DTI is applied to evaluate CSVD, the advantages and disadvantages of the technique should be clarified.



3 DTI main analysis methods

The main DTI analysis methods include ROI-based analysis, white matter tract-based analysis, voxel-based analysis, and brain structure network-based analysis. The potential applications and advantages and disadvantages of each DTI analysis method we present in Table 1.



TABLE 1 DTI main analysis method.
[image: A table comparing analysis methods in brain research with four columns: analysis method, potential applications, strength, and challenge. ROI-based analysis focuses on specific brain regions with strengths in splitting and challenges in limitations. White matter tract-based analysis includes deterministic, probabilistic fiber tracing, and AFQ, highlighting strengths in neural connectivity study and challenges like fiber crossings. Voxel-based analysis includes VBA, TBSS, and PSMD, emphasizing comprehensiveness and challenges in alignment errors. Structural brain network-based analysis using graph theory shows whole-brain changes with challenges in nodal region selection.]


3.1 Region of interest based analysis

ROI-based analysis is based on the study of specific brain regions or fiber tracts, which need to be corrected manually or by templates when setting the region of interest, and subsequently, the mean or median values of the indexes of the relevant voxels within the region. The analysis of changes in white matter microstructural properties in combination with pathologic findings and specific ROIs helps to explore the potential mechanisms of altered DTI-derived parameters in patients with CSVD. However, the manner in which ROIs are split into regions suffers from the discrepancy between manual selection and the inadequacy of template-based automated region splitting (Auriel et al., 2014).



3.2 White matter tract-based analysis

Diffusion tensor tractography (DTT) is a technique that builds on DTI data and can display the alignment of cerebral white matter bundles in vivo. Through this technique, we can not only visualize the morphology of WM fibers but also extract the diffusion index of the fiber bundles for quantitative statistical analysis. Currently, the two most commonly used methods for diffusion tensor fiber tracking are deterministic and probabilistic fiber tracking (O'Donnell and Westin, 2011). The deterministic fiber-tracking method starts from the seed point, and at each step, a definite fiber direction is obtained based on the diffusion direction distribution function or diffusion tensor principal direction at the current point, leaps forward according to this direction, and repeats the process until the termination condition is satisfied. Probabilistic fiber tracking methods mainly use the known information of the fibers to obtain the a posteriori probability distribution of the fibers. The direction at each step is sampled and selected from the probability distribution, and finally, the probabilistic path from the seed point to the target region is obtained (Behrens et al., 2007). However, each analysis method has limitations. Deterministic fiber tracing is useful for resolving complex fiber patterns, especially when performing standard diffusion tensor modelling of the data. It does not convey information about the strength of the connections (Jones, 2008). The disadvantage of probabilistic fiber tracing methods is that the calculations can be computationally intensive. The number of streamlines through each voxel has been used as a proxy for connection strength, although this is an oversimplified interpretation that may be affected by anatomically incorrect reconstructions or complex fiber arrangements (Grier et al., 2020). Automated fiber quantification (AFQ) overcomes the limitations of both (Qiu et al., 2021). The AFQ is a quantitative white matter analysis technique based on DTI sequences that automatically extracts 20 major WM tracts from the whole brain. It can precisely locate and estimate the point-by-point diffusion parameters of each specific fiber bundle at 100 anatomically equivalent locations along the fiber trajectory, providing more accurate information for quantitative analysis (Huang et al., 2020).



3.3 Voxel-based analysis

Voxel-based analysis (VBA) is an analytical method for spatially localized diffusion studies at whole-brain voxel levels. Compared to ROI-based methods, VBA does not require a priori knowledge of the researcher, is not subjective to the researcher’s influence and confounding factors, and is characterized by comprehensiveness, objectivity, and reproducibility. However, this method may be affected by the alignment, smoothing, and other factors. Therefore, when designing experiments, cluster thresholds and p-values are strictly set, and it is not possible to determine whether there are real differences or errors due to alignment; thus, they have been used less frequently (Raffelt et al., 2017).

Tract-Based Spatial Statistics (TBSS) is a spatial statistical method based on the white matter skeleton proposed by the Centre for Functional MRI of the Brain (FMRIB) at the University of Oxford to overcome the problems of alignment error or smooth kernel selection in the VBA method. The TBSS method can automatically and accurately analyze diffusion tensor data, and its core is the “skeletonization” data processing method, which realizes the alignment between different fiber bundles and significantly reduces the occurrence of false-positive results. The TBSS can provide a quantitative index for the study of white matter structural changes related to cognitive deficits and mood changes caused by CSVD. TBSS can provide quantitative indicators for studying changes in white matter structure associated with cognitive impairment and mood changes due to CSVD (Yao et al., 2017; Jha et al., 2015).

The peak width of skeletonized mean diffusivity (PSMD) is a new, fully automated CSVD parameter based on two processing techniques (TBSS and histogram analysis) of DTI data, reflecting the heterogeneity of voxel-based mean diffusivity (MD) values in major WM tracts (Zanon Zotin et al., 2023). This method eliminates cerebrospinal fluid contamination and improves the sensitivity to capture CSVD-related changes. Because PSMD is sensitive to age-related cognitive changes and calculations are fully automated, it has clear advantages in large-sample trials (Lam et al., 2019; Deary et al., 2019; Egle et al., 2022). Longitudinal analyzes showed that the PSMD had the smallest sample size estimate compared to the whole-brain mean peak diffusivity height, standardized WMH volume, brain parenchyma score, processing speed score, and standardized lacunar volume (Wei et al., 2019). Therefore, the PSMD may be of great practical value in clinical research and applications. Multiple cohort studies have shown that PSMD can be a valid assessment of cognitive impairment in cerebral small vessel disease (Zanon Zotin et al., 2023; Wei et al., 2019; Zanon Zotin et al., 2022).



3.4 Brain structure network-based analysis

The brain network-based analysis method uses specific brain regions as nodes and nodes’ structural connections as edges to construct a structural network and uses graph theory to calculate the corresponding topological properties of the brain network. The brain structural network is a mapping of brain structural connections, and compared with the traditional MRI markers that focus on localized brain damage, network construction focuses on whole-brain integration of different structural damage information (Griffa and Van den Heuvel, 2018). Structural brain networks represent the integrity of WM connectivity and thus arguably reflect the mechanisms of cognitive dysfunction better than any other measure (Du et al., 2019). Several cross-sectional studies of patients with CSVD have shown that reduced structural network integrity, manifested as a decrease in overall efficiency, is associated with increased cognitive impairment (Lawrence et al., 2014; Reijmer et al., 2015; Tuladhar et al., 2015) as well as an increased risk of developing dementia in the future (Tuladhar et al., 2016).




4 Exploring the pathogenesis of CSVD neuroimaging

Available evidence suggests that the pathogenesis of CSVD is associated with factors that impair WM tract connectivity (Mascalchi et al., 2019; Huang et al., 2020; Zhang et al., 2022). Different functions of frontal WM tract injury can lead to different types of brain connectivity disruptions. Damage to association fibers interrupts the transmission of information between cortical areas that mediate different behavioral domains. Damage to commissural fibers will lead to a disrupts the transmission of information between cerebral hemispheres. Damage to projection fibers disrupts the influence of subcortical structures on behavior. Specific segments of these white matter bundles are associated with specific brain functions such as cognition (Mascalchi et al., 2019), emotion (Li et al., 2020), and gait (van der Holst et al., 2018).


4.1 WM tract damage and CSVD

Alterations in WM microstructure are thought to be the main pathogenesis of CSVD (Finsterwalder et al., 2020). It is widely accepted that WM tracts in the corpus callosum contain united fibers connecting the frontal lobe (FL) to other cortical areas that may be damaged in the early stages of CSVD (Qiu et al., 2021). Two recent imaging studies (Mascalchi et al., 2019; Zhang et al., 2022) comparing the two types of mild cognitive impairment (MCI) have been conducted. It has been shown that vascular MCI and CSVD-MCI impairments are associated with microstructural changes in multiple WM tracts, mainly located in the cerebral hemispheres WM potential connections. These include the corpus callosum, which links interhemispheric information; the WM within the thalamus, which transmits thalamocortical information; and the WM in the dentate nucleus-thalamus or dentate nucleus-red nucleus-thalamus, which governs cerebellar-cerebral connections (Mascalchi et al., 2019). However, a recent study has shown that MD values in the forceps minor (Fmi) are the better indicators for differentiating between amnestic MCI (a-MCI) and CSVD-MCI. Studies have also shown that the impaired tracts in a-MCI are mainly related to memory function, whereas the impaired tracts in CSVD-MCI are mainly related to executive function (Zhang et al., 2022).

Gait disturbance, another major manifestation of CSVD, has a significant impact on patients’ lives. A study using a probabilistic fiber bundle approach suggested that the microstructural integrity of the terminal right cingulate gyrus plays an important role in gait speed in patients with MCI (Haddad et al., 2023). However, a recent Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort (RAN DMC) study found that stride length is a more sensitive marker of gait abnormality in CSVD than stride frequency and gait speed, and a 5-year follow-up study of patients with CSVD demonstrated that an increase in MD values of the corpus callosum and corona radiata area is significantly associated with a decrease in stride length in patients with CSVD (van der Holst et al., 2018).

The current study demonstrated that CSVD damage to WM tracts exhibits broad interhemispheric symmetry and is limited to specific segments. An AFQ study suggested that different WM bundle segments of the anterior thalamic radiation (ATR) may be associated with different cognitive domains. The MD values of the left ATR nodes 1–56 (anterior) were independent predictors of situational memory scores. FA values of the left ATR nodes 8–32 (anterior part) were independently correlated with verbal function, and FA values of the right ATR nodes 43–61 (middle part) were independently correlated with executive and gait function (Huang et al., 2020). To explore more precise disease-lesion mapping studies, Xie et al. (2022) conducted a meta-analysis showing that damaged regional WM detected by DTI is associated with domain-specific cognitive deficits in CSVD. The frontal lobe (FL) is closely associated with general cognition, executive function, and attention. The corpus callosum (CC) is strongly associated with memory and attention. The cingulate gyrus (CG) is closely associated with general cognition and attention. The radial crown, internal capsule, and thalamic radiation are also strongly associated with general cognition.



4.2 Brain network damage and CSVD

Currently, an alternative explanation for the mechanism of CSVD is considered to be a global rather than a focal disease. This is because a variety of structural damages can remotely affect structural and functional network connections (Ter Telgte et al., 2018). Previous studies have demonstrated that structural brain networks represent the integrity of WM connectivity and have advantages over traditional imaging markers in explaining cognitive dysfunction (Du et al., 2019). The rich-club is a common property of complex networks, which is essential for efficient global information transfer and complex neural functions in the brain (Riedel et al., 2022). Rich clubs work to enhance the brain’s ability to recover by maintaining the integrity of the network and promoting compensatory mechanisms when parts of the network are damaged. Tuladhar et al. (2017) showed that rich-club connection strength mediated the association of WMH with processing speed and executive function, so that higher rich-club connection strength was associated with better cognitive performance. However, a longitudinal study suggests otherwise (van Leijsen et al., 2019). The results showed that the effects of WMH on dementia were causally mediated by global network efficiency and peripheral connectivity strength, suggesting that whole-brain networks, rather than rich-club disruption, play an important role in causing cognitive decline and dementia in older adults with CSVD. A preclinical study of the progression of CSVD supports this view (Du et al., 2021).

The latest preclinical phase study of brain structural networks in the CSVD explains the above observations, with preclinical cognitive impairment (PCI) showing a weak loss of node strength but no significant abnormality in the rich-club. While patients with MCI show disruption in the rich-club, there is a more severe loss of node strength (in preference to hub nodes), as well as an overall disruption of local connectivity. This impaired topology may also underlie cognitive deficits in CSVD, particularly in the domains of attention, executive and memory cognition (Du et al., 2020). Indeed, as studies of other disorders have shown, the disruption of the rich-club reflects a decline in global communication and altered functional brain dynamics, and the two are not antagonistic. However, because the rich-club is a common property of complex networks that are less sensitive than changes in node strength versus changes in the global network, some of the studies have come to different conclusions (Shu et al., 2018).



4.3 Body fluid environment alterations and CSVD

Indeed, WM tract damage may be a downstream manifestation of alterations in the body fluid environment, which would be beneficial for the treatment and prevention of disease. Previous studies have shown that Type 2 diabetes mellitus (T2DM) can lead to WMH (Teng et al., 2022), lacunar infarcts (Zhou et al., 2022) and CMBs (Chen et al., 2021) and is strongly associated with total CSVD load. Liu et al. (2024) found that the mechanism of visuospatial function decline in T2DM patients was associated with deterioration of the right inferior longitudinal fasciculus (ILF), and that impairment of callosum forceps minor (CF_minor) and the right inferior fronto-occipital fasciculus (IFOF) was closely associated with increased CSVD burden. Another study showed that fibrin-like degeneration of perforating arteries, capillaries, and small veins is another pathogenesis of CSVD (De Silva and Faraci, 2020). Studies have shown that lower lenticulostriate artery (LSA) counts are associated with the development of diabetes mellitus, larger DWMH volume ratios, and higher degrees of fiber bundle damage in most brain regions. As the most common brain-penetrating artery, the LSA supplies blood to the basal ganglia and internal capsule regions, where 35–44% of ischemic and hemorrhagic strokes occur (Xie et al., 2021), and loss of the LSA may be associated with more severe damage to the microstructure of the WM (Zhang et al., 2023).

To further understand the association between risk factors and microstructural changes, a new pathway for circulation and waste removal from cerebrospinal fluid (CSF), the glymphatic system (GS), has been proposed. In the GS, CSF flows into the periarterial space for exchange with the interstitium within the brain parenchyma and out of the perivascular space for the removal of metabolic wastes and solutions (Jiang, 2019). Impaired GS clearance leads to excessive accumulation of cellular debris and metabolic waste in the perivascular space, which in turn exacerbates decreased cerebrovascular reactivity, blood–brain barrier disruption, and perivascular inflammation. Ultimately, cognitive impairment is the primary physiological consequence of lymphatic system failure (Taoka et al., 2017). Previous studies have calculated clearance in rodent brains using intrathecally injected gadolinium contrast and fluorescent tracer methods (Cai et al., 2021; Christensen et al., 2020). However, the tracer-based methods used to assess GS alterations are invasive and unsuitable for human studies. A new noninvasive DTI algorithm assesses GS activity by calculating the diffusion coefficient in the perivascular space DTI-ALPS (Taoka et al., 2017).

A community-based study demonstrated that (Tian et al., 2023) Glymphatic injuries assessed by low DTI-ALPS indices were associated with the presence, severity, and specific neuroimaging phenotypes of CSVD in a community-based population. It is worth mentioning that the study included a total of 2,219 subjects, which is the largest known study on DTI-ALPS. In a cross-sectional study of 133 patients with CSVD, the DTI-ALPS index was highly correlated with a comprehensive neuropsychological test in the area of cognitive impairment (Tang et al., 2022). A related study also reported that a low DTI-ALPS index mediates the association between WMH and situational memory in patients with CSVD (Ke et al., 2022). When the GS is weakened or dysfunctional, CSF-interstitial fluid exchange and drainage are impeded, and accumulation of cerebral metabolites (including toxins and Aβ proteins) leads to a neuroinflammatory response and a further increase in the volume of interstitial fluids in the brain tissue (Zhang et al., 2021; Thrippleton et al., 2019; Zhang et al., 2022). Recent studies suggest that (Lan et al., 2022) increased extracellular fluid volume may occur first, followed by demyelination and axonal damage in WM. Thus, microstructural changes in patients with cerebral small vessel disease may be mediated by extracellular fluid accumulation, and an increased extracellular fluid volume in the WM is associated with decreased FA. In addition, further imaging studies have shown that changes in extracellular fluid volume, as assessed by the DTI index of free water (FW) in the WM, correlate with CSVD-MR markers (PWMH, DWMH, and PVS) and CSVD burden. Thus, extracellular fluid volume in WM is thought to play an important role in the severity of cerebral small vessel disease (Lan et al., 2022).




5 CSVD preclinical stage identification

The most important significance of CSVD neuroimaging studies is the early diagnosis of the disease through imaging markers; however, traditional imaging markers such as WMH, lacunes, PSV, CMBs, recent small subcortical infarcts, and brain atrophy are irreversible once they occur. Localization and diagnosis of CSVD in the preclinical stage, as well as before the occurrence of traditional imaging markers, has become a recent research hotspot. There is growing evidence that some tissue changes also occur around the WMH, and these specific, subtle changes in the normal appearance of the white matter (NAWM) are referred to as “white matter high signal penumbra (WMH-P)” (Wu et al., 2019). Recognizing and assessing these specific and subtle changes in the penumbra may influence early treatment decisions. It may be a novel therapeutic target, and if salvageable, may alter the time course of WMH progression. Pathologically, WMH-P may correspond to mild tissue changes with slightly lower myelin density, activated endothelial cells, looser but still largely intact axonal networks, and normal glial density (Ding et al., 2023). Although these changes cannot be detected using conventional MRI scans, they have been shown to be associated with cognitive impairment on DTI/DKI scans (Brandhofe et al., 2021).

A cross-sectional study showing structural and blood flow changes in the brain tissue around the WMH by DTI/DKI and ASL demonstrated that WM injury extends beyond the range of visible lesions commonly seen on conventional MRI. The cerebral blood flow (CBF) penumbra was larger than the tectonic penumbra in the deep WMH penumbra (DWMH-P), but in the periventricular WMH penumbra (PVWMH-P), the CBF and tectonic penumbra were almost identical in extent. These findings suggest that CBF reduction may precede microstructural deterioration of NAWM tissue (Wu et al., 2019; Promjunyakul et al., 2016). However, it is worth noting that some longitudinal studies have found that changes in the penumbra microstructure correlate with progression, implying a new target for treatment (Jiaerken et al., 2019; van Leijsen et al., 2018). Changes in penumbral signaling may further our understanding of the underlying etiology of early WMH development and expansion. This is essential for preventing WMH growth and subsequent cognitive and motor deficits. At the same time, the discovery of early reversible changes will redefine the CSVD marker of WMH, which can be slowed or reversed by treatment (Wang et al., 2023). The latest DTI studies are not only limited to patients with CSVD who have already developed the disease but also aim to apply DTI data to identify the early clinical stage (VaMCI) or even the preclinical stage (NCI) of CSVD. A recent study showed that damage to the corpus callosum and internal and external capsules was detected in NCI, and the same results were observed in a previous study of VaMCI patients with CSVD (Papma et al., 2014). It was further found that the uncinate fasciculus of the frontal and temporal lobes, which are closely related to executive function, was impaired in the NCI group, and the MD of the cingulate gyrus (CGC) was increased in the NCI group compared to healthy controls. This suggests that impairment of cerebral WM integrity also occurs in the preclinical stage of vascular cognitive impairment (VCI) due to CSVD (Du et al., 2021).



6 Application of new technologies in CSVD research

Most current CSVD studies have been analyzed using DTI. Although DTI is significantly better than conventional MRI in determining nerve fiber myelin lesions due to its technical limitations, it is not effective in determining the integrity of nerve myelin in brain regions with low anisotropy or bias toward anisotropy, such as the arcuate fibers in the subcortical WM (Guo et al., 2016; Guo et al., 2016).

Diffusion kurtosis imaging (DKI) is an extension of the DTI technique that partially overcomes these limitations by more sensitive and accurate detection of alterations in the microstructure of nerve fiber bundles, which are particularly significant in the subcortex (Chen et al., 2017). DKI assumes that the dispersion of water molecules in living tissues is non-Gaussian (Deng et al., 2023). DKI was used to compensate for the lack of a second-order tensor by adding a fourth-order tensor correction term to the imaging equation, forming a convex surface with multiple spines to coincide with the multifiber orientation, thus characterizing the extent to which water molecule dispersion deviates from a normal distribution (Wei et al., 2021). It requires high b-values (typically b > 1,000 s/ mm2) as well as the application of diffusion-sensitive gradient fields in multiple (≥15) directions. In addition to the conventional diffusion parameters MD and FA, mean kurtosis (MK), radial kurtosis (RK), axial kurtosis (AK), and kurtosis anisotropy (KA) can be used (Qi et al., 2023). DKI can detect these microstructural changes even before any imaging findings are discovered through conventional imaging, which is why it is superior to DTI (Marrale et al., 2016). It has been shown that DKI has high sensitivity for the detection of subclinical brain damage in CSVD, in which MK is more sensitive in responding to the degree of brain function impairment (Tong et al., 2019). However, to date, the use of DKI to study CSVD is still in the minority and has mostly focused on the exploration of CSVD-related depression (Li et al., 2020) and cognitive functioning (Liu et al., 2021; Liu et al., 2023; Liu et al., 2019).



7 Discussion

CSVD has significant global influence (Markus and de Leeuw, 2023). Much of the recent research has focused on changes in the body fluid environment and MRI preclinical manifestations of CSVD, in addition to traditional studies of white matter bundles and structural networks. Because processes such as damage to the LAS (Zhang et al., 2023), disorders of the GS (Tian et al., 2023), and increased extracellular fluid volume (Lan et al., 2022) are now considered to be the key mechanisms of microstructural WM injury, this suggests that abnormalities in fiber organization may be secondary mechanisms (Duering et al., 2018; Muñoz Maniega et al., 2017). The discovery of WMH-P (Wang et al., 2023) similarly proves that the same destructive pathologic changes occur in the NAWM around the WMH. Identifying and evaluating such specific and subtle changes in the penumbra and the early development of therapeutic strategies based on etiology will be able to slow down or salvage the progression of WMH, which may be a new therapeutic goal.

In this review, we found that the development and improvement of DTI analysis methods by describing changes in the organizational properties of specific WM tracts (focusing on the observation of localized white matter fibers) to investigate changes in the topological properties between different brain regions (focusing on the observation of connections in different brain regions or even whole-brain connectivity) have continuously increased the breadth and depth of DTI applications. However, we found that due to the different clinical manifestations of CSVD, numerous disease-lesion mappings have been produced, both for WM bundle damage studies and for studies of brain network changes. Owing to the limitations of available therapeutic techniques, such articles, although providing in-depth investigations of pathogenic mechanisms, lack clinical guidance in some sense. Recent DTI studies have highlighted the relationship between disease onset and damage to the WM tract connectivity (i.e., the brain structural network) in the whole brain, which can be used to prevent the onset and further progression of CSVD by exploring the etiology of CSVD and intervening in a timely manner in the clinical setting or in life. Therefore, the potential mechanism of WM bundle damage and the microstructural pathological changes of NAWM in the preclinical stage are becoming new hot spots in CSVD research.

This shift in research direction is likewise in response to the need for clinical work, and there have been many DTI studies related to CSVD. However, the pathogenic mechanism of CSVD remains ambiguous and no consensus has been reached regarding the standardized treatment of CSVD. The ethical implications of advanced neuroimaging in CSVD are also a concern due to issues of access and data analysis of DTI technology, as well as the protection of patients’ rights and interests, with advanced neuroimaging technology, which is often costly and scarcely equipped. This may lead to unequal distribution of healthcare resources among patients in different regions and from different socioeconomic backgrounds and give rise to ethical controversies. Ensuring that all patients in need have access to advanced diagnostic technologies is an important ethical consideration. Neuroimaging data are often complex and difficult to understand intuitively and need to be interpreted by doctors or specialists with specialized knowledge and experience. This requires healthcare organizations to strengthen staff training and improve their interpretation skills. Neuroimaging data contains a large amount of sensitive personal information, and strict privacy protection regulations must be followed to ensure data security and anonymity. Together, these aspects form an important ethical framework for advanced neuroimaging for the diagnosis and treatment of CSVD.

Moreover, CSVD progresses insidiously, and patients often have no typical symptoms in the early stage; however, the risk of stroke, dementia, and death is increased, and the long-term prognosis is poor. Therefore, research on early diagnosis and pathogenesis of CSVD is particularly important. Follow-up studies could be carried out on the following aspects: (1) based on the current DTI study, more advanced DKI technology was used to study the WM microstructure damage mechanism of CSVD; (2) a prospective longitudinal multimodal, multicenter, large-sample study; and (3) improved algorithms for DTI/DKI using AI, deep learning, etc., to enable patients to be accurately screened at the preclinical stage of CSVD. In conclusion, future prospective studies should be patient oriented and focus on the etiology and preclinical diagnosis of CSVD to provide reliable imaging evidence to support clinical prevention and treatment.
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Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics. These multi-tensors are estimated using the stable, accurate and robust to noise Multi-Resolution Discrete Search method (MRDS). The spatial coherence of the multi-tensor field estimated with MRDS, which includes up to three anisotropic and one isotropic tensors, is tractography-regularized using the Track Orientation Density Imaging method. Our end-to-end tractometry pipeline goes from raw data to track-specific multi-tensor-metrics tract profiles that are robust to noise and crossing fibers. A comprehensive evaluation conducted in a phantom simulating healthy and damaged tissue with the standard model, as well as in a healthy cohort of 20 individuals scanned along 5 time points, demonstrates the advantages of using multi-tensor metrics over traditional single-tensor metrics in tractometry. Qualitative assessment in a cohort of patients with relapsing-remitting multiple sclerosis reveals that the pipeline effectively detects white matter anomalies in the presence of crossing fibers and lesions.
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1 Introduction

Advancements in diffusion magnetic resonance imaging (dMRI) have facilitated our understanding of the brain's intricate architecture and organization (Le Bihan, 2003). By measuring the diffusion of water molecules within the brain tissue, dMRI provides valuable information to investigate the connectivity and assess the white matter (WM) microstructure of pathways in the brain. Voxels in the WM can contain different axonal fiber populations with complex configurations (Jeurissen et al., 2013). Each one of these populations is called fixel, which denotes the discrete component of a fiber element (Raffelt et al., 2015; Tournier et al., 2019). Fixels and their properties, like orientation and tissue metrics, are fully determined by the voxel in which they reside. Local modeling allows for estimating these fixel properties at each voxel of the dMRI data (Alexander et al., 2017; Jelescu and Budde, 2017). Tractography can use these locally estimated fixel orientations to reconstructs the trajectories of the WM, which are often called streamlines (Behrens et al., 2007; Jeurissen et al., 2017). Additionally, tractometry (Jones et al., 2005; Yeatman et al., 2012) has emerged as a useful method for quantitative analysis of the WM pathways. It encompasses the streamlines obtained with tractography at the macroscopic level with the metrics obtained from a local modeling method at the microscopic level. This combination enables the analysis of microstructural changes by extracting quantitative metrics along specific WM anatomical tracts. Tractometry insights could potentially serve as a valuable tool for investigating WM characterization and degeneration associated with neurological disorders, such as multiple sclerosis (MS) (Winter et al., 2021; Beaudoin et al., 2021), Alzheimer's disease (Lee et al., 2015), and traumatic brain injury (Huang et al., 2022), among others.

Diffusion Tensor Imaging (DTI) (Basser et al., 1994) is a single fiber method traditionally used to estimate properties of the fixels, averaging the diffusion properties of all the fixels within a voxel. Thus, DTI results in a loss of important information of the fixels, especially when different fiber populations with different properties or lesions are present within the same voxel. This presents an important problem in estimation because WM tissue contains between 66% to 90% of voxels with crossing fibers (Descoteaux, 2008; Jeurissen et al., 2013; Schilling et al., 2017). DTI Limitations motivated the development of more advanced acquisition and local modeling techniques. Multi-shell High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al., 2002) was originally developed to provide anisotropy measures beyond DTI metrics (Tournier et al., 2011) that are more robust to crossing fibers and sensitive to WM alterations, making also tractography more robust (Descoteaux, 2015). HARDI allowed to develop techniques that estimate multiple fixels within a voxel. Notable examples of these techniques are: Q-ball Imaging (QBI) (Tuch, 2004; Descoteaux et al., 2007), the Multi-Tensor Model (MTM) (Tuch et al., 2002), and Constrained Spherical Deconvolution (CSD) (Tournier et al., 2007). In particular, MTM is a straightforward extension of DTI that represents each one of the fiber populations in the voxel by a different diffusion tensor. However, the estimation of MTM parameters is an ill-posed challenging problem, that requires very high SNR data and large computational resources, restricting it's routine clinical use.

The dMRI signal arising from the WM is composed of several compartments. Thus, taking advantage of HARDI, several techniques were developed to decompose the dMRI data into contributions from various compartments. An example of these multi-compartment methods procedures is the model in Novikov et al. (2019), which depicts the dMRI data as a combination of Intra-Cellular (IC), Extra-Cellular (EC) and ISOtropic (ISO) contributions. Other hybrid methods are based in the MTM like the Free-Water DTI (FW-DTI) (Pasternak et al., 2009), which fits for each voxel a bi-tensor model including an anisotropic tensor for tissue compartment and an isotropic tensor for a free water compartment. The DIstribution of Anisotropic MicrO-structural eNvironments with Diffusion-weighted imaging (DIAMOND) (Scherrer et al., 2015) and the Multi-Resolution Discrete-Search (MRDS) (Coronado-Leija et al., 2017) are more general MTM-based methods, which fits up to three restricted anisotropic tensors for the restricted and hindered diffusion compartments and one isotropic tensor for the free diffusion compartment.

DTI (Basser et al., 1994) metrics are the most widely used metrics for tractometry (Jones et al., 2005). Although DTI metrics have the potential to be biomarkers, they have inconsistent sensitivity to characterize the WM as they are easily biased. For example, the common Fractional Anisotropy (FA) metric is informative about changes in WM microstructure caused by pathology, but crossing fibers bias it. FA decreases in fiber crossing voxels because oblate tensors are obtained, which leads to an alteration in the resulting FA tract profile in the tractometry as shown in Figure 1. These alterations can be confused with alterations derived from WM degeneration, which is also illustrated in Figure 1, leading to erroneous or ambiguous interpretations. Moreover, in the presence of crossing fibers together with pathology, FA increases, which could seem counterintuitive. However, this could happen, when only one of the fiber populations in the crossing is affected by the pathology, then the resulting single-tensor may become sharper, see Figure 2. Approaches that have studied other DTI metrics, like the radial diffusivity (RD) metric, have shown that RD is a promising biomarker for demyelination (Song et al., 2002, 2005; de Vries, 2010). However, they have reported that RD can be inconsistent, presenting challenges in its reliability and reproducibility and resulting in misleading results. Besides, co-existing inflammation, edema, and crossing fibers can significantly impact on the DTI metrics at the same time (Ye et al., 2020).


[image: Illustration showing a segmented bundle from tractography on the left, combined with four grid-like images of tissues: healthy single-fibre, demyelination single-fibre, healthy crossing fibers (DTI), and healthy crossing fibers (MTM). On the right, a graph displays z-score data across the segmented bundle, featuring four lines in different colors indicating varied trends.]
FIGURE 1
 Illustration of an FA tract profile in 4 different scenarios showing the limitation of DTI-based tractometry. All FA tract profiles are generated through the same bundle (orange streamlines). Blue, green, pink tensor fields exhibit a single fixel in each voxel estimated with DTI, while purple tensor field exhibits a multi-fixel estimation with MTM. (blue tensors) A control case with healthy tissue and only one fiber population. This scenario is expected to have high FA values in the tract profile (blue curve). (green tensors) A single fiber with demyelination resulted in an increased RD and decreased FA (green curve). (gray and pink tensors) Tensors are estimated using DTI, where FA is affected in the intersection as oblate tensors are obtained (pink curve). (gray and purple tensors) Tensors are estimated using MTM, which can estimate a different tensor for each fixel at the intersection. This case is expected to have normal FA values as the tractometry only considers FA values of the tensors aligned with the streamlines (purple curve). From this scheme, it is clear that a single-fixel analysis is limited when differentiating between demyelination and crossing fibers based only on the alterations in the tract profiles.



[image: Two diagrams compare healthy and lesion states in MTM and DTI imaging. The top shows elongated red and blue ellipses for MTM, with labels "Healthy" and "Lesion." The bottom shows grayscale spheres for DTI, with an arrow labeled "Higher FA" pointing from "Healthy" to "Lesion."]
FIGURE 2
 Example of how DTI can lead to counter-intuitive results in the presence of a lesion and crossing fibers. (A) Represents a MTM fitting showing the presence of crossing fibers in two scenarios: healthy (left) and damaged (right) tissue. Left scenario exhibits two healthy fiber populations. Right scenario shows a healthy fiber population and another with lesion. (B) Represents a tensor obtained with DTI in the healthy and damaged scenarios. In the presence of lesion DTI shows a sharper tensor, leading to a higher FA compared with the healthy scenario. This is a consequence of a lesion only in one of the underlying fiber populations for which DTI is not sensitive.


Multi-fixel methods have further expanded the scope of tractometry, resulting in tract-specific analyses less impacted by crossing fibers. Remarkable examples are the Automated Fiber-tract Quantification (Yeatman et al., 2012; Kruper et al., 2021), the Connectivity-based Fixel Enhancement (Raffelt et al., 2015), the Fixel-Based Analysis framework (Dhollander et al., 2021), the Tractometry_flow pipeline (Cousineau et al., 2017; Kurtzer et al., 2017; Di Tommaso et al., 2017) and, recently, the UNRAVEL framework (Delinte et al., 2023). Other tractometry frameworks have combined DTI metrics with other metrics including fixel-based metrics like the Apparent Fiber Density (AFD). For example, the framework called Profilometry (Dayan et al., 2015) performs a simultaneous analysis of DTI metrics and other metrics, resulting in tract profiles as parameterized curves in a multi-dimensional space. Nonetheless, the crossing fibers bias in DTI metrics still limits it. Besides, these types of multi-fixel methods face several challenges and limitations. As example, frameworks informed with CSD metrics such as AFD, while sensitive, do not have a straightforward biological interpretation; moreover, they could be biased as CSD employ a fixed response function across the entire WM (Dell'Acqua et al., 2007; Jones et al., 2013). On the other hand, previous tractometry results using MTM fixel-based metrics are not free of limitations. For instance, they need more complex multi-shell dMRI acquisitions (Scherrer and Warfield, 2012) and are limited to a maximum of 2 fixels per voxel (Delinte et al., 2023). This is insufficient in many brain regions, e.g. the centrum semiovale, where 3 fiber populations cross from the corticospinal tract, corpus callosum, and superior longitudinal tract intersect. Additionally, fixel-FA estimation has shown to be affected by high levels of noise and inconsistent through scan-rescan experiments (Mishra et al., 2014) as a consequence of MTM fitting being numerically unstable (Tuch et al., 2002). MTM-based methods generally struggle to accurately estimate the required number of tensors per voxel (N). These methods tend to overestimate the value of N as a direct consequence that a single diffusion tensor does not properly represent the dMRI signal (even when a single fixel is present) for b-values higher than 1ms/μm2, needing more tensors to fit the per voxel signal (Karaman et al., 2023).

Between the MTM-based methods, MRDS offers a balanced trade-off in terms of model complexity and accuracy when using short-acquisition-time clinical multi-shell dMRI data (Coronado-Leija et al., 2017). MRDS has proven to be a noise-robust and accurate multi-fixel method for estimating the directions of the fixels and their metrics. In addition, MRDS has been histologically validated in a rat model of unilateral retinal ischemia in which only one of the optic nerves was damaged. This nerve lesion was correctly detected by MRDS at the region where the optic nerves cross (optic chiasm) (Rojas-Vite et al., 2019). Moreover, MRDS has shown to be capable of recognizing 3 fiber populations in regions-of-interest (ROI) like the centrum semioval (Hernandez-Gutierrez et al., 2021) when using clinical in vivo multi-shell dMRI data. A recent work (Karaman et al., 2023) has proposed to use the Track Orientation Density Imaging (TODI) (Dhollander et al., 2014) as a useful spatial regularizer for a more accurate and robust estimation of N in MRDS. The Track Orientation Distribution (TOD) image estimated with TODI presents an increased amount of spatial consistency compared with the fiber orientation distribution (FOD) image obtained with constrained spherical deconvolution (CSD) (Dhollander et al., 2014).

In this paper, we propose a novel tractometry pipeline to address several current limitations of tractometry informed with multi-fixed methods. Our proposed pipeline combines multi-tensor fixel-based metrics estimated with MRDS and the Tractoflow (Theaud et al., 2020) and Tractometry_flow (Cousineau et al., 2017; Kurtzer et al., 2017; Di Tommaso et al., 2017) pipelines. The proposed pipeline provides fixel-based tensor metrics that are robust to crossing fibers and noise. Provided fixel-based metrics have the potential to be biomarkers for pathologies like demyelination and can be useful for the characterization and study of underlying WM anomalies in patients with pathologies such as MS. Most of the previous tractometry studies in pathology used DTI metrics, then, our multi-tensor pipeline results can be straightforwardly situated in their context and compared with them. Finally, the pipeline is tested on both synthetic phantom dMRI data and clinical dMRI in vivo data from a large healthy control and MS groups with a scan-rescan experiment, highlighting the robustness and potential of our approach when studying WM anomalies in patients with such neurological disorders.



2 Methods

In this section, we describe the simulation of the synthetic phantom and the acquired in-vivo dMRI data. We also explain each step in the proposed pipeline.


2.1 Synthetic data

A synthetic phantom was generated based on the geometry of a previously published dMRI phantom (Caruyer et al., 2014), see Figure 3. The size of the phantom is 50 × 50 × 50 voxels with an isotropic dimension of 1.0mm. Similar to Caruyer et al. (2014), our synthetic phantom has 20 distinct bundles showing a complex fiber crossing configuration and volume contamination with CerebroSpinal Fluid (CSF). Each bundle in the phantom exhibits unique diffusivities and axonal dispersion characteristics. The diffusivities of each bundle were tuned to mimic those found in healthy human brains (Coelho et al., 2022).


[image: Composite image showing three parts: color-coded bundles, a grayscale dMRI signal, and detailed fixels representation. An inset diagram illustrates components IC, EC, and ISO contributing to the fixels.]
FIGURE 3
 This figure illustrates the geometry of the diffusion MRI (dMRI) phantom, the multi-compartment model employed for signal generation, and the resulting signal. The geometric structure of the phantom is composed of 20 bundles, highlighting each bundle with a different color. The multi-compartment model (intracellular, extracellular, and free water compartments) that is used to generate the shown dMRI signal at each voxel includes axonal dispersion. The figure illustrates the orientations of fixels, depicting the crossing fiber configuration and distribution.


We have simulated a phantom dMRI signal for each individual bundle and the whole volume signal without noise and without dispersion. Then, DTI was fitted to each individual bundle signal as well as the whole dMRI signal, and the tensor metrics were extracted. This simulated dataset was employed as Gold Standard (GS) to compare results with the experiments on in-vivo dMRI data. A multi-compartment model also known as Standard Model (SM) (Ferizi et al., 2016; Novikov et al., 2019), was adopted to simulate this phantom signal by including three types of microstructural environments: intracellular (IC), extracellular (EC), and isotropic (ISO). Each environment was simulated with a given volume fraction denoted by fic, fec and fiso, respectively. The IC space was modeled with cylinders of zero radius (sticks), the EC space with a cylindrically symmetric tensor (zeppelin), and finally, the ISO space was modeled as a free diffusion compartment (ball) (Panagiotaki et al., 2012; Ferizi et al., 2013a,b).

Three datasets were generated with known GS. The radial EC diffusivities were simulated based on Fieremans et al. (2012). Thus, the EC space tortuosity [image: Mathematical expression showing "D sub 0" divided by "D sub e c perpendicular."], which quantifies how the diffusion is affected by cellular and extracellular structures within tissue, was defined as the ratio of free diffusivity [image: \( D_0 = 2 \, \mu \text{m}^2 / \text{ms} \)] over the EC diffusivity [image: Mathematical notation showing "D" with a perpendicular symbol, and a subscript "e c".]. Therefore, the intracellular volume fraction fic was most sensitive to axonal loss. Besides, it was most sensitive to demyelination. The first dataset incorporated [image: Mathematical expression: D subscript i c.] and [image: Mathematical notation showing the symbol "D" with "ec" as a subscript and two parallel lines as a superscript.] diffusivities within a healthy range sampling a Gaussian distribution with a mean of 2μm2/ms and variance of 0.01μm2/ms, while [image: Equation displaying \(D_{ec}^{\perp} = 0.48 \, \mu \text{m}^2/\text{ms}\).], fic = 0.65 and fec = 1−fic. On the other hand, the second dataset simulated, in some bundles, conditions associated with demyelination on MS. Specifically, in regions with demyelination fic = 0.55 and [image: Equation displaying \( D^\perp_{ec} = 0.71 \, \mu \text{m}^2/\text{ms} \).], while in regions without damage, the values remained the same as in the first dataset. Finally, our third dataset simulated conditions related to axonal loss. For this case, fic = 0.35 and [image: Formula showing \(D_{ec}^\perp = 0.59 \, \mu\text{m}^2 / \text{ms}\), representing a diffusion coefficient with units in micrometers squared per millisecond.] in regions with lesion and regions without lesion maintained the same control values as the first dataset. All datasets were generated with a high and realistic noise level (SNR = 12). The isotropic diffusivity Diso and volume fraction fiso were fixed equal to 3μm2/ms and 0.05, respectively. Axonal dispersion was modeled with a Watson distribution (Jespersen et al., 2012, 2018). The κ value of each bundle used as the parameter for the Watson distribution was sampled from a Gaussian distribution with mean 20 and variance 0.01. Lastly, we used the same protocol of the in-vivo data described below.

The 13th bundle of the phantom was selected to compare the three scenarios above because bundle 13 crosses with 2 and 3 bundles at different places. In the datasets simulating damages, the lesion was simulated in a spot of the bundle represented by the red region, while the diffusivities outside the lesion remained the same as in the control case.



2.2 In-vivo data

Two groups of participants were recruited from the University of Sherbrooke (UdS) and the Center Hospitalier Universitaire of Sherbrooke (CHUS) community. The first group was a healthy control (HC) group with 26 adults, and the second group has 22 relapsing-remitting MS patients. Both groups had a gender proportion of 75% women and 25% men. Diffusion MRI data was acquired using a clinical 3T MRI scanner (Ingenia, Philips Healthcare) using a 32-channel head coil. Each subject was scanned 5 times over 6 months and a 4-week interval (±1 week) with a total acquisition time of 20 minutes for each session. MRI acquisitions were obtained for each subject at roughly the same time daily to mitigate potential diurnal impacts, i.e. morning subjects underwent all sessions in the morning with a permissible 2-3-hour variation. Finally, 6 of the 26 healthy control subjects were discarded for several reasons, including problems during the scan or processing. Thus, the HC group employed for the experiments had 20 subjects.

All MRI images were aligned respect to the anterior commissure-posterior commissure plane (AC-PC), which is an anatomical reference defined by two small bundles in the brain. One bundle located in the front part of the brain, and the other in the back. This ensured consistency in the orientation and position of the images when analyzing them across scans and subjects. In addition, 3 type of data were included:

	• Anatomical 3D T1-weighted image (T1): an MPRAGE image was acquired axially at 1.0mm isotropic resolution.
	• Multi-shell diffusion-weighted images (DWI): these images were acquired with a single-shot EPI spin-echo sequence at 2.0mm isotropic resolution. The acquisition scheme included 100 unique gradient directions uniformly distributed over and across 3 shells at b-values b = 0.3ms/μm2 (8 directions), b = 1ms/μm2 (32 directions) and b = 2ms/μm2 (60 directions) with 7 non-diffusion-weighted images (b = 0) for a total of 107 diffusion volumes. An additional reversed phase-encoded b = 0 image was acquired after the DWI acquisition with the same geometry to correct EPI distortions.
	• Inhomogeneous magnetization transfer images (ihMT): these images were acquired using a 3D segmented-EPI gradient-echo sequence with different magnetization transfer (MT) preparation pulses. They have 2 × 2 mm resolution and 65 slices with 2.0 mm thickness.

Finally, all images have been subjected to visual quality assessment. A detailed and more extensive data description can be found in Edde et al. (2023).



2.3 Pipeline

The data processing pipeline consists of 6 key steps described in sequential order in the following subsections, see Figure 4:


[image: Flowchart illustrating a process for analyzing fMRI data. It begins with preprocessing raw data, followed by steps in FWE-DS and TOD analysis, including multi-tensor fitting and model selection. Fiber tracking and RootBundleX are shown, leading to tractometry, which charts metrics against bundle location. The diagram uses labeled arrows to display data flow.]
FIGURE 4
 Proposed pipeline to extract the tract profiles using the MRDS fixel-based multi-tensor metrics. (1) Input data is denoised, aligned, corrected, normalized, cropped, and resampled. Brain, WM, and lesion masks are extracted. (2) The CSD method is fitted to obtain an FOD image, and a local tracking technique is used to estimate the streamlines. The WM mask is used to seed the streamlines. (3) TODI maps the tractogram into a NuFO map, which MRDS exploits as a model selection map in the MTM fitting. (4.1) MTM is fitted to the dMRI data using MRDS. MTM parameters are estimated for N = 1, N = 2, and N = 3, resulting in 3 MTFs. (4.2) The TODI NuFO map is used on the estimated MTFs to choose a value of N that better describes the diffusion signal at each voxel. TODI helps to refine the MTF with the spatial information provided by the tractogram (Karaman et al., 2023). Multi-tensor fixel-based metrics are computed from the MTF derived from the model selection. (5) The tractogram is segmented into major fiber bundles using the RecoBundlesX pipeline. (6) Segmented bundles and estimated fixel-metrics are the input of the Tractometry_flow pipeline to assess a tract profile for every combination of the bundles and metrics.



2.3.1 Preprocessing

The preprocessing of the dMRI data was performed using the Tractoflow pipeline (Theaud et al., 2020). This includes the brain and WM masks extraction, T1 registration and tractography.

The dMRI data was denoised using the MP-PCA (Veraart et al., 2016) method. Brain deformation induced by magnetic field susceptibility artifacts was corrected (Andersson et al., 2003). Motion artifacts corrections and slice-wise outlier detection were performed (Andersson and Sotiropoulos, 2016). Image intensities were normalized to reduce the bias by the magnetic field (Tustison et al., 2010). The brain mask was obtained from the bet command from FSL (Smith, 2002). Specifically, Tractoflow performed an extraction on the b = 0 image. Then, the obtained mask was applied to the whole DWI to remove the skull and prepare the DWI for the T1 Registration. Tractoflow performed brain extraction after Eddy/Topup correction to have a distortion-free brain mask.

Tractoflow processed the T1 image using eight different steps. First, Tractoflow preprocessed the T1 image including denoising, correcting and resampling steps for the T1 image. Then, the T1 image was registered on the b = 0 and FA images using the nonlinear SyN ANTs (antsRegistration) multivariate option, where the T1 image is set as moving image and the b0 and FA images are set as target images. After registration, Tractoflow extracted gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) partial volume masks using fast from FSL. These maps were used to compute the exclusion and inclusion maps for tractography (Girard et al., 2014), which are anatomical constraints for the tracking (Smith et al., 2012; Girard et al., 2014).



2.3.2 Fiber tracking

The fiber tracking was also done using the Tractoflow pipeline. The seeding mask employed in the tractography was the obtained WM mask. The tractogram was generated employing the anatomically constrained particle filter tracking (PFT) algorithm (Girard et al., 2014). This algorithm utilized the FOD image obtained with the Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD) (Jeurissen et al., 2014), along with the inclusion map, exclusion map, and a seeding mask to guide the tractography process. The seeding mask employed in the tractography was the extracted WM mask. A fully detailed explanation of the whole Tractoflow pipeline can be found in Theaud et al. (2020).

Additionally, Tractoflow includes strategies to avoid premature track termination when tracking MS patients. The seeding mask in MS patients was filled using a lesion-corrected WM mask. During the tracking process, if a peak in the FOD image is coherent and well-defined, the tracking continues even if the voxel is inside a WM lesion, increasing anatomical accuracy and consistency in obtained tractograms for MS patients. This step can be omitted as the tractogram can be generated with any fiber tracking technique.



2.3.3 TODI as model selector

The tractogram from fiber tracking was then processed with the TODI method to obtain a TOD image. Subsequently, the resulting TOD image was segmented to produce discrete fixels (Smith et al., 2013). Then, the fixel-based image was converted into a Number of Fiber Orientations (NuFO) scalar image, where the number of fixels was counted in each voxel. A threshold peak amplitude was utilized to prune the spurious peaks, such that any lobe for which the maximal peak amplitude was smaller than 0.1 was omitted. Finally, this NuFO image was used as input MOSEMAP in MRDS, which is better described in the next step (Section 2.3.4).



2.3.4 Multi-tensor Fitting

The MTM represents the diffusion signal Si at each voxel as:

[image: Mathematical equation showing signal intensity ratio: \( S_i/S_0 = \sum_{j=1}^{N} \alpha_j \exp(-b \mathbf{g}_i^T \mathbf{D} \mathbf{g}_i) \), where \( i = 1, \ldots, M \). Consists of summation, exponential, and matrix operations.]

where M is the number of unitary gradient orientations gi, N is the number of tensors, and αj is the fraction of the j-th diffusion tensor Dj. Assuming axial symmetry, then Dj is parameterized by the unitary principal diffusion direction (PDD) θj, the axial ([image: Mathematical notation showing a partial derivative symbol with subscripts indicating differentiation with respect to variable \( j \).]) and radial ([image: Mathematical expression showing \( \lambda_j^\perp \).]) diffusivities, such that:

[image: Equation showing \( \mathbf{g}_i^T D \mathbf{g}_i = \lambda_i \left\| \theta_j \cdot \mathbf{g}_i \right\|^2 + \frac{\lambda_j}{\lambda_i} \left[ 1 - (\theta_j \cdot \mathbf{g}_i)^2 \right] \).]

The bundle-specific parameters of the MTM were non-linearly estimated using the MRDS (Coronado-Leija et al., 2017) method for N = 1, N = 2, and N = 3, resulting in 3 multi-tensor fields (MTFs), see Figure 4. More than three fixels can be estimated, albeit with increased computation time and reduced precision for the estimated parameters. Besides, N ≤ 3 has been reported to be a reasonable threshold (Jeurissen et al., 2013). Initial diffusivities for the non-linear estimation of parameters in Equation 2 were obtained from DTI at brain WM voxels with a high probability of containing only one fiber.

Given that high b-value diffusion signals are not fully represented with the diffusion tensor, causing an overestimation in N. Thus, the original statistical model selection in MRDS, which provides a model selection map (MOSEMAP) with the value of N that better describes the diffusion signal at each voxel, is replaced for the NuFO scalar map obtained with TODI in step 2.3.3. The TODI NuFO scalar map merges the 3 MTFs into a reevaluated and refined MTF with the spatially smoothed information provided by the tractogram (Karaman et al., 2023), see Figure 4. From this improved MTF, fixel-FA, fixel-MD, fixel-AD, and fixel-RD maps were generated. The fixel-FA map maintains the same spatial dimensions as the original DWI Each voxel may contain multiple tensors. Then, an extra layer was added to store the multiple fixel-FA values obtained at each voxel. The scalar fixel-FA value was obtained for every tensor within a voxel, computed as the standard FA (Basser et al., 1994). This resulted in a 4D-dimensional fixel-FA map. The computation of fixel-RD, fixel-AD and fixel-MD maps was analogous to the computation of the fixel-FA map. Similarly, a map storing the PPDs of the MTF was computed. These maps were used as input for the tractometry step.



2.3.5 Tractogram segmentation

The tractogram was segmented into major bundles employing the RecoBundlesX (St-Onge et al., 2023, 2020; Kurtzer et al., 2017; Di Tommaso et al., 2017) pipeline, see Figure 4. RecoBundlesX recognizes bundles by comparing the subject's tractogram with a template (or atlas) through a similarity metric based on their shapes. This algorithm is re-evaluated multiple times with parameter variations and label fusion because RecoBundlesX is a multi-atlas and multi-parameter approach. We used the atlas in Rheault (2023), which is designed specifically to be used with RecoBundlesX, and it was built from delineation informed with anatomical priors (Catani and Thiebaut de Schotten, 2008). After RecoBundlesX identified a large number of WM bundles, tracks were visually inspected to ensure their quality. The Superior Longitudinal Fasciculus (SLF), Arcuate Fasciculus (AF), Pyramidal Tract (PYT), Inferior Longitudinal Fasciculus (ILF), Inferior Fronto-Occipital Fasciculus (IFOF), Middle Cerebellar Peduncle (MCP) and Cingulum (CG) bundles were selected to showcase the pipeline's capabilities. Selected bundles comprise a large set covering most of the brain, showing complex crossing fiber configurations, which is why they are frequently studied in the literature (Yeatman et al., 2012; Mishra et al., 2014; Chamberland et al., 2019; Winter et al., 2021).

In the experiments with MS patients, we have chosen the AF, ILF, IFOF and PYT bundles, which have clinical implications in the context of MS studies (Filippi and Rocca, 2011). The AF bundle connects the frontal and temporal lobes, crucial in speech communication. On the other hand, the ILF bundle connects the occipital and temporal lobes. Its functionality includes visual processing, tracking and recognition of objects and obstacles. Like AF and ILF, the IFOF bundle is involved in speech communication and visual processing tasks, transporting signals from the frontal to occipital and temporal lobes. The PYT connects the spinal cord with the cerebral cortex. It is essential in voluntary control movements. Therefore, when MS lesions appear in the AF, ILF, IFOF, and PYT bundles, several symptoms are experienced by MS patients. These symptoms include difficulties in speech and comprehension, visual deterioration, visual memory problems, attention issues, and affected motor coordination.



2.3.6 Tractometry with fixel-based metrics

The proposed pipeline employed the Tractometry_flow (Cousineau et al., 2017; Kurtzer et al., 2017; Di Tommaso et al., 2017) pipeline, which delivers metric maps along each individual input bundle. Then, each metric map was projected through every bundle to obtain a tract profile. We adapted the Tractometry_flow pipeline to support multi-tensor fixel-based metrics. The closest-fixel-only (Raffelt et al., 2015) strategy was used to map the contribution of the multi-fixels estimated by MRDS to a given streamline.




2.4 Experiments

We designed three experiments to study the behavior of the pipeline:

	• Experiment I: our proposed pipeline is tested on the three synthetic phantom datasets described before, simulating healthy tissue, demyelination and axonal degeneration. Estimated multi-tensor fixel-based metrics and tractometry results are compared with the known GS of the phantom. Relative errors obtained using the formula [image: The formula shows error equals the absolute value of the difference between value sub real and value sub estimated, divided by value sub real.] are reported in the results.
	• Experiment II: the pipeline is used to study the robustness to crossing fibers of the tract profiles in the in-vivo healthy control group. Obtained tract profiles informed with multi-tensor fixel-based metrics of the 100 total scans (20 subjects scanned 5 times each one) are group-averaged and compared to DTI-derived tract profiles.
	• Experiment III: the pipeline is employed to study variations of metrics across the AF, ILF, IFOF and PYT, which are relevant bundles in the study of relapsing-remitting MS. As the location and severity of the MS lesions are different for every individual patient, it is irrelevant to make a group-averaged study of the MS group of patients. Instead, we have manually selected patients 004 and 022 because they have the most severe and larger white matter coverage of lesions present in the WM. These particular patients are chosen in an effort to maximize the difference between the healthy control group and the MS patient tract profiles. Individual patient tract profiles informed with multi-tensor fixel-based metrics are compared with the group-averaged tract profiles in order to exhibit differences.




3 Results


3.1 Experiments on synthetic data

In Figure 5, we show violin plots comparing single-tensor (blue) and multi-tensor (green) metrics. Horizontal lines refer to the GS (red) and the mean of each distribution. Single-tensor metrics exhibit several discrepancies with respect to the GS, most DTI distributions are bimodal, such that one of the peaks is close to the GS, while the other is underestimated for FA and AD, and overestimated for RD.


[image: Three panel violin plot visualizes the distribution of FA, RD, and AD metrics across various subjects. Each panel represents a different metric, comparing blue (Study FA) and green (Study B) with red (Gold Standard). Subject labels are X01 to X15.]
FIGURE 5
 Violin plots of the estimated tensor and multi-tensor fixel-based metric maps along each bundle of the control synthetic dataset (control values without lesions). Tensor metrics are estimated with DTI (blue violin) and multi-tensor fixel-based metrics with MRDS (green violins). Obtained metrics are compared with the GS (red line). The bundle's average crossing fibers composition in the GS is indicated in the proportions containing N = 1 fiber, N = 2, or N = 3 fibers at the top of the figure.


For each bundle, we accounted for the proportion of voxels containing 1, 2, and 3 fiber populations using the NuFO map obtained with TODI, i.e., we accounted for the proportions of N. These proportions are at the top of Figure 5. By inspecting percentages of N shown in Figure 5, it is reasonable to assume that DTI bimodality is caused by crossing fiber biases. In Figure 5, bundles with a high proportion of N = 2 and N = 3 have a more pronounced bimodality; this is particularly evident for the 13th bundle. In contrast, it can be seen in Figure 5 that the mean of the estimated fixel-FA and fixel-AD are similar to the GS value in all bundles. The relative error of fixel-FA and fixel-AD is around 10% as it is reported in Table 1, reaching a relative error as low as 2.7% in some bundles where the average relative error is 5.6%. It is important to note that, for fixel-based metrics, the relative error of bundles with a high count of 2 and 3 crossing fibers is similar to the relative error in bundles exposing mostly single fiber composition. As an example, percentages shown in Figure 5 exhibit that bundles 5 and 10 mainly have no crossing fibers, while bundle 11 has, for the most part, crossing fibers. However, the relative error of fixel-FA for bundles 5, 10, and 11 in Table 1 are around 3%. Even for the bundle 13, which is one of the most challenging bundle as it has a high proportion of crossing fibers, the relative error remains at 7%. Values in Table 1 exhibit a higher relative error for fixel-RD compared with fixel-AD and fixel-FA, but still less relative error than RD in general. Additionally, bundle 2 shows abnormal relative errors compared to the other bundles.


TABLE 1 Relative errors of the violin plots for the tensor (blue) and multi-tensor (green) metric maps estimated with DTI and MRDS, respectively.

[image: A table displaying metrics labeled from 1 to 20 and their mean values. The columns include FA, Fixel-FA, RD, Fixel-RD, AD, and Fixel-AD, with percentage values for each metric. The mean values at the bottom are: FA 15.6%, Fixel-FA 5.6%, RD 75.0%, Fixel-RD 28.6%, AD 20.3%, Fixel-AD 7.0%.]

Looking at the obtained tractogram, the streamline count for bundle number 2 after segmentation is 104, which is insufficient to cover the whole bundle's volume, resulting in an increased relative error. Thus, results in bundle 2 should be interpreted with caution because of the low number of streamlines. Bundle 10 has almost 100% single fiber composition. It is the only bundle where the relative error of RD is less than the one reported in fixel-RD. This suggests that, in the absence of crossing fibers, DTI's RD may be more accurate than fixel-RD. Besides, fixel-RD violin plots in Figure 5 indicate that, in general, fixel-RD tends to underestimate the GS value, which is congruent with the relative errors reported in Table 1. In the MTM fitting with MRDS the isotropic volume fraction is overestimated, see Appendix A. Since the synthetic data was generated using a multi-compartment model and MTM does not fully represent the signal for the b-values in our protocol, then the ISO compartment may be partially explaining the contribution of the EC compartment (see Appendix A for more details). Therefore, this underestimation of the fixel-RD metric might be related to the overestimation of the isotropic volume fraction.

Similar to Figure 5, in Figure 6 violin plots on the 13th bundle are reported for the 3 simulated scenarios detailed in Section 2.1: healthy control case, demyelination, and axonal loss. Additionally, tractometry results on the same bundle for the 3 different scenarios can be found in Figure 6B. In the healthy control scenario, the limitations of DTI in capturing the overall WM microstructure configuration are evident. Tract profiles informed with standard DTI metrics are biased by crossing fibers as FA, RD, and AD tract profiles have variations along the bundle, while the GS does not. In particular, FA tract profile decreases and RD tract profile increases when the value of N increases, see Figure 6B. In contrast, the robustness of the multi-tensor fixel-based metrics estimated with MRDS is evident as they provide tract profiles independent of the underlying fiber configuration, see Figure 6B.


[image: Multiple violin plots compare fractional anisotropy, radial diffusivity, and axial diffusivity across control, demyelination, and axon loss conditions in bundle thirteen. Line graphs illustrate the same metrics for different conditions—control, demyelination, and axon loss—defined by location along the bundle. An image at the bottom highlights a specific bundle region with crossing fibers.]
FIGURE 6
 Differences between different simulated scenarios are studied in the bundle number 13 of the phantom. (A) Violin plots of the estimated single-tensor (blue) and multi-tensor (green) fixel-based metrics for each scenario. The mean of the distributions is represented as a horizontal line matching the color of the distribution. The GS of the healthy tissue and damaged tissue are represented as red and purple horizontal lines, respectively. (B) Tract profiles resulting from projecting the estimated single- and multi-tensor fixel-based metrics along the 13th bundle. Every row represents a different scenario (control, demyelination, and axon loss), while every row represents a different measure (FA, RD, and AD). The GS value of N (black curve) and tensor metrics (red curve) are also projected on the bundle number 13, showing the actual underlying fiber configuration along this bundle for comparison. A region with lesions and crossing fibers is highlighted in pink.


In the demyelination scenario, results with DTI metrics in Figure 6 showed limited sensitivity to changes in the WM microstructure. In the region with a lesion, tract profiles exhibit variations, but they do not correspond with the GS. Contrarily, results with multi-tensor fixel-based metrics show enhanced sensitivity, detecting reductions in FA and increase in RD associated with simulated demyelination while maintaining robustness to noise and crossing fibers, see Figure 6. Like the demyelination scenario, DTI metrics exhibit limitations in detecting axonal loss, particularly in regions with crossing fibers. Despite the differences in the three simulated scenarios, results in Figure 6 show no substantial differences in DTI metrics. This makes it impossible to distinguish between different scenarios. Results with multi-tensor fixel-based metrics are less contaminated by fiber crossing artifacts, which allows to detect variations in the tract profiles related to lesions. Obtained tract profiles informed with fixel-based metrics underestimate the GS RD, which is expected and congruent with the results investigated in Figure 5. Although results with multi-tensor fixel-based metrics overestimate the GS FA and underestimate the GS RD, they are accurate in shape and sensitive to small variations.



3.2 Experiments on in-vivo data

For experiments on in-vivo data, we focus only on FA and RD metrics and their fixel-based counterparts, as MS research and literature report that FA and RD are potential biomarkers closely related to microstructure anomalies and demyelination (Song et al., 2002, 2005). Figure 7 illustrates tract profiles for different major bundles in the left hemisphere of the healthy participants.
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FIGURE 7
 Group-averaged tract profiles of the 100 healthy control scans (comprising 20 participants scanned five times over 6 months) along several segmented WM bundles: the (red) SLF_L, (cyan) PYT_L, (orange) MCP, (blue) IFOF_L, (yellow) CG_L (magenta) ILF_L and (green) AF_L bundles. The mean and variance of the tract profiles obtained with DTI-derived metrics (green) and MTM-derived fixel-based metrics (blue) are represented with a bold line and a shaded area, respectively. The estimated number of crossing fibers (N) using TODI along each selected bundle is represented by an black curve. The axial, coronal and sagittal views a control subject's T1 image are provided as anatomical references.


According to Table 2, tract profiles obtained with MRDS fixel-FA and fixel-RD metrics show an overall reduction in the correlation with the value of N compared to FA and RD metrics. Tract FA profile decreases in locations where N is high and vice versa. In contrast, tract fixel-FA profiles exhibit more robustness to crossing fibers. Additionally, tract profiles informed with fixel-based multi-tensor metrics show FA similar to the ones reported in healthy WM of human brain. Based on the literature, FA values in the healthy human brain WM generally range between 0.60 and 0.85, depending on the specific tract or region. For example, FA in the corpus callosum was reported to be between 0.72 and 0.78 (Westlye et al., 2010), and between 0.73 and 0.76. FA in the internal capsule was reported to be between 0.70 and 0.80 (Mukherjee et al., 2008), and around 0.75. Finally, FA in frontal WM was found to be between 0.60 and 0.70 (Westlye et al., 2010), and between 0.60 and 0.65. Results on the healthy control group dataset follow the patterns observed in the experiments on the control synthetic dataset. Like Figure 5, tract profiles obtained with DTI-based metrics consistently show lower FA and higher RD values compared to the fixel-based metrics across every bundle.


TABLE 2 Pearson correlation coefficients between the tract profiles of MRDS fixel-based metrics (green curves), DTI metrics (blue curves) and the NuFO value of N (black curve) in Figure 7. Each metric was evaluated across the same set of bundles as in Figure 7.

[image: Table showing correlations with a variable \( N \) for different metrics: FA, Fixel-FA, RD, and Fixel-RD across seven regions: SLF_L, AF_L, PYT_L, ILF_L, MCP, IFOF_L, and CG_L. Correlation values range from strongly negative to strongly positive, demonstrating varying degrees of association between each metric and region.]

Figure 7 shows average tract profiles computed from the HC cohort, which includes different subjects scanned in different time stamps. Tract profiles in Figure 7 show visually low variability overall. In Table C1, the standard deviation (SD) is presented for tract profiles informed with both fixel-based and DTI metrics. The SDs are computed within-subject and between-subject for each bundle and each section of the bundle. The SD from tract fixel-FA profiles is generally higher than the tract FA profiles, though they remain comparable overall. Additionally, Table C2 presents the results of the ANOVA test conducted to compare the mean of 5 tract fixel-FA and fixel-RD profiles resulting from the five scans of sub-015 (one of the subjects exhibiting the highest variability), see Appendix C. The ANOVA test shows the F-statistic and p-value across the 20 locations (labels) of the selected bundles. The results revealed significant differences in the means for various bundles at specific labels. Notably, Label 2 exhibited a statistically significant effect in the PYT_L bundle with an F-statistic of 3.9618 (p = 3.84E-04) and in the ILF_L bundle (F-statistic = 1.6415, p = 1.69E-02). Similarly, Label 8 demonstrated significant findings in the SLF_L (F-statistic = 4.6286, p = 2.74E-04) and MCP (F-statistic = 15.2726, p = 2.82E-06) bundles. Additionally, Label 12 showed highly significant results in the AF_L (F-statistic = 12.99599, p = 5.45E-07) and PYT_L (F-statistic = 10.1636, p = 1.48E-07) bundles.



3.3 Experiments on relapsing-remitting MS data

Our pipeline was applied to the MS dataset for a set of relevant bundles in the context of MS studies: AF, ILF, IFOF, and PYT. Differences between MS patients and HC group-averaged tract profiles are studied in Figure 8. In locations adjacent to lesions, fixel-FA tract profiles show lower values than the healthy control group. Moreover, on the ILF and IFOF bundles, fixel-FA values are beyond the second variance, which may indicate degradation of the WM integrity. Besides, fixel-RD tract profiles are consistently elevated compared to healthy controls in regions with lesions, suggesting widespread expected demyelination. The spatial extent of the lesions correlates with the extent of the changes in both metrics.


[image: Four panels display brain tract images alongside line graphs. Each panel features a brain tract image on the left with color-coded regions, labeled as AF_L, ILF_L, IFOF_L, and PYT_L. On the right, corresponding line graphs show data trends along the tract location. Graphs depict various metrics with multiple colored lines, including a legend indicating the measured parameters and groups. The x-axis of each graph represents the location along the tract, while the y-axis varies per dataset. The background of charts includes gray bands indicating standard deviation or range.]
FIGURE 8
 Single MS patient fixel-FA and fixel-RD tract profiles (red lines) compared with the group-averaged tract profiles (green lines with shaded areas) of the 100 healthy control subjects (comprising 20 participants scanned 5 times) along several segmented WM bundles: the (A) AF_L, (B) ILF_L, (C) IFOF_L, and (D) PYT_L. Tract profiles of lesion volume (black lines) are reported to exhibit the potential relationship between the fluctuations in the tract profiles and the lesion. The sagittal view of the MS patient's T1 image, the bundle, and the lesions (dark blue surfaces) are provided as anatomical references.


Figure 9 displays FA and fixel-FA maps along the IFOF_L bundle in the patient 004. Both single- and multi-tensors are visualized in the region of the bundle. Each tensor is colored according to its FA value. Additionally, Figure 9 compares the tensor renders in two different ROIs within the bundle. The ROI outlined in blue has MS lesions while the orange outlined ROI is located at the normal-appearing white matter. Several crossing fibers are present in each ROI as the IFOF bundle crosses with other bundles, such as the PYT and ILF bundles. The FA map shows darker areas in both ROIs, corresponding with the shape, and decreased FA showed by the tensors. No significant differences in FA values are appreciated between the two ROIs. On the other side, the fixel-FA map is darker only in the ROI with the lesion. However, unlike the FA map, fixel-FA map shows higher values and fewer dark spots in the crossing fiber ROI. This indicates that fixel-FA is more robust to crossing fibers. In addition, multi-tensors show FA values within a healthy control range in the crossing fiber ROI, highlighting their potential to differentiate between crossing fibers and lesions.


[image: MRI brain image with fiber bundles and lesions highlighted in varying colors. Two sections display detailed views: "Crossing" shows altered fiber structures; "Lesion" emphasizes specific lesion areas. A color scale ranges from dark blue to yellow for intensity.]
FIGURE 9
 Difference between DTI and MTM in ROIs with crossing fibers and lesions. (A) The T1 image of an MS patient and the IFOF_L bundle streamlines with lesion mask (pink colored surfaces) are shown for anatomical reference. (B) Fixel-FA and (C) FA maps along the IFOF_L bundle estimated with MRDS and DTI, respectively. Tensors and multi-tensors are rendered in two different ROIs using the FA value of the tensor as color using the Inferno color map. One of the ROIs (blue ROI) has MS lesions, while the other (orange ROI) is located at the NAWM. Both ROIs present crossing fibers as the IFOF intersects other bundles. Single-tensors show a decreased FA value in both ROIs. Multi-tensors show low FA value only in the ROI with lesions, while the ROI in the NAWM shows more consistent values with healthy tissue.





4 Discussion

In this work, we address the crossing fiber bias from DTI metrics used in tractometry, by instead using multi-tensor fixel-based measures obtained from multi-shell HARDI acquisitions. Multiple b-vale diffusion-weighted data is mandatory for reliable parameter estimation in MTM-based methods such as MRDS (Scherrer and Warfield, 2012; Coronado-Leija et al., 2017). Our multi-shell acquisitions remain clinically feasible (~30 minutes).

Previous works in literature have reported limitations when informing tractometry with multi-tensor fixel-based metrics. Multi-tensor fitting is computationally demanding, highly affected by noise, and requires extensive high-quality dMRI HARDI acquisitions, which are time-consuming and challenging to find in clinical settings (Tournier et al., 2011; Jeurissen et al., 2013). Because of this, previous tractometry methods informed with multi-tensor fixel-based metrics have been limited up to 2 fixels per voxels, resulting insufficient in many regions of the brain (Delinte et al., 2023; Mishra et al., 2014). MTM methods generally struggle to accurately determine the number of fixels at each voxel, which is especially challenging in regions with complex fiber configurations. Choosing MRDS as a framework to estimate the multi-tensor fixel-based measures and using TODI to inform MRDS's model selection with tractography regularization allowed us to address these limitations in the current state-of-the-art. MRDS accounts for the presence of up to 3 fixels within each voxel plus an isotropic compartment, allowing for more accurate characterization of the fixel-specific tract profiles and being robust to fiber-crossing. MRDS is relatively fast when estimating the diffusivities in the resampled WM at 1 mm isotropic resolution (~1 h of computing time per subject). Moreover, it has been shown to be accurate and robust to noise (SNR = 12) when using clinical-grade dMRI data and protocols. Finally, the new model selection (Karaman et al., 2023) applied in MRDS allows for improvement in the estimation of the required number of tensors per voxel, taking advantage of the spatial regularization provided by tractography.

In the experiments with synthetic dMRI data, relative errors for fixel-based metrics indicate that multi-tensor fixel-based metrics estimated with MRDS are robust to crossing fibers and sensitive to WM anomalies (Figure 5). When comparing the tract profiles obtained with fixel-based multi-tensor metrics to traditional single-fixel tensor metrics, a difference in sensitivity was observed. Tract profiles informed with multi-tensor fixel-based metrics distinguish between crossing fibers and scenarios like axonal loss and demyelination (Figure 6) by assessing the underlying fiber configuration and WM tissue metrics.

We tested our proposed tractometry pipeline on several WM bundles of the in-vivo healthy control group: SLF, AF, CG, IFOF, PYT, ILF and MCP. We compared the obtained tract profiles informed with multi-tensor fixel-based metrics with tract profiles informed with single-tensor metrics along these bundles, focusing on their robustness to crossing fibers (Figure 7). The robustness of the multi-tensor fixel-based metrics to crossing fibers is evident across all examined bundles. Besides, our findings indicate that tractometry informed with multi-tensor fixel-based metrics is consistent, reliable, and not significantly affected by random noise or crossing fibers. As expected, single-tensor metrics exhibit a notable fluctuation when the estimated number of crossing fibers per voxel (N) along the bundle increases or decreases. This pattern suggests that single-tensor metrics are highly influenced by crossing fibers. According to the literature (Grieve et al., 2007), tract profiles informed with multi-tensor fixel-based metrics exhibit FA values in a range that is considered normal for healthy WM. This alignment suggests that multi-tensor fixel-based metrics provide more accurate representation of the WM integrity. Contrary, singles tensor metrics fail to estimate FA values considered normal in the WM because they are biased by crossing fibers.

In Section 3.2 we quantitatively and qualitatively explored the within-subject and between-subject variability of the tract profiles. The consistent low SDs values for the tract profiles indicate minimal variability within and between subjects. Despite the higher variability in multi-tensor fixel-based tract profiles, they remain within acceptable limits. This suggests that multi-tensor fixel-based informed tract profiles are more accurate, but less precise than DTI informed tract profiles. Moreover, we conducted an ANOVA test to evaluate the differences in mean fixel-FA and fixel-RD metrics across 20 locations of several bundles in sub-015. The overall rejection rates across the labels suggest a high level of consistency in the measurements, with an average rejection rate of 40%. However, our findings indicate that the tract profiles of certain bundles are significantly influenced by the anatomical location, revealing significant differences in the means of fixel-FA and fixel-RD across different regions of the brain. These results underscore the importance for careful interpretation of tract profiles as certain bundles, particularly in subjects with pronounced variability.

While Rojas-Vite et al. (2019) provided a solid foundation for the application of fixel-based metrics provided by MRDS, further validation using animal models remains essential. Particularly, in the context of demyelination and tractometry. Understanding the intricate changes in the obtained fixel-based metrics associated with demyelination is crucial for accurately interpreting the alterations detected by our method. Future studies utilizing animal models have to be driven for a more comprehensive assessment of our approach's sensitivity to demyelination and its correlation with histological outcomes.


4.1 Application to relapsing-remitting multiple sclerosis

We compared relapsing-remitting MS patients to a group of healthy subjects with similar age and brain configuration (Figure 8). The proposed pipeline shows to be sensitive to WM anomalies related to relapsing-remitting MS disease. The single MS patient tract profiles exhibit values that clearly deviate from the healthy control group. These deviations are potentially related to MS pathology as they occur around lesion location. A similar behavior is reproduced in the synthetic data simulating demyelination (Figure 6). Therefore, differences between group-averaged and individual MS patients' tract profiles in Figure 8 are assumed to be a consequence of the disease. In general, for all bundles, MS patients consistently show reduced fixel-FA and increased fixel-RD compared to healthy controls.

In Section 3.3, we made a comparison between the tract profiles of the HC group and two MS patients (sub-004-ms and sub-022-ms) of the MS group. Although a group comparison (HC vs. MS) may be done, the inherent group-averaging may not be beneficial because of the variability of MS lesions among MS patients. MS lesions can appear in different regions along the brain, and the severity of these lesions varies between patients (Wicks et al., 1992). Averaging these tract profiles across patients could lead to loss of critical information that is essential for understanding the individual differences within the MS group. Nonetheless, it is important, as a future work, to design an analysis for the entire MS cohort, which will provide a more comprehensive understanding of these dynamics. Moreover, we recognize the importance of developing a framework for explicit comparison of Wallerian degeneration, which would provide valuable insights to the MS research community. Finally, we acknowledge the need for a more comprehensive analysis comparing FA and RD values in the normal-appearing white matter of MS patients with those of healthy controls, which could further enhance our understanding of the integrity of WM in regions without visible lesions.

In a previous study (Winter et al., 2021), tractometry with dMRI metrics was investigated in young adults with relapsing-remitting MS. They reported significant abnormalities in the WM microstructure in WM bundles similar to those we used. In particular, reduced FA and increased RD were observed, indicating demyelination, which aligns with our reported results. Additionally, specific changes in fiber density and complexity were noted, indicating axonal degeneration. In Chamberland et al. (2021) a study using tractometry was conducted on MS patients with optic neuritis. It was found a limited ability to differentiate between various types of lesions like demyelination and axon loss using dMRI metrics, which is consistent with our findings. In another example (Beaudoin et al., 2021), tractometry informed with single tensor and other advanced fixel-based metrics was used to investigate the association between diffusion MRI-derived measures and neuropsychological symptoms of MS. They focused on WM fascicles that are associated with cognitive dysfunction in the presence of lesions. Our approach could offer several benefits to this kind of studies. For example, MTM metrics may replace standard DTI metrics in their analysis. The integration of these new metrics should be direct, as MTM metrics have the same biological and geometrical interpretation as DTI metrics without the crossing fiber bias. This could provide a more robust and accurate depiction of microstructural WM changes in MS patients. MTM metrics like fixel-RD would allow for a more precise and sensitive characterization of demyelination and other alterations, including axon loss. Robust multi-tensor metrics could improve the reliability of longitudinal studies by providing consistent and accurate measures over time. This would facilitate the monitoring of disease progression. By incorporating multi-tensor fixel-based tractometry analysis, researchers and clinicians may underscore the advantages of multi-tensor fixel-based metrics in improving the fidelity of studies.

One of the main limitations in the current literature is that RD metric can be contaminated in regions with crossing fibers and lesions, leading to erroneous interpretations and conclusions, making RD unstable as a biomarker (Jones et al., 2013; Winston, 2012). This work addresses this limitation by offering a tractometry pipeline robust to crossing fibers, suggesting the fixel-RD metric as a more robust biomarker for demyelination. Our pipeline shows that multi-tensor fixel-based methods could be a robust alternative to DTI, in which familiar metrics such as FA or RD are now specific to a particular fixel or track, with similar biological/geometrical interpretation. This facilitates the contextualization of these MTM metrics regarding many studies utilizing DTI metrics. Besides, it is unnecessary to include other fixel-based metrics such as AFD, which has challenging biological interpretability. AFD reflects the density of axonal fibers within a voxel, but not necessarily their functional status or health (Dell'Acqua et al., 2007). Thus, an increase or decrease in AFD does not directly translate to improved or deteriorated neurological function, requiring additional context (Raffelt et al., 2012). Moreover, pathological conditions like demyelination or axon loss can alter diffusion properties in ways that are not straightforward to disentangle, making it hard to pinpoint the exact biological cause of changes in AFD (Jones et al., 2013).



4.2 Limitations

In this work, we utilized a simulated phantom that incorporates different compartments to simulate WM microstructure to evaluate our proposed method. However, it is important to acknowledge the limitations of this phantom as it only serves as an approximation that does not capture the full complexities of the human WM. Membrane permeability and vascularization are examples of factors that were not considered in these simulations. Future work should focus on validating the proposed method using more realistic phantoms, such as the proposed by Callaghan et al. (2020) and Villarreal-Haro et al. (2023).

Our pipeline uses the closest-fixel-only strategy when relating the streamline's segments to local fixel properties. This does not allow multiple local fixels to contribute to a given streamline and might contribute to erroneous tractometry results if the bundle does not have enough streamlines. This can be improved by employing a fixel angular weighting strategy as the one proposed and used in Delinte et al. (2023).

Our results showed a decrease in RD precision when a single fiber population is present. This is concordant with what has been reported in other multi-fiber methods (Parker et al., 2013). Including a free water tensor in MRDS enhances results accuracy and mitigates potential biases, particularly when analyzing patient data. Nonetheless, this inclusion decreases sensitivity in the estimated fixel-based diffusivities due to the increased complexity of fitting 4 tensors (3 anisotropic and 1 isotropic) instead of 3 with MRDS. Besides, for acquisition schemes including high b-values the estimation of N and the isotropic volume fraction is affected, see Appendix A. Hence, the isotropic compartment may partially explain the contribution of the extra-cellular part of the dMRI signal, resulting in a reduction of the RD as shown in results with synthetic data. In the future, we consider that it will be important to study in depth the impact of including a free water compartment in MRDS and their implications in other lesions like edema as it is still an open question.

In our study, we demonstrated that the proposed method effectively detects variations in tract profiles associated with lesions, both in synthetic simulations and in-vivo data. This capability underscores the potential of our approach for identifying abnormalities in complex fiber crossing regions. However, it is important to note that while our method shows promise in detecting lesions, future work is necessary to further investigate its performance in accurately assessing the actual severity of detected lesions.

Although the obtained results underscore the capabilities of the proposed pipeline to identify WM lesions while being robust to crossing fibers, it cannot discriminate between demyelination and axonal damage. This is congruent to previous studies, which found that RD is sensitive to several microstructural changes different from demyelination, such as axonal deterioration, edema, and inflammation (de Vries, 2010). More advanced models like SM (Ferizi et al., 2016; Novikov et al., 2019) can distinguish between changes occasioned by axonal integrity and changes due to demyelination, but they still use one single tissue kernel per voxel, not per fixel. Similar to Dayan et al. (2015), our robust multi-tensor fixel-based metrics can be combined with these advanced methods, leading to a more sophisticated pipeline with a different type of metrics. Additionally, the employment of Magnetization Transfer Imaging (MTI), which is sensitive to myelin content, could help to differentiate between demyelination and axonal injury. However, it is necessary to extend the developed phantom for simulating not only dMRI acquisitions but also MTI acquisitions in order to validate the results on in-vivo data.

Another important aspect to consider is the high amount of false-positive streamlines in the tractogram and recognized bundles (Maier-Hein et al., 2017). While segmenting the tractogram and focusing the analysis on known tract bundles, false-positive streamlines can lead to inconsistencies in the tract profiles of the tractometry analysis, like overestimating the tract profiles from the estimated fixel-based metrics. Additionally, they can introduce more noise and variability into the analysis, hindering reproducibility. This can reduce the sensitivity of tractometry analysis to detect genuine alterations in WM between control subjects and patients, resulting in misinterpretations and erroneous conclusions. Fortunately, there are methods like COMMIT (Daducci et al., 2015) that assign weights to individual streamlines in the tractogram by solving a convex optimization problem. This enables the detection of false-positive streamlines, which can be removed by discarding streamlines with weight equal to 0. As future work, COMMIT can be integrated into the pipeline to obtain a pipeline more robust to false-positive streamlines.




5 Conclusions

In conclusion, our work focuses on creating a robust tractometry framework informed by tractography-regularized multi-tensor fixel-based metrics. It demonstrates its capabilities to address the crossing fibers bias and lesions, increasing the sensibility in both simulated and real-world scenarios.

This study makes several key contributions to the field of WM imaging analysis. First, developing a simulated phantom with challenging and customizable geometry, incorporating different WM scenarios by using the standard model (healthy tissue, demyelination, and axon loss). This phantom provides a controlled environment to systematically evaluate and compare different imaging techniques and models. This allows us to verify the accuracy and robustness of our proposed methods against various fiber configurations and pathologies. Second, our proposed pipeline informed with the multi-compartment framework MRDS–three anisotropic and one isotropic compartment–marks a substantial methodological advancement. This pipeline goes from raw data to tract profiles informed with track-specific tensor metrics. By combining tractography robust to lesions and accurate multi-tensor fixel-based metrics, our pipeline achieves more robust, precise, and sensitive representations of the WM microstructure, particularly in regions with complex crossing fiber configurations or lesions related to pathologies. This approach addresses limitations in the current state-of-the-art methods. Thirdly, we evaluated the proposed tractometry pipeline in a cohort of 20 healthy individuals. Our results demonstrate the superiority of MTM over DTI, highlighting MTM's enhanced ability to capture detailed microstructural information and resolve crossing fiber geometries. The increased sensitivity of MTM metrics provides more accurate assessments of white matter integrity. Finally, applying our tractometry pipeline to a cohort with relapsing-remitting MS further underscores the clinical relevance of our work. Our qualitative analysis demonstrates the sensitivity of the pipeline in detecting WM anomalies related to demyelination. This is particularly important in diseases like MS, where it is important to differentiate between crossing fibers and lesion contamination. Pipeline's capabilities to delineate these anomalies offer an improvement over those that only include DTI metrics for studying and monitoring MS and potentially other neurological conditions.
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Appendix A


Isotropic compartment fitting

Two synthetic datasets were generated using 2 different acquisition schemes. Datasets share the same parameters except for the scheme. They were generated with no noise and no dispersion. MRDS was fitted in both datasets in order to study the estimation of the Isotropic Volume Fraction (IVF) with different schemes. The first scheme (Penthera_3T) matched as closely as possible the scheme used in the in-vivo experiments. Similar to the Penthera_3T scheme, the second scheme (Test scheme) was composed of 107 encoding directions, but they were distributed as 33 directions for b = 0.3ms/μm2, 33 for b = 0.6ms/μm2, 34 for b = 1ms/μm2, and 7 for b = 0, respectively.

Figure A1 shows histograms of the estimated IVF with MRDS on the 2 different acquisition schemes. The histogram corresponding to Penthera_3T shows an overestimation of the IVF, with a mean relative error of 80%. On the other hand, the histogram corresponding to the second scheme has a lower relative error (40%). This indicates the importance of using an appropriated protocol for the estimation, as the free diffusion compartment decays faster for high b-values (>1ms/μm2), reducing the number of lower b-values measurements in the protocol biases the estimation of the IVF. However, for the most accurate estimation of the free water compartment acquisitions with multiple echo times are needed (Coelho et al., 2022).


[image: Histogram comparing data distributions of "Penthera_3T" and "Test Protocol" with a vertical red line indicating "GT". Both distributions overlap significantly, peaking around 0.10, with counts reaching approximately 6,000.]
FIGURE A1
 Histograms of the estimated isotropic volume fraction with MRDS using different protocols.





Appendix B


Fiber tracking with multi-tensor

If a statistical-based model selection, such as the Bayesian Information Criterion (BIC), is used to obtain a preliminary MTF with MRDS, an Orientation Distribution Function (ODF) can be generated. The transformation of the MTF provided by MRDS into an ODF image can be performed using the following equation (Daducci et al., 2014):

[image: Mathematical formula for ODF (g-hat) is shown: ODF (g-hat) equals the sum from j equals 1 to N of alpha sub j times the expression in parentheses, g-hat transposed times D sub j inverse times g-hat, raised to the power of negative three-halves, divided by the expression four pi times the square root of the determinant of D sub j. Equation B.1.]

Fiber tracking can be performed using the probabilistic tractography algorithm iFOD2 (Tournier et al., 2009) on the ODFs obtained with Equation B.1. Since iFOD2 has been optimized for the Fiber Orientation Distributions (FODs) derived from CSD, a tuned ODF amplitude cutoff of 0.05 should be used as it has shown to improve results when tacking with multi-tensor derived ODFs (Girard et al., 2023). Afterward, the obtained tractogram can be used as input for the proposed pipeline in Figure 4. Thus, this tractogram can be segmented into major bundles, employing RecoBundlesX. Besides, it can be used to evaluate a new MTF with the TODI model selector.

Computing the tractogram with MRDS instead of CSD could help to reduce the pipeline's computational time. However, both RecoBundlesX and iFOD2 are specifically tuned to work with ODFs obtained with CSD or similar methods. Therefore, the quality of the tractogram may be affected, resulting in difficulties recovering some major bundles.




Appendix C


Tract profile standard deviation and ANOVA test results for fixel-FA and fixel-RD metrics


TABLE C1 Standard deviations (SD) for tract profiles across different white matter bundles.

[image: A detailed table displaying various metrics across different brain regions for multiple subjects. The metrics include FA, Fixel-FA, RD, and Fixel-RD for regions such as SLF_L, AF_L, PYT_L, and others. Each subject has individual values, and the last row summarizes cohort averages. Additionally, the description explains the calculation method for standard deviations across five scans, noting variability within the group, and mentions the reporting conditions for the cohort.]


TABLE  C2 ANOVA results for tract profiles of sub-015 across the 20 sections (labels) of multiple bundles.

[image: Table shows statistical results from an ANOVA test assessing differences in mean tract profiles across various metrics, such as SLF_L, AF_L, PYT_L, ILF_L, MCP, IFOF_L, and CG_L. Includes f-statistics and p-values for each metric and location. The significance threshold is set at p < 0.01, and rejection rates are provided for 25%, 35%, 50%, 40%, and 55%. Rejection rates and significant data are highlighted, offering detailed insights into the analysis.]
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Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that lacks effective early biomarkers. This study investigated the potential of diffusion kurtosis imaging (DKI) as a non-invasive biomarker for detecting and monitoring ALS progression through a comprehensive analysis of white matter alterations.
Methods: We performed a cross-sectional analysis of magnetic resonance images with advanced diffusion imaging techniques in ALS patients recruited from a neurodegenerative consultation service over a 3-year period and healthy controls. Our methodology employed multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) for tract reconstruction and diffusion kurtosis imaging for microstructural analysis. The study focused particularly on the corticospinal tract and associated pathways, utilizing both tract-specific Bundle Analytics (BUAN) and whole-brain Tract-Based Spatial Statistics (TBSS) approaches.
Results: The study included 33 ALS patients and 37 controls with no significant differences in age or gender. ALS patients predominantly presented with spinal onset and exhibited moderate functional impairment (ALSFRS-R: 39.09 ± 5). Whole-brain TBSS revealed widespread white matter alterations, with increased MD, RD, and AD, and decreased FA notably in the corona radiata, internal capsule, and corticospinal tracts. Detailed fiber tracking of the corticospinal tracts showed significant microstructural changes, with the left CST displaying pronounced increases in MD and AD alongside reduced FA, while the right CST exhibited distinctive regional variations. Additionally, analyses of the frontopontine and parietopontine tracts uncovered further alterations in diffusion metrics. Despite imaging findings, clinical-radiological correlations with functional scores and disease progression were not statistically significant.
Conclusions: This study explores DKI as a potential biomarker for ALS pathology, revealing microstructural changes in both motor and extra-motor pathways. Using whole-brain TBSS analysis and tractography with DIPY, we identified an asymmetric pattern of degeneration and involvement of integrative neural networks, providing new insights into ALS pathophysiology. These findings contribute to our understanding of the complex structural alterations in ALS and suggest that DKI-derived metrics may have utility in characterizing the disease process.
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1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive degeneration of upper motor neurons (UMN) and lower motor neurons (LMN), with a median survival of 2–5 years post-diagnosis (Brown and Al-Chalabi, 2017). Despite advances in molecular characterization, early diagnosis remains hampered by clinical heterogeneity and the absence of biomarkers detecting pre-symptomatic axonal degeneration (Goutman et al., 2022). The diagnosis of ALS remains primarily clinical, following a complex process that often results in significant diagnostic delays. The current diagnostic framework relies on the revised El Escorial criteria (Brooks et al., 2000), which were updated in 2015 (Ludolph et al., 2015) to improve diagnostic sensitivity while maintaining specificity. However, several challenges persist in the early and accurate diagnosis of ALS.

Early symptoms can be subtle and non-specific, often resembling other neurological conditions. Physical examination focuses on identifying both upper motor neuron and lower motor neuron signs, but the heterogeneous presentation of these signs can complicate early diagnosis. Progressive muscle weakness typically begins focally, making it challenging to differentiate from other neuromuscular conditions (Hardiman et al., 2017).

Electrophysiological (EMG) studies and nerve conduction studies (NCS) have been essential diagnostic tools, but these techniques have limits in detecting early changes in denervation. These techniques do not allow detection of abnormalities until there is a significant loss of motor neurons, requiring about 30% motor neuron loss (Lari et al., 2019). Furthermore, EMG findings can be non-specific and may appear similar to other neuromuscular disorders.

Current biomarkers lack sufficient sensitivity and specificity for early diagnosis. Neurofilament light chain (NfL) levels in cerebrospinal fluid and blood show promise but are not yet validated for routine clinical use. The absence of a definitive biomarker significantly impacts early diagnosis and disease monitoring (Poesen et al., 2017).

Conventional magnetic resonance imaging (MRI) is primarily used to exclude other conditions rather than confirm ALS diagnosis. While advanced neuroimaging techniques show promise in detecting early neural pathway changes, they are not yet part of standard diagnostic criteria (Turner et al., 2009). However, the active search for biomarkers for the detection of the disease does not cease, different investigations carried out in the field of MRI have provided a lot of information.

Advanced neuroimaging techniques have emerged as promising tools for the detection and monitoring of ALS, offering insights beyond conventional MRI.

Diffusion tensor imaging (DTI) has emerged as a particularly valuable technique for investigating microstructural alterations in ALS, with meta-analyses confirming consistent abnormalities in white matter tracts, especially the corticospinal tract (Li et al., 2012; Foerster et al., 2013). Despite its widespread application, the diagnostic utility of DTI metrics has been limited by methodological heterogeneity and the complex pathophysiology of ALS, necessitating careful interpretation of imaging findings (Bede and Hardiman, 2014). Recent studies have demonstrated the potential of DTI parameters as biomarkers for ALS, showing significant correlations with clinical measures and disease progression (Baek et al., 2020). However, the sensitivity and specificity of single-modality approaches remain suboptimal for individual patient assessment. To address these limitations, multimodal MRI approaches that integrate structural, diffusion, and functional techniques have shown promising results, improving diagnostic accuracy and sensitivity to longitudinal changes in ALS (Pisharady et al., 2023).

Studies, where diffusion tensor imaging (DTI) has been applied, have shown significant alterations in fractional anisotropy (FA) and mean diffusivity (MD) values in ALS patients compared to healthy controls, and these changes correlate with disease progression and functional impairment (Chió et al., 2014). Nevertheless, DTI techniques have limitations to reliance on Gaussian diffusion models, which oversimplify the complex microstructure of degenerating white matter (Assaf and Pasternak, 2008). Diffusion kurtosis imaging (DKI) addresses these limitations by quantifying non-Gaussian water diffusion, revealing microstructural features such as axonal density, dendritic complexity, and glial reactivity–key pathological hallmarks in ALS (Jensen and Helpern, 2010).

DKI captures non-Gaussian water diffusion properties, offering more detailed information about tissue complexity and cellular barriers than conventional DTI. Studies implementing DKI have revealed significant alterations in mean kurtosis (MK) values in the motor cortex and along the CST of ALS patients, potentially serving as earlier and more sensitive markers of neurodegeneration (Andica et al., 2020; Chen et al., 2017). These findings suggest that DKI metrics might detect pathological changes even before conventional DTI parameters show significant alterations (Welton et al., 2019). However, inconsistencies in analytical approaches and limited focus on extramotor pathways hinder clinical translation (Bede and Hardiman, 2018).

Recent developments in fiber tractography, combining both DTI and DKI approaches, have enabled more comprehensive mapping of white matter pathway alterations in ALS. These advanced tractography methods have revealed specific patterns of degeneration along the CST, with changes often beginning in the primary motor cortex and progressing causally, offering new perspectives on the pathophysiological mechanisms underlying ALS progression (Anand et al., 2023).

Despite advances in neuroimaging techniques, there remains a critical need for sensitive and reliable biomarkers that can detect early microstructural changes in amyotrophic lateral sclerosis. While diffusion tensor imaging has shown promise in identifying white matter alterations, its inability to capture non-Gaussian water diffusion potentially limits its sensitivity to complex tissue changes (Steven et al., 2014). Our research proposes that DKI assessment within sensorimotor tracts will reveal distinct patterns of microstructural degeneration in ALS patients, with metrics that correlate significantly with clinical measures of upper motor neuron dysfunction and disease progression. The application of DKI metrics is expected to demonstrate superior sensitivity in detecting pathological changes compared to conventional diffusion tensor parameters, especially in regions where traditional measures remain within normal ranges (Steven et al., 2014). Moreover, the integration of advanced 3D fiber tractography techniques will provide unprecedented visualization of these microstructural alterations, offering a comprehensive spatial mapping of disease-related pathology along these critical white matter pathways. This multi-modal approach aims to establish DKI as a robust biomarker for detecting microstructural alterations in ALS patients, potentially advancing our understanding of the disease's underlying pathophysiology at the time of diagnosis.



2 Methods


2.1 Participants

The recruitment of ALS cases and controls was carried out in the ALS unit of the University Hospital of Navarra (HUN) for three consecutive years.

The inclusion criteria for the patient group was a diagnosis of probable or defined ALS according to the El Escorial criteria. Patients were excluded if they had a medical history of cerebral ischemic events, other previous neurodegenerative or neuropsychiatric diseases, significant respiratory insufficiency, or contraindications for MRI. In the healthy control group, subjects had no family history of neurodegenerative disease, no history of severe head trauma, ischemic events, or any other serious neurological, psychiatric, or other diseases.

This study was reviewed and approved by the local ethics committee, and written informed consent was obtained from all participants.



2.2 Data acquisition

The MRI studies were carried out on a 3T MAGNETON Vida system (Siemens Healthineers, Erlangen, Germany) using a 32-channel head coil array, with the following imaging parameters for each technique:

High-resolution T1-weighted structural images were acquired using a three-dimensional magnetization-prepared rapid gradient-echo (MPRAGE) sequence with inversion time (TI) = 1,020 ms, echo time (TE) = 2.61 ms, repetition time (TR) = 2,100 ms, field of view (FoV) = 230 × 230 mm2, acquisition matrix = 256 × 256, and 192 sagittal slices. The sequence employed a GRAPPA acceleration factor of 3, yielding an isotropic voxel resolution of 0.9 mm3.

The diffusion weighting data were acquired using a multi-shell acquisition protocol with 64 diffusion-encoding directions. The protocol included three b-values (b = 0, 1,000, and 2,000 s/mm2) to enable advanced diffusion modeling, resulting in a total of 140 diffusion-weighted volumes, each containing 66 anatomical slices. The sequence parameters were: echo time (TE) = 91 ms, repetition time (TR) = 3,800 ms, with a field of view (FoV) = 200 × 200 mm2, and acquisition matrix = 100 × 100. The protocol employed a simultaneous multi-slice (SMS) acceleration factor of 3 and GRAPPA parallel imaging acceleration factor of 2, resulting in an isotropic voxel resolution of 2 mm3.

Clinical and neurophysiological data were obtained concurrently with MRI acquisition. Functional status was evaluated using the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) and disease progression rate was calculated as (48 - ALSFRS-R score)/symptom duration in months.



2.3 MRI analysis
 
2.3.1 Data preprocessing

The diffusion-weighted and T1-weighted images were visually inspected for possible acquisition problems such as motion, susceptibility, and artifact noise. As a first step, all acquisitions were subjected to an initial pre-processing to correct acquisition problems.

All raw diffusion scans were denoised using the Diffusion Imaging in Python (DIPY https://dipy.org/index.html) (Garyfallidis et al., 2014) software package applying self-supervised denoising via statistical independence (Fadnavis et al., 2020) and motion corrected (Jenkinson and Smith, 2001). Distortion susceptibility was corrected using topup (Andersson et al., 2003) of FSL's (Jenkinson et al., 2012). Before performing the susceptibility correction, Synb0-DiscCO (Schilling et al., 2020) was used to synthesize a distortion-free image b = 0. Eddy current correction is performed using eddy (Andersson and Sotiropoulos, 2016) of FSL implementation, the b matrix was rotated to preserve the correct orientation information after the eddy current and tilt angle corrections (Leemans and Jones, 2009). Finally, a Gibbs ring correction is applied to reduce artifacts in the white matter (Veraart et al., 2016). Additionally, the T1-weighted images were denoised using the Non-Local Means (Coupe et al., 2008).

All diffusion image processing, including both the reconstruction of diffusion models and fiber tracking procedures, was performed using the DIPY software package (version 1.9.0), a comprehensive library for diffusion MRI analysis and tractography.



2.3.2 DWI reconstruction

Diffusion reconstruction was performed using two complementary models. First, DKI (Jensen and Helpern, 2010; Henriques et al., 2021) was implemented to obtain enhanced diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Subsequently, Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD) (Jeurissen et al., 2014) was applied to optimize tractographic reconstruction, allowing a more accurate characterization of tract anatomy.

Prior to diffusion metric computation, a binary mask was applied to the diffusion-weighted images to exclude background noise and non-brain tissue. The DKI model was then fitted to the masked diffusion data to estimate multiple diffusion metrics: FA, AD, MD, and RD. These metrics were computed for each voxel within the brain mask to quantify local water diffusion properties.

For the reconstruction of fiber orientations, T1-weighted images were first used to perform tissue segmentation, distinguishing between white matter, gray matter, and cerebrospinal fluid. These tissue maps were then incorporated into the Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD) method. This technique takes advantage of both the tissue segmentation and the additional information provided by different b-values to separate the contributions from different tissues and provide a more accurate estimation of fiber orientations. The response function for each tissue was estimated in a tissue-specific manner using an iterative self-calibration process adapted for multi-shell data.



2.3.3 DWI fiber traking

The fiber tracking of white matter was performed using the parallel transport algorithm (Aydogan and Shi, 2021), which preserves the local differential geometry of diffusion space. To ensure anatomical specificity, the tractography was constrained using tissue-specific masks derived directly from MSMT-CSD analysis and T1 segmentation.

For quantitative analysis of the reconstructed tracts, scalar metrics were mapped onto each streamline using DIPY. This process involved interpolating the scalar values from the DKI metric maps at each point along the streamlines, allowing for detailed characterization of microstructural properties along the entire length of each tract. The mapping was performed using a trilinear interpolation method to ensure accurate sampling of the scalar values while maintaining the native resolution of the diffusion data.



2.3.4 Tract segmentation analysis

In our tract segmentation analysis, each reconstructed white matter tract is divided into 100 segments through the creation of assignment maps in a common model space. This approach, as described in previous studies (Garyfallidis et al., 2012, 2014), allows us to capture local variations in diffusion properties—such as fractional anisotropy (FA)—that might be overlooked when the entire tract is analyzed as a single entity. By assigning each point on a streamline to its nearest segment based on Euclidean distance, we preserve the natural distribution of points without re-sampling, ensuring that regional differences in tract integrity are accurately reflected.



2.3.5 TBSS

Following the initial preprocessing steps and diffusion metric computation described above, the data were further analyzed using Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006). Using the previously obtained diffusion metrics (FA, MD, AD, and RD) derived from the DKI model, all subjects' FA images were nonlinearly registered to a common space. Next, a mean FA image was created and thinned to generate a mean FA skeleton, which represents the centers of all white matter tracts common to the group. This skeleton was thresholded at FA>0.2 to exclude peripheral tracts with high inter-subject variability and partial volume effects. Subsequently, each subject's aligned FA data was projected onto this skeleton for voxelwise cross-subject statistical analysis. The transformation matrices derived from the FA images were then applied to the other diffusion metrics (MD, AD, and RD) to allow for multi-metric voxelwise statistical analysis.




2.4 Statistical analysis

Demographic comparisons between ALS patients and healthy controls were conducted using appropriate statistical tests. Age differences were assessed using two-sample independent t-tests, while gender distribution was analyzed using chi-squared test. For the ALS group, clinical characteristics including disease duration, ALSFRS-R scores, and progression rates were summarized using descriptive statistics.

Neuroimaging analyses were performed using two complementary methodological approaches to comprehensively assess white matter alterations.

The first approach is whole brain analysis, voxelwise statistical tests were performed using FSL's randomize tool, implementing nonparametric permutation tests with 500 permutations. The analysis included age and sex as covariates to control for demographic effects. Correction for multiple comparisons was performed using threshold-free cluster enhancement (TFCE), and statistical significance was set at p < 0.05 corrected. This dual analytic approach allowed both detailed examination of specific tracts of interest and comprehensive assessment of whole-brain white matter changes.

The second approach consists of an analysis using the Bundle Analytics (BUAN) module within DIPY to examine tract-specific changes. Linear mixed models (LMM) were implemented to analyze differences in diffusion metrics along the corticospinal tract and associated white matter pathways. The statistical model incorporated group status as the main factor of interest while controlling for age, sex, and ALSFRS-R scores as covariates. Subject-specific random effects were included to account for individual variability in tract measurements. Statistical significance was assessed using a hierarchical approach with multiple thresholds (p < 0.05 and p < 0.01) to control for multiple comparisons across tract profiles.

Correlation analyses examined the relationships between diffusion metrics and clinical variables. Pearson's correlation coefficients were calculated to assess the associations between the average value of diffusion parameters (FA, MD, AD, and RD) along fiber tracts and clinical measures, specifically the ALSFRS-R scores and disease progression rate. Statistical significance was set at p < 0.05.




3 Results


3.1 Demographic and clinical characteristics

The study included 33 ALS patients (19 males, 14 females) and 37 controls (16 males, 21 females), with no significant differences in age (64.6 ± 10.35 vs. 60.8 ± 9.7 years, p = 0.114) or gender distribution (p = 0.144) (Table 1).


TABLE 1 Comparison between patients and controls.

[image: Table comparing characteristics between controls and patients. Controls: 37 participants, average age 60.8 ± 9.7 years, gender 16 male, 21 female. Patients: 33 participants, average age 64.6 ± 10.35 years, gender 19 male, 14 female. p-values: 0.114 for age (two-sample independent t-test) and 0.144 for gender (chi-squared test).]

Among ALS patients, the distribution of symptom onset patterns was spinal onset being predominant (66.7%, n = 22), followed by bulbar onset (27.3%, n = 9), and a small proportion presenting with generalized onset (6.0%, n = 2) (Table 2). The analysis of disease characteristics revealed that patients had a mean symptom duration of 27.46 ± 20.40 months at the time of MRI acquisition (Table 2). Laterality of initial symptoms show no significant differences in distribution (p = 0.307). Functional status assessment indicated moderate impairment, with a mean ALSFRS-R score of 39.09 ± 5 out of 48, and a disease progression rate of 0.38 ± 0.38. One patient was excluded from the ALSFRS-R analysis due to missing data (Table 2).


TABLE 2 Clinical characteristics of ALS patients.

[image: A table displays characteristics, values, and p-values related to symptoms. Symptom onset includes bulbar (9, 27.3%), spinal (22, 66.7%), generalized (2, 6.0%). Symptom duration before MRI is 27.46 ± 20.40 months. ALSFRS-R/48 score is 39.09 ± 5. Disease progression rate is 0.38 ± 0.38. Initial symptoms of laterality include left (10, 30.3%), right (8, 24.2%), others (15, 45.5%) with a p-value of 0.307. ALSFRS-R refers to Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; chi-squared test is noted. One patient was excluded due to missing ALSFRS-R score.]



3.2 Whole-brain white matter analysis

Tract-Based Spatial Statistics (TBSS) analysis revealed significant white matter alterations in all diffusion metrics with a left predominance (Figure 1). We corrected for multiple comparisons using TFCE and p < 0.05 for the MD, RD, and AD metrics and p < 0.05 uncorrected for the FA diffusion metric.


[image: Four rows of brain scan images labeled MD, FA, RD, and AD from right (R) to left (L). Each row contains multiple cross-sectional images with color-coded highlights in blue, green, and red, indicating different brain structures or data points. Numerical labels are placed above each column.]
FIGURE 1
 Voxel-wise comparison of diffusion metrics (MD, FA, RD, and AD) displayed on axial brain slices (z = –32 to 68 mm). Green outlines show a white matter skeleton. Blue regions indicate areas where patients>controls, while brown/red regions (in FA) show areas where patients<controls. Images in radiological convention (R: Right, L: Left).


Multiple comparison correction was not applied to the FA analyses because the effects on FA were more subtle than on the other diffusion metrics. When applying multiple comparison correction to FA, an insufficient number of voxels exceeded the threshold to allow meaningful interpretation of corticospinal tract alterations. Uncorrected FA results are presented as exploratory findings.

MD showed increased bilateral diffusivity (z = 28–68), predominantly affecting the corona radiata and internal capsule. FA showed markedly decreased values (shown in red/brown) in the anterior and superior regions of the white matter, with marked involvement of the corticospinal tract. RD showed a pronounced increase in diffusivity (shown in blue) concentrated in the central areas of the white matter, from the corona radiata to the internal capsule. In addition, AD showed increased diffusivity along the white matter tracts. The most significant changes for MD, FA, and RD were observed in anterior and superior brain regions (z = 18–48).



3.3 Alterations of the corticospinal tract in fiber tracking

The corticospinal tract, being the principal motor pathway and a known site of pathology in ALS, demonstrated the most pronounced changes in our analysis. As shown (Figure 2), both left and right CST showed altered DKI parameters along their trajectories, with significant differences (p < 0.05).


[image: Eight line graphs labeled a) to h) display data trends for variables CST_L and CST_A, with curves representing correlation and p-values. Each graph includes a histogram overlay and varying data series. The x-axis shows segment numbers from zero to one hundred, while the y-axis displays the EO values and entropy measure on two vertical axes.]
FIGURE 2
 Analysis of bilateral CST in ALS patients vs. controls, showing (a) left MD, (b) right MD, (c) left FA, (d) right FA, (e) left RD, (f) right RD, (g) left AD and (h) right RD, for both groups along tract segments (0–100). Blue bars represent the p-value of the two-sample test, with blue and red thresholds indicating statistical significance (p < 0.05 and p < 0.01).



3.3.1 Left corticospinal tract

Analysis of the left corticospinal tract revealed significant microstructural alterations in multiple diffusion metrics (Figure 3). MD values showed higher mean values in patients (red line) compared to controls (green line), with statistically significant differences particularly evident at segments 50–90 (p < 0.05) and more pronounced differences at segments 70–75, 85–90 (p < 0.01). FA trajectories showed maximum values around segments 35–45, where both groups reached peaks between 0.75–0.80, and patients exhibited lower mean values and significant reductions compared to controls at segments 35–40 (p < 0.05). FA differences became most evident in segments 90–95, where the patient group consistently showed reduced values. RD analysis revealed similar trajectory patterns between groups with initially elevated peaks at segments 0–5, followed by similar trajectories between segments. A notable separation occurred at segments 35–40 and 80–95, where patients showed elevated mean values compared to controls, with multiple segments reaching statistical significance thresholds (p < 0.05). AD demonstrated significantly higher patient values at segments 55–85 (p < 0.05), and particularly prominent differences at segments 65–85 (p < 0.01). The AD trajectory showed a characteristic pattern with elevated values in the middle portions (segments 20–60), reaching peaks of approximately 0.00175 mm2/s in the patient group, before gradually decreasing toward the tract endpoints.


[image: Four color-coded brain tractography images labeled a) to d). Each combines blue and red streamlines, showing variations in density and pathways. Subtle differences appear across the images, illustrating visual and structural changes.]
FIGURE 3
 3D representation of the statistical significance (p > 0.05) of the (a) MD, (b) FA, (c) RD, and (d) AD over the left CST tract. Red stripe significant values, blue stripe non-significant values.




3.3.2 Right corticospinal tract

The right corticospinal tract exhibited a pattern of changes that revealed distinctive microstructural alterations in multiple diffusion metrics (Figure 4). MD values in patients (red line) showed similar trajectories to controls (green line) with subtle variations, particularly in segments 70–100 where patients showed slightly elevated values, although statistical significance was not achieved (p < 0.05). FA demonstrated maximal values in segments 35–45, reaching peaks of approximately 0.70–0.75, with patients showing consistently lower mean values. Notable reductions in FA were observed in segments 30–35 (p < 0.01), primarily affecting the central region of the tract. RD analysis showed an initial peak in segments 0–5, followed by stable trajectories in both groups. The patient group showed slightly elevated RD values throughout the tract length, with scattered segments reaching statistical significance (p < 0.05), particularly at segments 5–10 and 85–90. AD values showed the most prominent differences between groups, with controls showing higher mean values, particularly at segments 25–40, where peak values reached approximately 0.00175 mm2/s and patients showing slightly lower values, and notable differences at segments 80–90, although most differences remained at significance level p < 0.05. The AD trajectory showed a characteristic pattern with elevated values in the middle portions (segments 25–50) before gradually decreasing toward the endpoints of the tract reaching significance at segments 30–40 and 75–80 at p < 0.05. These findings were visualized in three-dimensional reconstructions, with color-coded representations highlighting the spatial distribution of these alterations along the length of the tract. This pattern of changes, although similar to that observed in the left corticospinal tract, showed a distinctive regional involvement.


[image: Four panels show a blue 3D shape resembling a fan with various red markings. Panel a) shows the shape without markings. Panel b) has red markings at the base. Panel c) features a red stripe diagonally across. Panel d) combines the red base markings and diagonal stripe.]
FIGURE 4
 3D representation of the statistical significance (p > 0.05) of the (a) MD, (b) FA, (c) RD, and (d) AD over the right CST tract. Red stripe significant values, blue stripe non-significant values.


Analysis of the aforementioned corticospinal tracts revealed differences in diffusion metrics between ALS patients and controls. The pattern of changes suggests a possible superior-to-inferior gradient of pathological involvement, which may reflect the progressive nature of ALS. Moreover, the alterations showed distinct patterns of involvement between the left and right hemispheres, suggesting potential asymmetric progression of pathology in ALS, a finding that may have important implications for understanding disease progression.




3.4 Extended white matter pathway involvement

Our analysis revealed that white matter alterations in ALS extend beyond the primary motor pathways, affecting several associated tracts crucial for motor function and cognitive processing. This broader involvement may help explain the spectrum of clinical manifestations observed in ALS patients.


3.4.1 Frontopontine tract

Analysis of the left frontopontine tract revealed distinctive patterns of microstructural alterations (Figure 5). In the left tract, MD demonstrated significant differences at segments 60–85 (p < 0.05) with two segments reaching statistical significance (p < 0.01). FA reached maximal values of approximately 0.70–0.75 at segments 30–45, and patients showed subtle reductions throughout the tract reaching statistical significance at segments 5–10, 30–35, and 95–100 (p < 0.05). RD exhibited consistent elevations in patients across all segments reaching statistical significance at segments 30–35 and 85–90 (p < 0.05). AD values showed markedly elevated trajectories in patients compared to controls, particularly in segments 60-85 (p < 0.05), with peak values reaching approximately 0.00175 mm2/s in segments 20–25, Figure 5 shows the projection in the reconstructed 3D tracts.


[image: Two panels labeled a) and b) compare diffusion tensor imaging data between control and patient groups. Both panels feature line graphs of mean FA values over segments with control (green) and patient (red) lines, alongside p-values and histograms beneath. Adjacent to each graph is a fiber tract image, showing brain connectivity with differences in blue, red, and green fibers.]
FIGURE 5
 Analysis of left FPT in ALS patients vs. controls, showing (a) MD and (b) FA for both groups across tract segments (0–100). Blue bars represent the p-value of the two-sample test, with blue and red thresholds indicating statistical significance (p < 0.05 and p < 0.01). This is complemented by a 3D representation of the left FPT tract showing in red the segments where there are significant differences between groups (p < 0.05) no significant differences were found on the right side.




3.4.2 Parietopontine tract

Analysis of left parietopontine tracts revealed distinct patterns of microstructural changes (Figure 6). In the left tract, MD measures demonstrated increased values in patients, particularly between segments 60–85 (p < 0.05). FA showed maximum values around segments 35–45 (approximately 0.75–0.80), with patients showing subtle reductions throughout reaching statistical significance at segments 0–5, 85–100 (p < 0.05). AD values showed markedly elevated trajectories in patients compared to controls at segments 20–40 (peaking at approximately 0.00165 mm2/s) and maintained higher values at segments 60–80, with consistent statistical significance (p < 0.05), Figure 6 shows the projection in the reconstructed 3D tracts.


[image: Two panels labeled a) and b) each contain graphs and corresponding fiber tract diagrams. Graphs plot EEG alpha values against segment numbers for controls (green line) and patients (red line), with significance levels marked. Bar graphs below show statistical differences. Right side displays fiber tracts in blue and red, representing connectivity differences.]
FIGURE 6
 Analysis of left PPT in ALS patients vs. controls, showing (a) MD and (b) FA for both groups across tract segments (0–100). Blue bars represent the p-value of the two-sample test, with blue and red thresholds indicating statistical significance (p < 0.05 and p < 0.01). This is complemented by a 3D representation of the left PPT tract showing in red the segments where there are significant differences between groups (p < 0.05) no significant differences were found on the right side.





3.5 Clinical-radiological correlations

Correlations between diffusivity metrics (MD, FA, RD, and AD) and the clinical parameters evaluated (ALSFRS-R and rate of progression) did not reach statistical significance. The patterns of microstructural alteration observed in the white matter tracts analyzed showed a spatial distribution consistent with the typical clinical manifestations of ALS. However, the finding of greater involvement in the left hemisphere in our study population did not correlate with the laterality of the onset of motor symptoms reported by the patients.




4 Discussion

Our findings provide several insights into ALS pathophysiology. First, the asymmetric nature of white matter changes suggests that disease progression may not be uniform across hemispheres. Second, the involvement of non-motor pathways supports the contemporary view of ALS as a complex neurodegenerative disorder affecting multiple neural systems.

This study employed a dual analytical approach to assess white matter alterations in ALS patients in a comprehensive manner. The combination of whole-brain voxelwise analysis and tract-specific examination allowed for a nuanced understanding of white matter integrity.

DKI analysis in ALS patients revealed significant white matter alterations compared to healthy controls. In neurodegenerative diseases, overall white matter microstructural damage is typically expressed by increased MD and decreased FA, whereas RD and AD are more specific markers of myelin and axon degeneration, respectively. Although our study reproduced most of the expected results, it found a paradoxical increase in AD, suggesting a more complex pattern of neurodegeneration.

The comprehensive pattern of involvement across multiple diffusion metrics corroborates our tract-specific findings and provides further evidence of asymmetric motor pathway involvement in ALS. Left gray and white matter asymmetry has been previously described in volumetric and DTI studies and is postulated to represent an increased vulnerability in the dominant motor cortex in right-handed patients, regardless of the laterality of symptoms at disease onset (Devine et al., 2015; Menke et al., 2012).

DKI analysis revealed significant white matter alterations, with prominent changes in the CST and additional involvement of the FPT and PPT tracts. The evidence, obtained by tract-specific and whole-brain analyzes, demonstrates that white matter degeneration extends beyond primary motor pathways, especially involving sensorimotor integration regions (TPF segments 60–80) and suggesting a pattern of disease spread along functionally connected pathways.

Regarding the lack of statistical significance in the segments proximal to the motor cortex observed in Figure 3, this phenomenon can be explained by inherent limitations of tractography reconstruction. The variability in the termination of the reconstructed streamlines represents a known technical challenge: some streamlines terminate prematurely due to limitations in the tractography algorithm when faced with areas of low anisotropy or fiber crossings, while others reach the cortex with greater extension. This heterogeneity in the reconstruction generates greater statistical variability in the diffusion values projected precisely in these cortical segments, reducing the statistical power to detect differences between groups. This phenomenon has been documented in previous tractography studies (Garyfallidis et al., 2012) and represents a methodological limitation rather than a biological finding in itself.

The findings, validated by both tract-specific (BUAN) and whole-brain (TBSS) analyses, highlight ALS as an integrative neural network disorder affecting motor planning and execution. Three-dimensional reconstructions confirm this spatial distribution of changes, which follows a pattern parallel to that observed in the corticospinal tract, providing evidence that ALS pathology impacts networks beyond primary motor pathways and suggesting broader implications for understanding the full spectrum of the disease.

While our study establishes that DKI is sensitive to ALS-related white matter pathology based on previous investigations demostrating its superior performance compared to DTI (Zhu et al., 2015; Huang et al., 2020), certain limitations must be acknowledged. The limited sample size prevents consideration of the substantial heterogeneity of ALS, both in terms of phenotype and prognosis. Future research directions should focus on multicenter cohorts to standardize protocols and expand subtype-specific analyses. Combining DKI with other biomarkers could further elucidate structure-function relationships in ALS, potentially refining its role in therapeutic trials and personalized prognostic models.
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Introduction: Multiple sclerosis (MS) is a chronic neuroinflammatory disease marked by demyelination and axonal degeneration, processes that can be probed using diffusion tensor imaging (DTI). In the brain, white matter (WM) tractography enables anatomically specific analysis of microstructural changes. However, in the spinal cord (SC), anatomical localization is inherently defined by cervical levels, offering an alternative framework for regional analysis.
Methods: This study employed an along-level approach to assess both microstructural (e.g., fractional anisotropy) and macrostructural (e.g., cross-sectional area) features of the SC in persons with relapsing-remitting MS (pwRRMS) relative to healthy controls (HCs).
Results: Compared to conventional whole-cord averaging, along-level analyses provided enhanced sensitivity to group differences. Detailed segmentation of WM tracts and gray matter (GM) subregions revealed spatially discrete alterations along the cord and within axial cross-sections. Notably, while GM atrophy was associated with clinical disability, microstructural changes did not exhibit significant correlations with disability measures.
Discussion: These findings underscore the utility of level-specific analysis in detecting localized pathology and suggest a refined framework for characterizing SC alterations in MS.
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1 Introduction

Diffusion tensor imaging (DTI) is a quantitative magnetic resonance imaging (MRI) technique that can reveal important microstructural alterations not otherwise captured by conventional imaging. Diffusion imaging measures the random Brownian motion of water molecules, which is influenced by tissue microstructure, enabling inference of both the magnitude and direction of diffusion along fiber tracts (Kolasa et al., 2019). When applied in the brain and spinal cord (SC), DTI-derived indices can describe tissue microstructure and can serve as a surrogate measure of physiological conditions (Schmierer et al., 2007; Alexander et al., 2007). Diffusion-derived indices include fractional anisotropy (FA), a measure of anisotropic water diffusion, and mean, axial, and radial diffusivities (MD, AD, RD) that represent either average magnitude (MD) or direction (AD/RD) of diffusion. These measures are particularly informative in conditions such as multiple sclerosis (MS), a demyelinating neuroinflammatory condition of the central nervous system. In MS, decreased FA and increased RD are associated with of axonal loss (Sbardella et al., 2013) and myelin injury (Klawiter et al., 2011), respectively, and found in both MS normal-appearing white matter (WM) and lesions compared to healthy control (HC) brains as supported by post-mortem histology (Ciccarelli et al., 2008; Kolasinski et al., 2012; Lin et al., 2007).

Investigations into SC microstructure using diffusion measures can be conducted at multiple spatial scales, encompassing (1) whole-cord metrics, (2) tissue-specific assessments within WM and gray matter (GM), and (3) finer-scale analyses of functionally relevant WM tracts or GM regions. This hierarchical approach has provided key insights, revealing distinct patterns of WM and GM involvement across MS subtypes, with lesion burden varying across tissue classes (Eden et al., 2019; Ouellette et al., 2020; Kreiter et al., 2024). Expanding this framework, recent studies have examined specific WM pathways and GM subregions, such as the lateral funiculi, where lesion burden has been correlated with clinical disability scores, including the Expanded Disability Status Scale (EDSS) (Eden et al., 2019). However, it remains unclear which spatial scale – whole cord, tissue compartment, or individual pathways – offers the most sensitive biomarker for distinguishing persons with MS (pwMS) from HCs or for evaluating relationships between microstructural integrity and clinical impairment.

Despite their utility, diffusion-derived indices are often averaged across large swaths of tissue, potentially obscuring localized microstructural alterations (Tallus et al., 2023). Tractography is one such attempt to more directly model WM structural integrity and localize variations in diffusion along a specific fiber pathway (Colby et al., 2012; Pieri et al., 2021). In the SC, however, such along-structure analysis does not require tractography, as the anatomical localization is inherently defined by cervical levels. This level-based approach enables a lengthwise parcellation of diffusion data, capturing regional variations along the cord from, for example, C2 through C5, without extensive post-processing demands. Prior studies have leveraged level-based atlases to understand the distribution of MS lesions along the corticospinal tract from the cortex to the cervical SC, highlighting the feasibility to derive anatomic details via atlas (Kerbrat et al., 2020). An atlas-based approach enables a comprehensive investigation of structural changes – both within and along the SC – while also revealing the spatial scale at which these changes occur.

In addition to microstructure, tissue macrostructure measures have proven useful in distinguishing diseased and healthy SCs. For example, macrostructural features like SC atrophy have been identified as potential predictors of subclinical disease progression and an increased risk of conversion from relapsing disease to secondary progressive disease (Bischof et al., 2022). Cross-sectional area (CSA) is a proxy measure for SC atrophy, with an underexplored opportunity to derive CSA across finer SC levels compared to the conventional approach across multiple slices limited to C2 and C3 vertebral levels (Keegan et al., 2024). A prior study assessing SC atrophy across vertebral levels found atrophy to be evenly distributed, with no apparent correlation between lesion distribution and atrophy (Bussas et al., 2022). Moreover, no association was observed between atrophy and/or lesion distribution with disability, including EDSS and sensorimotor tests (SMT) like the Timed 25-Foot Walk (T25). However, to our knowledge, these findings have not been examined in the context of diffusion-derived indices, nor has atrophy been systematically evaluated in relation to lesion burden across specific WM pathways and GM subregions.

In this study, we sought to investigate differences in macrostructural and microstructural SC integrity between HC and pwRRMS via an along-level approach and across multiple spatial scales. We also set out to associate these findings with disability. By identifying specific locations along the SC where disease-related alterations are most pronounced, we aim to refine MS biomarkers and improve our understanding of the spatial distribution of neurodegenerative processes in the human SC.



2 Methods


2.1 Image acquisition

Collection of anatomical and DTI data was approved by the Vanderbilt Institutional Review Board Health Sciences Committee and performed in accordance with relevant ethical guidelines and regulations. 70 pwRRMS and 46 HCs were recruited to undergo SMT and cervical SC MRI protocol at 3 T. Inclusion criteria for patients included EDSS score of less than 4, relapsing–remitting disease, and no contraindications to 3 T MRI (Kurtzke, 1983). Subjects were asked to perform SMT, including the Timed Up and Go (TUG) test (Sebastião et al., 2016) and T25. Participants were then scanned on a 3 T Philips Elition X (Philips Medical Systems, Best, The Netherlands) using a dual-channel transmit body coil and 16-channel neurovascular coil for signal reception centered in the cervical SC at C3 to C4 to encompass C2-C5 cervical vertebral levels.

The acquisition protocol included:


	• Sagittal T2-weighted turbo spin echo (TR/TE = 2500/100 ms, α = 90°, FOV = 160 × 250 mm2, 18 slices, voxel size 0.8 × 1 × 2 mm3)

	• Multi-echo Fast Field Echo (mFFE) T2*-weighted axial anatomical scan (TR/TE = 700/8 ms, α = 28°, FOV = 160 × 160 mm2, 14 slices, voxel size 0.65 × 0.65 × 5 mm3)

	• Cardiac-triggered single-shot EPI diffusion sequence (TR = 5 beats (∼4,000 ms), TE = 77 ms, SENSE (RL) = 1.8, FOV = 80 × 57.5 × 70 mm3, 14 slices, resolution = 1.1 × 1.1 × 5 mm3, averages = 3) with a single shell acquisition (15 directions, b = 750 s/mm2)





2.2 Image processing

The image processing steps were adapted from prior work and utilized the Spinal Cord Toolbox (SCT) and FSL (De Leener et al., 2017; Barry et al., 2016; Combes et al., 2022; Smith et al., 2004; Jenkinson et al., 2012). For each participant, vertebral levels were identified on the sagittal T2 image using SCT and registered to the mFFE image. Cord and GM segmentations were obtained on the mFFE image using sct_deepseg_sc (Gros et al., 2019) and sct_deepseg_gm (Perone et al., 2018), respectively. The WM mask was obtained by subtracting the GM mask from the full cord mask obtained via the initial segmentation. Unsatisfactory segmentations were corrected manually. Lesions were identified and masked on the T2*-weighted mFFE scan by two trained neuroradiologists (CM and SS) using ITK-Snap. For all further analyses, the whole cord (mFFE), WM, and GM regions were masked as the entire region, whether or not a lesion was present. The cord, WM, GM, and lesion masks were then resampled to atlas resolution (0.5 × 0.5 × 0.5 mm3). Per-slice CSA was calculated via the SCT command sct_process_segmentation (Valošek et al., 2024) from vertebral level C2 through C5 for the cord, WM, and GM masks.

Diffusion data underwent denoising via the Marcenko-Pastur PCA algorithm (Tournier et al., 2019; Cordero-Grande et al., 2019; Veraart et al., 2016a; Veraart et al., 2016b), Gibbs artifact removal (Tournier et al., 2019; Kellner et al., 2016), and Rician bias noise removal (Tournier et al., 2019) prior to motion correction using sct_dmri_moco (Cordero-Grande et al., 2019; Veraart et al., 2016a). Model fitting was performed using SCT to obtain FA, AD, RD, and MD maps which were then transformed to the anatomical space and resampled to atlas resolution (0.5 × 0.5 × 0.5 mm3).

To identify vertebral levels, the PAM50 continuous level map from SCT was first transformed to anatomical space as defined by the mFFE image from each subject. Then, to derive masks for six WM pathways, the PAM50 WM atlas was used to produce binary masks for dorsal, lateral, and ventral columns in the left and right hemicords [left dorsal (LDo), right dorsal (RDo), left ventral (LV), right ventral (RV), left lateral (LL), right lateral (RL)]. A similar process was repeated to derive masks for six GM subregions including the dorsal, intermediate, and ventral horns in the left and right hemicords [left dorsal horn (LDH), right dorsal horn (RDH), left ventral horn (LVH), right ventral horn (RVH), left intermediate horn (LIH), right intermediate horn (RIH)]. The WM pathway and GM subregion masks were transformed to anatomical space, resampled to atlas resolution (0.5 × 0.5 × 0.5 mm3), and binarized above 0.5. Per-slice CSA was calculated via the SCT command sct_process_segmentation from vertebral level C2 through C5 for WM pathway and GM subregion data.



2.3 Extraction of image metrics

Participants were excluded from the study due to missing data or poor data quality including MS subjects with no EDSS or SMT scores recorded (n = 5), poor vertebral level labeling that could not be manually corrected (n = 1), or no generation of lesion masks (n = 10). After removal of subjects, analysis was performed on 46 HCs (31.9 +/− 6.8 years old, 29 females) and 54 pwRRMS (36.7 +/− 7.5 years old, 36 females, EDSS (1 [median], 0–3.5 [range])).

Image analysis proceeded via in-house MATLAB code (R2024a). The PAM50 continuous level mask was extrapolated to a new mask with discrete, ascending increments of 0.2 (i.e., C2.0, C2.2, C2.4…) until C5.8. Then, for both HC and pwRRMS, per-slice CSA was extracted for each discrete sub-level within anatomical masks including whole cord, WM, GM, and WM pathway/GM subregion masks. C6 refers to the superior aspect of C6 and the inferior aspect of C5 but does not encompass C6 as this was not fully included in the original scan acquisition. Diffusion-derived indices were extracted (FA, AD, RD MD) using masks at each discrete vertebral sub-level. Finally, for just pwRRMS, lesion load was calculated as the volume of lesion divided by the volume of the whole cord, WM, or GM mask across vertebral levels.

Figure 1 summarizes the data analysis approach, including assessing macrostructure and microstructure features derived from (1) the whole cord, (2) specific tissues (WM/GM), and (3) regions-of-interests in both HCs and pwRRMS. For pwRRMS, lesion load was derived for whole cord and WM/GM analyses.

[image: MRI comparison of spinal cords. The top section shows a healthy control with T2 sagittal and axial images highlighting cervical vertebrae C2 to C5, focusing on C4. The axial images display the whole cord, white matter, gray matter, and pathways. The bottom section displays a patient with multiple sclerosis, similarly highlighting spinal segments, with additional images pinpointing lesions. Contrasts include cross-sectional area, microstructure (FA, AD, RD, MD), and lesion load measurements.]

FIGURE 1
 Depiction of healthy and MS cord processing, including delineation of the masks relative to healthy or lesioned tissue. The contrasts are included in the right column. CSA and diffusion-derived indices were calculated for HCs, and CSA, diffusion-derived indices, and lesion load were calculated for pwRRMS.




2.4 Statistical analysis

Group differences in age between HCs and pwRRMS were assessed via Welch’s t-test, while differences in sex distribution were evaluated using a chi-squared analysis. Clinical outcomes, including TUG and T25, were compared using ANCOVA adjusting for age and sex.

Meam values for CSA, diffusion-derived indices, and lesion load were determined between C2 through C5 for HC and pwRRMS for each anatomic mask (whole cord, WM, and GM), with significance determined via Welch’s t-test as p < 0.05. Group-averaged means and 95% confidence intervals were plotted across levels for CSA and diffusion-derived indices. Because the same subjects contribute measurements at equidistant levels in 0.2 increments, a linear mixed-effect model was appied at each level. The model included fixed effects for group (HC vs. pwRRMS), spinal level, and their interaction, with subject included as a random intercept: Imaging Feature ~ Group * Level + (1 | Subject). Significance was defined as p < 0.01.

For WM and GM pathways, Cohen’s d effect size differences were calculated for CSA and diffusion-derived indices, respectively, between HC and pwRRMS by calculating the difference in cohort means divided by the pooled standard deviation; this method was selected as a way to standardize the difference in means for various MRI measures between two groups. Mean values for CSA and diffusion-derived indices were computed per pathway, and between-group differences were assessed using Welch’s t-test with a relatively stringent p < 0.01 to account for tests from multiple pathways (6 WM/6 GM). As above, a linear mixed-effect model was appied at each level for each pathway: Imaging Feature ~ Group * Level + (1 | Subject). Significance was defined as p < 0.01.

Multivariable linear regression was performed to understand if CSA or diffusion-derived indices relate to disability as measured by T25, TUG, or EDSS while adjusting for age, sex, and diagnosis as covariates. Continuous variables – including CSA, diffusion-derived indices, and SMT measures – were normalized to allow for a comparable interpretation of effect size across features of different scales. The variables were inputted into MATLAB as fitlm (predictors, Clinical Feature ~ Imaging Feature + Age + Sex + Diagnosis). Effect size (B1) was used to measure the association between the imaging and clinical features. False discovery rate (FDR) p-value correction was performed with significance determined as p < 0.05. For visualization, effect sizes are normalized between −1 and 1 for macrostructure and microstructure analyses and between −0.5 and 0.5 for disability analyses.




3 Results


3.1 Group comparisons

Demographic data and clinical variables are reported in Table 1. PwRRMS demonstrated significantly longer TUG and T25 times compared to HCs (both p < 0.01). The patient cohort was also significantly older than the HC cohort (p < 0.01) with an average age of 36.70 compared to 31.86 in the HC cohort.


TABLE 1 Demographic and clinical averages with standard deviation for healthy controls (HCs) and persons with relapsing–remitting multiple sclerosis (pwRRMS).


	
	Healthy controls (n = 46)
	Persons with multiple sclerosis (n = 54)
	P-value (p)

 

 	Sex at birth 	29F/17M 	36F/18M 	NS


 	Age (years) 	31.86 +/− 6.78 	36.70 +/− 7.51 	<0.01*


 	Disease duration (years) 	– 	5.70 (0.1–20.0) 	


 	EDSS (median and range) 	– 	1 (0–3.5) 	


 	TUG (s) 	6.10 +/− 0.91 	7.34 +/− 1.81 	<0.01*


 	T25 (s) 	4.25 +/− 0.62 	4.86 +/− 1.17 	< 0.01*





Age was compared using Welch’s t-test. Sex was compared using a chi-squared analysis. TUG and T25 were compared using ANCOVA adjusted for age and sex. EDSS = Expanded Disability Status Scale score; NS = not significant; TUG = Timed Up and Go; T25 = Timed 25-Foot Walk. The bold value means * p < 0.01.
 



3.2 Macrostructure, microstructure, and lesion load: whole cord

As listed above, measures related to macrostructure (CSA), microstructure (diffusion-derived indices), and lesion load were obtained from whole cord, WM, and GM masks. In this context, “whole cord” refers to combined WM and GM tissue, while excluding the spinal canal and CSF.

Across the whole cord measures, CSA was not significantly different between pwRRMS and HCs, while microstructure measures showed statistically significant decreases in FA and AD in pwRRMS compared to HCs. There were no significant differences in average whole cord CSA between pwRRMS and HCs, which held true across discrete levels. Average whole cord FA was significantly decreased in pwRRMS (0.60) compared to HCs (0.63) (p < 0.01) with specific significant differences localized to sub-levels C2.4 through C2.8 (p < 0.01), C3.4 through C3.6 (p < 0.01). C4.2 through C5.2 (p < 0.01), and C5.8 (p < 0.01), suggesting a spatially heterogeneous pattern of microstructural alterations. Average whole cord AD was also significantly decreased in pwRRMS (2.03×10−3 mm2/s) compared to HCs (2.08×10−3 mm2/s) (p = 0.01), with significant differences localized to sub-levels C2.0 (p < 0.01) and C3.8 (p < 0.01). Average whole cord RD was greater in pwRRMS (7.35×10−4 mm2/s) compared to HCs (7.13×10−4 mm2/s) and MD decreased in pwRRMS (1.16×10−3 mm2/s) compared to HCs (1.17×10−3 mm2/s) though neither were significant, with similar findings across levels as shown in Figure 2.

[image: Graphs and a scan showing spinal cord measurements and microstructural parameters across different levels, comparing healthy controls (HC) and multiple sclerosis (MS) patients. The left section includes whole cord cross-sectional area (CSA) and lesion load with corresponding box plots. The right section features fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) with box plots displaying mean values for HC and MS groups. Shaded regions indicate variability.]

FIGURE 2
 Macrostructure, lesion load, and microstructure for the whole cord mask, including both group average differences and along-level differences. HCs are listed in blue and pwRRMS are listed in red, with the thick lines representing mean values and the shaded regions as 95% confidence intervals. For group differences, the “*” represents significance at p < 0.05 as determined by Welch’s t-test. For along-level differences, the gray bars represent a significant difference at that level at p < 0.01 as determined by the linear mixed-effect model.




3.3 Macrostructure, microstructure, and lesion load: WM and GM

GM CSA was largely similar between groups, with the exception of a significant reduction at sub-level C5.8 in pwRRMS (p < 0.01), while microstructure demonstrated statistically significant decreases in WM and GM FA, decreases in WM AD, and increases in GM RD in pwRRMS compared to HCs. For average WM and GM diffusion-derived indices, FA was significantly decreased in pwRRMS (WM 0.61, GM 0.58) compared to HCs (WM 0.63, GM 0.62) (WM p < 0.01, GM p < 0.01), AD was significantly decreased in pwRRMS (WM 2.12×10−3 mm2/s) compared to HCs (WM 2.18×10−3 mm2/s) (p < 0.01), and RD was significantly increased in pwRRMS (GM 5.95×10−4 mm2/s) compared to HCs (GM 5.63×10−4 mm2/s) (p = 0.02). Specific significant differences across levels are depicted in Figure 3 for WM and Figure 4 for GM. Average lesion loads for whole cord, WM, and GM were 0.200, 0.203, and 0.343, respectively.

[image: The image is a multi-panel graph showing macrostructure and microstructure analysis. The macrostructure panel displays white matter cross-sectional area (WM CSA) for healthy controls (HC) and multiple sclerosis (MS) across different levels, with shaded error bands. The microstructure panel includes four graphs: fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD), each comparing HC and MS. Box plots on the sides summarize mean values of CSA, lesion load, FA, AD, RD, and MD. Lesion load is plotted separately in a macrostructure graph.]

FIGURE 3
 Macrostructure, lesion load, and microstructure for the WM mask, including both group average differences and along-level differences. HCs are listed in blue and pwRRMS are listed in red, with the thick lines representing mean values and the shaded regions as 95% confidence intervals. For group differences, the “*” represents significance at p < 0.05 as determined by Welch’s t-test. For along-level differences, the gray bars represent a significant difference at that level at p < 0.01 as determined by the linear mixed-effect model.


[image: Composite image of brain structure analysis, featuring graphs comparing healthy controls (HC) and multiple sclerosis (MS) patients. The top left shows macrostructure with a GM CSA curve, next to a box plot of mean CSA. Below, lesion load graphs are displayed. The right section focuses on microstructure, with graphs for fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD), each accompanied by mean measurement box plots. Different color-coded lines and shaded areas indicate data trends and variability for HC and MS groups.]

FIGURE 4
 Macrostructure, lesion load, and microstructure for the GM mask, including both group average differences and along-level differences. HCs are listed in blue and pwRRMS are listed in red, with the thick lines representing mean values and the shaded regions as 95% confidence intervals. For group differences, the “*” represents significance at p < 0.05 as determined by Welch’s t-test. For along-level differences, the gray bars represent a significant difference at that level at p < 0.01 as determined by the linear mixed-effect model.




3.4 Macrostructure, microstructure, and lesion load: WM pathways

There were no significant group differences in CSA in any of the WM pathways, nor were there significant differences for averaged WM RD and MD diffusion-derived indices. WM FA was significantly decreased for RDo (0.64, p < 0.01) and LV (0.55, p < 0.01) and WM AD was significantly decreased for LL (0.57 mm2/s, p < 0.01) in pwRRMS compared to HCs.

There were no significant CSA effect size differences between pwRRMS and HCs across vertebral levels. When considering across-level comparisons, WM FA was significantly decreased for RDo (7 sub-levels), LV (3 sub-levels), RV (1 sub-level), and LL (1 sub-level), AD significantly decreased for LV (4 sub-levels) and LL (2 sub-levels), and MD significantly decreased for LV (1 sub-level) in pwRRMS compared to HCs (p < 0.01). WM RD was significantly increased for LDo (2 sub-levels) in pwRRMS compared to HCs (p < 0.01). Detailed effect sizes are depicted in Figure 5.

[image: Heat maps depicting macrostructure and microstructure in white matter (WM) pathways, categorized by effect size for Mean Value, CSA, FA, AD, RD, and MD. Each map compares healthy controls (HC) to multiple sclerosis (MS) patients. Blue indicates a higher value for HC, while orange shows a higher value for MS. The significance is marked by asterisks. Pathways are labeled LDo, RDo, LV, RV, LL, and RL. A color bar on the left shows effect size scale.]

FIGURE 5
 Cohen’s d effect size visualization of WM pathways split into group average differences (left graph) and along-level differences for CSA, FA, AD, RD, and MD. The group differences in CSA (green box) and microstructure (pink box) are indicated for the along-level analyses. Blue squares indicate a decreased effect size in pwRRMS versus HCs and red squares indicate a greater effect size in pwRRMS versus HCs. Significance is denoted with “*” and was determined for the mean values as p < 0.01 via Welch’s t-test and for the along-level differences as p < 0.01 via the linear mixed-effect model.




3.5 Macrostructure, microstructure, and lesion load: GM subregions

Similar to WM pathways, there were no significant differences in CSA between pwRRMS and HCs for averaged GM subregions, nor were there significant differences for averaged GM AD, RD, and MD diffusion-derived indices. GM FA was significantly decreased for LVH (0.37, p < 0.01), RVH (0.74, p < 0.01), and LIH (0.69, p < 0.01) in pwRRMS compared to HCs.

Across-level comparisons for GM subregions revealed a significant reduction in CSA for LVH (2 sub-levels) in pwRRMS compared to HCs (p < 0.01). GM FA was significantly decreased for LVH (5 sub-levels), RVH (4 sub-levels), LIH (4 sub-levels), and RIH (2 sub-levels) and AD significantly decreased for LVH (1 sub-level), RVH (1 sub-level), LIH (1 sub-level), and RIH (2 sub-levels) in pwRRMS compared to HCs (p < 0.01). Conversely, GM RD was significantly increased for RDH (1 sub-level) and RIH (1 sub-level) and MD significantly increased for RDH (1 sub-level) in pwRRMS compared to HCs (p < 0.01). Detailed effect sizes are depicted in Figure 6.

[image: Heatmaps illustrating the effect size of different measures on gray matter subregions. Six panels demonstrate effect size changes in CSA, FA, AD, RD, and MD, with color-coded significance levels. The left shows a gradient indicating HC > MS and MS > HC. A small brain scan image is included for reference.]

FIGURE 6
 Cohen’s d effect size visualization of GM subregions split into group average differences (left graph) and along-level differences for CSA, FA, AD, RD, and MD. The group differences in CSA (green box) and microstructure (pink box) are indicated for the along-level analyses. Blue squares indicate a decreased effect size in pwRRMS versus HCs and red squares indicate a greater effect size in pwRRMS versus HCs. Significance is denoted with “*” and was determined for the mean values as p < 0.01 via Welch’s t-test and for the along-level differences as p < 0.01 via the linear mixed-effect model.


In summary, no significant differences in CSA were observed between pwRRMS and HCs across averaged regions. However, significant reductions in FA were identified in both WM pathways and GM subregions, along with a decrease in AD specifically in WM pathways. The along-level analysis revealed spatially localized microstructural alterations, with pwRRMS exhibiting lower FA and AD, as well as increased RD, across multiple levels in both WM pathways and GM subregions.



3.6 Macrostructure and clinical variables

Among macrostructural measures (whole cord, WM, GM, and subregions), only GM CSA exhibited significant associations with clinical disability measures, specifically at C2 to C3. When examining the relationship between averaged CSA and disability measures (T25, TUG, and EDSS) across levels, superior levels (C2 to C3) exhibited the greatest negative effect size (beta values from normalized continuous variables), particularly for GM. After C3, the effect size differences in GM were less pronounced. Decreased CSA was significantly related to increased TUG times for GM between C2 to C3 (beta −0.28, −0.29, −0.27, −0.28, −0.28; adjusted p = 0.01) as shown in Figure 7. There were also reductions in CSA with increasing T25 times and increasing EDSS score in the range of C2 to C3, though these findings were not significant after FDR correction.

[image: Cross-sectional area (CSA) and clinical variables chart showing images and heatmaps. The left panel displays three labeled images: WC, GM, and WM, each with highlighted regions. Adjacent heatmaps show CSA effect sizes for T25, TUG, and EDSS across levels two to six. Color gradient indicates data values.]

FIGURE 7
 Visualization of linear regression investigating the relationship between CSA and T25, TUG, and EDSS for whole cord (WC), GM, and WM masks. Positive relationships are indicated in red, while negative relationships are indicated in blue. Significant differences are denoted via a white circle, with p < 0.05 following FDR correction.


For CSA and its relationship to disability across levels for WM pathways and GM subregions, there were no significant associations after performing FDR correction as shown in Figure 8.

[image: Heatmaps displaying CSA and clinical variables for WM pathways and GM subregions. The first row shows CSA effect sizes for T25, TUG, and EDSS across levels, with a brain region map on the left. The second row presents similar data for GM subregions, including LDH, RDH, LVH, RVH, LIH, and RIH. Color gradients range from blue to red, indicating varying effect sizes.]

FIGURE 8
 Visualization of linear regression investigating the relationship between CSA and T25, TUG, and EDSS for WM pathways (top) and GM subregions (bottom). Pathways for WM include left dorsal (LDo), right dorsal (RDo), left ventral (LV), right ventral (RV), left lateral (LL), and right lateral (RL). Subregions for GM include left dorsal horn (LDH), right dorsal horn (RDH), left ventral horn (LVH), right ventral horn (RVH), left intermediate horn (LIH), and right intermediate horn (RIH). Positive relationships are indicated in red, while negative relationships are indicated in blue. Significant differences are denoted via a white circle, with p < 0.05 following FDR correction.




3.7 Microstructure and clinical variables

Across whole cord, WM, and GM masks, diffusion-derived indices (FA, AD, RD, and MD) were not significantly associated with TUG, T25, or EDSS after FDR correction, with EDSS shown in Figure 9. However, significant associations between microstructure (AD and MD) and disability (EDSS) were observed in pwRRMS GM subregions (Figure 10), including positive relationships in GM subregions between EDSS and AD for LVH (1 sub-level), EDSS and MD for LVH (2 sub-levels), and EDSS and MD for RIH (1 sub-level).

[image: Heat map showing diffusion metrics and EDSS effect sizes across levels 2 to 6, with three sections labeled WC, GM, and WM effect sizes. Metrics include FA, AD, RD, and MD, with color gradients from blue to red indicating varying effect sizes. Three brain images on the left illustrate the regions analyzed.]

FIGURE 9
 Visualization of linear regression investigating the relationship between diffusion-derived indices (FA, AD, RD, MD) and EDSS for WC, GM, and WM masks. Positive relationships are indicated in red, while negative relationships are indicated in blue.


[image: Heatmaps showing diffusion metrics and Expanded Disability Status Scale (EDSS) for white matter pathways and gray matter subregions. The top panel presents FA, AD, RD, and MD effect sizes for pathways labeled LDo, RDo, LV, RV, LL, and RL. The bottom panel illustrates effect sizes for subregions marked LDH, RDH, LVH, RVH, LIH, and RIH. Each effect size is color-coded from blue to red, corresponding to the range in the color bar. An inset image displays a colored anatomical brain section.]

FIGURE 10
 Visualization of linear regression investigating the relationship between diffusion-derived indices (FA, AD, RD, MD) and EDSS for WM pathways (top) and GM subregions (bottom). Positive relationships are indicated in red, while negative relationships are indicated in blue. Significant differences are denoted via a white circle, with p < 0.05 following FDR correction.


In the T25 model after performing FDR correction, there were no significant associations between T25 and diffusion-derived indices in the WM pathways, nor were there significant associations between T25 and diffusion-derived indices in GM subregions. The same was true for TUG and the WM pathways and GM subregions.




4 Discussion

This work derived both macrostructural (CSA) and microstructural (FA, AD, RD, MD) measures at multiple spatial scales and precise locations along the SC, enabling a detailed assessment of structural integrity in pwRRMS. We identified discrete differences in microstructural properties between pwRRMS and HCs, as well as associations with EDSS, supporting the potential use of these measures as biomarkers of disease severity.

Taken together, these findings provide a method to capture regional alterations of SC tissue integrity in pwRRMS when compared to HCs. The following sections will explore the implications of these results in the context of previous literature, discuss potential mechanisms underlying these observed changes, and consider the limitations and future directions for this work.


4.1 Findings in MS cohort reflect established disability patterns

Consistent with known disease processes and existing literature (Sebastião et al., 2016; Kalinowski et al., 2022; Cohen et al., 2014), our MS cohort with mild disability (EDSS < 4) demonstrated significantly longer mobility times (T25, TUG) compared to the HC cohort. Although pwRRMS were older than HCs, we accounted for this by including age as a covariate in the multivariable linear regression as discussed previously.



4.2 No group differences in whole cord macrostructure, but demonstrated group differences in whole cord microstructure

There were no significant differences between whole cord average CSA for pwRRMS compared to HCs. Current literature on CSA as a measure of atrophy in MS is somewhat mixed depending on the patient population. Some studies suggest significantly lower mean CSA as measured at C2 in pwRRMS compared to HCs, with progressive subtypes typically demonstrating greater atrophy (Casserly et al., 2018; Al-Tameemi et al., 2023). Other studies, including a study using this same participant cohort averaged between C3 and C4, do not suggest differences in whole cord or GM atrophy between groups (Combes et al., 2022; Mann et al., 2007). It’s possible the slight increase in whole cord CSA in our patient cohort relates to inflammation and edema and, as suggested previously, may be masking true atrophy (Mann et al., 2007). Alternatively, given our cohort with only mild disability, it’s plausible we are imaging too early in the disease process for significant macrostructural changes to have occurred. Across literature, there is no established consensus for a preferred CSA calculation method, though our results do align with studies applying SCT for CSA calculation like our approach.

Unlike group differences in macrostructure, there were group differences in whole cord microstructure, including significantly decreased FA and AD in pwRRMS compared to HCs. Diminished FA in the cervical SC of pwRRMS has been previously observed in the literature and may indicate a loss of fiber coherence (Combes et al., 2022; Agosta et al., 2008; Valsasina et al., 2005). AD decreases with axonal loss in mouse models of MS (Budde et al., 2009), but cannot discriminate between degrees of axonal injury in humans (Kreiter et al., 2024) and thus clinical correlation may be limited. The subtle increase in RD and MD in pwRRMS compared to HCs are likewise supported by previous work and could also serve as surrogate measures for axonal injury (Naismith et al., 2010). Increased RD is posited to be associated with myelin damage as supported by pathological studies, though FA, AD, RD and MD are inherently nonspecific (Klawiter et al., 2011).

Taken together, our observation of microstructure and macrostructure differences suggests that microstructural abnormalities may arise independently from macrostructural changes and follow different spatial patterns of vulnerability, despite cord atrophy being consistently measured across a wide variety of SC MS studies. It’s believed a loss of axon density and expansion of the extracellular space may contribute to atrophy (Petrova et al., 2018), and would understandably be captured via microstructural alterations like FA even prior to significant macrostructural changes detected via conventional imaging. Additionally, high rates of microstructural damage early in relapsing–remitting disease are associated with development of SC atrophy at 5 years and greater EDSS scores (Gaubert et al., 2025). Our results support this notion, suggesting diffusion imaging may provide additional information prior to the critical point when CSA changes are detectable and significant. A more in-depth longitudinal study would help support this claim and could provide evidence that CSA may not be the most sensitive method to quantify damage early in the MS disease process.



4.3 No group differences in WM/GM macrostructure, but demonstrated group differences in WM/GM microstructure

As in the whole cord, there were no significant group differences between WM or GM CSA for pwRRMS compared to HCs, nor for group differences for either the WM pathways and GM subregions.

When considering differences in group-wide WM microstructure, the significantly decreased FA and AD in pwRRMS mirrored the whole cord analysis. This was reflected in the group WM pathway analysis, with significantly decreased FA in the RDo and LV pathways, and significantly decreased AD in the LL pathway. Parcellation of the WM mask into six anatomically relevant pathways provided additional information to determine where in the WM these significant differences exist, though there was no preference for either hemicord (i.e., all differences in the left or right hemicord) nor pathway (i.e., all differences located to the lateral columns).

For GM microstructure, a significant decrease in FA was reflected in the GM subregions as significant differences in the LVH, RVH, and LIH subregions. The significantly decreased FA segregated to the GM ventral horns may provide insight into what regions of the GM butterfly are first to undergo expansion of the extracellular space, or most affected by such edematous processes (Sbardella et al., 2013). While longitudinal exploration would be necessary to support these claims, it’s interesting to consider MS impacts the WM or GM in heterogeneous patterns, with increased susceptibility to damage in specific regions not otherwise captured in the group analysis.



4.4 Whole cord, WM, and GM level delineation allows for identification of group differences at specific spatial locations

The general lack of group CSA differences noted in the whole cord, WM, and GM analyses were also noted in the along-level CSA analyses. There were nearly no significant differences between HC and pwRRMS CSA and a trend towards greater whole cord and WM CSA and decreased GM CSA in pwRRMS compared to HCs. Even so, the along-level analyses provided a more in-depth understanding of trends that were otherwise diminished when averaged at the group level.

The subtle increase in CSA from C2 through C5 aligns with known anatomical variation of the cervical SC as it nears the cervical enlargement, as reflected by whole cord and GM along-level CSA. It’s been shown that pwRRMS exhibit SC GM atrophy in the absence of SC WM atrophy, albeit less pronounced than progressive patients, and that SC GM atrophy correlates with disability independent of SC WM atrophy (Schlaeger et al., 2014). Our results support this when querying along the SC at specific levels, with no observed added benefit after dissecting the GM into specific GM subregions. By utilizing an along-level approach, we better locate where spatial differences in macrostructure are most pronounced along the cord and could extrapolate these findings in longitudinal studies to understand the timing and development of such differences.

Furthermore, it’s plausible our separation of vertebral levels into 0.2 segments better identifies alterations in microstructure compared to group values and provides an alternate mechanism to qualitatively describe such differences. Diffusion-derived microstructural metrics may be most sensitive at distinguishing people with RRMS from HCs, as these subtle microstructural differences in the fine-grained along-level approach may reflect early or subclinical tissue injury that is diluted in whole-cord averages.

Though we did not explore whole cord, GM, and WM lesion load beyond quantification per level, lesion load did not fluctuate in any appreciable pattern from C2 to C5. Atrophy – as encompassed by CSA—and lesion load are independent predictors of disability for progressive and relapsing subtypes (Kearney et al., 2015). It’s been shown that, while cortical lesion burden is associated with worsening disability, SC lesion burden is not (Beck et al., 2023). Future work should carefully consider associations between SC lesion load, atrophy, and disability to determine if these findings remain true when considered on a sub-level basis.



4.5 WM pathways/GM subregions level delineation allows for identification of group differences at specific spatial locations

While there were no significant differences in WM pathway CSA between pwRRMS and HCs, there was significantly decreased CSA in the LVH GM subregion in pwRRMS not otherwise captured by group-wide differences in GM subregions. More specific analysis of level-dependent changes may provide a more nuanced understanding of macrostructure and atrophy beyond average pathway analysis.

This hierarchical parcellation is most pronounced when comparing group-level differences in microstructure with differences along levels for both the WM pathways and GM subregions. For both WM pathways and GM subregions, the group-wide differences and significant decreases in pwMS FA are expanded upon when using an along-level approach, depicting where exactly along the SC these changes in FA are most pronounced. These changes in FA seem to cluster near the lower cervical SC levels like C4 and C5, which otherwise may have been missed had the group level analysis sufficed. Additionally, for the GM subregions in particular, level-based differences were identified in AD, RD, and MD – including some sub-levels with significantly decreased AD and significantly increased RD or MD in pwRRMS compared to HCs – that were not identified from group differences. Given lower RD of the cervical corticospinal tract at baseline in pwMS is associated with better clinical outcomes after relapse (Freund et al., 2010), it would be worthwhile to localize what levels are most impacted by changes such as this. Our investigation into an along-level approach versus just group-wide differences reveals opportunities to identify these changes, particularly when nulled at the group level.



4.6 GM macrostructure changes relate the most to disability metrics

A main goal of this work was to leverage along-level analysis with disability metrics to help piece together where SC pathophysiology may contribute to clinical alterations. The evident reduction in CSA as a proxy measure for atrophy with increasing markers of disability, including increased motor function times and disability scores, has been observed in previous studies of the MS cervical SC (Mann et al., 2007; Schlaeger et al., 2014; Celik et al., 2023; Losseff et al., 1996). Our GM results support the use of C2/C3 vertebral regions to calculate and represent average cervical SC CSA, as performed in prior work, to draw conclusions with disability. These trends did not persist when the analysis was restricted to individual WM pathways and GM subregions, suggesting GM CSA is most sensitive to disability-related changes at a broader anatomic scale rather than at finer levels of parcellation. This finding has potential clinical utility, as it implies that accurate detection of relevant atrophy may not require detailed segmentation of the cord into multiple subregions where an average GM mask may suffice.



4.7 Even with along-level differences, microstructure changes do not explain disability

In addition to macrostructure, we explored diffusion-derived indices in the context of disability scores and determined no significant associations between FA, AD, RD, and MD and T25, TUG, and EDSS, respectively, for whole cord, WM, and GM. From previous work in the cervical SC, whole cord diffusion-derived indices do not seem to correlate with EDSS scores, nor with T25 times (Lee et al., 2020; Klineova et al., 2016). However, there is evidence of limited correlations between pathway/subregion and column-based diffusion-derived indices and disability scores. PwMS have lower FA of the lateral cortico-spinal and posterior tracts compared to HCs, and significant associations between EDSS and RD in the lateral cortico-spinal tract and EDSS and RD and FA in posterior columns (Ciccarelli et al., 2007; Naismith et al., 2013). In our work, when separating the analysis based on WM pathways and GM subregions, we likewise found significant associations of increased GM subregion AD and GM subregion MD and increased EDSS. While average cervical cord MD correlates with degree of disability in some studies (Valsasina et al., 2005), our four significant differences are likely not compelling enough to make any one claim about microstructure changes driving disability.



4.8 Along-tract parcellation is feasible in the SC, even without explicit fiber tracking

An alternate approach to investigate diffusion along tissue pathways is diffusion tractography, which provides 3D visual representations of fiber groupings with derived metrics along each point in the tract (Lin et al., 2007; Vargas et al., 2008). This often requires segmenting pathways into a predefined number of along-tract points from which to extract metrics. In this manner, tractography can be leveraged to plot at what point differences between patient and HC fiber tracts begin to emerge, specifically when applied for metric comparisons (Pieri et al., 2021). Despite the utility of tractography, deriving WM fiber pathways in the brain and SC of pwMS requires significant post-processing capabilities, with studies of tractography in the MS SC just beginning to emerge (Ciccarelli et al., 2007).

Unlike the brain, the SC and surrounding vertebrae provide anatomically meaningful levels along each fiber pathway that can be used to localize values for comparison across individuals. In this work, we provide an anatomically robust along-tract analysis of the cord, despite not directly utilizing tractography. While our level parcellation is more coarse than intricate fiber tracking, it is more straightforward to apply and requires only a T2 sagittal image or PAM50 atlas to derive vertebral levels instead of specialized software.



4.9 Clinical implications

Our results highlight the potential clinical utility of anatomically informed SC imaging, even though longitudinal data are still required to establish the temporal order of macro- and microstructural changes and to verify their prognostic value. First, findings such as ours can help identify spinal levels and tissue compartments most vulnerable to MS-related damage. Second, they underscore the importance of focusing diagnostic imaging protocols on these regions to more accurately assess disease severity. Finally, this framework may inform future therapeutic strategies by guiding the development of targeted interventions aimed at protecting the most affected SC regions early in the disease course, and what tools or metrics (atrophy, microstructural changes) may be best suited as biomarkers in therapeutic efforts.



4.10 Limitations and future directions

Limitations in this study include our recruited patient population and analysis methods. Though our MS patient cohort was significantly older than our HC cohort, we accounted for any age-related differences by including age as a covariate in our analyses and believe changes in MS pathophysiology related to age are marginal over the span of 5 years (Wang et al., 2014; Macaron et al., 2023). Additionally, our patient population consisted of individuals with relatively low disability (EDSS < 4), which may have biased our sample towards younger individuals. Future recruitment efforts should aim to include older individuals with more advanced disability to better capture the full spectrum of disease severity. We also recognize that sex differences in MS brain studies are well established, such as more extensive WM damage in males compared to females with MS (Klistorner et al., 2018; Schoonheim et al., 2014). Sex differences in the MS SC are underexplored, and though we considered age and sex as covariates in our statistical analysis, stratifying based on sex within a larger recruited patient population would be of merit to help unravel biologically meaningful sex-related differences in macro- or microstructure at discrete spinal levels.

From an analysis and post-processing standpoint, we are bound to acquisition constraints in the SC (slice thickness 5mm3) and thus had to interpolate our cervical levels to better match the PAM50 atlas resolution for CSA calculation. In future iterations, it may be feasible to push our image resolution, though critical to remain mindful of sequence time and participant demand in an MS population. Our selection of WM pathway and GM subregion masks was derived from pre-determined PAM50 atlas masks and may be susceptible to partial volume effects. While we utilized a probabilistic approach, we note the possibility of a single voxel containing information from a mixture of different tissue types or pathways from our 0.5 cutoff.

Finally, we recognize that SC lesion location and distribution in the MS population may contribute to spatial alterations of macrostructure and microstructure. In a post-hoc analysis, we derived diffusion metrics (FA, AD, RD, MD) from normal-appearing WM and GM masks, respectively, and determined broadly similar trends to those included in this manuscript with whole WM and GM masks. Future iterations should include an in-depth analysis of macrostructure and microstructure with specific consideration of lesion burden to more fully describe the regional specificity of SC alterations. We also acknowledge our somewhat limited ability to assess the influence of lesion heterogeneity on diffusion-based findings in particular, given our image acquisition without gadolinium-based contrast. In the brain of pwRRMS, FA values differentiate between different types of MS pathology, including contrast enhancing lesions and iron rim lesions (Shi et al., 2023). If this work is translated to the SC, we may better understand the cellular mechanisms and pathophysiology of MS lesion developmemt and thus offer more specific biomarkers for MS-related treatment strategies.




5 Conclusion

This study demonstrates the utility of an along-level diffusion MRI framework for characterizing both macrostructural and microstructural SC abnormalities in pwRRMS. By leveraging the inherent anatomical segmentation of the cervical SC, this approach enables spatially localized detection of disease-related alterations, offering a resolution not achievable with conventional whole-structure averaging. Our results reveal significant group differences in FA and CSA, with spatially distinct patterns of abnormality across WM pathways and GM subregions. Notably, these alterations were often confined to specific cervical levels, underscoring the importance of examining the SC as a functionally and anatomically heterogeneous structure. While GM atrophy exhibited strong associations with clinical disability measures, diffusion-based microstructural changes did not independently explain variance in clinical scores, suggesting a complex and multifactorial relationship between SC damage and functional impairment.

These findings underscore the potential of along-level tractometry as a complementary methodology to tractography, particularly in regions like the SC where anatomical constraints facilitate precise localization. Future work should focus on refining along-level models, integrating multi-parametric imaging, and expanding clinical correlations to further elucidate the biological underpinnings and clinical relevance of localized SC changes in MS.
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Original clusters

Thresholds

Algorithm clusters 189.00 £ 8.89 | 155.67 £ 5.03 12133+ 153 | 118633 £9.07 | 964.33 £ 473 672.67£833 | 265033 £6.11 | 215000 18.36 1495.00  7.94
Accuracy 093£001 | 0942001 094£001 | 079000 0.82 £ 0.00 081£0.00 | 073000 0.76 £ 0.00 0.76 % 0.00
Precision 036£003 | 0.49%002 062£003 | 012001 0.18 £ 0.00 026001 | 006000 0.11 £ 0.01 0.18 0.1
Recall 067£002 | 076002 075£003 | 0274001 0.36 £ 0.01 035£001 | 016000 025 £ 0.01 027001
F-Measure 047 £0.03 | 0.5940.02 0674003 | 0.16%0.01 0.24 4 0.00 030001 | 0.090.00 0.16 % 0.01 0214001
Maximum Matching Ratio | 0.65£0.02 | 0.74%0.02 073£002 | 0254001 0.33 £ 0.01 034:£001 | 014000 023 £ 0.01 025001

The table shows the mean and standard deviation values of all metrics. In blue, the metrics for the threshold with the best performance are highlighted.
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Original clusters

Thresholds

Algorithm clusters 176 | 155 17 | 1193 | 978 688 | 2722 | 2171 1527
Accuracy 093 | 0.94 093 | 079 | 082 081 | 073 | 076 076
Precision 043 | 051 067 | 011 | 018 025 | 006 | 012 018
Recall 076 | 079 078 | 027 | 035 034 | 016 | 025 027
F-Measure 055 | 0.62 072 | 016 | 024 029 | 009 | 016 021
Maximum Matching Ratio 073 | 076 076 | 024 | 033 033 | 015 | 023 026

In blue, the metrics for the threshold with the best performance are highlighted.
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Origina 0]0) 0[0]

i glelle (0) 0] (0] (0) 0] (0]
Algorithm clusters 168.33 £ 4.04 89.67 £ 058 | 70.67 £2.08 | 747.67 +£10.21 182.00 £4.36 | 1436.00 £ 13.08 528.67 £4.51 | 262.33£3.06
Accuracy 0.87 £0.02 0.93+0.01 0.84 £0.02 0.79 £ 0.01 0.64 % 0.01 0.77 £ 0.00 0.70 & 0.00 0.54 +0.00
Precision 0.28 4 0.04 0.83£0.04 0.67 £0.04 0.21£0.01 0.30 £ 0.02 021£0.01 0.4340.01 0.24£0.01
Recall 0.46 % 0.06 0.75 £ 0.04 0.48 £0.04 0.31 0.02 0.110.01 0.30 £ 0.01 0.234+0.01 0.06 £ 0.00
F-Measure 0.3540.05 0.79 £0.04 0.56 £ 0.04 0.25+0.01 0.16 £ 0.01 025£0.01 030+ 0.01 0.10 £0.01
Maximum 0.45 % 0.06 0.74 £0.04 0.47 £0.04 0.30 £0.01 0.11£0.01 028 £0.01 022001 0.06 £ 0.00
Matching Ratio

The table shows the mean and standard deviation values of all metrics. In blue, the metrics for the threshold with the best performance are highlighted.
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Radius of 2.000 + 2.000 + 2.000 + 0.514 0.627 0.957 1.000 1.000 1.000 0.032 0.375 0.970 0.023
graph (B) 0.000 0.000 0.000

Radius of 49.780 & 30795 + 29.386 + 0.773 0456 0.930 1.000 1.000 1.000 0.035 0411 0.692 0.003
graph (W) 84.040 10.475 13.939

Assortativity 0.082 & 0.081 & 0.064 & 0.995 0217 0.372 1.000 1.000 1.000 0.077 0.264 0.692 0.067
coff (B) 0.030 0.029 0.037

Assortativity 0.076 & 0.046 = 0.056 & 0.080 0.308 0.658 1.000 1.000 1.000 0.113 0.267 0.692 0.015
coff (W) 0.026 0.057 0.031

Rich club K5 0.391 + 0397 + 0.409 + 0.922 0.450 0.785 1.000 1.000 1.000 0.037 0437 0.692 0.021
(B) 0.043 0.045 0.039

Rich club 0.430 + 0425 + 0.436 + 0.940 0.905 0.772 1.000 1.000 1.000 0.013 0.487 0.777 0.019
K10 (B) 0.033 0.042 0.035

Rich club 0.500 = 0.490 = 0.504 0.688 0.932 0.516 1.000 1.000 1.000 0.040 0.235 0.640 0.069
K15 (B) 0.030 0.025 0.028

Rich club 0.610 = 0.618 & 0.611 & 0.755 0.996 0.812 1.000 1.000 1.000 0.011 0.295 0.692 0.010
K20 (B) 0.028 0.033 0.037

Rich club 0742 + 0.766 + 0.744 + 0.691 0.995 0.756 1.000 1.000 1.000 0.027 0.347 0.692 0.034
K25 (B) 0.066 0.077 0.047

Rich club K5 0.999 + 0.999 + 1.000 & 0.630 0.267 0.077 1.000 1.000 1.000 0.069 0.064 0.640 0.104
) 0.002 0.003 0.0002

Rich club 0.961 + 0.967 & 0.977 £ 0.639 0.161 0.759 1.000 1.000 1.000 0.089 0.543 0.692 0.050
K10 (W) 0.027 0.027 0.018

Rich club 0.829 + 0.843 + 0.853 & 0.913 0.633 0.921 1.000 1.000 1.000 0.017 0.729 0.935 0.003
K15 (W) 0.069 0.105 0.072

Rich club 0.607 £ 0.601 + 0.649 + 1.000 0572 0.656 1.000 1.000 1.000 0.033 0312 0.692 0.034
K20 (W) 0.102 0.127 0.134

Rich club 0.391 + 0417 + 0.438 + 0.940 0.387 0.700 1.000 1.000 1.000 0.047 0.305 0.692 0.014
K25 (W) 0.106 0.074 0.096

*p < 0.05. B is binary and W is weighted. HC = healthy controls, 1p/19q CD = 1p/19q Co-deletion, 1p/19q NCD = 1p/19q non-co-deletion. Bold values indicate the significant values.
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Properties HC 1p/19q | 1p/199q Un- Un- Un- FDR- FDR- FDR- Cohen’s | Uncorrected FDR- Cohen'’s
(h=20) CD NCD corrected | corrected | corrected | corrected | corrected| corrected f2 (HC p-value corrected | f? (1p/19q
patients | patients| p-value p-value p-value p-value p-value p-value VS. (1p/199 CD p-value CD vs.
(n=13) | (n=19) (HC vs. (HC vs. (1p/19q (HC vs. (HC vs. (1p/19q 1p/19q vs. 1p/19q (1p/19q 1p/19q
1p/199q 1p/19q CD vs. 1p/19q 1p/19q CD vs. CD vs. NCD CD vs. NCD
SD \[efp) 1p/19q CD NCD 1p/19q 1p/19q patients), 1p/19q patients),
patients) patients) NCD patients) | patients) NCD NCD controlling NCD), controlling
patients) patients) | patients) for age, controlling | forage,
sex, tumor for age, sex,
volume, sex, tumor
and grades tumor volume,
volume, and
and grades
grades
Density 0.389 + 0.394 + 0.408 + 0.940 0.387 0.700 1.000 1.000 1.000 0.043 0.367 0.692 0.028
0.044 0.048 0.040
Clustering 0.690 + 0.690 + 0.698 + 1.000 0.301 0.416 1.000 1.000 1.000 0.054 0.285 0.640 0.041
coff (B) 0013 0.020 0.021
Clustering 0.023 + 0.023 + 0.025 + 0.996 0.269 0.338 1.000 1.000 1.000 0.073 0.047 0.640 0.107
coff (W) 0.005 0.003 0.004
Transitivity 0.088 & 0.097 + 0.111 + 0.620 0.051 0.490 1.000 1.000 1.000 0.134 0.293 0.692 0.067
(B) 0.031 0.031 0.022
Transitivity 0.019+ 0.019 + 0022 + 0.994 0.167 0315 1.000 1.000 1.000 0.094 0.030* 0.640 0.125
(W) 0.005 0.003 0.004
Path Length 1.654+ 1.645 + 1622 + 0.958 0.460 0.734 1.000 1.000 1.000 0.034 0.458 0.692 0.031
(B) 0.097 0.083 0.054
Path Length 21.900 + 20229 + 17.225 + 0.836 0.108 0.456 1.000 1.000 1.000 0.098 0.048* 0.640 0.133
(W) 9389 4.870 3.659
Small- 0418+ 0.420 + 0431 + 0977 0.214 0.427 1.000 1.000 1.000 0.070 0.206 0.640 0.065
Worldness 0.025 0.021 0.023
(B)
Small- 0.001 + 0.001 £ 0.002 + 0.864 0.500 0319 1.000 1.000 1.000 0.057 0.018* 0.640 0.132
Worldness 0.0008 0.0005 0.0005
(W)
Global 0.677 + 0.680 + 0.689 + 0.950 0.412 0.706 1.000 1.000 1.000 0.040 0.404 0.692 0.030
efficiency (B) 0.029 0.029 0.022
Global 0.072 + 0.070 + 0.083 + 0.947 0314 0274 1.000 1.000 1.000 0.078 0.017* 0.640 0.177
efficiency 0.026 0.015 0.015
(W)
Diameter of 3.050 &+ 3.077 + 3.000 & 0.757 0.610 0300 1.000 1.000 1.000 0.027 0.119 0.640 0.049
graph (B) 0.224 0.277 0.000
Diameter of 77.815+ 55.954 + 52.662 & 0.755 0.408 0913 1.000 1.000 1.000 0.039 0.515 0.713 0.006
graph (W) 93.435 20.964 21.356
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Healthy controls 1p/19q co-deletion 1p/19q non-co-deletion

(n = 20) patients (n = 13) patients (n = 19)

Age (years) 40.45 + 10.79 46.62 £ 9.66 3842 +9.18 0.0791
Sex

Male 10 (50.00%) 8 (61.54%) 11 (57.89%) 0.787
Female 10 (50.00%) 5(38.46%) 8 (42.11%)

Tumor volume (mm3) NA 44,094.962 =+ 29,495.364 62,008.463 + 43,152.760 0.203
Pathological grades 0.835
1I grade NA 10 (76.92%) 14 (73.68%)

11T grade NA 3(23.08%) 5(26.32%)

IDH status 0.132
Wild type NA 0 (0.00%) 3 (15.79%)

Mutation NA 13 (100.00%) 16 (84.21%)

T This factor was considered as one of the covariates in the statistical study.
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abe a p-value a p-value a p-value a p-value a p-value a p-value a p-value
1 2.68 6.20E-01 1.95 2.20E-01 13.45 1.26E-08 2.54 6.98E-01 4.60 3.13E-02 113 2.33E-01 0.40 5.42E-01
2 0.52 L51E-01 1.64 8.66E-01 3.96 3.84E-04 1.64 1.69E-02 0.77 1.21E-03 3.59 2.13E-02 9.33 5.24E-07
3 1.81 7.20E-01 2.01 1.17E-02 8.50 6.73E-03 6.15 3.93E-02 223 3.36E-02 1.41 3.03E-02 2.63 1.94E-02
4 1.68 1.16E-01 267 8.57E-01 0.17 5.55E-01 0.39 4.31E-04 345 5.91E-01 170 7.32E-01 8.92 3.88E-02
5 0.42 2.10E-01 228 2.18E-02 374 3.96E-04 0.88 6.89E-01 7.52 5.83E-07 1.33 7.70E-01 4.16 7.90E-04
6 1.83 1.37E-01 2.20 5.03E-01 420 2.57E-01 9.50 1.43E-02 0.27 8.34E-02 0.98 2.23E-01 527 1.89E-05
7 173 1.31E-01 5.35 241E-04 2291 5.45E-17 13.83 1.88E-13 6.97 1.88E-05 0.74 1.36E-01 129 1.36E-02
8 4.63 2.74E-04 2.04 1.26E-01 14.76 1.05E-06 1527 2.82E-06 512 1.77E-02 8.89 1.71E-05 2.82 1.45E-01
9 4.10 5.86E-03 4.43 5.58E-05 4.00 5.20E-03 247 7.17E-03 220 3.60E-02 5.87 1.97E-03 325 3.33E-03
10 1.39 1L.12E-01 5.14 1.33E-03 2.01 1.19E-01 5.13 3.66E-01 7.64 9.55E-03 3.57 5.01E-04 373 1.12E-03
11 1.03 9.90E-01 0.54 2.68E-01 193 1.47E-02 338 2.62E-01 1.83 2.70E-01 3.40 6.62E-04 2.68 6.22E-05
12 1.81 4.28E-02 12.99 5.45E-07 10.16 1.48E-07 13.85 1.67E-05 459 2.87E-03 5.61 3.61E-01 0.36 9.03E-01
13 4.87 8.56E-03 7.40 3.10E-04 7.12 1.83E-01 9.42 1.79E-06 4.68 6.92E-05 623 1.15E-04 0.60 4.13E-01
14 2.54 9.77E-03 4.50 1.47E-01 3.66 4.24E-03 3.18 2.61E-05 5.15 6.68E-01 1.33 4.30E-01 13.63 1.85E-05
15 0.78 5.48E-02 4.10 3.25E-02 3.79 1.66E-02 197 1.12E-01 1.07 3.41E-01 11.86 1.63E-03 5.78 L.11E-05
16 9.05 3.11E-03 18.82 3.47E-13 531 1.63E-02 0.65 4.07E-01 287 4.70E-02 891 1.27E-05 5.50 1.28E-04
17 2.10 4.94E-01 7.85 5.87E-05 4.41 2.98E-02 337 2.59E-01 9.96 2.63E-06 7.06 2.39E-02 8.27 8.73E-09
18 0.51 2.61E-01 0.69 2.25E-01 10.31 3.31E-06 6.81 3.43E-09 113 2.93E-01 17.16 1.87E-09 4.89 2.39E-03
19 1.81 2.80E-01 1.51 3.20E-01 218 1.06E-01 099 6.23E-01 377 4.23E-01 199 2.02E-01 022 1.43E-02
20 2.73 4.56E-01 057 1.66E-01 2.19 3.92E-02 6.77 1.90E-02 1.82 8.15E-01 1.92 1.38E-02 0.98 7.60E-01
Rej. rate 25% 35% 50% 40% 35% 40% 55%

1 255 3.65E-01 0.87 9.90E-02 7.81 2.08E-04 147 4.42E-01 1.78 3.29E-02 213 2.78E-02 3.84 8.35E-02
2 0.99 1.58E-01 1.88 6.29E-01 0.85 3.83E-01 242 1.84E-02 2.89 1.65E-02 234 3.10E-01 745 1.37E-04
3 1.94 2.11E-01 1.09 4.50E-01 6.21 4.59E-04 1.52 2.19E-01 0.34 7.36E-03 1.49 6.28E-01 2.10 8.33E-02
4 1.30 7.04E-02 119 5.44E-02 13.20 2.87E-05 191 4.24E-01 8.90 5.56E-05 130 2.52E-01 1.66 9.10E-02
5 0.86 1.56E-01 0.95 3.13E-02 19.43 1.46E-10 1.46 9.16E-01 0.95 5.26E-01 113 4.03E-02 230 3.59E-01
6 1.98 3.94E-02 11.33 6.11E-07 18.96 1.45E-10 285 3.57E-01 8.11 3.62E-07 6.99 1.79E-03 6.71 1.19E-05
7 240 3.11E-01 6.17 2.27E-06 8.92 1.40E-06 4.00 1.41E-05 16.90 4.07E-09 1.30 7.30E-01 7.27 8.59E-04
8 0.33 4.04E-01 3.50 1.90E-01 3.60 1.14E-02 021 6.85E-01 324 1.62E-04 2.08 2.70E-01 224 9.10E-02
9 1.04 5.36E-01 10.65 4.61E-08 1.06 1.14E-02 0.62 2.15E-02 3.34 1.44E-02 3.52 1.06E-01 322 2.18E-03
10 0.00 7.94E-06 7.05 2.33E-03 8.26 1.20E-03 321 3.24E-01 26.34 3.35E-16 11.59 5.33E-10 351 4.32E-02
11 0.47 1.64E-01 9.52 4.65E-07 217 5.06E-03 1.06 7.70E-01 12.96 7.62E-10 12.14 4.52E-08 519 8.09E-02
12 0.00 3.13E-07 4.51 1.98E-01 3.05 7.44E-03 4.01 1.25E-01 2.94 1.66E-01 6.51 1.92E-06 9.12 1.71E-06
13 4.57 1.28E-02 4.98 3.98E-02 0.47 1.34E-01 3.17 3.03E-01 2.10 2.18E-03 9.48 1.58E-04 6.49 1.41E-02
14 4.02 1.55E-03 3.60 3.18E-03 6.92 2.12E-01 0.30 3.22E-01 171 1.22E-01 0.70 8.55E-01 297 7.49E-03
15 378 7.62E-03 10.43 1.04E-04 0.92 7.24E-03 375 1.43E-05 1.45 3.62E-01 4.72 4.24E-02 3.65 2.98E-02
16 0.44 1.46E-01 7.04 4.07E-07 6.83 7.45E-06 347 8.95E-03 3.18 2.68E-06 4.99 4.21E-03 6.23 3.71E-05
17 233 2.43E-02 1.87 1.00E-01 1.01 7.09E-03 0.57 3.25E-01 2.58 4.11E-03 122 3.28E-01 2.66 1.94E-01
18 1129 1.80E-05 1.26 8.85E-01 218 2.96E-02 3.04 1.21E-03 11.60 1.45E-06 141 2.01E-03 7.80 4.88E-03
19 2.88 2.88E-02 2.55 3.54E-01 6.76 4.35E-02 241 6.38E-03 14.73 1.13E-07 0.75 2.52E-01 1.03 8.64E-02
20 1.91 5.04E-01 1.55 1.84E-01 2.64 1.00E-05 4.66 2.01E-03 1.41 7.36E-03 1.32 7.63E-02 4.20 8.93E-02
Rej. rate 25% 40% 60% 25% 60% 25% 40%

The ANOVA test assesses whether there are statistically significant differences in the means tract profiles with fixel-FA and fixel-RD metrics across locations, with a significance threshold setat p < 0.01. It includes the percentage of hypothesis rejection. The sample
size for the analysis is 500.
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Subject FA Fixel- FA Fixel- FA Fixel- FA Fixel- FA Fixel- FA Fixel- FA Fixel-

FA FA FA FA FA FA FA
sub-003 0.108 0.174 0.117 0.142 0.122 0.143 0.112 0.167 0.098 0213 0.113 0.154 0.116 0.170
sub-004 0.113 0.158 0.113 0.164 0.127 0.161 0.102 0.167 0.105 0.177 0.108 0.163 0.111 0.174
sub-005 0.118 0.154 0.103 0.160 0.136 0.170 0.100 0.172 0.120 0.192 0.105 0.165 0.118 0.148
sub-006 0.110 0.162 0.112 0.167 0.126 0.163 0.102 0.170 0.108 0.179 0.103 0.165 0.119 0.173
sub-007 0.101 0.172 0.099 0.153 0.128 0.153 0.104 0.163 0.112 0.162 0.106 0.154 0.109 0.160
sub-008 0.115 0.169 0.102 0.151 0.135 0.172 0.091 0.158 0.106 0.170 0.102 0.143 0.112 0.168
sub-010 0.108 0.159 0.100 0.145 0.123 0.162 0.093 0.158 0.112 0.196 0.099 0.153 0.100 0.161
sub-011 0.099 0.162 0.110 0.162 0.123 0.146 0.103 0.156 0.116 0.185 0.100 0.146 0.132 0.168
sub-012 0.102 0.192 0.106 0.162 0.135 0.174 0.108 0.158 0.121 0.182 0.115 0.155 0.111 0.186
sub-014 0.105 0.172 0.100 0.152 0.129 0.167 0.092 0.173 0.102 0.163 0.098 0.170 0.093 0.159
sub-015 0.109 0.144 0.108 0.142 0.120 0.165 0.109 0.180 0.101 0208 0.103 0.171 0.116 0.161
sub-016 0.112 0.154 0.104 0.146 0.130 0.173 0.098 0.155 0.107 0.190 0.102 0.144 0.126 0.152
sub-018 0.114 0.175 0.103 0.167 0.130 0.156 0.108 0.169 0.107 0.198 0.113 0.159 0.121 0.156
sub-019 0.114 0.171 0.104 0.146 0.128 0.171 0.110 0.153 0.106 0.161 0.117 0.151 0.105 0.170
sub-020 0.100 0.156 0.094 0.135 0.128 0.169 0.099 0.163 0.109 0.203 0.103 0.157 0.109 0.162
sub-021 0.121 0.171 0.108 0.155 0.126 0.150 0.105 0.175 0.110 0.206 0.103 0.164 0.117 0.167
sub-022 0.108 0.161 0.103 0.142 0.123 0.166 0.105 0.153 0.113 0223 0.103 0.150 0.106 0.164
sub-023 0.108 0.178 0.099 0.129 0.130 0.158 0.098 0.163 0.109 0.200 0.110 0.152 0.119 0.173
Cohort 0.109 0.166 0.105 0.151 0.128 0.162 0.102 0.164 0.109 0.190 0.106 0.157 0.114 0.165
Subject RD Fixel- RD Fixel- RD Fixel- RD Fixel- RD Fixel- RD Fixel- RD Fixel-

RD RD RD RD RD RD RD
sub-003 0.507 0346 0521 0.355 0538 0.378 0,503 0341 0452 0.307 0478 0.352 0525 0346
sub-004 0.491 0357 0491 0373 0.527 0367 0.483 0348 0498 0333 0489 0.369 0512 0337
sub-005 0.483 0.354 0473 0.370 0.543 0.386 0.464 0.342 0.508 0.344 0485 0.371 0.522 0358
sub-006 0.507 0.371 0.487 0.385 0.536 0.384 0.476 0.352 0.506 0.339 0.486 0.366 0.505 0337
sub-007 0476 0.339 0471 0.342 0.540 0374 0472 0333 0491 0315 0478 0.347 0497 0320
sub-008 0.493 0352 0479 0.340 0536 0365 0474 0347 0496 0320 0.465 0.349 0518 0328
sub-010 0471 0341 0457 0332 0527 0369 0.461 0337 0502 0323 0456 0.338 0.489 0321
sub-011 0475 0352 0486 0.365 0524 0.366 0472 0336 0507 0318 0481 0.345 0510 0326
sub-012 0.488 0.368 0.474 0.370 0.545 0.388 0.482 0.340 0518 0.329 0477 0.349 0.496 0358
sub-014 0.496 0.351 0.479 0.364 0.532 0378 0.458 0.341 0477 0.309 0.485 0.361 0.487 0.329
sub-015 0478 0.365 0491 0.368 0537 0371 0474 0336 0504 0319 0480 0.366 0507 0345
sub-016 0.505 0.354 0473 0.363 0543 0376 0.464 0342 0491 0326 0.469 0.342 0515 0345
sub-018 0473 0351 0477 0.362 0538 0386 0.486 0339 0.500 0324 0478 0.361 0519 0332
sub-019 0.501 0357 0489 0.360 0546 0374 0.485 0337 0496 0317 0.490 0.345 0507 0337
sub-020 0.484 0365 0467 0.348 0545 0381 0.465 0338 0506 0330 0.469 0.343 0.492 0343
sub-021 0.474 0.341 0.484 0.349 0.539 0.357 0.467 0.332 0.488 0.319 0.477 0.348 0.522 0.319
sub-022 0472 0.351 0.469 0.345 0.538 0371 0.471 0.330 0.494 0312 0473 0.348 0.504 0317
sub-023 0.487 0353 0465 0331 0542 0.384 0.470 0337 0504 0.327 0481 0.341 0511 0345
Cohort 0.489 0355 0478 0.360 0539 0376 0.474 0339 0497 0324 0479 0.352 0.505 0340

The SDs for each bundle are calculated by taking the square root of the mean of the within-subject variance across five repeated scans. The last row in the table shows the SD obtained from the
between-subject variance, reflecting the variability of the tract profiles within the group. The SDs are reported for four key metrics: FA, fixel-FA, RD and fixel-RD. Only 18 of the 20 subjects
from the HC cohort are reported because 2 of them did not completed the five scans.
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FA 0.0967 -0.2601 -0.7193 -0.4657 -0.9682 -0.7553 -0.8593
Fixel-FA 0.8311 0.8631 0.5264 -0.4285 0.5364 -0.5641 -0.6131
RD -0.4528 -0.2934 04773 03926 07444 05921 0.8717
Fixel-RD -0.4994 -0.5395 0.1480 0.1433 0.8568 04370 07228
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Label

1 19.4% 2.7% 89.0% 26.7% 23.9% 4.2%
2 17.6% 31.5% 82.0% 46.9% 22.5% 33.2%
3 15.1% 3.4% 74.1% 28.4% 20.2% 4.2%
4 17.6% 3.0% 83.9% 26.7% 22.8% 4.2%
5 11.3% 3.2% 58.1% 26.8% 16.0% 3.9%
6 16.7% 4.3% 75.1% 27.9% 20.6% 5.9%
7 14.5% 3.9% 71.1% 27.5% 20.1% 4.7%
8 10.9% 2.7% 54.9% 25.8% 15.1% 3.8%
9 15.9% 2.7% 80.3% 26.0% 21.6% 3.4%
10 22% 2.7% 18.0% 27.5% 5.3% 4.4%
11 23.1% 3.3% 102.9% 29.0% 27.7% 5.6%
12 12.1% 3.7% 63.0% 26.1% 17.7% 4.7%
13 25.4% 7.5% 112.5% 30.0% 29.7% 9.1%
14 15.8% 2.8% 75.9% 28.2% 20.3% 5.1%
15 13.4% 4.5% 68.1% 25.9% 18.5% 5.5%
16 13.6% 7.4% 66.6% 28.3% 18.5% 9.2%
17 15.8% 3.7% 75.0% 26.1% 20.5% 5.1%
18 7.6% 10.2% 43.2% 32.1% 12.2% 11.3%
19 27.0% 4.9% 121.8% 27.8% 32.0% 6.5%
20 18.6% 5.3% 85.5% 29.2% 22.7% 6.8%
Mean 15.6% 5.6% 75.0% 28.6% 20.3% 7.0%
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Characteristics Values
Symptom onset [n, (%)]

Bulbar 9(27.3)

Spinal 22(66.7)

Generalized 2(6.0)
Symptom duration before MRI (months) | 27.46 % 20.40 -
ALSFRS-R/48 score 39.09 £ 5° -
Disease progression rate 0.38 +0.38" -
Initial symptoms of laterality [n, (%)] 0307

Left 10 (30.3)

Right 8(24.2)

Others 15 (45.5)

ALSERS-R, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised.

2Chi-squared test.

bOne patient was excluded because of missing ALSFRS-R score.
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rols = Patients p-Values
n 37 33
Age, years 608497 | 646+1035 0.114*
Gender (male, female) 16,21 19,14 0.144°

“Two-sample independent r-test.
bChi-squared test.
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ASSO SGL

Age 3e-01 1.8e-01 3.1e-01
Crystalized intelligence 7.2e-02 9e-02 7.6e-02
Fluid intelligence 3.5e-02 2.7e-02 4.8e-02
Global intelligence 6.8e-02 7.7e-02 8.9¢-02
Impulsivity 7.1e-03 2.7e-02 8.2e-03
Endurance 1e-01 le-01 Le-01

Verbal memory 3.3¢-03 1.2¢-02 3.7e-03
Reading ability 3.9¢-02 8.1e-02 4.8¢-02
Attention 3.3e-03 6.4e-03 4.4e-03
Spatial orientation 7e-02 6.1e-02 7.2e-02
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Age 5.7e-03 1.5e-02
Crystalized intelligence 8.5¢-03 3.0e-02
Fluid intelligence 7.4e-03 2.4e-02
Global intelligence 1.2¢-02 3.6e-02
Impulsivity 5.4¢-05 1.8¢-04
Endurance 7.4e-03 2.8e-02
Verbal memory 8.1e-04 3.4e-03
Reading ability 9.1¢-03 2.6e-02
Attention 3.5e-06 2.6e-05
Spatial orientation 3.4e-03 1.1e-02
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Tract abbreviati Formal tract name

ATR_L Left anterior thalamic

ATR_R Right anterior thalamic
CST_L Left corticospinal

CST_R Right corticospinal

CGC_L Left cingulum cingulate
CGC_R Right cingulum cingulate

FP Forceps major

FA Forceps minor

IFO_L Left inferior fronto-occipital
IFO_R Right inferior fronto-occipital
ILE_L Left inferior longitudinal
ILF_R Right inferior longitudinal
SLE_L Left superior longitudinal
SLE_R Right superior longitudinal
UNC_L Left uncinate

UNC_R Right uncinate

ARC_L Left arcuate

ARC_R Right arcuate

Orbital Orbital corpus callosum
AntFrontal Anterior frontal callosum
SupFrontal Superior frontal callosum
Motor Motor corpus callosum
SupParietal Superior parietal corpus callosum
PostParietal Posterior parietal corpus callosum
Occipital Occipital corpus callosum
Temporal Temporal Corpus Callosum






OPS/images/fnins-19-1581719/fnins-19-1581719-g002.gif





OPS/images/fnins-18-1389680/fnins-18-1389680-g009.gif





OPS/images/fnins-19-1581719/fnins-19-1581719-g001.gif





OPS/images/fnins-18-1389680/fnins-18-1389680-g008.gif
£ %220 100 160 260
b TRK size (MB)






OPS/images/fnins-19-1581719/crossmark.jpg
©

|





OPS/images/fnins-18-1467786/math_3.gif
(B.1)






OPS/images/fnins-18-1389680/fnins-18-1389680-g007.gif
DKIAWF OKIFA DKIMD. DKI MK

o
JIZL'LT“‘“ yr it frrrtte [P

04
08
Bundle
Lo s R ndons Gy
(R oo ocoptal  Kapy e FartoOosptal Lok oo onpiun
Rantoior Lorgiodos |~ Lok Supercs ongodinl R Supro Lonptodnol
CiUncnato Fon Unens Coinunto
feircen) Colosum Orota CalosimaasirFronn
Coosum Superr Froml  Catosum Hlor Calobum Suporer Pl

R P ooy - oo Bt Calosum Tomporal





OPS/images/fnins-18-1389680/fnins-18-1389680-g006.gif





OPS/images/fnins-18-1467786/math_2.gif
@)






OPS/images/fnins-18-1389680/fnins-18-1389680-g005.gif





OPS/images/fnins-18-1467786/math_1.gif
/=Y
F‘u,ap(fb
£/ Dyt;)
). i=

[0





OPS/images/fnins-18-1389680/fnins-18-1389680-g004.gif





OPS/images/fnins-18-1467786/inline_9.gif
A





OPS/images/fnins-18-1389680/fnins-18-1389680-g003.gif
1200 e

i o
i
\12/\ 1 s

1 srrons

© sumsan
¥ pospin
0 Torwont
1 occpt

s,

m o 0w 0 @0

oon k. Poskion )






OPS/images/fnins-18-1467786/inline_8.gif
0.594m* [ ms






OPS/images/fnins-18-1389680/fnins-18-1389680-g002.gif





OPS/images/fnins-18-1467786/inline_7.gif
0.71gm* f ms






OPS/images/fnins-18-1389680/fnins-18-1389680-g001.gif





OPS/images/fnins-18-1467786/inline_6.gif
0.484m* [ ms






OPS/images/fnins-18-1389680/crossmark.jpg
©

|





OPS/images/fnins-18-1467786/inline_5.gif
Dl





OPS/images/fnins-18-1396518/math_9.gif
]

'Sy % PP\





OPS/images/fnins-18-1467786/inline_4.gif





OPS/images/fnins-18-1396518/math_8.gif
PPV =

L maxity

YT

®)





OPS/images/fnins-18-1467786/inline_3.gif





OPS/images/fnins-18-1467786/inline_2.gif
2pm* f ms






OPS/images/fnins-18-1333243/fnins-18-1333243-g001.gif
Phybers

e e R |

== E=
St

o
sanping
(oo






OPS/images/fnins-18-1333243/fnins-18-1333243-g002.gif
A Segmentation

b e —

st

e






OPS/images/fnins-18-1333243/fnins-18-1333243-g003.gif
[ —
WOnasone [l Copiebog oo
B i Sopmar [l Gt shontor
M Postoso Segment [ Tompura tors






OPS/images/fnins-17-1228952/fnins-17-1228952-g002.jpg
® g 60
£ ‘ 024
8 TR S 020 Bl ol
§4 40 é
2 ‘ 0.16; 0575
. o et ) ) ! MO
20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70
Age Age Age Age
© © ¢ os
Eci; 06
0.14 1.75 i
>
3 00
& Z o8
2012 = T3
£ 33 | Tractometry
g3
0.10 I [ mso
1.00 g o
20 30 40 50 60 70 20 30 40 50 60 70 & o
Age Age & o0






OPS/images/fnins-17-1228952/fnins-17-1228952-g003.jpg
20 30 40 50 60 70
Age

® 25
< 180
S, 160
L S
o | A <. |40 //_\\
o 15 N
g 1201
Q
=10 100

20 30 40 50 60 70
Age

20 30 40 50 60 70
Age

20 30 40 50 60 70
Age

Adjusted R?
Efficiency Modularity Streny

|| Tractometry

B coumr






OPS/images/fnins-17-1228952/fnins-17-1228952-t001.jpg
MVF Efficiency ~ Modularity Mean MVF COMMIT Efficiency ~ Modularity Mean

Tractometry strength  (i.e., MySD) strength
Age value of p 0.080 0715 0.022¢ Age value of p 0.071 0760 0.023*
Age estimate 7.56-4 494 80e2  Ageestimate Lie2 “ed 39e-1
Age? value of p 0.035* 0787 0.015* Age* value of p 0.031% 0673 0.009%
Age estimate “Lies 43c6 S10e3 Age estimate “Le-d 506 543
Sex value of p 0349 0.155 0780 Sex value of p 0.654 0.484 0.091
Sex estimate 1.8e-3 8.8e-3 —4.3e-2 Sex estimate =1.3e-2 =3.3e-3 Ly
WM volume value of p 0.002% <0.001% <0.001% WM volume value of p <0.001% 0.037% <0.001%
‘WM volume estimate 3.7e-8 =1.7e-7 5.4e-6 ‘WM volume estimate 1.5¢-6 5.9e-8 5.7e-5
R 0.257 0.216 0.392 0.606 0.035 0.781
MSE 0.886 0.905 0.765 MSE 0.441 1.029 0.251
'T';‘:Ciometry Efficiency  Modularity st’:":nag';h INVF COMMIT  Efficiency ~ Modularity St’:":nag':h
Age value of p <0.001% 0.964 0.001% Agevalue of p <0001% 0250 <0001%
Age estimate. 6.2e-3 5.6e-5 4.2e-2 Age estimate 7.6e-2 =1.3e-3 26
Age? value of p <0.001% 0.835 0.001% Age? value of p <0.001% 0213 <0001%
Age® estimate. ~7.0e-5 —3.0e-6 —4.8e-3 Age® estimate. —8.9e-4 1.7e-5 =3.le-2
Sexvalue of p 0849 0.183 0757 Sexvalue of p 0225 0.603 0719
Sex estimate —1.38e-3 7.6e-3 —4.le=1 Sex estimate =1.0e-1 2.8e-3 9.3e-1
WM volume value of p <0.001% <0001% <0001% WM volume value of p <0.001% 0507 <0.001%
‘WM volume estimate 1.7e-7 -1.6e-7 1.9e-5 ‘WM volume estimate 5.0e-6 2.1e-8 1.8e-4
R 0.264 0.252 0.368 R 0.635 0.017 0.741
MSE 0.822 0.826 0.747 MSE 0.361 1127 0.255

We marked the results with significant value of p with asterisks.
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References and main findings

Pinnipeds Ex-vivo Siemens Healthcare, Diffusion-weighted DTI (Cook et al., 2018): California sea lions exposed to
Trio, 3T steady-state free the algal neurotoxin domoic acid are natural
precession animal models for human epilepsy.
(DW-SSFP)
Ex-vivo Siemens Healthcare, DW-SSFP DTI (Cook and Berns, 2022): Pinnipeds and coyotes
Trio, 3T have exceptionally larger caudate nuclei compared
to putamen.
In-vivo Siemens Healthcare, DW-SSFP DTI (Cook et al,, 2021): Established an MRI protocol for
Trio, 3T comprehensive evaluation of domoic acid toxicosis
in the sea lion brain.
Horse Ex-vivo Philips Healthcare, Spin-echo DTI (Boucher et al,, 2020): Confirmed the presence of
Achieva, 3T echo-planar imaging fiber bundles corresponding to pyramidal tracts
(SE-EPI) from the motor cortex to the central brainstem.
Sheep In-vivo General Electric SE-EPIL DTI (Lee et al,, 2015): Demonstration of feasibility of
Healthcare, 3T combining DTI and fMRI in alive and healthy
animals. Examples were the sensorimotor and
visual cortex
Ex-vivo Bruker, 4.7T SE-EPI DTI (Peruffo et al,, 2019): Confirmed the presence of
fiber bundles corresponding to pyramidal tracts
from the motor cortex to the central brainstem.
(Pirone et al, 2021): Found ipsilateral connections
between the claustrum and the visual cortex.
(Gerussi et al,, 2022): Found a similarity in the
connections of the orbitofrontal cortex between the
sheep and humans, including a right asymmetry.
(Graic et al., 2023): Studied the connections of the
amygdala, showing some similarities with the
well-studied cat, rat, and monkey.
In-vivo Philips Healthcare, SE-EPI DTI (Pierietal, 2019): Created a DTI atlas of the major
Achieva, 1.5T fiber bundles.
In-vivo Siemens Healthcare, SE-EPI DTI (O’Connell et al., 2021): Used DTT and magnetic
Skyra, 3T resonance spectroscopy in the striatum to study the
excitotoxic model of Huntington disease.
Pig Ex-vivo Varian, 4.7T Pulse gradient spin DTIand CSD (Knosche et al,, 2015): Found that various DWI
echo (PGSE) protocols are likely to find major fiber bundles but
are less sensitive to complex fiber architecture and
high spatial resolution and SNR are needed.
In-vivo and Philips Healthcare, SE-EPI DTI and CSD (Walker et al., 2019): Compared the diffusion
Ex-vivo Achieva, 1.5T metrics between in-vivo and ex-vivo tractography
and no significant difference was found
In-vivo Siemens Healthcare, SE-EPIL DTI (Wang et al,, 2023): Studied the mechanical
Prisma, 3T properties of brain development
Camel Ex-vivo Philips Healthcare, SE-EPI DTI (Cartiaux et al., 2023): Reconstructed the cingulum,
Achieva, 3T corpus callosum, and internal capsule tracts in the
one-humped camel brain.
Dolphin Ex-vivo Siemens Healthcare, DW-SSFP DTI (Berns et al., 2015): Determined the existence of a
Trio, 3T parietal auditory cortex area in the bottlenose
dolphin
Ex-vivo General Electric SE-EPIL DTI (Wright et al.,, 2018): Segmented the main white
Healthcare, 3T matter bundles in the bottlenose dolphin brain and
studied their asymmetries
Ex-vivo Siemens Healthcare, DW-SSFP DTI (Orekhova et al,, 2022): Studied the auditory
Magnetom, 7T pathway in the bottlenose dolphin
Ex-vivo Philips Healthcare, SE-EPI CSD (Gerussi et al., 2023, 2024): Determined the
Achieva, 3T prefrontal cortex position in the bottlenose dolphin

based on thalamic connections.
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MFF MFF + CP MEF + SSPD MFF + FC MFF + CH
DsC SRBy 0.71 £ 0.09 0.71£0.09 0.71£0.10 072£0.11 0.73 £0.11
SRB, 0.73 £ 0.06 0.75 £ 0.06 0.75 £ 0.06 0.76 £ 0.06 0.77 £ 0.06
SRB; 0.56 +0.17 0.56 £0.17 0.56 £ 0.18 0.56 £0.18 0.57£0.18
SRBy 0.76 0.05 0.76 £ 0.06 0.77 £0.05 0.77 £0.07 0.78 £ 0.06
AFD SRB; 2.11£0.13 2.13£0.15 2.13£0.14 2.15£0.15 2.17 £0.15
SRB, 2.0340.12 2.05£0.12 2.06+0.11 2.08 +0.12 2.09£0.11
SRB; 173 £0.30 173 £ 031 1.74 £ 031 1.75 £ 0.33 1.76 +0.33
SRBy 2.134£0.08 2.13£0.09 2.1540.08 2.17£0.08 2.18£0.09
AMD SRBy 3.63 +0.66 3.56 & 0.67 3.58 £ 0.69 3.50+0.71 3.5240.68
SRB, 2.96+0.48 2.86£0.51 2.86+0.52 2.80£0.52 2.79£0.53
SRB; 4.67 £ 1.15 462+ 121 4.64£123 4.58 £ 1.30 4.62 £1.36
SRBy 251032 243£0.36 244£033 2.37£0.34 2394033
AD SRBy 1123 £ 111 10.53 £ 1.24 10.76 £ 1.20 10.44 £ 1.27 10.60 £ 1.23
SRB; 1117 £1.43 10.39 £ 1.62 10.21 £ 1.64 10.17 £ 1.66 10.02 £ 1.73
SRB3 13.00 £0.95 11.98 £ 111 1212£1.13 11.84 £ 1.19 11.56 £ 1.16
SRB4 10.73 £0.78 9.324+0.87 10.29 £0.86 9.86 £0.98 10.20 £0.93

The bold values indicate the best score.
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Dice Volumetric Overlap 0704 0.11 0.74£0.12 0.66 £ 0.15 0.68 %0.16
Average Fractal Dimension (AFD) 2014021 2.11£021 1.92£0.29 1.99 £0.29
Average Minimum Distance (AMD) 3684091 3.57 £1.01 388124 3774141
Average Distance (AD) 15704291 14.05 % 3.02 12534212 11.35+228

‘The Dice Volumetric Overlap shows the mean DSC. The AD and AMD are in s, Bold values indicate an improvement of the score after applying the filter based on the Convex Hull over NP

bundles and main fibers fascicles.
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A higher number of significant bundles were found with the identification of the main fiber
fascicle and filter based on the Convex Hull.
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Multivariate model p-values

Non-adjusted Adjusted for Differences in
components
p-values (nz) CUMAP ADHD Pubertal Ethnicity ‘Family
stage income
Boys (n = 400)
Left
UF 04662
IFOF 0.8035
CcG 07851
ILF 02472
csT 0.0392 (0.02) 0.0349 0.0236 0.1085 | 0.0390 0.0813 0.0394 0.0231 Axonal density:
TBI+ >TBI-
Right
UF 0.6261
IFOF 05252
CcG 05661
ILE 0.0241 (0.02) 0.0262 0.0656 0.0240 | 0.0230 0.0174 0.0244 0.2794 Absolute diffusivity:
TBI+ >TBI-
csT 0.9050
cc
Genu 09735
Body 03543
Splenium 0.6314
Girls (n = 269)
Left
UF 0.9623
IFOF 0.6460
G 0.9446
ILF 0.8010
csT 05054
Right
UF 03650
IFOF 0.4694
CG 08951
ILF 04452
csT 0.6829
cc
Genu 0.0369 (0.03) 0.0358 0.0249 0.0483 | 0.0436 0.0052 0.0363 0.2069 Absolute diffusivity:
TBI+ >TBI-
Body 03849
Splenium 0.7792

D, typically developing; DBD, Disruptive Behavior Disorders; UF, Uncinate Fasciculus; IFOE, Inferior Fronto-Occipital Fasciculus; CG, Cingulum; ILE, Inferior Longitudinal Fasciculus; CST,
Corticospinal Tract; CC, Corpus Callosum; CU MAP, Callous Unemotional maximum a posteriori scores; ADHD, Attention Deficit/Hyperactivity Disorder. n?, Generalized eta squared.
Statistically significant p-values have been highlighted in bold.
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Boys (n = 40)
Left
UF 03374
IFOF 0.1219
CcG 02818
ILE 0.0910
csT 0.0263 (0.22) 0.0185 0.1104 00313 | 0.0568 0.0397 0.0275 0.0863 None
Right
UF 0.7966
IFOF 0.6124
CcG 05597
ILF 07011
csT 02385
CE
Genu 0.6557
Body 03704
Splenium 0.1050
Girls (n = 23)
Left
UF 05464
IFOF 04380
CcG 09113
ILF 0.8297
csT 0.4828
Right
UF 0.0251 (0.38) 0.0058 0.0111 0.0375 | 0.0375 0.0048 0.0352 0.1657 Axonal density:
TD<DBD
IFOF 0.0963
CcG 03728
ILF 03205
csT 05709
cc
Genu 03739
Body 04913
Splenium 0.6331

TD, typically developing; DBD, Disruptive Behavior Disorders; UE, Uncinate Fasciculus; IFOE, Inferior Fronto-Occipital Fasciculus; CG, Cingulum; ILE, Inferior Longitudinal Fasciculus; CST,
Corticospinal Tract; CC, Corpus Callosum; CU MAR, Callous Unemotional maximum a posteriori scores; ADHD, Attention Deficit/Hyperactivity Disorder. 1%, Generalized eta squared.
Statistically significant p-values have been highlighted in bold.
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Multivariate model p-values

Non-adjusted Adjusted for Differences in
components
p-values (%) CUMAP ADHD Pubertal Ethnicity ~ Family
stage income
Boys (n = 709)
Left
UF 03346
IFOF 09611
CG 0.9893
ILF 08612
csT 0.0366 (0.01) 02511 0.1532 00813 | 0.0354 0.0764 0.0211 0.0373 None
Right
UF 05173
IFOF 09762
CcG 09219
ILE 0.6080
csT 02058
cc
Genu 0.0077 (0.02) 03117 0.0880 0.0293 | 0.0080 0.0097 0.0051 0.0074 Absolute diffusivity:
TD>DBD
Axonal density:
TD<DBD
Body 05306 [
Splenium 0.9581
Girls (n = 728)
Left
UF 0.0585
IFOF 0.0257 (0.01) 0.1329 0.0277 00388 | 0.0271 0.0275 0.0284 0.0480 Axonal density:
TD<DBD
CcG 06011
ILF 07111 |
csT 07171
Right
UF 0.1683
IFOF 0.0118 (0.02) 02511 0.2249 00173 | 00115 0.0084 0.0160 00133 | Asonal density:
TD<DBD
CcG 03848
ILE 0.0428 (0.01) 0.1644 0.2937 01566 | 0.0306 0.0882 0.0572 00101 | Asonal density:
TD>DBD
csT 06183
ce
Genu 00560
Body 0.0214 (0.01) 0.0156 0.1504 0.0651 | 0.0249 0.0304 0.0120 0.0535 Absolute diffusivity:
TD>DBD
Splenium 02957

TD, typically developing; DBD, Disruptive Behavior Disorders; UE, Uncinate Fasciculus; IFOE, Inferior Fronto-Occipital Fasciculus; CG, Cingulum; ILE, Inferior Longitudinal Fasciculus; CST,
Corticospinal Tract; CC, Corpus Callosum; CU MAR, Callous Unemotional maximum a posteriori scores; ADHD, Attention Deficit/Hyperactivity Disorder. 1%, Generalized eta squared.
Statistically significant p-values have been highlighted in bold.
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DBD (n = 269) TD (n = 482) Statistics
TBI (n = 13) No TBI TBI (n = 10) No TBI DBD/TBI- vs. TD/TBI-vs. DBD/TBI-vs. DBD/TBI+ vs.
(n = 256) (n=472) DBD/TBI+ TD/TBI+ TD/TBI- TD/TBI+
el
Pubertal stage?
1 3(25%) 72 (29.3%) 3(30%) 154 (33.6%) 1.500, 2,0.513 1.892, 0.401 6.417,0.043 0.105, 1.000
2 1(8.3%) 50 (20.3%) 1(10%) 118 (25.8%)
3+ 8(66.7%) 124 (50.4%) 6 (60%) 186 (40.6%)
Race/ethnicity®
Hispanic 3(23.1%) 36 (14.1%) 0(0%) 95 (20.2%) 1.123,0.788 3.386,0.374 6.022,0.104 2.654,0.555
Non-Hispanic black 1(7.7%) 30 (11.7%) 1(10%) 67 (14.2%)
Non-Hispanic white 8(61.5%) 157 (61.3%) 8 (80%) 254 (53.9%)
Other/Multi-racial 1(7.7%) 33 (12.9%) 1(10%) 55 (11.7%)
Combined household income®
<$50,000 5 (45.4%) 73 (31.1%) 1(10%) 93 (21.5%) 1.374, 0.508 6.458, 0.026 7.413, 0.029 8.639,0.010
$50,000-$100,000 3(27.3%) 59 (25.1%) 0(0%) 122 (28.2%)
>$100,000 3(27.3%) 103 (43.8%) 9 (90%) 217 (50.3%)
Highest parent education
Some college or less 0(0%) 29 (11.3%) 0(0%) 52 (11%) 6.887,0.036 3.091,0.227 0.167,0.921 4.915,0.053
Associate degree 5(38.5%) 35 (13.7%) 0(0%) 60 (12.7%)
Bachelor’s and above 8(61.5%) 192 (75%) 10 (100%) 360 (76.3%)
Parent marital status?
Married/living with 8(61.5%) 173 (67.6%) 9 (90%) 369 (78.8%) 0.205,0.775 0736, 0.496 11.165,0.002 2.375,0.164
partner®
n (%)
Parent substance use®
=1 parent with 6 (46.29%) 80 (32.1%) 1(10%) 54 (11.8%) 1.102, 0.374 0.031,1 43.245, <0.001 3.490, 0.088
substance use
n (%)
Conduct problems 64.1 (8.89) 58.2(8.44) 50(0) 50 (0) —2.338,13.121, 0.036 - 15.509, 255, <0.001 5.708, 12, <0.001
Oppositional defiant 64.8 (8.58) 59.8(7.52) 50(0) 50 (0) —2.096, 12.952,0.056 - 20.780, 255, <0.001 6.238, 12, <0.001
problems
NIH total cognition 46.8(12.2) 477 (11.4) 49.6 (8.43) 504 (10.9) 0240, 13.212,0.814 —0.293,8.580,0.776 —2.940, 44934, 0.003 —0.615,19.997,0.546
fully-corrected T-score
CU MAP 0.174 (1.04) 0.360 (1.19) —0.485 (0.04) —0.515 (0.07) 0.627,13.648, 0.541 —2.317,10.021, 0.043 11.759, 255.85, <0.001 2.280, 12.048, 0.042
ADHD score 62.8(8.21) 56.9 (7.46) 50(0) 50 (0) —2.549, 13.025, 0.024 - 14.835, 255, <0.001 5.639, 12, <0.001
Mean age (SD) 10.11 (0.64) 9.89(0.63) 10.40 (0.62) 10.00 (0.60) —1.206, 13.233, 0.249 —2.053, 9.359, 0.070 —2.177, 496.57, 0.030 —1.106, 19.812,0.282

21 girl with disruptive behavior disorder (DBD) with a traumatic brain injury (TBI), 10 DBD girls without TBIs, and 14 TD without TBIs had missing pubertal stage data. ®1 TD gitl without a TBI had missing race/ethnicity data. <Parents of 2 DBD girls with a TBI, 21
DBD girls without a TBI, and 40 TD girls without a TBI had missing combined household income data. Parents of 4 TD girls without TBIs had missing marital status data. *Parents from 7 DBD girls without a TBI and 15 TD girls without a TBI had missing data on
substance use problems. DBD, disruptive behavior disorders; TBI, traumatic brain injury; CU MAP, callous-unemotional maximum a posteriori scores; ADHD, attention deficit disorder. Statistically significant p-values have been highlighted in bold.
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DBD (n = 400) TD (n = 349) Statistics

TBI (n = 31) No TBI TBIl (n =9) No TBI DBD/TBI- vs. 8 3 DBD/TBI+ vs.
(n = 369) (n = 340) DBD/TBI+
Pubertal stage?
1 20 (66.7%) 241 (66.6%) 6(66.7%) 224/(68.9%) 0.003, 1.000 0.262, 1.000 0.473,0.778 0231, 1.000
2 8(26.7%) 96 (26.5%) 2 (22.2%) 79 (24.3%)
3+ 2 (6.6%) 25(6.9%) 1(11.1%) 22(6.8%)
Race/ethnicity
Hispanic 5 (16.1%) 43 (11.7%) 3(33.3%) 71(20.9%) 1.293,0.755 3.520,0311 11.893, 0.007 3.097,0.375
Non-Hispanic black 3(9.7%) 60 (16.3%) 0(0%) 52 (15.3%)
Non-Hispanic white 19 (61.3%) 222 (60.2%) 6 (66.7%) 175 (51.5%)
Other/Multi-racial 4 (12.9%) 44 (11.9%) 0(0%) 42 (12.3%)

Combined household income®

<$50,000 10 (36%) 102 (30.4%) 0(0%) 75 (24.2%) 0.866, 0.684 7.420, 0.026 6.894,0.036 11.496, 0.003
$50,000-$100,000 9(32%) 96 (28.6%) 0(0%) 76 (24.5%)
>$100,000 9(32%) 138 (41.0%) 8 (100%) 159 (51.3%)

Highest parent education

Some college or less 4(12.9%) 41 (11.1%) 2(22.2%) 46 (13.5%) 0.778,0.755 1.819,0.349 1.017, 0.592 1.275,0.549
Associate degree 3(9.7%) 57 (15.4%) 0(0%) 49 (14.4%)
Bachelor’s and above 24 (77.4%) 271 (73.5%) 7 (77.8%) 245 (72.1%)

Parent marital status®

Married/Living With Partner 19 (61%) 248 (68.5%) 8(88.9%) 260 (77.8%) 0.683, 0.423 0.626, 0.679 7.680, 0.009 2.422,0.237
n (%)

Parent substance use

>1 parent with substance use 12 (40%) 104 (29.1%) 1(11.1%) 28 (8.4%) 1.557,0223 0.086, 1 48314, <0.001 2.600,0.214

n (%)

Conduct problems 627 (8.58) 60.0(8.87) 50 (0) 50 (0) —1.705, 35.607, - 21657, 368, <0.001 8.270, 30, <0.001
0.097

Oppositional defiant 64.0(9.39) 61.1(8.16) 50 (0) 50 (0) —1.701,33.911, - 26.076, 368, <0.001 8318, 30, <0.001

problems 0.098

NIH total cognition 44.6(10.1) 472(113) 559 (13.0) 502 (11.9) 1354,35.673,0.184 | —1307,8.407,0.226 —3232,623.55, —2.409, 11.086,

fully-corrected T-score 0.001 0.035

CU MAP 1.02 (1.17) 0.887 (1.15) ~0.207(0.07) ~0.214 (0.07) —0.630,35.054, —0.283,8.377,0.784 18.303,370.74, 5.811,30.765,
0533 <0.001 <0.001

ADHD score 65.1(9.23) 58.7(8.22) 50 (0) 50 (0) —3734,34.116, - 20.352, 368, <0.001 9.109, 30, <0.001

<0.001

Mean age (sd) 995 (0.64) 9.94(0.61) 10.35 (0.63) 9.95(0.63) —0.102, 34.691, —1.899,8.425,0.092 —0.253,698.34, —1.685,13.228,

0919 0.800 0.115

*1 boy in the disruptive behavior disorder (DBD) group with traumatic brain injury (TBI), 7 boys in the DBD group without a TBI, and 15 boys in TD group without TBI had missing pubertal stage data. ®3 boys presenting DBD with a TBI, 33 boys presenting DBD
without a TBI, 1 TD boy with a TBI, and 30 TD boys without a TBI had missing combined household income data. Parents of 7 DBD boys without a TBI and 6 TD boys without a TBI had missing marital status data. 4Parents from 1 DBD boy with TBI, 12 DBD boys
without TBI, and 5 TD boys without a TBI had missing data on substance use problems. DBD, disruptive behavior disorders; TBI, traumatic brain injury; CU MAR callous-unemotional maximum a posteriori scores; ADHD; attention deficit disorder; NIH, National
Institutes of Health. Statistically significant p-values have been highlighted in bold.
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Software Lenguaje Distribution dMRI format Tractography

license format
BrainSUITE Ct+, Multi. Open-source DICOM, NIfTI, TRK
Matlab Analyze
Camino Java Linux Open-source DICOM, NIfTT VTK
MacOs
Diffusion C++ Multi. Open-source DICOM, NIfTT, TRK
toolkit Analyze
ExploreDTI Matlab Multi. Non-commercial DICOM, NIfTI MAT
package Analyze,
Matlab formats
FSL C++/Unix Linux Non-commercial NIfTT NIfTT
MacOs package
Windows
MRtrix Ct+, Linux open-source DICOM, Analize TCK
OpenGL MacOs NIfTI, MGH
MRtrix formats
FreeSurfer C/Ct+, Linux Open-source DICOM, Analyze -
Python, NIfTL, MINC
Matlab
DSI Studio C++ Multi. Open-source DICOM, NIfTT TRK
Dipy Pyhton, Multi. Open-source Analyze, NIfTI, TCK, TRK
Cython DICOM
DiffusionKit C/C++ Windows Freely available DICOM, NIfTT TRK
Linux
SlicerDMRI Ct+, Multi. Open-source DICOM, Analyze, VTK
Python NIfT, nrrd/nhdr

The order of the columns is as follows: Software, Lenguaje, OS, Distribution License, dMRI Format, and Tractography Format. OpenGL, Open graphics library; Multi., Multiplatform; NIfT1,
Neuroimaging informatics technology initiative; DICOM, Digital imaging and communications in Medicine; MGH, FreeSurfer format; MING, FreeSurfer format; VTK, Visualization ToolKit;
TRK, Track File; Analyze, Image data format; TCK, Tracks file format; and MAT, Matlab file.





OPS/images/fnins-18-1403804/math_2.gif
m=mri
gLl Lhi Y
=%





OPS/images/fnins-18-1333243/fnins-18-1333243-t002.jpg
Software DW Model Fiber Bundle Visual- Fiber

Reconst. 1 Clustering Segment. ization Measur.
BrainSUITE DTI Det. - 3 Slice/Volume, d
DW model,
tractography
Camino DTI/ multifiber Det. - - Slice/Volume, -
HARDI, QBall, Prob. DW model,
PASMRI tractography
Diffusion DTI, DSI, QBI Det. - - Uses TrackVis -
toolkit
ExploreDTI DTI, QBI, CSD Det. - Using ROIs Slice/Volume, Mean
Prob. DW model, length
tractography
FSL DTI Prob. - - Slice/Volume, -
Meshes
MRtrix DTI, Single-tissue Det. - e Slice/Volume, =
8D, Prob. DW model,
Multi-tissue CSD tractography
FreeSurfer TRACULA Prob. Anato- TRACULA Slice/Volume, -
micCuts Meshes
DSI Studio DTI, DSI, QBI Det. - Using ROTs Slice/Volume, Count,
DW model, mean
Tractography, length
Meshes
Dipy DTI, DSI, Det. Quick- Reco- Slice/Volume, Count,
QBI, CSD Prob. Bundles Bundles DW model, mean
Tractography, length
Meshes
DiffusionKit DTI, CSD, dec. Det. - - Slice/Volume, -
-based SPFI DW model,
Tractography
SlicerDMRI DTI, Multi-tensor Det. - Using ROIs Slice/Volume, Points
UKF DW model, numbers,
Tractography count,
mean
length

‘The order of the columns is as follows: Software, DW (diffusion-weighted) Model Reconstruction, Fiber Tracking, Fiber Clustering, Bundle Segmentation, Visualization, and Fiber Measures.
DTI, Diffusion tensor imaging; HARDI, High angular resolution diffusion Imaging; DSI, Diffusion spectrum imaging; QBI, Q-Ball imaging; CSD, Constrained spherical deconvolution; SPEI,
Spherical polar Fourier imaging; TRACULA, TRActs Constrained by UnderLying Anatomy; Det., Deterministic; Prob., Probabilistic; ROIs, Regions of interest; QuickBundles, (Garyfallidis
ctal, 2012); AnatomicCuts, (Siless et al, 2018) RecoBundles (Garyfallidis et al,, 2015); DW, Diffusion weighted; and UK, unscented Kalman filter (Malcolm et al., 2010).
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Computer Graphics OpenGL

card Version

PC1 Intel Core NVIDIA GeForce 128 GB 160 Ubuntu 39&3.11

i9-12900 RTX 3060 22.04.1 LTS/
Windows 11

PC2 Intel Core NVIDIA Quadro 32GB 160 Ubuntu 39&3.11
i7-9700KF P620 20.04.5 LTS

PC3 AMD Ryzen 9 NVIDIA GeForce 24GB 160 Windows 10 39&3.11
5900HX RTX 3060

PC4 Intel Core NVIDIA GeForce 64GB 160 Windows 10 39&3.11
i7 -8700K GTX 1050 Ti

PC5 Intel Core Intel HD Graphics | 64 GB 160 Ubuntu 39&3.11
i7-7700HQ 630 20,042 LTS

PC6 Intel Core NVIDIA GeForce 16GB 160 Ubuntu 39&3.11
i7-12700K GTX 1650 22.042LTS

PC7 Intel Core NVIDIA GeForce 16 GB 3.0 Ubuntu 39&3.11
i5-8600K GTX 1050 Ti 18.04.6 LTS

PC8 Intel Core NVIDIA 16 GB 110 Windows 10 310
i5-6600k GTX 1660

The first column assigns a unique number to each computer employed. Hardware resources are examined through the CPU, Graphics card, and RAM columns, whereas software resources
are appraised via the columns for OpenGL version, OS (Operating System), and Python version. Phybers runs smoothly for all these listed features except for the Visualization module, which
requires OpenGL versions higher than 3.0.





